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The current era of artificial intelligence and machine learning 

(AIML) tools has transformed the workings of vast swaths 

of our private, working, and social lives beyond recognition. 

It has been found that these tools can solve many problems 

in better and faster ways compared to humans. AIML tools 

allow machines and related systems to reason and infer almost 

like humans, and this has deep intellectual and philosoph-

ical ramifications as well. The areas of machine learning are 

broadly classified into supervised, unsupervised, and deep 

reinforcement learning (DRL). The last one comes closest to 

how humans reason, and various innovations in this area have 

many useful applications.

This book covers most of the areas of DRL, with a spe-

cial focus on its mathematical and algorithmic foundations. 

Undergraduate and early graduate students should find it to be 

a good guide to the fast- developing areas of DRL and its myriad 

applications in both technical and social contexts. 
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Prologue

The idea of putting information in a digital form 

is quite simple and seems an ordinary technical advance 

in hindsight. Over a period, many scientists and engineers 

nurtured it at a steady pace, and finally made it possible for the 

society to usher in the age of digital revolution. In a relatively 

very short time by historical standards, it has transformed the 

modern civilization and changed the workings of vast swaths of 

our private, working, and social lives beyond recognition. The 

idea of machine learning has been one of the key innovations 

in this regard.

Machines, specifically those which can think and act like 

humans, have been the stuff of science fiction for a long time. 

At some deeper level, this concept also connects to our quest 

for understanding the essence of human intelligence and con-

sciousness. We are still very far from solving that puzzle, but 

the impulse has resulted in very rapid advances in the fields 

of machine learning. We have also found that these thinking 

machines can solve many problems in better and faster ways 

compared to humans.

This book presents a high- level view of the fast developing 

discipline of the Reinforcement Learning in its basic and more 

sophisticated aspects. Hopefully, it will inspire the reader to 

take a deeper dive into this subject as well as help understand 

the coming revolution in every aspect of society based on 

these ideas.
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C H A P T E R  1

Introduction

In this chapter, some basic concepts behind machine

learning (ML) and their history have been presented.

1.1  ARTIFICIAL INTELLIGENCE (AI)

AI uses data input, computing hardware, and appropriate 

software to model the underlying neural circuits mimicking 

human learning and problem- solving behavior. It has excelled 

at some of the learning and reasoning tasks and surpassed 

human capabilities.

A general AI system contains two basic layers.

i. Infrastructure layer:

• Central processing unit (CPU) for serially executed

tasks,
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2   ■   An Introduction to Deep Reinforcement Learning

 • Graphics processing unit (GPU) for graphics and 

image calculations),

 • Dedicated AI chips like Google’s tensor processing 

unit (TPU) chips, and

 • High- speed networks behind frameworks like 

Tensorflow, Caffe, Mxnet, Torch, Keras, PyTorch, 

Theano, etc.

ii. Algorithm layer: It contains various types of ML 

algorithms which will be elaborated in coming chapters.

1.2  MACHINE LEARNING

In recent times the field of ML has developed very fast and 

has branched into many subfields. The following are the most 

recognized ML methods.

 • Supervised Learning: Labeled data is given as input for 

learning.

 • Unsupervised Learning: Unlabeled data is given as input 

for learning. The combination of unsupervised and 

supervised learning is called semi- supervised learning in 

which both labeled and unlabeled data are given as input.

 • Reinforcement Learning (RL): Learning is based on intel-

ligent agents taking actions to maximize the cumulative 

reward from environments.

Neural networks (NNs) model neurons as electronic circuits 

and use them as their basic building blocks. They perform 

deep learning (DL) when the number of NN layers is increased. 

Further classification is determined by these basic methods:

i. Back Propagation NN (BPNN)

The NN circuit signals are used to update earlier layer, a 

key discovery behind the NN revolution.
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ii. Convolutional NN (CNN)

It uses the mathematical operation of convolution (an 

integral or sum expressing the amount of overlap of 

one function with shifted another function) instead of 

matrix multiplication in at least one of its layers, and

iii. Recurrent NN (RNN)

The connections between nodes form a directed graph 

along a temporal sequence.

The following are some of the important, but nonexhaustive 

NN types based on the above paradigms:

i. Feedforward Neural Networks (FFNN): They are the 

most basic type of NN consisting of an input layer, one 

or more hidden layers, and an output layer, with the data 

flowing sequentially through them from the input to the 

output layer. They are widely used for image and speech 

recognition, natural language processing, and predictive 

modeling. In an FFNN, each neuron in the hidden 

layer(s) applies an activation function to a weighted 

sum of the inputs and passes the output to the next 

layer. Their weights and biases get adjusted during the 

training to minimize the errors between the predicted 

and the actual output.

ii. Perceptron: It is a single- layer NN that takes a set of 

inputs, processes them, and produces an output. They 

apply weights to the input data and then pass the sum 

through an activation function to produce an output. 

The activation function is typically a threshold function 

that outputs a 1 or 0 depending on whether the sum 

is above or below a certain threshold. They are used 

for image recognition, signal processing, and control 

systems and are somewhat limited in their applications 

as they can only solve linearly separable problems in 

 



4   ■   An Introduction to Deep Reinforcement Learning

which the data can be separated into two categories 

using a straight line.

iii. Multilayer Perceptron (MLP): It is a type of FFNN com-

monly used for classification tasks. The input layer 

receives the raw data. Each following MLP layer consists 

of many perceptrons, and the output of one MLP layer 

feeds into the next layer as input. The hidden layers in 

between transform the input into a form that is suitable 

for the output layer, which produces the final prediction. 

MLPs have been applied to image recognition, speech 

recognition, time series analysis, and natural language 

processing.

iv. Recurrent Neural Networks (RNN): They process sequen-

tial input data, such as text and speech The input data is 

processed through a series of recurrent neurons, which 

take the current input and the output from the pre-

vious time step as input, thus allowing the network to 

maintain a memory of previous inputs and context. The 

weights and biases of the neurons are adjusted during 

training to minimize the error between the predicted 

output and the actual output –  a process called back 

propagation. RNNs are commonly used for language 

translation, text generation, speech recognition, and 

time series prediction.

v. Long Short- Term Memory (LSTM): It is a type of RNN 

for handling long- term dependencies and contains 

memory cells, input gates, output gates, and forget gates.

 The information flows through the memory cells over 

time. The input and forget gates determine which infor-

mation should be stored in the memory cells and which 

information should be removed. The output gate then 

determines which information should be passed on to 

the next layer. Thus, LSTM remembers important infor-

mation over long periods of time and selectively forgets 
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irrelevant information. They have solved problems 

with long- term dependencies effectively in natural 

language processing, speech recognition, handwriting 

recognition, and other applications where long- term 

memory is important.

vi. Radial Basis Function (RBF) Neural Network: It is an 

FFNN that uses a set of RBFs to transform its inputs 

into outputs. It is composed of an input layer, a hidden 

layer, and an output layer. It uses a set of RBFs to trans-

form the input data by calculating the distance between 

the input and a set of predefined centers in the hidden 

layer. The hidden layer outputs are then combined lin-

early to produce the final output. The weights of the 

connections between the hidden and the output layer 

are trained using a supervised learning algorithm, 

such as backpropagation. RBF networks are often used 

for problems with large datasets as they learn to gen-

eralize well and provide good predictions. They are 

used for time- series analysis and prediction, financial 

forecasting, pattern recognition, classification, and 

control tasks.

vii. Convolutional Neural Networks (CNN): These are made 

up of convolutional, pooling, and fully connected 

layers. The input data is processed through many con-

volutional layers, which apply filters to the input and 

extract features. Their output then passes through 

pooling layers, which down- sample the data to reduce 

its dimension. Finally, the output goes through fully 

connected layers for the final classification or predic-

tion. The CNNs are commonly used for image and 

video recognition tasks, such as object detection, facial 

recognition, and self- driving cars.

viii. Autoencoder: This NN uses unsupervised learning 

which does not require labeled data to make 
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predictions. It first compresses the input data into 

a lower- dimensional representation and then 

reconstructs it back into the original format, thus iden-

tifying the most important features of the input data. 

They are commonly used in applications such as data 

compression, feature extraction, image denoising, and 

anomaly detection. For example, NASA uses them to 

detect anomalies in spacecraft sensor data.

ix. Sequence to Sequence Models (Seq2Seq): They use an 

encoder and a decoder to convert one sequence of data 

into another by first encoding the input sequence into 

a fixed- length vector. Then the decoder uses this vector 

to generate the output sequence one element at a time, 

predicting the next element based on the previous one 

and the context vector. These models have been used in 

natural language processing, machine translation, con-

versational agents, and language translations.

x. Modular Neural Network (MNN): In MNN, each 

module is a separate network for solving a spe-

cific subproblem, and all module outputs are then 

combined to provide a final output. This approach 

makes it easier to build complex systems by combining 

simpler modules. They can be more robust than trad-

itional NNs, as each module can handle a specific type 

of input or noise, so that even if one module fails, the 

overall system can still function, as other modules can 

take over. MNNs have been used in computer vision, 

speech recognition, and robotics.

1.3  APPLICATIONS OF AI

Attempts to understand the nature of intelligence started a 

long time ago and various ancient cultures –  e.g. Greek, Indian, 

Chinese, and others –  produced many philosophical ideas about 

it. Later tools of mathematics, logic, and engineering ushered 

us in the current era of new understanding and applications.
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The field of AI is very broad, with a nonexhaustive list of 

subfields given below.

i. Neural Networks: Study the promise and limitations of 

computational networking based on neuron models, 

e.g., brain modeling, time series prediction, classifica-

tion, etc.

ii. Evolutionary Computation: Study and development of 

computer programs correcting and improving them-

selves automatically without human intervention 

during execution, e.g., genetic programming, etc.

iii. Vision: Developing machines to understand and inter-

pret the visual input, e.g., object recognition, image 

understanding, etc.

iv. Robotics: Building machines capable of autonomous 

movement, e.g., intelligent control, autonomous explor-

ation, etc.

v. Expert Systems: Software embodying the facts and rules 

of a particular area of knowledge, e.g., decision support 

systems, teaching systems, etc.

vi. Speech Processing: Development of systems able to 

understand naturally spoken languages, e.g., speech 

recognition and processing.

vii. Natural Language Processing: Extraction of meaning and 

structure of the written or printed natural languages, 

e.g., machine translation.

viii. Planning: Using current data to enumerate steps to 

achieve a well- defined goal, e.g., scheduling, etc.

ix. Machine Learning: Study and development of machines 

and algorithms capable of learning, e.g., decision 

trees, etc.

The new areas for using neural networks are always opening.
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1.4  HISTORICAL DEVELOPMENT

A short history based on the milestones follows based on Royal 

Society (UK) Report [1] .

i. 18th Century:

• Development of statistical methods which accelerated 

the pace of scientific research in general.

• Bayes’ Theorem (1763): Usually we have some prior

knowledge of the conditions leading to an event. This

theorem relates them.

P AB
P B A P A

P B
|

|( ) =
( ) ( )

( )
(1.1)

Here P A( ) and P B( ) are the probabilities of the

occurrence of events A and B independently. P AB|( )
and P B A|( ) are conditional probabilities of occurrence

of event A or B given that B or A is true. This simple 

relation has played an outsized role in the development 

of AI/ ML.

ii. 1950s:

• Turing Test (1950): Alan Turing presented the criteria

by which machines can be considered intelligent if its

responses to questions could convince a person that

it is human.

• Checker playing machine (1952): Arthur Samuel

created a machine able to learn to pay checkers using

expert rules and playing against itself.

• Dartmouth workshop (1956): This was a get- together 

of the AI/ ML’s early pioneers. John McCarthy came

up with the term ‘Artificial Intelligence.’
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 • The Perceptron (1957): Frank Rosenblatt invented the 

first ‘neural network’ using a potentiometer and an 

electric motor. It could take an input (like a pixel) and 

create an output (like a label).

 iii. 1960s and 1970s: not much, AI winter

 iv. 1980s:

 • ‘Parallel Distributed Processing’ in two volumes 

(1986): advocated the use of NN models for ML

 v. 1990s:

 • Backgammon playing neural network algorithm 

(1992): Gerald Tesauro created a backgammon 

playing program based on NN, which could match 

the best human players.

 • Deep Blue beats world chess champion (1997): It 

could process 200 million moves per second before 

selecting the best one.

 vi. 2010s:

 • IBM’s Watson beats Jeopardy champion (2011):

 • ImageNet (2012): A paper by Alex Krizhevsky, Ilya 

Sutskever, and Geoffrey Hinton presented a model 

that dramatically reduced the error rate in image rec-

ognition systems.

 • AlphaGo beats Go champion (2016): Program created 

by Google’s DeepMind team won four out of five 

games against Chinese master of Go game.

 • Libratus beats poker champion (2017): Program 

created by Carnegie Mellon University beat top poker 

player, and this success was repeated by University of 

Alberta’s program Deepstack.

 • Transformer architecture: The Google researchers 

published a paper ‘Attention is all you need’ (2017) 
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starting a new and powerful approach to large lan-

guage models (LLMs).

 • Development of foundational LLM models (2018) 

trained on vast amounts of unlabeled data started.

 vii. 2020s:

 • GPT- 3 was released by OpenAI (2020).

 • GPT- 4 was released by Microsoft (2023). It is a mile-

stone toward achieving a ‘General AI’ system.

1.5  SOME GENERAL REMARKS

The new technologies have always created great hopes and 

fears in society and AI/ ML is not an exception. In addition, it 

has raised some philosophical questions about the essence of 

human uniqueness. We discuss some of them without giving 

definite answers.

The human brain consists of about 86 billion neurons and 

100 trillion synapses which often fire asynchronously in par-

allel. Furthermore, it runs on less than 20 watts of power, 

making it one of its kind in the natural world. On the other 

hand, the number of neurons in an artificial neural network 

(ANN) is somewhere between 100 and 1,000. It has been found 

that increasing their numbers does not necessarily improve 

the network performance. Also in ANN, only the neighboring 

layers are connected which, in most cases, are activated 

sequentially, and it usually consumes about 200 watts and also 

produces heat.

All of this points to the fact that a huge improvement in the 

architecture and algorithms of ANN is needed before they can 

be comparable to the brain. Still the progress has been remark-

able so far and is accelerating fast.

Our intelligence has many components and a few of them like 

recognizing outside objects and events and their understanding 

are one of them. This involves comparing new information 

against the older stored ones. The AI through neural networks 
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also works like that. The NN is trained on known cases and 

that training is used for recognizing or classifying the new data. 

This aspect of human intelligence has been well captured by 

the machines and they can be said to have even surpassed us. 

This has been demonstrated by machines beating humans, for 

example, in games of chess and Go. It seems that machines will 

surpass humans in all such situations sooner or later where this 

paradigm is applicable.

Robotics combined with AI is another area where machines 

will outperform humans. This is just the extension of the 

situations in which traditional machines like cars, planes, 

and other similar inventions extend human capabilities. The 

working of AI/ ML algorithms in real time becomes visible 

through machine movements and that is something new. This 

has generated in general public’s mind more fear and curiosity 

than anything else.

The ANN may also give new insights to better under-

stand the brain by studying how it generates its outputs and 

changes in response to new input. That may well provide useful 

insights into their working of human and other biological 

brains. So, while ANNs are far from being able to replicate the 

brain functions in totality, they can still help us solve com-

plex problems such as optimizing logistics for transportation 

networks and processing raw photos and videos in medical 

imaging, robotics, or facial recognition.

It is still not clear how moral and ethical concerns can be 

encoded in the AI/ ML algorithms right from the beginning.
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C H A P T E R  2

Survey of ML

After the advent of the machine learning (ML) para-

digm, many different approaches to ML were quickly 

discovered. They are often characterized as being with or 

without deep learning (DL), a very important part of AI/ ML.

DL provides a method for approximating arbitrary functions 

in high- dimensional feature space (corresponding to large 

number of independent features) using NN. It uses input data 

as examples and learns the data’s structure and functional 

relationships among its features using various algorithms based 

on the statistical methods such as linear regression, decision 

trees (DT), random forests (RF), support vector machines 

(SVMs), artificial neural networks (ANNs), boosting, etc. An 

input layer followed by analysis and an output layer is some-

times called ‘shallow learning.’
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In contrast, ‘deep learning’ has one or more hidden layers 

between input and output layers. At each layer (except input 

layer), the following action steps take place:

 • At the current layer, the weighted sum of units from the 

previous layer is computed.

 • A nonlinear transformation or an activation function 

(e.g., logistic function, hyperbolic tangent, rectified linear 

unit (ReLU), etc.) is applied to the sum.

 • This sum and weights on the inter- layer links become the 

input to the next layer.

This way, the computations flow forward from input layer to 

the output layer. For backpropagation, at output layer and each 

hidden layer, one computes the error derivatives backward, and 

backpropagates gradients toward the input layer. The weights 

are then updated to optimize some chosen loss function.

This basic approach is used in many ways to accomplish 

various ML tasks. Some of these approaches are the focus of 

this chapter.

2.1  LEARNING FROM PROBLEMS

One way of learning starts from a problem and learns the 

methods, techniques, and steps for solving it from known 

methods of solution. Here we provide a nonexhaustive list of 

the main varieties of this approach (Table 2.1).

2.1.1  Supervised (or Discriminative) Learning

In this approach, labeled historical or experimental data is used 

as input for learning. Labels are tagged by experts and con-

tain descriptive features (attributes taking either numerical or 

binary values) and target features (desired information). The 

learning is also called ‘classification’ for discrete and ‘regres-

sion’ for continuous labels. The ML techniques are used to learn 
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TABLE 2.1 Varieties of Machine Learning: Learning from Problems

Supervised (or 
Discriminative) 
Learning

(A representative list)
-  Multi- layer perceptron (MLP):

  i. Feed- forward MLP (FF- MLP)
 ii. Back- propagation MLP (BP- MLP)

-  Convolutional NN (CNN)
-  Recurrent NN (RNN):

  i. Long short- term memory (LSTM)
 ii. Bidirectional LSTM (Bi- LSTM)
iii. Gated Recurrent Unit (GRU)

Semi- supervised 
Learning

Applicable when data labels are missing or incomplete

Unsupervised 
(or Generative) 
Learning

(A representative list)
-  Generative adversarial network (GAN)
-  Restricted Boltzmann machine (RBM)
-  Radial basis function network (RBFN)
-  Self- organizing map (SOM)
-  Auto- encoder (AE):

  i. Sparse AE (SAE)
 ii. Denoising AE (DAE)
iii. Contractive AE (CAE)
 iv. Variational AE (VAE)

-  Deep belief network (DBN)
Self- supervised 

Learning
Intermediate between unsupervised and supervised 
learning

Hybrid Learning -  Integrate more than one of either variety (generative 
or discriminative)
 i. CNN+ LSTM,
ii. AE+ GAN, etc.

-  Generative stack followed by discriminative stack.
  i. DBN+ MLP,
 ii. GAN+ CNN,
iii. AE+ CNN, etc.

-  Integrate either variety with non- deep learning 
classifier.
 i. AE+ SVM,
ii. CNN+ SVM, etc.

Deep Transfer Learning
Multi- instance Learning
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their functional relationship and this step usually takes much 

time and expense. Then, the trained learning system is used to 

assign the new incoming data to appropriate target classes.

Some well- known but not exhaustive supervised learning 

algorithms are given below.

2.1.1.1 Multilayer Perceptron (MLP)

A feedforward MLP is a simpler version of artificial neural net-

work. It is a next- level progression of single- layer perceptrons, 

which can distinguish only linearly separable data.

An MLP consists of at least three layers of fully connected 

neurons and maps a set of input values to output values. It 

uses a nonlinear activation function (usually a Heaviside step 

function) at each individual layer which can be combined to 

express any mathematical function in principle. It can dis-

tinguish data that is linearly nonseparable. Backpropagation 

algorithm is used to train them and that requires the use of 

continuous activation functions, e.g., sigmoid or ReLU. The 

MLP components and their roles are as follows:

 • Input layer: It has neurons for receiving the initial input 

data and each of them represents a feature or dimension 

of the input data. The dimensionality of the input data 

determines the number of neurons.

 • Hidden layer: These are the layers between the input and 

output layers in which each neuron receives inputs from 

all other neurons in the previous layer (either the input 

or another hidden layer). Then the output is passed to the 

next layer. The number of hidden layers and the number 

of neurons in each of them are called hyperparameters. 

They are determined during the model design phase.

 • Output layer: Neurons at this layer produce the final 

output of the network, and their number depends on the 
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nature of the task. For example: (i) in binary classifica-

tion, there may be either one or two neurons depending 

on the activation function for representing the probability 

of belonging to one class, (ii) in multi- class classification 

tasks one may require many more neurons.

 • Weights: Neurons in adjacent layers are fully connected 

to each other. Each such connection has an associated 

weight learned during the training process determining 

the strength of the connection.

 • Bias neurons: In addition to the input and hidden neurons, 

each layer (except the input layer) usually also has a bias 

neuron, giving a constant input to the next layer neurons. 

Bias neurons have their own weights associated with each 

connection, which is learned during training. They effect-

ively shift the activation function of the neurons in the 

subsequent layer to learn an offset or bias in the decision 

boundary. By adjusting the bias neuron weights, the MLP 

learns to control the threshold for activation to better fit 

the training data.

Note: In general machine learning, bias has another 

meaning, as it refers to the error introduced by approxi-

mating a real- world problem with a simplified model, thus 

measuring how well the model can capture the underlying 

patterns in the data. A high bias indicates that the model 

is too simplistic and may underfit the data, while a low 

bias suggests that the model is capturing the underlying 

patterns well.

 • Activation function: Each hidden layer and the output 

layer neuron apply an activation function (e.g., sigmoid, 

tanh, ReLU, softmax, etc.) to its weighted sum of inputs. 

These functions introduce nonlinearity into the network, 

allowing it to learn complex patterns in the data.

 • Training: MLPs are trained using the backpropagation 

algorithm, which computes gradients of a loss function 
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with respect to the model’s parameters. The parameters 

are updated iteratively to minimize the loss.

2.1.1.2 Convolutional NN (CNN)

A CNN is a feedforward deep neural network (FF- DNN), 

having layers with specific functions for processing data with 

multiple arrays, e.g., color image, language, audio spectrogram, 

and video. The inspiration behind CNN is the organization of 

neurons in our visual cortex. After the input layer, the CNN 

layers have the following other layers:

 • Convolutional layer: This includes one or more layers that 

perform convolutions or dot product of the convolution 

kernel (usually Frobenius inner product with ReLU as 

activation function) with the layer’s input matrix. This 

kernel slides along the input matrix and generates a fea-

ture map contributing to the input of the next layer.

 • Pooling layer: It combines the outputs of neuron clusters 

at one layer into a single neuron in the next layer, thereby 

reducing the dimensions of data. There are two types of 

pooling: max pooling and average pooling. The former uses 

the maximum value of each local cluster of neurons in the 

feature map and the latter takes the average value.

 • Fully connected layers: These layers connect every neuron 

in one layer to every neuron in another layer as in MLP.

2.1.1.3 Recurrent NN (RNN)

RNN uses output of the previous step as the input to the current 

step. In this manner, its output depends on the prior elements 

within the sequence. This is done with the help of hidden units 

which store the history of past elements using multilayer NN in 

which all layers have same weights. RNNs cannot store infor-

mation for long time and have issues of vanishing gradients. 

Some of its variations are given below.
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 • Long Short- Term Memory (LSTM)

LSTM networks (Hochreiter and Schmidhuber, 1997) and 

gated recurrent unit (GRU) (Chung et al., 2014) were 

proposed to address the vanishing gradient issue. They use 

gating mechanisms to manipulate information through 

recurrent cells. Gradient backpropagation or its variants 

can be used for training all deep NN. An LSTM memory 

cell with long period data storage capability has three 

gates: (i) ‘Forget,’ which decides which previous data will 

be kept or discarded; (ii) ‘Input,’ which controls which 

data enters; and (iii) ‘Output,’ which controls the output.

 • Bidirectional LSTM (Bi- LSTM)

They have two hidden layers running in opposite 

directions and are trained to predict negative and positive 

directions at the same time. It is widely used for natural 

language processing.

 • Gated Recurrent Unit

In contrast to LSTM, it has only two gates: ‘Reset’ and 

‘Update.’. It does not discard information from earlier data 

sequence.

2.1.2  Semisupervised Learning

Semisupervised learning falls in between supervised and 

unsupervised learning. Many times, the desired data comes 

without labels or misses some of them. Sometimes, a small 

amount of labeled data with large number of unlabeled ones 

is available. Acquisition of labeled data is usually very expen-

sive but whatever one has gives more accurate understanding 

of the underlying relationships. The algorithm is trained on 

both labeled and unlabeled data. This learning method better 

mimics the way humans learn.
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The algorithms are a complicated mix of both supervised 

and unsupervised learning, e.g., generative models, low- density 

separation, Laplacian regularization, etc. The goal is to learn a 

function that can accurately predict the output variables based 

on the input variables, like supervised learning. Semisupervised 

learning builds a model with available labeled data for training 

and treats the rest of the unlabeled ones as test data. Some 

assumptions are also made implicitly by the algorithm:

 • Continuity: The points closer to each other are more 

likely to have the same output label.

 • Cluster: The data can be divided into discrete clusters 

and points in the same cluster are more likely to share an 

output label.

 • Manifold: The data dimension is lower than that of the 

input space, thus allowing the use of distances and dens-

ities defined on the manifold.

2.1.3  Unsupervised (or Generative) Learning

In this approach, unlabeled data is used as input for learning, 

and algorithms are used to learn the patterns present in the 

data. These patterns capture the inherent probability densities 

through neural networks and statistical methods. The net-

work mimics the given data using a learning rule and then uses 

the error for correcting its weights and biases. Unsupervised 

learning is used for tasks such as clustering, dimensionality 

reduction, and anomaly detection.

The sequence of actions are as follows:

 • The algorithms search for frequent if- then associations to 

discover correlations and co- occurrences within data.

 • The model learns useful data structure properties.

 • Strong rules within a dataset are identified.
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Some of the well- known learning rules are:

 • Hopfield learning: A single self- connected layer mimicking 

the magnetic domains in iron is used. This learning layer 

can also be used as a content addressable memory.

 • Boltzmann machine learning: There are two layers (hidden 

vs. visible) with symmetric two- way weights. Boltzmann’s 

thermodynamics probability rule at the microscopic level 

is used to get at the macroscopic energies.

 • Restricted Boltzmann machine (RBM) learning: This is the 

regular Boltzmann machine but with a restriction that lat-

eral connections within a layer are prohibited. This makes 

further analysis easier.

 • Stacked RBM: In this approach many RBMs encode 

hidden features hierarchically. After training a single 

RBM, another one is added and they are trained together 

again. This can go on as needed.

 • Helmholtz method: In the stacked RBM, the bidirectional 

symmetric connections, separate one- way connections 

are used to form a loop. It does both generation and 

discrimination.

2.1.3.1 Generative Adversarial Network (GAN)

A GAN (Ian Goodfellow) is a type of neural network architec-

ture for generative modeling to create new plausible samples 

on demand. It involves automatically discovering and learning 

regularities or patterns in input data so that the model may 

be used to generate or output new examples from the original 

dataset. GANs are composed of two neural networks:

 • Generator G: it creates new data having properties like the 

original data

 • Discriminator D: it predicts the likelihood of a subsequent 

sample being drawn from actual data rather than data 

provided by G.
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Both G and D are trained to compete. While G tries to fool and 

confuse D by creating more realistic data, D tries to distinguish 

the genuine data from the fake data generated by G.

GAN networks are more used for unsupervised learning but 

have been also found useful for semisupervised, transfer, and 

reinforcement learning tasks. Inverse models, such as bidirec-

tional GAN, can also learn a mapping from data to the latent 

space. GAN networks have been used in the areas of healthcare, 

image analysis, data augmentation, video generation, voice 

generation, pandemics, traffic control, cybersecurity, and 

many more.

2.1.3.2 Restricted Boltzmann Machine (RBM)

The full Boltzmann machines can learn a probability distri-

bution from inputs. Each one of their nodes are connected to 

every other node. RBM is their subset which has a limit on 

the number of connections between the visible and hidden 

layers. They are more efficient for the gradient- based con-

trastive divergence algorithm. They can recognize patterns in 

data automatically to develop probabilistic models using either 

supervised or unsupervised learning. They have been used for 

dimensionality reduction, classification, regression, collabora-

tive filtering, feature learning, topic modeling, etc.

2.1.3.3 Radial Basis Function Network (RBFN)

It is an ANN that uses radial basis functions as activation 

functions so that its output depends on their linear combin-

ation and neuron parameters. RBFNs are used for function 

approximation, time series prediction, classification, etc.

2.1.3.4 Self- Organizing Map (SOM)

SOM or Kohonen’s map for unsupervised learning was 

introduced by Teuvo Kohonen in the 1980s. It does not use 

backpropagation for learning but learns by adjusting neuron 

weights. It reduces the dimension of data by creating a spatially 

organized representation.
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SOMs have two layers: one for input and the other for output 

or the feature map. There are no activation functions as weights 

are passed to the output layer as they are. The dimensions 

of input data and of the neuron weight vector are the same. 

Weights are updated using the processes of competition, 

cooperation, and adaptation.

2.1.3.5 Autoencoder (AE)

An AE uses neural networks to learn representations for espe-

cially high- dimensional data. It has three parts:

 • Encoder compresses the input.

 • Code is also generated by encoder.

 • Decoder uses the code to reconstruct the input.

The AEs are used for many deep learning tasks, e.g., 

dimensionality reduction, feature extraction, efficient coding, 

generative modeling, denoising, anomaly or outlier detection, 

etc. A single- layered AE with a linear activation function AE 

is like principal component analysis (PCA). AEs have many 

variants which are given below.

 • Sparse AE (SAE)

An SAE has a sparsity penalty on the coding layer. It may 

have more hidden units than inputs, but only a small 

number of them are active at the same time, thus resulting 

in a sparse model. They respond to the unique statistical 

features of the constrained training data.

 • Denoising AE (DAE)

This variant of AE receives a corrupted data point as input. 

It is trained to output the original undistorted input by 

minimizing the average reconstruction error over the 

input, thus ‘denoising’ it. It also alters the reconstruction 
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criterion to make it harder to learn the identity function. 

