
Time Series
Forecasting Using
Generative AI

Leveraging AI for Precision Forecasting
—
Banglore Vijay Kumar Vishwas
Sri Ram Macharla

Time Series
Forecasting Using

Generative AI
Leveraging AI for Precision

Forecasting

Banglore Vijay Kumar Vishwas
Sri Ram Macharla

Time Series Forecasting Using Generative AI: Leveraging AI for Precision

Forecasting

ISBN-13 (pbk): 979-8-8688-1275-0		 ISBN-13 (electronic): 979-8-8688-1276-7
https://doi.org/10.1007/979-8-8688-1276-7

Copyright © 2025 by Banglore Vijay Kumar Vishwas and Sri Ram Macharla

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically, the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisition Editor: Celestin Suresh John
Editorial Assistant: Kripa Joseph

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

Banglore Vijay Kumar Vishwas
San Diego, CA, USA

Sri Ram Macharla
Montville, NJ, USA

https://doi.org/10.1007/979-8-8688-1276-7

To my parents

Rathnamma and Vijay Kumar, who nurtured the seeds of
knowledge planted within me.

—Vishwas

To my Mom and Dad

Mrs. Satyavathi Macharla, Retd. Mgr ECIL

Mr. Narayana Murthy Macharla, Retd. Mgr ECIL

And in memory of my grandfather Mr. M.V.S.N. Murthy.
100% of the royalty I receive from the sale of this book will

be donated to St. Jude Children's Research Hospital.

—Sri Ram Macharla

v

About the Authors���ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Chapter 1: �Time Series Meets Generative AI���1

What Sparked Interest in Time Series?��1

Introduction to Time Series Analysis��2

1.1 �Characteristics of Time Series Data���3

1.2 �Time Series Forecasting Methods��4

1.3 �Introduction to Generative AI��8

1.4 �Evolution from AI to Generative AI��9

1.5 �Generative AI with Time Series���13

1.6 �Introduction to Large Language Models���15

1.7 �Summary��16

1.8 �References���16

Chapter 2: �Neural Networks for Time Series���������������������������������������17

2 Introduction to Perceptron��17

2.1 Technical Overview of a Perceptron���19

2.2 �What Is Multilayer Perceptron?��21

2.3 �CNN-Based Architecture for Time Series��27

2.5 �Neural Networks for Sequential Data���50

Table of Contents

vi

2.6 �Neural Networks Based on Autoregression��64

2.7 �Neural Basis Expansion Analysis��74

2.8 �Summary��80

2.9 �References���80

Chapter 3: �Transformers for Time Series���83

3 �Introduction to Transformers���83

3.1 �Technical Overview of Transformers���84

3.2 �Vanilla Transformer���94

3.3 �Inverted Transformers��102

3.4 �DLinear���109

3.5 �NLinear���118

3.6 �Patch Time Series Transformer���122

3.7 �Summary��129

3.8 �References���130

Chapter 4: �Time-LLM: Reprogramming Large Language Model��������131

4 �Fine-Tuning vs. Reprogramming���132

4.1 �Technical Overview of Time-LLM��133

4.2 �Time-LLM in Action���138

4.3 �Summary��153

4.4 �Reference���154

Chapter 5: �Chronos: Pre-trained Probabilistic Time Series Model����155

5 �Introduction���155

5.1 �Technical Overview of Chronos��156

5.2 �Time Series Tokenization��157

5.3 �Training���158

5.4 �Inference��159

Table of Contents

vii

5.5 �Chronos in Action���159

5.6 �Summary��167

5.7 �Reference���167

Chapter 6: �TimeGPT: The First Foundation Model for Time Series�����169

6 �Introduction���169

6.1 �Technical Overview of TimeGPT��171

6.2 �TimeGPT in Action���173

6.3 �Summary��182

6.4 �References���182

Chapter 7: �MOIRAI: A Time Series LLM for Universal Forecasting�����183

7 �Introduction���183

7.1 �Challenges with Building a Universal Forecasting Model�����������������������184

7.2 �Technical Overview of MOIRAI��186

7.3 �MOIRAI in Action���188

7.4 �Summary��194

7.5 �Reference���194

Chapter 8: TimesFM: Time Series Forecasting Using
Decoder-Only Foundation Model���195

8 �Introduction���195

8.1 �Technical Overview of TimesFM���196

8.2 �TimesFM in Action��199

8.3 �Summary��209

8.4 �Conclusion��209

8.5 �Reference���210

�Index��211

Table of Contents

ix

Banglore Vijay Kumar Vishwas is a seasoned

Principal Data Scientist and AI researcher with

over 11 years of experience in the IT industry.

He is currently based in San Diego, California.

Vishwas holds a Master of Technology in

Software Engineering from Birla Institute of

Technology and Science, Pilani, India.

He specializes in developing innovative

solutions for large enterprises, with expertise

in machine learning, deep learning, time series forecasting, natural

language processing, reinforcement learning, generative AI, and AI agents.

He is the author of Hands-on Time Series Analysis with Python published

by Apress. He is the inventor of a patented method that utilizes AI to

minimize emissions from gas turbines. 

Sri Ram Macharla is a consultant and

architect in the areas of AI and ML with over 19

years of experience in IT. He holds an MTech

from BITS Pilani and has experience working

with clients in domains such as finance, retail,

life sciences, defense, and manufacturing.

Additionally, he has worked as a mentor,

corporate trainer, and guest faculty teaching

AI and ML. He has papers published and

works as a reviewer with leading journals and

publishers. He is passionate about mathematical modeling and applying

AI for social good. He is currently affiliated with Involgixs Inc. 

About the Authors

xi

Sai Chiligireddy is an Engineering Manager

at Amazon with a decade of experience

in software engineering, specializing in

generative AI, cloud, and distributed systems.

Beyond his professional role, Sai is passionate

about mentorship. He actively supports new

engineering managers, senior engineers, and

university students, mentoring them on career

development and technical expertise.  

About the Technical Reviewer

xiii

Acknowledgments

This book would not have existed without the tenacious support of my

incredible family. To my parents, Vijay Kumar and Rathnamma, whose

love and guidance have been my guiding light. Thank you for your endless

belief in me. Your sacrifices and constant support have paved the way for

success in my life. To my wife, Janani, my rock and my biggest cheerleader,

thank you for your unwavering love, constant encouragement, and

indomitable support throughout this challenging journey. Thank you for

your patience and understanding. To my brother, Shreyas, thank you for

our unbreakable bond and the unflinching support that has always been

there for me. And finally, to my son, Hiyan, the most amazing little human

I know, may you always chase your dreams with boundless enthusiasm

and perhaps one day write your own book.

—Vishwas

I would like to thank my spouse, Meena, and son, Sudhish, for taking

up my responsibilities around the house while I was busy working on

the book.

Writing a book of this sort is impossible without the motivation and

support of friends and well wishers. Thank you Dr. Damahe, Raju Gandhi,

Aaron Maxwell, and Ganesh Samarthyam; your articles and responses

to my mails were motivating. To my former colleagues – Dr. Anji Pasala,

Sridhar Murthy, G. Madhu, S. Karthikeyan, and Hari Sharma – for the

opportunities, support, and guidance. To my friends – Focus group,

Appalachari group, Sudhir Sriramoju, Irfan Chavda, Jaime, N. Uday,

Naveed, Mallik Katta, Anuj Mohan, Naga Kishore, S. Koley, Chaitu Tanuku,

Madhu Kanala, and Balu Nayak – always appreciate and thank you for the

xiv

support. My sister and brother-in-law, whom I can always fall back on,

thank you. Sharad Chilukuri, Director at Involgixs, for encouraging and

supporting this initiative. My former and current supervisors – Gladson,

Sandhya, Muthu, Odie, Martin, Tim M., Chandan, Ren, Manoj, Saurabh K.,

K.S.N. Murthy garu, and others – for providing me the opportunity to work

on high-impact projects and for the guidance. To the organizations that

provided me the opportunity to work on corporate training assignments –

thank you for the trust in me. Thank you Dr. Sudhakar, Dr. V. Uday, and

Dr. A.V. Ramana for always being around for any technical discussion. Dr.

Nicoleta Serban, thank you for the amazing course on time series analysis.

It helped in laying a strong foundation.

Lastly, I would like to thank my coauthor Vishwas for the numerous

arguments and discussions to ensure we revise the content and do

our best.

—Sriram

We would like to express our appreciation to Sudhish Macharla, Praveen

Nandan K, and Siva Pichappan for their contributions in proofreading the

early draft and testing the code.

We express our heartfelt gratitude to T. Sowmya for her invaluable

assistance in answering all our questions throughout the development

process. We would also like to thank Celestin John for his guidance in

refining and approving the proposal. Finally, we extend our appreciation

to all the reviewers and the entire production team at Apress for their

contributions.

—Vishwas and Sriram

Acknowledgments

xv

Introduction

“Guru Brahma, Guru Vishnu, Guru Devo Maheshwara, Guru Sakshat

Parabrahma, Tasmai Shri Gurave Namah” – a disciple expressing gratitude

and reverence toward their guru (teacher).

Grateful to my gurus who guided and supported me in the form of

teachers and friends.

A couple of years back while working on a project related to time

series, we wanted to explore newer techniques in forecasting to improve

precision. The advent of GenAI provides us with an opportunity to

explore LLM-based models for forecasting. However, there was not

enough material to help the team come up to speed. The research

papers were difficult to understand for the team who came from diverse

levels of mathematical backgrounds, so we had to go through a steep

learning curve.

We were looking for a resource that would equip us with the theoretical

understanding of the models and practical implementation with python

sample code. We could not find any, so that gave birth to the idea of writing

this book. We present this book that is catered to the needs of working

professionals to come up to speed. Those who wish to dive deeper may

want to read the reference papers after reading this book.

This book is primarily targeted toward intermediate to advanced time

series forecasting modelers. So if you are a beginner, we suggest you to

pick up a beginner-friendly book like Hands-on Time Series Analysis with

Python by Vishwas and Ashish before reading this book. Researchers are

suggested to read the provided references after going through this book.

https://link.springer.com/book/10.1007/978-1-4842-5992-4
https://link.springer.com/book/10.1007/978-1-4842-5992-4

xvi

The book starts with a motivation to learn time series forecasting.

Chapter 1 introduces different time series techniques, generative AI, large

language models, evolution, and milestones to date.

Chapters 2 and 3 discuss neural networks and transformer theory and

implementation. You can use these chapters to refresh your knowledge

and learn to implement them by leveraging modern tools.

Chapters 4–8 cover topics related to foundation models for time

series forecasting. Each chapter discusses a new foundation model. We

begin by understanding the technical overview, relevant concepts, and

implementation using Python code and libraries. Techniques that help to

understand forecasting by repurposing and reusing foundation models

meant for NLP are explained.

All chapters (except Chapter 1) discuss how to implement the

models with a dataset and full code with explanation. Where possible

and applicable, we try to implement the models for both univariate and

multivariate scenarios.

Introduction

1© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7_1

CHAPTER 1

Time Series Meets
Generative AI
Chapter Goal: Introduction to time series, evolution of artificial

intelligence, and a gentle introduction to generative AI and large

language models.

�What Sparked Interest in Time Series?
There is a lot of buzz in the IT industry about NLP, computer vision,

generative AI, transformers, and AI agents. However, a specific use case

encountered while working on a consulting project for a manufacturing

client, which was solved using time series techniques, captured interest in

time series.

For over two decades, a team relied on a legacy approach using moving

averages to forecast product demand for the next year. This system,

however, often resulted in inaccurate forecasts, leading to significant waste

due to under- or overestimation and instances where orders couldn't meet

actual demand.

A more sophisticated approach was implemented using simple ARIMA

(Autoregressive Integrated Moving Average) models to address this issue.

This upgrade significantly reduced waste and, to our knowledge, has

eliminated instances of underestimation since its implementation. While

https://doi.org/10.1007/979-8-8688-1276-7_1#DOI

2

this project was less complex than other initiatives using computer vision

and NLP, the time series solution delivered immediate cost savings and

empowered the team to make informed decisions on time. This success

also garnered significant recognition from senior management.

�Introduction to Time Series Analysis
Time series analysis is a statistical and advanced mathematical technique

for analyzing time-dependent data. It is used in various fields such as

finance, economics, healthcare, environmental monitoring, marketing

and sales, energy and utilities, manufacturing, telecommunications,

engineering, and many more to identify patterns within data over time.

The goal of time series analysis is to identify the underlying patterns,

trends, and seasonality in the data and use this information for making

informed predictions about future values. Let’s put this in context through

some real-world examples.

Example 1: Predict inventory for supply chain

optimization.

Example 2: Predictive or preventive maintenance

is a proactive way to maintain equipment health,

machinery, or other assets in optimal condition to

prevent breakdown.

Example 3: Forecast pandemic spread.

Example 4: Identify patterns for the bullwhip effect

and cart loading (refer to the “Summary” section).

Chapter 1 Time Series Meets Generative AI

3

�1.1  Characteristics of Time Series Data

	 a)	 Time dependence: Data points are ordered in

time and have a natural temporal sequence, which

means that prior observations frequently influence

the value of each observation.

	 b)	 Autocorrelation: Statistical measure that describes

the relationship between an observation in time

series and its own past values.

	 c)	 Stationarity: Statistical properties of time series do

not change over time.

	 d)	 Nonstationarity: Statistical properties, like mean

and variance, change over time, indicating that

values at time point (t) can be influenced by

preceding values at times like t − 1 or t − 2.

	 e)	 Seasonality: Recurrent fluctuations at fixed

intervals (e.g., daily, monthly, yearly), influenced

by factors like time of year, month, or day which

are predictable and repetitious. Examples are retail

sales increasing during popular holidays.

	 f)	 Trends: Long-term movement in the data indicates

direction and movement over time. Examples are

rising global temperatures and housing prices post

pandemic.

	 g)	 Cyclic patterns: Recurrent phenomena without

fixed periods, attributed to complex circumstances

that are unpredictable and challenging to identify.

Examples are forest growth and fire cycles.

Chapter 1 Time Series Meets Generative AI

4

	 h)	 Irregularity or noise (irregular component):

Random variations without a recurring pattern,

attributed to unforeseen events or anomalies.

Examples are rapid stock market fluctuations before

and after a political event.

	 i)	 Frequency: Data is sampled at regular time

intervals (e.g., hourly, daily, monthly).

	 j)	 Duration: Length of time between observations.

�1.2  Time Series Forecasting Methods
Various techniques and algorithms are available to perform time series

forecasting based on the data characteristics learned in the above section.

They can be “broadly” classified into two categories – univariate and

multivariate.

�1.2.1  Univariate

Univariate time series analysis focuses on the study of a single time series

to understand its underlying patterns and make forecasts. Let’s understand

some popular techniques:

	 a)	 Moving Average (MA): The Moving Average model

computes the average of a fixed number of previous

observations to predict future values.

	 b)	 Autoregressive (AR): Autoregressive models are a

class of models that describe a linear relationship

between an observation at a particular time and a

certain number of lagged observations (i.e., past

values) of the same series.

Chapter 1 Time Series Meets Generative AI

5

	 c)	 Autoregressive Moving Average (ARMA): This

model is a combination of AR (Autoregressive) and

MA (Moving Average), and this combination is done

to improve the approximation.

	 d)	 Autoregressive Integrated Moving Average
(ARIMA): This model is a combination of three

models – AR (Autoregressive), MA (Moving

Average), and Integrated (the number of times

differencing is done to make data stationary).

	 e)	 Seasonal Autoregressive Integrated Moving
Average (SARIMA): SARIMA is an extension of

ARIMA that can handle seasonal effects present in

the data.

	 f)	 Exponential Smoothing: Exponential smoothing

methods forecast future values by weighting past

observations exponentially.

	 g)	 SES: Suitable for data without trend or seasonality.

	 h)	 Holt’s Linear Trend Model: Extends SES to capture

linear trends.

	 i)	 Holt-Winters Seasonal Model: Extends Holt’s

model to capture seasonality.

	 j)	 Fourier Analysis: Fourier Analysis decomposes a

time series into sinusoidal components. It is useful

for identifying cyclical patterns.

	 k)	 Kalman Filter: The Kalman filter is an algorithm

that uses a series of measurements over time,

containing statistical noise and other inaccuracies,

to estimate unknown variables.

Chapter 1 Time Series Meets Generative AI

6

	 l)	 Hidden Markov Models: Models time series data

as sequences of hidden states with observable

outcomes, useful for sequential data with unknown

state transitions.

�1.2.2  Multivariate

Multivariate time series analysis extends the techniques used in univariate

time series to multiple interrelated time series. Exogenous variables which

are external factors affecting the target variable are included to make

models robust. Examples are sales of the book impacted by exogenous

variables such as target audience, reviews, and current topics in trend.

	 a)	 Seasonal Autoregressive Integrated Moving
Average with Exogenous Regressors (SARIMAX):

SARIMAX is an extension of ARIMA which can

handle seasonal effects and also include external

influencing factors into the model.

	 b)	 Vector Autoregression (VAR): VAR models

generalize the univariate autoregressive model

to capture the linear interdependencies among

multiple time series.

	 c)	 Vector Autoregressive Moving Average (VARMA):

VARMA models extend VAR models by including

moving average terms.

	 d)	 Vector Autoregression Moving Average with
Exogenous Regressors (VARMAX): This model is

an extended version of VAR and VARMA models by

incorporating exogenous variables.

Chapter 1 Time Series Meets Generative AI

7

	 e)	 Vector Error Correction Model (VECM): VECM

is used for nonstationary time series that are

cointegrated. It extends the VAR model to include

error correction terms, capturing long-term

equilibrium relationships.

	 f)	 Generalized Autoregressive Conditional
Heteroskedasticity Models (GARCH): GARCH

models are designed to capture the changing

variances over time, especially useful for modeling

financial time series data which often exhibit

volatility clustering which are periods of oscillation

followed by a period of relative calm.

	 g)	 Convolutional Neural Networks (CNNs): CNNs

can be adapted to capture spatial dependencies in

multivariate time series by treating time series data

as images or sequences.

	 h)	 Recurrent Neural Network (RNN), Gated
Recurrent Unit (GRU), Long Short-Term Memory
(LSTM): A type of neural network that is well suited

for sequence prediction problems. These neural

networks can capture long-term dependencies in

multivariate time series.

	 i)	 Transformers: Originally developed for natural

language processing, transformers can be

adapted for multivariate time series by capturing

relationships between different variables and

leveraging attention mechanisms.

Chapter 1 Time Series Meets Generative AI

8

Note T hose who are completely new to time series and are
interested in understanding more about the above techniques can
refer to book [1].

�1.3  Introduction to Generative AI
“Even with its very limited current capability and its very deep
flaws, people are finding ways to use [AI tools] for great pro-
ductivity gains or other gains and understand the
limitations.”

—Sam Altman, CEO of OpenAI

“Some people call this artificial intelligence, but the reality is
this technology will enhance us. So instead of artificial intelli-
gence, I think we'll augment our intelligence.”

—Ginni Rometty, Former CEO of IBM

“The transformation opportunity that AI brings for all of soci-
ety, for governments, business, communities, and just human
beings, can only be achieved if we have strong public and pri-
vate sector collaboration.”

—Sabastian Niles, President and Chief Legal Officer at
Salesforce

These recent quotes from industry leaders highlight the excitement

and transformative potential of AI, particularly in its evolving forms like

generative AI. Generative AI is a subset of artificial intelligence because it

utilizes AI techniques, such as machine learning and pattern recognition,

to generate new content, like images and text; just as how a painter uses

brushes to create art, GenAI uses algorithms to create new content, making

Chapter 1 Time Series Meets Generative AI

9

it a specialized tool within the broader scope of AI. For example, ChatGPT,

a GenAI tool, uses AI algorithms to generate human-like text responses,

making it a subset of AI.

Figure 1-1.  AI and its subsets

GenAI involves leveraging AI to generate novel content, such as

text, images, music, audio, and videos, by employing machine learning

algorithms to identify patterns and relationships within human-created

content. These learned patterns are then used to create new content,

effectively mimicking human creativity.

The emergence of GenAI has significant implications for language

teaching and learning, which plays a vital role in today's globalized world.

Language proficiency enables individuals to communicate effectively,

express ideas clearly, and navigate diverse cultural contexts.

�1.4  Evolution from AI to Generative AI
Current generative artificial intelligence is still basic. Artificial

intelligence (AI) has seen rapid progress, inching us closer to a future

where machines exhibit creative capabilities. A prominent branch of AI,

Chapter 1 Time Series Meets Generative AI

10

known as generative AI, involves algorithms and models that can produce

original content, such as images, music, text, and even entire virtual

environments.

Despite the impressive advancements in generative AI, it remains in a

relatively early stage – akin to a first draft or initial version compared to its

potential future development. Although it showcases remarkable abilities,

numerous limitations and challenges must be overcome before generative

AI can fully realize its potential.

1940–1950: The birth of artificial intelligence (AI)

with the works of Alan Turing and Claude Shannon,

who proposed early models of computation based

on the idea that machines could one day mimic

human intelligence.

1951–1960: The Dartmouth Summer Research
Project on artificial intelligence is considered the

birth of AI as a field of study. Noam Chomsky

released Syntactic Structures, a book that lays out a

style of grammar called “Phase-Structure Grammar,”

which translates natural language into a format that

computers can understand and use.

1961–1970: Joseph Weizenbaum developed the first
chatbot, ELIZA, which can simulate a conversation

with a human by using a simple algorithm to

generate text responses to questions.

1980–1990: Neural networks are developed, which

can learn and remember patterns, providing a

model for understanding human memory.

Chapter 1 Time Series Meets Generative AI

11

2000–2010: Generative AI begins to gain

momentum, thanks to advancements in machine

learning and deep learning, which enable the

creation of neural networks that can process and

learn from data like the human brain.

2011–2013: Apple releases Siri, an AI and NLP

assistant that uses predefined commands to

perform actions and answer questions. Deep

learning techniques start gaining popularity.

2014: Generative Adversarial Networks (GANs) are

introduced by Ian Goodfellow and Yoshua Bengio,

a class of machine learning frameworks that can

generate new data based on a given training set.

2015: AlexNet wins ImageNet competition,

showcasing deep learning's power. The attention
model is introduced, which solves the problem of

traditional architectures that have to remember an

entire input sentence before translation.

2016–2017: AlphaGo defeats a human Go

champion, demonstrating AI's capabilities.

Transformers are introduced, revolutionizing

natural language processing.

2018: GPT-1 is released, marking the beginning

of generative AI. The generative pre-training of

a language model is republished on OpenAI’s

website, showing how a generative language model

can acquire knowledge and process dependencies

unsupervised based on pre-training on a large and

diverse set of data.

Chapter 1 Time Series Meets Generative AI

12

2019: OpenAI releases the complete version of its

GPT-2 language model, which was trained on a

dataset of more than nine million documents.

2020: Transformers become widely adopted in

natural language processing. AI-powered chatbots

become popular in customer service. GPT-3
released.

2021: DALL-E and Midjourney introduce

generative AI for images.

2022: Stability AI develops Stable Diffusion, a deep

learning text-to-image model that generates images

based on text descriptions. ChatGPT releases

GPT-3.5, an AI tool that can access data from the

Web up to 2021.

2023: TimeGPT, the first foundation model for

time series forecasting, is released. The generative
AI race begins, with Microsoft integrating

ChatGPT technology into Bing; Google releasing

its own generative AI chatbot, Bard; and OpenAI

releasing GPT-4.

2024: MIT launched a working group to explore

the future of work with generative AI, Runway

introduced Gen-2 for high-quality video
production, Google expanded access to its Gemini
AI models, and Stanford researchers developed the

SyntheMol AI model for creating new antibiotics

to combat resistant bacteria. Powerful foundation

models for time series covered in this book start

seeing wider adoption.

Chapter 1 Time Series Meets Generative AI

13

�1.5  Generative AI with Time Series
Over the last decade, machine learning techniques have gained popularity

and shown significant promise. Traditionally, statistical methods have

dominated time series analysis and forecasting, such as ARIMA, ETS,

MSTL, Theta, and CES, which have been widely utilized across diverse

domains for their reliability.

Over the past decade, machine learning models such as XGBoost

and LightGBM have gained traction, showing strong performance in

competitions and real-world applications. However, the emergence of deep

learning has marked a significant paradigm shift in time series analysis.

Deep learning methods have garnered popularity in academia and have

been increasingly adopted for large-scale industrial forecasting tasks.

Ongoing research in generative artificial intelligence is focused on

application to time series data and investigating the potential benefits of

foundational models. The foundation models are independently trained

on vast time series datasets as a large transformer model. The models are

developed to minimize the forecasting error. The model thus developed

uses the past data window to forecast the future.

