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Introduction

“Guru Brahma, Guru Vishnu, Guru Devo Maheshwara, Guru Sakshat 

Parabrahma, Tasmai Shri Gurave Namah” – a disciple expressing gratitude 

and reverence toward their guru (teacher).

Grateful to my gurus who guided and supported me in the form of 

teachers and friends.

A couple of years back while working on a project related to time 

series, we wanted to explore newer techniques in forecasting to improve 

precision. The advent of GenAI provides us with an opportunity to 

explore LLM-based models for forecasting. However, there was not 

enough material to help the team come up to speed. The research 

papers were difficult to understand for the team who came from diverse 

levels of mathematical backgrounds, so we had to go through a steep 

learning curve.

We were looking for a resource that would equip us with the theoretical 

understanding of the models and practical implementation with python 

sample code. We could not find any, so that gave birth to the idea of writing 

this book. We present this book that is catered to the needs of working 

professionals to come up to speed. Those who wish to dive deeper may 

want to read the reference papers after reading this book.

This book is primarily targeted toward intermediate to advanced time 

series forecasting modelers. So if you are a beginner, we suggest you to 

pick up a beginner-friendly book like Hands-on Time Series Analysis with 

Python by Vishwas and Ashish before reading this book. Researchers are 

suggested to read the provided references after going through this book.

https://link.springer.com/book/10.1007/978-1-4842-5992-4
https://link.springer.com/book/10.1007/978-1-4842-5992-4
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The book starts with a motivation to learn time series forecasting. 

Chapter 1 introduces different time series techniques, generative AI, large 

language models, evolution, and milestones to date.

Chapters 2 and 3 discuss neural networks and transformer theory and 

implementation. You can use these chapters to refresh your knowledge 

and learn to implement them by leveraging modern tools.

Chapters 4–8 cover topics related to foundation models for time 

series forecasting. Each chapter discusses a new foundation model. We 

begin by understanding the technical overview, relevant concepts, and 

implementation using Python code and libraries. Techniques that help to 

understand forecasting by repurposing and reusing foundation models 

meant for NLP are explained.

All chapters (except Chapter 1) discuss how to implement the 

models with a dataset and full code with explanation. Where possible 

and applicable, we try to implement the models for both univariate and 

multivariate scenarios.

Introduction
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CHAPTER 1

Time Series Meets 
Generative AI
Chapter Goal: Introduction to time series, evolution of artificial 

intelligence, and a gentle introduction to generative AI and large 

language models.

�What Sparked Interest in Time Series?
There is a lot of buzz in the IT industry about NLP, computer vision, 

generative AI, transformers, and AI agents. However, a specific use case 

encountered while working on a consulting project for a manufacturing 

client, which was solved using time series techniques, captured interest in 

time series.

For over two decades, a team relied on a legacy approach using moving 

averages to forecast product demand for the next year. This system, 

however, often resulted in inaccurate forecasts, leading to significant waste 

due to under- or overestimation and instances where orders couldn't meet 

actual demand.

A more sophisticated approach was implemented using simple ARIMA 

(Autoregressive Integrated Moving Average) models to address this issue. 

This upgrade significantly reduced waste and, to our knowledge, has 

eliminated instances of underestimation since its implementation. While 

https://doi.org/10.1007/979-8-8688-1276-7_1#DOI
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this project was less complex than other initiatives using computer vision 

and NLP, the time series solution delivered immediate cost savings and 

empowered the team to make informed decisions on time. This success 

also garnered significant recognition from senior management.

�Introduction to Time Series Analysis
Time series analysis is a statistical and advanced mathematical technique 

for analyzing time-dependent data. It is used in various fields such as 

finance, economics, healthcare, environmental monitoring, marketing 

and sales, energy and utilities, manufacturing, telecommunications, 

engineering, and many more to identify patterns within data over time.

The goal of time series analysis is to identify the underlying patterns, 

trends, and seasonality in the data and use this information for making 

informed predictions about future values. Let’s put this in context through 

some real-world examples.

Example 1: Predict inventory for supply chain 

optimization.

Example 2: Predictive or preventive maintenance 

is a proactive way to maintain equipment health, 

machinery, or other assets in optimal condition to 

prevent breakdown.

Example 3: Forecast pandemic spread.

Example 4: Identify patterns for the bullwhip effect 

and cart loading (refer to the “Summary” section).

Chapter 1  Time Series Meets Generative AI
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�1.1  Characteristics of Time Series Data

	 a)	 Time dependence: Data points are ordered in 

time and have a natural temporal sequence, which 

means that prior observations frequently influence 

the value of each observation.

	 b)	 Autocorrelation: Statistical measure that describes 

the relationship between an observation in time 

series and its own past values.

	 c)	 Stationarity: Statistical properties of time series do 

not change over time.

	 d)	 Nonstationarity: Statistical properties, like mean 

and variance, change over time, indicating that 

values at time point (t) can be influenced by 

preceding values at times like t − 1 or t − 2.

	 e)	 Seasonality: Recurrent fluctuations at fixed 

intervals (e.g., daily, monthly, yearly), influenced 

by factors like time of year, month, or day which 

are predictable and repetitious. Examples are retail 

sales increasing during popular holidays.

	 f )	 Trends: Long-term movement in the data indicates 

direction and movement over time. Examples are 

rising global temperatures and housing prices post 

pandemic.

	 g)	 Cyclic patterns: Recurrent phenomena without 

fixed periods, attributed to complex circumstances 

that are unpredictable and challenging to identify. 

Examples are forest growth and fire cycles.

Chapter 1  Time Series Meets Generative AI
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	 h)	 Irregularity or noise (irregular component): 

Random variations without a recurring pattern, 

attributed to unforeseen events or anomalies. 

Examples are rapid stock market fluctuations before 

and after a political event.

	 i)	 Frequency: Data is sampled at regular time 

intervals (e.g., hourly, daily, monthly).

	 j)	 Duration: Length of time between observations.

�1.2  Time Series Forecasting Methods
Various techniques and algorithms are available to perform time series 

forecasting based on the data characteristics learned in the above section. 

They can be “broadly” classified into two categories – univariate and 

multivariate.

�1.2.1  Univariate

Univariate time series analysis focuses on the study of a single time series 

to understand its underlying patterns and make forecasts. Let’s understand 

some popular techniques:

	 a)	 Moving Average (MA): The Moving Average model 

computes the average of a fixed number of previous 

observations to predict future values.

	 b)	 Autoregressive (AR): Autoregressive models are a 

class of models that describe a linear relationship 

between an observation at a particular time and a 

certain number of lagged observations (i.e., past 

values) of the same series.

Chapter 1  Time Series Meets Generative AI
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	 c)	 Autoregressive Moving Average (ARMA): This 

model is a combination of AR (Autoregressive) and 

MA (Moving Average), and this combination is done 

to improve the approximation.

	 d)	 Autoregressive Integrated Moving Average 
(ARIMA): This model is a combination of three 

models – AR (Autoregressive), MA (Moving 

Average), and Integrated (the number of times 

differencing is done to make data stationary).

	 e)	 Seasonal Autoregressive Integrated Moving 
Average (SARIMA): SARIMA is an extension of 

ARIMA that can handle seasonal effects present in 

the data.

	 f )	 Exponential Smoothing: Exponential smoothing 

methods forecast future values by weighting past 

observations exponentially.

	 g)	 SES: Suitable for data without trend or seasonality.

	 h)	 Holt’s Linear Trend Model: Extends SES to capture 

linear trends.

	 i)	 Holt-Winters Seasonal Model: Extends Holt’s 

model to capture seasonality.

	 j)	 Fourier Analysis: Fourier Analysis decomposes a 

time series into sinusoidal components. It is useful 

for identifying cyclical patterns.

	 k)	 Kalman Filter: The Kalman filter is an algorithm 

that uses a series of measurements over time, 

containing statistical noise and other inaccuracies, 

to estimate unknown variables.
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	 l)	 Hidden Markov Models: Models time series data 

as sequences of hidden states with observable 

outcomes, useful for sequential data with unknown 

state transitions.

�1.2.2  Multivariate

Multivariate time series analysis extends the techniques used in univariate 

time series to multiple interrelated time series. Exogenous variables which 

are external factors affecting the target variable are included to make 

models robust. Examples are sales of the book impacted by exogenous 

variables such as target audience, reviews, and current topics in trend.

	 a)	 Seasonal Autoregressive Integrated Moving 
Average with Exogenous Regressors (SARIMAX): 

SARIMAX is an extension of ARIMA which can 

handle seasonal effects and also include external 

influencing factors into the model.

	 b)	 Vector Autoregression (VAR): VAR models 

generalize the univariate autoregressive model 

to capture the linear interdependencies among 

multiple time series.

	 c)	 Vector Autoregressive Moving Average (VARMA): 

VARMA models extend VAR models by including 

moving average terms.

	 d)	 Vector Autoregression Moving Average with 
Exogenous Regressors (VARMAX): This model is 

an extended version of VAR and VARMA models by 

incorporating exogenous variables.
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	 e)	 Vector Error Correction Model (VECM): VECM 

is used for nonstationary time series that are 

cointegrated. It extends the VAR model to include 

error correction terms, capturing long-term 

equilibrium relationships.

	 f )	 Generalized Autoregressive Conditional 
Heteroskedasticity Models (GARCH): GARCH 

models are designed to capture the changing 

variances over time, especially useful for modeling 

financial time series data which often exhibit 

volatility clustering which are periods of oscillation 

followed by a period of relative calm.

	 g)	 Convolutional Neural Networks (CNNs): CNNs 

can be adapted to capture spatial dependencies in 

multivariate time series by treating time series data 

as images or sequences.

	 h)	 Recurrent Neural Network (RNN), Gated 
Recurrent Unit (GRU), Long Short-Term Memory 
(LSTM): A type of neural network that is well suited 

for sequence prediction problems. These neural 

networks can capture long-term dependencies in 

multivariate time series.

	 i)	 Transformers: Originally developed for natural 

language processing, transformers can be 

adapted for multivariate time series by capturing 

relationships between different variables and 

leveraging attention mechanisms.
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Note T hose who are completely new to time series and are 
interested in understanding more about the above techniques can 
refer to book [1].

�1.3  Introduction to Generative AI
“Even with its very limited current capability and its very deep 
flaws, people are finding ways to use [AI tools] for great pro-
ductivity gains or other gains and understand the 
limitations.”

—Sam Altman, CEO of OpenAI

“Some people call this artificial intelligence, but the reality is 
this technology will enhance us. So instead of artificial intelli-
gence, I think we'll augment our intelligence.”

—Ginni Rometty, Former CEO of IBM

“The transformation opportunity that AI brings for all of soci-
ety, for governments, business, communities, and just human 
beings, can only be achieved if we have strong public and pri-
vate sector collaboration.”

—Sabastian Niles, President and Chief Legal Officer at 
Salesforce

These recent quotes from industry leaders highlight the excitement 

and transformative potential of AI, particularly in its evolving forms like 

generative AI. Generative AI is a subset of artificial intelligence because it 

utilizes AI techniques, such as machine learning and pattern recognition, 

to generate new content, like images and text; just as how a painter uses 

brushes to create art, GenAI uses algorithms to create new content, making 

Chapter 1  Time Series Meets Generative AI



9

it a specialized tool within the broader scope of AI. For example, ChatGPT, 

a GenAI tool, uses AI algorithms to generate human-like text responses, 

making it a subset of AI.

Figure 1-1.  AI and its subsets

GenAI involves leveraging AI to generate novel content, such as 

text, images, music, audio, and videos, by employing machine learning 

algorithms to identify patterns and relationships within human-created 

content. These learned patterns are then used to create new content, 

effectively mimicking human creativity.

The emergence of GenAI has significant implications for language 

teaching and learning, which plays a vital role in today's globalized world. 

Language proficiency enables individuals to communicate effectively, 

express ideas clearly, and navigate diverse cultural contexts.

�1.4  Evolution from AI to Generative AI
Current generative artificial intelligence is still basic. Artificial 

intelligence (AI) has seen rapid progress, inching us closer to a future 

where machines exhibit creative capabilities. A prominent branch of AI, 
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known as generative AI, involves algorithms and models that can produce 

original content, such as images, music, text, and even entire virtual 

environments.

Despite the impressive advancements in generative AI, it remains in a 

relatively early stage – akin to a first draft or initial version compared to its 

potential future development. Although it showcases remarkable abilities, 

numerous limitations and challenges must be overcome before generative 

AI can fully realize its potential.

1940–1950: The birth of artificial intelligence (AI) 

with the works of Alan Turing and Claude Shannon, 

who proposed early models of computation based 

on the idea that machines could one day mimic 

human intelligence.

1951–1960: The Dartmouth Summer Research 
Project on artificial intelligence is considered the 

birth of AI as a field of study. Noam Chomsky 

released Syntactic Structures, a book that lays out a 

style of grammar called “Phase-Structure Grammar,” 

which translates natural language into a format that 

computers can understand and use.

1961–1970: Joseph Weizenbaum developed the first 
chatbot, ELIZA, which can simulate a conversation 

with a human by using a simple algorithm to 

generate text responses to questions.

1980–1990: Neural networks are developed, which 

can learn and remember patterns, providing a 

model for understanding human memory.
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2000–2010: Generative AI begins to gain 

momentum, thanks to advancements in machine 

learning and deep learning, which enable the 

creation of neural networks that can process and 

learn from data like the human brain.

2011–2013: Apple releases Siri, an AI and NLP 

assistant that uses predefined commands to 

perform actions and answer questions. Deep 

learning techniques start gaining popularity.

2014: Generative Adversarial Networks (GANs) are 

introduced by Ian Goodfellow and Yoshua Bengio, 

a class of machine learning frameworks that can 

generate new data based on a given training set.

2015: AlexNet wins ImageNet competition, 

showcasing deep learning's power. The attention 
model is introduced, which solves the problem of 

traditional architectures that have to remember an 

entire input sentence before translation.

2016–2017: AlphaGo defeats a human Go 

champion, demonstrating AI's capabilities. 

Transformers are introduced, revolutionizing 

natural language processing.

2018: GPT-1 is released, marking the beginning 

of generative AI. The generative pre-training of 

a language model is republished on OpenAI’s 

website, showing how a generative language model 

can acquire knowledge and process dependencies 

unsupervised based on pre-training on a large and 

diverse set of data.

Chapter 1  Time Series Meets Generative AI



12

2019: OpenAI releases the complete version of its 

GPT-2 language model, which was trained on a 

dataset of more than nine million documents.

2020: Transformers become widely adopted in 

natural language processing. AI-powered chatbots 

become popular in customer service. GPT-3 
released.

2021: DALL-E and Midjourney introduce 

generative AI for images.

2022: Stability AI develops Stable Diffusion, a deep 

learning text-to-image model that generates images 

based on text descriptions. ChatGPT releases 

GPT-3.5, an AI tool that can access data from the 

Web up to 2021.

2023: TimeGPT, the first foundation model for 

time series forecasting, is released. The generative 
AI race begins, with Microsoft integrating 

ChatGPT technology into Bing; Google releasing 

its own generative AI chatbot, Bard; and OpenAI 

releasing GPT-4.

2024: MIT launched a working group to explore 

the future of work with generative AI, Runway 

introduced Gen-2 for high-quality video 
production, Google expanded access to its Gemini 
AI models, and Stanford researchers developed the 

SyntheMol AI model for creating new antibiotics 

to combat resistant bacteria. Powerful foundation 

models for time series covered in this book start 

seeing wider adoption.
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�1.5  Generative AI with Time Series
Over the last decade, machine learning techniques have gained popularity 

and shown significant promise. Traditionally, statistical methods have 

dominated time series analysis and forecasting, such as ARIMA, ETS, 

MSTL, Theta, and CES, which have been widely utilized across diverse 

domains for their reliability.

Over the past decade, machine learning models such as XGBoost 

and LightGBM have gained traction, showing strong performance in 

competitions and real-world applications. However, the emergence of deep 

learning has marked a significant paradigm shift in time series analysis. 

Deep learning methods have garnered popularity in academia and have 

been increasingly adopted for large-scale industrial forecasting tasks.

Ongoing research in generative artificial intelligence is focused on 

application to time series data and investigating the potential benefits of 

foundational models. The foundation models are independently trained 

on vast time series datasets as a large transformer model. The models are 

developed to minimize the forecasting error. The model thus developed 

uses the past data window to forecast the future.

The underlying idea is that attention-based mechanisms effectively 

capture the diversity of past events, enabling accurate extrapolation 

of potential future distributions. These developments may herald a 

new phase in the field, deepening our understanding of temporal data 

and enhancing the efficiency of forecasting and application in various 

domains.

Transformers have demonstrated exceptional capability in modeling 

long-range dependencies and interactions within sequential data, making 

them highly attractive for time series modeling. Numerous transformer 

variants have been developed to tackle specific challenges in this domain 

and have proven successful in applications such as forecasting, anomaly 

detection, and classification. Notably, addressing seasonality and 

periodicity remains a crucial aspect of time series analysis.
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TimeGPT is the first pre-trained foundation model for time series 

forecasting that can produce accurate predictions across various domains 

and applications without additional training. The architecture consists 

of an encoder-decoder structure with multiple layers, each with residual 

connections and layer normalization. Finally, a linear layer maps the 

decoder’s output to the forecasting window dimension. The general 

intuition is that attention-based mechanisms can capture the diversity 

of past events and correctly extrapolate potential future distributions. 

This innovation marks a significant breakthrough that paves the way for 

a new forecasting paradigm. The new techniques discussed above are 

more accessible, accurate, less time-consuming, and substantially reduce 

computational complexity.

Ongoing advancements aim to enhance generated content's realism, 

fidelity, and diversity across various formats, including images, text, audio, 

and video. This involves developing more advanced generative models, 

employing innovative training techniques, and establishing superior 

evaluation metrics to assess output quality.

Few-shot and zero-shot learning advances will enable generative 

models to tackle new tasks or domains with minimal or no training data, 

reducing reliance on large annotated datasets and enhancing adaptability.

Ensuring the robustness and security of generative models against 

adversarial attacks is crucial for their practical deployment. Future research 

will focus on creating defenses against adversarial manipulation and 

preventing the malicious use of generative AI. Additionally, developing 

algorithms that can continuously learn and adapt over time, integrating 

new data and knowledge while retaining previously learned information, 

will be essential for sustained use in dynamic real-world environments.

As AI becomes increasingly pervasive, addressing ethical and societal 

issues such as privacy, bias, fairness, and responsible use of synthetic 

media will be imperative. This requires collaboration across disciplines 

and the establishment of ethical guidelines, regulatory frameworks, and 

accountability measures.

Chapter 1  Time Series Meets Generative AI



15

�1.6  Introduction to Large Language Models
A large language model (LLM) is a type of model developed by training 

on massive amounts of data. This enables it to understand and generate 

responses indistinguishable from human responses. These are especially 

helpful for tasks like translation, summarization, writing creative content, 

time series forecasting, and image and video generation.

LLMs have seen significant use in domains such as natural language 

processing and computer vision. Beyond text, images, and graphics, LLMs 

present substantial potential for analyzing time series data, benefiting 

fields such as climate science, IoT, healthcare, traffic management, 

audio processing, and finance. This survey paper provides an in-depth 

exploration and a detailed taxonomy of the various methodologies 

employed to harness the power of LLMs for time series analysis. We 

address the inherent challenge of bridging the gap between LLMs' original 

text-based training and the numerical nature of time series data, and we 

explore strategies for transferring and distilling knowledge from LLMs to 

numerical time series analysis.

Figure 1-2.  Large language models have recently been applied for 
various time series tasks in diverse application domains from the 
“Large Language Models for Time Series: A Survey” paper [3]

In the following chapters, we'll explore high-level theoretical concepts 

that will provide enough insights to follow them with simple practical 

implementation.
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�1.7  Summary
In this chapter, we started with an introduction to time series analysis 

by understanding its characteristics and various forecasting methods, 

followed by a deep dive into evolution AI, followed by a gentle introduction 

to generative AI and large language models.

Bull Whip Effect
This is a phenomena noticed in the supply chain. The orders placed 

with the manufacturer tend to have a larger variability than sales to 

end customers. This results in inaccurate demand projections to the 

manufacturer or upstream supplier.

Cart Loading
This is a phenomena noticed in a retailer's supply chain. During sales 

like Thanksgiving, customers tend to buy additional quantities of items 

with a higher shelf life than their regular shopping habits. This is due to 

discounts and offers on items. This results in challenges with retailer's 

estimates of quantities to stock. This occurs due to customers’ changes in 

shopping habits for the next couple of months or visits.
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CHAPTER 2

Neural Networks 
for Time Series
Chapter Goal: Learn how to leverage different types of neural network 

architectures to solve time series problems.

In the previous chapter, we understood the evolution of artificial 

intelligence and covered the basics of time series and the introduction to 

generative AI and large language models.

In this chapter, let us understand techniques related to time series 

analysis using neural networks. We will focus on simple perceptron, 

multilayer perceptron, convolutional neural network, recurrent neural 

network, long short-term memory, and autoregressive and neural basis 

expansion analysis for interpretable time series.

�2  Introduction to Perceptron
In the following sections, let us cover some techniques related to time 

series analysis using neural networks. We will be building up on some 

basics here before working with foundation models. Foundation models 

are also a type of neural network models. The first model that comes to our 

mind is a perceptron. Let us understand what perceptron and multilayer 

perceptron are and implement a use case.

https://doi.org/10.1007/979-8-8688-1276-7_2#DOI
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A perceptron may be understood as the simplest form of neural 

network. It is a type of neural network with a single neuron. The 

perceptron algorithm is among one of the earliest algorithms used for 

supervised learning.

