

An Introduction to Deep
Reinforcement Learning

The current era of artificial intelligence and machine learning

(AIML) tools has transformed the workings of vast swaths

of our private, working, and social lives beyond recognition.

It has been found that these tools can solve many problems

in better and faster ways compared to humans. AIML tools

allow machines and related systems to reason and infer almost

like humans, and this has deep intellectual and philosoph-

ical ramifications as well. The areas of machine learning are

broadly classified into supervised, unsupervised, and deep

reinforcement learning (DRL). The last one comes closest to

how humans reason, and various innovations in this area have

many useful applications.

This book covers most of the areas of DRL, with a spe-

cial focus on its mathematical and algorithmic foundations.

Undergraduate and early graduate students should find it to be

a good guide to the fast- developing areas of DRL and its myriad

applications in both technical and social contexts.

Vinod K. Mishra received his PhD in Theoretical Physics

from the State University of New York (SUNY) at Stony Brook.

After gaining some academic teaching and research experi-

ence, he joined Lucent Technology Bell Labs and later became

a research scientist at US Army Research Laboratory. His areas

of primary interest are quantum information science, artifi-

cial intelligence, and machine learning. He is the author of An
Introduction to Quantum Communication and Software Defined
Networks.

https://taylorandfrancis.com

An Introduction to
Deep Reinforcement

Learning

Vinod K. Mishra

Designed cover image: Shutterstock

ATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with
permission. The MathWorks does not warrant the accuracy of the text or exercises
in this book. This book’s use or discussion of MATLAB® or Simulink® software or
related products does not constitute endorsement or sponsorship by The MathWorks
of a particular pedagogical approach or particular use of the MATLAB® and Simulink®
software.

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Vinod K. Mishra

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyri ght.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978- 750- 8400. For works that are not available on CCC
please contact mpkbookspermissions@tandf.co.uk

For Product Safety Concerns and Information please contact our EU representative
GPSR@taylorandfrancis.com. Taylor & Francis Verlag GmbH, Kaufingerstraße 24,
80331 München, Germany.

Trademark notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

ISBN: 978- 1- 032- 65979- 4 (hbk)
ISBN: 978- 1- 032- 65143- 9 (pbk)
ISBN: 978- 1- 032- 65980- 0 (ebk)

DOI: 10.1201/ 9781032659800

Typeset in Minion
by Newgen Publishing UK

http://www.copyright.com
http://www.copyright.com
http://dx.doi.org/10.1201/9781032659800

v

Contents

Prologue, vii

CHAPTER 1 ■ Introduction 1

CHAPTER 2 ■ Survey of ML 12

CHAPTER 3 ■ Basic Mathematics behind Deep
Reinforcement Learning 33

CHAPTER 4 ■ Single-Agent Algorithms 58

CHAPTER 5 ■ Multi- Agent RL (MARL) Algorithms 102

CHAPTER 6 ■ Recent Developments in DRL 120

CHAPTER 7 ■ Applications of RL 152

EPILOGUE, 173

vi ■ Contents

ACKNOWLEDGMENTS, 175

BIBLIOGRAPHY, 177

INDEX, 185

vii

Prologue

The idea of putting information in a digital form

is quite simple and seems an ordinary technical advance

in hindsight. Over a period, many scientists and engineers

nurtured it at a steady pace, and finally made it possible for the

society to usher in the age of digital revolution. In a relatively

very short time by historical standards, it has transformed the

modern civilization and changed the workings of vast swaths of

our private, working, and social lives beyond recognition. The

idea of machine learning has been one of the key innovations

in this regard.

Machines, specifically those which can think and act like

humans, have been the stuff of science fiction for a long time.

At some deeper level, this concept also connects to our quest

for understanding the essence of human intelligence and con-

sciousness. We are still very far from solving that puzzle, but

the impulse has resulted in very rapid advances in the fields

of machine learning. We have also found that these thinking

machines can solve many problems in better and faster ways

compared to humans.

This book presents a high- level view of the fast developing

discipline of the Reinforcement Learning in its basic and more

sophisticated aspects. Hopefully, it will inspire the reader to

take a deeper dive into this subject as well as help understand

the coming revolution in every aspect of society based on

these ideas.

newgenprepdf

https://taylorandfrancis.com

1DOI: 10.1201/9781032659800-1

C H A P T E R 1

Introduction

In this chapter, some basic concepts behind machine

learning (ML) and their history have been presented.

1.1 ARTIFICIAL INTELLIGENCE (AI)

AI uses data input, computing hardware, and appropriate

software to model the underlying neural circuits mimicking

human learning and problem- solving behavior. It has excelled

at some of the learning and reasoning tasks and surpassed

human capabilities.

A general AI system contains two basic layers.

i. Infrastructure layer:

• Central processing unit (CPU) for serially executed

tasks,

http://dx.doi.org/10.1201/9781032659800-1

2 ■ An Introduction to Deep Reinforcement Learning

 • Graphics processing unit (GPU) for graphics and

image calculations),

 • Dedicated AI chips like Google’s tensor processing

unit (TPU) chips, and

 • High- speed networks behind frameworks like

Tensorflow, Caffe, Mxnet, Torch, Keras, PyTorch,

Theano, etc.

ii. Algorithm layer: It contains various types of ML

algorithms which will be elaborated in coming chapters.

1.2 MACHINE LEARNING

In recent times the field of ML has developed very fast and

has branched into many subfields. The following are the most

recognized ML methods.

 • Supervised Learning: Labeled data is given as input for

learning.

 • Unsupervised Learning: Unlabeled data is given as input

for learning. The combination of unsupervised and

supervised learning is called semi- supervised learning in

which both labeled and unlabeled data are given as input.

 • Reinforcement Learning (RL): Learning is based on intel-

ligent agents taking actions to maximize the cumulative

reward from environments.

Neural networks (NNs) model neurons as electronic circuits

and use them as their basic building blocks. They perform

deep learning (DL) when the number of NN layers is increased.

Further classification is determined by these basic methods:

i. Back Propagation NN (BPNN)

The NN circuit signals are used to update earlier layer, a

key discovery behind the NN revolution.

Introduction     ■    3

ii. Convolutional NN (CNN)

It uses the mathematical operation of convolution (an

integral or sum expressing the amount of overlap of

one function with shifted another function) instead of

matrix multiplication in at least one of its layers, and

iii. Recurrent NN (RNN)

The connections between nodes form a directed graph

along a temporal sequence.

The following are some of the important, but nonexhaustive

NN types based on the above paradigms:

i. Feedforward Neural Networks (FFNN): They are the

most basic type of NN consisting of an input layer, one

or more hidden layers, and an output layer, with the data

flowing sequentially through them from the input to the

output layer. They are widely used for image and speech

recognition, natural language processing, and predictive

modeling. In an FFNN, each neuron in the hidden

layer(s) applies an activation function to a weighted

sum of the inputs and passes the output to the next

layer. Their weights and biases get adjusted during the

training to minimize the errors between the predicted

and the actual output.

ii. Perceptron: It is a single- layer NN that takes a set of

inputs, processes them, and produces an output. They

apply weights to the input data and then pass the sum

through an activation function to produce an output.

The activation function is typically a threshold function

that outputs a 1 or 0 depending on whether the sum

is above or below a certain threshold. They are used

for image recognition, signal processing, and control

systems and are somewhat limited in their applications

as they can only solve linearly separable problems in

4 ■ An Introduction to Deep Reinforcement Learning

which the data can be separated into two categories

using a straight line.

iii. Multilayer Perceptron (MLP): It is a type of FFNN com-

monly used for classification tasks. The input layer

receives the raw data. Each following MLP layer consists

of many perceptrons, and the output of one MLP layer

feeds into the next layer as input. The hidden layers in

between transform the input into a form that is suitable

for the output layer, which produces the final prediction.

MLPs have been applied to image recognition, speech

recognition, time series analysis, and natural language

processing.

iv. Recurrent Neural Networks (RNN): They process sequen-

tial input data, such as text and speech The input data is

processed through a series of recurrent neurons, which

take the current input and the output from the pre-

vious time step as input, thus allowing the network to

maintain a memory of previous inputs and context. The

weights and biases of the neurons are adjusted during

training to minimize the error between the predicted

output and the actual output – a process called back

propagation. RNNs are commonly used for language

translation, text generation, speech recognition, and

time series prediction.

v. Long Short- Term Memory (LSTM): It is a type of RNN

for handling long- term dependencies and contains

memory cells, input gates, output gates, and forget gates.

 The information flows through the memory cells over

time. The input and forget gates determine which infor-

mation should be stored in the memory cells and which

information should be removed. The output gate then

determines which information should be passed on to

the next layer. Thus, LSTM remembers important infor-

mation over long periods of time and selectively forgets

Introduction     ■    5

irrelevant information. They have solved problems

with long- term dependencies effectively in natural

language processing, speech recognition, handwriting

recognition, and other applications where long- term

memory is important.

vi. Radial Basis Function (RBF) Neural Network: It is an

FFNN that uses a set of RBFs to transform its inputs

into outputs. It is composed of an input layer, a hidden

layer, and an output layer. It uses a set of RBFs to trans-

form the input data by calculating the distance between

the input and a set of predefined centers in the hidden

layer. The hidden layer outputs are then combined lin-

early to produce the final output. The weights of the

connections between the hidden and the output layer

are trained using a supervised learning algorithm,

such as backpropagation. RBF networks are often used

for problems with large datasets as they learn to gen-

eralize well and provide good predictions. They are

used for time- series analysis and prediction, financial

forecasting, pattern recognition, classification, and

control tasks.

vii. Convolutional Neural Networks (CNN): These are made

up of convolutional, pooling, and fully connected

layers. The input data is processed through many con-

volutional layers, which apply filters to the input and

extract features. Their output then passes through

pooling layers, which down- sample the data to reduce

its dimension. Finally, the output goes through fully

connected layers for the final classification or predic-

tion. The CNNs are commonly used for image and

video recognition tasks, such as object detection, facial

recognition, and self- driving cars.

viii. Autoencoder: This NN uses unsupervised learning

which does not require labeled data to make

6 ■ An Introduction to Deep Reinforcement Learning

predictions. It first compresses the input data into

a lower- dimensional representation and then

reconstructs it back into the original format, thus iden-

tifying the most important features of the input data.

They are commonly used in applications such as data

compression, feature extraction, image denoising, and

anomaly detection. For example, NASA uses them to

detect anomalies in spacecraft sensor data.

ix. Sequence to Sequence Models (Seq2Seq): They use an

encoder and a decoder to convert one sequence of data

into another by first encoding the input sequence into

a fixed- length vector. Then the decoder uses this vector

to generate the output sequence one element at a time,

predicting the next element based on the previous one

and the context vector. These models have been used in

natural language processing, machine translation, con-

versational agents, and language translations.

x. Modular Neural Network (MNN): In MNN, each

module is a separate network for solving a spe-

cific subproblem, and all module outputs are then

combined to provide a final output. This approach

makes it easier to build complex systems by combining

simpler modules. They can be more robust than trad-

itional NNs, as each module can handle a specific type

of input or noise, so that even if one module fails, the

overall system can still function, as other modules can

take over. MNNs have been used in computer vision,

speech recognition, and robotics.

1.3 APPLICATIONS OF AI

Attempts to understand the nature of intelligence started a

long time ago and various ancient cultures – e.g. Greek, Indian,

Chinese, and others – produced many philosophical ideas about

it. Later tools of mathematics, logic, and engineering ushered

us in the current era of new understanding and applications.

Introduction     ■    7

The field of AI is very broad, with a nonexhaustive list of

subfields given below.

i. Neural Networks: Study the promise and limitations of

computational networking based on neuron models,

e.g., brain modeling, time series prediction, classifica-

tion, etc.

ii. Evolutionary Computation: Study and development of

computer programs correcting and improving them-

selves automatically without human intervention

during execution, e.g., genetic programming, etc.

iii. Vision: Developing machines to understand and inter-

pret the visual input, e.g., object recognition, image

understanding, etc.

iv. Robotics: Building machines capable of autonomous

movement, e.g., intelligent control, autonomous explor-

ation, etc.

v. Expert Systems: Software embodying the facts and rules

of a particular area of knowledge, e.g., decision support

systems, teaching systems, etc.

vi. Speech Processing: Development of systems able to

understand naturally spoken languages, e.g., speech

recognition and processing.

vii. Natural Language Processing: Extraction of meaning and

structure of the written or printed natural languages,

e.g., machine translation.

viii. Planning: Using current data to enumerate steps to

achieve a well- defined goal, e.g., scheduling, etc.

ix. Machine Learning: Study and development of machines

and algorithms capable of learning, e.g., decision

trees, etc.

The new areas for using neural networks are always opening.

8 ■ An Introduction to Deep Reinforcement Learning

1.4 HISTORICAL DEVELOPMENT

A short history based on the milestones follows based on Royal

Society (UK) Report [1] .

i. 18th Century:

• Development of statistical methods which accelerated

the pace of scientific research in general.

• Bayes’ Theorem (1763): Usually we have some prior

knowledge of the conditions leading to an event. This

theorem relates them.

P AB
P B A P A

P B
|

|() =
() ()

()
(1.1)

Here P A() and P B() are the probabilities of the

occurrence of events A and B independently. P AB|()
and P B A|() are conditional probabilities of occurrence

of event A or B given that B or A is true. This simple

relation has played an outsized role in the development

of AI/ ML.

ii. 1950s:

• Turing Test (1950): Alan Turing presented the criteria

by which machines can be considered intelligent if its

responses to questions could convince a person that

it is human.

• Checker playing machine (1952): Arthur Samuel

created a machine able to learn to pay checkers using

expert rules and playing against itself.

• Dartmouth workshop (1956): This was a get- together

of the AI/ ML’s early pioneers. John McCarthy came

up with the term ‘Artificial Intelligence.’

Introduction     ■    9

 • The Perceptron (1957): Frank Rosenblatt invented the

first ‘neural network’ using a potentiometer and an

electric motor. It could take an input (like a pixel) and

create an output (like a label).

 iii. 1960s and 1970s: not much, AI winter

 iv. 1980s:

 • ‘Parallel Distributed Processing’ in two volumes

(1986): advocated the use of NN models for ML

 v. 1990s:

 • Backgammon playing neural network algorithm

(1992): Gerald Tesauro created a backgammon

playing program based on NN, which could match

the best human players.

 • Deep Blue beats world chess champion (1997): It

could process 200 million moves per second before

selecting the best one.

 vi. 2010s:

 • IBM’s Watson beats Jeopardy champion (2011):

 • ImageNet (2012): A paper by Alex Krizhevsky, Ilya

Sutskever, and Geoffrey Hinton presented a model

that dramatically reduced the error rate in image rec-

ognition systems.

 • AlphaGo beats Go champion (2016): Program created

by Google’s DeepMind team won four out of five

games against Chinese master of Go game.

 • Libratus beats poker champion (2017): Program

created by Carnegie Mellon University beat top poker

player, and this success was repeated by University of

Alberta’s program Deepstack.

 • Transformer architecture: The Google researchers

published a paper ‘Attention is all you need’ (2017)

10 ■ An Introduction to Deep Reinforcement Learning

starting a new and powerful approach to large lan-

guage models (LLMs).

 • Development of foundational LLM models (2018)

trained on vast amounts of unlabeled data started.

 vii. 2020s:

 • GPT- 3 was released by OpenAI (2020).

 • GPT- 4 was released by Microsoft (2023). It is a mile-

stone toward achieving a ‘General AI’ system.

1.5 SOME GENERAL REMARKS

The new technologies have always created great hopes and

fears in society and AI/ ML is not an exception. In addition, it

has raised some philosophical questions about the essence of

human uniqueness. We discuss some of them without giving

definite answers.

The human brain consists of about 86 billion neurons and

100 trillion synapses which often fire asynchronously in par-

allel. Furthermore, it runs on less than 20 watts of power,

making it one of its kind in the natural world. On the other

hand, the number of neurons in an artificial neural network

(ANN) is somewhere between 100 and 1,000. It has been found

that increasing their numbers does not necessarily improve

the network performance. Also in ANN, only the neighboring

layers are connected which, in most cases, are activated

sequentially, and it usually consumes about 200 watts and also

produces heat.

All of this points to the fact that a huge improvement in the

architecture and algorithms of ANN is needed before they can

be comparable to the brain. Still the progress has been remark-

able so far and is accelerating fast.

Our intelligence has many components and a few of them like

recognizing outside objects and events and their understanding

are one of them. This involves comparing new information

against the older stored ones. The AI through neural networks

Introduction     ■    11

also works like that. The NN is trained on known cases and

that training is used for recognizing or classifying the new data.

This aspect of human intelligence has been well captured by

the machines and they can be said to have even surpassed us.

This has been demonstrated by machines beating humans, for

example, in games of chess and Go. It seems that machines will

surpass humans in all such situations sooner or later where this

paradigm is applicable.

Robotics combined with AI is another area where machines

will outperform humans. This is just the extension of the

situations in which traditional machines like cars, planes,

and other similar inventions extend human capabilities. The

working of AI/ ML algorithms in real time becomes visible

through machine movements and that is something new. This

has generated in general public’s mind more fear and curiosity

than anything else.

The ANN may also give new insights to better under-

stand the brain by studying how it generates its outputs and

changes in response to new input. That may well provide useful

insights into their working of human and other biological

brains. So, while ANNs are far from being able to replicate the

brain functions in totality, they can still help us solve com-

plex problems such as optimizing logistics for transportation

networks and processing raw photos and videos in medical

imaging, robotics, or facial recognition.

It is still not clear how moral and ethical concerns can be

encoded in the AI/ ML algorithms right from the beginning.

12 DOI: 10.1201/9781032659800-2

C H A P T E R 2

Survey of ML

After the advent of the machine learning (ML) para-

digm, many different approaches to ML were quickly

discovered. They are often characterized as being with or

without deep learning (DL), a very important part of AI/ ML.