The underlying idea is that attention-based mechanisms effectively

capture the diversity of past events, enabling accurate extrapolation

of potential future distributions. These developments may herald a

new phase in the field, deepening our understanding of temporal data

and enhancing the efficiency of forecasting and application in various

domains.

Transformers have demonstrated exceptional capability in modeling

long-range dependencies and interactions within sequential data, making

them highly attractive for time series modeling. Numerous transformer

variants have been developed to tackle specific challenges in this domain

and have proven successful in applications such as forecasting, anomaly

detection, and classification. Notably, addressing seasonality and

periodicity remains a crucial aspect of time series analysis.

Chapter 1 Time Series Meets Generative AI

14

TimeGPT is the first pre-trained foundation model for time series

forecasting that can produce accurate predictions across various domains

and applications without additional training. The architecture consists

of an encoder-decoder structure with multiple layers, each with residual

connections and layer normalization. Finally, a linear layer maps the

decoder’s output to the forecasting window dimension. The general

intuition is that attention-based mechanisms can capture the diversity

of past events and correctly extrapolate potential future distributions.

This innovation marks a significant breakthrough that paves the way for

a new forecasting paradigm. The new techniques discussed above are

more accessible, accurate, less time-consuming, and substantially reduce

computational complexity.

Ongoing advancements aim to enhance generated content's realism,

fidelity, and diversity across various formats, including images, text, audio,

and video. This involves developing more advanced generative models,

employing innovative training techniques, and establishing superior

evaluation metrics to assess output quality.

Few-shot and zero-shot learning advances will enable generative

models to tackle new tasks or domains with minimal or no training data,

reducing reliance on large annotated datasets and enhancing adaptability.

Ensuring the robustness and security of generative models against

adversarial attacks is crucial for their practical deployment. Future research

will focus on creating defenses against adversarial manipulation and

preventing the malicious use of generative AI. Additionally, developing

algorithms that can continuously learn and adapt over time, integrating

new data and knowledge while retaining previously learned information,

will be essential for sustained use in dynamic real-world environments.

As AI becomes increasingly pervasive, addressing ethical and societal

issues such as privacy, bias, fairness, and responsible use of synthetic

media will be imperative. This requires collaboration across disciplines

and the establishment of ethical guidelines, regulatory frameworks, and

accountability measures.

Chapter 1 Time Series Meets Generative AI

15

�1.6  Introduction to Large Language Models
A large language model (LLM) is a type of model developed by training

on massive amounts of data. This enables it to understand and generate

responses indistinguishable from human responses. These are especially

helpful for tasks like translation, summarization, writing creative content,

time series forecasting, and image and video generation.

LLMs have seen significant use in domains such as natural language

processing and computer vision. Beyond text, images, and graphics, LLMs

present substantial potential for analyzing time series data, benefiting

fields such as climate science, IoT, healthcare, traffic management,

audio processing, and finance. This survey paper provides an in-depth

exploration and a detailed taxonomy of the various methodologies

employed to harness the power of LLMs for time series analysis. We

address the inherent challenge of bridging the gap between LLMs' original

text-based training and the numerical nature of time series data, and we

explore strategies for transferring and distilling knowledge from LLMs to

numerical time series analysis.

Figure 1-2.  Large language models have recently been applied for
various time series tasks in diverse application domains from the
“Large Language Models for Time Series: A Survey” paper [3]

In the following chapters, we'll explore high-level theoretical concepts

that will provide enough insights to follow them with simple practical

implementation.

Chapter 1 Time Series Meets Generative AI

16

�1.7  Summary
In this chapter, we started with an introduction to time series analysis

by understanding its characteristics and various forecasting methods,

followed by a deep dive into evolution AI, followed by a gentle introduction

to generative AI and large language models.

Bull Whip Effect
This is a phenomena noticed in the supply chain. The orders placed

with the manufacturer tend to have a larger variability than sales to

end customers. This results in inaccurate demand projections to the

manufacturer or upstream supplier.

Cart Loading
This is a phenomena noticed in a retailer's supply chain. During sales

like Thanksgiving, customers tend to buy additional quantities of items

with a higher shelf life than their regular shopping habits. This is due to

discounts and offers on items. This results in challenges with retailer's

estimates of quantities to stock. This occurs due to customers’ changes in

shopping habits for the next couple of months or visits.

1.8  References

[1].	 Hands-on Time Series Analysis with Python: From Basics to

Bleeding Edge Techniques by B V Vishwas (Author), Ashish

Patel. https://doi.org/10.1007/978-1-4842-5992-4

[2].	 TimeGPT, Azul Garza, Cristian Challu, Max

Mergenthaler-Canseco. Nixtla San Francisco, CA,

USA. https://doi.org/10.48550/arXiv.2310.03589

[3].	 Transformers in Time Series: A Survey. https://doi.
org/10.48550/arXiv.2202.07125

Chapter 1 Time Series Meets Generative AI

https://www.amazon.com/B-V-Vishwas/e/B0DFZFS2Z4/ref=dp_byline_cont_ebooks_1
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_2?ie=UTF8&field-author=ASHISH+PATEL&text=ASHISH+PATEL&sort=relevancerank&search-alias=digital-text
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_2?ie=UTF8&field-author=ASHISH+PATEL&text=ASHISH+PATEL&sort=relevancerank&search-alias=digital-text
https://doi.org/10.1007/978-1-4842-5992-4
https://doi.org/10.48550/arXiv.2310.03589
https://doi.org/10.48550/arXiv.2202.07125
https://doi.org/10.48550/arXiv.2202.07125

17© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7_2

CHAPTER 2

Neural Networks
for Time Series
Chapter Goal: Learn how to leverage different types of neural network

architectures to solve time series problems.

In the previous chapter, we understood the evolution of artificial

intelligence and covered the basics of time series and the introduction to

generative AI and large language models.

In this chapter, let us understand techniques related to time series

analysis using neural networks. We will focus on simple perceptron,

multilayer perceptron, convolutional neural network, recurrent neural

network, long short-term memory, and autoregressive and neural basis

expansion analysis for interpretable time series.

�2  Introduction to Perceptron
In the following sections, let us cover some techniques related to time

series analysis using neural networks. We will be building up on some

basics here before working with foundation models. Foundation models

are also a type of neural network models. The first model that comes to our

mind is a perceptron. Let us understand what perceptron and multilayer

perceptron are and implement a use case.

https://doi.org/10.1007/979-8-8688-1276-7_2#DOI

18

A perceptron may be understood as the simplest form of neural

network. It is a type of neural network with a single neuron. The

perceptron algorithm is among one of the earliest algorithms used for

supervised learning.

Figure 2-1.  Perceptron example

The intuition behind the working of a perceptron is that it accepts

several binary inputs; each input is multiplied by a weight. Finally, add

all the weighted inputs. This value is passed through a step function. This

results in a single binary output.

The step function results in one if the input is greater than or equal to

zero, and zero for all other inputs. Hence, the step function is useful for

binary classification. This function is used in threshold-based models and

not in the basic perceptron.

Chapter 2 Neural Networks for Time Series

19

�2.1  Technical Overview of a Perceptron
As a first step, the perceptron receives inputs. The inputs could be

independent variables/features. These inputs are combined (multiplied)

with a set of weights. The perceptron’s formula can be expressed as

	 output f w x w x w x bn n= + + … + +()∗ ∗ ∗
1 1 2 2 	 (Eq. 2.1)

where

w1, w2, …, wn are the weights.

x1, x2, …, xn are the input signals.

b is the bias, which allows the activation function to be shifted to the

left or right, to better fit the data.

f is the activation function, typically a step function that outputs either

zero or one.

The perceptron’s decision-making process is binary. If the sum of the

weighted inputs plus the bias is greater than zero, the perceptron outputs

a one; otherwise, it outputs a zero. This binary step function is what allows

the perceptron to classify input data.

From the above equation, we can understand that weights are a set of

values associated with the connections between neurons. They determine

the strength of these connections. They control the influence that one

neuron’s output has on another neuron’s input. Weights may be understood

as the coefficients of the input variables that adjust the impact of incoming

data. They can increase or decrease the importance of specific information.

During the training phase of a neural network, the weights are adjusted

in iterations. This helps in reducing the difference between the model’s

prediction and the actual outcomes to a minimum. This process helps in

fine-tuning the network’s ability to make accurate predictions.

Weights are the neural network’s mechanism to learn from data.

Weights capture the relationships between input features and the target

output feature. This allows the network to generalize and make predictions

on new, unseen data.

Chapter 2 Neural Networks for Time Series

20

In Equation 2.1, we can see a value b added at the end. This bias value

is a constant associated with each neuron. Unlike weights, biases are not

combined with specific inputs but are added to the neuron’s output. Bias

serves as a form of offset or threshold, helping neurons to activate even

when the weighted sum of their inputs is not sufficient on its own. They

introduce a level of adaptability that ensures the network can learn and

make predictions effectively.

The result of the weighted sum plus bias is passed through an

activation function. This function determines whether the neuron should

activate or remain dormant based on the calculated value.

While training the neural network, the values of weights and bias

are adjusted through an optimization process. The most frequently

used technique is named gradient descent, and it is used along with a

learning algorithm called backpropagation. Using this gradient descent

optimization method, the gradient of the error is computed.

This computation is performed with respect to the values of weights

and bias. The gradient of the error is nothing but difference between

the predicted value and the actual value. This gradient points toward

the steepest decrease in error. The neural network updates the values of

weights and bias in small steps. The intention is minimizing the error. This

entire process is repeated until the neural network reaches a state where

the prediction error is minimal.

Now a question may arise – what are the starting values of weights?

Before the start of the training, weights in an ANN (Artificial Neural

Network) must be initialized to some values. Proper weight initialization

plays a key role in the convergence and performance of the network. The

most common initialization method is random initialization. As the name

says, the weights are assigned small random values.

Chapter 2 Neural Networks for Time Series

21

�2.2  What Is Multilayer Perceptron?
In the previous section, we learned how a perceptron works. In this

section, let us understand the multilayer perceptron (MLP).

An MLP is a neural network that has at least three layers: an input layer,

a hidden layer, and an output layer. Each layer performs operations on the

outputs of its preceding layer.

Figure 2-2.  Multilayer perceptron

In Figure 2-2, we use the following notations:

aiˡ is the activation (output) of neuron i in layer l.

wijˡ is the weight of the connection from neuron j in

layer l1 to neuron i in layer l.

biˡ is the bias term of neuron i in layer l.

The hidden layers are nothing but intermediate layers between the

input and the output layers.

Chapter 2 Neural Networks for Time Series

22

Now that we have understood simple neural networks, let us explore

CNN-based architecture and how it can be leveraged for time series

forecasting.

For time series analysis in this book, one of the libraries that will be

used is the NeuralForecast library. It is a library for time series forecasting

developed in Python.

This library has built-in datasets, statistical tests, benchmarks, utilities

for evaluation, and data loading. There are many reasons to use this

library – fast and accurate implementations of state-of-the-art models,

support for exogenous variables and static covariates, probabilistic

forecasting, and more.

You can find more details at https://github.com/Nixtla/
neuralforecast.

Note E xtra attention should be given while setting up the Python
package for the code to work in each notebook.

�2.2.1  Multilayer Perceptron in Action

Having established a high-level theoretical foundation of MLP, we shall

now translate abstract concepts into practical code implementation.

Help an airline company to estimate the number of air passengers

per month. Let’s leverage a dataset with a monthly passenger count for

12 years. This dataset is used to train the model and then forecast the

passenger traffic for the subsequent year.

Note T he same dataset is used throughout the book for most of the
univariant examples.

Chapter 2 Neural Networks for Time Series

https://github.com/Nixtla/neuralforecast
https://github.com/Nixtla/neuralforecast

23

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import MQLoss,
DistributionLoss
from neuralforecast.models import MLP

Define the calculate_error_metrics function which helps in assessing

the performance of the trained model.

Note T his function is referred to throughout the book.

def calculate_error_metrics(actual, predicted, num_
predictors=1):
 # convert inputs are numpy arrays
 actual = np.array(actual)
 predicted = np.array(predicted)
 # Number of observations
 n = len(actual)
 # Calculate MSE
 mse = mean_squared_error(actual, predicted)
 # Calculate RMSE
 rmse = np.sqrt(mse)
 # Calculate MAPE
 mape = mean_absolute_percentage_error(actual, predicted)
 # Calculate R-squared

Chapter 2 Neural Networks for Time Series

24

 r2 = r2_score(actual, predicted)
 # Calculate Adjusted R-squared
 �adjusted_r2 = 1 - ((1 - r2) * (n - 1) / (n - num_

predictors - 1))
 print(f'MSE : {mse}')
 print(f'RMSE : {rmse}')
 print(f'MAPE : {mape}')
 print(f'r2 : {r2}')
 print(f'adjusted_r2 : {adjusted_r2}')

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

train_data = Y_df.head(132)
test_data = Y_df.tail(12)

Chapter 2 Neural Networks for Time Series

25

Let’s initialize and train the multilayer perceptron by understanding

key parameters.

h is the forecast horizon.

input_size is considered the autoregressive inputs (lags), y=[1,2,3,4]

input_size=2 -> lags=[1,2].

Loss is PyTorch module, instantiated train loss class from the losses

collection.

scaler_type is the step size between each window of temporal data.

learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every

validation loss check.

�early_stop_patience_steps is the number of validation iterations

before early stopping.

horizon = 12
model = MLP(h=horizon, input_size=12,
 �loss=DistributionLoss(distribution='Normal',

level=[80, 90]),
 scaler_type='robust',
 learning_rate=1e-3,
 max_steps=200,
 val_check_steps=10,
 early_stop_patience_steps=2)

fcst = NeuralForecast(models=[model],freq='M')
fcst.fit(df=train_data, val_size=12)

Predict the next defined horizon:

Y_hat_df = fcst.predict()
Y_hat_df.head()

Chapter 2 Neural Networks for Time Series

26

The MLP column contains the predicted values as depicted below:

Measure the model’s accuracy:

calculate_error_metrics(test_data[['y']],Y_hat_df['MLP'])

Visualize the predictions:

train_data.set_index('ds',inplace =True)
Y_hat_df.set_index('ds',inplace =True)
test_data.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = train_data["y"]
y_pred = Y_hat_df['MLP']
y_test = test_data["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)

Chapter 2 Neural Networks for Time Series

27

plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-3.  Actual vs. predicted plot

Figure 2-3 helps us to appreciate that the air passenger count predicted

by our model is very close to reality.

�2.3  CNN-Based Architecture for Time Series
Convolutional neural networks are a type of neural nets best suited

for computer vision and speech processing. This type of network has a

minimum of three layers – convolutional layer, pooling layer, and fully

connected layer. In the convolutional layer, the features are extracted

by applying convolutional filters while retaining the spatial relationship

between pixels. The operations performed in this layer result in

dimensionality reduction without impacting essential features. These

feature maps are passed on to the pooling layer. In the pooling layer,

downsampling is done on the feature maps, which results in reducing

their spatial dimensions while retaining essential features. This helps in

reducing overfitting and makes the model immune to small changes. In

a fully connected layer, the final classification task is performed based on

extracted features from the previous layers. CNN architectures are primarily

used in image processing applications in the medical domain [5], industrial

automation, quality control, autonomous driving, and time series.

Chapter 2 Neural Networks for Time Series

28

In this section, we will be covering different CNN-based forecasting

techniques like WaveNet, TCN (temporal convolutional network), and

BiTCN (bidirectional temporal convolutional network).

�2.3.1  WaveNet for Time Series Forecasting

Let us explore WaveNet architecture, a deep neural network that can

be used for time series forecasting. WaveNet was primarily developed

for music and audio generation. WaveNet DNN may be classified as a

generative model which is based on a dilated causal convolutional neural

network. Let us explore modifying the WaveNet model for time series

forecasting. In order to learn long-term dependencies with the time series

data, it uses stacked layers of dilated convolutions.

Dilated convolutions allow WaveNet to efficiently learn long-range

relationships in the data without sacrificing computational efficiency.

WaveNet’s DNN structure is designed in a manner that the model only

uses past values to predict future values (causality), all this while keeping

intact the temporal dependencies of the data. Temporal dependency

involves the impact of previous behavior on current behavior. Temporal

dependencies are relationships between past and future events in a time

series data. They can be useful for predicting outcomes and understanding

patterns.

�2.3.2  Technical Overview of WaveNet

The WaveNet architecture uses a combination of complex mathematical

operations to generate and model sequences. Understanding the math

behind WaveNet architecture requires deeper understanding of its three

constituent components: (a) dilated convolutions, (b) causal convolutions,

and (c) residual connections. Let’s understand the math behind individual

components of WaveNet:

Chapter 2 Neural Networks for Time Series

29

	 a)	 Dilated Convolutions

Dilated convolutions help the model to have a larger

receptive field. The interesting part is that this is

achieved without increasing the number of parameters

or the computational complexity significantly.

Given a 1D convolution operation with a kernel K

and dilation rate, the dilated convolution operation

can be expressed as

Figure 2-4.  Dilated convolution with a dilation rate of 2

The dilation rate d effectively expands the kernel’s

receptive field. For example, a dilation rate of 2 means

that the kernel will have gaps of 1 between each

weight. This helps the model to cover a larger input

span with fewer parameters.

Chapter 2 Neural Networks for Time Series

30

	 b)	 Causal Convolutions

Causal convolutions ensure that the model does

not use future values to predict past values.

This is necessary for time series and sequence

prediction tasks.

For a causal convolution, the output at time t only

depends on the current and past inputs. This is

achieved by padding the input sequence with zeros

at the beginning. Mathematically, it is expressed as

Figure 2-5.  Depiction of casual convolution

	 c)	 Residual Connections

Residual connections help in training the neural

network by mitigating the vanishing gradient

problem. They also help the gradients to flow

through the network more effectively.

Chapter 2 Neural Networks for Time Series

31

Figure 2-6.  Depiction of residual block and complete architecture [4]

Learning of residual mapping by the model is taken care of by residual

connection. This is achieved by adding the input to the output of the

convolution block.

The WaveNet model achieves a large receptive field by deploying

multiple dilated causal convolutions. The residual connections help in

building deeper networks. They also improve the gradient flow. Gated

activations help capture complex temporal patterns by introducing

nonlinearity and enhancing modeling capabilities. For audio generation,

the final output layer typically uses a softmax function. This helps to

generate probabilities for the next value in the sequence.

In order to leverage the WaveNet DNN model for time series

forecasting, the input needs to be a time series data instead of waveform.

The input data could be original values, derived feature values, or

Chapter 2 Neural Networks for Time Series

32

normalized values. This can be used to predict the next time step or

series of future values. The preferred loss function is MSE (mean squared

error) or MAE (mean absolute error). To determine the optimal WaveNet

architecture for our particular time series dataset, it is necessary to

perform hyper-parameter tuning, specifically adjusting the layers,

filters, and dilation rate. In real-world applications, we were able to

improve the results of predictions by combining the WaveNet model with

autoregressive models.

Consider using this model when computation, memory, and power

consumption are not a challenge. You should also be having access

to a large amount of data. This model shines when there are temporal

dependencies in the data. This model handles most of the types of time

series data and can be adapted to various time series forecasting use

cases. One of the downsides of this model is that it is challenging to tune

hyperparameters.

�2.3.3  WaveNet in Action

AutoGluon is an open source library for automating machine learning

tasks. This library supports training and deployment of ML and deep

learning models. It provides support for time series forecasting models

which are used throughout the book for implementing few techniques.

Please refer to [1] for more details.

Now that we have understood the theoretical aspects of WaveNet, let

us see a practical implementation.

Import libraries:

import autogluon
from neuralforecast.utils import AirPassengersDF
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from autogluon.timeseries import TimeSeriesPredictor,

Chapter 2 Neural Networks for Time Series

33

TimeSeriesDataFrame
from autogluon.timeseries.models import WaveNetModel
import pandas as pd

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

Convert the unique_id column to categorical so that we can convert to

the format which AutoGluon understands:

Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df['unique_id'] = 'airline_1'

AutoGluon expects time series data in long format. Each row of the

data frame contains a single observation (time step) of a single time series

represented by

•	 Unique ID of the time series item_id as int or str

•	 Timestamp of the observation timestamp as a pandas.

Timestamp

Chapter 2 Neural Networks for Time Series

34

•	 Compatible format

•	 Numeric value of the time series target

data = TimeSeriesDataFrame.from_data_frame(
 Y_df,
 id_column="unique_id",
 timestamp_column="ds"
)
data.tail()

Split data into train and test:

train_data = data.head(132)
test_data = data.tail(12)

Create a TimeSeriesPredictor object to forecast future values and

explicitly define a WaveNet model to be used:

predictor = TimeSeriesPredictor(target='y',
 prediction_length=12,
 eval_metric="MASE",).fit
(train_data,presets='best_quality', hyperparameters={'WaveNetMo
del': {}},time_limit=600)

Chapter 2 Neural Networks for Time Series

35

Predict the next defined horizon:

predictions = predictor.predict(train_data)
predictions.head()

The mean is the predicted column of interest.

Measure the model’s accuracy:

calculate_error_metrics(test_data['y'],predictions['mean']
['airline_1'].tail(48))

Visualize the predictions:

import matplotlib.pyplot as plt
plt.figure(figsize=(20, 3))
item_id = "airline_1"
y_past = train_data.loc[item_id]["y"]
y_pred = predictions.loc[item_id]
y_test = test_data.loc[item_id]["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred["mean"], label="Mean forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)

Chapter 2 Neural Networks for Time Series

36

plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.fill_between(
 y_pred.index, y_pred["0.1"], y_pred["0.9"], color="red",
alpha=0.1, label=f"10%-90% confidence interval"
)
plt.legend();

Figure 2-7.  Actual vs. predicted plot

Figure 2-7 helps us to appreciate that the air passenger count

predicted by our model is not close to reality. This model is best used

to capture complex relationships within the signals like in the case of

electroencephalogram time series data.

�2.4.1  Temporal Convolutional Networks

The temporal convolutional network (TCN) is a type of convolutional

neural network architecture best suited for use cases involving sequential

data. The models built on these architectures work by exploiting the

capabilities of convolution operations mapped to temporal dimension.

This helps in learning patterns in the sequential data and also captures

long-range dependencies.

Temporal dimension is the dimension in a dataset that represents

progression in time. In our area of interest, i.e., the time series data,

it can be identified by looking at columns in which observations are

ordered chronologically. For example, in the dataset of air travel, the year

Chapter 2 Neural Networks for Time Series

37

represents a temporal dimension. In time series forecasting, the temporal

dimension helps to understand the effects of past observations on

future values.

In machine learning models like the CNN, 1D convolutions can be

used to capture local patterns over time. This is achieved by learning

relationships between elements at progressive time intervals. In

the WaveNet architecture discussed in the previous section, dilated

convolutions were used to extend the receptive field. This helps to capture

longer-term dependencies without increasing the computational load.

Before the advent of TCNs, an approach where CNNs were combined

with RNNs was used. CNNs helped to capture spatial relationships,

while RNNs helped to capture temporal relationships. However, with the

addition of GPU and TPU processors, TCNs can capture spatiotemporal

relations simultaneously with high degree of parallelism. Convolution

operations can be performed in parallel, making TCNs more efficient

than recurrent networks. Remember that RNNs are inherently sequential

networks.

�2.4.2.1  Technical Overview of TCN

In Figure 2-8, we can see a TCN with multiple layers, each corresponding

to exponentially increasing dilation factors d = 1, 2, 4. The input layer is

represented by blue circles, the hidden layer is represented by red circles,

and the output layer is represented by yellow circles.

Chapter 2 Neural Networks for Time Series

38

Figure 2-8.  Architecture of TCN [6]

The advantage of using TCN is that this model can capture longer

dependencies compared to LSTM or RNN. However, it may be noted

that newer models like transformers have much better range. One of the

downsides of using this model is that TCNs could be computationally

expensive, as seen in long sequences. Let’s break it down further and

understand.

Input
The input could be thought of as a matrix of dimensions L X F where L

and F are the length and features of the input time series dataset.

Convolution Layer
The convolution layer applies a filter W with dimensions K x F to the

time series data. Here, K is the kernel size, F is the number of features,

and the length of stride is denoted by S. Convolution between filters (each

filter) and the input sequence results in an output sequence of length T

which is the length of the series.

Padding
This ensures that the output sequence has the same length as the input

sequence. Zero padding adds zeros to the beginning and end of the input

sequence.

Chapter 2 Neural Networks for Time Series

39

Dilated Convolutions
These help the filter to capture long-range temporal dependencies.

This is done by increasing the spacing between filter weights. The spacing

is controlled by dilation factor D.