Figure 2-1.  Perceptron example

The intuition behind the working of a perceptron is that it accepts 

several binary inputs; each input is multiplied by a weight. Finally, add 

all the weighted inputs. This value is passed through a step function. This 

results in a single binary output.

The step function results in one if the input is greater than or equal to 

zero, and zero for all other inputs. Hence, the step function is useful for 

binary classification. This function is used in threshold-based models and 

not in the basic perceptron.
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�2.1  Technical Overview of a Perceptron
As a first step, the perceptron receives inputs. The inputs could be 

independent variables/features. These inputs are combined (multiplied) 

with a set of weights. The perceptron’s formula can be expressed as

	 output f w x w x w x bn n= + + … + +( )∗ ∗ ∗
1 1 2 2 	 (Eq. 2.1)

where

w1, w2, …, wn are the weights.

x1, x2, …, xn are the input signals.

b is the bias, which allows the activation function to be shifted to the 

left or right, to better fit the data.

f is the activation function, typically a step function that outputs either 

zero or one.

The perceptron’s decision-making process is binary. If the sum of the 

weighted inputs plus the bias is greater than zero, the perceptron outputs 

a one; otherwise, it outputs a zero. This binary step function is what allows 

the perceptron to classify input data.

From the above equation, we can understand that weights are a set of 

values associated with the connections between neurons. They determine 

the strength of these connections. They control the influence that one 

neuron’s output has on another neuron’s input. Weights may be understood 

as the coefficients of the input variables that adjust the impact of incoming 

data. They can increase or decrease the importance of specific information.

During the training phase of a neural network, the weights are adjusted 

in iterations. This helps in reducing the difference between the model’s 

prediction and the actual outcomes to a minimum. This process helps in 

fine-tuning the network’s ability to make accurate predictions.

Weights are the neural network’s mechanism to learn from data. 

Weights capture the relationships between input features and the target 

output feature. This allows the network to generalize and make predictions 

on new, unseen data.
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In Equation 2.1, we can see a value b added at the end. This bias value 

is a constant associated with each neuron. Unlike weights, biases are not 

combined with specific inputs but are added to the neuron’s output. Bias 

serves as a form of offset or threshold, helping neurons to activate even 

when the weighted sum of their inputs is not sufficient on its own. They 

introduce a level of adaptability that ensures the network can learn and 

make predictions effectively.

The result of the weighted sum plus bias is passed through an 

activation function. This function determines whether the neuron should 

activate or remain dormant based on the calculated value.

While training the neural network, the values of weights and bias 

are adjusted through an optimization process. The most frequently 

used technique is named gradient descent, and it is used along with a 

learning algorithm called backpropagation. Using this gradient descent 

optimization method, the gradient of the error is computed.

This computation is performed with respect to the values of weights 

and bias. The gradient of the error is nothing but difference between 

the predicted value and the actual value. This gradient points toward 

the steepest decrease in error. The neural network updates the values of 

weights and bias in small steps. The intention is minimizing the error. This 

entire process is repeated until the neural network reaches a state where 

the prediction error is minimal.

Now a question may arise – what are the starting values of weights?

Before the start of the training, weights in an ANN (Artificial Neural 

Network) must be initialized to some values. Proper weight initialization 

plays a key role in the convergence and performance of the network. The 

most common initialization method is random initialization. As the name 

says, the weights are assigned small random values.
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�2.2  What Is Multilayer Perceptron?
In the previous section, we learned how a perceptron works. In this 

section, let us understand the multilayer perceptron (MLP).

An MLP is a neural network that has at least three layers: an input layer, 

a hidden layer, and an output layer. Each layer performs operations on the 

outputs of its preceding layer.

Figure 2-2.  Multilayer perceptron

In Figure 2-2, we use the following notations:

aiˡ is the activation (output) of neuron i in layer l.

wijˡ is the weight of the connection from neuron j in 

layer l1 to neuron i in layer l.

biˡ is the bias term of neuron i in layer l.

The hidden layers are nothing but intermediate layers between the 

input and the output layers.
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Now that we have understood simple neural networks, let us explore 

CNN-based architecture and how it can be leveraged for time series 

forecasting.

For time series analysis in this book, one of the libraries that will be 

used is the NeuralForecast library. It is a library for time series forecasting 

developed in Python.

This library has built-in datasets, statistical tests, benchmarks, utilities 

for evaluation, and data loading. There are many reasons to use this 

library – fast and accurate implementations of state-of-the-art models, 

support for exogenous variables and static covariates, probabilistic 

forecasting, and more.

You can find more details at https://github.com/Nixtla/
neuralforecast.

Note E xtra attention should be given while setting up the Python 
package for the code to work in each notebook.

�2.2.1  Multilayer Perceptron in Action

Having established a high-level theoretical foundation of MLP, we shall 

now translate abstract concepts into practical code implementation.

Help an airline company to estimate the number of air passengers 

per month. Let’s leverage a dataset with a monthly passenger count for 

12 years. This dataset is used to train the model and then forecast the 

passenger traffic for the subsequent year.

Note T he same dataset is used throughout the book for most of the 
univariant examples.
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Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import MQLoss, 
DistributionLoss
from neuralforecast.models import MLP

Define the calculate_error_metrics function which helps in assessing 

the performance of the trained model.

Note T his function is referred to throughout the book.

def calculate_error_metrics(actual, predicted, num_
predictors=1):
    # convert inputs are numpy arrays
    actual = np.array(actual)
    predicted = np.array(predicted)
    # Number of observations
    n = len(actual)
    # Calculate MSE
    mse = mean_squared_error(actual, predicted)
    # Calculate RMSE
    rmse = np.sqrt(mse)
    # Calculate MAPE
    mape = mean_absolute_percentage_error(actual, predicted)
    # Calculate R-squared
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    r2 = r2_score(actual, predicted)
    # Calculate Adjusted R-squared
    �adjusted_r2 = 1 - ((1 - r2) * (n - 1) / (n - num_

predictors - 1))
    print(f'MSE : {mse}')
    print(f'RMSE : {rmse}')
    print(f'MAPE : {mape}')
    print(f'r2 : {r2}')
    print(f'adjusted_r2 : {adjusted_r2}')

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

 

train_data = Y_df.head(132)
test_data = Y_df.tail(12)
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Let’s initialize and train the multilayer perceptron by understanding 

key parameters.

h is the forecast horizon.

input_size is considered the autoregressive inputs (lags), y=[1,2,3,4] 

input_size=2 -> lags=[1,2].

Loss is PyTorch module, instantiated train loss class from the losses 

collection.

scaler_type is the step size between each window of temporal data.

learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every 

validation loss check.

�early_stop_patience_steps is the number of validation iterations 

before early stopping.

horizon = 12
model = MLP(h=horizon, input_size=12,
            �loss=DistributionLoss(distribution='Normal', 

level=[80, 90]),
            scaler_type='robust',
            learning_rate=1e-3,
            max_steps=200,
            val_check_steps=10,
            early_stop_patience_steps=2)

fcst = NeuralForecast(models=[model],freq='M')
fcst.fit(df=train_data, val_size=12)

Predict the next defined horizon:

Y_hat_df = fcst.predict()
Y_hat_df.head()
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The MLP column contains the predicted values as depicted below:

 

Measure the model’s accuracy:

calculate_error_metrics(test_data[['y']],Y_hat_df['MLP'])

 

Visualize the predictions:

train_data.set_index('ds',inplace =True)
Y_hat_df.set_index('ds',inplace =True)
test_data.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = train_data["y"]
y_pred = Y_hat_df['MLP']
y_test = test_data["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
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plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-3.  Actual vs. predicted plot

Figure 2-3 helps us to appreciate that the air passenger count predicted 

by our model is very close to reality.

�2.3  CNN-Based Architecture for Time Series
Convolutional neural networks are a type of neural nets best suited 

for computer vision and speech processing. This type of network has a 

minimum of three layers – convolutional layer, pooling layer, and fully 

connected layer. In the convolutional layer, the features are extracted 

by applying convolutional filters while retaining the spatial relationship 

between pixels. The operations performed in this layer result in 

dimensionality reduction without impacting essential features. These 

feature maps are passed on to the pooling layer. In the pooling layer, 

downsampling is done on the feature maps, which results in reducing 

their spatial dimensions while retaining essential features. This helps in 

reducing overfitting and makes the model immune to small changes. In 

a fully connected layer, the final classification task is performed based on 

extracted features from the previous layers. CNN architectures are primarily 

used in image processing applications in the medical domain [5], industrial 

automation, quality control, autonomous driving, and time series.
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In this section, we will be covering different CNN-based forecasting 

techniques like WaveNet, TCN (temporal convolutional network), and 

BiTCN (bidirectional temporal convolutional network).

�2.3.1  WaveNet for Time Series Forecasting

Let us explore WaveNet architecture, a deep neural network that can 

be used for time series forecasting. WaveNet was primarily developed 

for music and audio generation. WaveNet DNN may be classified as a 

generative model which is based on a dilated causal convolutional neural 

network. Let us explore modifying the WaveNet model for time series 

forecasting. In order to learn long-term dependencies with the time series 

data, it uses stacked layers of dilated convolutions.

Dilated convolutions allow WaveNet to efficiently learn long-range 

relationships in the data without sacrificing computational efficiency. 

WaveNet’s DNN structure is designed in a manner that the model only 

uses past values to predict future values (causality), all this while keeping 

intact the temporal dependencies of the data. Temporal dependency 

involves the impact of previous behavior on current behavior. Temporal 

dependencies are relationships between past and future events in a time 

series data. They can be useful for predicting outcomes and understanding 

patterns.

�2.3.2  Technical Overview of WaveNet

The WaveNet architecture uses a combination of complex mathematical 

operations to generate and model sequences. Understanding the math 

behind WaveNet architecture requires deeper understanding of its three 

constituent components: (a) dilated convolutions, (b) causal convolutions, 

and (c) residual connections. Let’s understand the math behind individual 

components of WaveNet:
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	 a)	 Dilated Convolutions

Dilated convolutions help the model to have a larger 

receptive field. The interesting part is that this is 

achieved without increasing the number of parameters 

or the computational complexity significantly.

Given a 1D convolution operation with a kernel K 

and dilation rate, the dilated convolution operation 

can be expressed as

 

Figure 2-4.  Dilated convolution with a dilation rate of 2

The dilation rate d effectively expands the kernel’s 

receptive field. For example, a dilation rate of 2 means 

that the kernel will have gaps of 1 between each 

weight. This helps the model to cover a larger input 

span with fewer parameters.
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	 b)	 Causal Convolutions

Causal convolutions ensure that the model does 

not use future values to predict past values. 

This is necessary for time series and sequence 

prediction tasks.

For a causal convolution, the output at time t only 

depends on the current and past inputs. This is 

achieved by padding the input sequence with zeros 

at the beginning. Mathematically, it is expressed as

 

Figure 2-5.  Depiction of casual convolution

	 c)	 Residual Connections

Residual connections help in training the neural 

network by mitigating the vanishing gradient 

problem. They also help the gradients to flow 

through the network more effectively.
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Figure 2-6.  Depiction of residual block and complete architecture [4]

Learning of residual mapping by the model is taken care of by residual 

connection. This is achieved by adding the input to the output of the 

convolution block.

The WaveNet model achieves a large receptive field by deploying 

multiple dilated causal convolutions. The residual connections help in 

building deeper networks. They also improve the gradient flow. Gated 

activations help capture complex temporal patterns by introducing 

nonlinearity and enhancing modeling capabilities. For audio generation, 

the final output layer typically uses a softmax function. This helps to 

generate probabilities for the next value in the sequence.

In order to leverage the WaveNet DNN model for time series 

forecasting, the input needs to be a time series data instead of waveform. 

The input data could be original values, derived feature values, or 
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normalized values. This can be used to predict the next time step or 

series of future values. The preferred loss function is MSE (mean squared 

error) or MAE (mean absolute error). To determine the optimal WaveNet 

architecture for our particular time series dataset, it is necessary to 

perform hyper-parameter tuning, specifically adjusting the layers, 

filters, and dilation rate. In real-world applications, we were able to 

improve the results of predictions by combining the WaveNet model with 

autoregressive models.

Consider using this model when computation, memory, and power 

consumption are not a challenge. You should also be having access 

to a large amount of data. This model shines when there are temporal 

dependencies in the data. This model handles most of the types of time 

series data and can be adapted to various time series forecasting use 

cases. One of the downsides of this model is that it is challenging to tune 

hyperparameters.

�2.3.3  WaveNet in Action

AutoGluon is an open source library for automating machine learning 

tasks. This library supports training and deployment of ML and deep 

learning models. It provides support for time series forecasting models 

which are used throughout the book for implementing few techniques. 

Please refer to [1] for more details.

Now that we have understood the theoretical aspects of WaveNet, let 

us see a practical implementation.

Import libraries:

import autogluon
from neuralforecast.utils import AirPassengersDF
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from autogluon.timeseries import TimeSeriesPredictor, 
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TimeSeriesDataFrame
from autogluon.timeseries.models import WaveNetModel
import pandas as pd

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

 

Convert the unique_id column to categorical so that we can convert to 

the format which AutoGluon understands:

Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df['unique_id'] = 'airline_1'

AutoGluon expects time series data in long format. Each row of the 

data frame contains a single observation (time step) of a single time series 

represented by

•	 Unique ID of the time series item_id as int or str

•	 Timestamp of the observation timestamp as a pandas.

Timestamp
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•	 Compatible format

•	 Numeric value of the time series target

data = TimeSeriesDataFrame.from_data_frame(
    Y_df,
    id_column="unique_id",
    timestamp_column="ds"
)
data.tail()

 

Split data into train and test:

train_data = data.head(132)
test_data = data.tail(12)

Create a TimeSeriesPredictor object to forecast future values and 

explicitly define a WaveNet model to be used:

predictor = TimeSeriesPredictor(target='y',
                                prediction_length=12,
                                 eval_metric="MASE",).fit 
(train_data,presets='best_quality', hyperparameters={'WaveNetMo
del': {}},time_limit=600)
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Predict the next defined horizon:

predictions = predictor.predict(train_data)
predictions.head()

The mean is the predicted column of interest.

 

Measure the model’s accuracy:

calculate_error_metrics(test_data['y'],predictions['mean']
['airline_1'].tail(48))

 

Visualize the predictions:

import matplotlib.pyplot as plt
plt.figure(figsize=(20, 3))
item_id = "airline_1"
y_past = train_data.loc[item_id]["y"]
y_pred = predictions.loc[item_id]
y_test = test_data.loc[item_id]["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred["mean"], label="Mean forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
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plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.fill_between(
    y_pred.index, y_pred["0.1"], y_pred["0.9"], color="red", 
alpha=0.1, label=f"10%-90% confidence interval"
)
plt.legend();

Figure 2-7.  Actual vs. predicted plot

Figure 2-7 helps us to appreciate that the air passenger count 

predicted by our model is not close to reality. This model is best used 

to capture complex relationships within the signals like in the case of 

electroencephalogram time series data.

�2.4.1  Temporal Convolutional Networks

The temporal convolutional network (TCN) is a type of convolutional 

neural network architecture best suited for use cases involving sequential 

data. The models built on these architectures work by exploiting the 

capabilities of convolution operations mapped to temporal dimension. 

This helps in learning patterns in the sequential data and also captures 

long-range dependencies.

Temporal dimension is the dimension in a dataset that represents 

progression in time. In our area of interest, i.e., the time series data, 

it can be identified by looking at columns in which observations are 

ordered chronologically. For example, in the dataset of air travel, the year 
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represents a temporal dimension. In time series forecasting, the temporal 

dimension helps to understand the effects of past observations on 

future values.

In machine learning models like the CNN, 1D convolutions can be 

used to capture local patterns over time. This is achieved by learning 

relationships between elements at progressive time intervals. In 

the WaveNet architecture discussed in the previous section, dilated 

convolutions were used to extend the receptive field. This helps to capture 

longer-term dependencies without increasing the computational load.

Before the advent of TCNs, an approach where CNNs were combined 

with RNNs was used. CNNs helped to capture spatial relationships, 

while RNNs helped to capture temporal relationships. However, with the 

addition of GPU and TPU processors, TCNs can capture spatiotemporal 

relations simultaneously with high degree of parallelism. Convolution 

operations can be performed in parallel, making TCNs more efficient 

than recurrent networks. Remember that RNNs are inherently sequential 

networks.

�2.4.2.1  Technical Overview of TCN

In Figure 2-8, we can see a TCN with multiple layers, each corresponding 

to exponentially increasing dilation factors d = 1, 2, 4. The input layer is 

represented by blue circles, the hidden layer is represented by red circles, 

and the output layer is represented by yellow circles.
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Figure 2-8.  Architecture of TCN [6]

The advantage of using TCN is that this model can capture longer 

dependencies compared to LSTM or RNN. However, it may be noted 

that newer models like transformers have much better range. One of the 

downsides of using this model is that TCNs could be computationally 

expensive, as seen in long sequences. Let’s break it down further and 

understand.

Input
The input could be thought of as a matrix of dimensions L X F where L 

and F are the length and features of the input time series dataset.

Convolution Layer
The convolution layer applies a filter W with dimensions K x F to the 

time series data. Here, K is the kernel size, F is the number of features, 

and the length of stride is denoted by S. Convolution between filters (each 

filter) and the input sequence results in an output sequence of length T 

which is the length of the series.

Padding
This ensures that the output sequence has the same length as the input 

sequence. Zero padding adds zeros to the beginning and end of the input 

sequence.
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Dilated Convolutions
These help the filter to capture long-range temporal dependencies. 

This is done by increasing the spacing between filter weights. The spacing 

is controlled by dilation factor D.

Activation Function
The output of each convolution layer is passed through an activation 

function, such as ReLU or sigmoid, to introduce nonlinearity.

Residual Connections
These allow information to flow directly from previous layers to later 

layers. This helps to prevent vanishing gradients and improve training 

stability.

Pooling
Pooling layers reduce the dimensionality of the feature maps by 

selecting the maximum or average value within a sliding window. This 

helps to extract salient features and reduce computational costs.

Output Layer
The TCN outputs a prediction for each time step. For our task of 

forecasting, we could use a linear function for the output layer.

 

where

•	 W is the weight matrix of the final linear layer.

•	 b is the bias vector.

•	 H(T) is the feature vector from the last 

convolution block.

•	 ŷ (T+1) is the predicted value for the next time step.

Loss Function
This measures the difference between the predicted output and the 

actual output. For our task, we could use the mean squared error (MSE).
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Optimization
The model parameters (weights and biases) are computed using 

gradient descent algorithms like Adam or SGD (Stochastic Gradient 

Descent). This helps minimize the loss function.

Another important concept to know about the TCN is the input 

receptive field (IRF). IRF is the maximum time span for which a single 

output neuron can receive information from the input sequence.

The input receptive field of a TCN is dependent on three parameters: 

(a) convolution kernel size, (b) number of hidden layers, and (c) 

dilation factor.

The predictions are obtained by transforming the hidden states 

into contexts c[t+1:t+H]​, which are decoded and adapted into ŷ ​[t+1:t+H], [q]​ 

through MLPs.

where ht​ is the hidden state for time t, yt​ is the input at time t, ht−1​ is the 

hidden state of the previous layer at t−1, x(s) are static exogenous inputs, 

xt
(h)​ are historic exogenous, and x[:t+H]

(f)​ are future exogenous available at 

the time of the prediction.

�2.4.2.2  TCN in Action

Having established a high-level theoretical foundation of TCN, we shall 

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import GMM, MQLoss, 
DistributionLoss
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from neuralforecast.auto import TCN
from neuralforecast.tsdataset import TimeSeriesDataset
from ray import tune

Load the AirPassenger dataset and split data into train and test:

from neuralforecast.utils import AirPassengersDF as Y_df

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Let’s initialize and train the model (TCN) by understanding its key 

parameters.

h is the forecast horizon.

input_size is the maximum sequence length for truncated train 

backpropagation. Default –1 uses all history.

Loss is the instantiated train loss class.

learning_rate is the learning rate between (0, 1).

kernel_size is the size of the convolving kernel.

dilations controls the temporal spacing between the kernel points, 

also known as the à trous algorithm.

encoder_hidden_size is the unit for the TCN’s hidden state size.

context_size is the size of the context vector for each timestamp on the 

forecasting window.

decoder_hidden_size is the size of the hidden layer for the MLP 

decoder.

decoder_layers is the number of layers for the MLP decoder.

max_steps is the maximum number of training steps.

scaler_type is the type of scaler for temporal input normalization; see 

temporal.

hist_exog_list is the historic exogenous columns.
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horizon = 12
fcst = NeuralForecast(
    models=[TCN(h=horizon,
                input_size=-1,
                �loss=GMM(n_components=7, return_params=True, 

level=[80,90]),
                learning_rate=5e-4,
                kernel_size=2,
                dilations=[1,2,4,8,16],
                encoder_hidden_size=128,
                context_size=10,
                decoder_hidden_size=128,
                decoder_layers=2,
                max_steps=500,
                scaler_type='robust',
                #futr_exog_list=['y_[lag12]'],
                hist_exog_list=None,
                #stat_exog_list=['airline1'],
                )
    ],
    freq='M'
)

fcst.fit(df =Y_train_df)

Predict for the next defined horizon:

y_hat = fcst.predict()
y_hat.set_index('ds',inplace =True)
y_hat.head()
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TCN is the predicted column of interest.