DL provides a method for approximating arbitrary functions

in high- dimensional feature space (corresponding to large

number of independent features) using NN. It uses input data

as examples and learns the data’s structure and functional

relationships among its features using various algorithms based

on the statistical methods such as linear regression, decision

trees (DT), random forests (RF), support vector machines

(SVMs), artificial neural networks (ANNs), boosting, etc. An

input layer followed by analysis and an output layer is some-

times called ‘shallow learning.’

http://dx.doi.org/10.1201/9781032659800-2

Survey of ML     ■    13

In contrast, ‘deep learning’ has one or more hidden layers

between input and output layers. At each layer (except input

layer), the following action steps take place:

 • At the current layer, the weighted sum of units from the

previous layer is computed.

 • A nonlinear transformation or an activation function

(e.g., logistic function, hyperbolic tangent, rectified linear

unit (ReLU), etc.) is applied to the sum.

 • This sum and weights on the inter- layer links become the

input to the next layer.

This way, the computations flow forward from input layer to

the output layer. For backpropagation, at output layer and each

hidden layer, one computes the error derivatives backward, and

backpropagates gradients toward the input layer. The weights

are then updated to optimize some chosen loss function.

This basic approach is used in many ways to accomplish

various ML tasks. Some of these approaches are the focus of

this chapter.

2.1 LEARNING FROM PROBLEMS

One way of learning starts from a problem and learns the

methods, techniques, and steps for solving it from known

methods of solution. Here we provide a nonexhaustive list of

the main varieties of this approach (Table 2.1).

2.1.1 Supervised (or Discriminative) Learning

In this approach, labeled historical or experimental data is used

as input for learning. Labels are tagged by experts and con-

tain descriptive features (attributes taking either numerical or

binary values) and target features (desired information). The

learning is also called ‘classification’ for discrete and ‘regres-

sion’ for continuous labels. The ML techniques are used to learn

14 ■ An Introduction to Deep Reinforcement Learning

TABLE 2.1 Varieties of Machine Learning: Learning from Problems

Supervised (or
Discriminative)
Learning

(A representative list)
- Multi- layer perceptron (MLP):

 i. Feed- forward MLP (FF- MLP)
 ii. Back- propagation MLP (BP- MLP)

- Convolutional NN (CNN)
- Recurrent NN (RNN):

 i. Long short- term memory (LSTM)
 ii. Bidirectional LSTM (Bi- LSTM)
iii. Gated Recurrent Unit (GRU)

Semi- supervised
Learning

Applicable when data labels are missing or incomplete

Unsupervised
(or Generative)
Learning

(A representative list)
- Generative adversarial network (GAN)
- Restricted Boltzmann machine (RBM)
- Radial basis function network (RBFN)
- Self- organizing map (SOM)
- Auto- encoder (AE):

 i. Sparse AE (SAE)
 ii. Denoising AE (DAE)
iii. Contractive AE (CAE)
 iv. Variational AE (VAE)

- Deep belief network (DBN)
Self- supervised

Learning
Intermediate between unsupervised and supervised
learning

Hybrid Learning - Integrate more than one of either variety (generative
or discriminative)
 i. CNN+ LSTM,
ii. AE+ GAN, etc.

- Generative stack followed by discriminative stack.
 i. DBN+ MLP,
 ii. GAN+ CNN,
iii. AE+ CNN, etc.

- Integrate either variety with non- deep learning
classifier.
 i. AE+ SVM,
ii. CNN+ SVM, etc.

Deep Transfer Learning
Multi- instance Learning

Survey of ML     ■    15

their functional relationship and this step usually takes much

time and expense. Then, the trained learning system is used to

assign the new incoming data to appropriate target classes.

Some well- known but not exhaustive supervised learning

algorithms are given below.

2.1.1.1 Multilayer Perceptron (MLP)

A feedforward MLP is a simpler version of artificial neural net-

work. It is a next- level progression of single- layer perceptrons,

which can distinguish only linearly separable data.

An MLP consists of at least three layers of fully connected

neurons and maps a set of input values to output values. It

uses a nonlinear activation function (usually a Heaviside step

function) at each individual layer which can be combined to

express any mathematical function in principle. It can dis-

tinguish data that is linearly nonseparable. Backpropagation

algorithm is used to train them and that requires the use of

continuous activation functions, e.g., sigmoid or ReLU. The

MLP components and their roles are as follows:

 • Input layer: It has neurons for receiving the initial input

data and each of them represents a feature or dimension

of the input data. The dimensionality of the input data

determines the number of neurons.

 • Hidden layer: These are the layers between the input and

output layers in which each neuron receives inputs from

all other neurons in the previous layer (either the input

or another hidden layer). Then the output is passed to the

next layer. The number of hidden layers and the number

of neurons in each of them are called hyperparameters.

They are determined during the model design phase.

 • Output layer: Neurons at this layer produce the final

output of the network, and their number depends on the

16 ■ An Introduction to Deep Reinforcement Learning

nature of the task. For example: (i) in binary classifica-

tion, there may be either one or two neurons depending

on the activation function for representing the probability

of belonging to one class, (ii) in multi- class classification

tasks one may require many more neurons.

 • Weights: Neurons in adjacent layers are fully connected

to each other. Each such connection has an associated

weight learned during the training process determining

the strength of the connection.

 • Bias neurons: In addition to the input and hidden neurons,

each layer (except the input layer) usually also has a bias

neuron, giving a constant input to the next layer neurons.

Bias neurons have their own weights associated with each

connection, which is learned during training. They effect-

ively shift the activation function of the neurons in the

subsequent layer to learn an offset or bias in the decision

boundary. By adjusting the bias neuron weights, the MLP

learns to control the threshold for activation to better fit

the training data.

Note: In general machine learning, bias has another

meaning, as it refers to the error introduced by approxi-

mating a real- world problem with a simplified model, thus

measuring how well the model can capture the underlying

patterns in the data. A high bias indicates that the model

is too simplistic and may underfit the data, while a low

bias suggests that the model is capturing the underlying

patterns well.

 • Activation function: Each hidden layer and the output

layer neuron apply an activation function (e.g., sigmoid,

tanh, ReLU, softmax, etc.) to its weighted sum of inputs.

These functions introduce nonlinearity into the network,

allowing it to learn complex patterns in the data.

 • Training: MLPs are trained using the backpropagation

algorithm, which computes gradients of a loss function

Survey of ML     ■    17

with respect to the model’s parameters. The parameters

are updated iteratively to minimize the loss.

2.1.1.2 Convolutional NN (CNN)

A CNN is a feedforward deep neural network (FF- DNN),

having layers with specific functions for processing data with

multiple arrays, e.g., color image, language, audio spectrogram,

and video. The inspiration behind CNN is the organization of

neurons in our visual cortex. After the input layer, the CNN

layers have the following other layers:

 • Convolutional layer: This includes one or more layers that

perform convolutions or dot product of the convolution

kernel (usually Frobenius inner product with ReLU as

activation function) with the layer’s input matrix. This

kernel slides along the input matrix and generates a fea-

ture map contributing to the input of the next layer.

 • Pooling layer: It combines the outputs of neuron clusters

at one layer into a single neuron in the next layer, thereby

reducing the dimensions of data. There are two types of

pooling: max pooling and average pooling. The former uses

the maximum value of each local cluster of neurons in the

feature map and the latter takes the average value.

 • Fully connected layers: These layers connect every neuron

in one layer to every neuron in another layer as in MLP.

2.1.1.3 Recurrent NN (RNN)

RNN uses output of the previous step as the input to the current

step. In this manner, its output depends on the prior elements

within the sequence. This is done with the help of hidden units

which store the history of past elements using multilayer NN in

which all layers have same weights. RNNs cannot store infor-

mation for long time and have issues of vanishing gradients.

Some of its variations are given below.

18 ■ An Introduction to Deep Reinforcement Learning

 • Long Short- Term Memory (LSTM)

LSTM networks (Hochreiter and Schmidhuber, 1997) and

gated recurrent unit (GRU) (Chung et al., 2014) were

proposed to address the vanishing gradient issue. They use

gating mechanisms to manipulate information through

recurrent cells. Gradient backpropagation or its variants

can be used for training all deep NN. An LSTM memory

cell with long period data storage capability has three

gates: (i) ‘Forget,’ which decides which previous data will

be kept or discarded; (ii) ‘Input,’ which controls which

data enters; and (iii) ‘Output,’ which controls the output.

 • Bidirectional LSTM (Bi- LSTM)

They have two hidden layers running in opposite

directions and are trained to predict negative and positive

directions at the same time. It is widely used for natural

language processing.

 • Gated Recurrent Unit

In contrast to LSTM, it has only two gates: ‘Reset’ and

‘Update.’. It does not discard information from earlier data

sequence.

2.1.2 Semisupervised Learning

Semisupervised learning falls in between supervised and

unsupervised learning. Many times, the desired data comes

without labels or misses some of them. Sometimes, a small

amount of labeled data with large number of unlabeled ones

is available. Acquisition of labeled data is usually very expen-

sive but whatever one has gives more accurate understanding

of the underlying relationships. The algorithm is trained on

both labeled and unlabeled data. This learning method better

mimics the way humans learn.

Survey of ML     ■    19

The algorithms are a complicated mix of both supervised

and unsupervised learning, e.g., generative models, low- density

separation, Laplacian regularization, etc. The goal is to learn a

function that can accurately predict the output variables based

on the input variables, like supervised learning. Semisupervised

learning builds a model with available labeled data for training

and treats the rest of the unlabeled ones as test data. Some

assumptions are also made implicitly by the algorithm:

 • Continuity: The points closer to each other are more

likely to have the same output label.

 • Cluster: The data can be divided into discrete clusters

and points in the same cluster are more likely to share an

output label.

 • Manifold: The data dimension is lower than that of the

input space, thus allowing the use of distances and dens-

ities defined on the manifold.

2.1.3 Unsupervised (or Generative) Learning

In this approach, unlabeled data is used as input for learning,

and algorithms are used to learn the patterns present in the

data. These patterns capture the inherent probability densities

through neural networks and statistical methods. The net-

work mimics the given data using a learning rule and then uses

the error for correcting its weights and biases. Unsupervised

learning is used for tasks such as clustering, dimensionality

reduction, and anomaly detection.

The sequence of actions are as follows:

 • The algorithms search for frequent if- then associations to

discover correlations and co- occurrences within data.

 • The model learns useful data structure properties.

 • Strong rules within a dataset are identified.

20 ■ An Introduction to Deep Reinforcement Learning

Some of the well- known learning rules are:

 • Hopfield learning: A single self- connected layer mimicking

the magnetic domains in iron is used. This learning layer

can also be used as a content addressable memory.

 • Boltzmann machine learning: There are two layers (hidden

vs. visible) with symmetric two- way weights. Boltzmann’s

thermodynamics probability rule at the microscopic level

is used to get at the macroscopic energies.

 • Restricted Boltzmann machine (RBM) learning: This is the

regular Boltzmann machine but with a restriction that lat-

eral connections within a layer are prohibited. This makes

further analysis easier.

 • Stacked RBM: In this approach many RBMs encode

hidden features hierarchically. After training a single

RBM, another one is added and they are trained together

again. This can go on as needed.

 • Helmholtz method: In the stacked RBM, the bidirectional

symmetric connections, separate one- way connections

are used to form a loop. It does both generation and

discrimination.

2.1.3.1 Generative Adversarial Network (GAN)

A GAN (Ian Goodfellow) is a type of neural network architec-

ture for generative modeling to create new plausible samples

on demand. It involves automatically discovering and learning

regularities or patterns in input data so that the model may

be used to generate or output new examples from the original

dataset. GANs are composed of two neural networks:

 • Generator G: it creates new data having properties like the

original data

 • Discriminator D: it predicts the likelihood of a subsequent

sample being drawn from actual data rather than data

provided by G.

Survey of ML     ■    21

Both G and D are trained to compete. While G tries to fool and

confuse D by creating more realistic data, D tries to distinguish

the genuine data from the fake data generated by G.

GAN networks are more used for unsupervised learning but

have been also found useful for semisupervised, transfer, and

reinforcement learning tasks. Inverse models, such as bidirec-

tional GAN, can also learn a mapping from data to the latent

space. GAN networks have been used in the areas of healthcare,

image analysis, data augmentation, video generation, voice

generation, pandemics, traffic control, cybersecurity, and

many more.

2.1.3.2 Restricted Boltzmann Machine (RBM)

The full Boltzmann machines can learn a probability distri-

bution from inputs. Each one of their nodes are connected to

every other node. RBM is their subset which has a limit on

the number of connections between the visible and hidden

layers. They are more efficient for the gradient- based con-

trastive divergence algorithm. They can recognize patterns in

data automatically to develop probabilistic models using either

supervised or unsupervised learning. They have been used for

dimensionality reduction, classification, regression, collabora-

tive filtering, feature learning, topic modeling, etc.

2.1.3.3 Radial Basis Function Network (RBFN)

It is an ANN that uses radial basis functions as activation

functions so that its output depends on their linear combin-

ation and neuron parameters. RBFNs are used for function

approximation, time series prediction, classification, etc.

2.1.3.4 Self- Organizing Map (SOM)

SOM or Kohonen’s map for unsupervised learning was

introduced by Teuvo Kohonen in the 1980s. It does not use

backpropagation for learning but learns by adjusting neuron

weights. It reduces the dimension of data by creating a spatially

organized representation.

22 ■ An Introduction to Deep Reinforcement Learning

SOMs have two layers: one for input and the other for output

or the feature map. There are no activation functions as weights

are passed to the output layer as they are. The dimensions

of input data and of the neuron weight vector are the same.

Weights are updated using the processes of competition,

cooperation, and adaptation.

2.1.3.5 Autoencoder (AE)

An AE uses neural networks to learn representations for espe-

cially high- dimensional data. It has three parts:

 • Encoder compresses the input.

 • Code is also generated by encoder.

 • Decoder uses the code to reconstruct the input.

The AEs are used for many deep learning tasks, e.g.,

dimensionality reduction, feature extraction, efficient coding,

generative modeling, denoising, anomaly or outlier detection,

etc. A single- layered AE with a linear activation function AE

is like principal component analysis (PCA). AEs have many

variants which are given below.

 • Sparse AE (SAE)

An SAE has a sparsity penalty on the coding layer. It may

have more hidden units than inputs, but only a small

number of them are active at the same time, thus resulting

in a sparse model. They respond to the unique statistical

features of the constrained training data.

 • Denoising AE (DAE)

This variant of AE receives a corrupted data point as input.

It is trained to output the original undistorted input by

minimizing the average reconstruction error over the

input, thus ‘denoising’ it. It also alters the reconstruction

Survey of ML     ■    23

criterion to make it harder to learn the identity function.

DAE is very useful for automatic preprocessing of an

image to boost its recognition accuracy.

 • Contractive AE (CAE)

CAE makes the autoencoder robust against small changes

in the training dataset by including a ‘regularizer’ in its

objective function. DAEs and CAEs make reconstruction

and representation robust, respectively.

 • Variational AE (VAE)

A VAE is an ANN using probabilistic generative approach

and was introduced by Kingma and Welling (2022).

Assuming an underlying probability distribution for

the source data, it tries to discover the distribution’s

parameters. It is very effective for generative coders for

mapping the input onto a latent vector with the parameters

of a probability distribution, e.g., the mean and variance

of a Gaussian distribution. Initially designed for unsuper-

vised learning, VAE has been extended to semisupervised

and supervised learning.

The main components of a VAE are two NNs.

 • The ‘encoder,’ as the first NN, maps the input data to a low-

dimensional latent space of parameters of a variational dis-

tribution. It is thus able to produce many different samples

coming from the same distribution.

 • The second ‘decoder’ NN goes in the opposite direction

to map the latent space to the input data space, e.g., to the

means of the variational distribution. Both networks are

trained together using reparameterization. Sometimes

a third NN is used to map to the variance which can be

optimized with gradient descent.

24 ■ An Introduction to Deep Reinforcement Learning

The model is optimized by calculating ‘the reconstruc-

tion error’ and ‘Kullback– Leibler divergence,’ which are both

derived from the free energy expression of the distribution.

2.1.3.6 Deep Belief Network (DBN)

The DBN is composed of many stacked individual unsuper-

vised networks such as AE and RBM connected sequentially.

These are layers of hidden units, with connections between the

layers but not between units within each layer.

Initially DBN is trained with unlabeled data and later is fine-

tuned with labeled ones. It is good at capturing the hierarchical

nature of the input and its deep patterns due to its abilities for

strong feature extraction and classification. In the unsuper-

vised learning phase, DBN learns to reconstruct its input prob-

abilistically so that layers could act as feature detectors. Later,

DBN can be further trained with supervision for the purpose

of classification.

In DBN, each sub- network’s hidden layer serves as the vis-

ible layer for the next. As there are connections between, but

not within, layers, it leads to a fast, layer- by- layer unsupervised

training.

The application of DBN in electroencephalography and drug

discovery has been particularly successful.

2.1.4 Self- Supervised Learning (SSL)

SSL is a particular variation of the unsupervised learning

approach. It can be also thought of as an intermediate between

the supervised and unsupervised learning.

SSL learns from vast amounts of unlabeled data, so it

avoids the cost of labeling and curating it. In contrast to task-

specific supervised learning methods, SSL learns generic

representations useful across many tasks. SSL- based models

learn representations that are more robust to adversarial

examples, label corruption, and input perturbations, and are

fairer compared to their supervised counterparts.

Survey of ML     ■    25

There have been many recent noteworthy areas of SSL’s

applications.

 • In natural language processing, it has led to advances from

automated machine translation to large language models

trained on web- scale corpus of unlabeled text. A common

SSL objective is to mask a word in the text and predict

the surrounding words. Finding this context allows the

model to capture relationships among words in the text

without the need for any labels. The same SSL model

representations can be used across a range of downstream

tasks such as translating text across languages, summar-

izing, or even generating text, etc.

 • In computer vision, SSL pushed new bounds on data size

with models such as SEER trained on 1 billion images.

Such models have also matched or in some cases surpassed

models trained on labeled data on benchmarks like

ImageNet. It has also been successfully applied to video,

audio, and time series by defining a pre- text task based

on unlabeled inputs to produce descriptive and intelligible

representations. SSL can also find two views of the same

image formed by adding color or cropping, to be mapped

to similar representations.

In SSL, the task is solved in two steps:

i. First the artificial neural network (ANN) is initialized

with pseudo- labeled data.

ii. Using the weights and biases found in first step, the

actual task is solved with either supervised or unsuper-

vised learning.