Activation Function
The output of each convolution layer is passed through an activation

function, such as ReLU or sigmoid, to introduce nonlinearity.

Residual Connections
These allow information to flow directly from previous layers to later

layers. This helps to prevent vanishing gradients and improve training

stability.

Pooling
Pooling layers reduce the dimensionality of the feature maps by

selecting the maximum or average value within a sliding window. This

helps to extract salient features and reduce computational costs.

Output Layer
The TCN outputs a prediction for each time step. For our task of

forecasting, we could use a linear function for the output layer.

where

•	 W is the weight matrix of the final linear layer.

•	 b is the bias vector.

•	 H(T) is the feature vector from the last

convolution block.

•	 ŷ (T+1) is the predicted value for the next time step.

Loss Function
This measures the difference between the predicted output and the

actual output. For our task, we could use the mean squared error (MSE).

Chapter 2 Neural Networks for Time Series

40

Optimization
The model parameters (weights and biases) are computed using

gradient descent algorithms like Adam or SGD (Stochastic Gradient

Descent). This helps minimize the loss function.

Another important concept to know about the TCN is the input

receptive field (IRF). IRF is the maximum time span for which a single

output neuron can receive information from the input sequence.

The input receptive field of a TCN is dependent on three parameters:

(a) convolution kernel size, (b) number of hidden layers, and (c)

dilation factor.

The predictions are obtained by transforming the hidden states

into contexts c[t+1:t+H]​, which are decoded and adapted into ŷ ​[t+1:t+H], [q]​

through MLPs.

where ht​ is the hidden state for time t, yt​ is the input at time t, ht−1​ is the

hidden state of the previous layer at t−1, x(s) are static exogenous inputs,

xt
(h)​ are historic exogenous, and x[:t+H]

(f)​ are future exogenous available at

the time of the prediction.

�2.4.2.2  TCN in Action

Having established a high-level theoretical foundation of TCN, we shall

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import GMM, MQLoss,
DistributionLoss

Chapter 2 Neural Networks for Time Series

41

from neuralforecast.auto import TCN
from neuralforecast.tsdataset import TimeSeriesDataset
from ray import tune

Load the AirPassenger dataset and split data into train and test:

from neuralforecast.utils import AirPassengersDF as Y_df

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Let’s initialize and train the model (TCN) by understanding its key

parameters.

h is the forecast horizon.

input_size is the maximum sequence length for truncated train

backpropagation. Default –1 uses all history.

Loss is the instantiated train loss class.

learning_rate is the learning rate between (0, 1).

kernel_size is the size of the convolving kernel.

dilations controls the temporal spacing between the kernel points,

also known as the à trous algorithm.

encoder_hidden_size is the unit for the TCN’s hidden state size.

context_size is the size of the context vector for each timestamp on the

forecasting window.

decoder_hidden_size is the size of the hidden layer for the MLP

decoder.

decoder_layers is the number of layers for the MLP decoder.

max_steps is the maximum number of training steps.

scaler_type is the type of scaler for temporal input normalization; see

temporal.

hist_exog_list is the historic exogenous columns.

Chapter 2 Neural Networks for Time Series

42

horizon = 12
fcst = NeuralForecast(
 models=[TCN(h=horizon,
 input_size=-1,
 �loss=GMM(n_components=7, return_params=True,

level=[80,90]),
 learning_rate=5e-4,
 kernel_size=2,
 dilations=[1,2,4,8,16],
 encoder_hidden_size=128,
 context_size=10,
 decoder_hidden_size=128,
 decoder_layers=2,
 max_steps=500,
 scaler_type='robust',
 #futr_exog_list=['y_[lag12]'],
 hist_exog_list=None,
 #stat_exog_list=['airline1'],
)
],
 freq='M'
)

fcst.fit(df =Y_train_df)

Predict for the next defined horizon:

y_hat = fcst.predict()
y_hat.set_index('ds',inplace =True)
y_hat.head()

Chapter 2 Neural Networks for Time Series

43

TCN is the predicted column of interest.

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],y_hat[['TCN']])

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = y_hat[['TCN']]
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Chapter 2 Neural Networks for Time Series

44

Figure 2-9.  Actual vs. predicted plot

Figure 2-9 helps us to appreciate that the air passenger count predicted

by our model is close to reality.

�2.4.3  Bidirectional Temporal Convolutional Network

In the previous section, we understood the working of TCN. In this section,

let us understand a CNN architecture that leverages the predictive power

of combining two TCN networks.

While approaches that follow transformer architecture (covered in

upcoming chapters) deliver cutting-edge performance, it comes at the cost

of high compute and memory. This is due to the fact that transformer-

based approaches learn a large number of parameters. The BiTCN

handles this challenge by combining two TCNs. Bidirectional temporal

convolutional network (BiTCN) architecture is developed by using two

temporal convolutional networks for forecasting. The first network, called

the forward network, encodes future covariates of the time series. The

second network, called the backward network, encodes past observations

and covariates. This technique helps in preserving temporal information

of sequence data. The parameters of the output distribution are jointly

estimated using these two networks. It is computationally more efficient

than RNN methods like LSTM. Compared to newer architectures like

transformer-based methods, it requires parameters of lower order

magnitude (lower space complexity). BiTCN falls under the category of

univariate models.

Chapter 2 Neural Networks for Time Series

45

The benefits of a lesser number of parameters directly translate to

lower memory and computing costs, besides lower cost of deployment.

Choose this model when you are looking for a model with a lesser number

of hyperparameters to tune and a smaller number of trainable parameters.

�2.4.3.1  What Are Future Covariates?

The variables that are not part of the current dataset, in a time series model

that helps to explain or predict the outcome variable in the time series

forecasting model, are called future covariates. These external variables

are anticipated to influence the predictions in future. These variables help

to improve forecasting results in future by adding information that could

influence the outcome. For example, in forecasting flight delays, past

airport data (historical trends) could be supplemented with local weather

data and upcoming major holidays to improve predictions.

Covariates are not necessarily time dependent; they may be time-

independent variables too. While weather and holidays are examples

of time-dependent covariates, others like gender and weight are time

independent.

We discussed future covariates. Let’s now peep into the past – past

covariates.

In the context of time series forecasting, past covariates are the external

variables (outside the dataset) that influenced time series forecasting

in the past. To understand the effect of external variables on historical

trends, past covariates may be used, for example, climatic conditions or

maintenance history that could have influenced the past delays in flights.

The difference between past covariates and future covariates, discussed

in the previous section, is that the latter are predictors of future outcomes,

while the former provide additional context for interpreting forecasts done

in the past.

Chapter 2 Neural Networks for Time Series

46

�2.4.3.2  Technical Overview of BiTCN

Let’s explore the BiTCN, which is an extension of the TCN we discussed

earlier:

	 (a)	 Bidirectional Processing

BiTCN may be understood by extending the TCN

model, i.e., by applying convolutions in both

forward and backward directions. The first one

processes the sequence from start to end (forward)

and the other from end to start (backward).

Output of the forward pass:

Output of the backward pass:

	 (b)	 Combining Forward and Backward Outputs

The outputs from both directions are combined to produce the

final output.

The combined operation is usually done by element-wise addition.

Figure 2-10 shows using three stacked TCN layers to enable

conditioning the forecast at t = t0 + 1 on both past and future information.

This uses both forward and backward dilated convolutions with kernel size

3 and dilation 2i−1 for the ith layer.

Chapter 2 Neural Networks for Time Series

47

Figure 2-10.  BiTCN architecture [2]

The blue circles (columns 1-11) represent the input sequence, the

yellow circles (columns 12-18) the output sequence, and the green circles

(columns 19-25) the additional future covariates on which the forecast can

be conditioned.

The red connections (arrows in the middle and left side of the diagram)

indicate the backward-looking convolutions, and the purple connections

(arrows depicted in the right side of the diagram) are the forward-looking

convolutions. For clarity purposes, some inner convolutional connections

are shown with dashed lines.

�2.4.3.3  BiTCN in Action

Having established a high-level theoretical foundation of BiTCN, we shall

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast

Chapter 2 Neural Networks for Time Series

48

from neuralforecast.models import BiTCN
from ray import tune
from neuralforecast.losses.pytorch import GMM, DistributionLoss
from neuralforecast.tsdataset import TimeSeriesDataset

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger data. Separate the last 12 months of data for training and use the

remaining 11 years of data and try to predict.

from neuralforecast.utils import AirPassengersDF as Y_df
Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Let’s initialize and train the BiTCN model by understanding its key

parameters.

H is the forecast horizon.

input_size is considered the autorregresive inputs (lags), y=[1,2,3,4]

input_size=2 -> lags=[1,2].

Loss is the instantiated train loss class from the losses collection.

max_steps is the maximum number of training steps.

scaler_type is the type of scaler for temporal input normalization; see

temporal.

hist_exog_list is the historic exogenous columns.

horizon = 12
fcst = NeuralForecast(
 models=[
 BiTCN(h=horizon,
 input_size=12,
 �loss=GMM(n_components=7, return_params=True,

level=[80,90]),
 max_steps=100,

Chapter 2 Neural Networks for Time Series

49

 scaler_type='standard',
 hist_exog_list=None,

),
],
 freq='M'
)
fcst.fit(df=Y_train_df)

Predict the next defined horizon:

y_hat = fcst.predict()
y_hat.set_index('ds',inplace =True)
y_hat.head()

BiTCN is the predicted column of interest.

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],y_hat[['BiTCN']])

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)

Chapter 2 Neural Networks for Time Series

50

Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = y_hat[['BiTCN']]
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-11 helps us to appreciate that the air passenger count

predicted by our model is not close to reality. Please note that BiTCN may

not always perform better than TCN due to some factors like overfitting,

complexity, and some properties of the dataset.

Figure 2-11.  Actual vs. predicted plot

�2.5  Neural Networks for Sequential Data
In this section, let us discuss neural network architectures that are better

suited for sequential data.

Chapter 2 Neural Networks for Time Series

51

�2.5.1  Recurrent Neural Network

In this section, let us start our exploration with a type of deep neural

network architecture called recurrent neural network (RNN). We will try

to understand why it works better with datasets that deal with sequential

data like time series data. Sequential data is a type of data where there is

a specific order (sequence) in the data. Some examples of sequential data

are time series data, speech, audio, and text.

In the RNN architecture, the output from the previous step becomes

input for the current step. So, no points for guessing why sequence is

important for RNN architecture. This is in contrast to the traditional neural

networks where the inputs and outputs from each layer are independent

of each other. The emergence of RNN architecture was majorly due to NLP

(natural language processing) use cases that required prediction of the

next word. RNN provided a solution to this problem by making use of a

hidden layer. This layer works as memory, as it is used to remember some

information about the sequence.

�2.5.1.1  Technical Overview of RNN

In feedforward neural networks, there is only one direction for the data to

move from the input layer to the output layer, without any loops. Because

of this forward-moving pattern, the data of previous layers will be lost, and

no internal memory essentially each input is processed independently.

However, in RNN, the data goes through a loop, which means it can

remember the past as well as the new data. Information can flow in both

directions, with feedback loops that allow the network to maintain a

memory of previous inputs.

Chapter 2 Neural Networks for Time Series

52

Figure 2-12.  Recurrent neural network and feedforward
neural network

The architecture of RNNs remains the same as any other deep neural

network’s input and output architecture. The change may be noted in the

way information propagates from input to output. Each dense network

within a deep neural network has different sets of weights. In contrast,

the weight matrices remain the same across the entire recurrent neural

network – in other words, same weight matrices across several time steps.

For an input time series x={x1, x2, .., xn}, the RNN computes the hidden

state sequence h = {h1, h2,.., hn} as well as the output sequence y = {y1;

y2;..; yn} iteratively.

The set of equations used to compute the hidden state sequence and

output sequence is

	 h f W x W h bht hx n hh n= + +()−1 	

	
y g W h bt yh n y= +()

	

Chapter 2 Neural Networks for Time Series

53

Figure 2-13.  An unrolled RNN

where

Whx is the input-hidden weight.

Whh is the hidden-hidden weight matrix.

Wyh is the hidden-output weight matrix

The input layer x takes in the input to the neural network and

processes it and passes it to the middle layer. The middle layer h can be

a stack of multiple hidden layers, each with its own activation functions,

weights, and biases, and y is the output layer.

The RNN will standardize the different activation functions, weights,

and biases so that each hidden layer has the same parameters. Then,

instead of creating multiple hidden layers, it will create one and loop

over it as many times as required. RNN uses the hidden state hn at time

step n to memorize. The hidden state helps to capture information from

the previous steps which helps in better understanding of temporal

relationships within data.

Despite the benefits discussed earlier, RNNs have two major

challenges: exploding gradient and vanishing gradient. Exploding gradient

is a phenomenon that occurs when weights are assigned very large

values. Vanishing gradient is a phenomenon that occurs when weights

Chapter 2 Neural Networks for Time Series

54

are assigned very small value. This stops the learning process in a neural

network. Another issue with RNN is its inability to handle long-range

dependencies. Multiple developments have happened to overcome these

issues, and one of them is LSTM that we will discuss in the next section.

�2.5.1.2  RNN in Action

Having established a high-level theoretical foundation of RNN, we shall

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import GMM, MQLoss,
DistributionLoss
from neuralforecast.models import RNN
from neuralforecast.tsdataset import TimeSeriesDataset
from ray import tune

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF as Y_df

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Chapter 2 Neural Networks for Time Series

55

Let’s initialize and train the model (RNN) by understanding its key

parameters.

H is the forecast horizon.

input_size is the maximum sequence length for truncated train

backpropagation. Default –1 uses all history.

inference_input_size is the maximum sequence length for truncated

inference. Default –1 uses all history.

Loss is the instantiated train loss class from the losses collection.

scaler_type is the step size between each window of temporal data.

encoder_n_layers is the number of layers for the RNN.

encoder_hidden_size is the unit for the RNN’s hidden state size.

context_size is the size of context vector for each timestamp on the

forecasting window.

decoder_hidden_size is the size of the hidden layer for the MLP

decoder.

decoder_layers is the number of layers for the MLP decoder.

max_steps is the maximum number of training steps.

horizon = 12
fcst = NeuralForecast(
 models=[RNN(h=horizon,
 input_size=-1,
 inference_input_size=24,
 loss=MQLoss(level=[80, 90]),
 scaler_type='robust',
 encoder_n_layers=2,
 encoder_hidden_size=128,
 context_size=10,
 decoder_hidden_size=128,
 decoder_layers=2,
 max_steps=300,
 #futr_exog_list=['y_[lag12]'],

Chapter 2 Neural Networks for Time Series

56

 #hist_exog_list=['y_[lag12]'],
 #stat_exog_list=['airline1'],
)
],
 freq='M'
)

fcst.fit(df=Y_train_df, val_size=12)

Predict for the next defined horizon.

y_hat = fcst.predict()
y_hat.set_index('ds',inplace =True)
y_hat.head()

RNN-median is the predicted column of interest.

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],y_hat[['RNN-median']])

Chapter 2 Neural Networks for Time Series

57

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = y_hat[['RNN-median']]
y_test = Y_test_df["y"
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-14 helps us to appreciate that the air passenger count

predicted by our model is close to reality.

Figure 2-14.  Actual vs. predicted plot

�2.5.2  Long Short-Term Memory

The long short-term memory (LSTM) architecture is a modification to the

RNN architecture to allow additional signal paths. These additional paths

help in bypassing many processing steps encountered at each stage of the

network. This modification helps in remembering information over a large

number of time steps. While this modification improves the performance

Chapter 2 Neural Networks for Time Series

58

compared to the RNN, it also introduces additional complexity. This

complexity has an impact on training speed compared to RNNs. Popular

tools like Apple’s Siri and Google’s AlphaGo were based on LSTM.

�2.5.2.1  Technical Overview of LSTM

Figure 2-15.  Architecture of LSTM

From Figure 2-15, it is evident that for the input for each computational

step, three values are considered. The values are (a) current input x(t), (b)

past value of hidden state h(t-1), and (c) past value of short-term memory

c(t-1). Next, these inputs pass through three gates – forget gate, input gate,

and output gate – before obtaining a new cell state c(t) and hidden state

h(t). Let us understand these three gates in some more detail.

	 (a)	 Forget Gate

In this gate, a decision is taken with regard to which

current and previous information is retained and

discarded. The decision is taken on past values of

the hidden state and values of the current input.

These values are passed through a sigmoid function.

Chapter 2 Neural Networks for Time Series

59

Those who are familiar with logistic regression

would recall that the sigmoid function’s output

ranges between 0 and 1. In our context, the value 0

means that previous information can be discarded.

This is due to possible availability of new, more

important information. The value 1 means that the

previous information is preserved. The resultant

output of the sigmoid function is multiplied by the

current cell state so that knowledge that is no longer

needed is discarded since it is multiplied by 0.

	 (b)	 Input Gate

In this gate, a decision is taken to evaluate the

current input to solve the task. To achieve this,

the current input is multiplied by the hidden state

and the weight matrix of the previous run. All the

information that appears important in the input gate

is then added to the cell state. The resultant forms

the new cell state c(t). This new cell state becomes

the current state of the long-term memory to be

used in the subsequent run.

	 (c)	 Output Gate

In this gate, the output of the LSTM model is

calculated for the hidden state. Depending on the

application, it can be, for example, a word that

complements the meaning of the sentence. In

order to compute h(t), the sigmoid function is used

to decide what information can pass through the

output gate. The result is then multiplied by cell

state, after c(t) passes through the tanh activation

function.

Chapter 2 Neural Networks for Time Series

60

Despite the modifications, all RNN-based architectures come with an

inherent limitation – they do not support parallel processing. You would

have noted by now that propagation paths in RNNs increase linearly with

the number of steps in sequence. It is not possible to leverage powerful

parallel processing capable processors like GPUs and TPUs (within a single

training example) due to the sequential processing architecture in RNNs.

In the next chapter, we explore a newer architecture called transformer

that overcomes the limitations of the RNN architecture.

�2.5.2.2  LSTM in action

Having established a high-level theoretical foundation of LSTM, we shall

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import LSTM
from neuralforecast.tsdataset import TimeSeriesDataset
from neuralforecast.losses.pytorch import GMM, MQLoss,
DistributionLoss
from neuralforecast.utils import AirPassengersDF as Y_df
from ray import tune

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

Chapter 2 Neural Networks for Time Series

61

from neuralforecast.utils import AirPassengersDF as Y_df

Y_train_df = Y_df[Y_df.ds<='1959-12-31'] # 132 train data
Y_test_df = Y_df[Y_df.ds>'1959-12-31'] # 12 test data

Let’s initialize and train the LSTM model by understanding its key

parameters.

H is the forecast horizon.

input_size is the maximum sequence length for truncated train

backpropagation. Default –1 uses all history.

Loss is the instantiated train loss class from the losses collection.

scaler_type is the step size between each window of temporal data.

encoder_n_layers is the number of layers for the RNN.

encoder_hidden_size is the unit for the RNN’s hidden state size.

context_size is the size of the context vector for each timestamp on the

forecasting window.

decoder_hidden_size is the size of the hidden layer for the MLP

decoder.

decoder_layers is the number of layers for the MLP decoder.

max_steps is the maximum number of training steps.

horizon = 12
fcst = NeuralForecast(
 models=[LSTM(h=horizon, input_size=-1,
 �loss=DistributionLoss(distribution='Normal',

level=[80, 90]),
 scaler_type='robust',
 encoder_n_layers=2,
 encoder_hidden_size=128,
 context_size=10,
 decoder_hidden_size=128,

Chapter 2 Neural Networks for Time Series

62

 decoder_layers=2,
 max_steps=200,

)
],
 freq='M'
)
fcst.fit(df =Y_train_df)

model.fit(dataset=dataset)

Predict the next defined horizon:

y_hat = fcst.predict()
y_hat.set_index('ds',inplace =True)
y_hat.head()

LSTM is the predicted column of interest.

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],y_hat[['LSTM']])

Chapter 2 Neural Networks for Time Series

63

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = y_hat[['LSTM']]
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-16 helps us to appreciate that the air passenger count

predicted by our model is close to reality.

Figure 2-16.  Actual vs. predicted plot

Chapter 2 Neural Networks for Time Series

64

�2.6  Neural Networks Based on Autoregression
In this section, let us discuss neural networks that leverage

autoregression (AR).

We are going to cover the DeepAR forecasting method that is based on

autoregressive recurrent networks. Autoregression models in time series

forecast future values by depending on past observations of the same

variable. With a fundamental assumption that past and future values of

the same variable are dependent, they use a linear combination of past

observations for time series forecasts. The value of “order” of the model is

nothing but the number of past values used in computing the future value.

The techniques we have covered so far provided us with a single

predicted forecast value. However, the technique we are going to cover

in this section is a probabilistic forecasting technique. Probabilistic

forecasting techniques have a unique feature. These classes of techniques

do not forecast a single value; rather, they provide a range of values

that we call, in the language of probability, probability distribution.

Acknowledging that the future is inherently uncertain, the output of

probabilistic forecasting is a range of possible outcomes of a forecasted

variable.

There are many examples of probabilistic forecasting that we

encounter in real life; weather forecasts are a classic example. For instance,

the temperature forecast that I saw last week in New Jersey was displayed

as follows: 70% chance of heat on Monday would be between 81 and 83 F,

60% chance of heat on Tuesday between 76 and 79 F.

�2.6.1  Key Features of Probabilistic Forecasting

	 a)	 Quantification of uncertainty: A spectrum of

value is provided with probabilities instead of a

single forecasted value. This helps in quantifying

uncertainty associated with the future.

Chapter 2 Neural Networks for Time Series

65

	 b)	 Better decisions with risk considerations: The

inherent uncertainty in future time periods, which is

important in taking strategic decisions that take into

account the risks involved, is supported by the range

and likelihood of outcomes.

	 c)	 Percentile representation: The forecasts can be

expressed in percentiles and represented using

box plots and whisker plots representing different

confidence levels.

The early traditional forecasting methods were developed in the

context of time series forecasting individual time series data. The scope

later expanded to forecast a small number of groups of time series. In

the early traditional approaches, model parameters for each given time

series within the group were independently estimated from historical

observations. The model was then manually selected to cater to various

parameters like trend, seasonality, cycles, and autocorrelation. The best fit

model was then used in time series forecasting as per the model dynamics.

DeepAR is good at handling complex time series with seasonality, trends,

and other irregularities.

In the last decade, we have seen an explosion in data availability. New tools

and techniques to handle big data became popular. New expectations and

associated developments to handle use cases that demanded forecasting in the

order of millions of related time series emerged. Let us appreciate this scenario

by citing a few use cases. Forecasting energy demands of large apartment

complexes, forecasting power consumption of server farms, and forecasting

demand for individual products during Thanksgiving sales are a few examples.

The common aspect you may have observed in these scenarios is

the availability of large amount of historical data. This data could be of

same or similar events. The time series data from similar events can be

utilized in time series forecasting for individual time series. There are two

Chapter 2 Neural Networks for Time Series

66

major advantages of using time series data from similar events; they are

(a) efficiently fitting more complex models and (b) reducing the effort in

feature engineering and model selection steps. The DeepAR model for

time series forecasting efficiently learns from historical data leveraging

these two advantages.

The DeepAR model uses recurrent neural networks (RNNs) to learn

temporal dependencies and patterns in the data. The model takes past

values of a variable and generates a probability distribution of future

values. This distribution can be used to estimate the most likely future

values or to generate confidence intervals for predictions.

Despite the advantages discussed earlier, regarding the usage of

learning from multiple time series, a few practical problems exist. In real-

world datasets, the magnitude of time series varies widely. You will also

note that the distribution of magnitudes is strongly skewed. As an example,

we can see the plot in Figure 2-17, which explains the distribution of

sales velocity of items sold (in millions) by a leading online retailer. Sales

velocity is defined as the average weekly sales of a product.

Figure 2-17.  Log-log histogram of the number of items versus
number of sales [7]

Chapter 2 Neural Networks for Time Series

67

A few approaches were suggested based on group-based regularization

techniques, which largely became inapplicable because of variations

in velocities within individual groups. Also, skewed distributions limit

the use of normalization methods like input standardization or batch

normalization.

�2.6.2  Technical Overview of Deep Autoregressive

The DeepAR model has some key benefits compared to traditional

approaches. The major advantages that set DeepAR apart are as follows:

(a) Relatively much less effort and time need to be spent on feature

engineering to capture complex and group-dependent behavior. This

is because the model learns seasonality and dependencies on given

covariates across the time series. (b) It has an ability to provide forecasts

for products with little to no historical data. This is because of learning

from historical data of similar events.

The DeepAR model has properties that help produce better forecasts

by learning from historical behavior of all the time series taken together.