DAE is very useful for automatic preprocessing of an 

image to boost its recognition accuracy.

 • Contractive AE (CAE)

CAE makes the autoencoder robust against small changes 

in the training dataset by including a ‘regularizer’ in its 

objective function. DAEs and CAEs make reconstruction 

and representation robust, respectively.

 • Variational AE (VAE)

A VAE is an ANN using probabilistic generative approach 

and was introduced by Kingma and Welling (2022). 

Assuming an underlying probability distribution for 

the source data, it tries to discover the distribution’s 

parameters. It is very effective for generative coders for 

mapping the input onto a latent vector with the parameters 

of a probability distribution, e.g., the mean and variance 

of a Gaussian distribution. Initially designed for unsuper-

vised learning, VAE has been extended to semisupervised 

and supervised learning.

The main components of a VAE are two NNs.

 • The ‘encoder,’ as the first NN, maps the input data to a low- 

dimensional latent space of parameters of a variational dis-

tribution. It is thus able to produce many different samples 

coming from the same distribution.

 • The second ‘decoder’ NN goes in the opposite direction 

to map the latent space to the input data space, e.g., to the 

means of the variational distribution. Both networks are 

trained together using reparameterization. Sometimes 

a third NN is used to map to the variance which can be 

optimized with gradient descent.
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The model is optimized by calculating ‘the reconstruc-

tion error’ and ‘Kullback– Leibler divergence,’ which are both 

derived from the free energy expression of the distribution.

2.1.3.6 Deep Belief Network (DBN)

The DBN is composed of many stacked individual unsuper-

vised networks such as AE and RBM connected sequentially. 

These are layers of hidden units, with connections between the 

layers but not between units within each layer.

Initially DBN is trained with unlabeled data and later is fine- 

tuned with labeled ones. It is good at capturing the hierarchical 

nature of the input and its deep patterns due to its abilities for 

strong feature extraction and classification. In the unsuper-

vised learning phase, DBN learns to reconstruct its input prob-

abilistically so that layers could act as feature detectors. Later, 

DBN can be further trained with supervision for the purpose 

of classification.

In DBN, each sub- network’s hidden layer serves as the vis-

ible layer for the next. As there are connections between, but 

not within, layers, it leads to a fast, layer- by- layer unsupervised 

training.

The application of DBN in electroencephalography and drug 

discovery has been particularly successful.

2.1.4  Self- Supervised Learning (SSL)

SSL is a particular variation of the unsupervised learning 

approach. It can be also thought of as an intermediate between 

the supervised and unsupervised learning.

SSL learns from vast amounts of unlabeled data, so it 

avoids the cost of labeling and curating it. In contrast to task- 

specific supervised learning methods, SSL learns generic 

representations useful across many tasks. SSL- based models 

learn representations that are more robust to adversarial 

examples, label corruption, and input perturbations, and are 

fairer compared to their supervised counterparts.
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There have been many recent noteworthy areas of SSL’s 

applications.

 • In natural language processing, it has led to advances from 

automated machine translation to large language models 

trained on web- scale corpus of unlabeled text. A common 

SSL objective is to mask a word in the text and predict 

the surrounding words. Finding this context allows the 

model to capture relationships among words in the text 

without the need for any labels. The same SSL model 

representations can be used across a range of downstream 

tasks such as translating text across languages, summar-

izing, or even generating text, etc.

 • In computer vision, SSL pushed new bounds on data size 

with models such as SEER trained on 1 billion images. 

Such models have also matched or in some cases surpassed 

models trained on labeled data on benchmarks like 

ImageNet. It has also been successfully applied to video, 

audio, and time series by defining a pre- text task based 

on unlabeled inputs to produce descriptive and intelligible 

representations. SSL can also find two views of the same 

image formed by adding color or cropping, to be mapped 

to similar representations.

In SSL, the task is solved in two steps:

i. First the artificial neural network (ANN) is initialized 

with pseudo- labeled data.

ii. Using the weights and biases found in first step, the 

actual task is solved with either supervised or unsuper-

vised learning.

2.1.5  Hybrid Learning

In general, we have two kinds of deep learning models:
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 • Generative: This can learn from both labeled and 

unlabeled data.

 • Discriminative: This cannot learn from unlabeled data but 

can outperform generative on labeled data.

Hybrid networks combine the two in various ways to get the 

best possible results for tasks at hand.

 • Approach 1: Integrate more than one of either variety, e.g., 

CNN+ LSTM, AE+ GAN, etc.

 • Approach 2: Stack generative followed by discriminative, 

e.g., DBN+ MLP, GAN+ CNN, AE+ CNN, etc.

 • Approach 3: Integrate either variety with non- deep 

learning classifier, e.g., AE+ SVM, CNN+ SVM, etc.

Most of the hybrid networks have focused on supervised 

learning and classification tasks.

2.1.6  Deep Transfer Learning (DTL)

DTL uses a previously learned model to solve a new task with 

minimum training. The knowledge gained while solving one 

problem is stored and then applied or reused to a different but 

related problem. As an example, learning from recognizing cars 

can be partially used to recognize trucks. It can also be used 

to improve the sampling efficiency of a reinforcement learning 

agent. It is very useful when a needed amount of labeled data is 

unavailable or training on available data is expensive. Recently 

it has been used in many fields like natural language processing, 

sentiment classification, visual recognition, speech recogni-

tion, spam filtering, etc.

It has a two- stage process of pre- training and fine- tuning. 

DTL can be classified as having four main approaches as 

follows:
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i. It utilizes instances in source domain by appropriate 

weight.

ii. It maps instances from two domains into a new data 

space with better similarity.

iii. It reuses a part of the network pretrained in the source 

domain based on network.

iv. It uses adversarial approach to transfer features suitable 

for two domains.

The last approach has become quite popular recently as it 

combines GAN and DTL. DTL can be also classified into 

(i) inductive, (ii) transductive, and (iii) unsupervised depending 

on the source and target domains.

2.1.7  Multi- Instance Learning (MIL)

MIL is a type of weakly supervised learning in which the learner 

receives a set of labeled sets or ‘bags,’ each containing many 

instances. For example, in multi- instance binary classification, a 

‘negative- labeled bag’ contains all negative instances. A ‘positive- 

labeled bag’ contains at least one positive instance. The learning 

process leads one to the underlying concept for correct labeling.

In the simple case of binary classification, a bag labeled 

negative has all the negative instances, but one labeled positive 

has at least one positive instance. The learner uses a collection 

of such bags to either (i) induce a concept that will label indi-

vidual instances correctly or (ii) learn how to label bags without 

inducing the concept. MIL is a kind of supervised learning, in 

which every training instance has either discrete or real valued 

label. It handles situations when training labels come with 

incomplete knowledge of labels.

2.2  LEARNING FROM STATISTICAL INFERENCE

Most of the learning methods discussed earlier can also be 

understood from a statistical point of view.
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2.2.1 Inductive Inference

It is the same as supervised learning in which general rules are 

obtained from the labeled training data. The trained model is 

then used to predict the classification/ regression properties of 

new and unseen data. In general, inductive learning first studies 

observation from which conclusions are drawn.

2.2.2 Deductive Inference

In general, deductive learning starts from the known 

conclusions or rules which helps the algorithms to classify the 

new observations.

2.2.3 Transductive Inference

Transductive learning (introduced by Vladimir Vapnik) was 

motivated by the observation that it is easier to learn a spe-
cific function for the specific problem at hand than a general 
function applicable to the same problem. Sometimes, it is pref-

erable to induction as that requires solving a more general and 

often difficult problem. In those situations, many times it is 

easier to get the immediate solution without solving the general 

one. Transductive support vector machine (T- SVM) algorithm 

is an example of such an approach.

2.3  LEARNING DEPENDING ON TECHNIQUES

This way of looking at ML focusses on learning techniques. 

Some important variations are presented next.

2.3.1  Multitask Learning (MTL)

In MTL, multiple learning tasks are solved at the same time by 

exploiting features, which are both common and separate across 

tasks. This improves efficiency in learning and accuracy of pre-

diction for the task- specific models when compared to situation 

when the models are trained separately. Usually, MTL is applied 

to stationary learning settings and its extension to nonstationary 

environments is called Group Online Adaptive Learning.
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As MTL uses commonalities and differences across many 

tasks, to solve them at the same time, this leads to improved 

learning efficiency and prediction accuracy. It utilizes inductive 

transfer to improve generalization by using the domain infor-

mation contained in the training signals of related tasks. 

Learning tasks is done in parallel, so learning each task helps 

better learn other tasks. Some good examples are spam filter, 

multi- class and multi- label classifications, etc. MTL is particu-

larly useful when the tasks have many common features but are 

undersampled.

2.3.2  Active Learning (AL)

In AL, a learning algorithm queries a user (or some other infor-

mation source also called teacher or oracle) to label new data 

points with the desired outputs, especially when unlabeled 

data is abundant but manual labeling is expensive. With careful 

choice the number of examples to learn a concept is often much 

lower than the number required in normal supervised learning.

2.3.3  Online Learning (OL)

In OL, data becomes available sequentially and is used to 

update the best predictor for future data at each step. This is 

different from batch learning for generating the best predictor 

by learning on the entire training data set at once.

2.3.4  Ensemble Learning (EL)

EL uses many learning algorithms to obtain performance 

that is better than any of the constituent learning algorithms 

alone. One can increase the resources to improve the efficiency 

of a single algorithm or spread that increase among multiple 

algorithms. The latter has been found to give better results.

An ML ensemble consisting of finite set of alternative 

models typically has more flexible alternative structures. In 

general, EL combines many hypotheses to construct a better 

hypothesis.
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EL trains two or more algorithms to a specific classification or 

regression task, and they are called ‘base models,’ ‘base learners’ 

or ‘weak learners.’ A diverse collection of weak performing 

models are trained to the same modeling task, and as a result, 

their outcomes and error values exhibit high variance. Then EL 

combines them into a stronger and better performing model.

Ensemble learning uses Bagging (bootstrap- aggregating), 

Boosting, or Stacking/ Blending techniques to create high vari-

ability base models.

 • Bagging generates random samples from the training 

observations and tries fitting the same model to each 

different sample.

 • Boosting is an iterative process to sequentially train each 

next base model on the up- weighted errors of the previous 

base model’s errors. This produces an additive model to 

reduce the final model errors.

 • Stacking or Blending trains different base models (with 

diverse/ high variability) independently and combines 

them into the ensemble model.

Common EL applications include Random Forests (exten-

sion of Baggin), Boosted Tree Models, Gradient Boosted Tree 

Models.

In one sense, EL compensates for poor learning algorithms 

by performing a lot of extra computation. Fast algorithms such 

as decision trees and random forests are commonly used for 

this purpose.

2.4  REINFORCEMENT LEARNING (RL)

The foundation of RL has its origin in two scientific ideas of 

almost a century earlier.

1. Law of Effect

It was coined by Edward Thorndike in 1911 based on animal 

research. It is the notion that an animal will repeat satisfactory 
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actions and avoid actions producing discomfort. Furthermore, 

this says that the learning uses selection to choose the final 

course of action after observing how the possible choices 

worked. The animal also uses ‘associative learning’ in which 

options are associated with positive or negative outcomes.

In 1927, Ivan Pavlov described reinforcement as ‘the 

strengthening of a pattern of behavior due to an animal 

receiving a stimulus— a reinforcer— in a time- dependent rela-

tionship with another stimulus or with a response.’

2. Optimal Control Theory

This has its origin in mathematics and algorithms. Richard 

Bellman used them to derive an equation (aptly named Bellman 

equation), which returns an optimal value function from given 

states of a dynamic system. He further introduced the idea of 

Markov decision process (MDP), which is a discrete stochastic 

version of the optimal control problem.

With the advent of NN, the RL was combined with it and 

deep RL (DRL) was born. In DRL, the agent learns from a 

high- dimensional environment using an NN which can be of 

two kinds.

i. Online or direct learning: The agent constructs an 

explicit model of the fully available environment and 

then computes an optimal policy for it.

ii. Offline or indirect learning: Full environment model is 

unavailable, so the agent uses one of the two options:

 • It uses genetic algorithms, policy gradient methods, 

etc., to search the policy space, or

 • It finds policy using value- learning methods (e.g., 

temporal difference, Q- learning, etc.) with either 

policy (like A2C, etc.) or value iteration schemes (e.g., 

Q- learning, etc.).

In both RL and DRL, the agent is given a task to perform or 

a goal to achieve. The overall system has many states and in 
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each state an agent can take many possible actions. The agent 

chooses the action which maximizes the ‘reward.’

i. In RL, the agent accomplishes this task by trial and error. 

The reward is presented in a table so it can get that infor-

mation in a straightforward manner. It is possible for the 

table to become too complex and many times the agent 

is unable to visit some state- action pairs.

ii. In DRL, the agent uses NN to first learn the best pos-

sible state– action combination from an existing data 

set. It utilizes that knowledge to a new data set or a situ-

ation. The NN creates a function approximation for 

the reward implicitly, which the agent can use even for 

unencountered situations.

In coming chapters, we will discuss RL/ DRL in more detail.
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C H A P T E R  3

Basic Mathematics 

behind Deep 

Reinforcement 

Learning

The origins of reinforcement learning (RL) lie in applied 

mathematics and statistics. There are many important 

concepts to understand that are essential for mastering both 

the theoretical and applied aspects of RL. This chapter focusses 

on them.

3.1  A MATHEMATICAL MODEL OF DRL

RL differs from other learning paradigms like unsupervised 

learning, supervised learning, etc., in some important ways, as 

given below.

 • There is no supervision in RL so that there is no one 

telling the agent what the next best action is to be taken. 

For example, there is no supervisor guiding the robot in 

choosing the next moves.
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 • The feedback to the action taken is delayed and may not 

be observed immediately. This is very important as imme-

diate action without feedback may lead to accidents.

 • The agent decisions are sequential in time.

 • The feedback to the agent depends on the actions taken by 

the agent and the uncertainty in the environment.

The RL has some important mathematical underpinnings:

 • Markov decision process

 • Bellman equations

 • Q- learning

The rest of the chapter will explain these concepts.

3.2  MATHEMATICAL IDEAS BEHIND DRL

3.2.1  Markov Decision Process (MDP)

The MDP used in RL involves the elements (S, A, P, r, γ , s
0
) with 

the following properties:

 • {S} =  the set of all states s, it may be finite or infinite

 • {A} =  the set of all actions a, it may be finite or infinite

 • {P} =  probability P s s a
t t t
( | , )+1  for transitioning to state s

t+1 

at the next time step, after choosing action a
t
 in state s

t
 at 

time t.

 • r =  reward function r s a
t t
( , ) for choosing action a

t
 in state 

s
t
, can be either deterministic or stochastic.

 • γ  =  the discount factor to avoid accumulation of infinite 

future reward, so γ <1.

 • s
0
 =  the initial state which is usually taken from a distribu-

tion function.
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MDP is a discounted process with infinite horizon. The Markov 
property is defined as follows:

The effect of an action (a) on a state (s) depends only 
on that state (s) and not on any prior history of its 
development.

It means that no historical memory or the past information 

influences the next state. This makes the reasoning about the 

future states possible using only the information available in 

the current state. This is the basic mathematical framework 

behind the RL.

Let us look at these elements of MDP.

3.2.1.1 Actions and Policies

A policy defines how an agent selects actions. They can be 

either of the following depending on time horizon.

 • Stationary:

It applies for infinite time horizons, and stationary 

policies.

 • Nonstationary:

It depends on the time step and is useful for the finite time 

horizon. There, the cumulative rewards that the agent 

seeks to optimize are limited to a finite number of future 

time steps.

There is a second criterion for the policies which specifies the 

probability of the agent taking an action a
t
 in each state s

t
. Let 

the parameters θ specify other dependencies of the policy, then 

it can have the following characteristics.

 • Deterministic: In this case the probability is a predetermined 

time- independent action a.
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 π π
θ θ
s a s a
t t
,( ) = ( ) =  (3.1)

 • Stochastic: Also, time- dependent in which case it is the 

probability of action at  in state st

 π
θ
s a P a s
t t t t
,( ) =  |  (3.2)

Further, an RL agent can be either of the following kinds.

i. Model- free:

 This agent has one or more of the following components:

• a value function predicting how good each state, or 

each state/ action pair is, and

• a direct representation of the policy

 The agent learns a policy π(a|s) without explicitly mod-

eling the forward dynamics. It optimizes the policy 

by maximizing returns through estimation of policy 

gradients. For discrete situations Q- function is learned 

and for continuous cases both a value estimate and a 

policy is learned.

ii. Model- based:

This agent includes a model of the environment 

(estimated transition and reward functions) and a 

planning algorithm. The NN- based supervised learning 

is used to estimate a model of the environment. The 

actions are then learned by model predictive control 

using this model.

iii. Mixed agent:

This combines both approaches. For most real- world 

problems, the state space is high- dimensional and pos-

sibly continuous as well. In such situations deep learning 
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NN methods can be used to learn either policy or the 

value function.

• NN can deal with high- dimensional data, e.g., times 

series, frames, etc. They can manage exponential 

increase in data when adding extra dimensions to the 

state or action space.

• NN can be trained incrementally using additional 

samples obtained as learning happens.

3.2.1.2 Reward Function r(st, at)

It is a continuous scalar function in range {0, r
max

} for a given 

state- action pair to transition to another state. It indicates the 

quality of that state so that it is greater for states more rele-

vant to the solution of the task. Rewards are defined by the 

following terms.

 • Rewards:
They are associated with single states and indicate the 

states’ quality.

 • Return:

This indicates the quality of full sequence of decisions 

made in reaching the goal. The reward for such a full 

sequence is called return.

 • Value function:

It is the expected cumulative reward when actions are 

taken according to a policy.

Later in this chapter we discuss the varieties of value functions.

3.2.1.3 Discount Factor

The tasks can be of two kinds and that will affect their nature.

-  Continuous time and long running tasks
In these tasks it makes sense to discount far- future rewards to 

value current information more strongly at the present time. 
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To achieve this the discount factor γ <1 such that the impact of 

faraway rewards is reduced. In this way, the cumulative reward 

does not become infinite, and the agent can reach its reward 

goal in finite time.

-  Episodic tasks
These tasks come to an end, and discounting factor consider-

ations do not apply. So, in these problems, 𝛾 =  1 is used.

3.3  VALUE AND POLICY FUNCTIONS

In addition to the sets of states and functions we also need 

various value functions which are related to rewards. They 

depend on the process parameters for controlling the behavior 

of the RL agent involving states, actions, or their combinations. 

Some commonly used value functions are described next.

3.3.1  State- Only Value Function vπ(s)

It is the expected return or reward (denoted by r
t
) starting from 

that state under the agent’s policy π
θ
.

 v s E r s s

k

k

k t tπ π
γ( ) = =











=

∞

+ +∑
0

1
|  (3.3)

The discount factor (γ <1) ensures the finiteness of the 

accumulated reward.

Expression for value function in terms of policy

3.3.2  State- Action Value Function Qπ(s, a) 

This is also known simply as Q- function where Q denotes 

quality). If the agent’s policy π
θ
 is given, then it is the expected 

return or reward starting from that state, taking that action.

 Q s a E r s s a a
k

k
k t t t

π
π

γ, | ,( ) = = =










=

∞

+ +∑
0

1
 (3.4)
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Here

 • Q s aπ ,( ) =  the expected total future reward (under policy 

π with discount factor γ ) at time t for a given state- action 

pair s a
t t
,( ).

 • r
t+1 =  the reward at time step t+ 1 and so on.

The right- hand side in the above equation is an expectation 

value (denoted by E) as the expression inside the bracket is a 

random variable.

3.3.3  Action- Only Value Function Vπ(at)

It is the value of an action a
t
 at time t under policy π over all the 

states. It is also denoted just as V- function.

 V a Q s a s a
t

s
t t t t

t

π π
θ

π( ) = ( ) ( )∑ , ,  (3.5)

3.3.4  Advantage Value Function Aπ(st,at)

It is the difference between the Q- function and V- function, and 

it considers the other actions that the agent could have taken.

 A s a Q s a V a
t t t t t

π π π, ,( ) = ( ) − ( ) (3.6)

3.3.5  Policy Function with Maximum Entropy π*maxEnt

The previously defined Q- function does not prioritize the 

more promising states to be visited by the agent. One way to 

implement this idea is to define the policy directly in terms of 

exponentiated Q- values.

 π
θ

πs a Q s a
t t t t
, exp ,( ) ∝ ( ) (3.7)

Here the Q- function serves as the negative energy in a 

Boltzmann- like distribution, and it assigns a nonzero likelihood 
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to all actions. Because of this, the agent becomes aware of all 

behaviors that lead to solving the task. This can help the agent 

adapt to changing situations in which some of the solutions 

might have become infeasible.

The policy defined now is an optimal solution for the 

maximum- entropy RL objective.

 π π
π πMaxEnt

*

t

T

t t
argmax E r H s= +











=
∑
0

( (. | ))  (3.8)

Here H is the entropy function.

3.4  BELLMAN EQUATIONS (BE)

The value functions follow the Bellman equations named after 

their discoverer Richard E. Bellman (1949). The basic idea 

behind most of them is the following observation.

Define the cumulative discounted reward function as

 R T r r r r r
t

k t

T

k t

k t t t

T t

T
γ γ γ γ γ,( ) = = + + …+

= +

− +( )
+ + +

− +( )∑
1

1

1 2

2

3

1  

 = + + + + …+( )+ + + +
− +( )r r r r r

t t t t

T t

T1 2 3

2

4

2γ γ γ γ  (3.9)

Here the final time T can be infinity and γ  can be 1 (but not 

both at the same time). One can write the above as a recursive 

relation.

 R T r R T
t t t

γ γ γ, ,( ) = + ( )+ +1 1
 (3.10)

3.4.1  BE for the State Value Function Vπ(s)

It has the following definition.

 v s E R T s s
t tπ π

γ( ) = ( ) = , |  (3.11)
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The earlier expression for R T
t

γ ,( ) gives

 v s E r E R T s s
t t tπ π π

γ γ( ) = +  ( ) = + +1 1
, |  (3.12)

Finally, using the definition of v s
π ( ) leads to the desired BE.

 v s E r v s s s
t t tπ π π

γ( ) = + ( ) = + +1 1
|  (3.13)

Without the expectation value operation, it takes the following 

equivalent form:

 v s r P s s a v s
t t

s

t t t t

t

π π
γ( ) = + ( )

+

∑ + +
1

1 1
( | , )  (3.14)

Note that the first term is different. Then the optimized value in 

the current state is

 v s r max P s s a v s
t t a

s

t t t t
t

t

π π
γ* ( | , )( ) = + ( )

+

∑ + +
1

1 1
 (3.15)

This gives the optimal policy for choosing the next action, 

which maximizes the future reward.

 π
π

* *( | , )s arg max P s s a v s
t a

s

t t t t
t

t

( ) = ( )
+

∑ +
1

1
 (3.16)

3.4.2  BE for the State- Action Value Function Qπ(s,a) 

It is given as follows:

 

Q s a E R T s s a a

E r R T s s s

t t t

t t t t

π π

π

γ

γ γ

* , , ,

, ,

( ) = ( ) = = 
= + ( ) =+ +

|

|
1 1

== = 
= + ( ) = = + + +

s a a

E r Q s a s s a a

t

t t t t t

,

, ,
π

πγ
1 1 1

|

 

(3.17)
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Optimal control policy produces optimal value functions.

 Q s a r max P s s a Q s a
t t t a

s a
t t t t t

t

t t

π π
γ*

,

, ( | , ) ,( ) = + ( )+ + + +
+ +

∑1 1 1 1

1 1

 (3.18)

3.4.3  Soft BE for the Value Function of a State

It is like the previous ones but uses a special function called 

softmax in the expectation value.

 Q Es a r softmax Q s a
t t t a t
, * ,( ) = + ( ) γ  (3.19)

Here the softmax function is defined as

 softmax f a f a da
a ( ) = ∫ ( )log exp  (3.20)

The soft BE holds for the optimal Q- function of the entropy 

augmented reward function. The soft BE allows solving for 

the Q- function using dynamic programming or model- free 

temporal difference (TD) learning in tabular state and action 

spaces.

Some analytical solutions for Bellman equation are given in 

the Appendix.

3.5  LOSS FUNCTIONS

The loss and cost are very important factors for meeting the NN 

goals as they measure how good the ML algorithm models the 

input data set in predicting the expected outcome. Generally, 

it is defined as the difference between the mean squared error 

of the predicted Q- value from the target Q- value Q*. In this 

context, loss function (LF) is calculated for each sample and 

the cost function is its average for all samples. They need to be 

minimized to improve the performance of the algorithm.
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LF for classification predicts the probabilities of all the classes 

inherent in the input data. Some important ones are described 

below. Similarly, LF for regression applies to situations with 

continuous variables.

3.5.1  LF for Classification: Binary Cross- Entropy    
Loss/ Log Loss

This is one of the most used loss functions in classifica-

tion. It measures the performance of a classification model 

whose predicted output is a probability value between 0 and 

1. It decreases as the predicted probability converges to the 

actual label.

 L
m

y y y y
i

m

i i i i
= − + −( ) −( )





=
∑1 1 1
1

log  log  (3.21)

where

 • m =  the number of training samples,

 • i =  the ith training sample,

 • y
i
 =  value of the ith sample, and

 • y
i
 =  value of the predicted ith sample.

It is called binary classification for two classes and multi- class 
classification for more than two classes.

3.5.2  LF for Classification: Hinge Loss

This loss function is highly used in support vector machine 

(SVM) model evaluation.

 L yf x= − ( )( )max 0 1,  (3.22)

where y is the sample value and f x( ) is the SVM value.
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It penalizes the wrong predictions and the right predictions 

that are not confident. For SVM classifiers it uses class labels - 1  

and 1.

Loss functions for regression are used for problems with 

continuous inputs. Some important ones are given below.

3.5.3  LF for Regression: Mean Square Error  
(MSE)/ Quadratic Loss/ L2 Loss

We define MSE loss function as the average of squared 

differences between the actual and the predicted value. It is the 

most used regression loss function.

 MSE
n

Y Y

i

n

i i
= −( )

=
∑1
1

2  (3.23)

where n is the number of training samples, i is the ith training 

sample, and Y Y
i i
/  is the value of the ith sample and its predicted 

value. The MSE penalizes the large errors by squaring them, 
which makes it less robust to outliers.

3.5.4  LF for Regression: Mean Absolute Error  
(MAE)/ L1 Loss

The MAE is the average of absolute differences between the 

actual and the predicted values. It measures the average magni-

tude of errors in a set of predictions without considering their 

directions.

 MAE
n

y x
i

n

i i
= −

=
∑1
1

 (3.24)

where x y
i i
/  is theactual/ predicted value and n is the number of 

samples. It is more robust to outliers compared to the MSE and 

therefore it is preferred if the data is prone to many outliers.
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3.5.5  LF for Regression: Huber Loss/ Smooth Mean 
Absolute Error

It combines MSE and MAE. It is MAE and becomes quadratic 

for small error. That is controlled by a tunable hyperparameter δ.

 L y f x y f x y f x
δ

δ, ,( )( ) = − ( )( ) − ( ) ≤
1

2

2

for  

 = − ( ) −δ δy f x
1

2

2 ,  otherwise (3.25)

where y is the actual value and f x( ) is the predicted value. The 

choice of δ is critical as it determines what an outlier is. This 

loss function should be preferred for the outlier- prone data.

3.5.6  LF for Regression: Log- Cosh Loss

It is the logarithm of the hyperbolic cosine of the prediction 

error and is much smoother than MSE. It is twice differenti-

able everywhere, and used for some learning algorithms like 

XGBoost which uses Newton’s method to find the optimum.

 L y y log cosh y yp

i

n

i
p

i
, ( ( ))( ) = −

=
∑
1

 

≈ x2 /  2 for small x, |x| -  log (2) for large x  

     (3.26)

Here y y
i
p

i
−  is the predicted error or x. It is mostly like the MSE 

but is not affected strongly by the occasional incorrect prediction.

3.5.7  LF for Regression: Quantile Loss

The quantile regression loss function predicts quantiles, which 

are values below which a fraction of samples in a group falls. 

For a set of predictions, the loss will be its average.

 L y y y y y yp

i y y

i i

p

i y y

i i

p

i i

p

i i

p
γ

γ γ,( ) = −( ) − + −
= < = ≥
∑ ∑1  (3.27)
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where y y
i

p

i
−  is the predicted error and γ  is the hyperparameter. 

It is useful for predicting an interval instead of only points.

There are many loss functions specific to the ML tasks like 

object and face recognition. They are in most cases special cases 

based on the general ideas.

3.6  ACTIVATION FUNCTIONS

The activation functions are used at the internal NN layers to 

bring the quantity of interest within (0, 1) interval.

3.6.1  Activation Functions: Sigmoid

It is a mathematical function with a characteristic ‘S’- shaped 

curve –  hence the name sigmoid. In the area of AI/ ML, it is 

usually another name for the logistic function defined below 

for a single variable.

 σ σx
e

x
x

( ) =
+

= − −( )
−

1

1
1  (3.28)

A sigmoid function is convex for values less than a particular 

point, and it is concave for values greater than that point. There 

is also one inflection point. When used in the NNs, they show 

some problems as well.

 • Vanishing gradients for very high or very low values.

 • Output not centered on 0 which reduces the efficiency of 

weight update.

 • Exponential operations are slow for computers.

Some other common sigmoid functions are given below.

-  Hyperbolic tangent function

 σ x x
e x

( ) = ( ) =
+

−
−

tanh
2

1
1

2
 (3.29)
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It has some advantages compared with sigmoid.

 • Output interval is 1 and it is centered on 0.

 • Negative input is mapped to negative and zero input is 

mapped to near- zero.

In binary classification problem, tanh is used for the hidden 

layer and the sigmoid is used for the output layer in general.

 • Arctangent function

 σ x x( ) = ( )arctan  (3.30)

 • Gudermannian function

 σ x
x( ) = 











2
2

arctan tanh  (3.31)

3.6.2  Activation Functions: Softmax

It takes a vector z of K real numbers as input and brings out a 

probability distribution as output.