2.1.5 Hybrid Learning

In general, we have two kinds of deep learning models:

26 ■ An Introduction to Deep Reinforcement Learning

 • Generative: This can learn from both labeled and

unlabeled data.

 • Discriminative: This cannot learn from unlabeled data but

can outperform generative on labeled data.

Hybrid networks combine the two in various ways to get the

best possible results for tasks at hand.

 • Approach 1: Integrate more than one of either variety, e.g.,

CNN+ LSTM, AE+ GAN, etc.

 • Approach 2: Stack generative followed by discriminative,

e.g., DBN+ MLP, GAN+ CNN, AE+ CNN, etc.

 • Approach 3: Integrate either variety with non- deep

learning classifier, e.g., AE+ SVM, CNN+ SVM, etc.

Most of the hybrid networks have focused on supervised

learning and classification tasks.

2.1.6 Deep Transfer Learning (DTL)

DTL uses a previously learned model to solve a new task with

minimum training. The knowledge gained while solving one

problem is stored and then applied or reused to a different but

related problem. As an example, learning from recognizing cars

can be partially used to recognize trucks. It can also be used

to improve the sampling efficiency of a reinforcement learning

agent. It is very useful when a needed amount of labeled data is

unavailable or training on available data is expensive. Recently

it has been used in many fields like natural language processing,

sentiment classification, visual recognition, speech recogni-

tion, spam filtering, etc.

It has a two- stage process of pre- training and fine- tuning.

DTL can be classified as having four main approaches as

follows:

Survey of ML     ■    27

i. It utilizes instances in source domain by appropriate

weight.

ii. It maps instances from two domains into a new data

space with better similarity.

iii. It reuses a part of the network pretrained in the source

domain based on network.

iv. It uses adversarial approach to transfer features suitable

for two domains.

The last approach has become quite popular recently as it

combines GAN and DTL. DTL can be also classified into

(i) inductive, (ii) transductive, and (iii) unsupervised depending

on the source and target domains.

2.1.7 Multi- Instance Learning (MIL)

MIL is a type of weakly supervised learning in which the learner

receives a set of labeled sets or ‘bags,’ each containing many

instances. For example, in multi- instance binary classification, a

‘negative- labeled bag’ contains all negative instances. A ‘positive-

labeled bag’ contains at least one positive instance. The learning

process leads one to the underlying concept for correct labeling.

In the simple case of binary classification, a bag labeled

negative has all the negative instances, but one labeled positive

has at least one positive instance. The learner uses a collection

of such bags to either (i) induce a concept that will label indi-

vidual instances correctly or (ii) learn how to label bags without

inducing the concept. MIL is a kind of supervised learning, in

which every training instance has either discrete or real valued

label. It handles situations when training labels come with

incomplete knowledge of labels.

2.2 LEARNING FROM STATISTICAL INFERENCE

Most of the learning methods discussed earlier can also be

understood from a statistical point of view.

28 ■ An Introduction to Deep Reinforcement Learning

2.2.1 Inductive Inference

It is the same as supervised learning in which general rules are

obtained from the labeled training data. The trained model is

then used to predict the classification/ regression properties of

new and unseen data. In general, inductive learning first studies

observation from which conclusions are drawn.

2.2.2 Deductive Inference

In general, deductive learning starts from the known

conclusions or rules which helps the algorithms to classify the

new observations.

2.2.3 Transductive Inference

Transductive learning (introduced by Vladimir Vapnik) was

motivated by the observation that it is easier to learn a spe-
cific function for the specific problem at hand than a general
function applicable to the same problem. Sometimes, it is pref-

erable to induction as that requires solving a more general and

often difficult problem. In those situations, many times it is

easier to get the immediate solution without solving the general

one. Transductive support vector machine (T- SVM) algorithm

is an example of such an approach.

2.3 LEARNING DEPENDING ON TECHNIQUES

This way of looking at ML focusses on learning techniques.

Some important variations are presented next.

2.3.1 Multitask Learning (MTL)

In MTL, multiple learning tasks are solved at the same time by

exploiting features, which are both common and separate across

tasks. This improves efficiency in learning and accuracy of pre-

diction for the task- specific models when compared to situation

when the models are trained separately. Usually, MTL is applied

to stationary learning settings and its extension to nonstationary

environments is called Group Online Adaptive Learning.

Survey of ML     ■    29

As MTL uses commonalities and differences across many

tasks, to solve them at the same time, this leads to improved

learning efficiency and prediction accuracy. It utilizes inductive

transfer to improve generalization by using the domain infor-

mation contained in the training signals of related tasks.

Learning tasks is done in parallel, so learning each task helps

better learn other tasks. Some good examples are spam filter,

multi- class and multi- label classifications, etc. MTL is particu-

larly useful when the tasks have many common features but are

undersampled.

2.3.2 Active Learning (AL)

In AL, a learning algorithm queries a user (or some other infor-

mation source also called teacher or oracle) to label new data

points with the desired outputs, especially when unlabeled

data is abundant but manual labeling is expensive. With careful

choice the number of examples to learn a concept is often much

lower than the number required in normal supervised learning.

2.3.3 Online Learning (OL)

In OL, data becomes available sequentially and is used to

update the best predictor for future data at each step. This is

different from batch learning for generating the best predictor

by learning on the entire training data set at once.

2.3.4 Ensemble Learning (EL)

EL uses many learning algorithms to obtain performance

that is better than any of the constituent learning algorithms

alone. One can increase the resources to improve the efficiency

of a single algorithm or spread that increase among multiple

algorithms. The latter has been found to give better results.

An ML ensemble consisting of finite set of alternative

models typically has more flexible alternative structures. In

general, EL combines many hypotheses to construct a better

hypothesis.

30 ■ An Introduction to Deep Reinforcement Learning

EL trains two or more algorithms to a specific classification or

regression task, and they are called ‘base models,’ ‘base learners’

or ‘weak learners.’ A diverse collection of weak performing

models are trained to the same modeling task, and as a result,

their outcomes and error values exhibit high variance. Then EL

combines them into a stronger and better performing model.

Ensemble learning uses Bagging (bootstrap- aggregating),

Boosting, or Stacking/ Blending techniques to create high vari-

ability base models.

 • Bagging generates random samples from the training

observations and tries fitting the same model to each

different sample.

 • Boosting is an iterative process to sequentially train each

next base model on the up- weighted errors of the previous

base model’s errors. This produces an additive model to

reduce the final model errors.

 • Stacking or Blending trains different base models (with

diverse/ high variability) independently and combines

them into the ensemble model.

Common EL applications include Random Forests (exten-

sion of Baggin), Boosted Tree Models, Gradient Boosted Tree

Models.

In one sense, EL compensates for poor learning algorithms

by performing a lot of extra computation. Fast algorithms such

as decision trees and random forests are commonly used for

this purpose.

2.4 REINFORCEMENT LEARNING (RL)

The foundation of RL has its origin in two scientific ideas of

almost a century earlier.

1. Law of Effect

It was coined by Edward Thorndike in 1911 based on animal

research. It is the notion that an animal will repeat satisfactory

Survey of ML     ■    31

actions and avoid actions producing discomfort. Furthermore,

this says that the learning uses selection to choose the final

course of action after observing how the possible choices

worked. The animal also uses ‘associative learning’ in which

options are associated with positive or negative outcomes.

In 1927, Ivan Pavlov described reinforcement as ‘the

strengthening of a pattern of behavior due to an animal

receiving a stimulus— a reinforcer— in a time- dependent rela-

tionship with another stimulus or with a response.’

2. Optimal Control Theory

This has its origin in mathematics and algorithms. Richard

Bellman used them to derive an equation (aptly named Bellman

equation), which returns an optimal value function from given

states of a dynamic system. He further introduced the idea of

Markov decision process (MDP), which is a discrete stochastic

version of the optimal control problem.

With the advent of NN, the RL was combined with it and

deep RL (DRL) was born. In DRL, the agent learns from a

high- dimensional environment using an NN which can be of

two kinds.

i. Online or direct learning: The agent constructs an

explicit model of the fully available environment and

then computes an optimal policy for it.

ii. Offline or indirect learning: Full environment model is

unavailable, so the agent uses one of the two options:

 • It uses genetic algorithms, policy gradient methods,

etc., to search the policy space, or

 • It finds policy using value- learning methods (e.g.,

temporal difference, Q- learning, etc.) with either

policy (like A2C, etc.) or value iteration schemes (e.g.,

Q- learning, etc.).

In both RL and DRL, the agent is given a task to perform or

a goal to achieve. The overall system has many states and in

32 ■ An Introduction to Deep Reinforcement Learning

each state an agent can take many possible actions. The agent

chooses the action which maximizes the ‘reward.’

i. In RL, the agent accomplishes this task by trial and error.

The reward is presented in a table so it can get that infor-

mation in a straightforward manner. It is possible for the

table to become too complex and many times the agent

is unable to visit some state- action pairs.

ii. In DRL, the agent uses NN to first learn the best pos-

sible state– action combination from an existing data

set. It utilizes that knowledge to a new data set or a situ-

ation. The NN creates a function approximation for

the reward implicitly, which the agent can use even for

unencountered situations.

In coming chapters, we will discuss RL/ DRL in more detail.

33DOI: 10.1201/9781032659800-3

C H A P T E R 3

Basic Mathematics

behind Deep

Reinforcement

Learning

The origins of reinforcement learning (RL) lie in applied

mathematics and statistics. There are many important

concepts to understand that are essential for mastering both

the theoretical and applied aspects of RL. This chapter focusses

on them.

3.1 A MATHEMATICAL MODEL OF DRL

RL differs from other learning paradigms like unsupervised

learning, supervised learning, etc., in some important ways, as

given below.

 • There is no supervision in RL so that there is no one

telling the agent what the next best action is to be taken.

For example, there is no supervisor guiding the robot in

choosing the next moves.

http://dx.doi.org/10.1201/9781032659800-3

34 ■ An Introduction to Deep Reinforcement Learning

 • The feedback to the action taken is delayed and may not

be observed immediately. This is very important as imme-

diate action without feedback may lead to accidents.

 • The agent decisions are sequential in time.

 • The feedback to the agent depends on the actions taken by

the agent and the uncertainty in the environment.

The RL has some important mathematical underpinnings:

 • Markov decision process

 • Bellman equations

 • Q- learning

The rest of the chapter will explain these concepts.

3.2 MATHEMATICAL IDEAS BEHIND DRL

3.2.1 Markov Decision Process (MDP)

The MDP used in RL involves the elements (S, A, P, r, γ , s
0
) with

the following properties:

 • {S} = the set of all states s, it may be finite or infinite

 • {A} = the set of all actions a, it may be finite or infinite

 • {P} = probability P s s a
t t t
(| ,)+1 for transitioning to state s

t+1

at the next time step, after choosing action a
t
 in state s

t
 at

time t.

 • r = reward function r s a
t t
(,) for choosing action a

t
 in state

s
t
, can be either deterministic or stochastic.

 • γ = the discount factor to avoid accumulation of infinite

future reward, so γ <1.

 • s
0
 = the initial state which is usually taken from a distribu-

tion function.

Basic Mathematics behind Deep Reinforcement Learning     ■    35

MDP is a discounted process with infinite horizon. The Markov
property is defined as follows:

The effect of an action (a) on a state (s) depends only
on that state (s) and not on any prior history of its
development.

It means that no historical memory or the past information

influences the next state. This makes the reasoning about the

future states possible using only the information available in

the current state. This is the basic mathematical framework

behind the RL.

Let us look at these elements of MDP.

3.2.1.1 Actions and Policies

A policy defines how an agent selects actions. They can be

either of the following depending on time horizon.

 • Stationary:

It applies for infinite time horizons, and stationary

policies.

 • Nonstationary:

It depends on the time step and is useful for the finite time

horizon. There, the cumulative rewards that the agent

seeks to optimize are limited to a finite number of future

time steps.

There is a second criterion for the policies which specifies the

probability of the agent taking an action a
t
 in each state s

t
. Let

the parameters θ specify other dependencies of the policy, then

it can have the following characteristics.

 • Deterministic: In this case the probability is a predetermined

time- independent action a.

36 ■ An Introduction to Deep Reinforcement Learning

 π π
θ θ
s a s a
t t
,() = () = (3.1)

 • Stochastic: Also, time- dependent in which case it is the

probability of action at in state st

 π
θ
s a P a s
t t t t
,() =  | (3.2)

Further, an RL agent can be either of the following kinds.

i. Model- free:

 This agent has one or more of the following components:

• a value function predicting how good each state, or

each state/ action pair is, and

• a direct representation of the policy

 The agent learns a policy π(a|s) without explicitly mod-

eling the forward dynamics. It optimizes the policy

by maximizing returns through estimation of policy

gradients. For discrete situations Q- function is learned

and for continuous cases both a value estimate and a

policy is learned.

ii. Model- based:

This agent includes a model of the environment

(estimated transition and reward functions) and a

planning algorithm. The NN- based supervised learning

is used to estimate a model of the environment. The

actions are then learned by model predictive control

using this model.

iii. Mixed agent:

This combines both approaches. For most real- world

problems, the state space is high- dimensional and pos-

sibly continuous as well. In such situations deep learning

Basic Mathematics behind Deep Reinforcement Learning     ■    37

NN methods can be used to learn either policy or the

value function.

• NN can deal with high- dimensional data, e.g., times

series, frames, etc. They can manage exponential

increase in data when adding extra dimensions to the

state or action space.

• NN can be trained incrementally using additional

samples obtained as learning happens.

3.2.1.2 Reward Function r(st, at)

It is a continuous scalar function in range {0, r
max

} for a given

state- action pair to transition to another state. It indicates the

quality of that state so that it is greater for states more rele-

vant to the solution of the task. Rewards are defined by the

following terms.

 • Rewards:
They are associated with single states and indicate the

states’ quality.

 • Return:

This indicates the quality of full sequence of decisions

made in reaching the goal. The reward for such a full

sequence is called return.

 • Value function:

It is the expected cumulative reward when actions are

taken according to a policy.

Later in this chapter we discuss the varieties of value functions.

3.2.1.3 Discount Factor

The tasks can be of two kinds and that will affect their nature.

- Continuous time and long running tasks
In these tasks it makes sense to discount far- future rewards to

value current information more strongly at the present time.

38 ■ An Introduction to Deep Reinforcement Learning

To achieve this the discount factor γ <1 such that the impact of

faraway rewards is reduced. In this way, the cumulative reward

does not become infinite, and the agent can reach its reward

goal in finite time.

- Episodic tasks
These tasks come to an end, and discounting factor consider-

ations do not apply. So, in these problems, 𝛾 = 1 is used.

3.3 VALUE AND POLICY FUNCTIONS

In addition to the sets of states and functions we also need

various value functions which are related to rewards. They

depend on the process parameters for controlling the behavior

of the RL agent involving states, actions, or their combinations.

Some commonly used value functions are described next.

3.3.1 State- Only Value Function vπ(s)

It is the expected return or reward (denoted by r
t
) starting from

that state under the agent’s policy π
θ
.

 v s E r s s

k

k

k t tπ π
γ() = =











=

∞

+ +∑
0

1
| (3.3)

The discount factor (γ <1) ensures the finiteness of the

accumulated reward.

Expression for value function in terms of policy

3.3.2 State- Action Value Function Qπ(s, a)

This is also known simply as Q- function where Q denotes

quality). If the agent’s policy π
θ
 is given, then it is the expected

return or reward starting from that state, taking that action.

 Q s a E r s s a a
k

k
k t t t

π
π

γ, | ,() = = =










=

∞

+ +∑
0

1
 (3.4)

Basic Mathematics behind Deep Reinforcement Learning     ■    39

Here

 • Q s aπ ,() = the expected total future reward (under policy

π with discount factor γ) at time t for a given state- action

pair s a
t t
,().

 • r
t+1 = the reward at time step t+ 1 and so on.

The right- hand side in the above equation is an expectation

value (denoted by E) as the expression inside the bracket is a

random variable.

3.3.3 Action- Only Value Function Vπ(at)

It is the value of an action a
t
 at time t under policy π over all the

states. It is also denoted just as V- function.

 V a Q s a s a
t

s
t t t t

t

π π
θ

π() = () ()∑ , , (3.5)

3.3.4 Advantage Value Function Aπ(st,at)

It is the difference between the Q- function and V- function, and

it considers the other actions that the agent could have taken.

 A s a Q s a V a
t t t t t

π π π, ,() = () − () (3.6)

3.3.5 Policy Function with Maximum Entropy π*maxEnt

The previously defined Q- function does not prioritize the

more promising states to be visited by the agent. One way to

implement this idea is to define the policy directly in terms of

exponentiated Q- values.

 π
θ

πs a Q s a
t t t t
, exp ,() ∝ () (3.7)

Here the Q- function serves as the negative energy in a

Boltzmann- like distribution, and it assigns a nonzero likelihood

40 ■ An Introduction to Deep Reinforcement Learning

to all actions. Because of this, the agent becomes aware of all

behaviors that lead to solving the task. This can help the agent

adapt to changing situations in which some of the solutions

might have become infeasible.

The policy defined now is an optimal solution for the

maximum- entropy RL objective.

 π π
π πMaxEnt

*

t

T

t t
argmax E r H s= +











=
∑
0

((. |)) (3.8)

Here H is the entropy function.

3.4 BELLMAN EQUATIONS (BE)

The value functions follow the Bellman equations named after

their discoverer Richard E. Bellman (1949). The basic idea

behind most of them is the following observation.

Define the cumulative discounted reward function as

 R T r r r r r
t

k t

T

k t

k t t t

T t

T
γ γ γ γ γ,() = = + + …+

= +

− +()
+ + +

− +()∑
1

1

1 2

2

3

1

 = + + + + …+()+ + + +
− +()r r r r r

t t t t

T t

T1 2 3

2

4

2γ γ γ γ (3.9)

Here the final time T can be infinity and γ can be 1 (but not

both at the same time). One can write the above as a recursive

relation.