 

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],y_hat[['TCN']])

 

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = y_hat[['TCN']]
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();
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Figure 2-9.  Actual vs. predicted plot

Figure 2-9 helps us to appreciate that the air passenger count predicted 

by our model is close to reality.

�2.4.3  Bidirectional Temporal Convolutional Network

In the previous section, we understood the working of TCN. In this section, 

let us understand a CNN architecture that leverages the predictive power 

of combining two TCN networks.

While approaches that follow transformer architecture (covered in 

upcoming chapters) deliver cutting-edge performance, it comes at the cost 

of high compute and memory. This is due to the fact that transformer- 

based approaches learn a large number of parameters. The BiTCN 

handles this challenge by combining two TCNs. Bidirectional temporal 

convolutional network (BiTCN) architecture is developed by using two 

temporal convolutional networks for forecasting. The first network, called 

the forward network, encodes future covariates of the time series. The 

second network, called the backward network, encodes past observations 

and covariates. This technique helps in preserving temporal information 

of sequence data. The parameters of the output distribution are jointly 

estimated using these two networks. It is computationally more efficient 

than RNN methods like LSTM. Compared to newer architectures like 

transformer-based methods, it requires parameters of lower order 

magnitude (lower space complexity). BiTCN falls under the category of 

univariate models.
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The benefits of a lesser number of parameters directly translate to 

lower memory and computing costs, besides lower cost of deployment. 

Choose this model when you are looking for a model with a lesser number 

of hyperparameters to tune and a smaller number of trainable parameters.

�2.4.3.1  What Are Future Covariates?

The variables that are not part of the current dataset, in a time series model 

that helps to explain or predict the outcome variable in the time series 

forecasting model, are called future covariates. These external variables 

are anticipated to influence the predictions in future. These variables help 

to improve forecasting results in future by adding information that could 

influence the outcome. For example, in forecasting flight delays, past 

airport data (historical trends) could be supplemented with local weather 

data and upcoming major holidays to improve predictions.

Covariates are not necessarily time dependent; they may be time- 

independent variables too. While weather and holidays are examples 

of time-dependent covariates, others like gender and weight are time 

independent.

We discussed future covariates. Let’s now peep into the past – past 

covariates.

In the context of time series forecasting, past covariates are the external 

variables (outside the dataset) that influenced time series forecasting 

in the past. To understand the effect of external variables on historical 

trends, past covariates may be used, for example, climatic conditions or 

maintenance history that could have influenced the past delays in flights. 

The difference between past covariates and future covariates, discussed 

in the previous section, is that the latter are predictors of future outcomes, 

while the former provide additional context for interpreting forecasts done 

in the past.
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�2.4.3.2  Technical Overview of BiTCN

Let’s explore the BiTCN, which is an extension of the TCN we discussed 

earlier:

	 (a)	 Bidirectional Processing

BiTCN may be understood by extending the TCN 

model, i.e., by applying convolutions in both 

forward and backward directions. The first one 

processes the sequence from start to end (forward) 

and the other from end to start (backward).

Output of the forward pass:

 

Output of the backward pass:

 

	 (b)	 Combining Forward and Backward Outputs

 

The outputs from both directions are combined to produce the 

final output.

The combined operation is usually done by element-wise addition.

Figure 2-10 shows using three stacked TCN layers to enable 

conditioning the forecast at t = t0 + 1 on both past and future information. 

This uses both forward and backward dilated convolutions with kernel size 

3 and dilation 2i−1 for the ith layer.
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Figure 2-10.  BiTCN architecture [2]

The blue circles (columns 1-11) represent the input sequence, the 

yellow circles (columns 12-18) the output sequence, and the green circles 

(columns 19-25) the additional future covariates on which the forecast can 

be conditioned.

The red connections (arrows in the middle and left side of the diagram) 

indicate the backward-looking convolutions, and the purple connections 

(arrows depicted in the right side of the diagram) are the forward-looking 

convolutions. For clarity purposes, some inner convolutional connections 

are shown with dashed lines.

�2.4.3.3  BiTCN in Action

Having established a high-level theoretical foundation of BiTCN, we shall 

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
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from neuralforecast.models import BiTCN
from ray import tune
from neuralforecast.losses.pytorch import GMM, DistributionLoss
from neuralforecast.tsdataset import TimeSeriesDataset

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger data. Separate the last 12 months of data for training and use the 

remaining 11 years of data and try to predict.

from neuralforecast.utils import AirPassengersDF as Y_df
Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Let’s initialize and train the BiTCN model by understanding its key 

parameters.

H is the forecast horizon.

input_size is considered the autorregresive inputs (lags), y=[1,2,3,4] 

input_size=2 -> lags=[1,2].

Loss is the instantiated train loss class from the losses collection.

max_steps is the maximum number of training steps.

scaler_type is the type of scaler for temporal input normalization; see 

temporal.

hist_exog_list is the historic exogenous columns.

horizon = 12
fcst = NeuralForecast(
    models=[
            BiTCN(h=horizon,
                input_size=12,
                �loss=GMM(n_components=7, return_params=True, 

level=[80,90]),
                max_steps=100,
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                scaler_type='standard',
                hist_exog_list=None,

                ),
    ],
    freq='M'
)
fcst.fit(df=Y_train_df)

Predict the next defined horizon:

y_hat = fcst.predict()
y_hat.set_index('ds',inplace =True)
y_hat.head()

BiTCN is the predicted column of interest.

 

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],y_hat[['BiTCN']])

 

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
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Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = y_hat[['BiTCN']]
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-11 helps us to appreciate that the air passenger count 

predicted by our model is not close to reality. Please note that BiTCN may 

not always perform better than TCN due to some factors like overfitting, 

complexity, and some properties of the dataset.

Figure 2-11.  Actual vs. predicted plot

�2.5  Neural Networks for Sequential Data
In this section, let us discuss neural network architectures that are better 

suited for sequential data.
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�2.5.1  Recurrent Neural Network

In this section, let us start our exploration with a type of deep neural 

network architecture called recurrent neural network (RNN). We will try 

to understand why it works better with datasets that deal with sequential 

data like time series data. Sequential data is a type of data where there is 

a specific order (sequence) in the data. Some examples of sequential data 

are time series data, speech, audio, and text.

In the RNN architecture, the output from the previous step becomes 

input for the current step. So, no points for guessing why sequence is 

important for RNN architecture. This is in contrast to the traditional neural 

networks where the inputs and outputs from each layer are independent 

of each other. The emergence of RNN architecture was majorly due to NLP 

(natural language processing) use cases that required prediction of the 

next word. RNN provided a solution to this problem by making use of a 

hidden layer. This layer works as memory, as it is used to remember some 

information about the sequence.

�2.5.1.1  Technical Overview of RNN

In feedforward neural networks, there is only one direction for the data to 

move from the input layer to the output layer, without any loops. Because 

of this forward-moving pattern, the data of previous layers will be lost, and 

no internal memory essentially each input is processed independently. 

However, in RNN, the data goes through a loop, which means it can 

remember the past as well as the new data. Information can flow in both 

directions, with feedback loops that allow the network to maintain a 

memory of previous inputs.
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Figure 2-12.  Recurrent neural network and feedforward 
neural network

The architecture of RNNs remains the same as any other deep neural 

network’s input and output architecture. The change may be noted in the 

way information propagates from input to output. Each dense network 

within a deep neural network has different sets of weights. In contrast, 

the weight matrices remain the same across the entire recurrent neural 

network – in other words, same weight matrices across several time steps.

For an input time series x={x1, x2, .., xn}, the RNN computes the hidden 

state sequence h = {h1, h2,.., hn} as well as the output sequence y = {y1; 

y2;..; yn} iteratively.

The set of equations used to compute the hidden state sequence and 

output sequence is

	 h f W x W h bht hx n hh n= + +( )−1 	

	
y g W h bt yh n y= +( )
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Figure 2-13.  An unrolled RNN

where

Whx is the input-hidden weight.

Whh is the hidden-hidden weight matrix.

Wyh is the hidden-output weight matrix

The input layer x takes in the input to the neural network and 

processes it and passes it to the middle layer. The middle layer h can be 

a stack of multiple hidden layers, each with its own activation functions, 

weights, and biases, and y is the output layer.

The RNN will standardize the different activation functions, weights, 

and biases so that each hidden layer has the same parameters. Then, 

instead of creating multiple hidden layers, it will create one and loop 

over it as many times as required. RNN uses the hidden state hn at time 

step n to memorize. The hidden state helps to capture information from 

the previous steps which helps in better understanding of temporal 

relationships within data.

Despite the benefits discussed earlier, RNNs have two major 

challenges: exploding gradient and vanishing gradient. Exploding gradient 

is a phenomenon that occurs when weights are assigned very large 

values. Vanishing gradient is a phenomenon that occurs when weights 
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are assigned very small value. This stops the learning process in a neural 

network. Another issue with RNN is its inability to handle long-range 

dependencies. Multiple developments have happened to overcome these 

issues, and one of them is LSTM that we will discuss in the next section.

�2.5.1.2  RNN in Action

Having established a high-level theoretical foundation of RNN, we shall 

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import GMM, MQLoss, 
DistributionLoss
from neuralforecast.models import RNN
from neuralforecast.tsdataset import TimeSeriesDataset
from ray import tune

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF as Y_df

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Chapter 2  Neural Networks for Time Series



55

Let’s initialize and train the model (RNN) by understanding its key 

parameters.

H is the forecast horizon.

input_size is the maximum sequence length for truncated train 

backpropagation. Default –1 uses all history.

inference_input_size is the maximum sequence length for truncated 

inference. Default –1 uses all history.

Loss is the instantiated train loss class from the losses collection.

scaler_type is the step size between each window of temporal data.

encoder_n_layers is the number of layers for the RNN.

encoder_hidden_size is the unit for the RNN’s hidden state size.

context_size is the size of context vector for each timestamp on the 

forecasting window.

decoder_hidden_size is the size of the hidden layer for the MLP 

decoder.

decoder_layers is the number of layers for the MLP decoder.

max_steps is the maximum number of training steps.

horizon = 12
fcst = NeuralForecast(
    models=[RNN(h=horizon,
                input_size=-1,
                inference_input_size=24,
                loss=MQLoss(level=[80, 90]),
                scaler_type='robust',
                encoder_n_layers=2,
                encoder_hidden_size=128,
                context_size=10,
                decoder_hidden_size=128,
                decoder_layers=2,
                max_steps=300,
                #futr_exog_list=['y_[lag12]'],
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                #hist_exog_list=['y_[lag12]'],
                #stat_exog_list=['airline1'],
                )
    ],
    freq='M'
)

fcst.fit(df=Y_train_df, val_size=12)

Predict for the next defined horizon.

y_hat = fcst.predict()
y_hat.set_index('ds',inplace =True)
y_hat.head()

RNN-median is the predicted column of interest.

 

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],y_hat[['RNN-median']])
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Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = y_hat[['RNN-median']]
y_test = Y_test_df["y"
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-14 helps us to appreciate that the air passenger count 

predicted by our model is close to reality.

Figure 2-14.  Actual vs. predicted plot

�2.5.2  Long Short-Term Memory

The long short-term memory (LSTM) architecture is a modification to the 

RNN architecture to allow additional signal paths. These additional paths 

help in bypassing many processing steps encountered at each stage of the 

network. This modification helps in remembering information over a large 

number of time steps. While this modification improves the performance 
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compared to the RNN, it also introduces additional complexity. This 

complexity has an impact on training speed compared to RNNs. Popular 

tools like Apple’s Siri and Google’s AlphaGo were based on LSTM.

�2.5.2.1  Technical Overview of LSTM

Figure 2-15.  Architecture of LSTM

From Figure 2-15, it is evident that for the input for each computational 

step, three values are considered. The values are (a) current input x(t), (b) 

past value of hidden state h(t-1), and (c) past value of short-term memory 

c(t-1). Next, these inputs pass through three gates – forget gate, input gate, 

and output gate – before obtaining a new cell state c(t) and hidden state 

h(t). Let us understand these three gates in some more detail.

	 (a)	 Forget Gate

In this gate, a decision is taken with regard to which 

current and previous information is retained and 

discarded. The decision is taken on past values of 

the hidden state and values of the current input. 

These values are passed through a sigmoid function. 
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Those who are familiar with logistic regression 

would recall that the sigmoid function’s output 

ranges between 0 and 1. In our context, the value 0 

means that previous information can be discarded. 

This is due to possible availability of new, more 

important information. The value 1 means that the 

previous information is preserved. The resultant 

output of the sigmoid function is multiplied by the 

current cell state so that knowledge that is no longer 

needed is discarded since it is multiplied by 0.

	 (b)	 Input Gate

In this gate, a decision is taken to evaluate the 

current input to solve the task. To achieve this, 

the current input is multiplied by the hidden state 

and the weight matrix of the previous run. All the 

information that appears important in the input gate 

is then added to the cell state. The resultant forms 

the new cell state c(t). This new cell state becomes 

the current state of the long-term memory to be 

used in the subsequent run.

	 (c)	 Output Gate

In this gate, the output of the LSTM model is 

calculated for the hidden state. Depending on the 

application, it can be, for example, a word that 

complements the meaning of the sentence. In 

order to compute h(t), the sigmoid function is used 

to decide what information can pass through the 

output gate. The result is then multiplied by cell 

state, after c(t) passes through the tanh activation 

function.
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Despite the modifications, all RNN-based architectures come with an 

inherent limitation – they do not support parallel processing. You would 

have noted by now that propagation paths in RNNs increase linearly with 

the number of steps in sequence. It is not possible to leverage powerful 

parallel processing capable processors like GPUs and TPUs (within a single 

training example) due to the sequential processing architecture in RNNs. 

In the next chapter, we explore a newer architecture called transformer 

that overcomes the limitations of the RNN architecture.

�2.5.2.2  LSTM in action

Having established a high-level theoretical foundation of LSTM, we shall 

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import LSTM
from neuralforecast.tsdataset import TimeSeriesDataset
from neuralforecast.losses.pytorch import GMM, MQLoss, 
DistributionLoss
from neuralforecast.utils import AirPassengersDF as Y_df
from ray import tune

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.
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from neuralforecast.utils import AirPassengersDF as Y_df

Y_train_df = Y_df[Y_df.ds<='1959-12-31'] # 132 train data
Y_test_df = Y_df[Y_df.ds>'1959-12-31']   # 12 test data

Let’s initialize and train the LSTM model by understanding its key 

parameters.

H is the forecast horizon.

input_size is the maximum sequence length for truncated train 

backpropagation. Default –1 uses all history.

Loss is the instantiated train loss class from the losses collection.

scaler_type is the step size between each window of temporal data.

encoder_n_layers is the number of layers for the RNN.

encoder_hidden_size is the unit for the RNN’s hidden state size.

context_size is the size of the context vector for each timestamp on the 

forecasting window.

decoder_hidden_size is the size of the hidden layer for the MLP 

decoder.

decoder_layers is the number of layers for the MLP decoder.

max_steps is the maximum number of training steps.

horizon = 12
fcst = NeuralForecast(
    models=[LSTM(h=horizon, input_size=-1,
                 �loss=DistributionLoss(distribution='Normal', 

level=[80, 90]),
                 scaler_type='robust',
                 encoder_n_layers=2,
                 encoder_hidden_size=128,
                 context_size=10,
                 decoder_hidden_size=128,
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                 decoder_layers=2,
                 max_steps=200,

                 )
    ],
    freq='M'
)
fcst.fit(df =Y_train_df)

model.fit(dataset=dataset)

Predict the next defined horizon:

y_hat = fcst.predict()
y_hat.set_index('ds',inplace =True)
y_hat.head()

LSTM is the predicted column of interest.

 

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],y_hat[['LSTM']])
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Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = y_hat[['LSTM']]
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-16 helps us to appreciate that the air passenger count 

predicted by our model is close to reality.

Figure 2-16.  Actual vs. predicted plot
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�2.6  Neural Networks Based on Autoregression
In this section, let us discuss neural networks that leverage 

autoregression (AR).

We are going to cover the DeepAR forecasting method that is based on 

autoregressive recurrent networks. Autoregression models in time series 

forecast future values by depending on past observations of the same 

variable. With a fundamental assumption that past and future values of 

the same variable are dependent, they use a linear combination of past 

observations for time series forecasts. The value of “order” of the model is 

nothing but the number of past values used in computing the future value.

The techniques we have covered so far provided us with a single 

predicted forecast value. However, the technique we are going to cover 

in this section is a probabilistic forecasting technique. Probabilistic 

forecasting techniques have a unique feature. These classes of techniques 

do not forecast a single value; rather, they provide a range of values 

that we call, in the language of probability, probability distribution. 

Acknowledging that the future is inherently uncertain, the output of 

probabilistic forecasting is a range of possible outcomes of a forecasted 

variable.

There are many examples of probabilistic forecasting that we 

encounter in real life; weather forecasts are a classic example. For instance, 

the temperature forecast that I saw last week in New Jersey was displayed 

as follows: 70% chance of heat on Monday would be between 81 and 83 F, 

60% chance of heat on Tuesday between 76 and 79 F.

�2.6.1  Key Features of Probabilistic Forecasting

	 a)	 Quantification of uncertainty: A spectrum of 

value is provided with probabilities instead of a 

single forecasted value. This helps in quantifying 

uncertainty associated with the future.
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	 b)	 Better decisions with risk considerations: The 

inherent uncertainty in future time periods, which is 

important in taking strategic decisions that take into 

account the risks involved, is supported by the range 

and likelihood of outcomes.

	 c)	 Percentile representation: The forecasts can be 

expressed in percentiles and represented using 

box plots and whisker plots representing different 

confidence levels.

The early traditional forecasting methods were developed in the 

context of time series forecasting individual time series data. The scope 

later expanded to forecast a small number of groups of time series. In 

the early traditional approaches, model parameters for each given time 

series within the group were independently estimated from historical 

observations. The model was then manually selected to cater to various 

parameters like trend, seasonality, cycles, and autocorrelation. The best fit 

model was then used in time series forecasting as per the model dynamics. 

DeepAR is good at handling complex time series with seasonality, trends, 

and other irregularities.

In the last decade, we have seen an explosion in data availability. New tools 

and techniques to handle big data became popular. New expectations and 

associated developments to handle use cases that demanded forecasting in the 

order of millions of related time series emerged. Let us appreciate this scenario 

by citing a few use cases. Forecasting energy demands of large apartment 

complexes, forecasting power consumption of server farms, and forecasting 

demand for individual products during Thanksgiving sales are a few examples.

The common aspect you may have observed in these scenarios is 

the availability of large amount of historical data. This data could be of 

same or similar events. The time series data from similar events can be 

utilized in time series forecasting for individual time series. There are two 
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major advantages of using time series data from similar events; they are 

(a) efficiently fitting more complex models and (b) reducing the effort in 

feature engineering and model selection steps. The DeepAR model for 

time series forecasting efficiently learns from historical data leveraging 

these two advantages.

The DeepAR model uses recurrent neural networks (RNNs) to learn 

temporal dependencies and patterns in the data. The model takes past 

values of a variable and generates a probability distribution of future 

values. This distribution can be used to estimate the most likely future 

values or to generate confidence intervals for predictions.

Despite the advantages discussed earlier, regarding the usage of 

learning from multiple time series, a few practical problems exist. In real- 

world datasets, the magnitude of time series varies widely. You will also 

note that the distribution of magnitudes is strongly skewed. As an example, 

we can see the plot in Figure 2-17, which explains the distribution of 

sales velocity of items sold (in millions) by a leading online retailer. Sales 

velocity is defined as the average weekly sales of a product.

Figure 2-17.   Log-log histogram of the number of items versus 
number of sales [7]
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A few approaches were suggested based on group-based regularization 

techniques, which largely became inapplicable because of variations 

in velocities within individual groups. Also, skewed distributions limit 

the use of normalization methods like input standardization or batch 

normalization.

�2.6.2  Technical Overview of Deep Autoregressive

The DeepAR model has some key benefits compared to traditional 

approaches. The major advantages that set DeepAR apart are as follows: 

(a) Relatively much less effort and time need to be spent on feature 

engineering to capture complex and group-dependent behavior. This 

is because the model learns seasonality and dependencies on given 

covariates across the time series. (b) It has an ability to provide forecasts 

for products with little to no historical data. This is because of learning 

from historical data of similar events.

The DeepAR model has properties that help produce better forecasts 

by learning from historical behavior of all the time series taken together. 

(a) It incorporates a wide range of likelihood functions. This allows 

the time series modeling team to choose suitable functions based on 

statistical properties of the data. (b) The probabilistic forecasts are 

generated in the form of Monte Carlo Samples. These can be used to 

compute quantile estimates belonging to subranges in the prediction 

horizon. This is important as discussed earlier in this section, where we 

pointed out advantages of forecasts with probabilities compared to a point 

forecast value.

In Figure 2-18, we see two parts – to the left is the input and to the right 

is the prediction.
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Figure 2-18.  Summary of the model [7]

The input to the network consists of three parameters: (a) covariates 

xi, t, (b) preceding time step’s target value zi, t − 1, and (c) preceding network 

output value hi, t − 1.