 σ z( ) = = …
=∑i

z

j

K z

e

e
i K

i

j

1

1 2, , , ,  (3.32)

The vector input components can be negative or greater than 

1. The output of the softmax function lies in the interval (0,1) 

with all components adding up to 1. The larger components 

yield larger probabilities. The softmax function is actually 

the well- known Boltzmann probability function of statistical 

thermodynamics adapted to ML.
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3.6.3  Activation Functions: Rectified Linear Unit (ReLU)

ReLU is a very popular activation function and is defined as 

follows.

 σ x x x and for x( ) = ( ) ≥ <max , ,0 0 0 0  (3.33)

It is 0 for x less than 0 and x for x greater than or equal to x. It has 

the range 0,∞[ ]. ReLU has no gradient saturation problem for 

positive x and is computed much faster compared to sigmoid 

and tanh. On the other hand, it has also some disadvantages.

 • For negative x, it is completely inactive. This is problem-

atic for backpropagation.

 • It is not centered on 0.

There are variations of ReLU which take care of its shortcomings. 

Leaky ReLU (LReLU) is defined as

 σ x x x ax x( ) = > ≤, 0 0and for  (3.34)

It gives a very small value to negative inputs using small ‘a,’ 

e.g., a =  0.01. Range is also increased to −∞ ∞[ ], . It also solves 

the problem of dead ReLU.

 • Exponential linear unit (ELU) is defined as

 σ x x x a e x
x( ) = > −( ) ≤, 0 1 0and for . (3.35)

 Its negative values bring the mean closer to zero, so it is 

zero- centered, and the gradients are also closer to their 

natural values. Learning is faster due to a reduced bias 

shift effect. Even smaller inputs saturate ELUs to negative 
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values, thus decreasing the variations in forward propa-

gation. It is slightly more computationally intensive 

compared to ReLU.

 • Parametric ReLU (PReLU) is defined as

 σ x x x ax x( ) = > ≤, 0 0and for . (3.36)

 It is a generalization of ReLU such that other versions are 

its special cases, e.g.,

 • a = 0 makes it ReLU,

 • a > 0 makes it LReLU, and for

 • a as a learnable parameter it is PReLU.

 It has a small nonzero slope in the x ≤ 0 region so the 

problem of ReLU death is avoided.

In actual applications no clear- cut and definitive advantage has 

been found between the original ReLU and its variations.

3.7  ENTROPIES AND RELATED FUNCTIONS

The systems of both natural and human- made varieties are built 

out of many smaller or less complex entities, e.g., gas made up 

of molecules or atoms. Such systems have disorder or chaos as 

their inherent property, and it is mathematically captured by 

the idea of entropy.

The concept was later applied by Shannon to information. It 

has many variations as there are many ways in which the ran-

domness inherent in such systems can be captured. Here we 

give a list of entropies with their definitions.

3.7.1  Boltzmann’s Thermodynamic Entropy

It is the starting point of many similar definitions of entropy. For 

an isolated state in thermodynamic equilibrium, it is defined as

 S k ln
B

= − Ω  (3.37)
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where k
B
 is Boltzmann’s constant, ln is the natural logarithm, 

and Ω  is the number of microstates with energy same as 

the system’s energy. The Boltzmann entropy can be further 

generalized as

 S k Tr
B

= − ( )ρ ρ ln  (3.38)

where ρ  is the density matrix, Tr is the trace, and ln is the nat-

ural matrix logarithm. All other definitions of entropy can be 

derived from it.

3.7.2  Gibbs Entropy

It is defined as

 S k p p
B

i
i i

= − ∑ ln  (3.39)

It is the generalization of the Boltzmann entropy. The latter refers 

to the situation when the system is in a global thermodynamic 

equilibrium. The former does not require the system to be in a 

single state. It is also referred to as Boltzmann– Gibbs entropy.

3.7.3  Tsallis Entropy

It is a further generalization of Boltzmann– Gibbs entropy for 

nonadditive and nonstandard thermodynamic situations. Let 

{ }p
i

 be the discrete set of probabilities ( 
i

i
p∑ =1), real number 

q be the entropic index, and k be a positive number, then Tsallis 

entropy is defined by

 S P
k

q
p

q
i

i
q( ) =

−
−





∑

1
1  (3.40)

The usual Botzmann– Gibbs entropy is recovered in the 

limit q→1.
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3.7.4  Rényi Entropy

It is named after Alfred Rényi who generalized the concept of 

information while preserving the additivity of independent 

events. It is defined as

 H P log p
i

n

iα
α

α
( ) =

−




=

∑1

1 1

 (3.41)

Here 0 < < ∞α , α ≠1, and p
i
 is the probability for random vari-

able with i= 1,…,n. Many other information- theoretic entro-

pies, e.g., Hartley entropy, Shannon entropy, collision entropy, 

and min- entropy, are special cases of Rényi entropy. In many 

physics- based models it is essentially the trace of the power of 

the density matrix.

 H P log Tr
α

α

α
ρ( ) =

−
( )1

1
 (3.42)

The exact analytic expression for Rényi entropy of Heisenberg 

XY spin model is known.

3.7.5  Shannon or Information Entropy

The basic idea of entropy in physics was modified and applied 

to information theory by Shannon by developing the concept 

of information entropy. This gives the average number of bits 

so that the information can be stored optimally. For informa-

tion of n symbols, the average number of bits must be at the 

least log n
2

. This idea is captured by the information entropy H 

defined by

 Discrete case: H p log p
i

n

i i
= −

=
∑

1

2
 (3.43)

where p
i
 is the probability of an outcome from the set of all 

possibilities. It has some interesting properties: (i) S increases 
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to a maximum value of log n
2

 when all p
i
 are equal to 1 / n, and 

(ii) for only one possible outcome the system is perfectly pre-

dictable, and so H  =  0.

For continuous probability distribution it is given as

 Continuous case: H P P x P x

x

( ) = − ( ) ( )∑ log  (3.44)

3.7.6  Hartley Entropy

Given a finite set with n elements, if we choose an element ran-

domly, then the information obtained is expressed by Hartley 

function, also known as Hartley entropy or max- entropy.

 H P n( ) = log
2

 (3.45)

3.7.7  Collision Entropy

It is a special case of Rényi entropy when α =  2.

 H P log p log
i

n

i2
1

2 2( ) = −






= −
=
∑ p  (3.46)

Here p p
i

n

i
=

=
∑
1

2  is the geometric length of an n- dimensional 

vector.

3.7.8  Min- Entropy

In the limit α → ∞, Rényi entropy is called min- entropy.

 H P max p
i i∞ ( ) = − log  (3.47)

It is the smallest entropy measure in the family of Rényi entro-

pies –  hence its name. It is never larger than Shannon’s entropy.
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3.7.9  Cross- Entropy

This is a generalization of Shannon’s entropy to two probability 

distribution P x( ) and Q x( ) over the same support space.

 H P Q P x Q x
x

, log( ) = − ( ) ( )∑  (3.48)

As an example, cross- entropy is minimized between the data 

distribution and the model distribution for maximum likeli-

hood estimation in supervised learning.

3.7.10  Relative Entropy or Kullback– Leibler (KL) 
Divergence

It is the expectation value of logarithmic difference between two 

probability distribution. For discrete probability distributions 

(P =  ‘true’ and Q =  given probability distribution), it is

 D P Q P x
P x

Q x
P x

Q x

P xKL
x x

( | | ) log log= ( ) ( )
( )







= − ( ) ( )

( )






∑ ∑   

  
(3.49)

The KL divergence and cross- entropy are related as

 H P Q H P D P Q
KL

, ( |( ) = ( ) + | ) (3.50)

There are many more definitions of entropy relevant to other 

branches of mathematics, e.g., Kolmogorov– Sinai entropy, 

topological entropy, metric entropy, etc.

3.7.11  Mutual Information

It is a measure of the mutual dependence between two variables 

defined as the amount of information obtained about one 

random variable by observing the other. It determines how 

different the joint distribution of pair (X, Y) is from the product 
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of their marginal distributions. It is defined in terms of KL 

divergence as

 I X Y D P P P
KL X Y X Y

, ( |
,

( ) = ⊕( ) | ) (3.51)

Broadly speaking, it quantifies the information shared by two 

distributions.

3.7.12  Information Gain

It is the amount of information gained about a random signal 

or variable X from observing another one Y. It is basically the 

KL divergence defined earlier and is another name for the 

same. In the context of decision trees, it is the same as mutual 

information.

3.7.13  Fisher Information

Many times, one needs the amount of information carried by 

an unknown parameter θ of a distribution which models a 

random observable X. This is given by Fisher information I θ( ),  
which depends on covariances.

I E f X f X f xθ
θ

θ θ
θ

θ( ) =
∂

∂
( )

















= ∫
∂

∂
( )





log ; | log ,

2 2

;;θ( )dx  
  

(3.52)

In an equivalent manner, it gives an estimate of the relative 

uncertainty in and correlation among the model parameters 

based on the local curvature of the cost function.

APPENDIX: SOME ANALYTICAL SOLUTIONS OF 

BELLMAN EQUATION

The BE equations are solved using methods of dynamic pro-

gramming. The term ‘programming’ here refers to the original 
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meaning of this term introduced by Bellman. It uses recursive 

methods to calculate the value of a state by calling on its own 

code to complete recursive steps. This approach in its simple 

application goes through the entire state space many times. 

This inefficiency is addressed by better methods that were 

developed afterward.

There are very few known analytically solvable models for 

BE. The following examples present a few of them.

i.  Model –  1

This example is from the area of econometrics.

Input

s
t
=  state variable,

Bellman equation: V s max u s s V s
t s t t t

t

( ) = −( ) + ( ) + + +
1

1 1
θ γ

Where u logc c
t t

( ) = ( )  (3.53)

Solution:

Let

V s
t t( ) be the value function when there are t periods left 

to go, V s
t0

0( ) =

The policy rule: α
t t t
s s( ) = +1 with α

0
0k

t
( ) =

Then

 V s s k s
t t

k

t1 ( ) = ( ) = ( )log log  (3.54)

 
V s max log s s V s

t s t

k

t t
t

2 1 1 1
1

( ) = −( ) + ( ) + + +γ
 

 = −( ) + ( ) + + +max log s s k log s
s t

k
t t

t 1
1 1

γ �  (3.55)

Maximization gives

 
d

ds
V s

d

ds
log s s k s

t

t

t

t
k

t t

+ +
+ +( ) = −( ) + ( )  =

1

2

1

1 1
0γ log  (3.56)
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So that

 s
k

k
s

t t

k

+ =
+1 1

γ

γ
 (3.57)

Substitution leads to

 V s k k s D
t t2

1( ) = +( ) ( ) +γ log  (3.58)

The last term is time independent.

 D k k k k= ( ) − +( ) +( )γ γ γ γlog 1 1log  (3.59)

Iterating the steps n times gives

 V s k k k k s D
n t

n n

t
( ) = + + + …+( ) ( ) +− −1 2 2 1 1γ γ γ γlog  (3.60)

As n→ ∞, we get a solution to BE.

 V s
k

k
s k k k k

t t( ) =
−

( ) + ( ) − +( ) +( ) 
1

1 1
γ

γ γ γ γ γlog log log   
  

(3.61)

ii.  Model –  2

The following continuous example is from quantum control 

theory.

Let V * be the optimal value function satisfying the following 

Bellman equation.

 −∂ = + ∂{ } + ∂
t B t t
V min B B V V

t

* * *2 2 22 2
θ θϑ

α  (3.62)

Completing the squares gives the optimal condition.

 B V
t

= −∂
θ

* (3.63)
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Substitution in the starting BE leads to Hamilton– Jacobi– 

Bellman equation.

 ∂ = ∂( ) − ∂
t
V V V* * *

θ θϑ
α

2
2 22  

(3.64)

Let us make an ansatz: V t f t g t
t

* ( ) = ( ) + ( )θ2 . Then the substi-

tution gives the equations for the unknown functions as

 ∂ = ( ) =
t
f f f T4 12 ,  

(3.65)

 ∂ = − ( ) =
t
g f g T4 02α ,  

(3.66)

The solutions are

 f t
T t

g t T t( ) =
−( ) +

( ) = −( ) +
1

4 1
4 12, α log  (3.67)

 V t
T t

T t
t* ( ) =

−( ) +
+ −( ) +

θ
α

2

2

4 1
4 1log  (3.68)
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C H A P T E R  4

Single- Agent 

Algorithms

The historical development of RL started with the 

situations where the number of possible states and actions 

were finite and discrete. Usually, these could be presented in a 

tabular form. Many games of strategy like Go and Chess fall 

under this category. Neural networks are not needed for their 

solution, so they are not deep RL but simply RL algorithms.

There are many approaches to RL depending on which 

aspect is emphasized. This leads to many algorithms, some 

of which are very general, and others better suited to specific 

problems. We start with general considerations applicable to 

the classification of RL algorithms by understanding the applic-

able environment.
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i. Deterministic versus stochastic

The reward for every (state, action) pair is known in a 

deterministic environment. In stochastic situation they 

are known probabilistically.

ii. Finite versus infinite horizon

The agent comes to a stop in the former but can go on 

operating indefinitely in the latter scenario.

iii. The environment is static and so it does not vary with 

time. Time- varying environments call for different 

approaches.

The algorithms have the following general characteristics.

i. Algorithm: The common name by which it is known 

is given.

ii. Model: The agent learns either from value or from 

policy rewards obtained by going through the (state, 

action) pairs. It can be also model free in which case all 

possibilities of model are given right at the beginning.

iii. Action: It can be either discrete or continuous.

iv. Policy: For a learned model, one may have either offline 

or online learning.

 • OFF Policy: A replay buffer memory stores the pre-

vious states and randomly chooses a batch to train 

the model. It does not update the model based on the 

current performance.

 • ON Policy: The model is updated at each episode 

based on the current exploration of the agent. It 

converges slowly and is a bit noisy because it uses an 

exploration only once.

v. Performance measure: The basic mathematical or stat-

istical measure characterizing the performance of the 

algorithm is given.
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The method of temporal difference (TD) learning has been a 

very important feature of model- free learning in which the role 

of the transition function is replaced by an iterative sequence of 

environment samples. The TD here refers to the difference in 

values between two time steps used to calculate the value at the 

new time step. It works by updating the current estimate of the 

state value with an error value based on the estimate of the state 

that it has gotten through sampling the environment:

 𝑉 (𝑠) ← 𝑉 (𝑠) +  𝛼[𝑟, +  𝛾𝑉 (𝑠,) − 𝑉 (𝑠)] (4.1)

where 𝑠 is the current state, 𝑠, is the new state, 𝑟 is the reward 

of the new state, 𝛼 is the learning rate, and 𝛾 is the discount 

rate. The learning rate 𝛼 controls how fast the algorithm learns 

(or bootstraps), so setting its value too high can be detrimental 

since the last value dominates the bootstrap process too much. 

Its optimal value is found by experimentation. The last term 

subtracts the value of the current state to compute the TD. 

Another way to write this update rule is

 𝑉 (𝑠) ← 𝛼[𝑟, +  𝛾𝑉 (𝑠,)] +  (1 − 𝛼)𝑉 (𝑠) (4.2)

as the difference between the new TD target and the old value. 

Note the absence of transition model 𝑇 in the formula; TD is a 

model- free update formula.

Almost all RL algorithms follow a generic framework and 

are typically a variant of the scheme given below. They try 

attacking one step or multiple steps of the problem.

 • Loop:

 Collect trajectories ((transitions –  (state, action, reward, 

next state, terminated flag)))

 (Optionally) Store trajectories in a replay buffer for 

sampling
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 • Loop:

 Sample a mini batch of transitions to compute policy 

gradient.

 (Optionally) Compute critic Gradient

 • Update parameters

The single- agent discrete algorithms apply to situations where 

a finite number of actions and states for the agent. Some 

well- known algorithms are given in the table below. Simple 

value- iteration for discrete states is a simple approach based 

on dynamic programming for finding optimal state value- 

function. One solves a Bellman equation for Markov Decision 

Process (MDP) given by five elements:

i. A set of states representing all possible agent 

configurations in the environment,

ii. A set of actions the agent can take in any given state,

iii. Transition probabilities that the agent’s action will be 

successful (or not),

iv. Rewards, for arriving to a specific state, and

v. A discount factor γ for diminishing future rewards.

One starts at time t with (i) an initial state s
t
, (ii) the initial 

reward r
t
, and (iii) discount factor 0 1< ≤γ . The algorithm 

calculates the new value- function after looking at all possible 

actions available to the agent and maximizing the value.

 v s r max P s s a v s s
t t a

s

t t t t t
t

t

( ) = + ( ) ( )












∀
+

∑ + +γ
1

1 1
| , ,  (4.3)
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The value of being in a state is a sum of

i. Immediate reward in that state, and

ii. The discount factor multiplied with the maximum value 

of the expression in the bracket found after calculating it 

over all actions allowed in that state.

The expression in the bracket for a chosen action itself is the 

value function of the possible transition state multiplied with 

transition probabilities of that state and it is summed over all 

reachable transition states.

i. Algorithms based on MDP: They are again broadly 

classified into the following.

 • Model based:

 • Model is given: MCTS.

 • Model is learned: I2A, World model.

 • Model free:

 • Value- based and on- policy: SARSA,

 • Value- based and off- policy: Q- learning, DQN.

 • Policy- based and gradient- free:

a. Using cross- entropy: QT- opt,

b. Using evolution strategy: SAMUEL.

 • Both policy-  and gradient- based: Policy gradient, 

TRPO/ PPO, ACKTR.

ii. Algorithms based on multi- arm- bandits paradigm.

 • Action value- based.

 • Gradient- based.

In the rest of the chapter some important but (nonexhaustive) 

algorithms are introduced.

4.1  Q- LEARNING

Algorithm Model Action Policy Perf. Meas.

Q- Learning Model- free Discrete Discrete, off Q- function
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It is one of the early RL algorithms developed by Chris Watkins 

in 1989. In this approach, the learned Q- function at each iter-

ation approximates the optimal value function for action. Given 

a state, it is a model- free RL algorithm for learning the value 

of an action. It finds an optimal policy so that expected total 

reward or Q- function over all successive steps is maximized. 

The Bellman equation is used for value iteration. The following 

steps illustrate the procedure.

The Q- learning is a model- free algorithm for learning the 

value of an action. The agent finds an optimal policy so that 

the ‘Q- function’ (the expected total reward) over all successive 

steps is maximized. A SARSA agent uses an on- policy learning 

to interact with the environment and updates modifiable 

parameters after each visit of a state. The Monte Carlo methods 

rely on repeated random sampling to approximate situations 

which may be deterministic in principle.

In the finite state- action Q- learning, big memory space is 

needed for storage. That need makes its generalization to con-

tinuous state- action situation almost impossible. This problem 

is solved by approximating the Q- function using deep neural 

network called DQN. It computes the Q- values of all possible 

actions for a given input state. The size of its input and output 

layers is that of the states and all possible actions, respectively. 

The agent forwards its state to the DQN and chooses the action 

with the highest Q- value.

System Setup
Start at time t with an (i) initial state s

t
, (ii) the initial reward 

r
t
, (iii) the initial state- action value- function Q s a

t t
,�( ),  

(iv) learning rate or step size α, and (v) discount factor 0 1< ≤γ .

Pseudocode
The algorithm uses a Bellman equation for updating a simple 

value function by calculating the weighted average of the 

current value and the new information.
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At t =  0

assign a random value to Q s a
t t
,( )

At time t

(i) Choose an action a
t
 and calculate the new Q- function.

Q s a Q s a

r max Q s

new
t t t t

t a t

, ,( ) = ( ) +

+ +                       α γ
1
,, ,a Q s a

t t( ) − ( ) 
 
(4.4)

With

Q(st, at) =  old Q- function value,
rt =  reward,
maxaQ(st+1, a)=  future Q- function estimate (optimized 
for chosen action)

the terms in the Bellman equation above are:

-  (1 – α)Q(st, at) =  current Q- function weighted by 
learning rate

- art =  the reward (weighted by learning rate) obtained 
if action at  is taken

- αγ maxaQ(st, at) =  the maximum reward (weighted 
by learning rate and discount factor) that can be 
obtained if new state is st+1

(ii) Calculate Qnew (st, at) for all other possible actions at  
and find its maximum value.

(iii) Choose the action corresponding to the 
maximum value.

(iv) Update the action corresponding to the maximum value.

Repeat the process for next time steps.
Stop when state st+1 is terminal or final state (Q- function for 
this state can be zero)

Applications
The Q- learning has found applications in many areas, out of 

which some prominent ones are:

i. Autoconfiguration of online web systems,

ii. News recommendation system, and

iii. Network traffic control system.
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4.2  DEEP Q- LEARNING AND DEEP Q- NETWORK 

(DQN)

Algorithm Model Action Policy Perf. Meas.

Deep 
Q- Learning

Model- 
free

Continuous Continuous, 
off

Q- function

It is the generalization of the finite Q- learning presented before 

to continuous states and actions. They cannot be represented 

by a table for such situations as the potential combinations can 

become infinite. The solution of such systems requires neural 

networks (NN) and is indicated by the word ‘Deep’ in the Deep 

Q- learning or DQN. Policy gradient is a very important general 

tool for these algorithms. They solve the problem of ‘reward 

shaping’ or finding the right set of rewards for a given problem. 

This is done by a policy which is the probability distribution for 

a given state.

4.2.1 Mathematical Formulation

Let

 • θ =  the set of parameters defining a policy π, e.g., the 

coefficients of a polynomial or the weights and biases of 

neural network nodes

 • τ =  the trajectory (set of states and actions) of an agent 

resulting in the reward r(τ)

Then the ‘expected’ reward following the policies parameterized 

by θ is given as

 J E r r dθ τ π τ τ τ
π( ) = ( )  = ∫ ( ) ( )  (4.5)

Let θ* denote parameter maximizing J θ( ). That can be found 

by first calculating the gradient of J θ( ),
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 ∇ ( ) = ∇∫ ( ) ( ) = ( )∇ ( ) J r d E rθ π τ τ τ τ π τ
π

log  (4.6)

and utilizing the gradient ascent rule for update as

 θ θ α θ
t t t

J+ = + ∇ ( )1
 (4.7)

The Policy Gradient Theorem: We use the following obvious 

result:

Derivative of the expected reward =  the expectation of 

the reward × the gradient (or 
∂

∂¸
) of the log of the policy π

θ
.    

This gives

 ∇ ( )  = ( )∇ ( ) E r E r
π π θθ θ

τ τ π τlog  (4.8)

The following results are needed for calculating this.

 • π τ π
θ θ( ) = ( ) ( )

=
+ +∏P s a s P s r s a

t

T

t t t t t t0
1

1 1
| ( , | , ) (4.9)

 • ∇ ( ) = ∇ ( )
=
∑log log |π τ π

θ θ
t

T

t t
a s

1

 (4.10)

Giving us the following final expression:

 

∇ ( )  = ( ) ∇ ( )















= ∫

=

=

∑

∑

E r E r a s

r

t

T

t t

t

T

π π θθ θ
τ τ π

1

1

log |

ττ π π τ
θ θ( ) ( )∇ ( )a s a s d

t t t t
| log |

 

(4.11)

This result is independent of the ergodic distribution of 

states and the environment dynamics. It leads to ‘model- free 
algorithms’ bypassing the need to ‘model’ the environment. The 

integral can be calculated by sampling many trajectories and 
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averaging them out. This method is known as Markov Chain 

Monte- Carlo (MCMC), widely used in probabilistic graph-

ical models and Bayesian networks to approximate parametric 

probability distributions.

4.2.2 Pseudocode

DQN combines Q- learning with a deep convolutional NN 

(CNN) specialized for data arrays. For continuous case the 

Q- function is approximated by deep neural networks (DNN) 

known as deep Q networks (DQN). After receiving a state as 

an input, it outputs the Q- values of all possible actions for that 

state. Its input and output layers have sizes of states and actions, 

respectively. The agent in each state enters it as an input to the 

DQN and chooses the output action with the highest Q- value.

Initialize replay memory D to capacity N.
Initialize action- value function Q with random weights.

for episode =  1; M do
Initialize sequence s1 =  {x1} and preprocessed sequenced   
ϕ1 =  ϕ1 (s1)
for t =  1; T do

With probability   select a random actionat

otherwise select at = maxa  Q*(ϕ(st), a; θ)
Execute action at in emulator and observe reward rt and 
image xt+1

Set st+1 =  st, at, xt+1 and preprocess ϕt+1 =  ϕ(st+1)
Store transition (ϕt, at, rt, ϕt+1) in D
Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1)    
from D
Set yj  =  rj (for terminal ϕt+1)

=  r max Q a
j a j
+ ( )′′ +γ φ θ

1
, ;  (for non- terminal ϕt+1)

Perform a gradient descent step on y Q a
j j j

− ( )( )φ θ, ;
2

 end for
end for
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Source: ‘Playing Atari with Deep Reinforcement Learning,’ 

Volodymyr Mnih Koray Kavukcuoglu, David Silver, Alex 

Graves, Ioannis Antonoglou, Daan Wierstra, and Martin 

Riedmiller, DeepMind Technologies.

4.2.3 Applications

DQN is one of the most widely used algorithms and has many 

applications. A brief and incomplete list below tells us about its 

range and capabilities.

 • Robotics and automation: DQNs have been used in training 

robots for tasks ranging from simple object manipulation 

to assembly tasks in manufacturing processes. We have:

 • The robot states: (i) position and orientation of the 

robotic arm, (ii) the gripper’s state (open or closed), 

and (iii) the relative position of the objects of interest.

 • The actions: (i) the incremental movements in the joints 

of the robot arm, or (ii) gripper control commands.

 • The reward function: positive (the arm correctly picks 

up, moves, or assembles an object), negative (for 

dropping items or incorrect placement).

DQN implementation requires a model of the environ-

ment, e.g., a real- world interface to a physical robot arm, 

or a simulated environment and training with a carefully 

designed reward function and sufficient exploration of the 

state- action space.

 • Autonomous vehicles and drones: DQNs are increasingly 

being used to train cars and drones for safe and efficient 

navigation in their environments.

 • For self- driving cars, (i) the states are sensor data from 

LIDAR and RADAR readings, camera images, GPS 

data, and internal car status data; (ii) the actions are 

driving maneuvers such as accelerating, braking, or 

steering; (iii) the reward function is positive for safe and 
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efficient driving, and negative for traffic rule violations 

or unsafe driving behaviors.

 • For drones, (i) the state includes information about the 

drone’s position, velocity, orientation, battery status, 

and data from onboard sensors (like cameras or depth  

sensors); (ii) the actions are commands for changing in 

thrust and torque for each rotor (for quadcopters); and (iii) 

the reward function is positive for efficient navigation to 

the target, and negative for crashes or unsafe flight behavior.

 • Home and industrial automation: In home automation, 

DQNs can learn user habits and control smart home 

devices efficiently.

 • For smart homes, (i) states are the time of day, whether 

residents are at home, which devices are currently on, and 

the current energy cos; (ii) the actions are commands, 

e.g., adjust a thermostat, turn lights on or off, start a 

washing machine, etc.; (iii) the reward function is better 

energy efficiency and user comfort preferences.

 • For manufacturing automation, (i) states for optimizing 

production schedules are manufacturing line, current 

work orders, historical data etc., and in logistics, states can 

be the configurations of autonomous forklifts or conveyor 

systems, etc.; (ii) actions for automation maximize effi-

ciency and minimize downtime, etc., and for logistics they 

optimize the efficient movement of goods within a ware-

house; (iii) the reward function these and similar cases 

improve operational efficiency, reduce costs, and main-

tain safety standards. The actual implementation of DQNs 

would have to manage high- dimensional state and action 

spaces, delayed rewards, and the need for safe exploration.

 • Personalized medical treatment recommendations: (i) the 

states are patient- specific factors such as age, gender, 

preexisting conditions, genetic information, progression 

of the disease, etc., (ii) the actions are various treatment 
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options such as medications, dosages, surgery, or other 

therapies, etc.; (iii) the reward are better patient outcomes 

to maximize the effectiveness of treatment and minimize 

side effects or complications, etc.

 • Financial portfolio management and trading: For trading 

strategies and managing portfolios, (i) the states are 

current portfolio holdings, recent market trends, rele-

vant economic indicators, etc., (ii) the actions are buying, 

selling, holding different assets, etc., (iii) the reward is the 

profitability of these actions.

The new applications of DQN are being discovered and utilized 

as machine learning spreads through different activities.

4.3  STATE- ACTION- REWARD- STATE- ACTION 

(SARSA)

Algorithm Model Action Policy Perf. Meas.

SARSA Model- free discrete Discrete, on Q- function

A SARSA agent follows an on- policy learning algorithm in 

which it interacts with the environment and updates modifi-

able parameters after each visit of a state. The acronym for the 

quintuple s a r s a
t t t t t
, , , ,+ +( )1 1

 is SARSA.

In on- policy learning a single policy function is used for 

(downward) action selection and (upward) value backup 

towards the learning target. SARSA is an on- policy algorithm, 

and it updates values directly on the single policy. The same 

policy function is used for exploration behavior and for the 

target policy. The SARSA update is given by

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼[𝑟𝑡+ 1 +  𝛾𝑄(𝑠𝑡+ 1, 𝑎𝑡+ 1) − 𝑄(𝑠𝑡, 𝑎𝑡)]  
  (4.12)

And it looks very much like TD, although it uses state- action 

values, whereas TD deals with state values.
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On- policy learning selects an action, evaluates it in the envir-

onment, and moves on to better actions, guided by the behavior 

policy. It samples the state space with a given behavior policy, 

and improves that by backing up values of the selected actions. 

Note that the term 𝑄(𝑠𝑡+ 1, 𝑎𝑡+ 1) can also be written as 𝑄(𝑠𝑡+ 1, 

π(s𝑡+ 1)), highlighting the difference with off- policy learning. 

SARSA updates its Q- values using the Q- value of the next state 𝑠 and the current policy’s action. The primary advantage of on- 

policy learning is that it directly optimizes the target of interest 

and converges quickly by learning with direct behavior values. 

The sample inefficiency is usually its biggest drawback.

4.3.1 Mathematical Formulation

The Q- function for a state- action is updated by an error, 

adjusted by the learning rate α.

 Q s a Q s a r Q s a Q s anew
t t t t t t t t t
, , , ,( ) = ( ) + + ( ) − ( ) + +α γ

1 1
  

  (4.13)

Q- functions represent the possible reward received in the next 

time step for taking the action a
t
 in state s

t
, plus the discounted 

future reward received from the next state- action observation. 