 R T r R T
t t t

γ γ γ, ,() = + ()+ +1 1
 (3.10)

3.4.1 BE for the State Value Function Vπ(s)

It has the following definition.

 v s E R T s s
t tπ π

γ() = () = , | (3.11)

Basic Mathematics behind Deep Reinforcement Learning     ■    41

The earlier expression for R T
t

γ ,() gives

 v s E r E R T s s
t t tπ π π

γ γ() = +  () = + +1 1
, | (3.12)

Finally, using the definition of v s
π () leads to the desired BE.

 v s E r v s s s
t t tπ π π

γ() = + () = + +1 1
| (3.13)

Without the expectation value operation, it takes the following

equivalent form:

 v s r P s s a v s
t t

s

t t t t

t

π π
γ() = + ()

+

∑ + +
1

1 1
(| ,) (3.14)

Note that the first term is different. Then the optimized value in

the current state is

 v s r max P s s a v s
t t a

s

t t t t
t

t

π π
γ* (| ,)() = + ()

+

∑ + +
1

1 1
 (3.15)

This gives the optimal policy for choosing the next action,

which maximizes the future reward.

 π
π

* *(| ,)s arg max P s s a v s
t a

s

t t t t
t

t

() = ()
+

∑ +
1

1
 (3.16)

3.4.2 BE for the State- Action Value Function Qπ(s,a)

It is given as follows:

Q s a E R T s s a a

E r R T s s s

t t t

t t t t

π π

π

γ

γ γ

* , , ,

, ,

() = () = = 
= + () =+ +

|

|
1 1

== = 
= + () = = + + +

s a a

E r Q s a s s a a

t

t t t t t

,

, ,
π

πγ
1 1 1

|

(3.17)

42 ■ An Introduction to Deep Reinforcement Learning

Optimal control policy produces optimal value functions.

 Q s a r max P s s a Q s a
t t t a

s a
t t t t t

t

t t

π π
γ*

,

, (| ,) ,() = + ()+ + + +
+ +

∑1 1 1 1

1 1

 (3.18)

3.4.3 Soft BE for the Value Function of a State

It is like the previous ones but uses a special function called

softmax in the expectation value.

 Q Es a r softmax Q s a
t t t a t
, * ,() = + () γ (3.19)

Here the softmax function is defined as

 softmax f a f a da
a () = ∫ ()log exp (3.20)

The soft BE holds for the optimal Q- function of the entropy

augmented reward function. The soft BE allows solving for

the Q- function using dynamic programming or model- free

temporal difference (TD) learning in tabular state and action

spaces.

Some analytical solutions for Bellman equation are given in

the Appendix.

3.5 LOSS FUNCTIONS

The loss and cost are very important factors for meeting the NN

goals as they measure how good the ML algorithm models the

input data set in predicting the expected outcome. Generally,

it is defined as the difference between the mean squared error

of the predicted Q- value from the target Q- value Q*. In this

context, loss function (LF) is calculated for each sample and

the cost function is its average for all samples. They need to be

minimized to improve the performance of the algorithm.

Basic Mathematics behind Deep Reinforcement Learning     ■    43

LF for classification predicts the probabilities of all the classes

inherent in the input data. Some important ones are described

below. Similarly, LF for regression applies to situations with

continuous variables.

3.5.1 LF for Classification: Binary Cross- Entropy
Loss/ Log Loss

This is one of the most used loss functions in classifica-

tion. It measures the performance of a classification model

whose predicted output is a probability value between 0 and

1. It decreases as the predicted probability converges to the

actual label.

 L
m

y y y y
i

m

i i i i
= − + −() −()





=
∑1 1 1
1

log  log (3.21)

where

 • m = the number of training samples,

 • i = the ith training sample,

 • y
i
 = value of the ith sample, and

 • y
i
 = value of the predicted ith sample.

It is called binary classification for two classes and multi- class
classification for more than two classes.

3.5.2 LF for Classification: Hinge Loss

This loss function is highly used in support vector machine

(SVM) model evaluation.

 L yf x= − ()()max 0 1, (3.22)

where y is the sample value and f x() is the SVM value.

44 ■ An Introduction to Deep Reinforcement Learning

It penalizes the wrong predictions and the right predictions

that are not confident. For SVM classifiers it uses class labels - 1

and 1.

Loss functions for regression are used for problems with

continuous inputs. Some important ones are given below.

3.5.3 LF for Regression: Mean Square Error
(MSE)/ Quadratic Loss/ L2 Loss

We define MSE loss function as the average of squared

differences between the actual and the predicted value. It is the

most used regression loss function.

 MSE
n

Y Y

i

n

i i
= −()

=
∑1
1

2 (3.23)

where n is the number of training samples, i is the ith training

sample, and Y Y
i i
/ is the value of the ith sample and its predicted

value. The MSE penalizes the large errors by squaring them,
which makes it less robust to outliers.

3.5.4 LF for Regression: Mean Absolute Error
(MAE)/ L1 Loss

The MAE is the average of absolute differences between the

actual and the predicted values. It measures the average magni-

tude of errors in a set of predictions without considering their

directions.

 MAE
n

y x
i

n

i i
= −

=
∑1
1

 (3.24)

where x y
i i
/ is theactual/ predicted value and n is the number of

samples. It is more robust to outliers compared to the MSE and

therefore it is preferred if the data is prone to many outliers.

Basic Mathematics behind Deep Reinforcement Learning     ■    45

3.5.5 LF for Regression: Huber Loss/ Smooth Mean
Absolute Error

It combines MSE and MAE. It is MAE and becomes quadratic

for small error. That is controlled by a tunable hyperparameter δ.

 L y f x y f x y f x
δ

δ, ,()() = − ()() − () ≤
1

2

2

for

 = − () −δ δy f x
1

2

2 , otherwise (3.25)

where y is the actual value and f x() is the predicted value. The

choice of δ is critical as it determines what an outlier is. This

loss function should be preferred for the outlier- prone data.

3.5.6 LF for Regression: Log- Cosh Loss

It is the logarithm of the hyperbolic cosine of the prediction

error and is much smoother than MSE. It is twice differenti-

able everywhere, and used for some learning algorithms like

XGBoost which uses Newton’s method to find the optimum.

 L y y log cosh y yp

i

n

i
p

i
, (())() = −

=
∑
1

≈ x2 / 2 for small x, |x| - log (2) for large x

 (3.26)

Here y y
i
p

i
− is the predicted error or x. It is mostly like the MSE

but is not affected strongly by the occasional incorrect prediction.

3.5.7 LF for Regression: Quantile Loss

The quantile regression loss function predicts quantiles, which

are values below which a fraction of samples in a group falls.

For a set of predictions, the loss will be its average.

 L y y y y y yp

i y y

i i

p

i y y

i i

p

i i

p

i i

p
γ

γ γ,() = −() − + −
= < = ≥
∑ ∑1 (3.27)

46 ■ An Introduction to Deep Reinforcement Learning

where y y
i

p

i
− is the predicted error and γ is the hyperparameter.

It is useful for predicting an interval instead of only points.

There are many loss functions specific to the ML tasks like

object and face recognition. They are in most cases special cases

based on the general ideas.

3.6 ACTIVATION FUNCTIONS

The activation functions are used at the internal NN layers to

bring the quantity of interest within (0, 1) interval.

3.6.1 Activation Functions: Sigmoid

It is a mathematical function with a characteristic ‘S’- shaped

curve – hence the name sigmoid. In the area of AI/ ML, it is

usually another name for the logistic function defined below

for a single variable.

 σ σx
e

x
x

() =
+

= − −()
−

1

1
1 (3.28)

A sigmoid function is convex for values less than a particular

point, and it is concave for values greater than that point. There

is also one inflection point. When used in the NNs, they show

some problems as well.

 • Vanishing gradients for very high or very low values.

 • Output not centered on 0 which reduces the efficiency of

weight update.

 • Exponential operations are slow for computers.

Some other common sigmoid functions are given below.

- Hyperbolic tangent function

 σ x x
e x

() = () =
+

−
−

tanh
2

1
1

2
 (3.29)

.

Basic Mathematics behind Deep Reinforcement Learning     ■    47

It has some advantages compared with sigmoid.

 • Output interval is 1 and it is centered on 0.

 • Negative input is mapped to negative and zero input is

mapped to near- zero.

In binary classification problem, tanh is used for the hidden

layer and the sigmoid is used for the output layer in general.

 • Arctangent function

 σ x x() = ()arctan (3.30)

 • Gudermannian function

 σ x
x() = 











2
2

arctan tanh (3.31)

3.6.2 Activation Functions: Softmax

It takes a vector z of K real numbers as input and brings out a

probability distribution as output.

 σ z() = = …
=∑i

z

j

K z

e

e
i K

i

j

1

1 2, , , , (3.32)

The vector input components can be negative or greater than

1. The output of the softmax function lies in the interval (0,1)

with all components adding up to 1. The larger components

yield larger probabilities. The softmax function is actually

the well- known Boltzmann probability function of statistical

thermodynamics adapted to ML.

48 ■ An Introduction to Deep Reinforcement Learning

3.6.3 Activation Functions: Rectified Linear Unit (ReLU)

ReLU is a very popular activation function and is defined as

follows.

 σ x x x and for x() = () ≥ <max , ,0 0 0 0 (3.33)

It is 0 for x less than 0 and x for x greater than or equal to x. It has

the range 0,∞[]. ReLU has no gradient saturation problem for

positive x and is computed much faster compared to sigmoid

and tanh. On the other hand, it has also some disadvantages.

 • For negative x, it is completely inactive. This is problem-

atic for backpropagation.

 • It is not centered on 0.

There are variations of ReLU which take care of its shortcomings.

Leaky ReLU (LReLU) is defined as

 σ x x x ax x() = > ≤, 0 0and for (3.34)

It gives a very small value to negative inputs using small ‘a,’

e.g., a = 0.01. Range is also increased to −∞ ∞[], . It also solves

the problem of dead ReLU.

 • Exponential linear unit (ELU) is defined as

 σ x x x a e x
x() = > −() ≤, 0 1 0and for . (3.35)

 Its negative values bring the mean closer to zero, so it is

zero- centered, and the gradients are also closer to their

natural values. Learning is faster due to a reduced bias

shift effect. Even smaller inputs saturate ELUs to negative

Basic Mathematics behind Deep Reinforcement Learning     ■    49

values, thus decreasing the variations in forward propa-

gation. It is slightly more computationally intensive

compared to ReLU.

 • Parametric ReLU (PReLU) is defined as

 σ x x x ax x() = > ≤, 0 0and for . (3.36)

 It is a generalization of ReLU such that other versions are

its special cases, e.g.,

 • a = 0 makes it ReLU,

 • a > 0 makes it LReLU, and for

 • a as a learnable parameter it is PReLU.

 It has a small nonzero slope in the x ≤ 0 region so the

problem of ReLU death is avoided.

In actual applications no clear- cut and definitive advantage has

been found between the original ReLU and its variations.

3.7 ENTROPIES AND RELATED FUNCTIONS

The systems of both natural and human- made varieties are built

out of many smaller or less complex entities, e.g., gas made up

of molecules or atoms. Such systems have disorder or chaos as

their inherent property, and it is mathematically captured by

the idea of entropy.

The concept was later applied by Shannon to information. It

has many variations as there are many ways in which the ran-

domness inherent in such systems can be captured. Here we

give a list of entropies with their definitions.

3.7.1 Boltzmann’s Thermodynamic Entropy

It is the starting point of many similar definitions of entropy. For

an isolated state in thermodynamic equilibrium, it is defined as

 S k ln
B

= − Ω (3.37)

50 ■ An Introduction to Deep Reinforcement Learning

where k
B
 is Boltzmann’s constant, ln is the natural logarithm,

and Ω is the number of microstates with energy same as

the system’s energy. The Boltzmann entropy can be further

generalized as

 S k Tr
B

= − ()ρ ρ ln (3.38)

where ρ is the density matrix, Tr is the trace, and ln is the nat-

ural matrix logarithm. All other definitions of entropy can be

derived from it.

3.7.2 Gibbs Entropy

It is defined as

 S k p p
B

i
i i

= − ∑ ln (3.39)

It is the generalization of the Boltzmann entropy. The latter refers

to the situation when the system is in a global thermodynamic

equilibrium. The former does not require the system to be in a

single state. It is also referred to as Boltzmann– Gibbs entropy.

3.7.3 Tsallis Entropy

It is a further generalization of Boltzmann– Gibbs entropy for

nonadditive and nonstandard thermodynamic situations. Let

{ }p
i

 be the discrete set of probabilities (
i

i
p∑ =1), real number

q be the entropic index, and k be a positive number, then Tsallis

entropy is defined by

 S P
k

q
p

q
i

i
q() =

−
−





∑

1
1 (3.40)

The usual Botzmann– Gibbs entropy is recovered in the

limit q→1.

Basic Mathematics behind Deep Reinforcement Learning     ■    51

3.7.4 Rényi Entropy

It is named after Alfred Rényi who generalized the concept of

information while preserving the additivity of independent

events. It is defined as

 H P log p
i

n

iα
α

α
() =

−




=

∑1

1 1

 (3.41)

Here 0 < < ∞α , α ≠1, and p
i
 is the probability for random vari-

able with i= 1,…,n. Many other information- theoretic entro-

pies, e.g., Hartley entropy, Shannon entropy, collision entropy,

and min- entropy, are special cases of Rényi entropy. In many

physics- based models it is essentially the trace of the power of

the density matrix.

 H P log Tr
α

α

α
ρ() =

−
()1

1
 (3.42)

The exact analytic expression for Rényi entropy of Heisenberg

XY spin model is known.

3.7.5 Shannon or Information Entropy

The basic idea of entropy in physics was modified and applied

to information theory by Shannon by developing the concept

of information entropy. This gives the average number of bits

so that the information can be stored optimally. For informa-

tion of n symbols, the average number of bits must be at the

least log n
2

. This idea is captured by the information entropy H

defined by

 Discrete case: H p log p
i

n

i i
= −

=
∑

1

2
 (3.43)

where p
i
 is the probability of an outcome from the set of all

possibilities. It has some interesting properties: (i) S increases

52 ■ An Introduction to Deep Reinforcement Learning

to a maximum value of log n
2

 when all p
i
 are equal to 1 / n, and

(ii) for only one possible outcome the system is perfectly pre-

dictable, and so H = 0.

For continuous probability distribution it is given as

 Continuous case: H P P x P x

x

() = − () ()∑ log (3.44)

3.7.6 Hartley Entropy

Given a finite set with n elements, if we choose an element ran-

domly, then the information obtained is expressed by Hartley

function, also known as Hartley entropy or max- entropy.

 H P n() = log
2

 (3.45)

3.7.7 Collision Entropy

It is a special case of Rényi entropy when α = 2.

 H P log p log
i

n

i2
1

2 2() = −






= −
=
∑ p (3.46)

Here p p
i

n

i
=

=
∑
1

2 is the geometric length of an n- dimensional

vector.

3.7.8 Min- Entropy

In the limit α → ∞, Rényi entropy is called min- entropy.

 H P max p
i i∞ () = − log (3.47)

It is the smallest entropy measure in the family of Rényi entro-

pies – hence its name. It is never larger than Shannon’s entropy.

Basic Mathematics behind Deep Reinforcement Learning     ■    53

3.7.9 Cross- Entropy

This is a generalization of Shannon’s entropy to two probability

distribution P x() and Q x() over the same support space.

 H P Q P x Q x
x

, log() = − () ()∑ (3.48)

As an example, cross- entropy is minimized between the data

distribution and the model distribution for maximum likeli-

hood estimation in supervised learning.

3.7.10 Relative Entropy or Kullback– Leibler (KL)
Divergence

It is the expectation value of logarithmic difference between two

probability distribution. For discrete probability distributions

(P = ‘true’ and Q = given probability distribution), it is

 D P Q P x
P x

Q x
P x

Q x

P xKL
x x

(| |) log log= () ()
()







= − () ()

()






∑ ∑

(3.49)

The KL divergence and cross- entropy are related as

 H P Q H P D P Q
KL

, (|() = () + |) (3.50)

There are many more definitions of entropy relevant to other

branches of mathematics, e.g., Kolmogorov– Sinai entropy,

topological entropy, metric entropy, etc.

3.7.11 Mutual Information

It is a measure of the mutual dependence between two variables

defined as the amount of information obtained about one

random variable by observing the other. It determines how

different the joint distribution of pair (X, Y) is from the product

54 ■ An Introduction to Deep Reinforcement Learning

of their marginal distributions. It is defined in terms of KL

divergence as

 I X Y D P P P
KL X Y X Y

, (|
,

() = ⊕() |) (3.51)

Broadly speaking, it quantifies the information shared by two

distributions.

3.7.12 Information Gain

It is the amount of information gained about a random signal

or variable X from observing another one Y. It is basically the

KL divergence defined earlier and is another name for the

same. In the context of decision trees, it is the same as mutual

information.

3.7.13 Fisher Information

Many times, one needs the amount of information carried by

an unknown parameter θ of a distribution which models a

random observable X. This is given by Fisher information I θ(),
which depends on covariances.

I E f X f X f xθ
θ

θ θ
θ

θ() =
∂

∂
()

















= ∫
∂

∂
()





log ; | log ,

2 2

;;θ()dx

(3.52)

In an equivalent manner, it gives an estimate of the relative

uncertainty in and correlation among the model parameters

based on the local curvature of the cost function.

APPENDIX: SOME ANALYTICAL SOLUTIONS OF

BELLMAN EQUATION

The BE equations are solved using methods of dynamic pro-

gramming. The term ‘programming’ here refers to the original

Basic Mathematics behind Deep Reinforcement Learning     ■    55

meaning of this term introduced by Bellman. It uses recursive

methods to calculate the value of a state by calling on its own

code to complete recursive steps. This approach in its simple

application goes through the entire state space many times.

This inefficiency is addressed by better methods that were

developed afterward.

There are very few known analytically solvable models for

BE. The following examples present a few of them.

i. Model – 1

This example is from the area of econometrics.

