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Praise for GenAl on Google Cloud

We are moving past the era of “wow” moments in Generative Al into the
era of “work.” This book provides the essential engineering blueprint for
that transition. The authors don t just talk about the potential of agents
and LLMs; they show you exactly how to architect, secure, and scale
them using the very best of Google Cloud s stack. A mandatory read for
any leader serious about turning Al experimentation into enterprise
value.

—Saurabh Tiwary, VP, general manager, Google Cloud Al

A masterclass in balance, this book seamlessly bridges the gap between
foundational theory and hands-on execution. For anyone looking to
understand the “why” behind Generative Al while mastering the “how”
of building applications, this is essential reading.

—Burak Gokturk, VP of Al and systems research, Google
Cloud

Won 't any book about Al agents be woefully out of date as soon as its
published? Perhaps for some, but not this one. The authors provide
hearty treatment to a wide range of topics, focusing on the “why” as
much as the “how.” Whether you re creating Al strategy, designing
architectures, writing code, or operating production systems, this book
will stand the test of time as a valid guide towards a successful
implementation.

—Richard Seroter, chief evangelist, Google

For leaders ready to build the next generation of intelligent applications,
this book provides the necessary blueprint. It offers the first
comprehensive look at Agent Development Kit (ADK), equipping
engineers with the practical frameworks needed to turn agentic concepts
into production-grade reality.

—Julia Wiesinger, group product manager, Google



While ADK gives developers the framework to build powerful agents, this
book provides the essential roadmap from building prototypes to secure,
production-grade enterprise systems. It is the missing manual for anyone
serious about bridging the gap between writing agentic code and
delivering real-world business value on Google Cloud.

—Bo Yang, lead software engineer, Google (Building
ADKY)
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Preface

Let’s be honest—building a flashy generative Al prototype is the easy part.
We’ve all been there: the excitement of a demo that works perfectly in
controlled conditions, stakeholders leaning forward in their chairs, and that
moment when someone says, “This is amazing! When can we roll it out?”

And then reality hits.

The four of us—Ayo, Lavi, Sarita, and Steph—have collectively spent
thousands of hours helping organizations and developers navigate what
comes after that exciting demo moment. We work across different teams at
Google Cloud, but we kept encountering the same fundamental challenge
regardless of industry or use case: the gap between a working prototype and
a production-ready generative Al system is massive, complex, and filled
with obstacles that aren’t obvious until you’re knee-deep in the journey.

During one of our regular knowledge-sharing sessions, we realized that
while there are plenty of resources that teach how to build generative Al
prototypes, there’s surprisingly little practical guidance on the critical path
from prototype to production. We started compiling our notes, frameworks,
and hard-earned lessons, initially just for ourselves and our teams.

“This could help a lot more people than just us,” became our mantra, and
that’s how this book was born.

We’re not here to dazzle you with theoretical abstractions or rehash
concepts you can find in a hundred blog posts. Instead, we’ve created the
practical guide we wish we’d had—one that addresses the real challenges of
deploying generative Al systems in production environments on Google
Cloud, backed by concrete examples and honest insights about what
actually works.

This isn’t a polished marketing narrative. It’s a field guide written by
practitioners who’ve seen both the triumphs and the train wrecks. We’ve



kept our individual voices throughout, sharing our unique perspectives
rather than forcing a unified narrative, because that’s how real engineering
teams work. Sometimes we disagree, and that’s valuable too.

Our goal is simple: to help you navigate the journey from prototype to
production more efficiently than we did our first time around.



Why This Book Matters

The GenAl and agentic Al landscape is evolving at breakneck speed. New
models emerge almost daily, each promising more parameters, better
benchmarks, and greater capabilities. Yet across industries, we’re
witnessing a consistent pattern: organizations struggle not with building
impressive prototypes, but with making them production-ready.

This transition from prototype to production represents the true value
inflection point. According to industry analysts, more than 80% of
enterprises will have experimented with generative Al by 2026, yet many
report no significant bottom-line impact. At the heart of this paradox is a
mismatch in deployment. While “horizontal” tools like chatbots have scaled
rapidly across enterprises, their value is often spread thin and difficult to
quantify. In contrast, high-value “vertical” applications—those deeply
integrated into specific business functions—face far greater hurdles, with
analysts estimating that nearly 90% of these transformative initiatives fail to
progress beyond the pilot stage. The gap is particularly stark in regulated
industries such as healthcare and financial services, where security,
compliance, and reliability requirements intensify the challenge.

What separates successful deployments from a pilot experiment? It’s rarely
about model quality alone. Instead, it’s about the surrounding infrastructure
—data pipelines, evaluation frameworks, monitoring systems, and
governance guardrails—that make the difference between systems that
demonstrate potential and those that deliver measurable business value.

Google Cloud’s Vertex Al platform has helped hundreds of organizations
bridge this gap, providing the foundation for both startups and Fortune 500
companies to move their GenAl applications from concept to production.
The patterns and practices we’ve observed along the way form the
backbone of this book’s practical approach to building systems that not only
work in demos but thrive in the real world.

Writing a book about a field that reinvents itself every few months is a
formidable challenge. While specific code snippets, tools, or model
recommendations are bound to become dated, the fundamental questions of
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system design, evaluation, and governance will remain. Our goal is to equip
you with a durable framework for answering those questions, regardless of
what the next breakthrough looks like.

What You’ll Find in This Book

We’ve structured this book to follow the journey from prototype to
production, with each chapter building on the previous one:

Chapter 1, “The Challenge of Generative Al Application Development”
Introduces the unique complexities of building GenAl applications and
sets the stage for MLOps for LLMs and agents

Chapter 2, “Data Readiness and Accessibility”

Explores how to handle and prepare data for GenAl applications,
covering preparation strategies, annotation techniques, and data
augmentation

Chapter 3, “Building a Multimodal Agent with the Agent Development Kit
(ADK)”

Guides you through creating a functional agent prototype using
Google’s ADK framework, demonstrating how to build a customer
service agent that handles text, video, and images

Chapter 4, “Orchestrating Intelligent Agent Teams”

Shows how to scale from single agents to multiagent systems, covering
agent-to-agent and agent-to-tool communication patterns and enterprise
collaboration strategies

Chapter 5, “Evaluation and Optimization Strategies”

Explores frameworks for measuring success in LLMs and agents, from
safety and robustness metrics to agent trajectory evaluation and
advanced optimization patterns



Chapter 6, “Tuning and Infrastructure”

Covers model fine-tuning techniques and infrastructure optimization
strategies to maximize performance and cost-efficiency in production
environments

Chapter 7, “MLOps for Production-Ready Al and Agentic Systems”

Establishes a comprehensive approach to operationalizing LLMs and
agent systems, from CI/CD pipelines and cost management to
monitoring and deployment strategies

Chapter 8, “The Al and Agentic Maturity Framework”

Provides a strategic roadmap for organizational growth, helping you
assess readiness across leadership, culture, and operations to move from
tactical experiments to transformational Al adoption

Each chapter concludes with a “Looking Ahead” section to prepare you for
the topics and themes that will come next. Additionally, we provide a
“Learning Labs” section at the end of each chapter, where links to hands-on
activities will lead you to further support your understanding of key
concepts presented in the chapter.

Our Approach

We believe in learning by doing. Throughout this book, we provide code
examples that you can run and adapt to your specific needs. We focus on
practical implementations rather than theoretical abstractions, though we
provide enough theory to ensure that you understand why certain
approaches work better than others.

We’ve chosen to write this book with our individual voices rather than
aiming for a seamless narrative. As you read, you’ll hear from each of us
directly, sharing our specific expertise and experiences. We believe this



approach makes the content more authentic and allows us to connect with
you on a more personal level.



Who This Book Is For

This book is designed for several key audiences:

Machine learning engineers and Al engineers transitioning from
traditional machine learning models to complex generative Al
pipelines

Data teams moving from conventional analytics to Al-powered
insights

Software developers with Python skills entering Al-first
application development

Product managers and technical leaders responsible for Al strategy
and implementation

Career transitioners leveraging existing technical foundations to
move into Al engineering roles

While we assume familiarity with Python programming and basic machine
learning concepts, we’ve structured the content to be accessible to readers
with varying levels of expertise. Some familiarity with Google Cloud and
Vertex Al is beneficial but not a prerequisite.

Prerequisites
To get the most out of this book, you should have:

Experience with Python programming
Basic understanding of machine learning concepts

Familiarity with cloud computing principles (though not

necessarily Google Cloud specifically)

If you’re new to some of these areas, don’t worry—we provide references
and explanations where needed, and the hands-on approach means you’ll
learn as you go.



Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLSs, email addresses, filenames, and file
extensions.
Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

This element signifies a general note.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for
download at Attps.//github.com/ayoisio/genai-on-google-cloud.

If you have a technical question or a problem using the code examples,
please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
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reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “GenAl
on Google Cloud: Enterprise Generative Al Systems and Agents by Ayo
Adedeji, Lavi Nigam, Sarita A. Joshi, and Stephanie Gervasi (O’Reilly).
Copyright 2026 Ayo Adedeji, Lavi Nigam, Sarita A. Joshi, and Stephanie
Gervasi, 979-8-341-62385-9.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

For more than 40 years, O Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit Attps://oreilly.com.

How to Contact Us
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Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https.//oreil.ly/GenAl on_Google.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: Attps://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.
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Chapter 1. The Challenge of
Generative Al Application
Development

Dear reader, we are excited to have you on this learning journey with us.
The objective for this first chapter is to introduce you to the unique
complexities of building and deploying applications powered by large
language models (LLMs). We hope this chapter will prepare you for
subsequent deeper discussions of LLM operations (LLMOps) and agent
operations (AgentOps)—really, extensions of machine learning operations
(MLOps), which includes the behind-the-scenes work and set of best
practices for managing the entire lifecycle of Al and agentic systems, from
building and testing to deploying and responsibly maintaining these
powerful systems in production.

Overview of LLMs, Generative Al Agents,
and Potential Applications to Business Tasks

Let’s start by defining some key characteristics of LLMs and their
application to generative tasks such as content generation, summarization,
recommendation, problem solving, and discovery.

To break it down simply, an LLM is:
Large

LLMs are trained on enormous datasets, often containing billions or
even trillions of words. Many LLMs have “read” a significant portion of
the internet and many, many books. The corpus for many of the LLMs
you may use as a consumer have been trained on the equivalent of
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several large libraries. In the case of multimodal model training, this
includes libraries of text, images, videos, and audio.

Language

The primary focus of LLMs is on understanding and generating human
language.

Model

LLMs use complex statistical techniques to learn patterns and
relationships within text data. At its heart, an LLM is a type of neural
network, specifically a deep learning model, with multiple layers of
interconnected nodes. The most common architecture for these models
is the transformer network. Before the transformer can process any text,
the raw input is first converted into a numerical format through
vectorization, where every word or token is mapped to a high-
dimensional vector. These vectors are the model’s native language,
representing the semantic meaning of the text; words with similar
meanings are mapped to vectors that are numerically close together.
Transformer networks excel by utilizing mechanisms like “attention,”
which allows the model to dynamically weigh and combine these input
vectors, thereby understanding the context and relationships between all
words in a sequence. This deep, vectorized interpretation allows the
model to effectively index and retrieve relevant information based on
meaning, rather than just keywords.

In language models, a token refers to the basic unit of text that the model
processes. Tokens are typically word fragments, complete words, or
characters depending on the model. For example, the sentence, “Let’s go to
the store” might be split into tokens such as [“Let”, “’s”, “go”, “to”, “the”,
“store”’]. One trillion tokens would be roughly equivalent to several billions
of pages of text.
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The 2017 paper, Attention Is All You Need, published in the Proceedings of the 3 1st
International Conference on Neural Information Processing Systems by researchers at
Google, is foundational to the development and success of modern LLMs. This paper
introduced a novel neural network architecture called the transformer. Importantly, this
architecture moved away from the previously dominant recurrent neural networks
(RNNs) for sequence-to-sequence tasks such as machine translation. The core
innovation of the transformer is its heavy reliance on the attention mechanism. Instead
of processing sequences step by step like RNNs do, the attention mechanism allows the
model to directly access and weigh the importance of all parts of the input sequence
when processing each position. The transformer architecture described in the 2017 paper
has become the cornerstone of virtually all state-of-the-art LLMs.

So, an LLM is a type of Al model that is trained on a massive amount of
text data. This training allows an LLM to understand, summarize, generate,
and predict new text. While traditionally focused on text, the most advanced
LLMs are often trained on multimodal datasets, enabling them to process
and generate content across various formats such as images, videos, and
audio, along with text. We can use natural language to communicate with
LLMs. Prompting is the act of using natural language instructions (the
“prompt”) to communicate a specific task, request, or context to an LLM to
guide it toward generating the desired output.
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THE ORIGINS OF LLMS

It’s difficult to pinpoint the exact moment and person who first used the
precise term “large language model;” it emerged as these models grew
in size and capability. The underlying concepts and technologies were
developed by numerous researchers over decades in the fields of natural
language processing (NLP) and machine learning. The abbreviation
“LLM” gained traction as the scale of these models became a defining
characteristic, but LLMs entered the mainstream conversation relatively
recently, around late 2022 and throughout 2023. Several key factors
contributed to this:

The rise of ChatGPT

The release of OpenAl’s ChatGPT in November 2022 was a
watershed moment. Its user-friendly interface and remarkable
ability to generate human-like text, answer questions, write different
kinds of creative content, and even code captured the public’s
imagination like no previous generative Al (GenAl) technology.
People could directly interact with a powerful LLM and experience
its capabilities firsthand.

Increased accessibility

ChatGPT made LLM technology accessible to the general public.
Previously, interacting with such advanced GenAl models often
required technical expertise or was limited to research settings.

Viral media coverage

Impressive and sometimes surprising outputs from LLMs quickly
spread across social media and were widely covered by mainstream
news outlets. This generated significant public interest and
discussion about the potential and implications of this technology.

Advancements in capabilities



LLMs had been under development for years, with models such as
GPT-3 (released in 2020) demonstrating significant advancements.
However, it was the combination of fine-tuning for improved
performance and advances in alignment techniques to make models
safer that truly brought LLMs into the mainstream.

Debates about impact

The capabilities of LLMs sparked widespread conversations about
their potential impact on various aspects of society, including
education, work, creativity, and the spread of misinformation. This
ongoing debate has kept LLMs in the public eye. Responsible
GenAl toolkits (e.g., Google Al) have emerged to help guide best
practices around evaluation of LLMs for bias and include tools for
model explainability and safety and security guardrails.

Small Language Models (SLMs)

You may hear the term small language model (SLM) used to refer to a
language model with a significantly smaller number of parameters and a
less complex architecture compared to LLMs. SLMs are trained on smaller
and often domain-specific datasets and require far fewer computational
resources for both training and deployment. SLMs are optimized for speed,
cost, and on-device deployment. You might reach for an SLM over an LLM
when resource constraints are significant, cost constraints are considerable,
or you have a well-defined and narrow task. The most common reason for
choosing an SLM over an LLM involves latency-sensitive applications,
where user interaction demands near-instantaneous responses. However, it’s
also important to note that many publicly hosted LLMs now offer streaming
modes with very low latency for real-time interaction, making the choice
more nuanced and dependent on other factors such as data privacy, offline
accessibility, and domain specificity. For example, Google’s Gemma family
of models is a collection of lightweight open models trained for specific
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tasks such as coding (CodeGemma), image processing (PaliGemma), and
content safety evaluation (ShieldGemma).

Don’t automatically assume that bigger models guarantee better
performance for all tasks. For many practical applications, a well-trained
SLM can provide a cost-effective and efficient solution that meets the
specific needs. Conversely, for tasks demanding high levels of reasoning,
creativity, or general knowledge, the power of an LLM might be essential,
even if it comes with higher costs. Table 1-1 provides a comprehensive
comparison of these models across key dimensions including size,
computational requirements, and capabilities. The key is to match the
model’s capabilities and resource requirements to the specific demands of
your use case. Later in this chapter, we’ll talk more about use cases for
LLMs; the importance of a well-articulated use case (with performance
metrics and evaluation criteria) cannot be overstated!



Table 1-1. Comparing small and large language models

Feature

Size
(parameters)
Complexity
Training data
Computational

cost

Resource
needs

Latency

Small language
model (SLM)

Typically millions to
single-digit billions of
parameters.

Simpler neural network
architectures.

Trained on smaller
datasets.

Lower for training and
inference.

Can run on devices
with more limited
resources (€.g., mobile,
embedded).

Very low latency, often
enabling near-
instantaneous
responses, which is
ideal for on-device and
real-time interactive
applications.

Large language model
(LLM)

Typically billions to trillions
of parameters.

More complex architectures
(often deeper and wider).

Trained on massive, diverse
datasets.

Significantly higher for
training and inference.

Typically requires
substantial computational
infrastructure such as
graphics processing units
(GPUs) and more
specialized tensor
processing units (TPUs).

Higher latency for full
responses, but can be
significantly reduced with
streaming APIs for
Interactive use cases.



Feature

General
knowledge

Reasoning
ability

Creativity and
nuance

Task
versatility

Data efficiency

Small language
model (SLM)

More limited and may
be domain-specific.

Generally less
sophisticated.

May struggle with
highly creative or
nuanced tasks.

Often designed or fine-

tuned for specific tasks.

May require more task-
specific data for fine-
tuning to achieve
comparable
performance on certain
tasks.

Large language model
(LLM)

Broader and more
comprehensive general
knowledge.

Often exhibits more
advanced reasoning and
understanding.

Capable of generating more
creative and nuanced
content.

More versatile and can
perform a wider range of
tasks, including in-context
learning.

Can often achieve good
performance on new tasks
with fewer examples (few-
shot or zero-shot learning).

Foundation Models and Multimodality

Another term that you might hear used interchangeably with LLM is
foundation model. In truth, all LLMs are foundation models because they
are large, trained on vast amounts of unlabeled data, and can be adapted for
various language-based tasks. But not all foundation models are LLMs.
There are specialized foundation models—such as biological models for
protein structure prediction or vision models for image generation (like



Imagen). While a model like Imagen may leverage a powerful LLM to
encode and ‘understand’ a text prompt, its primary architecture is
specialized for generating pixels rather than performing general-purpose,
multi-turn linguistic reasoning. The industry is increasingly moving toward
architectures that synthesize these disparate capabilities into a single,
unified system, resulting in the highly integrated multimodal foundation
models illustrated in Figure 1-1.
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Figure 1-1. lllustration of a multimodal foundation model capable of processing and generating
different types of content, including images, text, sound, and video

Google’s multimodal Gemini family exemplifies modern foundation
models. Gemini 3, for example, functions as an LLM because it is explicitly
designed to understand and generate human language with a high degree of
sophistication. However, these models are trained on vast datasets of text,
images, audio, video, and code. This broad pretraining allows the models to
exhibit general-purpose capabilities and be fine-tuned for a wide range of
tasks beyond just text, making them multimodal foundation models. These
models are often available in distinct versions to match the job at hand; for
instance, Gemini 3 Flash is built for high-speed efficiency, while Gemini 3
Pro 1s designed for deep reasoning and complex problem-solving. Out-of-
the-box pretrained foundation models are a key starting point for most
consumers of LLMs. Context engineering (covered here and in Chapters 2,
5, and 7) and model fine-tuning (covered in Chapter 6) are common
approaches to augment the performance of these models.
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WHAT IS CONTEXT ENGINEERING?

Context engineering for LLMs is the strategic design and preparation of
all of the input information (e.g, prompt and data) to guide the model’s
behavior and enable it to perform a specific task more effectively.
Prompt engineering, system instructions, Retrieval-Augmented
Generation (RAG), and controlled generation are examples of context
engineering strategies:

Prompt engineering

The practice of crafting effective inputs (prompts) that guide a
pretrained LLM to produce a desired, accurate, and reliable output
for a specific task. The prompt serves as the functional instructions
in a natural language interface that guides the model’s reasoning
capabilities and dictates its behavior, persona, constraints, and the
format of its response. Common techniques in prompt design
include:

Zero-short prompting
Giving a task without any examples (e.g., translate this text from
English to Spanish).

Few-shot prompting
Including several examples within the prompt itself, to define
and illustrate the desired input-output pattern.

Chain-of-thought prompting

Instructing the model to output its reasoning steps before the
final answer is output to improve logical coherence and
accuracy.

You’ll read more about prompt optimization, including
automated optimization tools available in the Vertex Al
Platform, in Chapter 5.
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System instructions

A fundamental element of prompt design, especially in complex
applications like Al agents. A system instruction is a governing,
persistent piece of text provided to an LLM that defines its identity,
behavioral boundaries, and core constraints for the entire
conversation or application session. System instructions establish
the primary rules for the model before any user input is processed
and are generally fixed and do not change during the course of a
single user session, providing a consistent “personality” and set of
rules for the LLM. Even in consumer interfaces where a user
doesn’t explicitly provide one, the platform typically inserts a
“hidden” system instruction to establish the model’s baseline
persona and safety guardrails.

Controlled generation

A mechanism that can be used to control the structure, format, and
guardrails of an LLM’s generated output to conform to a predefined
schema or format, such as JSON. Guaranteeing a syntactically
correct and schema-valid structure for output is critical for the
reliability of applications in production environments. Specifically,
output engineering/control ensures that LLM responses can be
consumed correctly by downstream systems.

Retrieval-Augmented Generation (RAG)

An architectural pattern for enhancing the factual accuracy, recency,
and relevance of LLMs by grounding their responses in external,
verified, and up-to-date data sources. RAG also offers users strong
interpretability and verifiability by enabling citations. RAG works
by fundamentally changing the model’s workflow from relying
solely on its pretrained, static internal knowledge to incorporating
dynamic, external context. RAG is highly versatile and can be
configured to ground LLM responses using virtually any accessible
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data source, including your own internal proprietary data, external
public data, or live third-party data via APlIs.

With RAG, when a user submits a query, the RAG system first
searches a curated knowledge base (e.g., internal documents,
databases, articles) to find the most relevant document segments or
“chunks.” These retrieved, relevant text chunks are then appended
to the original user query, effectively augmenting the model’s
prompt with fresh, specific context. The LLM receives this
augmented prompt and generates its response based on the new,
provided context, thereby grounding the answer in verifiable
information and minimizing the risk of hallucination.

You’ll learn more about RAG in Chapter 2 and will see this
important concept come up again in subsequent chapters of this
book.

Domain-Specific and Reasoning Models

Some LLMs are referred to as “task (or domain) specific.” This is a
property of the way these models are tuned for the tasks they are developed
to perform. Two examples of task-specific LLMs are SecLM and Med-
Gemini, models developed by Google and specializing in the cybersecurity
and medical domains, respectively. SecLM is trained on a vast dataset that
includes security-related information, threat intelligence, and code analysis
data. Its purpose is to specifically assist security professionals with tasks
such as threat detection, analysis of malicious scripts, and understanding
attack paths.

Med-Gemini is trained on medical literature, research papers, clinical data
(likely anonymized and with appropriate safeguards), and other health-
related information. Its goal is to specifically assist with tasks such as
answering medical questions, summarizing research, and potentially aiding
in clinical decision support (under expert supervision). Figure 1-2 shows
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Med-Gemini in action—it demonstrates its domain expertise by precisely
identifying video segments (02:22-02:58) showing how to relieve calf strain
with foam roller massage, a capability requiring specialized medical
knowledge that general-purpose models might lack. This ability to
understand and extract relevant information from medical instructional
content showcases how task-specific models are optimized for their
domains. Increasingly, general-purpose LLMs, including the Gemini family
of multimodal foundation models, have been trained on massive general
and specialized datasets within their respective domains. This means that
users must critically evaluate both general and specialized LLMs for tasks.

MedGemini is an internal Google research product, but try out the MedGemma model,
which is part of the Gemma family of open-weight models we mentioned earlier, if you
want to get hands-on with a medical domain specific model. SecLM is operationalized
in Google Cloud’s Security Command Center, so go there to experience the insights this
model powers.
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Figure 1-2. Demonstration of Med-Gemini's task-specific capabilities in analyzing medical
instructional content

A new flavor of LLMs has advanced “reasoning” or “thinking” capabilities.
This refers to a model’s ability to engage in extended internal deliberation
before delivering an answer. These models are trained to work step by step
through a “thinking stage,” where they analyze information, explore
multiple hypotheses, and self-correct their logic internally to reduce errors.



This incremental reasoning process makes them significantly more reliable
for complex math, scientific logic, and advanced coding. A notable example
is the Gemini family (starting with version 2.5), which allows users to
manage this process through a controllable “thinking budget”, balancing the
depth of the model’s reasoning with the speed of the response.

A MULTITUDE OF MODELS

There are so many LLMs to choose from! It seems like every week
there is a new model or new model version released. Choice means that
you can thoroughly evaluate and select the best (among many) models
to fit your individual use case and that you have the flexibility to move
models in and out of your pipelines as needs change. Being able to
access a multitude of models and model versions easily, quickly, and
within the expectations of enterprise security and privacy is more
important than ever. At the time of writing, Vertex Al Model Garden,
part of Google’s Vertex Al Platform, includes more than 200 first-party,
third-party, and open source models—spanning language, vision, audio,
and other modalities—for users to choose from for various applications
and diverse use cases. This includes pretrained multitask models that
can be further tuned or customized for specific tasks, such as
generation, classification, detection, recognition, embedding,
segmentation, forecasting, translation, and automatic speech
recognition. In Chapter 7, you’ll hear more about model cards, which
are simple, structured overviews of how models were designed and
evaluated. Model cards can be accessed from within Vertex Al Model
Garden and allow you, the user, to make fully informed decisions based
on facts about each model.

Generative Al Agents

GenAl agents use the reasoning capabilities of GenAl models (e.g., LLMs)
as a cognitive engine to drive autonomous decision-making and actions.
Henceforth, an agent can be thought of as an entity that can perceive its
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environment, make decisions, and take actions to achieve specific goals.
Key characteristics of an intelligent agent include the following:

e Perception (i.e., gathering information about the environment)

e Reasoning (i.e., processing information and making decisions)

e Action (i.e., executing choices to interact with the environment)

e Autonomy (i.e., self-directed execution of tasks to achieve a goal)
e Goal-oriented (i.e., working toward specific objectives)

One of the most interesting features of agents is iterative refinement, based
on human or internal feedback mechanisms. GenAl agents can refine their
generated content based on feedback or changes in the environment, giving
them an element of adaptability that is unique and powerful.

As illustrated in Figure 1-3, agents have four key components:

Model(s)

A model, typically an LLM, serves as the agent “brain” for reasoning,
understanding, and responding. The model functions to reason over
goals, determine a plan, and generate a response. Multiagent
frameworks can leverage different models to complete subtasks as part
of an overall process or intent. Models optimized during training for
agentic performance (for example, teaching a model not just what to
say, but how to behave and reliably choose the correct tools, order of
operations, and interpretation of complex content) tend to perform
better on sequential decision-making of agentic applications.

Tools

Tools are used to fetch data and perform actions or transactions by
calling APIs, functions, or services, including databases or even other
agents. In other words, tools bridge the gap between the LLM’s
capability and the real world by allowing the agent to take actions,



access real-time information, and perform calculations or specialized
tasks that the LLM cannot do internally.

Orchestration

The orchestration component is the central control plane of an Al agent,
managing the cyclical flow and decision-making process across the
entire system. This cyclical layer maintains memory and state, including
the approach used to plan and sequence actions. It applies advanced
reasoning techniques, such as ReAct, Chain of Thought (CoT), and Tree
of Thoughts (ToT), to inform decisions, determine which tools to
invoke, and decide what new context to retrieve or store. By directing
the interaction between the model, the tools, and the environment,
orchestration ensures that the agent executes tasks reliably, iteratively
refining its plan until the final objective is met.

Runtime

The runtime is the secure environment where the agent’s instructions
and logic are actually carried out. It is the physical infrastructure that
hosts the model and orchestration code and is responsible for making
the agent’s tools work (like executing code or making API calls). The
runtime matters because it governs the agent’s real-world reliability: it
ensures that the agent is scalable, operates with low latency, and is
properly secured and authenticated, which is essential for deploying
agents in an enterprise setting. In short, the runtime component of an
agent executes the system, when invoked.
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Figure 1-3. Agent overview (reprinted with permission from Megan O Keefe, developer advocate at
Google Cloud) illustrates the complete workflow of an Al agent operating within its runtime
environment

As Figure 1-3 shows, the agent runtime serves as the operational
environment, encompassing the agent (orchestration), the model (LLM),
and the external tools. The process unfolds in four stages, depicted in the
figure:

Step 1. Prompt initiation

The user presents a complex goal or query to the agent.

Step 2. Reasoning and tool selection

The agent uses its internal LLM to assess the task. Leveraging its
internal memory (which includes crucial context such as chat history
and retrieved knowledge) and its goals and instructions, the model
engages in reasoning, planning, and reflection to determine that an
external action is required. It selects the appropriate tool, B, and formats
the required input payload.

Step 3. External execution

The agent’s orchestration layer executes the preformatted function call
to Tool B within the external tools suite.

Step 4. Interpretation and response

The agent receives the output from Tool B. It again uses the model to
interpret this raw data, integrate it with the original context, and
generate a final, coherent, and actionable response for the user.

One of the most exciting things about GenAl agents is their potential to
automate creative tasks, personalize experiences, and drive new forms of
interaction with technology. Agents have widespread application across
diverse industries such as sales, marketing, customer service, software
development, healthcare, education, consumer goods, and retail. A few
illustrative examples of these agents (many of which would likely be



multiagent systems that leverage sets of instructions and various LLMs)
that we’ve discussed with user teams include:

Al marketing assistant

An agent that can understand marketing goals, research target
audiences, and autonomously generate advertising copy, social media
posts, storyboards and visual imagery, and short video content for
campaigns and target audiences. Marketing assistants can also
dynamically monitor campaign performance and adjust generation
strategies for new audience segments or trends in the competitive
landscape.

Personalized learning tutor

An agent that can understand a student’s learning needs and generate
customized practice problems, hints to correct answers, explanations
with reasoning, and feedback in natural language. Such agents can adapt
and evolve with the user by understanding the changing nature of
prompts.

Code developer agent

An agent that can understand software requirements with codebase
awareness and generate relevant code snippets, entire functions, or even
complete applications. Such an agent could also test and debug the
generated code. Developer agents can be particularly useful for
enforcing standards and best practices across an organization.

Scientific research assistant

An agent that can understand a researcher’s specific domain and
hypotheses, utilize RAG against a specialized database of academic
papers, and autonomously generate hyper-relevant findings, synthesized
summaries, and cross-referenced evidence. Research agents employing
scheduled workflows monitor new data sources daily and proactively
alert users to new critical information relevant to their area of interest,
accelerating hypothesis testing and literature review.



Agent Architectures

Multiagent GenAl applications are increasingly emerging as potential tools
for completing complex and multistep tasks, especially in areas of deep
scientific research. Applications using multiagent frameworks share a
common environment, make individual and collective decisions, and take
individual and collective actions to achieve specific goals. Imagine a team
of specialized Al robots that need to work together to solve a complex
problem, much like a team of human experts collaborating on a project.
Multiagent frameworks must provide rules, tools, and infrastructure for
these Al robots to communicate, coordinate, and interact effectively.

As illustrated in Figure 1-4, there are several common architectural patterns
for structuring LLM-based applications, from simple single-model
approaches to more complex multimodel systems.

Google Cloud provides tools and services for building, deploying, and
managing no-code, low-code, and high-code agent applications through
Gemini Enterprise (for business users), Vertex AI Agent Builder (for
developers), and the open source Agent Development Kit (for developers).
We will talk more about these products in Chapters 3 and 4.

Not every GenAl application is an agent application. Nonagentic GenAl applications
include zero-shot or few-shot learning, RAG (Retrieval-Augmented Generation), and
fixed hard-coded sequences of zero-/few-shot invocations.



Sequential models

One LLM foral tasks Chains multiplespecialized LLMsina pipeline

Intermediate
feslls..

BOEE
Post

Preprocessing~ PIOCeSSIg Intermediate
resfs..

Parallel models Hierarchicalouting
Multiple LLMs run concurvently and their | | i Router modelto directinputsto specilized
outputs are aggregated LLMs based on content or ntent
SR .
LMY
e/
SR




Figure 1-4. Common architectural patterns for LLM applications

You may come across the term “AgentOps” for preparing and managing
(i.e., operationalizing) agents in production. In the context of agents,
specifically, AgentOps often includes specific provisions for managing
tools, orchestration, memory, and reasoning outputs.

We have reached a truly unique moment in time where underlying
generative technology has matured significantly, the resources to build and
deploy Al systems are more readily available, and the potential for real-
world impact is becoming increasingly clear. This confluence of factors
makes the current moment a truly transformative and exciting time for the
field of GenAl, LLMs, and Al agents.

Challenges in Development, Deployment,
and Maintenance

GenAl applications present a unique class of technical and operational
challenges unlike traditional software or even conventional machine
learning systems. The generative, probabilistic nature of the underlying
models introduces complexities that ripple throughout the entire application
lifecycle.

In our work assisting organizations deploying LLMs and agents to
production environments, we’ve observed how established MLOps
practices often require significant adaptation. Generative models don’t
behave like classification or regression models—their outputs can’t be
evaluated with simple accuracy metrics, their performance characteristics
change based on prompt construction, and they interact with data in
fundamentally different ways.

These differences manifest as specific technical obstacles at each stage of
implementation. Let’s examine these challenges systematically, from initial
development through deployment and into ongoing maintenance, to help
you navigate this complex terrain more effectively.



Development Challenges

During the development phase, teams encounter several fundamental
obstacles that can significantly impact project success.

Data

LLMs require massive amounts of high-quality data for pretraining to learn
general language representations. Acquiring datasets of sufficient scale
(often trillions of tokens) and diversity can be a significant hurdle. The
sheer volume of data poses logistical challenges for storage, processing, and
management. These challenges are a main reason that most business users
leverage pretrained foundation models rather than training their own from
scratch.

Beyond scale, data quality and representation directly impact model
performance. Low-quality or poorly representative data leads to models that
generate nonsensical, biased, or factually incorrect outputs, eroding
reliability and trustworthiness of applications. Common data quality issues
include noise from irrelevant content, factual inaccuracies, repetitive
content that skews learning, societal biases that models can amplify, and
even malicious data poisoning designed to degrade performance.

Data preparation is another critical challenge, including cleaning,
preprocessing, and formatting messy real-world data. For privacy and
compliance, organizations must implement anonymization techniques to
protect sensitive data such as personally identifiable information (PII) and
protected health information (PHI).

In Chapter 2, we’ll explore comprehensive strategies for data readiness and accessibility,
including detailed approaches to addressing these data challenges.

Models

Model development presents numerous challenges and choices. Prompt
engineering—crafting effective prompts to elicit desired LLM behavior—



can be highly subjective, with small changes significantly impacting output
quality. LLMs have finite context windows, requiring careful prioritization
of information in prompts.

Fine-tuning introduces additional challenges despite using smaller datasets
than pretraining. The computational requirements remain substantial for
models with billions or trillions of parameters, potentially taking days or
weeks and incurring significant costs. The technical expertise required can
present barriers for many organizations seeking to customize models for
specific domains.

Hallucinations represent a significant challenge for LLM applications.
Unlike traditional information retrieval systems, LLMs predict the most
probable next token based on learned patterns rather than retrieving facts
from databases. This fundamental approach can lead to factually incorrect
or nonsensical information presented with high confidence as illustrated in
Figure 1-5. Grounding techniques that anchor responses to verifiable
external knowledge can help mitigate this issue, but comprehensive
evaluation remains essential.

The lack of explainability further complicates development. While we can
observe inputs and outputs, the complex internal decision-making processes
of LLMs remain largely opaque, making it difficult to diagnose issues or
implement targeted improvements.
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Figure 1-5. Example of a hallucination in an LLM chatbot response

Chapters 6 and 7 will detail iterative processes for developing production-ready models,
including techniques for addressing hallucinations and improving explainability.

Evaluation

Evaluating GenAl applications requires a nuanced approach that goes
beyond traditional machine learning metrics. While conventional machine
learning models might be assessed with straightforward metrics such as
precision and recall, LLM and agent evaluation encompasses multiple
dimensions of quality that are often subjective and context dependent.

Qualitative evaluation typically involves assessing how well responses
address the original prompt, the logical flow and structure of the generated
content, the naturalness and grammatical correctness of the language,
factual consistency with real-world knowledge, the overall usefulness and



informativeness of responses, and whether content avoids harmful or
inappropriate material. These aspects often require human judgment,
introducing challenges of consistency and scalability. For agents, evaluation
also extends to the trajectory—the sequence of reasoning steps and tool
calls—to ensure the system reached the correct answer for the right reasons.

Quantitative evaluation approaches include reference-based metrics that
compare generated text against ground truth examples. Methods such as
BLEU, ROUGE, and BERTScore measure various aspects of similarity
between generated and reference texts, though they don’t always correlate
perfectly with human judgments of quality. Other metrics such as perplexity
measure a model’s uncertainty in its predictions, while coherence metrics
assess readability and logical flow.

A/B testing provides another valuable approach, comparing different
models or prompting strategies through structured comparisons. However,
designing fair comparisons and interpreting results correctly requires
careful consideration of biases and context.

In Chapter 5, we’ll explore comprehensive evaluation and optimization strategies,
providing frameworks for both qualitative and quantitative assessment of GenAl
applications.

Deployment Challenges

Moving from development to production introduces a new set of technical
and operational hurdles that organizations must address.

Infrastructure

At the heart of successful GenAl deployment is the challenge of resource
optimization. The sheer size and computational intensity of LLMs demand
a robust, specialized infrastructure that often surpasses the requirements of
conventional applications. Planning and provisioning the right hardware
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and software stack to serve these models is a key operational undertaking
with implications for both performance and cost.

Industry-standard graphical processing units (GPUs) are excellent for
parallel processing, while tensor processing units (TPUs) are efficient for
large-scale Al workloads. Central processing units (CPUs) are perfectly
suitable for smaller, highly optimized models that have less demanding and
infrequent inference requests. Compared to GPUs and TPUs, CPUs may
also be a more cost-effective and widely available option for compute
hardware. The delicate trade-off between high performance and sustainable,
cost-effective infrastructure to meet user demands is something that is often
revisited by practitioners as demand for GenAl applications grows and must
scale across internal and external users.

In addition to compute hardware, developers have choices about
deployment environments (cloud-based, on-premises, hybrid cloud, or even
edge deployment for smaller models running directly on user devices).
Decisions about deployment environments involve trade-offs between cost,
security, control, and scalability. Finally, serving and orchestration
frameworks are crucial for efficiency, serving GenAl applications to users
while managing memory and performance. Software stack choices include
tools such as Docker and Kubernetes to package dependencies for
consistency in deployment and scaling. LLMOps platforms can be a great
choice for managing an entire GenAl product lifecycle, including
deployment challenges.

The infrastructure complexity outlined immediately translates into
challenges for scaling and maintaining performance. Latency represents a
key challenge, particularly for conversational applications where response
time directly impacts UX. Balancing performance with resource efficiency
requires careful optimization across the entire stack, from model selection
and quantization to serving infrastructure. Ultimately, these models require
significant computing power, making scalability a critical concern as usage
increases. Organizations need infrastructure that can efficiently scale to
handle growing demand without performance degradation or excessive
costs.



The cost implications of GenAl deployment can be substantial,
encompassing compute resources, energy consumption, and potentially API
fees for managed services. Organizations must carefully analyze the value
delivered by GenAl applications against these ongoing operational costs,
considering both direct expenses and opportunity costs of alternative
approaches.

Integration

GenAl applications rarely exist in isolation—they must seamlessly interact
with existing enterprise systems, databases, and business processes. For
instance, a customer support agent might need to access customer
relationship management (CRM) data to personalize responses, query
knowledge bases for accurate information, and integrate with ticketing
systems to track issue resolution, as illustrated in Figure 1-6. Building these
integrations requires developing robust connectors that extract information,
transform it into formats suitable for LLM consumption, and incorporate it
effectively into the application workflow.
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Figure 1-6. High-level architecture of a GenAl application integrated with enterprise data and
external APIs

When working with third-party or self-hosted LLM services, API
management introduces additional complexity. Organizations must
implement strategies for rate limiting, authentication and authorization,
versioning, and error handling to ensure reliable operation at scale. This
often requires building abstraction layers that shield application logic from
the underlying model implementation, enabling flexibility as models
evolve.

Security

Security considerations for GenAl applications extend beyond traditional
application security to include Al-specific vulnerabilities. Prompt injection
attacks can manipulate models into ignoring safety guardrails or generating
unauthorized content by crafting deceptive inputs. Adversarial examples
might cause misclassification or incorrect outputs through subtle
manipulations that exploit model sensitivities. Data breaches could expose
not only user data but potentially training data or model weights, creating
additional risk vectors that organizations must address.

Privacy concerns are equally important, particularly as LLMs may process
sensitive personal information. Without appropriate controls, these models
might inadvertently memorize or reveal confidential data from training sets
or user interactions. Organizations must implement comprehensive
governance frameworks and security measures to protect data, ensure
compliance with relevant regulations, and maintain user trust.

Chapters 6 and 7 will provide a practical, prototype-to-production approach addressing
the preceding model deployment challenges in detail, with specific guidance on
infrastructure, integration, and security considerations.

Maintenance Challenges



Once your GenAl application is developed and deployed, your work to
maintain the application in production begins. There are many important
considerations for the long-term use of applications to drive business
outcomes.

Drift

Model drift poses a significant challenge for GenAl applications over time.
As language evolves with new terminology, emerging topics, and shifting
usage patterns, models trained on historical data gradually become less
effective at understanding and generating appropriate responses. Similarly,
changes in data sources, user behavior, or business requirements can impact
performance, creating a widening gap between model capabilities and
operational needs.

The complex, interconnected nature of language means that even seemingly
minor shifts can have cascading effects on model performance. New
cultural references or domain terminology may be entirely absent from
training data, while once-common expressions might become outdated or
change in meaning. This dynamic environment requires continuous
monitoring and periodic updates to maintain application effectiveness.

Monitoring

Ongoing monitoring is essential for maintaining high-quality GenAl
applications in production. Unlike traditional software that might function
identically for years if unchanged, GenAl applications operate in a
constantly evolving linguistic and informational landscape. Organizations
must implement comprehensive monitoring systems that track not only
technical metrics but also semantic drift, hallucination frequency, bias
emergence, and other quality indicators specific to GenAl.

This proactive approach enables early detection of performance
degradation, allowing teams to implement targeted interventions before
issues significantly impact users. Without robust monitoring, organizations
risk declining performance, increasing inaccuracies, and potentially harmful
outputs that could damage reputation and trust.



Version control

Managing the complex ecosystem of components that compose GenAl
applications presents significant challenges. Organizations must track not
only model versions but also the associated training data, fine-tuning
datasets, prompt templates, integration code, and configuration parameters.
This comprehensive version control enables reproducibility, facilitates
debugging, and allows rolling back to previous stable states when needed.

Deciding when and how to update production models requires careful
consideration of multiple factors. Performance metrics may indicate
degradation requiring intervention, while new model architectures might
offer substantial improvements in capabilities or efficiency. Organizations
must develop clear criteria and processes for evaluating potential updates,
balancing the benefits of improved performance against the risks and costs
of change.

In Chapter 8, we’ll explore a multistage maturity model for GenAl applications,
including detailed approaches to monitoring, maintenance, and continuous
improvement.

Addressing Challenges with Modern Platforms

We’ve painted a pretty daunting picture of the challenges in building

production-grade GenAl applications—and we’ve seen firsthand how these
obstacles can derail promising projects. But here’s the good news: you don’t
have to solve all these problems from scratch.

The market has rapidly evolved to provide platforms that tackle many of

these pain points out of the box. We’re not talking about magical solutions
that eliminate all complexity but rather tooling that handles the heavy lifting
so you can focus on what makes your application unique.

In our work with organizations across industries, we’ve seen teams leverage
everything from fully managed offerings to more customizable, component-
based approaches. AWS Bedrock provides a unified API for multiple
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foundation models with governance features baked in. Hugging Face’s
Inference API simplifies deployment for thousands of open source models.
Specialized providers such as Together Al and fal Al offer optimized
infrastructure for specific workloads. Even xAl has entered the arena with
its Grok model, which is integrated into the X platform. Each has distinct
strengths and limitations that we’ve watched teams navigate when choosing
the right fit for their needs.

Though this book focuses primarily on implementing solutions with Google
Cloud’s Vertex Al Platform, many of the principles and patterns we discuss
apply across provider platforms. Vertex Al offers a comprehensive end-to-
end environment that addresses the challenges we’ve discussed in this
chapter, and more. What makes Vertex particularly effective for production
deployments is the connective tissue of supporting services for data
preparation, model training, model evaluation, model serving, and
monitoring. Vertex Al combines data engineering, data science, and
machine learning engineering workflows, which means that traditionally
siloed teams can easily and effectively collaborate using a common toolset.

We (your authors) have also helped many teams who have stitched together
functional AI/ML pipeline components across multiple provider platforms
—perhaps using one vendor’s embeddings service with another’s chat
completion API—and seen both the flexibility this offers as well as the
integration challenges it can create. What matters most isn’t which specific
platform you choose but rather understanding the patterns that lead to
successful production deployments. We’ll help you build that understanding
throughout this book, showing you how to implement reliable production
patterns regardless of your specific technology stack.

In Chapter 8, we’ll revisit Al and agentic platforms and how they can help to accelerate
the maturity of your enterprise strategy and cohesive and scalable developer practices.

Industry Use Cases and ROI
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“So what’s the actual business impact?” It’s a question we hear in nearly
every executive briefing, and rightfully so. The technical capabilities of
LLMs are fascinating, but what ultimately matters i1s whether they move the
needle on business outcomes.

We’ve had front-row seats watching organizations transform prototypes into
production systems that deliver measurable returns. A retail client we
worked with started with a simple product description generator that saved
their copywriters hours of tedious work. But the real return on investment
(ROI) emerged when the company integrated it with its inventory system
and customer data, creating personalized product recommendations that
boosted conversion rates by 23%. What began as a productivity tool
became a revenue driver.

In financial services, we’ve witnessed the evolution from basic chatbots to
sophisticated assistants that handle complex customer inquiries about
investment options. One bank we advised initially measured success by call
deflection rates (which were impressive at 40%), but later discovered the
real value was in increased customer satisfaction and higher retention rates
for digitally engaged customers.

Healthcare organizations face some of the most stringent requirements for
accuracy and compliance, making production deployment particularly
challenging. Yet we’ve helped teams build systems that accelerate
administrative workflows such as prior authorizations—reducing
processing time from days to minutes while maintaining compliance with
regulatory frameworks. For one healthcare provider, this translated to
millions in annual savings and faster patient care.

Manufacturing clients have surprised us with creative applications that
blend structured data analysis with unstructured text generation. One team
built a system that interprets equipment telemetry, generates maintenance
recommendations, and automatically schedules technician visits—reducing
unplanned downtime by 25% and extending equipment life.

The telecommunications sector has found particular value in applying
LLMs to knowledge management, with one company we worked with



dramatically improving field technician efficiency by providing contextual
troubleshooting guidance based on service histories, equipment
specifications, and previously successful resolutions.

These experiences align with broader industry research. The 2024 “ROI of
Gen AI” study by Google Cloud and the National Research Group found
that back-office business processes represent the largest area of measurable
return, with organizations reporting significant impact in human resources,
legal, procurement, and enterprise technology support. The study also
indicates that while initial investments often target productivity
improvements, organizations are increasingly leveraging these technologies
for strategic initiatives such as innovation and customer experience
enhancement. Google’s 2025 update on the ROI of Al reported that the
most common cross-industry applications for Al agents were customer
service and experience (49%), marketing (46%), security operations and
cybersecurity (46%), and tech support (45%), as illustrated in Figure 1-7.

What separates organizations that capture significant ROI from those that
don’t? In our experience, it’s rarely about having access to the best model or
the most sophisticated technology. It’s about rigorously focusing on specific
business problems, building robust data and operational foundations, and
creating tight feedback loops that allow systems to continuously improve.
The returns come from thoughtful and intentional implementation rather
than technological wizardry.
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Figure 1-7. Top cross-industry use cases for Al agents by deployment frequency (source: Google
Cloud, The ROI of Gen Al, 2025)

Looking Ahead

Throughout this chapter, we’ve explored the fundamental concepts of
LLMs and identified the key challenges that organizations face when
developing production-grade systems. While these challenges are
significant, they’re also well understood and addressable with the right
approaches and tools.

In the chapters that follow, we’ll address these challenges, providing
practical guidance and implementation strategies drawn from our
experience helping organizations successfully navigate the journey from
prototype to production. Our discussions will scale across the stages of
GenAl evolution that we’ve witnessed over the last two years: from direct
(out-of-the-box) foundation model interactions through prompt and system
engineering, to grounding and augmenting the behavior of foundation
models with external data, to equipping LLMs with tools (like APIs) and
reasoning capabilities, to goal-oriented automation with a single dedicated
agent or through multiagent orchestration and the development of
collaborative Al systems. As we move through Chapters 3 and 4, we’ll
show you what it looks like to transition from building systems that can
respond with external data and actions to a system that can autonomously
execute multistep goals; we’ll build agents together! Across Chapters 5, 6,
and 7, you’ll learn how to evaluate, tune, and apply MLOps to safely
deploy and maintain your Al products. Finally, in Chapter 8, we’ll bring
together your learnings across the first seven chapters by applying them to
an Al and agentic maturity framework to guide your organization.

In the next chapter, Chapter 2, we’ll dive deeper into preparing for GenAl
experimentation through “data readiness and accessibility”—a critical
foundation for successful GenAl applications.



Learning Labs

To reinforce the concepts covered in this chapter and explore the
fundamentals of Generative Al, we recommend exploring the learning
resources available in the Chapter 1 folder of the book’s GitHub repository.
Key resources you will find linked there include:

e Courses

— Introduction to Generative Al: A free introductory course
that explains GenAl fundamentals, model types, and
applications

— Google Al Essentials: A productivity-focused
specialization that teaches how to use generative Al tools
to speed up daily work tasks and generate ideas

— Google Prompting Essentials : A hands-on specialization
teaching the “5 steps of effective prompting” for text, data
analysis, and multimodal tasks

¢ Video Tutorials

— Introduction to Artificial Intelligence (Al): An overview
of how Al, Machine Learning, and Generative Al differ
and how they automate cognitive tasks

— Introduction to Responsible Al: A breakdown of Google’s
three core Al principles—bold innovation, responsible
development, and collaborative progress

— Intro to AI Agents: A discussion on agentic architecture,
defining agents as “Al with a job” and exploring tool
usage versus autonomous reasoning

— Prompt Engineering for Developers: A practical guide to
improving model outputs using the “Persona, Task,
Context” framework and Chain of Thought reasoning
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— How to use Retrieval Augmented Generation (RAG): A
walkthrough of the RAG data flow, explaining how to use
embeddings and vector databases to ground LLM
responses

— Intro to multimodal RAG systems: A technical tutorial on
building RAG systems that can reason across both text
and images using multimodal embeddings
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Chapter 2. Data Readiness and
Accessibility

In Chapter 1, we explored how GenAl applications represent a
fundamentally different class of Al systems compared to traditional
machine learning models for classification and regression tasks. The
generative, probabilistic nature of GenAl systems introduces unique
complexities across the entire lifecycle, and as we’ll see, this starts with the
data.

“Wait, I thought LLMs were all about the models?”” a CTO once asked
Sarita after their team had spent months fine-tuning parameters but still
couldn’t match their prototype’s performance in production. This is perhaps
the most common misconception we encounter when working in the field.
While the models get the spotlight, it’s really the quality, accessibility, and
governance of your data that ultimately determine whether your GenAl
application succeeds or fails in the real world.

When our team works with organizations transitioning from prototype to
production, we typically find they’ve underestimated the data challenges by
an order of magnitude. Industry analysis suggests that data preparation can
consume up to 80% of the total effort in Al projects. With GenAl, this
becomes even more pronounced, particularly when building systems that
need to be reliable, accurate, and trustworthy.

The Amplified Importance of Data for GenAl

“Garbage in, garbage out” (GIGO) takes on an entirely new dimension with
GenAl, as illustrated in Figure 2-1. For traditional ML models, the
consequence of poor data is typically a quantitative drop in accuracy. For
LLMs, however, the failure is qualitative and more insidious: they can
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confidently generate completely fabricated information, perpetuate subtle
biases, or produce plausible-sounding but entirely incorrect outputs.

\, o J
Figure 2-1. lllustration of the garbage in, garbage out effect of bad data

Sarita recalls working with a healthcare provider whose initial RAG system
was generating clinical treatment recommendations that sounded medically
valid but included completely fabricated medication names and dosages.
The 1ssue wasn’t with the LLM or the retrieval mechanism, but with
inconsistent preprocessing formatting applied to the provider’s clinical



documents that caused critical information to be missed during document
chunking. For example, if one clinical note lists “Medication: Drug X,
Dosage: 500 mg” all on one line, but another note lists “Medication: Drug
X” and then “Dosage: 500 mg” two paragraphs later, a simple chunking
strategy would likely split the medication from its dosage. When the RAG
system retrieved only the chunk with “Drug X,” the LLM would lack the
dosage context, leading it to generate fabricated outputs like Sarita
observed.

These risks from poor data quality and preparation become even more acute
with agentic systems. When such a system uses an LLM not just to generate
text but to reason and autonomously take actions—querying databases,
calling APIs, or making decisions—the consequences of data issues cascade
rapidly. A seemingly minor data quality problem can trigger a chain
reaction of errors, potentially leading to significant real-world impacts.

One financial services client we worked with built an agent to help
customers restructure debt. In testing, it performed flawlessly. But in
production, it began recommending impossible payment schedules because
the client’s production database contained subtle inconsistencies in how
interest rates were stored across different account types—something their
test environment didn’t capture. This is a classic example of a semantic
data issue rooted in a lack of a united enterprise governance strategy. For
this client, the “interest rate” column in their “mortgage” database was
stored as a float (e.g., 5.5), while in the “credit card” database, it was stored
as a string with a percentage (e.g., '5.5%'). The agent, lacking the context
of this semantic difference, treated both as raw numbers, leading to
catastrophic calculation errors. A key architectural solution 1s a semantic
layer, which sits between the data sources and the Al to provide a single,
authoritative definition for all business terms, preventing this type of error
before 1t can impact the agent.
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The semantic layer is a metadata translation layer that sits between complex, technical
data storage (like data warehouses or data lakes) and business users’ tools (like
dashboards, Business Intelligence [BI], or Al agents). It allows users to query data using
familiar business terminology instead of technical table names and columns.

What Data Readiness Really Means for
GenAl Applications

These experiences taught us something crucial: the definition of “data
ready” for GenAl applications 1s fundamentally different from traditional
ML systems. Data readiness is a state achieved when organizational data
has undergone meticulous preparation and optimization to ensure that it can
be seamlessly, effectively, and reliably utilized by LLMs and agentic
systems. It signifies that data is not merely available but appropriately
formatted, thoroughly cleaned, contextually enriched, actively governed,
and demonstrably trustworthy.

When Ayo was consulting with a retail client struggling with its
recommendation engine, he explained it this way: “It’s not just about
having a lot of data; it’s about having the right data, in the right shape, at
the right time.”

In the following sections, we’ll unpack exactly what these dimensions—the
right data, the right shape, and the right time—truly mean in practice when
moving from a prototype to a production system.



FROM DATA FAULT TO LEARNING FAILURE: WHY
AGENT IMPROVEMENT STALLS

Think of an agent’s ability to learn from its mistakes as a cognitive
process. Data errors aren’t just bad inputs; they are traps that can
sabotage this process. We can use a simplified memory model to
understand why:

Short-term memory (STM) is flooded

An agent’s “short-term memory” is its immediate context—the plan
it’s currently executing and any recent error messages. A production
environment with poor data quality can flood this context with
repetitive, low-level data faults (e.g., thousands of the same “parser
error’).