(a) It incorporates a wide range of likelihood functions. This allows

the time series modeling team to choose suitable functions based on

statistical properties of the data. (b) The probabilistic forecasts are

generated in the form of Monte Carlo Samples. These can be used to

compute quantile estimates belonging to subranges in the prediction

horizon. This is important as discussed earlier in this section, where we

pointed out advantages of forecasts with probabilities compared to a point

forecast value.

In Figure 2-18, we see two parts – to the left is the input and to the right

is the prediction.

Chapter 2 Neural Networks for Time Series

68

Figure 2-18.  Summary of the model [7]

The input to the network consists of three parameters: (a) covariates

xi, t, (b) preceding time step’s target value zi, t − 1, and (c) preceding network

output value hi, t − 1.

The output of the network hi,t is then used to compute the parameters

of the likelihood. These parameters in turn are used to train the model

parameters. In order to perform prediction, the history of the time series

zi;t is provided as input for t < t0, then in the prediction range (right) for t

≥ t0 a sample is drawn and fed to the next point. This process continues

till the end of the prediction range t = t0 + T. This results in the generation

of a single sample trace. Multiple traces representing the joint predicted

distribution are generated by repeating the steps for prediction.

To understand the mathematical model of DeepAR, we need to

remember that the primary goal is to model conditional distribution,

where Zi,t is the value of time series i at an instance of time t.

This conditional distribution is for the future of each time

series in .

The past values are

.

Chapter 2 Neural Networks for Time Series

69

Here, t0 denotes the time point from which we assume Zi, t to be

unknown at prediction time. The Zi, 1:t0-1 and Xi, 1 : T are covariates that are

assumed to be known for all time points. To avoid confusion in terminology,

we skip using terms like “past” or “future”; rather, we use time ranges [1, t0 -1]

and [t0, T] as conditioning range and prediction range. While training the

model, both time ranges have to be in the past so that Zi,t is observed.

However, during prediction Zi,t is available in the conditioning range only.

Note T he time index t is relative, i.e., t = 1 can correspond to a
different actual time period for each i.

�2.6.3  DeepAR in Action

Having established a high-level theoretical foundation of DeepAR, we shall

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import MQLoss,
DistributionLoss, GMM, PMM
from neuralforecast.tsdataset import TimeSeriesDataset
import pandas as pd
import pytorch_lightning as pl
import matplotlib.pyplot as plt
from neuralforecast.models import DeepAR

Chapter 2 Neural Networks for Time Series

70

from neuralforecast.losses.pytorch import DistributionLoss,
HuberMQLoss
from neuralforecast.utils import AirPassengers,
AirPassengersPanel, AirPassengersStatic
from neuralforecast.utils import AirPassengers,
AirPassengersPanel, AirPassengersStatic, AirPassengersPanel,
AirPassengersStatic
AirPassengersPanel.head()

print(AirPassengersStatic)

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

Chapter 2 Neural Networks for Time Series

71

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassen
gersPanel['ds'].values[-12]]
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassen
gersPanel['ds'].values[-12]].reset_index(drop=True)

Let’s initialize and train the DeepAR model by understanding its key

parameters.

h is the forecast horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 ->

y_[t-2:t]=[1,2].

lstm_n_layers is the number of LSTM layers.

trajectory_samples is the number of Monte Carlo trajectories during

inference.

Loss is the instantiated train loss class from the losses collection.

learning_rate is the learning rate between (0, 1).

stat_exog_list is the static exogenous columns.

futr_exog_list is the future exogenous columns.

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every

validation loss check.

early_stop_patience_steps is the number of validation iterations

before early stopping.

scaler_type is the type of scaler for temporal input normalization.

nf = NeuralForecast(
 models=[DeepAR(h=12,
 input_size=48,
 lstm_n_layers=3,
 trajectory_samples=100,
 �loss=DistributionLoss(distribution='Normal',

level=[80, 90], return_params=False),
 learning_rate=0.005,

Chapter 2 Neural Networks for Time Series

72

 stat_exog_list=['airline1'],
 futr_exog_list=['trend'],
 max_steps=100,
 val_check_steps=10,
 early_stop_patience_steps=-1,
 scaler_type='standard',
 enable_progress_bar=True),
],
 freq='M'
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_
size=12)

Predict the next defined horizon:

Y_hat_df = nf.predict(futr_df=Y_test_df)
Y_hat_df.head()

DeepAR is the predicted column of interest.

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],Y_hat_df[['DeepAR']])

Chapter 2 Neural Networks for Time Series

73

Visualize the predictions:

Y_hat_df =Y_hat_df.reset_index(drop=False).drop(columns=['uniq
ue_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])
plt.figure(figsize=(20, 3))
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_
id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['DeepAR-median'], c='blue',
label='median')
plt.fill_between(x=plot_df['ds'][-12:],
 y1=plot_df['DeepAR-lo-90'][-12:].values,
 y2=plot_df['DeepAR-hi-90'][-12:].values,
 alpha=0.4, label='level 90')
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend()
plt.grid()
plt.plot()

Figure 2-19 helps us to appreciate that the air passenger count

predicted by our model is close to reality.

Chapter 2 Neural Networks for Time Series

74

Figure 2-19.  Actual vs. predicted plot

�2.7  Neural Basis Expansion Analysis
In this section, we cover neural basis expansion analysis for time series

(NBEATS). This is an effective but simple architecture; let us learn how.

This architecture is built with a deep stack of MLPs with the doubly

residual connections. Depending on the blocks used, NBEATS has a

generic and interpretable architecture. In use cases involving scarce data

settings, the interpretable architecture of NBEATS is recommended. The

primary reason is that the model regularizes its predictions by expressing

in terms of constituent harmonics and trends. This makes it a suitable

choice for many forecasting tasks.

�2.7.1  Technical Overview of NBEATS

NBEATS architecture was developed in the process of exploring the use

of deep learning to solve univariate time series forecasting use cases. This

architecture is designed using a deep learning network with multiple fully

connected layers and relies on a network of backward and forward residual

links. The intention of including this model in our journey to understand

time series forecasting with GenAI is that this model was the first pure

deep learning approach that performed better than existing statistical

approaches in the Makridakis M-competition. The NBEATS model

surpassed the winning solution of the M4 competition. You may want to

look at https://forecasters.org/resources/time-series-data/ to

know more and participate.

Chapter 2 Neural Networks for Time Series

https://forecasters.org/resources/time-series-data/

75

The building blocks of the architecture are “stacks.” NBEATS consists

of a layer of stacks. The individual stack is used to focus on various levels of

temporal resolution. For example, one stack may be used to focus on long-

term trends, while another stack may be used to focus on the short-

term seasonality component. Each stack also has a series of “blocks.” These

blocks are responsible for capturing a specific temporal pattern like trend

or seasonality. The blocks have backcast and forecast components. These

help to learn from past behavior and help in time series forecasting based

on the patterns learned.

The NBEATS architecture has advantages like interpretability

(a challenge with neural networks in general), faster to train, and

applicability to a wide spectrum of use cases in many domains with

minimal to no changes in architecture. This is achieved with the help

of generic architecture and interpretable architecture, which are

discussed later.

From Figure 2-20, it is evident that the NBEATS architecture is a

multilayered fully connected (FC) network. This network also has ReLU

nonlinearities. A fully connected layer in a neural network means that in

the neural network, each input node is mapped to an output node. This

is in contrast to a convolutional layer, where you will find unconnected

nodes. Going back to the architecture diagram, the predictions include

forward basis expansion coefficient, forecast θf, and backward basis

expansion coefficient, backcast θb. Using doubly residual stacking

principle, the blocks are organized into stacks. The stack includes layers

with shared forecasts and backcasts. Developing a deep learning network

with interpretable forecasts is possible by hierarchical aggregation

(adding) of the forecasts.

Chapter 2 Neural Networks for Time Series

76

Figure 2-20.  Architecture of NBEATS [3]

The residual stacking principle is a concept where each block

iteratively updates the forecast by considering the residual error from the

preceding block.

The forward basis expansion coefficient, forecast θf, is accumulated to

generate the final prediction. The backward basis expansion coefficient,

backcast θb, is used to adjust the input series iteratively. The input to each

block is the residual time series. Residual time series is the remaining value

(residual) after outputs from the preceding block have been subtracted.

The input traverses through multiple FC layers.

There are two configurations of the NBEATS architecture. (a) Generic

architecture: The generic architecture does not rely on any time series–

specific (trend, seasonality) knowledge. The model learns the TS patterns

directly from the dataset. (b) Interpretable architecture: The interpretable

architecture is built by modifying the architecture shown in Figure 2-13.

The architecture has a trend block and seasonality block. These blocks

help to capture the trend and seasonality in the dataset.

Chapter 2 Neural Networks for Time Series

77

�2.7.2  NBEATS in Action

Having established a high-level theoretical foundation of NBEATS, we shall

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from ray import tune
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NBEATS, NHITS

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

Chapter 2 Neural Networks for Time Series

78

train_data = Y_df.head(132)
test_data = Y_df.tail(12)

Let’s initialize and train the NBEATS model by understanding its key

parameters.

h is the forecast horizon.

�input_size is considered the autoregressive inputs (lags), y=[1,2,3,4]

input_size=2 -> lags=[1,2].

max_steps is the maximum number of training steps.

horizon = 12
models = [NBEATS(input_size=2 * horizon, h=horizon, max_
steps=50)]
nf = NeuralForecast(models=models, freq='M')
nf.fit(df=train_data)

Predict the next defined horizon:

Y_hat_df = nf.predict().reset_index()
Y_hat_df.head()

NBEATS is the predicted column of interest.

Measure the model’s accuracy:

calculate_error_metrics(test_data[['y']],Y_hat_df['NBEATS'])

Chapter 2 Neural Networks for Time Series

79

Visualize the predictions:

train_data.set_index('ds',inplace =True)
Y_hat_df.set_index('ds',inplace =True)
test_data.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
item_id = "airline_1"
y_past = train_data["y"]
y_pred = Y_hat_df['NBEATS']
y_test = test_data["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Mean forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-21 helps us to appreciate that the air passenger count

predicted by our model is close to reality.

Figure 2-21.  Actual vs. predicted plot

Chapter 2 Neural Networks for Time Series

80

�2.8  Summary
In this chapter, we discussed various neural network architectures that

are used for time series forecasting. We covered architectures based on

CNN, RNN, and LSTM that can be leveraged for time series forecasting.

We understood terms like dilated convolutions, causal convolutions,

future covariates, and mathematical overview of some of the models. We

discussed temporal convolution networks and how they are useful in

handling sequential data.

We understood how DeepAR works and its effectiveness in handling

complex time series datasets. We explored how an effective yet simple

architecture like NBEATS works. Finally, we saw the models in action by

implementing them with use cases for prediction.

Please use a dataset of your choice to practice. In the next chapter,

we will move a step closer to GenAI by understanding the transformer

architecture and how it helps in time series forecasting. Transformers are

building blocks for training GenAI models.

2.9  References
[1].	 GitHub – autogluon/autogluon: Fast and Accurate ML in

3 Lines of Code

[2].	 Olivier Sprangers, Sebastian Schelter, Maarten de

Rijke (2023). Parameter-Efficient Deep Probabilistic

Forecasting. https://doi.org/10.1016/j.ijforecast.
2021.11.011

[3].	 Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados,

Yoshua Bengio (2019). “N-BEATS: Neural basis expansion

analysis for interpretable time series forecasting.”

https://doi.org/10.48550/arXiv.1905.10437

Chapter 2 Neural Networks for Time Series

https://github.com/autogluon/autogluon
https://github.com/autogluon/autogluon
https://doi.org/10.1016/j.ijforecast.2021.11.011
https://doi.org/10.1016/j.ijforecast.2021.11.011
https://doi.org/10.48550/arXiv.1905.10437

81

[4].	 WaveNet: A generative model for raw audio. Computing

Research Repository. https://doi.org/10.48550/arXiv
.1609.03499

[5].	 Exponential Pixelating Integral transform with

dual fractal features for enhanced chest X-ray

abnormality detection. https://doi.org/10.1016/j.
compbiomed.2024.109093

[6].	 The predictive skill of convolutional neural networks

models for disease forecasting. https://doi.
org/10.1371/journal.pone.0254319.g003

[7].	 DeepAR: Probabilistic Forecasting with Autoregressive

Recurrent Networks. https://doi.org/10.48550/
arXiv.1704.04110

Chapter 2 Neural Networks for Time Series

https://doi.org/10.48550/arXiv.1609.03499
https://doi.org/10.48550/arXiv.1609.03499
https://doi.org/10.1016/j.compbiomed.2024.109093
https://doi.org/10.1016/j.compbiomed.2024.109093
https://doi.org/10.1371/journal.pone.0254319.g003
https://doi.org/10.1371/journal.pone.0254319.g003
https://doi.org/10.48550/arXiv.1704.04110
https://doi.org/10.48550/arXiv.1704.04110

83© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7_3

CHAPTER 3

Transformers for
Time Series
Chapter Goal: Learn how to leverage the different types of transformers

and solve time series problems.

In the preceding chapter, we explored different kinds of neural network

architectures and practically implemented them using real-world datasets.

This chapter focuses on breaking down transformers, understanding

them at a high level, and exploring other popular transformer variants. Let

us also understand how they can be used to solve time series problems.

�3  Introduction to Transformers
Transformers initially revolutionized natural language processing and

have increasingly found their application in other realms such as computer

vision, audio processing, bioinformatics, finance, robotics, and time series

analysis. This chapter delves into the core concepts of transformers and

explains how these powerful models can be adapted to effectively handle

time series data.

https://doi.org/10.1007/979-8-8688-1276-7_3#DOI

84

We will dissect the transformer’s architecture by breaking it down into

its fundamental components and understand how it works internally.

Beyond the foundation of the transformer, we will explore a diverse range

of variants that have been specifically tailored for time series analysis.

These innovative architectures offer different advantages in handling

various time series challenges.

By the end of this chapter, readers will have a solid grasp of

transformers and their potential in the time series domain, enabling them

to effectively apply to solve their own problems.

“Attention Is All You Need” [1] was the paper that introduced the

transformer architecture; this revolutionized the natural language

processing by demonstrating the power of the attention mechanism.

Numerous efforts have tried to push the boundaries of recurrent

language models and encoder-decoder architectures. Sequence learning

architectures, such as gated recurrent neural networks, recurrent neural

networks, and long short-term memory in particular, have been firmly

established as state-of-the-art approaches in sequence modeling any data

that exhibits a sequential pattern.

�3.1  Technical Overview of Transformers
Let’s break down the components that underpin the transformer’s

remarkable performance and how it works through the lenses of the

original paper [1].

Transformers are designed using stacked self-attention and point-

wise, fully connected layers for both the encoder and decoder, as shown in

Figure 3-1.

Chapter 3 Transformers for Time Series

85

Figure 3-1.  Transformer model architecture [1]

Transformers are built on encoder-decoder architecture. The encoder

applies the mathematical function to the data and transforms input to a

certain representation, while the decoder applies the inverse function to

recover back the original data.

Chapter 3 Transformers for Time Series

86

Figure 3-2.  Encoder-decoder

Let’s understand the components from the left (bottom-up approach)

of Figure 3-1:

	 a)	 Input Embedding

This is the initial step where raw text is converted

into the format suitable for the model to process

which is numerical representation.

	 b)	 Positional Encoding

Positional encoding is a method used in

transformers to incorporate word order by assigning

a unique number to each word in a sentence,

allowing the model to learn sequence information.

This is a way of saving the word order in the data

itself rather than the network.

As the original paper had no recurrent and no

convolution for the model to make use of the order

of the sequence, there was a need to inject some

information about the relative or absolute position

Chapter 3 Transformers for Time Series

87

of the tokens in the sequence. The positional

encoding has the same dimensions dmodel as the

embedding so that they can be summed up:

where dmodel is the embedding dimension, positional

encoding is a matrix PE of shape (n, dmodel), pos is

the position, and i is the dimension where each

dimension of the positional encoding corresponds

to a sinusoid. Sine and cosine functions of different

frequencies are used in the example; however, we

can explore other encoding techniques such as

rotary positional encoding, no positional encoding,

and absolute positional encoding.

	 c)	 Encoder

Let’s dive deep into the encoder part of the

transformers, which is highlighted below; it consists

of a stack of six identical layers. Each layer consists

of a multi-head self-attention mechanism and a

point-wise fully connected feedforward network.

There is a residual connection around each of the

two sublayers followed by layer normalization.

Chapter 3 Transformers for Time Series

88

Figure 3-3.  The encoder highlighted in green

	 d)	 Attention

An attention function can be described as mapping

a query and a set of key-value pairs to an output,

where the query, keys, values, and output are all

vectors. The output is computed as a weighted sum.

Chapter 3 Transformers for Time Series

89

Figure 3-4.  Scaled dot-product attention

Scaled dot-product attention is used to enable

models to capture complex dependencies between

input elements. The input consists of query (Q) that

represents what you are looking for, key (K) that

represents what you are searching with, and value

(V) that represents information you want to retrieve.

Dot product is used to calculate the similarity

between the query and each key. A higher result

means a closer match. Scaling is used to prevent dot

products from getting too large; as the dimension

of keys increases, the dot product tends to grow

large. A large value in the softmax function can lead

to gradients that are close to zero, slowing down

training as the model parameters receive negligible

updates and slowing down the learning; this is

called the vanishing gradient problem. Weighted

Chapter 3 Transformers for Time Series

90

sum multiplies each value by the corresponding

attention weight and sums them up to get the

final output.

Scaled dot-product attention helps the model to

focus on the most relevant parts of the data passed

when generating the output. Let us understand

scaled dot-product attention with a simple example.

(Q): �Imagine you have a question about time series

forecasting.

(K): Scan for keywords in the text.

(V): �Find relevant keywords like trend, seasonality,

forecasting, etc.

Figure 3-5.  Depiction of multi-head attention

Chapter 3 Transformers for Time Series

91

Multi-head Attention

Multi-head attention is multiple attention working

in parallel, which allows transformer models to

focus on different parts of the input sequence

simultaneously. Multi-head attention allows the

model to jointly attend to information from different

representation subspaces at different positions.

Multiple attention is projected instead of a single

attention function with dmodel – dimensional keys,

value, and queries. K, Q, and V are linearly projected

h times with different linear projections dk, dq,

and dv dimensions, respectively. The model jointly

sees the information from different representation

subspaces at different positions.

	 e)	 Feedforward Neural Network

This layer applies the same feedforward neural

network to each position separately and identically.

It consists of two linear transformations with a ReLU

activation in between.

	 f)	 Layer Normalization

This is applied after each sublayer to stabilize

or improve the performance of the deep neural

network.

Chapter 3 Transformers for Time Series

92

	 g)	 Residual Connections

This helps in mitigating the vanishing gradient

problem, which is essentially when the gradients,

used to update the weights of the network during

training, become extremely small as they propagate

backward through the layers and also act as a

shortcut path to bypass one or more layers.

Let’s now understand the components from the right (bottom-up

approach) of Figure 3-1:

	 a)	 Output Embedding

Similar to the encoder, text is converted into

numerical embeddings.

	 b)	 Positional Encoding

The same functionality as in the encoder.

	 c)	 Decoder

The decoder is also composed of a stack of six

identical layers same as the encoder; the number

of layers, depicted as Nx, can be increased or

decreased. In addition to the two sublayers in each

encoder layer, the decoder inserts a third sublayer,

which performs multi-head attention over the

output of the encoder stack.

Chapter 3 Transformers for Time Series

93

Figure 3-6.  The decoder highlighted in green

	 d)	 Masked Multi-head Self-Attention

This layer is similar to the encoder’s self-attention,

but with a mask to prevent attending to future

tokens or words. This masking plays a vital role in

maintaining the order and coherence of the output.

	 e)	 Encoder-Decoder Attention

This layer allows the decoder to attend to the output

of the encoder.

	 f)	 Feedforward Neural Network

Same as the encoder’s feedforward network.

	 g)	 Layer Normalization

Applied after each sublayer to stabilize or improve

the performance of the deep neural network.

Chapter 3 Transformers for Time Series

94

	 h)	 Residual Connections

Used to ease training by allowing gradients to flow

directly to earlier layers.

	 i)	 Linear and Softmax

The final layer converts the decoder output into

predicted vocabulary or token probabilities.

This innovative approach revolutionized sequence modeling by

introducing a transformer architecture that exclusively uses self-attention

mechanisms, thereby eliminating the need for recurrent or convolutional

neural networks, resulting in superior performance, parallelization, and

accelerated training while effectively capturing long-range dependencies

within data. There are different variants of transformers such as BERT,

RoBERTa, LaMDA, GPT, Vit, T5, XLNet, and many more introduced for

various applications.

�3.2  Vanilla Transformer
Long sequence time series forecasting (LSTF) requires a high prediction

capacity of the model, which can capture precise long-range dependency

coupling between the output and the input efficiently; studies have shown

the capabilities of transformers, but there are issues that prevent them

from being directly applicable to LSTF, such as quadratic time complexity,

high memory usage, and limitations of encoder-decoder architecture.

Transformer models have shown superior performance in capturing

long-range dependency than RNN models; however, they still have some

drawbacks such as

	 a)	 The quadratic computation of self-attention: The

time complexity and memory usage per layer to be

O(L2) when performing self-attention mechanisms,

such as the canonical dot product.

Chapter 3 Transformers for Time Series

95

	 b)	 The memory bottleneck in stacking layers for
long inputs: The stack of J encoder/decoder layers

makes total memory usage O(J ⋅ L2), which limits the

model scalability in receiving long sequence inputs.

	 c)	 The speed reduction in predicting long outputs:

Dynamic decoding of a vanilla transformer

makes the step-by-step inference as slow as

regular sequence-based models, such as RNN,

LSTM, or GRU.

�3.2.1  Technical Overview of Vanilla Transformers

Vanilla transformers follow the implementation of an informer which is

designed to handle long input sequences efficiently and capture complex

patterns using ProbSparse attention, generative modeling, and self-

attention, which helps mitigate traditional problems within transformers;

the architecture has three distinct features:

	 a)	 Full-attention mechanism with O(L^2) time and

memory complexity

	 b)	 Encoder-decoder with a multi-head attention

mechanism as proposed by Vaswani et al. (2017) [1]

	 c)	 An MLP multi-step decoder that predicts long time

series sequences in a single forward operation

rather than step by step

�3.2.2  What Is an Informer?

Informers are a specific type of neural network architecture; in other

words, they improve over traditional transformers designed for long

sequence time series forecasting and successfully enhance the prediction

Chapter 3 Transformers for Time Series

96

capacity in the LSTF problem, which proves the transformer-like model’s

potential value to capture individual long-range dependency between long

sequence time series outputs and inputs. The key feature that is different

from traditional transformers is ProbSparse.

Before understanding the ProbSparse self-attention mechanism, let’s

understand canonical self-attention, which is a variant of the self-

attention mechanism explained earlier. In the traditional self-attention

mechanism, we calculate attention scores between the elements (words)

in the sequence. However, in canonical self-attention, we use convolutions

which save computation time.

The ProbSparse self-attention mechanism is an advancement

to the canonical self-attention. This technique aids the model to learn

relationships between different parts of the input sequence with reduced

memory and computational need.

The ProbSparse self-attention mechanism selects a subset of tokens for

each query based on a probability distribution. This reduces the number

of attention calculations, resulting in efficient computation for long

sequences.

The self-attention distilling operation is a technique particularly used

where a model selectively focuses on the most important attention weights

within stacked layers (J-stacking layers). This process results in reduced

memory footprint, which helps to receive long sequence input.

Pseudo code for ProbSparse self-attention
Require: Tensor Q ∈ Rm× d, K ∈ Rn× d, V ∈ Rn× d

Q, K, V: Query, key, and value matrices, respectively

Chapter 3 Transformers for Time Series

97

Then the generative style decoder acquires long sequence output with

only one forward step needed, simultaneously avoiding cumulative error

spreading during the inference phase.

Figure 3-7.  Informer model overview [2]

The encoder receives massive long sequence inputs X. We replace

canonical self-attention with the proposed ProbSparse self-attention.

The encoder block is the self-attention distilling operation to extract

dominating attention, reducing the network size significantly. The layer

stacking replicas increase robustness.

The decoder receives long sequence inputs, pads the target elements

into zero, measures the weighted attention composition of the feature

map, and instantly predicts output elements in a generative style.

The vanilla transformer model utilizes a three-component approach to

define its embedding:

	 a)	 It uses encoded autoregressive features obtained

from a convolution network.

	 b)	 It uses window-relative positional embeddings

derived from harmonic functions which are a

popular technique used in sequence modeling

with transformers. Unlike absolute positional

Chapter 3 Transformers for Time Series

98

embeddings, which assign a unique embedding

to each position in a sequence, window-relative

embeddings focus on the relative positions of

elements within a specific window. Harmonic

functions can capture cyclical patterns and

relationships between elements within a sequence.