Input

s
t
= state variable,

Bellman equation: V s max u s s V s
t s t t t

t

() = −() + () + + +
1

1 1
θ γ

Where u logc c
t t

() = () (3.53)

Solution:

Let

V s
t t() be the value function when there are t periods left

to go, V s
t0

0() =

The policy rule: α
t t t
s s() = +1 with α

0
0k

t
() =

Then

 V s s k s
t t

k

t1 () = () = ()log log (3.54)

V s max log s s V s

t s t

k

t t
t

2 1 1 1
1

() = −() + () + + +γ

 = −() + () + + +max log s s k log s
s t

k
t t

t 1
1 1

γ � (3.55)

Maximization gives

d

ds
V s

d

ds
log s s k s

t

t

t

t
k

t t

+ +
+ +() = −() + ()  =

1

2

1

1 1
0γ log (3.56)

56 ■ An Introduction to Deep Reinforcement Learning

So that

 s
k

k
s

t t

k

+ =
+1 1

γ

γ
 (3.57)

Substitution leads to

 V s k k s D
t t2

1() = +() () +γ log (3.58)

The last term is time independent.

 D k k k k= () − +() +()γ γ γ γlog 1 1log (3.59)

Iterating the steps n times gives

 V s k k k k s D
n t

n n

t
() = + + + …+() () +− −1 2 2 1 1γ γ γ γlog (3.60)

As n→ ∞, we get a solution to BE.

 V s
k

k
s k k k k

t t() =
−

() + () − +() +() 
1

1 1
γ

γ γ γ γ γlog log log

(3.61)

ii. Model – 2

The following continuous example is from quantum control

theory.

Let V * be the optimal value function satisfying the following

Bellman equation.

 −∂ = + ∂{ } + ∂
t B t t
V min B B V V

t

* * *2 2 22 2
θ θϑ

α (3.62)

Completing the squares gives the optimal condition.

 B V
t

= −∂
θ

* (3.63)

Basic Mathematics behind Deep Reinforcement Learning     ■    57

Substitution in the starting BE leads to Hamilton– Jacobi–

Bellman equation.

 ∂ = ∂() − ∂
t
V V V* * *

θ θϑ
α

2
2 22

(3.64)

Let us make an ansatz: V t f t g t
t

* () = () + ()θ2 . Then the substi-

tution gives the equations for the unknown functions as

 ∂ = () =
t
f f f T4 12 ,

(3.65)

 ∂ = − () =
t
g f g T4 02α ,

(3.66)

The solutions are

 f t
T t

g t T t() =
−() +

() = −() +
1

4 1
4 12, α log (3.67)

 V t
T t

T t
t* () =

−() +
+ −() +

θ
α

2

2

4 1
4 1log (3.68)

58 DOI: 10.1201/9781032659800-4

C H A P T E R 4

Single- Agent

Algorithms

The historical development of RL started with the

situations where the number of possible states and actions

were finite and discrete. Usually, these could be presented in a

tabular form. Many games of strategy like Go and Chess fall

under this category. Neural networks are not needed for their

solution, so they are not deep RL but simply RL algorithms.

There are many approaches to RL depending on which

aspect is emphasized. This leads to many algorithms, some

of which are very general, and others better suited to specific

problems. We start with general considerations applicable to

the classification of RL algorithms by understanding the applic-

able environment.

http://dx.doi.org/10.1201/9781032659800-4

Single-Agent Algorithms     ■    59

i. Deterministic versus stochastic

The reward for every (state, action) pair is known in a

deterministic environment. In stochastic situation they

are known probabilistically.

ii. Finite versus infinite horizon

The agent comes to a stop in the former but can go on

operating indefinitely in the latter scenario.

iii. The environment is static and so it does not vary with

time. Time- varying environments call for different

approaches.

The algorithms have the following general characteristics.

i. Algorithm: The common name by which it is known

is given.

ii. Model: The agent learns either from value or from

policy rewards obtained by going through the (state,

action) pairs. It can be also model free in which case all

possibilities of model are given right at the beginning.

iii. Action: It can be either discrete or continuous.

iv. Policy: For a learned model, one may have either offline

or online learning.

 • OFF Policy: A replay buffer memory stores the pre-

vious states and randomly chooses a batch to train

the model. It does not update the model based on the

current performance.

 • ON Policy: The model is updated at each episode

based on the current exploration of the agent. It

converges slowly and is a bit noisy because it uses an

exploration only once.

v. Performance measure: The basic mathematical or stat-

istical measure characterizing the performance of the

algorithm is given.

60 ■ An Introduction to Deep Reinforcement Learning

The method of temporal difference (TD) learning has been a

very important feature of model- free learning in which the role

of the transition function is replaced by an iterative sequence of

environment samples. The TD here refers to the difference in

values between two time steps used to calculate the value at the

new time step. It works by updating the current estimate of the

state value with an error value based on the estimate of the state

that it has gotten through sampling the environment:

 𝑉 (𝑠) ← 𝑉 (𝑠) + 𝛼[𝑟, + 𝛾𝑉 (𝑠,) − 𝑉 (𝑠)] (4.1)

where 𝑠 is the current state, 𝑠, is the new state, 𝑟 is the reward

of the new state, 𝛼 is the learning rate, and 𝛾 is the discount

rate. The learning rate 𝛼 controls how fast the algorithm learns

(or bootstraps), so setting its value too high can be detrimental

since the last value dominates the bootstrap process too much.

Its optimal value is found by experimentation. The last term

subtracts the value of the current state to compute the TD.

Another way to write this update rule is

 𝑉 (𝑠) ← 𝛼[𝑟, + 𝛾𝑉 (𝑠,)] + (1 − 𝛼)𝑉 (𝑠) (4.2)

as the difference between the new TD target and the old value.

Note the absence of transition model 𝑇 in the formula; TD is a

model- free update formula.

Almost all RL algorithms follow a generic framework and

are typically a variant of the scheme given below. They try

attacking one step or multiple steps of the problem.

 • Loop:

 Collect trajectories ((transitions – (state, action, reward,

next state, terminated flag)))

 (Optionally) Store trajectories in a replay buffer for

sampling

Single-Agent Algorithms     ■    61

 • Loop:

 Sample a mini batch of transitions to compute policy

gradient.

 (Optionally) Compute critic Gradient

 • Update parameters

The single- agent discrete algorithms apply to situations where

a finite number of actions and states for the agent. Some

well- known algorithms are given in the table below. Simple

value- iteration for discrete states is a simple approach based

on dynamic programming for finding optimal state value-

function. One solves a Bellman equation for Markov Decision

Process (MDP) given by five elements:

i. A set of states representing all possible agent

configurations in the environment,

ii. A set of actions the agent can take in any given state,

iii. Transition probabilities that the agent’s action will be

successful (or not),

iv. Rewards, for arriving to a specific state, and

v. A discount factor γ for diminishing future rewards.

One starts at time t with (i) an initial state s
t
, (ii) the initial

reward r
t
, and (iii) discount factor 0 1< ≤γ . The algorithm

calculates the new value- function after looking at all possible

actions available to the agent and maximizing the value.

 v s r max P s s a v s s
t t a

s

t t t t t
t

t

() = + () ()












∀
+

∑ + +γ
1

1 1
| , , (4.3)

62 ■ An Introduction to Deep Reinforcement Learning

The value of being in a state is a sum of

i. Immediate reward in that state, and

ii. The discount factor multiplied with the maximum value

of the expression in the bracket found after calculating it

over all actions allowed in that state.

The expression in the bracket for a chosen action itself is the

value function of the possible transition state multiplied with

transition probabilities of that state and it is summed over all

reachable transition states.

i. Algorithms based on MDP: They are again broadly

classified into the following.

 • Model based:

 • Model is given: MCTS.

 • Model is learned: I2A, World model.

 • Model free:

 • Value- based and on- policy: SARSA,

 • Value- based and off- policy: Q- learning, DQN.

 • Policy- based and gradient- free:

a. Using cross- entropy: QT- opt,

b. Using evolution strategy: SAMUEL.

 • Both policy- and gradient- based: Policy gradient,

TRPO/ PPO, ACKTR.

ii. Algorithms based on multi- arm- bandits paradigm.

 • Action value- based.

 • Gradient- based.

In the rest of the chapter some important but (nonexhaustive)

algorithms are introduced.

4.1 Q- LEARNING

Algorithm Model Action Policy Perf. Meas.

Q- Learning Model- free Discrete Discrete, off Q- function

Single-Agent Algorithms     ■    63

It is one of the early RL algorithms developed by Chris Watkins

in 1989. In this approach, the learned Q- function at each iter-

ation approximates the optimal value function for action. Given

a state, it is a model- free RL algorithm for learning the value

of an action. It finds an optimal policy so that expected total

reward or Q- function over all successive steps is maximized.

The Bellman equation is used for value iteration. The following

steps illustrate the procedure.

The Q- learning is a model- free algorithm for learning the

value of an action. The agent finds an optimal policy so that

the ‘Q- function’ (the expected total reward) over all successive

steps is maximized. A SARSA agent uses an on- policy learning

to interact with the environment and updates modifiable

parameters after each visit of a state. The Monte Carlo methods

rely on repeated random sampling to approximate situations

which may be deterministic in principle.

In the finite state- action Q- learning, big memory space is

needed for storage. That need makes its generalization to con-

tinuous state- action situation almost impossible. This problem

is solved by approximating the Q- function using deep neural

network called DQN. It computes the Q- values of all possible

actions for a given input state. The size of its input and output

layers is that of the states and all possible actions, respectively.

The agent forwards its state to the DQN and chooses the action

with the highest Q- value.

System Setup
Start at time t with an (i) initial state s

t
, (ii) the initial reward

r
t
, (iii) the initial state- action value- function Q s a

t t
,�(),

(iv) learning rate or step size α, and (v) discount factor 0 1< ≤γ .

Pseudocode
The algorithm uses a Bellman equation for updating a simple

value function by calculating the weighted average of the

current value and the new information.

64 ■ An Introduction to Deep Reinforcement Learning

At t = 0

assign a random value to Q s a
t t
,()

At time t

(i) Choose an action a
t
 and calculate the new Q- function.

Q s a Q s a

r max Q s

new
t t t t

t a t

, ,() = () +

+ + α γ
1
,, ,a Q s a

t t() − () 

(4.4)

With

Q(st, at) = old Q- function value,
rt = reward,
maxaQ(st+1, a)= future Q- function estimate (optimized
for chosen action)

the terms in the Bellman equation above are:

- (1 – α)Q(st, at) = current Q- function weighted by
learning rate

- art = the reward (weighted by learning rate) obtained
if action at is taken

- αγ maxaQ(st, at) = the maximum reward (weighted
by learning rate and discount factor) that can be
obtained if new state is st+1

(ii) Calculate Qnew (st, at) for all other possible actions at
and find its maximum value.

(iii) Choose the action corresponding to the
maximum value.

(iv) Update the action corresponding to the maximum value.

Repeat the process for next time steps.
Stop when state st+1 is terminal or final state (Q- function for
this state can be zero)

Applications
The Q- learning has found applications in many areas, out of

which some prominent ones are:

i. Autoconfiguration of online web systems,

ii. News recommendation system, and

iii. Network traffic control system.

Single-Agent Algorithms     ■    65

4.2 DEEP Q- LEARNING AND DEEP Q- NETWORK

(DQN)

Algorithm Model Action Policy Perf. Meas.

Deep
Q- Learning

Model-
free

Continuous Continuous,
off

Q- function

It is the generalization of the finite Q- learning presented before

to continuous states and actions. They cannot be represented

by a table for such situations as the potential combinations can

become infinite. The solution of such systems requires neural

networks (NN) and is indicated by the word ‘Deep’ in the Deep

Q- learning or DQN. Policy gradient is a very important general

tool for these algorithms. They solve the problem of ‘reward

shaping’ or finding the right set of rewards for a given problem.

This is done by a policy which is the probability distribution for

a given state.

4.2.1 Mathematical Formulation

Let

 • θ = the set of parameters defining a policy π, e.g., the

coefficients of a polynomial or the weights and biases of

neural network nodes

 • τ = the trajectory (set of states and actions) of an agent

resulting in the reward r(τ)

Then the ‘expected’ reward following the policies parameterized

by θ is given as

 J E r r dθ τ π τ τ τ
π() = ()  = ∫ () () (4.5)

Let θ* denote parameter maximizing J θ(). That can be found

by first calculating the gradient of J θ(),

66 ■ An Introduction to Deep Reinforcement Learning

 ∇ () = ∇∫ () () = ()∇ () J r d E rθ π τ τ τ τ π τ
π

log (4.6)

and utilizing the gradient ascent rule for update as

 θ θ α θ
t t t

J+ = + ∇ ()1
 (4.7)

The Policy Gradient Theorem: We use the following obvious

result:

Derivative of the expected reward = the expectation of

the reward × the gradient (or
∂

∂¸
) of the log of the policy π

θ
.

This gives

 ∇ ()  = ()∇ () E r E r
π π θθ θ

τ τ π τlog (4.8)

The following results are needed for calculating this.

 • π τ π
θ θ() = () ()

=
+ +∏P s a s P s r s a

t

T

t t t t t t0
1

1 1
| (, | ,) (4.9)

 • ∇ () = ∇ ()
=
∑log log |π τ π

θ θ
t

T

t t
a s

1

 (4.10)

Giving us the following final expression:

∇ ()  = () ∇ ()















= ∫

=

=

∑

∑

E r E r a s

r

t

T

t t

t

T

π π θθ θ
τ τ π

1

1

log |

ττ π π τ
θ θ() ()∇ ()a s a s d

t t t t
| log |

(4.11)

This result is independent of the ergodic distribution of

states and the environment dynamics. It leads to ‘model- free
algorithms’ bypassing the need to ‘model’ the environment. The

integral can be calculated by sampling many trajectories and

Single-Agent Algorithms     ■    67

averaging them out. This method is known as Markov Chain

Monte- Carlo (MCMC), widely used in probabilistic graph-

ical models and Bayesian networks to approximate parametric

probability distributions.

4.2.2 Pseudocode

DQN combines Q- learning with a deep convolutional NN

(CNN) specialized for data arrays. For continuous case the

Q- function is approximated by deep neural networks (DNN)

known as deep Q networks (DQN). After receiving a state as

an input, it outputs the Q- values of all possible actions for that

state. Its input and output layers have sizes of states and actions,

respectively. The agent in each state enters it as an input to the

DQN and chooses the output action with the highest Q- value.

Initialize replay memory D to capacity N.
Initialize action- value function Q with random weights.

for episode = 1; M do
Initialize sequence s1 = {x1} and preprocessed sequenced
ϕ1 = ϕ1 (s1)
for t = 1; T do

With probability  select a random actionat

otherwise select at = maxa Q*(ϕ(st), a; θ)
Execute action at in emulator and observe reward rt and
image xt+1

Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)
Store transition (ϕt, at, rt, ϕt+1) in D
Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1)
from D
Set yj = rj (for terminal ϕt+1)

= r max Q a
j a j
+ ()′′ +γ φ θ

1
, ; (for non- terminal ϕt+1)

Perform a gradient descent step on y Q a
j j j

− ()()φ θ, ;
2

 end for
end for

68 ■ An Introduction to Deep Reinforcement Learning

Source: ‘Playing Atari with Deep Reinforcement Learning,’

Volodymyr Mnih Koray Kavukcuoglu, David Silver, Alex

Graves, Ioannis Antonoglou, Daan Wierstra, and Martin

Riedmiller, DeepMind Technologies.

4.2.3 Applications

DQN is one of the most widely used algorithms and has many

applications. A brief and incomplete list below tells us about its

range and capabilities.

 • Robotics and automation: DQNs have been used in training

robots for tasks ranging from simple object manipulation

to assembly tasks in manufacturing processes. We have:

 • The robot states: (i) position and orientation of the

robotic arm, (ii) the gripper’s state (open or closed),

and (iii) the relative position of the objects of interest.

 • The actions: (i) the incremental movements in the joints

of the robot arm, or (ii) gripper control commands.

 • The reward function: positive (the arm correctly picks

up, moves, or assembles an object), negative (for

dropping items or incorrect placement).

DQN implementation requires a model of the environ-

ment, e.g., a real- world interface to a physical robot arm,

or a simulated environment and training with a carefully

designed reward function and sufficient exploration of the

state- action space.

 • Autonomous vehicles and drones: DQNs are increasingly

being used to train cars and drones for safe and efficient

navigation in their environments.

 • For self- driving cars, (i) the states are sensor data from

LIDAR and RADAR readings, camera images, GPS

data, and internal car status data; (ii) the actions are

driving maneuvers such as accelerating, braking, or

steering; (iii) the reward function is positive for safe and

Single-Agent Algorithms     ■    69

efficient driving, and negative for traffic rule violations

or unsafe driving behaviors.

 • For drones, (i) the state includes information about the

drone’s position, velocity, orientation, battery status,

and data from onboard sensors (like cameras or depth

sensors); (ii) the actions are commands for changing in

thrust and torque for each rotor (for quadcopters); and (iii)

the reward function is positive for efficient navigation to

the target, and negative for crashes or unsafe flight behavior.

 • Home and industrial automation: In home automation,

DQNs can learn user habits and control smart home

devices efficiently.

 • For smart homes, (i) states are the time of day, whether

residents are at home, which devices are currently on, and

the current energy cos; (ii) the actions are commands,

e.g., adjust a thermostat, turn lights on or off, start a

washing machine, etc.; (iii) the reward function is better

energy efficiency and user comfort preferences.

 • For manufacturing automation, (i) states for optimizing

production schedules are manufacturing line, current

work orders, historical data etc., and in logistics, states can

be the configurations of autonomous forklifts or conveyor

systems, etc.; (ii) actions for automation maximize effi-

ciency and minimize downtime, etc., and for logistics they

optimize the efficient movement of goods within a ware-

house; (iii) the reward function these and similar cases

improve operational efficiency, reduce costs, and main-

tain safety standards. The actual implementation of DQNs

would have to manage high- dimensional state and action

spaces, delayed rewards, and the need for safe exploration.

 • Personalized medical treatment recommendations: (i) the

states are patient- specific factors such as age, gender,

preexisting conditions, genetic information, progression

of the disease, etc., (ii) the actions are various treatment

70 ■ An Introduction to Deep Reinforcement Learning

options such as medications, dosages, surgery, or other

therapies, etc.; (iii) the reward are better patient outcomes

to maximize the effectiveness of treatment and minimize

side effects or complications, etc.

 • Financial portfolio management and trading: For trading

strategies and managing portfolios, (i) the states are

current portfolio holdings, recent market trends, rele-

vant economic indicators, etc., (ii) the actions are buying,

selling, holding different assets, etc., (iii) the reward is the

profitability of these actions.