“Cognitive overload’ masks the real problem

In more advanced agentic architectures, a key goal is for the agent
to identify high-level planning failures, learn from them, and store
that knowledge for the future (a form of “long-term memory”).
However, if the agent’s immediate context is constantly clogged
with noise from data errors, it becomes impossible for the system
(or the developers who maintain it) to distinguish a meaningful
strategic failure from the countless trivial data faults.

Long-term learning “starves”

The agent gets stuck in a reactive loop, perpetually handling the
same data inconsistencies without ever getting the chance to solve
higher-order problems. As a result, its ability to genuinely improve
stalls. This is how issues like semantic inconsistency, data voids,
and poor accessibility don’t just cause a single error; they create a
cycle of failure that prevents the agent from becoming more capable
over time.



Key Dimensions of Data Readiness

Let’s break down these dimensions through the lens of what we’ve learned
helping dozens of organizations move from prototype to production.

First, data must be discoverable. In one manufacturing organization we
worked with, the data scientists had built a promising prototype for an LLM
that could answer questions about equipment maintenance procedures. But
when they tried to scale it, they hit a wall—nobody knew where all the
maintenance documentation lived. Some was in SharePoint, some in an
ancient document management system, some in email attachments, and
some existed only as printed manuals in maintenance shops.

“I can’t ground an LLM on data I can’t find,” the lead data scientist told us
in frustration. We ended up creating a “data map” that identified not just
where information lived, but who owned it and how frequently it changed
—essential context that the company’s data catalog had never captured
before.

Similarly, accessibility often becomes a roadblock. Steph recalls a financial
services client that built a prototype chatbot for customer service. It worked
beautifully in the lower development environment where the data science
team had unfettered access to customer data. In production, however,
privacy requirements meant that the LLM could access only redacted data
through specific secure APIs, which completely changed how the data
needed to be structured and how the prompts needed to be engineered.

The most deceptive requirement is often quality. “Surely our data quality is
good enough,” a retail executive once told Ayo. “We’ve been running our
business on it for years.” But what’s “good enough” for operational systems
or even traditional analytics can be catastrophic for generative models.
Missing values in a database might be acceptable for a dashboard showing
aggregate sales trends, but for an LLM generating detailed product
descriptions, those gaps become confabulations—plausible but entirely
fictional claims that can mislead customers or violate regulations.

Format requirements also differ dramatically for GenAl applications. A
major insurance company we consulted with had beautifully organized



policy documentation in well-structured PDFs that humans could easily
interpret. Yet their LLM consistently misinterpreted coverage details
because tables were being processed as jumbled text by the company’s
ingestion pipeline. Steph helped the company’s team develop custom
parsers that could extract tabular information and convert it into structured
JSON that preserved the semantic relationships between policy elements—
relationships that were visually obvious to humans but completely lost in
the raw text extraction, as illustrated in Figure 2-2.
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Figure 2-2. Without a proper preprocessing step, such as the automated extraction provided by
Document Al or BigQuerys ML . PROCESS DOCUMENT function, structured data (left) can be

misinterpreted by an LLM as jumbled text (right)




LAYOUT-AWARE PARSING WITH GOOGLE CLOUD

Newer models such as Gemini 3 Pro with optical character recognition
(OCR) capabilities have significantly improved native table parsing and
understanding. However, table extraction remains challenging in many
production scenarios, especially with complex layouts or poor-quality
scans. For mission-critical applications, we often recommend
specialized document processing services such as Google Cloud’s
Document Al, Microsoft Azure’s Document Intelligence, or Amazon
Textract. These services offer more reliable structured data extraction,
custom parsing rules, and domain-specific processors (e.g., for invoices,
recelpts, or contracts), as illustrated in Figure 2-3. The extra processing
step adds complexity to your pipeline but dramatically improves
downstream model performance by providing properly structured data
rather than relying on the model’s ability to interpret raw text.
Developers can also leverage BigQuery’s built-in Al functions, such as
ML.PROCESS DOCUMENT, to automatically extract tabular
information and convert it into structured JSON that preserves the
semantic relationships between document elements.
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Figure 2-3. Semantic Feature Extraction and Layout-Aware Parsing within Google Cloud
Document Al illustrating how complex documents are transformed into structured data and
task-optimized embeddings

Finally, governance takes on new significance. Data usage policies that
worked for traditional applications often fail to address the unique ways
LLMs can combine, interpret, and generate information. One healthcare
organization we worked with had to develop entirely new governance
frameworks to ensure that its clinical decision support system respected not
just patient privacy regulations, but also considered fairness, provenance
tracking, and auditability requirements that simply hadn’t been relevant for
its pre-GenAl systems.



WHAT DOES DATA GOVERNANCE MEAN?

Data governance is a set of policies, processes, and roles that ensure
data 1s managed as a critical asset throughout its entire lifecycle—from
creation to retirement. The primary goal of a data governance strategy is
to maximize the value, quality, reliability, security, and compliance of
an organization’s data. Data governance answers the fundamental
questions: who can access the data, how can it be used, and who is
accountable for its quality and meaning?

The semantic layer is a critical component for achieving centralized
data governance, particularly for ensuring common and central
definitions of business terms. In addition to centralizing business
definitions (functioning as a “central source of truth”), the semantic
layer standardizes logic for Al applications and agents and importantly,
makes it easier to enforce, comply with, and audit data policies. For
example, access and security rules can be applied at the business term
level rather than the technical column level. For instance, “Only
managers can view the ‘Gross Revenue’ metric” is simpler to manage
and audit than applying permissions to 20 different columns that
contribute to the calculation of Gross Revenue.

In Chapter 7, we’ll do a deeper dive into data governance and related
concepts.

The Interconnected Nature of Data Readiness

What makes data readiness particularly challenging for GenAl systems is
how interconnected these requirements are. A healthcare company we

worked with learned this the hard way when it tried to address data quality

issues in isolation, without tackling the underlying governance gaps.

“We spent months cleaning our customer interaction data,” the C1O
explained, “only to discover that without clear data ownership and
consistent standards across departments, the quality problems just kept



reappearing.” The company’s LLM-powered customer support bot would
work well for a few weeks, then gradually start making more errors as
fresh, inconsistent data flowed into the system.

The solution ultimately involved creating a unified data readiness
framework that recognized how discoverability, accessibility, quality,
format, governance, and security reinforce each other, as illustrated in
Figure 2-4. When the company implemented role-based access controls as
part of its governance initiative, it also improved data quality by ensuring
that only authorized personnel could modify certain data elements. When
the company improved metadata tagging for security purposes, it
simultaneously enhanced discoverability.

This holistic approach mirrors what we’ve seen work across industries.
Data readiness for GenAl systems isn’t a series of independent checkboxes,
it’s a coherent strategy that addresses longstanding “data debt” while
preparing for the unique demands of these powerful models.

The components in this framework are grouped by their conceptual role.
Quality, format, and governance represent the inherent properties and
policies of the data itself. Discoverability and security represent the
mechanisms of control and access. Finally, accessibility represents the core
action of delivering the right data to the right people, enabled by all other
components.
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Figure 2-4. The six components of data readiness for GenAl: an interconnected cycle

Managing Prompts as Data Assets

In the rush to build, teams often hardcode prompts or treat them as simple
configuration files. However, in a production data architecture, prompts are
critical data assets that define your application’s behavior and must be
managed with the same rigor as your training datasets. Keep the following
in mind:

Versioning and lineage

Just as you version your datasets, you must version your prompt
templates. A “data-ready” architecture treats prompts as managed
artifacts—stored in version control or a dedicated prompt registry—
ensuring that you can always map a specific model output back to the
exact combination of data version and prompt version that generated it.

Context window management

Data readiness also means managing the scarcity of the context window.
This involves strict governance over what data is allowed to enter the
window, using summarization chains to compress verbose retrieved
content, and enforcing token budgets to ensure that your critical system
instructions are never pushed out by noisy retrieval results.

In Chapter 7, “MLOps for Production-Ready Al and Agentic Systems,” we’ll dive
deeper into the operational side of this concept. We’ll explore “PromptOps” and the
specific CI/CD workflows required to manage prompt versions, test them
systematically, and deploy them alongside model iterations in a production environment.

The Human Element: Roles in the Data
Readiness Journey



Successful GenAl implementations depend not just on understanding the
interconnected nature of data readiness, but on having the right people with
the right skills to make it happen. In our work with organizations across
industries, we’ve observed that the most successful teams recognize that
data readiness isn’t owned by any single role—it’s a collaborative effort
requiring diverse expertise.

Each role brings a unique perspective and set of skills to different parts of
the data readiness cycle. As we walk through these key personas, you’ll
notice that the boundaries between them often blur in practice. The data
scientist exploring a new dataset might identify quality issues that the data
engineer needs to address, while governance questions raised by
compliance teams influence architectural decisions made by ML engineers.

Let’s look at how these roles collaborate to build the foundation for
successful GenAl deployment, starting with the explorers at the frontier:
data scientists.

In Chapter 8, we’ll revisit this critical concept of team synergy through the lens of A7
maturity. We’ll show how an organization’s journey from the “Tactical” to the
“Strategic” and “Transformational” phases is defined by its ability to break down these
silos. The “aha moment” is this: low-maturity organizations keep their business subject
matter experts (SMEs) and technical teams separate, leading to “pilot purgatory,” where
projects work in a lab but fail in production. High-maturity organizations, in contrast,
use Al and agentic platforms to embed these domain leaders directly into the
development lifecycle, ensuring that technical execution is, by default, aligned with
measurable business value and strategic goals.

Data Scientists: The Explorers

Data scientists are often the first to venture into unexplored data territories
when organizations begin GenAl initiatives. Their initial challenge is
typically discovery—finding relevant data sources that could inform or
ground their models.

In one organization we worked with, the data science team spent three
weeks searching for product information that should have taken minutes or



hours to locate. The data existed but was scattered across inventory
systems, marketing databases, and even spreadsheets maintained by
individual category managers.

This discovery process requires both technical skills and detective work.
Effective data scientists develop systematic approaches to mapping data
landscapes, often beginning with broad questions using tools such as
BigQuery to understand available datasets. Tools such as Dataplex
Universal Catalog can accelerate this process by providing a centralized
catalog with context about data assets across the organization. Beyond
merely locating data, data scientists need to understand provenance,
freshness, completeness, and potential biases. This discovery process is also
becoming more conversational; data scientists can now use natural language
interfaces—such as Dataplex Semantic Search or Looker Conversational
Analytics—to ask questions about datasets, their quality, and their lineage.

We’ll go deeper into BigQuery and Dataplex later in this chapter. BigQuery enables
powerful SQL queries across vast datasets, helping data scientists quickly explore and
understand available data. Dataplex complements this by providing metadata
management, data governance, and discovery capabilities in a unified platform.
Together, these tools streamline the critical early stages of GenAl data preparation by
making relevant data more discoverable and accessible across the organization.

Once relevant sources are identified, the next challenge is data wrangling
and integration. Building a customer support chatbot, for instance, might
require combining knowledge base articles (unstructured text), historical
support tickets (semi-structured), and customer profiles (structured data
from CRM systems). Data scientists typically perform this exploratory
work in a unified notebook environment. Using BigQuery notebooks
powered by Vertex Al Colab Enterprise, they can work interoperably with
Python, SQL, and even Spark, combining data-wrangling libraries with
BigQuery’s powerful analytics all in one place.

For GenAl applications specifically, data scientists face unique preparation
challenges. Sarita recalls working with a legal team building a contract
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analysis system: “Their challenge wasn’t lack of data—they had thousands
of contracts. The challenge was preparing that text appropriately for the
LLM. We had to experiment with different chunking strategies, embedding
approaches, and metadata schemas before finding the right balance.”

One hard-earned lesson from numerous implementations is that data
preparation for generative models is inherently iterative. Initial assumptions
about chunk size, embedding approaches, or filtering criteria almost always
evolve as testing reveals gaps or performance issues. This requires planning
for flexibility from the beginning, with data pipelines that can adapt to
changing requirements without complete redesigns.

ML Engineers: Building the Bridge to Production

ML engineers occupy a unique position between data preparation and
model deployment, focusing on how data directly impacts model
performance and optimization. While data scientists explore data
possibilities and data engineers build foundational infrastructure, ML
engineers design the systems that transform raw data into model-ready
formats and ensure that models perform consistently in production.

“The most painful failures we’ve seen are when a meticulously tuned model
suddenly underperforms in production,” Ayo notes. A retail client spent
months fine-tuning a model for sentiment analysis in customer reviews,
only to watch it deteriorate within weeks of deployment. The investigation
revealed that the client’s training data hadn’t accounted for seasonal shifts
in customer language and product references. The fine-tuned dataset was
perfectly curated but not representative of real-world variation.

ML engineers develop specialized expertise in understanding how data
characteristics affect model behavior. In one healthcare company, the ML
engineering team discovered that including or excluding certain data fields
in their training process dramatically impacted how well their LLM could
recognize policy exclusions. They conducted a systematic feature
importance study that evaluated model performance across different data
combinations: “We created what we called ‘data ablation tests’ for the



LLM,” Sarita said. “By systematically removing different types of data
from the context—policy dates, coverage limits, exclusion clauses—we
could measure exactly how each element affected response accuracy. This
informed both our data preparation strategy and our prompt engineering
approach.”

Through these systematic evaluations, ML engineers transform abstract
data-quality concerns into measurable performance impacts. This evidence-
based approach creates a continuous feedback loop between data
preparation decisions and model outcomes, turning what might otherwise
be a static, one-time process into an ongoing optimization cycle that
evolves as new patterns emerge in both data and user interactions.

For fine-tuning and adaptation tasks, ML engineers design specialized data
pipelines that enforce rigorous quality standards. When a healthcare
organization needed to adapt a general LLM for medical terminology, the
ML engineers built a comprehensive fine-tuning data pipeline with multiple
safeguards. Their system verified medical term consistency against external
terminology databases while carefully balancing case distribution to prevent
specialization bias across different medical fields. They didn’t stop at basic
quality controls—the team also implemented data augmentation techniques
to improve model robustness and created targeted synthetic challenge cases
that addressed known model weaknesses. This multilayered approach
ensured that the LLM could reliably process medical language with the
precision that healthcare applications demand.

As models move to production, ML engineers build monitoring systems
that track the alignment between training data distributions and real-world
inputs. They develop automated retraining triggers that detect when data
drift exceeds acceptable thresholds, ensuring that models remain effective
as language patterns evolve.

Beyond technical implementation, the fundamental contribution ML
engineers bring to data readiness is a performance-centered perspective.
They view data not as static content to be processed, but as the dynamic
foundation that directly shapes model behavior and UX. This perspective
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ensures that investments in data quality remain tightly coupled with
business outcomes throughout the model lifecycle.

Data Engineers: Architecting the Foundation

While ML engineers focus on model-specific data pipelines, data engineers
build the underlying infrastructure that makes everything possible. For
GenAl applications, this infrastructure requires thoughtful planning to
handle diverse data types and access patterns.

Steph recalls working with a retail client who needed an advanced product
recommendation system that could handle millions of products with rich
semantic search capabilities. The client’s requirements included both
powerful filtering and sub-100 ms semantic search latency across its
growing catalog.

The data engineering team designed a multilayer architecture that leveraged
Google Cloud’s complementary services. At the foundation layer, they used
Cloud Storage to store the original product documents and images in their
raw form. For structured data management and vector search capabilities,
they implemented a solution combining BigQuery with Vertex Al Feature
Store. BigQuery served as the centralized repository for product data,
metadata, and embeddings, enabling complex queries and joins across the
product catalog. Vertex Al Feature Store provided ultra-low latency vector
serving by maintaining synchronized copies of the most relevant
embeddings optimized for similarity search.

This integrated approach was transformative. First, it eliminated the need to
maintain duplicate data across separate systems. This, in turn, shortened the
idea-to-prototype timeline by days or even weeks, as teams could now
discover and reuse features built on common business attributes. Second,
data from BigQuery seamlessly flowed to the Feature Store’s optimized
serving layer, simultaneously enabling both powerful analytics and the
required sub-100 ms semantic search performance. Finally, the architecture
scaled automatically as the product catalog grew, maintaining consistent
performance without requiring manual intervention.
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DevOps and SREs: Operationalizing the Foundation

A perfectly architected data foundation is still just a blueprint. The
“prototype-to-production gap” that Steph and Ayo mentioned—Iike the
chatbot that failed under real-world privacy rules—is closed by the
operational teams: Developer Operations (DevOps), Security Operations
(SecOps), and, as Steph notes, Site Reliability Engineers (SREs).

These personas are the bridge from ““it works™ to “it works reliably,
securely, and at scale.”

For them, the data foundation is not a static asset but a dynamic system that
must be versioned, deployed, and monitored. Their core focus is the CI/CD
(continuous integration/continuous delivery) pipeline, which is uniquely
complex for GenAl. A RAG application isn’t just code; it’s a living system
of code, models, and constantly changing data.

This is where a GitOps-centric approach, as seen in modern RAG
architectures, becomes essential. In this model, the “source of truth” in a Git
repository defines the entire state of the application:

Cl

When an ML engineer updates the agent’s logic, a CI pipeline is
automatically triggered. This process runs tests, scans for
vulnerabilities, and—most critically—builds the agent’s code into a
container. This containerization step is special because it packages the
agent’s complex logic and all its specific dependencies (such as Python
libraries, data connectors, and environment variables) into a single,
portable unit. This ensures that the agent runs i1dentically in
development, testing, and production—a massive challenge for Al
systems that this approach elegantly solves. This container is then
pushed as a versioned artifact into Artifact Registry.

CD

The GitOps controller detects the new image in Artifact Registry. It
then automatically manages a progressive rollout of the new container
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to the production environment, which is often a scalable, serverless
service like Cloud Run.

This same pipeline also handles data changes. When new documents are
added to the RAG knowledge base, it’s this CI/CD process that triggers the
data ingestion, chunking, and embedding jobs that update the vector
database.

This is where the SRE mindset, so core to Google’s culture, is critical. An
SRE’s job goes beyond just deployment. They are responsible for the
reliability, performance, and cost-efficiency of the entire system. They are
the ones asking the following:

e “What is our service level objective (SLO) for RAG retrieval
latency?”

e “What are the SLOs for the data ingestion pipelines that refresh the
vector database?”

e “How are we monitoring real-time token consumption and GPU
utilization for capacity planning?”’

e “What is our error budget—the acceptable amount of failure—for
failed tool calls?”

e “Is this agent’s cost scaling predictably with its usage, or are we
exposed to runaway costs from inefficient tool calls or agent
reasoning loops?”

While the data engineer builds the road, the DevOps and SRE teams
operate it—installing the guardrails, managing the flow of traffic, and
ensuring that it can handle rush hour without collapsing in production.

Business SMEs and Domain Leaders: The “Why” Behind
the “What”
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This brings us to the final, and arguably most critical, group of personas we
identified: the business subject matter experts (SMEs) and domain leaders.
These are the stakeholders who understand the nuance of what the data
means.

While the technical teams build the zow—the pipelines, models, and
infrastructure—the domain leader defines the why. They are the
“guardrails” for business logic, context, and risk:

* In the financial agent failure, an SME is the person who could have
explained, “Hold on, ‘interest rate’ isn’t one thing. It has three
different semantic meanings depending on the account, and you
cannot treat them as the same number.”

e In a healthcare setting, SMEs are the clinical leaders who define
the “persona” of an agent (e.g., “Persona 1: clinical peer” versus
“Persona 2: patient-facing assistant™) and the critical “conditions”
that govern its behavior (e.g., “Discharge” versus “Pre-Visit”).

e SMEs can often alert developer teams to data assumptions that,
while statistically valid, could be clinically dangerous or biased.
For example, in a healthcare setting, an SME understands that
historical healthcare utilization (cost) is a proxy for systemic
access and institutional bias, not a direct measure of patient clinical
need for high-touch services such as care management programs.
As a result, an SME might suggest that models for clinical risk use
features such as lab values or chronic disease comorbidity counts
instead of proxies such as healthcare cost, to avoid reinforcing
historical disparities in care access.

In short, these personas are the connective tissue between the Al’s technical
capabilities and its real-world business value. Without their active and
continuous involvement, even the most advanced agent is just an impressive
technical demo—a system that can execute a task but doesn’t understand
the purpose of the task.
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The biggest architectural insight we’ve gained is understanding the
relationship between data storage and serving strategies. Not all data
requires the same infrastructure or access patterns. Smart data architects
recognize that GenAl applications need thoughtfully designed systems that
balance performance, cost, and operational complexity.

The foundation built by data engineers determines what’s possible for the
entire GenAl application. When done right, it’s invisible to end users but
enables seamless scaling, consistent performance, and sustainable
operations even as data volumes grow exponentially. Their work creates the
technical foundation that allows data scientists and ML engineers to focus
on extracting insights and building powerful UX.

Strategic Data Patterns: The Foundation for
Reliable GenAl Systems

Now that we’ve explored how different roles approach data readiness, let’s
examine the key architectural patterns that enable GenAl systems to
transition successfully from prototype to production. These patterns have
emerged across industries as critical foundations for reliable, scalable Al
systems.

The Unified Data and Al Platform

Successful GenAl implementations invariably build on a unified data and
Al foundation. In Google Cloud, this typically manifests as a “Data and Al
Lakehouse” architecture, illustrated in Figure 2-5, which seamlessly
connects data storage, processing, governance, and Al capabilities.
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Figure 2-5. The building blocks of a unified platform

At the foundation layer sits Cloud Storage—the versatile landing zone for
raw data including documents, images, logs, and media files. This provides
the elasticity and flexibility needed for scaling with unpredictable data
volumes.

BigQuery forms the core of this unified platform, acting as both a serverless
data warehouse and data lakehouse. Its ability to analyze structured data in
native storage while directly querying data in Cloud Storage, other clouds
(via BiglLake), or open table formats (Iceberg, Delta Lake, and Hudi)
eliminates data silos and minimizes complex extraction, transformation, and
load (ETL). This open foundation is key because it unifies analytical and
operational engines, allowing both BigQuery and AlloyDB to interoperate
on the same data.
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Crucially for GenAl applications, BigQuery now integrates generative Al
capabilities directly with functions like ML . GENERATE TEXT and ML.
PROCESS DOCUMENT. This integration enables powerful document
processing directly within your data platform, without requiring complex
data movement or separate infrastructure.

The ability to query data where it lives is key. Object tables take this
integration even further, enabling seamless analysis of unstructured data
(such as images, PDFs, and audio) directly from Cloud Storage. In the same
way, Biglake extends this capability to structured open table formats such
as Apache Iceberg, Delta Lake, and Hudji, allowing you to analyze all your
data within a single platform. For example, Example 2-1 shows how you
can process a collection of contracts stored in Cloud Storage and extract
structured information using Document Al, all within a SQL query. For a
deeper dive, refer to the Google Cloud example repository to parse
responses from Document Al into chunks and metadata, then generate
vector embeddings for the chunks.

Example 2-1. Process contracts with Document Al and join with client data
directly in BigQuery

-— Create an object table pointing to documents in Cloud Storage
CREATE EXTERNAL TABLE "project.dataset.contracts object table’
WITH CONNECTION "us.cloud storage connection’
OPTIONS (

object metadata = 'SIMPLE',

uris = ['gs://company-contracts/*'],

max staleness = INTERVAL 1 DAY,

metadata cache mode = 'AUTOMATIC'
) i

-—- Create a Document AI processor model reference in BigQuery
CREATE OR REPLACE MODEL project.dataset.contract processor’
REMOTE WITH CONNECTION "us.document ai connection’

OPTIONS (
remote service type = 'cloud ai document vl',
document processor = 'processors/l2345abcde’

) ;

—-— Process documents and extract structured information
SELECT
uri,
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-—- Extract specific entities from the JSON results
JSON_EXTRACT SCALAR (
ml process document result, 'S.entities[0].mentionText'
) AS contract value,
JSON_EXTRACT SCALAR (
ml process document result, 'S.entities[l].mentionText'
) AS effective date,
JSON EXTRACT SCALAR (
ml process_document result, 'S.entities[2].mentionText'
) AS expiration date,
-- Join with other structured data
c.client name,
c.account manager
FROM
ML.PROCESS DOCUMENT (
MODEL "project.dataset.contract processor’,
TABLE project.dataset.contracts object table’

) AS doc
JOIN
‘project.dataset.client data AS ¢
ON REGEXP EXTRACT (uri, r'contracts/(["/]+)') = c.client id;

Vertex Al completes this foundation, providing end-to-end ML/GenAl
lifecycle management. Its Model Garden gives access to foundation models,
while Vertex Al Workbench or Vertex Al Colab Enterprise, Pipelines, and
the Model Registry support development, deployment, and governance
workflows. The deep integration between BigQuery, BigQuery Notebooks,
and Vertex Al minimizes data movement, reducing both complexity and
cost.

This unified platform is not just about connecting data sources (the
multimodal data layer at the bottom) or managing them (the Dataplex
governance layer). It’s about enabling a multiengine layer where
autonomous systems—such as Gemini Enterprise (formerly Agentspace)
and agents—can operate alongside traditional SQL and BI.

This architecture is what allows all the personas we discussed in “The

Human Element”—from business users to data scientists and platform
engineers—to collaborate on a single, secure foundation, moving from
simple data analysis to building and deploying autonomous agents.
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The effectiveness of this unified approach, as depicted in Figure 2-6,
becomes evident when compared with fragmented alternatives.
Organizations that attempt to build GenAl applications across disconnected
databases, storage systems, and Al platforms typically struggle with data
inconsistencies, governance gaps, and significant operational overhead that
ultimately undermine model performance.
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Figure 2-6. Google Cloud autonomous data to Al platform

Please refer to Google Cloud’s data-to-ai GitHub repository for a complete,
end-to-end reference architecture that implements this Al Lakehouse
pattern using Terraform and Vertex Al notebooks.

In Chapter 1, we introduced the core concept of RAG. We defined it as the
primary architectural pattern for enhancing the factual accuracy and
relevance of LLMs by grounding them in external, verifiable data, and we
promised to go deeper in this chapter. Now, we’ll do just that.

As our conversations with technical teams have evolved, we’ve seen that
RAG isn’t one simple thing. It’s a spectrum of complexity and design
patterns. This is the evolution from “Naive RAG” to “Advanced RAG” and,
ultimately, “Agentic RAG,” and it represents the true data-readiness
challenge. Let’s explore this evolution of RAG paradigms, from its
foundational data pipeline to the advanced, agent-driven systems that power
production Al.

From RAG to Agentic RAG: The Evolution of a Data
Pattern

While often described as an architectural pattern, RAG is fundamentally a
data engineering challenge. Naive RAG systems frequently fail in
production not because of model limitations, but because they treat data
retrieval as a simple semantic search. They fail because they lack metadata
filtering and semantic relationship mapping, placing an impossible burden
on the embedding model to “guess” context that should have been
structured during ingestion. To succeed, we must move from simple
retrieval to the advanced, data-centric patterns of GraphRAG and Agentic
RAG.

The DIY RAG pipeline: a data engineering challenge

At its core, a Naive RAG system—as illustrated in the leftmost panel of
Figure 2-7—is a complex data pipeline that addresses the data readiness
challenges we’ve discussed. Building this from scratch—the do-it-yourself
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(DIY) approach—is a significant engineering effort. We’ve found that this
DIY RAG implementation challenge can consume 60% to 70% of a
project’s timeline, time that’s spent on data infrastructure rather than the
AT’s behavior.
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Figure 2-7. Adapted from Yunfan Gao et al. (2024), “Modular RAG: Transforming RAG Systems into
LEGO-like Reconfigurable Frameworks” (https://oreil ly/nlFNd)

The complete data flow involves several critical stages, each with its own
data-readiness pitfalls:

Stage 1: Data preparation and chunking

This 1s where most prototypes fail. Documents (PDFs, structured,
unstructured, semi-structured OR in the case of healthcare, additional
FHIR bundles, DICOM metadata) must be parsed and segmented. As
Sarita saw with a healthcare client, “inconsistent formatting... caused
critical information to be missed during chunking,” leading to
“fabricated medication names and dosages.” A robust DIY pipeline
must handle tables, semantic boundaries, and overlapping chunks to
maintain context.

Stage 2: Embedding generation

These text chunks are converted to vector representations. A critical,
often-missed failure point is embedding model consistency. The exact
same model version must be used for indexing documents and
embedding user queries at retrieval time. A mismatch here leads to a
silent failure where the system retrieves irrelevant documents.

Stage 3: Query processing and filtering

The user’s query is also embedded. But a “things, not strings” vector
search isn’t enough. A production system must perform metadata
filtering. For a query such as “Find imaging for female patients 30-50
with emphysema,” the system must first filter on structured
PatientSex and PatientAge DICOM tags before running a vector
search for “emphysema.”

Stage 4: Context assembly

The retrieved chunks are assembled into a prompt. This is a key data-
shaping step. A well-designed assembler, like the one a healthcare client
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built, formats the context with metadata (source, date) to help the LLM
weigh the authority of different sources, which reduced hallucinations

by 35%.

In vector search, top-k refers to retrieving the £ most similar items to a query, where & is
a configurable number (often 3 to 10 for RAG applications). The choice of & represents
an important trade-oft: too small a value might miss relevant information, while too
large a value can introduce noise and increase computational costs. Production systems
often use adaptive approaches that adjust k£ based on query complexity or confidence
thresholds rather than using fixed values, as demonstrated in the logic of Example 2-2.

Example 2-2. Assemble retrieved document chunks into a coherent context

for the LLM code

def assemble rag context(query, retrieved chunks, max tokens=6000) :
"""Assemble chunks into a coherent context for the LLM."""

# Sort chunks by relevance score in descending order

chunks = sorted(
retrieved chunks,
key=lambda x: x['score'],
reverse=True

context pieces = []
current length

Il
o

for i, chunk in enumerate (chunks) :

source type = chunk.get ('source type',
chunk.get ('publication date', 'Unknown date')
'Unknown author')

source date

source_ author = chunk.get ('author',

header = (

'Unknown')

f"SOURCE {i+1} [{source type} from "

f"{source author}, {source date}]"

)

context piece = f"{header}:\n{chunk['text']}\n"

# LOGIC FIX: Check length before adding

# If adding this chunk exceeds the limit, stop adding.

chunk tokens = len(context piece)

if current length + chunk tokens > max tokens:

break
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context pieces.append(context piece)
current length += chunk tokens

combined context = "\n".join(context_pieces)

prompt = (
f"Please answer the following question based ONLY on the "
f"provided sources:\n\n"
f"Question: {query}\n\n"
f"Sources:\n{combined context}\n\n"
f"Answer:"

)

return prompt

Stage 5: Feedback and continuous improvement

A production RAG system must capture user feedback to refine
retrieval quality and identify gaps in the knowledge base.

This DIY complexity is the primary driver for adopting managed services.

The RAG trade-off: choosing your vector store (DIY versus
managed)

The DIY pipeline we just described 1s powerful and flexible, but it’s also
brittle and operationally expensive. Sarita recalls a healthcare client who
spent three months building a custom RAG system (like the pgvector
solution in our financial example), only to have it crash under production
load.

This DIY complexity, as shown in Figure 2-8, is the primary driver for
adopting managed services, and it brings you to the most critical decision
point in your RAG architecture: choosing the right vector store.
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Figure 2-8. The RAG pipeline in a simplified version

Each option offers different trade-offs between performance, integration
flexibility, and operational complexity, as shown in Table 2-1. Consider the
trade-offs:

DIY/database-integrated (e.g., Cloud SQL, BigQuery)

This approach, used in our “Enterprise RAG Knowledge Engine,” gives
you maximum control. By using Cloud SQL (PostgreSQL) with
pgvector, you colocate your vector data with your operational or
business data. This is ideal for hybrid search (mixing vector search with
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SQL filters) and low-latency serving. Similarly, BigQuery vector search
is powerful for unifying vector search directly with massive analytical
datasets, eliminating data movement.

“Managed’/specialized service (e.g., Vertex Al Search, Vertex A RAG
Engine)

For many teams, managed solutions such as Vertex Al Search provide a
practical middle ground. It handles the entire complex pipeline we’ve
described—from ingestion and chunking to retrieval and context
assembly—with significantly reduced operational overhead, as depicted
in Figure 2-9. It is especially powerful for operationalizing production
flows because it can ground responses in data living directly within
operational systems such as AlloyDB or BigQuery.
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Figure 2-9. Vertex AI RAG Engine is a managed orchestration service, streamlining the complex
process of retrieving relevant information and feeding it to an LLM

Vector store: choosing the right approach

The choice of vector storage technology represents a critical decision point
in GenAl architecture. Each option offers different trade-offs between

performance, integration flexibility, and operational complexity, as shown
in Table 2-1.
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Table 2-1. A PoV on vector storage on Google Cloud

Operational

Workload
Profile

Data Model

Max Vectors
per Search
Space

Max
Dimensions
per Vector

Max Vector
Storage
Capacity

Latency

Consistency

Data
Freshness

Filtered
Hybrid

AlloyDB

OLTP/HTAP

Relational

Billions

64k

128 TB
(Preview)

<10 ms

Strong

Real-time

Yes

BigTable

OLTP

Wide Column

Petabytes

Topology
Dependent

Real-time

Yes

Cloud SQL
(PostgreSQL)
OLTP

Relational

100’s of
millions

64k

64 TB

10s ms

Strong

Real-time

Yes

Clou
(Mys¢
OLTI

Relat

10 m

16k

596 (
table

100s

Stror

Real-

Yes
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Search

Multiranked  No No No No
Hybrid

Search

Access Fine-grained Fine-grained Fine-grained Fine-
Control

Embeddings  Built-in External Built-in Exte1
Management

OSS or OSS OSS OSS OSS
Proprietary Compatible Compatible

ANN Index IVF, HNSW, None IVF, HNSW TRE!
Support ScaNN KNN ONLY TRE]
Availability up t0 99.99%  up t0 99.999% up t0 99.99%  up to
SLA

Beyond these managed options, open source vector databases and libraries
such as Chroma, Milvus, and Faiss can be deployed on Google Kubernetes
Engine (GKE) or Compute Engine. These solutions offer more
customization control but introduce significant new complexities, including
data duplication, data movement, and additional operational management.
This “DIY versus managed” decision comes with trade-offs. We’ve seen
enterprise customers that require highly custom chunking strategies,
specialized medical embedding models, or complex multistep retrieval logic
that go beyond a managed framework’s options. This need for more
advanced, custom logic is what leads to the next step in the RAG evolution.
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NAVIGATING VECTOR DATABASE SELECTION

A comprehensive comparison guide provides a detailed breakdown of
different vector database options available on Google Cloud Platform
(GCP). The selection of an appropriate vector database on GCP can be
navigated using a decision tree approach, prioritizing the key use cases
and associated business-centric context. There is not a one-size-fits-all
vector database that is the right choice for every use case.

When implementing vector search for production GenAl applications,
consistency between embedding models used during indexing and
retrieval is critical. Using different embedding models or versions for
these processes can significantly degrade search relevance.
Additionally, vector dimensions and distance metrics (cosine similarity
versus Euclidean distance) must remain consistent throughout your
pipeline. Organizations often underestimate the operational complexity
of maintaining this consistency, especially as models evolve. Much of
the powerful search capability in Google’s managed services, including
BigQuery, AlloyDB, and Vertex Al Vector Search, is powered by
Google’s own ScaNN (Scalable Nearest Neighbors) algorithm. ScaNN
is the fundamental Google Research technology that AlloyDB uses for
vector indexing. The release of ScaNN for AlloyDB leverages some of
the ScaNN library techniques to accelerate vector index creation,
accelerate vector search, and deliver low-memory footprint. We’ll cover
the basics here, but for those interested in additional details, there are
many articles on the research powering ScaNN published in prestigious
research publications, including PMLR and NeurIPS papers. ScaNN is
also available in the Google Research Github repository.

For full control and customization for your RAG applications, you can
leverage Document Al for parsing documents, text embeddings API for
vectorization, Vertex Al Vector Search for indexing/retrieval, ranking
API for reranking, and Gemini API for synthesis, grounded by Vertex
Al grounding.
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You can learn about the Vertex RAG Engine with Gemini through GCP
sample code.

Advanced RAG: from vectors to agents

When a Naive RAG system isn’t smart enough, the architecture must
evolve. The two most powerful advanced patterns we see are GraphRAG
and Agentic RAG.

GraphRAG: retrieving relationships, not just documents

Standard vector search is excellent at finding semantic similarity but
terrible at understanding semantic relationships. It answers “what” but often
fails at “why” or “how.”

We call this the “L’Occitane” problem. A standard RAG system, when
asked “Where can I freshen up?”” might retrieve “Public Showers”
(relevant) but also “L’Occitane en Provence” (semantically similar, as it
sells toiletries, but functionally wrong) (Figure 2-10).
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Figure 2-10. A simple example for vector search similarity response versus one with graph traversal

GraphRAG solves this by combining vector search with a Knowledge
Graph (KG). Instead of just finding similar documents, it finds related
entities, as illustrated in Figure 2-11, and explained with the following:

Step 1 (vector search)
The query finds the “Public Showers” node in the graph.

Step 2 (graph traversal)

The system then traverses the graph from that node to find related
entities, such as Public Showers -> SIMILAR TO ->

Family Restroom.

Step 3 (the “aha moment”)

The context sent to the LLM now includes “Public Showers” and
“Family Restroom.” It has eliminated the irrelevant “L’Occitane” result
and added a relevant option (“Family Restroom”) that vector search
alone would have missed. This improved precision is the difference
between a toy and a trustworthy system.
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Figure 2-11. Example graph traversal for neighboring nodes

Refer to the Google Cloud Architecture center for an advanced RAG architecture that
combines vector search with Knowledge Graph queries to retrieve interconnected,
contextual data, which results in more detailed and relevant GenAl responses.

Agentic RAG: orchestrating specialist retrievers

The most advanced pattern is Agentic RAG. This pattern addresses the
reality that enterprise data lives in many different, complex systems. A
single RAG pipeline can’t effectively query multiple data sources at once—
for instance with the healthcare example, a FHIR database, a DICOM
metadata store, and a PDF knowledge base.

Instead of one monolithic pipeline, an Agentic RAG system uses a
multiagent architecture, which we’ll explore in detail in Chapter 4. It
involves the following:
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e A primary coordinator or routing agent receives a user’s query
(e.g., “What 1s the discharge summary for the patient with
emphysema from yesterday?”).

e This coordinator plans and delegates the task to specialized
subagents.

e The coordinator might first call the agent 1 to query structured
electronic health record (EHR) tables and FHIR bundles to identify
the patient.

e Then, it passes that patient’s ID to an agent 2 (knowledge base
agent) to perform a vector search on unstructured data, such as
PDF discharge summaries (Figure 2-12).

This “agentic workflow pattern”—which involves planning, memory, and
specialized tools—is the true state of the art for production Al It moves
RAG from a simple data pipeline to an intelligent, autonomous system.
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Figure 2-12. The Agentic RAG workflow, illustrating how a coordinator orchestrates specialized
agents to bridge structured and unstructured data

Tying it All Together: the Enterprise RAG Knowledge
Engine

This brings us to the “aha moment” that connects the entire chapter.

Let’s revisit the financial services enterprise discussed at the beginning of
the chapter. While a semantic layer solves structured data consistency issues
like the “interest rate” confusion, the organization faces an equally critical
challenge: enabling agents to reason over vast archives of unstructured
knowledge, such as earnings calls and 10-K reports.

To answer complex questions like “What are BetaTech’s supply chain
risks?”, we need a different architecture. The Enterprise RAG Knowledge
Engine (Figure 2-13) is that solution. It separates the “data-readiness” work
from the “agent-reasoning” work.
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Figure 2-13. The Enterprise RAG Knowledge Engine architecture, illustrating how the data pipeline
(Phase 1) is decoupled from the reasoning layer (Phase 2) to ensure that the agent accesses only
curated, indexed knowledge

Phase 1: Building the Knowledge Engine (the Data Foundation)

Before the agent ever receives a query, the data engineering team builds a
reliable, automated pipeline. This is the DIY RAG pipeline, but built for

enterprise scale, with the following steps:

Ingestion

Raw, unstructured data such as earnings calls, 10-K reports, and news
articles are landed in their raw form in Cloud Storage.

Transformation

The data is processed within BigQuery. This 1s where the critical data-
readiness work happens.

Extraction and transformation

Using BigQuery ML’s ML.. GENERATE TEXT (with a Gemini model),
the raw text from earnings calls is transformed into structured, clean

data.

Chunking and embedding

The cleaned text is chunked and, using ML . GENERATE EMBEDDING,
converted into vectors all within BigQuery.

Loading (ETL)

A Dataflow pipeline reads this prepared, vectorized data from BigQuery
and loads it into the operational serving database.

Serving (the operational DB)
The data is served from Cloud SQL (PostgreSQL), which is running the
pgvector extension. A crucial Hierarchical Navigable Small Worlds
(HNSW) index is built on the embedding column, enabling the ultra-
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low latency (sub-100 ms) vector search required for a production
system.

Phase 2: Activating the Agentic RAG layer

Now, with a clean, fast, and reliable Knowledge Engine in place, we can
deploy our Financial Analyst Agent. This is where the architecture becomes
agentic. We don’t just feed the agent context. We give it a “brain” and
“tools” and let it act in the following way:

The agent

The agent is built using the ADK. It’s an L1mAgent configured with a
“Senior Financial Analyst” persona, giving it the “brain” to reason
about complex financial topics.

The tool

Instead of trying to know everything, the agent is given a single,
powerful tool: knowledge lookup. This tool encapsulates the entire
RAG retrieval pipeline (connecting to Cloud SQL, embedding the
query, running the pgvector HNSW search, and returning the
results).

The agentic workflow

A user asks a complex question: “What are BetaTech’s supply chain
risks?”

The Financial Analyst agent reasons that it cannot answer this from its
internal knowledge.

It autonomously decides to call its knowledge lookup tool.

The tool executes the low-latency vector search against the Knowledge
Engine and retrieves the most relevant chunks from the 10-K reports and
earnings calls.

The tool returns this evidence to the agent.
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The agent’s “brain” then synthesizes this retrieved evidence and generates
its final, expert-level analysis, complete with citations.

This completes the data readiness puzzle. While the semantic layer
addressed the structured data inconsistencies (like the interest rate
confusion), this architecture solves the unstructured data challenge. The
specialist agent succeeds because it reasons over a data-ready Enterprise
RAG Knowledge Engine. Deploying this architecture as a scalable API—
using a managed service like Cloud Run—bridges the final gap between a
brittle prototype and a trustworthy, production-ready Al system.

ENTERPRISE RESOURCES

All the code samples and setup instructions for financial services
enterprise scenarios are available at the Chapter 2 GitHub repository.

Knowledge Graph

This feature augments Gemini Enterprise by mapping the dynamic
relationships between people, content, and interactions. By
understanding these semantic connections rather than just matching
keywords, it significantly improves search relevance and context.

Architecture Patterns

Refer to the Google Cloud Architecture center for an agent-driven
architecture that uses Gemini Enterprise as a unified platform to
orchestrate an end-to-end RAG dataflow for enterprise applications
that require real-time data availability and enriched contextual
search.

Data Readiness for Agent Systems

While RAG systems ground LLM responses in existing knowledge, agent
systems represent a significant evolution by enabling active interaction with
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that knowledge. Agents not only generate text but actively take actions—
calling APIs, querying databases, and making decisions based on real-time
information. This transition from passive retrieval to active engagement
creates entirely new data readiness considerations.

Agents fundamentally change the approach to data. With basic RAG, you’re
concerned with what data the model can see. With agents, you must also
consider what data the system can act on, how those actions are governed,
and how you maintain control over increasingly autonomous systems.
These considerations will become particularly relevant in Chapter 3 as we
move from theory to implementation.

This evolution requires specialized data access patterns that balance
flexibility with security:

Read-only interfaces

Most agent tools should provide read-only access to underlying data,
with write operations limited to specific, tightly controlled scenarios.
Financial services organizations, for example, typically implement strict
permission hierarchies where agents can query market data freely but
have limited access to client information.

Parameterized queries

Rather than allowing agents to construct arbitrary SQL, well-defined
parameterized queries enable targeted data access while preventing
potential injection attacks. Healthcare and financial services
environments benefit particularly from this approach when agents need
to access patient and client information without compromising broader
clinical databases.

Authentication context

Data access should respect the requesting user’s permissions, ensuring
that agents can’t bypass existing security controls. This becomes
especially critical in environments with regulatory requirements around
data access and confidentiality.



Observability

All data access through agent tools should be logged and monitored,
creating an audit trail for regulatory compliance and security analysis.
Comprehensive logging should capture not just what data was accessed,
but the reasoning context that led to that access.

Beyond these access patterns, agents require specialized data for their
reasoning and orchestration layers. The agent’s “brain” relies on
instructions, contextual information, and both short-term and long-term
memory to plan and execute actions effectively. In a modern data platform,
this “contextual information” can be dynamically sourced from a
centralized service such as Dataplex Knowledge Engine, which provides
agents with business context from their enterprise business data. This
additional dimension requires:

Clear instructions and goals

The agent’s objectives and operational boundaries must be defined
through carefully structured prompts or configuration data. Unclear
boundaries often lead to unexpected agent behaviors, particularly
around sensitive operations.

Memory management

Agents often maintain both session-specific context and persistent
knowledge across interactions. For persistent knowledge, customers can
use high-performance databases such as Spanner or AlloyDB as the
“operational brain” for their own agents, providing a scalable and
consistent memory store. This mirrors how Google’s own first-party
agents, such as Looker Conversational Analytics, use Spanner as their
primary context and memory store.

The combination of these specialized patterns enables agents to access
enterprise data securely while maintaining appropriate governance controls.
As you’ll see in the next section, this expansion of Al capabilities into



active system interaction makes security and governance considerations
even more critical.

This distinction between session-specific context (short-term memory) and persistent
knowledge (long-term memory) is a core architectural pattern for building reliable
agents. We will explore the specific implementation of these state management scopes
—including temporary, user, and application state—in detail in Chapter 3.

Security and Governance: Protecting Data
Throughout the LLM Lifecycle

Data security and governance take on new dimensions with LLM and
agentic systems, requiring controls that work across the entire data lifecycle
while maintaining utility for GenAl applications.

Data Privacy Framework

Effective protection of sensitive information in GenAl workflows requires a
multilayered approach:

PII detection and handling

Cloud Data Loss Prevention (DLP) provides automated discovery,
classification, and protection of sensitive data (PII, financial
information, credentials) in both data at rest and in motion. This allows
organizations to scan document repositories, implement inline masking
during document processing, and validate outputs for potential leakage.
For example, a healthcare organization we worked with implemented
DLP scanning of all documents before indexing, replacing patient
identifiers with anonymized tokens while preserving the semantic
relationships needed for accurate retrieval. See our GitHub repository
for an extended code sample.

Dynamic data masking
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BigQuery offers role-based column-level security via policy tags that
can dynamically mask sensitive fields based on user permissions. This
enables scenarios where different user groups see different levels of
detail from the same underlying data—critical for ensuring that LLMs
receive only appropriately redacted information based on the requesting
user’s permissions.

Encryption controls

Google-managed encryption protects data at rest by default, while
customer-managed encryption keys (CMEK) provide additional control
for sensitive data. Organizations in regulated industries typically
implement CMEK for BigQuery datasets, Bigl.ake managed open
format data, and Cloud Storage buckets containing sensitive documents,
ensuring cryptographic separation of different data categories.

Network and perimeter controls

Encryption secures data af rest, but a complete governance strategy
must also secure data in motion and control the network perimeter. This
is where Virtual Private Cloud (VPC) and related services become
essential.

A VPC provides a private, isolated network within Google’s global
distributed cloud. For Al and agentic systems, this is not just a standard
best practice, it’s a fundamental security control. When an agent
running in a serverless environment like Cloud Run or a container
orchestrator like GKE needs to call a managed service like Vertex Al
(for embeddings) or BigQuery (for data retrieval), you must prevent that
sensitive traffic from traveling over the public internet.

This is achieved using VPC Service Controls (VPC-SC), which creates
a secure data perimeter around your Google Cloud services. By
combining this with Private Service Connect (PSC), you ensure that all
communication between your agent’s runtime and these managed
services stays entirely within Google’s private global network. This
isolates your entire Al workflow from the public internet, a critical
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requirement for any enterprise in a regulated industry. In the process, it
creates a secure “bubble” for your Al applications, ensuring that
sensitive data is protected at every layer.

The controls we’ve just discussed—DLP, CMEK, and VPC-SC—are the essential
platform-layer guardrails for your data. In Chapter 7, we’ll deep-dive on the additional
operational-layer guardrails required to get agentic systems safely to production. We’1l
move from MLOps to Agent Operations, tackling the non-deterministic nature of
agents, managing “semantic drift,” and implementing the robust versioning, monitoring,
and security needed to manage autonomous Al systems at scale.

Comprehensive Governance

As discussed previously, beyond security controls, effective governance
ensures that data remains discoverable, trustworthy, and properly managed
throughout its lifecycle:

Cataloging and discovery

The Dataplex Universal Catalog automates the discovery and cataloging
of assets not just across BigQuery and Cloud Storage, but across the
entire data estate, from open formats such as Iceberg to operational
databases such as Spanner and even Vertex Al models. This provides
Al-driven curation and enables data discovery via natural language
semantic search.

Lineage tracking

Understanding where data originated and how it has been transformed
becomes critical for GenAl applications, where outputs may combine
information from multiple sources. Dataplex captures these
relationships, enabling traceability from raw documents to model
outputs. Modern governance now extends beyond just data to include
Al assets. Platforms like Dataplex now provide AI model governance.
The Dataplex Universal Catalog can discover, catalog, and manage
metadata for Vertex Al models right alongside the datasets they were



trained on. This unifies data and Al governance, enabling critical
lineage from a raw data source all the way to the specific model version
it produced.

Quality monitoring

Defining and enforcing data quality rules ensures that LLMs work with
reliable information. Dataplex Universal Catalog lets you define and
measure the quality of the data in your BigQuery tables. You can
automate the data scanning, validate data against defined rules, and log
alerts if your data doesn’t meet quality requirements. Auto data quality
lets you manage data quality rules and deployments as code, improving
the integrity of data production pipelines.

Policy management

Centralized access policies ensure consistent controls across storage
layers. This is particularly important for multitier LLM architectures
where the same information may exist in multiple formats (e.g., raw
documents in Google Cloud Storage [GCS], open table formats on GCS
managed by BiglLake, processed text in native BigQuery storage, and
embeddings in Vector Search).

In Chapter 7, we’ll deep-dive on additional guardrails as they relate to path-to-
production for agentic systems.

Google was one of the first in the industry to publish an AI/ML Privacy Commitment,
which outlines its belief that customers should have the highest level of security and
control over their data that’s stored in the cloud. That commitment extends to Google
Cloud GenAl products. More details about how Google processes data can be found in
Google’s Cloud Data Processing Addendum (CDPA).

Practical Data Readiness Assessment

The security and governance controls we’ve outlined form critical
components of a comprehensive data readiness framework. To move from
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concept to implementation, organizations need a structured approach for
evaluating their current state and identifying high-priority areas for
improvement.

As you prepare to implement GenAl applications, assess your
organization’s readiness across the key dimensions shown in the following
checklist:

e Data discovery, admin, and access control

— Have you established a centralized catalog of available
data sources?

— Do you have processes for exploring and understanding
unstructured/multimodal content?

— Can relevant teams access the data needed for
experimentation and development?

e Data quality and preparation

— Have you evaluated data quality for GenAl consumption
(accuracy, completeness, formatting)?

— Do you have processes for document processing and text
extraction?

— Have you established chunking strategies appropriate for
your document types?

e Security and governance

— Have you identified and classified sensitive data within
your repositories?

— Are appropriate access controls and masking policies in
place?

— Do you have processes for tracking data lineage and
provenance?



— Have you defined read-only interfaces and parameterized
queries for agent data access tools? (Critical for
preventing injection attacks in agentic systems.)

e Infrastructure and scalability

— Can your storage and processing infrastructure handle the
volume of documents needed?

— Have you evaluated vector database options based on your
specific requirements?

— Are your pipelines designed to scale with growing
document volumes?

— Have you provisioned high-performance operational
storage (e.g., Spanner, AlloyDB) for agent memory/state?
(Required for the “operational brain” discussed in the
Agentic RAG section.)

— Does your data architecture support graph-based querying
(e.g., Spanner Graph) for relationship retrieval? (Required
for GraphRAG traversal.)

e Integration and workflow

— How will document updates and additions flow through
your system?

— Have you defined processes for reprocessing content when
needed?

— Are monitoring systems in place to detect data quality
issues or drift?

This checklist represents the first step in your maturity journey—moving
from “Phase 0” (ad hoc experimentation) to “Phase 1” (foundational data
readiness). Answering “no” to these questions helps you identify the critical
gaps you must fill to build a reliable, production-ready system. As we’ll



explore in Chapter 8, mastering this stage is the non-negotiable prerequisite
for achieving higher-level Al maturity.

To help organizations map these requirements to specific implementation
solutions, in Table 2-2 we’ve created reference mappings to GCP services
that support LLM and agent workflows.



Table 2-2. Mapping GCP services to data readiness tasks for GenAl

applications

Data
readiness
task

Data ingestion

Data cleaning
and
transformation

Structuring
data
(especially for
RAG)

Primary GCP
service(s)

Cloud Storage,
BigQuery
Streaming,
Pub/Sub,
Dataflow

Dataflow,
Dataproc,
BigQuery
(SQL), Vertex
Al Workbench,
Google Cloud
Serverless for
Apache Spark

Dataflow,
Dataproc,
Vertex Al
Workbench,
Cloud
Functions,

BigQuery

Key functionality/use case for
LLMs/agents

Storing raw files (GCS), managing
open-table formats (Iceberg, Hudi,
etc.) on GCS via BiglLake, loading
batch data (BigQuery Load),
ingesting real-time streams (Pub/Sub
+ Dataflow/BigQuery).

Large-scale batch/stream ETL
(Dataflow), Spark-based processing
(Dataproc), SQL transformations
(BigQuery), interactive cleaning
(Workbench).

Parsing documents, implementing
chunking logic, formatting data (e.g.,
JSON Lines [JSONL] for fine-
tuning).



Data
readiness
task

Feature
engineering

Feature
management
and serving

Embedding
management
and search

Data labeling

Primary GCP
service(s)

BigQuery
(SQL), Vertex
Al Workbench,
Dataflow,
Dataproc

Vertex Al
Feature Store
(built on

BigQuery)

Vertex Al
Feature Store
(Optimized),
Vertex Al
Vector Search

Vertex Al Data
Labeling
(bring-your-
own-labeler) /
Partner
Solutions

Key functionality/use case for
LLMs/agents

Creating derived features, text
processing (n-grams, etc.),
embedding generation (via models
called from these services).

Centralized storage, sharing,
versioning, low-latency online
serving of features and embeddings,
training-serving skew mitigation.

Storing, indexing, and performing
approximate nearest neighbor (ANN)
search on vector embeddings for
RAG retrieval, similarity search,
recommendations.

Managing labeling tasks and
annotator workflows using your own
labeling workforce or prevetted
Google Cloud Partners. Used for
creating labeled datasets (e.g.,
prompt-response pairs) for
supervised fine-tuning and
evaluation.