The output of the network hi,t is then used to compute the parameters 

of the likelihood. These parameters in turn are used to train the model 

parameters. In order to perform prediction, the history of the time series 

zi;t is provided as input for t < t0, then in the prediction range (right) for t 

≥ t0 a sample is drawn and fed to the next point. This process continues 

till the end of the prediction range t = t0 + T. This results in the generation 

of a single sample trace. Multiple traces representing the joint predicted 

distribution are generated by repeating the steps for prediction.

To understand the mathematical model of DeepAR, we need to 

remember that the primary goal is to model conditional distribution, 

where Zi,t is the value of time series i at an instance of time t.

 

This conditional distribution is for the future of each time 

series in .

The past values are  

.
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Here, t0 denotes the time point from which we assume Zi, t to be 

unknown at prediction time. The Zi, 1:t0-1 and Xi, 1 : T are covariates that are 

assumed to be known for all time points. To avoid confusion in terminology, 

we skip using terms like “past” or “future”; rather, we use time ranges [1, t0 -1]  

and [t0, T] as conditioning range and prediction range. While training the 

model, both time ranges have to be in the past so that Zi,t is observed. 

However, during prediction Zi,t is available in the conditioning range only.

Note T he time index t is relative, i.e., t = 1 can correspond to a 
different actual time period for each i.

�2.6.3  DeepAR in Action

Having established a high-level theoretical foundation of DeepAR, we shall 

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import MQLoss, 
DistributionLoss, GMM, PMM
from neuralforecast.tsdataset import TimeSeriesDataset
import pandas as pd
import pytorch_lightning as pl
import matplotlib.pyplot as plt
from neuralforecast.models import DeepAR
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from neuralforecast.losses.pytorch import DistributionLoss, 
HuberMQLoss
from neuralforecast.utils import AirPassengers, 
AirPassengersPanel, AirPassengersStatic
from neuralforecast.utils import AirPassengers, 
AirPassengersPanel, AirPassengersStatic, AirPassengersPanel, 
AirPassengersStatic
AirPassengersPanel.head()

 

print(AirPassengersStatic)

 

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

Chapter 2  Neural Networks for Time Series



71

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassen
gersPanel['ds'].values[-12]]
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassen
gersPanel['ds'].values[-12]].reset_index(drop=True)

Let’s initialize and train the DeepAR model by understanding its key 

parameters.

h is the forecast horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 -> 

y_[t-2:t]=[1,2].

lstm_n_layers is the number of LSTM layers.

trajectory_samples is the number of Monte Carlo trajectories during 

inference.

Loss is the instantiated train loss class from the losses collection.

learning_rate is the learning rate between (0, 1).

stat_exog_list is the static exogenous columns.

futr_exog_list is the future exogenous columns.

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every 

validation loss check.

early_stop_patience_steps is the number of validation iterations 

before early stopping.

scaler_type is the type of scaler for temporal input normalization.

nf = NeuralForecast(
    models=[DeepAR(h=12,
                   input_size=48,
                   lstm_n_layers=3,
                   trajectory_samples=100,
                   �loss=DistributionLoss(distribution='Normal', 

level=[80, 90], return_params=False),
                   learning_rate=0.005,
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                   stat_exog_list=['airline1'],
                   futr_exog_list=['trend'],
                   max_steps=100,
                   val_check_steps=10,
                   early_stop_patience_steps=-1,
                   scaler_type='standard',
                   enable_progress_bar=True),
    ],
    freq='M'
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_
size=12)

Predict the next defined horizon:

Y_hat_df = nf.predict(futr_df=Y_test_df)
Y_hat_df.head()

DeepAR is the predicted column of interest.

 

Measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],Y_hat_df[['DeepAR']])

Chapter 2  Neural Networks for Time Series



73

 

Visualize the predictions:

Y_hat_df =Y_hat_df.reset_index(drop=False).drop(columns=['uniq
ue_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])
plt.figure(figsize=(20, 3))
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_
id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['DeepAR-median'], c='blue', 
label='median')
plt.fill_between(x=plot_df['ds'][-12:],
                 y1=plot_df['DeepAR-lo-90'][-12:].values,
                 y2=plot_df['DeepAR-hi-90'][-12:].values,
                 alpha=0.4, label='level 90')
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend()
plt.grid()
plt.plot()

Figure 2-19 helps us to appreciate that the air passenger count 

predicted by our model is close to reality.
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Figure 2-19.  Actual vs. predicted plot

�2.7  Neural Basis Expansion Analysis
In this section, we cover neural basis expansion analysis for time series 

(NBEATS). This is an effective but simple architecture; let us learn how. 

This architecture is built with a deep stack of MLPs with the doubly 

residual connections. Depending on the blocks used, NBEATS has a 

generic and interpretable architecture. In use cases involving scarce data 

settings, the interpretable architecture of NBEATS is recommended. The 

primary reason is that the model regularizes its predictions by expressing 

in terms of constituent harmonics and trends. This makes it a suitable 

choice for many forecasting tasks.

�2.7.1  Technical Overview of NBEATS

NBEATS architecture was developed in the process of exploring the use 

of deep learning to solve univariate time series forecasting use cases. This 

architecture is designed using a deep learning network with multiple fully 

connected layers and relies on a network of backward and forward residual 

links. The intention of including this model in our journey to understand 

time series forecasting with GenAI is that this model was the first pure 

deep learning approach that performed better than existing statistical 

approaches in the Makridakis M-competition. The NBEATS model 

surpassed the winning solution of the M4 competition. You may want to 

look at https://forecasters.org/resources/time-series-data/ to 

know more and participate.
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The building blocks of the architecture are “stacks.” NBEATS consists 

of a layer of stacks. The individual stack is used to focus on various levels of 

temporal resolution. For example, one stack may be used to focus on long-

term trends, while another stack may be used to focus on the short- 

term seasonality component. Each stack also has a series of “blocks.” These 

blocks are responsible for capturing a specific temporal pattern like trend 

or seasonality. The blocks have backcast and forecast components. These 

help to learn from past behavior and help in time series forecasting based 

on the patterns learned.

The NBEATS architecture has advantages like interpretability 

(a challenge with neural networks in general), faster to train, and 

applicability to a wide spectrum of use cases in many domains with 

minimal to no changes in architecture. This is achieved with the help 

of generic architecture and interpretable architecture, which are 

discussed later.

From Figure 2-20, it is evident that the NBEATS architecture is a 

multilayered fully connected (FC) network. This network also has ReLU 

nonlinearities. A fully connected layer in a neural network means that in 

the neural network, each input node is mapped to an output node. This 

is in contrast to a convolutional layer, where you will find unconnected 

nodes. Going back to the architecture diagram, the predictions include 

forward basis expansion coefficient, forecast θf, and backward basis 

expansion coefficient, backcast θb. Using doubly residual stacking 

principle, the blocks are organized into stacks. The stack includes layers 

with shared forecasts and backcasts. Developing a deep learning network 

with interpretable forecasts is possible by hierarchical aggregation 

(adding) of the forecasts.
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Figure 2-20.  Architecture of NBEATS [3]

The residual stacking principle is a concept where each block 

iteratively updates the forecast by considering the residual error from the 

preceding block.

The forward basis expansion coefficient, forecast θf, is accumulated to 

generate the final prediction. The backward basis expansion coefficient, 

backcast θb, is used to adjust the input series iteratively. The input to each 

block is the residual time series. Residual time series is the remaining value 

(residual) after outputs from the preceding block have been subtracted. 

The input traverses through multiple FC layers.

There are two configurations of the NBEATS architecture. (a) Generic 

architecture: The generic architecture does not rely on any time series–

specific (trend, seasonality) knowledge. The model learns the TS patterns 

directly from the dataset. (b) Interpretable architecture: The interpretable 

architecture is built by modifying the architecture shown in Figure 2-13. 

The architecture has a trend block and seasonality block. These blocks 

help to capture the trend and seasonality in the dataset.

Chapter 2  Neural Networks for Time Series



77

�2.7.2  NBEATS in Action

Having established a high-level theoretical foundation of NBEATS, we shall 

now translate abstract concepts into practical code implementation.

Import libraries:

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from IPython.display import display, Markdown
import matplotlib.pyplot as plt
from ray import tune
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NBEATS, NHITS

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

 

Chapter 2  Neural Networks for Time Series



78

train_data = Y_df.head(132)
test_data = Y_df.tail(12)

Let’s initialize and train the NBEATS model by understanding its key 

parameters.

h is the forecast horizon.

�input_size is considered the autoregressive inputs (lags), y=[1,2,3,4] 

input_size=2 -> lags=[1,2].

max_steps is the maximum number of training steps.

horizon = 12
models = [NBEATS(input_size=2 * horizon, h=horizon, max_
steps=50)]
nf = NeuralForecast(models=models, freq='M')
nf.fit(df=train_data)

Predict the next defined horizon:

Y_hat_df = nf.predict().reset_index()
Y_hat_df.head()

NBEATS is the predicted column of interest.

 

Measure the model’s accuracy:

calculate_error_metrics(test_data[['y']],Y_hat_df['NBEATS'])
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Visualize the predictions:

train_data.set_index('ds',inplace =True)
Y_hat_df.set_index('ds',inplace =True)
test_data.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
item_id = "airline_1"
y_past = train_data["y"]
y_pred = Y_hat_df['NBEATS']
y_test = test_data["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Mean forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 2-21 helps us to appreciate that the air passenger count 

predicted by our model is close to reality.

Figure 2-21.  Actual vs. predicted plot
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�2.8  Summary
In this chapter, we discussed various neural network architectures that 

are used for time series forecasting. We covered architectures based on 

CNN, RNN, and LSTM that can be leveraged for time series forecasting. 

We understood terms like dilated convolutions, causal convolutions, 

future covariates, and mathematical overview of some of the models. We 

discussed temporal convolution networks and how they are useful in 

handling sequential data.

We understood how DeepAR works and its effectiveness in handling 

complex time series datasets. We explored how an effective yet simple 

architecture like NBEATS works. Finally, we saw the models in action by 

implementing them with use cases for prediction.

Please use a dataset of your choice to practice. In the next chapter, 

we will move a step closer to GenAI by understanding the transformer 

architecture and how it helps in time series forecasting. Transformers are 

building blocks for training GenAI models.
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CHAPTER 3

Transformers for  
Time Series
Chapter Goal: Learn how to leverage the different types of transformers 

and solve time series problems.

In the preceding chapter, we explored different kinds of neural network 

architectures and practically implemented them using real-world datasets.

This chapter focuses on breaking down transformers, understanding 

them at a high level, and exploring other popular transformer variants. Let 

us also understand how they can be used to solve time series problems.

�3  Introduction to Transformers
Transformers initially revolutionized natural language processing and 

have increasingly found their application in other realms such as computer 

vision, audio processing, bioinformatics, finance, robotics, and time series 

analysis. This chapter delves into the core concepts of transformers and 

explains how these powerful models can be adapted to effectively handle 

time series data.
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We will dissect the transformer’s architecture by breaking it down into 

its fundamental components and understand how it works internally. 

Beyond the foundation of the transformer, we will explore a diverse range 

of variants that have been specifically tailored for time series analysis. 

These innovative architectures offer different advantages in handling 

various time series challenges.

By the end of this chapter, readers will have a solid grasp of 

transformers and their potential in the time series domain, enabling them 

to effectively apply to solve their own problems.

“Attention Is All You Need” [1] was the paper that introduced the 

transformer architecture; this revolutionized the natural language 

processing by demonstrating the power of the attention mechanism. 

Numerous efforts have tried to push the boundaries of recurrent 

language models and encoder-decoder architectures. Sequence learning 

architectures, such as gated recurrent neural networks, recurrent neural 

networks, and long short-term memory in particular, have been firmly 

established as state-of-the-art approaches in sequence modeling any data 

that exhibits a sequential pattern.

�3.1  Technical Overview of Transformers
Let’s break down the components that underpin the transformer’s 

remarkable performance and how it works through the lenses of the 

original paper [1].

Transformers are designed using stacked self-attention and point- 

wise, fully connected layers for both the encoder and decoder, as shown in 

Figure 3-1.
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Figure 3-1.  Transformer model architecture [1]

Transformers are built on encoder-decoder architecture. The encoder 

applies the mathematical function to the data and transforms input to a 

certain representation, while the decoder applies the inverse function to 

recover back the original data.
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Figure 3-2.  Encoder-decoder

Let’s understand the components from the left (bottom-up approach) 

of Figure 3-1:

	 a)	 Input Embedding

This is the initial step where raw text is converted 

into the format suitable for the model to process 

which is numerical representation.

	 b)	 Positional Encoding

Positional encoding is a method used in 

transformers to incorporate word order by assigning 

a unique number to each word in a sentence, 

allowing the model to learn sequence information. 

This is a way of saving the word order in the data 

itself rather than the network.

As the original paper had no recurrent and no 

convolution for the model to make use of the order 

of the sequence, there was a need to inject some 

information about the relative or absolute position 
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of the tokens in the sequence. The positional 

encoding has the same dimensions dmodel as the 

embedding so that they can be summed up:

 

where dmodel is the embedding dimension, positional 

encoding is a matrix PE of shape (n, dmodel), pos is 

the position, and i is the dimension where each 

dimension of the positional encoding corresponds 

to a sinusoid. Sine and cosine functions of different 

frequencies are used in the example; however, we 

can explore other encoding techniques such as 

rotary positional encoding, no positional encoding, 

and absolute positional encoding.

	 c)	 Encoder

Let’s dive deep into the encoder part of the 

transformers, which is highlighted below; it consists 

of a stack of six identical layers. Each layer consists 

of a multi-head self-attention mechanism and a 

point-wise fully connected feedforward network. 

There is a residual connection around each of the 

two sublayers followed by layer normalization.
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Figure 3-3.  The encoder highlighted in green

	 d)	 Attention

An attention function can be described as mapping 

a query and a set of key-value pairs to an output, 

where the query, keys, values, and output are all 

vectors. The output is computed as a weighted sum.
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Figure 3-4.  Scaled dot-product attention

Scaled dot-product attention is used to enable 

models to capture complex dependencies between 

input elements. The input consists of query (Q) that 

represents what you are looking for, key (K) that 

represents what you are searching with, and value 

(V) that represents information you want to retrieve.

Dot product is used to calculate the similarity 

between the query and each key. A higher result 

means a closer match. Scaling is used to prevent dot 

products from getting too large; as the dimension 

of keys increases, the dot product tends to grow 

large. A large value in the softmax function can lead 

to gradients that are close to zero, slowing down 

training as the model parameters receive negligible 

updates and slowing down the learning; this is 

called the vanishing gradient problem. Weighted 
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sum multiplies each value by the corresponding 

attention weight and sums them up to get the 

final output.

Scaled dot-product attention helps the model to 

focus on the most relevant parts of the data passed 

when generating the output. Let us understand 

scaled dot-product attention with a simple example.

(Q): �Imagine you have a question about time series 

forecasting.

(K): Scan for keywords in the text.

(V): �Find relevant keywords like trend, seasonality, 

forecasting, etc.

Figure 3-5.  Depiction of multi-head attention
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Multi-head Attention

Multi-head attention is multiple attention working 

in parallel, which allows transformer models to 

focus on different parts of the input sequence 

simultaneously. Multi-head attention allows the 

model to jointly attend to information from different 

representation subspaces at different positions.

Multiple attention is projected instead of a single 

attention function with dmodel – dimensional keys, 

value, and queries. K, Q, and V are linearly projected 

h times with different linear projections dk, dq, 

and dv dimensions, respectively. The model jointly 

sees the information from different representation 

subspaces at different positions.

	 e)	 Feedforward Neural Network

This layer applies the same feedforward neural 

network to each position separately and identically. 

It consists of two linear transformations with a ReLU 

activation in between.

 

	 f )	 Layer Normalization

This is applied after each sublayer to stabilize 

or improve the performance of the deep neural 

network.
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	 g)	 Residual Connections

This helps in mitigating the vanishing gradient 

problem, which is essentially when the gradients, 

used to update the weights of the network during 

training, become extremely small as they propagate 

backward through the layers and also act as a 

shortcut path to bypass one or more layers.

Let’s now understand the components from the right (bottom-up 

approach) of Figure 3-1:

	 a)	 Output Embedding

Similar to the encoder, text is converted into 

numerical embeddings.

	 b)	 Positional Encoding

The same functionality as in the encoder.

	 c)	 Decoder

The decoder is also composed of a stack of six 

identical layers same as the encoder; the number 

of layers, depicted as Nx, can be increased or 

decreased. In addition to the two sublayers in each 

encoder layer, the decoder inserts a third sublayer, 

which performs multi-head attention over the 

output of the encoder stack.
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Figure 3-6.  The decoder highlighted in green

	 d)	 Masked Multi-head Self-Attention

This layer is similar to the encoder’s self-attention, 

but with a mask to prevent attending to future 

tokens or words. This masking plays a vital role in 

maintaining the order and coherence of the output.

	 e)	 Encoder-Decoder Attention

This layer allows the decoder to attend to the output 

of the encoder.

	 f )	 Feedforward Neural Network

Same as the encoder’s feedforward network.

	 g)	 Layer Normalization

Applied after each sublayer to stabilize or improve 

the performance of the deep neural network.
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	 h)	 Residual Connections

Used to ease training by allowing gradients to flow 

directly to earlier layers.

	 i)	 Linear and Softmax

The final layer converts the decoder output into 

predicted vocabulary or token probabilities.

This innovative approach revolutionized sequence modeling by 

introducing a transformer architecture that exclusively uses self-attention 

mechanisms, thereby eliminating the need for recurrent or convolutional 

neural networks, resulting in superior performance, parallelization, and 

accelerated training while effectively capturing long-range dependencies 

within data. There are different variants of transformers such as BERT, 

RoBERTa, LaMDA, GPT, Vit, T5, XLNet, and many more introduced for 

various applications.

�3.2  Vanilla Transformer
Long sequence time series forecasting (LSTF) requires a high prediction 

capacity of the model, which can capture precise long-range dependency 

coupling between the output and the input efficiently; studies have shown 

the capabilities of transformers, but there are issues that prevent them 

from being directly applicable to LSTF, such as quadratic time complexity, 

high memory usage, and limitations of encoder-decoder architecture.

Transformer models have shown superior performance in capturing 

long-range dependency than RNN models; however, they still have some 

drawbacks such as

	 a)	 The quadratic computation of self-attention: The 

time complexity and memory usage per layer to be 

O(L2) when performing self-attention mechanisms, 

such as the canonical dot product.
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	 b)	 The memory bottleneck in stacking layers for 
long inputs: The stack of J encoder/decoder layers 

makes total memory usage O(J ⋅ L2), which limits the 

model scalability in receiving long sequence inputs.

	 c)	 The speed reduction in predicting long outputs: 

Dynamic decoding of a vanilla transformer 

makes the step-by-step inference as slow as 

regular sequence-based models, such as RNN, 

LSTM, or GRU.

�3.2.1  Technical Overview of Vanilla Transformers

Vanilla transformers follow the implementation of an informer which is 

designed to handle long input sequences efficiently and capture complex 

patterns using ProbSparse attention, generative modeling, and self- 

attention, which helps mitigate traditional problems within transformers; 

the architecture has three distinct features:

	 a)	 Full-attention mechanism with O(L^2) time and 

memory complexity

	 b)	 Encoder-decoder with a multi-head attention 

mechanism as proposed by Vaswani et al. (2017) [1]

	 c)	 An MLP multi-step decoder that predicts long time 

series sequences in a single forward operation 

rather than step by step

�3.2.2  What Is an Informer?

Informers are a specific type of neural network architecture; in other 

words, they improve over traditional transformers designed for long 

sequence time series forecasting and successfully enhance the prediction 
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capacity in the LSTF problem, which proves the transformer-like model’s 

potential value to capture individual long-range dependency between long 

sequence time series outputs and inputs. The key feature that is different 

from traditional transformers is ProbSparse.

Before understanding the ProbSparse self-attention mechanism, let’s 

understand canonical self-attention, which is a variant of the self- 

attention mechanism explained earlier. In the traditional self-attention 

mechanism, we calculate attention scores between the elements (words) 

in the sequence. However, in canonical self-attention, we use convolutions 

which save computation time.

The ProbSparse self-attention mechanism is an advancement 

to the canonical self-attention. This technique aids the model to learn 

relationships between different parts of the input sequence with reduced 

memory and computational need.

The ProbSparse self-attention mechanism selects a subset of tokens for 

each query based on a probability distribution. This reduces the number 

of attention calculations, resulting in efficient computation for long 

sequences.

The self-attention distilling operation is a technique particularly used 

where a model selectively focuses on the most important attention weights 

within stacked layers (J-stacking layers). This process results in reduced 

memory footprint, which helps to receive long sequence input.

Pseudo code for ProbSparse self-attention
Require: Tensor Q ∈ Rm× d, K ∈ Rn× d, V ∈ Rn× d

Q, K, V: Query, key, and value matrices, respectively
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Then the generative style decoder acquires long sequence output with 

only one forward step needed, simultaneously avoiding cumulative error 

spreading during the inference phase.

Figure 3-7.  Informer model overview [2]

The encoder receives massive long sequence inputs X. We replace 

canonical self-attention with the proposed ProbSparse self-attention. 

The encoder block is the self-attention distilling operation to extract 

dominating attention, reducing the network size significantly. The layer 

stacking replicas increase robustness.

The decoder receives long sequence inputs, pads the target elements 

into zero, measures the weighted attention composition of the feature 

map, and instantly predicts output elements in a generative style.