SARSA itself learns the Q- function associated with taking the 

policy it follows.

4.3.2 Pseudocode

The algorithm consists of the following steps:

At time t:
Start in the current state st ,
Choose the action at,
Get the reward rt for choosing this action,

At next time step t+ 1,
enter the state st+1 after taking that action, and finally
choose the next action at+1 in its new state.
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4.3.3 Applications

SARSA has been used to train robots for autonomous driving, 

gaming agents to play chess and other games, autonomous 

vehicles to drive in complex environments.

4.4  SARSA-λ

Algorithm Model Action Policy Perf. 
Meas.

SARSA-λ Model- 
free

Discrete Discrete, 
on

Q- function

The signifier λ in SARSA- λ refers to the ‘eligibility traces’ 

e s a
t
,( ). They are mathematical objects designed to improve the

convergence of temporal difference (TD) methods and are used 

in implementing online Monte Carlo and in problems without 

episodes. They offer improved computational efficiency by

i. Using a short- term memory vector,

ii. Storing a single vector memory instead of a list of fea-

ture vectors, and

iii. Learning continuously rather than waiting for results at

the end of an episode.

4.4.1 Mathematical Formulation

Consider the following multi- step returns at some time- step t:

q r Q s a
t t t t

1

1 1 1

( )
+ + += + ( )( )γ

π
, SARSA  (4.14)

q r Q s a
t t t t

2

2
2

2 2
( )

+ + += + ( )γ
π

, (4.15)

…

q r r r Q s a
t

k

t t
k

t k
k

t k t k
( )

+ +
−

+ + += + + …+ …+ ( )1 2

1γ γ γ
π

,  (4.16)

…
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 q r r r
t t t

T

T

∞ γ γ( )
+ +

−= + + …+ ( )
1 2

1 MC  (4.17)

As we can see, the process covers returns of all the steps from 

SARSA to Monte Carlo (MC). In SARSA(λ) one combines 

them to reach a middle ground between those two methods to 

exercise control over the bias/ variance trade- off. We define a 

return qλ giving more weight to closer trajectories and average 

over multiple n- step returns.

 q q
t

n

n

t

nλ
∞

λ λ= −( )
=

−∑1
1

1  (4.18)

Here λ =  0 is SARSA and λ =  1 is MC. It allows us to control 

how far the algorithm should go. For intermediate values of λ, 

each past experience is given a weight, used for updates called 

an ‘eligibility trace,’ one for each function approximator param-

eter. This strategy generates an exponentially decaying impact 

of rewards over time.

The expression for updated Q- function is given as

 Q s a Q s a e s a
t t t t t t+ +( ) = ( ) + ( )
1 1
, , ,αδ  (4.19)

Here

i. δ γ
t t t t t t
r Q s a Q s a= + ( ) − ( )+ + +1 1 1

, ,

ii. e s a e s a
t t
, ,( ) = ( ) +−γλ

1
1 for s a s a

t t
, ,�( ) = ( )

= ( )−γλe s a
t 1

,           otherwise

Eligibility trace triggers an update of all recently visited state- 

action values.
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4.4.2 Pseudocode

The algorithm is given below.

Repeat (for each episode): et(s, a), for Ɐ(s, a) 
Choose initial (s0, a0) and Q(s0, a0) 
Repeat (for each episode): Choose action at

Observe rt+1 and st+1 using policy derived from   
Q- function

 δ γ
t t t t t t

r Q s a Q s a← + ( ) − ( )+ + +1 1 1
, ,  

e s a e s a
t t

, ,( ) ← ( ) +−γλ
1

1 for ∀ ( )s a,

Q s a Q s a e s a
t t t t t t+ +( ) ← ( ) + ( )1 1

, , ,αδ

Until st is terminal   

4.4.3 Applications

SARSA- λ has been used to train robots for similar tasks as 

regular SARSA algorithms.

4.5  ADVANTAGE ACTOR CRITIC (A2C)

Algorithm Model Action Policy Perf. Meas.

A2C Model- free Continuous Continuous Value functions 
and policy 
optimizations

The RL methods belong to two broad classes of methods.

i. Based on value functions:

  It assigns each state- action pair to a value. The critic is a 

value- based neural network, and it measures how good 

the action is.

ii. Based on optimizing the policies directly without using 

value functions:
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  The actor is a policy- based neural network, and it controls 

the RL agent’s action. Both run in parallel and the real- 

time feedback from critic improves the actor.

Actor critic methods like A2C (also A3C and SAC) combine 

both approaches.

In general, the Actor module of the system decides the next 

action to take. It is not aware if the action is the best possible in 

the given environment. Now the Critic module enters the scene 

and evaluates the proposed action’s optimality. It also suggests 

how the actor should adjust the parameters to maximize the 

reward. This approach is especially important when the envir-

onment is dynamic.

In A2C, the value function is the advantage function.

 A s a Q s a V s
t t t t t
, ,( ) = ( ) − ( ) (4.20)

Where

 • Q s a
t t
,( ) =  the Q- value for the action or maximum future 

reward in that state

 • V s
t( ) =  the average value of that state.

A positive advantage pushes the gradient in that direction and 

vice versa.

4.5.1 Mathematical Formulation

Finding a good baseline using state value and computing it 

is not straightforward either. Let us approximate it using one 

more parameter ω and denote it by the bootstrapped return 

V sω ( ). This idea leads to the Actor- Critic methods in which 

there are two entities called ‘Actor’ and ‘Critic’ defined by 

functions π
θ
a s
t t
|( ) and V sω ( ), respectively. One must com-

pute both gradients now.
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Define G R V s
t t t

≅ + ( )+ +1 1
γ ω  (4.21)

Here

 • G
t
 =  a single step bootstrapped return,

 • R
t+1 =  is the immediate reward,

 • V s
t

ω
+( )1  =  bootstrapped value- estimate of the next state in 

the trajectory.

The actor’s gradient is calculated as

 ∇ ( )  = − ( )  ∇ ( )












=
∑E r E G V s a s

t

T

t t t tπ π
ω

θθ θ
τ π

1

log |  (4.22)

The critic’s objective J ω( ) is generally taken to be the mean 

squared error (MSE) or a less harsh Huber loss.

Critic’s objective

as MSE: J ω ω( ) = − ( ) 
1

2

2

G V s
t t

 (4.23)

as Huber loss:    

J ω δω ω( ) = − ( )  − ( ) ≤
1

2

2

G V s for G V s
t t t t

, | | ,

= − ( ) −δ δωG V s
t t

1

2

2 otherwise (4.24)

The critic’s parameters ω is updated by using Stochastic gra-

dient descent (SGD) giving the Critic’s gradient as

∇ ( ) = − ( )J ω ωG V s
t t

 for MSE (4.25)

4.5.2 Pseudocode

Initialize parameters ( s w, ,θ ) and learning rates ( α α
θ
,

w
)

Sample a a s~ ( | )π
θ
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for t T= …1, , :  do
Sample reward r R s a

t
~ ,( )  and next state ′ ′s P s s a~ ( | , )

Sample the next action ′ ′ ′a a s~ ( | )π
θ

Update θ θ α π
θ θ θ

← + ∇( )Q s a log a s
w

, ( | )

Compute TD error δ γ
t t w w

r Q s a Q s a= + −′ ′( ) ( ), ,

Update Q- function parameter w w Q s a
w t w w

← + ∇ ( )α δ ,
Move to a a← ′  and s s← ′

At next time step t+ 1,
enter the state s

t +1
 after taking that action, and finally

end for   

Based on Lilian Weng’s post ‘Policy Gradient algorithms.’

At each step, both Critic and the Actor networks are updated.

4.5.3 Applications

A2C networks have been used to train robots for similar tasks 

as other similar algorithms.

4.6  ASYNCHRONOUS ADVANTAGE ACTOR 

CRITIC (A3C)

Algorithm Model Action Policy Perf. Meas.

A3C Model- free Continuous Continuous Value functions 
and policy 
optimizations

The A3C was developed by Google DeepMind and became 

public in 2016. Unlike DQN which uses a single agent, it uses 

many agents, each with its own network parameters and a copy 

of the same environment. Their interaction with the environ-

ment is not coordinated globally, so it is ‘asynchronous,’ hence 

the name. Each agent is controlled by a global network, so it 

allows for experimenting with more diversified environment. 

This mitigates the problem of RL sample correlation.
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Just like in A2C, the A3C agent learns the Value Function 

from the critic and updates its or actor’s optimal policy function. 

It determines the conditional probability for choosing action a 

in state s and uses Advantage Function to determine how much 

better the rewards were compared to its expectation. The asyn-

chronous (parallel and distributed) gradient descent is used 

for optimization of DNN controllers. The training stage uses 

parallel networks efficiently and independently by adjusting 

the direction of each training thread. In this way, multiple 

actor- learners instantiate the environment separately, collect 

experience, update the gradients, and send it to a central target 

network. It was found that this parallel operation stabilizes the 

training.

4.6.1 Mathematical Formulation

It is the same as in A2C but is parallelized for many actors inde-

pendently and later combined for central update.

4.6.2 Pseudocode

Initialize parameters ( s w, ,θ ) and learning rates ( α α
θ
,

w )
Sample a a s~ ( | )π

θ

input:
assume (globally shared) parameter vectors 𝜃 and 𝜙 =  0, 
counter T =  0
assume thread- specific parameter vectors ′θ and ′φ
initialize thread step counter t ← 1
repeat

reset gradients: d𝜃 ← 0 and d𝜙 ← 0.
synchronize thread- specific parameters ′θ =  𝜃 and ′φ  =  𝜙
t t
start

=

get state st

repeat
choose action at wrt policy π θ( | ; )a s

t t
′

receive reward rt and new state st+1
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t t← + 1 and T T← + 1
until terminal s

t
 or t t t

start max
− =

R =  0 (for terminal s
t
) or V s

t
, ′( )φ  (for non- terminal s

t
)

for i t t
start

∈ − …( )1, ,  do
R s R

t
← + γ

accumulate gradient.

wrt ′θ :  d d log a s R V s
i i i

θ θ π θ φ
θ

← + ∇ − ( )( )′ ′′ ( | ; ) ;

wrt ′φ :  d d R V s
i

φ φ φ φ← + ∂ − ( )( ) ∂′ ′;
2

/

end for
update asynchronously θ using dθ and φ using dφ

until T T
max

>     

4.6.3 Application

A3C has been found to stabilize the training and surpassed the 

performance of earlier methods in Atari game environment, 

motor control problems, and navigating 3D mazes.

4.7  SOFT ACTOR CRITIC (SAC)

Algorithm Model Action Policy Perf. Meas.

SAC Model- free Continuous Continuous Value functions

SAC attains SOTA performance in continuous control tasks, 

e.g., robotic locomotion and manipulation by maximizing the 

‘entropy’ in policy and the expected reward from the environ-

ment. This approach encourages the state space exploration, 

improves the transition data collection, and prevents prema-

ture convergence to bad local optima by allowing good policies.

4.7.1 Mathematical Formulation

A two- step policy iteration technique alternating between 

policy evaluation and policy improvement is used. Starting 

from a given initial policy π, some metric between the current 

policy and the derived update policy is minimized. Specially in 
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tabular case, an exact solution to MDP can be found by alter-

nating between policy evaluation and policy improvement.

i. In the policy evaluation step, the accurate value function 

for current policy is found by repeatedly evaluating the 

Bellman operator T
π
.

 [ , ]
~ (.| ) | ,

T V s E r s a E V s
a s s s aπ π

γ( ) =



 ( ) + ( ) ′′  (4.26)

For soft policy iteration, the policy’s entropy as an additional 

reward term is added to the original Bellman operator.

 
T Q s a r s a E

Q s

t t t t a

t

π π
γ, ,

~( )  = ( ) + ′

                         ++ ′ ′ ( ) − ( )1
, log |a a s

t
π

 
(4.27)

Its repeated application to any initial Q function is 

guaranteed to converge to the optimal ‘Soft’ Q function.

ii. In the policy improvement step, the Bellman optimality 

operator T  is applied repeatedly on given initial value 

function V  so that it converges to the true (optimal) 

value function V *.

 T V max T V*[ ] =  π π
 (4.28)

The optimal policy π* can be constructed from the optimal 

value function V *. For the soft policy improvement step, 

the Kullback– Leibler (KL) distance (‘divergence’) J ω( ) 
between the two distributions is minimized.

 J Eω π( ) =
( )

( )










∑

KL s
expQ s

expQ s
t

a

( (. | ) ||
, .

,.
 (4.29)

This leads to an improved policy.

 π ω
ωnew

argmin J= ( ) (4.30)
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This update scheme guarantees monotonic improvement of the 

policy in the tabular case. In an alternate scheme, NN calculates 

Soft Q- function as the mean and variance with the current state 

as input, and Soft Policy as a Gaussian distribution with the 

mean and variance from above.

4.7.2 Alternate Method

Both Q- function and policy parameters are updated with the 

experience data collected from a policy different from the 

current one. For every actor roll- out, all the transition data is 

saved in a replay buffer D.

i. Q- function optimization: It is done at every update step 

by using the gradient of the mean squared loss between 

the predicted action- value and the target action- value q
t
.

 J E Q s a q
Q s a D t t t

t t

θ
θ( ) = ( ) −( )



( ), ~

,
1

2

2

 (4.31)

where

 q E r s a Q s a a s
t a s t t t t

t

= ( ) + ( ) − ′
+ + +~ (.| )

, , log ( | )
π θ ωω

α π
1

1 1 

(4.32)

Here the α- term represents the ‘entropy temperature,’ 

i.e., weight given to the ‘randomness’ of policy versus the 

reward from the environment.

ii. Policy update: The actions are the hyperbolic tangent 

Gaussian policy parameters sampled from the mean and 

covariance output of the policy neural network.

 a u
t

= ( )tanh  (4.33)

 

 

 

 



82   ■   An Introduction to Deep Reinforcement Learning

Also, the action is modified as:

 log ( | ) log ( | ) logπ µa s u s tanh u

i

D

i
= − − ( )( )

=
∑
1

21  (4.34)

The log ( | )µ u s  represents the cumulative distribution 

function (CDF) computed with the mean and variance from the 

policy neural network. The policy parameter can be optimized 

by minimizing a simplified form of the KL divergence.

 J E E a s Q s a
s D a s t t t t
t t

π π ω θ
ω α π

ω
( ) = ( ) − ( ){ }



′~ ~ (.| )

log ,|  (4.35)

The parameter α is updated through the gradient of the 

objective function including the desired minimum entropy H  

given below:

 J E a s H
t t tα

π α α= − ( ) − | ;  (4.36)

4.7.3 Pseudocode

It is like the Actor- Critic case given earlier with appropriate 

modifications.

4.7.4 Applications

It has been found to be very successful in robotic applications.

4.8  DEEP DETERMINISTIC POLICY 

GRADIENTS (DDPG)

Algorithm Model Action Policy Perf. Meas.

DDPG Model- free Continuous Off- policy Like deep Q- learning

Often one encounters a situation in which the policy is differ-

entiable, but actions are non- stochastic. It becomes then harder 

to build a policy, and in these cases an action for a given state is 

learnt directly by a maximization objective.
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 µ µk
a

argmax Q s a
k+ = ( )1 ,  (4.37)

In general, this maximization is computationally hard as 

one must search the entire space for a given action- value 

function. An algorithm known as Deterministic Policy Gradient 
(DPG) has handled such situations in which the argmax is 

approximated by a function approximator. Its realization using 

NN is called DDPG.

4.8.1 Mathematical Formulation

The DPG algorithm can be expressed using the following 

equations.

 • Q- learning is minimized with the MSBE loss with SGD.

 L D E Q s a y r s d
s a r s d D

s a r s d B

φ
φ

, , , ,
, , , ,

, , , ,

( ) = ( ) − ( )( )′
′

′
( )∈

( )∈
∑

2

 (4.38)

 y r s d r d Q s s
targ targ

, , ,′ ′ ′( ) = + −( ) ( )( )γ µ
φ θ

1  (4.39)

 • Policy learning is solved by gradient ascent for policy 

parameters.

 max E Q s s
s Dθ φ θ

µ∈ ( )( ),  (4.40)

4.8.2 Pseudocode

Input: Initialize parameters θ  (policy), 𝜙 (Q- function) and D 
(empty relay buffer)

Set target and main parameters as equal, i.e., θ θ
targ

← ,  

φ φ
targ

←

Repeat:
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Observe state s, select action a Clip s a a
low high

= ( ) +[ , , ]µ
θ

 ,  
with  Gaussian
Execute a∞ , observe next state ′s , reward r , and 
determine if ′s  is terminal from signal d
Store s a r s d, , , ,′( )  in replay buffer D, if ′s  is terminal then 
reset environment state.

If updating then
For however many updates do

Randomly sample a batch of transitions 
B s a r s d= ( )′, , , ,  from D

Compute: y r s d r d Q s s
targ targ

, , ,′ ′ ′( ) = + −( ) ( )( )γ µ
φ θ

1

Update Q- function: ∇ ( ) − ( )( )′
′( )∈

∑φ φ

1 2

B
Q s a y r s d

s a r s d B, , , ,

, , ,

Update policy: ∇ ( )( )
∈
∑φ φ θ

µ
1

B
Q s s

s B

,

Update target networks: φ ρφ φ
targ targ

← + −( )1  ,  

θ ρθ θ
targ targ

← + −( )1 

End for
  End if
Until convergence   

4.8.3 Applications

DDPG has been applied to a wide range of continuous con-

trol problems, including robotics, gaming, and autonomous 

navigation, e.g., robot arm control, autonomous navigation 

in high- dimensional state spaces, video games with DRL 

agent, etc.
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4.9  TWIN- DELAYED DEEP DETERMINISTIC POLICY 

GRADIENTS (TD3PG)

Algorithm Model Action Policy Perf. Meas.

TD3PG Model- free Continuous Off policy Value function

Just like DDPG, the TD3PG algorithm is also an actor- critic 

RL agent. It extends the DDPG by reducing the value function 

overestimates. The significant features of a TD3PG agent are:

 • It learns two Q- value functions and uses the minimum of 

the two for policy updates.

 • It updates the policy and targets less frequently than the Q 

functions.

 • It adds noise to the target action during policy updates, 

which makes the policy less likely to exploit actions with 

high Q- value estimates.

 • It can implement both TD3 and delayed TD3 

algorithms. The latter uses only one Q- value function 

with smoothing of the target policy and delayed policy 

and target updates.

4.9.1 Mathematical Formulation

The TD3PG algorithm is a slightly modified form of the DDPG 

one. It can be expressed with the following equations.

 • Add a Gaussian noise in the initialized action and update 

reward with this included. y r min Q s a
i

i

← + ( )′=γ
θ1 2, '

, 

 • Update critic with loss function.

 θ
θ θi

argmin N y Q s a
i i

← ∑ − ( )( )−1
2

,  (4.41)

 • Update actor with the deterministic policy gradient.
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 ∇ ( ) = ∑ ∇ ( ) ∇ ( )−
= ( )φ θ π φ φ

φ π
φ

J N Q s a s
a a s

1

1

, |  (4.42)

4.9.2 Pseudocode

Input: Initialize (i) critic Q- functions Q Q
θ θ1 2

,( )  and actor π
φ

 

(policy) with random parameters, (ii) target networks with 

′ ←θ θ
1 1

, ′ ←θ θ
2 2

, ′ ←φ φ , and (iii) target buffer B.

for t= 1 to T do

select action with Gaussian noise a s~ π
φ ( ) +  , observe 

reward r and new state ′s
store s a r s, , , ′( )  in buffer B

sample a small set of N transitions s a r s
b b ac

a
, , , ′( ) − ± −2 4

2
    

from B

a s← ( ) +′′π
φ

,  ~ [clip N (0, σ), , ]−c c ,    

y r min Q s a
i

i

← + ( )′=γ
θ1 2, ’ , 

update critics θ
θ θi

argmin N y Q s a
i i

← ∑ − ( )( )−1
2

,

if t mod d then

update φ by the deterministic policy 

gradient ∇ ( ) = ∑ ∇ ( ) ∇ ( )−
= ( )φ θ π φ φ

φ π
φ

J N Q s a s
a a s

1

1
, |

update target networks ′ ← + −( ) ′θ τθ τ θ
i i i

1 ,   
′ ′← + −( )φ τφ τ φ1

end if
end for   

4.9.3 Applications

TD3PG has been applied to gain further improvements in 

the solutions to similar problems as handled by DDPG in 

general.
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4.10  TRUST REGION POLICY 

OPTIMIZATION (TRPO)

Algorithm Model Action Policy Perf. Meas.

TRPO Continuous Continuous 
or discrete

On- policy Advantage fn.

It is a DRL algorithm using Stochastic gradient (SG) method to 

implement trust region update. It guaranteed policy improve-

ment by a local approximation to the loss function due to the 

new policy.

4.10.1 Mathematical Formulation

Let us begin with given quantities: (i) expected discounted 

reward η π( ), (ii) visitation frequency ρ
π
s( ), (iii) advantage 

function A s a
π
( | ), and (iv) policy function π( | )a s . Then the 

TRPO loss function is written as

 L s a s A s a
new old

s a
new

old old
π π π

π η π ρ π( ) = ( ) + ( )∑ ∑ ( | ) ( | ) (4.43)

More explicitly, the TRPO approach maximizes an objective 

function.

a. It is initially max LCPI
θ

θ( ), where
  

L E r ACPI
t

t
tθ θ( ) = ( )





   =  Loss function due to conserva-

tive policy iteration with

E
t

 …[ ] =  the empirical average over a finite batch of 

samples alternating between sampling and optimiza-

tion, and

A
t

  =  estimator of advantage function at step t =    

Q s a V a
t t t

π π,( ) − ( )
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b. It is modified by a constraint bound by KL diver-

gence (D
KL

) over trust region max E r A
t t tθ

θ ( )





, such 

that D s s
KL t t

old new

π π δ
θ θ
. , (. | )|( ){ } ≤ , and

θ θ
old new
,( ) =  (old, new) vector of policy parameters.

 c.  For a better result, it is sometimes replaced 

by an unconstrained optimization: 

max E r A D s s
t t t KL t t

old new
θ θ θ

θ β π π ( ) − ( ){ }





. , (. | )|
 
with β

as a numerical coefficient and r
a s

a s
t

t t

t t

new

old

θ
π

π

θ

θ

( ) =
( )
( )
|

|
 =  ratio 

of old and new policy values at time t.

4.10.2 Pseudocode

Input: Initialize (i) policy parameters θ
0
, (ii) initial value 

function parameters φ
0
, (iii) KL- divergence limit δ,   

(iv) backtracking coefficient α , and (v) maximum number   
of backtracking steps K.

for k =  0,1, 2 ,… do
run policy π θ( )

k
, collect trajectories D

k
, compute 

rewards Rt

compute advantage function A
t  using current value 

function V
kφ

estimate policy gradient as

g
D

log a s A
k

k D t

T

t t t

k

k
= ∇











∈ =

∑ ∑1

0τ
θ θ θ

π ( | ) |

Use the conjugate gradient algorithm to compute

x H g
k k k

≈ −1

( H
k
=  Hessian of the sample- 

averaged KL- divergence.)
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Backtrack line search to update the policy with

θ θ α
δ

k k
j

k
T

k k

kx H x
x+ = +









1

2
, j K∈ …{ }0 1 2, , , ,

(j =  the smallest value for improving sample loss 
while satisfying KL- div. constraint)

Use MSE regression to fit the value function via some 
gradient descent algorithm:

φ
φ

τ
φk

k D t

T

t t
argmin

D T
V s R

k

+
∈ =

= ( ) −( )∑ ∑1
0

21

end for   

4.10.3 Applications

Under proper assumptions TRPO is guaranteed to provide 

monotonic improvement.

4.11  PROXIMAL POLICY OPTIMIZATION (PPO)

Algorithm Model Action Policy Perf. Meas.

PPO Continuous Discrete or 
Continuous

On- policy Advantage 
function

Like TRPO, which uses second- order methods, the PPO also 

tries to get the biggest possible improvement in policy but uses 

first- order methods. It has two variations.

 • PPO- Penalty: It is a KL- constrained update like the TRPO, 

but penalizes the KL- divergence in the objective function 

by automatically adjusting the penalty coefficient.

 • PPO- Clip doesn’t use either KL divergence term or any 

constraint but clips the objective function to remove 

incentives for the new policy to get far from the old policy.

Here, we’ll focus on PPO- Clip.
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4.11.1 Mathematical Formulation

The policy is updated using the following expression.

 θ θ θ
θ πθ

k s a k
argmax E L s a

k
+ ( )= ( )1 , ~

, , ,  (4.44)

One uses minibatch SGD to maximize the objective L given by

 L s a A s a g A s a
k

k

k k, , , , , , ,θ θ
π

π
θ

θ

π πθ θ( ) = ( ) ( )( )










min   (4.45)

Here

 g A A for A A for A  , ,( ) = +( ) ≥ −( ) <1 0 1 0  (4.46)

4.11.2 Pseudocode

Input: Initialize (i) policy parameters θ
0

, (ii) initial value 
function parameters φ

0
.

for k =  0,1, 2 ,… do
run policy π θ( )

k
, collect trajectories D

k
, compute  

rewards R
t

compute advantage function A
t  using current value 

function V
kφ

update policy by maximizing PPO- Clip objective:

θ
π

πθ
τ

θ

θ

π πθ θ

k

k D t

T

argmax
D T

A s a g A s a
k k

k k
+

∈ =

= ( ) ( )( )∑ ∑1
0

1
min , , , ,









 .

via SGD with Adam (a particular SGD variant)
Use MSE regression to fit the value function via some 
gradient descent algorithm:

φ
φ

τ
φk

k D t

T

t t
argmin

D T
V s R

k

+
∈ =

= ( ) −( )∑ ∑1
0

21

end for   
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4.11.3 Applications

The PPO method has been a very successful RL algorithm and 

is the preferred method for solving identification and classifi-

cation problems.

4.12  LONG SHORT- TERM MEMORY (LSTM)

Algorithm Model Action Policy Perf. Meas.

LSTM Continuous Discrete or 
Continuous

On- policy Advantage 
function

The general structure of recurrent neural network (RNN) includes 

input, output, and hidden layers. The last one contains neurons 

with memory, so it allows information to persist. In general, 

their information content does not persist for a long time due to 

vanishing or blowing up of the gradients of the parameters. The 

LSTM uses a specialized and more capable neuron consisting of 

three gates for handling time series problems, e.g., planning, and 

other time- dependent tasks. The three gates of LSTM are:

i. Forget gate: It chooses whether to keep or forget the pre-

vious timestamp’s information.

ii. Input gate: It adds or updates information.

iii. Output gate: It passes the updated information to the 

next timestamp.

In addition, the LSTM neuron has two states.

i. Hidden state: Short- term memory with information 

H t( ) at current timestamp and H t −( )1  at previous 

timestamp.

ii. Cell state: Long- term memory with information C t( ) at 

current timestamp and C t −( )1  at previous timestamp.

The updating for different states is done using sigmoid, tanh, or 

other similar functions.
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4.12.1 Mathematical Formulation

Let

x
t
 =  input vector at time t,

h
t � and h

t−1 =  hidden state or output vector of LSTM unit,

W and U (with appropriate suffixes) =  weight matrices for 

different gates,

b (with appropriate suffixes) =  bias vectors for different gates,

 =  Operator for the elementwise or Hadamard product,

d and h =  Superscripts denoting number of input features 

and hidden units,

σ
g
 =  sigmoid function,

Then operations at different gates are:

Forget gate f W x U h b
t g f t f t f

= + +( )−σ
1

, f
t

h∈( )0 1,

Input gate i W x U h b
t g i t i t i

= + +( )−σ
1

, i
t

h∈( )0 1,

Output gate o W x U h b
t g o t o t o

= + +( )−σ
1

, o
t

h∈( )0 1,

The hidden state operations are:

Memory cell input activation vector    c W x U h b
t c c t c t c

= + +( )−σ
1

, 

c
t

h∈ −( )1 1,

Cell state vector                              c f c i c
t t t t t

= +− 
1

� 

Hidden state or output vector     h o c
t t h t

= σ ( ), h
t

h∈ −( )1 1,

4.12.2 Pseudocode

Input: Initialize (i) sequence length =  L, (ii) hidden state 
vector h

t
 and h

t −1
for i =  0,1, 2 ,… L do

if i =  0

h
t −1

 =  random (), c
t −1

=  random ()
else
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h
t −1

 =  h
t
, c

t −1
=  c

t

f W x U h b
t g f t f t f

= + +( )−σ
1

i W x U h b
t g i t i t i

= + +( )−σ
1

o W x U h b
t g o t o t o

= + +( )−σ
1

c W x U h b
t c c t c t c

= + +( )−σ
1

c f c i c
t t t t t

= +− 
1



h o c
t t h t

=  σ ( )
end for   

4.12.3 Applications

The RNNs using LSTM units are trained using gradient des-

cent. They have led to many remarkable successes in playing 

games and controlling robots.

4.13  GENERATIVE ADVERSARIAL NETWORK (GAN)

Algorithm Model Action Policy Perf. Meas.

GAN xx Continuous xx xx

In GAN approach, two networks contest one another for 

improved outcome in DRL. The given unsupervised learning 

problem is formulated as a game between two competing 

networks known as Generative and Discriminative networks. In 

this contest gain of one network becomes loss of another one. 

The overall approach is as follows:

i. Generative network or generator G generates random 

synthetic samples from a latent data distribution, e.g., 

multivariate normal distribution. For image generation, 

a deconvolutional NN or a deterministic FFNN is used. 

Its objective is to increase the error rate of the discrim-
inative network.
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ii. Discriminative network discriminator D is trained using a 

known dataset until a desired accuracy is attained. It takes 

the samples provided by G and tries to distinguish them 

from the true data distribution by classifying the sample as 

real or false. For image generation, a convolutional NN is 

used to map a sample to a binary classification probability.

The GAN game is then formulated as a zero- sum game for 

the value of the cross- entropy loss between the discriminator’s 

prediction and the identity of the image as real or generated. 

Independent backpropagation method is used in both networks 

so that G produces better samples, while D becomes better at 

recognizing synthetic samples.