Data

readiness Primary GCP Key functionality/use case for
task service(s) LLMs/agents
Workflow Vertex Al Automating multistep data
orchestration  Pipelines, preparation, training, and
Cloud deployment workflows.
Composer,
BigQuery
pipelines
Relationship Spanner Graph, Modeling and querying semantic
management Vertex Al relationships between entities.
(GraphRAG)  Knowledge
Graph
Agent state Spanner, Low-latency “operational brain”
and memory AlloyDB, storage for persisting session state
Cloud SQL, (short-term memory) and user
Agent Engine history (long-term memory).
Data Dataplex, Unified discovery, metadata
governance Cloud Identity =~ management, lineage tracking,
and cataloging and Access quality monitoring, access control,
Management PII handling, compliance auditing.
(IAM),
Sensitive Data
Protection,
Cloud Audit
Logs

For security and governance specifically, reference the controls in Table 2-3
to ensure that your Al data pipelines and workflows incorporate appropriate
safeguards.



Table 2-3. Overview of Google Cloud security and governance controls for

Al data workflows

Control area

Access control

Data
discovery and
classification

Data
exfiltration
prevention

Prompt/output
security

Data
encryption

Key GCP
service(s)

Cloud 1AM,
Dataplex (policy
tags), Identity-
Aware Proxy (IAP)

Dataplex (Data
Catalog, Business
Glossary), Sensitive
Data Protection
(DLP)

VPC Service
Controls, Sensitive
Data Protection
(DLP), IAM

Vertex Al Al
Protection (Model
Armor)

Default encryption
(at rest, in transit),
customer-managed
encryption keys
(CMEK)

How it addresses Al
risks/needs

Enforces least privilege for users
and service accounts accessing
data, models, pipelines, and
infrastructure. Manages API
access.

Automatically finds and catalogs
data/Al assets, classifies
sensitive data (PII, etc.), enables
metadata-driven policy.

Creates network perimeters to
block unauthorized data
movement, masks/redacts
sensitive data before potential
exposure, restricts export
permissions.

Detects/prevents prompt
injection and jailbreaking, filters
harmful content/URLSs, sanitizes
inputs/outputs, integrates DLP.

Protects data confidentiality
during storage and transmission,
provides customer control over
keys.



Key GCP How it addresses Al

Control area service(s) risks/needs

Secure Confidential Encrypts data during processing

compute Computing in memory for enhanced

protection.

Model Vertex Al Model Controls access to models, scans

security and Registry (IAM), custom containers for

integrity Artifact Registry, vulnerabilities, ensures that only
Binary trusted containers are deployed.
Authorization

Auditing and  Cloud Audit Logs, Records admin/data access, logs

monitoring Access Google support access, monitors
Transparency, Cloud system performance and security
Monitoring, Cloud  events.

Logging
Compliance Assured Workloads, Helps meet geographic data
and data compliance location requirements, provides
residency reports/certifications evidence of adherence to

standards (Health Insurance
Portability and Accountability
Act [HIPAA] for protected
health information in the US;
Federal Risk and Authorization
Management Program
[FedRAMP] for US federal
government cloud security;
International Organization for
Standardization [ISO] for
international standards on
information security).



Key GCP How it addresses Al

Control area service(s) risks/needs
Unified Dataplex Centralizes metadata, lineage,
governance quality monitoring, and policy

management across distributed
data and Al assets.

Threat Security Command  Centralizes security posture,

detection and  Center (SCC), Al detects threats against Al

response Protection, workloads, provides threat
Mandiant Threat intelligence and response
Intelligence recommendations.

Looking Ahead

In this chapter, we established the non-negotiable foundation of data
readiness. We’ve moved beyond theory to define the architectural patterns,
security controls, and data processing pipelines required for any production-
grade Al system. We’ve defined the data-layer work for RAG—including
preprocessing, chunking, and vector search—as the essential first step in
grounding a model.

You now have your data foundation strategy for building Al and agentic
systems. This foundation allows us to follow a clear evolutionary path
through the rest of this book—a journey that mirrors the one you’ll take in
your own enterprise:

Overview of GenAl systems

In Chapter 1, we introduced use cases for GenAl and discussed
everything from foundation models to an overview of agentic
frameworks for business challenges.

Grounded models (RAG)



This chapter (Chapter 2) provided the complete data-readiness
framework, evolution of data patterns, and the journey from vectors to
agents.

Agents

In Chapter 3, we’ll move from architecture to execution. You won’t just
read about agents, you’ll build one. We’ll construct a production-ready
Customer Support Agent from scratch, equipping it with the ability to
query order databases, manage persistent shopping cart state, and even
analyze images of damaged products—transforming the data foundation
we designed here into a fully functional Al system.

Multiagent systems

In Chapter 4, we’ll scale this concept, orchestrating multiple agents to
solve complex problems.

This step-by-step progression is key. As we move from theory to

implementation, you’ll gain practical experience with the end-to-end
workflow—from the data preparation in this chapter to the full agent
deployment in the next—that brings intelligent Al capabilities to life.

We’ve seen how different roles—data scientists, ML engineers, data
engineers, and business SMEs or domain leaders—contribute their
unique expertise to create a robust data foundation. We’ve also
examined the technical patterns and implementations that convert raw
information into production-ready knowledge assets for GenAl systems,
from document processing to vector search.



In this chapter, we’ve defined the data-level requirements for a single agent: secure
access patterns and a high-performance “operational brain” for memory. But the true
power—and complexity—of production Al comes from orchestration.

In Chapter 4, we’ll move beyond the “solo agent” and explore how to build and manage
teams of specialized agents. We’ll show how to connect them to databases and other
tools in a secure, manageable way using emerging standards like the Model Context
Protocol (MCP) and tackle the critical production challenges of observability (the
“traceability problem”) and state management that are unique to multiagent systems.

Learning Labs

To reinforce the concepts covered in this chapter and gain hands-on
experience with data foundations and building RAG pipelines, we
recommend exploring the learning resources available in the Chapter 2
folder of the book’s GitHub repository. Key resources you will find linked
there include:

e Hands-On Code Examples

— Cymbal Air: A production-quality reference
implementation for building agentic applications that use
agents and RAG to query and interact with data stored in
Google Cloud databases.

— Grounding for Gemini with Vertex Al Search and DIY
RAG: A reference implementation for grounding Gemini
using Vertex Al Search and DIY RAG. This solution
deploys a Cloud Run application that uses Cloud SQL
vector storage to enable conversational search and
recommendations.

— Build and Evaluate with Vertex RAG Engine: A collection
of notebooks demonstrating how to implement RAG
pipelines using Vertex RAG Engine and third-party vector
stores.
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— RAG with Cloud Run and Vector Search : A reference
architecture for deploying a RAG system using Cloud Run
jobs for ingestion and Vertex Al Vector Search.

— Agentic RAG: A RAG agent for document retrieval and
Q&A, supporting Vertex Al Search and Vector Search.

— Llamalndex advanced agentic RAG implementation: An
advanced RAG system using Llamalndex and Google
Cloud Vertex Al

¢ Video Tutorials

— Advanced RAG techniques for developers: Advanced
RAG techniques, combining semantic and keyword
search, task type embedding

— How to prepare data for LLMs: Developer-focused
discussion on data’s impact on LLM quality and security

— Use Google BigQuery and Gemini Al for Data Analytics :
Learn how Gemini models can help you generate new
insights, enrich your datasets, and even analyze
multimodal content including images, videos, and text

— Grounding for Gemini with Vertex Al Search and DIY
RAG: Integrate Gemini, multimodal embeddings, and
vector search to create an Al application that provides
accurate, up-to-date, and relevant answers from your own
data
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Chapter 3. Building a
Multimodal Agent with the
Agent Development Kit (ADK)

In Chapter 1, we explored what makes Al agents compelling: their ability to
perceive, reason, and act autonomously across complex tasks. In Chapter 2,
we laid the data foundations these agents require to function reliably. Now
comes the crucial question: how do we actually build them?

Not every problem requires an agent. If your use case needs simple tool
selection based on user queries, or deterministic RAG retrieval, you don’t
need the complexity of agents. These linear, stateless patterns work well for
many applications.

But when your system needs to maintain context across interactions, reason
about multistep solutions, self-correct when approaches fail, or proactively
pursue goals, you need true agents—systems that work through problems
step by step, adapting their approach based on what they learn along the
way.

Building such agents well—making them reliable enough to handle
production workloads, trustworthy enough for sensitive operations, and
functional enough to solve real problems—can be surprisingly difficult.

The root challenge to agent development is maintaining coherence across
the entire perception-reasoning-action loop (Figure 1-3). Context, state, and
intent need to flow naturally from each interaction to the next. Yet in
practice, information gets lost between tool calls. Errors cascade through
conversations. State vanishes when sessions restart. Many frameworks
leave you to figure this out through defensive programming and complex
orchestration logic.



Google’s Agent Development Kit (ADK) takes a different approach. It
builds in the patterns that keep agents coherent under pressure.
Conversations persist automatically, errors become information the agent
can reason about, and state flows naturally between interactions. The
framework anticipates and handles the complexity of real-world agent
interactions from the ground up, illustrated in Figure 3-1.
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Figure 3-1. Core components of the ADK include agents (conversational units), tools (function
integration), orchestration (multiagent coordination), session management (state persistence),



memory (semantic knowledge), streaming (real-time interaction), artifacts (file handling), callbacks
(execution hooks), and deployment options with comprehensive debugging and tracing capabilities

These design choices reflect patterns proven across Google’s Al products,
from handling billions of Assistant queries to managing state in Al-powered
support systems.” While ADK itself is new, it codifies approaches that have
kept Al systems stable at scale. These are patterns that apply whether
you’re building a single agent or orchestrating entire teams of specialists.

In this chapter, we’ll build a customer support agent using ADK. Starting
with basic text interactions, we’ll progressively expand to integrate tools,
manage state and memory across sessions, handle multimodal inputs
(images, audio, and video), and implement real-time streaming support. As
we build, you’ll see how the framework’s design decisions translate into
code that remains clean even as capabilities expand.

Google’s unified Al stack offers a “no-code to high-code” continuum for agent
development. On one end, the no-code Agent Builder console allows for rapid creation
of conversational agents through a visual interface. Agent Garden provides a library of
prebuilt agent solutions and tools that can be customized and deployed. For production
deployment, Vertex Al Agent Engine offers a fully managed runtime environment
handling infrastructure, monitoring, and lifecycle management. ADK is the
programmatic component of this ecosystem—an open source framework that spans
from visual prototyping to full code control, letting developers rapidly experiment and
build production-grade Al agents.

From Zero to Agent in Seven Lines

Every journey begins with a single step. For ADK, that step is remarkably
small.

The Simplest Thing That Works

Seven lines. As shown in Example 3-1, that’s all it takes to create an agent
that can hold conversations, maintain context across multiple turns, and
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provide helpful responses. No boilerplate for session management. No
event loop configuration. No state persistence setup.

Example 3-1. The minimal definition for a conversational agent using
ADK's Agent class

from import Agent

root agent = Agent (
name="CustomerSupportAgent",
model="gemini-2.5-flash",
instruction="You help customers with their SmartHome products.

"

)

This simplicity reveals ADK’s fundamental philosophy: the framework
should handle the logic of managing multiturn, stateful conversations so
you can focus on what your agent actually does.

The ADK supports multiple language SDKs—Python, Go, and Typescript (preview)—
allowing you to build agents in the language that best fits your development
environment and team expertise. The examples and code throughout this book are
written exclusively using the Python SDK.

The Runtime Behind the Simplicity

The power of that simple code lies in ADK’s fundamental design principle:
the strict separation of an agent’s logic (the “what”) from its runtime (the
“how”). Those seven lines define the agent’s logic—its brain. They specify
its purpose, instructions, and capabilities. The runtime, on the other hand, is
the host application that loads and executes your agent logic, providing all
the life-support systems it needs to function. For development and testing,
ADK provides several command-line tools that launch interaction interfaces
for this runtime: adk run for a simple text interface, adk web for a rich
web Ul, and adk api server for exposing a direct API. You’ll use
adk run in a moment.

At the heart of the ADK runtime is a powerful “event loop” that manages
the conversation lifecycle. Figure 3-2 illustrates this internal flow.
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When you run adk run, it launches the ADK runtime with a CLI. This
runtime acts as a lightweight but complete host application for your agent,
initializing three interconnected systems.

First, a SessionService creates isolated workspaces for each
conversation. Every user who interacts with your agent gets their own
session—a dedicated context that tracks their conversation history,
maintains their state, and ensures that their information never leaks to other
users. These sessions persist across interruptions, survive network failures,
and can even resume after system restarts.
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Second, an event-driven system transforms every interaction into a stream
of observable occurrences. When a user types a message, it enters the event
stream where it triggers a cascade: the agent begins processing, tokens
stream as the response generates, and state updates as needed. This event-
driven architecture enables capabilities that would be architectural
nightmares in traditional request-response systems such as real-time
streaming, parallel tool execution, and graceful error recovery.

Third, state management provides four distinct scopes with different
persistence guarantees:

e Temporary state (with temp: prefix) handles in-flight operations.
e User state (with user: prefix) maintains cross-session memory.

e Application state (with app : prefix) manages system-wide
configuration.

e Session state (no prefix) persists for the session duration. The
framework handles serialization, persistence, and cleanup
automatically.

Running Your First Conversation

With your agent defined and API credentials configured (see our GitHub
repository for complete setup instructions), let’s start a conversation.

Example 3-2 shows a typical interaction session with the customer support
agent using ADK’s CLI.

Example 3-2. The [user] : prefix indicates human input, while
[CustomerSupportAgent] : shows the agent’s responses

$ adk run customer support agent

Running agent CustomerSupportAgent, type exit to exit.

[user]: Hi, my smart doorbell keeps disconnecting from wifi
[CustomerSupportAgent]: I understand how frustrating intermittent
WiFi issues can

be with your smart doorbell. To help diagnose this, I need to
gather a few details:
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1. How often does it disconnect? (hourly, daily, randomly?)

2. When did this issue start?

3. Have you noticed any patterns (like during specific times of
day) ?

4. How far is the doorbell from your WiFi router?

[user]: It started about a week ago, happens every few hours

The agent engages naturally, gathering diagnostic information just as a
human support agent would. But continue the conversation, and you’ll
quickly discover where it falls short.

Understanding the Limitations

Here’s where i1t breaks down. When you ask, “What’s the warranty status
for my doorbell? Order #782347?”, the agent might respond with something
like: “I’d be happy to help you check your warranty status. While I can’t
access order information directly right now, I can guide you through the
general warranty terms for our smart doorbells...”

The agent handles this gracefully, but it’s clearly not solving the actual
problem. Without access to order systems, it can offer only generic
information where specific answers are needed.

Similarly, the agent can describe solutions but can’t implement them. It can
explain how to reset a doorbell but can’t trigger the reset. It can describe the
return process but can’t initiate a return.

Each new conversation starts fresh: a customer who spent 20 minutes
troubleshooting yesterday starts from scratch today because the agent has
no memory between sessions. When customers provide serial numbers,
error codes, or configuration details, the agent can only store them in
conversation history. There’s no structured extraction or validation.

Each of these gaps points toward a specific capability you can add. Data
access limitations can be solved with tools for querying databases and APIs.
Action capability requires tools that modify state and trigger processes.



Cross-session memory needs user-scoped state that persists. Structured data
handling demands state management with validation.

The beauty of ADK is that adding these capabilities doesn’t require
rewriting what you have. You can build on top of this foundation, keeping
your code clean even as its capabilities expand.

In the next section, we’ll address the most pressing limitation: the inability
to access real data. By adding tools, we’ll transform our agent from a
conversational companion into an assistant that can actually solve
problems.

Adding Intelligence Through Tools

The moment of truth for any customer support agent comes when a
customer asks a specific question: “Where’s my order?” Our conversational
agent can offer sympathy and generic advice, but without access to real
data, it can’t provide the answer the customer actually needs. Let’s fix that.

Your Agent’s First Tool

Let’s add our first tool—an order lookup function. Example 3-3 shows how
remarkably simple this transformation is.

Example 3-3. When adding an order lookup tool to the customer support
agent, the function is automatically converted to a tool by ADK when added
to the tools parameter

from import Agent
from import datetime, timedelta
import

def look up order (order id: str) -> dict:
"""Retrieves order information from our database.

Args:
order id: The customer's order number

Returns:
Order details including status, items, and tracking info



mrrn

# Simulated database lookup - in production, this would query
real systems
# Using randomization to show different scenarios

statuses = ["shipped", "processing", "delivered"]
status = random.choice (statuses)

# Create realistic order data

order data = {
"order id": order id,
"status": status,

"order date": (
datetime.now () -
timedelta (days=random.randint (1, 7))
) .isoformat (),
"items": [
{
"name": "Smart Doorbell Pro",
"quantity": 1,
"price": 199.99

1,
"total": 199.99

# Add status-specific information

if status == "shipped":
order data["tracking number"] = f"SH{random.randint (100000,
999999) "
order data["estimated delivery"] = (
datetime.now () +

timedelta (days=2)
) .strftime ("%B %d, %Y")
elif status == "delivered":
order data["delivery date"] = (
datetime.now () -
timedelta (days=1)
) .strftime ("SB %d, %Y")

return order data

def create root agent():
return Agent (
name="CustomerSupportAgent",
model="gemini-2.5-flash",
instruction="""You help customers with SmartHome products.
Be professional, empathetic, and solution-focused.



When customers ask about orders, use the look up order tool
to get real information. Present the information
tools=[look up order] # Just add the function - ADK
handles the rest

)

clearly.

# Create the agent instance ADK expects
root agent = create root agent()

That’s it. By adding the function to the tools parameter, we’ve transformed
our agent from a conversationalist into a problem solver. ADK
automatically extracts the function’s signature and generates a tool
description for the LLM, parses the docstring to understand when and how
to use the tool, handles parameter validation based on type hints, and
manages the execution flow when the agent decides to use the tool.

Earlier we used adk run to test our basic conversational agent. Now let’s
use adk web to see the tool in action with full visibility into the execution
process.

The web interface provides rich insights into how our agent uses tools.
Figure 3-3 shows what happens when a customer asks about their order.
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Figure 3-3. Tool execution in the ADK web interface with visual indicators for tool calls (lightning
bolt icons)

The agent understood that the request required the 1ook up order tool,
called the function with the correct parameter, integrated the results
naturally into its response, and highlighted the most important information
such as status, delivery date, and tracking number. This seamless integration
demonstrates ADK’s tool orchestration. The framework handles all the
complexity behind the scenes, letting you focus on building useful
functionality.

The Event tab shown in Figure 3-4 reveals even more detail about the
execution flow, showing the precise sequence of function calls and
responses that power the interaction. This transparency becomes invaluable
when debugging complex tool interactions or optimizing performance.



Request Response

# CustomerSupportAgent —» . look_up_order

content:
parts:
- 0:
functionCall:
id: "adk-9d709214-a2383-496f-8761-f12
args:
order_id: "“78234"

name: "look_up_order"

role: "model"
usageMetadata:
candidatesTokenCount:
candidatesTokensDetails:
0:
modality: "TEXT"
tokenCount:

promptTokenCount:
promptTokensDetails:
0:
modality: "TEXT"
tokenCount:
totalTokenCount:
invocationld: "e-d30c8733-6da7-4b35-b2db-af5153c93b4a"
author: "CustomerSupportAgent"
actions:
stateDelta:
artifactDelta:
requestedAuthConfigs:
longRunningToollds:
id: "99bbf751-68a3-475d-a2fd-3ee@8f472078"
timestamp:
title: "functionCall:look up order"




Figure 3-4. Event visualization in the ADK web interface

ADK supports several types of tools beyond simple functions. You can create long-
running tools for operations that take time (discussed later in the chapter), use built-in
tools, such as Google Search or code execution, or even use other agents as tools.

Tools Versus Subagents—A Practical Decision
Framework

As your agent grows more capable, you’ll face a recurring architectural
decision: should this new capability be a tool or a subagent? The answer
shapes your system’s complexity, performance, and maintainability.

You’ve seen how tools extend an agent’s capabilities with specific functions
such as looking up orders or calculating prices. ADK offers another
powerful pattern: subagents. These are complete agents that your main
agent can delegate to for handling entire conversations or workflows. Think
of the difference this way—tools are like an agent’s skills, while subagents
are like specialist colleagues they can hand off to when expertise is needed.

This distinction becomes clear when we consider a common customer
support scenario: handling product returns. Returns require a delicate
balance of policy enforcement and customer empathy, often involving
multiple steps and nuanced decision making. Let’s explore how you might
implement this capability.

You could start with a tool approach, as shown in Example 3-4.

Example 3-4. A simple tool implementation for processing returns—
deterministic and straightforward

def process return(order id: str, reason: str, items: list) ->
dict:

"""Processes a product return request."""

# Validate order exists and is eligible

# Create return authorization

# Send confirmation email

# Update order status

return {"return id": "RET123", "status": "approved"}
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Or you could implement it as a subagent, as demonstrated in Example 3-5.

Example 3-5. A subagent implementation for returns—capable of nuanced
conversation and complex decision making

returns agent = Agent (

name="ReturnsSpecialist",

model="gemini-2.5-flash",

instruction="""You are a returns specialist. Guide customers
through

the return process, ensuring they have valid reasons and
helping them

understand our policies. Be empathetic but ensure policy
compliance.""",

tools=[validate return eligibility, create return label,
send confirmation]

)

# Root agent can delegate to returns specialist

root agent = Agent (
name="CustomerSupportAgent",
sub_agents=[returns agent]

How do you choose? Here’s a practical framework based on our
implementation experience. The beauty of ADK is that you’re not locked
into your initial choice. When you find yourself writing complex
conditionals or wishing the tool could ask clarifying questions, refactor it
into a subagent. The framework makes this evolution natural. To help make
the decision easier, Table 3-1 summarizes the key decision factors.



Table 3-1. Decision matrix for choosing between tools and subagents

Factor
Operation type
Reasoning
required

Interface
stability
Performance
Frequency

Context needs

Example use
cases

Use tools

Deterministic, single-
purpose

None—clear rules
suffice

Fixed inputs/outputs

Fast with generally no
token cost

High-frequency
operations

Stateless or simple
state

Database lookups,
calculations, API calls

Use subagents

Context-dependent, multistep

Understanding, empathy,
judgment needed

Dynamic, conversational

Variable latency and token
costs

Complex, less frequent
interactions

Maintains conversation
context

Troubleshooting,
negotiations, multistep
workflows

Let’s take an example, Example 3-6, with our use case to reinforce what we

just learned.

Example 3-6. Shipping calculation as a tool—pure function with predictable

outputs

def calculate shipping(weight:

float,

destination: str) -> dict:

"""Always returns the same rate for given weight and

destination."""

# Deterministic calculation

base rate =

weight * 0.5



zone multiplier = ZONE RATES.get (destination, 1.0)
return {"cost": base rate * zone multiplier}

Tools also shine when the task requires no reasoning. If you can write clear
rules for when and how to perform an operation, it’s likely a good tool
candidate. Speed matters too—tool calls execute quickly with just function
execution plus any network overhead. There’s typically no explicit LLM
inference time, token costs, or nondeterministic delays. Finally, tools work
best with stable interfaces that have clear inputs and outputs that rarely
change.

Often, the best solution combines both approaches, tools and subagents, as
shown in Example 3-7.

Example 3-7. Hybrid architecture combining tools for deterministic
operations with subagents for complex workflows

# Returns subagent uses specialized tools
returns agent = Agent (
name="ReturnsSpecialist",
instruction="Guide return processes with empathy and policy

awareness'",
tools=]|
check return eligibility, # Tool: Deterministic policy
check
calculate refund amount, # Tool: Financial calculation
create return label # Tool: Generate shipping label

)

# Root agent delegates complex returns to specialist
root agent = Agent (
name="CustomerSupportAgent",
tools=]|
look up order, # Simple tools for common tasks
check shipping status
] 14

sub_ agents=[returns agent] # Specialist for complex
workflows

)

Use subagents when the task requires understanding context. Return
requests aren’t just about processing—they require understanding why the
customer 1s unhappy, determining whether their reason is valid, and



maintaining relationship quality while enforcing policies. When a customer
says, “The doorbell works but I don’t like how it looks on my house,” a
returns specialist subagent can respond with nuance: “I understand that
aesthetics are important for your home. While our standard policy covers
defects, I can see this is disappointing. Let me check if we have other finish
options that might better match your home’s style...”

Subagents excel at coordinating multiple steps with branching logic, follow-up
questions, and dynamic decision making. They can maintain specialized knowledge
through their own instruction sets, tools, and even different models. This specialization
improves performance without complicating your main agent. Additionally, subagents
maintain their own conversation context, allowing natural multiturn interactions for
complex tasks.

The patterns we’re exploring here—tools for deterministic operations, subagents for
complex workflows—form the foundation for building multiagent systems. In
Chapter 4, we’ll see how these building blocks enable teams of specialized agents to
work together through coordinator and pipeline patterns.

As our customer support agent grows in the sections that follow, we’ll use
both patterns—tools for looking up information and performing
calculations and subagents for complex workflows that benefit from
specialized reasoning. This combination creates an agent that’s both capable
and efficient—exactly what production systems demand.

State Management That Actually Scales

While tools and subagents provide the capabilities your agent needs, there’s
another critical piece that determines whether your agent can handle real-
world interactions: state management. Every conversation generates
information that needs to persist—not just for the current exchange, but
across sessions, users, and even system-wide configurations. Let’s explore
how ADK’s state system makes this possible.

Our customer support agent can now look up orders and delegate to
specialists, but it still lacks persistent memory across sessions. When a



customer returns next week, the agent has no record of their preferences or
previous interactions. When company policies change, there’s no
mechanism to propagate updates across all agent instances. These
limitations stem from missing state management.

ADK provides three state scopes that solve these challenges. Let’s enhance
our customer support agent with a shopping cart feature to see these scopes
in action.

Building a Stateful Shopping Cart

Adding shopping capabilities to our support agent introduces clarifying
state challenges. Some information should exist only during the current
conversation, like temporary calculations or session-specific metrics. Other
data needs to persist across sessions: purchase history, customer
preferences, loyalty status. And certain facts must remain consistent
system-wide, such as product prices, shipping policies, and inventory rules.

Let’s implement these capabilities, as shown in Example 3-8.

Example 3-8. Shopping cart implementation demonstrating state scope

usage

from import Agent

from import ToolContext
from import datetime

async def add to cart(
product id: str,
tool context: ToolContext,
quantity: int = 1
) —> dict:
"""Adds products to cart, demonstrating state management.'"""
# User state: Cart persists across sessions
cart = tool context.state.get ("user:cart", {"items": [],
"total": 0.0})

# Add item (simplified - assumes all products are 5$24.99)

cart["items"] .append ({"id": product id, "gty": quantity,
"price": 24.99})

cart["total"] = sum(item["price"] * item["gty"] for item in
cart["items"])



# Update user state
tool context.state["user:cart"] = cart
tool context.state["user:total items"] = (
tool context.state.get ("user:total items", 0) + quantity

# Temp state: Session metrics
tool context.state["temp:last action"] = f"Added {product id}"
tool context.state["temp:session adds"] = (

tool context.state.get("temp:session adds", 0) + 1

)

return {"success": True, "cart total": cart["total"]}

async def checkout (tool context: ToolContext) -> dict:
"""pProcesses checkout, demonstrating state scope
interactions. """
cart = tool context.state.get ("user:cart", {"items": [],
"total": 0.0})
if not cart["items"]:
return {"error": "Empty cart"}

# Update user state
tool context.state["user:lifetime value"] = (
tool context.state.get("user:lifetime value", 0.0) +
cart["total"]
)
tool context.state["user:order count"] = (
tool context.state.get ("user:order count", 0) + 1

# Check loyalty using app state threshold

if (tool context.state["user:lifetime value"] >
tool context.state.get ("app:loyalty threshold", 500)):
tool context.state["user:is vip"] = True

# Clear cart

tool context.state["user:cart"] = {"items": [], "total": 0.0}
return {"success": True, "order id": f"ORD-
{datetime.now () : $YSm3dSHEMSS} "}

# Create agent with simplified configuration

root agent = Agent (
name="CustomerSupportAgent",
model="gemini-2.5-flash",
instruction="""Shopping cart agent demonstrating
temp:, user:, and app: state scopes.""",



tools=[add to cart, checkout]
)

This condensed example shows the essential state management patterns.
The complete implementation includes additional tools for viewing the cart
and retrieving user preferences, along with additional error handling and
product management. You can find the full code with all five tools and
comprehensive functionality in our GitHub repository.

Now let’s see these state management concepts in action. Watch how state
flows through an example conversation with our customer support agent in
Figure 3-5. The interface displays how user state accumulates customer
metrics such as order lookups, cart usage, and total items added—all of
which persist across sessions. The customer begins shopping and each
interaction builds on the last.
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Figure 3-5. State management in the ADK web interface showing user state (user :) updating in
real time

Understanding the Three Scopes

Why three different state scopes? Because what your agent needs to
remember depends on context:

Temporary state (temp:)

Lives for only the current invocation (or turn). When the agent finishes
responding, this state disappears. It’s perfect for in-progress form data,
search filters and preferences for the current interaction, verification
codes or temporary tokens, and session-specific metrics. Think of it as
your agent’s short-term working memory—essential for the task at hand
but not worth remembering forever.

User state (user:)

Persists across sessions for a specific user. When they come back next
week, this data is still there. It’s ideal for order history, preferences and
settings, loyalty status and rewards, and customer-specific information.
This 1s your agent’s cross-session memory for each user—the details
that make each customer feel recognized and valued.

Application state (app:)

Applies system-wide across all users and sessions. When you update it,
every agent instance sees the change. It’s essential for business rules
and policies, system configuration, feature flags, and global inventory
levels. Consider this your agent’s globally shared knowledge—the facts
and rules that everyone in your organization needs to know.

Example 3-9 shows how these scopes work in practice.

Example 3-9. Temporary state holds session-specific data, user state
maintains individual preferences and history, and application state contains
system-wide settings




# Temporary state - disappears after each invocation

tool context.state["temp:search filters"] = {"category":
"lighting", "max price": 50}
tool context.state["temp:verification code"] = "123456"

# User state - persists for this user across sessions

tool context.state["user:preferred shipping"] = "express"
tool context.state["user:loyalty points"] = 1250

# Application state - shared across all users

tool context.state["app:return window days"] = 30

tool context.state["app:free shipping threshold"] = 50.0

State Scope Interactions

The real power emerges when scopes work together. Let’s enhance our
agent with abandoned cart recovery—a feature that showcases how
different state scopes complement each other, as shown in Example 3-10.

Example 3-10. Temporary cart data moves to the user state for persistence,
while the application state defines business rules such as expiration policies

async def save cart for later(tool context: ToolContext) -> dict:
"""saves the current cart for later retrieval."""
cart = tool context.state.get ("user:cart")

if not cart or not cart["items"]:
return {"message": "No items to save"}

# Use temp: for actual invocation-scoped data
tool context.state["temp:validation status"] = "validating"

# Validate cart items (example intermediate step)
if not validate cart items(cart["items"]):

tool context.state["temp:validation status"] = "failed"
return {"error": "Invalid items in cart"}
tool context.state["temp:validation status"] = "passed"

# Add metadata for recovery
cart["saved at"] = datetime.now () .isoformat ()

# Mark cart as saved 1n user state
tool context.state["user:cart saved"] = True
tool context.state["user:cart saved date"] = cart["saved at"]



return {
"success": True,
"message": "Your cart has been saved and will be here when
you return!"

}

async def check cart expiry(tool context: ToolContext) -> dict:
"""Checks 1f saved cart has expired based on business rules.'"""
cart = tool context.state.get ("user:cart")
cart saved date =

tool context.state.get ("user:cart saved date")

if not cart or not cart["items"] or not cart saved date:
return {"status": "no saved cart"}

# Check if cart is still valid
saved date = datetime.fromisoformat (cart saved date)

days old = (datetime.now() - saved date) .days

# Get cart expiry policy from app state
max days = tool context.state.get("app:saved cart expiry days",

30)
if days old > max days:
# Clear expired cart
tool context.state["user:cart"] = {"items": [], "total":
0.0}

del tool context.state["user:cart saved"]
del tool context.state["user:cart saved date'"]

return {
"status": "expired",
"message": f"Your saved cart has expired (older than

{max days} days)"
}

return
"status": "valid",
"message": f"Your cart from {days old} days ago is still

available",
"days old": days old

State management might seem like plumbing—easily overlooked
infrastructure. But with ADK’s state scopes, it becomes a powerful tool for
building agents that truly understand context.



Making State Persist in Production

The state management you’ve built handles session state, user preferences,
and application configuration beautifully. Throughout this chapter, we’ve
stored all our sessions in memory—a deliberate choice that provides instant
feedback with zero configuration, perfect for development and testing.

But production applications need state that survives application restarts.
When you deploy updates, scale containers, or recover from failures, your
users expect their preferences and session data to persist. Let’s explore
ADK’s persistent storage options.

Development: InMemorySessionService

The default InMemorySessionService stores everything in RAM for
speed and simplicity. It’s what you’ve been using throughout this chapter,
and 1t excels at local development with instant feedback, rapid prototyping
without configuration overhead, and testing and demonstrations.

The tradeoff is straightforward: state exists only while the application runs.
Restart your process, and the state resets. This makes
InMemorySessionService ideal for development but unsuitable for
production deployments where users expect continuity. Example 3-11
shows the basic configuration you’ve been using throughout the chapter.

Example 3-11. This zero-configuration approach provides instant feedback
but doesn t persist state across application restarts

from import InMemoryRunner
from import root agent
runner = InMemoryRunner (

agent=root agent,
app_ name="CustomerSupportAgent"

)

Self-managed production: DatabaseSessionService

When you need persistent state with full control over your database
infrastructure, DatabaseSessionService connects your agent to
standard relational databases such as PostgreSQL, MySQL, and SQL.ite.



This approach works well when you have existing database infrastructure or
specific compliance requirements around data storage.

Example 3-12 demonstrates a DatabaseSessionService
configuration using PostgreSQL.

Example 3-12. This self-managed approach provides full control over
database infrastructure while ensuring that state persists across application
restarts

from import Runner
from import DatabaseSessionService
from import root agent

# Production configuration with Cloud SQL (PostgreSQL)
# Assumes secure connection via Cloud SQL Auth Proxy or private IP

DB USER = "your-db-user"

DB PASS = "your-db-password"

DB _HOST = "your-instance-private-ip" # or 127.0.0.1 via proxy
DB_PORT = "5432"

DB NAME = "adk sessions db"

db_url = f"postgresql+pg8000://{DB_USER}:{DB PASS}@{DB_HOST}:
{DB_PORT}/{DB_NAME}"

runner = Runner (
agent=root agent,
app_name="CustomerSupportAgent",
session service=DatabaseSessionService (db url=db url)

Fully managed production: VertexAiSessionService

For teams deploying on Google Cloud, VertexAiSessionService
eliminates database management entirely. Vertex Al Agent Engine handles
storage, scaling, high availability, and backups automatically—representing
the lowest operational overhead. The platform manages the infrastructure
while you focus on agent logic. As shown in Example 3-13, the
VertexAiSessionService configuration for fully managed state
persistence is even simpler than the database approach.



Example 3-13. Vertex Al Agent Engine handles all infrastructure concerns,
providing the lowest operational overhead

from import Runner

from import VertexAiSessionService
from import root agent

PROJECT ID = "your—-gcp-project-id"

LOCATION = "us-centrall"

AGENT ENGINE ID = "your-agent-engine-id"

runner = Runner (

agent=root agent,
app_name=AGENT ENGINE ID, # Must match Agent Engine ID
session service=VertexAiSessionService (
project=PROJECT ID,
location=LOCATION

)

The choice between these implementations depends on your deployment
environment, operational expertise, and infrastructure preferences, which
we’ll cover in more depth in Chapter 6 (infrastructure), Chapter 7 (MLOps),
and Chapter 8 (Al and agentic maturity framework). Your agent code—the
tools, state management patterns, and conversation logic—works identically
with all three implementations. Switching between them means changing
only how you initialize the runner, not rewriting the agent itself.

Beyond Structured State: Semantic Memory

The persistent state we’ve configured enables your agent to remember
structured facts across sessions. When a customer returns weeks later, their
user:preferences, user:cart, and user:vip status state, for
example, remain intact. This programmatic memory is powerful—it
captures exactly what you choose to track.

But conversations contain knowledge that resists structure. Consider the
following exchange:



Customer: 1 finally got the doorbell working by switching to the
2.4GHz network. The 5GHz just wouldn’t stay connected.

Agent: That’s great! I’ve updated your order status to resolved.

Your agent might set user:issue resolved = True in state, but
what about the troubleshooting insight embedded in that exchange? The
fact that this customer’s WiFi environment works better on 2.4GHz could
help diagnose future issues with their other smart home devices. Yet it
doesn’t fit naturally into a state key.

This conversational nuance—the context, preferences, and tacit knowledge
that emerges organically—is what semantic memory captures.

Vertex Al Agent Engine Memory Bank: Learning from
Conversations

Vertex Al Agent Engine Memory Bank, illustrated in Figure 3-6,
complements structured state by automatically extracting and consolidating
meaningful facts from conversation history. After each session, Memory
Bank analyzes the exchange using a Gemini model to identify information
worth remembering.
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Figure 3-6. During the flow of information in Memory Bank, sessions generate memories through
extraction and consolidation, which agents retrieve using semantic search

The distinction is subtle but powerful. User state requires you to decide
upfront: “Store this specific piece of data.” Memory Bank operates at a
higher level: “what did we learn about this customer that will improve
future interactions?”

Consider how these two forms of memory work together. Memory Bank
extracts semantic insights such as “Customer’s smart home devices perform
better on 2.4GHz WiFi1 than 5GHz;” “Prefers detailed technical
explanations over simplified summaries;” and “Concerned about shipping
reliability after previous delayed order.” Meanwhile, the user state tracks
explicit data points such as user:preferred shipping =
"express",user:wifi network = "2.4GHz", and
user:communication preference = "email".



Both forms of memory enable personalization. User state provides
structured facts that let your agent recognize returning customers and adapt
accordingly. Memory Bank adds conversational context, creating
interactions that feel genuinely attentive rather than merely informed.

Implementation

Integrating Memory Bank builds on the session persistence you’ve already
configured. The pattern involves three steps: adding the memory service to
your runner, extracting memories from completed sessions, and equipping
your agent to retrieve relevant memories automatically.

Step 1: Add memory service to your runner

Adding VertexAiMemoryBankService to your runner requires the
same configuration elements you used for session persistence: project ID,
location, and agent engine ID.

Example 3-14 shows VertexAiSessionService and
VertexAiMemoryBankService configured together.

Example 3-14. The session service handles structured state while the
memory service captures semantic knowledge from conversations

from import Runner

from import VertexAiSessionService
from import VertexAiMemoryBankService
from import root agent

PROJECT ID = "your—-gcp-project-id"

LOCATION = "us-centrall"

AGENT ENGINE ID = "your-agent-engine-id"

# Your existing session service for state persistence
session service = VertexAiSessionService (
project=PROJECT 1ID,
location=LOCATION
)

# Add memory service for semantic knowledge
memory service = VertexAiMemoryBankService (
project=PROJECT 1ID,



location=LOCATION,
agent engine 1d=AGENT ENGINE ID

runner = Runner (
agent=root agent,
app_name=AGENT ENGINE ID,
session service=session service, # Handles structured state
memory service=memory service # Handles semantic memories

Step 2: Extract memories from completed sessions

You explicitly trigger memory extraction by calling

add session to memory () on completed sessions, typically when a
conversation concludes successfully. Memory Bank then automatically
analyzes the conversation to identify and extract valuable knowledge, as
shown in Example 3-15.

Example 3-15. When extracting memories from a completed session,
Memory Bank analyzes the conversation using a Gemini model to identify
and consolidate meaningful facts worth remembering

# Retrieve the completed session

completed session = await runner.session service.get session(
app name=AGENT ENGINE ID,
user id="customer-user-id",
session_id="session-id-from-conversation"

if completed session:
# Analyze conversation and extract memories
await memory service.add session to memory(completed session)

For production systems, you can automate this using an

after agent callback (discussed later in this chapter) that processes
sessions after successful interactions, ensuring that valuable conversations
are captured without manual intervention.

Step 3: Retrieve memories automatically

ADK’s PreloadMemoryTool performs semantic search against Memory
Bank at the start of each conversation turn, injecting relevant facts into your



agent’s context. Example 3-16 demonstrates how to equip your agent with
automatic memory retrieval.

Example 3-16. The PreloadMemoryTool injects relevant memories into

the agent s context at the start of each turn, enriching responses with
historical knowledge

from import Agent
from import PreloadMemoryTool

root agent = Agent (

name="CustomerSupportAgent",

model="gemini-2.5-flash",

instruction="""You are a helpful customer support assistant
with access

to both current session data and relevant memories from past
conversations.

Use the retrieved memories to provide personalized support and
avoid asking
for information the customer has already shared."™"",
tools=[PreloadMemoryTool () ]
)

The agent doesn’t explicitly call memory retrieval—it simply receives
enriched context for each interaction, allowing it to provide responses
informed by the full conversational history with this specific customer.
ADK also provides 1load memory as an alternative tool that lets the agent
decide when to retrieve memories.

Structured state and semantic memory working together

The combination creates a complete picture of your customer. When
someone returns to your support agent, you have both operational data and
conversational context. User state provides immediate, structured facts such
asuser:vip status = True,user:lifetime value =
1250.00,and user:preferred contact = "email".Memory
Bank provides contextual understanding: “Customer is price-sensitive but
values reliability over cost,” “Had frustrating experience with previous
shipping delay,” and “WiF1 environment requires 2.4GHz for smart home
devices.”



This dual-layer approach enables agents that make smart operational
decisions—applying VIP discounts and using email for notifications—
while providing genuinely personalized interactions by acknowledging past
shipping concerns and proactively recommending 2.4GHz-compatible
products.

Your customer support agent now has memory that scales from single
conversations to weeks of accumulated knowledge—exactly the foundation
needed for production deployments where users expect continuity and
personalization.

Expanding to Multimodal

Our customer support agent has grown considerably since the start of this
chapter. It can look up orders, manage shopping carts, and remember
customer preferences across sessions. But watch what happens when a
customer tries to report a damaged product:

Customer: My smart doorbell is sparking! It looks dangerous!

Our agent can respond with only generic troubleshooting steps. It can’t see
the sparking. It can’t assess the damage. It can’t generate the visual
documentation needed for a warranty claim. In the real world of customer
support, seeing is believing—and our text-only agent is effectively blind.

The ADK solves this limitation through three complementary capabilities.
First, Gemini models natively understand images, audio, and video,
allowing our agent to analyze media a customer shares. Second, the Gemini
Live API enables real-time streaming for voice and video interactions.
Third, the Artifact Service provides persistent document storage, ensuring
that important findings become retrievable records.

Let’s enhance our customer support agent to handle these real-world
scenarios. The code samples in this section show the essential patterns; for
the complete implementation including WebSocket infrastructure, client-
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side media handling, and production-ready error handling, see our GitHub
repository.

Making Our Agent See

The transformation relies on Gemini’s native multimodal capabilities to
“see” the damage. We add the analyze product damage tool not to
process the pixels, but to capture the model’s analysis—such as damage
type and severity—and structure it into a formal report. Example 3-17
shows how this new multimodal damage analysis capability integrates
seamlessly with our existing agent.

Example 3-17. The function processes product images, generates
assessment reports, and stores them as persistent artifacts using the user:

prefix for cross-session access

async def analyze product damage (

damage type: str,

severity: str,

tool context: ToolContext
) —> dict:

"""Records the damage assessment derived from image
analysis. """

# Use the model-provided analysis values
assessment = {
"damage severity": severity,
"damage type'": damage type,
# In a real app, coverage logic would likely be another
tool or lookup
"warranty coverage": "Covered - component failure",
"recommended action": "Warranty replacement approved"

# Generate report content

report content = {
"report type": "Damage Assessment",
"generated at": datetime.now() .isoformat (),
"assessment": assessment,
"case number": f£"DMG-
{datetime.now () .strftime ('3YSmSdsHEMSS") } "

}

# Save as artifact for permanent storage
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report json = json.dumps (report content, indent=2)
report artifact = types.Part.from bytes(
data=report json.encode('utf-8'),
mime type="application/json"

# Use user: prefix for cross-session persistence
# Wrapped in parentheses to prevent margin breach
filename = (f"user:damage report "

f"{report content['case number']}.json")

version = await tool context.save artifact(

filename=filename,
artifact=report artifact

# Return assessment with case number

assessment ["case number"] = report content['case number']
assessment ["report saved"] = True
assessment ["report version"] = version

return assessment

# Update our agent to include the new capability
root agent = Agent (
name="CustomerSupportAgent",
model="gemini-2.5-flash",
# Instruction updated to explicitly tell the model to analyze
first
instruction=(
"You help customers with SmartHome products.
"When customers share images, analyze the damage details

"

and use
"analyze product damage to document the issue."

)/
tools=]|
look up order,
add to cart,
checkout,
analyze product damage

With this enhancement in place, our agent can now process visual
information just as naturally as text. Figure 3-7 demonstrates this
multimodal capability in action, showing how the agent seamlessly



combines order lookup with visual damage assessment when a customer
uploads an image of their damaged doorbell.

The agent isn’t just acknowledging the image—it’s analyzing it, making
decisions based on what it sees, and saving a formal damage report through
the Artifact Service. These artifacts persist independently of conversation
state, meaning customers can retrieve their case documentation weeks later
for insurance claims or warranty verification.

While we’ve demonstrated image analysis here, the same approach works
with audio and video. Customers could upload recordings of unusual
sounds or videos of installation problems, with the agent analyzing the
media content and capturing the findings via specific reporting tools.



Sure, my order number is #78234 and here's a picture of the
doorbell where | think the damage might be

I. \, Used tool: look_up_order

I, \ Used tool: analyze_product_damage

Okay, I've reviewed the image and the damage analysis. | see
that the order has shipped and is expected to arrive on July
22, 2025. The image analysis indicates a moderate electrical
issug affecting the circuit board and power supply. The
recommended action is a warranty replacement. I'm very sorry
about this damage! Il need to review the warranty coverage to
confirm the replacement. One moment...



Figure 3-7. The customer uploads an image of their doorbell, and the agent automatically invokes
both 1ook up orderand analyze product damage tools to provide comprehensive
support—checking warranty status while analyzing and documenting the visible damage

From Static Analysis to Live Support

Static media analysis solves many problems, but some situations demand
real-time interaction. When a customer struggles with thermostat wiring or
needs guided troubleshooting, asynchronous image sharing falls short. They
need someone watching in real time, providing immediate feedback as they
work.

ADK’s Live API integration enables this capability through streaming
interactions. Example 3-18 demonstrates how to implement real-time voice
and video support.

Example 3-18. With ADK's Live API integration, the WebSocket endpoint
handles bidirectional streaming, processing both audio and video inputs
while streaming agent responses back to the client

.websocket ("/ws-voice")
async def websocket voice endpoint (websocket: WebSocket) :
"""Real-time voice/video support for complex
troubleshooting. """
await websocket.accept ()

session id = f"voice streaming {datetime.now () .timestamp() }"
user id = "voice user"

# Create session

session = await session service.create session(
app name="voice streaming demo",
user id=user id,
session id=session id

)

# Initialize runner with streaming agent
runner = Runner (
agent=streaming agent,
app name="voice streaming demo",
session_service=session_ service,
artifact service=artifact service



# Configure for audio mode
run_config = RunConfig

streaming mode=StreamingMode.BIDI,

response modalities=["AUDIO"],

speech config=types.SpeechConfig(

voice config=types.VoiceConfig(
prebuilt voice config=types.PrebuiltVoiceConfig (
voice name="Aoede"

) s

input audio transcription=types.AudioTranscriptionConfig(),

output audio transcription=types.AudioTranscriptionConfig(),

)

# Create live streaming components

live request queue = LiveRequestQueue ()

live events = runner.run live(
session=session,
live request queue=live request queue,
run_config=run config

# Handle bidirectional streaming
async def process client audio():
"""Receive audio/video from client."""
async for data in websocket.iter json():
if data["type"] == "audio":
audio bytes = baset4.b64decode (data["data"])
live request queue.send realtime (
types.Blob (
data=audio bytes,
mime type="audio/pcm;rate=16000"

)
elif data["type"] == "video":
video bytes = baseb64.b6ddecode (data["data"])
live request queue.send realtime (
types.Blob (
data=video bytes,
mime type="image/jpeg"

async def stream agent responses():
"""Send agent audio responses to client."""
async for event in live events:



if event.content and event.content.parts:
for part in event.content.parts:
if hasattr(part, "inline data") and
part.inline data:
# Audio response
audio baset4 = base64.btdencode (
part.inline data.data
) .decode ("utf-8")
await websocket.send json ({
"type": "audio",
"data": audio base64

b

# Run both tasks concurrently
await asyncio.gather (
process client audio(),
stream agent responses ()

)

The complete implementation in our GitHub repository includes transcript
buffering for smooth text display, comprehensive error handling and
reconnection logic, client-side JavaScript for media capture and playback,
and integration with the full HTML interface shown in the screenshots.

The Live API currently supports either text or audio responses (not both
simultaneously). In voice mode, customers can enable their camera for
visual troubleshooting while maintaining natural conversation flow.

Figure 3-8 demonstrates this live support capability in action, showing how
customers can share their camera feed while receiving real-time voice
guidance during complex troubleshooting scenarios.
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Figure 3-8. The customer shares their camera feed while the agent provides real-time text guidance
for troubleshooting—the same agent that handles text and analyzes static images now guides through
live interaction

Beyond real-time interactions, our agent needs to maintain a permanent
record of important customer interactions and documents.

Building Complete Interaction Memory

Beyond tracking structured data in state, your agent needs to handle actual
files—images customers upload showing product damage, PDFs of receipts
they want analyzed, or reports your agent generates for them to download
and share. The artifact service provides persistent file storage for any binary
content that needs to outlive the conversation, whether uploaded by
customers or created by your agent. Example 3-19 shows how to implement
comprehensive file management.

Example 3-19. The document management function retrieves and organizes
all saved customer artifacts and categorizes documents by type (damage
reports, receipts, installation certificates) for improved UX

async def list user documents (tool context: ToolContext) -> dict:
"""Shows all saved documents for the customer."""
all artifacts = await tool context.list artifacts()
user artifacts = [f for f in all artifacts if

f.startswith ("user:") ]

damage reports = []
receipts = []
installation certs = []

for artifact in user artifacts:
if "damage report" in artifact:
damage reports.append(artifact)
elif "receipt" in artifact:
receipts.append(artifact)
elif "installation" in artifact:
installation certs.append(artifact)

return
"damage reports": damage reports,
"receipts": receipts,



"installation certificates": installation certs

}

The architectural consistency becomes clear when you consider the
complete system. State management tracks structured data—cart contents,
preferences, VIP status. The artifact service handles the actual files—
damage photos, generated reports, receipts. Session persistence ensures that
both survive across conversations. Together, these capabilities transform
your agent from a conversational interface into a complete support system
that can handle real-world customer needs from diagnosis through
documentation.

Building Production-Grade Tools

The agent you’ve built is production-capable—it handles conversations,
manages state, processes multimodal inputs, and generates documents. But
enterprise deployments introduce scenarios that don’t appear during
development, and ADK provides patterns specifically designed for these
production realities.

Real business processes often involve waiting. Approvals require manager
review. Infrastructure provisioning takes minutes. External systems process
requests asynchronously. Your agent needs to handle these long-running
operations without blocking conversations.

Enterprise applications demand consistent security and compliance.
Sensitive data needs protection across every interaction. Organizational
policies must apply uniformly regardless of which agent handles the
request. These requirements need systematic enforcement, not ad hoc
implementation.

Production systems require visibility. When something goes wrong, you
need detailed execution traces. When performance matters, you need
precise metrics. When compliance asks questions, you need comprehensive
audit logs. ADK’s plug-in architecture provides exactly this observability.

Let’s enhance our agent with these enterprise capabilities, starting with
long-running operations.



Handling Asynchronous Operations

The tools we’ve built so far complete their operations within milliseconds
or seconds. When the agent calls 1look up order or

analyze product damage, it receives responses quickly. This works
well for database lookups, API calls, and damage assessments.

Many enterprise scenarios involve multiple operations that take time. ADK
handles these efficiently and runs tools in parallel when the agent requests
multiple operations. If your agent needs weather data from three cities, all
three API calls happen concurrently rather than sequentially. This parallel
execution makes research tasks and multisource data gathering fast and
responsive.

Throughout this chapter, you’ve been defining tools with async def rather than
def. This asynchronous syntax enables ADK to run multiple tool calls concurrently
when your agent requests them. When you write async def my tool(...),
you’re telling Python this function can yield control while waiting for I/O operations
(database queries, API calls, file operations), allowing other tools to execute
simultaneously. You don’t need to change how you’ve been writing tools—the async
def pattern you’ve been using already enables this concurrent execution.

But some business processes are inherently singular and time-consuming:
manager approvals that require human review, infrastructure provisioning
that takes minutes, complex reports that process for hours. These operations
can’t be parallelized because they’re single, long-running tasks. With
standard tools, users would wait the entire duration with no
acknowledgment—a poor experience when operations take minutes or
hours to complete.

For these scenarios, ADK provides the LongRunningFunctionTool.
This specialized tool initiates long-running background operations without
blocking the agent, allowing it to handle business workflows where the
actual work happens asynchronously—outside the immediate request-
response cycle. Figure 3-9 illustrates the interaction flow.
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Figure 3-9. LongRunningFunctionTool interaction pattern showing how asynchronous
operations integrate with agent execution

The interaction flow is designed to integrate seamlessly with external
processes. When the agent calls a long-running tool, the tool initiates the
external operation (creating an approval ticket, starting infrastructure
provisioning) and stores tracking information in state—typically a task ID
and status flag. The agent run completes, informing the user their request
was submitted along with the task ID.

Later, when the user asks about status, the status-checking tool queries the
external tracking system, discovers the current state, and updates ADK
session state accordingly. If the operation has completed, the tool sets
completion flags in state (such as approval completed: True),
allowing subsequent agents in the pipeline to proceed automatically.

Example 3-20 demonstrates implementing a manager approval workflow.

Example 3-20. Implementing asynchronous manager approval with
LongRunningFunctionTool

import

from import Any

from import LongRunningFunctionTool

def request manager approval (purpose: str, amount: float) ->

dict[str, Any]:
"""Tnitiates a request for manager approval for an expense.""”
# In production, this would call an API to create a ticket
# in a system like Jira or ServiceNow
print (f"--- TOOL: Creating approval ticket for ${amount} USD "
f"for '{purpose}' ---")

ticket id = f"TICKET-{random.randint (1000, 9999)}"

# Return immediately with pending status and ticket ID

return {
'status': 'pending',
'approver': 'manager@example.com',
"ticket id': ticket id,
'message': (f"Approval request submitted. Track status with

f"ticket {ticket id}")



# Wrap the function with LongRunningFunctionTool
approval tool =
LongRunningFunctionTool (func=request manager approval)

# Add to your agent's tools 1ist
agent = Agent (
name="ExpenseAgent",
tools=[approval tool],
instruction="Help users submit expenses for approval."

)

This pattern allows your agent to manage workflows that mirror real
business processes, where delays and external dependencies are the norm
rather than the exception.

Ensuring Safety with Human-in-the-Loop

Agents with tools that can perform sensitive or destructive actions—
deleting database records, sending customer-facing emails, approving
financial transactions—pose significant risk. An LLM misinterpretation
could trigger an irreversible, costly mistake. As shown in Figure 3-10, ADK
provides native safety through Tool Confirmation, implementing a Human-
in-the-Loop (HITL) guardrail that pauses the agent before protected tools
execute.
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Figure 3-10. HITL confirmation flow preventing unauthorized destructive operations

For simple “yes/no” approvals, wrap a function in a FunctionTool and
set require confirmation = True, as shown in Example 3-21.