This technique is used for applications such as NLP

and computer vision too.

	 c)	 Absolute positional embeddings are the vectors

assigned to each position in the sequence of

information about its location within the overall

sequence. It is often beneficial to include calendar

features directly into these embeddings, which

helps create powerful embeddings that enhance the

performance of your time series models.

�3.2.3  Vanilla Transformer in Action

Having established a high-level theoretical foundation of a vanilla

transformer, we shall now translate abstract concepts into practical code

implementation.

Import required modules:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import MLP,VanillaTransformer
from neuralforecast.losses.pytorch import MQLoss,
DistributionLoss,MAE

Chapter 3 Transformers for Time Series

99

from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast.utils import AirPassengers,
AirPassengersPanel, AirPassengersStatic, augment_calendar_df

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF as Y_df
print(Y_df)

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Let’s construct and train the VanillaTransformer model by

understanding its key parameters.

h is the forecast horizon.

input size default is –1 which uses all the history, maximum sequence

length for truncated train backpropagation.

hidden_size is the unit of embeddings and encoders.

Chapter 3 Transformers for Time Series

100

conv_hidden_size is the channels of the convolutional encoder.

n_heads is the number of multi-head attention.

scaler_type is the type of scaler for temporal input normalization.

learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every

validation loss check.

early_stop_patience_steps is the number of validation iterations

before early stopping.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters

which can be used to add future, history, and static exogenous

variables.

horizon = 12
model = VanillaTransformer(h=horizon,
 input_size=12,
 hidden_size=16,
 conv_hidden_size=32,
 n_head=2,
 loss=MAE(),
 #futr_exog_list=calendar_cols, example
 scaler_type='robust',
 learning_rate=1e-3,
 max_steps=500,
 val_check_steps=50,
 early_stop_patience_steps=2)

nf = NeuralForecast(
 models=[model],
 freq='M'
)

Chapter 3 Transformers for Time Series

101

Let’s train the model using training data, and val_size is the validation

size for temporal cross-validation:

nf.fit(df=Y_train_df, val_size=12)

Predict the next defined horizon, which is 12 months:

forecasts = nf.predict()
forecasts.head()

Let’s measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts
['VanillaTransformer'])

Chapter 3 Transformers for Time Series

102

Visualize actual vs. predicted:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = forecasts['VanillaTransformer']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(forecasts, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-8 helps us to appreciate that the air passenger count predicted

by our model is close to reality.

Figure 3-8.  Actual vs. predicted plot

�3.3  Inverted Transformers
The recent popularity of linear forecasting models questions the ongoing

interest in architectural modifications of transformer-based forecasters.

Transformer-based forecasting typically embeds multiple variates of the

same timestamp into almost identical channels and applies attention on

these temporal tokens to capture temporal dependencies.

Chapter 3 Transformers for Time Series

103

Transformers struggle in forecasting series with larger look-back

windows due to performance degradation and computation explosion;

however, the embedding for each temporal token fuses multiple

variates that represent potential delayed events and distinct physical

measurements, which may fail in learning variate-centric representations

and result in meaningless attention maps. The main idea here is to reuse

the transformer without any modification to the basic components.

�3.3.1  Technical Overview of iTransformers

iTransformers take the transformer architecture but apply the attention

and feedforward network on the inverted dimensions. This means that

the time points of each individual series are embedded into variate

tokens which can be used by the attention mechanisms to capture

multivariate correlation, and the feedforward network learns nonlinear

relationships.

Figure 3-9.  Comparison between the vanilla transformer (top) and
the iTransformer (bottom) [3]

The transformer embeds the temporal token, which contains the

multivariate representation of each time step.

Chapter 3 Transformers for Time Series

104

The iTransformer embeds each series independently to the token,

such that the attention module depicts the multivariate correlations and

the feedforward network encodes series representations.

Figure 3-10.  Structure from iTransformers [3]

	 a)	 Embedding

Raw series of different variates are independently

embedded as variate tokens and passed to the

next step.

	 b)	 Self-attention

The inverted model regards the whole series of

one variate as an independent process. Concretely,

with comprehensively extracted representations

of each time series H = {h0,...,hN} ∈ RN×D, the self-

attention module adopts linear projections to get

queries, keys, and values Q, K, V ∈ RN×d
k, where

dk is the projected dimension. Self-attention is

applied to embedded variate tokens with enhanced

interpretability revealing multivariate correlations.

Chapter 3 Transformers for Time Series

105

	 c)	 Feedforward network

The feedforward network is leveraged on the

series representation of each variate token. By the

universal approximation theorem, they can extract

complicated representations to describe a time

series such as amplitude, periodicity, and even

frequency spectrums. With the stacking of inverted

blocks, they are devoted to encoding the observed

time series and decoding the representations for

future series using dense nonlinear connections.

	 d)	 Layer normalization

The normalization is applied to the series

representation of individual variate as the equation

mentioned below; since all series as (variate) tokens

are normalized to a Gaussian distribution, the

discrepancies caused by inconsistent measurements

can be diminished and hence adopted to reduce the

discrepancies among variates.

�3.3.2  iTransformers in Action

Having established a high-level theoretical foundation of inverted transformer,

we shall now translate abstract concepts into practical code implementation.

Import required modules:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Chapter 3 Transformers for Time Series

106

from neuralforecast import NeuralForecast
from neuralforecast.models import iTransformer
from neuralforecast.losses.pytorch import MQLoss,
DistributionLoss,MSE
from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF as Y_df
Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Let’s construct and train the iTransformer model by understanding its

key parameters.

h is the horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 ->

y_[t-2:t]=[1,2].

n_series is the number of time series.

hidden_size is the dimension of the model.

n_heads is the number of heads.

e_layers is the number of encoder layers.

d_layers is the number of decoder layers.

d_ff is the dimension of the fully connected layer.

factor is the attention factor.

dropout is the dropout rate.

Chapter 3 Transformers for Time Series

107

use_norm is whether to normalize or not.

loss is the instantiated train loss class from the losses collection.

valid_loss is the instantiated valid loss class from the losses collection.

batch_size is the number of different series in each batch.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters

which can be used to add future, history, and static exogenous

variables.

horizon =12
model = iTransformer(h=horizon,
 input_size=24,
 n_series=2,
 hidden_size=128,
 n_heads=2,
 e_layers=2,
 d_layers=1,
 d_ff=4,
 factor=1,
 dropout=0.1,
 use_norm=True,
 loss=MSE(),
 valid_loss=MAE(),
 batch_size=32)
model.fit(dataset=dataset,val_size=12)

Predict the next defined horizon, which is 12 months:

y_hat = model.predict(dataset=dataset)
Y_test_df['iTransformers'] = y_hat
Y_test_df.head()

Chapter 3 Transformers for Time Series

https://nixtla.github.io/neuralforecast/losses.pytorch.html
https://nixtla.github.io/neuralforecast/losses.pytorch.html

108

Let’s measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],Y_test_
df['iTransformers'])

Visualize actual vs. predicted:

Y_train_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = Y_test_df['iTransformers']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")

Chapter 3 Transformers for Time Series

109

plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-11 helps us to appreciate that the air passenger count

predicted by our model is close to reality.

Figure 3-11.  Actual vs. predicted

�3.4  DLinear
Forecasting a larger horizon is only feasible for those time series with

a clear trend and cyclicity, as linear models can readily extract such

information. Simple models such as long-term time series forecasting

LTSF-Linear regress historical time series with a one-layer linear model

to forecast. Results show that LTSF-Linear outperforms existing complex

transformer models in all cases by a large margin.

Moreover, most of the transformers fail to extract temporal relations

which are connections between events related to each other from long

sequences. When such sequences occur, the forecasting errors are not

reduced (sometimes even increased) with the increase in look-back

window sizes.

LTSF-Linear is a set of linear models. Vanilla Linear is a one-layer

linear model to handle time series across different domains (e.g., weather

forecast, retail, and healthcare); we further understand two variants with

two preprocessing methods, named DLinear and NLinear.

Chapter 3 Transformers for Time Series

110

The architecture has the following distinctive features: uses

Autoformer’s trend and seasonality decomposition and simple linear

layers for trend and seasonality components.

The LTSF-Linear directly regresses historical time series for future

prediction via a weighted sum operation (Figure 3-12).

Figure 3-12.  Illustration of one basic linear layer [4]

The mathematical expression is Xwi= WXi, where W ∈ RT×L is a linear

layer along the temporal axis. X̂i and Xi are the prediction and input for

each ith variate. LTSF-Linear shares weights across different variates and

does not model any spatial correlations.

�3.4.1  What Is Autoformer ?

The Autoformer model is based on the decomposition of time series into

seasonality and trend cycle. To achieve this, a decomposition layer is added,

which enhances the model’s ability. Autoformer uses an innovative auto-

correlation mechanism that enables the model to utilize period-based

dependencies in the attention. This improves accuracy in finding reliable

dependencies on intricate temporal patterns of long-horizon forecasting.

�3.4.2  Technical Overview of DLinear

DLinear is a combination of a decomposition scheme used in Autoformer

and FEDformer with linear layers. It decomposes raw data input into

a trend component by a moving average kernel and a remainder or

Chapter 3 Transformers for Time Series

111

seasonal component. Then, two one-layer linear layers are applied to each

component, and we sum up the two features to get the final prediction. By

explicitly handling trends, DLinear enhances the performance of a vanilla

linear when there is a clear trend in the data.

This architecture has the following unique features compared to

traditional architecture:

•	 Built-in progressive decomposition in trend and

seasonal components based on a moving average

filter where decomposed components are updated

and refined iteratively during the forecasting

process. This is a dynamic process compared to

traditional decomposition where the decomposition

of components is fixed throughout the forecasting

process.

•	 The autocorrelation mechanism discovers the period-

based dependencies by calculating the autocorrelation

and aggregating similar subseries based on the

periodicity.

Figure 3-13.  Autoformer architecture [5]

Chapter 3 Transformers for Time Series

112

	 a)	 Encoder

The encoder focuses on seasonal part of the

modeling which helps decoder to use use the past

seasonal information generated by encoder to refine

the prediction.

	 b)	 Decoder

The decoder performs well in two tasks, which are

an accumulation of the structure of trend-cyclical

components and the stacked autocorrelation mechanism

for season components shown in Figure 3-13.

Each decoder is comprised of inner autocorrelation

and encoder-decoder autocorrelation which

helps in refining prediction by utilizing the past

seasonal information. The model extracts the

trend components from the intermediate hidden

variables during the decoder, allowing Autoformer

to progressively refine the trend prediction and

eliminate interference information for period-based

dependency discovery in autocorrelation.

Figure 3-14.  Autocorrelation (left) and time delay aggregation
(right) [5]

Chapter 3 Transformers for Time Series

113

	 c)	 Autocorrelation

The autocorrelation mechanism with series-

wise connections to expand the information

utilization. Autocorrelation discovers the period-

based dependencies by calculating the series

autocorrelation and aggregates similar subseries by

time delay aggregation.

The Fast Fourier Transform is used to calculate the

autocorrelation R(T), which reflects the time delay

similarities. Then the similar subprocesses are

rolled to the same index based on selected delay T

and aggregated by R(T). The final prediction is the

sum of the two refined decomposed components.

	 d)	 Time delay aggregation

The period-based dependencies connect the

subseries among estimated periods, as depicted

in the time delay aggregation block in Figure 3-14

(right). Time delay aggregation can roll the series

based on the selected time delay. This operation can

align similar subseries that are at the same phase

position of estimated periods. This is different from

the point-wise dot-product aggregation in the self-

attention family. Finally, it aggregates the subseries

by softmax normalized confidences.

Chapter 3 Transformers for Time Series

114

Figure 3-15.  Structure of DLinear [4]

X̂ = Hs+Ht, where Hs = WsXs ∈ RTxC are the decomposed trend and

remainder features.

Ws ∈ RTxL and Wt ∈ RTxL are the two linear layers.

DLinear is capable of capturing both short-range and long-range

temporal relations, and as each branch has only one linear layer, it costs

much lower memory and fewer parameters and has a faster inference

speed than existing transformers.

�3.4.3  DLinear in Action

Having established a high-level theoretical foundation of DLinear, we shall

now translate abstract concepts into practical code implementation.

Import required libraries:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import MLP,DLinear
from neuralforecast.losses.pytorch import MQLoss,
DistributionLoss,MAE

Chapter 3 Transformers for Time Series

115

from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast.utils import AirPassengers,
AirPassengersPanel, AirPassengersStatic, augment_calendar_df

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Let’s train the DLinear model and define its hyperparameters.

h is the horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 ->

y_[t-2:t]=[1,2].

loss is the instantiated train loss class from the losses collection.

Scaler_type is the type of scaler for temporal input normalization.

Learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every

validation loss check.

early_stop_patience_steps is the number of validation iterations

before early stopping.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters

which can be used to add future, history, and static exogenous

variables.

Chapter 3 Transformers for Time Series

https://nixtla.github.io/neuralforecast/losses.pytorch.html

116

horizon =12
model = DLinear(h=horizon,
 input_size=12,
 loss=MAE(),
 scaler_type='robust',
 learning_rate=1e-3,
 max_steps=500,
 val_check_steps=50,
 early_stop_patience_steps=2)

nf = NeuralForecast(
 models=[model],
 freq='M'
)
nf.fit(df=Y_train_df, val_size=12)

Predict the next defined horizon:

forecasts = nf.predict()
forecasts.head()

Chapter 3 Transformers for Time Series

117

Measure the model accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['DLinear'])

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = forecasts['DLinear']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-16 helps us to appreciate that the air passenger count

predicted by our model is close to reality.

Chapter 3 Transformers for Time Series

118

Figure 3-16.  Actual vs. predicted

�3.5  NLinear
NLinear is part of the LTSF-Linear family of models specifically designed

to boost the performance of Linear when there is a distribution shift in the

dataset. NLinear first subtracts the input by the last value of the sequence,

then the input goes through a linear layer, and the subtracted part is added

back before making the final prediction. The subtraction and addition in

NLinear are a simple normalization for the input sequence.

NLinear can consistently outperform all transformer-based methods

by a large margin most of the time. Simple normalization via the last

value from the look-back window can greatly relieve the distribution shift

problem.

A distribution shift occurs when the statistical properties of the

training data differ significantly from the test data. This is when the model

is trained on one set of data but applied to data of different characteristics.

The various types of distribution shifts are covariate shift, label shift, and

concept drift. If these kinds of shifts are not handled properly, it can result

in performance degradation and unreliable predictions.

�3.5.1  NLinear in Action

Having established a high-level foundation of NLinear, we shall now

translate abstract concepts into practical code implementation.

Chapter 3 Transformers for Time Series

119

Import required modules:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import MLP,NLinear
from neuralforecast.losses.pytorch import MQLoss,
DistributionLoss,MAE
from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast.utils import AirPassengers,
AirPassengersPanel, AirPassengersStatic, augment_calendar_df

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Let’s train the NLinear model and define its hyperparameters.

h is the horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 ->

y_[t-2:t]=[1,2].

Chapter 3 Transformers for Time Series

120

loss is the instantiated train loss class from the losses collection.

Scaler_type is the type of scaler for temporal input normalization.

Learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every

validation loss check.

early_stop_patience_steps is the number of validation iterations

before early stopping.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters

which can be used to add future, history, and static exogenous

variables.

horizon =12
model = NLinear(h=horizon,
 input_size=12,
 loss=MAE(),
 scaler_type='robust',
 learning_rate=1e-3,
 max_steps=500,
 val_check_steps=50,
 early_stop_patience_steps=2)

nf = NeuralForecast(
 models=[model],
 freq='M'
)

nf.fit(df=Y_train_df, val_size=12)

Predict the next defined horizon:

forecasts = nf.predict()
forecasts.head()

Chapter 3 Transformers for Time Series

https://nixtla.github.io/neuralforecast/losses.pytorch.html

121

Measure the model accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['NLinear'])

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = forecasts['NLinear']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")

Chapter 3 Transformers for Time Series

122

plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-17 helps us to appreciate that the air passenger count

predicted by our model is close to reality.

Figure 3-17.  Actual vs. predicted

�3.6  Patch Time Series Transformer
PatchTST supports multivariate time series forecasting and self-supervised

representation learning. It is based on the segmentation of time series into

subseries-level patches, which serve as input tokens to the transformer.

Channel independence is a property of PatchTST where each channel

contains a single univariate time series. Channel independence helps

share the same embedding and transformer weights across all the series.

This helps the PatchTST model to apply attention weights separately to

each channel, which helps in better capturing the unique features and

patterns in each channel.

Patching is the segmentation of time series into windows, which helps

to enhance the locality and capture comprehensive semantic information

that is not available at the point level. This is achieved by aggregating time

steps into subseries-level patches and channel independence.

Chapter 3 Transformers for Time Series

123

�3.6.1  Technical Overview of PatchTST

Figure 3-18.  PatchTST model overview [6]

Multivariate time series data is divided into different channels. They share

the same transformer backbone, but the forward processes are independent.

Figure 3-19.  (a) Transformer backbone (supervised), (b) transformer
backbone (self-supervised) [6]

•	 Each channel univariate series is passed through

the instance normalization operator and segmented

into patches. These patches are used as transformer

input tokens.

•	 Masked self-supervised representation learning with

PatchTST where patches are randomly selected and set

to zero. The model will reconstruct the masked patches.

Chapter 3 Transformers for Time Series

124

	 a)	 Patching

Point-wise attention which is used in traditional

transformers tries to retrieve information from

a single step. This is not ideal in a time series, as

we will need to extract the relationship between

past time steps and future time steps to make

predictions.

Univariate inputs of time series x(i) are first divided

into patches which can be either overlapped or

non-overlapped. Denote the patch length as P and

the stride – the non-overlapping region between

two consecutive patches – as S, then the patching

process will generate the sequence of patches xp
(i)

∈RP×N where N is the number of patches, N = [(

L−P)/ S] +2. Here, we pad S repeated numbers of the

last value xL
(i) ∈ R to the end of the original sequence

before patching.

The number of input tokens can be reduced with

the use of patches from L to approximately L/S. This

implies the memory usage and computational

complexity of the attention map are quadratically

decreased by a factor of S.

	 b)	 Transformer encoder

A vanilla transformer encoder is used that maps the

observed signals to the latent representations. The

patches are mapped to the transformer latent space

of dimension D via a trainable linear projection, and

a learnable additive position encoding is applied to

monitor the temporal order of patches.

Chapter 3 Transformers for Time Series

125

	 c)	 Loss function

MSE loss to measure the discrepancy between the

prediction and the ground truth. The loss in each

channel is gathered and averaged over M time series

to get the overall objective loss:

	 d)	 Instance normalization

This helps mitigate the distribution shift effect

between the training and testing data. It simply

normalizes each time series instance x(i) with zero

mean and unit standard deviation. In this type of

normalization, for each x(i) before patching, the

mean and deviation are added back to the output

prediction.

Representation Learning
PatchTST can be utilized for self-supervised use cases to capture

the abstract representation of the data. The same encoder is used as the

supervised settings, the prediction head is removed, and a D×P linear layer

is attached. Instead of a supervised model where patches can be overlapped,

here each input sequence is split into regular non-overlapping patches.

It is for convenience to ensure observed patches do not contain

information about the masked patches. This is achieved by selecting a subset

of the patch at random and masking the patches according to zero values.

The model is trained with MSE loss to reconstruct the masked patches.

�3.6.2  PatchTST in Action

Having established a high-level theoretical foundation of the PatchTST

transformer, we shall now translate abstract concepts into practical code

implementation.

Chapter 3 Transformers for Time Series

126

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import PatchTST
from neuralforecast.losses.pytorch import MQLoss,
DistributionLoss,MAE
from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast.utils import AirPassengers,
AirPassengersPanel, AirPassengersStatic, augment_calendar_df

Let’s load the dataset either from an offline copy or from the

neuralforecast.utils dataset, which contains 12 years of monthly air

passenger count. Separate the last 1 year of data for the test and use the

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF as Y_df
Y_train_df = Y_df[Y_df.ds<='1959-12-31'] # 132 train
Y_test_df = Y_df[Y_df.ds>'1959-12-31'] # 12 test

dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Let’s initialize and train the PatchTST model:

h is the horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 ->

y_[t-2:t]=[1,2].

Patch_length is the length of patch. Note: patch_len = min(patch_len,

input_size + stride).

Stride is the stride of patch.

revin is the RevIn.

hidden_size is the dimension of the model.

n_heads is the number of heads.

Chapter 3 Transformers for Time Series

127

scaler_type is the type of scaler for temporal input normalization; see

temporal scalers.

loss is the instantiated train loss class from the losses collection.

learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every

validation loss check.

early_stop_patience_steps is the number of validation iterations

before early stopping.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters

which can be used to add future, history, and static exogenous variables.

horizon =12
model = PatchTST(h=horizon,
 input_size=104,
 patch_len=12,
 stride=24,
 revin=False,
 hidden_size=16,
 n_heads=4,
 scaler_type='robust',
 �loss=DistributionLoss(distribution='StudentT',

level=[80, 90]),
 learning_rate=1e-3,
 max_steps=500,
 val_check_steps=50,
 early_stop_patience_steps=2)

nf = NeuralForecast(
 models=[model],
 freq='M'
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)

Chapter 3 Transformers for Time Series

https://nixtla.github.io/neuralforecast/common.scalers.html
https://nixtla.github.io/neuralforecast/losses.pytorch.html

128

Predict the next defined horizon:

forecasts = nf.predict()
forecasts.head()

The predicted column of interest is PatchTST.

Measure the model accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['PatchTST'])

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = forecasts['PatchTST']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")

Chapter 3 Transformers for Time Series

129

plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-20 helps us to appreciate that the air passenger count

predicted by our model is close to reality.

Figure 3-20.  Actual vs. predicted

�3.7  Summary
In this chapter, we explored the transformer architecture, its core

components, and the modifications to leverage this powerful architecture

for time series forecasting tasks. We also discussed other variants such

as vanilla transformers, inverted transformers, DLinear, NLinear, and

PatchTST. We gained insights into the strengths and weaknesses of

different approaches, equipping readers to make informed decisions when

selecting models for specific time series forecasting tasks.

Choosing the best model depends on multiple parameters like

distributions of features, properties (volume, missing values, number

of features, etc.) of the dataset, and parameters like cost effectiveness,

memory usage, and computation power. However, we now understand the

strengths and weaknesses of the models discussed.

Vanilla transformers are highly scalable and versatile due to their

ability to be used in different domains like NLP, computer vision, and

time series. On the downside, they come with a high computational cost

and are data hungry. They are also not the best choice for use cases with

continuous time series data.

Chapter 3 Transformers for Time Series

130

Inverted transformer architecture is best suited for sequential

data while limited to time series use cases and requires expertise in

hyperparameter tuning.

DLinear architecture needs lesser features to train and has lower

memory and computational needs. These are the go-to architectures in

resource-constrained use cases. However, this model is not best when

there are nonlinear relationships in the data. The NLinear model is useful

in cases where the data is stationary or nonstationary; however, it does not

capture complex relations within the data.

Finally, the PatchTST captures the dependencies in the data well while

still having downsides with respect to preprocessing needs and careful

patch size selection.

3.8  References
[1].	 Attention is all you need. https://doi.org/10.48550/

arXiv.1706.03762
[2].	 iTransformer: Inverted Transformers Are Effective for

Time Series Forecasting. https://doi.org/10.48550/
arXiv.2310.06625

[3].	 Informer: Beyond Efficient Transformer for Long

Sequence Time-

Series Forecasting. https://doi.org/10.48550/
arXiv.2012.07436

[4].	 Are Transformers Effective for Time Series Forecasting?

https://doi.org/10.48550/arXiv.2205.13504
[5].	 Autoformer: Decomposition Transformers with Auto-

Correlation for Long-Term Series Forecasting. https://
doi.org/10.48550/arXiv.2106.13008

[6].	 A Time Series is Worth 64 Words: Long-term Forecasting

with Transformers. https://doi.org/10.48550/
arXiv.2211.14730

Chapter 3 Transformers for Time Series

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2310.06625
https://doi.org/10.48550/arXiv.2310.06625
https://doi.org/10.48550/arXiv.2012.07436
https://doi.org/10.48550/arXiv.2012.07436
https://doi.org/10.48550/arXiv.2205.13504
https://doi.org/10.48550/arXiv.2106.13008
https://doi.org/10.48550/arXiv.2106.13008
https://doi.org/10.48550/arXiv.2211.14730
https://doi.org/10.48550/arXiv.2211.14730

131© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7_4

CHAPTER 4

Time-LLM:
Reprogramming Large
Language Model
Chapter Goal: Understand how the Time-LLM repurposes a foundation

model that is designed for NLP tasks and uses it for time series forecasting.