The new applications of DQN are being discovered and utilized

as machine learning spreads through different activities.

4.3 STATE- ACTION- REWARD- STATE- ACTION

(SARSA)

Algorithm Model Action Policy Perf. Meas.

SARSA Model- free discrete Discrete, on Q- function

A SARSA agent follows an on- policy learning algorithm in

which it interacts with the environment and updates modifi-

able parameters after each visit of a state. The acronym for the

quintuple s a r s a
t t t t t
, , , ,+ +()1 1

 is SARSA.

In on- policy learning a single policy function is used for

(downward) action selection and (upward) value backup

towards the learning target. SARSA is an on- policy algorithm,

and it updates values directly on the single policy. The same

policy function is used for exploration behavior and for the

target policy. The SARSA update is given by

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+ 1 + 𝛾𝑄(𝑠𝑡+ 1, 𝑎𝑡+ 1) − 𝑄(𝑠𝑡, 𝑎𝑡)]
 (4.12)

And it looks very much like TD, although it uses state- action

values, whereas TD deals with state values.

Single-Agent Algorithms     ■    71

On- policy learning selects an action, evaluates it in the envir-

onment, and moves on to better actions, guided by the behavior

policy. It samples the state space with a given behavior policy,

and improves that by backing up values of the selected actions.

Note that the term 𝑄(𝑠𝑡+ 1, 𝑎𝑡+ 1) can also be written as 𝑄(𝑠𝑡+ 1,

π(s𝑡+ 1)), highlighting the difference with off- policy learning.

SARSA updates its Q- values using the Q- value of the next state 𝑠 and the current policy’s action. The primary advantage of on-

policy learning is that it directly optimizes the target of interest

and converges quickly by learning with direct behavior values.

The sample inefficiency is usually its biggest drawback.

4.3.1 Mathematical Formulation

The Q- function for a state- action is updated by an error,

adjusted by the learning rate α.

 Q s a Q s a r Q s a Q s anew
t t t t t t t t t
, , , ,() = () + + () − () + +α γ

1 1

 (4.13)

Q- functions represent the possible reward received in the next

time step for taking the action a
t
 in state s

t
, plus the discounted

future reward received from the next state- action observation.

SARSA itself learns the Q- function associated with taking the

policy it follows.

4.3.2 Pseudocode

The algorithm consists of the following steps:

At time t:
Start in the current state st ,
Choose the action at,
Get the reward rt for choosing this action,

At next time step t+ 1,
enter the state st+1 after taking that action, and finally
choose the next action at+1 in its new state.

72 ■ An Introduction to Deep Reinforcement Learning

4.3.3 Applications

SARSA has been used to train robots for autonomous driving,

gaming agents to play chess and other games, autonomous

vehicles to drive in complex environments.

4.4 SARSA-λ

Algorithm Model Action Policy Perf.
Meas.

SARSA-λ Model-
free

Discrete Discrete,
on

Q- function

The signifier λ in SARSA- λ refers to the ‘eligibility traces’

e s a
t
,(). They are mathematical objects designed to improve the

convergence of temporal difference (TD) methods and are used

in implementing online Monte Carlo and in problems without

episodes. They offer improved computational efficiency by

i. Using a short- term memory vector,

ii. Storing a single vector memory instead of a list of fea-

ture vectors, and

iii. Learning continuously rather than waiting for results at

the end of an episode.

4.4.1 Mathematical Formulation

Consider the following multi- step returns at some time- step t:

q r Q s a
t t t t

1

1 1 1

()
+ + += + ()()γ

π
, SARSA (4.14)

q r Q s a
t t t t

2

2
2

2 2
()

+ + += + ()γ
π

, (4.15)

…

q r r r Q s a
t

k

t t
k

t k
k

t k t k
()

+ +
−

+ + += + + …+ …+ ()1 2

1γ γ γ
π

, (4.16)

…

Single-Agent Algorithms     ■    73

 q r r r
t t t

T

T

∞ γ γ()
+ +

−= + + …+ ()
1 2

1 MC (4.17)

As we can see, the process covers returns of all the steps from

SARSA to Monte Carlo (MC). In SARSA(λ) one combines

them to reach a middle ground between those two methods to

exercise control over the bias/ variance trade- off. We define a

return qλ giving more weight to closer trajectories and average

over multiple n- step returns.

 q q
t

n

n

t

nλ
∞

λ λ= −()
=

−∑1
1

1 (4.18)

Here λ = 0 is SARSA and λ = 1 is MC. It allows us to control

how far the algorithm should go. For intermediate values of λ,

each past experience is given a weight, used for updates called

an ‘eligibility trace,’ one for each function approximator param-

eter. This strategy generates an exponentially decaying impact

of rewards over time.

The expression for updated Q- function is given as

 Q s a Q s a e s a
t t t t t t+ +() = () + ()
1 1
, , ,αδ (4.19)

Here

i. δ γ
t t t t t t
r Q s a Q s a= + () − ()+ + +1 1 1

, ,

ii. e s a e s a
t t
, ,() = () +−γλ

1
1 for s a s a

t t
, ,�() = ()

= ()−γλe s a
t 1

, otherwise

Eligibility trace triggers an update of all recently visited state-

action values.

74 ■ An Introduction to Deep Reinforcement Learning

4.4.2 Pseudocode

The algorithm is given below.

Repeat (for each episode): et(s, a), for Ɐ(s, a)
Choose initial (s0, a0) and Q(s0, a0)
Repeat (for each episode): Choose action at

Observe rt+1 and st+1 using policy derived from
Q- function

 δ γ
t t t t t t

r Q s a Q s a← + () − ()+ + +1 1 1
, ,

e s a e s a
t t

, ,() ← () +−γλ
1

1 for ∀ ()s a,

Q s a Q s a e s a
t t t t t t+ +() ← () + ()1 1

, , ,αδ

Until st is terminal

4.4.3 Applications

SARSA- λ has been used to train robots for similar tasks as

regular SARSA algorithms.

4.5 ADVANTAGE ACTOR CRITIC (A2C)

Algorithm Model Action Policy Perf. Meas.

A2C Model- free Continuous Continuous Value functions
and policy
optimizations

The RL methods belong to two broad classes of methods.

i. Based on value functions:

 It assigns each state- action pair to a value. The critic is a

value- based neural network, and it measures how good

the action is.

ii. Based on optimizing the policies directly without using

value functions:

Single-Agent Algorithms     ■    75

 The actor is a policy- based neural network, and it controls

the RL agent’s action. Both run in parallel and the real-

time feedback from critic improves the actor.

Actor critic methods like A2C (also A3C and SAC) combine

both approaches.

In general, the Actor module of the system decides the next

action to take. It is not aware if the action is the best possible in

the given environment. Now the Critic module enters the scene

and evaluates the proposed action’s optimality. It also suggests

how the actor should adjust the parameters to maximize the

reward. This approach is especially important when the envir-

onment is dynamic.

In A2C, the value function is the advantage function.

 A s a Q s a V s
t t t t t
, ,() = () − () (4.20)

Where

 • Q s a
t t
,() = the Q- value for the action or maximum future

reward in that state

 • V s
t() = the average value of that state.

A positive advantage pushes the gradient in that direction and

vice versa.

4.5.1 Mathematical Formulation

Finding a good baseline using state value and computing it

is not straightforward either. Let us approximate it using one

more parameter ω and denote it by the bootstrapped return

V sω (). This idea leads to the Actor- Critic methods in which

there are two entities called ‘Actor’ and ‘Critic’ defined by

functions π
θ
a s
t t
|() and V sω (), respectively. One must com-

pute both gradients now.

76 ■ An Introduction to Deep Reinforcement Learning

Define G R V s
t t t

≅ + ()+ +1 1
γ ω (4.21)

Here

 • G
t
 = a single step bootstrapped return,

 • R
t+1 = is the immediate reward,

 • V s
t

ω
+()1 = bootstrapped value- estimate of the next state in

the trajectory.

The actor’s gradient is calculated as

 ∇ ()  = − ()  ∇ ()












=
∑E r E G V s a s

t

T

t t t tπ π
ω

θθ θ
τ π

1

log |  (4.22)

The critic’s objective J ω() is generally taken to be the mean

squared error (MSE) or a less harsh Huber loss.

Critic’s objective

as MSE: J ω ω() = − () 
1

2

2

G V s
t t

 (4.23)

as Huber loss:

J ω δω ω() = − ()  − () ≤
1

2

2

G V s for G V s
t t t t

, | | ,

= − () −δ δωG V s
t t

1

2

2 otherwise (4.24)

The critic’s parameters ω is updated by using Stochastic gra-

dient descent (SGD) giving the Critic’s gradient as

∇ () = − ()J ω ωG V s
t t

 for MSE (4.25)

4.5.2 Pseudocode

Initialize parameters (s w, ,θ) and learning rates (α α
θ
,

w
)

Sample a a s~ (|)π
θ

Single-Agent Algorithms     ■    77

for t T= …1, , : do
Sample reward r R s a

t
~ ,() and next state ′ ′s P s s a~ (| ,)

Sample the next action ′ ′ ′a a s~ (|)π
θ

Update θ θ α π
θ θ θ

← + ∇()Q s a log a s
w

, (|)

Compute TD error δ γ
t t w w

r Q s a Q s a= + −′ ′() (), ,

Update Q- function parameter w w Q s a
w t w w

← + ∇ ()α δ ,
Move to a a← ′ and s s← ′

At next time step t+ 1,
enter the state s

t +1
 after taking that action, and finally

end for

Based on Lilian Weng’s post ‘Policy Gradient algorithms.’

At each step, both Critic and the Actor networks are updated.

4.5.3 Applications

A2C networks have been used to train robots for similar tasks

as other similar algorithms.

4.6 ASYNCHRONOUS ADVANTAGE ACTOR

CRITIC (A3C)

Algorithm Model Action Policy Perf. Meas.

A3C Model- free Continuous Continuous Value functions
and policy
optimizations

The A3C was developed by Google DeepMind and became

public in 2016. Unlike DQN which uses a single agent, it uses

many agents, each with its own network parameters and a copy

of the same environment. Their interaction with the environ-

ment is not coordinated globally, so it is ‘asynchronous,’ hence

the name. Each agent is controlled by a global network, so it

allows for experimenting with more diversified environment.

This mitigates the problem of RL sample correlation.

78 ■ An Introduction to Deep Reinforcement Learning

Just like in A2C, the A3C agent learns the Value Function

from the critic and updates its or actor’s optimal policy function.

It determines the conditional probability for choosing action a

in state s and uses Advantage Function to determine how much

better the rewards were compared to its expectation. The asyn-

chronous (parallel and distributed) gradient descent is used

for optimization of DNN controllers. The training stage uses

parallel networks efficiently and independently by adjusting

the direction of each training thread. In this way, multiple

actor- learners instantiate the environment separately, collect

experience, update the gradients, and send it to a central target

network. It was found that this parallel operation stabilizes the

training.

4.6.1 Mathematical Formulation

It is the same as in A2C but is parallelized for many actors inde-

pendently and later combined for central update.

4.6.2 Pseudocode

Initialize parameters (s w, ,θ) and learning rates (α α
θ
,

w)
Sample a a s~ (|)π

θ

input:
assume (globally shared) parameter vectors 𝜃 and 𝜙 = 0,
counter T = 0
assume thread- specific parameter vectors ′θ and ′φ
initialize thread step counter t ← 1
repeat

reset gradients: d𝜃 ← 0 and d𝜙 ← 0.
synchronize thread- specific parameters ′θ = 𝜃 and ′φ = 𝜙
t t
start

=

get state st

repeat
choose action at wrt policy π θ(| ;)a s

t t
′

receive reward rt and new state st+1

Single-Agent Algorithms     ■    79

t t← + 1 and T T← + 1
until terminal s

t
 or t t t

start max
− =

R = 0 (for terminal s
t
) or V s

t
, ′()φ (for non- terminal s

t
)

for i t t
start

∈ − …()1, , do
R s R

t
← + γ

accumulate gradient.

wrt ′θ : d d log a s R V s
i i i

θ θ π θ φ
θ

← + ∇ − ()()′ ′′ (| ;) ;

wrt ′φ : d d R V s
i

φ φ φ φ← + ∂ − ()() ∂′ ′;
2

/

end for
update asynchronously θ using dθ and φ using dφ

until T T
max

>

4.6.3 Application

A3C has been found to stabilize the training and surpassed the

performance of earlier methods in Atari game environment,

motor control problems, and navigating 3D mazes.

4.7 SOFT ACTOR CRITIC (SAC)

Algorithm Model Action Policy Perf. Meas.

SAC Model- free Continuous Continuous Value functions

SAC attains SOTA performance in continuous control tasks,

e.g., robotic locomotion and manipulation by maximizing the

‘entropy’ in policy and the expected reward from the environ-

ment. This approach encourages the state space exploration,

improves the transition data collection, and prevents prema-

ture convergence to bad local optima by allowing good policies.

4.7.1 Mathematical Formulation

A two- step policy iteration technique alternating between

policy evaluation and policy improvement is used. Starting

from a given initial policy π, some metric between the current

policy and the derived update policy is minimized. Specially in

80 ■ An Introduction to Deep Reinforcement Learning

tabular case, an exact solution to MDP can be found by alter-

nating between policy evaluation and policy improvement.

i. In the policy evaluation step, the accurate value function

for current policy is found by repeatedly evaluating the

Bellman operator T
π
.

 [,]
~ (.|) | ,

T V s E r s a E V s
a s s s aπ π

γ() =



 () + () ′′ (4.26)

For soft policy iteration, the policy’s entropy as an additional

reward term is added to the original Bellman operator.

T Q s a r s a E

Q s

t t t t a

t

π π
γ, ,

~()  = () + ′

 ++ ′ ′ () − ()1
, log |a a s

t
π

(4.27)

Its repeated application to any initial Q function is

guaranteed to converge to the optimal ‘Soft’ Q function.

ii. In the policy improvement step, the Bellman optimality

operator T is applied repeatedly on given initial value

function V so that it converges to the true (optimal)

value function V *.

 T V max T V*[] =  π π
 (4.28)

The optimal policy π* can be constructed from the optimal

value function V *. For the soft policy improvement step,

the Kullback– Leibler (KL) distance (‘divergence’) J ω()
between the two distributions is minimized.

 J Eω π() =
()

()










∑

KL s
expQ s

expQ s
t

a

((. |) ||
, .

,.
 (4.29)

This leads to an improved policy.

 π ω
ωnew

argmin J= () (4.30)

Single-Agent Algorithms     ■    81

This update scheme guarantees monotonic improvement of the

policy in the tabular case. In an alternate scheme, NN calculates

Soft Q- function as the mean and variance with the current state

as input, and Soft Policy as a Gaussian distribution with the

mean and variance from above.

4.7.2 Alternate Method

Both Q- function and policy parameters are updated with the

experience data collected from a policy different from the

current one. For every actor roll- out, all the transition data is

saved in a replay buffer D.

i. Q- function optimization: It is done at every update step

by using the gradient of the mean squared loss between

the predicted action- value and the target action- value q
t
.

 J E Q s a q
Q s a D t t t

t t

θ
θ() = () −()



(), ~

,
1

2

2

 (4.31)

where

 q E r s a Q s a a s
t a s t t t t

t

= () + () − ′
+ + +~ (.|)

, , log (|)
π θ ωω

α π
1

1 1

(4.32)

Here the α- term represents the ‘entropy temperature,’

i.e., weight given to the ‘randomness’ of policy versus the

reward from the environment.

ii. Policy update: The actions are the hyperbolic tangent

Gaussian policy parameters sampled from the mean and

covariance output of the policy neural network.

 a u
t

= ()tanh (4.33)

82 ■ An Introduction to Deep Reinforcement Learning

Also, the action is modified as:

 log (|) log (|) logπ µa s u s tanh u

i

D

i
= − − ()()

=
∑
1

21 (4.34)

The log (|)µ u s represents the cumulative distribution

function (CDF) computed with the mean and variance from the

policy neural network. The policy parameter can be optimized

by minimizing a simplified form of the KL divergence.

 J E E a s Q s a
s D a s t t t t
t t

π π ω θ
ω α π

ω
() = () − (){ }



′~ ~ (.|)

log ,| (4.35)

The parameter α is updated through the gradient of the

objective function including the desired minimum entropy H

given below:

 J E a s H
t t tα

π α α= − () − | ; (4.36)

4.7.3 Pseudocode

It is like the Actor- Critic case given earlier with appropriate

modifications.

4.7.4 Applications

It has been found to be very successful in robotic applications.

4.8 DEEP DETERMINISTIC POLICY

GRADIENTS (DDPG)

Algorithm Model Action Policy Perf. Meas.

DDPG Model- free Continuous Off- policy Like deep Q- learning

Often one encounters a situation in which the policy is differ-

entiable, but actions are non- stochastic. It becomes then harder

to build a policy, and in these cases an action for a given state is

learnt directly by a maximization objective.

Single-Agent Algorithms     ■    83

 µ µk
a

argmax Q s a
k+ = ()1 , (4.37)

In general, this maximization is computationally hard as

one must search the entire space for a given action- value

function. An algorithm known as Deterministic Policy Gradient
(DPG) has handled such situations in which the argmax is

approximated by a function approximator. Its realization using

NN is called DDPG.

4.8.1 Mathematical Formulation

The DPG algorithm can be expressed using the following

equations.

 • Q- learning is minimized with the MSBE loss with SGD.

 L D E Q s a y r s d
s a r s d D

s a r s d B

φ
φ

, , , ,
, , , ,

, , , ,

() = () − ()()′
′

′
()∈

()∈
∑

2

 (4.38)

 y r s d r d Q s s
targ targ

, , ,′ ′ ′() = + −() ()()γ µ
φ θ

1 (4.39)

 • Policy learning is solved by gradient ascent for policy

parameters.

 max E Q s s
s Dθ φ θ

µ∈ ()(), (4.40)

4.8.2 Pseudocode

Input: Initialize parameters θ (policy), 𝜙 (Q- function) and D
(empty relay buffer)

Set target and main parameters as equal, i.e., θ θ
targ

← ,

φ φ
targ

←

Repeat:

84 ■ An Introduction to Deep Reinforcement Learning

Observe state s, select action a Clip s a a
low high

= () +[, ,]µ
θ

 ,
with  Gaussian
Execute a∞ , observe next state ′s , reward r , and
determine if ′s is terminal from signal d
Store s a r s d, , , ,′() in replay buffer D, if ′s is terminal then
reset environment state.