Example 3-21. Implementing HITL confirmation for sensitive operations

from google.adk.agents import Agent
from google.adk.tools import FunctionTool

def delete user account (user id: str) -> dict:
mrrn
Permanently deletes a user's account and all associated data.

This action 1is irreversible and requires confirmation.
mrmrn

print (f"--- TOOL: Deleting account for user: {user id} ---")
# In production, this would call your user management API
return {"status": "success", "message": f"User {user id} has

been deleted."}

# Wrap with confirmation requirement
delete tool = FunctionTool (

func=delete user account,

require confirmation=True # Forces human approval before
execution

)

safety agent = Agent(
name="AdminAgent",
model="gemini-2.5-flash",
instruction=(
"You are an admin assistant. When asked to delete a user, "
"use the delete user account tool. Always state that this

"permanent action."

),
tools=[delete tool]

When this agent runs and decides to call delete user account, the
user sees a confirmation dialog. The tool executes only if they explicitly
approve. For scenarios requiring more complex input, such as a reason for
approval or multifactor authentication, use

tool context.request confirmation () within your tool logic
to request structured data from the user.



Production Monitoring and Policy Enforcement with
Callbacks and Plug-ins

Throughout this chapter, we’ve seen callbacks at work behind the scenes,
tracking media references, managing state transitions. But callbacks serve a
critical role in production: they’re one of your primary mechanisms for
observability, security, and compliance.

ADK provides callback hooks at key execution points. The

before agent callbackandafter agent callback fire
when the agent run starts and ends, making them ideal for logging session
metadata and tracking overall execution time. The

before model callbackand after model callback fire
before and after LLM calls, enabling prompt inspection, output filtering,
and token usage tracking. Similarly, before tool callback and
after tool callback fire before and after tool execution, perfect for
authorization checks, input validation, and result transformation.

While callbacks work well for agent-specific logic, production systems
need consistent security policies across all agents. This is where ADK’s
Plugin system becomes essential. Plug-ins are reusable, modular
components that apply at the runner level, ensuring that every agent in your
system follows the same security and compliance rules.

The distinction is important: use callbacks for agent-specific behavior such
as custom state management, but use plug-ins for application-wide policies
like PII redaction or security guardrails. ADK provides the plug-in
framework through the BasePlugin class, allowing teams to build their
own custom plug-ins for their specific requirements. Example 3-22
demonstrates implementing a production PII redaction plug-in.

Example 3-22. Custom PII redaction plug-in for application-wide data

protection

from import BasePlugin
from import CallbackContext
from import LlmRequest

from import LlmResponse

from import BaseTool
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from google.adk.tools.tool context import ToolContext
from typing import Any, Optional
import re

class PIIRedactionPlugin (BasePlugin):

"""Custom plugin for enterprise-grade PII protection across all
agents. mmwn

def init (self, redaction patterns=None) :
"""Tnitialize with customizable redaction patterns."""
super (). init (name="PIIRedactionPlugin")
self.patterns = redaction patterns or {
r'\b\d{3}-\d{2}-\d{4}\b': '[SSN-REDACTED] "',
r'\b\d{3}[-.]12\d{3}[-.12\d{4}\b"': '[PHONE-REDACTED] "',
(r'\b[A-Za-z0-9. $+-1+@"'
r'[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b"): '[EMAIL-
REDACTED] ',
r'MRN\d{6,}': '[MRN-REDACTED]', # Medical Record
Numbers
r'\b\d{4}\s?\d{4}\s?\d{4}\s?\d{4}\b': '"[CREDIT-CARD-
REDACTED] '

}

async def before model callback(
self,
callback context: CallbackContext,
11lm request: LlmRequest
) —> Optional [None] :
"""Redact PII patterns before sending to LLM."""
if not 1lm request.contents:
return None

for content in 1lm request.contents:
for part in content.parts:
if hasattr(part, 'text') and part.text:
part.text = self. redact text(part.text)

return None # Allow model call to proceed with redacted
content

async def after model callback(
self,
callback context: CallbackContext,
llm response: LlmResponse

) —> Optional [LlmResponse]:
"""Redact PII from LLM outputs before returning to user."""
if not 1llm response.content or not

llm response.content.parts:



return None

# Modify response in place
for part in 1llm response.content.parts:
if hasattr(part, 'text') and part.text:
part.text = self. redact text(part.text)

return None # Use the modified response

async def before tool callback(
self,
tool: BaseTool,
tool args: dict[str, Any],
tool context: ToolContext
) -> Optionalldict[str, Anyl]:
"""Redact PII from tool arguments.'"""
# Redact PII in tool arguments
for key, value in tool args.items():
if isinstance(value, str):
tool argslkey] = self. redact text(value)

return None # Allow tool execution with redacted args

def redact text(self, text: str) -> str:
"""Apply all redaction patterns to text."""
for pattern, replacement in self.patterns.items():
text = re.sub(pattern, replacement, text,
flags=re.IGNORECASE)
return text

# Production deployment: Apply plugin at runner level for all
agents

from google.adk.runners import InMemoryRunner

from google.adk.runners import Runner

from google.adk.sessions import VertexAiSessionService

# Initialize your agents
healthcare agent = Agent (

name="HealthcareSupport",

model="gemini-2.5-flash",

instruction="You help patients with appointment scheduling and
basic inquiries.",

tools=[schedule appointment, lookup patient info]

billing agent = Agent (
name="BillingSupport",
model="gemini-2.5-flash",



instruction="You help with insurance and billing questions.",
tools=[check coverage, process claim]

)

# Deploy with application-wide PII protection
runner = Runner (
agent=healthcare agent, # or billing agent, or any other agent
app name="healthcare system",
session service=VertexAiSessionService (project=PROJECT 1ID,
location=LOCATION),
plugins=][
PIIRedactionPlugin(), # Applies to ALL agents using this
runner
# Add other custom plugins as needed

)

# For development/testing with in-memory session storage
dev runner = InMemoryRunner (
agent=healthcare agent,
app name="healthcare system",
plugins=[PIIRedactionPlugin () ]
)

This plug-in-based approach ensures that even if users accidentally share
sensitive information or the model underlying the agent attempts to
generate it, PII never appears in logs or responses.

These patterns—asynchronous operations, HITL controls, and systematic
monitoring through custom plug-ins—transform your agent from a capable
prototype into a production system ready for enterprise deployment.

Looking Ahead

Our customer support agent handles single conversations brilliantly. It
processes multimodal inputs, orchestrates tools, manages state, and recovers
from errors. However, what happens when problems exceed the agent’s
capabilities?

Real customer issues often span multiple domains. A billing problem might
require technical investigation. A technical issue might have warranty



implications. A warranty claim might need financial approval. Single
agents, no matter how well designed, hit natural boundaries.

This is where multiagent systems become essential. Instead of building
ever-more-complex single agents, we build teams of specialists that
collaborate. A technical specialist deeply understands product issues and
troubleshooting. A billing expert navigates financial policies and payment
systems. A warranty agent interprets coverage rules and claim procedures.
A coordinator routes requests and synthesizes responses across all these
specialists.

Chapter 4 explores these patterns in depth. You’ll discover how agents find
each other’s capabilities, share context without confusion, and maintain
conversation coherence across handoffs. You’ll learn when single agents
suffice and when you need the power of agent teams.

The principles remain the same: clear state boundaries, graceful error
handling, and performance focus. But the implementation shifts from
monolithic to distributed, from single-threaded to concurrent, from one
voice to a coordinated chorus.

Our customer support agent is complete. Next, we’ll discuss how to make
agents production-ready through evaluation and optimization in Chapter 5
and ensure that agents stay production ready through ML/AgentOps best
practices, discussed in Chapter 7. In the next chapter, Chapter 4, you’ll get a
glimpse of how specialized agents can work together to solve problems no
single agent could handle alone.

Learning Labs

To reinforce the ADK concepts covered in this chapter and build your own
production-ready agents, we recommend exploring the learning resources
available in the Chapter 3 folder in the book’s GitHub repository. Key
resources you will find linked there include:

e Hands-On Code Examples
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— Personalized shopping agent: A stateful agent
implementation that uses custom search and navigation
tools to traverse a product catalog

— Data Science Multiagent System: A reference architecture
that demonstrates multiagent orchestration with BigQuery
and AlloyDB integration to generate analytical insights

— Financial Advisor Multiagent System: A reference
architecture of a specialized agent team that collaborates
to analyze markets, develop trading strategies, and
evaluate risk

— Weather Bot agent team tutorial: A progressive, notebook-
based journey from basic agents through multiagent
delegation, state management, and safety callbacks

¢ Video

— Getting started with Agent Development Kit: Covers
agent definition, runners, services, and local debugging
with ADK’s built-in tools Tutorials

— Vibe Coding: Building ADK Agents with Gemini CLI: An
advanced workflow tutorial showing how to use “Vibe
Coding” and context engineering to rapidly scaffold and
deploy production-ready ADK agents without writing
boilerplate code

— Build, Test, and Deploy with ADK: A comprehensive
technical walkthrough demonstrating how to define
agents, integrate tools, debug using the ADK Web Ul
traces, and deploy to Cloud Run

T Asof 2025, Google Assistant on mobile devices is being upgraded to Gemini, Google’s Al-
powered assistant that builds on Assistant’s foundation while adding generative Al capabilities
like multimodal conversations and advanced research features.
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Chapter 4. Orchestrating
Intelligent Agent Teams

“My new smart thermostat is showing a wiring error, and I think it might
have overcharged my last bill. Can you check if it’s eligible for a warranty
replacement and fix the billing issue?”

This is the kind of query that arrives every day in customer service systems.
It’s deceptively simple—just a brief message from a frustrated customer.
But look closer, and you’ll see it demands expertise from three entirely
different domains: technical diagnostics for the wiring error, warranty
policy interpretation for the replacement eligibility, and financial
reconciliation for the billing correction.

In Chapter 3, we built a capable customer support agent using the ADK. It
handled conversations gracefully, managed state across sessions, processed
multimodal inputs, and executed tools reliably. For many single-domain
problems, it was exactly the right solution. But throw this multidomain
query at it, and you’ll quickly discover the architectural limits of what we
call the “monolithic agent” approach.

The Bottleneck of the Monolithic Agent

Let’s examine what happens when you try to handle this query with a single
L1lmAgent as shown in Example 4-1.

Example 4-1. A monolithic support agent antipattern

# The monolithic agent antipattern
monolithic support agent = Agent (

model="gemini-2.5-flash",

name="UniversalSupportAgent",

instruction="""You are a universal customer support agent
handling:

- Technical troubleshooting for smart home devices



- Warranty eligibility determination and replacement processing
- Billing inquiries, corrections, and refund processing

When handling wiring issues, check device logs and error
codes. ..
When processing warranties, verify purchase date and coverage
terms...
When correcting billing, calculate prorated amounts and...
[Instructions continue for 500+ more lines]
" "l
tools=][
check device diagnostics,
lookup error codes,
verify warranty status,
process warranty claim,
fetch billing history,
calculate refund,
issue credit,
schedule technician,
order replacement,
send confirmation email,
# ... 50 more tools

This approach creates several critical problems that become apparent only
when you move beyond demos and into production use.

Conflicting Instructions

Technical troubleshooting demands a methodical, diagnostic mindset:

“Check error logs, identify the faulty component, and recommend
specific fixes.”

Billing correction requires a financial compliance mindset:

“Verify charge accuracy, calculate corrections, document
adjustments for audit trails.”

Warranty processing needs a policy interpretation mindset:



“Parse coverage terms, check eligibility dates, follow replacement
workflows.”

Cramming all three domains into a single instruction set creates cognitive
dissonance—the agent must constantly context-switch between
fundamentally different ways of thinking. As instruction sets grow larger,
they consume valuable context space and this can lead to confusion about
which paradigm to apply.

Tool Selection Paralysis

With 50+ tools at its disposal, the agent faces a combinatorial explosion in
decision making. For each user query, it must evaluate which subset of tools
is relevant, in what order to invoke them, and how to interpret their outputs.
This ““analysis paralysis” increases latency, burns tokens unnecessarily, and
introduces errors as the model struggles to navigate an overwhelming
decision space.

Token Limitations

Large instruction sets and extensive tool lists push token limits, forcing you
to either truncate critical context or upgrade to more expensive models.

Maintenance Nightmare

When the billing team updates their refund policy, you must carefully edit
the monolithic instruction set without breaking the technical
troubleshooting logic. When the warranty team adds a new product line,
you must add more tools and instructions without creating conflicts with
existing billing rules. Every change requires understanding the entire
system, testing across all domains, and hoping nothing breaks unexpectedly.

Watch what happens when this monolithic agent encounters our customer’s
query (Example 4-2).

Example 4-2. Breakdown of a monolithic agent
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$ adk run customer support agent

[user]: My new smart thermostat is showing a wiring error, and I
think it

might have overcharged my last bill. Can you check if it's eligible
for a

warranty replacement and fix the billing issue?

[UniversalSupportAgent]: I'll help you with your thermostat issue.
Let me

start by checking the device diagnostics...

[calls check device diagnostics]

[calls lookup error codes]

I see the wiring error. Before we proceed with warranty, could you
clarify

what you mean by overcharged on your bill? Are you referring to
your utility

bill or the purchase price?

[user]: My utility bill. It's been unusually high since I installed
it.

[UniversalSupportAgent]: I understand, but I handle product
warranties and

technical issues. For utility billing concerns, you would need to
contact

your utility provider directly. However, let's focus on fixing the
wiring error.

Please check if the C-wire is securely inserted into the
terminal...

The agent gets lost in the complexity. It starts down the technical
troubleshooting path, then realizes it needs clarification about the billing
issue, but ultimately can’t bridge the gap between technical diagnostics and
utility billing analysis. Even worse, it doesn’t recognize that the wiring
error might cause the billing problem—a connection that requires
synthesizing insights from both domains at once.

The Solution: An Agent Team

The alternative is elegantly simple: instead of building one agent that tries
to do everything, build a team of specialists that each do one thing



exceptionally well (Example 4-3).

Example 4-3. A multiagent approach including specialist agents and a
coordinator agent

# The specialist approach
technical agent = Agent (
model="gemini-2.5-flash",
name="TechnicalSpecialist",
instruction="""You diagnose and resolve technical issues with
smart home
devices. Focus on device diagnostics, error codes, and repair
procedures.""",
tools=][
check device diagnostics,
lookup error codes,
schedule technician

warranty agent = Agent(
model="gemini-2.5-flash",
name="WarrantySpecialist",

instruction="""You determine warranty eligibility and process
claims.

Verify coverage, check dates, and initiate replacements.""",

tools=][

verify warranty status,
process warranty claim,
order replacement

billing agent = Agent (
model="gemini-2.5-flash",
name="BillingSpecialist",

instruction="""You handle billing inquiries and corrections.
Analyze

charges, calculate refunds, and process credits.""",

tools=][

fetch billing history,
calculate refund,
issue credit

# A coordinator that routes to specialists
coordinator agent = Agent (



model="gemini-2.5-flash",

name="CustomerServiceCoordinator",

instruction="""You coordinate customer support by routing
queries to

specialist agents. Delegate technical issues to
TechnicalSpecialist,

warranty questions to WarrantySpecialist, and billing problems
to

BillingSpecialist.""",

sub_agents=[technical agent, warranty agent, billing agent]

)

This architecture solves all the problems we identified. Each specialist has
clear, focused instructions without cognitive dissonance. Each specialist
works with a small, relevant tool set without decision paralysis. Each
specialist can use a smaller, faster model because its scope is narrower.
Each specialist can be updated independently without touching the others.

But most importantly, the coordinator can now understand the relationships
between domains because its instructions focus on orchestration. When it
recetves our multidomain query, it can recognize that the wiring error might
cause the billing problem not because it understands thermostats or billing
systems, but because it understands workflows and dependencies. It
delegates to the technical specialist first to diagnose the root cause, receives
a structured diagnostic report, then uses that information to help the billing
specialist understand whether charges are legitimate or error-induced.

This is the essence of a multiagent system (MAS): building intelligent
systems from simpler, focused components that collaborate to solve
complex problems. The intelligence emerges not from a single, all-knowing
agent, but from the orchestration of specialists working together.

The Roadmap: From Local Teams to
Distributed Systems

Building effective multiagent systems requires mastering three
progressively advanced architectural patterns, each solving a different class
of problems.



First, we’ll learn to compose agents locally using ADK’s workflow agents.
These are the orchestration primitives—SequentialAgent,
ParallelAgent, and LoopAgent—that let you define how agents
collaborate within a single application. Think of this as building a team that
works together in the same office, sharing memory and context naturally.
This is where most multiagent systems start, and for many applications, it’s
where they can stay.

Then, we’ll learn to connect agents across network boundaries using the
Agent-to-Agent (A2A4) protocol and the Model Concept Protocol (MCP).
This is the shift from local teams to distributed systems, where agents run
as independent microservices, possibly owned by different teams or even
different organizations. The BillingAgent might run on the finance team’s
infrastructure, the TechnicalAgent on the support team’s servers, and the
WarrantyAgent as a third-party service. A2A and MCP provide the
standardized communication protocols that make this distribution possible
without sacrificing the seamless collaboration you achieved locally.

Finally, we’ll address the critical production concerns that arise in these
distributed systems. When agents communicate across network boundaries,
you face challenges that don’t exist in local systems: how does the
BillingAgent authenticate the CoordinatorAgent? How do you trace a
request that fails across multiple services? How do you ensure
accountability when agents from different organizations interact? These are
practical realities that determine whether your multiagent system works in
production or fails under real-world conditions.

By the end of this chapter, you’ll understand not just how to build
multiagent systems, but how to architect them for the scale, security, and
reliability that production environments demand. Let’s begin with the
foundation: local orchestration using workflow agents.

Local Teams



Before we can build teams of agents, we need to understand how ADK
structures agent relationships. The architecture is surprisingly simple:
agents form parent-child hierarchies where a coordinator agent manages
specialist subagents. This hierarchical structure provides the foundation for
all multiagent patterns in ADK, whether you’re building local teams or
distributed systems.

The Foundation: Agent Hierarchy

At the heart of every multiagent system in ADK is the sub_agents
parameter, illustrated in Example 4-4. When you pass a list of agents to this
parameter, you’re establishing a formal parent-child relationship.

Example 4-4. The use of subagents with coordinator agent delegation

from import Agent

# Define specialist agents
technical agent = Agent (

model="gemini-2.5-flash",

name="TechnicalSpecialist",

description="Diagnoses technical issues with smart home
devices",

instruction=("You troubleshoot device problems, interpret error
codes, "

"and recommend solutions.")

warranty agent = Agent(

model="gemini-2.5-flash",

name="WarrantySpecialist",

description="Determines warranty eligibility and processes
claims",

instruction=("You verify coverage, check eligibility dates, and

"initiate replacements.")

# Create a coordinator with specialists as subagents
coordinator = Agent(

model="gemini-2.5-flash",

name="SupportCoordinator",

instruction="""You coordinate customer support by delegating to
specialists.



Route technical problems to TechnicalSpecialist and warranty
questions to

WarrantySpecialist.""",

sub agents=[technical agent, warranty agent]

)

This code establishes a simple hierarchy: coordinator is the parent and
technical agent and warranty agent are its children. The parent
agent doesn’t need to understand technical diagnostics or warranty policies

—it just needs to know when to delegate to agents that do.

The description parameter on each subagent is critical here. When the
coordinator receives a query such as “My device won’t power on,” it uses
these descriptions to determine which specialist can help. The LLM
powering the coordinator reads the descriptions, understands the user’s
intent, and delegates accordingly. This is LLM-driven routing—the
coordinator agent uses its language understanding to make intelligent
delegation decisions.

This dynamic routing, while powerful, isn’t always what you need.
Sometimes you want deterministic control over execution order, timing, and
flow. This is where ADK’s workflow agents become essential. They
provide three fundamental patterns for orchestrating agent teams with
predictable, reliable behavior.

Pattern 1: The Assembly Line (SequentialAgent)

Some workflows have a natural order that must be respected. In our
customer support scenario, you can’t check warranty eligibility before you
know what’s wrong with the device. You can’t process a replacement claim
before verifying that the customer owns the product. These dependencies
demand sequential execution—each step must complete before the next
begins.

Consider the warranty claim workflow. When a customer reports a
defective thermostat, you need to diagnose the issue to confirm that it’s a
defect and not user error, verify that the product is under warranty and the
customer is eligible, and then process the replacement claim with the



correct product details. Each step depends on information from the previous
step, making sequential execution essential.

Here’s how you implement this workflow using SequentialAgent,
illustrated in Figure 4-1 and shown in Example 4-5.
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Figure 4-1. Overview of a sequential agent

Example 4-5. Implementation of a sequential agent workflow

from import Agent, SequentialAgent
# Step 1: Diagnose the issue
diagnostic agent = Agent(
model="gemini-2.5-flash",
name="DiagnosticAgent",

instruction="""Analyze the reported issue and determine if it's
a product
defect or user error. Save your conclusion to state.""",

output key="diagnosis result",
tools=[check device logs, analyze error patterns]

)

# Step 2: Check warranty eligibility
warranty check agent = Agent (

model="gemini-2.5-flash",

name="WarrantyCheckAgent",

instruction="""Based on the diagnosis in {diagnosis result},
verify if

this issue is covered under warranty. Check purchase date and



coverage terms.""",
output key="warranty status",
tools=[lookup purchase date, check coverage terms]

)

# Step 3: Process the claim
claim processor = Agent (
model="gemini-2.5-flash",
name="ClaimProcessor",
instruction="""If {warranty status} indicates coverage, process
the
replacement claim. Use details from {diagnosis result}.
tools=[initiate replacement, send confirmation]

mwrwmmn
’

)

# Orchestrate the sequence

warranty claim workflow = SequentialAgent (
name="WarrantyClaimWorkflow",
sub_agents=[diagnostic agent, warranty check agent,

claim processor]

)

The SequentialAgent executes these specialists in strict order: first,
diagnostic_ agent, thenwarranty check agent, then
claim processor. But notice the intelligence in how they
communicate. The diagnostic agent saves its conclusion to
state[“diagnosis result”] using the output key parameter.
The warranty check agent then reads this value directly from the
state using the {diagnosis result} placeholder in its instruction.
This state-based communication is how sequential agents pass information
forward through the pipeline.

The power of this pattern lies in its predictability. You know exactly when
each agent runs, what information it receives, and where it stores its output.
This deterministic behavior makes sequential workflows easy to debug, test,
and reason about. When a warranty claim fails, you can trace through the
sequence step by step to find exactly where and why it broke.

Behind the scenes, the SequentialAgent passes the same
InvocationContext to each subagent. This shared context means they
all access the same session state, making data flow effortless. The first



agent writes to state, the second agent reads from it, the third agent builds
on both—all happening naturally through the shared context.

Pattern 2: The Independent Taskforce (ParallelAgent)

Not all tasks have dependencies. Sometimes you need multiple pieces of
information that can be gathered simultaneously. When a customer asks
about their thermostat’s energy usage, you might need to fetch their
purchase history from the order database, retrieve the product manual from
the documentation system, and pull their usage data from the telemetry
service. None of these tasks depends on the others—they can all happen at
once.

This is where ParallelAgent, illustrated in Figure 4-2, transforms
performance. Instead of waiting for each operation to complete sequentially,
it executes all subagents concurrently, as shown in Example 4-6.
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Figure 4-2. Overview of a parallel agent

Example 4-6. Implementation of a parallel agent workflow

from import Agent, ParallelAgent
# Independent information gathering agents
purchase history agent = Agent (
model="gemini-2.5-flash",
name="PurchaseHistoryAgent",
instruction="Fetch and summarize the customer's purchase
history.",
output key="purchase data",
tools=[query order database]

manual lookup agent = Agent (
model="gemini-2.5-flash",
name="ManualLookupAgent",



instruction="Retrieve the product manual and relevant
troubleshooting guides.",

output key="manual content",

tools=[fetch product manual, get troubleshooting guides]

usage analysis agent = Agent (

model="gemini-2.5-flash",

name="UsageAnalysisAgent",

instruction="Analyze the device's usage patterns and energy
consumption.",

output key="usage data",

tools=[query telemetry service, calculate energy metrics]

# Execute all information gathering concurrently

info gathering taskforce = ParallelAgent (
name="InformationGathering",
sub_agents=[purchase history agent, manual lookup agent,

usage analysis agent]

)

# A synthesis agent processes the combined results
synthesis agent = Agent(

model="gemini-2.5-flash",

name="SynthesisAgent",

instruction="""Combine information from {purchase data},
{manual content},

and {usage data} to provide comprehensive support."""

)

# Complete workflow: gather in parallel, then synthesize

support workflow = SequentialAgent (
name="ComprehensiveSupport",
sub_agents=[info gathering taskforce, synthesis agent]

When info gathering taskforce executes, all three subagents run
simultaneously. The ParallelAgent launches them concurrently and
collects their results as they complete. Each agent still uses output key
to save its findings to state, but now these writes happen in parallel rather
than sequence. The workflow waits for all three to finish before invoking
the synthesis agent to process the combined information.



The performance benefit is substantial. If each information-gathering
operation takes two seconds, sequential execution requires approximately
six seconds total. Parallel execution completes in approximately two
seconds—the duration of the slowest operation. For workflows involving
multiple API calls, database queries, or external service requests, this
concurrent execution can reduce latency by an order of magnitude.

One important consideration: parallel agents must be truly independent.
They can all read from the shared state, but if they try to modify the same
state keys, you’ll encounter race conditions. This is why each agent in our
example writes to a distinct output key. The framework provides the
concurrent execution infrastructure, but you must design your agents to
avoid conflicts.

Pattern 3: The Iterative Refiner (LoopAgent)

Some problems can’t be solved in a single pass. When a customer describes
an intermittent issue—"‘My thermostat sometimes shows the wrong
temperature”—you need an iterative approach: suggest a potential fix, ask
the customer to test it, evaluate the results, and repeat if necessary. This
iterative refinement is the domain of LoopAgent, illustrated in Figure 4-3.
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Consider a troubleshooting workflow shown in Example 4-7, where you
want to try progressively more involved solutions until the problem
resolves.

Example 4-7. Implementation of a loop agent workflow

from google.adk.agents import Agent, LoopAgent

# Agent that suggests a solution
solution agent = Agent (
model="gemini-2.5-flash",
name="SolutionAgent",
# Assumes 'issue description' was populated by a previous

agent/callback
instruction=(
"Based on {issue description} and {previous attempts} and
the "
"previously suggested solution '{suggested solution}', if
any, "

"suggest the next troubleshooting step. Start with simple "
"solutions and progress to more complex ones."

) 4

output key="suggested solution",

tools=[lookup troubleshooting steps, check known issues]

# Agent that validates if the solution worked
validation agent = Agent (
model="gemini-2.5-flash",
name="ValidationAgent",
instruction=(
"Ask the customer to test {suggested solution} and report "
"results. Determine if the issue is resolved."
) 4
output key="solution status",
tools=[prompt user for feedback, analyze test results,
check resolution]

)

# Loop until resolved or max attempts reached

troubleshooting loop = LoopAgent (
name="TroubleshootingLoop",
sub_agents=[solution agent, validation agent],
max iterations=5



The LoopAgent executes its subagents repeatedly. Each iteration runs
solution agent and thenvalidation agent in sequence. The
state persists across iterations—previous attempts (incremented by a
callback or tool) accumulates, allowing solution agent to avoid
suggesting the same fix twice and progress to more advanced solutions.

The loop terminates in two ways. First, if it reaches max iterations
(five attempts in this example), it stops to prevent infinite loops. Second,
any subagent can signal success by returning an event with
escalate=True inits actions. When validation agent determines
the issue is resolved, it escalates to terminate the loop early, as shown in
Example 4-8.

Example 4-8. Validation step of a loop agent workflow

from import Agent
from import Event, EventActions
validation agent = Agent (

model="gemini-2.5-flash",

name="ValidationAgent",

instruction="""Ask the customer to test {suggested solution}.
If they

report the issue is resolved, you MUST indicate success.

output key="solution status"

mman
’

)

# In practice, you'd implement this logic in a custom tool or
callback

# that checks the solution status and returns an escalating event
when resolved

async def check resolution(tool context):

status = tool context.state.get("solution status", "")

if "resolved" in status.lower () or "fixed" in status.lower():
tool context.actions.escalate = True

return {}

This termination mechanism is crucial. Without it, your loop would always
run the maximum number of iterations, wasting time and tokens on
unnecessary attempts after the problem is already solved. With it, your
agent responds efficiently, stopping as soon as success is achieved while
still having a safety limit to prevent infinite execution.



The LoopAgent is particularly valuable for workflows that involve trial
and error, progressive refinement, or iterative improvement.
Troubleshooting, content revision, parameter optimization—any process
where you can’t determine the right solution upfront but can evaluate
proposed solutions iteratively benefits from this pattern.

These three workflow agents—SequentialAgent, ParallelAgent,
and LoopAgent—provide the building blocks for orchestrating agent
teams locally. You can compose them hierarchically: a
SequentialAgent might contain a ParallelAgent as one step, or a
LoopAgent might include a SequentialAgent in its iteration. This
composability lets you build complex workflows from simple, predictable
components.

These patterns all assume your agents run within the same application,
sharing memory and state naturally. What happens when your agents need
to run as independent services, possibly on different infrastructure or even
owned by different organizations? That’s where we move from local
orchestration to distributed collaboration.

Distributed Collaboration

The workflow agents we’ve built work beautifully—as long as all your
agents live in the same application. The SequentialAgent passes state
seamlessly because everything shares the same memory. The
ParallelAgent coordinates concurrent execution because all subagents
run in the same process. This local orchestration is simple, fast, and requires
minimal network overhead.

This pattern serves many production use cases well. But some scenarios
require agents to run as independent services, particularly when
organizational boundaries come into play.

The Organizational “Why”



Let’s revisit our Bi11ingAgent. In our examples so far, we’ve treated it
as just another specialist agent—a Python object instantiated alongside the
TechnicalAgent and WarrantyAgent, all running in the same
customer support application.

In many organizations, billing lives in a separate domain. The finance team
often maintains their own systems, databases, and compliance requirements.
The billing logic isn’t a simple function you can import—it’s a complex
service that handles payment processing, refund calculations, tax
compliance, fraud detection, and audit trails. This service typically runs on
infrastructure the finance team controls, using databases only they can
access, following security policies only they enforce.

When the customer support team needs billing information, they can’t just
instantiate a Bi11ingAgent object in their Python code. The billing
service exists as an independent microservice, running on separate servers,
maintained by a different team with different deployment schedules and
different service-level agreements (SLAs). This pattern—specialized
capabilities living in specialized services—is common in enterprise
architecture.

You’ll see similar patterns, illustrated in Figure 4-4, throughout
organizations.
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Figure 4-4. Common organization boundaries in enterprise multiagent architecture

The inventory system runs as a service owned by operations. The
recommendation engine runs as a service owned by the ML team. The
authentication service runs on infrastructure managed by the security team.
Each team builds, deploys, and maintains their service independently. Your
customer support agent needs to work with all of them, but none of them
exist as local code you can import.

This shift from local modules to independent services introduces a
fundamental architectural change. You’re no longer orchestrating agents
within a single application—you’re coordinating agents across network
boundaries, where each agent is a service with its own lifecycle, its own
infrastructure, and its own team of maintainers.

This is the problem that the A2A Protocol and MCP solve. They provide
standardized ways for agents to discover, communicate with, and invoke
other agents and tools across these organizational and network boundaries.
Before we dive into how these protocols work, we need to understand the
distinction between the two patterns we’re discussing.

Local agents are what we’ve been building so far. These are agent instances
that exist within your application’s code. When you create a
SequentialAgent with subagents, those subagents are Python objects
(or Java objects or Go structs—depending on your ADK language)
instantiated in your process memory. They share the same
InvocationContext, access the same session state, and communicate
through direct function calls. This is internal code organization—different
classes working together within a single application boundary.

Remote agents are independent services. They run in separate processes,
possibly on different servers, possibly managed by different teams or
organizations. They have their own memory space, their own state
management, their own security boundaries. When your agent needs to
work with a remote agent, it makes network calls over HTTP, following
standardized protocols that both sides understand. This is distributed


https://oreil.ly/O9aqk
https://oreil.ly/C7TSS

systems architecture—independent services collaborating across
organizational and network boundaries.

The distinction might seem academic until you consider what it means in
practice. With local subagents, when your CoordinatorAgent
delegates to the Bi11lingAgent, it’s an in-memory agent invocation that
completes in near real time. The state is already in memory. There’s no
network latency, no serialization overhead, no authentication required. With
remote agents, that same delegation becomes an HTTP request that might
take hundreds of milliseconds. The request must be serialized, transmitted
over the network, authenticated, processed by a separate service, and the
response transmitted back. If the billing service i1s down or slow, your
coordinator agent must handle that failure gracefully.

This distinction shapes everything about how you build your system. Local
subagents let you move fast—you can refactor freely, share state easily, and
debug by stepping through code. Remote agents require you to think
carefully about boundaries—you design explicit contracts, handle network
failures, implement authentication, and monitor distributed traces. Neither
approach is better; they solve different problems. The art is knowing when
to use each.

Here’s a simple heuristic: if two agents need to share the same
organizational context—same team, deployment, database, security
boundary—keep them local. Use workflow agents to orchestrate them
within a single application. But when agents cross organizational
boundaries, when they’re maintained by different teams with different
lifecycles, make them remote and use A2A or MCP to connect them.

In our customer support example, the TechnicalAgent and
WarrantyAgent might stay local—both are owned by the customer
support team, deployed together, and share the same customer database.
The BillingAgent becomes remote because it’s owned by Finance, runs
on its infrastructure, and accesses its protected financial systems. The
coordinator agent orchestrates the local specialists directly while



communicating with the remote billing service through a standardized
protocol.

This is where A2A and MCP enter the picture. They provide the
standardized protocols that make remote agent communication possible
without requiring custom integration code for every service.

The agent communication landscape is still evolving, and several protocols exist for
enabling distributed agent systems. While we focus on A2A and MCP in this chapter,
you may encounter other frameworks in the wild—such as IBM’s Agent
Communication Protocol (ACP) or various proprietary solutions from other vendors.
We’ve chosen to focus on A2A and MCP because they represent the most widely
adopted open standards, with strong community support and active development.
However, the community hasn’t fully centralized on a single standard yet, and the
patterns and architectural principles we discuss here apply regardless of which protocol
you ultimately choose.

Let’s examine each protocol and understand when to use which.

MCP: The Language of Tools

When your agent needs to query a database, call an API, or execute a
specific function on a remote system, you don’t need another stateful agent.
You need a tool—a stateless request-response interaction that takes inputs,
performs a defined action, and returns results. This is the domain of the
MCP, illustrated in Figure 4-5.
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Figure 4-5. The “USB for A"’ analogy: connecting models to diverse data sources via a standard
protocol

MCP is an open standard for exposing resources—databases, APIs,
filesystems, external services—as tools that any LLM-powered agent can
discover and use. Think of it as a universal adapter that turns diverse
backend systems into a standardized tool interface. Instead of writing
custom integration code for every database or API your agent needs to
access, you connect to an MCP server that already speaks the protocol.

The protocol is deliberately simple. An MCP server exposes a catalog of
available tools, each with a clear schema defining its inputs and outputs.
Your agent queries the server to discover what tools exist, reads their
schemas to understand how to use them, then invokes them like any other
function. The server handles the actual interaction with the underlying
resource—executing SQL queries, making REST API calls, reading files—
and returns structured results your agent can process.

ADK makes working with MCP servers straightforward through the
MCPToolset. Example 4-9 shows how you might connect your customer
support agent to a database of customer information.

Example 4-9. Connecting an agent to an external database with
MCPToolset

from import MCPToolset
from import
SseConnectionParams

# Connect to an MCP server that exposes your customer database
customer db tools = McpToolset (
connection_params:sSeConnectionParams(
url="http://customer-db-mcp.internal:8080"
)I
tool name prefix="CustomerDatabase"

)

# Your agent can now use these tools
support agent = Agent (
model="gemini-2.5-flash",
name="SupportAgent",
instruction=(
"You help customers with their orders. Use CustomerDatabase



tools "
"to look up order details."

),

tools=[customer db tools]

)

The agent doesn’t need to know SQL or understand the database schema.
The MCP server exposes high-level operations like

lookup customer by email orget order history, handling
the underlying database complexity. Your agent simply calls these tools as
needed, passing parameters and receiving structured results.

While less common than the conversational agent pattern we’ll discuss next, some
architectures expose agent operations through MCP. For instance, if your
BillingAgent performs discrete, well-defined operations

(check billing status, process_refund), you could expose these as
stateless MCP tools rather than as a conversational agent. This works well when
operations are atomic and independent, trading flexibility for simplicity and
predictability.

For teams building agents that need to work with diverse data sources,
Google provides the MCP Toolbox for Databases—a production-ready
MCP server that exposes common databases (PostgreSQL, MySQL,
BigQuery, Firestore, and many others) as ready-to-use tools. Instead of
building custom database access layers, you deploy the MCP Toolbox,
configure it with your database connections, and immediately get a
standardized tool interface your agents can use.

Beyond generic database access, Google provides industry-specific MCP
toolboxes that handle complex domain protocols. For example, the Cloud
Healthcare API Toolbox exposes FHIR patient records and DICOM
medical imaging through standardized MCP tools, allowing healthcare
agents to search patient data or retrieve medical images without
understanding the underlying FHIR or DICOM specifications. This same
pattern applies across industries—finance, legal, manufacturing—where
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domain-specific toolboxes can expose specialized systems through the
universal MCP interface.

The value becomes clear when you consider maintenance. When your
database schema changes, you update the MCP server configuration—not
every agent that uses the database. When you add a new data source, you
extend the MCP server—not every application that needs access. The
protocol provides a clean separation between data access logic and agent
logic, letting each evolve independently.

Taking this a step further, Google Cloud offers fully managed remote MCP
servers for its core services. Instead of deploying and hosting your own
MCP intermediate layer, you can connect your agents directly to global,
enterprise-ready endpoints for services like BigQuery, Google Maps, and
Google Kubernetes Engine (GKE). These managed endpoints handle the
translation between MCP and the service API automatically, enforcing IAM
permissions and providing built-in observability without any infrastructure
management on your part.

Regardless of whether the server is managed or self-hosted, MCP has a
natural boundary: it works beautifully for stateless operations where you
have a clear input-output relationship. Query a database, get results. Call an
API, receive a response. These are function-like operations that complete
quickly and deterministically. When you need something more intelligent—
when you want to delegate an entire goal to another intelligent system that
can reason, plan, and adapt—you need a different protocol.

A2A: The Language of Delegation

A2A enables agents to delegate complex, multiturn goals to other agents,
illustrated in Figure 4-6. Unlike MCP’s request-response pattern, A2A
supports stateful interactions where an agent can ask clarifying questions,
reason through problems, and adapt its approach based on what it learns.
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Figure 4-6. Overview of A2A delegation among agents

Consider billing scenarios that require judgment and context. When a
customer reports “I was overcharged after installing a faulty thermostat,”
the support agent needs to delegate a complex investigation—explain the
full situation to a billing specialist, have them analyze it in context, possibly
ask clarifying questions, apply policy judgment, and reach a conclusion.
This conversational, context-rich delegation is what A2A enables.

Just as MCP standardizes tool interactions, A2A standardizes agent-to-
agent delegation. It defines how agents discover each other’s capabilities,
communicate their needs, and exchange results. Unlike MCP, A2A



maintains state across multiple conversational turns, enabling the
collaborative intelligence needed for ambiguous, judgment-heavy tasks.

Let’s see how this works in practice by building a realistic example: our
customer service coordinator working with a remote billing agent owned by
the finance team.

Exposing a specialist agent: the finance team’s perspective

The finance team maintains their billing service. They’ve built a
comprehensive agent that understands billing policies, processes refunds,
handles disputes, and ensures compliance with financial regulations. Now
they want to make this agent available to other teams—customer support,
sales, operations—without giving direct access to their internal systems or
databases.

ADK makes this remarkably simple through the to aZ2a () utility.
Example 4-10 shows how the finance team exposes their billing agent.

Example 4-10. Exposing an agent as an A2A service with to_aZa ()

# billing service/agent.py - The finance team's billing agent
from google.adk.agents import Agent
from google.adk.aZa.utils.agent to a2a import to aZa

# The billing agent itself - comprehensive logic for financial
operations
billing agent = Agent (

model="gemini-2.5-flash",

name="BillingAgent",

instruction="""You are a billing specialist. You analyze
charges, process

refunds, handle billing disputes, and ensure compliance with
financial policies.

When analyzing billing issues:
Review the customer's billing history
Identify any anomalies or incorrect charges
Calculate appropriate refunds or credits
Explain your reasoning clearly
5. Process approved adjustments
tools=][

query billing history,

Sw N



calculate refund amount,
check payment status,
process credit,

generate invoice

)

# Expose this agent via A2A - generates AgentCard automatically
aZa app = to aZa(billing agent, port=8001)

That’s it. The to a2a () function wraps the agent in an A2A-compatible
server that handles all the protocol details. It automatically generates an
AgentCard as illustrated in Figure 4-7.

An Agent Card is a public descriptor that explains what the agent does, its
capabilities, and how to communicate with it. This card gets published at a
well-known URL (/ .well-known/agent-card. json), where other

agents can discover it.
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Figure 4-7. lllustration of an Agent Card

The finance team then deploys this service to their infrastructure, as shown
in Example 4-11.

Example 4-11. Deploying an A2A agent service with uvicorn

# Start the A2A server
uvicorn billing service.agent:aZa app --host 0.0.0.0 --port 8001

Now the billing agent runs as an independent microservice. It has its own
infrastructure, its own security boundary, its own deployment lifecycle. The
finance team can update it without coordinating with customer support.
They can scale it independently. They can enforce their own authentication
and authorization policies.

From the outside, it looks like any other A2A agent—discoverable,
describable, and invokable through the standard protocol. This is illustrated
in Figure 4-8.
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Figure 4-8. A24 initialization, discovery, and selection process

Consuming the specialist agent: the customer support team’s
perspective

Now let’s switch perspectives to the customer support team. They need
billing expertise, but they don’t want to maintain billing logic, understand
financial regulations, or access sensitive financial databases. They just want
to delegate billing questions to the finance team’s specialist.

ADK’s RemoteA2aAgent makes this delegation feel local, as shown in
Example 4-12.

Example 4-12. Consuming a remote A2A agent with RemoteA2aAgent

# support_service/agent.py - The customer support coordinator
from google.adk.agents import Agent
from google.adk.agents.remote aZa agent import RemoteAZaAgent

# Connect to the remote billing agent via its AgentCard
billing agent = RemoteAZaAgent (

name="BillingAgent",

description="Specialist for billing inquiries, refunds, and
payment issues',

agent card="http://billing-service.internal:8001/.well-
known/agent-card. json"

)

# Use it like any other subagent
coordinator = Agent (
model="gemini-2.5-flash",
name="CustomerServiceCoordinator",
instruction=(
"You coordinate customer support by delegating to
specialists.\n\n"
"For billing questions, refund requests, or payment issues,
"delegate to BillingAgent. For technical problems, handle
them "
"yourself using diagnostic tools."
) 4
sub_agents=[billing agent],
tools=[check device status, lookup error codes]



From the coordinator’s perspective, billing agent looks justlike a
local subagent. The coordinator can delegate to it, the billing agent
processes the request with full context, and the results come back
seamlessly. The customer support team doesn’t see HTTP requests, JSON
serialization, or network calls—they just see delegation working exactly as
it does with local agents.

But under the hood, something substantial is happening. When the
coordinator delegates to billing agent, ADK does the following:

1. Serializes the current conversation context and the delegation
request.

2. Makes an HTTP request to the billing service’s A2A endpoint.

3. The billing service receives the context, spins up its agent, and
processes the request.

4. The billing agent can ask clarifying questions, use its tools, and
reason through the problem.

5. Once complete, it returns the result back to the coordinator.

6. The coordinator receives this as if it came from a local subagent.

The conversation remains coherent across this network boundary. The
billing agent has access to the relevant context—what the customer asked,
what’s been discussed so far—without needing direct access to the
customer support system’s database or state.

Putting It All Together: A Hybrid Agent Team

Most production systems aren’t purely local or purely remote—they’re
hybrid. Some specialists live locally, others are remote services. Let’s build
a realistic example, illustrated in Example 4-13, that shows this hybrid
architecture in action.

Example 4-13. Hybrid agent team combining local agents, remote A2A
agents, and MCP tools




from google.adk.agents import Agent, SequentialAgent

from google.adk.agents.remote aZa agent import RemoteAZaAgent
from google.adk.tools import MCPToolset

from google.adk.tools.mcp tool.mcp session manager import
SseConnectionParams

# Local specialist: Technical diagnostics
technical agent = Agent (

model="gemini-2.5-flash",

name="TechnicalAgent",

description="Diagnoses technical issues with smart home
devices",

instruction="""You troubleshoot device problems. Analyze error
codes,

check device logs, and recommend solutions.""",

output key="technical diagnosis",

tools=[

check device diagnostics,
analyze error patterns,
lookup known issues

# Remote specialist: Billing (owned by finance team)
billing agent = RemoteAZaAgent (

name="BillingAgent",

description="Handles billing inquiries, refunds, and payment
processing",

agent card="http://billing-service.internal:8001/.well-
known/agent-card. json"

)

# MCP tools: Customer database access
customer db = McpToolset (
connection params=SseConnectionParams (
url="http://customer-db-mcp.internal:8080"
),
tool name prefix="CustomerDatabase"

# The coordinator orchestrates everything
coordinator = Agent (

model="gemini-2.5-flash",

name="CustomerServiceCoordinator",

instruction="""You coordinate customer support by intelligently
routing

requests and combining expertise from multiple specialists.



For our multi-domain thermostat query:
1. First, delegate to TechnicalAgent to diagnose the wiring
error
2. Use CustomerDB to verify the customer's purchase and usage
history
3. If the diagnosis suggests the device is defective and
causing excess
energy usage, delegate to BillingAgent to analyze if charges
are
legitimate and process any necessary credits

Synthesize all findings into a comprehensive response.
sub agents=[technical agent, billing agent],
tools=[customer db]

mwman
14

)

Let’s trace through what happens when our coordinator receives the
complex query “My new smart thermostat is showing a wiring error, and I
think it might have overcharged my last bill. Can you check if it’s eligible
for a warranty replacement and fix the billing issue?”

First, the coordinator recognizes that this needs technical expertise and
delegates to the local technical agent. This happens in-process, fast
and simple. The technical agent uses its tools to diagnose the wiring error,
determines it’s a defective component, and saves its conclusion to
state[“technical diagnosis”].

Second, the coordinator queries the customer db using MCP tools. It
retrieves the purchase date, warranty status, and historical usage data. These
are stateless queries—fetch data, return results. MCP handles the database
interaction while keeping the agent code clean.

Third, armed with the technical diagnosis and usage history, the coordinator
delegates to the remote billing agent. This crosses the network
boundary to the finance team’s service. The billing agent receives the full
context—the wiring error diagnosis, the customer’s concern about
overcharges, and their usage patterns. It analyzes whether the energy usage
spike correlates with the defect, calculates a fair credit, and returns its
recommendation.



Finally, the coordinator synthesizes all these findings, as shown in
Example 4-14.

Example 4-14. Synthesizing multiagent results into a unified response

Based on my analysis:

Technical: Your thermostat has a defective temperature sensor
causing

incorrect readings. This is covered under warranty, and I've
initiated

a replacement order.

Billing: The sensor defect caused your HVAC system to run
inefficiently,

resulting in approximately $47 in excess energy costs over the past
month.

I've applied a $50 credit to your account to cover this impact.

Your replacement thermostat will arrive in 2-3 business days with
free
installation included.

This response required coordinating three different systems: local technical
expertise, remote billing intelligence via A2A, and database access via
MCP. Yet from the coordinator’s perspective, it just delegated to specialists
and combined their expertise. The protocols handled the complexity of
cross-boundary communication while maintaining the simplicity of the
agent interface.

This hybrid architecture reflects how real organizations work. Core
capabilities owned by your team stay local. Specialized services owned by
other teams become remote agents accessed via A2A. Shared data resources
get exposed through MCP. Each boundary is crossed with the right protocol,
but the agent’s logic remains clean and focused on coordination rather than
integration details.

The beauty of this approach is its scalability. As your organization grows,
new teams can expose their services as A2A agents without requiring
changes to existing coordinators. The billing team can completely rewrite
their service’s internals without breaking the customer support integration
—as long as they maintain the same AgentCard interface. The customer
database can migrate from PostgreSQL to BigQuery without touching agent



code—just update the MCP server configuration. This loose coupling
enables teams to evolve their services independently while maintaining
system-wide coherence.

But this distributed architecture introduces challenges that don’t exist in
local systems. When agents communicate across organizational and
network boundaries, questions of trust, visibility, and accountability become
critical. Let’s examine these production realities.

Production Realities

The hybrid agent team we’ve built is architecturally sound. The coordinator
orchestrates local specialists efficiently, delegates to remote services
through A2A, and accesses data through MCP. In development, with all
services running on localhost and controlled test data, everything works
beautifully.

Then you deploy to production, and reality intrudes.

The finance team’s security officer asks:

“How do you prevent unauthorized services from calling our billing
agent?”

Your operations team asks:

“When a customer reports a problem, how do we trace the request
through all the agents that handled it?”

Your product manager asks:

“How can we update the billing agent without breaking existing
integrations?”’

Your legal team asks:



“How can we add GDPR data handling requirements to billing
requests without breaking existing integrations that don’t operate in
the EU?”

These questions reveal the fundamental tension in multiagent systems:
you’ve gained the benefits of specialization and distribution, but you’ve
also inherited the challenges of distributed systems. When your billing
agent runs as a separate service owned by a different team, it’s no longer
“Just code you call”—it’s an independent system with its own security
perimeter, its own operational requirements, and its own evolution timeline.

The good news: these aren’t new problems. The patterns that make
microservices reliable—authentication at boundaries, distributed tracing,
API versioning—apply directly to agents. The even better news: A2A was
designed with these realities in mind, providing architectural primitives that
make these patterns natural and explicit.

Let’s examine how ADK and A2A address the four critical concerns that
determine whether your multiagent system can operate in production: trust,
extensibility, visibility, and evolution.

The Trust Problem: Security Schemes in A2A

When your CustomerServiceCoordinator delegates to a local
TechnicalAgent, trust is implicit—both run in the same process. But
when your coordinator makes an HTTP request to the finance team’s
BillingAgent, you’ve crossed a security boundary.

The A2A protocol provides security schemes as a first-class architectural
concept. The finance team’s billing agent declares its authentication
requirements in its Agent Card, as shown in Example 4-15.

Example 4-15. Security schemes configuration in an Agent Card

{
"name": "BillingAgent",
"url"™: "https://billing-service.company.com",
"securitySchemes": {
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"oauth": {

"type": "oauth2",
"flows": {
"clientCredentials": {
"tokenUrl": "https://auth.company.com/oauth/token",
"scopes": {
"billing:read": "Read billing information",
"billing:refund": "Process refunds and credits"
}
}
}
}
b
"security": [{ "oauth": ["billing:read", "billing:refund"] }]

}

A2A supports the same security schemes as OpenAPI 3.0: API keys, HTTP
authentication (Basic/Bearer), OAuth 2.0, OpenID Connect, and Mutual
TLS. When you instantiate a RemoteA2aAgent, the ADK SDK reads the
Agent Card and discovers the required security scheme. The SDK can assist
with authentication flows, but credential acquisition is ultimately an out-of-
band process—the A2A protocol itself doesn’t define how clients obtain
tokens or keys. Credentials are then transmitted via standard HTTP headers
(e.g.,Authorization: Bearer <token>).

How you actually provide those credentials to the A2A client—whether
through environment variables, secret managers, or configuration files—is
an operational decision that depends on your deployment environment.

The Extension Problem: Evolving Agent Capabilities

A2A provides a powerful mechanism for extending agent capabilities
without fragmenting the core protocol: extensions. Extensions allow agents
to declare support for additional functionality beyond the base protocol.

Extensions are identified by URI and declared in the Agent Card, as shown
in Example 4-16.

Example 4-16. Extensions configuration in an AgentCard
{

"name": "BillingAgent",
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"capabilities": {

"extensions": [
{
"uri": "https://company.com/ext/audit-logging/v1",
"description": "Provides detailed audit trails for
financial transactions",
"required": true

}

}

Extensions can serve different purposes:

Data-only extensions
Add structured metadata to the Agent Card (e.g., compliance
certifications, SLA guarantees)

Profile extensions

Overlay additional requirements on message formats

Method extensions
Add new remote procedure call (RPC) methods beyond the core A2A
protocol

State machine extensions

Add new states or transitions to the task lifecycle

When a client connects to an agent, it activates extensions by including
them in the request header, as shown in Example 4-17.

Example 4-17. Activating A2A extensions via HTTP headers

POST /agents/billing HTTP/1.1
X-A2A-Extensions: https://company.com/ext/audit-logging/vl

The agent responds with confirmation of which extensions were activated.
Extensions marked as required: true signal that clients must support
them to interact with the agent.



This extension mechanism provides a disciplined way to evolve agent
capabilities. When the finance team needs to add audit logging
requirements, they publish an extension specification, update their Agent
Card to declare support, and clients can opt into the new behavior
incrementally. This is how A2A balances standardization with flexibility.

SECURING PAYMENTS WITH AP2

The Agent Payments Protocol (AP2) is a complementary protocol that
can be implemented alongside A2A to enable secure autonomous
payments. While A2A standardizes how agents communicate, AP2
standardizes what they communicate about payments:

Verifiable Digital Credentials (VDCs)
Cryptographically signed Cart Mandates and Intent Mandates

Role-based trust

Separation between shopping agents, credentials providers, and
merchants

Can be used with A2A

When multiple agents coordinate payments

Can be used with MCP

When agents use payment tools

AP2 demonstrates how payment-specific trust mechanisms can layer on
top of agent communication protocols like A2A to handle high-stakes
transactions.

The Visibility Problem: Distributed Tracing
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When a customer service representative reports that “The agent said it
couldn’t process billing,” you need to understand what happened. But your
coordinator and billing agent log independently, as shown in Example 4-18.

Example 4-18. Fragmented logs across invoked agents

Coordinator logs:
2025-03-15 14:23:41 INFO Received request: session abcl23
2025-03-15 14:23:43 ERROR BillingAgent delegation failed: HTTP 500

Billing agent logs:
2025-03-15 14:23:42 INFO Processing request: customer i1d=7823
2025-03-15 14:23:42 ERROR Database query timeout

Without a common identifier, reconstructing what happened requires
manual correlation across log streams.

The solution is distributed tracing: threading trace context through every
service involved in a request. When you enable tracing in ADK (via —-
trace to cloudorenable tracing=True), it automatically
instruments agent operations, creating spans that capture agent execution
timing, tool invocations, LLM calls, and delegation to subagents.

When your coordinator delegates to a remote A2A agent, ADK propagates
trace context via W3C Trace Context headers (traceparent,
tracestate). The remote agent continues the trace, creating child spans
under the same trace ID, illustrated in Example 4-19.

Example 4-19. Distributed trace showing agent execution spans across
services

TRACE: 4bf92£3577b34da6a3ce929d0e0e4736
— Span: CustomerServiceCoordinator.process request (2.1s)
F— Span: TechnicalAgent.diagnose (0.8s)
| (- Span: LLM.call (0.6s)
(- Span: BillingAgent.analyze (1.2s) [Remote via A2A]
F— Span: query billing history (0.4s)
(- Span: LLM.call (0.7s)

]

Your logs can reference the same trace ID for correlation, as shown in
Example 4-20.