In the previous chapter, we covered transformers. In the upcoming

chapters, we will understand how to use large language models built

with the help of transformers. We will discuss some of the recent

foundation models used in time series forecasting, starting with the first

one: TimeGPT. Some of the recent advances in time series foundation

models make use of techniques like fine-tuning or pre-training to capture

generalized knowledge for time series forecasting.

In this chapter, we will cover Time-LLM. In Chapter 2, we discussed the

WaveNet model. While it was designed primarily for audio applications,

we saw how to use it for time series forecasting by changing parameters

like dilation rate, receptive field, and loss function. In this chapter, let

us discuss how a foundation model primarily trained and used for NLP

applications can be used for time series forecasting. Time-LLM essentially

provides a framework to tackle this challenge, without changing the model

itself. In this framework, the input time series is transformed to a natural

https://doi.org/10.1007/979-8-8688-1276-7_4#DOI

132

language before feeding it to the foundation model. The output of the

foundation model is then decoded to a time series forecast.

Figure 4-1.  High-level overview of Time-LLM

Before proceeding to understand this framework, we need to clearly

understand the difference between reprogramming and fine-tuning. While

both methods help to adopt foundation models to perform desired tasks,

they differ in process and purpose.

�4  Fine-Tuning vs. Reprogramming
Fine-tuning involves extending the training process on the foundation

model rather than from scratch. Not everyone has the resources and time

to build a custom model. The process of fine-tuning involves training the

model with our custom data. This helps to serve a specific task or to use

in a specific domain. The process of training generally may be achieved

by freezing some layers or by training with a different learning rate. The

weights of the model are adjusted, resulting in a change in the nature of

the foundation model itself. One of the use cases where we used fine-

tuning is taking a foundation model like GPT-2/BERT and fine-tuning

to perform sentiment analysis. This was part of onboarding a new client

based on media articles, reviews, and a few other written sources.

Reprogramming involves using a foundation model built for use in a

specific domain for an entirely different task or domain. This is generally

achieved by using a transformation layer or a mapping layer to convert

input from a different domain to the domain that the model understands.

For example, input time series data to NLP data. It focuses on altering

input rather than altering the model itself. This is similar to using wrappers

Chapter 4 Time-LLM: Reprogramming Large Language Model

133

in software engineering. This is faster and less resource intensive since the

effort is in translating the input than the core model itself. This translation

layer can be reused for similar input transformation (input domain ->

output domain mappings), which is not necessarily true for fine-

tuning cases.

Figure 4-2.  Visual representation of fine-tuning (b) and
reprogramming (c) [1]

From the above understanding, it is clear that fine-tuning changes

the model parameters to cater to specific tasks, whereas reprogramming

helps us to use the model for an entirely different task, by presenting the

input in a format that the model was primarily intended to accept, without

changing (or minimal changes) to the model itself.

�4.1  Technical Overview of Time-LLM
Let us understand the enhancements that can be done to a foundation

model primarily trained on text data, like GPT-2, to be used for time series

forecasting. The foundation model works by converting input text to

multidimensional vectors that are used to capture the semantic properties

of the input text. Figure 4-3 represents the framework that we are about to

discuss.

Chapter 4 Time-LLM: Reprogramming Large Language Model

134

Figure 4-3.  Model framework of Time-LLM [1]

Figure 4-3 shows the model framework of Time-LLM. The input time

series is converted to tokens, and embedding is performed by (1) patching

along with a (2) customized embedding layer. (3) These patch embeddings

are then reprogrammed with condensed text prototypes to align two

modalities. To augment the LLM’s reasoning ability, (4) additional

prompt prefixes are added to the input to direct the transformation of

input patches. (5) The output patches from the LLM are passed through a

projection layer to generate the forecasts.

�4.1.1  Working of Time-LLM

Each input time series is individually normalized, which results in a time

series with unit SD (standard deviation) and zero mean. This is achieved

using the RevIN (reversible input normalization) algorithm. RevIN is a

type of normalization where the transformations can be rolled back, thus

helping to recover original data after processing. Then the input time

series is divided into many overlapped or non-overlapped patches, each

Chapter 4 Time-LLM: Reprogramming Large Language Model

135

of length Lp. Patching of input time series helps in preserving the local

semantic information. LSI is nothing but understanding the words (or

n-grams) within their immediate context. This is achieved by considering

a group of time steps rather than an individual time step. This aggregation

of time steps results in greatly reducing the number of tokens passed to the

reprogramming layer. This is due to the generation of a compact sequence

of input tokens for reprogramming that greatly reduces computational

complexity. Patch embeddings are generated as a result of this step.

The patch embeddings generated from the first (previous) step are

used in patch reprogramming. This step innovatively transforms the patch

embeddings to text prototypes. This helps the foundation model trained

with natural language to understand time series data. This is achieved by

taking help of techniques used in domain adaptation like noise learning.

Here, instead of retraining, a small noise (perturbation) is learned. This

noise when applied to the input patch embeddings generates output that

can be understood by the foundation model.

Those familiar with domain adaptation may be already thinking; it is

possible to achieve tasks within the same domain like models trained on

images in day light to identify images taken in poor lighting conditions by

introducing noise in the form of brightness and contrast. However, text and

numbers are entirely different domains. To handle this unique scenario,

the patch reprogramming layer leverages pre-trained word embeddings

already present in the foundation model. Another challenge arises in using

since there is no information regarding the relevance of source tokens.

Leveraging all possible word embeddings results in a large co-domain.

This is overcome by selecting a small subset of relevant word embeddings

by using a linear classifier (like a logistic regression or linear SVC) to

classify relevant embeddings for our task. To understand better, we can

see that in Figure 4-4 text prototypes learn connecting language cues,

Chapter 4 Time-LLM: Reprogramming Large Language Model

136

for example, “short up” (shown in red lines) “steady down” (shown in blue

lines). These are combined to represent the local patch information “short

up then down steadily” for characterizing patch 5. Similarly, “early down,”

“steady long” for characterizing patch 1.

Figure 4-4.  Patch reprogramming [1](The above figure represents
transforming the input patch to a language task.)

Reprogramming essentially consists of adaptation and alignment.

While we discussed the adaptation part so far, let us understand the

alignment now. Refer to Figure 4-3. The translated patches are sent to

a multi-head attention layer. From the previous chapter (Chapter 3) on

transformers (where multi-head attention was explained), we know that

this step helps in focusing on the different patches simultaneously. Each

“head” processes information from the patches independently. This helps

the model to capture various relationships and dependencies present in

the data. Next, the processed data needs to be aligned with the specific

format that the foundation model can use. The “linear projection” step

helps to transform the dimensionality of the data (reprogrammed patches)

to match the expected input size or format of the foundation model.

Chapter 4 Time-LLM: Reprogramming Large Language Model

137

This ensures that the data can be correctly interpreted and processed by

the model.

At this stage, the input to the foundation model is natural language.

So similar to leveraging explanations of the task in prompts while using an

LLM to get better output, we can add prompts to the patches. This prompt

prefix complements patch programming to guide the LLM for better

forecasts.

There are three main parts in the prompt for leveraging prompt as

a prefix. We should pass (1) the dataset context, (2) task instruction,

and (3) input statistics as part of the prompt. In the prompt example in

Figure 4-5, the dataset context provides the LLM with essential background

information about the input time series, which often exhibits distinct

characteristics across various domains. Task instruction serves as a guide

for the foundation model in the transformation of patch embeddings

for specific tasks. The input time series is also enriched with additional

statistics. These stats could be information regarding trends and lags which

helps in pattern recognition and reasoning.

Figure 4-5.  Prompt as a prefix. <H/T> as task instruction and <min_
val, max_val ..> as input statistics. [1]

Chapter 4 Time-LLM: Reprogramming Large Language Model

138

Figure 4-6.  Prompt as a prefix and patches are sent to the foundation
model [1]

The prompt and patches are fed to the LLM, and as a result the LLM

generates output patch embeddings. Remember that the output is from

a language-trained LLM, which needs to be converted to time series

forecasts. This is achieved by flattening, and then linear projections are

applied to get the desired output which is the time series forecast.

Before we get into practical implementation, readers may please note

that what we understood so far is the idea and working behind Time-LLM.

Please note that the practical implementations may differ and use

clever tricks like computing input statistics automatically as part of

the code and using FFT (Fast Fourier Transform) to compute lags.

�4.2  Time-LLM in Action
Having established a high-level theoretical foundation of Time-LLM, we

shall now translate abstract concepts into practical code implementation.

Chapter 4 Time-LLM: Reprogramming Large Language Model

139

�4.2.1  Univariate Use Case

Let's explore Time-LLM to solve a univariate problem.

Import required modules:

import torch
import psutil
import platform
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast import NeuralForecast
from neuralforecast.models import TimeLLM
from neuralforecast.utils import AirPassengersPanel, augment_
calendar_df
from transformers import GPT2Config, GPT2Model, GPT2Tokenizer

Let’s display the GPU and CPU information:

use_cuda = torch.cuda.is_available()
if use_cuda:
 print('__CUDNN VERSION:', torch.backends.cudnn.version())
 print('__Number CUDA Devices:', torch.cuda.device_count())
 print('__CUDA Device Name:',torch.cuda.get_device_name(0))
 �print('__CUDA Device Total Memory [GB]:',torch.cuda.get_

device_properties(0).total_memory/1e9)

Chapter 4 Time-LLM: Reprogramming Large Language Model

140

Let’s print the memory, CPU, and platform information:

mem = psutil.virtual_memory()

print("Available Memory:")
print(" Total:", mem.total / (1024 ** 2), "MB")
cpu_count = psutil.cpu_count()
cpu_count_logical = psutil.cpu_count(logical=True)

print("\nCPU Details:")
print(" Physical Cores:", cpu_count)
print(" Logical Cores:", cpu_count_logical)

platform_info = platform.platform()
print("\nPlatform:", platform_info)

Let’s load the AirPassenger dataset and split data into train and test:

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

Chapter 4 Time-LLM: Reprogramming Large Language Model

141

Y_train_df = Y_df[Y_df.ds<='1959-12-31'] # 132 train
Y_test_df = Y_df[Y_df.ds>'1959-12-31'] # 12 test

Next, let’s work on setting up GPT2:

gpt2_config = GPT2Config.from_pretrained('openai-
community/gpt2')
gpt2 = GPT2Model.from_pretrained('openai-community/gpt2',
config=gpt2_config)
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('openai-
community/gpt2')
prompt_prefix = "The dataset contains data on monthly air
passengers. There is a yearly seasonality"

Let’s initialize, train the model (TimeLLM), and define its

hyperparameters.

h is the forecast horizon.

input_size is the autoregressive input size.

llm is the LLM model to be used.

llm_config is the configuration of LLM.

llm_tokenizer is the tokenizer of LLM.

Chapter 4 Time-LLM: Reprogramming Large Language Model

142

prompt_prefix is the prompt to inform the LLM about the dataset.

batch_size is the number of different series in each batch.

windows_batch_size is the number of windows to sample in each

training batch.

horizon = 12
timellm = TimeLLM(h=horizon,
 input_size=36,
 llm=gpt2,
 llm_config=gpt2_config,
 llm_tokenizer=gpt2_tokenizer,
 prompt_prefix=prompt_prefix,
 batch_size=24,
 windows_batch_size=24)

nf = NeuralForecast(
 models=[timellm],
 freq='M'
)

nf.fit(df=Y_train_df, val_size=12)

Now that we completed training, let’s work on prediction.

Note I t took 26 minutes to train the model and 25 minutes to
generate predictions using the hardware specification printed above.

forecasts = nf.predict()
forecasts.head()

Chapter 4 Time-LLM: Reprogramming Large Language Model

143

Let’s measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['TimeLLM'])

Let’s visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))

Chapter 4 Time-LLM: Reprogramming Large Language Model

144

y_past = Y_train_df["y"]
y_pred = forecasts['TimeLLM']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)

plt.legend();

Figure 4-7 helps us to appreciate that the air passenger count predicted

by our model is not close to reality. Please refer to the “Summary” section

for more details.

Figure 4-7.  Actual vs. predicted plot

�4.2.2  Multivariate Use Case

Now that we have tried the univariate use case, let's explore Time-LLM for

the multivariate problem.

Import required modules:

import torch
import psutil
import platform

Chapter 4 Time-LLM: Reprogramming Large Language Model

145

import numpy as np
import pandas as pd
import pytorch_lightning as pl
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast import NeuralForecast
from neuralforecast.models import TimeLLM
from neuralforecast.utils import AirPassengersPanel, augment_
calendar_df
from transformers import GPT2Config, GPT2Model, GPT2Tokenizer

Let’s display the GPU and CPU information:

use_cuda = torch.cuda.is_available()
if use_cuda:
 print('__CUDNN VERSION:', torch.backends.cudnn.version())
 print('__Number CUDA Devices:', torch.cuda.device_count())
 print('__CUDA Device Name:',torch.cuda.get_device_name(0))
 �print('__CUDA Device Total Memory [GB]:',torch.cuda.get_

device_properties(0).total_memory/1e9)

Let’s print the memory, CPU, and platform information:

mem = psutil.virtual_memory()
print("Available Memory:")
print(" Total:", mem.total / (1024 ** 2), "MB")
cpu_count = psutil.cpu_count()

Chapter 4 Time-LLM: Reprogramming Large Language Model

146

cpu_count_logical = psutil.cpu_count(logical=True)
print("\nCPU Details:")
print(" Physical Cores:", cpu_count)
print(" Logical Cores:", cpu_count_logical)
platform_info = platform.platform()
print("\nPlatform:", platform_info)

Let’s load the AirPassenger dataset and split data into train and test:

AirPassengersPanel, calendar_cols = augment_calendar_
df(df=AirPassengersPanel, freq='M')

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassen
gersPanel['ds'].values[-12]]
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassen
gersPanel['ds'].values[-12]].reset_index(drop=True)

Note that other features apart from “y” are added as exogenous variables:

Y_train_df.head()

Chapter 4 Time-LLM: Reprogramming Large Language Model

147

Now let’s work on setting up GPT2:

gpt2_config = GPT2Config.from_pretrained('openai-
community/gpt2')
gpt2 = GPT2Model.from_pretrained('openai-community/gpt2',
config=gpt2_config)
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('openai-
community/gpt2')
prompt_prefix = "The dataset contains data on monthly air
passengers. There is a yearly seasonality"

Chapter 4 Time-LLM: Reprogramming Large Language Model

148

Let’s initialize, train the model (TimeLLM), and define its

hyperparameters.

h is the forecast horizon.

input_size is the autoregressive input size.

llm is the LLM model to be used.

llm_config is the configuration of LLM.

llm_tokenizer is the tokenizer of LLM.

prompt_prefix is the prompt to inform the LLM about the dataset.

batch_size is the number of different series in each batch.

windows_batch_size is the number of windows to sample in each

training batch.

horizon = 12
timellm = TimeLLM(h=horizon,
 input_size=36,
 llm=gpt2,
 llm_config=gpt2_config,
 llm_tokenizer=gpt2_tokenizer,
 prompt_prefix=prompt_prefix,
 batch_size=24,
 windows_batch_size=24)

nf = NeuralForecast(
 models=[timellm],
 freq='M'
)

nf.fit(df=Y_train_df, val_size=12)

Now that training is done, let’s try predicting by passing future

exogenous which are part of test data prepared earlier.

Chapter 4 Time-LLM: Reprogramming Large Language Model

149

Note I t took 26 minutes to train the model and 25 minutes to
generate predictions using the hardware specification printed above.

Pass the Y_test_df which contains future exogenous variables:

forecasts = nf.predict(futr_df=Y_test_df)

Let’s measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['TimeLLM'])

Let’s see predictions for Airline1; TimeLLM is the predicted column:

print(forecasts['TimeLLM'][:12])

Chapter 4 Time-LLM: Reprogramming Large Language Model

150

Let’s see predictions for Airline2; TimeLLM is the predicted column:

print(forecasts['TimeLLM'][12:])

Chapter 4 Time-LLM: Reprogramming Large Language Model

151

Let’s visualize the predictions:

train_df_1 = Y_train_df[Y_train_df.unique_id == 'Airline1']
airline_df_1 = Y_test_df[Y_test_df.unique_id == 'Airline1']
train_df_1.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)

Chapter 4 Time-LLM: Reprogramming Large Language Model

152

airline_df_1.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = train_df_1["y"]
y_pred = forecasts['TimeLLM'][:12]
y_test = airline_df_1["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast for Airline1', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)

plt.legend();

Figure 4-8.  Actual vs. predicted plot

Figure 4-8 helps us to appreciate that the air passenger count predicted

by our model is not close to reality. Please refer to the “Summary” section

for more details.

train_df_2 = Y_train_df[Y_train_df.unique_id == 'Airline2']
airline_df_2 = Y_test_df[Y_test_df.unique_id == 'Airline2']
train_df_2.set_index('ds',inplace =True)
airline_df_2.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = train_df_2["y"]
y_pred = forecasts['TimeLLM'][12:]
y_test = airline_df_2["y"]

Chapter 4 Time-LLM: Reprogramming Large Language Model

153

plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast for Airline2', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 4-9 helps us to appreciate that the air passenger count predicted by

our model is not close to reality. One of the reasons could be using such large

models on smaller datasets, leading to over- or underfitting. Sometimes, these

reprogrammed models are too complex for the available training set.

Figure 4-9.  Actual vs. predicted plot

�4.3  Summary
We understood how the Time-LLM repurposes a foundation model that

is designed for NLP tasks and uses it for time series forecasting. We used

patching to capture the LSI and make the best use of the underlying

transformer/attention mechanism.

Finally, we learned how to do forecasting in both univariate and

multivariate scenarios and understood how such large models might over-

or underfit for smaller datasets. This model does not work well on datasets

with strong temporal dynamics (changes in time series characteristics over

time). In the next chapter, let’s understand Chronos along with a sample

implementation.

Chapter 4 Time-LLM: Reprogramming Large Language Model

154

4.4  Reference

[1].	 Time-LLM: Time Series Forecasting by Reprogramming

Large Language Models; Ming Jin et.al. https://doi.
org/10.48550/arXiv.2310.01728

Chapter 4 Time-LLM: Reprogramming Large Language Model

https://arxiv.org/abs/2310.01728
https://arxiv.org/abs/2310.01728

155© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7_5

CHAPTER 5

Chronos: Pre-trained
Probabilistic Time
Series Model
Chapter Goal: Learn how to leverage Chronos, a pre-trained probabilistic

time series model.

�5  Introduction
In the previous chapter, we understood how large language models are

reprogrammed for time series forecasting.

The emergence of large language models with zero-shot learning

capabilities has encouraged the development of foundation models for

time series by directly using pre-trained LLMs in natural language and

fine-tuning LLMs to handle time series tasks.

Zero-shot forecasting is the ability of models to generate forecasts for

time series from unseen datasets. One of the popular techniques is training

on a single time series dataset and testing on a different dataset.

Several methods adapting LLMs to the time series domain have been

developed. One line of work treats numerical time series data as raw text

and directly uses the pre-trained LLMs with minimal or no fine-tuning to

https://doi.org/10.1007/979-8-8688-1276-7_5#DOI

156

forecast unseen time series. LLM-based forecasting models such as Time-

LLM have shown evidence that pre-trained models perform well at a zero-

shot forecasting ability.

Chronos is a probabilistic pre-trained time series forecasting model

based on T5 family language model architectures. It leverages existing

language model architectures as both language and time series are

sequential. The only difference is that their representation of natural

language consists of words from a finite vocabulary, while time series are

real valued.

�5.1  Technical Overview of Chronos
Chronos is a language modeling framework minimally adapted for time

series forecasting. Chronos tokenizes time series into discrete bins through

simple scaling and quantization of real values. By using this method, we

can train off-the-shelf language models with no changes to the model

architecture as depicted in Figure 5-1. A straightforward approach proves

to be effective in addressing a broad range of time series problems with

minimal modifications.

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

157

Figure 5-1.  (Left) Scaled and quantized input time series to obtain
input from a sequence of tokens. (Center) Encoder-decoder or
decoder-only model accepting tokens which is trained using cross-
entropy loss. (Right) Multiple trajectories are sampled to obtain
predictive distribution during inference by autoregressively sampling
tokens from the model and mapping them to original numerical
values [1]

�5.2  Time Series Tokenization
Time series data requires mapping the observations to a finite set of

tokens, as originally language models operate on tokens from a finite

vocabulary, to address this scale and then quantize observations into a

fixed number of bins.

Scaling: The main goal of normalization is to transform the data to fit

within a specific range suitable for quantization; there are several scaling

techniques such as mean scaling, standard scaling, min-max scaling,

MaxAbsScaler, RobustScaler, and several others as mean scaling is known

to be effective in deep learning models commonly used for time series

applications.

Quantization: This is a technique that converts real values into

discrete tokens as scaled time series cannot be processed directly by

language models. Uniform binning is used as it selects bin centers

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

158

uniformly within some interval and as the distribution of training and

inference data significantly differ, or any other quantization technique can

also be used.

Time series tokens will also include two special tokens, PAD and EOS,

which are commonly used in language models. The PAD token is used to

pad time series of different lengths to a fixed length for batch construction

and replace missing values. The EOS token is appended to the quantized

and padded time series to denote the end of the sequence and also helps

make training and inference of the large language models much easier.

�5.3  Training
Tokenized time series are used to train and minimize the cross-entropy

between the distribution of the quantized ground truth label and the

predicted distribution.

Categorical cross-entropy loss is not a distance-aware objective

function, which means it does not explicitly recognize that bin i is closer

to bin i+1 than to i+2. Based on the distribution of bin indices in the

training dataset, the models associated nearby bins together, which means

Chronos performs regression via classification. This is unlike typical

probabilistic time series forecasting models, which either use parametric

continuous distributions such as Gaussian and Student’s t-distribution or

perform quantile regression.

The benefits of using categorical outputs are that we can use existing

language models with no modification to the architecture or training

objective, and we can use them out of the box, and they don’t impose any

restrictions on the structure of the output distribution.

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

159

�5.4  Inference
Context tokens are fed into the model to generate the future tokens; then

these tokens need to be mapped back to real values and then unscaled to

obtain original forecasts. The dequantization function is used to map the

predicted tokens to real values and then unscaled by applying the inverse

scaling transformation.

Training these models requires a large volume of data, and public time

series data is barely available, which poses challenges in training zero-shot

forecasting models. To tackle this, we can diversify the training data by

generating mix-up data augmentation for real datasets and using synthetic

data for training, which can be done using techniques such as TSMixup

(time series mix-up) and KeralSynth (synthetic data generation using the

Gaussian process).

�5.5  Chronos in Action
Having established a high-level theoretical foundation of Chronos, we

shall now translate abstract concepts into practical code implementation

of Chronos-tiny.

�5.5.1  Chronos-tiny Use Case

At the time of book development, the Chronos forecasting scope was

limited to univariate forecasting.

Import required modules:

import autogluon
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

160

from autogluon.timeseries import TimeSeriesPredictor,
TimeSeriesDataFrame
from autogluon.timeseries.models import WaveNetModel
import pandas as pd

Let's load the AirPassengersDataset CSV using pandas, a dataset which

contains 12 years of monthly air passenger data:

Y_df = pd.read_csv('AirPassengersDataset.csv')
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

AutoGluon expects time series data in long format. Each row of the

data frame contains a single observation (time step) of a single time series

represented by

	 a)	 Unique ID of the time series item_id as int or str

	 b)	 Timestamp of the observation timestamp as a

pandas.Timestamp or compatible format

	 c)	 Numeric value of the time series target

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

161

Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df.rename(columns={"ds":"timestamp","unique_id" :"item_id",
"y": "target"},inplace = True)
Y_df['item_id'] = 'airline_1'

data = TimeSeriesDataFrame.from_data_frame(
 Y_df,
 id_column="item_id",
 timestamp_column="timestamp"
)
data.tail()

Split data into train and test. Separate the last 1-year data for the test

and use the remaining 11 years of data to train and predict:

train_data = data.head(132)
test_data = data.tail(12)

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

162

Create a TimeSeriesPredictor object to forecast future values and

explicitly define chronos_tiny to be used:

prediction_length =12
predictor = TimeSeriesPredictor(prediction_length=prediction_
length).fit(
train_data, presets="chronos_tiny"
)

Predict the next defined horizon:

predictions = predictor.predict(train_data)
predictions.head()

The predicted column of interest is mean.