The vanilla transformer model utilizes a three-component approach to 

define its embedding:

	 a)	 It uses encoded autoregressive features obtained 

from a convolution network.

	 b)	 It uses window-relative positional embeddings 

derived from harmonic functions which are a 

popular technique used in sequence modeling 

with transformers. Unlike absolute positional 
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embeddings, which assign a unique embedding 

to each position in a sequence, window-relative 

embeddings focus on the relative positions of 

elements within a specific window. Harmonic 

functions can capture cyclical patterns and 

relationships between elements within a sequence. 

This technique is used for applications such as NLP 

and computer vision too.

	 c)	 Absolute positional embeddings are the vectors 

assigned to each position in the sequence of 

information about its location within the overall 

sequence. It is often beneficial to include calendar 

features directly into these embeddings, which 

helps create powerful embeddings that enhance the 

performance of your time series models.

�3.2.3  Vanilla Transformer in Action

Having established a high-level theoretical foundation of a vanilla 

transformer, we shall now translate abstract concepts into practical code 

implementation.

Import required modules:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import MLP,VanillaTransformer
from neuralforecast.losses.pytorch import MQLoss, 
DistributionLoss,MAE
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from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast.utils import AirPassengers, 
AirPassengersPanel, AirPassengersStatic, augment_calendar_df

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF as Y_df
print(Y_df)

 

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Let’s construct and train the VanillaTransformer model by 

understanding its key parameters.

h is the forecast horizon.

input size default is –1 which uses all the history, maximum sequence 

length for truncated train backpropagation.

hidden_size is the unit of embeddings and encoders.
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conv_hidden_size is the channels of the convolutional encoder.

n_heads is the number of multi-head attention.

scaler_type is the type of scaler for temporal input normalization.

learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every 

validation loss check.

early_stop_patience_steps is the number of validation iterations 

before early stopping.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters 

which can be used to add future, history, and static exogenous 

variables.

horizon = 12
model = VanillaTransformer(h=horizon,
                 input_size=12,
                 hidden_size=16,
                 conv_hidden_size=32,
                 n_head=2,
                 loss=MAE(),
                 #futr_exog_list=calendar_cols, example
                 scaler_type='robust',
                 learning_rate=1e-3,
                 max_steps=500,
                 val_check_steps=50,
                 early_stop_patience_steps=2)

nf = NeuralForecast(
    models=[model],
    freq='M'
)
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Let’s train the model using training data, and val_size is the validation 

size for temporal cross-validation:

nf.fit(df=Y_train_df, val_size=12)

Predict the next defined horizon, which is 12 months:

forecasts = nf.predict()
forecasts.head()

 

Let’s measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts 
['VanillaTransformer'])
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Visualize actual vs. predicted:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = forecasts['VanillaTransformer']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(forecasts, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-8 helps us to appreciate that the air passenger count predicted 

by our model is close to reality.

Figure 3-8.  Actual vs. predicted plot

�3.3  Inverted Transformers
The recent popularity of linear forecasting models questions the ongoing 

interest in architectural modifications of transformer-based forecasters. 

Transformer-based forecasting typically embeds multiple variates of the 

same timestamp into almost identical channels and applies attention on 

these temporal tokens to capture temporal dependencies.
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Transformers struggle in forecasting series with larger look-back 

windows due to performance degradation and computation explosion; 

however, the embedding for each temporal token fuses multiple 

variates that represent potential delayed events and distinct physical 

measurements, which may fail in learning variate-centric representations 

and result in meaningless attention maps. The main idea here is to reuse 

the transformer without any modification to the basic components.

�3.3.1  Technical Overview of iTransformers

iTransformers take the transformer architecture but apply the attention 

and feedforward network on the inverted dimensions. This means that 

the time points of each individual series are embedded into variate 

tokens which can be used by the attention mechanisms to capture 

multivariate correlation, and the feedforward network learns nonlinear 

relationships.

Figure 3-9.  Comparison between the vanilla transformer (top) and 
the iTransformer (bottom) [3]

The transformer embeds the temporal token, which contains the 

multivariate representation of each time step.
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The iTransformer embeds each series independently to the token, 

such that the attention module depicts the multivariate correlations and 

the feedforward network encodes series representations.

Figure 3-10.  Structure from iTransformers [3]

	 a)	 Embedding

Raw series of different variates are independently 

embedded as variate tokens and passed to the 

next step.

	 b)	 Self-attention

The inverted model regards the whole series of 

one variate as an independent process. Concretely, 

with comprehensively extracted representations 

of each time series H = {h0,...,hN} ∈ RN×D, the self-

attention module adopts linear projections to get 

queries, keys, and values Q, K, V ∈ RN×d
k, where 

dk is the projected dimension. Self-attention is 

applied to embedded variate tokens with enhanced 

interpretability revealing multivariate correlations.
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	 c)	 Feedforward network

The feedforward network is leveraged on the 

series representation of each variate token. By the 

universal approximation theorem, they can extract 

complicated representations to describe a time 

series such as amplitude, periodicity, and even 

frequency spectrums. With the stacking of inverted 

blocks, they are devoted to encoding the observed 

time series and decoding the representations for 

future series using dense nonlinear connections.

	 d)	 Layer normalization

The normalization is applied to the series 

representation of individual variate as the equation 

mentioned below; since all series as (variate) tokens 

are normalized to a Gaussian distribution, the 

discrepancies caused by inconsistent measurements 

can be diminished and hence adopted to reduce the 

discrepancies among variates.

 

�3.3.2  iTransformers in Action

Having established a high-level theoretical foundation of inverted transformer, 

we shall now translate abstract concepts into practical code implementation.

Import required modules:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
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from neuralforecast import NeuralForecast
from neuralforecast.models import iTransformer
from neuralforecast.losses.pytorch import MQLoss, 
DistributionLoss,MSE
from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF as Y_df
Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Let’s construct and train the iTransformer model by understanding its 

key parameters.

h is the horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 -> 

y_[t-2:t]=[1,2].

n_series is the number of time series.

hidden_size is the dimension of the model.

n_heads is the number of heads.

e_layers is the number of encoder layers.

d_layers is the number of decoder layers.

d_ff is the dimension of the fully connected layer.

factor is the attention factor.

dropout is the dropout rate.
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use_norm is whether to normalize or not.

loss is the instantiated train loss class from the losses collection.

valid_loss is the instantiated valid loss class from the losses collection.

batch_size is the number of different series in each batch.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters 

which can be used to add future, history, and static exogenous 

variables.

horizon =12
model =  iTransformer(h=horizon,
                     input_size=24,
                     n_series=2,
                     hidden_size=128,
                     n_heads=2,
                     e_layers=2,
                     d_layers=1,
                     d_ff=4,
                     factor=1,
                     dropout=0.1,
                     use_norm=True,
                     loss=MSE(),
                     valid_loss=MAE(),
                     batch_size=32)
model.fit(dataset=dataset,val_size=12)

Predict the next defined horizon, which is 12 months:

y_hat = model.predict(dataset=dataset)
Y_test_df['iTransformers'] = y_hat
Y_test_df.head()
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Let’s measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],Y_test_
df['iTransformers'])

 

Visualize actual vs. predicted:

Y_train_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = Y_test_df['iTransformers']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
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plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-11 helps us to appreciate that the air passenger count 

predicted by our model is close to reality.

Figure 3-11.  Actual vs. predicted

�3.4  DLinear
Forecasting a larger horizon is only feasible for those time series with 

a clear trend and cyclicity, as linear models can readily extract such 

information. Simple models such as long-term time series forecasting 

LTSF-Linear regress historical time series with a one-layer linear model 

to forecast. Results show that LTSF-Linear outperforms existing complex 

transformer models in all cases by a large margin.

Moreover, most of the transformers fail to extract temporal relations 

which are connections between events related to each other from long 

sequences. When such sequences occur, the forecasting errors are not 

reduced (sometimes even increased) with the increase in look-back 

window sizes.

LTSF-Linear is a set of linear models. Vanilla Linear is a one-layer 

linear model to handle time series across different domains (e.g., weather 

forecast, retail, and healthcare); we further understand two variants with 

two preprocessing methods, named DLinear and NLinear.

Chapter 3  Transformers for Time Series 



110

The architecture has the following distinctive features: uses 

Autoformer’s trend and seasonality decomposition and simple linear 

layers for trend and seasonality components.

The LTSF-Linear directly regresses historical time series for future 

prediction via a weighted sum operation (Figure 3-12).

Figure 3-12.  Illustration of one basic linear layer [4]

The mathematical expression is Xwi= WXi, where W ∈ RT×L is a linear 

layer along the temporal axis. X̂i and Xi are the prediction and input for 

each ith variate. LTSF-Linear shares weights across different variates and 

does not model any spatial correlations.

�3.4.1  What Is Autoformer ?

The Autoformer model is based on the decomposition of time series into 

seasonality and trend cycle. To achieve this, a decomposition layer is added, 

which enhances the model’s ability. Autoformer uses an innovative auto-

correlation mechanism that enables the model to utilize period-based 

dependencies in the attention. This improves accuracy in finding reliable 

dependencies on intricate temporal patterns of long-horizon forecasting.

�3.4.2  Technical Overview of DLinear

DLinear is a combination of a decomposition scheme used in Autoformer 

and FEDformer with linear layers. It decomposes raw data input into 

a trend component by a moving average kernel and a remainder or 
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seasonal component. Then, two one-layer linear layers are applied to each 

component, and we sum up the two features to get the final prediction. By 

explicitly handling trends, DLinear enhances the performance of a vanilla 

linear when there is a clear trend in the data.

This architecture has the following unique features compared to 

traditional architecture:

•	 Built-in progressive decomposition in trend and 

seasonal components based on a moving average 

filter where decomposed components are updated 

and refined iteratively during the forecasting 

process. This is a dynamic process compared to 

traditional decomposition where the decomposition 

of components is fixed throughout the forecasting 

process.

•	 The autocorrelation mechanism discovers the period- 

based dependencies by calculating the autocorrelation 

and aggregating similar subseries based on the 

periodicity.

Figure 3-13.  Autoformer architecture [5]
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	 a)	 Encoder

The encoder focuses on seasonal part of the 

modeling which helps decoder to use use the past 

seasonal information generated by encoder to refine 

the prediction.

	 b)	 Decoder

The decoder performs well in two tasks, which are 

an accumulation of the structure of trend-cyclical 

components and the stacked autocorrelation mechanism 

for season components shown in Figure 3-13.

Each decoder is comprised of inner autocorrelation 

and encoder-decoder autocorrelation which 

helps in refining prediction by utilizing the past 

seasonal information. The model extracts the 

trend components from the intermediate hidden 

variables during the decoder, allowing Autoformer 

to progressively refine the trend prediction and 

eliminate interference information for period-based 

dependency discovery in autocorrelation.

Figure 3-14.  Autocorrelation (left) and time delay aggregation 
(right) [5]
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	 c)	 Autocorrelation

The autocorrelation mechanism with series-

wise connections to expand the information 

utilization. Autocorrelation discovers the period-

based dependencies by calculating the series 

autocorrelation and aggregates similar subseries by 

time delay aggregation.

The Fast Fourier Transform is used to calculate the 

autocorrelation R(T), which reflects the time delay 

similarities. Then the similar subprocesses are 

rolled to the same index based on selected delay T 

and aggregated by R(T). The final prediction is the 

sum of the two refined decomposed components.

	 d)	 Time delay aggregation

The period-based dependencies connect the 

subseries among estimated periods, as depicted 

in the time delay aggregation block in Figure 3-14 

(right). Time delay aggregation can roll the series 

based on the selected time delay. This operation can 

align similar subseries that are at the same phase 

position of estimated periods. This is different from 

the point-wise dot-product aggregation in the self-

attention family. Finally, it aggregates the subseries 

by softmax normalized confidences.

Chapter 3  Transformers for Time Series 



114

Figure 3-15.  Structure of DLinear [4]

X̂ = Hs+Ht, where Hs = WsXs ∈ RTxC are the decomposed trend and 

remainder features.

Ws ∈ RTxL and Wt ∈ RTxL are the two linear layers.

DLinear is capable of capturing both short-range and long-range 

temporal relations, and as each branch has only one linear layer, it costs 

much lower memory and fewer parameters and has a faster inference 

speed than existing transformers.

�3.4.3  DLinear in Action

Having established a high-level theoretical foundation of DLinear, we shall 

now translate abstract concepts into practical code implementation.

Import required libraries:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import MLP,DLinear
from neuralforecast.losses.pytorch import MQLoss, 
DistributionLoss,MAE

Chapter 3  Transformers for Time Series 



115

from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast.utils import AirPassengers, 
AirPassengersPanel, AirPassengersStatic, augment_calendar_df

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Let’s train the DLinear model and define its hyperparameters.

h is the horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 -> 

y_[t-2:t]=[1,2].

loss is the instantiated train loss class from the losses collection.

Scaler_type is the type of scaler for temporal input normalization.

Learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every 

validation loss check.

early_stop_patience_steps is the number of validation iterations 

before early stopping.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters 

which can be used to add future, history, and static exogenous 

variables.
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horizon =12
model = DLinear(h=horizon,
                 input_size=12,
                 loss=MAE(),
                 scaler_type='robust',
                 learning_rate=1e-3,
                 max_steps=500,
                 val_check_steps=50,
                 early_stop_patience_steps=2)

nf = NeuralForecast(
    models=[model],
    freq='M'
)
nf.fit(df=Y_train_df, val_size=12)

Predict the next defined horizon:

forecasts = nf.predict()
forecasts.head()
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Measure the model accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['DLinear'])

 

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = forecasts['DLinear']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-16 helps us to appreciate that the air passenger count 

predicted by our model is close to reality.
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Figure 3-16.  Actual vs. predicted

�3.5  NLinear
NLinear is part of the LTSF-Linear family of models specifically designed 

to boost the performance of Linear when there is a distribution shift in the 

dataset. NLinear first subtracts the input by the last value of the sequence, 

then the input goes through a linear layer, and the subtracted part is added 

back before making the final prediction. The subtraction and addition in 

NLinear are a simple normalization for the input sequence.

NLinear can consistently outperform all transformer-based methods 

by a large margin most of the time. Simple normalization via the last 

value from the look-back window can greatly relieve the distribution shift 

problem.

A distribution shift occurs when the statistical properties of the 

training data differ significantly from the test data. This is when the model 

is trained on one set of data but applied to data of different characteristics. 

The various types of distribution shifts are covariate shift, label shift, and 

concept drift. If these kinds of shifts are not handled properly, it can result 

in performance degradation and unreliable predictions.

�3.5.1  NLinear in Action

Having established a high-level foundation of NLinear, we shall now 

translate abstract concepts into practical code implementation.
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Import required modules:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import MLP,NLinear
from neuralforecast.losses.pytorch import MQLoss, 
DistributionLoss,MAE
from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast.utils import AirPassengers, 
AirPassengersPanel, AirPassengersStatic, augment_calendar_df

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Let’s train the NLinear model and define its hyperparameters.

h is the horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 -> 

y_[t-2:t]=[1,2].
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loss is the instantiated train loss class from the losses collection.

Scaler_type is the type of scaler for temporal input normalization.

Learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every 

validation loss check.

early_stop_patience_steps is the number of validation iterations 

before early stopping.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters 

which can be used to add future, history, and static exogenous 

variables.

horizon =12
model = NLinear(h=horizon,
                 input_size=12,
                 loss=MAE(),
                 scaler_type='robust',
                 learning_rate=1e-3,
                 max_steps=500,
                 val_check_steps=50,
                 early_stop_patience_steps=2)

nf = NeuralForecast(
    models=[model],
    freq='M'
)

nf.fit(df=Y_train_df, val_size=12)

Predict the next defined horizon:

forecasts = nf.predict()
forecasts.head()
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Measure the model accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['NLinear'])

 

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = forecasts['NLinear']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
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plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-17 helps us to appreciate that the air passenger count 

predicted by our model is close to reality.

Figure 3-17.  Actual vs. predicted

�3.6  Patch Time Series Transformer
PatchTST supports multivariate time series forecasting and self-supervised 

representation learning. It is based on the segmentation of time series into 

subseries-level patches, which serve as input tokens to the transformer.

Channel independence is a property of PatchTST where each channel 

contains a single univariate time series. Channel independence helps 

share the same embedding and transformer weights across all the series. 

This helps the PatchTST model to apply attention weights separately to 

each channel, which helps in better capturing the unique features and 

patterns in each channel.

Patching is the segmentation of time series into windows, which helps 

to enhance the locality and capture comprehensive semantic information 

that is not available at the point level. This is achieved by aggregating time 

steps into subseries-level patches and channel independence.
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�3.6.1  Technical Overview of PatchTST

Figure 3-18.  PatchTST model overview [6]

Multivariate time series data is divided into different channels. They share 

the same transformer backbone, but the forward processes are independent.

Figure 3-19.  (a) Transformer backbone (supervised), (b) transformer 
backbone (self-supervised) [6]

•	 Each channel univariate series is passed through 

the instance normalization operator and segmented 

into patches. These patches are used as transformer 

input tokens.

•	 Masked self-supervised representation learning with 

PatchTST where patches are randomly selected and set 

to zero. The model will reconstruct the masked patches.
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	 a)	 Patching

Point-wise attention which is used in traditional 

transformers tries to retrieve information from 

a single step. This is not ideal in a time series, as 

we will need to extract the relationship between 

past time steps and future time steps to make 

predictions.

Univariate inputs of time series x(i) are first divided 

into patches which can be either overlapped or 

non-overlapped. Denote the patch length as P and 

the stride – the non-overlapping region between 

two consecutive patches – as S, then the patching 

process will generate the sequence of patches xp
(i) 

∈RP×N where N is the number of patches, N = [( 

L−P)/ S] +2. Here, we pad S repeated numbers of the 

last value xL
(i) ∈ R to the end of the original sequence 

before patching.

The number of input tokens can be reduced with 

the use of patches from L to approximately L/S. This 

implies the memory usage and computational 

complexity of the attention map are quadratically 

decreased by a factor of S.

	 b)	 Transformer encoder

A vanilla transformer encoder is used that maps the 

observed signals to the latent representations. The 

patches are mapped to the transformer latent space 

of dimension D via a trainable linear projection, and 

a learnable additive position encoding is applied to 

monitor the temporal order of patches.
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	 c)	 Loss function

MSE loss to measure the discrepancy between the 

prediction and the ground truth. The loss in each 

channel is gathered and averaged over M time series 

to get the overall objective loss:

 

	 d)	 Instance normalization

This helps mitigate the distribution shift effect 

between the training and testing data. It simply 

normalizes each time series instance x(i) with zero 

mean and unit standard deviation. In this type of 

normalization, for each x(i) before patching, the 

mean and deviation are added back to the output 

prediction.

Representation Learning
PatchTST can be utilized for self-supervised use cases to capture 

the abstract representation of the data. The same encoder is used as the 

supervised settings, the prediction head is removed, and a D×P linear layer 

is attached. Instead of a supervised model where patches can be overlapped, 

here each input sequence is split into regular non-overlapping patches.

It is for convenience to ensure observed patches do not contain 

information about the masked patches. This is achieved by selecting a subset 

of the patch at random and masking the patches according to zero values. 

The model is trained with MSE loss to reconstruct the masked patches.

�3.6.2  PatchTST in Action

Having established a high-level theoretical foundation of the PatchTST 

transformer, we shall now translate abstract concepts into practical code 

implementation.
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import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import PatchTST
from neuralforecast.losses.pytorch import MQLoss, 
DistributionLoss,MAE
from neuralforecast.tsdataset import TimeSeriesDataset
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast.utils import AirPassengers, 
AirPassengersPanel, AirPassengersStatic, augment_calendar_df

Let’s load the dataset either from an offline copy or from the 

neuralforecast.utils dataset, which contains 12 years of monthly air 

passenger count. Separate the last 1 year of data for the test and use the 

remaining 11 years of data to train the model.

from neuralforecast.utils import AirPassengersDF as Y_df
Y_train_df = Y_df[Y_df.ds<='1959-12-31'] # 132 train
Y_test_df = Y_df[Y_df.ds>'1959-12-31']   # 12 test

dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)

Let’s initialize and train the PatchTST model:

h is the horizon.

input_size is the autoregressive input size, y=[1,2,3,4] input_size=2 -> 

y_[t-2:t]=[1,2].

Patch_length is the length of patch. Note: patch_len = min(patch_len, 

input_size + stride).

Stride is the stride of patch.

revin is the RevIn.

hidden_size is the dimension of the model.

n_heads is the number of heads.
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scaler_type is the type of scaler for temporal input normalization; see 

temporal scalers.

loss is the instantiated train loss class from the losses collection.

learning_rate is the learning rate between (0, 1).

max_steps is the maximum number of training steps.

val_check_steps is the number of training steps between every 

validation loss check.

early_stop_patience_steps is the number of validation iterations 

before early stopping.

futr_exog_list, hist_exog_list, stat_exog_list are input parameters 

which can be used to add future, history, and static exogenous variables.

horizon =12
model = PatchTST(h=horizon,
                 input_size=104,
                 patch_len=12,
                 stride=24,
                 revin=False,
                 hidden_size=16,
                 n_heads=4,
                 scaler_type='robust',
                 �loss=DistributionLoss(distribution='StudentT', 

level=[80, 90]),
                 learning_rate=1e-3,
                 max_steps=500,
                 val_check_steps=50,
                 early_stop_patience_steps=2)

nf = NeuralForecast(
    models=[model],
    freq='M'
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
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Predict the next defined horizon:

forecasts = nf.predict()
forecasts.head()

The predicted column of interest is PatchTST.