Example 4-20. Correlated logs using a trace ID across invoked agents




TRACE ID: 4bf92£3577b34da6a3ce929d0e0ed736

Service: CustomerServiceCoordinator

2025-03-15 14:23:41 INFO [trace id=4bf92f...] Received request
2025-03-15 14:23:43 ERROR [trace id=4bf92f...] BillingAgent
returned HTTP 500

Service: BillingAgent
2025-03-15 14:23:42 INFO [trace 1id=4bf92f...] Processing request
2025-03-15 14:23:42 ERROR [trace id=4bf92f...] Database timeout

Chapter 7 covers distributed tracing with Cloud Trace in depth: how to
configure tracing backends, analyze trace data, and use traces for
performance optimization and debugging.

The Versioning Problem: Managing Agent Evolution

Your billing agent works perfectly. Then the finance team adds support for
partial refunds and deploys the updated agent. Suddenly, customer service
coordinators deployed last month start failing.

The A2A protocol addresses this through Agent Card versioning. Each
Agent Card declares its version, as shown in Example 4-21.

Example 4-21. Version declaration in an Agent Card

{

"name": "BillingAgent",

"version": "2.0.0",

"description": "Handles billing inquiries, refunds, and partial
refunds",

"url": "https://billing-service.company.com"

}

When you add new capabilities, publish a new version while keeping the
old version available. Client agents specify which version they expect by
pointing to versioned Agent Card URLs, shown in Example 4-22.

Example 4-22. Referencing different Agent Card versions for backward
compatibility

# 0ld coordinator using vl
billing agent vl = RemoteAZaAgent (

agent card="https://billing-service.company.com/vl/.well-
known/agent-card. json"

)



# New coordinator using v2
billing agent v2 = RemoteAZaAgent (

agent card="https://billing-service.company.com/v2/.well-
known/agent-card.json"

)

Follow semantic versioning: major versions for breaking changes, minor
versions for new features, patch versions for bug fixes. The finance team
can deploy v2.0.0, give client teams time to upgrade, and then eventually
deprecate v1.0.0.

Looking Ahead

We began this chapter with a customer query spanning three domains—
technical, warranty, and billing. The solution wasn’t building a smarter
monolithic agent, but a team of specialists collaborating through protocols.
This architectural insight extends across domains.

Edge and Embodied Intelligence

The patterns you’ve learned in this chapter are already reshaping two
frontiers: on-device Al and physical robotics.

Consider a personal assistant on your phone:

“Plan my week, find time for the gym, book a haircut, and remind
me to prep for Thursday’s presentation.”

A lightweight coordinator runs locally, maintaining personal context. For
complex operations, it delegates through A2A to specialized cloud services.
Your calendar stays on device; the scheduling agent receives only
constraints. Your preferences remain private; the booking agent gets just
requirements.

The same pattern extends to physical action. Google’s Gemini Robotics 1.5
demonstrates this explicitly: Gemini Robotics-ER 1.5 acts as coordinator—
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planning and orchestrating. Gemini Robotics 1.5 acts as specialist—
translating plans into motor commands. The coordinator decides what and
when. The specialist determines Zow to physically execute it.

From smartphones to warehouse robots, the architecture remains constant:
coordinators orchestrate, specialists execute, protocols enable collaboration,
and distributed traces provide visibility.

From Architecture to Excellence

Building multiagent systems that work is just the beginning. When you
deploy to production, different questions emerge: how well does your
technical specialist actually diagnose issues compared to human experts?
When the billing agent processes refunds, does it consistently follow
policy? How often does the coordinator choose the wrong specialist for
ambiguous queries? And as your team iterates—refining prompts, adjusting
agent instructions, adding new tools—how do you know whether changes
improve performance or introduce subtle regressions?

These are questions of systematic measurement and continuous
improvement. You’ve built a system of collaborating agents. Now you need
to ensure that it delivers consistent, high-quality results across the messy
realities of production use.

Chapter 5 tackles these challenges head-on, giving you the framework to
measure quality and the techniques to improve it systematically.

Learning Labs

To reinforce the concepts covered in this chapter and gain hands-on
experience building multiagent systems, we recommend exploring the
learning resources available in the Chapter 4 folder of the book’s GitHub
repository. Key resources you will find linked there include:

e Hands-On Code Examples
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— Build and deploy an ADK agent that uses an MCP server
on Cloud Run: Learn how to build and deploy an ADK
agent that uses remote tools through an MCP server
deployed on Cloud Run

— Build a Travel Agent using MCP Toolbox for Databases:
Build a travel agent using the ADK that utilizes the MCP
Toolbox for Databases

— The Summoner’s Concord—Architecting multiagent
systems: Architect and deploy a distributed multi-agent
system using the A2A protocol, MCP tool servers, and
ADK workflow patterns on Cloud Run

— Google’s Agent Stack in Action: Build, deploy, and test a
multiagent Al system using Google’s ADK, A2A, MCP,
and other Google Cloud services

¢ Video Tutorials

— How to build an Al agent with MCP, ADK, and A2A on
Google Cloud: A step-by-step tutorial demonstrating how
to create an MCP tool, wrap it in an ADK agent, and
expose it via the A2A protocol for distributed
collaboration

— Foundations of multiagent systems with ADK: Guides
through the core concepts of multiagent systems,
including decentralized control, local views, and emergent
behavior

— Workflow agents and communication in ADK: Guides
through how agents manage and communicate tasks,
guiding through workflow agents (Sequential, Parallel,
and Loop)

— Building your own MCP server with ADK: Guides
developers through building their own MCP server with
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ADK and MCP Toolbox

— MCP Toolbox for Databases in action: Learn how MCP
Toolbox for Databases acts as a control plane between
your Al agent’s orchestration framework and your
databases
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Chapter 5. Evaluation and
Optimization Strategies

We’ve now constructed our multimodal question-answering agent, a system
capable of ingesting diverse data types and providing relevant answers. It
works; it fulfills its designed function. In the world of LLMs and agents,
however, “functional” is just the starting line. The real challenge—and
where true value is unlocked—Iies in the journey from functional to
optimal.

How quickly does it respond? How consistently accurate is it across a vast
range of unseen queries, especially ambiguous ones? If it uses tools, how
reliably and efficiently does it invoke them? Are its responses not just
correct, but also concise, helpful, and perfectly aligned with the user’s
nuanced intent? And, critically, as your systems evolve and interact with
more complex data and tasks, how do you ensure they maintain
performance, learn from experience, and continuously improve?

This chapter explores practical approaches for evaluation and optimization
—two sides of the same coin in the journey to production excellence. You
can’t meaningfully improve what you can’t measure, and you can’t know if
your optimizations are effective without robust evaluation methods. We’ve
structured this chapter to reflect this natural cycle: first establishing
frameworks for systematically measuring performance across multiple
dimensions, then applying targeted optimization techniques based on those
insights.

In the evaluation section, we’ll explore both human-centered assessment
techniques and automated metrics that scale, showing how to build a
comprehensive view of your system’s strengths and weaknesses. Then,
armed with these insights, we’ll dive into optimization strategies that can be
implemented quickly through prompt engineering and agent design



improvements. We’ll cover model adaptation and infrastructure
optimization techniques in depth in Chapter 6.

By the end of this chapter, you’ll have a repeatable process for transforming
a working LLM-based application or Al agent into a high-performing,
trustworthy, and continually evolving system that delivers sustained
business value.

Tailoring Evaluation to Your LLM/Agent’s
Purpose

Evaluation isn’t a one-size-fits-all process. The metrics and methods that
matter most depend entirely on your specific application and its intended
users.

Beyond Basic Functionality

Our multimodal agent from Chapter 3 fulfills its core purpose—it can
answer questions across text, image, and video content. But what separates
a merely functional system from one that delivers exceptional value?

The answer varies dramatically by industry and use case. A healthcare
application might prioritize precision in understanding medical terminology
over response speed, especially when patient outcomes are at stake. We’ve
seen healthcare implementations where users preferred waiting a few extra
seconds for responses that correctly distinguished between similar-sounding
medication names.

Financial services deployments often value regulatory compliance above
conversational fluency. One banking client’s evaluation framework heavily
weighted the system’s ability to include required disclosures and avoid
prohibited recommendations, even if it made responses slightly more
formal.

Customer service systems might need intelligent human escalation
capabilities more than comprehensive knowledge. A retail client’s most



valuable metric became the agent’s ability to recognize when a query
exceeded its capabilities and seamlessly transfer to a human agent with
proper context.

While every application requires evaluation criteria tailored to its specific
context, our work across industries has revealed five foundational
dimensions that consistently matter—regardless of whether you’re building
for healthcare, finance, retail, or another industry. These dimensions
provide a structured starting point for evaluation design, though you should
expect to adapt them or add domain-specific dimensions for your use case.
For instance, a medical diagnostic agent might add a “Clinical Safety”
dimension beyond our general “Safety & Responsibility” category, while a
creative writing assistant might include “Originality” as a distinct
dimension from “Quality of Output.”

Think of the five dimensions in Figure 5-1 as the skeleton that most
evaluation frameworks build upon, not a prescriptive checklist that limits
your assessment.

Your task is to define what “exceptional” means for each dimension in your
specific context—balancing them according to what matters most for your
application.
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Figure 5-1. The five key dimensions of evaluation

Key Dimensions of Evaluation
Let’s start with the foundation: quality of output.

Quality of output

Your baseline “good” multimodal agent produces responses with accurate
information drawn from source media. It maintains basic fluency,
coherence, and relevance to queries. For straightforward questions, it
provides serviceable answers addressing core information needs.



A truly exceptional system, however, goes far beyond these basics. It
demonstrates precision by focusing exactly on what was asked without
extraneous details and adjusting its level of detail appropriately. When
faced with “What color is the car in the image?”, it provides a simple color
identification without unnecessary elaboration, but for “Can you describe
the car in the 1image?”, it offers comprehensive detail. This distinction
shows a nuanced understanding of user intent and the ability to adapt
response depth to match the query’s scope.

Great systems also demonstrate depth of understanding. When asked about
complex concepts in a video lecture, they don’t just extract surface-level
information but show comprehension of underlying principles. They grasp
conceptual relationships and can explain them in ways that demonstrate true
understanding rather than mere information retrieval.

Appropriate and consistent tone becomes another marker of excellence. The
best systems maintain a style matching your brand voice while adapting
appropriately to user context. For enterprise deployments, this might mean
professional language with technical precision; for consumer applications, a
more conversational and approachable style typically works best.

Perhaps most importantly, exceptional systems exhibit genuine helpfulness
by anticipating follow-up needs and providing valuable additional context.
When asked about a diagram in a technical document, they go beyond
describing visible elements to explain how these relate to concepts
discussed in surrounding text.

Measuring these nuanced qualities requires evaluation frameworks that
transcend simple accuracy checks. Later in this chapter, we’ll explore both
human evaluation approaches and automated metrics designed to assess
these more nuanced dimensions of quality.

Task success and goal achievement (agents)

Beyond output quality, task success and goal achievement become your
next critical dimension. At the baseline “good” level, our agent completes
intended tasks when given clear instructions. For our multimodal agent, this



means successfully retrieving information from the appropriate media
source—text, image, or video—when explicitly directed.

Superior agents, however, demonstrate efficiency by completing tasks with
minimal unnecessary steps and optimal resource utilization. For complex
tasks requiring multiple tool calls, they follow the most direct path rather
than taking detours, making redundant API calls, or invoking tools when
simpler approaches would suffice. This judicious approach to tool usage not
only improves response times but also reduces computational costs and
infrastructure load.

Great agents also offer proactive assistance, providing helpful clarifications
when appropriate. If a user’s query is ambiguous about which media type to
analyze, an exceptional agent might check multiple sources or ask for
clarification rather than making potentially incorrect assumptions.

Properly measuring this dimension requires tracking not just task
completion but the path taken. This includes analyzing tool call sequences,
tracking resolution time, and assessing the appropriateness of tool selection
—metrics we’ll explore in depth in our evaluation frameworks.

System performance

Moving to system performance, baseline “good” systems respond within
acceptable timeframes under normal load. Resource utilization stays within
budgeted limits, and performance meets minimal user expectations.

An optimized system prioritizes user-perceived speed—response times that
feel instantaneous for simple queries, with appropriate progress indicators
for more complex processing. Research shows that response times under
100 milliseconds feel instantaneous to users, while delays beyond 10
seconds negatively impact UX. Great systems maintain consistent
performance under load, delivering reliable response times even during
traffic spikes or when processing multiple complex queries simultaneously.

System-level resource optimization represents another hallmark of
excellence. The best systems dynamically allocate compute capacity based
on query complexity, implement intelligent caching to avoid redundant
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model invocations, and automatically select appropriate model sizes (using
smaller models for simple queries, larger ones only when needed) to deliver
maximum value while minimizing unnecessary expenditure.

Proper evaluation in this dimension requires tracking metrics such as
latency distributions, throughput, cost per query, and resource utilization
patterns—considerations we’ll explore in Chapters 6 and 7.

Robustness and reliability

Beyond performance metrics, robustness and reliability determines whether
your system can handle the messy realities of production use. At the
baseline “good” level, systems handle expected inputs and common edge
cases without failing. They implement basic error handling for obvious
issues like malformed queries or missing data.

Production-worthy systems demonstrate consistent performance across
diverse inputs—handling not just common cases but unusual, unexpected,
or edge-case queries with grace. This includes variations in query format,
language, and complexity. When faced with system limitations or resource
constraints, they exhibit graceful degradation under stress, adjusting
performance in controlled ways rather than failing completely.

Great systems show resilience to external dependencies, handling failures
in external tools or data sources without cascading failures. If an image-
analysis API becomes temporarily unavailable, the system continues
functioning for text queries while providing informative error messages for
image-related tasks. Great systems demonstrate quick recovery from errors,
maintaining state and resuming normal operation after transient issues
without requiring system restarts or losing conversation context.

In production environments, robustness often separates successful
implementations from those struggling with user adoption. One retail
client’s multimodal product search agent performed well in controlled
testing but failed in early trials when store associates began using it. It
couldn’t handle partial voice queries with background noise or mixed inputs
such as showing a product image while asking for partial SKUs like



“HP15-" instead of the full SKU “HP15-DY2024.” Testing with real
multimodal query logs revealed these patterns and enabled targeted
improvements.

Proper evaluation in this dimension includes targeted testing with edge
cases and malformed input, controlled chaos engineering, dependency
failure simulations, and long-running stability tests—approaches we’ll
explore further in our evaluation strategies section.

Safety and responsibility

Finally, the safety and responsibility dimension has become perhaps the
most critical one as Al systems move into production. At the baseline
“good” level, systems avoid generating obviously harmful content, leaking
PII, and exhibiting blatant bias in responses.

Foundation model providers like Google already implement base safety filters, but these
are generic protections. Your responsibility is to test for risks specific to your
application domain—for instance, a healthcare chatbot must verify that it doesn’t
generate medical misinformation, and a financial advisor must ensure that it doesn’t
violate securities regulations. Provider-level safety is your foundation, not your finish
line.

Truly responsible systems go much further. They implement proactive
identification of subtle biases, not just avoiding obvious prejudice but
actively identifying and mitigating more nuanced forms of unfairness in
responses. They exhibit demonstrable fairness across diverse scenarios,
providing consistent, unbiased treatment across different demographic
groups, topics, and contexts, validated through systematic testing,.

Excellence in this dimension also includes robust PII handling with
sophisticated detection and protection of sensitive information, even when
embedded in complex conversational flows or multimodal content. Great
systems maintain appropriate transparency, clearly communicating to users
about the system’s capabilities, limitations, and information sources.
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These requirements take on particular urgency in regulated industries. In
financial services, for instance, regulators such as the Consumer Financial
Protection Bureau (CFPB) are expanding oversight to include Al-driven
discrimination in lending and advisory services, while financial institutions
grapple with ensuring that their models don’t perpetuate historical biases in
credit decisions or investment recommendations.

Effective evaluation in this crucial dimension combines targeted testing for
known safety risks, diverse evaluator pools, red-teaming exercises, and
ongoing monitoring for emerging safety challenges.

Setting the Bar for Production Excellence

Moving beyond identifying what to measure, successful organizations
establish clear targets for what excellence looks like across each dimension.
These targets aren’t generic industry standards, but precisely defined
thresholds tailored to your specific use case and business context.

For your multimodal agent or LLM application, defining these targets
explicitly serves several critical purposes. First, it aligns stakeholders on
quality expectations, creating a shared understanding of what success truly
looks like beyond the basic “it works” threshold. When everyone from
developers to business owners shares this vision, teams can work
cohesively toward the same quality goals.

Explicit targets also guide resource allocation, helping you prioritize
optimization efforts on the dimensions most critical to your specific use
case. A financial compliance application might focus resources on accuracy
and PII protection, while a creative writing assistant might prioritize tone
flexibility and originality.

These defined standards establish objective criteria that provide clear
benchmarks for determining when your system is truly ready for production
deployment. Rather than subjective assessments, you can point to concrete
metrics showing that the system meets or exceeds the defined targets across
key dimensions.
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These defined standards establish objective criteria where possible that
provide clear benchmarks for determining when your system is truly ready
for production deployment. Rather than purely subjective assessments, you
can point to concrete metrics showing that the system meets or exceeds the
defined targets across key dimensions. However, some dimensions—
particularly fairness, bias, and cultural appropriateness—resist simple
quantification and require human judgment alongside automated metrics.
The goal is to make evaluation as systematic and reproducible as possible,
not to exclude dimensions that can’t be reduced to a single number.

Perhaps most importantly, well-defined quality targets create a foundation
for continuous improvement. They set baselines against which ongoing
enhancements can be measured, allowing you to track progress as your
system evolves and ensuring that each iteration truly advances your quality
objectives rather than merely changing the system.

As you prepare to evaluate your own system, start by defining specific,
measurable targets across each of these dimensions, weighted according to
your particular use case and business objectives. With these targets in place,
let’s explore how to effectively measure your system’s performance against
them.

Practical Evaluation Strategies

Now that we’ve defined what makes an LLM application or agent
exceptional, we need systematic approaches to measure performance
against these targets. Effective evaluation combines multiple
complementary strategies, from human assessment of nuanced qualities to
automated metrics for consistency and scale.

Human-Centered Evaluation

While automated metrics play a crucial role in evaluation, certain aspects of
LLM and agent performance remain best assessed by human evaluators.



This is particularly true for dimensions involving subjective judgment,
nuanced understanding, or alignment with human preferences.

Human evaluation proves especially valuable for assessing several critical
qualities that machines struggle to measure effectively. When evaluating
helpfulness, human judges can determine whether responses actually
address the user’s underlying need, not just their literal question—a
distinction that often requires reading between the lines of user queries.
Similarly, nuanced understanding of implicit meaning, context, and subtlety
often requires human judgment to assess accurately.

The appropriateness of tone and style represent another area where human
evaluation excels. Determining whether responses align with brand voice
and adapt correctly to situational context requires cultural understanding
and sensitivity to linguistic nuance that automated systems typically lack.

Human evaluators also excel at identifying subtle safety and bias concerns
that automated systems might miss. While algorithmic approaches can
catch obvious issues, the more nuanced manifestations of bias or potential
harm often require human judgment informed by diverse perspectives and
lived experiences.

Perhaps most importantly, humans can evaluate the overall UX—the
holistic impression of interacting with the system—in ways that isolated
metrics cannot capture. This comprehensive assessment often reveals
insights that wouldn’t emerge from evaluating individual aspects separately.

When implementing human evaluation, it’s essential to design a process
that produces consistent, actionable insights while managing the inherent
subjectivity of human judgment.

Detailed evaluation criteria and scoring guidelines form the foundation of
reliable human evaluation. Without them, different evaluators may apply
inconsistent standards or focus on different aspects of performance.

A well-designed rubric defines specific dimensions to evaluate, such as
helpfulness, accuracy, and safety. It provides clear criteria for each score
level, helping evaluators distinguish between exceptional, adequate, and



problematic responses. Effective rubrics include concrete examples of
responses meriting different scores, giving evaluators reference points to
calibrate their judgments. They also offer guidance on handling edge cases
or ambiguous situations to ensure consistent evaluation across challenging

scenarios. Table 5-1 shows a sample rubric for evaluating response
helpfulness.



Table 5-1. Helpfulness assessment rubric

Score

5
(Exceptional)

Criteria

Response fully
addresses the
query with
optimal detail
level and
additional
valuable
context. It
anticipates
likely follow-
up needs and
provides
resources for
deeper
exploration if
appropriate.

Example

For “How does the car engine in the
video work?”, the response explains
key components shown, identifies
their relationships, includes analogies
for clarity, and notes what’s not
visible but relevant. “The video shows
a 4-stroke internal combustion engine
where fuel mixes with air (0:15), then
is compressed and ignited by the spark
plug (0:32). Think of it like a
controlled explosion pushing the
piston down—similar to how your leg
pushes a bike pedal. Note that while
the cooling system isn’t featured
prominently, it’s crucial for preventing
overheating. I’ve identified the main
components at specific timestamps if
you’d like to revisit any part.”



Score

4 (Very Good)

3 (Adequate)

Criteria

Response
thoroughly
addresses the
query with
appropriate
detail and
some useful
additional
context,
though may
miss some
opportunities
for added
value.

Response
directly
answers the
basic query
but provides
minimal
additional
context or
explanation.
It’s factually
correct but
doesn’t go
beyond what
was explicitly
asked.

Example

For “How does the car engine in the
video work?”, the response correctly
identifies and explains the main
components shown in the video with
their functions. “The video
demonstrates a 4-stroke engine with
pistons moving up and down inside
cylinders. At 0:32, you can see the
spark plug igniting the fuel-air
mixture, creating combustion that
drives the pistons. This motion is
transferred to the crankshaft, which
ultimately powers the wheels. The
intake and exhaust valves control the
flow of gases in and out of the
combustion chamber.”

For “How does the car engine in the
video work?”, the response provides a
basic factual explanation without
depth. “The car engine in the video
works through a 4-stroke cycle:
intake, compression, combustion, and
exhaust. Fuel is mixed with air,
compressed, ignited by the spark plug,
and then the exhaust gases are
expelled. This process creates the
mechanical energy that powers the
vehicle.”



Score Criteria Example

2 (Subpar) Response For “How does the car engine in the
partially video work?”, the response gives
addresses the  generic engine information without
query but specifically addressing what’s shown
misses key in the video. “Car engines convert
elements or chemical energy from fuel into
provides mechanical energy. They have pistons,
tangential cylinders, and valves. Gasoline
information engines differ from diesel engines in
that doesn’t how they ignite the fuel. Modern
fully address engines are becoming more efficient
the user’s compared to older designs.”
need.

1 (Poor) Response fails For “How does the car engine in the

to address the
core query, 1s

video work?”, the response is vague
and unhelpful. “The video shows

excessively various mechanical components
vague, or working together. Engines are
requires complex systems with many moving
significant parts. Different cars might have
follow-up to different types of engines depending
get useful on the manufacturer and model. You
information. might want to consult a mechanic or

automotive textbook for more specific
information.”

When implementing evaluation projects at scale, we’ve found that investing
time in rubric development and evaluator training significantly improves
consistency and makes results more actionable for engineering teams.
Effective teams treat rubrics as living documents—starting with an initial
draft, running pilot evaluations to identify ambiguities or score clustering,



and then refining criteria and examples based on where evaluators
disagreed. This iterative approach typically requires two or three refinement
cycles before the rubric produces reliable, actionable results.

Beyond rubric-based assessment, several other human evaluation
techniques offer complementary perspectives on system performance.
These approaches can be broadly categorized into structured individual
assessments (like the rubrics we’ve discussed), comparative methods that
directly contrast different systems, and adversarial testing that seeks to
identify potential failure modes.

A/B Testing and Preference Scoring

When comparing different versions of your LLM or agent system,
preference testing often reveals insights that absolute scoring methods miss.
Rather than asking evaluators to rate each system independently on a fixed
scale, preference testing presents pairs of responses from different systems
to the same query. This direct comparison mirrors how users naturally
evaluate alternatives and helps focus evaluation on meaningful differences.

In our work with client implementations, we’ve found that this approach
consistently produces more actionable insights. Evaluators simply indicate
which response they prefer, sometimes with a strength rating, allowing
teams to aggregate results and determine statistical win rates for different
system variants. A healthcare client discovered through preference testing
that their newly fine-tuned model for History and Physical Exam (H&P)
note generation outperformed their baseline by a significant margin—
physicians found that it better captured the clinical reasoning flow from
chief complaint through assessment and plan, despite both models scoring
similarly on absolute rating scales for completeness.

This approach offers several advantages beyond simplicity. Preference
testing naturally focuses attention on relative improvements rather than
absolute scores, helping teams identify whether changes are moving in the
right direction even when perfect performance remains aspirational. It
typically shows higher inter-annotator agreement than absolute scoring
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because judging which of two options is better requires less calibration than
assigning precise quality scores. Perhaps most importantly, it directly
mimics the choices users would make when comparing systems, making it a
strong proxy for eventual user satisfaction.

Various evaluation platforms make implementing preference testing
straightforward through pairwise comparison functionality. The Vertex Al
evaluation service offers built-in human review interfaces and capabilities,
which we’ll explore in detail later in this chapter. If you’re seeking open
source alternatives, Argilla is a data annotation platform that specializes in
collecting structured human feedback, including preference data for
evaluation and fine-tuning. Other platforms include Langfuse, which offers
comprehensive A/B testing for prompts with detailed observability, and for
teams already using Weights & Biases, W&B Weave supports custom
preference scorers that integrate seamlessly with Weights & Biases’
experiment-tracking infrastructure.

Side-by-side comparison

A specialized form of preference testing is side-by-side comparison, in
which evaluators examine outputs from different systems simultaneously.
This approach proves particularly valuable when assessing incremental
improvements or comparing systems with different strengths and
weaknesses across multiple dimensions.

Side-by-side evaluation often reveals nuanced insights that might be missed
in isolated assessments. For example, it can highlight how one model might
excel at technical accuracy while another produces more accessible
explanations, or how a fine-tuned model improves specific capabilities
while potentially losing others. These insights enable development teams to
make informed decisions about model selection or even create hybrid
approaches that leverage complementary strengths.

Figure 5-2 shows how evaluators can view model outputs in parallel in

Vertex Al with structured feedback mechanisms. For teams seeking deeper
insights into evaluation decisions, tools such as Google’s LLM Comparator
can augment these comparisons with visual explanations of why evaluators


https://oreil.ly/wnpez
https://oreil.ly/LrZOE
https://oreil.ly/9T-hW
https://oreil.ly/UEYfH

prefer one response over another—essentially providing “explainable AI”
for the evaluation process itself.
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Figure 5-2. Comparative prompt evaluation in Vertex Al

Red Teaming: Stress Testing for Safety and Reliability

Red teaming involves adversarial testing in which security experts
deliberately attempt to manipulate the agent into generating harmful outputs
or bypassing safety guardrails. The most effective red teaming efforts bring
together diverse, specialized evaluators—cybersecurity experts, ethicists,
linguists, and domain specialists—who systematically probe for failures
across multiple risk categories. As Figure 5-3 illustrates, these categories
include prompt attacks, training data extraction, backdooring, adversarial
examples, data poisoning, and exfiltration—each requiring distinct
expertise to properly evaluate.
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Figure 5-3. Common types of red team attacks on Al systems, showing six key attack vectors that
security teams must defend against

Rather than simply cataloging successful attacks, comprehensive red
teaming documents the specific conditions that trigger failures, creating
actionable insights for system improvements. Google’s Al Red Team
experience shows that while researchers increasingly focus on novel Al-
specific vulnerabilities, traditional security fundamentals—proper access
management, input validation, and supply chain security—remain
surprisingly effective at protecting Al systems. At the same time,
comprehensive red teaming of Al systems must also address their unique
vulnerabilities. For systems like our multimodal agent, this includes
attempting to extract PII from partially visible documents in images,
exploiting tool usage to bypass safety guardrails, or testing for
inconsistencies when information conflicts across modalities.

Automated Evaluation: Scaling Feedback for Rapid
Improvement

While human evaluation provides nuanced insights into system quality, its
resource-intensive nature limits continuous monitoring of production
systems. Automated evaluation metrics enable consistent, scalable, and
frequent assessment of your LLM or agent—particularly valuable during
development iterations and ongoing production monitoring.

The key to effective automated evaluation is selecting metrics that
meaningfully correlate with your quality targets while recognizing their
limitations. Rather than relying on any single metric, build a suite of
complementary measures that collectively provide a more complete view of
system performance.

Google Cloud’s Vertex Al platform provides a comprehensive evaluation
infrastructure that unifies this process through its evaluation service and
SDK. This integrated framework supports everything from standard
reference-based metrics to LLM-as-judge evaluations to specialized agent
metrics—all with consistent APIs and integration with experiment tracking.
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As we explore specific metrics throughout this section, we’ll demonstrate
how they can be implemented through this unified approach.

Reference-Based Metrics for Text Generation

The most established category of automated evaluation metrics compares
generated outputs against “gold standard” reference texts. These reference-
based metrics provide objective measures of similarity:

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

Measures n-gram overlap between generated and reference texts.
Particularly useful for summarization tasks. ROUGE-L considers the
longest common subsequence, capturing some aspects of fluency.

BLEU (Bilingual Evaluation Understudy)

Originally designed for translation, it measures precision of n-gram
matches between generated and reference texts. Useful for tasks where
exact phrasing matters.

BERTScore

Uses contextual embeddings to compute similarity beyond literal word
matches. Better at capturing semantic similarity when different
phrasings express the same meaning.

Example 5-1 shows how to implement these reference-based metrics using
Vertex Al’s evaluation service.

Example 5-1. Reference-based evaluation using the Vertex Al evaluation
service

import as
import
from import EvalTask

vertexai.init (project=PROJECT ID, location=LOCATION)

# Create evaluation dataset with model responses and references
eval dataset = pd.DataFrame ({



"response": [
"The system processes images through a multistage pipeline,

"first detecting objects, then analyzing their
relationships."

1,
"reference": [
"Image processing occurs in stages: object detection
followed "
"by relationship analysis."

})

# Evaluate using multiple reference-based metrics
eval task = EvalTask(

dataset=eval dataset,

metrics=["rouge 1 sum", "bleu"]

)

# If evaluating pre-generated responses, just call evaluate()
result = eval task.evaluate()

Limitations of Reference-Based Evaluation

Reference-based metrics, while valuable, come with significant limitations
that practitioners should recognize. They typically reward strict similarity to
reference outputs, which can unfairly penalize valid alternative phrasings or
approaches that might be equally correct or even superior. A healthcare
chatbot might express medical advice in simpler terms than the reference
but be more effective for patient understanding, yet score poorly on
similarity metrics.

These metrics also struggle considerably with evaluating creative or open-
ended generation tasks where multiple diverse outputs could be equally
valid. A creative writing assistant generating stories or marketing copy
might produce excellent content that bears little lexical similarity to any
reference examples, resulting in misleadingly low scores despite high
quality.

Perhaps most practically limiting, reference-based evaluation requires
having reference outputs in the first place, which may not be available for



all inputs or might be prohibitively expensive to create at scale. Many real-
world applications involve novel queries without preestablished “correct”
answers, making pure reference-based evaluation impossible in these
contexts.

For these reasons, reference-based metrics should be viewed as just one
component in a comprehensive evaluation strategy. They work best when
complemented with other approaches, particularly for assessing more
subjective aspects of quality such as creativity, helpfulness, and nuanced
understanding where human judgment or model-based evaluation often
provides more meaningful insights.

Domain-Specific and Task-Oriented Metrics

The limitations of reference-based evaluation have driven the development
of specialized metrics tailored to specific domains and tasks. Rather than
relying solely on text similarity, these approaches measure application-
specific outcomes:

Exact match (EM)

For question-answering, EM measures whether the generated answer
exactly matches the reference (or a set of acceptable answers).

Fl score

For information extraction or classification tasks, the F1 score measures
the harmonic mean of precision (how many identified elements are
correct) and recall (how many correct elements were identified).

Domain-specific metrics

For code generation, functional correctness evaluates the probability
that at least one correct solution appears in k& generated samples,
focusing on whether code actually works rather than how it reads.
Medical applications require clinical accuracy and safety compliance
metrics that assess medical reasoning and patient safety rather than text
similarity to reference materials. Financial analysis benefits from
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directional accuracy and risk assessment measures that evaluate
prediction quality and investment performance rather than similarity in
phrasing or presentation style.

Metrics for Agentic Systems and Tool Use

When evaluating agent systems, traditional output-focused metrics, whether
reference-based or domain-specific, provide only part of the picture. You
must also assess how effectively agents leverage tools and follow
appropriate action sequences to accomplish tasks. This trajectory evaluation
—analyzing the path an agent takes to reach its conclusion—reveals
insights about decision quality that response evaluation alone cannot
capture.

Understanding the agent evaluation process

Figure 5-4 illustrates how the ADK evaluation workflow captures both tool
usage and trajectory data for comprehensive agent assessment.
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Figure 5-4. The ADK evaluation workflow, showing how test queries are processed and compared
against expected results

Vertex Al provides a comprehensive framework for evaluating agent
behavior across multiple dimensions. At the foundation level, you assess
basic tool usage competency through several key metrics that examine
whether agents properly construct and execute tool calls.

The most fundamental metric, tool call valid, verifies that an agent
can form syntactically correct tool calls—a baseline capability for any
functional agent. This binary metric (1 for valid, 0 for invalid) quickly
identifies agents that fail to properly structure their API interactions.

Moving beyond basic syntax verification, tool name match examines
whether the agent selects the appropriate tool for a given task. This
assessment reveals whether your agent correctly maps user intents to
available capabilities—for instance, a customer service agent choosing
“order lookup” for “Where’s my package?” versus
“process_return” for “I want to send this back.”

For deeper assessment of parameter handling,

tool parameter key match evaluates whether the agent includes
the correct parameter names in its tool calls, returning a proportion between
0 and 1. This reveals whether your agent understands a tool’s interface
requirements. Similarly, tool parameter kv match examines both
parameter names and values, ensuring that the agent not only knows which
parameters to include but also provides appropriate values.

Example 5-2 demonstrates how to implement these foundational tool usage
metrics using Vertex Al’s evaluation framework.

Example 5-2. Evaluating agent tool usage with Vertex Al

import
from import EvalTask
from import

TrajectorySingleToolUse
vertexai.init (project=PROJECT ID, location=LOCATION)

# For single tool usage



single tool usage metrics =
[TrajectorySingleToolUse (tool name="get product price")]

# For trajectory metrics

trajectory metrics = [
"trajectory exact match",
"trajectory in order match",
"trajectory any order match",
"trajectory precision",
"trajectory recall",

]

# Run evaluation

eval task = EvalTask(
dataset=eval sample dataset,
metrics=trajectory metrics,
experiment=EXPERIMENT NAME,

eval result = eval task.evaluate(
runnable=agent parsed outcome,
experiment run name=EXPERIMENT RUN

Trajectory evaluation and metric visualization

Beyond these individual tool call assessments, trajectory evaluation
examines the complete sequence of actions an agent takes to complete a
task—particularly important for complex tasks such as travel planning or
financial analysis that require coordinated multistep processes. Vertex Al
provides several specialized metrics for this assessment.

trajectory exact match requires precise alignment between the
agent’s actual tool call sequence and a reference “golden path.” This
stringent metric is valuable for critical applications like healthcare or
financial services where deviations from established protocols may
introduce risk. It returns “1” for exact matches and “0” otherwise.

For more flexible evaluation, trajectory in order match verifies
that reference actions appear in the correct sequence but allows additional
steps, while trajectory any order match checks only that
required actions are performed regardless of sequence. These



accommodating metrics better suit scenarios where multiple valid
approaches exist.

The complementary metrics trajectory precision and
trajectory recall provide nuanced assessment from different
angles. Precision measures how many of the agent’s actions were necessary
according to the reference (avoiding superfluous steps), while recall
indicates how many required actions the agent successfully completed.
Together, these metrics create a comprehensive view of trajectory quality.

Vertex Al evaluation service returns results that can be analyzed as
dataframes in notebook environments, as shown in Figure 5-5. The service
provides both summary metrics (means and standard deviations across all
test cases) and row-wise details for each individual test query.
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Figure 5-5. Example evaluation results table showing trajectory precision, coherence, latency, and
other metrics for a home automation agent

Examining these results reveals valuable insights. For instance, in the
sample shown, the first test case shows a

trajectory precision/score of 0.0, indicating that the agent
failed to complete the task—attempting to control device 10, which
doesn’t exist in the system. Meanwhile, other test cases show perfect
trajectory precision scores (1.0), suggesting the agent generally works well
when given valid device identifiers. This pattern helps identify gaps in test
data setup or system configuration.

Custom metric development for advanced evaluation

As agent systems grow more sophisticated, off-the-shelf metrics may not
capture all aspects of performance relevant to your specific use case. Vertex
Al supports custom metric development through two complementary
approaches: LLM-based metrics using a templated interface and
computation-based metrics using custom functions.

LLM-based custom metrics

One of the most powerful approaches 1s using an LLM as a judge to
evaluate agent behavior based on complex qualitative criteria. Unlike
pattern-matching algorithms, an LLM can evaluate nuanced aspects of
reasoning and coherence. The implementation is straightforward through
Vertex Al’s templated interface. You define evaluation criteria in natural
language, establish a rating rubric, and specify which variables should be
included in the assessment. Example 5-3 demonstrates creating a custom
metric for evaluating response helpfulness.

Example 5-3. Example custom LLM-as-judge metric for agent evaluation

helpfulness prompt template = PointwiseMetricPromptTemplate (
criteria=({
"Helpfulness": (
"Evaluate whether the agent's response is genuinely
helpful to the "
"user. Consider:\n"
" - Does it directly address the user's question or



need?\n"
" - Is the information accurate and complete?\n"
- Does it provide appropriate context or additional
guidance?\n"
" - Is the response clear and easy to understand?"
)
}I

rating rubric={

"1": "Very helpful - fully addresses the user's needs",
"0.5": "Somewhat helpful - partially addresses the user's
needs",
"0O": ("Not helpful - misses the user's needs or provides
incorrect "
"information")
}I
input variables=["prompt", "response"],

helpfulness metric = PointwiseMetric (
metric="helpfulness",
metric prompt template=helpfulness prompt template,
)

A financial advisor agent might be evaluated on regulatory compliance and
risk disclosure completeness, while a healthcare agent could be assessed on
medical accuracy and appropriate safety disclaimers.

LLM-as-judge evaluation provides scalability advantages, evaluating
thousands of responses uniformly. However, it requires calibration to align
with human judgment: the most effective implementations include
examples of good and bad responses with human scores to establish
consistent standards. This transforms purely algorithmic evaluation into
nuanced assessment that operates at production scale.



Vertex Al’s evaluation service uses proprietary judge models like Gemini that have been
specifically calibrated with human raters to improve evaluation quality. While the LLM-
as-judge framework works with any capable language model, these precalibrated
models can provide more reliable assessments out of the box. The service offers three
approaches: using existing example templates for common use cases, guided metric
definition through a templated interface, and complete custom control for highly
specific requirements. Even with calibrated models, providing examples of good and
bad responses with human scores further improves alignment with your specific quality
standards.

Computation-based custom metrics

For metrics that require precise business logic validation, custom
computation-based metrics provide complete control over evaluation
criteria. Example 5-4 demonstrates a financial compliance metric that
validates portfolio recommendations against multiple regulatory and risk
management requirements.

Example 5-4. Sample custom metric for agent evaluation

def portfolio risk compliance (instance, max risk score=0.7,
max concentration=0.3):

"""Custom metric checking if financial recommendations meet
risk

compliance standards."""

response = instance["response']

user profile = instance.get ("user profile", {})

# Extract portfolio allocation from agent's recommendation
# In practice, this would parse the actual response structure
recommended allocation = parse portfolioc allocation(response)

# Calculate risk score based on asset mix
risk score = calculate portfolio risk(recommended allocation)

# Check concentration limits (no single asset > 30%)
max single allocation = max(recommended allocation.values())

# Verify alignment with user's risk tolerance

user risk tolerance = user profile.get("risk tolerance",
"moderate")

risk alignment = check risk alignment (risk score,
user risk tolerance)
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return {
"risk compliance": 1 if risk score <= max risk score else

"concentration compliance": (1 if max single allocation <=
max concentration else 0),
"risk alignment": risk alignment,
"overall compliance": 1 if all (][
risk score <= max risk score,
max single allocation <= max concentration,
risk alignment ==
1) else O

portfolio compliance metric = CustomMetric (
name="portfolio risk compliance",
metric function=portfolio risk compliance

)

This approach excels when you need to validate hard business constraints.
In financial services, that might mean ensuring that portfolio allocations
stay within risk limits and concentration thresholds. In healthcare, similar
metrics could verify that drug dosages fall within safe ranges or flag
potential medication interactions.

The key advantage is deterministic evaluation—these metrics produce
consistent, auditable results based on explicit rules. While LLM-based
evaluation handles subjective qualities, such as helpfulness or clarity,
computation-based metrics enforce the nonnegotiable requirements your
application must meet.

Optimization Strategies

With comprehensive evaluation data in hand—from human assessments,
automated metrics, and custom evaluations—you’re equipped to make
targeted improvements that address your system’s specific gaps. The next
step 1s implementing optimizations to close those gaps.

The most effective approach begins with systematic prompt refinement and
agent design improvements—changes you can implement quickly without



infrastructure modifications. When this approach reaches its limits, more
advanced techniques involving model adaptation and infrastructure
optimization (covered comprehensively in Chapter 6) may be necessary.

Refining Prompts

Prompt engineering often provides the quickest wins for improving LLM
and agent performance. Rather than ad hoc tweaking, successful teams
approach this as a systematic process. They identify specific improvement
targets based on evaluation results, hypothesize which prompt elements
could address those issues, implement variations to test different
approaches, then evaluate results both quantitatively and qualitatively
before iterating based on findings.

Several patterns have proven particularly effective across different
applications. Explicit role and context definition works by priming the
model’s attention mechanisms to activate domain-specific knowledge
representations, essentially creating a specialized context window that
emphasizes relevant training patterns while de-emphasizing generic
responses. In mixture of experts (MoE) architectures, this context priming
helps route processing through the most relevant expert networks. Task
decomposition breaks complex tasks into explicit steps, guiding the model
through structured reasoning processes that reduce errors and improve
consistency.

Few-shot examples provide concrete demonstrations of desired inputs and
outputs, essentially teaching the model through examples rather than
abstract instructions. Qutput structuring explicitly defines the desired
response format, ensuring consistency across interactions. Thinking process
guidance directs the model’s reasoning approach, encouraging it to consider
multiple perspectives and potential conflicts before responding.

For our multimodal agent, if evaluation showed weaknesses in visual detail
extraction, we might test prompts with more explicit instructions about
image analysis depth. The key 1s connecting specific evaluation insights to
targeted prompt improvements rather than making generic adjustments.
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Vertex Al’s Prompt Optimizer service can automate much of this
experimentation, systematically testing prompt variations and identifying
the most effective approaches based on your evaluation criteria. You can
optimize the instruction component (role and system instructions), the
demonstration component (few-shot examples), or both simultaneously,
allowing you to focus optimization efforts where your evaluation identifies
the most significant gaps. Figure 5-6 shows the workflow of how the
Prompt Optimizer transforms your original prompt template into an
optimized version through systematic testing. For most applications, prompt
engineering should be your first optimization approach due to its simplicity
and rapid iteration cycle.
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Figure 5-6. Vertex AI Prompt Optimizer inputs and outputs

Elevating Agent Performance

Agents add another layer of complexity to LLM applications by
incorporating tool use, planning, and multistep reasoning. The most
successful agent optimizations focus on designing robust tools and



improving agent-reasoning capabilities, often extending into advanced
multiagent architectures for complex domains.

Designing robust tools

Tools form the interface between your agent and external systems, making
their optimization crucial for reliability and usability. The most robust tools
provide clear specifications with detailed descriptions, parameter
definitions, and usage examples that help the LLM understand when and
how to use each tool. They implement thorough input validation to catch
and handle invalid inputs gracefully, preventing cascading failures that can
bring down entire agent workflows.

Modern protocols like MCP (Model Context Protocol) and A2A (Agent-to-
Agent communication), which we explore in Chapter 4, standardize how
tools expose their capabilities and enable dynamic tool discovery,
eliminating the need to hardcode tool specifications into agent prompts.

Effective tools are designed to fail gracefully with informative error
messages the agent can understand and act upon. Where possible, they’re
built to be idempotent, meaning multiple identical calls produce the same
result, making agents more resilient to repeated tool invocations. They
minimize state dependencies between tool calls to reduce complexity and
potential failure modes.

Well-designed tools include retry logic for handling temporary failures,
structure their results for optimal LLM consumption rather than human
readability, and provide actionable error messages when failures occur.
They limit response sizes to prevent overwhelming the model with
excessive information while ensuring that essential data remains accessible.
Strong type checking with frameworks such as Pydantic helps catch
parameter errors before they reach external APIs, while comprehensive

error handling ensures that agents receive useful feedback when operations
fail.

Improving agent reasoning and planning
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Beyond tools, optimizing how agents make decisions and plan multistep
processes proves critical for complex tasks. Modern agent architectures
employ several reasoning techniques.

Chain-of-thought prompting provides the foundation, explicitly instructing
agents to reason step by step before taking actions. Leading
implementations enhance this with structured frameworks like ReAct
(reasoning and acting), which alternates between thought and action steps,
allowing agents to observe results and adjust their approach mid-task. Tree
of Thoughts (ToT) extends this further by exploring multiple reasoning
paths in parallel before committing to actions, which is particularly valuable
for complex problems with uncertain solution paths.

Modern agents also employ dynamic planning that adjusts based on
intermediate results. Rather than following rigid sequences, they maintain
goal hierarchies and can reformulate subgoals when initial approaches fail.
This includes techniques such as plan-and-execute patterns where agents
first create high-level plans, as shown in Figure 5-7, then decompose them
into executable steps, monitoring progress and adjusting as needed.
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For enhanced decision making, agents maintain both working memory
(current task context) and episodic memory (past experiences) to inform
decisions. Working memory typically leverages session state for immediate
context, while episodic memory—the ability to recall similar past scenarios
and learn from previous interactions—often requires infrastructure choices.
Simple implementations might use in-memory storage for prototyping, but
production systems typically need persistent solutions such as vector
databases or managed services to maintain knowledge across sessions and
system restarts. This memory isn’t just passive storage—it’s actively used
to weight decisions and predict likely outcomes of different action
sequences.

When it comes to self-improvement, advanced reflection mechanisms go
beyond simple validation. Agents can engage in multilevel reflection:
immediate reflection on tool outputs (“Is this result reasonable?”), strategic
reflection on approach (“Am I making progress toward the goal?”), and
meta-reflection on their own reasoning process (“Am I overthinking this?”).
Some implementations include adversarial self-critique, where the agent
deliberately challenges its own assumptions before proceeding.

Finally, when deployed in multiagent systems (detailed in Chapter 4),
agents can engage in collaborative reasoning—consulting with specialized
agents for domain expertise, validating decisions through peer review, or
even engaging in structured debates to explore different perspectives before
reaching conclusions.

These reasoning techniques transform agents from simple tool-callers into
adaptive problem-solvers that can handle ambiguity, recover from errors,
and continuously improve their performance.

Multiagent optimization patterns

While Chapter 4 provides comprehensive coverage of multiagent systems,
certain optimization patterns deserve mention here because they directly
impact individual agent performance within larger systems.
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The choice between role specialization and generalization significantly
impacts optimization strategies. Specialized agents can be more deeply
optimized for their specific domains, with focused prompts, curated tools,
and targeted evaluation metrics. However, this must be balanced against the
coordination overhead and the risk of over-specialization that limits
flexibility.

In multiagent systems, optimizing inter-agent communication becomes
crucial. This includes developing efficient message formats, implementing
smart routing to avoid unnecessary communication loops, and managing
conversation state across agent boundaries. Effective communication
patterns can reduce latency, prevent information loss, and ensure that
specialized agents can collaborate seamlessly.

Multiagent systems can also exhibit emergent behaviors—both beneficial
and problematic. Optimization strategies must account for these system-
level effects, including implementing circuit breakers to prevent cascade
failures, designing feedback mechanisms that promote beneficial
emergence, and creating governance structures that maintain system
coherence without stifling innovation.

Beyond Prompt and Agent Optimizations

While prompt engineering and agent design improvements can deliver
significant gains, some optimization challenges require deeper technical
interventions. When you’ve exhausted these configuration-level
approaches, you may need to consider model adaptation through fine-tuning
techniques such as Low-Rank Adaptation (LoRA) and Quantized Low-
Rank Adaptation (QLoRA), which allow you to specialize models for your
specific domain while managing computational costs. Infrastructure
optimizations for latency and cost reduction become crucial as your
application scales, requiring decisions about quantization, model
compression, and efficient serving strategies. Advanced deployment
approaches, including edge computing and specialized hardware
acceleration, may be necessary for applications with stringent performance
requirements or unique deployment constraints.



These advanced optimization strategies require careful planning and often
significant computational resources. They also introduce new complexity
around model versioning, A/B testing infrastructure, and performance
monitoring. Chapter 6 provides comprehensive coverage of these tuning
and infrastructure considerations, helping you determine when they’re
necessary and how to implement them effectively for your specific use case.
The key is knowing when you’ve reached the limits of prompt and agent
optimizations—typically when you’re seeing diminishing returns despite
systematic experimentation, domain-specific requirements demand
specialized model behavior, or scaling requirements necessitate
infrastructure-level changes.

Looking Ahead

In this chapter, we’ve established a comprehensive framework for
evaluating and optimizing LLM applications. We explored how to define
excellence across multiple dimensions—from output quality and task
success to efficiency and safety—and equipped you with both human-
centered and automated evaluation strategies to measure performance
against these targets.

We then demonstrated how evaluation insights drive targeted optimization
through prompt engineering and agent design patterns. While certain
capabilities—particularly persistent memory systems and multiagent
coordination—may require infrastructure considerations, many
enhancements such as reasoning frameworks, reflection mechanisms, and
basic tool optimization can be implemented within your existing setup.

While we’ve focused on the initial evaluation and optimization process,
production systems require ongoing attention. Regular reevaluation helps
detect performance drift, changing user needs, and emerging edge cases.
Chapter 7 will show you how to operationalize this process within a
comprehensive MLOps framework, transforming these one-time
improvements into systematic, continuous enhancement that keeps your
system aligned with evolving user needs and business objectives.



In Chapter 6, “Tuning and Infrastructure,” we’ll explore the model
adaptation and infrastructure optimization techniques we briefly touched
upon here. You’ll learn when fine-tuning becomes necessary, how to
implement techniques like LoORA and QLoRA, and how to build serving
infrastructure that balances performance with cost as your application
scales.

Learning Labs

To reinforce the concepts covered in this chapter and deepen your
understanding of evaluation frameworks and optimization strategies, we
recommend exploring the learning resources available in the Chapter 5
folder of the book’s GitHub repository. Key resources you will find linked
there include:

e Hands-On Code Examples

— Getting Started with Vertex Al Gen Al Evaluation Service
SDK: Comprehensive introduction to model-based
evaluation with the Vertex Al Python SDK

— Build and Evaluate BigQuery Agents using ADK and
GenAl Eval Service: A codelab demonstrating BigQuery
agent evaluation against golden responses

— Zero-Shot Prompt Optimizer: Real-time prompt
optimization without labeled data

— Data-Driven Prompt Optimizer: Prompt optimization
using labeled samples and evaluation metrics

¢ Video Tutorials

— How to evaluate your GenAl models with Vertex Al: A
practical guide to using the Vertex Al evaluation service to
assess model performance with both pre-built and custom
metrics


https://oreil.ly/0bnlQ
https://oreil.ly/t_n_r
https://oreil.ly/oeL9G
https://oreil.ly/JaicF
https://oreil.ly/YaVBk
https://oreil.ly/pR7Ny

— The Agent Evaluation Revolution: Explores why
traditional software testing fails for autonomous agents
and introduces a “full-stack” system-level testing
approach for evaluating planning, tool use, and memory

— Evaluating and Debugging Non-Deterministic Al Agents:
A clear explanation of why Al systems behave
unpredictably and how to design evaluation strategies that
account for this inherent variability
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Chapter 6. Tuning and
Infrastructure

You built a capable customer service agent in Chapters 3 and 4. It handles
requests across text, images, and video, and routes complex queries to
specialist agents when needed. You followed Chapter 5°s evaluation
framework, measuring performance, iterating on prompts, and refining
coordination patterns. The system works.

But as you prepare for production, new questions emerge. What if response
times need to drop by 50%? What if the request volume scales to millions
per day? What if your domain vocabulary—the specific terminology and
patterns unique to your business—proves too specialized for the base model
to handle reliably? When prompt engineering and agent design reach their
limits, what comes next?

This chapter explores the deeper interventions that become necessary at
scale. We’ll examine when fine-tuning justifies its costs, how to implement
it efficiently, and how to build inference infrastructure that balances
performance, cost, and operational complexity.

The Tuning Decision

These questions about latency, scale, and domain specialization don’t all
have the same answer. Some point toward fine-tuning. Others don’t. To see
why, consider a financial services client whose agent struggled with two
problems. First, it missed fraud signals, failing to recognize when routine-
sounding inquiries were actually red flags for account takeover. The client
had tried detailed prompts describing fraud patterns, but even with regular
updates, the model treated these as rigid rules rather than adaptable
heuristics. It would flag obvious cases but miss variations like new phishing
approaches or slight changes in social engineering tactics.



Second, it couldn’t match the conversational nuances that helped customers
feel heard and guided toward resolution. They had refined prompts for
empathetic language, but the agent would apply them mechanically,
following the rules while missing the contextual judgment that
distinguished experienced customer service representatives from those
following a script. With configuration-level optimizations exhausted and
thousands of successful human interactions logged, fine-tuning seemed like
the logical next step for both problems.

It wasn’t—at least not for both. The fraud detection issue could be solved
by connecting the agent to their existing security infrastructure. Rather than
teaching the model to recognize fraud patterns through fine-tuning, the
agent could query real-time risk scoring systems when evaluating
transactions—systems that were already processing millions of transactions
and updating continuously based on emerging threats. The conversational
nuances, however, required a different approach. Prompting could describe
these patterns such as “be empathetic when customers are frustrated” but
couldn’t encode the learned associations between conversational signals and
appropriate responses. When does a customer’s one-word answer signal
frustration versus simple efficiency? These patterns require contextual
comprehension that emerges from statistical regularities across thousands of
interactions. Fine-tuning on their call transcripts allowed the model to
develop this comprehension—Ilearning, for instance, that silence following
a complaint paired with terse responses often signals the need to slow down
and validate feelings rather than push toward resolution. Prompting gives
rules; fine-tuning builds understanding of when and how to apply them.

Before committing to fine-tuning, map each capability requirement to these
questions: can real-time data solve this (e.g., fraud detection via security
APIs)? Does this require learned intuition from patterns (e.g.,
conversational judgment from interaction histories)? Could prompt
engineering bridge 80% of the gap? This financial services case study
demonstrates that even seemingly obvious candidates for fine-tuning may
have simpler solutions. The question becomes: how do you make this
evaluation systematically?



The Fine-Tuning Decision Framework

Five key decision criteria for this evaluation have emerged from production
deployments. Table 6-1 summarizes the framework.