4.13.1 Pseudocode

Here D and G denote discriminator and generator, respectively.

Input: number of steps k for discriminator
for number of training iterations do

for k steps do
generate samples z z m1( ) ( )…{ }, , from a noise  
distribution p z

g ( )
choose examples x x m1( ) ( )…{ }, , from data  
distribution p x

data ( )
update the discriminator by ascending stochastic gradient:

∇ ( ) + − ( )( )





=

( ) ( )∑θd m
logD x log D G z

i

m
i i1

1
1

(

end for
generate samples z z m1( ) ( )…{ }, , from a noise  
distribution p z

g ( )
update the generator by descending stochastic gradient:

∇ − ( )( )
=

( )∑θd m
log D G z

i

m
i1

1
1

( )

end for
   

GANs versus Actor- Critic (AC) method
The AC and GAN methods look similar, but they differ signifi-

cantly from one another as given in Table 4.1.
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TABLE 4.1 GANs versus AC

Properties GAN Actor- Critic

Aims GANs aim to learn the 
underlying distribution 
of the data and afterward 
generate new samples 
that were not in the 
original data set.

They are typically 
formulated as a max- min 
optimization or saddle- 
point problem.

AC solves a stochastic optimal 
control problem from data, 
without prior knowledge of 
the environment and learns 
the model of the environment 
either implicitly or explicitly.

The actor (like G) tracks the 

policy P s a( , )| θ  (θ =  the 
distribution specific vector of 
parameters).

The critic (like D) tracks the 
value function representing the 
‘goodness’ of actor’s policy.

Convexity GANs are inherently 
nonconvex.

ACs are originally convex but 
their approximate solution is 
usually nonconvex, e.g., with 
DL.

Components In GANs, G approximates 
the data distribution, 
and D evaluates the 
distribution of the 
generator

In AC, the actor approximates 
the policy, i.e., the distribution 
P a s( | ), and the critic evaluates 
this policy.

Learning GANs work in an 
unsupervised learning 
setting and mimic the 
distribution of the 
given data assumed to 
be independent and 
identically distributed 
(i.i.d).

ACs work in the RL or a 
sequential decision- making 
setting —  the action chosen at 
the current step affects the data 
seen in the future. AC methods 
explore the environment and 
learn to act nearly optimally.

Supervision In GANs, G gets 
supervision from D 
and it signals G about 
how good or bad the 
generated data are. If D is 
removed, then G cannot 
be trained at all.

In ACs, the critic improves the 
supervision to the actor. The 
actor can be trained without 
the critic, in which case, one is 
simply learning the policy by 
estimating its future reward. 
The critic helps make this 
estimation better.

 

 



96   ■   An Introduction to Deep Reinforcement Learning

4.13.2 Applications

GANS have been applied to many problems successfully, e.g., 

image inpainting, super resolution, Steganography or hiding 

data in images, synthetic data generation for training models, 

image and video recognition, etc.

4.14  NORMALIZED ADVANTAGE 

FUNCTION (NAF)

Algorithm Model Action Policy Perf. Meas.

NAF Continuous

Methods for Q- learning can be used for both discrete and con-

tinuous cases.

 • The optimal Q- function for discrete action sets is given as

 Q s a E r max Q s a s a
t t s t a t t

* *, , | ,( ) = + ( ) ′ ′′ ′γ  (4.47)

 The agent goes through a well- defined discrete action 

space usually given as a table.

 • In continuous cases the action selection step requires 

taking arg max over all possible actions.

 a max Q s a
t a t

= ( )* , ;θ  (4.48)

The Q- learning methods have difficulty in these situations.

Methods like DDPG have been developed to solve this 

problem with two NN output streams. NAF is another similar 

method in which the NNs estimate the value and advantage 

functions separately. The advantage function is expressed as a 

quadratic function of the state parameters.
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 A x u u x P x u xA
T

P, ( | ) )| | |θ µ θ θ µ θµ µ( ) = − − ( )  − ( ) 
1

2
 (4.49)

There are three output streams now:

i. the value function V x V|θ( ),
ii. a state- dependent, positive- definite square 

matrix formed with a lower- triangular matrix L:  

P x L x L xP P P T|θ θ θ( ) = ( | ) ( | ) , and

iii. the action µ θµx|( ) which always maximizes the Q- 

function, since it is quadratic in u.

Afterward, these three streams are combined to give the 

Q- function.

  Q x u A x u V xQ A V, ,| | |θ θ θ( ) = ( ) + ( ) (4.50)

Here θ θ θQ A V, ,  are the parameters of the Q- function, value 

function and the advantage functions, respectively.

4.13.1 Pseudocode

Randomly initialize normalized Q network Q x u Q( , | )θ
Initialize target network ′Q with weight θ θ′ →Q Q .
Initialize replay buffer R ← 0 .

for episode =  1, M do
Initialize a random process N for action exploration
Receive initial observation state x p x

1 1
~ ( )

 for t =  1,…,T do
 for iteration =  1,…,I do

 Select action u x N
t t t

= ( ) +µ θµ|

 Execute u
t
 and observe r

t
 and x

t +1

 Store transition x u r x
t t t t
, , , +( )1

 in R
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Set y r V x
i i i

Q= + ( )′ +
′γ θ

1
|

Update θQ  by minimizing the loss

L
N

y Q x u
i

i i i
Q= −( )∑1 2

( , | )θ

Update the target network: θ τθ τ θ′ ′← + −( )Q Q Q1
end for

  end for
end for
   

4.15  SELF- ORGANIZING MAPS (SOM)

Algorithm Model Action Policy Perf. Meas.

SOM Continuous

A SOM, based on Kohonen map, is applied to unsupervised 

learning without using backpropagation. It creates a low- 

dimensional representation (usually two- dimensional) of 

a higher- dimensional data while preserving its topological 

structure. It moves its ‘neurons’ closer to the data points and 

finds probable clusters by using a neighborhood function for 

retaining the data topology.

SOMs have only two layers, one for the input and one for 

the output or the feature map. There is no activation function, 

so weights pass to output layer unchanged. Both weight and 

the input vectors have the same dimension. The weights are 

updated using the processes of competition, cooperation, and 

adaptation.

i. Competition: This step computes the Euclidean distance 

between each output layer neuron and the input data. 

The neuron with the lowest distance (‘winner’) is chosen 

as the winner.
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ii. Cooperation: This step chooses the ‘neighbors’ using a 

kernel function dependent on time (increment for the 

new input) and distance (between the winner and target 

neuron).

iii. Adaptation: This step updates the neurons using the 

following relation

 w w t h t x w
k k ik

n

k
= + ( ) ( ) −( )( )� η  (4.51)

Here

 • η ηt e
t T( ) = −

0
1
/  is the learning rate for determining how 

much the weights must be adjusted.

 • h t
d

t
ik

ik( ) = −
( )







exp

2

22σ
 is the neighborhood kernel 

function depending on d
ik

 (the distance between the 

winner and the other neuron) and σ t( ) (the time- 

dependent neighborhood size).

 • σ σt e
t T( ) = −

0
2

/  is the neighborhood size decay rule.

4.15.1 Pseudocode

Randomly initialize weights to some small values.
Repeat until convergence

Select the next input pattern x in  from the database.
Find the unit w

i
 that best matches x in

i x argmin x win
j

in
j( ) = − .

Update the weights of winner w
i
 and its neighbors w

k
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 w w t h t x w
k k ik

in
k

= + ( ) ( ) −( )η . .  

Decrease the learning rate η t( ) and 
neighborhood size σ t( )

   

4.16  REINFORCE GRADIENT WITH AND 

WITHOUT BASELINE

Algorithm Model Action Policy Perf. Meas.

REINFORCE: gradient Continuous

REINFORCE is the acronym for REward Increment =  Non- 
negative Factor × Offset Reinforcement × Characteristic 

Eligibility.

REINFORCE without baseline:

The gradient of policy π
θ
a s
t t
|( ) does not depend on reward 

r(τ), but it makes the variance of the MCMC sampling quite 

large. Define:

G
t
 =  the discounted return,

As the past rewards do not contribute anything, so the policy 

gradient can be replaced by G
t
.

 ∇ ( )  = ∇ ( )















=
∑E r E G a s
t

T

t t tπ π θθ θ
τ π

1

log |  (4.52)

This is the basis of the MCMC policy gradient algorithm 

REINFORCE.

It is an MCMC policy gradient algorithm for the episodic 

case and therefore it requires a complete episode to get the 

sample proportional to the gradient. It then updates the policy 

parameter with the step size.
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REINFORCE with baseline:

The above algorithm prescription does not totally alleviate the 

problem related to sampling. It uses the Monte Carlo method 

which has high variance and consequently slow learning. So, a 

baseline parameter b is introduced for the gradient to reduce its 

variance. Then the above expression is modified as:

 ∇ ( )  = −( )∇ ( )















=
∑E r E G b a s

t

T

t t tπ π θθ θ
τ π

1

log |  (4.53)

It can be proved that

 E b a s

t

T

t tπ θθ
π

=
∑ ∇ ( )













 =

1

0log |  (4.54)

The baseline parameter b reduces the variance as well as keeps 

the gradient still unbiased. A good baseline is the current state- 

value defined as the expected return given a state following the 

policy π
θ
 or V s E G s s

t t
( ) = = πθ

| .
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C H A P T E R  5

Multi- Agent RL 

(MARL) Algorithms

As a subfield of RL, multi- agent reinforcement learning 

(MARL) studies the behavior of many learning agents 

coexisting in a shared environment. Each agent seeks its own 

reward and acts to advance its own interests. There are two 

cases to distinguish.

 • In a cooperative case, MARL agents work together to 

maximize a given goal.

 • In a competitive case, the agent interests are opposed to 

those of others.

MARL uses the theory of repeated games combined with the 

pursuit of finding ideal algorithms that maximize rewards. 

While single- agent RL tries to find the algorithm that gets the 

biggest rewards for one agent, MARL evaluates and quantifies 
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social metrics, such as cooperation, reciprocity, equity, social 

influence, language, and discrimination.

5.1 COOPERATION VERSUS COMPETITION

When many agents share the same environment, their 

interests might be aligned or misaligned. MARL allows 

exploring all the different alignments and how they affect the 

agents’ behavior:

 • Pure competition settings: The agents’ rewards are exactly 

opposite to each other, and therefore they are playing a 

zero- sum game against each other, e.g., games like Go and 

chess, and projects like AlphaGo and Deep Blue. Neither 

agent takes actions that benefit its opponent.

 • Pure cooperation settings: The agents get the exact same 

rewards, and therefore they are playing with each other. 

MARL approach is used to explore how agents with 

identical interests can communicate and work together. 

Pure cooperation settings are explored in recreational 

cooperative games like Overcooked, and in real- world 

robotics scenarios. In pure cooperation settings, agents 

converge to specific ‘conventions’ when coordinating 

with each other.

 • Mixed- sum settings: These cover situations which com-

bine elements of both cooperation and competition, e.g., 

self- driving cars, such that each car minimizes the time it 

takes to reach its destination, but all cars have the shared 

interest of avoiding a traffic collision.

Classic matrix games such as Prisoner’s dilemma and rec-

reational games such as Diplomacy and StarCraft II are 

good examples. These settings sometime create commu-

nication and social dilemmas.
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5.2  GENERAL CONSIDERATIONS FOR MARL

5.2.1 Training

The approaches to training must consider the following 

possibilities:

i. Train all agents independently so that each agent 

considers all others as part of the environment and learns 

its own policy in a fully decentralized approach or

ii. Implement Centralized Learning with Decentralized 
Execution (CLDE) in which one takes in the state of the 

environment and returns an action for each agent in the 

form of a single joint action vector, thus learning a single 

policy for all agents.

5.2.2 Single- Agent Setting as Reference

There are many new considerations for implementing DRL 

algorithms when the number of agents increases beyond 1. We 

first recall the single- agent situation for further reference. Let 

an agent at a given time step t

i. be in a state s
t
 (from state space S) and

ii. choose an action a
t
 (from action space A) to

iii. transition to state s
t+1 by

iv. receiving reward r
t
.

Then, this agent’s value function for policy π is given by the 

following expression:

 v s E r
t

k

k

k tπ π
γ( ) =











=

∞

+ +∑
0

1
 (5.1)

Here γ ∈ [0, 1] is the discount factor and E
π
 is the expectation 

value operator.
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The value function for optimal policy π∗ can be obtained by 

using Bellman’s equation.

 v s max p s s a r s a v s
t a

s

new

t t

new

new

π π
γ* *( | , ) ,( ) = ( ) + ( ) ∑  (5.2)

Similarly, the optimal Q- value is given by appropriate Bellman’s 

equation.

 Q s a p s s a r s a max Q s a
t t

s

new
t t t t a

new new

new

newπ π
γ* *, ( | , ) , ,( ) = ( ) +∑ (( )  

 (5.3)

Here p s s anew

t t
( | , ) is the probability of transitioning to the new 

state snew after taking action a
t
 in state s

t
.

5.2.3  Basic Equations for the Multi- Agent Q- Function 
Framework

The mathematical framework of the most MARL methods 

focusses on finding an optimum Q- value and/ or policy. For 

MARL cases, a modified version of the above optimal Q- value 

equation is the following:

Q s a

s

r s a P s s a

x x x

x x

x x

s

new

x

x

new

* , |

,

, , ( | , ,

π

π

−

− −

−

( )

= ( )
( ) +

−

∑
∑

a

a

a γ aa−

( )

















x

a x

new

x

newmax Q s a
x
new

)

,*

 (5.4)

Here

i. a
x
 =  the action of agent x

ii. a− x =  the action vector of all agents except agent x.

iii. π− x
 =  the policy vector of all agents except agent x.

iv. P =  the transition probability among the states.
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5.2.4  Basic Equations for the Multi- Agent Policy- Function 
Framework

The above equations can be written using policy as a param-

eter during learning to optimize a policy- based function. The 

equation can be solved using policy gradient methods for 

finding an approximation to the gradient.

The MARL framework is a stochastic game based on the 

Markov decision process represented formally as:

 • Game represented as the tuple S, actions A A A
n1 2

, , , ,…
Rewards R R R

n1 2
, , ,… , (n =  the number of agents), P (tran-

sition function)

 • A A XA X XA
n

= …
1 2

 is the joint action space of all agents,

 • S × A × S → R is the reward function of each agent,

 • The state transition function P ∶ S × A × S → [0, 1]

 • H =  joint policy

 • Reward function is bounded.

State transitions are the result of all agents acting together and 

the rewards depend on the joint policy. The reward R
i

H for the 

ith agent under the joint policy H is given by:

 R E R S s A a H
i

H

t t t i
= = =+[ | , , ]

,1
 (5.5)

The corresponding Bellman equation for Q- function is:

 Q s a E R Q S A S s A a
i

H

i

H

t i

H

t t t t
, [ , | , ]( ) = + ( ) = =+ + +1 1 1

γ  (5.6)

There is a similar equation for value function.

In general, the stochastic games are of three kinds:

i. Fully cooperative: All agents have the same reward   

( R R R
n1 2

= = … = ) and their goal is to maximize it.
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ii. Fully competitive: The agents have opposite goals, e.g., 

for n =  2, R R
1 2

= − .

iii. Mixed games: The agents’ rewards are usually different 

and correlated.

5.2.5 An Example

There are three primary challenges associated with MADRL. In 

this example, an approach to their solutions is given which can 

be used in other similar situations.

 • Problem representation: We need to represent an arbi-

trary number of agents without changing the architecture 

of the deep Q- Network. To solve this problem, a number 

of simplifying assumptions are made: (i) environment is 

two- dimensional, (ii) time and space are discrete, and (iii) 

there are two types of agents (allies and opponents).

 The global system state can be represented as an image- 

like tensor, with each channel containing agent-  and 

environment- specific information. This representation 

can now be used to take advantage of convolutional neural 

networks (CNN) which work well for image classification 

tasks. The image tensor is of size 4 _ W_  H, where W and H 

are the height and width of our two- dimensional domain 

and four is the number of channels in the image. Each 

channel encodes a different set of information from the 

global state in its pixel values. The channels can be broken 

down in the following way:

 _ Background Channel: contains information about any 

obstacles in the environment

 _ Opponent Channel: contains information about all the 

opponents

 _ Ally Channel: contains information about all the allies

 _ Self Channel: contains information about the agent 

making the decision
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Note that channels in the image- like representation are 

sparse. In both the opponent and ally channels, each non-

zero pixel value encodes the number of opponents or allies 

in that specific position.

 • Multi- agent training: When many agents interact in an 

environment, their actions may directly impact the actions 

of other agents. So, the agents must be able to reason about 

one another for intelligent actions. One trains one agent 

at a time and keeps the policies of all the other agents 

fixed during this period. After a set number of iterations, 

the policy learned by the training agent gets distributed 

to all the other agents of its type. Specifically, an agent 

distributes its policy to all its allies. In this way one set 

of agents incrementally improves its policy over time. The 

learning process itself is not distributed, but the policy 

execution is distributed, because each agent has its own 

NN controller. Each agent must be aware of the locations 

of all the other agents, but it does not need to tell the other 

agents about its intent.

 • Agent ambiguity: Consider a scenario where two ally 

agents occupy the same position in the environment. The 

image- like state representation for each agent will be iden-

tical, so their policies will be the same. To break this sym-

metry, a stochastic policy for agents is used in which an 

agent’s action is drawn from a distribution. For example, it 

can be a softmax over the NN’s Q- values. This allows allies 

to take different actions if they occupy the same state and 

break the ambiguity.

5.3  REWARD MACHINES (RMS) FOR MARL

RM is a kind of reward function generalized to the multi- agent 

scenario. It encodes a non- Markovian reward in a type of 

finite- state machine. It takes subsets of propositional variables 

as input and outputs real numbers as reward values.
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RM abstracts the current environment state to sets of high- level 

events.

 • Input: It is the current RM state 𝑢 ∈ 𝑈 and the environ-

ment state 𝑠 ∈ 𝑆
 • Output: It is a collection of multiple concurrent events 

which are passed as unordered sequence to the RM. It 

depends both on the environment and on the current pro-

gress through the task specifying local labeling functions.

RMs decompose a complex task into several stages and sim-

plify the stage- specific operations.

Reward functions are part of the MDP formalism of a single 

RL agent, and they have been generalized to ‘Reward Machines’ 

for the case of the multi- agent RL. They use finite state 

machines (FSM) to allow the team- level task to be decomposed 

into subtasks for individual agents. Its output value depends 

on the present state and the current input symbol and can be 

characterized by the following elements:

i. A finite set of states,

ii. An initial state,

iii. An input alphabet,

iv. An output alphabet,

v. A transition function map from (states, input alphabet) 

to input alphabet, and

vi. An output function map from (states, input alphabet) 

to input alphabet. The lengths of input and output 

are equal.

RMs use a particular form of FSM called ‘Mealy’ machines 

for the structured representation of reward functions using 

concatenations, loops, and conditional rules. Given an RM 

framework, the agents can separate the team- level tasks into 
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stages and learn the stage- specific behaviors for the overall 

task. Q- Learning for reward machines (QRM) decomposes the 

problem to improve sample efficiency and uses q- learning to 

update each subtask policy in parallel, which guarantees con-

vergence to an optimal policy. QRM can be combined with 

DRL methods.

5.3.1  Markov Game, Nash Equilibrium, and Pareto 
Optimality

Markov games (MG) are multi- agent generalization of Markov 

decision process (MDP), which itself is the basic framework for 

the single- agent RL. In MG framework, many agents interact 

simultaneously within a shared environment and with each 

other. It is given by the following elements:

i. A set of interacting agents {1, 2, …, N}, N>1

ii. A set of states observed by all agents representing all 

possible agent configurations in the environment,

iii. A set of joint actions of the agents which is a collection 

of the individual action spaces of all agents,

iv. Transition probabilities for the chance of a state 

transition,

v. Individual rewards, specific to an agent for arriving at a 

new state by taking a specific action,

vi. A discount factor γ for diminishing future rewards.

In multi- agent situation, the best response is found by taking 

multiple reward functions. In general, this may not be the 

best. That is determined by the Nash equilibrium, which is a 

solution such that no one agent can improve upon the policy 

when other agents’ policies are fixed. This situation of non- 

uniqueness is called Pareto optimal, when no agent action is 

available that makes one get more reward without making 

others worse off.
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5.3.2 Pareto Optimality

A strategy is called Pareto- optimal or Pareto- efficient if a 

strategy or policy profile dominates all others if no agent using 

a chosen strategy profile can be better off without making 

another agent using the same profile more efficient. A Pareto 

improvement is defined as any adjustments to a strategy profile 

that makes the resulting strategy profile more Pareto efficient. 

So a strategy profile π∗ is a Pareto efficient solution if it is not 

Pareto dominated by any other strategy profiles. It maximizes 

the overall welfare defined as the sum of all agents’ utilities 

without emphasizing individual rational decisions.

5.3.3 Nash Equilibrium

It is a state in which no individual agent can increase its expected 

return by unilaterally deviating from their policy. It means that 

all agent strategies are the best responses to the other agents’ 
strategy. It is not unique and computing it in complex situations 

may even be impossible. In such situations ϵ- Nash equilibrium 

is more tractable. It relaxes the requirements by allowing the 

agent to deviate if it improves its expected returns by more than 

some value ϵ.

5.3.4 Q- Learning with RMs (QRM)

It is an algorithm that learns a collection of q- functions, one for 

each RM state 𝑢 ∈ 𝑈, corresponding to the optimal policies for 

each stage of the task.

A naive approach to applying RMs in the MARL setting 

would be to treat the entire team as a single agent and use QRM 

to learn a centralized policy. This approach quickly becomes 

intractable due to the exponential scaling of the number of 

states and actions with the number of agents. Furthermore, it 

assumes agents communicate with a central controller at every 

time step, which may be undesirable from an implementation 

standpoint.
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A basic RM algorithm for Q- learning is given below (Ref: Neary)

Input: R =  ⟨ 𝑈, u
I
, Σ, 𝛿, 𝜎, 𝐹 ⟩, 𝐿, 𝛾, 𝛼

Output: 𝑄 =  { q
u
 : 𝑆 × 𝐴 → R|𝑢 ∈ 𝑈}

Q ← InitializeQFunctions ()
for 𝑛 =  1 to NumEpisodes do

u
1
 ← u

I
 , s

1
 ← environmentInitialState ()

for 𝑡 =  0 to NumStemps do𝑎 ← getAction ( q
u1

, s
1
)

s
2

 ← executeActions ( s
1
, 𝑎)𝑟, u

2
 ← rewardsMach i n e O u t p u t ( u

1
, 𝐿 ( s

2
, u

1
))

q
u
 ( s

1
, a) ← (1 − 𝛼) q

u1
 ( s

1
, a) +  𝛼 (r +  𝛾 max

a A′∈
 q

u2

  

( s
2

, ′a ))
for u ∈ U, u ≠ 𝑢1 do

r, u′ ← rewardMach i n e O u t p u t (u, L ( s
2

, u));
q

u
 ( s

1
, 𝑎) ← (1 − 𝛼) q

u
( s

1
, 𝑎) +  𝛼 (𝑟 +  𝛾 max

a A′∈
 q

a′
   

( s
2

, ′a ))

u
1
 ← u

2
, s

1
 ← s

2
if u1 ∈ F then

break

return Q
   

The algorithm works as follows:

 • The agent starts with RM state u
1
 and environment state s

1

 • It uses its estimate of q
u
1

 ( s
1
, .) to select action a.

 • The environment goes to state s
2
.

 • The RM transitions to state u
2
 caused by the events output 

by 𝐿 ( s
2
, u
1
).

 • The agent updates the optimal q- function q
u
1

( s
1
, a) using 

reward output by 𝜎.

 • The agent queries the rewards and RM transitions that 

would have occurred had the RM been in any other state u 

and uses this information to update the estimate of each q
u
.
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The tabular QRM algorithm is guaranteed to converge to an 

optimal policy.

5.4  MARL ALGORITHMS: NEURO- SYMBOLIC 

LEARNING

We interact with outside world in a two- tiered manner:

i. Perception through sensory inputs which is mapped into 

symbols, and

ii. Cognition which maps the symbols into knowledge 

about the environment.

This is further used for supporting abstraction, reasoning by 

analogy, and long- term planning.

The NN- based AI algorithms effectively model machine 

perception, but for modeling human cognition a different 

approach using symbolic knowledge structure is needed. 

Neuro- symbolic AI approach supports mapping perception 

output to knowledge which enables traceability of knowledge 

systems. It combines NN with knowledge- guided symbolic 

approaches to create more capable and flexible AI systems 

capable of combining both algorithm and application- level 

capabilities.

Further analysis of this approach leads to two major 

considerations.

Symbolism: It represents objects as symbols and uses rules 

of logic to work with them. Let A denote the collection of prop-

ositions and B the general principles. Then historically three 

different types of reasoning have been found by logicians for 

the symbolic approach.

 • Deductive: One derives A from B only when A is a formal 

logical consequence of B.

 • Inductive: One infers B if given A.
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 • Abductive: One infers A as an explanation of B without 

rigorous logical analysis. This allows preconditions from 

consequences which is opposite in direction to induction.

It is apparent that all of them involve working with symbols. It 

requires relatively few input symbols for representing know-

ledge of the target system and internal functioning of the 

programs is transparent.

It was discovered soon that the symbolic approach does not 

work well with noisy and ambiguous real- world data.

Connectionism: It was generally observed that

 • Cognitive processes (attention, problem- solving, memory, 

learning, decision- making, language, perception, imagin-

ation, and logic reasoning) arise from neurons and their 

connections.

 • Learning occurs through weight modification, minim-

izing cumulative error and with discovery of statistical 

patterns in the input data.

Thus, ‘cognition’ can be represented as stemming from the 

interconnected networks of uniform ‘neuron’- like units, thus 

allowing its representation by neural networks (NNs).

Despite many successes, this approach also has some 

shortcomings like lack of compositional generalization and a 

verifiable train of logic and no understanding of why a deci-

sion was made. Application of this approach to critical areas 

like medical diagnosis, autonomous driving, and mathematical 

reasoning has proved very problematic.

Integration of two approaches: Neuro- Symbolic learning
Recently, researchers have tried to combine the above two as 

‘Neuro- symbolic’ (NeSy) approach to AI. It was also found that 

neural (N) and symbolic (S) components can be combined 

in different ways. The following six broad types capture this 

integration:
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i. S- N- S: symbols as both input and output.

ii. S[N] : neural as subroutine inside overall symbolic 

approach.

iii. N|S: neural and symbolic both at the same co- 

routine level.

iv. N:S→N: symbolic rules integrated with NN’s architec-

ture or training.

v. N_ S: symbolic as soft constraint on loss function in 

training NN.

vi. N[S] : symbolic engine directly embedded inside an NN 

engine, logical reasoning as tensor calculus.

This is a rapidly evolving area of research and does not have a 

universally agreed approach yet. Here one such approach will 

be described to give a general idea of the research in this field.

5.5  MARL FOR A2C AND A3C

This variation of A2C was developed by Google DeepMind. It 

uses many agents with each having its own copy of the environ-

ment. All agents also have their own set of network parameters, 

which are different from others. They interact with their envir-

onments asynchronously and learn with each interaction just 

like in an A2C algorithms. They learn the conditional prob-

ability P a s( | , )θ , where θ denotes the agent- specific network 

parameters. At the same time, they are also controlled by a 

global network, which collects the learning information and 

creates a better picture of the environment. This process mimics 

the human learning process more accurately as we learn from 

various sources.

5.6  MULTI- OBJECTIVE RL (SINGLE AND 

MULTI- AGENT)

In most real- world problems, our decisions involve optimiza-

tion of more than a single objective. For example, in medical 
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situations, we may want to maximize the effectiveness of the 

treatment, while minimizing a variety of side effects. Most real- 

world decision problems are inherently multi- objective, and 

they need a generalization of the single objective RL to multi- 

objective one. Many times, all the goals needed by an adequate 

solution are combined into a scalar and additive reward 

function and numerical rewards or penalties are assigned to 

events that can occur in the environment.

For single- agent RL, this leads to fine- tuning the reward 

function iteratively until a satisfactory solution is found. This is 

an unsatisfactory approach lacking explainability and inability 

to handle changing requirements. Mathematically, it implies 

that it is always possible to convert a MOMDP into an MDP. 

An a priori scalarization function is required for this to work 

which may or may not be feasible or desirable.

Some scenarios and examples are presented here:

 • Unknown utility function scenario: There is too much 

uncertainty about knowing the correct utility function. 

It is preferable to compute a broader set of policies to 

respond quickly whenever more information is available.

 • Decision support scenario: The user’s preferences are 

unknown or difficult to specify. It is almost identical to 

the unknown utility function scenario. The only difference 

is that the user selects a policy based on its preference. 

Capturing preferences and trade- offs for all stakeholders 

across all objectives is difficult, if not impossible. One solu-

tion is to learn a set of optimal policies and let an authority 

(local council or government) decide what policy to follow 

after a collective decision has been made by a local council 

or government.

 • Known utility function scenario: The user’s preferences are 

known at the time of learning or planning, so scalarization 
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is both possible and feasible. However, sometimes this can 

lead to an intractable problem. Usually, since the user’s 

preferences are known, it is possible to learn a single 

optimal policy.

 • Interactive decision support scenario: The agent learns 

both the preferences of the user in the given environment. 

During learning, the agent can find user preferences and 

remove uncertainty from the user’s utility function. At 

various times during the learning phase a user could be 

presented with different potential solutions and rank the 

solutions in order of preference, so the system gets a more 

accurate representation of the users preferences and learns 

an optimal solution.

 • Dynamic utility function scenario: The user’s preferences 

for certain objectives change over time. Therefore, 

applying a priori scalarization would be undesirable. An 

optimal approach for the algorithm is to learn a finite 

number of policies over time and choose an appro-

priate non- dominated policy for any utility function and 

improve upon it. Although there is an infinite amount of 

utility functions, they can be covered by a finite number of 

policies.

 • Review and adjust scenario: A user may be uncertain about 

its objective preferences over time, making utility function 

too much uncertain. In this scenario, learning a coverage 

set of policies is optimal, so a user can select the policy 

accurately reflecting its preferences. The chosen solution 

can be reviewed before execution. If the user’s preferences 

have changed, selected solution can be adjusted to accur-

ately reflect the updates.