 

Measure the model accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['PatchTST'])

 

Visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = Y_train_df["y"]
y_pred = forecasts['PatchTST']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
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plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 3-20 helps us to appreciate that the air passenger count 

predicted by our model is close to reality.

Figure 3-20.  Actual vs. predicted

�3.7  Summary
In this chapter, we explored the transformer architecture, its core 

components, and the modifications to leverage this powerful architecture 

for time series forecasting tasks. We also discussed other variants such 

as vanilla transformers, inverted transformers, DLinear, NLinear, and 

PatchTST. We gained insights into the strengths and weaknesses of 

different approaches, equipping readers to make informed decisions when 

selecting models for specific time series forecasting tasks.

Choosing the best model depends on multiple parameters like 

distributions of features, properties (volume, missing values, number 

of features, etc.) of the dataset, and parameters like cost effectiveness, 

memory usage, and computation power. However, we now understand the 

strengths and weaknesses of the models discussed.

Vanilla transformers are highly scalable and versatile due to their 

ability to be used in different domains like NLP, computer vision, and 

time series. On the downside, they come with a high computational cost 

and are data hungry. They are also not the best choice for use cases with 

continuous time series data.
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Inverted transformer architecture is best suited for sequential 

data while limited to time series use cases and requires expertise in 

hyperparameter tuning.

DLinear architecture needs lesser features to train and has lower 

memory and computational needs. These are the go-to architectures in 

resource-constrained use cases. However, this model is not best when 

there are nonlinear relationships in the data. The NLinear model is useful 

in cases where the data is stationary or nonstationary; however, it does not 

capture complex relations within the data.

Finally, the PatchTST captures the dependencies in the data well while 

still having downsides with respect to preprocessing needs and careful 

patch size selection.
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CHAPTER 4

Time-LLM: 
Reprogramming Large 
Language Model
Chapter Goal: Understand how the Time-LLM repurposes a foundation 

model that is designed for NLP tasks and uses it for time series forecasting.

In the previous chapter, we covered transformers. In the upcoming 

chapters, we will understand how to use large language models built 

with the help of transformers. We will discuss some of the recent 

foundation models used in time series forecasting, starting with the first 

one: TimeGPT. Some of the recent advances in time series foundation 

models make use of techniques like fine-tuning or pre-training to capture 

generalized knowledge for time series forecasting.

In this chapter, we will cover Time-LLM. In Chapter 2, we discussed the 

WaveNet model. While it was designed primarily for audio applications, 

we saw how to use it for time series forecasting by changing parameters 

like dilation rate, receptive field, and loss function. In this chapter, let 

us discuss how a foundation model primarily trained and used for NLP 

applications can be used for time series forecasting. Time-LLM essentially 

provides a framework to tackle this challenge, without changing the model 

itself. In this framework, the input time series is transformed to a natural 
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language before feeding it to the foundation model. The output of the 

foundation model is then decoded to a time series forecast.

Figure 4-1.  High-level overview of Time-LLM

Before proceeding to understand this framework, we need to clearly 

understand the difference between reprogramming and fine-tuning. While 

both methods help to adopt foundation models to perform desired tasks, 

they differ in process and purpose.

�4  Fine-Tuning vs. Reprogramming
Fine-tuning involves extending the training process on the foundation 

model rather than from scratch. Not everyone has the resources and time 

to build a custom model. The process of fine-tuning involves training the 

model with our custom data. This helps to serve a specific task or to use 

in a specific domain. The process of training generally may be achieved 

by freezing some layers or by training with a different learning rate. The 

weights of the model are adjusted, resulting in a change in the nature of 

the foundation model itself. One of the use cases where we used fine- 

tuning is taking a foundation model like GPT-2/BERT and fine-tuning 

to perform sentiment analysis. This was part of onboarding a new client 

based on media articles, reviews, and a few other written sources.

Reprogramming involves using a foundation model built for use in a 

specific domain for an entirely different task or domain. This is generally 

achieved by using a transformation layer or a mapping layer to convert 

input from a different domain to the domain that the model understands. 

For example, input time series data to NLP data. It focuses on altering 

input rather than altering the model itself. This is similar to using wrappers 
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in software engineering. This is faster and less resource intensive since the 

effort is in translating the input than the core model itself. This translation 

layer can be reused for similar input transformation (input domain -> 

output domain mappings), which is not necessarily true for fine- 

tuning cases.

Figure 4-2.  Visual representation of fine-tuning (b) and 
reprogramming (c) [1]

From the above understanding, it is clear that fine-tuning changes 

the model parameters to cater to specific tasks, whereas reprogramming 

helps us to use the model for an entirely different task, by presenting the 

input in a format that the model was primarily intended to accept, without 

changing (or minimal changes) to the model itself.

�4.1  Technical Overview of Time-LLM
Let us understand the enhancements that can be done to a foundation 

model primarily trained on text data, like GPT-2, to be used for time series 

forecasting. The foundation model works by converting input text to 

multidimensional vectors that are used to capture the semantic properties 

of the input text. Figure 4-3 represents the framework that we are about to 

discuss.
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Figure 4-3.  Model framework of Time-LLM [1]

Figure 4-3 shows the model framework of Time-LLM. The input time 

series is converted to tokens, and embedding is performed by (1) patching 

along with a (2) customized embedding layer. (3) These patch embeddings 

are then reprogrammed with condensed text prototypes to align two 

modalities. To augment the LLM’s reasoning ability, (4) additional 

prompt prefixes are added to the input to direct the transformation of 

input patches. (5) The output patches from the LLM are passed through a 

projection layer to generate the forecasts.

�4.1.1  Working of Time-LLM

Each input time series is individually normalized, which results in a time 

series with unit SD (standard deviation) and zero mean. This is achieved 

using the RevIN (reversible input normalization) algorithm. RevIN is a 

type of normalization where the transformations can be rolled back, thus 

helping to recover original data after processing. Then the input time 

series is divided into many overlapped or non-overlapped patches, each 
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of length Lp. Patching of input time series helps in preserving the local 

semantic information. LSI is nothing but understanding the words (or 

n-grams) within their immediate context. This is achieved by considering 

a group of time steps rather than an individual time step. This aggregation 

of time steps results in greatly reducing the number of tokens passed to the 

reprogramming layer. This is due to the generation of a compact sequence 

of input tokens for reprogramming that greatly reduces computational 

complexity. Patch embeddings are generated as a result of this step.

The patch embeddings generated from the first (previous) step are 

used in patch reprogramming. This step innovatively transforms the patch 

embeddings to text prototypes. This helps the foundation model trained 

with natural language to understand time series data. This is achieved by 

taking help of techniques used in domain adaptation like noise learning. 

Here, instead of retraining, a small noise (perturbation) is learned. This 

noise when applied to the input patch embeddings generates output that 

can be understood by the foundation model.

Those familiar with domain adaptation may be already thinking; it is 

possible to achieve tasks within the same domain like models trained on 

images in day light to identify images taken in poor lighting conditions by 

introducing noise in the form of brightness and contrast. However, text and 

numbers are entirely different domains. To handle this unique scenario, 

the patch reprogramming layer leverages pre-trained word embeddings 

already present in the foundation model. Another challenge arises in using 

since there is no information regarding the relevance of source tokens. 

Leveraging all possible word embeddings results in a large co-domain. 

This is overcome by selecting a small subset of relevant word embeddings 

by using a linear classifier (like a logistic regression or linear SVC) to 

classify relevant embeddings for our task. To understand better, we can  

see that in Figure 4-4 text prototypes learn connecting language cues,  

Chapter 4  Time-LLM: Reprogramming Large Language Model



136

for example, “short up” (shown in red lines) “steady down” (shown in blue 

lines). These are combined to represent the local patch information “short 

up then down steadily” for characterizing patch 5. Similarly, “early down,” 

“steady long” for characterizing patch 1.

Figure 4-4.  Patch reprogramming [1](The above figure represents 
transforming the input patch to a language task.)

Reprogramming essentially consists of adaptation and alignment. 

While we discussed the adaptation part so far, let us understand the 

alignment now. Refer to Figure 4-3. The translated patches are sent to 

a multi-head attention layer. From the previous chapter (Chapter 3) on 

transformers (where multi-head attention was explained), we know that 

this step helps in focusing on the different patches simultaneously. Each 

“head” processes information from the patches independently. This helps 

the model to capture various relationships and dependencies present in 

the data. Next, the processed data needs to be aligned with the specific 

format that the foundation model can use. The “linear projection” step 

helps to transform the dimensionality of the data (reprogrammed patches) 

to match the expected input size or format of the foundation model. 
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This ensures that the data can be correctly interpreted and processed by 

the model.

At this stage, the input to the foundation model is natural language. 

So similar to leveraging explanations of the task in prompts while using an 

LLM to get better output, we can add prompts to the patches. This prompt 

prefix complements patch programming to guide the LLM for better 

forecasts.

There are three main parts in the prompt for leveraging prompt as 

a prefix. We should pass (1) the dataset context, (2) task instruction, 

and (3) input statistics as part of the prompt. In the prompt example in 

Figure 4-5, the dataset context provides the LLM with essential background 

information about the input time series, which often exhibits distinct 

characteristics across various domains. Task instruction serves as a guide 

for the foundation model in the transformation of patch embeddings 

for specific tasks. The input time series is also enriched with additional 

statistics. These stats could be information regarding trends and lags which 

helps in pattern recognition and reasoning.

Figure 4-5.  Prompt as a prefix. <H/T> as task instruction and <min_
val, max_val ..> as input statistics. [1]
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Figure 4-6.  Prompt as a prefix and patches are sent to the foundation 
model [1]

The prompt and patches are fed to the LLM, and as a result the LLM 

generates output patch embeddings. Remember that the output is from 

a language-trained LLM, which needs to be converted to time series 

forecasts. This is achieved by flattening, and then linear projections are 

applied to get the desired output which is the time series forecast.

Before we get into practical implementation, readers may please note 

that what we understood so far is the idea and working behind Time-LLM.  

Please note that the practical implementations may differ and use 

clever tricks like computing input statistics automatically as part of 

the code and using FFT (Fast Fourier Transform) to compute lags.

�4.2  Time-LLM in Action
Having established a high-level theoretical foundation of Time-LLM, we 

shall now translate abstract concepts into practical code implementation.
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�4.2.1  Univariate Use Case

Let's explore Time-LLM to solve a univariate problem.

Import required modules:

import torch
import psutil
import platform
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast import NeuralForecast
from neuralforecast.models import TimeLLM
from neuralforecast.utils import AirPassengersPanel, augment_
calendar_df
from transformers import GPT2Config, GPT2Model, GPT2Tokenizer

Let’s display the GPU and CPU information:

use_cuda = torch.cuda.is_available()
if use_cuda:
    print('__CUDNN VERSION:', torch.backends.cudnn.version())
    print('__Number CUDA Devices:', torch.cuda.device_count())
    print('__CUDA Device Name:',torch.cuda.get_device_name(0))
    �print('__CUDA Device Total Memory [GB]:',torch.cuda.get_

device_properties(0).total_memory/1e9)
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Let’s print the memory, CPU, and platform information:

mem = psutil.virtual_memory()

print("Available Memory:")
print("  Total:", mem.total / (1024 ** 2), "MB")
cpu_count = psutil.cpu_count()
cpu_count_logical = psutil.cpu_count(logical=True)

print("\nCPU Details:")
print("  Physical Cores:", cpu_count)
print("  Logical Cores:", cpu_count_logical)

platform_info = platform.platform()
print("\nPlatform:", platform_info)

 

Let’s load the AirPassenger dataset and split data into train and test:

from neuralforecast.utils import AirPassengersDF
Y_df = AirPassengersDF
Y_df = Y_df.reset_index(drop=True)
Y_df.head()
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Y_train_df = Y_df[Y_df.ds<='1959-12-31'] # 132 train
Y_test_df = Y_df[Y_df.ds>'1959-12-31']   # 12 test

Next, let’s work on setting up GPT2:

gpt2_config = GPT2Config.from_pretrained('openai- 
community/gpt2')
gpt2 = GPT2Model.from_pretrained('openai-community/gpt2', 
config=gpt2_config)
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('openai- 
community/gpt2')
prompt_prefix = "The dataset contains data on monthly air 
passengers. There is a yearly seasonality"

Let’s initialize, train the model (TimeLLM), and define its 

hyperparameters.

h is the forecast horizon.

input_size is the autoregressive input size.

llm is the LLM model to be used.

llm_config is the configuration of LLM.

llm_tokenizer is the tokenizer of LLM.
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prompt_prefix is the prompt to inform the LLM about the dataset.

batch_size is the number of different series in each batch.

windows_batch_size is the number of windows to sample in each 

training batch.

horizon = 12
timellm = TimeLLM(h=horizon,
                 input_size=36,
                 llm=gpt2,
                 llm_config=gpt2_config,
                 llm_tokenizer=gpt2_tokenizer,
                 prompt_prefix=prompt_prefix,
                 batch_size=24,
                 windows_batch_size=24)

nf = NeuralForecast(
    models=[timellm],
    freq='M'
)

nf.fit(df=Y_train_df, val_size=12)

Now that we completed training, let’s work on prediction.

Note I t took 26 minutes to train the model and 25 minutes to 
generate predictions using the hardware specification printed above.

forecasts = nf.predict()
forecasts.head()
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Let’s measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['TimeLLM'])

 

Let’s visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
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y_past = Y_train_df["y"]
y_pred = forecasts['TimeLLM']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)

plt.legend();

Figure 4-7 helps us to appreciate that the air passenger count predicted 

by our model is not close to reality. Please refer to the “Summary” section 

for more details.

Figure 4-7.  Actual vs. predicted plot

�4.2.2  Multivariate Use Case

Now that we have tried the univariate use case, let's explore Time-LLM for 

the multivariate problem.

Import required modules:

import torch
import psutil
import platform
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import numpy as np
import pandas as pd
import pytorch_lightning as pl
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from neuralforecast import NeuralForecast
from neuralforecast.models import TimeLLM
from neuralforecast.utils import AirPassengersPanel, augment_
calendar_df
from transformers import GPT2Config, GPT2Model, GPT2Tokenizer

Let’s display the GPU and CPU information:

use_cuda = torch.cuda.is_available()
if use_cuda:
    print('__CUDNN VERSION:', torch.backends.cudnn.version())
    print('__Number CUDA Devices:', torch.cuda.device_count())
    print('__CUDA Device Name:',torch.cuda.get_device_name(0))
    �print('__CUDA Device Total Memory [GB]:',torch.cuda.get_

device_properties(0).total_memory/1e9)

 

Let’s print the memory, CPU, and platform information:

mem = psutil.virtual_memory()
print("Available Memory:")
print("  Total:", mem.total / (1024 ** 2), "MB")
cpu_count = psutil.cpu_count()
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cpu_count_logical = psutil.cpu_count(logical=True)
print("\nCPU Details:")
print("  Physical Cores:", cpu_count)
print("  Logical Cores:", cpu_count_logical)
platform_info = platform.platform()
print("\nPlatform:", platform_info)

 

Let’s load the AirPassenger dataset and split data into train and test:

AirPassengersPanel, calendar_cols = augment_calendar_
df(df=AirPassengersPanel, freq='M')

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassen
gersPanel['ds'].values[-12]]
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassen
gersPanel['ds'].values[-12]].reset_index(drop=True)

Note that other features apart from “y” are added as exogenous variables:

Y_train_df.head()
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Now let’s work on setting up GPT2:

gpt2_config = GPT2Config.from_pretrained('openai- 
community/gpt2')
gpt2 = GPT2Model.from_pretrained('openai-community/gpt2', 
config=gpt2_config)
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('openai- 
community/gpt2')
prompt_prefix = "The dataset contains data on monthly air 
passengers. There is a yearly seasonality"
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Let’s initialize, train the model (TimeLLM), and define its 

hyperparameters.

h is the forecast horizon.

input_size is the autoregressive input size.

llm is the LLM model to be used.

llm_config is the configuration of LLM.

llm_tokenizer is the tokenizer of LLM.

prompt_prefix is the prompt to inform the LLM about the dataset.

batch_size is the number of different series in each batch.

windows_batch_size is the number of windows to sample in each 

training batch.

horizon = 12
timellm = TimeLLM(h=horizon,
                 input_size=36,
                 llm=gpt2,
                 llm_config=gpt2_config,
                 llm_tokenizer=gpt2_tokenizer,
                 prompt_prefix=prompt_prefix,
                 batch_size=24,
                 windows_batch_size=24)

nf = NeuralForecast(
    models=[timellm],
    freq='M'
)

nf.fit(df=Y_train_df, val_size=12)

Now that training is done, let’s try predicting by passing future 

exogenous which are part of test data prepared earlier.
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Note I t took 26 minutes to train the model and 25 minutes to 
generate predictions using the hardware specification printed above.

Pass the Y_test_df which contains future exogenous variables:

forecasts = nf.predict(futr_df=Y_test_df)

Let’s measure the model’s accuracy:

calculate_error_metrics(Y_test_df[['y']],forecasts['TimeLLM'])

 

Let’s see predictions for Airline1; TimeLLM is the predicted column:

print(forecasts['TimeLLM'][:12])
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Let’s see predictions for Airline2; TimeLLM is the predicted column:

print(forecasts['TimeLLM'][12:])
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Let’s visualize the predictions:

train_df_1 = Y_train_df[Y_train_df.unique_id == 'Airline1']
airline_df_1 = Y_test_df[Y_test_df.unique_id == 'Airline1']
train_df_1.set_index('ds',inplace =True)
forecasts.set_index('ds',inplace =True)
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airline_df_1.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = train_df_1["y"]
y_pred = forecasts['TimeLLM'][:12]
y_test = airline_df_1["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast for Airline1', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)

plt.legend();

Figure 4-8.  Actual vs. predicted plot

Figure 4-8 helps us to appreciate that the air passenger count predicted 

by our model is not close to reality. Please refer to the “Summary” section 

for more details.

train_df_2 = Y_train_df[Y_train_df.unique_id == 'Airline2']
airline_df_2 = Y_test_df[Y_test_df.unique_id == 'Airline2']
train_df_2.set_index('ds',inplace =True)
airline_df_2.set_index('ds',inplace =True)
plt.figure(figsize=(20, 3))
y_past = train_df_2["y"]
y_pred = forecasts['TimeLLM'][12:]
y_test = airline_df_2["y"]
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plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast for Airline2', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.legend();

Figure 4-9 helps us to appreciate that the air passenger count predicted by 

our model is not close to reality. One of the reasons could be using such large 

models on smaller datasets, leading to over- or underfitting. Sometimes, these 

reprogrammed models are too complex for the available training set.

Figure 4-9.  Actual vs. predicted plot

�4.3  Summary
We understood how the Time-LLM repurposes a foundation model that 

is designed for NLP tasks and uses it for time series forecasting. We used 

patching to capture the LSI and make the best use of the underlying 

transformer/attention mechanism.

Finally, we learned how to do forecasting in both univariate and 

multivariate scenarios and understood how such large models might over- 

or underfit for smaller datasets. This model does not work well on datasets 

with strong temporal dynamics (changes in time series characteristics over 

time). In the next chapter, let’s understand Chronos along with a sample 

implementation.
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CHAPTER 5

Chronos: Pre-trained 
Probabilistic Time 
Series Model
Chapter Goal: Learn how to leverage Chronos, a pre-trained probabilistic 

time series model.

�5  Introduction
In the previous chapter, we understood how large language models are 

reprogrammed for time series forecasting.

The emergence of large language models with zero-shot learning 

capabilities has encouraged the development of foundation models for 

time series by directly using pre-trained LLMs in natural language and 

fine-tuning LLMs to handle time series tasks.

Zero-shot forecasting is the ability of models to generate forecasts for 

time series from unseen datasets. One of the popular techniques is training 

on a single time series dataset and testing on a different dataset.

Several methods adapting LLMs to the time series domain have been 

developed. One line of work treats numerical time series data as raw text 

and directly uses the pre-trained LLMs with minimal or no fine-tuning to 

https://doi.org/10.1007/979-8-8688-1276-7_5#DOI
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forecast unseen time series. LLM-based forecasting models such as Time- 

LLM have shown evidence that pre-trained models perform well at a zero- 

shot forecasting ability.

Chronos is a probabilistic pre-trained time series forecasting model 

based on T5 family language model architectures. It leverages existing 

language model architectures as both language and time series are 

sequential. The only difference is that their representation of natural 

language consists of words from a finite vocabulary, while time series are 

real valued.

�5.1  Technical Overview of Chronos
Chronos is a language modeling framework minimally adapted for time 

series forecasting. Chronos tokenizes time series into discrete bins through 

simple scaling and quantization of real values. By using this method, we 

can train off-the-shelf language models with no changes to the model 

architecture as depicted in Figure 5-1. A straightforward approach proves 

to be effective in addressing a broad range of time series problems with 

minimal modifications.
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Figure 5-1.  (Left) Scaled and quantized input time series to obtain 
input from a sequence of tokens. (Center) Encoder-decoder or 
decoder-only model accepting tokens which is trained using cross-
entropy loss. (Right) Multiple trajectories are sampled to obtain 
predictive distribution during inference by autoregressively sampling 
tokens from the model and mapping them to original numerical 
values [1]

�5.2  Time Series Tokenization
Time series data requires mapping the observations to a finite set of 

tokens, as originally language models operate on tokens from a finite 

vocabulary, to address this scale and then quantize observations into a 

fixed number of bins.