Table 6-1. Fine-tuning decision framework

Fine-tuning
criterion

Reasoning
and intuition

Domain
specialization

Style and
consistency

Response
latency

Economics of
scale

When to apply

Model must
synthesize
information, not just
retrieve it

Domain
vocabulary/concepts
poorly represented
in base model

Specific
communication
patterns required

Real-time
requirements or
limited connectivity

High-volume
requests with
retrieval costs

Example
use case

Medical
diagnosis from
patient records

Radiology
terminology,
contract clause
structures

Legal
document
generation
matching firm
style

Factory floor
quality
inspection

Millions of
customer
service
Interactions

Key signal

External tools
provide facts,
but judgment
requires
learned
patterns

Specialized
jargon or niche
industry
knowledge

Prompting
produces
correct content
but
Inconsistent
tone/structure

Round-trip API
calls exceed
operational
requirements

Per-request
RAG/API costs
exceed fine-
tuning
Investment



Consider fine-tuning when your task requires the model to develop intuition
rather than just access information. A medical diagnosis agent might
connect to an MCP server that serves patient records and lab results, but the
ability to synthesize these into differential diagnoses—understanding subtle
patterns and interactions—benefits from fine-tuning on case histories. The
external tools provide the facts; the fine-tuned model provides the
reasoning.

Fine-tuning becomes essential when your domain uses specialized
vocabulary, concepts, or knowledge poorly represented in foundation model
training data. Medical imaging models analyzing radiology scans need to
learn subtle visual patterns and technical terminology that general vision-
language models haven’t encountered. Legal document systems must
understand jurisdiction-specific contract language and clause structures.
Manufacturing quality inspection agents need to internalize proprietary
defect classifications and industry standards. When your domain’s core
concepts are niche or specialized, fine-tuning bridges the knowledge gap
that prompting and retrieval alone can’t.

Beyond knowledge gaps, fine-tuning also addresses how models express
what they know. Style and consistency requirements often justify fine-
tuning even when the information could be accessed externally. A legal
document generation agent we worked with could pull clause templates
from a database, but fine-tuning was necessary to ensure that the connecting
language, transitions, and overall document flow matched the firm’s house
style. Every attempt to achieve this through prompting alone resulted in
subtle inconsistencies that trained lawyers immediately spotted.

Operational constraints introduce additional considerations. Response
latency creates another compelling case, particularly for edge deployments
or environments with limited connectivity. Consider quality inspection on a
factory floor: models need to analyze images in milliseconds to keep
production lines moving. The round-trip time to a remote server—
uploading high-resolution images, processing, and receiving results—often
exceeds operational requirements. Add intermittent factory WiF1i or security
restrictions on external connections, and local inference becomes essential.



Fine-tuning smaller models like Gemma 3n—which can run directly on
edge devices with relevant visual patterns internalized—becomes the most
viable approach.

Finally, the economics of scale often tip the balance toward fine-tuning.
When you’re processing millions of requests, the cumulative cost of
retrieving context—whether through RAG, MCP servers, or API calls—can
exceed fine-tuning costs within weeks. This calculation becomes even more
stark when using closed model APIs where each request incurs pay-as-you-
go token charges. A fine-tuned open model running on your own
infrastructure might have higher upfront costs but eliminates per-request
pricing that can spiral at scale. Of course, fine-tuned models aren’t “train
once and forget”™—they require periodic retraining as data distributions shift
or domain knowledge evolves, turning a one-time training cost into an
ongoing operational commitment. The key 1s understanding whether your
use case justifies these lifecycle costs versus configuration-level approaches
such as prompt engineering, tool integration, and retrieval systems, which
can be refined and deployed without retraining cycles.

Certain industries have adopted fine-tuning as standard practice due to recurring
patterns in these criteria. Ad tech agencies routinely fine-tune image and video
generation models for proprietary brand aesthetics (style and consistency + domain
specialization). Healthcare organizations fine-tune for specialized medical terminology
and diagnostic reasoning (domain specialization + reasoning and intuition). Financial
services fine-tune for regulatory compliance language and risk assessment patterns
(style and consistency + reasoning and intuition). If your industry isn’t listed here, don’t
assume fine-tuning is unnecessary—use the framework to evaluate your specific
requirements.

Fine-Tuning Strategies: From Full Training to Efficient
Adaptations

The framework tells you whether to fine-tune. But deciding “yes” opens a
new set of questions: what will this actually cost in production? Should you
use a managed platform or build custom infrastructure? How do modern
parameter-efficient methods change the implementation calculus? The gap
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between “We should fine-tune” and “We’re serving a fine-tuned model in
production” is where many projects stumble—in fact, a 2023 industry
survey found that 30% of organizations cite customization and fine-tuning
as a top challenge when deploying LLMs.

The Real Cost of Fine-Tuning

Economics offers one lens into these challenges. The true costs of fine-
tuning often bear little resemblance to initial estimates.

Consider a SaaS company fine-tuning a 7B (7-billion-parameter) model for
its customer service agent. The company needs the model to match its brand
voice, understand its product ecosystem, and handle domain-specific
troubleshooting. The company estimated $800 in compute costs and 2
weeks of engineering time. The reality proved far more demanding: 7
training iterations across 3 months, more than $3,500 in compute costs, and
400 hours of engineering time. That time broke down into four weeks for
data preparation (cleaning, formatting, balancing), three weeks for
infrastructure setup (training pipelines, evaluation metrics, integration), and
three weeks for experiment management (analyzing results, adjusting
hyperparameters, iterating on approaches).

This pattern repeats across projects. The direct training costs appear modest
—processing millions of tokens and several hours of GPU time might total
a few hundred dollars per run. However, production-ready fine-tuning
rarely happens in one shot. In practice, teams typically need three to seven
iterations to achieve their quality targets, each involving data curation
improvements, hyperparameter adjustments, and evaluation refinements.
Those iterations quickly multiply the initial cost.

The compute costs, while significant, typically pale in comparison to the
engineering investment. Then come the ongoing operational costs that
transform a “one-time investment” into a recurring expense: model
versioning and storage, A/B testing infrastructure, performance monitoring,
and periodic retraining as data distributions shift or domain knowledge
evolves. The SaaS company now retrains its model monthly, each iteration
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requiring data updates, quality validation, and careful deployment. What
seemed like a project became an ongoing operational commitment.

Implementation Approaches

The costs are understood. The commitment is made. Now comes the
practical question: how do you actually implement fine-tuning?

Fine-tuning requires loading your model into GPU memory, along with
your training data and the optimizer (the training algorithm that calculates
how to adjust parameters). For example, a 7B parameter model in 16-bit
precision requires 14 GB just to load into memory. During training, the
process gets more expensive. The training algorithm must track not just the
model weights themselves, but also the gradients (the calculations showing
which direction to adjust each weight) and optimizer states (information
about past adjustments that helps training converge faster). These additional
requirements add roughly three times the model size. That’s 42 GB of
training overhead on top of the 14 GB model-—56 GB total before
accounting for the actual data being processed. Consider a typical
development GPU with 24 GB of memory, common in hardware like a
NVIDIA RTX 4090 or L4. The 56 GB requirement makes full fine-tuning
impossible on a single accelerator.

Parameter-efficient methods such as LoRA (Low-Rank Adaptation) solve
this by changing what gets updated during training. As illustrated in

Figure 6-1, instead of updating all 7B parameters in the model, LoORA
freezes the original model weights and adds small “adapter” layers: new
parameters that learn your specific task. These adapters typically contain
about 8M parameters, less than 1% of the original model size. When you’re
only training 8M parameters instead of 7B, those 42 GB of training
overhead shrink to under 1 GB. What required a GPU cluster now fits on a
single accelerator.
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PEFT LoRA

Model Model

Figure 6-1. Parameter-efficient fine-tuning (PEFT) and methods like LoRA freeze the massive base
model and update only a small adapter layer, drastically reducing computational costs compared to
full fine-tuning

Vertex Al’s supervised fine-tuning implements these parameter-efficient
techniques automatically. The platform supports fine-tuning of Gemini
models and popular open source models such as Llama, Gemma, and
Qwen. The platform accepts training data as JSONL files, determines
optimal adapter configurations, orchestrates training across its
infrastructure, and exposes the result as a serving endpoint, illustrated in
Figure 6-2. Most teams we work with take this managed path. It eliminates
infrastructure concerns and accelerates time to production.

The alternative is custom training using libraries like Hugging Face’s
transformers and trl or higher-level frameworks like Unsloth and
Axolotl. This provides complete control over the training process: how the
model learns, how infrastructure resources are allocated, and how the
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resulting model gets deployed. The trade-off is an operational burden. You
become responsible for GPU cluster configuration, hyperparameter tuning,
experiment tracking, checkpoint management, and deployment pipelines.

Custom frameworks make sense in specific circumstances. First, when you
need training approaches the platform doesn’t support. Perhaps you need
different parts of your model to learn at different speeds, you need to
introduce training examples in a carefully controlled order, or your domain
requires specialized techniques to prevent overfitting. Second, when you’re
operating at a scale where infrastructure optimization justifies dedicated
engineering effort. If you’re training dozens of models monthly at costs that
compound into hundreds of thousands of dollars, custom infrastructure
optimization justifies the engineering effort. Third, when compliance
requirements demand complete infrastructure control. For example, certain
financial services or healthcare deployments face strict data residency rules
that limit use of managed platforms.
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Figure 6-2. Vertex Al supervised tuning pipeline automates adapter injection and orchestrates the
training workflow, eliminating the need for complex infrastructure management

For most use cases, the managed platform suffices. Teams we work with
start on Vertex Al and stay there—the platform handles production
workloads without requiring dedicated infrastructure expertise.
Containerization and model format standards mean migration to custom
frameworks involves configuration changes rather than architectural
rewrites if specific requirements later justify it. The decision is economic:
does the value of infrastructure control outweigh the cost of building and



maintaining it? For many teams, engineering focus is better spent on data
quality, evaluation frameworks, and application logic.

DISTILLATION FOR EDGE AND REAL-TIME
WORKLOADS

Sometimes, even an efficiently fine-tuned model is simply too large for
its target environment. If your application targets mobile devices, [oT
hardware, or requires single-millisecond latency, a standard 7B+
parameter model may be unviable regardless of how you trained it.

In these scenarios, knowledge distillation is the standard solution.
Unlike LoRA, which optimizes the training process, distillation
optimizes the inference outcome. The pattern involves using a large,
capable “teacher” model to generate synthetic training data, reasoning
traces, or labels. This high-quality output is then used to fine-tune a
significantly smaller “student” model. This approach was notably
validated by DeepSeek, which successfully distilled the complex
reasoning capabilities of its 670B R1 model into smaller, efficient
variants.

The goal is to transfer the reasoning capabilities of the large model into
a compact architecture that can run locally on-device or at extreme
speeds in the cloud.

Infrastructure Questions Emerge

The implementation path—managed platform or custom framework—
determines how you train. But regardless of which path you take,
infrastructure questions emerge that shape both training efficiency and
serving performance.

During training, you might see your job showing 40% GPU utilization
despite running on expensive hardware. Or distributed training across 8
GPUs delivers only 3x speedup instead of the 8x you expected. During
serving, the deployed model takes 30 seconds to load on startup, handles
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five requests per second when you need five hundred, or runs out of
memory under real traffic patterns. The symptoms differ but the underlying
cause 1s consistent: infrastructure constraints.

These aren’t model quality problems. They’re bottlenecks in how data
moves through your system, how hardware resources get utilized, and how
compute scales across multiple devices. Understanding which constraint
you’ll hit first—and why it’s happening—determines everything about your
infrastructure choices. The hardware you select, the storage architecture you
deploy, the serving framework you configure, and the platform you run on
all flow from identifying your specific bottleneck.

The Constraint You’ll Hit First

You run training and it completes successfully. Or you deploy to production
and inference requests return correct responses. The system functions. But
performance tells a different story. Training takes twice as long as
projected. Serving handles a fraction of the throughput you need.
Something is limiting performance, but what?

The answer shows up in your metrics. Four characteristic patterns appear
across training and serving workloads, each revealing a different
fundamental constraint. Recognizing which pattern you’re seeing
determines everything about how you’ll solve it—the hardware you need,
the optimizations that matter, and the infrastructure investments that
actually help.

Pattern 1: The Waiting Accelerator

Your GPU utilization sits at 50% to 70%. You optimize your code—batch
sizes, data loading, model architecture. The number barely moves. You
expect expensive accelerators to run near 100%, but they don’t. The
hardware 1sn’t slow. It’s waiting, as illustrated in Example 6-1.

Example 6-1. Processors sit idle waiting for data when the memory bus
cannot keep up with the computational speed, resulting in low effective
utilization




TPU Runtime Utilization

R o - o +
| Device | HBM usage | Duty cycle |
o o - - +
| 8 | 18.45 GiB / 31.25 GiB | 42.50% \
| 9 | 10.40 GiB / 31.25 GiB | 41.20% \
| 12 | 10.40 GiB / 31.25 GiB | 43.10% \
| 13 | 10.40 GiB / 31.25 GiB | 42.80% \
F——— o - - +

This is a memory bandwidth bottleneck. The problem isn’t the processor’s
ability to compute—it’s the rate at which data can move from memory to
the processor. Think of it like a high-performance engine connected to a
narrow fuel line. The engine could run at full throttle, but it spends most of
its time 1dling, waiting for the next batch of fuel to arrive.

In neural network operations, the processor needs constant access to model
weights. During LLM inference, generating each token requires loading
attention weights from memory, performing calculations, then loading the
next set of weights. If the memory bus can only deliver data at 1 TB/s but
your processor can consume it at 3 TB/s, the processor spends two-thirds of
its time waiting. Your utilization reads 50% not because the hardware is
slow, but because it’s starving for data.

This bottleneck appears most commonly in LLM serving, where generating
text token-by-token creates a continuous stream of small computations,
each requiring fresh data from memory. It also shows up in training when
models are large relative to available memory bandwidth—the processor
can multiply matrices quickly but can’t get the next batch of weights fast
enough to stay busy.

The symptom is distinctive: GPU or TPU utilization that stays stuck at 50%
to 70% or less regardless of optimization efforts and throughput that doesn’t
scale proportionally when you increase batch size. The solution requires
either hardware with higher memory bandwidth or techniques that reduce
how much data needs to move—approaches like quantization and efficient
attention mechanisms that we’ll explore in the accelerator and serving
sections.



Pattern 2: The Memory Wall

Your training job crashes before the first step completes. Or your serving
instance starts, then immediately exits with an out-of-memory error. You’re
not hitting a performance limit. You’re hitting a capacity limit—the model
and its operational overhead simply don’t fit. This is illustrated in

Example 6-2.

Example 6-2. Workloads fail immediately with out-of-memory (OOM)
errors when model parameters and activations exceed the accelerator s
available video random access memory (VRAM)

TPU Runtime Utilization

Fo— o - o +
| Device | HBM usage | Duty cycle |
F——— o - - +
| 8 | 31.25 GiB / 31.25 GiB | 10.00% \
| 9 | 31.25 GiB / 31.25 GiB | 10.00% \
| 12 | 31.25 GiB / 31.25 GiB | 10.00% \
| 13 | 31.25 GiB / 31.25 GiB | 10.00% \
R o - o +

The arithmetic is straightforward but unforgiving. A 70B parameter model
in 16-bit precision requires 140 GB just to store the weights (70B
parameters x 2 bytes per parameter). During training, you need additional
memory for activations (the intermediate calculations at each layer) and
gradients (the information needed to update weights). During serving, you
need memory for the key-value (KV) cache (the attention mechanism’s
working memory that grows with each token generated). If your GPU has
80 GB of memory, the model doesn’t fit. No amount of optimization
changes this fundamental constraint.

This bottleneck appears across both training and serving, though for
different reasons. In training, the memory wall typically appears when
attempting to train large models without proper memory management
techniques. Teams often discover this immediately—the first training step
fails with an OOM error before any real work happens. In serving, it shows
up when trying to deploy models that barely fit in memory, leaving no room
for the dynamic allocations needed during inference. Under normal load,



the model serves requests successfully, but when traffic increases and more
requests arrive simultaneously, memory exhausts and requests start failing.

The most common occurrence is trying to run models on single GPUs when
they fundamentally require multiple devices. A 70B model needs at least
two 80 GB GPUs just for basic inference, more if you want reasonable
batch sizes.

Solutions involve either reducing memory requirements or distributing the
model across more memory. Quantization reduces precision (16-bit weights
to 8-bit or 4-bit), cutting memory usage by 50% to 75% at the cost of slight
quality degradation. This addresses both capacity constraints (Pattern 2) and
bandwidth bottlenecks (Pattern 1) by reducing how much data exists and
needs to move. Model parallelism splits the model across multiple GPUs,
each holding a portion of the weights. Both approaches trade something—
quality or hardware complexity—to fit within available memory. Without
one of these interventions, you simply can’t proceed.

Pattern 3: Maxed Out But Still Slow

Your GPU utilization shows 100%, sustained across the entire workload.
This is illustrated in Example 6-3. Every optimization you’ve tried is
already implemented. The hardware is processing as fast as physically
possible. Yet training still takes longer than you need, or serving throughput
still falls short of requirements.

Example 6-3. Sustained 100% compute utilization indicates that the
hardware is processing as fast as possible, requiring faster chips or
horizontal scaling to improve throughput

TensorCore Utilization
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This is a compute bottleneck, and paradoxically, it’s often the best kind of
bottleneck to have. It often means you’ve optimized well—data moves
efficiently, memory is utilized effectively, and the processor is doing
legitimate work rather than waiting.

This pattern appears most commonly in diffusion models for image
generation. Each generated image requires 50 to 100 denoising steps, each
step a computationally expensive forward pass through a U-Net
architecture. The math is intensive, the processor stays busy, and every
calculation is necessary. There’s no waste to eliminate, no inefficiency to
fix. The work itself is compute-heavy.

The solution is straightforward in concept: faster chips or more chips
working in parallel. A model that takes 2 seconds per inference on a mid-
tier GPU might take 0.5 seconds on a high-end accelerator. Scaling
horizontally—adding more GPUs handling different requests
simultaneously—also works, though with coordination overhead that limits
efficiency gains.

This is most often the easiest bottleneck to diagnose and address. If your
metrics show sustained high utilization and your workload is inherently
compute-intensive, you have a clear path forward. The decision becomes
economic: does faster hardware or more parallel capacity justify its cost for
your use case? But unlike bandwidth or capacity constraints, you’re not
fighting inefficiency or fundamental limits. You’re just constrained by the
speed of computation itself.

Pattern 4: More GPUs = Worse Performance

Training on a single GPU completes in 8 hours. You add a second GPU,
expecting 4 hours. Instead it takes 5 hours. You scale to 8 GPUs—the math
should give you 1 hour, but you get 3 hours instead. Adding more hardware
makes things slower per GPU, not faster. Something is consuming the
benefit you should be getting from parallelism, illustrated in Figure 6-3.
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Figure 6-3. Distributed training performance degrades when compute nodes spend more time
synchronizing states over the network than processing data

This is a network bottleneck, and it appears only when you distribute
workloads across multiple devices. Each GPU processes its portion of the
work quickly. Then comes the synchronization step: gradients must be
communicated between all GPUs, averaged, and distributed back. If this
communication takes longer than the computation itself, adding more GPUs
just adds more coordination overhead.

The pattern is characteristic of distributed training at scale. During each
training step, every GPU computes gradients for its batch of data. Before
the next step begins, all GPUs must share their gradients with each other—a
communication pattern called “all-reduce” where every GPU needs
information from every other GPU. If you have 8 GPUs and the network
between them is slow, each training step includes substantial idle time
waiting for gradient synchronization to complete.

The math reveals the problem quickly. If computation takes 100
milliseconds per step and network communication takes 50 milliseconds,
you’re spending one-third of your time on coordination overhead. Scale to
64 GPUs and that communication time might grow to 400 milliseconds—
now 80% of each step is waiting for the network. Your expensive compute
sits idle while data moves between machines.

This bottleneck is invisible in development. Training on a single GPU or a
few GPUs in the same machine uses fast local interconnects where
communication overhead is negligible. The problem appears only when you
scale to multiple servers, where GPUs must communicate over standard
datacenter networks.

The solution requires fast interconnects designed specifically for this
communication pattern. NVIDIA’s NVLink for GPU clusters, InfiniBand
for high-performance computing, or Google’s Inter-Chip Interconnect (ICI)
for TPU pods—these specialized networks provide the bandwidth and
latency characteristics that make distributed training viable. Without them,
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adding more devices to your training job may make things slower, not
faster.

Accelerators: Matching Hardware to Bottlenecks

Your bottleneck is diagnosed. The metrics tell you whether you’re waiting
for data (Pattern 1), running out of space (Pattern 2), maxing out
computation (Pattern 3), or losing time to network synchronization (Pattern
4). Now comes the hardware decision: which accelerator actually addresses
your specific constraint?

The choice between GPUs and TPUs isn’t about which is “better” in the
abstract. It’s about which matches your bottleneck, scale, and operational
reality. This decision is fundamentally economic. The hardware that solves
your bottleneck most efficiently today might not be optimal at 10x scale.

The Decision Framework

Each bottleneck pattern has different hardware implications. Table 6-2 maps
constraints to accelerator strengths.



Table 6-2. Accelerator selection by bottleneck

Pattern

Pattern 1:
bandwidth

Pattern 2:
memory

Pattern 3:
compute

Pattern 4:
network

Constraint

Memory-to-
processor data
movement

Model doesn’t
fit in device
memory

Sustained
100%
utilization

Multidevice
gradient sync

GPU best
when

Ecosystem
compatibility
matters more
than efficiency

Single-device
optimization
preferred

Quick
1teration,
familiar tools

Single-node
clusters (e.g.,
8 GPUs)

TPU best
when

Processing
>1M
requests/day
or large
training jobs
where
bandwidth
matters

Distributing
across TPU
pods with
high-speed
interconnect

Large-scale
training where
cost-per-FLOP
matters

Distributed
training across
TPU pods
(hundreds of
chips)

Key
off

Oper
simp.
band
effici
scale

Setuy
simp
pod-1
scala

Flexi
Ccost ¢

Setuy
simp
scalii
effici

TPUs excel when scale transforms architectural advantages into meaningful
cost savings. GPUs excel when ecosystem compatibility, operational
familiarity, or modest scale make optimization premature. Pattern 1



bandwidth bottlenecks benefit from TPU pod bandwidth and interconnect
speeds (enabling efficient sharding), but this advantage amplifies primarily
at large cluster scales. Pattern 3 compute bottlenecks are straightforward:
you need more processing power—both platforms work, and economics
determines the choice.

The Practical Decision

During initial development, GPUs typically make sense. You’re iterating
rapidly—trying architectures, debugging issues, testing hyperparameters.
The ecosystem accelerates iteration. When you’re still figuring out what

works, flexibility outweighs potential cost savings.

The calculation shifts when training runs become large. A week-long job on
64 high-end GPUs (e.g., NVIDIA A100s) can cost $10,000 to $25,000 on
discounted or alternative cloud pricing; on major hyperscalers it may cost
significantly more depending on instance type. Run several experiments
and costs can rise up to $50,000+. Public benchmarks and case studies often
show several-fold (2 to 4x, sometimes higher) cost-performance advantages
for large-scale training on TPUs—especially TPU v5p or newer at pod
scale. In scenarios where GPUs would cost approximately $50,000 for a full
training cycle, TPUs can reduce that cost into the low five-figure range
depending on workload, configuration, and commitments.

A rough heuristic: training jobs under 100 GPU-hours stay on GPUs for
simplicity. Jobs exceeding 500 GPU-hours justify TPU evaluation. Between
100 to 500 GPU-hours, the decision depends on experiment volume and
your team’s platform comfort.

Framework support has matured significantly. Keras 3 runs on TPUs
through JAX, TensorFlow, or PyTorch backends. PyTorch/XLA provides
TPU execution for PyTorch models. Modern frameworks increasingly
abstract hardware differences, reducing the platform lock-in that once
favored GPUs.

Migration Reality
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You’re not locked into your initial choice. Modern serving frameworks such
as vLLM now support both GPUs and TPUs with minimal changes to
model code or serving logic. Start where you can iterate fastest—often
GPUs—then optimize based on actual scale and costs.

When should you switch? Here are three general triggers:

Cost threshold

Monthly serving costs exceeding approximately $10,000 or training
costs exceeding approximately $10,000 per experiment warrant a
platform benchmark comparison.

Scale stabilization

When request patterns are predictable, optimizing for cost-per-inference
justifies itself. With highly variable traffic, optimizing for operational
flexibility and rapid scaling often matters more than cost efficiency.

Bottleneck diagnosis

When you’ve identified Pattern 1 or Pattern 4 bottlenecks limiting
performance, hardware that directly addresses these constraints
becomes attractive.

The optimal choice changes as your application matures. Start with what
gets you to production fastest—usually GPUs for ecosystem familiarity—
then optimize based on real data once you understand your actual
constraints and scale.

Storage Options

Your training job starts. GPUs initialize, the model loads, and training
begins. Then progress slows. An hour passes. The progress indicator shows
2% complete. You check GPU utilization: 15%. The hardware isn’t slow—
it’s waiting.
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This storage bottleneck is often invisible during development. Training on
small datasets or cached data masks the problem. But scale to production—
hundreds of gigabytes of training data, millions of examples, frequent
checkpoints—and storage determines whether your expensive accelerators
work or wait. A training job that should take 8 hours takes 24, not because
computation is slow, but because GPUs spend two-thirds of their time idle,
waiting for the next batch to arrive. If you’re paying $5,000 per day for
accelerator capacity but storage delivers data at one-third the rate
computation demands, you’re getting $1,500 of actual work.

When Storage Becomes Your Bottleneck

The question isn’t “What storage technology should I use?” but “When
does storage become the constraint limiting my workload?”

For training, the signal is straightforward: dataset size multiplied by access
frequency exceeding network storage throughput. A 2 TB computer vision
dataset trained for 50 epochs means reading 100 TB of data. Standard
network storage delivers 500 MB/s. That’s 55+ hours just loading data
before any computation happens. If your GPU cluster can process each
epoch in 1 hour, you’re spending 55 hours on I/O and 50 hours on
computation—storage is the bottleneck.

For serving, the constraint manifests differently: cold start time multiplied
by scaling frequency exceeding acceptable latency. A 70B model is 140
GB. If loading takes 10 minutes, autoscaling adds capacity 10 minutes after
traffic spikes—too late to prevent user impact. If your service scales
instances 20 times daily responding to traffic patterns, those 10-minute
delays compound into operational problems.

The decision framework: if accelerators spend more time waiting for data
than computing, or if cold starts prevent responsive scaling, storage
architecture needs attention.

The Storage Pattern



Production Al workloads follow a consistent progression through three
phases, each with different storage requirements.

Training phase: Managed Lustre

Training demands sustained high throughput—reading datasets repeatedly
and writing large checkpoints frequently. Managed Lustre delivers up to 1
TB/s by striping data across dozens of disks simultaneously, roughly 10 to
20x faster than standard network storage.

The math is direct: a 2 TB dataset on network storage at S00MB/s takes 68
minutes to load per epoch. On Lustre, even at a conservative throughput of
10 GBY/s, that drops to under 4 minutes. Over 50 epochs, you save more
than 50 hours of idle accelerator time. Lustre costs roughly $70 monthly for
capacity that costs $2.80 in Cloud Storage, but during active training, that
premium justifies itself by eliminating wasted compute costs.

The critical requirement: collocate Lustre in the same zone as your training
accelerators. A training job, for example, in us-centrall-a should read
from Lustre in us-centrall-a. Cross-zone transfers add latency and
cost that mitigates the throughput advantage.

Archival phase: Cloud Storage

When training completes, export the final model to Cloud Storage. This
transitions from high-performance, high-cost storage optimized for
sustained throughput to durable, cost-effective storage. A 140 GB model
costs $2.80 monthly in Cloud Storage versus $70+ in Lustre. When you’re
maintaining multiple model versions—production model, A/B test variants,
rollback versions—Cloud Storage’s cost structure makes version
management practical.

Serving phase: Cloud Storage FUSE + Anywhere Cache

Serving optimizes for global distribution and fast initial loads rather than
sustained throughput. Cloud Storage with FUSE mounts buckets as local
filesystems, and Anywhere Cache adds regional solid-state drive (SSD)-
backed caches. Cold reads might take 50 to 100 milliseconds; cached reads
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drop to 15 to 30 milliseconds. For model loading—reading hundreds of
thousands of weights sequentially—this reduces cold start times by roughly
70%.

The architecture supports multiregion serving naturally. Store your model
once in a multiregion Cloud Storage bucket. Enable Anywhere Cache in
each serving zone. Instances in us-west1 and europe-west1 read the
same model with regional caching—no manual replication, no data transfer
costs between the bucket and cache in the same multiregion location.

Serving and Deployment

Your model is trained and stored. Now you face two distinct deployment
challenges: serving the model for inference and deploying the agent
application that orchestrates requests. Model serving focuses on generating
predictions efficiently—handling concurrent requests, managing GPU
memory, returning responses quickly. Agent deployment handles everything
else: request routing, conversation state, tool orchestration, and calling
model endpoints. These are separate concerns with different infrastructure
requirements and different deployment platforms.

Efficient serving with vLLM

To serve your model efficiently, you need a framework that maximizes
GPU utilization while handling concurrent requests. vLLM achieves this by
optimizing how memory is allocated during the token generation process.

The throughput problem

Your fine-tuned model is ready. You deploy a straightforward serving setup:
load the model into GPU memory, accept requests, generate responses.
Initial testing works. Then production traffic reveals that the infrastructure
handles a fraction of the throughput you need—a hundred requests per
second when you need a thousand. The model quality is fine. The serving
efficiency isn’t.



The root cause is memory waste. Traditional serving approaches allocate
fixed memory blocks for each request’s entire potential generation, even
though most requests complete early. If you allocate space for 512 tokens
but the response finishes at 50 tokens, those remaining 462 token slots sit
unused, unavailable to other requests. This fragmentation leaves expensive
VRAM underutilized while new requests queue, unable to start because
memory appears full. You’re not hitting a model capacity limit—you’re
hitting an infrastructure efficiency limit.

vLLM addresses Pattern 1 (bandwidth) and Pattern 2 (memory) bottlenecks
through three core innovations, each solving a specific constraint that limits
throughput or increases latency.

PagedAttention

PagedAttention eliminates the memory waste that creates artificial capacity
constraints. Instead of reserving large contiguous blocks per request, it
manages memory in small, fixed-size pages—typically 16 or 32 tokens per
page. These pages are allocated on demand as tokens generate and returned
to the free pool immediately when requests complete.

The impact 1s direct: 2.5x higher throughput typically on identical
hardware. A 13B parameter model that served 100 requests per second with
traditional approaches now serves 250 requests per second with vLLM.
You’re not making the model faster or the GPU more powerful, you’re
eliminating the memory waste that prevented running more requests
concurrently. This directly addresses Pattern 2’s capacity constraint through
efficiency rather than adding hardware.

Continuous batching

Traditional batching waits for entire batches to complete before processing
the next batch. If your batch size is 32 and one request generates 500 tokens
while others complete in 50 tokens, the next 31 requests wait for that single
slow request to finish.

Continuous batching eliminates this wait. Requests join and leave batches
dynamically during generation. As soon as a request completes, a new


https://oreil.ly/SdyiW
https://oreil.ly/caR_q

request from the queue takes its slot. The batch composition changes with
every token generated. The utilization impact is substantial: 85% to 90%
GPU utilization versus 40% to 50% with naive batching. This optimization
matters most during traffic spikes, exactly when you need it.

Disaggregated serving

LLM inference has two distinct phases with different computational
characteristics. The prefill phase is compute-intensive, processing the initial
prompt through a forward pass that generates KV cache for all prompt
tokens. The decode phase is memory bandwidth—intensive, generating
output tokens one at a time by constantly loading attention weights.

Disaggregated serving splits these phases across different accelerators
matched to their bottlenecks. Dedicated prefill instances use high-compute
hardware optimized for intensive matrix operations. Dedicated decode
instances use memory-optimized hardware optimized for bandwidth-
intensive attention operations. The result is faster response times and lower
costs simultaneously—you’re matching accelerator characteristics to
workload bottlenecks rather than compromising with one hardware type
that’s mediocre at both phases.

Configuration That Matters

vLLM exposes several parameters that balance throughput, latency, and
resource utilization, illustrated in Example 6-4. Understanding what they
control and how they map to bottleneck patterns helps configure serving for
your specific workload.

Example 6-4. vLLM production configuration mapped to bottleneck pattern

from import LLM, SamplingParams

prompts = [
"Explain why storage throughput can bottleneck GPUs.",
"Give me a short summary of TPU benefits.",

]

# Initialize with production-optimized settings
11lm = LILM/(



model="google/gemma-2-27b-it",

# Pattern 2: Split across 2 GPUs if model doesn't fit one
tensor parallel size=27,

# Pattern 2: Use 90% of GPU memory for KV cache

gpu memory utilization=0.9,

# Pattern 1: Maximum concurrent sequences

max num seqgs=256,

# Pattern 1: Cache common prefixes to reduce bandwidth
enable prefix caching=True,

)

# Sampling configuration

sampling params = SamplingParams (
temperature=0.1,
top p=0.9,

max tokens=512,

)

outputs = llm.generate (prompts, sampling params)

Tuning to your bottleneck

If you’re hitting Pattern 2 (memory capacity) with OOM errors, reduce
gpu_memory utilization from 0.9 to 0.85 or 0.8, leaving headroom
for memory spikes. Alternatively, decrease max num segs to limit
concurrent requests and their memory footprint.

If you’re hitting Pattern 1 (bandwidth) with low GPU utilization, ensure
you’re maximizing memory use (gpu_memory utilization=0.9)
and enable prefix caching=True for conversational workloads
where system prompts repeat across requests. Prefix caching computes
these once and reuses results, dramatically reducing the attention weights
that must be loaded from memory.

If you’re hitting Pattern 3 (compute-bound) with sustained 100%
utilization, your configuration is already optimized. Improved throughput
requires faster hardware or more parallel capacity.

The tensor parallel size parameter determines how many
accelerators the model splits across. Set this based on Pattern 2 constraints:
if your model fits on 1 GPU, use 1. If it requires 140 GB but you have 80



GB GPUs, use 2. More parallelism means more communication overhead,
so use the minimum number of devices that fit your model comfortably.

Multiplatform support

vLLM supports both GPU and TPU serving with the same API and
configuration patterns. This enables practical optimization paths: develop
on GPUs for rapid iteration and familiar tooling, then benchmark TPU
deployment when traffic patterns stabilize and request volume grows.

The serving framework abstracts hardware differences, so the evaluation
becomes purely economic, and the configuration becomes about matching
serving parameters to the specific constraint limiting your workload.

Connecting Models to Agents

vLLM handles model serving: efficiently generating predictions from your
fine-tuned models. But agents built with frameworks like ADK need to
connect to these model endpoints to access their reasoning capabilities. The
model serves as the agent’s cognitive engine or brain, while the agent
framework handles orchestration, tool integration, and conversation
management.

This separation creates architectural flexibility. Your agent code can remain
stable while you swap model endpoints (upgrading from a 7B to a 70B
model, switching between different providers, or A/B testing fine-tuned
variants). Tools such as LiteLL.M provide standardized interfaces, allowing
agent frameworks to communicate with any model endpoint using a
consistent API format, as shown in Example 6-5.

Example 6-5. Connecting an ADK agent to a vLLM endpoint with LiteLLM

from import Agent
from import LiteLlm

# Configure LiteLLM to connect to your model endpoint

model client = LiteLlm(
model="openai/google/gemma-2-27b-it", # Model served by

framework


https://oreil.ly/WmhAJ

api base="https://your-vllm-service/v1l", # Your model
endpoint
api key="not-needed"

)

# Agent uses this client for all reasoning
agent = LlmAgent (
model=model client,
name="customer service agent",
instruction="You are a helpful customer service agent..."

)

When deploying to production, you’re managing two distinct infrastructure
concerns: model-serving endpoints configured with vLLM and the
optimizations discussed previously, plus agent application logic deployed
on platforms designed for orchestration workloads. The agent calls your
model endpoint, receives predictions, and uses those predictions to
determine next actions.

Agent Deployment Platforms

Your serving framework determines how efficiently your model generates
predictions. The deployment platform determines how your agent
application scales and how it’s monitored. The right choice depends less on
which platform is “better” and more on your team’s capabilities, scaling
requirements, and how much infrastructure management you’re willing to
own. Platform deployment options for ADK agents are illustrated in
Figure 6-4.
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Figure 6-4. ADK deployment options

Agent Engine

Agent Engine provides the fastest path from agent code to production. The
platform is purpose-built for Al agents, handling conversation state, session
persistence, and scaling automatically. You provide the agent code,
configure basic parameters, and the platform manages infrastructure, load
balancing, and monitoring.

The value extends beyond simple deployment. As requirements evolve,
Agent Engine accommodates growth without platform migration. You start
with an agent endpoint. As your application becomes more advanced, you
can add tools through MCP or scale from a single agent to a complex
multiagent system. This evolution happens within the same platform.
Example 6-6 shows how to deploy an ADK agent to Agent Engine.

Example 6-6. Deploying an agent to Agent Engine

# Using ADK CLI

adk deploy agent engine \
--project=my-project \
--region=us-centrall \
--staging bucket=gs://my-staging-bucket \
—--display name="Production Agent™ \
/path/to/agent

# Using Python SDK

import
from import agent engines
from import root agent

vertexail.init (
project="my-project",
location="us-centrall",
staging bucket="gs://my-staging-bucket"

app = agent engines.AdkApp (
agent=root agent,
enable tracing=True,

remote app = agent engines.create(



agent=app,
config={
"requirements": ["google-cloud-
aiplatform[adk,agent engines]"]
}
)

print (f"Deployed: {remote app.resource name}'")

Teams appreciate the managed operational model. Scaling adjusts
automatically. Security and access controls integrate with Google Cloud’s
IAM. Model versioning and session management work through the
platform. You focus on whether the agent solves user problems, not whether
infrastructure scales correctly.

The trade-off is reduced control over infrastructure details. You work within
the platform’s abstractions. For many applications—particularly those
iterating on agent logic—this constraint is liberating rather than limiting.

Cloud Run

Cloud Run occupies the middle ground: containerized deployment with
automatic scaling, but without managing clusters. You package your agent
with its dependencies in a container, deploy it, and the platform handles
load balancing, SSL termination, and autoscaling based on request volume.

The promise is “scale-to-zero” cost optimization, but for agent workloads,
this requires careful consideration. Cold starts include not just container
startup but loading any local resources your agent needs. Production
deployments typically use min-instances=1 or higher to maintain
consistent latency—you sacrifice scale-to-zero benefits but ensure that
users always hit a warm instance. Example 6-7 shows how to deploy an
ADK agent to Cloud Run.

Example 6-7. Deploying an agent to Cloud Run

# Using ADK CLI (Python)

adk deploy cloud run \
-—-project=my-project \
--region=us-centrall \




--service name=my-agent \
--with ui \
/path/to/agent

# Using gcloud (any language with Dockerfile)
gcloud run deploy my-agent \

--source . \

--region us-centrall \

--min-instances=1 \

Cloud Run fits teams wanting containerized flexibility with variable traffic
patterns. If your application sees 10x traffic variance between peak and off-
peak, Cloud Run’s autoscaling handles it without manual capacity planning.
The containerization provides flexibility—you can add MCP tools,
implement external state management with Redis or Firestore, or transform
the agent into a multiagent system without changing platforms.

GKE

GKE provides complete infrastructure control through Kubernetes
orchestration. For agent deployment, this means flexibility in routing
patterns, sophisticated resource management, and fine-grained control over
how your agents run. GKE Autopilot reduces operational overhead by
managing nodes automatically, while Standard mode gives complete control
for advanced scenarios. Example 6-8 shows how to deploy an ADK agent
to GKE.

Example 6-8. Deploying an agent to GKE

# Using ADK CLI (Python)

adk deploy gke \
--project=my-project \
--cluster name=agent-cluster \
--region=us-centrall \
--with ui \
/path/to/agent

# Using gcloud with Kubernetes manifests

# Manual deployment (after building container and creating
manifest)

kubectl apply -f deployment.yaml



For complete GKE deployment instructions including cluster setup,
Kubernetes manifests, and service configurations, see the GKE deployment
documentation.

GKE offers Al-specific capabilities: node pool separation lets you run
orchestration logic on standard nodes while reserving specialized hardware
for specific workloads. The Horizontal Pod Autoscaler scales based on
custom metrics—request latency, queue depth, or application-specific
signals. Advanced routing through service meshes enables sophisticated
traffic management.

Keep in mind that GKE for agent deployment is separate from GKE for
model serving. The GKE Inference Gateway and GPU node pools are
powerful tools for serving models, but agent deployment on GKE in context
of the ADK focuses on orchestrating your agent application code, not
serving model inference.

GKE makes sense in specific circumstances: when you need routing logic
that managed platforms don’t support, when you’re orchestrating multiple
agents with different resource requirements, or when you’ve hit platform
constraints blocking critical features. It requires Kubernetes expertise and
active operational management.

Google Distributed Cloud

Google Distributed Cloud (GDC) extends GKE to on-premises and edge
environments for organizations facing data sovereignty, air-gap, or extreme
latency requirements that make cloud deployment impossible. The platform
uses the same Kubernetes foundation as cloud GKE, meaning containerized
agents deploy with identical manifests and configurations.

The deployment process follows the GKE patterns documented previously.
The primary differences are infrastructure endpoints—your local instances
instead of cloud APIs, your private registry instead of Google Artifact
Registry—and operational responsibility. You own hardware procurement,
capacity planning, and full stack management.

Platform comparison
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Table 6-3 maps platform capabilities to common requirements.

Table 6-3. Agent deployment platform comparison

Aspect

Best for

Operational
complexity

Time to
production

Cold start
latency

Data residency

Infrastructure
control

Scaling

Agent
Engine

Production
agents,
minimal ops
Low (fully
managed)
Fastest

100-500 ms

Google Cloud

regions

Managed

Managed
auto-scaling

Cloud Run

Variable
traffic, cost-
sensitive

Medium
(serverless
config)

Fast

100—2000 ms

Google Cloud
regions

Managed
compute

Managed
auto-scaling

GKE

Complex
requirements,
max control

High (full K8s
management)

Variable

5-30 seconds

Google Cloud
regions

Managed K8s
control plane

Unlimited,
custom
metrics

GDC

Sove
air-g;
deplc

Very
stack
hardx

Varia

Varia

On-

prem
your
Jurisc

Com
own
hardx

Limi
prem



The pattern across successful deployments is to start where you can iterate
fastest, then migrate based on actual constraints rather than anticipated
ones. Agent Engine prioritizes speed to production and operational
simplicity. Cloud Run balances flexibility with managed infrastructure.
GKE provides control at the cost of increased operational complexity.

Platform decisions shape your operational reality for months, but modern
containerization means they’re not permanent. A well-configured Cloud
Run deployment serving thousands of requests per second might never need
migration. But when you hit specific limitations such as routing logic the
platform doesn’t support or resource management needs requiring
Kubernetes control, you have clear migration paths without starting from
scratch.

Looking Ahead

You’ve navigated from fine-tuning decision through infrastructure
constraints to production deployment. The fine-tuning framework helped
determine when prompt engineering reaches its limits. The bottleneck
patterns revealed which constraints would limit performance. Accelerator
choices matched hardware to specific bottlenecks. Storage architecture
ensured that data moved efficiently through training and serving phases.
The serving framework optimized memory usage and throughput. The
deployment platform handles scaling and operational concerns. Technical
capability is in place.

But production systems require ongoing attention that initial deployment
doesn’t address. The questions shift from “How do we build this?” to “How
do we keep it working?” Models drift as data distributions evolve and user
patterns change. A model fine-tuned on January conversations might
perform differently on June conversations as language patterns, product
offerings, or user expectations shift. Infrastructure that addressed initial
bottlenecks might face new constraints as traffic scales. The serving
configuration optimized for 1,000 requests per day might not be optimal at



100,000 requests per day. Pattern 1’s bandwidth constraint might give way
to Pattern 2’s capacity limit as batch sizes grow.

Costs compound in ways that aren’t obvious during initial deployment.
Serving expenses that seemed reasonable at launch—3$5,000 monthly for
handling modest traffic—might reach $50,000 monthly as adoption grows.
Which optimizations actually reduce costs at this scale versus just adding
operational complexity? Should you invest in infrastructure changes, or
would better caching solve 80% of the problem? When fine-tuned model
accuracy drops 5% over three months, the diagnosis isn’t obvious. Is that
data drift where the real-world distribution has shifted? A subtle training
bug that only manifests over time? Changing user expectations where what
counted as “helpful” in March differs from what users expect in June? The
symptoms are clear, but the causes require investigation.

Chapter 7 tackles these operational realities head-on. How do you track
model versions and their complete lineage—which training data,
hyperparameters, and infrastructure configuration? How do you monitor not
just that latency increased, but why it increased and what infrastructure
change would actually help? When does model drift justify the engineering
effort and computational expense of retraining versus refining prompts or
adjusting serving configuration? How do you build the processes and
tooling that transform one-time deployment into continuous operation?
Technical capability gets you to production. Operational maturity separates
demonstrations from deployments that deliver value for months and years.

Learning Labs

To reinforce the concepts covered in this chapter and gain experience with
model fine-tuning and inference infrastructure, we recommend exploring
the learning resources available in the Chapter 6 folder of the book’s
GitHub repository. Key resources you will find linked there include:

e Hands-On Code Examples
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— Fine-tune Gemma with Keras and LoRA: A tutorial on
using Keras and Low Rank Adaptation (LoRA) to fine-
tune Gemma

— Train an LLM using JAX, Ray Train, and TPU Trillium
on GKE: Train Llama 3 8B LLM on GKE using MaxText,
Ray Train, and TPUs

— Vertex Al Model Garden Community Notebooks: A
comprehensive collection of production-ready notebooks
for fine-tuning and deploying open models like Llama 3,
Gemma, and Mistral on Vertex Al

— Distributed Tuning of Gemma on TPU v5e: A guide to
fine-tuning Gemma using JAX and LoRA on TPU v5e
slices and deploying the model with vLLM on GPUs

— Serving Gemma with vLLM on Cloud Run: A step-by-
step codelab demonstrating how to containerize and serve
the Gemma 3 model using vLLM on Cloud Run

— Serve Gemma open models using GPUs on GKE with
vLLM: A comprehensive guide to deploying Gemma 3 on
GKE using vLLM and NVIDIA L4 GPUs

— Implementing High-Performance LLM Serving on GKE:
A developer guide that walks through step-by-step the
implementation of the advanced, Al-aware GKE Inference
Gateway

¢ Video Tutorials

— Optimize model serving GKE Inference Gateway: A deep
dive into configuring the GKE Inference Gateway for
model-aware load balancing and efficient GPU utilization

— Scaling Al with Google Cloud’s TPUs: An architectural
overview of TPUs, covering Matrix Multiply Units
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(MXUgs), High Bandwidth Memory (HBM), and the
decision framework for choosing TPUs over GPUs

— Deploying scalable and reliable Al inference on Google
Cloud: A guide to high-level architectural patterns for
production Al, covering multi-region availability, the
“cattle, not pets” approach to infrastructure, and
observability strategies

— Al workload orchestration options: A guide comparing
different orchestration options like GKE and Cloud Run to
help you choose the right platform for scaling your Al
agent workloads
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Chapter 7. MLOps for
Production-Ready Al and
Agentic Systems

Over the past six chapters, you’ve built a comprehensive foundation:
preparing data for GenAl applications (Chapter 2), constructing multimodal
agents (Chapter 3), orchestrating agent teams (Chapter 4), establishing
evaluation frameworks (Chapter 5), and optimizing models and
infrastructure (Chapter 6). Each of these capabilities represents a critical
pillar of what we call agent operations (AgentOps)—the systematic
practices that transform working prototypes into production-ready systems.

Figure 7-1 maps these pillars across nine key dimensions. This chapter
extends the pillars you’ve learned with production-specific practices while
introducing three pillars essential for sustainable operations: observability,
security and safety, and cost and capacity.
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Figure 7-1. The nine pillars of AgentOps

The gap between “the model works™ and “the model works in production”
is wider for GenAl models than traditional ML. Identical prompts produce
different outputs. Language evolves constantly. Agents maintain state
across sessions. No single metric captures quality. Costs can explode
through hidden operational overhead.

These challenges compound over time. Models that perform well at
deployment gradually degrade as language patterns shift. Without proper
versioning, teams can’t identify which model version is running or what
data trained it. Without comprehensive monitoring, degradation goes
unnoticed until users complain. Without automated rollback mechanisms,
recovery becomes a manual, error-prone process.

The unique characteristics of GenAl systems require adapted MLOps
practices that account for their generative, stateful, and evolving nature. The
inherent unpredictability of Al models—their non-deterministic behavior
and potential for emergent properties—makes it essential to build security
and governance considerations into operational workflows from the start.

At the core of any ML system lie three interconnected components: models,
data, and code. Traditional MLOps manages these through established
pipelines—data preparation, model training, and CI/CD deployment. But
the shift to agent-based systems fundamentally changes this landscape, as
illustrated in Figure 7-2. Instead of local data, you manage distributed
knowledge bases and context stores. Instead of model training alone, you
orchestrate prompt engineering and agent configuration. Instead of simple
deployment, you coordinate multiple agents, tools, and memory systems.
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Figure 7-2. In modern Al systems, DevOps provides foundational CI/CD practices, MLOps adds
model training and data pipelines, foundation model operations (FMOps) performs model fine-
tuning and training, and AgentOps provides prompt orchestration and multiagent coordination

From Ad Hoc to Systematic: The Current
State of Teams

Many teams today operate in what we call “FMOps” mode—manually
curating examples, rewriting production code for each model update, and
dealing with unsupported dependencies. The workflow is fragmented, as
shown in Figure 7-3: exploratory analysis happens in notebooks, data
preparation is manual, model training lacks reproducibility, and deployment
requires extensive reconfiguration each time.

The transition to agent-based systems adds new complexities. Teams now
manually sample from prompt libraries, configure tool and memory systems
by hand, and rewrite agent orchestration logic for each change. Agent
response evaluation happens sporadically. Production issues trigger reactive
firefighting rather than systematic improvement.
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Figure 7-3. The fragmented FMOps workflow showing disconnected stages from exploration to

deployment

The Evolution of MLOps



The journey from traditional MLOps to operations for modern agent
systems represents a fundamental shift in how we think about Al in
production. Understanding this evolution helps contextualize why
traditional approaches fall short.

Between 2018 and 2022, the industry adapted DevOps practices for
machine learning, establishing what we now call MLOps. This
specialization addressed ML-specific challenges DevOps wasn’t designed
for: managing predictive models that transformed inputs to outputs,
maintaining accuracy metrics, catching data drift, and ensuring reproducible
training pipelines. MLOps represented a transition from general software
operations to operations specialized for statistical models.

The emergence of LLMs in 2023 required further specialization. Suddenly,
we weren’t just tracking F1 scores—we were managing prompt libraries,
monitoring token costs, and implementing safety filters. The operational
question evolved from “Is the model accurate?” to “Is the output safe,
relevant, and cost-effective?”

Today’s agent systems demand yet another specialization. They maintain a
persistent state, make autonomous decisions with real-world consequences,
and exhibit emergent behaviors when working together. The operational
focus has shifted to an entirely new question: “Did the agent complete its
multistep task efficiently, safely, and in alignment with business goals?”’
This evolution is summarized in Table 7-1.
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Table 7-1. Evolution of MLOps

Era

MLOps
(2018-2022)

GenAlI Ops
(2023)

Agent Ops
(2024+)

Primary
focus

Predictive
models

Generative
models

Autonomous
systems

Core
challenge

Model drift,
data quality

Prompt
engineering,
safety

Decision
making, tool
reliability

Key metrics

Accuracy, F1-
score, AUC

Token usage,
latency, cost

Task
completion,
reasoning
quality

This evolution marks a shift to fundamentally different operational
paradigms, going beyond a simple increase in complexity. Each era builds
upon the last, introducing new dimensions that demand specialized

approaches.

Building Reproducible Training Pipelines
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The journey from experimental notebooks to production pipelines requires

systematic approaches to versioning, tracking, and automation. These

systems form the foundation that enables teams to understand not just what
went wrong, but when, why, and how to fix it.

Data Versioning and Lineage



Building on the data-readiness foundations from Chapter 2, production
MLOps requires additional layers of control that go beyond initial
preparation. While Chapter 2 established the importance of data quality,
governance, and accessibility for GenAl systems, production environments
face the ongoing challenge of maintaining reproducibility as data
continuously evolves. This means not just having high-quality data, but
being able to re-create exact conditions months after deployment—tracking
every input that influenced model behavior.

The versioning challenge manifests most painfully when models begin
producing incorrect outputs weeks or months after deployment. Consider a
scenario in which clinical note summarization systems suddenly begin
omitting critical medication dosages. The investigation reveals that a
seemingly minor update to the data pipeline changed how structured fields
were extracted, causing dosages to be stripped from the training data.
Without comprehensive versioning, teams spend weeks in forensic analysis,
unable to identify when the change occurred or which models were affected
by the corrupted data.

Production data versioning requires managing three distinct types of data,
each presenting unique challenges. Let’s examine each type and the specific
versioning strategies it demands.

Training data

Training data—the datasets used for fine-tuning or few-shot learning—
requires immutable snapshots with cryptographic hashes or checksums to
ensure integrity. The challenge emerges when training data stored in live
databases gets modified after model deployment. For example, a customer
service model suddenly starts mishandling refund requests. Investigation
requires retraining with the original data to isolate whether the issue stems
from data changes, model drift, or code updates. But if someone has since
“cleaned” the training database—correcting labels, removing outliers, or
updating categories—teams can’t re-create the exact conditions that
produced the production model. Without this ability to reproduce the
training environment, debugging becomes guesswork.



The solution involves creating timestamped, immutable copies that preserve
the exact state of data at training time—achievable through Vertex Al
datasets, leveraging BigQuery’s built-in snapshot and time-travel
capabilities for structured data, or implementing Object Versioning in Cloud
Storage buckets with retention policies for unstructured content.

Versioning preserves what data was used, but as traditional ML has long shown, it can’t
fix training data that never represented real-world variability—a challenge that extends
to LLM fine-tuning (which narrows foundation model distributions) and RAG systems
(which ground responses in whatever reality their knowledge bases capture, including
systematic gaps and biases).

Context data

Context data for RAG systems presents different versioning challenges.
Knowledge bases that provide context require their own versioning strategy
because incremental updates can introduce contradictions—whether
accidental or malicious. For instance, when a contract analysis system
begins hallucinating clause interpretations, investigation often traces back
to incremental knowledge base updates that introduced contradictory
precedents.

Beyond accidental corruption, RAG systems face deliberate poisoning
attacks where adversaries inject malicious content into knowledge bases.
Research demonstrates that just five strategically crafted documents in a
knowledge database can achieve a 90% attack success rate, causing the
system to generate attacker-chosen responses to specific queries. This
“memory poisoning” can occur gradually over time, making it difficult to
detect without comprehensive versioning and integrity checks.

Effective versioning maintains complete snapshots of the knowledge base,
with the ability to pin specific agent deployments to specific knowledge
base versions, while also enabling detection of unauthorized modifications
through cryptographic verification.
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Prompt templates

Often overlooked, prompt templates represent data that directly impacts
model behavior. What appears to be a minor adjustment to improve clarity
can fundamentally shift model behavior—customer service interactions
might shift from helpful to overly formal, product descriptions from
engaging to generic. Prompt templates require the same versioning rigor as
model weights, including A/B testing for changes and gradual rollout
procedures.

Solutions for prompt versioning range from Vertex Al prompt management
for centralized governance, to storing prompts as versioned records in
BigQuery, maintaining them in Git repositories for code-like version
control, or leveraging specialized open source tools such as Promptfoo and
Pezzo.