If updating then
For however many updates do

Randomly sample a batch of transitions
B s a r s d= ()′, , , , from D

Compute: y r s d r d Q s s
targ targ

, , ,′ ′ ′() = + −() ()()γ µ
φ θ

1

Update Q- function: ∇ () − ()()′
′()∈

∑φ φ

1 2

B
Q s a y r s d

s a r s d B, , , ,

, , ,

Update policy: ∇ ()()
∈
∑φ φ θ

µ
1

B
Q s s

s B

,

Update target networks: φ ρφ φ
targ targ

← + −()1  ,

θ ρθ θ
targ targ

← + −()1 

End for
 End if
Until convergence

4.8.3 Applications

DDPG has been applied to a wide range of continuous con-

trol problems, including robotics, gaming, and autonomous

navigation, e.g., robot arm control, autonomous navigation

in high- dimensional state spaces, video games with DRL

agent, etc.

Single-Agent Algorithms     ■    85

4.9 TWIN- DELAYED DEEP DETERMINISTIC POLICY

GRADIENTS (TD3PG)

Algorithm Model Action Policy Perf. Meas.

TD3PG Model- free Continuous Off policy Value function

Just like DDPG, the TD3PG algorithm is also an actor- critic

RL agent. It extends the DDPG by reducing the value function

overestimates. The significant features of a TD3PG agent are:

 • It learns two Q- value functions and uses the minimum of

the two for policy updates.

 • It updates the policy and targets less frequently than the Q

functions.

 • It adds noise to the target action during policy updates,

which makes the policy less likely to exploit actions with

high Q- value estimates.

 • It can implement both TD3 and delayed TD3

algorithms. The latter uses only one Q- value function

with smoothing of the target policy and delayed policy

and target updates.

4.9.1 Mathematical Formulation

The TD3PG algorithm is a slightly modified form of the DDPG

one. It can be expressed with the following equations.

 • Add a Gaussian noise in the initialized action and update

reward with this included. y r min Q s a
i

i

← + ()′=γ
θ1 2, '

, 

 • Update critic with loss function.

 θ
θ θi

argmin N y Q s a
i i

← ∑ − ()()−1
2

, (4.41)

 • Update actor with the deterministic policy gradient.

86 ■ An Introduction to Deep Reinforcement Learning

 ∇ () = ∑ ∇ () ∇ ()−
= ()φ θ π φ φ

φ π
φ

J N Q s a s
a a s

1

1

, | (4.42)

4.9.2 Pseudocode

Input: Initialize (i) critic Q- functions Q Q
θ θ1 2

,() and actor π
φ

(policy) with random parameters, (ii) target networks with

′ ←θ θ
1 1

, ′ ←θ θ
2 2

, ′ ←φ φ , and (iii) target buffer B.

for t= 1 to T do

select action with Gaussian noise a s~ π
φ () +  , observe

reward r and new state ′s
store s a r s, , , ′() in buffer B

sample a small set of N transitions s a r s
b b ac

a
, , , ′() − ± −2 4

2

from B

a s← () +′′π
φ

,  ~ [clip N (0, σ), ,]−c c ,

y r min Q s a
i

i

← + ()′=γ
θ1 2, ’ , 

update critics θ
θ θi

argmin N y Q s a
i i

← ∑ − ()()−1
2

,

if t mod d then

update φ by the deterministic policy

gradient ∇ () = ∑ ∇ () ∇ ()−
= ()φ θ π φ φ

φ π
φ

J N Q s a s
a a s

1

1
, |

update target networks ′ ← + −() ′θ τθ τ θ
i i i

1 ,
′ ′← + −()φ τφ τ φ1

end if
end for

4.9.3 Applications

TD3PG has been applied to gain further improvements in

the solutions to similar problems as handled by DDPG in

general.

Single-Agent Algorithms     ■    87

4.10 TRUST REGION POLICY

OPTIMIZATION (TRPO)

Algorithm Model Action Policy Perf. Meas.

TRPO Continuous Continuous
or discrete

On- policy Advantage fn.

It is a DRL algorithm using Stochastic gradient (SG) method to

implement trust region update. It guaranteed policy improve-

ment by a local approximation to the loss function due to the

new policy.

4.10.1 Mathematical Formulation

Let us begin with given quantities: (i) expected discounted

reward η π(), (ii) visitation frequency ρ
π
s(), (iii) advantage

function A s a
π
(|), and (iv) policy function π(|)a s . Then the

TRPO loss function is written as

 L s a s A s a
new old

s a
new

old old
π π π

π η π ρ π() = () + ()∑ ∑ (|) (|) (4.43)

More explicitly, the TRPO approach maximizes an objective

function.

a. It is initially max LCPI
θ

θ(), where

L E r ACPI
t

t
tθ θ() = ()





  = Loss function due to conserva-

tive policy iteration with

E
t

 …[] = the empirical average over a finite batch of

samples alternating between sampling and optimiza-

tion, and

A
t

 = estimator of advantage function at step t =

Q s a V a
t t t

π π,() − ()

88 ■ An Introduction to Deep Reinforcement Learning

b. It is modified by a constraint bound by KL diver-

gence (D
KL

) over trust region max E r A
t t tθ

θ ()





, such

that D s s
KL t t

old new

π π δ
θ θ
. , (. |)|(){ } ≤ , and

θ θ
old new
,() = (old, new) vector of policy parameters.

 c. For a better result, it is sometimes replaced

by an unconstrained optimization:

max E r A D s s
t t t KL t t

old new
θ θ θ

θ β π π () − (){ }





. , (. |)|

with β

as a numerical coefficient and r
a s

a s
t

t t

t t

new

old

θ
π

π

θ

θ

() =
()
()
|

|
 = ratio

of old and new policy values at time t.

4.10.2 Pseudocode

Input: Initialize (i) policy parameters θ
0
, (ii) initial value

function parameters φ
0
, (iii) KL- divergence limit δ,

(iv) backtracking coefficient α , and (v) maximum number
of backtracking steps K.

for k = 0,1, 2 ,… do
run policy π θ()

k
, collect trajectories D

k
, compute

rewards Rt

compute advantage function A
t using current value

function V
kφ

estimate policy gradient as

g
D

log a s A
k

k D t

T

t t t

k

k
= ∇











∈ =

∑ ∑1

0τ
θ θ θ

π (|) |

Use the conjugate gradient algorithm to compute

x H g
k k k

≈ −1

(H
k
= Hessian of the sample-

averaged KL- divergence.)

Single-Agent Algorithms     ■    89

Backtrack line search to update the policy with

θ θ α
δ

k k
j

k
T

k k

kx H x
x+ = +









1

2
, j K∈ …{ }0 1 2, , , ,

(j = the smallest value for improving sample loss
while satisfying KL- div. constraint)

Use MSE regression to fit the value function via some
gradient descent algorithm:

φ
φ

τ
φk

k D t

T

t t
argmin

D T
V s R

k

+
∈ =

= () −()∑ ∑1
0

21

end for

4.10.3 Applications

Under proper assumptions TRPO is guaranteed to provide

monotonic improvement.

4.11 PROXIMAL POLICY OPTIMIZATION (PPO)

Algorithm Model Action Policy Perf. Meas.

PPO Continuous Discrete or
Continuous

On- policy Advantage
function

Like TRPO, which uses second- order methods, the PPO also

tries to get the biggest possible improvement in policy but uses

first- order methods. It has two variations.

 • PPO- Penalty: It is a KL- constrained update like the TRPO,

but penalizes the KL- divergence in the objective function

by automatically adjusting the penalty coefficient.

 • PPO- Clip doesn’t use either KL divergence term or any

constraint but clips the objective function to remove

incentives for the new policy to get far from the old policy.

Here, we’ll focus on PPO- Clip.

90 ■ An Introduction to Deep Reinforcement Learning

4.11.1 Mathematical Formulation

The policy is updated using the following expression.

 θ θ θ
θ πθ

k s a k
argmax E L s a

k
+ ()= ()1 , ~

, , , (4.44)

One uses minibatch SGD to maximize the objective L given by

 L s a A s a g A s a
k

k

k k, , , , , , ,θ θ
π

π
θ

θ

π πθ θ() = () ()()










min  (4.45)

Here

 g A A for A A for A  , ,() = +() ≥ −() <1 0 1 0 (4.46)

4.11.2 Pseudocode

Input: Initialize (i) policy parameters θ
0

, (ii) initial value
function parameters φ

0
.

for k = 0,1, 2 ,… do
run policy π θ()

k
, collect trajectories D

k
, compute

rewards R
t

compute advantage function A
t using current value

function V
kφ

update policy by maximizing PPO- Clip objective:

θ
π

πθ
τ

θ

θ

π πθ θ

k

k D t

T

argmax
D T

A s a g A s a
k k

k k
+

∈ =

= () ()()∑ ∑1
0

1
min , , , ,









 .

via SGD with Adam (a particular SGD variant)
Use MSE regression to fit the value function via some
gradient descent algorithm:

φ
φ

τ
φk

k D t

T

t t
argmin

D T
V s R

k

+
∈ =

= () −()∑ ∑1
0

21

end for

Single-Agent Algorithms     ■    91

4.11.3 Applications

The PPO method has been a very successful RL algorithm and

is the preferred method for solving identification and classifi-

cation problems.

4.12 LONG SHORT- TERM MEMORY (LSTM)

Algorithm Model Action Policy Perf. Meas.

LSTM Continuous Discrete or
Continuous

On- policy Advantage
function

The general structure of recurrent neural network (RNN) includes

input, output, and hidden layers. The last one contains neurons

with memory, so it allows information to persist. In general,

their information content does not persist for a long time due to

vanishing or blowing up of the gradients of the parameters. The

LSTM uses a specialized and more capable neuron consisting of

three gates for handling time series problems, e.g., planning, and

other time- dependent tasks. The three gates of LSTM are:

i. Forget gate: It chooses whether to keep or forget the pre-

vious timestamp’s information.

ii. Input gate: It adds or updates information.

iii. Output gate: It passes the updated information to the

next timestamp.

In addition, the LSTM neuron has two states.

i. Hidden state: Short- term memory with information

H t() at current timestamp and H t −()1 at previous

timestamp.

ii. Cell state: Long- term memory with information C t() at

current timestamp and C t −()1 at previous timestamp.

The updating for different states is done using sigmoid, tanh, or

other similar functions.

92 ■ An Introduction to Deep Reinforcement Learning

4.12.1 Mathematical Formulation

Let

x
t
 = input vector at time t,

h
t � and h

t−1 = hidden state or output vector of LSTM unit,

W and U (with appropriate suffixes) = weight matrices for

different gates,

b (with appropriate suffixes) = bias vectors for different gates,

 = Operator for the elementwise or Hadamard product,

d and h = Superscripts denoting number of input features

and hidden units,

σ
g
 = sigmoid function,

Then operations at different gates are:

Forget gate f W x U h b
t g f t f t f

= + +()−σ
1

, f
t

h∈()0 1,

Input gate i W x U h b
t g i t i t i

= + +()−σ
1

, i
t

h∈()0 1,

Output gate o W x U h b
t g o t o t o

= + +()−σ
1

, o
t

h∈()0 1,

The hidden state operations are:

Memory cell input activation vector c W x U h b
t c c t c t c

= + +()−σ
1

,

c
t

h∈ −()1 1,

Cell state vector c f c i c
t t t t t

= +− 
1

� 

Hidden state or output vector h o c
t t h t

= σ (), h
t

h∈ −()1 1,

4.12.2 Pseudocode

Input: Initialize (i) sequence length = L, (ii) hidden state
vector h

t
 and h

t −1
for i = 0,1, 2 ,… L do

if i = 0

h
t −1

 = random (), c
t −1

= random ()
else

Single-Agent Algorithms     ■    93

h
t −1

 = h
t
, c

t −1
= c

t

f W x U h b
t g f t f t f

= + +()−σ
1

i W x U h b
t g i t i t i

= + +()−σ
1

o W x U h b
t g o t o t o

= + +()−σ
1

c W x U h b
t c c t c t c

= + +()−σ
1

c f c i c
t t t t t

= +− 
1



h o c
t t h t

=  σ ()
end for

4.12.3 Applications

The RNNs using LSTM units are trained using gradient des-

cent. They have led to many remarkable successes in playing

games and controlling robots.

4.13 GENERATIVE ADVERSARIAL NETWORK (GAN)

Algorithm Model Action Policy Perf. Meas.

GAN xx Continuous xx xx

In GAN approach, two networks contest one another for

improved outcome in DRL. The given unsupervised learning

problem is formulated as a game between two competing

networks known as Generative and Discriminative networks. In

this contest gain of one network becomes loss of another one.

The overall approach is as follows:

i. Generative network or generator G generates random

synthetic samples from a latent data distribution, e.g.,

multivariate normal distribution. For image generation,

a deconvolutional NN or a deterministic FFNN is used.

Its objective is to increase the error rate of the discrim-
inative network.

94 ■ An Introduction to Deep Reinforcement Learning

ii. Discriminative network discriminator D is trained using a

known dataset until a desired accuracy is attained. It takes

the samples provided by G and tries to distinguish them

from the true data distribution by classifying the sample as

real or false. For image generation, a convolutional NN is

used to map a sample to a binary classification probability.

The GAN game is then formulated as a zero- sum game for

the value of the cross- entropy loss between the discriminator’s

prediction and the identity of the image as real or generated.

Independent backpropagation method is used in both networks

so that G produces better samples, while D becomes better at

recognizing synthetic samples.

4.13.1 Pseudocode

Here D and G denote discriminator and generator, respectively.

Input: number of steps k for discriminator
for number of training iterations do

for k steps do
generate samples z z m1() ()…{ }, , from a noise
distribution p z

g ()
choose examples x x m1() ()…{ }, , from data
distribution p x

data ()
update the discriminator by ascending stochastic gradient:

∇ () + − ()()





=

() ()∑θd m
logD x log D G z

i

m
i i1

1
1

(

end for
generate samples z z m1() ()…{ }, , from a noise
distribution p z

g ()
update the generator by descending stochastic gradient:

∇ − ()()
=

()∑θd m
log D G z

i

m
i1

1
1

()

end for

GANs versus Actor- Critic (AC) method
The AC and GAN methods look similar, but they differ signifi-

cantly from one another as given in Table 4.1.

Single-Agent Algorithms     ■    95

TABLE 4.1 GANs versus AC

Properties GAN Actor- Critic

Aims GANs aim to learn the
underlying distribution
of the data and afterward
generate new samples
that were not in the
original data set.

They are typically
formulated as a max- min
optimization or saddle-
point problem.

AC solves a stochastic optimal
control problem from data,
without prior knowledge of
the environment and learns
the model of the environment
either implicitly or explicitly.

The actor (like G) tracks the

policy P s a(,)| θ (θ = the
distribution specific vector of
parameters).

The critic (like D) tracks the
value function representing the
‘goodness’ of actor’s policy.

Convexity GANs are inherently
nonconvex.

ACs are originally convex but
their approximate solution is
usually nonconvex, e.g., with
DL.

Components In GANs, G approximates
the data distribution,
and D evaluates the
distribution of the
generator

In AC, the actor approximates
the policy, i.e., the distribution
P a s(|), and the critic evaluates
this policy.

Learning GANs work in an
unsupervised learning
setting and mimic the
distribution of the
given data assumed to
be independent and
identically distributed
(i.i.d).

ACs work in the RL or a
sequential decision- making
setting — the action chosen at
the current step affects the data
seen in the future. AC methods
explore the environment and
learn to act nearly optimally.

Supervision In GANs, G gets
supervision from D
and it signals G about
how good or bad the
generated data are. If D is
removed, then G cannot
be trained at all.

In ACs, the critic improves the
supervision to the actor. The
actor can be trained without
the critic, in which case, one is
simply learning the policy by
estimating its future reward.
The critic helps make this
estimation better.

96 ■ An Introduction to Deep Reinforcement Learning

4.13.2 Applications

GANS have been applied to many problems successfully, e.g.,

image inpainting, super resolution, Steganography or hiding

data in images, synthetic data generation for training models,

image and video recognition, etc.

4.14 NORMALIZED ADVANTAGE

FUNCTION (NAF)

Algorithm Model Action Policy Perf. Meas.

NAF Continuous

Methods for Q- learning can be used for both discrete and con-

tinuous cases.

 • The optimal Q- function for discrete action sets is given as

 Q s a E r max Q s a s a
t t s t a t t

* *, , | ,() = + () ′ ′′ ′γ (4.47)

 The agent goes through a well- defined discrete action

space usually given as a table.

 • In continuous cases the action selection step requires

taking arg max over all possible actions.

 a max Q s a
t a t

= ()* , ;θ (4.48)

The Q- learning methods have difficulty in these situations.

Methods like DDPG have been developed to solve this

problem with two NN output streams. NAF is another similar

method in which the NNs estimate the value and advantage

functions separately. The advantage function is expressed as a

quadratic function of the state parameters.

Single-Agent Algorithms     ■    97

 A x u u x P x u xA
T

P, (|))| | |θ µ θ θ µ θµ µ() = − − ()  − () 
1

2
 (4.49)

There are three output streams now:

i. the value function V x V|θ(),
ii. a state- dependent, positive- definite square

matrix formed with a lower- triangular matrix L:

P x L x L xP P P T|θ θ θ() = (|) (|) , and

iii. the action µ θµx|() which always maximizes the Q-

function, since it is quadratic in u.

Afterward, these three streams are combined to give the

Q- function.

 Q x u A x u V xQ A V, ,| | |θ θ θ() = () + () (4.50)

Here θ θ θQ A V, , are the parameters of the Q- function, value

function and the advantage functions, respectively.