Measure the model’s accuracy:

calculate_error_metrics(test_data['target'],
predictions['mean']['airline_1'])

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

163

Visualize the predictions:

predictor.plot(
 data=Y_df,
 predictions=predictions,
 item_ids=["airline_1"],
 max_history_length=200,
);

Figure 5-2.  Observed vs. forecast

Figure 5-2 helps us to appreciate that the air passenger count predicted

by our model is close to reality.

�5.5.2  chronos_large_ensemble Use Case

Let’s now implement chronos_large_ensemble using the same dataset as

above which builds an ensemble of seasonal naive, tree-based, and deep

learning models with fast inference.

Import required modules:

import autogluon
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from autogluon.timeseries import TimeSeriesPredictor,
TimeSeriesDataFrame
import pandas as pd

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

164

Let's load the AirPassengersDataset CSV using pandas, a dataset that

contains 12 years of monthly air passenger data:

Y_df = pd.read_csv('AirPassengersDataset.csv')
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

AutoGluon expects time series data in long format. Each row of the

data frame contains a single observation (time step) of a single time series

represented by

	 a)	 Unique ID of the time series item_id as int or str

	 b)	 Timestamp of the observation timestamp as a

pandas.Timestamp or compatible format

	 c)	 Numeric value of the time series target

Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df.rename(columns={"ds":"timestamp","unique_id" :"item_id",
"y": "target"},inplace = True)
Y_df['item_id'] = 'airline_1'
Y_df.head()

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

165

data = TimeSeriesDataFrame.from_data_frame(
 Y_df,
 id_column="item_id",
 timestamp_column="timestamp"
)
data.tail()

Split data into train and test. Separate the last 1-year data for the test

and use the remaining 11 years of data to train and predict:

train_data = data.head(132)
test_data = data.tail(12)

Create a TimeSeriesPredictor object to forecast future values and

explicitly define chronos_large_ensemble to be used:

prediction_length =12
predictor = TimeSeriesPredictor(prediction_length=prediction_
length).fit(
train_data, presets="chronos_large_ensemble"
)

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

166

Predict the next defined horizon:

predictions = predictor.predict(train_data)
predictions.head()

The predicted column of interest is the mean.

Measure the model’s accuracy:

calculate_error_metrics(test_data['target'],predictions['mean']
['airline_1'])

Visualize the predictions:

predictor.plot(
 data=Y_df,
 predictions=predictions,
 item_ids=["airline_1"],
 max_history_length=200,
);

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

167

Figure 5-3.  Observed vs. forecast

Figure 5-3 helps us to appreciate that the air passenger count predicted

by our model is close to reality.

�5.6  Summary
In this chapter, we understood how Chronos pre-trained probabilistic time

series model works and how to implement chronos_tiny and chronos_

large_ensemble using real-world datasets. Chronos can be used for any

univariate forecasting use case, and it works best on datasets that consist

of observations captured at equal intervals of time. In the next section, let's

deep dive into TimeGPT.

5.7  Reference
[1].	 Chronos: Learning the Language of Time Series.

https://doi.org/10.48550/arXiv.2403.07815

Chapter 5 Chronos: Pre-trained Probabilistic Time Series Model

https://doi.org/10.48550/arXiv.2403.07815

169© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7_6

CHAPTER 6

TimeGPT: The First
Foundation Model
for Time Series
Chapter Goal: Learn how to leverage TimeGPT to build robust and

accurate time series models.

�6  Introduction
In the previous chapter, we explored the technical overview of Chronos,

a pre-trained time series forecasting model, and completed hands-on

implementation using a real-world dataset.

In this chapter, let’s explore TimeGPT, a production-ready, generative

pre-trained transformer for time series capable of predicting retail,

electricity, web traffic, transport, economics, finance, and IoT with just

a few lines of code. We can also understand why it is called the first

foundation model for time series.

Time series analysis historically relied on traditional techniques

like Fourier Analysis, Moving Average, Autoregressive, Autoregressive

Integrated Moving Average, Exponential Smoothing, Vector

Autoregression, Theta, and Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) Models, which were popular historically and

https://doi.org/10.1007/979-8-8688-1276-7_6#DOI

170

used in various domains, and later evolved to more powerful machine

learning tools like Random Forest, Gradient Boosting, XGBoost, LightGBM,

CatBoost, and Prophet.

The rapid advancement in computational power, availability

and storage of large datasets, and advancements in algorithms and

architectures have fueled the advent of new deep learning methodologies

in some use cases to outperform traditional techniques. Deep learning is

a global approach that offers advantages over conventional methods in

automatic feature learning, handling large and complex data, improved

performance, handling nonlinear relationships, handling structured and

unstructured data, and handling sequential data.

Deep learning models such as RNN, LSTM, GRU, and CNN, designed

for natural language processing and computer vision, when repurposed for

sequential data demonstrated amazing capabilities in learning patterns.

Significant advancements in hardware and distributed parallel processing

fueled the popularity of transformer models, which have gained popularity

in recent years as they demonstrate amazing capabilities for learning from

large volumes of data.

Recent advancements in transformer architecture have led to the

development of powerful transformer-based models like Autoformer,

Informer, FEDformer, and PatchTST. These models leverage self-attention

and innovative techniques to capture long-range dependencies and

complex patterns in time series data. Further to the discussion so far, let us

explore TimeGPT – the first time series foundation model.

TimeGPT was trained on a huge volume of publicly available datasets,

collectively over 100 billion data points, using NVIDIA A10G GPU for

multiple days. The training set included a wide range of domains due to this

dataset’s comprised of a diverse selection of temporal patterns, structural

breaks, seasonality, cycles of various lengths, various trends, and irregular

and regular patterns, offering a robust training dataset. This pre-training

allows it to generalize well to new, unseen time series data, making it a

powerful and versatile tool for time series forecasting and analysis.

Chapter 6 TimeGPT: The First Foundation Model for Time Series

171

The selection of diverse datasets helps TimeGPT to forecast unseen

time series accurately while eliminating the need for individual model

training and optimization and performs well on single-series and multiple-

series forecasting as depicted in Figure 6-1.

Figure 6-1.  (a) Single-series forecasting, (b) multiple-series
forecasting [1]

�6.1  Technical Overview of TimeGPT
TimeGPT is a transformer-based model and employs an encoder-

decoder architecture with multiple layers, each incorporating residual

connections and layer normalization. The decoder’s output is projected to

the forecasting window dimension through a linear layer. Local positional

encoding is added to the window of historical values to enhance the input.

The attention mechanisms allow models to focus on the most relevant

parts of the input sequence, improving their ability to capture long-range

dependencies and make accurate predictions.

TimeGPT can handle different input sizes, horizons, and other

characteristics within data such as frequency, sparsity, trend, seasonality,

stationarity, and heteroskedasticity which may present distinct

complications for both local and global models.

Chapter 6 TimeGPT: The First Foundation Model for Time Series

172

Figure 6-2.  Depicting datasets from different domains used for
training and inference are generated on new data [1]

The forecasting model is a function:

fθ: X → Y, where X is the feature space and Y is the dependent

variable.

Consider the setting: X = {y[0:t], x[0:t+h]} and Y = {y[t+1:t+h]}

where h is the horizon to forecast, y is the target variable, and x is the

exogenous variable. The goal is to estimate the conditional distribution.

P (y[t+1:t+h]| y[0:t],x[0:t+h])= fθ(y[0:t],x[0:t+h])

Figure 6-3.  Inference of new time series [1]

TimeGPT makes predictions by reading input series like humans

by looking at the windows of past data, which are similar to tokens, and

predicts the next required horizon. TimeGPT performs remarkably well

Chapter 6 TimeGPT: The First Foundation Model for Time Series

173

on zero-shot inference which is with no fine-tuning, which is remarkable

when compared against statistical models and state-of-the-art deep

learning approaches. A known drawback of this model is that accuracy

diminishes when the forecasting horizon is too long.

It’s worth noting that the original paper on TimeGPT [1] provides a

high-level overview of the approach, but lacks granular details regarding

the specific implementation techniques.

�6.2  TimeGPT in Action
Having established a high-level theoretical foundation of TimeGPT, we

shall now translate abstract concepts into practical code implementation.

�6.2.1  Setting Up an API Key for TimeGPT

There are secured and unsecured methods of the API key configuration

process; we follow the unsecured method in this example.

	 a)	 Log in to the NIXTLA Developer Dashboard by

authenticating using Gmail, GitHub, or email.

Chapter 6 TimeGPT: The First Foundation Model for Time Series

174

	 b)	 In the dashboard, navigate to API Keys and click

Create New API Key.

	 c)	 Paste the key directly into your Python code, by

instantiating the NixtlaClient with your API key:

Chapter 6 TimeGPT: The First Foundation Model for Time Series

175

�6.2.2  Univariate Use Case

Let’s explore an example using a univariate dataset.

Import required libraries:

import numpy as np
import pandas as pd
from nixtla import NixtlaClient
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score

Setting up your API key, copy and paste your key directly into your

Python code:

nixtla_client = NixtlaClient(
 api_key = 'nixtla-tok-xxxxxxxxxx'
)

Validate your API key, check the status of your API key, and use the

validate_api_key method of the NixtlaClient class. This method will return

True if the API key is valid and False otherwise.

nixtla_client.validate_api_key()

Chapter 6 TimeGPT: The First Foundation Model for Time Series

176

Load the AirPassenger dataset.

Split data into train and test. Separate the last 12 months of data for

testing and use the remaining 11 years for model training:

Y_df = pd.read_csv('AirPassengersDataset.csv')
Y_df.drop(['unique_id'], axis =1 , inplace = True)
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Plot the training data:

nixtla_client.plot(Y_train_df, time_col='ds', target_col='y')

Figure 6-4.  Training data

Set the following parameters:

	 a)	 df: A pandas DataFrame

	 b)	 h: Horizons

Chapter 6 TimeGPT: The First Foundation Model for Time Series

177

	 c)	 time_col: The column that identifies the date stamp

	 d)	 target_col: The forecast variable

timegpt_fcst_df = nixtla_client.forecast(df=Y_train_df, h=12,
time_col='ds', target_col='y')
timegpt_fcst_df.head()

Check how well the model works on test data:

calculate_error_metrics(Y_test_df[['y']],timegpt_fcst_
df['TimeGPT'])

Plot actual vs. predicted:

Y_train_df.set_index('ds',inplace =True)
timegpt_fcst_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 5))
y_past = Y_train_df["y"][-50:]
y_pred = timegpt_fcst_df['TimeGPT']
y_test = Y_test_df["y"]

Chapter 6 TimeGPT: The First Foundation Model for Time Series

178

plt.plot(y_past, label="Past time series values")
plt.plot(timegpt_fcst_df, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.tight_layout()
plt.xticks(rotation=90)
plt.legend();

Figure 6-5 helps us to appreciate that the air passenger count predicted

by our model is close to reality.

Figure 6-5.  Observed vs. forecast

�6.2.3  Multivariate Use Case

Let’s explore an example using a multivariate dataset.

Import required libraries:

import numpy as np
import pandas as pd
from nixtla import NixtlaClient
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score

Chapter 6 TimeGPT: The First Foundation Model for Time Series

179

Setting up your API key, copy and paste your key directly into your

Python code:

nixtla_client = NixtlaClient(
 api_key = 'nixtla-tok-xxxxxxxxxxxx'
)

Validate your API key, check the status of your API key, and use the

validate_api_key method of the NixtlaClient class. This method will return

True if the API key is valid and False otherwise.

nixtla_client.validate_api_key()

Load the bike-sharing dataset [2]:

Y_df = pd.read_csv('Bike_sharing_systems.csv')
Y_df.drop(columns=['instant','casual','cnt'], axis =1,
inplace =True)
Y_df.rename(columns={'dteday':'ds','registered':'y'},
inplace=True)
Y_df.head()

Split data into train and test:

Y_train_df = Y_df.iloc[:-24,:]
Y_test_df = Y_df.iloc[-24:,:]

Chapter 6 TimeGPT: The First Foundation Model for Time Series

180

Using the test data, let’s remove the ‘y’ variable and make it a

dataframe containing future exogenous variables for the defined horizon:

Y_test_df_w_y = Y_test_df.copy()
Y_test_df.drop(columns=['y'], axis =1, inplace =True)
Y_test_df_wo_y = Y_test_df

With the target variable:

Y_test_df_w_y.head()

Without the target variable:

Y_test_df_wo_y.head()

Calling the forecast method and passing the exogenous variables:

timegpt_fcst_ex_vars_df = nixtla_client.forecast(df=Y_train_df,
X_df=Y_test_df_wo_y, h=24,)
timegpt_fcst_ex_vars_df.head()

Chapter 6 TimeGPT: The First Foundation Model for Time Series

181

Check how well the model predicts:

calculate_error_metrics(Y_test_df_w_y[['y']],timegpt_fcst_ex_
vars_df['TimeGPT'])

Plot actual vs. predicted:

Y_train_df.set_index('ds',inplace =True)
timegpt_fcst_ex_vars_df.set_index('ds',inplace =True)
Y_test_df_w_y.set_index('ds',inplace =True)
plt.figure(figsize=(20, 5))
y_past = Y_train_df["y"][-75:]
y_pred = timegpt_fcst_ex_vars_df['TimeGPT']
y_test = Y_test_df_w_y["y"]
plt.plot(y_past, label="Past count of registered users")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual count of registered users")
plt.title('Bike Sharing Forecast', fontsize=10)
plt.ylabel('Daily Count', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.xticks(rotation=90)
plt.legend();

Chapter 6 TimeGPT: The First Foundation Model for Time Series

182

Figure 6-6 helps us to appreciate that the count predicted by our model

is not close to reality.

Figure 6-6.  Observed vs. forecast

�6.3  Summary
In this chapter, we understood how TimeGPT, the first foundation model

for time series, works internally. We also tried a hands-on implementation

using univariate and multivariate examples. In the next chapter, let’s

explore MOIRAI, a time series foundation model for universal forecasting.

6.4  References

[1].	 TimeGPT-1. https://doi.org/10.48550/arXiv.2310.03589

[2].	 Bike sharing dataset. https://doi.org/10.24432/C5W894

Chapter 6 TimeGPT: The First Foundation Model for Time Series

https://doi.org/10.48550/arXiv.2310.03589
https://doi.org/10.24432/C5W894

183© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7_7

CHAPTER 7

MOIRAI: A Time
Series LLM for
Universal Forecasting
Chapter Goal: Learn how a universal forecasting model is designed and

learn with real-world datasets.

�7  Introduction
Ever wondered why we need so many models? Many a time working

on use cases, you may have wondered why we develop a new model

whenever the use case changes, while the task remains the same, for

example, the classification of images or text for different domains. Another

scenario could be time series forecasting for sales or crop yield. While the

task of forecasting remains the same, we end up developing a new model

every time. Some questions arise: Is it possible to reuse a model? Can we

have a universal forecasting model? Let us understand how MOIRAI, a

foundation model pre-trained on a large collection of time series datasets,

tries to answer some of these questions.

https://doi.org/10.1007/979-8-8688-1276-7_7#DOI

184

The Masked EncOder-based UnIveRsAl Time Series Forecasting

Transformer, or in short MOIRAI, is a result of novel enhancements

made to the traditional time series forecasting transformer. The current

version of the model was developed by training on a dataset containing

observations taken across nine domains and has around 27B observations.

In our experience, we found MOIRAI useful in scenarios involving zero-

shot forecasting. In some use cases, it was providing results on par with

multi-shot forecasting models. MOIRAI is trained and made available in

three sizes, MOIRAISmall, MOIRAIBase, and MOIRAILarge, with 14m,

91m, and 311m parameters, respectively.

Zero-shot time series forecasting is the ability of the forecasting model

to provide predictions on unseen datasets. It provides predictions without

explicit training on past data for that specific use case. The model leverages

its knowledge and patterns learned from pre-training from similar or

related data. During one of the interactions with a potential client who

was planning to release a new product, we were asked – how would you

forecast the future sales of this product, as it has no historical data? Our

answer, as you might have guessed by now, is zero-shot forecasting.

�7.1  Challenges with Building a Universal
Forecasting Model
To build a universal time series forecasting model, the unique challenges

inherent to time series datasets need to be addressed. Challenges like

(i) cross-frequency learning, (ii) accommodating an arbitrary number

of variates for multivariate time series, and (iii) addressing the varying

distributional properties inherent in large-scale data are handled by

making some enhancements to the conventional transformer architecture.

Let us understand these challenges in detail.

The frequency at which the observations in the time series dataset

are gathered has a profound impact on the patterns in the dataset. To

commence, the temporal granularity be it hourly, daily, or monthly

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

185

intervals of a time series is profoundly consequential in delineating the

intricate patterns that emerge within its temporal tapestry. To understand

this better, think of the patterns present in a time series dataset having the

numbers related to hourly, daily, weekly, and annual sales of a product,

sold in the last five years. To make it still easier, think of withdrawing

money from your savings account periodically on a daily, weekly, or

monthly basis. Cross-frequency learning or learning with time series

datasets sampled across different frequencies helps to improve forecasting

results. The information learned from various frequencies helps to better

understand the latent patterns. However, there are challenges related to

overfitting, negative interference, and computational complexity. Negative

interference is nothing but the degradation in models’ performance across

different frequencies of datasets.

Time series datasets are inherently heterogeneous, as there can be

variation in several variables recorded at any point in time. Consider

univariate and multivariate time series data related to sales of a product.

The univariate primarily has only a value reflecting the number of units

sold. The multivariate, additional could have values related to profit and

color of the unit sold. The universal model developed should be flexible to

handle multivariate interactions and exogenous covariates.

Probabilistic forecasting (recollect the DeepAR model) has its

significance in time series forecasting. This is because it provides a

comprehensive view of uncertainty and a range of possible forecasts rather

than a single forecast. A multitude of time series datasets have differing

statistical and probabilistic distributions. Using a Gaussian distribution as

the predictive distribution has many benefits like mathematical simplicity

(has only mean and variance), uncertainty quantification, and flexibility

with additive noise models. However, it is not suitable for time series data

with all observations greater than zero (positive time series). This makes

it challenging to use the standard approach of using a simple distribution

across a wide variety of datasets.

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

186

Any pre-trained model intended for universal forecasting necessitates

training on large datasets from various domains. Existing generally

available datasets are incapable of enabling the development of a universal

forecasting model.

�7.2  Technical Overview of MOIRAI
Now that we understand the challenges of developing a universal

forecasting model, let us understand the architecture and approaches

taken in developing MOIRAI to overcome the challenges.

MOIRAI leverages patches and masked encoder architecture to

model time series. Parts of the input data are selectively hidden using

a mask. The model is encouraged to predict the masked portions using

known (unmasked) data. The model learns better by utilizing contextual

understanding by predicting the masked data. The technique enhances

learning of dependencies and improves forecasting accuracy.

The challenge of a universal forecaster (MOIRAI) to cater to multiple

datasets with varying frequencies is dealt with the help of a layer

containing multiple patches of sizes. Referring to Figure 7-1, we can see the

layer with varying patch sizes (multi-patch size). MOIRAI uses a strategy

wherein high-frequency data are handled with a larger patch size and

low-frequency data are handled with a smaller patch size. This reduces

computational complexity while maintaining long context length for high-

frequency data. The benefit of this flexibility helps to transfer computation

to transformer layers instead of embedding layers while dealing with low-

frequency datasets. This makes the best use of computational time and

resources too.

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

187

Figure 7-1.  The diagram represents the overall architecture
of MOIRAI

[In Figure 7-1, variate 0 and variate 1 are target variables, while variate

2 is the dynamic covariate. Considering a patch of size 64, the variates are

transformed into patches of three tokens. That is, each 64-element patch is

represented by three tokens, encapsulating key features of the patch. These

tokens are then converted to patch embeddings (high-dimensional vectors)

that represent the semantic meaning of each patch. These patch embeddings

along with the sequence number (position of the overall data) and

variate ID (which indicates a specific variable of the data) are input to the

transformer. The patches (shaded) in the multi-patch size output projection

layer represent the forecast horizon. The respective output representations

from this layer are mapped to mixture distributions.]

The next challenge for a universal forecaster (MOIRAI) is to cater to

multiple datasets with an arbitrary number of variates. This is addressed

by using a novel approach called any-variate attention and making use

of binary attention biases. The any-variate attention handles an arbitrary

number of variates, while binary attention biases help to differentiate and

encode the indexes (positions) of the variates. All variates are taken as a

single sequence by flattening the multivariate time series data. The variate

encodings help to distinguish between multiple variates in the data.

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

188

The next challenge of the foundation model to perform probabilistic

forecasting using a simple distribution is handled by MOIRAI using a

mixture of parametric distributions. The mixture comprises the following

distributions: (i) student’s t-distribution, which is a robust distribution

option for time series; (ii) negative binomial distribution for positive count

data; (iii) log-normal distribution, proven to be useful for scenarios with

right-skewed data; and (iv) low variance normal distribution, useful for

high confidence predictions.

Coming to the limitations, it is observed that forecasting results for use

cases involving high-dimensional datasets are not accurate.

�7.3  MOIRAI in Action
Having established a high-level theoretical foundation of MOIRAI, we shall

now translate abstract concepts into practical code implementation of

MOIRAI-Small.

Import required modules:

import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from einops import rearrange
from gluonts.dataset.multivariate_grouper import
MultivariateGrouper

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

189

from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from uni2ts.eval_util.plot import plot_single, plot_next_multi
from uni2ts.model.moirai import MoiraiForecast, MoiraiModule
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
import warnings
warnings.filterwarnings('ignore')

Let's load the AirPassengers CSV using pandas, a dataset that contains

12 years of monthly air passenger data:

df = pd.read_csv('AirPassengersDataset.csv')
df.rename(columns={'y': 'target'}, inplace=True)
df.drop(columns=['unique_id'], inplace=True)
df["ds"] = pd.to_datetime(df["ds"])
df.set_index("ds", inplace=True)
print(f"total length: {df.shape[0]}")
print(f"time frequency: {df.index.diff()[1]}")

df

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

190

Let's create a sample data with monthly frequency and split the data

into train and test, which are input and labels:

inp = {
 "target": df["target"].to_numpy()[:120],
 "start": df.index[0].to_period(freq="M"),
}
label = {
 "target": df["target"].to_numpy()[120:144],
 "start": df.index[120].to_period(freq="M"),
}

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

191

Inp

Label

Let’s initialize the model and define the parameters:

model = MoiraiForecast(
 �module=MoiraiModule.from_pretrained(f"Salesforce/

moirai-1.1-R-small"),
 prediction_length=24,
 context_length=120,
 patch_size=32,
 num_samples=100,
 target_dim=1,
 feat_dynamic_real_dim=0,
 past_feat_dynamic_real_dim=0,
)

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

192

Let's compute the past target by passing batch, time, and variate:

past_target = rearrange(
 �torch.as_tensor(inp["target"], dtype=torch.float32),

"t -> 1 t 1"
)

past_observed_target = torch.ones_like(past_target,
dtype=torch.bool)

past_is_pad = torch.zeros_like(past_target, dtype=torch.
bool).squeeze(-1)

Let's perform forecasting:

forecast = model(
 past_target=past_target,
 past_observed_target=past_observed_target,
 past_is_pad=past_is_pad,
)

Let's calculate the error metrics:

calculate_error_metrics(label["target"],np.round(np.median(fore
cast[0], axis=0), decimals=4))

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

193

Let's print the values of median prediction and ground truth:

print(
 "median prediction:\n",
 np.round(np.median(forecast[0], axis=0), decimals=4),
)
print("ground truth:\n", label["target"])

Let's visualize the predictions:

df_test = df["target"][120:144]
df_train = df["target"][:120]
df_test = df_test.reset_index().rename(columns={"index":"ds"})
df_train = df_train.reset_index().rename(columns={"ind
ex":"ds"})
df_test['Predicted']= pd.Series(np.round(np.median(forecast[0],
axis=0), decimals=4))
df_train.set_index('ds',inplace =True)
df_test.set_index('ds',inplace =True)
plt.figure(figsize=(20, 5))
y_past = df_train["target"]
y_pred = df_test['Predicted']
y_test = df_test["target"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

194

plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
#plt.tight_layout()
plt.xticks(rotation=90)
plt.legend();

Figure 7-2 helps us to appreciate that the air passenger count predicted

by our model is close to reality.

Figure 7-2.  Observed vs. forecast

�7.4  Summary
We understood how MOIRAI was developed to tackle the challenges

with universal forecasting, namely, handling various frequencies of data,

flexibility to support a range of variates, and producing probabilistic

forecasts for multiple scenarios having datasets of different statistical and

probabilistic distributions. We also saw practical implementations for

univariate and multivariate scenarios.