Data lineage

Data lineage for GenAl systems extends far beyond traditional tracking of
which data trained which model. Modern systems need to capture the
complete transformation pipeline, as shown in Figure 7-4. Tracking
preprocessing steps captures how raw data becomes training-ready,
including tokenization choices, cleaning steps, and augmentation
techniques. When models exhibit unexpected biases, teams need to trace
back through these transformations to identify where bias was introduced or
amplified.
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Figure 7-4. Data lineage tracking system showing the flow from raw data through transformations to
model training

Tracking how datasets are combined is especially important when mixing
proprietary and public data. The interaction between different data sources
can create emergent behaviors that neither source exhibits independently.
The lineage system records which data passed or failed quality checks and
the criteria used, enabling teams to identify systematic issues in data quality
that correlate with model failures.

Temporal lineage maintains timestamps not just for when data was created,
but when it was validated, when it entered the training pipeline, and when
models using it were deployed. This temporal tracking becomes essential



when investigating gradual performance degradation—teams can correlate
model behavior changes with specific data events. Vertex ML Metadata
provides a managed solution for capturing this complete lineage graph,
automatically tracking artifacts, executions, and their relationships—from
raw datasets through preprocessing steps to model training and deployment
—enabling teams to answer critical questions such as which dataset version
produced a specific model or which hyperparameters led to performance
degradation. Example 7-1 demonstrates how teams can trace problematic
models back to their training data.

Example 7-1. Using Vertex ML Metadata to trace model lineage and
identify problematic training data

from import aiplatform

# Initialize Vertex AT
aiplatform.init (project=PROJECT ID, location=LOCATION)

# Find models with poor performance metrics
problematic models = aiplatform.Artifact.list(
filter='schema title="system.Model"™ AND

metadata.accuracy.number value<0.85'

)

for model in problematic models:
# Trace back through the execution that created this model
executions = model.get executions()

for execution in executions:
# Find input datasets used during training
input artifacts = execution.get input artifacts()

for artifact in input artifacts:
if artifact.schema title == "system.Dataset":
print (f"Model {model.display name} "
f" (accuracy:
{model .metadata.get ('accuracy')})")
print (f" - Trained with dataset: {artifact.uri}")
print (f" — Dataset version:
{artifact.display name}")
print (f" - Created: {artifact.create time}")

# Check for known data quality issues
if artifact.metadata.get ("validation status") ==
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"failed":
print (f" A WARNING: Dataset failed validation
checks")

Experiment Tracking

Every training run generates dozens of artifacts—model weights, evaluation
metrics, hyperparameters, training curves—but for agentic systems powered
by LLMs, traditional experiment tracking falls short in critical ways. The
fundamental shift is that lower loss doesn’t necessarily mean better agent
behavior.

Consider a real scenario: a customer service agent fine-tuned on support
transcripts achieves excellent perplexity scores (a measure of how well the
model predicts text), suggesting that it’s learned the language patterns well.
In production, however, it generates frustratingly repetitive responses—
constantly asking “I understand your frustration, can you tell me more?”
without progressing toward solutions. The model learned to predict support
agent language patterns perfectly (hence good perplexity), but optimizing
for prediction made it favor common, safe phrases over task completion.

Similarly, a model with 95% accuracy on benchmark question-answering
tasks might seem superior to one scoring 92%. But the higher-scoring
model achieves those numbers by being more confident in its predictions—
including on edge cases where it should express uncertainty. In production,
this manifests as confident hallucinations on unusual queries, while the
“worse” model’s lower confidence actually makes it safer by triggering
human review more appropriately.

This disconnect between traditional metrics and agent behavior quality
fundamentally changes what you track. Beyond individual metrics, modern
experiment tracking for agent systems requires capturing the lineage and
dependencies across experiments, not just the results of individual runs.
Figure 7-5 illustrates how lineage chains track not just parent models but
entire sequences of prompt templates, context data versions, and fine-tuning
iterations. An agent model fine-tuned first on customer service data, then
further fine-tuned on technical support, behaves differently than one trained
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on the combined dataset. Similarly, a model using v1.0 prompts with a
knowledge base from March produces different behavior than the same
model with v2.0 prompts and an updated knowledge base from June. These
behavioral differences—stemming from any combination of the three data
types—often only emerge in production, making comprehensive lineage
tracking essential.
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Figure 7-5. Experiment lineage tracking showing how different training sequences and data
combinations influence final model behavior

Ablation studies systematically track what happens when different
components are removed. Teams might discover that their model’s
improved performance comes entirely from prompt engineering rather than
expensive fine-tuning, fundamentally changing their optimization strategy.
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Ensemble relationships become important when using multiple models or
routing between them—tracking how different combinations perform
reveals that ensemble disagreement rate often serves as the best predictor of
when human review is needed.

Model Registry and Governance

Your model registry becomes the source of truth for what’s deployed where.
Each model needs comprehensive documentation that goes beyond version
numbers and accuracy metrics, tracking the complete lifecycle from
development through retirement, as illustrated in Figure 7-6.
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Figure 7-6. Model registry lifecycle management showing review, refresh, and retirement stages

Capability boundaries must be explicitly documented—not just what the
model can do, but what it cannot or should not be used for. Figure 7-7
shows an example model card for an object detection model that documents
limitations and performance boundaries.
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Figure 7-7. Object detection model card

For agentic systems, behavioral characteristics require careful
documentation of known quirks, biases, and tendencies. Customer service
systems might document that certain model versions tend to be more
verbose at specific times, allowing downstream systems to adjust
accordingly. These behavioral notes become critical when debugging
production issues that manifest under only specific conditions. For
examples of comprehensive model documentation, see Google’s model
cards for the Gemini and Gemma model families, which detail capabilities,
limitations, biases, and operational considerations across dozens of pages.

Operational requirements specify not just compute needs but the complete
operational context. Some models require specific prompt formats,
particular token limits, or companion models for safety filtering. Often
teams discover that their models produce compliant outputs only when
paired with specific safety settings or classifiers—information that must be
captured in the registry to prevent non-compliant deployments.

This comprehensive documentation becomes particularly important when
exposing models as agents through standardized protocols like A2A
(Agent-to-Agent), where the Agent Card must accurately represent the
model’s capabilities to enable proper interagent collaboration.

Unlike traditional ML models that might run indefinitely, LLM models
often have planned obsolescence due to evolving capabilities, changing
regulations, or linguistic drift. The registry should track not just when a
model was deployed, but when it should be reviewed, refreshed, or retired.
This proactive lifecycle management prevents the gradual degradation that
occurs when models outlive their intended operational window.

Model governance for production LLMs requires multistakeholder approval
that goes beyond technical validation. Technical approval validates
performance metrics, resource requirements, and integration compatibility,
including verification that the model meets latency SLAs, stays within cost
budgets, and properly integrates with existing monitoring. Business
approval confirms that the model serves its intended purpose and aligns
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with business objectives—product descriptions must align with brand voice,
financial advice must match company strategy.

Compliance approval ensures that regulatory requirements are met, which
in healthcare includes HIPAA compliance verification and in finance might
include fair lending law compliance. These approvals often require
evidence from specific test suites designed to probe compliance boundaries.
Ethical review examines potential biases, fairness issues, and societal
impact.

Automated Retraining

Models shouldn’t wait for manual intervention to improve, but automated
retraining for LLMs presents unique challenges that go beyond traditional
ML systems.

Semantic drift detection recognizes that language evolves continuously.
Social media applications, for example, track semantic drift by measuring
how user queries diverge from training data vocabulary. New slang and
emerging topics cause gradual degradation even when traditional metrics
remain stable. Retraining triggers when semantic similarity between user
inputs and training data drops below carefully calibrated thresholds.

Performance degradation in LLMs rarely follows smooth curves. Travel
booking systems, for example, discover that model performance degrades in
step functions correlating with seasonal changes—summer vacation queries
differ fundamentally from business travel patterns in training data. Pattern-
based triggers that recognize these shifts prove more effective than simple
threshold monitoring.

Regulatory triggers represent a unique aspect of LLMOps. New regulations
or policy changes may necessitate immediate retraining. Organizations
achieve this through automated monitoring pipelines that scrape regulatory
websites, parse updates through Pub/Sub or Kafka, and trigger retraining
workflows when relevant changes are detected—ensuring continuous
compliance without manual intervention.



HANDLING CATASTROPHIC SHIFTS AND PHASE
TRANSITIONS

The retraining strategies discussed assume gradual or predictable
change. But what happens when the world fundamentally changes
overnight? The COVID-19 pandemic demonstrated this for healthcare
systems—models predicting patient care needs suddenly failed because
their core assumptions about “normal” utilization patterns had
collapsed. This wasn’t drift; it was a phase transition where retraining
couldn’t help fast enough.

Catastrophic shifts require different responses than automated
retraining:

Detection signals

Prediction confidence collapses across the board (not just edge
cases), multiple independent metrics degrade simultaneously, and
ensemble models suddenly disagree on predictions they previously
aligned on.

Fallback strategies

Gracefully degrade to simpler rule-based systems, increase HITL
intervention thresholds, and implement confidence-based circuit
breakers that pause automation when uncertainty exceeds safe
bounds.

Architectural preparation

Maintain diverse model ensembles trained on different time periods,
regularly test “crisis mode” workflows like disaster recovery drills,
and document model assumptions explicitly in your registry so you
know when to disable them.

The goal 1sn’t preventing model failure during catastrophic shifts—
that’s impossible. The goal is ensuring that systems degrade gracefully



and signal clearly when human judgment should supersede automation.

However, automated retraining for LLMs carries unique risks that require
careful mitigation. Model collapse occurs when retraining on model-
generated outputs leads to progressive degradation. You can maintain
“genetic diversity” by always including original human-generated content
in retraining sets to mitigate this degradation.

Feedback loop amplification presents another risk. Customer service
systems that retrain on highly rated interactions might gradually become
excessively apologetic and verbose, as users tend to rate longer, more
apologetic responses higher. Balance user feedback with objective quality
metrics to prevent these unintended behavioral shifts.

For RAG systems, automated knowledge base updates can introduce
context pollution or poisoning. For example, technical documentation
systems experience poisoning when automated crawlers add outdated
information to their knowledge base.

Two strategies help maintain quality: temporal weighting applies decay
factors based on document age (e.g, recent = weight 1.0, one-year-old = 0.5,
three-year-old = 0.2), ensuring that newer information dominates without
discarding historical context. Source authority scoring assigns provenance-
based weights (e.g., official docs = 1.0, community forums = 0.5),
prioritizing reliable sources during retrieval. Combine both approaches for
robust protection: a recent blog post (high temporal weight, low authority)
won’t outrank slightly older official documentation (medium temporal
weight, high authority), maintaining reliability in your knowledge base.

Comprehensive Monitoring

Building on the evaluation metrics from Chapter 5, production monitoring
transforms one-time assessments into continuous observation. While
evaluation tells you if a model or agent is good enough to deploy,
monitoring tells you if it stays good enough in production. The challenge is
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that degradation often happens gradually and invisibly—by the time users
complain, significant damage may have already occurred.

The observability landscape for agent systems is evolving rapidly. While this chapter
focuses on Google Cloud’s native capabilities (Cloud Trace, Cloud Monitoring, Vertex
Al tooling), many enterprise customers build their monitoring stack using specialized
partner solutions that integrate with GCP infrastructure such as AgentOps.ai and Arize.
Google Cloud’s partner ecosystem enables you to leverage best-in-class observability
tools while benefiting from GCP’s infrastructure and Al services. The monitoring
principles we discuss apply regardless of which tools you choose—mnative, partner, or
hybrid approaches.

Agent Monitoring

Multiagent systems introduce observability challenges beyond traditional
LLM metrics. When agents coordinate tasks through tool calls, loops, and
interagent communication, understanding system behavior requires
visibility into execution flows and resource consumption patterns.

Cloud Trace for agent execution

The ADK provides automatic tracing through the t race-to-cloud flag,
which instruments your agent to send detailed execution data to Cloud
Trace using OpenTelemetry. As shown in Figure 7-8, every agent
invocation, tool call, and LLM interaction is captured as structured spans
that show the complete request journey.


https://oreil.ly/yQ3NJ
https://oreil.ly/fKogq
https://oreil.ly/aJo57
https://oreil.ly/wpPti

. Start time (America/New_York) @ Duration Spans 5
2 Oct 9 at 8:01:24.418 PM 2m 28.024s 23

Name Collapse all | Service ® i

L v invocation

Ly agent_run [CodeReviewAssistant]
L v callim
execute_tool transfer_to_agent
v agent_run [CodeReviewPipeline]
— v agent_run [CodeAnalyzer]

v call_lim (GenAl
feslldim GenAl)

execute_tool analyze_code_str...

— call_llm (GenAl )

— v agent_run [StyleChecker]

= \lf::all__llm ( GenAl )

execute_tool check_code_style

— call_llm ( GenAl )

— v agent_run [TestRunner]

call_lim

— v agent_run [FeedbackSynthesizer]

— v call_llm { GenAl
execute_tool search_past_feed...

- T_call_llm

execute_tool update_grading_p...

— v call_llm ( GenAl )

execute_tool save_grading_rep...

invocation
2m 28.024s (100% of total time)

- Logs & events

Zenhi Tokers .
A5 0K (in} | 6.9K (out) K Show on spans i’ | ‘ Findin Trace | AW

Dz a7.006¢ Trm 14.012e 1m 51.078¢ 2m 2803

7 e

f e
| EES
Je0rama:
| RS
[T
B

Jiz 409

-
Tm 20 ATE

TiiEgime

Las7efl

0% 148ua]

2000 EEN

1 |

2 Viewlogs X



Figure 7-8. Cloud Trace waterfall for a code review agent showing execution spans and timing

In this example, the root span represents the complete user request lasting 2
minutes and 28 seconds. Nested within are spans for each operation: the
Code Analyzer completed in 4.7 seconds, while the Test Runner—requiring
actual code execution—consumed 1 minute and 28 seconds. Each LLM call
displays token counts for precise cost attribution, tool invocations reveal
latency to external dependencies, and loop iterations show nested cycles
demonstrating convergence patterns.

This visibility transforms debugging from guesswork into forensic analysis.
When users report slow responses, traces reveal whether delays stem from
LLM inference, tool execution, or orchestration overhead. In Figure 7-8,
test execution accounts for 59% of total time—an obvious optimization
target.

Token usage and cost attribution

Each LLM call in the trace captures input and output token counts, enabling
precise cost tracking at the operation level. Figure 7-9 shows token usage
detail extracted from a trace, revealing that the Code Analyzer consumed
1123 input tokens and generated 490 output tokens for a single analysis
operation.



GenAl Tokens
1.1K (in), 490 (out)

Related Attributes

gen_ai.request.model gemini-2.5-flash

gen_ai.response.finish_reasons  stop

gen_ai.system gcp.vertex.agent
gen_ai.usage.input_tokens 1123
gen_ai.usage.output_tokens 490

Figure 7-9. Token usage detail from trace showing input/output token counts

This granularity reveals which agents or operations consume the most
resources, informing architectural decisions about model selection, caching
strategies, or prompt optimization. Teams can calculate exact costs per
operation by multiplying token counts by model pricing, enabling precise
attribution when multiple agents with different model configurations
collaborate on tasks.

Loop and iteration visibility

For agents that use iterative refinement, traces show complete loop
execution with each iteration nested hierarchically. Figure 7-10
demonstrates a fix pipeline that attempted two iterations before successfully
passing all validation checks. Each iteration contains the complete sequence
of subagent executions—Code Fixer, Fix Test Runner, and Fix Validator—
with individual timings and token usage.
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-V agent_run [FixAttemptLoop]
— » agent_run [CodeFixer]

— » agent_run [FixTestRunner]
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v call_llm (GenAl

‘ = execute_tool save_fix_report

Figure 7-10. Loop iterations nested in trace showing convergence

This hierarchical view makes it easy to understand how agents converge to
solutions. If a fix loop ran three times before succeeding, you see three
complete cycles with their respective metrics, revealing whether the agent is
converging efficiently or struggling with a particular class of problems.
When loops hit their maximum iteration count without success, the trace
provides a complete record of what was attempted and why it failed.

Custom monitoring with Prometheus

Beyond ADK’s built-in tracing, production systems often require domain-
specific metrics that standard observability doesn’t capture. The
Prometheus sidecar pattern addresses this by deploying a lightweight
monitoring container alongside your agent service. The sidecar collects
custom metrics, such as model-specific performance counters, custom
business logic timings, or specialized resource utilization measurements,
and exports them to Cloud Monitoring, where they integrate with your
existing dashboards.
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For example, when serving models via vLLM, a Prometheus sidecar can
expose detailed LLM performance metrics like token generation throughput
and GPU memory utilization that aren’t available through standard Cloud
Run metrics. This pattern proves particularly valuable when agents interact
with specialized infrastructure or when you need metrics aligned with
specific SLAs or business key performance indicators (KPIs).

Technical Monitoring

Technical metrics for GenAl systems go far beyond traditional latency and
throughput measurements. Each metric tells a story about system health and
UX, but the relationships between metrics often matter more than individual
values, as shown in Figure 7-11.
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Figure 7-11. Key performance metrics for LLM infrastructure showing the interplay between latency,
throughput, and resource utilization

Time to First Token (TTFT) determines perceived responsiveness in ways
that total latency doesn’t capture. In our experience, users often abandon
sessions if TTFT exceeds 10 seconds, even if the total response time
remains acceptable. This leads to architectural decisions that prioritize
initial token generation—implementing speculative decoding, using smaller
“starter” models that hand off to larger models for complete responses, or
streaming partial results while complex reasoning continues in the
background.

Breaking down latency into components reveals bottlenecks that averages
hide. Queue time spikes indicate capacity issues—either under-provisioning
or poor load balancing. Model load time drives cold start delays, making
the difference between 3-second and 30-second initialization. Context
assembly often dominates RAG system latency, especially for knowledge-
intensive queries. Token generation scales unpredictably with complexity—
while simple responses scale linearly with length, complex reasoning can
cause exponential slowdowns. Chapter 6 covered infrastructure
optimizations—including model baking, quantization, and serving
framework choices—that address these cold start bottlenecks.

Hallucination Detection

Beyond the evaluation metrics covered in Chapter 5, production systems
require specific techniques for detecting when models generate factually
incorrect content.

Claim extraction and verification identifies factual assertions in generated
text, then verifies them against source documents. Summarization use cases
track three critical metrics: unsupported claim rate (percentage of claims
not found in source material), contradicted claim rate (percentage of claims
that contradict the source), and claim coverage (percentage of source facts
included in the summary).



The common finding is that hallucinations often occur in transitional
phrases rather than core claims. Models correctly state facts but hallucinate
connections between them, creating seemingly logical narratives that don’t
exist in the source material. This “connective tissue hallucination” proves
particularly dangerous because it seems plausible and is harder to detect
than outright factual errors.

For factually grounded applications—RAG systems, document
summarization, and knowledge retrieval—Google’s grounding API
provides an approach to automated verification, as shown in Example 7-2.

Example 7-2. Using Google's grounding API for automated hallucination
detection

from import discoveryengine vl as discoveryengine
client = discoveryengine.GroundedGenerationServiceClient ()

# Configure grounding check

grounding config = client.grounding config path(
project=project id,
location="global",
grounding config="default grounding config"

# Check if response is grounded in facts
request = discoveryengine.CheckGroundingRequest (
grounding config=grounding config,

answer candidate=("Titanic was directed by James Cameron and "
"released in 1997."),
facts=]
discoveryengine.GroundingFact (
fact text=("Titanic is a 1997 American romantic
disaster film "
"directed by James Cameron."),
attributes={"source": "movie database"}

1,

grounding spec=discoveryengine.CheckGroundingSpec (
citation threshold=0.6

)

response = client.check grounding(request=request)
# Returns: support score: 0.99, indicating high factual grounding
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Beyond the overall support score, the API performs detailed claim-level
analysis in which each sentence receives an individual grounding
assessment with citations linking it to supporting facts. Teams can enable
anti-citations to detect contradictions where generated content directly
conflicts with source material, or configure the API to check grounding
against entire Vertex Al Search data stores rather than inline facts for
scalable verification across large knowledge bases.

Cl/CD for Al Systems

The evaluation strategies from Chapter 5 and infrastructure patterns from
Chapter 6 converge in your CI/CD pipeline. This isn’t just about deploying
code—it’s about orchestrating the entire lifecycle of models, data, and
configurations in a way that maintains consistency, enables rollback, and
ensures reproducibility.

Cloud Build

Cloud Build provides the foundation for continuous integration of Al
systems, automating the building, testing, and packaging of models
alongside their supporting infrastructure, as shown in Figure 7-12. Cloud
Build triggers can automatically initiate pipelines when new training data
arrives, model weights are updated, or configuration changes are
committed, ensuring that every change goes through proper validation
before reaching production. Built artifacts—container images and model
packages—are stored in Artifact Registry, providing versioned, secure
storage for all deployment artifacts.
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Figure 7-12. Cloud Build EI/CD pipeline showing automated buildjsteps from source code to artifact
storage

RAG applications require additional CI/CD considerations beyond standard model
deployments, including knowledge base versioning, vector store synchronization, and
retrieval quality testing. For detailed RAG-specific patterns, see Google Cloud’s
architecture documentation.

Cloud Deploy

Production deployments for GenAl systems require strategies that handle
state, maintain consistency, and enable safe rollbacks. Cloud Deploy
orchestrates these deployments, providing declarative deployment pipelines
that manage the progression from development through staging to
production environments, as shown in Figure 7-13. Binary Authorization
adds a critical security layer to these deployments, ensuring that only
verified and approved model bundles can be deployed to production.
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Figure 7-13. Cloud Deploy orchestrating progressive deployments from development through test to
production environments with approval gates and Binary Authorization

Security and Governance as Foundation

Security and governance aren’t add-ons but fundamental platform
capabilities that enable everything else. The unique characteristics of
GenAl systems—their ability to generate arbitrary text, learn from
interactions, and make autonomous decisions—create novel security
challenges that traditional approaches don’t address.

Security Framework for Al Agents

Google’s security framework for Al agents provides a structured approach
to these challenges through three core principles. First, “human controllers’
ensures accountability and user control by preventing agents from acting
autonomously in critical situations without clear human oversight. Second,
“limited powers” enforces appropriately scoped privileges, ensuring that
agents have only the capabilities necessary for their intended purpose.
Third, “observable actions” requires transparency through robust logging of
inputs, reasoning, actions, and outputs, enabling both security decisions and
user understanding. These principles, illustrated in Table 7-2, form the
foundation of secure agent deployments.

b



Table 7-2. Google's three principles for secure Al agents, showing control

focus and infrastructure needs

Key control

Principle

Human
controllers

Limited
powers

Summary focus

Ensures
accountability
and user control,
and prevents
agents from
acting
autonomously in
critical situations
without clear
human oversight
or attribution.

Agent user
controls

Enforces
appropriate,
dynamically
limited
privileges,
ensuring that
agents have only
the capabilities
and permissions
necessary for
their intended
purpose and can’t
escalate
privileges
inappropriately.

Agent
permissions

Infrastructure
needs

Distinct agent
1dentities, user
consent
mechanisms,
secure inputs

Robust
authentication,
authorization, and
accounting
(AAA) for agents,
scoped credential
management,
sandboxing



Key control Infrastructure

Principle Summary focus needs

Observable Requires Agent Secure/centralized

actions transparency and  observability  logging,
auditability characterized
through robust action APIs,
logging of inputs, transparent UX
reasoning,

actions, and
outputs, enabling
security
decisions and
user
understanding.

Model Armor: A Key Security Component

These three core principles require comprehensive architectural decisions
across identity management, authorization, and observability systems.
Model Armor provides critical runtime protection for the “limited powers”
principle by preventing models from generating harmful or sensitive
content. As shown in Figure 7-14, Model Armor operates as a security filter
in the inference pipeline, screening both inputs and outputs to enforce
content policies.
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Figure 7-14. Model Armor integration showing input screening, processing, and output filtering
stages

The service addresses the primary security risks in LLM deployments
through multiple detection layers. Prompt injection attacks—where users
attempt to override system instructions—are blocked through pattern
recognition and behavioral analysis. Sensitive data protection prevents PII
and confidential information from leaking through model responses. Safety
filters enforce organizational policies on harmful content, while malicious
URL detection prevents distribution of compromised links through
generated text.

Configuration requires balancing security with usability. During initial
deployment, teams typically use “Inspect Only”” mode to understand
baseline behavior and false positive rates. This mode logs potential
violations without blocking, providing visibility into what production traffic
would trigger. Once teams understand their traffic patterns, they transition



to “Inspect and Block” mode with appropriately tuned thresholds. Financial
services might require high confidence thresholds for all safety categories
to minimize false positives on legitimate financial discussions, while
educational platforms might use “medium and above” thresholds to catch
more potential issues. For Sensitive Data Protection, organizations
configure specific infoTypes to detect, such as credit card numbers and
SSNs for ecommerce or medical record numbers and diagnosis codes for
healthcare applications.

Model Armor baseline settings establish organizational baselines that
individual applications can’t override, ensuring minimum security standards
across all deployments. These hierarchical controls enable security teams to
enforce compliance requirements while giving application teams flexibility
within those boundaries.

Cost Management

GenAl applications can generate surprising costs that spiral quickly without
proper controls. A customer service chatbot that costs $50 per day during
testing can balloon to $5,000 per day in production when traffic scales. An
agent system that makes innocent-seeming tool calls can trigger cascading
API requests that multiply costs exponentially. Understanding and
managing these costs requires systematic approaches that go beyond simple
monitoring to intelligent optimization and strategic control.

The True Cost Model

The total cost of an LLM interaction includes multiple components that are
often overlooked or poorly understood, as shown in Figure 7-15. Direct
model costs from input and output tokens represent only part of the picture.
Input tokens include not just user queries but entire prompts and context,
which for RAG systems can be substantial—a single query might include
thousands of tokens of retrieved context before the actual question even
appears.
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Figure 7-15. Cost breakdown showing direct model costs, indirect infrastructure costs, and hidden
operational costs

Indirect costs often exceed direct model costs. Vector database queries for
RAG systems add up quickly, with complex retrieval strategies executing
multiple similarity searches per request. API calls for tool usage
accumulate, especially when tools make multiple subcalls—an agent that
checks weather, searches calendars, and queries databases for a single user
request might trigger a dozen API calls. Storage for conversation history
grows continuously, particularly for multiagent systems that maintain state
across sessions. Compute for preprocessing and postprocessing adds
overhead to every request, from tokenization to response formatting.

Hidden costs surprise teams when they appear on bills. Retry costs from
failures can explode when systems don’t implement exponential backoff—a
service outage can trigger thousands of retry attempts in minutes.
Redundant calls from poor caching waste resources on repeated
computations, where the same context gets processed multiple times per
day. Inefficient routing sending simple queries to expensive models
multiplies costs unnecessarily. Development and testing in production
environments generates enormous unexpected bills. One startup discovered
they were spending thousands monthly on development testing in
production because they hadn’t set up proper staging environments with
cost controls, only realizing this when their monthly bill arrived.

Cost Attribution Strategies

Cost attribution must track multiple dimensions to be actionable. Without
clear attribution, optimization becomes guesswork—you can’t improve
what you can’t measure. Organizations should implement attribution across
several key dimensions:

User segment

Understanding whether costs align with value creation helps identify
where to optimize versus where to invest. Enterprise users generating
higher costs but proportionally higher revenue indicates healthy unit



economics—spending $10 to serve a customer who generates $100
makes sense. Conversely, if certain user segments consume resources
without corresponding value—free tier users making expensive agent
calls, or trial accounts triggering costly tool invocations—usage limits
or tier adjustments become necessary. A SaaS company might discover
that their “pro” tier users account for 80% of costs but only 40% of
revenue, suggesting that either pricing adjustments or feature
restrictions are needed.

Feature

Identifying which capabilities drive costs helps prioritize optimization
and informs product decisions. Simple chat features might have
acceptable per-query costs of a few cents, while complex report
generation features with multiagent coordination might cost several
dollars per request. This granular tracking enables informed decisions
about feature development and pricing. One analytics platform
discovered its “Al insights” feature cost $1 to $3 per generation but was
included free in their $29/month plan—<clearly unsustainable. Either the
feature needed optimization, users needed limits, or pricing required
adjustment.

Time

Temporal patterns reveal optimization opportunities that static analysis
misses. Peak hours from 9 A.M. to 5 P.M. might show 10 times higher
costs than overnight periods, suggesting opportunities for batching non-
urgent tasks. Seasonal patterns help forecast capacity needs—an
ecommerce agent system might see costs spike during holiday shopping
seasons. Weekly patterns expose usage anomalies—if Tuesday
consistently costs twice as much as other weekdays, investigation might
reveal a scheduled report that could be optimized or moved off-peak.
Understanding these patterns enables strategic resource allocation and
budget forecasting that aligns with actual usage.

Agent



For multiagent systems, tools such as Cloud Trace support granular cost
attribution at the token level, enabling you to track costs separately for
orchestrator agents versus specialist agents versus tool-calling agents.
This granularity reveals whether your orchestration overhead exceeds
the value it provides or whether certain specialist agents are
underutilized and could be consolidated.

Intelligent Cost Operations

Modern cost management for Al systems goes beyond spreadsheets and
manual analysis. Google Cloud provides Al-powered tools that
continuously analyze spending patterns, identify waste, and generate
actionable recommendations. These intelligent systems learn from usage
patterns across the entire platform, applying machine learning to detect
anomalies and surface optimization opportunities that human analysis
would miss.

FinOps hub with Gemini Cloud Assist

Google Cloud provides Al-powered cost intelligence through two
complementary interfaces: Cloud Billing reports for understanding
spending patterns and FinOps hub for identifying optimization
opportunities. Gemini Cloud Assist integrates with both, providing natural
language insights and recommendations that make cost management
accessible without requiring deep financial analysis expertise.

Cloud Billing reports with Al assistance

Cloud Billing reports with Gemini Cloud Assist transforms how you
analyze spending. Rather than manually configuring filters and
aggregations to understand your costs, you can describe what you want to
see in natural language. Ask “Show me daily Compute Engine costs by
SKU for the last 5 days” or “Help me understand my Vertex Al spending by
project for the last 30 days,” and Gemini Cloud Assist automatically
configures the report settings and filters to create the visualization you
need.
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More importantly, Gemini Cloud Assist analyzes each report and provides
insights that summarize what matters most. Using FinOps-trained models
developed in partnership with Google’s research teams, the system
identifies:

Overall costs
Total spending for the time period with trend direction (increasing or
decreasing)

Cost drivers

Which projects or services are responsible for the biggest changes, both
in absolute dollars and percentage, with direct links to the Anomalies
page when unusual patterns are detected

Savings opportunities

How much you’ve saved through existing optimizations, with links to
FinOps hub for additional recommendations

Budgeting suggestions

Recommendations to create budgets for tracking and controlling
spending

These insights appear automatically as you view reports, eliminating the
need to manually analyze charts and tables to extract meaning. The Al does
the heavy lifting of pattern recognition and prioritization, surfacing what’s
most important for your attention.

FinOps hub for optimization intelligence

While Cloud Billing reports help you understand what you’re spending,
FinOps hub helps you identify where you’re wasting resources and zow to
optimize. Gemini Cloud Assist in FinOps hub analyzes your infrastructure
and provides key optimization and utilization insights.



The Utilization insights dashboard reveals resource efficiency issues with
concrete savings potential. Figure 7-16 shows an example of these Al-
generated insights, where Gemini Cloud Assist has identified $401.68 in
potentially wasted Compute Engine usage, highlighted a high-cost project
with $233.95 in monthly optimization potential, and pinpointed a specific
region where resource optimization could save $179.13 per month. Each
insight includes direct links to take action, such as view detailed utilization
data, apply recommendations, or investigate anomalies.
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Figure 7-16. Gemini Cloud Assist providing actionable cost insights in the FinOps hub interface

These insights go beyond generic recommendations. The system
understands context—a Vertex Al endpoint running 24/7 with zero traffic in
the last 72 hours suggests a forgotten development resource. A project
consuming 10 times its normal resources over 3 days might indicate a
legitimate load test or a runaway process. Gemini Cloud Assist surfaces
these patterns with enough detail to make informed decisions. Beyond
generating insights, the system can draft email reports summarizing
recommendations, streamlining communication with engineering teams and
stakeholders.

Beyond console insights

For teams needing custom analysis or integration with existing BI tools,
Cloud Billing supports data exports to BigQuery. This enables building
custom dashboards in Looker, integrating cost data with business metrics,
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or creating specialized alerts. However, for most teams, the Al-powered
insights in FinOps hub and Cloud Billing reports provide sufficient
visibility without requiring SQL expertise.

Spending Controls

Cost optimization reduces baseline spending, but spending controls prevent
unexpected overages. These controls act as guardrails that catch runaway
costs before they become budget crises. Think of optimization as improving
your car’s fuel efficiency, while controls are the governor that prevents the
engine from over-revving.

User-level controls

User-level controls implement progressive restrictions based on usage
patterns, balancing service availability with cost protection. A well-
designed control system provides clear communication and graceful
degradation rather than abrupt service cutoffs.

Consider a three-tier approach: first, implement proactive notifications
when users approach predefined thresholds—perhaps at 70%, 85%, and
95% of their quota. These notifications should be actionable, explaining
current usage, projected costs, and options to adjust behavior, such as
“You’ve used 850 of 1,000 agent requests this month. At your current pace,
you’ll exceed your limit in 3 days. Consider upgrading to Pro for unlimited
requests.” This transparency helps users understand their consumption and
make informed decisions.

Second, implement graceful degradation when limits are reached. Rather
than completely cutting off service, route users to smaller, cheaper models,
return cached responses for repeated queries, or limit access to expensive
features while maintaining core functionality. A customer service agent
might switch from multiagent orchestration to single-agent mode after
quota exhaustion, providing degraded but still useful service. Or complex
tool calling might be disabled while basic question-answering continues.
The key is maintaining some level of service rather than a hard failure.



Third, reserve hard stops for only extreme overages or suspected abuse. If a
user exceeds their quota by 10 times in an hour, that’s likely a bug or attack
rather than legitimate usage. Hard stops prevent a misbehaving application
from generating thousands of dollars in unexpected charges. But for normal
overages—a user who exceeds monthly limits by 10% because of legitimate
increased usage—graceful degradation preserves the customer relationship
while protecting costs.

Make these transitions transparent through clear Ul messages and API
responses. When a user hits a limit, the response should explain what
happened, why, and what they can do about it. This transparency builds
trust and reduces support burden—users understand their situation rather
than being confused by cryptic errors.

Technical circuit breakers

Technical circuit breakers act as automatic safety valves when costs spike
unexpectedly, preventing small issues from becoming large bills. These
controls monitor several dimensions and trigger automated responses when
thresholds are breached:

Rate of spend monitoring

Track cost per minute or cost per hour rather than just daily totals. A
service that normally costs $2/hour suddenly costing $50/hour indicates
a serious problem—perhaps a retry loop, a distributed denial-of-service
(DDoS) attack, or a configuration error. Circuit breakers should trigger
when spending rate exceeds normal patterns by a defined multiple
(perhaps 5 to 10 times). The response might be to pause non-critical
workloads, disable expensive features, or switch to degraded modes
while operations teams investigate.

Individual request cost thresholds

Monitor costs per request, not just aggregate spending. A single agent
request that costs $10 suggests something is wrong—perhaps an infinite
tool call loop, an absurdly large context, or a bug that’s spawning
dozens of subagents. Set per-request cost limits appropriate to your



application. A complex research agent might legitimately cost $1 per
request, but a simple chatbot costing that much likely has a bug. When
individual requests exceed thresholds, log detailed diagnostics, reject
the request, and alert operations.

Error pattern detection

High retry rates or error rates often precede cost spikes. If your agent
system suddenly shows 50% error rates with automatic retries, there is
increased likelihood you’ll get an expensive bill as retries multiply.
Circuit breakers should trigger on error patterns—if error rate exceeds
20% for 5 minutes, pause processing and alert. This prevents cascading
failures from becoming cascading costs.

Adaptive throttling

Implement throttling that adapts to spending rate. When costs approach
limits, progressively slow down request processing. Instead of handling
100 requests per second, drop to 50, then 25, as costs increase. This
buys time for investigation while preventing complete service outage.
Users experience degraded performance rather than failure, and costs
stabilize rather than spiking.

When circuit breakers trigger, they should pause processing, log detailed
diagnostics, and alert operations teams rather than silently continuing to
generate costs. The goal is rapid detection and intervention before small
issues become large bills.

The implementation of these controls requires careful calibration. Too
restrictive, and you frustrate users and limit legitimate usage. Too
permissive, and you risk unexpected costs that can damage both budgets
and customer relationships. Start with monitoring and alerting to understand
normal patterns, then gradually implement controls based on actual usage
data rather than assumptions. Review and adjust controls quarterly as usage

patterns evolve—what was appropriate for 100 users might need adjustment
at 10,000 users.



Looking Ahead

This chapter equipped you with the operational practices to maintain and
evolve Al systems in production. We’ve explored the complete lifecycle
from reproducible training pipelines through comprehensive monitoring to
deployment strategies. The depth we’ve covered—from the nuances of
semantic drift detection to the complexities of multiagent failure modes—
reflects the real challenges teams face when moving beyond prototypes.

The practices we’ve discussed form the foundation for reliable production
Al Operational excellence is just one piece of the puzzle, however. How do
you measure your organization’s overall readiness for AI? How do you
progress from isolated successful projects to enterprise-wide Al
transformation?

Chapter 8 introduces the Al and agentic maturity framework, helping you
assess where your organization stands across multiple dimensions—from
technical capabilities to cultural readiness. We’ll move from tactical
operations to strategic transformation, showing you how to build not just
reliable Al systems, but an Al-ready organization.

Learning Labs

To reinforce the concepts covered in this chapter and gain experience with
operationalizing Al systems, we recommend exploring the learning
resources available in the Chapter 7 folder of the book’s GitHub repository.
Key resources you will find linked there include:

e Courses

— 5-Day Gen Al Intensive Course with Google: A
comprehensive overview of Generative Al technologies.
We specifically recommend Day 5: MLOps for Generative
Al, which covers adapting MLOps practices for GenAl
and provides a code walkthrough of the Agent Starter
Pack.
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— 5-Day AI Agents Intensive Course with Google: A hands-
on program for building autonomous systems. Focus on
Day 5: Prototype to Production, which provides a
technical guide to the operational lifecycle, deployment,
and scaling of Al agents using the Agent2Agent (A2A)
protocol.

¢ Video Tutorials

— Agentic Security Fundamentals: A technical workshop
covering the OWASP Top 10 for LLMs, implementing
input/output filtering with Model Armor, and managing
agent identity and authentication

— Operationalize Al Agents: A deep dive on the end-to-end
architecture for building, deploying, and evaluating
agents, covering the transition from MLOps to GenAIOps
and the importance of tool registries
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Chapter 8. The Al and Agentic
Maturity Framework

The journey through the first seven chapters has equipped you with a
technical blueprint for building and deploying Al and agentic systems.
We’ve navigated the complexities of data readiness, orchestrated intelligent
agent teams, and mastered the art of evaluation and tuning Al applications
with robust operational processes for continuous integration, deployment,
and retraining. The lessons learned by practitioners in these chapters—
moving from a prototype to a production-ready system—form the essential
foundation.

With the technical expertise you’ve gained, we can now shift our focus to
the strategic evolution of Al within an enterprise, an endeavor that must be
framed within local and global governance standards. This is the central
purpose of this chapter: translating the hands-on knowledge you’ve gained
thus far into a comprehensive Al and agentic maturity framework. This
framework moves beyond purely technical and operational readiness to
integrate the essential principles of trustworthy and compliant deployment,
grounding them in the standards set by landmark legislation like the
European Union’s Al Act.

The goal of this final chapter is to help you develop a forward-looking
strategy that cultivates and maintains long-term Al fluency across your
entire organization. This evolution will include critical behavioral and
cultural shifts around Al integration into daily activities for productivity
and efficiency, as well as shifts in risk management, operating transparency,
and accountability of Al-assisted processes. Next, we’ll provide you with a
working framework to assess your organization’s capabilities and chart a
course for continuous growth and value delivery. This framework will help
you assess your organization’s holistic maturity, ensuring that your
technical and behavioral efforts drive real, strategic transformation.


https://oreil.ly/-1_Ko

What Is the Al and Agentic Maturity
Framework?

The Al and agentic maturity framework is a conceptual tool that aims to
help you and your organization assess current capabilities and readiness for
Al adoption and make informed strategic decisions about where and how to
invest and grow based on alignment of Al capabilities with key business
outcomes. We hope the framework will help leaders like you define a
common purpose for Al investment and ensure that projects deliver tangible
value and ROI, such as increased efficiency, improved customer experience,
or new business models and opportunities for monetization of products or
services.

The Maturity Dimensions and Phases

To conduct a comprehensive assessment of Al and agent maturity, an
organization must evaluate criteria across three key dimensions of
readiness, illustrated in Figure 8-1: (1) Vision and Leadership, (2) Talent
and Culture, and (3) Operational and Technical Practice.
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Figure 8-1. The Al and Agentic Maturity framework includes 3 key dimensions: Vision and
Leadership, Talent and Culture, and Operational and Technical Practice. Maturity across all
dimensions is necessary to drive business impact.

Organizational maturity evolves from a state of awareness and
experimentation (Tactical phase) to one of fully integrated enterprise-scale
adoption, execution, and support (Transformational phase), as shown in
Figure 8-2. Between these two phases is a Strategic phase, where
organizations are connected, agile, standardized, and technically skilled
with Al and agentic approaches. Notably, the business value unlocked by
moving from one phase to the next is exponential, rather than linear, with
ROI for leadership, technical specialists, and the entire organization
becoming deeper and more visible across all areas and levels of the
enterprise. In fact, democratization of innovation within and across business
units of an organization is a hallmark of moving from the Strategic to the
Transformational phase of the Al and agentic maturity framework.
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Figure 8-2. The Al and Agentic Maturity framework proceeds across three phases: Tactical,
Strategic, and Transformational. Value delivered is exponential, rather than linear, as organizations
progress _from one phase to the next.

There are excellent frameworks that have been proposed for Al adoption
and MLOps maturity, including the 2020 Al Adoption Framework white
paper, published by Google Cloud (this was truly a source of inspiration for
Steph when she was working as a manager of a data science and MLOps
team). We also recommend reading this 2024 blog post describing an
approach to scaling an agentic maturity model, as well as the ROI of Al
2025 report, published in November 2025 by Google Cloud. Here, our
objective is to coalesce and extend on themes articulated in previous
frameworks to prepare you and your organization to move beyond
traditional machine learning into a secure, diversified, and highly governed
enterprise ecosystem of both generative and non-generative solutions with
an increasing degree of automation human-Al collaboration.

For the careful reader, if you’re familiar with the 2020 Al Adoption Framework white
paper, published by Google Cloud, you will notice that we adhere to the same three
phases of organizational maturity: Tactical, Strategic, and Transformational. Here, we
focus on the progression through these maturity levels for each dimension of our Al and
agentic maturity framework: Vision and Leadership, Talent and Culture, and
Operational and Technical Practice (Figure 8-3). To illustrate the application of our
framework, we provide representative examples for each phase of maturity, taken from
our collective field experiences. Finally, we provide a few points of advice and
educational resources for practitioners and teams who want to understand how to
develop into the next phase of maturity. This is the world we (Ayo, Sarita, Lavi, and
Steph) live and work in on a day-to-day basis and we’re excited to share our insights
from years of working with customers with you!


https://oreil.ly/TvQVG
https://oreil.ly/qsTnq
https://oreil.ly/Aftb-
https://oreil.ly/jYMXy
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Figure 8-3. The progression of Al and Agentic Maturity from the Tactical to the Transformational
phase for all three dimensions. As organizations progress from one phase to the next, they become
more agile and automate away manual tasks, which frees up time and resources for greater
innovation.

Vision and Leadership (The “What” and the “Why”
Dimension)

This first dimension of our maturity framework, Vision and Leadership,
includes:

e Short- to long-term vision and roadmap for Al and agents
e The level of executive and resource alignment and investment

e Organizational intent and integration with business operations and
objectives and key results (OKRs)

An organization’s journey to Al and agent maturity begins with the
evolution of its core strategy and leadership commitment. Getting started
begins with awareness and acknowledgment that Al can or should be
adopted for business. But this is phase 0; the transition to a Tactical,
Strategic, and Transformational phase of maturity is marked by a shift from
ad hoc, i1solated Al and agentic pilots to centrally governed, strategically
integrated business capabilities assisted and automated by Al. Ultimately, a
mature organization views Al not as a tactical cost center, but as an
embedded, competitive driver that fundamentally redefines its market
position and operational standards, ensuring proactive compliance and
measurable value. A mature organization has a proactive vision that is
tightly coupled to the overarching purpose and aims for Al in the enterprise.
A mature organization also has awareness and proactive preparedness for
global governance and compliance standards and is prepared to meet and
exceed standards with impact assessments, documentation on risk-
mitigation approaches, and clear and comprehensive oversight of high-risk
decisions.

Tactical phase



In the initial Tactical phase of maturity, the vision and intent for Al in the
enterprise may be unclear, is not centrally defined, and is very commonly
ad hoc. Al and agentic approaches arise out of isolated problem solving or
individual interest among teams, departments, or business units. Even the
most successful Al projects may remain siloed. With little or no explicit
executive sponsorship, the value of Al is unrecognized and unmeasured,
and there is a high probability of redundancy and wasted time and resources
rebuilding or reinventing solutions for small immediate problems. Leaders
in management may govern and drive an isolated vision for Al-related
projects, but the C-suite may not be directly engaged or aligned, which
weakens the link between Al efforts and realized business KPIs and
organizational intent.

Funding for Al is project-specific, opaque, and may be drawn from
innovation or IT department budgets that fluctuate in year-to-year
availability. Each project owner, team, or department determines the
technical approach/tools, governance, and ethics policies for their Al
solution or product they’re responsible for, and this may exclude key
stakeholders and SMEs who could improve quality, relevance, and thorough
evaluation of the Al solution for risk level. The focus in the Tactical phase
of maturity is quick wins and proofs of concept. Al may be viewed as a
technology cost, not a business driver, resulting in “pilot purgatory,” where
projects succeed locally but fail to scale across an organization.

In cases where a larger business unit is united in pursuing multiple Al
pilots, leadership may reactively become aware of value and
opportunistically carve out resources to support scaling and visibility of
projects. Leadership may become aware that resources simply do not exist
within the organization to advance or scale successful Al or agentic projects
or that key limitations related to people, processes, or technology exist. This
realization of enterprise versus ad hoc business value can propel
organizations from the Tactical to the Strategic phase of Al and agentic
maturity. Without investment, this fragile state may result in abandonment
of Al projects, a regression to completely manual processes, or complete



reliance on third-party Al tools that could be comparatively more opaque or
inflexible in application to specific or nuanced business use cases.

Strategic phase

In the next, Strategic phase of maturity for the Vision and Leadership
domain, Al is recognized as a key competitive lever and a strategic enabler.
A dedicated multiyear budget (for people, processes, and technology),
executive sponsorship and oversight, and a well-articulated link between
holistic Al investment and key business outcomes is a hallmark of the
transition into the Strategic phase. The roadmap for prioritizing and
expanding Al initiatives is often guided by a centralized Al governance
team or center of excellence, which evangelizes Al and brings together key
SMEs and relevant stakeholders on each initiative to identify and classify
risks and benefits.

Importantly, at the Strategic phase of maturity, an organization’s leadership
can articulate and has documented an established set of responsible Al
principles and mechanisms to continuously vet and monitor projects for
bias, compliance, safety, and security. Successful organizations at this phase
also invest in formal change management, recognizing that Al adoption is
as much a people transformation as a technology deployment. This
transforms the position of the organization from reactive to proactive; the
organization has performed risk assessments before deploying Al and
agentic solutions, has risk-mitigation strategies in place, and has a routine
process for human oversight in place. Standardization,
repeatability/reusability, and transparency are required and enforced across
enterprise Al initiatives. The organization is moving from experiments to
enterprise-wide products or programs. The focus is on a clear path to
scaling validated use cases across the business for fast wins and measurable
return on investment.

Transformational phase

In the Transformational phase of maturity, Al and agentic capabilities are
embedded into the business model itself, fundamentally redefining value



creation, market position, and corporate identity. For example, all or most
personas or job roles within the organization actively leverage Al for day-
to-day operational efficiency and productivity and can speak to its value. Al
is seamlessly integrated into go-to-market products or used to track and
predict go-to-market performance. In this phase, the CEO is a visible
champion for Al, articulating its role in the company’s future and actively
creating a culture around Al. Funding for Al including upskilling
opportunities for employees, is viewed as an investment in market
advantage with rapid reallocation of resources to high-potential
opportunities. Long-term R&D in Al is the standard in this phase, and the
vision and roadmap for Al is forward-looking, highly innovative, and
deeply integrated into the latest research and state-of-the-art technologies.
Both technical and business teams are proficient with understanding and
anticipating how Al and agents fit specific use cases, how to measure
business outcomes, and how to safely scale or expand the reach and impact
of Al initiatives. Beyond the CEO, a coalition of C-suite leaders—including
the CFO, CIO, CHRO, and Chief Strategy Officer—must align on Al
investment priorities.

In the Transformational phase of Vision and Leadership maturity, there is a
key shift in the organization as Al and agents are the default way to operate,
driving sustained competitive advantage and shaping industry standards.
Moreover, the mature organization is fully aware of the high stakes for non-
compliance in places such as the European Union (i.e., fines up to 35
million euros or 7% of global turnover, whichever is higher) and is prepared
for such standards around Al governance, even if they do not immediately
apply. Such preparation is not viewed by the mature organization as a trade-
off; a 2025 Axis Intelligence report found that organizations with mature Al
governance frameworks outperformed competitors by $8.4 billion annually
in combined operational efficiency, risk mitigation, and revenue
acceleration.


https://oreil.ly/CizYN
https://oreil.ly/yzU-X

VISION AND LEADERSHIP QUESTIONS TO ASK:
MOVING FROM TACTICAL TO TRANSFORMATIONAL

Use these questions to assess your organization’s current maturity phase
and 1dentify gaps to address.

e Tactical Phase Indicators

— What are the top three business KPIs our Al systems
are expected to impact this quarter? How will we
measure that impact?

— Who decides when an Al pilot is successful enough to
scale—and what criteria do they use?

— What is our “error budget” for Al initiatives? How
much experimentation failure is acceptable before we
pause investment?

 Strategic Phase Indicators

—Is Al funding from a dedicated, multiyear budget—or
annual, fluctuating allocations that create start-stop
cycles?



— Who centralizes governance for Al solutions across
business units to prevent duplication and ensure
reusability?

— Is our hiring and upskilling plan explicitly aligned
with the Al roadmap?

— What measurable mechanism ensures our Responsible
Al principles are enforced and audited before
deployment of new Al products?

e Transformational Phase Indicators

— How many job roles actively use Al or agentic tools
today? What is our plan to make Al the default
operating method for all employees?

— Can our CEO clearly articulate AI’s role in our
company’s future market identity—and does
leadership model Al-first behavior?

— How does our Al strategy create measurable
competitive advantage in the next 24 months?

— What proactive steps are we taking to meet global Al
compliance standards (e.g., EU Al Act) before they
become mandatory in our markets?

Example: breaking out of the Tactical phase

“Vision and Leadership Questions to Ask: Moving From Tactical to
Transformational” shows questions that will help organizations move from
the Tactical to the Transformational phase of Vision and Leadership. Let’s
look at an example of how an organization might transition out of the
Tactical phase. A new chief innovation officer (CIO) is hired at Cymbal
Health, a fictional health payer system. She recognizes the potential of Al,
and after interviewing the heads of departments, realizes that there are



pockets of exciting but largely invisible Al work being done across the
enterprise. The CIO establishes a temporary Al task force that consists of
data scientists, MLOps engineers, and analysts across three departments and
together they identify high-impact use cases and key business outcomes.
The team will undertake an initiative to build a clinical note summarizer
using one of three foundational LLMs, which will be evaluated against each
other. The team receives dedicated but temporary funding from the CIO and
begins the project with immediate success, including interest from the
clinical teams who depend on the notes to process claims and prior
authorizations. The CIO thinks that this pilot might convince the CEO that
Al will improve accuracy and efficiency of billing and coding departments
at Cymbal Health. The project is still a pilot, but it now has a clear objective
and a connection to a potential business outcome (faster claims processing
and reduced errors). So far, the Al task force is the only group executing on
Al strategy, but after the success of this project, the CIO would like to hire
at least five more individual contributors and create a more permanent task
force to oversee and guide Al projects across Cymbal Health.

Advice from the authors

This is a great example of a company in the Tactical phase of Al and
agentic maturity with respect to Vision and Leadership. Leadership has
recognized the promise and potential of Al, but there is a great deal of
fragmentation in vision and lack of purposeful use of Al to drive horizontal
enterprise outcomes. Cymbal Health may move into the Strategic phase,
contingent on a few key actions. Here are some points of advice and
resources to support the transition into the next phase of maturity:

Strengthen the business and strategic case

The team must deliver the pilot within the context of measurable
business outcomes and value. Focus the project not just on showing a
technical capability, but on demonstrating a direct impact on KPIs for
the billing and coding departments at Cymbal Health. For example,
show a quantifiable increase in accuracy or a reduction in the time it
takes to process claims, leading to cost savings. This will be the



evidence needed to convince the CEO that Al can be a pivotal business
accelerator, not just a proof of concept.

Formalize resource readiness

The current project uses dedicated funding from the CIO, but true
scalability requires a robust, company-wide foundation. Use this pilot
project as a forcing function to establish standards and governance over
the way that data is sourced, cleaned, and protected to ensure that it is
high-quality, secure, auditable, and ready for use in a regulated
environment. This will ensure that the solution is not a one-off script but
a reliable, scalable system that can be expanded later, ideally with
oversight from a central team or center of excellence.

Cultivate executive buy-in and Al literacy

While the CIO is an important strategic advocate for Al, moving to the
Strategic phase of maturity requires broader sponsorship. The
exploration team should actively evangelize their work, sharing
progress and results with other senior leaders and potential stakeholders
across the organization. By demonstrating the benefits of the pilot, they
can begin to build a coalition of support and foster a culture of Al
literacy.

For those seeking a more profound understanding of the strategic
imperative of Al leadership, we direct your attention to the curated
selection of thought leadership from sources such as Harvard Business
Review, McKinsey, and Google Cloud, meticulously compiled within the
“Further Reading” appendix.

Talent and Culture (The “Who” Dimension)

An organization’s ability to capitalize on Al and agents ultimately hinges on
its people and their collective mindset. The journey from low to high
maturity in this dimension is marked by a transformation from siloed
expertise and general skepticism to widespread Al literacy and a culture of



psychological safety. A truly mature organization moves beyond hiring a
few data scientists or Al engineers to embedding Al roles, fostering
continuous upskilling, and embracing innovation as a core cultural value
across the entire enterprise.

Maturity with respect to Talent and Culture is defined by an organization’s
cultural openness to innovation and the availability of a skilled workforce.
Growing and maturing depends on the presence of Al technical and subject
matter expertise as well as the overall Al literacy of the workforce and even
the psychological safety built around surfacing new and transformative
ideas and concepts related to Al and agentic use cases. This dimension of
the Al and agentic maturity framework intersects with the Vision and
Leadership domain because it depends on leadership’s commitment to and
sponsorship of expanded Al roles and education in the enterprise as well as
the types of products and services built and delivered externally by the
organization.

Tactical phase

At this initial phase of Al and agentic maturity, the majority of the
organization’s Talent and Culture are largely unprepared and may even be
resistant to pervasive changes brought by Al and agents. Technical
knowledge is siloed and there is a lack of cohesive strategy for adaptation to
Al tools or assistants in the workplace and across various personas/users.
Enterprise access to materials for Al upskilling may be limited to
individuals, teams, or departments and is not integrated into broader skill
development programs. A small number of individuals or individual teams
drive Al projects in isolation, and even when these teams successfully
launch Al projects or products, there is limited visibility and means to
evangelize such work. The culture of hiring is more reactive than proactive,
based largely on ad hoc Al project needs.