Scaling: The main goal of normalization is to transform the data to fit 

within a specific range suitable for quantization; there are several scaling 

techniques such as mean scaling, standard scaling, min-max scaling, 

MaxAbsScaler, RobustScaler, and several others as mean scaling is known 

to be effective in deep learning models commonly used for time series 

applications.

Quantization: This is a technique that converts real values into 

discrete tokens as scaled time series cannot be processed directly by 

language models. Uniform binning is used as it selects bin centers 
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uniformly within some interval and as the distribution of training and 

inference data significantly differ, or any other quantization technique can 

also be used.

Time series tokens will also include two special tokens, PAD and EOS, 

which are commonly used in language models. The PAD token is used to 

pad time series of different lengths to a fixed length for batch construction 

and replace missing values. The EOS token is appended to the quantized 

and padded time series to denote the end of the sequence and also helps 

make training and inference of the large language models much easier.

�5.3  Training
Tokenized time series are used to train and minimize the cross-entropy 

between the distribution of the quantized ground truth label and the 

predicted distribution.

Categorical cross-entropy loss is not a distance-aware objective 

function, which means it does not explicitly recognize that bin i is closer 

to bin i+1 than to i+2. Based on the distribution of bin indices in the 

training dataset, the models associated nearby bins together, which means 

Chronos performs regression via classification. This is unlike typical 

probabilistic time series forecasting models, which either use parametric 

continuous distributions such as Gaussian and Student’s t-distribution or 

perform quantile regression.

The benefits of using categorical outputs are that we can use existing 

language models with no modification to the architecture or training 

objective, and we can use them out of the box, and they don’t impose any 

restrictions on the structure of the output distribution.

Chapter 5  Chronos: Pre-trained Probabilistic Time Series Model



159

�5.4  Inference
Context tokens are fed into the model to generate the future tokens; then 

these tokens need to be mapped back to real values and then unscaled to 

obtain original forecasts. The dequantization function is used to map the 

predicted tokens to real values and then unscaled by applying the inverse 

scaling transformation.

Training these models requires a large volume of data, and public time 

series data is barely available, which poses challenges in training zero-shot 

forecasting models. To tackle this, we can diversify the training data by 

generating mix-up data augmentation for real datasets and using synthetic 

data for training, which can be done using techniques such as TSMixup 

(time series mix-up) and KeralSynth (synthetic data generation using the 

Gaussian process).

�5.5  Chronos in Action
Having established a high-level theoretical foundation of Chronos, we 

shall now translate abstract concepts into practical code implementation 

of Chronos-tiny.

�5.5.1  Chronos-tiny Use Case

At the time of book development, the Chronos forecasting scope was 

limited to univariate forecasting.

Import required modules:

import autogluon
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
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from autogluon.timeseries import TimeSeriesPredictor, 
TimeSeriesDataFrame
from autogluon.timeseries.models import WaveNetModel
import pandas as pd

Let's load the AirPassengersDataset CSV using pandas, a dataset which 

contains 12 years of monthly air passenger data:

Y_df = pd.read_csv('AirPassengersDataset.csv')
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

 

AutoGluon expects time series data in long format. Each row of the 

data frame contains a single observation (time step) of a single time series 

represented by

	 a)	 Unique ID of the time series item_id as int or str

	 b)	 Timestamp of the observation timestamp as a 

pandas.Timestamp or compatible format

	 c)	 Numeric value of the time series target
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Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df.rename(columns={"ds":"timestamp","unique_id" :"item_id", 
"y": "target"},inplace = True)
Y_df['item_id'] = 'airline_1'

data = TimeSeriesDataFrame.from_data_frame(
    Y_df,
    id_column="item_id",
    timestamp_column="timestamp"
)
data.tail()

 

Split data into train and test. Separate the last 1-year data for the test 

and use the remaining 11 years of data to train and predict:

train_data = data.head(132)
test_data = data.tail(12)
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Create a TimeSeriesPredictor object to forecast future values and 

explicitly define chronos_tiny to be used:

prediction_length =12
predictor = TimeSeriesPredictor(prediction_length=prediction_
length).fit(
train_data, presets="chronos_tiny"
)

Predict the next defined horizon:

predictions = predictor.predict(train_data)
predictions.head()

The predicted column of interest is mean.

 

Measure the model’s accuracy:

calculate_error_metrics(test_data['target'], 
predictions['mean']['airline_1'])
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Visualize the predictions:

predictor.plot(
    data=Y_df,
    predictions=predictions,
    item_ids=["airline_1"],
    max_history_length=200,
);

Figure 5-2.  Observed vs. forecast

Figure 5-2 helps us to appreciate that the air passenger count predicted 

by our model is close to reality.

�5.5.2  chronos_large_ensemble Use Case

Let’s now implement chronos_large_ensemble using the same dataset as 

above which builds an ensemble of seasonal naive, tree-based, and deep 

learning models with fast inference.

Import required modules:

import autogluon
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from autogluon.timeseries import TimeSeriesPredictor, 
TimeSeriesDataFrame
import pandas as pd
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Let's load the AirPassengersDataset CSV using pandas, a dataset that 

contains 12 years of monthly air passenger data:

Y_df = pd.read_csv('AirPassengersDataset.csv')
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

 

AutoGluon expects time series data in long format. Each row of the 

data frame contains a single observation (time step) of a single time series 

represented by

	 a)	 Unique ID of the time series item_id as int or str

	 b)	 Timestamp of the observation timestamp as a 

pandas.Timestamp or compatible format

	 c)	 Numeric value of the time series target

Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df.rename(columns={"ds":"timestamp","unique_id" :"item_id", 
"y": "target"},inplace = True)
Y_df['item_id'] = 'airline_1'
Y_df.head()
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data = TimeSeriesDataFrame.from_data_frame(
    Y_df,
    id_column="item_id",
    timestamp_column="timestamp"
)
data.tail()

 

Split data into train and test. Separate the last 1-year data for the test 

and use the remaining 11 years of data to train and predict:

train_data = data.head(132)
test_data = data.tail(12)

Create a TimeSeriesPredictor object to forecast future values and 

explicitly define chronos_large_ensemble to be used:

prediction_length =12
predictor = TimeSeriesPredictor(prediction_length=prediction_
length).fit(
train_data, presets="chronos_large_ensemble"
)
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Predict the next defined horizon:

predictions = predictor.predict(train_data)
predictions.head()

The predicted column of interest is the mean.

 

Measure the model’s accuracy:

calculate_error_metrics(test_data['target'],predictions['mean']
['airline_1'])

 

Visualize the predictions:

predictor.plot(
    data=Y_df,
    predictions=predictions,
    item_ids=["airline_1"],
    max_history_length=200,
);

Chapter 5  Chronos: Pre-trained Probabilistic Time Series Model



167

Figure 5-3.  Observed vs. forecast

Figure 5-3 helps us to appreciate that the air passenger count predicted 

by our model is close to reality.

�5.6  Summary
In this chapter, we understood how Chronos pre-trained probabilistic time 

series model works and how to implement chronos_tiny and chronos_

large_ensemble using real-world datasets. Chronos can be used for any 

univariate forecasting use case, and it works best on datasets that consist 

of observations captured at equal intervals of time. In the next section, let's 

deep dive into TimeGPT.

5.7  Reference
[1].	 Chronos: Learning the Language of Time Series. 

https://doi.org/10.48550/arXiv.2403.07815
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CHAPTER 6

TimeGPT: The First 
Foundation Model 
for Time Series
Chapter Goal: Learn how to leverage TimeGPT to build robust and 

accurate time series models.

�6  Introduction
In the previous chapter, we explored the technical overview of Chronos, 

a pre-trained time series forecasting model, and completed hands-on 

implementation using a real-world dataset.

In this chapter, let’s explore TimeGPT, a production-ready, generative 

pre-trained transformer for time series capable of predicting retail, 

electricity, web traffic, transport, economics, finance, and IoT with just 

a few lines of code. We can also understand why it is called the first 

foundation model for time series.

Time series analysis historically relied on traditional techniques 

like Fourier Analysis, Moving Average, Autoregressive, Autoregressive 

Integrated Moving Average, Exponential Smoothing, Vector 

Autoregression, Theta, and Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) Models, which were popular historically and 

https://doi.org/10.1007/979-8-8688-1276-7_6#DOI
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used in various domains, and later evolved to more powerful machine 

learning tools like Random Forest, Gradient Boosting, XGBoost, LightGBM, 

CatBoost, and Prophet.

The rapid advancement in computational power, availability 

and storage of large datasets, and advancements in algorithms and 

architectures have fueled the advent of new deep learning methodologies 

in some use cases to outperform traditional techniques. Deep learning is 

a global approach that offers advantages over conventional methods in 

automatic feature learning, handling large and complex data, improved 

performance, handling nonlinear relationships, handling structured and 

unstructured data, and handling sequential data.

Deep learning models such as RNN, LSTM, GRU, and CNN, designed 

for natural language processing and computer vision, when repurposed for 

sequential data demonstrated amazing capabilities in learning patterns. 

Significant advancements in hardware and distributed parallel processing 

fueled the popularity of transformer models, which have gained popularity 

in recent years as they demonstrate amazing capabilities for learning from 

large volumes of data.

Recent advancements in transformer architecture have led to the 

development of powerful transformer-based models like Autoformer, 

Informer, FEDformer, and PatchTST. These models leverage self-attention 

and innovative techniques to capture long-range dependencies and 

complex patterns in time series data. Further to the discussion so far, let us 

explore TimeGPT – the first time series foundation model.

TimeGPT was trained on a huge volume of publicly available datasets, 

collectively over 100 billion data points, using NVIDIA A10G GPU for 

multiple days. The training set included a wide range of domains due to this 

dataset’s comprised of a diverse selection of temporal patterns, structural 

breaks, seasonality, cycles of various lengths, various trends, and irregular 

and regular patterns, offering a robust training dataset. This pre-training 

allows it to generalize well to new, unseen time series data, making it a 

powerful and versatile tool for time series forecasting and analysis.
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The selection of diverse datasets helps TimeGPT to forecast unseen 

time series accurately while eliminating the need for individual model 

training and optimization and performs well on single-series and multiple- 

series forecasting as depicted in Figure 6-1.

Figure 6-1.  (a) Single-series forecasting, (b) multiple-series 
forecasting [1]

�6.1  Technical Overview of TimeGPT
TimeGPT is a transformer-based model and employs an encoder- 

decoder architecture with multiple layers, each incorporating residual 

connections and layer normalization. The decoder’s output is projected to 

the forecasting window dimension through a linear layer. Local positional 

encoding is added to the window of historical values to enhance the input. 

The attention mechanisms allow models to focus on the most relevant 

parts of the input sequence, improving their ability to capture long-range 

dependencies and make accurate predictions.

TimeGPT can handle different input sizes, horizons, and other 

characteristics within data such as frequency, sparsity, trend, seasonality, 

stationarity, and heteroskedasticity which may present distinct 

complications for both local and global models.
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Figure 6-2.   Depicting datasets from different domains used for 
training and inference are generated on new data [1]

The forecasting model is a function:

fθ: X → Y, where X is the feature space and Y is the dependent 

variable.

Consider the setting: X = {y[0:t], x[0:t+h]} and Y = {y[t+1:t+h]}

where h is the horizon to forecast, y is the target variable, and x is the 

exogenous variable. The goal is to estimate the conditional distribution.

P (y[t+1:t+h]| y[0:t],x[0:t+h] )= fθ(y[0:t],x[0:t+h])

Figure 6-3.  Inference of new time series [1]

TimeGPT makes predictions by reading input series like humans 

by looking at the windows of past data, which are similar to tokens, and 

predicts the next required horizon. TimeGPT performs remarkably well 
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on zero-shot inference which is with no fine-tuning, which is remarkable 

when compared against statistical models and state-of-the-art deep 

learning approaches. A known drawback of this model is that accuracy 

diminishes when the forecasting horizon is too long.

It’s worth noting that the original paper on TimeGPT [1] provides a 

high-level overview of the approach, but lacks granular details regarding 

the specific implementation techniques.

�6.2  TimeGPT in Action
Having established a high-level theoretical foundation of TimeGPT, we 

shall now translate abstract concepts into practical code implementation.

�6.2.1  Setting Up an API Key for TimeGPT

There are secured and unsecured methods of the API key configuration 

process; we follow the unsecured method in this example.

	 a)	 Log in to the NIXTLA Developer Dashboard by 

authenticating using Gmail, GitHub, or email.
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	 b)	 In the dashboard, navigate to API Keys and click 

Create New API Key.

	 c)	 Paste the key directly into your Python code, by 

instantiating the NixtlaClient with your API key:
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�6.2.2  Univariate Use Case

Let’s explore an example using a univariate dataset.

Import required libraries:

import numpy as np
import pandas as pd
from nixtla import NixtlaClient
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score

Setting up your API key, copy and paste your key directly into your 

Python code:

nixtla_client = NixtlaClient(
    api_key = 'nixtla-tok-xxxxxxxxxx'
)

Validate your API key, check the status of your API key, and use the 

validate_api_key method of the NixtlaClient class. This method will return 

True if the API key is valid and False otherwise.

nixtla_client.validate_api_key()
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Load the AirPassenger dataset.

Split data into train and test. Separate the last 12 months of data for 

testing and use the remaining 11 years for model training:

Y_df = pd.read_csv('AirPassengersDataset.csv')
Y_df.drop(['unique_id'], axis =1 , inplace = True)
Y_df = Y_df.reset_index(drop=True)
Y_df.head()

 

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Plot the training data:

nixtla_client.plot(Y_train_df, time_col='ds', target_col='y')

Figure 6-4.  Training data

Set the following parameters:

	 a)	 df: A pandas DataFrame

	 b)	 h: Horizons
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	 c)	 time_col: The column that identifies the date stamp

	 d)	 target_col: The forecast variable

timegpt_fcst_df = nixtla_client.forecast(df=Y_train_df, h=12, 
time_col='ds', target_col='y')
timegpt_fcst_df.head()

 

Check how well the model works on test data:

calculate_error_metrics(Y_test_df[['y']],timegpt_fcst_
df['TimeGPT'])

 

Plot actual vs. predicted:

Y_train_df.set_index('ds',inplace =True)
timegpt_fcst_df.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 5))
y_past = Y_train_df["y"][-50:]
y_pred = timegpt_fcst_df['TimeGPT']
y_test = Y_test_df["y"]
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plt.plot(y_past, label="Past time series values")
plt.plot(timegpt_fcst_df, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.tight_layout()
plt.xticks(rotation=90)
plt.legend();

Figure 6-5 helps us to appreciate that the air passenger count predicted 

by our model is close to reality.

Figure 6-5.  Observed vs. forecast

�6.2.3  Multivariate Use Case

Let’s explore an example using a multivariate dataset.

Import required libraries:

import numpy as np
import pandas as pd
from nixtla import NixtlaClient
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
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Setting up your API key, copy and paste your key directly into your 

Python code:

nixtla_client = NixtlaClient(
    api_key = 'nixtla-tok-xxxxxxxxxxxx'
)

Validate your API key, check the status of your API key, and use the 

validate_api_key method of the NixtlaClient class. This method will return 

True if the API key is valid and False otherwise.

nixtla_client.validate_api_key()

 

Load the bike-sharing dataset [2]:

Y_df = pd.read_csv('Bike_sharing_systems.csv')
Y_df.drop(columns=['instant','casual','cnt'], axis =1, 
inplace =True)
Y_df.rename(columns={'dteday':'ds','registered':'y'}, 
inplace=True)
Y_df.head()

 

Split data into train and test:

Y_train_df = Y_df.iloc[:-24,:]
Y_test_df = Y_df.iloc[-24:,:]
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Using the test data, let’s remove the ‘y’ variable and make it a 

dataframe containing future exogenous variables for the defined horizon:

Y_test_df_w_y = Y_test_df.copy()
Y_test_df.drop(columns=['y'], axis =1, inplace =True)
Y_test_df_wo_y = Y_test_df

With the target variable:

Y_test_df_w_y.head()

 

Without the target variable:

Y_test_df_wo_y.head()

 

Calling the forecast method and passing the exogenous variables:

timegpt_fcst_ex_vars_df = nixtla_client.forecast(df=Y_train_df, 
X_df=Y_test_df_wo_y, h=24,)
timegpt_fcst_ex_vars_df.head()
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Check how well the model predicts:

calculate_error_metrics(Y_test_df_w_y[['y']],timegpt_fcst_ex_
vars_df['TimeGPT'])

 

Plot actual vs. predicted:

Y_train_df.set_index('ds',inplace =True)
timegpt_fcst_ex_vars_df.set_index('ds',inplace =True)
Y_test_df_w_y.set_index('ds',inplace =True)
plt.figure(figsize=(20, 5))
y_past = Y_train_df["y"][-75:]
y_pred = timegpt_fcst_ex_vars_df['TimeGPT']
y_test = Y_test_df_w_y["y"]
plt.plot(y_past, label="Past count of registered users")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual count of registered users")
plt.title('Bike Sharing Forecast', fontsize=10)
plt.ylabel('Daily Count', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.xticks(rotation=90)
plt.legend();
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Figure 6-6 helps us to appreciate that the count predicted by our model 

is not close to reality.

Figure 6-6.  Observed vs. forecast

�6.3  Summary
In this chapter, we understood how TimeGPT, the first foundation model 

for time series, works internally. We also tried a hands-on implementation 

using univariate and multivariate examples. In the next chapter, let’s 

explore MOIRAI, a time series foundation model for universal forecasting.

6.4  References

[1].	 TimeGPT-1. https://doi.org/10.48550/arXiv.2310.03589

[2].	 Bike sharing dataset. https://doi.org/10.24432/C5W894
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CHAPTER 7

MOIRAI: A Time 
Series LLM for 
Universal Forecasting
Chapter Goal: Learn how a universal forecasting model is designed and 

learn with real-world datasets.

�7  Introduction
Ever wondered why we need so many models? Many a time working 

on use cases, you may have wondered why we develop a new model 

whenever the use case changes, while the task remains the same, for 

example, the classification of images or text for different domains. Another 

scenario could be time series forecasting for sales or crop yield. While the 

task of forecasting remains the same, we end up developing a new model 

every time. Some questions arise: Is it possible to reuse a model? Can we 

have a universal forecasting model? Let us understand how MOIRAI, a 

foundation model pre-trained on a large collection of time series datasets, 

tries to answer some of these questions.

https://doi.org/10.1007/979-8-8688-1276-7_7#DOI


184

The Masked EncOder-based UnIveRsAl Time Series Forecasting 

Transformer, or in short MOIRAI, is a result of novel enhancements 

made to the traditional time series forecasting transformer. The current 

version of the model was developed by training on a dataset containing 

observations taken across nine domains and has around 27B observations. 

In our experience, we found MOIRAI useful in scenarios involving zero- 

shot forecasting. In some use cases, it was providing results on par with 

multi-shot forecasting models. MOIRAI is trained and made available in 

three sizes, MOIRAISmall, MOIRAIBase, and MOIRAILarge, with 14m, 

91m, and 311m parameters, respectively.

Zero-shot time series forecasting is the ability of the forecasting model 

to provide predictions on unseen datasets. It provides predictions without 

explicit training on past data for that specific use case. The model leverages 

its knowledge and patterns learned from pre-training from similar or 

related data. During one of the interactions with a potential client who 

was planning to release a new product, we were asked – how would you 

forecast the future sales of this product, as it has no historical data? Our 

answer, as you might have guessed by now, is zero-shot forecasting.

�7.1  Challenges with Building a Universal 
Forecasting Model
To build a universal time series forecasting model, the unique challenges 

inherent to time series datasets need to be addressed. Challenges like 

(i) cross-frequency learning, (ii) accommodating an arbitrary number 

of variates for multivariate time series, and (iii) addressing the varying 

distributional properties inherent in large-scale data are handled by 

making some enhancements to the conventional transformer architecture. 

Let us understand these challenges in detail.

The frequency at which the observations in the time series dataset 

are gathered has a profound impact on the patterns in the dataset. To 

commence, the temporal granularity be it hourly, daily, or monthly 
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intervals of a time series is profoundly consequential in delineating the 

intricate patterns that emerge within its temporal tapestry. To understand 

this better, think of the patterns present in a time series dataset having the 

numbers related to hourly, daily, weekly, and annual sales of a product, 

sold in the last five years. To make it still easier, think of withdrawing 

money from your savings account periodically on a daily, weekly, or 

monthly basis. Cross-frequency learning or learning with time series 

datasets sampled across different frequencies helps to improve forecasting 

results. The information learned from various frequencies helps to better 

understand the latent patterns. However, there are challenges related to 

overfitting, negative interference, and computational complexity. Negative 

interference is nothing but the degradation in models’ performance across 

different frequencies of datasets.

Time series datasets are inherently heterogeneous, as there can be 

variation in several variables recorded at any point in time. Consider 

univariate and multivariate time series data related to sales of a product. 

The univariate primarily has only a value reflecting the number of units 

sold. The multivariate, additional could have values related to profit and 

color of the unit sold. The universal model developed should be flexible to 

handle multivariate interactions and exogenous covariates.