7.5  Reference
[1].	 Unified Training of Universal Time Series Forecasting

Transformers by Gerald Woo et al. https://doi.
org/10.48550/arXiv.2402.02592

Chapter 7 MOIRAI: A Time Series LLM for Universal Forecasting

https://doi.org/10.48550/arXiv.2402.02592
https://doi.org/10.48550/arXiv.2402.02592

195© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7_8

CHAPTER 8

TimesFM: Time
Series Forecasting
Using Decoder-Only
Foundation Model
Chapter Goal: Learn how a foundation model is designed, the challenges

and approaches to solve the challenges, using decoder only design.

�8  Introduction
After understanding the design, working, and developments in foundation

models for time series forecasting, it is natural for us (time series

forecasters) to expect models that would work out of the box. Let us

understand TimesFM, one such foundation model capable of zero-shot

forecasting. This model is developed based on a decoder-only transformer

architecture, using input patching. The forecasting capabilities of this

foundation model are comparable to supervised time series forecasting

models. The datasets used for training are a combination of real and

https://doi.org/10.1007/979-8-8688-1276-7_8#DOI

196

synthetic data. The sources of data primarily include page view stats,

a Wikipedia tool that provides data related to wiki page visits, and

Google trends.

The decoder-only transformer consists only of the decoder stage and

is best suited for autoregressive tasks. This transformer model focuses on

predicting the next token in the sequence based on the tokens that were

generated earlier. Please go through [2] in the “References” section for a

detailed explanation of the benefits of using decoder-only models.

The challenges with designing a time series forecasting model capable

of zero-shot forecasting are different when compared to the models in NLP

and vision domains. There are some types of bounds while dealing with

the natural language. Any language has rules, like grammar and limitation

of alphabets – 26 alphabets in English, 56 in Telugu, and 49 in Kannada.

Any image can be described with a finite number of pixels. Each pixel

can be broken down into three components of RGB colors ranging from

0 to 255 (maximum brightness). However, time, as we all know, has no

beginning or end.

�8.1  Technical Overview of TimesFM
Let us understand the problem TimesFM is trying to solve. The intention

behind creating a new time series foundation model, TimesFM, was to

develop a zero-shot forecasting model. This general-purpose time series

forecasting model, with zero-shot forecasting capabilities, takes past values

of time series data as context to come up with forecasts for the future. The

challenge here is that during training we cannot have covariates specific to

a dataset, since the intention is to come up with a one-shot general-

purpose forecaster. The problem that TimesFM is trying to solve is to learn

how to generalize forecasting based on historical values, irrespective of

time series properties like granularity, trend, and seasonality. This model

uses the MAE (mean absolute error) metric to measure prediction results.

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

197

The concepts leveraged while coming up with this model are (i)

decoder-only model, (ii) patching, (iii) length of output patches, and (iv)

patch masking. Let us understand these concepts in more detail.

In the decoder-only design, the model is trained to predict the next

path based on earlier patches. Training is done in parallel, spanning

the entire context window. This helps the model to generalize and thus

perform time series forecasting based on different input patches learned.

A patch-based approach, which was discussed in earlier chapters,

is used by TimesFM too. Time series data is split into patches and used

during the training of this model. Patch-based learning helps improve

performance and inference speed as the number of tokens fed to the

decoder is reduced.

The length of output patches being longer helps in scenarios

demanding forecasting into longer time periods like looking into forecasts

far into the future, years, and decades ahead. A general-purpose forecaster

has to cater to longer-term predictions too. While predicting the full

horizon (forecasting far ahead into the future) yields better results, in

the case of zero-shot forecasting the forecasting time step details are not

known up front. In TimesFM, the model uses output patches that are

longer than input patches.

Patch masking helps overcome the problem of overfitting. Some

patches are randomly hidden during training. If this is not done, then

models tend to learn based on the input patch length. The forecasting

accuracy can be seen only in instances where context length is a multiple

of input patch length. TimesFM uses a random masking technique during

training. This helps the model to learn all possible context lengths during

training, ranging from 1 all the way to the maximum context length.

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

198

Figure 8-1.  Overall architecture of TimesFM during training [1]

[In Figure 8-1, we can see time series data fed as input, split into patches

of size input_patch_len. The residual block converts patches into vectors. A

combination of positional encodings and vectors are input to the stacked

transformer layers. Remember that vectors are numerical representations of

tokens in the form of n-dimensional arrays. Tokens are converted to vector

embeddings, thus helping models to process and compute operations on

tokens. The resultant tokens are then fed to the residual block. The residual

block transforms the tokens to an output patch of length output_patch_len.

This output represents the forecast for the time window immediately

following the last input patch processed by the model.]

Let us understand the architectural blocks and their actions in

more detail.

The input layer processes the time series data to tokens. These tokens

are converted to patches that are fed to a residual block. The residual block

transforms these patches into a vector whose length is based on model

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

199

dimensions. Vectors are numerical representations of tokens in high-

dimensional space. The residual block consists of a multilayer perceptron

with one hidden layer and a skip connection. The skip connection helps in

adding the output to the next layer directly.

The stacked transformer architecture is used where parameters in the

model are in transformer layers stacked on top of each other. The layers

leverage multi-head self-attention proceeded by a feedforward network.

Here, the transformer architecture uses the mechanism of causal attention.

This ensures the model only considers the tokens that have arrived before

the current token in the sequence. This causal attention technique is

particularly helpful in scenarios where only past information (and not

future tokens) should be used to predict the next token.

The final task of prediction is taken care of by the output layers,

where the output tokens are mapped into predictions. The output tokens

represent the model’s understanding of data at various points in time;

however, they cannot be directly interpreted for forecasting. The output

tokens are mapped using a residual block. The residual block transforms

the tokens to an output patch of length output_patch_len. This output

represents the forecast for the time window immediately following the

last input patch processed by the model. Training using the decoder-only

model enables each output token to be capable of predicting the portion of

the time series that follows its corresponding input patch.

�8.2  TimesFM in Action
Having established a high-level theoretical foundation of TimesFM, we

shall now translate abstract concepts into practical code implementation.

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

200

�8.2.1  Univariate Use Case

Let us consider a univariate scenario first.

Import required modules:

import numpy as np
import pandas as pd
import timesfm
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score

import os
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
os.environ['JAX_PMAP_USE_TENSORSTORE'] = 'false'

Let's load the AirPassengersDataset CSV using pandas, a dataset that

contains 12 years of monthly air passenger data:

Y_df = pd.read_csv('AirPassengersDataset.csv')
Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

201

Split the data into train and test.

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Configure the model to use CPU:

timesfm_backend = "cpu"

from jax._src import config
config.update(
 �"jax_platforms", {"cpu": "cpu", "gpu": "cuda", "tpu": ""}

[timesfm_backend]
)

Initialize the TimesFM model and define the parameters:

tfm = timesfm.TimesFm(
 context_len=128,
 horizon_len=12,
 input_patch_len=32,
 output_patch_len=128,
 num_layers=20,
 model_dims=1280,
 backend=timesfm_backend,
)

Let’s understand the variables used:

context_len is the length of the context window for the model.

horizon_len is the length of the forecasting horizon.

input_patch_len is the length of input patches.

output_patch_len is the length of output patches.

inputs is the dataframe containing the training time series data.

freq is the frequency of the time series data (e.g., monthly).

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

202

value_name is the name of the column with the values to be

forecasted.

num_jobs is the number of parallel jobs to use for forecasting (–1 uses

all available cores).

Load the pre-trained model from the checkpoint:

tfm.load_from_checkpoint(repo_id="google/timesfm-1.0-200m")

Generate forecasts using the TimesFM model on the given DataFrame:

timesfm_forecast = tfm.forecast_on_df(
 inputs=Y_train_df,
 freq="MS",
 value_name="y",
 num_jobs=-1,
)
timesfm_forecast = timesfm_forecast[["ds","timesfm"]]

timesfm_forecast.head()

Evaluate how well the model works on test data:

calculate_error_metrics(Y_test_df[['y']],timesfm_
forecast['timesfm'])

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

203

Let's visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
timesfm_forecast.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 5))
y_past = Y_train_df["y"][-50:]
y_pred = timesfm_forecast['timesfm']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(timesfm_forecast, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.tight_layout()
plt.xticks(rotation=90)
plt.legend();

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

204

Figure 8-2.  Observed vs. forecast

Figure 8-2 helps us to appreciate that the air passenger count predicted

by our model is close to reality.

�8.2.2  Multivariate Use Case

Let’s now consider a multivariate scenario.

Import the necessary libraries:

import numpy as np
import pandas as pd
import timesfm
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from collections import defaultdict

import os
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
os.environ['JAX_PMAP_USE_TENSORSTORE'] = 'false'

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

205

Load the dataset for electricity price forecasting and create a

dataframe:

df = pd.read_csv('EPF_FR_BE.csv')
df[df['unique_id'] =='FR']

Create a data pipeline:

def get_batched_data_fn(
 batch_size: int = 128,
 context_len: int = 120,
 horizon_len: int = 24,
):
 examples = defaultdict(list)

 num_examples = 0
 for country in ("FR", "BE"):
 sub_df = df[df["unique_id"] == country]

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

206

 �for start in range(0, len(sub_df) - (context_len +
horizon_len), horizon_len):

 num_examples += 1
 examples["country"].append(country)
 �examples["inputs"].append(sub_df["y"][start:(context_end

:= start + context_len)].tolist())
 �examples["gen_forecast"].append(sub_df["gen_forecast"]

[start:context_end + horizon_len].tolist())
 �examples["week_day"].append(sub_df["week_day"]

[start:context_end + horizon_len].tolist())
 �examples["outputs"].append(sub_df["y"][context_

end:(context_end + horizon_len)].tolist())

 def data_fn():
 for i in range(1 + (num_examples - 1) // batch_size):
 �yield {k: v[(i * batch_size) : ((i + 1) * batch_size)]

for k, v in examples.items()}

 return data_fn

Configure the model to use CPU:

timesfm_backend = "cpu"

from jax._src import config
config.update(
 �"jax_platforms", {"cpu": "cpu", "gpu": "cuda", "tpu": ""}

[timesfm_backend]
)

Create the model using TimesFm and pass the values:

model = timesfm.TimesFm(
 context_len=512,
 horizon_len=128,

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

207

 input_patch_len=32,
 output_patch_len=128,
 num_layers=20,
 model_dims=1280,
 backend=timesfm_backend,
)
model.load_from_checkpoint(repo_id="google/timesfm-1.0-200m")

Let us forecast the required horizon:

batch_size = 128
context_len = 120
horizon_len = 24
input_data = get_batched_data_fn(batch_size = 128)
metrics = defaultdict(list)
import time

for i, example in enumerate(input_data()):
 raw_forecast, _ = model.forecast(
 �inputs=example["inputs"], freq=[0] *

len(example["inputs"])
)
 start_time = time.time()

 cov_forecast, ols_forecast = model.forecast_with_covariates(
 inputs=example["inputs"],
 dynamic_numerical_covariates={
 "gen_forecast": example["gen_forecast"],
 },
 dynamic_categorical_covariates={
 "week_day": example["week_day"],
 },
 static_numerical_covariates={},

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

208

 static_categorical_covariates={
 "country": example["country"]
 },
 freq=[0] * len(example["inputs"]),
 xreg_mode="xreg + timesfm",
 ridge=0.0,
 force_on_cpu=False,
 normalize_xreg_target_per_input=True,
)
 print(
 �f"\rFinished batch {i} linear in {time.time() - start_

time} seconds",
 end="",
)

Let’s see the results without covariates:

print("Without covariates: \n")
calculate_error_metrics(raw_forecast[:, :horizon_len],
example["outputs"])

The results with covariates:

print('With covariates: \n')
calculate_error_metrics(cov_forecast, example["outputs"])

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

209

Results with ordinary least square:

print('ols forecast: \n')
calculate_error_metrics(ols_forecast, example["outputs"])

�8.3  Summary
We understood how and why TimesFM was developed for general-purpose

zero-shot forecasting. The use of decoder architecture and patching was

discussed. Finally, we implemented use cases using the TimesFM model

for both univariate and multivariate scenarios.

�8.4  Conclusion
Your interest in this journey to explore advancements in time series and

staying with us until the end of this book is greatly appreciated.

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

210

We have learned the evolution of LLMs starting from the basic

perceptron to the latest foundation models.

From our experience working in different domains, diverse datasets,

and techniques, we can say it is definitely worth trying these models

alongside traditional and neural network–based models. As a best practice,

start with traditional models and then move to the advanced ones.

We encountered multiple scenarios where traditional techniques

outperformed foundation models. A Kannada (Indian language) proverb

says “Gubbi mele Brahmastra,” meaning using a huge weapon like

Brahmastra on a tiny sparrow. So let us ensure that we use the right

techniques as per use case and datasets.

We discussed techniques that help in repurposing existing foundation

models. We hope with the theory and implementation knowledge gained

so far, you will apply and appreciate these models in real-time scenarios.

The future of AI seems very promising, and we see many new

foundation models popping up, such as Tiny Time Mixtures, MOMENT,

MambaTS, Lag-Llama, and timer-base-84m.

Happy Learning!!!

8.5  Reference
[1].	 A Decoder-Only Foundation Model for Time-Series

Forecasting by Abhimanyu Das et al. https://doi.
org/10.48550/arXiv.2310.10688

Chapter 8 TIMESFM: TIME SERIES FORECASTING USING DECODER-ONLY
 FOUNDATION MODEL

https://doi.org/10.48550/arXiv.2310.10688
https://doi.org/10.48550/arXiv.2310.10688

211© Banglore Vijay Kumar Vishwas and Sri Ram Macharla 2025
B. V. Vishwas and Sri Ram Macharla, Time Series Forecasting Using Generative AI,
https://doi.org/10.1007/979-8-8688-1276-7

Index

A
Any-variate

attention, 187
ARIMA, see Autoregressive

Integrated Moving
Average (ARIMA)

Attention function, 88
Autoformer model, 110
AutoGluon, 32
Autoregression (AR), 64

DeepAR, 64–73
probabilistic forecasting

features, 64
RNNs, 68

Autoregressive Integrated Moving
Average (ARIMA), 1, 5

Autoregressive
models, 32

B
Bidirectional temporal

convolutional network
(BiTCN), 44

BiTCN, see Bidirectional temporal
convolutional
network (BiTCN)

C
Chronos, 156
Convolutional neural

networks (CNNs), 7
BiTCN, 44–50
computer vision/speech

processing, 27
TCN, 36–40, 42–44
WaveNet architecture, 28–36

CNNs, see Convolutional neural
networks (CNNs)

D
Decoder-only foundation

model, TimesFM
architecture, 198, 199
challenges, 196
multivariate use case,

204–207, 209
patch-based approach, 197
patch masking, 197
practical code implementation,

199–201, 203, 204
zero-shot forecasting, 195, 196

Deep learning models, 32
Dot product, 89

https://doi.org/10.1007/979-8-8688-1276-7#DOI

212

E
Encoder-decoder architectures, 84

F
Feedforward network, 105
Feedforward neural

network (FFN), 91
FFN, see Feedforward neural

network (FFN)
Foundation models, 17

G, H
GARCH, see Generalized

Autoregressive Conditional
Heteroskedasticity
(GARCH) models

Gated Recurrent Unit (GRU), 7
Gemini AI models, 12
Generalized Autoregressive

Conditional
Heteroskedasticity
(GARCH) models, 7, 169

Generative AI
evolution from AI, 9–12
generate novel content, 9
techniques, 8
time series, 13, 14

GRU, see Gated Recurrent
Unit (GRU)

I, J, K
Informers, 95

L
Large language model (LLM), 15
LLM, see Large language

model (LLM)
LLM-based forecasting

models, 156
Long sequence time series

forecasting (LSTF), 94
Long short-term memory

(LSTM), 7, 57
LSTF, see Long sequence time

series forecasting (LSTF)
LTSF-Linear, 109
LSTM, see Long short-term

memory (LSTM)

M
Masked EncOder-based UnIveRsAl

Time Series Forecasting
Transformer (MOIRAI)

any-variate attention, 187
architecture, 187
distribution, 188
practical code

implementation, 188–194
traditional time series, 184

INDEX

213

universal forecasting model,
challenges, 184–186

zero-shot time series, 184
Mean absolute error (MAE), 196
MLP, see Multilayer

perceptron (MLP)
MOIRAI, see Masked EncOder-

based UnIveRsAl Time
Series Forecasting
Transformer (MOIRAI)

Multi-head attention, 91
Multilayer perceptron (MLP), 21
Multivariate time series

analysis, 6

N, O
Natural language

processing (NLP), 51
NBEATS, see Neural basis

expansion analysis for time
series (NBEATS)

Neural basis expansion analysis for
time series (NBEATS)

advantages, 75
MLPs, 74
practical code

implementation, 77–80
residual stacking principle, 76
stacks, 75

Neural networks, see Perceptron
NLinear, 118
NLP, see Natural language

processing (NLP)

P, Q
Patch-based approach, 197
PatchTST, 122, 130
Perceptron

AR, 64
CNNs, 27
example, 18
formula, 19
foundation models, 17
sequential data

LSTM, 57, 58, 60–63
RNN, 51–57

training phase, 19, 20, 22,
23, 25–27

Phase-Structure Grammar, 10
Positional encoding, 86
Pre-trained probabilistic time

series model
Chronos, 156

large_ensemble use
case, 163–167

tiny use case, 159–163
inference, 159
LLMs, 155
time series tokenization,

157, 158
training, 158

ProbSparse self-attention
mechanism, 96

R
Recurrent language models, 84

INDEX

214

Recurrent neural networks (RNNs),
7, 51, 66

RNNs, see Recurrent neural
networks (RNNs)

S
SARIMA, see Seasonal

Autoregressive Integrated
Moving Average (SARIMA)

SARIMAX, see Seasonal
Autoregressive Integrated
Moving Average with
Exogenous Regressors
(SARIMAX)

Seasonal Autoregressive Integrated
Moving Average
(SARIMA), 5

Sequence learning
architectures, 84

Supervised time series forecasting
models, 195

SyntheMol AI model, 12

T
TCN, see Temporal convolutional

network (TCN)
Temporal convolutional

network (TCN), 36
TimeGPT, 131

API key configuration process,
setting up, 173

characteristics, 171

deep learning models, 170
encoder-decoder

architecture, 171
forecasting model, 172
foundation model, 169
machine learning tools, 170
multivariate dataset, 178–182
single-series/multiple-series

forecasting, 171
transformer-based models, 170
univariate dataset, 175–178
zero-shot inference, 173

Time-LLM
fine-tuning vs.

reprogramming, 132
foundation model, 132
framework, 133
multivariate use case,

144–148, 150–153
univariate problem, 139–144
working, 134–138

foundation model, 131
framework, 132
NLP applications, 131

Time series analysis
characteristics, 3
fields, 2
forecasting methods, 4–7, 16
IT industry, 1
neural networks, 17
real-world examples, 2
simple ARIMA, 1

Transformer-based methods, 44
Transformers, 60

INDEX

215

architecture, 85
components, 86, 87,

89–91, 93, 94
DLinear

architecture, 111–113
autoformer, 110
FEDformer, 110
linear models, 109
practical code

implementation, 114–117
encoder and decoder, 84
inverted

attention
mechanisms, 103–105

linear forecasting
models, 102

practical code
implementation, 105–108

natural language processing, 83
NLinear, 118–120, 122
PatchTST

channel independence, 122
multivariate time series

data, 123
practical code

implementation, 125–128
representation learning, 125
subseries-level patches, 122
transformer encoder, 124

vanilla, 94

U
Univariate time series analysis, 4

V
Vanilla transformer

drawbacks, 94
features, 95
informers, 95, 97
NLP, 129
practical code implementation,

98–102
RNN models, 94

VAR, see Vector
Autoregression (VAR)

VARMA, see Vector Autoregressive
Moving Average (VARMA)

VARMAX, see Vector
Autoregression Moving
Average with Exogenous
Regressors (VARMAX)

VECM, see Vector Error Correction
Model (VECM)

Vector Autoregression (VAR), 6
Vector Autoregressive Moving

Average (VARMA), 6
Vector Error Correction

Model (VECM), 7

W, X, Y
WaveNet, 28, 32

Z
Zero-shot forecasting,

155, 195

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Time Series Meets Generative AI
	What Sparked Interest in Time Series?
	Introduction to Time Series Analysis
	1.1 Characteristics of Time Series Data
	1.2 Time Series Forecasting Methods
	1.2.1 Univariate
	1.2.2 Multivariate

	1.3 Introduction to Generative AI
	1.4 Evolution from AI to Generative AI
	1.5 Generative AI with Time Series
	1.6 Introduction to Large Language Models
	1.7 Summary

	1.8 References

	Chapter 2: Neural Networks for Time Series
	2 Introduction to Perceptron
	2.1 Technical Overview of a Perceptron
	2.2 What Is Multilayer Perceptron?
	2.2.1 Multilayer Perceptron in Action

	2.3 CNN-Based Architecture for Time Series
	2.3.1 WaveNet for Time Series Forecasting
	2.3.2 Technical Overview of WaveNet
	2.3.3 WaveNet in Action
	2.4.1 Temporal Convolutional Networks
	2.4.2.1 Technical Overview of TCN
	2.4.2.2 TCN in Action

	2.4.3 Bidirectional Temporal Convolutional Network
	2.4.3.1 What Are Future Covariates?
	2.4.3.2 Technical Overview of BiTCN
	2.4.3.3 BiTCN in Action

	2.5 Neural Networks for Sequential Data
	2.5.1 Recurrent Neural Network
	2.5.1.1 Technical Overview of RNN
	2.5.1.2 RNN in Action

	2.5.2 Long Short-Term Memory
	2.5.2.1 Technical Overview of LSTM
	2.5.2.2 LSTM in action

	2.6 Neural Networks Based on Autoregression
	2.6.1 Key Features of Probabilistic Forecasting
	2.6.2 Technical Overview of Deep Autoregressive
	2.6.3 DeepAR in Action

	2.7 Neural Basis Expansion Analysis
	2.7.1 Technical Overview of NBEATS
	2.7.2 NBEATS in Action

	2.8 Summary

	2.9 References

	Chapter 3: Transformers for Time Series
	3 Introduction to Transformers
	3.1 Technical Overview of Transformers
	3.2 Vanilla Transformer
	3.2.1 Technical Overview of Vanilla Transformers
	3.2.2 What Is an Informer?
	3.2.3 Vanilla Transformer in Action

	3.3 Inverted Transformers
	3.3.1 Technical Overview of iTransformers
	3.3.2 iTransformers in Action

	3.4 DLinear
	3.4.1 What Is Autoformer ?
	3.4.2 Technical Overview of DLinear
	3.4.3 DLinear in Action

	3.5 NLinear
	3.5.1 NLinear in Action

	3.6 Patch Time Series Transformer
	3.6.1 Technical Overview of PatchTST
	3.6.2 PatchTST in Action

	3.7 Summary

	3.8 References

	Chapter 4: Time-LLM: Reprogramming Large Language Model
	4 Fine-Tuning vs. Reprogramming
	4.1 Technical Overview of Time-LLM
	4.1.1 Working of Time-LLM

	4.2 Time-LLM in Action
	4.2.1 Univariate Use Case
	4.2.2 Multivariate Use Case

	4.3 Summary

	4.4 Reference

	Chapter 5: Chronos: Pre-trained Probabilistic Time Series Model
	5 Introduction
	5.1 Technical Overview of Chronos
	5.2 Time Series Tokenization
	5.3 Training
	5.4 Inference
	5.5 Chronos in Action
	5.5.1 Chronos-tiny Use Case
	5.5.2 chronos_large_ensemble Use Case

	5.6 Summary

	5.7 Reference

	Chapter 6: TimeGPT: The First Foundation Model for Time Series
	6 Introduction
	6.1 Technical Overview of TimeGPT
	6.2 TimeGPT in Action
	6.2.1 Setting Up an API Key for TimeGPT
	6.2.2 Univariate Use Case
	6.2.3 Multivariate Use Case

	6.3 Summary

	6.4 References

	Chapter 7: MOIRAI: A Time Series LLM for Universal Forecasting
	7 Introduction
	7.1 Challenges with Building a Universal Forecasting Model
	7.2 Technical Overview of MOIRAI
	7.3 MOIRAI in Action
	7.4 Summary

	7.5 Reference

	Chapter 8: TimesFM: Time Series Forecasting Using Decoder-Only Foundation Model
	8 Introduction
	8.1 Technical Overview of TimesFM
	8.2 TimesFM in Action
	8.2.1 Univariate Use Case
	8.2.2 Multivariate Use Case

	8.3 Summary
	8.4 Conclusion

	8.5 Reference

	Index