Multi- objective RL tries to overcome these shortcomings. Some 

useful approaches are:
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i. Stateless/ bandit algorithms:

The well- known Multi- Armed Bandit (MAB) algorithm gives 

an optimal exploration/ exploitation strategy for selecting 

between different actions (arms). The aim is to minimize the 

regret defined as the loss in reward from not selecting the ini-

tially unknown optimal action on every time step). This has 

been extended to MORL by extending this concept to multi- 

objective regret in which the agent minimizes the number of 

Pareto- dominated actions. This general idea has resulted in sev-

eral MORL algorithms like multi- objective χ- armed bandit (the 

set of arms is measurable), a modified form of the Hierarchical 

Optimistic Optimization (HOO) algorithm, multi- objective 

ranked bandits, etc.

ii. Single- policy algorithms:

Extension of existing single- objective model- free value- based 

methods, such as Q- learning, to multi- objective situation is 

the most widely adopted approach to MORL. It requires two 

changes to the learning algorithm.

 • The agent stores Q- values as vectors rather than as 

scalars, and

 • The scalarization function has to match the utility function 

and should be used to identify the greedy action to per-

form in any given state.

In the case of either weighted or unweighted linear scalarization 

function, this is equivalent to transforming the MOMDP into 

a corresponding MDP. Extension to nonlinear case is quite 

complicated and several approximate methods have been 

devised.
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iii. Multi- policy algorithms:

These approaches fall into two classes:

 • Outer loop methods operate on series of single- objective 

problems. The simplest outer loop methods iterate through 

a series of different parameter settings for a utility function 

and re- run a single- policy MORL method for each setting.

 • Inner loop methods directly produce multiple policies by 

modifying the algorithm to directly identify and store 

multiple- policies in parallel rather than sequentially. 

Pareto- Q- learning is a good example of this.

In case of continuous state- action spaces and not fully observ-

able states, policy search or actor- critic algorithms have been 

considered.
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C H A P T E R  6

Recent  

Developments  

in DRL

The Deep reinforcement learning –  both theory and 

applications –  is developing rapidly. New ideas and 

techniques are entering discourse very often. In this chapter 

some of them are presented. The list is not exhaustive but hope-

fully introduces the readers to some of the intellectual excite-

ment permeating the research in this area.

Table 6.1 identifies some of the popular DRL algorithms 

underlying recent work.

6.1  PHYSICS- BASED NNS AND DRL

A supervised learning NN is a universal function approximator. 

However, it is strongly limited if one wants to extrapolate the 

desired solution for input variable values situated outside the 

range of the training data. This becomes a bottleneck, when in 

addition to this, the data is hard to come by due to the nature of 
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TABLE 6.1 Some DRL Algorithms

Common Algorithms Characteristics

Value- 
based 
methods

State- Action- Reward-  
State- Action (SARSA)

Learn Q function through TD 
learning algorithm and use Q 
function to generate actions

Deep Q Network (DQN) Combining neural network with 
Q- learning and adopting random 
strategy, each time learning 
uses the action that the current 
strategy believes to be the most 
valuable, it is easy to overestimate 
the Q value.

Double (DQN) The problem of overestimation is 
solved by improving the algorithm 
that separates selection from 
evaluation.

Averaged- DQN By reducing the approximate error 
variance in the target value, the 
training process is more stable, and 
the performance is improved.

Multiple DQN variant 
combinations: Rainbow

Combine the six extensions and 
improvements of DQN algorithm 
and focus on the same agent, 
including DDQN, priority- based 
reuse pool, competitive network, 
multi- step learning, distributed RL 
and noise network.

Action 
Elimination –  DQN

(AE- DQN)

To reduce the probability of 
redundant and uncorrelated 
actions, a system is proposed to 
learn the approximate value of Q- 
function and eliminate actions at 
the same time, which includes two 
deep neural networks: DQN and 
action elimination network.

Policy- 
based 
methods

Recurrent Deterministic 
Policy Gradient 
(RDPG)

Using RNN, agents can integrate 
the characteristics of historical 
information and combine it with 
deterministic strategy gradient 
DPG to solve some observable 
problems in POMDP.

(Continued)
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Common Algorithms Characteristics

Deep Deterministic 
Policy Gradient 
(DDPG)

Separate the exploration of action 
strategies from the learning and 
updating of action strategies, 
explore and use random strategies, 
and learn to use deterministic 
strategies; Increase batch 
normalization to prevent gradient 
explosion.

Trust Reason Policy 
Gradient(TRPG)

The advantage function is 
introduced to evaluate the current 
action value relative to the average 
value, to solve the problem of 
inappropriate step selection; The 
importance sampling processing 
action distribution is introduced 
to solve the problem of low data 
sampling efficiency.

Proximal Policy 
Optimization (PPO)

Use first- order optimization to 
minimize the loss function; High 
stability and good applicability 
in continuity problems; The 
implementation is relatively 
simple.

Model- 
based 
methods

Continuous deep   
Q- learning based on 
model acceleration

The RL algorithm based on model 
and without model is effectively 
combined to improve efficiency.

Exploration with 
Exemplar Models (EX2)

The novelty is estimated by 
considering the ease with 
which the classifier trained by 
discriminant can distinguish a 
given state from other states seen 
previously so as to solve the sparse 
reward problem.

Model- Ensemble 
Trust- Region Policy 
Optimization 
(ME- TRPO)

With the same performance as 
the most advanced model- free 
algorithm, the sample complexity 
is greatly reduced; Model 
integration technology is effective 
in overcoming model deviation. 
The introduction of tpro makes 
learning more stable.

TABLE 6.1 (Continued)
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the problem. In addition, the datasets corresponding to specific 

boundary conditions, material types, etc., are very hard to gen-

eralize to new and unseen situations.

In the past, many NN methods like DNN, RNN, CNN, 

GAN, and Neural Operators have been used for tackling these 

problems.

Common Algorithms Characteristics

Temporal Difference 
Model(TDM)

Using the relationship between 
model- based learning and model- 
free learning to learn specific types 
of target condition value functions, 
the sample complexity in 
continuous control tasks is higher 
than that in complete model- free 
learning, and the performance 
is better than that of pure model 
algorithm.

Hierarchy- 
based 
methods

Hierarchical DRL Decisions are made at two levels: the 
top- level module receives the state 
and selects a new goal, and the 
low- level module uses the state 
and the selected goal to make 
decisions until the goal is achieved 
or terminated.

Feudal Network 
Hierarchy RL

Using different time resolutions, 
using the manager module and the 
worker module, it is a consistent, 
end- to- end differentiable model, 
using directional rather than 
absolute goals.

Hierarchical 
reinforcement learning 
based on Stochastic 
Neural Network

First, learn skills in the pretraining 
environment and use agent reward 
signals to reduce the complexity 
of samples; Training advanced 
strategies on learning skills can 
achieve good performance in 
reward sparse or long horizon 
tasks.

TABLE 6.1 (Continued)
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Many times, the underlying system is known to be described 

by known laws of physics in the form of general partial differ-

ential equations (PDEs). Using this information in the learning 

stage makes it possible to overcome the problem of data scarcity. 

Physics- inspired NNs lie at the intersection of the pure physics- 

based system description and pure data- driven explanations. 

They ensure consistency with known physics of the system and 

also allow extrapolation beyond the available data.

There are four distinct neural network frameworks based on 

how the underlying physics is treated.

6.1.1  Physics- Guided Neural Networks (PgNNs)

PgNNs use supervised DL techniques to construct mappings 

between formatted inputs and outputs generated from 

experiments and computations in a controlled setting. The 

mappings are checked extensively to ensure compliance with 

physics principles and fundamental rules. Such models require 

a rich and sufficient dataset to be trained and used reliably.

The model maps a set of inputs x to outputs y using an 

appropriate function F with unknown parameters w such that 

y x w= ( )F ; . By specifying a particular structure for F, a data- 

driven approach fine- tunes the parameters w so that the overall 

error between true and model- predicted values is minimized. 

The cost of data acquisition for complex physical systems is quite 

high. This results in sparse data so the vast majority of state- 

of- the- art PgNNs lack robustness and fail to generalize using 

interpolation and extrapolation. Some of the other limitations 

are also important considerations before deciding to use them.

 • Their training process is solely based on statistics and 

generates models based on correlations in statistical 

variations. The predictions, thus, are naturally physics- 

agnostic and may violate the underlying physics. The 

training datasets are usually sparse and do not cover 

the entire range of underlying experimental attributes. 
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Therefore, the models also fail in blind testing on 

conditions outside the scope of training.

 • Their predictions might be incorrect, even for inputs 

within the scope of sparse training datasets due to lack of 

interpolation capabilities, especially for very wide range of 

the attributes. Also, they may not fully satisfy the training- 

specific initial and boundary conditions which vary from 

one problem to another, making the data generation and 

training process prohibitively costly. Additionally, inverse 

problems estimate parameters only indirectly related to 

these attributes.

 • As they are not resolution- invariant by construction, so 

they cannot be trained on a lower resolution and be dir-

ectly inferred on a higher resolution because they are only 

designed to learn the solution of physical phenomena for 

a single instance (i.e., inputs- outputs). While these models 

are optimal with respect to the entire dataset, they may 

produce suboptimal results in individual cases. They 

may struggle to learn the underlying process for diverse 

training dataset, i.e., when the interdependencies between 

different input and output pairs are drastically different.

6.1.2 Physics- Informed NNs (PiNNs)

They are data- driven to learn a model and ensure consistency 

with the applicable physics. They can generate more robust 

models with less data and are effective for ill- posed and inverse 

problems. Using domain decomposition allows scaling them to 

large problems.

PiNNS remediate the generalizability issue by performing 

supervised learning tasks while obeying laws of physics given 

as general nonlinear PDEs or ordinary differential equations 

(ODEs). They use deep NNs with a series of fully connected layers 

and a variant of gradient descent optimization. The learning or 

training process and hyperparameter tuning are conducted 

manually and depend on problem- dependent sample size.

 

 



126   ■   An Introduction to Deep Reinforcement Learning

They incorporate a weakly imposed loss function consisting 

of the residuals of physics equations and boundary constraints. 

They also leverage automatic differentiation to differentiate 

the neural network outputs with respect to their inputs (i.e., 

spatiotemporal coordinates and model parameters). By min-

imizing the loss function, the network can closely approximate 

the solution. As a result, PiNNs benefit from the long- standing 

achievements in mathematical physics. They are limited due 

to theoretical (e.g., convergence and stability) and implemen-

tation considerations (e.g., neural network design, boundary 

condition management, and optimization).

Let us assume that the physics of the system of interest can 

be described using nonlinear PDEs of the general form.

 u N u t
t

+ [ ] = ∈[ ]; , ,λ 0 0 T  (6.1)

Here u t x,( ) is the solution function and N u,λ[ ] is a nonlinear 

PDE operator with model parameters λ. This setup applies to a 

wide range of problems in mathematical physics, e.g., conser-

vation laws, diffusion processes, advection– diffusion– reaction 

systems, kinetic equations, etc. The PiNN solution to these 

systems uses two NNs. The first NN is a supervised learning 

NN using the available but incomplete and scarce data and 

it approximates the true solution u t x,( ) under the constraint 

from a loss function. Let

 • t x i N
u

i
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The second NN is a feed forward NN (also called multilayer 

perceptron or MLP) used for computing f t x u N u
t

, ;( ) = + [ ]λ  

on a finite set of chosen time and space point values (called col-
location points). It transforms the input to an output through 

a layer of neurons using either linear maps between units in 

successive layers or scalar nonlinear activation functions within 

layers. Some of the popular activation functions are sigmoid, 

hyperbolic tangent, and rectified linear unit (ReLU) functions.

Let t x i N
f
i

f
i

f
, , , , ,{ } =( )1  be the chosen collocation points for 

f t x,( ). They are different from the time and space points of the 

first NN. The corresponding loss function MSE
f
 is chosen as

 MSE
N

f t x
f

f i

N

f

i

f

i

f

= ( )
=
∑1
1

2

,  (6.3)

The MSE
f
 enforces the structure imposed by the system PDE 

at the collocation points. These collocation points are added 

to the space and time points of the training data in the first 

NN. The shared parameters between the two NN are learned by 

minimizing the two MSEs, i.e., total MSE MSE MSE
u f

= + . The 

supervised training in the first NN now

 • Includes this additional loss constraint due to physics,

 • Integrates the mathematical model into the network,

 • Reinforces the loss function with a residual term from the 

PDEs governing the system, and

 • Further acts as a penalizing term to restrict the space of 

acceptable solutions.

Two distinct classes of algorithms have been devised using these 

considerations: (i) continuous time models as data- efficient 
spatiotemporal function approximators and (ii) discrete time 
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models using implicit Runge– Kutta methods with unlimited 

number of temporal stages.

Some new approaches in this area use operator regres-

sion and equivariant neural network architectures with built- 

in physical constraints. Distributed PiNNs (DPiNNs) and 

distributed physics- informed extreme learning machines 

(DPiELMs) have been developed for approximating PDEs with 

strong nonlinearity or sharp gradients.

PiNNs come with several limitations and shortcomings:

 • Their training may face gradient vanishing problems and 

can be prohibitively slow for practical three- dimensional 

problems. They limit low- dimensional spatiotemporal 

parameterization due to using fully connected layers.

 • There is no theoretical proof of convergence for PiNNs 

when applied to problems governed by nonlinear PDEs. 

Additionally, all deep learning (DL) models including 

PiNNs generally fail to realize theoretical global minima.

 • PiNNs loss function has many terms with relative 

weighting affecting the predicted solution.

  There are, currently, no guidelines for selecting weights 

optimally. Different loss function terms may compete 

during training, thus reducing the training process stability. 

PiNNs are also harder to train for an ill- posed optimization 

problem as they depend on soft physical constraints.

 • PiNNs have bias induced by low frequency and they fre-

quently fail to solve nonlinear PDEs for high- frequency 

or multiscale structures. As they learn the solutions to a 

given PDE for a single instance, they need a new NN to 

train for a new instance of the functional parameters or 

coefficients. This limits their generalization (e.g., spatio-

temporal extrapolation). Additionally, they face diffi-

culties in learning the solutions to inverse problems in 

heterogeneous media.
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6.1.3 Physics- Encoded Neural Networks (PeNNs)

For situations when the explicit form of differential equations 

is not fully known, PeNNs are more helpful. They leverage 

advanced architectures to address issues with data sparsity 

and the lack of generalization encountered by both PgNNs 

and PiNNs. They can forcibly encode the known physics into 

their core architecture and can extend the NN’s learning cap-

ability from instance learning (used by PgNNs and PiNNs) to 

continuous learning. Some approaches like physics- encoded 

recurrent convolutional neural network (PeRCNN) and neural 

ordinary differential equations (NeuralODE) have shown much 

improvement over PiNNs.

The encoding mechanisms of the underlying physics in 

PeNNs are fundamentally different from those in PiNNs. 

Additionally, both NNs can be integrated to achieve the desired 

nonlinearity of the model. The NNs generated by PeNNs per-

form better in the presence of data sparsity and poor model 

generalizability when compared with PgNNs and PiNNs.

The most important limitation of PeNNs occurs in training 

and is similar to PgNNs and PiNNs. Their architecture is also 

comparatively more complex. Their advantage lies in their 

(i) more efficient algorithms in the finite- dimensional setting, 

(ii) their ability to provide transferable solutions, (iii) their 

robustness against data scarcity, and (iv) their generalizability 

compared to PgNNs and PiNNs.

6.1.4 Neural Operators (NOs)

The NOs use supervised learning in a manner that is different 

from previous categories of PgNN, PiNN, and PeNN. They 

learn the underlying linear and nonlinear continuous operators 

(such as integrals and fractional Laplacians) by using advanced 

architectures (e.g., DeepONet). Their data- intensive learning 

resembles the PgNNs, as they both enforce the physics of the 

problem by using labeled input- – output dataset pairs. However, 
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NOs are also very different from PgNNs which cannot be 

generalized due to under- parameterization.

NOs can be combined with PiNNs and PeNNs to train a 

model for learning complex nonlinearity in physical systems 

with extremely high generalization accuracy. They are very 

robust for applications requiring real- time inference. Most 

of the DL methods like PgNNs, PiNNs, and PeNNs gen-

erally map the solution of a physical phenomenon for a 

single instance (e.g., a certain spatiotemporal domain and 

boundary conditions to solve a PDE using PiNN), and thus 

must re- train or further train (e.g., transfer learning) to 

map the solution under a different instant. One can instead 

use NOs to

 • Learn nonlinear mappings between function spaces and 

the underlying linear and nonlinear continuous operators,

 • Enforce the physics of the problem using labeled input– 

output dataset pairs and also provide enhanced gen-

eralization, interpretability, continuous learning, and 

computational efficiency compared to PgNNs, PiNNs, and 

PeNNs, and

 • Use NN- based mesh- invariant, infinite- dimensional 

operators that do not require a prior understanding 

of PDEs.

NOs work with data to learn the resolution invariant solution 

and can be trained on one spatiotemporal resolution and suc-

cessfully inferred on any other. This resolution invariance is 

achieved because NOs learn continuous functions rather than 

discretized vectors by parameterizing the model in function 

spaces. They are very robust for applications requiring real- 

time inference. Three main NOs have been proposed recently, 

namely, (i) deep operator networks (DeepONets), (ii) Fourier 

NO (FNO), and (iii) graph NO (GNO).
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6.1.5 Physics- Informed Reinforcement Learning (PiRL)

In the traditional DRL approaches, the quality and efficiency 

of input samples has been a major problem. Model- based RL 

improves on this by learning the transition dynamics and 

reward function of the environment to generate sample system 

trajectories. It then backpropagates through them to update 

the policy by using the differentiability of the model. This can 

be further improved by using a much more accurate, physics- 

informed neural network- based dynamics model.

One of the common approaches for implementing PiRL has 

three steps:

i. Interaction with the environment: Current policy for 

connecting states to actions is used to interact with the 

environment and gather data.

ii. Learning the model: The data collected in the first step is 

used to learn the model for system dynamics. There are 

two approaches for this step.

 • Given the current state and action the next state is 

predicted by training a standard deep NN (DNN).

 • In another approach the underlying Lagrangian of the 

model is used to derive the equations of motion from 

which the next state of the system is predicted.

iii. Learning the behavior: The model learned in the second 

step is used to generate imaginary trajectories.

Afterwards, the policy is updated by backpropagating through 

them. This is accomplished by using the physics behind the 

model and the differentiability of the resulting equations. In 

reward learning a network is trained to map the next state to 

the reward using the Absolute Error Loss (also known as L1 

loss) between the predicted reward and the ground truth as the 

loss function.
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These general ideas and methods can be adapted to study 

many systems and phenomena of interest with an underlying 

physics- based model.

6.2  TRANSFORMERS

Transformer in a neural network (NN) setting is a DL model 

and is generally used for sequence modeling and sequence- 

to- sequence prediction. Basically, it transforms one sequence 

of input into another depending on the problem statement. 

This task is also performed by other DL models like RNNs and 

LSTMs but unlike them the transformers process the entire 

sequence at once and use the mechanism of ‘attention’ to weigh 

parts of input differently.

Recently, they have shown tremendous success in natural 

language processing (NLP), computer vision, and similar 

other tasks.

There are many variations on this simple idea resulting in 

different architectures.

 • The original Encoder- Decoder Transformer (EDT) is a 

sequence- to- sequence transformer.

 • Bidirectional Encoder Representations from Transformer 

(BERT) is an encoder- only transformer.

 • Generative Pretrained Transformer (GPT) is a decoder- 

only transformer.

Here encoder and decoder refer to the main components of 

their architecture.

The basic structure of a transformer is made of many layers.

i. Inputs: They are the numeric representation of the 

sequence to be transformed. As text directly can’t 

be used as NN input, a tokenizer is used to generate 
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numeric representation for each token which is then 

sent to the encoder.

ii. The input embedding layer: It generates input 

embeddings of model dimension d
m

 (generally chosen 

as 512 but can be different) for each token.

iii. The positional embedding layer: It encodes informa-

tion about every token t’s position (denoted by 2i).

( , ) , , /
PE t PE t N
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i d
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The position encoding output is added to the input embed-
ding layer.

iv. The attention layer: It uses the concept of ‘attention’ 
to provide importance to a few key tokens in the input 
sequence by altering the token embeddings. The calcula-
tion of ‘attention’ needs the following matrices and vectors.

 • The Query, Key, and Value weight matrices are,

 • Q d d
w m k

= =Query weight matrix dimension( X� ),
 • K

w
 =  Key weight matrix (dimension =  d d

m k
X� ), and

 • V
w
 =  Value weight matrix (dimension =  d d

m v
X� ).

 • The Query, Key, and Value matrices use the token 
matrix E (dimension =  n X d

m
) generated at the input 

embedding layer. Then for n tokens they are,
 • Q =  E X Q

w
 =  Query matrix (dimension =  n X d

k
),

 • K =  E X K
w

 =  Key matrix (dimension =  n X d
k
), and

 • V =  E X V
w
 =  Value matrix (dimension =  n X 

d d
v k
).Each of these matrices has rows andn  

or d
v
 (generally 64 but can be different) columns. 
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Those columns are the Query, Key, and Value vectors 
belonging to the corresponding matrices.

These matrices are derived from the linear transformations 

of the input sequence as described above. Typically, Q corres-

ponds to the current element, K represents other elements, and 

V encapsulates information to be aggregated.

Then the ‘attention’ for each token n is defined as

 Attention Q K V softmax QK d V
n

T
k

n
, , /( )  = ( )



  (6.4)

By definition, softmax z
e

e
i

z

i

K
z

i

i

( ) =
=∑ 1

. The attention is calculated 

for each token.
The basic idea behind ‘attention’ assumes that given an input 

text, it is possible to allocate distinct weights to individual 

words to capture dependencies and contextual relationships 

within the sequence. Each element within the sequence has its 

unique representation.

The association weight between the current element and 

others is determined by calculating the similarity between the 

Q and K matrices through their dot product normalized using 

the softmax function. The normalized weights are then applied 

to the corresponding values, followed by their aggregation. 

This results in a representation encompassing the association 

between the current word and other words in the text and is 

formally expressed as ‘attention’ given above.

v. The multi- head attention layer: It is a stack of par-

allel attention layers with n x d
m

 dimension. It helps in 

understanding different aspects of a sequence (e.g., sen-

tence or a language). Each head in this layer takes in the 

positional encoding generated earlier and produces an 
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output of shape n x d
k
 each. This output from all heads 

is then concatenated to produce a single output of the 

dimension n x d
m

. LSTM or RNN cannot be used for this 

purpose as they may lack sufficient memory for complex 

tasks like Language Translation.

vi. Generative pretrained transformer and ChatGPT

There are two core techniques behind this new and revo-

lutionary application which has brought AI to everyone’s 

attention.

i. Transformer as the backbone architecture: It has become an 

essential foundation for the recent development of large 

language models, such as BERT and GPT. Transformer 

idea has also been extended from language to visuals, so 

that it has become a unified backbone architecture for 

both NLP and computer vision.

ii. Autoregressive Generative Pretraining: These methods 

have become the foundation of GPT models as they 

handle the statistical analysis of time series data very 

well. These models specify that the output variable is lin-

early dependent on its preceding values. For NLP, they 

predict the subsequent word given the previous word, 

or the last probable word given the following words. 

The models learn a joint distribution of sequence data, 

employing previous time steps as inputs to forecast each 

variable in the sequence. The joint distribution p x
θ ( ) can 

be factorized into a product of conditional distributions, 

as demonstrated below:

 p x p x p x x p x x x x
n nθ θ θ θ( ) = ( ) ( )… …( )−1 2 1 1 2 1

| | , , ,  (6.5)

The RNNs are architecturally similar, and they use the pre-

vious hidden state but autoregressive models use previous 
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time steps as input. They are like a feed- forward network 

that incorporates all preceding time- step variables as inputs. 

Recently, the autoregressive approach has been extended to 

continuous variables as well.

6.3  GENERATIVE AI

Generative AI (GAI) is a type of AI which learns the patterns 

and structures of the input data in one media in detail and 

then generates output data of different types of media (e.g., 

text, images, etc.) when prompted. Traditional AI focusses on 

detecting patterns, making decisions, improving analytics, clas-

sifying data, etc. using CNN, RNN, RL, etc. GAI produces new 

contents, responses, synthetic data, etc., using Transformers, 

GANs, and variable auto- encoders. The recent excitement 

about GAI is due to the simplicity of its user interfaces.

The GANs, transformers, and large language models allowed 

the GAI to take off even though this technical approach was 

first used in 1960s chatbots. Especially, transformers made it 

possible to train ever- larger models, e.g., billions of pages of 

text, without labeling all the data in advance. This resulted in 

answers with more depth using the idea of ‘attention’ to track 

the connections between words across pages, chapters, and 

books and connections to analyze codes, proteins, chemicals, 

DNA, etc. Further innovations in multimodal AI allowed con-

tent generation across the media, e.g., images from text, etc.

Basic generative model denoted by Pmodel has the following 

properties:

 • Given a dataset of observations X generated according to 

an unknown distribution Pdata, the Pmodel can mimic Pdata.

 • By sampling from Pmodel, observations that appear to have 

been drawn from Pdata can be generated.

 • Generative DL consists in applying DL techniques to learn 

Pmodel.
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Table 6.2 summarizes these points.

The GAI can use DRL methods to increase its capabilities with 

three types of applications as shown in the table above.

6.3.1 Model Generation without Specified Objectives

RL is especially useful for deriving generative models for non- 

differentiable losses, e.g., GANs can be used for text- generation 

for which traditional techniques are not suitable. It can also be 

applied to domains in which feasibility and correctness (e.g., 

running code as above) are very essential. RL can produce 

observations that appear to have been drawn from the domain 

of interest even when such domain cannot be modeled by 

means of generative functions and corresponding differenti-

able losses. It can also derive more complex generative strat-

egies (e.g., through hierarchical RL) and reduce the model 

dependence on training data.

There are some limitations of this approach as learning 

without supervision is a hard task, when the reward is sparse, 

e.g., sequence generation of long text or music, where the 

reward is available only at the last timestep. In addition to the 

techniques for obtaining a denser reward, a potential solution 

might be an intrinsic reward. Ensuring a sufficient exploration 

of all possible actions while still exploiting the most promising 

ones to collect higher rewards is one of the key problems in RL.

6.3.2  Generation of Outputs While Concurrently 
Maximizing an Objective Function

RL for objective maximization can consider generators adapted 

for domains or for specific problems, or for tasks difficult to 

model through differentiable functions. Also, pretrained models 

can be fine- tuned to given requirements and specifications. The 

goal is to derive the best possible examples according to some 

specific target functions. Any desired and quantifiable property 

can be Reward Function. Apart from text or music generation, 

other domains might be considered as well.
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TABLE 6.2 DRL in GAI

Goal Reward Advantages Limitations

Mere 
generation

• GAN’s 
discriminative 
signal

• Log- likelihood 
of realor 
predicted 
targets

• Constraint 
satisfaction

• Model 
domains have 
nondifferentiable 
objectives

• Adapts GAN to 
sequential tasks

• Can 
implement RL   
strategies, e.g., 
hierarchical RL

• No supervision 
learning 
is hard

• Pretraining 
can prevent an 
appropriate 
exploration

Objective 
maximization

• Test- time 
metrics

• Countable 
desired or undesired 
characteristics

• Distance- based 
measures

• Quantifiable 
properties

• Output of ML 
algorithms

• Quantifiable 
requirements   
 satisfied

• Generator from a 
specific domain 
toward desirable   
sub- domains 
optimized

• Gap between 
training and 
evaluation 
reduced

• Not every 
desirable 
property is 
quantifiable

Improving 
not easily 
quantifiable 
characteristics

Output of a model 
trained to 
reproduce 
human or 
AI feedback 
about non- 
quantifiable 
properties (e.g., 
helpfulness, 
appropriateness, 
creativity, etc.)

• Satisfies 
nonquantifiable 
requirements, 
e.g., the    
alignment 
problem

• Requires 
preferences 
between 
candidates 
instead of 
defining a 
mathematical    
measure of 
desired property

• Getting user 
preferences 
expensive

• Users may 
misbehave, 
disagree, or 
be biased

• Reward 
modeling is 
difficult

• Prone to 
jailbreaks out 
of alignment

Source  Reinforcement Learning for Generative AI: State of the Art, 
Opportunities and Open Research Challenges, by Giorgio 
Franceschelli and Mirco Musolesi, arXiv:2308.00031v4 [cs.LG] 8 
Feb 2024.
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There are some drawbacks of this approach like its very high 

computational cost due to the number of iterations required for 

convergence. In addition, certain desired properties (e.g. harm-

lessness or appropriateness) can be difficult to quantify. New 

metrics are then required, and a gap between training objective 

and test score might be inevitable.

6.3.3  Embedding of Desired Characteristics, Which 
Cannot be Easily Captured by Means of an 
Objective Function, into the Generative Process

Reward modeling introduces a great level of flexibility in RL 

for GAI. Generative models can be trained to produce con-

tent with appropriate and of sufficient quality, by aligning them 

with human preferences. It becomes essential when a quantifi-

able measure might not exist or information to derive it might 

be hard to obtain.

Sometimes reward modeling may lead to reduction of 

the diversity to a single reward function. This may cause the 

majority views to disproportionately prevail. In addition, 

seemingly well- performing preference- based reward models 

might fail to generalize. More advanced approaches may be 

required to mitigate this problem and completely prevent cer-

tain undesired behaviors.

6.4  EXPLAINABLE AI AND RL

Explainable AI (XAI) is a type of AI with an architecture such 

that the reasoning behind its decision can be understood or 

explained. In traditional AI, the inner mechanism of the NN 

is like a blackbox that can answer ‘yes’ or ‘no’ type questions 

but the reasoning behind it is mostly untraceable. There are 

many situations e.g., in legal and medical field, where answers 

to other ‘wh’ questions (such as ‘why,’ ‘when,’ ‘where, etc.) are 

needed but usual AI cannot answer them. XAI considerations 

and methods should be able to handle the following concerns.
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(i) Transparency
This is provided if XAI justifications are such that min-
imally a human should be able to understand it. In its 
absence situations can arise in which a false training can 
be used to tweak any AI/ ML model to providing uneth-
ical benefits to an interested party.