Probabilistic forecasting (recollect the DeepAR model) has its 

significance in time series forecasting. This is because it provides a 

comprehensive view of uncertainty and a range of possible forecasts rather 

than a single forecast. A multitude of time series datasets have differing 

statistical and probabilistic distributions. Using a Gaussian distribution as 

the predictive distribution has many benefits like mathematical simplicity 

(has only mean and variance), uncertainty quantification, and flexibility 

with additive noise models. However, it is not suitable for time series data 

with all observations greater than zero (positive time series). This makes 

it challenging to use the standard approach of using a simple distribution 

across a wide variety of datasets.
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Any pre-trained model intended for universal forecasting necessitates 

training on large datasets from various domains. Existing generally 

available datasets are incapable of enabling the development of a universal 

forecasting model.

�7.2  Technical Overview of MOIRAI
Now that we understand the challenges of developing a universal 

forecasting model, let us understand the architecture and approaches 

taken in developing MOIRAI to overcome the challenges.

MOIRAI leverages patches and masked encoder architecture to 

model time series. Parts of the input data are selectively hidden using 

a mask. The model is encouraged to predict the masked portions using 

known (unmasked) data. The model learns better by utilizing contextual 

understanding by predicting the masked data. The technique enhances 

learning of dependencies and improves forecasting accuracy.

The challenge of a universal forecaster (MOIRAI) to cater to multiple 

datasets with varying frequencies is dealt with the help of a layer 

containing multiple patches of sizes. Referring to Figure 7-1, we can see the 

layer with varying patch sizes (multi-patch size). MOIRAI uses a strategy 

wherein high-frequency data are handled with a larger patch size and 

low-frequency data are handled with a smaller patch size. This reduces 

computational complexity while maintaining long context length for high- 

frequency data. The benefit of this flexibility helps to transfer computation 

to transformer layers instead of embedding layers while dealing with low- 

frequency datasets. This makes the best use of computational time and 

resources too.
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Figure 7-1.  The diagram represents the overall architecture 
of MOIRAI

[In Figure 7-1, variate 0 and variate 1 are target variables, while variate 

2 is the dynamic covariate. Considering a patch of size 64, the variates are 

transformed into patches of three tokens. That is, each 64-element patch is 

represented by three tokens, encapsulating key features of the patch. These 

tokens are then converted to patch embeddings (high-dimensional vectors) 

that represent the semantic meaning of each patch. These patch embeddings 

along with the sequence number (position of the overall data) and 

variate ID (which indicates a specific variable of the data) are input to the 

transformer. The patches (shaded) in the multi-patch size output projection 

layer represent the forecast horizon. The respective output representations 

from this layer are mapped to mixture distributions.]

The next challenge for a universal forecaster (MOIRAI) is to cater to 

multiple datasets with an arbitrary number of variates. This is addressed 

by using a novel approach called any-variate attention and making use 

of binary attention biases. The any-variate attention handles an arbitrary 

number of variates, while binary attention biases help to differentiate and 

encode the indexes (positions) of the variates. All variates are taken as a 

single sequence by flattening the multivariate time series data. The variate 

encodings help to distinguish between multiple variates in the data.
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The next challenge of the foundation model to perform probabilistic 

forecasting using a simple distribution is handled by MOIRAI using a 

mixture of parametric distributions. The mixture comprises the following 

distributions: (i) student’s t-distribution, which is a robust distribution 

option for time series; (ii) negative binomial distribution for positive count 

data; (iii) log-normal distribution, proven to be useful for scenarios with 

right-skewed data; and (iv) low variance normal distribution, useful for 

high confidence predictions.

Coming to the limitations, it is observed that forecasting results for use 

cases involving high-dimensional datasets are not accurate.

�7.3  MOIRAI in Action
Having established a high-level theoretical foundation of MOIRAI, we shall 

now translate abstract concepts into practical code implementation of 

MOIRAI-Small.

Import required modules:

import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from einops import rearrange
from gluonts.dataset.multivariate_grouper import 
MultivariateGrouper
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from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from uni2ts.eval_util.plot import plot_single, plot_next_multi
from uni2ts.model.moirai import MoiraiForecast, MoiraiModule
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
import warnings
warnings.filterwarnings('ignore')

Let's load the AirPassengers CSV using pandas, a dataset that contains 

12 years of monthly air passenger data:

df = pd.read_csv('AirPassengersDataset.csv')
df.rename(columns={'y': 'target'}, inplace=True)
df.drop(columns=['unique_id'], inplace=True)
df["ds"] = pd.to_datetime(df["ds"])
df.set_index("ds", inplace=True)
print(f"total length: {df.shape[0]}")
print(f"time frequency: {df.index.diff()[1]}")

df
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Let's create a sample data with monthly frequency and split the data 

into train and test, which are input and labels:

inp = {
    "target": df["target"].to_numpy()[:120],
    "start": df.index[0].to_period(freq="M"),
}
label = {
    "target": df["target"].to_numpy()[120:144],
    "start": df.index[120].to_period(freq="M"),
}
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Inp

 

Label

 

Let’s initialize the model and define the parameters:

model = MoiraiForecast(
    �module=MoiraiModule.from_pretrained(f"Salesforce/

moirai-1.1-R-small"),
    prediction_length=24,
    context_length=120,
    patch_size=32,
  num_samples=100,
    target_dim=1,
    feat_dynamic_real_dim=0,
    past_feat_dynamic_real_dim=0,
)
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Let's compute the past target by passing batch, time, and variate:

past_target = rearrange(
    �torch.as_tensor(inp["target"], dtype=torch.float32),  

"t -> 1 t 1"
)

past_observed_target = torch.ones_like(past_target, 
dtype=torch.bool)

past_is_pad = torch.zeros_like(past_target, dtype=torch.
bool).squeeze(-1)

Let's perform forecasting:

forecast = model(
    past_target=past_target,
    past_observed_target=past_observed_target,
    past_is_pad=past_is_pad,
)

Let's calculate the error metrics:

calculate_error_metrics(label["target"],np.round(np.median(fore
cast[0], axis=0), decimals=4))
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Let's print the values of median prediction and ground truth:

print(
    "median prediction:\n",
    np.round(np.median(forecast[0], axis=0), decimals=4),
)
print("ground truth:\n", label["target"])

 

Let's visualize the predictions:

df_test = df["target"][120:144]
df_train = df["target"][:120]
df_test = df_test.reset_index().rename(columns={"index":"ds"})
df_train = df_train.reset_index().rename(columns={"ind
ex":"ds"})
df_test['Predicted']= pd.Series(np.round(np.median(forecast[0], 
axis=0), decimals=4))
df_train.set_index('ds',inplace =True)
df_test.set_index('ds',inplace =True)
plt.figure(figsize=(20, 5))
y_past = df_train["target"]
y_pred = df_test['Predicted']
y_test = df_test["target"]
plt.plot(y_past, label="Past time series values")
plt.plot(y_pred, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
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plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
#plt.tight_layout()
plt.xticks(rotation=90)
plt.legend();

Figure 7-2 helps us to appreciate that the air passenger count predicted 

by our model is close to reality.

Figure 7-2.  Observed vs. forecast

�7.4  Summary
We understood how MOIRAI was developed to tackle the challenges 

with universal forecasting, namely, handling various frequencies of data, 

flexibility to support a range of variates, and producing probabilistic 

forecasts for multiple scenarios having datasets of different statistical and 

probabilistic distributions. We also saw practical implementations for 

univariate and multivariate scenarios.

7.5  Reference
[1].	 Unified Training of Universal Time Series Forecasting 

Transformers by Gerald Woo et al. https://doi.
org/10.48550/arXiv.2402.02592
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CHAPTER 8

TimesFM: Time 
Series Forecasting 
Using Decoder-Only 
Foundation Model
Chapter Goal: Learn how a foundation model is designed, the challenges 

and approaches to solve the challenges, using decoder only design.

�8  Introduction
After understanding the design, working, and developments in foundation 

models for time series forecasting, it is natural for us (time series 

forecasters) to expect models that would work out of the box. Let us 

understand TimesFM, one such foundation model capable of zero-shot 

forecasting. This model is developed based on a decoder-only transformer 

architecture, using input patching. The forecasting capabilities of this 

foundation model are comparable to supervised time series forecasting 

models. The datasets used for training are a combination of real and 

https://doi.org/10.1007/979-8-8688-1276-7_8#DOI
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synthetic data. The sources of data primarily include page view stats, 

a Wikipedia tool that provides data related to wiki page visits, and 

Google trends.

The decoder-only transformer consists only of the decoder stage and 

is best suited for autoregressive tasks. This transformer model focuses on 

predicting the next token in the sequence based on the tokens that were 

generated earlier. Please go through [2] in the “References” section for a 

detailed explanation of the benefits of using decoder-only models.

The challenges with designing a time series forecasting model capable 

of zero-shot forecasting are different when compared to the models in NLP 

and vision domains. There are some types of bounds while dealing with 

the natural language. Any language has rules, like grammar and limitation 

of alphabets – 26 alphabets in English, 56 in Telugu, and 49 in Kannada. 

Any image can be described with a finite number of pixels. Each pixel 

can be broken down into three components of RGB colors ranging from 

0 to 255 (maximum brightness). However, time, as we all know, has no 

beginning or end.

�8.1  Technical Overview of TimesFM
Let us understand the problem TimesFM is trying to solve. The intention 

behind creating a new time series foundation model, TimesFM, was to 

develop a zero-shot forecasting model. This general-purpose time series 

forecasting model, with zero-shot forecasting capabilities, takes past values 

of time series data as context to come up with forecasts for the future. The 

challenge here is that during training we cannot have covariates specific to 

a dataset, since the intention is to come up with a one-shot general- 

purpose forecaster. The problem that TimesFM is trying to solve is to learn 

how to generalize forecasting based on historical values, irrespective of 

time series properties like granularity, trend, and seasonality. This model 

uses the MAE (mean absolute error) metric to measure prediction results.
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The concepts leveraged while coming up with this model are (i) 

decoder-only model, (ii) patching, (iii) length of output patches, and (iv) 

patch masking. Let us understand these concepts in more detail.

In the decoder-only design, the model is trained to predict the next 

path based on earlier patches. Training is done in parallel, spanning 

the entire context window. This helps the model to generalize and thus 

perform time series forecasting based on different input patches learned.

A patch-based approach, which was discussed in earlier chapters, 

is used by TimesFM too. Time series data is split into patches and used 

during the training of this model. Patch-based learning helps improve 

performance and inference speed as the number of tokens fed to the 

decoder is reduced.

The length of output patches being longer helps in scenarios 

demanding forecasting into longer time periods like looking into forecasts 

far into the future, years, and decades ahead. A general-purpose forecaster 

has to cater to longer-term predictions too. While predicting the full 

horizon (forecasting far ahead into the future) yields better results, in 

the case of zero-shot forecasting the forecasting time step details are not 

known up front. In TimesFM, the model uses output patches that are 

longer than input patches.

Patch masking helps overcome the problem of overfitting. Some 

patches are randomly hidden during training. If this is not done, then 

models tend to learn based on the input patch length. The forecasting 

accuracy can be seen only in instances where context length is a multiple 

of input patch length. TimesFM uses a random masking technique during 

training. This helps the model to learn all possible context lengths during 

training, ranging from 1 all the way to the maximum context length.
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Figure 8-1.  Overall architecture of TimesFM during training [1]

[In Figure 8-1, we can see time series data fed as input, split into patches 

of size input_patch_len. The residual block converts patches into vectors. A 

combination of positional encodings and vectors are input to the stacked 

transformer layers. Remember that vectors are numerical representations of 

tokens in the form of n-dimensional arrays. Tokens are converted to vector 

embeddings, thus helping models to process and compute operations on 

tokens. The resultant tokens are then fed to the residual block. The residual 

block transforms the tokens to an output patch of length output_patch_len. 

This output represents the forecast for the time window immediately 

following the last input patch processed by the model.]

Let us understand the architectural blocks and their actions in 

more detail.

The input layer processes the time series data to tokens. These tokens 

are converted to patches that are fed to a residual block. The residual block 

transforms these patches into a vector whose length is based on model 
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dimensions. Vectors are numerical representations of tokens in high- 

dimensional space. The residual block consists of a multilayer perceptron 

with one hidden layer and a skip connection. The skip connection helps in 

adding the output to the next layer directly.

The stacked transformer architecture is used where parameters in the 

model are in transformer layers stacked on top of each other. The layers 

leverage multi-head self-attention proceeded by a feedforward network. 

Here, the transformer architecture uses the mechanism of causal attention. 

This ensures the model only considers the tokens that have arrived before 

the current token in the sequence. This causal attention technique is 

particularly helpful in scenarios where only past information (and not 

future tokens) should be used to predict the next token.

The final task of prediction is taken care of by the output layers, 

where the output tokens are mapped into predictions. The output tokens 

represent the model’s understanding of data at various points in time; 

however, they cannot be directly interpreted for forecasting. The output 

tokens are mapped using a residual block. The residual block transforms 

the tokens to an output patch of length output_patch_len. This output 

represents the forecast for the time window immediately following the 

last input patch processed by the model. Training using the decoder-only 

model enables each output token to be capable of predicting the portion of 

the time series that follows its corresponding input patch.

�8.2  TimesFM in Action
Having established a high-level theoretical foundation of TimesFM, we 

shall now translate abstract concepts into practical code implementation.
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�8.2.1  Univariate Use Case

Let us consider a univariate scenario first.

Import required modules:

import numpy as np
import pandas as pd
import timesfm
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score

import os
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
os.environ['JAX_PMAP_USE_TENSORSTORE'] = 'false'

Let's load the AirPassengersDataset CSV using pandas, a dataset that 

contains 12 years of monthly air passenger data:

Y_df = pd.read_csv('AirPassengersDataset.csv')
Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df = Y_df.reset_index(drop=True)
Y_df.head()
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Split the data into train and test.

Y_train_df = Y_df[Y_df.ds<='1959-12-31']
Y_test_df = Y_df[Y_df.ds>'1959-12-31']

Configure the model to use CPU:

timesfm_backend = "cpu"

from jax._src import config
config.update(
    �"jax_platforms", {"cpu": "cpu", "gpu": "cuda", "tpu": ""}

[timesfm_backend]
)

Initialize the TimesFM model and define the parameters:

tfm = timesfm.TimesFm(
    context_len=128,
    horizon_len=12,
    input_patch_len=32,
    output_patch_len=128,
    num_layers=20,
    model_dims=1280,
    backend=timesfm_backend,
)

Let’s understand the variables used:

context_len is the length of the context window for the model.

horizon_len is the length of the forecasting horizon.

input_patch_len is the length of input patches.

output_patch_len is the length of output patches.

inputs is the dataframe containing the training time series data.

freq is the frequency of the time series data (e.g., monthly).
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value_name is the name of the column with the values to be 

forecasted.

num_jobs is the number of parallel jobs to use for forecasting (–1 uses 

all available cores).

Load the pre-trained model from the checkpoint:

tfm.load_from_checkpoint(repo_id="google/timesfm-1.0-200m")

Generate forecasts using the TimesFM model on the given DataFrame:

timesfm_forecast = tfm.forecast_on_df(
    inputs=Y_train_df,
    freq="MS",
    value_name="y",
    num_jobs=-1,
)
timesfm_forecast = timesfm_forecast[["ds","timesfm"]]

timesfm_forecast.head()

 

Evaluate how well the model works on test data:

calculate_error_metrics(Y_test_df[['y']],timesfm_
forecast['timesfm'])
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Let's visualize the predictions:

Y_train_df.set_index('ds',inplace =True)
timesfm_forecast.set_index('ds',inplace =True)
Y_test_df.set_index('ds',inplace =True)
plt.figure(figsize=(20, 5))
y_past = Y_train_df["y"][-50:]
y_pred = timesfm_forecast['timesfm']
y_test = Y_test_df["y"]
plt.plot(y_past, label="Past time series values")
plt.plot(timesfm_forecast, label="Forecast")
plt.plot(y_test, label="Actual time series values")
plt.title('AirPassengers Forecast', fontsize=10)
plt.ylabel('Monthly Passengers', fontsize=10)
plt.xlabel('Timestamp [t]', fontsize=10)
plt.tight_layout()
plt.xticks(rotation=90)
plt.legend();
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Figure 8-2.  Observed vs. forecast

Figure 8-2 helps us to appreciate that the air passenger count predicted 

by our model is close to reality.

�8.2.2  Multivariate Use Case

Let’s now consider a multivariate scenario.

Import the necessary libraries:

import numpy as np
import pandas as pd
import timesfm
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_
percentage_error, r2_score
from collections import defaultdict

import os
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
os.environ['JAX_PMAP_USE_TENSORSTORE'] = 'false'
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Load the dataset for electricity price forecasting and create a 

dataframe:

df = pd.read_csv('EPF_FR_BE.csv')
df[df['unique_id'] =='FR']

 

Create a data pipeline:

def get_batched_data_fn(
    batch_size: int = 128,
    context_len: int = 120,
    horizon_len: int = 24,
):
  examples = defaultdict(list)

  num_examples = 0
  for country in ("FR", "BE"):
    sub_df = df[df["unique_id"] == country]
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    �for start in range(0, len(sub_df) - (context_len +  
horizon_len), horizon_len):

      num_examples += 1
      examples["country"].append(country)
      �examples["inputs"].append(sub_df["y"][start:(context_end 

:= start + context_len)].tolist())
      �examples["gen_forecast"].append(sub_df["gen_forecast"]

[start:context_end + horizon_len].tolist())
      �examples["week_day"].append(sub_df["week_day"]

[start:context_end + horizon_len].tolist())
      �examples["outputs"].append(sub_df["y"][context_

end:(context_end + horizon_len)].tolist())

  def data_fn():
    for i in range(1 + (num_examples - 1) // batch_size):
      �yield {k: v[(i * batch_size) : ((i + 1) * batch_size)] 

for k, v in examples.items()}

  return data_fn

Configure the model to use CPU:

timesfm_backend = "cpu"

from jax._src import config
config.update(
    �"jax_platforms", {"cpu": "cpu", "gpu": "cuda", "tpu": ""}

[timesfm_backend]
)

Create the model using TimesFm and pass the values:

model = timesfm.TimesFm(
    context_len=512,
    horizon_len=128,
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    input_patch_len=32,
    output_patch_len=128,
    num_layers=20,
    model_dims=1280,
    backend=timesfm_backend,
)
model.load_from_checkpoint(repo_id="google/timesfm-1.0-200m")

Let us forecast the required horizon:

batch_size = 128
context_len = 120
horizon_len = 24
input_data = get_batched_data_fn(batch_size = 128)
metrics = defaultdict(list)
import time

for i, example in enumerate(input_data()):
  raw_forecast, _ = model.forecast(
      �inputs=example["inputs"], freq=[0] * 

len(example["inputs"])
  )
  start_time = time.time()

  cov_forecast, ols_forecast = model.forecast_with_covariates(
      inputs=example["inputs"],
      dynamic_numerical_covariates={
          "gen_forecast": example["gen_forecast"],
      },
      dynamic_categorical_covariates={
          "week_day": example["week_day"],
      },
      static_numerical_covariates={},
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      static_categorical_covariates={
          "country": example["country"]
      },
      freq=[0] * len(example["inputs"]),
      xreg_mode="xreg + timesfm",
      ridge=0.0,
      force_on_cpu=False,
      normalize_xreg_target_per_input=True,
  )
  print(
      �f"\rFinished batch {i} linear in {time.time() - start_

time} seconds",
      end="",
  )

Let’s see the results without covariates:

print("Without covariates: \n")
calculate_error_metrics(raw_forecast[:, :horizon_len], 
example["outputs"])

 

The results with covariates:

print('With covariates: \n')
calculate_error_metrics(cov_forecast, example["outputs"])
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Results with ordinary least square:

print('ols forecast: \n')
calculate_error_metrics(ols_forecast, example["outputs"])

 

�8.3  Summary
We understood how and why TimesFM was developed for general-purpose 

zero-shot forecasting. The use of decoder architecture and patching was 

discussed. Finally, we implemented use cases using the TimesFM model 

for both univariate and multivariate scenarios.

�8.4  Conclusion
Your interest in this journey to explore advancements in time series and 

staying with us until the end of this book is greatly appreciated.
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We have learned the evolution of LLMs starting from the basic 

perceptron to the latest foundation models.

From our experience working in different domains, diverse datasets, 

and techniques, we can say it is definitely worth trying these models 

alongside traditional and neural network–based models. As a best practice, 

start with traditional models and then move to the advanced ones.

We encountered multiple scenarios where traditional techniques 

outperformed foundation models. A Kannada (Indian language) proverb 

says “Gubbi mele Brahmastra,” meaning using a huge weapon like 

Brahmastra on a tiny sparrow. So let us ensure that we use the right 

techniques as per use case and datasets.

We discussed techniques that help in repurposing existing foundation 

models. We hope with the theory and implementation knowledge gained 

so far, you will apply and appreciate these models in real-time scenarios.

The future of AI seems very promising, and we see many new 

foundation models popping up, such as Tiny Time Mixtures, MOMENT, 

MambaTS, Lag-Llama, and timer-base-84m.

Happy Learning!!!

8.5  Reference
[1].	 A Decoder-Only Foundation Model for Time-Series 

Forecasting by Abhimanyu Das et al. https://doi.
org/10.48550/arXiv.2310.10688
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