At the Tactical phase, most Al work happens in technical silos or might
even be contracted out of the organization, and there may be little to no
structured collaboration between Al specialists, business units, and
executive leadership, leading to friction and missed opportunities. Failure of



Al experiments may be seen negatively, stifling innovation, and eroding
confidence of individuals moving into the field for the first time. There is
no formal mechanism for cross-functional collaboration, when and where
support for experimentation and scaling could be beneficial. At this phase,
it is not uncommon for a majority of employees to view Al as a niche tool
rather than a way to accelerate productivity, efficiency, or innovation within
and outside of the enterprise. Talent and Culture is in early phases of
development at the tactical stage, but does exist, perhaps independently of
or outside of a larger strategic mission to cultivate it.

Strategic phase

At this next phase of maturity, an organization has a conscious strategy to
develop its workforce and foster a culture that supports Al and agent
adoption. There is a growing understanding, acceptance, and education. Full
integration of skilled workforce talent across the organization may still be a
work in progress. However, the organization now has a defined strategy to
recruit and retain Al expertise, and there are defined and distinct career
paths for Al professionals. Upskilling through Al literacy programs and
incentivized certifications is available to a wider range of employees,
including those who may evolve into a new role due to automation of
manual or routine tasks. There is a structured change management program
to address concerns, communicate Al’s benefits, and integrate Al into day-
to-day workflows. Training focuses on human-Al collaboration and
codesign. At this phase, leadership promotes and encourages a safe-to-fail
environment for Al experimentation and ideation.

Employees now view Al as an augmentative force, improving their work
rather than replacing it. Efforts are made by the C-suite and management to
explain AI’s role and build confidence in its application. It is clear that Al is
not replacing the workforce but augmenting it in helpful and positive ways.
A key component of the Strategic phase of Al and agentic maturity across
the Talent and Culture dimension is organizational investment in its people
to meet the demands of a rapidly evolving field. Leadership is actively
shaping the culture through training, communication, and structured
collaboration, leading to a positive feedback loop where increased adoption



leads to a workforce that is ready and willing to engage and get the most
benefit out of Al and agents.

Transformational phase

At this level of Al and agentic maturity with respect to Talent and Culture,
an organization has fully embraced an Al-first model of operating, where
Al fluency is a core competency. The culture is one of continuous
coevolution with Al, which is now viewed as a way to drive innovation.
Employees are trained to work alongside and augment Al systems and are
given the training resources to continue to upskill and refine understanding
and actions. A mature talent management strategy is integrated and
anticipatory; Al and agentic expertise is a core competency across many
roles, not just specialists. Adaptation to Al-driven change becomes an
inherent part of the organization’s cultural DNA. Employees might even
proactively identify new Al opportunities to shape their own roles. In this
phase, unlike others, Al and agents have become essential partners to the
workforce, are deeply rooted into the mission of the enterprise, and there is
a strong understanding of ethical, safe, secure, and compliant use of Al
Human oversight of Al systems is embedded in the foundation of the
enterprise.



TALENT AND CULTURE QUESTIONS TO ASK: MOVING
FROM TACTICAL TO TRANSFORMATIONAL

Use these questions to assess your organization’s current maturity phase
and 1dentify gaps to address:

e Tactical Phase Indicators

— How will we mandate and fund structured
collaboration between Al specialists and business unit
SMEs to ensure viable and relevant solutions?

— What is the explicit governance for reviewing failed
Al experiments? Will they be treated as learning
investments or budget losses, and who communicates
this?

e Strategic Phase Indicators

— If AI automates 30% of a non-technical role, what
incentivized upskilling pathway is available to that
employee for higher-value, Al-augmented tasks? Is
this training universally accessible?



— When hiring VPs or HR leads, is Al fluency a core,
non-negotiable competency? If not, what is the
timeline for making Al expertise a basic qualification
across all leadership?

e Transformational Phase Indicators

— Instead of hiring for current Al needs, what is our
strategy for cultivating skills for emerging agentic
paradigms anticipated in 18 months? Is there a
dedicated R&D budget for upskilling?

— How do we define our unique human-AlI collaboration
model? Can every employee articulate how Al
augments their job, and how do we measure the
cultural impact (e.g., job satisfaction, innovation
output) beyond technical metrics?

Example: moving beyond the Strategic phase

Cymbal Retail, a fictional multichannel apparel and home goods retailer,
has successfully moved beyond isolated Al pilots (like a single chatbot or
basic inventory forecasting). Its leadership, having defined a strategic Al
roadmap, now faces the challenge of scaling Al across core functions—
from personalized marketing to supply chain optimization. The Talent and
Culture efforts become focused on closing organizational gaps to support
this scale. Cymbal’s HR and technology departments collaborate on a
“Future of Retail” upskilling plan. Targeted Al literacy training paths are
launched for 500+ managers, focusing on using Al-generated insights for
merchandising and logistics. New roles, such as Al Translation Specialist
(to bridge data scientists and buyers), are actively recruited. The CEO hosts
quarterly Al town halls, actively addressing the fear of replacement by
showcasing new human-Al teaming roles.

Cymbal Retail launches a central Applied Al Center of Excellence (CoE),
composed of data scientists and Al engineers, business process owners, and



legal experts. The CoE’s mandate is to build reusable Al frameworks (e.g.,
a personalized product recommendation model) and deploy them as a
service for the marketing, ecommerce, and supply chain teams. Finally,
Cymbal allocates a small, dedicated budget for a “fast-fail sandbox” where
cross-functional teams can test new agent ideas.

Advice from the authors

Cymbal Retail is clearly in the Strategic phase of Al and agentic maturity
with respect to the Talent and Culture dimension. This is a pivotal phase
because successful ramping of education and human-AlI partnership can
lead this organization to the Transformational phase, over time. Here are
our points of advice for maturing within and beyond the Strategic phase:

Embed human-agent teaming as the default operating model

Facilitate coevolution with specialized agents, such as partnering
product managers with both forecasting models and a dedicated
Marketing Discovery Agent that proactively identifies gaps and drafts
new product requirements. This Al assistance changes the human’s role
to curate the agent output and execute the creative vision.

Establish a self-service agent creation and sharing platform

Instead of relying on the central AI CoE for all Al and agentic ideas and
products, leverage no-code tools for store managers and merchandisers.
Empower the entire workforce to build, customize, and share
lightweight agents or agent prototypes to automate their own daily
tasks. This democratizes Al and fosters a culture of continuous
innovation.

Integrate Al ethics and responsible Al into the core skillsets and incentives
for employees

Move beyond formal and siloed governance principles by expanding
training to annual human-agent teaming ethics training. Ensure that the
workplace 1s supported in ethical use of advanced agents and has a path
for reporting concerns. Create playbooks for best practices that can be



shared and discussed across the organization horizontally and within
verticals.

For a deeper exploration of Al upskilling and cultural transformation, we
direct your attention to the curated selection of thought leadership from
sources such as IBM and Boston Consulting Group, meticulously compiled
within the “Further Reading” appendix.

Operational and Technical Practice (The “How”
Dimension)

The third dimension of Al maturity is the execution engine that turns
strategy and talent into reliable, scalable value. The progression from low to
high maturity here is characterized by a fundamental shift from manual,
fragile development pipelines to an automated, self-sustaining system of
MLOps/AgentOps. A truly mature organization achieves seamless
integration across its expansive technical subdomains, making its Al
capabilities a source of competitive efficiency, robust security, and
continuous business value.

This dimension of our maturity framework is the most expansive. At a
mature phase of Operational and Technical Practice, the theoretical and the
applied world of Al and agents comes together seamlessly, with state-of-
the-art tools competitively driving business value and the organization
operating as a constantly evolving and almost self-sustaining entity through
automated ML/AIOps. Here, we’ll dive into the Al and maturity phases
related to “how” Al is built, maintained, and managed for maximum
business value and ROI. We acknowledge that these subdimensions are
intertwined and interdependent on one another. We propose at least six
subdomains that fuel operational and technical aspects of Al and agentic
maturity:

e Data quality, accessibility, and interoperability (also discussed in
Chapter 2)

e Engineering processes and best practices



Evaluation, monitoring, explainability, and product lifecycle
management

Safety, security, governance, and management of risk

Technical tools, frameworks, and flexibility

FinOps practices

As we did previously, we will review the Operational and Technical
Practice domain and each of the six subdomains with respect to the three
phases of the Al and agentic maturity framework, with an example and
resources to follow.

Tactical phase

The initial tactical phase of maturity is characterized by fragmentation,
manual effort, and high friction across the Al and agentic lifecycle

(Figure 8-4). The focus remains on isolated functions rather than enterprise-
wide operational reliability. Because of this, Al projects are technical
islands, disconnected from upstream data teams and downstream
deployment teams, and built largely by hand by single developers. Lack of
standardization results in reactive product management and makes the
organization at this phase slow, brittle, and largely incapable of scaling
successful Al pilots. Limited codesign, collaboration, and united standards
for governance make it unlikely that Al will sustainably drive business
goals or objectives.
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Figure 8-4. An example of a disconnected workflow, characteristic of the Tactical phase of
Operational and Technical Practice within the Al and agentic maturity framework

Let’s look at each of the subdomains:



Data quality, accessibility, and interoperability

At the Tactical phase, the data used to develop Al and agentic
applications is siloed, unversioned, and fragmented. Key features or
attributes needed for tasks may live across local servers and legacy
databases on-prem and in the cloud. Data quality may be inconsistent
and unvalidated and different business departments may have their own
business logic for defining features and outcomes. Data pipelines for Al
projects must be built manually and as one-off approaches for each use
case and business stakeholder. The data itself may not have a consistent
ETL process, and mismatches in standards applied to data ingestion
processes (e.g., delays in availability) may compromise the production
data pipeline (e.g., a need for real-time inference). Data transformations
are performed manually by individual data-users, resulting in non-
versioned feature sets. Al or agentic projects or products are often
delayed until data quality, accessibility, and interoperability are fully
addressed. It can be difficult or impossible to reproduce training
datasets.

Engineering processes and best practices

At the Tactical phase, MLOps/AgentOps is generally non-existent,
manual, or non-reproducible. Al and agentic application progression
from experimentation and development to deployment might be manual
code-to-deploy from notebooks or a single Python script, for example,
to production. No standardized continuous integration, continuous
deployment, continuous testing (CI/CD/CT) for pipelines exists, making
updates slow, rollbacks risky, and pipelines error-prone. In the Tactical
phase, there may be varying levels of engineering expertise on the team,
and deployment might be handled by individual developers or a single
senior DevOps engineer on the same or a different team. Engineers may
be tasked with taking agents to production through manual steps.
Engineers may have varying levels of confidence, skill, and adherence
to best practice such as code annotation and version control. Standard



practices in the enterprise, such as containerizing code using Docker or
Kubernetes, may be employed ad hoc.

Evaluation, monitoring, explainability, and product lifecycle management

At the Tactical phase, evaluation, explanation, and monitoring of
deployed solutions is also reactive and ad hoc. Solutions are not
evaluated for explainability before they are deployed. Model
performance monitoring is minimal and might focus on only accuracy
or latency. There is little production telemetry (logging input and output
data). Monitoring for model drift or data/feature quality degradation in
production may not exist and is certainly not automated at this phase,
leading to unexpected failures and unplanned or unpredictable resource
allocations to emergencies that compromise business continuity.
Building new tools or products is slowed by the need to react to
unexpected production issues. The team lacks technical capabilities to
explain, trace, or debug model or agent reasoning once in production.

Safety, security, governance, and risk management

Al security at the Tactical phase is passive, relying on general IT
security policies like perimeter network protection. There are no
specific technical controls embedded at the inference layer to mitigate
prompt injection, data leakage via model output, or adversarial attacks.
Identity and access management is absent or ad hoc for expensive
resources, leading to uncontrolled access to production models and
sensitive training data. In general, teams become aware of security
concerns or issues as they arise from their users. Responses are reactive
and may be overwhelming when teams do not explicitly codesign or
consult with security teams during the process of building Al and
agentic products.

Technical tools, frameworks, and flexibility

This phase is characterized by unmanaged tooling sprawl. The technical
ecosystem consists of disparate unmanaged open source tools and



environments that lack a consistent operational footprint. Deployments
suffer from dependency issues such as conflicting library versions. The
absence of a unified platform means no standardization in how models
are packaged, served, or secured, limiting horizontal scaling. Teams
building Al applications and agents focus on use of model APIs and
model tuning is rare, with more focus on prompt optimization as the
mechanism to modify model output and performance of applications.
There may or may not be clear separation of staging, development, and
production environments.

FinOps practices

At this phase, costs are largely unallocated and resources run the risk of
being overprovisioned. Bills may arrive as one large, generalized
expense. Project teams do not consistently tag resources, making it
impossible or at least difficult to attribute costs to specific Al models,
agents, or business outcomes. Teams might over-provision GPU and
compute resources for Al tasks “just in case.” There is no effort to stop
idle training environments or optimize LLM model serving sizes. Cost
is viewed as an engineering or IT problem and teams are not
incentivized or trained to be cost-aware. The finance team may be
involved only during budgeting or when the bill is unexpectedly high.
There are no thresholds put into place for individuals or teams to avoid
overspending.

Strategic phase

At this next phase of maturity, the organization is leveraging centralized
platforms (discussed at the end of this chapter). Technical teams adhere to
defined, repeatable processes to efficiently develop, deploy, govern, and
trace Al and agentic systems at scale with common packages and libraries.
There 1s team and organizational consensus about best practices for code
optimization, review, and packaging (Figure 8-5). Considerations such as
built-in safety filters for harmful content and explainability tools are present
and can be leveraged as part of the platform, rather than relying on custom



development. The organization is shifting from custom-built, one-off
solutions to an industrialized “Al factory” capable of handling a portfolio of
strategic projects by creating reusable assets. Standardized processes,
MLOps automation, and governance frameworks in alignment with the
security team enable the organization to scale Al reliably and with speed.
Developer teams are more agile and adaptable to planned and unplanned
changes, and there is collaboration across all teams involved from data
ingestion to model maintenance, issue handling, and product management
post-production.
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Figure 8-5. An example of a cross-functional team structure, where siloes are replaced by a team
working seamlessly together to build integrated, reusable, secure, and auditable assets on a shared
agent platform. This centralization is characteristic of the Strategic phase of Operational and
Technical Practice within the Al and agentic maturity framework.




Here’s the status of the subdomains:
Data quality, accessibility, and interoperability

A central data lake or mesh exists, often in the cloud, and data quality
standards are enforced for Al initiatives and underlaid by business
collaboration. Data pipelines for ingestion, processing, and
transformation are automated and reusable for common use cases (e.g.,
feature stores are used). At this phase of maturity, data is centralized and
governed, making Al and agentic projects relatively quick to begin.
Data, analytics, and AI/ML teams are agile and can deliver higher
reliability Al and agentic products with faster time to market.

Engineering processes and best practices

At this phase, operational processes are standardized and automated. A
common MLOps platform such as Vertex Al is adopted to seamlessly
train, test, validate, explain, and deploy Al and agentic solutions. The
full lifecycle is defined and versioned, and metadata are centrally
tracked in a registry. Processes are reproducible and modular. Technical
best practices are shared across the team, making collaboration and
codesign seamless. Automated CI/CD/CT is mandatory, integrating A/B
testing and canary testing for low-risk, gradual production rollouts. The
focus 1s on low-friction, repeatable deployments at volume.
Transparency and auditability are high at this phase, making it possible
for technical and non-technical teams to review decision points and
steps taken along the entire pipeline of Al and agentic development.

Evaluation, monitoring, explainability, and product lifecycle management

At this phase, monitoring is proactive and rollbacks are easily
integrated. Production solutions are continuously monitored for
performance decay and drift against pre-defined thresholds and alerting
is in place to let the central engineering team know when performance
is approaching thresholds where actions are needed. Proxy business
indicators are also measured continuously to ensure that solutions are
delivering ROI in production. A central product management function



governs the entire portfolio of models and agents with explainability
guiding decisions and improvements in model development and
tracking. Automated rollback capability is integrated into the CI/CD
pipeline, guaranteeing recovery to the last stable version with minimal
human intervention. Logging analytics are used to understand root
causes of anomalies or drift detected in production.

Safety, security, governance, and risk management

Technical guardrails and mandatory gating for security are embedded
into the Al process and technical approach at this phase. Red teaming—
a specialized, proactive testing methodology used to secure Al systems,
especially LLMs, by simulating real-world adversarial attacks before
they happen—may be employed to focus on vulnerabilities unique to
Al such as prompt injection, data leakage, and bypassing safety
guardrails (jailbreaks). Data deidentification via tokenization or
masking for PII and PHI is applied in lower development and staging
environments. A dedicated review board vets models and agents and
signs off on them before production deployment. The security team and
chief information security officer (CISO) are closely aligned with and
considered part of the team(s) who build and deploy Al and agents for
the enterprise. Safety, security, and privacy are defined and enforced.

Technical tools, frameworks, and flexibility

The organization has chosen a standardized, scalable, and unified
platform to host most Al and agentic workloads, reducing security and
deployment friction. Core frameworks and software development kits
(SDKs) such as ADK are used across teams and integrate naturally with
MCP and A2A, allowing seamless multiagent development and
orchestration. Teams and collaborating business units share ownership
of Al and agentic products and solutions. The team agrees on a common
language for most Al and agentic application builds but is adept at
moving between languages for the most appropriate approach.
Containerized environments and standardized APIs are used to build
efficiency into the processes and practices of the team. Speed of



delivery is short and accuracy is high, with code review occurring by
automated and HITL methods. The team’s flexibility, adaptability, and
agility start to skyrocket at this phase.

FinOps practices

In this Strategic phase, enhancements include greater cost accountability
and proactive rightsizing. Mandatory resource tagging is enforced to
allocate costs to business units, projects, or agents. Central tools provide
showback reports to project owners and managers. Clear policies exist
for resource optimization such as automated shutdown schedules for
non-active environments and rules for model sizing for specific types of
tasks. Engineers, finance, and business owners meet regularly to review
cost reports.

Transformational phase

At this phase of Al and agentic maturity within the Operational and
Technical Practice domain, an organization’s use of Al and agents is
somewhat self-governing (e.g., through human alerts), adaptive, and fully
integrated with core business systems. The organization achieves a self-
optimizing operational loop where the platform itself uses Al to
intelligently recommend, manage, secure, and improve on its own
performance (Figure 8-6). The technical team maximizes speed, efficiency,
resilience, and quality of products by synergizing with Al throughout
development, deployment, and lifecycle management.
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Figure 8-6. An example of automated feedback and optimization loops at the Transformational phase
of Operational and Technical Practice within the Al and agentic maturity framework

Let’s look at what’s occurring in the subdomains:
Data quality, accessibility, and interoperability

At the Transformational phase, data quality is autonomously managed
by agents that detect, flag (for human review), and remediate (with user
approval) issues. Data is universally accessible and instantly available
across the organization, contingent with robust identity and access
control and automated controls for removing or obscuring PII and PHI



in lower environments. Systems have been designed for interoperability,
so that upstream processes of data ingesting, processing, and
transformation are hidden from data consumers. In this phase, users
quickly get to business insights from raw data that is prepared,
governed, and accessible in line with common and agreed-upon rules
applied through a semantic layer.

Engineering processes and best practices

In the Transformational phase, MLOps can now really be thought of as
AlOps 1n practice; agents autonomously retrain and redeploy models in
production in response to live data triggers and/or human-defined
thresholds and rules. Agent orchestration is managed seamlessly with
frameworks such as ADK, and agents are monitored using platform
tools for evaluation. Al and agentic applications are continuously
monitored with the newest tools integrated into the standard developer
platform.

Evaluation, monitoring, explainability, and product lifecycle management

In the Transformational stage, monitoring is not only for performance
metrics, but also for business value and ROI in real time. Agents
proactively predict future performance decay based on trends and flag
potential failures before they occur. A common characteristic at this
stage 1s the development of HITL integration or protocol. A2H
protocols solve the problem of smart escalation and HITL workflows.
Rather than a failure simply stopping the process, A2H provides a
structured, contextual, and secure way for the agent to determine the
need for human intervention, escalate with full context, choose the right
channel (e.g., Slack, email), and receive instruction or approval. A2H
can be used as a “smart hand-off” mechanism, which ensures that your
automated Al agent workflows are safe and effective by seamlessly
integrating human judgment when it’s needed.

Safety, security, governance, and risk management



Security and governance agents are embedded within the pipeline,
automatically enforcing privacy and security before code execution.
Dynamic consent and provenance tracking are the default for all data
and model usage. In the Transformational phase, there may be
specialized teams dedicated to testing potential vulnerabilities of Al and
agentic solutions and running simulations of responses to malicious
attacks. When applied to Al and agentic products, the red team/blue
team/purple team framework shifts its focus from traditional network
infrastructure (firewalls, servers) to the unique algorithmic and content-
based vulnerabilities of the Al system itself. Al red teaming is the
proactive testing of an Al system to find safety, security, and ethical
risks. It goes beyond finding traditional software bugs to find flaws
specific to machine learning behavior. The blue team’s role is to build
and maintain the security and safety mechanisms that detect and
mitigate the attacks found by the red team. In the Al context, purple
teaming ensures that the discoveries made by the red team are quickly
and effectively turned into better defenses by the blue team. Purple
teaming is essential because Al threats change constantly.

Technical tools, frameworks, and flexibility

In the Transformational phase, it’s possible that all or most of the
organization’s agent capabilities are exposed as APIs for seamless
integration with external partners and systems via A2A protocol. The
platform itself adapts to new technological advancements automatically.
Teams know when it’s best to build versus buy and seamlessly integrate
with other first-party as well as third-party systems. Orchestration is
seamless and the team is not only using the latest technologies but
developing and innovating new tools and technologies for others in the
field to leverage for common business challenges. Technical teams are
experts not only within the organization, but in the greater Al and
agentic community. Often, these teams are also key contributors to and
publishers among open source community resources, understanding
industry and cross-industry trends and gaps.



FinOps practices

In the Transformational phase of Al and agentic maturity for
Operational and Technical Practice, Al and agentic spend is forecast
based on Al usage and business demand. Allocation is dynamic,
automatically adjusting project budgets based on instant revenue impact
or strategic priority. Dedicated FinOps agents autonomously trigger
model retraining, scaling, and deployment changes to maintain a target
cost-per-value metric. Financial optimization is continuous and fully
automated. The organization operates under a “value-as-a-service”
financial model where funding for R&D is as important as the costs of
maintaining production solutions for business. Cost is relevant when the
cost-to-value ratio is outside of an acceptable predetermined range.
Budget decisions are driven by automated ROI analysis with human
oversight and review.



OPERATIONAL QUESTIONS TO ASK: MOVING FROM
TACTICAL TO TRANSFORMATIONAL

Use these questions to assess your organization’s current maturity phase
and 1dentify gaps to address:

e Tactical Phase Indicators

— Would a mid-level engineer be able to replicate a top
Al engineer’s production environment, training data,
and model artifacts in under four hours if the Al
engineer left tomorrow? If not, what is the cost of that
technical debt in deployment delays and risks?

— Currently, security is a reactive final check. What
budget and process will be dedicated to red teaming
LLM-powered agents pre-launch, and who is the
CISO-aligned contact responsible for mandatory
inference-layer security control sign-oftf?

 Strategic Phase Indicators

— What is our roadmap for implementing a semantic
layer or universal governance, making all governed,
cleaned data instantly available to any agent or



developer, eliminating manual custom feature pipeline
creation for new use cases?

— What is the weekly dollar loss from unaddressed
model drift that goes unnoticed until user reports?

— What is the timeline for integrating automated
monitoring and alerting for business value proxies, not
just technical accuracy?

e Transformational Phase Indicators

— We can now allocate costs. What is the target cost-per-
value metric (e.g., cost per successful claims
processed by an agent) we need to achieve, and what
automated FinOps agents will we deploy to
dynamically scale, compute, and change model sizes
to autonomously maintain that metric in real-time?

— Beyond problem alerting, what is our first agent-
driven automation to autonomously manage and
redeploy its own model in production (AIOps), in
response to a pre-approved data quality trigger? Who
owns the A2H protocol for smart-human escalation if
automation fails?

Example: an organization operating in the Transformational
phase

Cymbal Media, a fictional global content and advertising platform, operates
its entire publishing and ad-serving ecosystem as a self-optimizing
intelligence network. Its focus is not on managing models, but on setting
high-level business goals and intervening only when an agent flags an
ethical or unforeseen risk. Data is organized into a hyper-connected mesh
where Data Quality Agents are embedded at every ingestion point. These
agents autonomously detect, isolate, and remediate corrupt or biased data



streams in real time. All data is API-accessible and tagged with automatic
provenance/lineage metadata, ensuring universal and auditable availability
for all agents and users. Model training, deployment, and pipeline
maintenance are fully AIOps-driven. Deployment Agents automatically
trigger model retirement or update rollouts based on predictive monitoring
alarms. The core Agent Orchestration Layer is self-aware, constantly
optimizing the routing and chaining of specialized agents (e.g., Content
Creation Agent — Ad Targeting Agent — Compliance Agent) to meet
editorial and revenue goals. Monitoring extends far beyond model drift—
it’s predictive. Drift Forecasting Agents flag models likely to fail in the
following 48 hours due to external factors (e.g., a major world event
impacting news consumption patterns). The product lifecycle is managed in
a “Value Dashboard” that displays real-time Net Revenue Generated per
Agent, providing instant ROI for every automated workflow.

Governance is no longer an afterthought; it’s code. Security Guardrail
Agents are embedded at the inference layer of every agent, automatically
enforcing PII redaction, token limits, and ethical guardrails before agent
code is allowed to execute. Audit trails are immutable and automatically
generated for every agent decision, creating a fully transparent compliance
record that adapts instantly to new regulations (e.g., a new advertising law
automatically updates the constraint agent).

All internal and third-party systems are connected via an API-first
architecture utilizing A2A protocols. This allows Cymbal’s agents to
seamlessly exchange data and hand off tasks to external partner agents (e.g.,
requesting a financial transaction from a partner bank’s agent), making the
company’s technical boundary fluid and highly interoperable. FinOps is
managed by a Cost-Optimization Agent that operates in a closed loop with
the MLOps platform. This agent dynamically rightsizes Al inference
compute, optimizes API calls, and automatically scales down training
clusters based on real-time usage and a pre-defined cost-per-value (CPV)
threshold. Budget is treated as a dynamic resource, automatically
reallocated across high-performing agent portfolios based on real-time
revenue impact.



Advice from the authors

Cymbal Media is in the Transformational phases of Operational and
Technical maturity. Maintaining this state, however, requires constant
intentional focus and investment from practitioners and leadership. Cymbal
Media is a model for other organizations and 1s operating at a state that is
rarely achieved. Here is some advice for maintaining this position in the
industry and in the Al and agentic maturity framework:

Embrace the perpetual reinvention

At the Transformational phase, the biggest threat might be complacency.
Leadership should continue strategic scanning including challenging the
stability of the current operational model, monetizing the operational
platform, and understanding how future societal and geopolitical
factors, not just technical ones, might affect the way that Al and agentic
systems are built and regulated.

Elevate human roles and creativity

Since the technical “How” is now truly automated in this phase, the
human “operator” role must shift entirely to strategic creativity,
boundary-setting, and ethical oversight. One suggestion would be to
shift performance incentives away from simply deploying agents and
toward innovating within ethical and FinOps constraints. Reward the
team that achieved the highest revenue gain while maintaining the
lowest CPV ratio and the highest compliance score.

Guarantee elasticity and trust

Focus on making the self-optimizing platform more resilient, verifiable,
and open to the next generation of technology. One way to develop a
truly elastic and resilient Al and agent maturity is by avoiding vendor
lock-in and diversifying the ecosystem of tools and technologies applied
for business. Technical specialists should become accustomed to and
comfortable with change, creating an adaptable living system for
thinking out the current and future state of Al



We recommend the included “Further Reading” appendix for additional
reports from Gartner and Google on real-world use cases and the future of
workforce Al.

How the Three Dimensions of Al and Agentic Maturity
Can Work Together

We often talk about prioritizing Al and agentic use cases. Effectively doing
so involves bringing together the three dimensions of maturity that we’ve
discussed previously. Vision and Leadership are needed to define core
business challenges, while Talent and Culture support the execution of the
product or solution to address the challenge within the context of
Operational and Technical Practice capabilities and processes to turn an
idea into reality. In Figure 8-7, we illustrate the process of use case
mapping, which should be performed with all relevant user personas
involved (such as business stakeholders, SMEs, analysts, data scientists,
and engineers). Along this process, we define two axes against which
GenAl use cases can be measured. On the x-axis, ease of execution ranges
across a high to low scale. Ease of execution depends on key input from
technical teams as well as the operational and technical tools available. As
we learned in Chapters 5, 6, and 7, execution of these use cases is inclusive
of more than testing and experimentation. We must factor in evaluation,
tuning, optimization, and AI/AgentOps needs before we generate business
value. Along the y-axis, the potential business value delivered ranges from
low to high. There may be trade-offs between ease of execution and value
delivered. However, a visualization of these trade-offs can be illuminating,
and the exercise of mapping use cases against these axes has been
something that we, the authors, have often used as starting points in our
conversations with customers.
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Figure 8-7. An example of a hypothetical use case prioritization mapping exercise for business
impact while considering ease of execution

We sometimes refer to an easy-to-execute GenAl use case as “low-hanging
fruit.” By that, we mean a project that is easily achievable, requires minimal
initial effort or technical complexity, and can deliver fast, clear, and
measurable business value. Low-hanging fruit use cases are often
prioritized early in an organization’s GenAl journey because they help build
internal capability, generate quick wins, and secure executive buy-in for
more ambitious and more technically or operationally complex projects
(often called “moonshots™). In our experience, use cases that bring value
and are (relatively) easy to achieve in short time frames involve search and
summarization use cases. Finding and understanding information with the
help of GenAl enhances productivity and efficiency across almost every
business area of an organization!

Use case mapping is crucial for assessing an organization’s readiness for
enterprise-scale AI. When performed with cross-functional teams, this
process systematically documents and quantifies potential projects against
axes like value and complexity/feasibility. This exercise not only surfaces
high-potential use cases but also reveals hidden data gaps and internal
capability requirements that would otherwise go unnoticed. This mapping
provides the initial blueprint for an Al maturity timeline, which is then
refined by integrating two key human-centric approaches: Design Thinking
and Critical User Journeys (CUJs). Both of these frameworks ensure that
technical, leadership, and end-user perspectives are consistently integrated
throughout the planning and development of LLM-powered solutions.

Design Thinking is the essential human-centered, iterative process that
prevents “Al for Al’s sake.” Its primary function is to ensure that any
proposed Al or agentic solution aligns with genuine human needs and
strategic organizational goals, rather than becoming merely a technological
showcase. This approach mandates deep user empathy, often involving
observational interviews and repeated testing with intended end users.
Complementing this, CUJs define the single, most important sequence of
steps a user takes to achieve a primary goal. CUJs drive ruthless



prioritization by forcing builder teams to focus resources on delivering
maximum business impact and superior UX, specifically targeting well-
understood pain points, existing workflows, and user-defined success
criteria.

From Framework to Reality: What Are Teams
Actually Building, and How?

We’ve said a lot about the framework and the key dimensions of the
framework, and we’ve given you some examples and resources. But what’s
the bottom line? What do we actually see and hear in the field? What types
of technical systems are industry-leading teams actually building? How is
leadership and vision evolving? What are the changes we 've seen with
respect to Talent and Culture? Below, we’ll share how our technical
conversations have evolved and provide some insights into what we’ve seen
with respect to shifts in leadership and culture over the past two years.

Technical Conversations

In the past one to two years, our conversations with customers have evolved
from a focus on choice of models (and ever-changing leaderboard scores for
LLMs) and prompting strategies to methods for grounding models in
structured and unstructured data (RAG) and choosing the right vector
database and embeddings model for the use case. We’ve gone from
discussing fully managed or DIY RAG with tools added to support actions
and reasoning loops integrated for more explainability and deeper insights.
Today, we’re talking a lot more often about agents—from single agents to
multiagent orchestration. While use cases are still driving conversations in
this area, organizations are bringing bigger and more systemic challenges
that require deep thought about what steps could be safely automated to
remove manual toil, reduce errors, and increase efficiency. Now we’re not
only discussing task-specific LLM performance, but talking about the
greater connective tissue that surrounds and supports truly scalable and
secure use of agentic Al. This connective tissue includes the frameworks



for experimenting, optimizing, evaluating, deploying, and tracing complex
systems that rely on various LLMs and considerations around agent
memory and true automation. At the same time, such complexity of agentic
systems must be obscured from end users for an exceptional and
differentiated UX. To easily scale this complexity and centralize Al and
agentic practices across the organization, many business leaders and
practitioners are choosing a platform approach. We’ll dive into some
platforms next and describe their benefits.

LLM leaderboard scores are essentially report cards for LLMs, ranking them based on
how well they perform on standardized tests called benchmarks. These benchmarks
measure an Al’s specific capabilities, such as its ability to answer complex questions
(knowledge), solve math and logic problems (reasoning), or generate correct computer
code (coding). These scores matter because they introduce competition that drives
companies to build smarter, faster, and more reliable Al, and they act as a tool for
businesses to objectively choose the best available model to power their applications,
directly influencing the quality of the Al tools you interact with every day. LM Arena.ai
is one of the most popular and influential LLM leaderboards in the world.

Leadership, Talent, and Culture Conversations

Developing and executing an Al and agentic strategy across an enterprise
involves more than your technical teams, it requires an honest assessment
of the Talent and Culture of an entire organization. Leaders who have taken
their organizations through the Tactical, Strategic, and even the
Transformational phases of Al and agentic maturity understand when and
why no-code and low-code Al tools and software as a service (SaaS) make
sense, and when a code-first approach, where you have complete control
over everything from infrastructure to agentic framework to home-grown
evaluation and validation tools, is more appropriate. One of the most
exciting and inspiring things about working with customers every day is
hearing how leadership is embracing change management, during a time of
unprecedented change. Innovative ideas such as hackathons, incentivized
technical certifications, peer-to-peer training, and creation of new career
tracks and mobility to roles that involve use of Al in the enterprise are just a



few of our favorites. Other leaders are choosing to democratize Al for every
user across the organization (and reduce the risk of shadow Al) by giving
access to a broad set of tools on a safe, secure, and private enterprise
platform—from no-code agents (developed with natural language as code)
to access to model gardens, where developers can choose from hundreds of
models and tools and leverage both open source and proprietary code.
Leaders operating at the Strategic and Transformational phases are not
relying only on developers (in the traditional sense) to ideate and build,
they’re opening up new opportunities for every user and every role to
contribute to the culture and strategy around Al and agents in the enterprise.
Indeed, crowdsourcing ideas and solutions for business challenges is a
unique way to get past our own blind spots and identify when a simpler
solution such as a traditional machine learning classification model is more
appropriate than a highly complex multiagent solution.

Why and How a Platform Approach Can Accelerate an
Organization’s Al and Agentic Maturity

Throughout this book, we’ve consistently underscored the need for an
integrated Al and agentic platform because the leap from i1solated
experimentation to sustained enterprise production—the journey from
Tactical to Strategic to Transformational maturity—is fundamentally an
exercise in overcoming operational friction.

Practitioners face a dizzying array of decision points: model and framework
selection, the need to establish and maintain stringent quality standards,
requirements for ensuring sustainable and interoperable connections to
critical enterprise knowledge and systems, managing rapidly shifting cost
considerations, and navigating an evolving regulatory and compliance
landscape. These challenges are further compounded by the constant,
aggressive need for skill ramp-up and model maintenance. A cohesive
platform eliminates operational friction by providing the centralized engine
required for velocity, governance, and close proximity of data, Al, and
reporting tools.



HOW PLATFORMS SUPPORT CRITICAL
REQUIREMENTS FOR ENTERPRISE Al

Platforms are explicitly designed to support three core imperatives that
accelerate individual productivity and organizational maturity by
turning manual toil into managed, repeatable processes.

Imperative Platform role Maturity shift enabled
Enterprise Centralizes Tactical — Strategic: shifts the
governance control, organization from individual
standardization, ethics to auditable, enterprise-
and transparency  wide compliance and
across the entire responsible Al standards
lifecycle
Seamless Serves as the Tactical — Strategic: moves
integration interoperable Al from an isolated pilot to a
middleware deeply embedded
connecting Al transformative business
assets to core capability

business systems

Production Abstracts Strategic — Transformational:

velocity infrastructure enables the team to move from
complexity and repeatable deployments to
automates the continuous, self-optimizing
MLOps/AgentOps  AlOps and competitive time-
pipeline to-market

We’ve chosen to highlight two key Al and agentic platform categories
designed to address these challenges: foundational AI/ML platforms and
specialized agentic platforms. For organizations leveraging the Google



Cloud ecosystem, these are best exemplified by Vertex Al Platform and
Gemini Enterprise Platform, respectively. You may remember back in
Chapter 1, where we first introduced you to Vertex Al Platform. We hope
that it now makes sense why we’ve chosen to close this book with this
important part of the Google Cloud Al portfolio.

Vertex Al Platform

Vertex Al Platform serves as a technical engine that translates the principles
of the Al and agentic maturity model into production reality. It’s a
comprehensive, managed platform where the technical MLOps principles
that you mastered in Chapter 7 become the foundation for enterprise scaling
and efficiency to drive value for an organization.

Enterprise governance: from isolated code to auditable lineage

A core characteristic of the strategic organization is rigorous, measurable,
and comprehensive governance. Vertex Al provides the technical
framework to enforce standards at scale:

Auditability via Model Registry, Artifact Registry, and ML Metadata

Establishing the single source of truth for model lineage is essential for
repeatability, audibility, and transparency. Model Registry, Artifact
Registry, and ML Metadata features in Vertex Al Platform provide a
strong technical foundation for strategic maturity, ensuring that every
deployed model’s data, code, and parameters are recorded and traceable
for mandatory regulatory audits or easy debugging. For example, in
Chapter 7, we saw exactly how to implement ML Metadata to track
model lineage (Example 7-1). Becoming proficient with these features
within Vertex Al Platform accelerates developer teams, ensuring that
they can take on more complex tasks at high velocity and with
meticulous traceability and auditability.

Responsible decision making with XAI



Deploying a high-stakes model is a risk mitigation exercise. Vertex
Explainable AI (XAI) provides the feature attributions that allow human
reviewers to peer inside models and validate reasoning before
deployment. This shifts the organization from trusting a model blindly
to enforcing human oversight, a key element of strategic governance.
Chapter 5 took us through some of the other tools for understanding and
explaining how Al systems are working and can be evaluated with
quantitative approaches. Chapter 6 showed us how to tune models to
make sure that behavior and performance of Al and agentic systems are
appropriate for enterprise deployment.

Trust and data isolation

As we saw in Chapter 2, for regulated industries such as healthcare and
financial services, the data isolation and security controls on Vertex Al
are fundamental. The platform provides a secure environment where
customer data and proprietary prompts are not used to train Google’s
foundation LLMs, directly supporting the compliance needs that are
required to move past the Tactical phase of Al and agentic maturity.

Seamless integration: embedding Al as a business asset

Vertex Al Platform ensures that models and agents are not isolated technical
islands but are deeply interoperable with the systems that run the business
—a hallmark of the Strategic phase of maturity:

Secure data access

Native integration with Google BigQuery is critical, as we saw in
Chapter 2. This integration allows models to access petabytes of high-
quality, fresh enterprise data for training and serving without time-
consuming and insecure data movement. This seamless data layer is a
prerequisite for reliable production integration.

Actionable agents



For agentic systems, Vertex Al Extensions (function calling) moves the
solution from informational to actionable. As you saw in Chapters 3 and
4, this capability allows models to securely connect to an execute code
or actions against external business APIs (e.g., retrieving inventory,
updating a customer record, and more). This enables the agent to
become an active operational entity, a capability often seen only at the
Transformational phase of Al and agentic maturity.

Grounding for trust

To make output of Al systems reliable for enterprise use, it must be
trustworthy. As we saw in Chapter 2 and throughout this book, Vertex
Al provides managed and DIY methods for RAG, to “ground” model
responses in proprietary data, drastically reducing hallucinations and
making outputs trustworthy and relevant for internal business use and
expanding the use cases available at strategic phases of maturity.

Production velocity: from manual hand-off to AlOps engine

The shift from Tactical to strategic Operational and Technical engineering
practice is defined by automation. Vertex Al Platform unifies the
environment and automates the pipeline. When one-off projects turn into
repeatable frameworks for generating output, time to value and ROI
accelerate exponentially and trust and reliability scale across organizations:

Automation via Vertex Al Platforms

The MLOps pipelines you used to build our CI/CD workflow in
Chapter 7 using Vertex Al become an engine for strategic repeatability.
By defining training, testing, and deployment as a single, sharable, and
versioned entity, the platform drastically reduces deployment risk and
accelerates time to market for validated use cases. Additional time
gained by using these tools can be reinvested in human review,
oversight, and even user testing.

Accelerating in a unified environment



By combining tools such as Colab Notebooks, BigQuery integration,
and foundation model access within Vertex AI Workbench and Vertex
Al Studio, the platform eliminates the context switching and setup time
that characterizes Tactical phase friction. This unity frees developers to
focus valuable time on model building, not tasks like infrastructure
management.

Achieving Transformational AIOps

On Vertex Al Platform, the goal is not just automation but self-
optimization. Managed model serving allows for one-click deployment
that handles, for example, unpredictable traffic. At the Transformational
phase, AIOps agents monitor that serving environment, automatically
triggering retraining or scaling adjustments based on live performance
decay and ensuring continuous value with little human intervention. We
walked through the details of AIOps in detail in Chapter 7.

Vertex Al is the catalyst for maturity. It enforces governance by providing
lineage and ethical tooling, delivers velocity through pipeline automation,
and guarantees integration by connecting models directly to enterprise data.
This platform approach transforms the organization from managing fragile
pilots into a strategic firm that builds high-quality, repeatable Al assets,
setting the stage for transformational self-optimization.

Gemini Enterprise

Unlike Vertex Al Platform, which can be thought of as a factory for
creating, training, and deploying Al and agentic systems, Gemini Enterprise
is Google’s all-in-one agentic platform built for every user, persona, and
workflow across the enterprise. Gemini Enterprise is a central hub for Al
agents, knowledge discovery, and enterprise search. The platform sits on
top of and orchestrates all of the Al assets, including prebuilt agents like
Deep Research, Idea Generation, and Data Insights Agent as well as no-
code agents (built with natural language) and high-code agents created
elsewhere, including those developed within Vertex Al Platform.
Importantly, Gemini Enterprise moves beyond a simple chatbot by acting as



a single, secure, conversational hub that unifies an enterprise’s data, tools,
and people to automate complex, multistep workflows. Different editions of
Gemini Enterprise allow every business to choose how to explore the
evolution of their culture, employees, and strategy to meet the Al era with
readiness and intentionality.

Because this book is for both practitioners and executive business leaders,
we highlight the value of both Vertex Al Platform and Gemini Enterprise. It
seems nearly impossible to talk about one without the other because Vertex
extends the work of developers and other builder teams, while Gemini
Enterprise fundamentally de-silos access to the assets that these (and other!)
teams create. We’re seeing a major shift in an organization’s need to support
not just a handful of enterprise Al products, but hundreds, if not thousands,
of models, agents, and other Al assets within a single business unit.
Maturity of leadership strategy, talent and culture, and technical capabilities
requires centralized access to a full suite of tools for every user and every
workflow.

Learning Labs

To reinforce the strategic concepts covered in this chapter and formalize
your knowledge, we recommend exploring the certification guides and
learning paths available in the Chapter 8 folder of the book’s GitHub
repository. Key resources you will find linked there include:

e Certifications

— Google Cloud Generative Al Leader: An excellent option
for non-technical leaders who want to develop familiarity
with how Al is driving fields such as HR, marketing,
finance, sales, and more.

— Cloud Digital Leader: We also love this certification for a
fundamental understanding of Google Cloud products,
concepts, and services.


https://oreil.ly/fs-iu
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https://oreil.ly/81Y1E

— Professional Cloud Architect: Ideal for those designing the
infrastructure behind the agents. This validates proficiency
in enterprise cloud strategy, solution design, and
architectural best practices. It emphasizes the Google
Cloud Well-Architected Framework, ensuring your Al
solutions are secure, efficient, and cost-optimized.

— Professional Machine Learning Engineer: The definitive
certification for practitioners building and productionizing
Al This exam covers architecting low-code Al solutions,
orchestrating ML pipelines (MLOps), and
operationalizing generative Al solutions using
foundational models.

We encourage you, reader, to dive into the unknown—whether you’re in a
technical or business role. Get curious, go outside of your comfort zone,
and explore something new. Google’s professional certifications and
training cover a broad range of topics from security operations to database
engineering to network engineering and DevOps and MLOps engineering.
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Conclusion

We hope this book has left you in a different place than where you started,
reader. Along the way, we’ve shared perspectives and insights with as much
objectivity as possible, but undoubtedly through the lenses of our own lived
experiences and backgrounds. Please accept these chapters as a current
view of an ever-changing field, where models, platforms, and products are
evolving on an almost day-to-day basis! Yet the foundations of what we’ve
discussed here, and the introduction to the types of choices and decisions
you’ll be faced with, will apply into the future, regardless of new models,
frameworks, and products. We challenge you to apply 10X thinking to your
Al and agentic strategy and to keep the principles of responsible Al at heart
while doing so. We also encourage you to bring your ideas, concerns, and
questions about the Al and agentic future to the greater community. This is
a moment where dialogue and conversations in this space are critical; we
believe in the advancement of knowledge through open sharing and
contributions from every perspective.

Before we conclude, we wanted to take a moment for personal reflection.
The advancements discussed in this book—from the evolution of the LLM
to the orchestration of complex agentic systems—trepresent the beginning of
a profound transformation. In the following section, each of us want to

share our own perspectives about what we’re excited about and our vision
for the future of this field, including the transformative impacts we hope to
help realize through our own contributions.

Thank you all for being a part of this journey with us!
Steph

My background in infectious disease biology directly informs my
passion for Al, particularly its potential to solve complex challenges in
global health. Al is not just about writing code; it can be a critical tool
for understanding and improving human and ecosystem well-being.
Today, we’re witnessing the evolution from general-purpose Al toward
highly specialized agent systems. This is evident in the life sciences,
where TxGemma is accelerating therapeutic development by predicting


https://oreil.ly/YeBwA

drug properties and optimizing clinical work, and in biology, where
Google DeepMind’s AlphaFold system helps to predict the 3D
structures of biomolecules—a fundamental breakthrough that has
already informed scientific discovery across diverse scientific
disciplines. At a global scale, some of the biggest challenges are being
met by tools such as Google Earth Al. This comprehensive platform
uses specialized geospatial models orchestrated by Gemini-powered
Geospatial Reasoning. This framework allows Al to automatically
connect disparate data—such as weather forecasts, satellite imagery, and
population maps—to provide crucial, lifesaving lead time for
communities threatened by natural disasters such as floods, tornados,
wildfires and epidemics.

While many applications of Al are truly novel and transformative at
large scales, the possibility for Al to transform basic tasks and reduce
manual toil is equally compelling. LLMs are making it possible for
scientists and physicians to understand and summarize large, complex
documents and get more precise insights at a faster speed than ever
before. This translates into more time with patients, faster time to
discovery, and a more comprehensive view of incredible amounts of
data within moments. I am most excited to see how specialized Al tools
and general models for understanding the world will come together in
the next one to two years. Increasing “connectedness” of Al (e.g., via
agents) will truly bring a new era of understanding and possibly
emergent properties that could be applied to address some of the most
pressing human and environmental challenges in completely new ways.

Ayo

The convergence happening now between Al, robotics, and spatial
computing represents a fundamental shift in how we’ll interact with
technology. We’re moving from Al that generates text to Al that
navigates and manipulates the physical world—while simultaneously
guiding humans through complex physical tasks via augmented reality.
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The technical evolution is striking. The same transformer architectures
that power our language models now enable robots to learn motor skills
across different physical forms. World models like Genie 3 can generate
consistent, interactive environments that maintain physical properties
for minutes—not just creating pretty pictures, but spaces where agents
can actually train. And with XR platforms integrating these capabilities,
we’re seeing Al assistants that understand both what you’re looking at
and what you’re trying to accomplish.

What makes this moment unique is the practical convergence of these
technologies. A surgeon practicing a complex procedure no longer
needs a cadaver lab. They can work in generated environments with
infinite anatomical variations, with Al providing real-time guidance.
Field technicians troubleshooting equipment failures get overlay
instructions adapted to exactly what their camera sees. These aren’t
distant possibilities; they’re systems being built today with the same
ADK frameworks and Vertex Al pipelines we’ve covered in this book.

Having worked in computational biology, I’ve seen firsthand how Al
transforms our understanding of complex systems, such as AlphaFold
revolutionizing protein structure prediction and single-cell analysis
revealing previously invisible cellular states. That same pattern of Al
making the invisible visible and the complex tractable is currently
happening across every field where physical and digital worlds
intersect.

The frameworks and practices we’ve detailed throughout this book—
multiagent orchestration, comprehensive evaluation strategies,
production-grade MLOps—these aren’t just for chatbots and document
analysis automation. They’re the foundation for systems that will
fundamentally change how we learn, work, and solve problems. The
question isn’t whether this convergence will happen, but how quickly
we can build the infrastructure and practices to deploy it responsibly
and effectively.

Sarita
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My vision for this technology is crystallized at the intersection of
operational efficiency and human equity in healthcare. We often talk
about Al discovering new drugs, but [ am obsessed with how Al will
revolutionize the delivery of care.

The true bottleneck in healthcare isn’t just data; it’s the interface—the
complex, fragmented, and often legacy software that clinicians are
forced to navigate. This is where Google’s latest work on the Computer
Use model becomes transformative. I envision autonomous agents,
powered by this model, that can see and operate these Uls just as a
human would.

This 1s the practical foundation for a true human-computer artificial
general intelligence (AGI) in the clinic. Imagine a revenue cycle
management (RCM) agent that flawlessly processes claims, not by
relying on brittle APIs, but by operating the billing portal itself. Imagine
a supply chain agent that anticipates an ICU’s needs and then logs into
three different vendor systems to orchestrate the order.

This 1sn’t about replacing humans—it’s about liberating them from the
keyboard. It’s about building a collaborative partner that handles the
90% of administrative toil that leads to burnout, allowing clinicians to
focus entirely on their patients.

Furthermore, this same technology is the key to my passion for equity.
The research that Ayo and I have conducted into a "Multicultural
Medical Assistant" is built on this new paradigm. We can build agents
that act as powerful equalizers, understanding a patient’s accent during
intake and ensuring that data is entered correctly into the electronic
medical record (EMR), regardless of the UI.

The 10X future I’'m working toward is one where Al scales not just data
processing, but empathy and efficiency in equal measure, by finally
mastering the complex digital environments where care is delivered.

Lavi
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My focus is on the fundamental architecture of this new computing
paradigm. We are currently in the “artisan” phase of GenAl, hand-
crafting bespoke agents and proof-of-concepts. My vision is about what
it takes to move to the “industrial” phase.

I believe the next five years will not focus on bigger models, but on the
connective tissue. The real, hard challenge is in building the durable,
scalable engineering primitives for this new era. I’m not just excited
about what agents can do, I’m obsessed with Zow they will be
orchestrated, managed, and trusted at enterprise scale.

The problems we need to solve are systemic. How do we guarantee
robust state management for agents designed to run for days, not
seconds? How do we build observability into a system that is inherently
non-deterministic? What are the secure, high-bandwidth protocols—Ilike
the MCP we discuss—that will become the TCP/IP for a new internet of
agents?

The work we’re doing in LLMOps and agentic frameworks is not just
about developer tools. It’s about defining the “operating system” for
intelligence. My passion is to build this production-grade platform,
enabling any enterprise to compose, deploy, and—most importantly—
debug these autonomous systems with the same confidence they have in
traditional, compiled code. The ultimate goal is reliability.



Appendix. Further Reading for
Leaders

The following resources can guide teams from the Tactical to the Strategic
maturity phase of Vision and Leadership:

Google Cloud. 2026. “AI Agent Trends 2026 (report),
https://oreil.ly/dMBgP

Harvard Business Impact Perspectives. 2025. “Succeeding in the
Digital Age: Why Al-First Leadership Is Essential” (report),
https://oreil.ly/JGny9

Iansiti, Marco and Lakhani, Karim R. 2020. Competing in the Age
of Al: Strategy and Leadership When Algorithms and Networks
Run the World (book)

Bachman, Michael, Boomi Head of Research, Architecture, and Al
Strategy. 2023. “Al and the End of Business As Usual: A
Framework for the Al Ready Enterprise” (report),
https://oreil.ly/FhSH4

Boston Consulting Group. 2024. “The Leader’s Guide to
Transforming with AI” (report), https.//oreil [y/Ig9INO

QuantumBlack, Al by McKinsey. 2025. “Seizing the Agentic Al
Advantage: A CEO Playbook to Solve the Gen Al Paradox and
Unlock Scalable Impact with AT Agents” (report),
https://oreil.ly/HINIv

Axis Intelligence. 2025. “Al Governance Framework Fortune 500
Implementation Guide: From Risk to Revenue Leadership”
(report), https://oreil ly/HgeRZ


https://oreil.ly/dMBgP
https://oreil.ly/JGny9
https://oreil.ly/FhSH4
https://oreil.ly/1g9N0
https://oreil.ly/H1NIv
https://oreil.ly/HgeRZ

e Google Cloud. 2025. “ROI of AI 2025” (report),
https://oreil.ly/1 TkJa

e Generative Al Leader Certification by Google Cloud

The following resources can guide teams from the Tactical to the Strategic
maturity phase of the Talent and Culture dimension:

e [BM. 2024. “Upskilling and Reskilling for Talent Transformation
in the Era of AI” (report), https://oreil.ly/BROIS

e Boston Consulting Group. 2024. “Five Must-Haves for Effective
Al Upskilling” (report), https://oreil.ly/0H-3w

e Forbes. 2025. “Workforce Reskilling Is the Competitive Edge in
the Agentic Al Era” (report), https://oreil.ly/aolKp

e Google Cloud Skills Boost online platform, which provides a vast
catalog of learning materials for individuals and organizations to
develop their cloud expertise, gain practical experience, and

validate their skills for career advancement in the cloud computing
field

Some resources to consider for teams operating at the Transformational
phase of Al and agentic maturity include the following:

e Google Cloud. 2025. “14 Ways Googlers Use Al to Work Smarter”
(blog post), https://oreil.ly/oCN6-

e Google Cloud. 2025. “1,001 Real-World Gen Al Use Cases from
the World’s Leading Organizations” (blog post),
https://oreil ly/HmgTK

e Gartner. 2025. “Emerging Tech Impact Radar: Generative AI”
(report), https://oreil ly/oud Gr

e Microsoft. 2025. “Redesigning How We Work at Microsoft with
Generative Al” (report), https.//oreil ly/ apdy
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e Forrester. 2025. “Ground Your Workforce Al Strategy In Human
Experience: Put Employees At The Center Of Your Al Efforts To
Drive Business Success” (report), https://oreil.ly/4DDDh
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meticulously built using sticks and twigs and are then decorated with shells,
seeds, leaves, and berries. Regent bowerbirds are known to mix a muddy
gray-blue “saliva paint” in their mouths, which they also use to decorate
their bowers. Females, on the other hand, are responsible for building actual
nests, since they are the ones who incubate and care for the chicks (males
do not participate in raising their young). The nests females build are
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certain threats, such as habitat loss. Many of the animals featured on
O’Reilly covers are endangered; all of them are important to the world.
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