(ii) Trust and confidence
Trust is essential if humans have to rely on any AI/ ML 
outcome. A logical and scientific justification for any 
prediction and conclusion should be available.

(iii) Bias and fairness
There is a trade- off between bias and variance in AI/ ML 
models. It must be handled so that bias is reduced, and 
one can believe the predictions of the model.

The XAI aims to provide an understanding of how AI models 

work and reasons beyond the decisions they make, allowing 

users to understand their results. This is particularly important 

as AI becomes more integrated into everyday life and critical 

decision- making processes such as healthcare and finance. 

The XAI explanations should also improve the AI model per-

formance based on understanding its decision- making strat-

egies so that explanations about the model outputs can help 

tune the ML system parameters better. For the DNN- based 

XAI building an explanation is challenging for two reasons: (i) 

DNNs offer excellent performances at the price of high inner 

complexity of the models and (ii) the explanations should be 

humanly understandable, which many times are unavailable.

The XAI techniques can be divided into two broad categories:

i. Transparent methods, e.g., logistic regression, support 

vector machine (SVM), Bayesian classifier, K- nearest- 

neighbors (KNN), decision trees (DT), rule- based 

learning (simple conditional if- else form or first- order 

predictive logic), and fuzzy inference systems are simple 
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to represent and interpret. They are more useful when 

internal feature correlations are less complex. There are 

three main approaches to transparency.

 • Simulatability implies that the model must be human- 

executable, e.g., sparse matrix model is easier to inter-

pret than dense matrix one as it is easy to justify and 

visualize by humans.

 • Decomposability means that each aspect of the model 

from input of data to hyperparameters and inherent 

calculations should be easy to understand.

 • Algorithmic transparency defines algorithm level inter-

pretability from input of given data to final decision or 

classification. With the help of visualization users can 

understand how the model reacts to different situations.

ii. Post- hoc methods work better for data with nonlinear rela-

tionship or higher complexity. After receiving a trained 

and/ or tested AI model as input, such methods generate 

useful approximations of the model’s inner working and 

decision logic as feature importance scores, rule sets, heat 

maps, or natural language. They are further classified into 

model agnostic and model- specific methods.

 • Model- agnostic explanations observe the change in 

output after perturbing the samples. Then they extract 

feature importance scores and build a simplified local 

model that approximates the original model’s behavior 

near the original samples. These tools use pairwise 

analysis and can be used for any AI/ ML model.

 • Model- specific techniques find explanations specific 

to the given algorithm and relevant to the internal 

structure of the learning model, such as (i) finding the 

impact factors and correlations of the most important 

features, (ii) condition- based explanations answering 

‘why’ questions, and (iii) finding simple rules capturing 

the complex input– output relations of the given model.
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6.4.1 Explainable RL

The impressive performance and remarkable recent 

achievements of RL systems can be attributed to combining 

RL with DL. However, explainability, which refers to the 

understanding of the system’s decision- making process, is 

lacking. In response to this challenge, the new explainable 

RL (XRL) field has emerged and is growing rapidly to help us 

understand the RL systems.

The XAI focuses on many forms of learning like unsupervised 

and supervised learning. In supervised learning, observations 

are assumed to be independent and identically distributed and 

the goal is to minimize the risk with immediate response. In con-

trast, the agent in RL learns to maximize the return with rewards 

as the responses, which are not necessarily provided immedi-

ately. Hence, the agent needs to consider the short- term and 

long- term consequences in addition to the immediate response 

when learning to make decisions. Accordingly, methods to 

explain these RL- specific characteristics are different from XAI.

The following considerations are very important for XRL.

i. Trust: One way to understand trust is whether a stake-

holder is willing to delegate the decision- making to the 

AI system. Thus, if one is inclined to let the AI system 

decide on its behalf, then it trusts the system. Also, trust 

can be the confidence that the system will behave as 

intended.

ii. New insight: This is the ability to extract knowledge 

from the AI system to gain a new understanding of the 

problem at hand. Creating an RL system is not only for 

making decisions but also for gaining novel insights into 

the domain.

iii. Making adjustments: It should be possible to change an 

AI system for correcting and improving it. Different 

quantities, such as accuracy and return indicate the 
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system’s performance but lack the ability to find, fix, 

and improve it. Hence, knowing how the system works, 

and also its strengths and weaknesses is required to find 

bugs, fix them, determine when the system might fail, 

and improve it.

iv. Fairness and being ethical: These ensure that the AI 

system does not make decisions that, for example, might 

discriminate based on skin color or gender and com-

plies with ethical standards.

Apart from these reasons, there are others like effective human 

and AI collaboration, privacy, and accountability that motivate 

the need for explainability.

6.5  GRAPH NEURAL NETWORKS (GNNS)

GNNs are evolutions of CNNs and graph embedding. They can 

work with usually highly complex data structures given as a 

graph, e.g., a grid of pixels, to predict a class. Like Recurrence 

NN used in text classification, the GNNs are applied to graph 

structures where every word is a node in a sentence. They were 

introduced when CNNs were applied to complex graphs with 

arbitrarily large sizes but failed to achieve optimal results. They 

are particularly used in pattern recognition, social networks 

analysis, recommendation systems, and semantic analysis.

In general, GNNs are used in predicting nodes, edges, and 

graph- based tasks. A node can be a person, place, or thing, 

connected with the edges defining the relationships between 

them. The edges can be directed and undirected based on direc-

tional dependencies. In general graphs exist in non- Euclidean 

spaces which sometimes makes it harder to interpret them.

Some of the types of GNN are the following.

 • Graph Convolutional Networks (GCNs): They are like 

traditional CNNs containing graph convolution, linear 
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layer, and non- learner activation function. There are two 

major types Spatial GCNs and Spectral GCNs.

 • Graph Auto- Encoder Networks (GAENNs): They learn 

graph representation using an encoder and attempt to 

reconstruct input graphs using a decoder. The encoder 

and decoders are joined by a bottleneck layer.

 • Recurrent Graph Neural Networks (RGNNs): They 

are good with multi- relational graphs where a single 

node has multiple relations. They use regularizers to 

boost smoothness and eliminate over- parameterization. 

RGNNs use less computation power to produce better 

results. They are used in generating text, machine trans-

lation, speech recognition, generating image descriptions, 

video tagging, and text summarization.

 • Gated Graph Neural Networks (GGNNs): They are better 

than the RGNNs in performing tasks with long- term 

dependencies. Like GRUs, they use gates to remember 

and forget information in different states.

6.5.1 GNN and DRL

State- of- the- art DRL- based networking solutions use standard 

NN. e.g., fully connected, convolutional, etc., which are usually 

unable to learn from information structured as graphs.

One of the solutions proposed to mitigate this problem is to 

relate Q- function to the graph metrics of the GNN. The GNN- 

based DRL agent defines the actions to apply on the network 

topology. The actions allocate the demands on one of the can-

didate paths. The DRL agent implements the DQN algorithm, 

where the Q- function is modeled by a GNN. At the same time, 

the environment (i) defines the optimization problem to solve, 

(ii) stores the network topology, together with the link features, 

(iii) generates the reward once an action is performed.

In the iterative learning process, the agent receives a graph- 

structured network state observation from the environment. 
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The GNN constructs a graph representation with topology 

links as the graph entities. An iterative message- passing algo-

rithm running between the links’ hidden states outputs a global 

hidden state encoding the topology and processed by a DNN. 

At the end of this phase, the GNN outputs a Q- function esti-

mate. This is evaluated over a limited set of actions, and finally 

the DRL agent selects the action with the highest Q- value. 

Application of DRL in GNN is still a very active research area.

6.6  BINARIZED NNS (BNN)

Regular NNs need powerful GPUs for training. Even after 

quantization the NN weights have int8 precision, which 

makes training and inference still very compute- intensive 

and not very energy- cost- friendly. The BNN is a new type of 

neural network which stores weights in binary values, i.e., 1 

and – 1, also known as 1- bit quantization. This uses just 1 bit 

for weights and/ or activations instead of full precision values 

and substitutes complex multiply- accumulate operations with 

bitwise logic operations. Thus, computation and memory foot-

print are reduced drastically so that they become very suitable 

for embedded devices and microcontrollers.

6.7  REINFORCEMENT LEARNING FROM HUMAN 

FEEDBACK (RLHF)

In usual DRL approach, the agent learns the policy giving 

the optimal reward function by trial- and- error iterations. 

However, explicitly defining a reward function that accur-

ately approximates human preferences is challenging. RLHF 

is a technique for aligning an intelligent agent with human 

preferences. In this approach, first a reward model is trained in 

a supervised manner to represent human preferences directly. 

This reward function is then used to improve an agent’s policy 

through an optimization algorithm like proximal policy opti-

mization (PPO).
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The algorithm was introduced by OpenAI for enhancing 

text continuation or summarization based on human feedback; 

later it was reused in InstructGPT. RLHF has been applied 

to many areas of machine learning, e.g., text summarization, 

conversational agents, text- to- image models, etc. One of the 

problems with RLHF is the high cost of acquiring high- quality 

preference data without any biases.

6.8  QUANTUM RL

First we have to understand the basis of quantum computing 

using some basic concepts of quantum mechanics.

6.8.1 Single and Multi- Qubit Systems

The basic unit of classical information is a single bit which can 

be either in state 0 or in state 1. A sequence of n such bits can 

represent 2n unique values and the bit register can only be in 

one of these 2n states at any point in time. On the other hand, 

the basic unit of quantum information is a single qubit with |0⟩ 

and |1⟩ as its two distinct, orthogonal states. These basis states 
span a two- dimensional Hilbert space, which contains all 1- 

qubit (pure) quantum states. The qubits can be realized physic-

ally in many ways, e.g., spin systems of subatomic particles, ion 

traps, neutral atoms, or superconducting circuits. An arbitrary 

qubit can not only be in |0⟩ and |1⟩ states but also be in a super-
position of both.

 |Ψ⟩ =  Α |0⟩ +  Β |1⟩ (6.6)

The amplitudes α and β are complex numbers satisfying 

α β
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This representation makes it possible to visualize the state of 

a 1- qubit system on the surface of the Bloch sphere, in which 

the north and south poles on the z- axis correspond to the basis 

states |0> and |>1. They are the computational basis states of a 

single qubit. Alternatively, qubits can be represented in other 

ways also.

 • By the poles related to the x- axis
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An n- qubit system gives access to the 2n- dimensional Hilbert 

space, in which an arbitrary pure quantum state is given as

 ψ = + + +
−

c c c
n0 1 2 1

00 00 00 01 11 11··· ··· ··· ···  (6.10)

The basis states consist of tensor products of the individual 

qubits. The state ψ  has 2n complex amplitudes, whose abso-

lute squared values must sum up to 1. Due to the principle 

of superposition, an n- qubit system can encode and process 
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information scaling in O (2n), while for a classical setting, it is 

limited to O (n).

6.8.1.1 Evolution of Closed Quantum Systems

The quantum computation is achieved by operators acting 

on the Hilbert space. They describe the time evolution of a 

closed quantum system and are reversible, so they can be 

represented as unitary matrices, i.e., for an operator U it 

must hold that U †U =  I. This constraint preserves the length. 

The operators are:
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The operator for arbitrary rotation with θ about axis i as

 R e
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The last 1- qubit operator is the Hadamard matrix:

 H :=
−
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2
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 (6.13)

The 1- qubit operators can be extended to act a multi- qubit 

system. For example, the most relevant 2- qubit operators are 

the controlled X (CX) and controlled Z (CZ), where one qubit 

acts as the control and the other acts as the target. Similarly, 

the CX- gate flips the amplitudes of the target qubit and the CZ 

operator performs a conditional phase flip.

6.8.1.2 Extracting Classical Information via Measurements

For quantum systems, in order to extract information, an 

observable quantity has to be measured, which is a Hermitian 
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operator O such that O† =  O. The eigenstates of O define a basis 

of the quantum system’s Hilbert space.

After measuring an observable O, the device outputs an 

eigenvalue of O and the system is in the corresponding eigen-

state. Let |0⟩, |1⟩, ..., |N − 1⟩ be the basis defined by observ-

able O and c0, c1, ..., cN the corresponding amplitudes of state 

|ψ⟩ expressed in this basis. Then measuring O gives the out-

come λi with probability c
i

2

. Consequently, having obtained λi, 

the post- measurement state of the system is |i⟩. The quantum 

circuits represent the measurement process with quantum 

circuit diagrams as the computing steps of a quantum algo-

rithm. The diagrams give its sequence of operators, states, and 

measurement.

6.8.2 Quantum RL (QRL)

It is the study and application of quantum ML (QML) as 

described above to RL tasks. QML integrates quantum 

algorithms with ML programs mostly for the classical data used 

in quantum computing. Qubits (and in principle Qudits) with 

relevant quantum operations are used to improve the compu-

tational speed and data storage. In general, QRL handles com-

putationally difficult subroutines. Most of them take one of the 

following approaches.

 • Quantum- inspired RL algorithms, e.g., amplitude 

amplification- based action selection

 • Variable quantum circuits (VQCs)- based function 

approximation for actor, critic, MARL, etc.

 • RL algorithms with quantum subroutines, e.g., quantum 

policy or value iteration, projective simulation, Boltzmann 

machines for function approximation, etc.

 • Full QRL, e.g., quantum policy iteration, quantum gra-

dient estimation, etc.
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6.8.3 Variational Quantum Circuits

The VQCs combine the strength of both classical and quantum 

computation. They use quantum circuits with tunable 

parameters on noisy intermediate- scale quantum (NISQ) hard-

ware optimizing them iteratively on a classical computer. Those 

parameters then become weights in an artificial NN. The DRL 

combined with NISQ computation is an RL agent interacting 

with the environment. It then gains knowledge of backgrounds 

and derives the policy for making the optimal decision.

The VQC can model any function approximators, classifiers, 

and even quantum- many body physics that are intractable 

on classical computers. Even without any quantum error 

correction, or fault- tolerant quantum computation, they have 

been shown to avoid the complex quantum errors existing in 

other quantum devices. Just like classical NN, they can approxi-

mate any analytic action- value function of DRL.

The foundations of QC, and by implication QML, were 

established with the development of the theory of quantum 

physics in the early 20th century. Feynman had proposed the 

idea of taking advantage of quantum mechanics for computing 

in the early 1980s. QC potentially provides efficient solutions to 

classically intractable problems

6.8.4 Quantum RL Algorithms

Most often, RL is used to:

 • Generate a solution for a quantum control problem, e.g., 

to learn quantum error correction strategies or to generate 

control policies at a lower error rate.

 • Optimize a variational quantum algorithm (VQA).

 • Optimize supervised and unsupervised learning.

 • Employ VQCs as function approximators.

In the method of amplitude amplification, as it is used in Grover- 

type search algorithms, several qubit registers embed the states 
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and actions relevant for the RL system in a suitable Hilbert 

space. Starting from a uniform superposition, amplitudes 

favored by the reward or the value function are selectively amp-

lified based on Born’s rule, i.e., a measurement is carried out on 

the qubit register with regard to the ‘action- basis.’

Projective Simulation (PS): Another QRL method is based on 

PS, which in the broadest sense is a particular learning para-

digm and similar in spirit to RL. Based on experiences made 

through interaction with the environment, a memory network 

is created by the agent. The network has a directed structure 

with adaptive weights between the nodes of the network. The 

learning process and action selection are based on a random 

process (more precisely, a random walk) on the graph of the 

network, with the transition probabilities between nodes being 

given by the respective adaptive weights. PS can be ‘quantized’ 

by replacing the random walk with a so- called quantum 

random walk. Possible quantum advantages over classical PS 

lie in the acceleration of the process of action selection.

Quantum Boltzmann Machines: Boltzmann machines are used 

as function approximators. These models are assumed to be 

advantageous compared to typical NNs in environments with 

large action spaces. Boltzmann machines are closely related to 

energy- based models. For specific instances, those allow for 

a quantum representation, which enables potential quantum 

speed- up for post- NISQ devices.

Quantum Subroutines: Another approach to go from RL to QRL 

replaces certain subroutines in existing RL approaches. One 

idea is to replace policy or value iteration with some quantum- 

enhanced analogs. While this approach is limited to universal, 

fault- tolerant and error- corrected quantum hardware, several 

such algorithms have been proposed.
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C H A P T E R  7

Applications of RL

As everyday news confirms, AI/ ML has emerged as a 

revolutionary technology applied in practically every area 

of human endeavor. In many situations it has solved problems 

deemed insoluble using standard techniques of analytical 

modeling and computational programming. In this chapter 

we will try to give a glimpse of the depth and breadth of these 

applications focused on RL.

7.1  SELF- DRIVING CARS

RL agents applied to traffic pattern can learn traffic density, 

vehicle flow patterns, speed, etc., in real time and continuously. 

They can then adapt the system in the preferred direction and 

keep repeating this in real time to make traffic safer and its flow 

smoother across times, climates, and seasons.
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RL is behind the related new technology of self- driving cars 

which promises to revolutionize personal transportation. The 

DRL network trains self- driving cars by using sensor data feed-

back collected during driving sessions in varied and unfamiliar 

terrains. This way they learn and avoid accidents anywhere in 

principle. Some cities on the west coast have allowed them on 

the roads, which is a sign of the maturity of this approach.

Autonomous driving (AD) systems contain many perception- 

level tasks for which high precision has been achieved using 

DRL. In addition to perception, AD systems must deal with 

other tasks for which classical supervised learning methods are 

not applicable.

(i) The prediction of the agent’s action changes future 
sensor observations received from the environment, e.g., 
determining the optimal driving speed in an urban area.

(ii) Supervisory signals such as time to collision (TTC) 
and lateral error w.r.t. [sic] to optimal trajectory of the 
agent, represent the dynamics of the agent, as well [as] 
uncertainty in the environment. Such problems require 
defining the stochastic cost function to be maximized.

(iii) The agent is required to learn new configurations of 
the environment and predict an optimal decision at each 
instant while driving. This represents a high- dimensional 
space given the number of unique configurations under 
which the agent and environment are observed.

In all such scenarios RL methods provide the best approach 

to an optimized solution to the problems outlined above. AD 

tasks where RL could be applied include the following:

 • Controller optimization

 • Path planning and trajectory optimization

 • Motion planning and dynamic path planning
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 • Development of high- level driving policies for complex 

navigation tasks

 • Scenario- based policy learning for highways, intersections, 

merges and splits

 • Reward learning with inverse RL from expert data for intent 

prediction of traffic actors such as pedestrian and vehicles

 • Learning of policies for ensuring safety and performing 

risk estimation.

Before discussing the applications of DRL to AD tasks we briefly 

review the state space, action space, and rewards schemes in 

AD setting.

7.1.1  State Spaces, Action Spaces, and Rewards

Commonly used state space features for an autonomous vehicle 

under consideration (called ego- vehicle) include the following:

i. Position, heading, and velocity of ego- vehicle.

ii. Same for other obstacles in the sensor view of the ego- 

vehicle. To avoid variations in the dimension of the 

state space, a Cartesian or Polar occupancy grid around 

the ego vehicle is used.

iii. Lane information such as lane number (ego- lane or 

others).

iv. Path curvature.

v. Past and future trajectory of the ego- vehicle.

vi. Longitudinal information such as time- to- collision (TTC)

vii. Scene information such as traffic laws and signal locations.

AD uses the following kinds of data:

i. Raw sensor data such as camera images, LiDAR, radar, 

etc., for finer contextual information.
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ii. Condensed abstracted data for reducing the complexity 

of the state space.

iii. In between data or a mid- level representation such as 

2D bird’s- eye view. It is sensor agnostic but still close to 

the spatial organization of the scene, retaining the spa-

tial layout of roads which graph- based representations 

cannot do.

A vehicle policy must control several continuous- valued 

actuators, e.g., steering angle, throttle, and brake, and discrete- 

valued ones controlling gear changes. The continuous action 

space can be discretized uniformly by dividing the range of con-

tinuous actuators (such as steering angle, throttle, and brake) 

into equal sized bins. Discretization has to be done carefully 

as it can lead to jerky or unstable trajectories if the step values 

between actions are too large. There is also a trade- off between 

having enough discrete steps to allow for smooth control and 

not having so many steps that action selections become pro-

hibitively expensive to evaluate. As an alternative, continuous 

values for actuators may also be handled by DRL algorithms 

which learn a policy directly (e.g. DDPG). Designing reward 

functions for DRL agents for autonomous driving is still very 

much an open question, but many approaches are becoming 

available.

7.1.2  Motion Planning and Trajectory Optimization

Motion planning ensures the existence of a path between target 

and destination. Path planning in dynamic environments and 

varying vehicle dynamics is a key AD problem, e.g., negotiating 

right to pass through in an intersection, merging into highways, 

etc. The DDPG algorithm has been found quite useful in hand-

ling these situations. Classical RL methods are used to perform 

optimal control in stochastic settings, e.g., the Linear Quadratic 
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Regulator (LQR) in linear regimes and iterative LQR (iLQR) 

for nonlinear regimes are utilized.

7.1.3  Simulator and Scenario Generation Tools

AD datasets address supervised learning setup with training 

sets containing image, label pairs for various modalities. RL 

requires an environment where state- action pairs can be 

recovered while modeling dynamics of the vehicle state, envir-

onment, as well as the stochasticity in the movement and 

actions of the environment and agent, respectively. Various 

simulators have been developed for this purpose.

7.1.4  Learn from Demonstrations (LfD) and Inverse 
Reinforcement Learning (IRL) for AD Applications

LfD agent mimics the behavior of an expert. Sometimes a CNN 

is trained to map raw pixels from a single front- facing camera 

directly to steering commands. Using a relatively small training 

dataset from humans/ experts, the system learns to drive in 

traffic on local roads with or without lane markings and on 

highways. The network learns image representations that detect 

the road successfully, without being explicitly trained to do so. 

Maximum entropy inverse RL is one of the methods used for 

this purpose.

7.2  VIDEO GAMES

Video games have long been of great interest to AI researchers, 

especially Atari games which are used to test control problems. 

The use of AI in its design has made the games better in the way 

people play them. The researchers are now trying to achieving 

super- human- level performance in playing them. The appli-

cation of DRL enables agents to learn making decisions in 

high- dimensional environments and it has brought many 

developments in this area.
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Example: Atari Game –  Pong

The environment consists of

 • Two solid rebounding walls at the top and bottom

 • Two agents represented by paddles and a ball.

The actions that the agent can perform are:

 • Move up or

 • Move down.

The objective is to keep shuttling the ball without letting it 

touch the leftmost and rightmost walls. Every time an agent 

fails to prevent the ball from touching the side walls, a penalty 

is levied. Training needs to be done to aid the agent in decision- 

making –  to either go up or go down.

In a supervised learning approach, a label needs to be given 

to every sequence of actions. This is very problematic:

1. The human controlling the agent must be highly skilled 

in order to get high performance rates.

2. The dataset created must be large enough to cover all 

possible action sequences.

3. Since the model is trained on a dataset created by a 

human, the performance can at best be equal to him/ her.

So supervised learning cannot be used to perform better than 

humans.

DRL overcomes these problems. Its framework is very 

similar to that of supervised learning. There is an input frame, 

a neural network, and an output action, the difference being 

that there is no target label in DRL. Policy network trained 

using policy gradient has been found the most useful. They 

consider a random network which takes a high- dimensional 
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image frame from the game engine as an input. This produces 

a random output action –  either up or down which is sent back 

to the network which then produces the next frame. After every 

single choice, the game simulator executes the action and gives 

a reward as feedback. If an agent wins, a reward of + 1 is given; 

if it loses, a penalty of – 1 is given, else 0.

The goal of this entire setting is to maximize the reward 

obtained and make the agent learn the most appropriate deci-

sion at a given stage. In the policy gradient solution, the credit 

assignment problem must be solved. The entire sequence of 

actions should not be discarded because of a negative penalty 

at the end. It might be the case that the intermediate steps were 

beneficial and some of the later steps were not.

The importance of DRL and policy gradient solution is 

observed in a sparse reward setting like the game ‘Montezuma’s 

revenge.’ The game environment and action sequences can be 

so complex that the number of sequences leading to the goal 

is very small. The agent will have limited positive examples 

to follow if it takes up random exploration. To overcome this 

problem, reward shaping is used. Reward shaping refers to the 

process of creating a reward function that is designed manually 

to direct the policy toward a specific behavior. However, reward 

shaping is not an optimal approach. The DRL approach to video 

games has led to impressive results in control problems.

7.3  HEALTHCARE

RL- related models and approaches have been widely applied 

in healthcare domains for some time now. In the early days 

the focus was on applying dynamic programming to develop 

pharmacokinetic/  pharmacodynamic models. With the tre-

mendous theoretical and technical achievements in gener-

alization, representation, and efficiency in recent years, RL 

approaches have been successfully applied in a number of 

healthcare domains as well. Broadly, they have been applied to 

three domains:
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i. Dynamic treatment regimes in chronic diseases and 

critical care

ii. Automated medical diagnosis

iii. Others such as health resources allocation and sched-

uling, optimal process control, drug discovery and 

development, as well as health management.

7.3.1 Dynamic Treatment Regimes (DTR)

One of the goals of healthcare decision- making is to develop 

effective treatment regimes that can dynamically adapt to the 

varying clinical states and improve the long- term benefits of 

patients. DTR provide a new paradigm to automate the process 

of developing new effective treatment regimes for individual 

patients with long- term care.

RL in healthcare has been used in automated medical diag-

nosis, resource scheduling, drug discovery and development, 

health management, etc. It has also helped in creating DTR. It 

works as follows:

 • The data based on the current clinical observations and 

assessments of the patient is entered into the DTR system.

 • The DTR system already has the previous medical his-

tory data of the patient. Using RL agent, it then outputs 

a suggestion on treatment type, drug dosages, and 

appointment timing for every stage of the patient’s journey 

to full recovery. It helps in making time- dependent 

decisions for the best treatment for a patient at a spe-

cific time.

Using DTR, medical professionals can save time, energy, and 

efforts needed to consult with multiple parties. It contains a 

sequence of decision rules to determine the course of actions 

(e.g., treatment type, drug dosage, or reexamination timing) at 

a time point according to the current health status and prior 

 

 



160   ■   An Introduction to Deep Reinforcement Learning

treatment history of an individual patient. They are tailored for 

generating new scientific hypotheses and developing optimal 

treatments across or within groups of patients. Utilizing 

data generated from the Sequential Multiple Assignment 

Randomized Trial (SMART), a DTR can be derived to optimize 

the final clinical outcome of particular interest. Some relations 

are as follows:

i. The series of decision rules in DTRs are equivalent to 

the policies in RL.

ii. The treatment outcomes are expressed by the reward 

functions.

iii. The inputs in DTRs are a set of clinical observations and 

assessments of patients.

iv. The outputs are the treatments options at each stage, 

equivalent to the states and actions in RL, respectively.

RL can achieve time- dependent decisions on the best treatment 

for each patient at each decision time, thus accounting for het-

erogeneity across patients. This precise treatment does not rely 

on the identification of any accurate mathematical models or 

explicit relationship between treatments and outcomes. These 

solutions improve the long- term outcomes by considering 

delayed effect of treatments, which is the major character-

istic of medical treatment. Finally, by careful engineering of 

the reward function using expert or domain knowledge, RL 

provides an elegant way to multi- objective optimization of 

treatment between efficacy and the raised side effect.

The domains of applying RL in DTRs can be classified into 

two main categories: chronic diseases and critical care.

7.3.2  Chronic Diseases

Chronic diseases, e.g., diabetes, hypertension, schizo-

phrenia, etc., are big public health issues worldwide, claiming 
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a considerable portion of death every year. They last a long 

period of three months or more and require continuous clin-

ical observation and medical care. Their long- term treatment 

contains a sequence of medical intervention that must con-

sider the changing health status of a patient and adverse effects 

occurring from previous treatment. In general, the relationship 

of treatment duration, dosage, and type against the patient’s 

response is too complex to be explicitly specified. RL has been 

utilized to automate the discovery and generation of optimal 

DTRs in a variety of chronic diseases including cancer, dia-

betes, anemia, HIV, and several common mental illnesses.

7.3.3  Critical Care

Critical care is for more seriously ill or injured patients 

needing special medical treatments and nursing care. Usually, 

these patients require intensive care unit (ICU) for intensive 

monitoring and close attention. They may also need sedation, 

nutrition, blood product administration, fluid and vasoactive 

drug therapy, hemodynamic endpoints, glucose control, and 

mechanical ventilation.

Much effort has been made in developing guidelines and 

standardization of the various aspects of ICU interventions. It 

is now possible to generate rich ICU data in a variety of formats 

for the applications of RL in critical care. However, the inherent 

3C (compartmentalization, corruption, and complexity) 

features indicate that critical care data are usually noisy, biased, 

and incomplete.

7.4  MARKETING AND ADVERTISING

The capitalist economy is centered on increasing profits by 

stimulating consumption and using natural and human 

resources to make products and services for that purpose. 

Marketing and advertising are backbones of this approach. The 

ML approach here works as follows.
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i. Real- time advertising to target audiences
Real- time bidding platforms, A/ B testing, and automatic ad 

optimization are the methods used for this purpose. A series 

of advertisements is placed in the marketplace. The DNN- 

based host automatically serves the best- performing ads in the 

best spots for the lowest prices. The marketing and advertising 

platforms learn in real time the most effective ads and display 

them more frequently and prominently.

The same platforms use RL to associate similar companies, 

products, and services to prioritize for certain customers. 

The choice is reinforced if the consumer clicks or uses other 

signals of engagement, so the same strategy is repeated. The ads 

consumers receive are usually from companies with websites 

previously visited, or bought from before, or situated in the 

same industry as a company from which a previous purchase 

was made.

ii. Recommendation systems
The DRL systems and learning machines are further used to gen-

erate recommendation shown as tabs like ‘Frequently Bought 

Together,’ ‘Customers Also Liked,’ ‘Recommended Reading,’ 

etc. On news websites, they queue the next story, articles, etc., 

to the customer based on his/ her previous preferences. They 

analyze customers’ behavior in real time and also generate 

rewards to keep them engaged and interested.

A variation on this application is used to improve video 

streaming, e.g., Netflix. RL is used to improve the perform-

ance of its algorithms that determine which video to play 

next. Recommendations for new titles are made based on past 

choices. It starts with an initial guess about what movie the 

user will like based on his/ her previous viewing habits. Then it 

recommends something new with the same or better rating. If 

the user selects it, then the rating specific to that user is changed 

for future interaction.
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These systems have a dark side which is not good for encour-

aging critical thinking as they reward impulsive behavior based 

on emotions. Their use on news websites and social media has 

exacerbated the social fragmentation and entrenched the ideo-

logical divisions. The society at large may have to revisit these 

issues in future.

7.5  IMAGE AND PATTERN RECOGNITION

This is one of the most important uses of RL as it is used in both 

regular and security settings. RL agents can start with a given 

image and then identify objects sequentially until individual 

items in the total image are cataloged. Artificial vision systems 

also use deep convolution NNs with large, labeled datasets as 

inputs and map images to human- generated scene descriptions 

from simulation engines.

Some more examples of RL in image processing include the 

following:

 • Robots with visual sensors learning from their surrounding 

environment.

 • Scanners for understanding and interpretation of the text.

 • Image preprocessing and segmentation of medical images, 

e.g., CT scans.

 • Traffic analysis and real- time road processing by video 

segmentation and frame- by- frame image processing.

 • Χλοσεδ- χιρχνιτ τελεϖισιον (CCTV) cameras for traffic 

and crowd analytics

Table 7.1 presents a sample of problems in this area and 

algorithms used to solve them.

7.6  AUTOMATED ROBOTS AND DRONES

While most robots do not look like their pop culture  

representations, their capabilities are just as impressive. The  
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more robots learn using RL, the more accurate they become,  

and the quicker they can complete a previously arduous task.  

They can also perform duties that would be dangerous for  

people with far less consequences. For these reasons, aside from  

requiring some oversight and regular maintenance, robots are a  

cost- effective and efficient alternative to manual labor.

Some more examples of RL in this area include the use of 

robots to:

TABLE 7.1 Some Image Classification Tasks and Applied Algorithms

Item Objective Algorithm

1 Dimensionality reduction DRL- based Q- learning
2 Applying dynamic policy in active 

learning
Dynamic policy

3 Learning the data selection criterion Deep Q- learning, CNN 
(VGG- 16), and ResNet.

4 Enhancing the classification when 
training samples are lacking

Few- shot learning

5 Solving the misclassification problem in 
the soft- attention mechanisms

DSFnet

6 Localizing the objects in scenes Pre- trained CNN, - Deep 
Q- network

7 Detection of the objects in images using 
a hierarchical technique

Q- learning

8 Providing an Aesthetics Aware 
framework based on RL (A2- RL) to 
improve image cropping

LSTM

9 Providing a Fast Aesthetics- Aware 
Adversarial framework based on RL 
(Fast A3RL) to improve image cropping

LSTM and Adversarial 
learning

10 Providing a Fast Aesthetics- Aware 
Adversarial framework based on RL 
(Fast A3RL) to improve image cropping

Double DQN

11 Lightweight network for large- scale 
image classification with visual 
attention and Gaussian modeling

Redefined Markov process 
for RL with Gaussian 
distribution

12 Model for autonomous exploration of 
vehicles

Double deep Q- learning 
(DDQN), Faster R- CNN
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 • Deliver food to tables in restaurants.

 • Identify lower shelves in grocery stores and order more 

products.

 • Assemble products and inspect for defects in factories.

 • Count, track, and manage inventory.

 • Deliver goods.

 • Travel long and short distances.

 • Input, organize, and report on data.

 • Grasp and handle objects of all different shapes and sizes.

The list is nonexhaustive. As we continue to test robotic abil-

ities, new features are being added to expand their potential.

These successes show the ability of DRL to control robotic 

systems with high- dimensional state or observation space with 

highly nonlinear dynamics. Some of the tasks are highly chal-

lenging, which cannot be handled by conventional decision- 

making, planning, and control approaches.

The achievements of DRL have been mostly in simulation 

or game environments. Extending them to physical world 

presents additional challenges.

i. Collection of trial- and- error samples directly in the 

physical world is often inefficient and/ or unsafe for the 

RL agents.

ii. It is usually impossible to simulate the complex real 

world exactly.

Still progress has been made in applying DRL to many phys-

ical environments, e.g., champion- level drone racing, quad-

ruped locomotion control integrated into production- level 

quadruped systems (e.g., ANYbotics, Swiss- Mile, and Boston 

Dynamics), etc.
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Some areas have seen rapid progress in applying DRL:

 • Locomotion: DRL has enabled mature quadruped loco-

motion control. Hardware accessibility is an important 

contributing factor. Even in the mature quadruped loco-

motion domain, open questions remain, such as:

i. Effectively integrating locomotion with downstream 

tasks via RL

ii. Enabling efficient and safe real- world learning.

 • Navigation: DRL has shown potential for local planning, 

global exploration, and constructing end- to- end naviga-

tion solutions, but the solutions lack explainability and 

safety guarantees. Therefore, it has not been deployed 

widely.

i. Visual navigation: While end- to- end RL excels in 

simulation, most real- world successes deploy modular 

designs and learn components of the navigation stack. 

Joint reasoning jointly with navigation and locomo-

tion enables agile legged and aerial navigation. Model- 

free, end- to- end policies show promise for structured 

indoor environments like homes, while modular 

architectures boost performance without sacrificing 

guarantees and generalization. RL- based vision- and- 

language navigation is relatively underexplored in 

real- world settings but promising given the recent 

advances in vision- language models.

ii. Legged navigation: For agile legged and aerial navi-

gation, jointly learning navigation and locomotion 

yields promising results. Yet, involving locomotion 

complicates the training of long- horizon navigation 

policies.

 



Applications of RL     ■    167

 • Manipulation: DRL has been applied to both stationary 

and dynamic manipulation tasks like pick- and- place, 

contact- rich manipulation, in- hand manipulation, and 

non- prehensile manipulation. Stationary manipulation 

refers to an agent’s control of its environment through 

selective contact. Robots require manipulation capabil-

ities such as pick- and- place, mechanical assembly, in- 

hand manipulation, non- prehensile manipulation, etc., to 

be useful. Manipulation poses several challenges for both 

analytical and learning- based methods, as the mechanics 

of contact are complex and difficult to model, and open- 

world manipulation requires strong generalization and 

fast online learning. It poses fundamental difficulties 

for RL:

a.  Large observation and action spaces make real- world 

exploration prohibitively time- consuming and unsafe.

b.  Reward function design requires domain knowledge.

c. Tasks are often long- horizon.

d. Instantaneous environment resets are usually unreal-

istic in real- world tasks.

 • Despite these challenges, RL has achieved notable successes 

in domains where the space of tasks is more constrained –  

grasping, in- hand manipulation, and assembly –  rather 

than less, e.g., end- to- end pick- and- place. These more 

constrained tasks allow for a priori reward design and 

zero- shot sim- to- real transfer, whereas open- world pick- 

and- place and contact- rich manipulation require gen-

eralizing to diverse objects and tasks. The limitations of 

physical simulation may also preclude scaling sim- to- real 

for contact- rich tasks.
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7.7  NATURAL LANGUAGE PROCESSING (NLP)

NLP tasks are some of the most important uses of RL. Some 

examples include:

 • Text prediction,

 • Text summarization,

 • Question answering,

 • Machine translation, etc.

RL agents train with patterns in texts and speech, and then 

mimic the language, diction, and syntax people speak to each 

other every day.

In NLP, the goal is to develop computer programs capable 

of communicating with humans using natural language. As an 

example, machine translation helps humans speaking different 

languages to understand each other by translating from one 

natural language to another. Over the years, NLP research has 

been transformed by ML algorithms and deep neural networks 

as neural language models such as BERT and various versions of 

GPT. These new approaches define natural languages as prob-

ability distributions over sentences rather than using definitive 

sets specified by grammars.

An important NLP approach uses n- grams, which is a 

sequence of written symbols of length n. The n- gram model is 

the probability distribution of n- grams defined as Markov chain 

of length n- 1. The DNNs, such as the recurrent long short- term 

memory (LSTM) network, have allowed the researchers to 

replace probabilistic language models with those based on DNNs. 

The LSTM has been successfully applied to machine translation 

which was not possible with the approach based on language 

grammars alone. These new neural models contain thousands of 

parameters that are estimated iteratively from a massive number 

of training examples gathered from the Internet.
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There are five main categories of MDP- based NLP problems.

i. Conversational systems: They are the most studied ones, 

and they involve finding an optimal dialog policy that 

should be followed by an automated system during a con-

versation with a human user. A very important advance-

ment in this area occurred in 2016, when researchers 

from Stanford University, Ohio State University, and 

Microsoft Research used RL to generate dialogues 

using two RL agents. They applied policy gradient 

methods to reward coherence, informativity, and ease 

of answering in simulated conversations. The outcome 

has been adopted very widely in business customer ser-

vice departments. The other four categories also use RL 

methods. In some of them, it is even not easy to identify 

the elements of a well- defined MDP.

ii. Syntactic parsing: It consists of analyzing a string made 

of symbols belonging to some alphabet, either in nat-

ural or in programming languages, using a set of rules 

called grammar. There could be many ways to perform 

parsing, depending on the final goal of the system, e.g., 

construction of a compiler for a new programming lan-

guage, an application of language understanding for 

human– computer interaction, etc. A grammar can gen-

erate many parsing trees and each of these trees specifies 

the valid structure for sentences of the corresponding 

language. Since parsing can be represented as a sequen-

tial search problem with a parse tree as the final goal 

state, RL methods are tools well suited for the under-

lying sequential decision problem. In general, a parse is 

obtained as a path when an optimal policy is used in 

each MDP.

iii. Language understanding: It can also be posed as an 

MDP and therefore RL algorithms can be applied. 
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Furthermore, they can be implemented together with 

DNN to cope with the massive amount of data that text 

understanding applications typically require.

iv. Text generation systems: They automatically generate 

valid sentences in natural language given a language 

model. The optimization generates valid substring 

sequences that subsequently complete a whole sen-

tence with some meaning in the domain of the appli-

cation. For example, given a vector representation of 

a set of variables in a computational system and their 

corresponding values, an RL algorithm generates a sen-

tence in English (or any other natural language). This 

communicates specific and meaningful information to 

a human user.

  Generating navigational instructions for humans has 

been one of the first areas for this approach. Here, the 

system decides first the content to be communicated 

to the human, and then builds the correct instructions 

adding word by word. The reward function is 

implemented as a hidden Markov model or as a Bayesian 

network. The RL process is carried out with a hierarch-

ical algorithm using semi- MDPs. Other approaches 

combining IRL and GANs have also been used in which 

the reward and the policy functions are learned alter-

nately with a discriminator and a generator.

  In a text generation task, the corresponding MDP works 

as follows:

a. Each state is a feature vector describing the current 

state of the system containing enough information to 

generate the output string.

b. Actions add or delete words.

c. Every transition to next state is determined by the 

resulting string, after adding or deleting a word.
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d. The reward function is learned from a corpus of 

labeled data or from human feedback.

v. Machine translation: It consists in automatically trans-

lating sentences from one natural language to another 

one using a computing device with a program. It receives 

text (or speech) in some language as input and automat-

ically generates text (or speech), with the same meaning 

in a different language. They are used mostly as online 

translation systems. Neural machine translation is the 

preferred approach now in which large NNs predict the 

likelihood of a sequence of words.

  Currently RNN, such as LSTM network, is the preferred 

MT method. Two RNNs function as an encoder and a 

decoder:

a. The encoder updates its weights as it receives a sequence 

of input words to extract the meaning of the sentence. 

It internally encodes the meaning of the source text.

b. The decoder updates its corresponding weights to 

generate the correct sequence of output words of 

the translated sentence. It decodes using an internal 

representation and outputs a translated sentence with 

the correct meaning.

  RL has been used to tackle the problems of exposure 

bias, i.e., the discrepancy between ground- truth- 

dependent prediction during training and model- 

output- dependent prediction during testing, and 

inconsistency between the training and test objectives.

7.8  SOME OTHER AREAS

RL methods are being used in a wide variety of areas in add-

ition to those mentioned above. Some of them are:

a. Finding the ways to reduce energy consumption espe-

cially in data centers. Google achieved a 40% reduction 
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in energy spending without the need for human inter-

vention by developing RL and AI methods for this pur-

pose. The steps in achieving energy reduction are the 

following:

 • DNN using DRL is fed snapshots of data from the data 

centers every five minutes.

 • DNN predicts future energy consumptions for different 

combinations of the data.

 • System identifies actions leading to minimal power 

consumption subject to a set standard of safety criteria.

 • These actions are implemented in the data center.

 • The local control system verifies the actions.

A similar approach is used in setting the thermostat or the level 

of light in the room.

b. In trading, one tries to predict future prices of stocks 

before deciding whether to buy or sell. RL agents help 

in this by optimizing the buy/ sell action for maximizing 

the future monetary reward based on the current state of 

knowledge. The optimization must consider factors like 

availability of money, risk appetite, and access to relevant 

information.

The entry of RL agents has also encouraged very fast real- 

time trading using dueling RL agents for making short- term 

profits. Only the future will tell if this use of RL is good for 

attaining socially desirable ends like decreasing inequality.

c. Climate change, poverty and inequality, responsible 

wealth generation and resource management, education, 

government, and military are some of the areas in which 

RL methods have been found to be very useful.
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Epilogue

The idea of reinforcement learning combined with 

neural network has revolutionized the field of machine 

learning. It has led to an explosion of applications in several 

fields of social and scientific importance. It is difficult to fore-

cast the future of RL but certainly we can look forward to 

more and more exciting applications of this seminal idea in 

near future.

Like many scientific and technological applications, RL 

can be also used for unsavory ends that harm individuals 

and societies. We must exert our utmost effort to prevent this 

and, in cases where this is not possible, at least to minimize 

repercussions. That is easier said than done as it will involve 

widespread collective awareness and social effort.

In the future, we can envision the areas of application of 

RL expanding to solve more and more social and scientific 

problems. It will be one of the most widely available tools in the 

hands of researchers as well as decision- makers. Let us hope 

that it will help in solving some of the pressing problems cur-

rently facing humanity, like environmental degradation and 

inequality.
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Absolute error loss, 131
Activation functions, 16

Rectified Linear Unit 

(ReLU), 48– 49

sigmoid function, 46– 47

softmax function, 47

Active learning (AL), 29

Advantage actor critic (A2C), 74– 77

applications of, 77

mathematical formulation 

of, 75– 76

pseudocode of, 76– 77

value function, 75

Advantage Function, 78

Advection– diffusion– reaction 

systems, 126

Aerial navigation, 166

Agent ambiguity, 108

Agent- specific network, 115

Algorithmic transparency, 141

AlphaGo program, 9, 103

Artificial intelligence (AI) 

applications of, 6– 7

basic layers of 

algorithm layer, 2

infrastructure layer, 1– 2

development of, 8– 10

Artificial neural networks (ANNs), 

10, 12, 25

Associative learning, 31

Asynchronous advantage actor critic 

(A3C), 77– 79

Attention layer, 133– 134

Autoencoder (AE), 5– 6, 22, 23

Automated robots and drones, 

163– 167

Autonomous driving (AD) 

systems, 153

Autoregressive generative 

pretraining, 135

B

Back Propagation NN 

(BPNN), 2, 98

Bayesian classifier, 140

Bayesian networks, 67, 170

Bayes’ Theorem, 8

Bellman equations (BE), 31, 34, 

40– 42, 63

analytical solutions of, 54– 57

for Markov Decision Process 

(MDP), 61

for Q- function, 106

for state- action value function 

Qπ(s,a), 41– 42

for state value function 

Vπ(s), 40– 41

for value function of a state, 42

Bellman operator, 80
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Bias neurons, 16
Bidirectional encoder 

representations from 
transformer (BERT), 
132, 135

Bidirectional LSTM (Bi- LSTM), 18
Binarized NNS (BNN), 145
Binary classification, 43

Bloch sphere, 147

Boltzmann– Gibbs entropy. See 

Gibbs entropy

Boltzmann machine learning, 20

Boltzmann machines, for function 

approximation, 149, 151

Boltzmann probability function, 47

Boltzmann’s constant, 50

Boltzmann’s thermodynamic 

entropy, 49– 50

Born’s rule, 151

C

Cartesian occupancy grid, 154

Cell state vector, 92

Centralized Learning with 

Decentralized Execution 

(CLDE), 104

Central processing unit (CPU), 1

ChatGPT, 135– 136

Closed quantum systems, evolution 

of, 148

Collision entropy, 51, 52

Collocation points, 127

Computational basis states, 147

Computer vision, 25, 132

Conservation laws, 126

Continuous probability 

distribution, 52

Contractive AE (CAE), 23

Conversational agents, 6

Conversational systems, 169

Convolutional layer, 17

Convolutional Neural Networks 

(CNN), 2, 5, 17, 67, 107, 143

Cost function, 42

Cross- entropy, 53, 94

Cumulative discounted reward 

function, 40

Cumulative distribution function 

(CDF), 82

Cybersecurity, 21

D

Dartmouth workshop, 8

Data arrays, 67

Data augmentation, 21

Data- efficient spatiotemporal 

function approximators, 127

Decision trees (DT), 12, 54, 140

Deconvolutional neural network, 93

Deductive inference, 28

Deep Belief Network (DBN), 24

application of, 24

Deep Blue, 9, 103

Deep deterministic policy gradients 

(DDPG), 82– 84, 96, 122

applications of, 84

mathematical formulation of, 83

pseudocode of, 83– 84

Deep learning (DL), 2, 12, 13, 25, 

36, 128

Deep neural networks (DNN), 

67, 168

optimization of, 78

Deep operator networks 

(DeepONets), 130

Deep Q- Network (DQN), 63,  

65– 70, 77, 107, 121

algorithm, 144

applications of, 68– 70

mathematical formulation, 65– 67

pseudocode, 67– 68

Deep reinforcement learning (DRL), 

31, 68, 120

achievements of, 165

action- value function of, 150

algorithms, 121– 123

applications of, 154

in Generative AI (GAI), 138

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index     ■    187

hierarchical, 123

importance of, 158

mathematical ideas behind,  

34– 38

mathematical model of, 33– 34

Deepstack (University of Alberta’s 

program), 9

Deep Transfer Learning 

(DTL), 26– 27

Denoising AE (DAE), 22– 23

Density matrix, 50

power of, 51

Direct learning, 31

Discriminative learning model, 26

Discriminative network, 93

Discriminative network 

discriminator, 94

Distributed physics- informed 

extreme learning machines 

(DPiELMs), 128

Distributed PiNNs (DPiNNs), 128

Double deep Q- learning (DDQN), 

121, 164

Dynamic treatment regimes (DTR), 

159– 160

decision rules in, 160

E

Eligibility trace, 73

Encoder- Decoder Transformer 

(EDT), 132

Encoder- only transformer, 132

Ensemble learning (EL), 29– 30

Entropic index, 50

Entropies 

Boltzmann’s thermodynamic 

entropy, 49– 50

collision entropy, 52

cross- entropy, 53

definitions of, 49

Fisher information, 54

Gibbs entropy, 50

Hartley entropy, 52

information gain, 54

Kullback– Leibler (KL) 

divergence, 53

min- entropy, 52

mutual information, 53– 54

relative entropy, 53

Rényi entropy, 51

Shannon or information 

entropy, 51– 52

Tsallis entropy, 50

Entropy temperature, 81

Episodic tasks, 38

Euclidean distance, 98

Evolutionary computation, 7

Expert systems, 7

Explainable AI (XAI) 

considerations important for, 

142– 143

DNN- based, 140

explainable RL, 142– 143

model- agnostic explanations,  

141

model- specific techniques, 141

and reinforcement learning (RL), 

139– 143

Explainable RL, 142– 143

Exponential linear unit 

(ELU), 48– 49

F

Feedforward deep neural network 

(FF- DNN), 17

Feedforward Neural Networks 

(FFNN), 3, 4, 127

deterministic, 93

Financial portfolio management 

and trading, 70

Finite state machines (FSM),  

109

First- order predictive logic, 140

Fisher information, 54

Forget gate, 91

Fully connected layers, 5, 17, 

125, 128

Fuzzy inference systems, 140
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G

Gated Graph Neural Networks 

(GGNNs), 144

Gated recurrent unit (GRU), 18

Gaussian distribution, 23, 81

Gaussian noise, 85– 86

Gaussian policy, 81

Generative Adversarial Network 

(GAN), 20– 21, 27, 93– 96, 170

versus actor- critic (AC) 

method, 94– 95

applications of, 96

pseudocode of, 94

Generative AI (GAI), 136– 139

deep RL (DRL) in, 138

embedding of desired 

characteristics, 139

generation of outputs while 

concurrently maximizing an 

objective function, 137– 139

model generation without 

specified objectives, 137

Generative learning model, 26

Generative modeling, neural 

network architecture for, 20

Generative pretrained transformer 

(GPT), 132, 135– 136

Gibbs entropy, 50

Google, 171

DeepMind, 9, 77, 115

tensor processing unit (TPU) 

chips, 2

Gradient backpropagation, 18

Graph auto- encoder networks 

(GAENNs), 144

Graph Convolutional Networks 

(GCNs), 143– 144

Graphics processing unit (GPU), 2

Graph neural networks (GNNS), 

143– 145

Group Online Adaptive 

Learning, 28

Grover- type search algorithms, 150

Gudermannian function, 47

H

Hadamard matrix, 148

Hamilton– Jacobi– Bellman 

equation, 57

Handwriting recognition, 5

Hartley entropy, 51, 52

Healthcare, 158– 161

Chronic diseases, 160– 161

critical care, 161

dynamic treatment regimes 

(DTR), 159– 160

Helmholtz method, 20

Hermitian operator, 148– 149

Hidden layer, 15, 47

Hidden Markov model, 170

Hidden state, 91

Hierarchical Optimistic 

Optimization (HOO) 

algorithm, 118

Hilbert space, 146– 147, 149

Hinge loss, 43– 44

Hinton, Geoffrey, 9

Hopfield learning, 20

Huber loss, 45, 76

Human– computer interaction, 169

Human intelligence, 11

Human learning, 1, 115

Hybrid learning, 25– 26

Hyperparameters, 15, 45– 46, 

125, 141

I

IBM’s Watson, 9

If- else logic, 140

ImageNet, 9, 25

Image recognition system, 3, 9, 163

Image understanding, 7

Indirect learning, 31

Inductive inference, 28

Information gain, 54

Information- theoretic 

entropies, 51– 52

Input embedding layer, 133
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Input gate, 91

Input layer, 15

InstructGPT, 146

Intelligent control, 7

Inverse Reinforcement Learning 

(IRL), 156, 170

Ion traps, 146

Iterative LQR (iLQR), 156

J

Jointly learning navigation,  

166

K

Kinetic equations, 126

K- nearest- neighbors (KNN), 140

Kohonen’s map, 21, 98. See also Self- 

Organizing Map (SOM)

Kohonen, Teuvo, 21

Kolmogorov– Sinai entropy, 53

Krizhevsky, Alex, 9

Kullback– Leibler (KL) divergence, 

24, 53, 80, 89

L

Labeled data, acquisition of, 18

Language translations, 6

Language understanding, 169– 170

Laplacian regularization, 19

Large language models (LLMs), 10

Law of Effect, 30– 31

Leaky ReLU (LReLU), 48

Learn from Demonstrations (LfD), 

156

Learning algorithms, 45

Learning from problems, See also 

Machine learning (ML)

deep transfer learning (DTL), 

26– 27

hybrid learning, 25– 26

multi- instance learning (MIL), 27

self- supervised learning (SSL), 

24– 25

semisupervised learning, 18– 19

supervised (or discriminative) 

learning, 13– 15

convolutional NN (CNN), 17

multilayer perceptron (MLP), 

15– 17

recurrent NN (RNN), 17– 18

unsupervised (or generative) 

learning, 19– 20

autoencoder (AE), 22– 24

Deep Belief Network (DBN), 24

generative adversarial network 

(GAN), 20– 21

radial basis function network 

(RBFN), 21

restricted Boltzmann machine 

(RBM), 21

self- organizing map (SOM), 

21– 22

Learning from statistical inference, 

27

deductive inference, 28

inductive inference, 28

transductive learning, 28

Linear activation function, 22

Linear Quadratic Regulator (LQR), 

155– 156

Linear regression, 12

Log- cosh loss, 45

Logistic regression, 140

Long- horizon navigation policies, 

166

Long Short- Term Memory (LSTM), 

4– 5, 18, 91– 93, 168

applications of, 93

mathematical formulation of, 92

pseudocode of, 92

three gates of, 91

two states of, 91

Long- term memory, 5, 91

Loss function (LF), 42– 46

for classification 

binary cross- entropy loss/ log 

loss, 43

hinge loss, 43– 44
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for regression 

Huber loss/ smooth mean 

absolute error, 45

log- cosh loss, 45

mean absolute error (MAE)/ L1 

loss, 44

mean square error (MSE)/ 

quadratic loss/ L2 loss, 44

quantile loss, 45– 46

M

Machine learning (ML), 2– 6, 7, 12, 

171

active learning (AL), 29

Boltzmann probability function, 47

ensemble learning (EL), 29– 30

multitask learning (MTL), 28– 29

online learning (OL), 29

varieties of, 14

Machine translation, 6, 7, 25, 168

Markov Chain Monte- Carlo 

(MCMC), 67

Markov decision process (MDP), 

31, 34– 35

algorithms based on, 62

Bellman equation for, 61

elements of 

actions and policies, 35– 37

discount factor, 37– 38

reward function r(st, at), 37

multi- agent generalization of, 110

Markov games (MG), 110

Max- entropy, 52

Max pooling, 17

McCarthy, John, 8

‘Mealy’ machines, 109

Mean absolute error (MAE), 44

Mean square error (MSE), 44, 76, 

126

Memory cells, 4

input activation vector, 92

Metric entropy, 53

Microcontrollers, 145

Min- entropy, 51, 52

Model- Ensemble Trust- Region 

Policy Optimization (ME- 

TRPO), 122

Model- free algorithms, 66

Model- free learning, 60

Modular Neural Network (MNN), 6

Monte Carlo (MC) methods, 63, 

73, 101

‘Montezuma’s revenge’ game, 158

Motion planning and trajectory 

optimization, 155– 156

Multi- agent policy- function 

framework, basic equations 

for, 106– 107

Multi- agent Q- function framework, 

basic equations for, 105

Multi- agent reinforcement learning 

(MARL), 102

for A2C and A3C, 115

cooperation versus competition, 

103

general considerations for 

basic equations for the multi- 

agent policy- function 

framework, 106– 107

basic equations for the 

multi- agent Q- function 

framework, 105

examples, 107– 108

single- agent setting as 

reference, 104– 105

training, 104

mixed- sum settings, 103

neuro- symbolic learning, 113– 115

pure competition settings, 103

pure cooperation settings, 103

reward machines (RMS) for, 

108– 113

Markov game, 110

Nash equilibrium, 111

Pareto optimality, 111

Q- Learning with RMs (QRM), 

111– 113
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Multi- agent training, 108

Multi- arm- bandits paradigm, 

algorithms based on, 62

Multi- armed bandit (MAB) 

algorithm, 118

Multi- class classification, 43

Multi- instance binary classification, 

27

Multi- Instance Learning (MIL), 27

Multilayer Perceptron (MLP), 4, 

17, 127

layers of, 15– 17

Multi- objective RL, 115– 119

decision support scenario, 116

dynamic utility function scenario, 

117

inner loop methods, 119

interactive decision support 

scenario, 117

known utility function scenario, 

116– 117

multi- policy algorithms, 119

outer loop methods, 119

review and adjust scenario, 117

single- policy algorithms, 118

stateless/ bandit algorithms, 118

unknown utility function 

scenario, 116

Multitask learning (MTL), 28– 29

N

Nash equilibrium, 110, 111

Natural language processing (NLP), 

5– 6, 7, 18, 25, 132, 168– 171

MDP- based problems, 169– 171

conversational systems, 169

language understanding, 

169– 170

machine translation, 171

syntactic parsing, 169

text generation systems, 

170– 171

n- gram model, 168

Network traffic control system, 64

Neural networks (NNs), 2, 7, 9– 11, 

20, 23, 31, 46, 65, 114, 173

deconvolutional, 93

learning capability from instance 

learning, 129

policy- based, 75

Q- values, 108

value- based, 74

Neural operators (NOs), 129– 130

Neural ordinary differential 

equations (NeuralODE), 129

Neuro- symbolic (NeSy) learning, 114

Noisy intermediate- scale quantum 

(NISQ) hardware, 150

Normalized advantage function 

(NAF), 96– 98

pseudocode of, 97– 98

O

Object recognition, 7

Off- policy learning, 71

Online learning (OL), 29, 31, 167

On- policy learning algorithm, 

70– 71

OpenAI, 10, 146

Optimal control theory, 31

Optimal value function, 31, 42

Output gate, 91

Output layer, 15– 16, 47

P

Parallel Distributed Processing, 9

Parametric ReLU (PReLU), 49

Pareto optimality, 110, 111

Path planning, in dynamic 

environments, 155

Pattern recognition, 5, 163

Pavlov, Ivan, 31

Perceptron, 3, 9

Physics- based NNS, 120– 124

Physics- encoded neural networks 

(PeNNs), 129
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Physics- encoded recurrent 

convolutional neural 

network (PeRCNN), 129

Physics- guided neural networks 

(PgNNs), 124– 125

Physics- informed NNs (PiNNs), 

125– 128

limitations and shortcomings of, 

128

proof of convergence for, 128

Physics- informed reinforcement 

learning (PiRL), 131– 132

Policy Gradient algorithms, 77

Policy Gradient theorem, 66– 67

Policy iteration technique, 79

Pooling layer, 17

Positional embedding layer, 133

Principal component analysis 

(PCA), 22

Prisoner’s dilemma, 103

Probability distribution, 53

of n- gram models, 168

Projective simulation (PS), 149, 151

Proximal policy optimization 

(PPO), 89– 91, 122, 145

applications of, 91

mathematical formulation of, 90

pseudocode of, 90

Q

Q- function, 42, 63, 71, 73

Bellman equation for, 106

optimization, 81

Q- learning, 31, 34, 62– 64

applications of, 64

deep Q- Learning, 65– 70

finite state- action, 63

generalization of, 65

methods for, 96

Q- Learning for reward machines 

(QRM), 110, 111– 113
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