4.13.1 Pseudocode

Randomly initialize normalized Q network Q x u Q(, |)θ
Initialize target network ′Q with weight θ θ′ →Q Q .
Initialize replay buffer R ← 0 .

for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state x p x

1 1
~ ()

 for t = 1,…,T do
 for iteration = 1,…,I do

 Select action u x N
t t t

= () +µ θµ|

 Execute u
t
 and observe r

t
 and x

t +1

 Store transition x u r x
t t t t
, , , +()1

 in R

98 ■ An Introduction to Deep Reinforcement Learning

Set y r V x
i i i

Q= + ()′ +
′γ θ

1
|

Update θQ by minimizing the loss

L
N

y Q x u
i

i i i
Q= −()∑1 2

(, |)θ

Update the target network: θ τθ τ θ′ ′← + −()Q Q Q1
end for

 end for
end for

4.15 SELF- ORGANIZING MAPS (SOM)

Algorithm Model Action Policy Perf. Meas.

SOM Continuous

A SOM, based on Kohonen map, is applied to unsupervised

learning without using backpropagation. It creates a low-

dimensional representation (usually two- dimensional) of

a higher- dimensional data while preserving its topological

structure. It moves its ‘neurons’ closer to the data points and

finds probable clusters by using a neighborhood function for

retaining the data topology.

SOMs have only two layers, one for the input and one for

the output or the feature map. There is no activation function,

so weights pass to output layer unchanged. Both weight and

the input vectors have the same dimension. The weights are

updated using the processes of competition, cooperation, and

adaptation.

i. Competition: This step computes the Euclidean distance

between each output layer neuron and the input data.

The neuron with the lowest distance (‘winner’) is chosen

as the winner.

Single-Agent Algorithms     ■    99

ii. Cooperation: This step chooses the ‘neighbors’ using a

kernel function dependent on time (increment for the

new input) and distance (between the winner and target

neuron).

iii. Adaptation: This step updates the neurons using the

following relation

 w w t h t x w
k k ik

n

k
= + () () −()()� η (4.51)

Here

 • η ηt e
t T() = −

0
1
/ is the learning rate for determining how

much the weights must be adjusted.

 • h t
d

t
ik

ik() = −
()







exp

2

22σ
 is the neighborhood kernel

function depending on d
ik

 (the distance between the

winner and the other neuron) and σ t() (the time-

dependent neighborhood size).

 • σ σt e
t T() = −

0
2

/ is the neighborhood size decay rule.

4.15.1 Pseudocode

Randomly initialize weights to some small values.
Repeat until convergence

Select the next input pattern x in from the database.
Find the unit w

i
 that best matches x in

i x argmin x win
j

in
j() = − .

Update the weights of winner w
i
 and its neighbors w

k

100 ■ An Introduction to Deep Reinforcement Learning

 w w t h t x w
k k ik

in
k

= + () () −()η . .

Decrease the learning rate η t() and
neighborhood size σ t()

4.16 REINFORCE GRADIENT WITH AND

WITHOUT BASELINE

Algorithm Model Action Policy Perf. Meas.

REINFORCE: gradient Continuous

REINFORCE is the acronym for REward Increment = Non-
negative Factor × Offset Reinforcement × Characteristic

Eligibility.

REINFORCE without baseline:

The gradient of policy π
θ
a s
t t
|() does not depend on reward

r(τ), but it makes the variance of the MCMC sampling quite

large. Define:

G
t
 = the discounted return,

As the past rewards do not contribute anything, so the policy

gradient can be replaced by G
t
.

 ∇ ()  = ∇ ()















=
∑E r E G a s
t

T

t t tπ π θθ θ
τ π

1

log | (4.52)

This is the basis of the MCMC policy gradient algorithm

REINFORCE.

It is an MCMC policy gradient algorithm for the episodic

case and therefore it requires a complete episode to get the

sample proportional to the gradient. It then updates the policy

parameter with the step size.

Single-Agent Algorithms     ■    101

REINFORCE with baseline:

The above algorithm prescription does not totally alleviate the

problem related to sampling. It uses the Monte Carlo method

which has high variance and consequently slow learning. So, a

baseline parameter b is introduced for the gradient to reduce its

variance. Then the above expression is modified as:

 ∇ ()  = −()∇ ()















=
∑E r E G b a s

t

T

t t tπ π θθ θ
τ π

1

log | (4.53)

It can be proved that

 E b a s

t

T

t tπ θθ
π

=
∑ ∇ ()













 =

1

0log | (4.54)

The baseline parameter b reduces the variance as well as keeps

the gradient still unbiased. A good baseline is the current state-

value defined as the expected return given a state following the

policy π
θ
 or V s E G s s

t t
() = = πθ

| .

102 DOI: 10.1201/9781032659800-5

C H A P T E R 5

Multi- Agent RL

(MARL) Algorithms

As a subfield of RL, multi- agent reinforcement learning

(MARL) studies the behavior of many learning agents

coexisting in a shared environment. Each agent seeks its own

reward and acts to advance its own interests. There are two

cases to distinguish.

 • In a cooperative case, MARL agents work together to

maximize a given goal.

 • In a competitive case, the agent interests are opposed to

those of others.

MARL uses the theory of repeated games combined with the

pursuit of finding ideal algorithms that maximize rewards.

While single- agent RL tries to find the algorithm that gets the

biggest rewards for one agent, MARL evaluates and quantifies

http://dx.doi.org/10.1201/9781032659800-5

Multi-Agent RL (MARL) Algorithms     ■    103

social metrics, such as cooperation, reciprocity, equity, social

influence, language, and discrimination.

5.1 COOPERATION VERSUS COMPETITION

When many agents share the same environment, their

interests might be aligned or misaligned. MARL allows

exploring all the different alignments and how they affect the

agents’ behavior:

 • Pure competition settings: The agents’ rewards are exactly

opposite to each other, and therefore they are playing a

zero- sum game against each other, e.g., games like Go and

chess, and projects like AlphaGo and Deep Blue. Neither

agent takes actions that benefit its opponent.

 • Pure cooperation settings: The agents get the exact same

rewards, and therefore they are playing with each other.

MARL approach is used to explore how agents with

identical interests can communicate and work together.

Pure cooperation settings are explored in recreational

cooperative games like Overcooked, and in real- world

robotics scenarios. In pure cooperation settings, agents

converge to specific ‘conventions’ when coordinating

with each other.

 • Mixed- sum settings: These cover situations which com-

bine elements of both cooperation and competition, e.g.,

self- driving cars, such that each car minimizes the time it

takes to reach its destination, but all cars have the shared

interest of avoiding a traffic collision.

Classic matrix games such as Prisoner’s dilemma and rec-

reational games such as Diplomacy and StarCraft II are

good examples. These settings sometime create commu-

nication and social dilemmas.

104 ■ An Introduction to Deep Reinforcement Learning

5.2 GENERAL CONSIDERATIONS FOR MARL

5.2.1 Training

The approaches to training must consider the following

possibilities:

i. Train all agents independently so that each agent

considers all others as part of the environment and learns

its own policy in a fully decentralized approach or

ii. Implement Centralized Learning with Decentralized
Execution (CLDE) in which one takes in the state of the

environment and returns an action for each agent in the

form of a single joint action vector, thus learning a single

policy for all agents.

5.2.2 Single- Agent Setting as Reference

There are many new considerations for implementing DRL

algorithms when the number of agents increases beyond 1. We

first recall the single- agent situation for further reference. Let

an agent at a given time step t

i. be in a state s
t
 (from state space S) and

ii. choose an action a
t
 (from action space A) to

iii. transition to state s
t+1 by

iv. receiving reward r
t
.

Then, this agent’s value function for policy π is given by the

following expression:

 v s E r
t

k

k

k tπ π
γ() =











=

∞

+ +∑
0

1
 (5.1)

Here γ ∈ [0, 1] is the discount factor and E
π
 is the expectation

value operator.

Multi-Agent RL (MARL) Algorithms     ■    105

The value function for optimal policy π∗ can be obtained by

using Bellman’s equation.

 v s max p s s a r s a v s
t a

s

new

t t

new

new

π π
γ* *(| ,) ,() = () + () ∑ (5.2)

Similarly, the optimal Q- value is given by appropriate Bellman’s

equation.

 Q s a p s s a r s a max Q s a
t t

s

new
t t t t a

new new

new

newπ π
γ* *, (| ,) , ,() = () +∑ (() 

 (5.3)

Here p s s anew

t t
(| ,) is the probability of transitioning to the new

state snew after taking action a
t
 in state s

t
.

5.2.3 Basic Equations for the Multi- Agent Q- Function
Framework

The mathematical framework of the most MARL methods

focusses on finding an optimum Q- value and/ or policy. For

MARL cases, a modified version of the above optimal Q- value

equation is the following:

Q s a

s

r s a P s s a

x x x

x x

x x

s

new

x

x

new

* , |

,

, , (| , ,

π

π

−

− −

−

()

= ()
() +

−

∑
∑

a

a

a γ aa−

()

















x

a x

new

x

newmax Q s a
x
new

)

,*

 (5.4)

Here

i. a
x
 = the action of agent x

ii. a− x = the action vector of all agents except agent x.

iii. π− x
 = the policy vector of all agents except agent x.

iv. P = the transition probability among the states.

106 ■ An Introduction to Deep Reinforcement Learning

5.2.4 Basic Equations for the Multi- Agent Policy- Function
Framework

The above equations can be written using policy as a param-

eter during learning to optimize a policy- based function. The

equation can be solved using policy gradient methods for

finding an approximation to the gradient.

The MARL framework is a stochastic game based on the

Markov decision process represented formally as:

 • Game represented as the tuple S, actions A A A
n1 2

, , , ,…
Rewards R R R

n1 2
, , ,… , (n = the number of agents), P (tran-

sition function)

 • A A XA X XA
n

= …
1 2

 is the joint action space of all agents,

 • S × A × S → R is the reward function of each agent,

 • The state transition function P ∶ S × A × S → [0, 1]

 • H = joint policy

 • Reward function is bounded.

State transitions are the result of all agents acting together and

the rewards depend on the joint policy. The reward R
i

H for the

ith agent under the joint policy H is given by:

 R E R S s A a H
i

H

t t t i
= = =+[| , ,]

,1
 (5.5)

The corresponding Bellman equation for Q- function is:

 Q s a E R Q S A S s A a
i

H

i

H

t i

H

t t t t
, [, | ,]() = + () = =+ + +1 1 1

γ (5.6)

There is a similar equation for value function.

In general, the stochastic games are of three kinds:

i. Fully cooperative: All agents have the same reward

(R R R
n1 2

= = … =) and their goal is to maximize it.

Multi-Agent RL (MARL) Algorithms     ■    107

ii. Fully competitive: The agents have opposite goals, e.g.,

for n = 2, R R
1 2

= − .

iii. Mixed games: The agents’ rewards are usually different

and correlated.

5.2.5 An Example

There are three primary challenges associated with MADRL. In

this example, an approach to their solutions is given which can

be used in other similar situations.

 • Problem representation: We need to represent an arbi-

trary number of agents without changing the architecture

of the deep Q- Network. To solve this problem, a number

of simplifying assumptions are made: (i) environment is

two- dimensional, (ii) time and space are discrete, and (iii)

there are two types of agents (allies and opponents).

 The global system state can be represented as an image-

like tensor, with each channel containing agent- and

environment- specific information. This representation

can now be used to take advantage of convolutional neural

networks (CNN) which work well for image classification

tasks. The image tensor is of size 4 _ W_ H, where W and H

are the height and width of our two- dimensional domain

and four is the number of channels in the image. Each

channel encodes a different set of information from the

global state in its pixel values. The channels can be broken

down in the following way:

 _ Background Channel: contains information about any

obstacles in the environment

 _ Opponent Channel: contains information about all the

opponents

 _ Ally Channel: contains information about all the allies

 _ Self Channel: contains information about the agent

making the decision

108 ■ An Introduction to Deep Reinforcement Learning

Note that channels in the image- like representation are

sparse. In both the opponent and ally channels, each non-

zero pixel value encodes the number of opponents or allies

in that specific position.

 • Multi- agent training: When many agents interact in an

environment, their actions may directly impact the actions

of other agents. So, the agents must be able to reason about

one another for intelligent actions. One trains one agent

at a time and keeps the policies of all the other agents

fixed during this period. After a set number of iterations,

the policy learned by the training agent gets distributed

to all the other agents of its type. Specifically, an agent

distributes its policy to all its allies. In this way one set

of agents incrementally improves its policy over time. The

learning process itself is not distributed, but the policy

execution is distributed, because each agent has its own

NN controller. Each agent must be aware of the locations

of all the other agents, but it does not need to tell the other

agents about its intent.

 • Agent ambiguity: Consider a scenario where two ally

agents occupy the same position in the environment. The

image- like state representation for each agent will be iden-

tical, so their policies will be the same. To break this sym-

metry, a stochastic policy for agents is used in which an

agent’s action is drawn from a distribution. For example, it

can be a softmax over the NN’s Q- values. This allows allies

to take different actions if they occupy the same state and

break the ambiguity.

5.3 REWARD MACHINES (RMS) FOR MARL

RM is a kind of reward function generalized to the multi- agent

scenario. It encodes a non- Markovian reward in a type of

finite- state machine. It takes subsets of propositional variables

as input and outputs real numbers as reward values.

Multi-Agent RL (MARL) Algorithms     ■    109

RM abstracts the current environment state to sets of high- level

events.

 • Input: It is the current RM state 𝑢 ∈ 𝑈 and the environ-

ment state 𝑠 ∈ 𝑆
 • Output: It is a collection of multiple concurrent events

which are passed as unordered sequence to the RM. It

depends both on the environment and on the current pro-

gress through the task specifying local labeling functions.

RMs decompose a complex task into several stages and sim-

plify the stage- specific operations.

Reward functions are part of the MDP formalism of a single

RL agent, and they have been generalized to ‘Reward Machines’

for the case of the multi- agent RL. They use finite state

machines (FSM) to allow the team- level task to be decomposed

into subtasks for individual agents. Its output value depends

on the present state and the current input symbol and can be

characterized by the following elements:

i. A finite set of states,

ii. An initial state,

iii. An input alphabet,

iv. An output alphabet,

v. A transition function map from (states, input alphabet)

to input alphabet, and

vi. An output function map from (states, input alphabet)

to input alphabet. The lengths of input and output

are equal.

RMs use a particular form of FSM called ‘Mealy’ machines

for the structured representation of reward functions using

concatenations, loops, and conditional rules. Given an RM

framework, the agents can separate the team- level tasks into

110 ■ An Introduction to Deep Reinforcement Learning

stages and learn the stage- specific behaviors for the overall

task. Q- Learning for reward machines (QRM) decomposes the

problem to improve sample efficiency and uses q- learning to

update each subtask policy in parallel, which guarantees con-

vergence to an optimal policy. QRM can be combined with

DRL methods.

5.3.1 Markov Game, Nash Equilibrium, and Pareto
Optimality

Markov games (MG) are multi- agent generalization of Markov

decision process (MDP), which itself is the basic framework for

the single- agent RL. In MG framework, many agents interact

simultaneously within a shared environment and with each

other. It is given by the following elements:

i. A set of interacting agents {1, 2, …, N}, N>1

ii. A set of states observed by all agents representing all

possible agent configurations in the environment,

iii. A set of joint actions of the agents which is a collection

of the individual action spaces of all agents,

iv. Transition probabilities for the chance of a state

transition,

v. Individual rewards, specific to an agent for arriving at a

new state by taking a specific action,

vi. A discount factor γ for diminishing future rewards.

In multi- agent situation, the best response is found by taking

multiple reward functions. In general, this may not be the

best. That is determined by the Nash equilibrium, which is a

solution such that no one agent can improve upon the policy

when other agents’ policies are fixed. This situation of non-

uniqueness is called Pareto optimal, when no agent action is

available that makes one get more reward without making

others worse off.

Multi-Agent RL (MARL) Algorithms     ■    111

5.3.2 Pareto Optimality

A strategy is called Pareto- optimal or Pareto- efficient if a

strategy or policy profile dominates all others if no agent using

a chosen strategy profile can be better off without making

another agent using the same profile more efficient. A Pareto

improvement is defined as any adjustments to a strategy profile

that makes the resulting strategy profile more Pareto efficient.

So a strategy profile π∗ is a Pareto efficient solution if it is not

Pareto dominated by any other strategy profiles. It maximizes

the overall welfare defined as the sum of all agents’ utilities

without emphasizing individual rational decisions.

5.3.3 Nash Equilibrium

It is a state in which no individual agent can increase its expected

return by unilaterally deviating from their policy. It means that

all agent strategies are the best responses to the other agents’
strategy. It is not unique and computing it in complex situations

may even be impossible. In such situations ϵ- Nash equilibrium

is more tractable. It relaxes the requirements by allowing the

agent to deviate if it improves its expected returns by more than

some value ϵ.

5.3.4 Q- Learning with RMs (QRM)

It is an algorithm that learns a collection of q- functions, one for

each RM state 𝑢 ∈ 𝑈, corresponding to the optimal policies for

each stage of the task.

A naive approach to applying RMs in the MARL setting

would be to treat the entire team as a single agent and use QRM

to learn a centralized policy. This approach quickly becomes

intractable due to the exponential scaling of the number of

states and actions with the number of agents. Furthermore, it

assumes agents communicate with a central controller at every

time step, which may be undesirable from an implementation

standpoint.

112 ■ An Introduction to Deep Reinforcement Learning

A basic RM algorithm for Q- learning is given below (Ref: Neary)

Input: R = ⟨ 𝑈, u
I
, Σ, 𝛿, 𝜎, 𝐹 ⟩, 𝐿, 𝛾, 𝛼

Output: 𝑄 = { q
u
 : 𝑆 × 𝐴 → R|𝑢 ∈ 𝑈}

Q ← InitializeQFunctions ()
for 𝑛 = 1 to NumEpisodes do

u
1
 ← u

I
 , s

1
 ← environmentInitialState ()

for 𝑡 = 0 to NumStemps do𝑎 ← getAction (q
u1

, s
1
)

s
2

 ← executeActions (s
1
, 𝑎)𝑟, u

2
 ← rewardsMach i n e O u t p u t (u

1
, 𝐿 (s

2
, u

1
))

q
u
 (s

1
, a) ← (1 − 𝛼) q

u1
 (s

1
, a) + 𝛼 (r + 𝛾 max

a A′∈
 q

u2

(s
2

, ′a))
for u ∈ U, u ≠ 𝑢1 do

r, u′ ← rewardMach i n e O u t p u t (u, L (s
2

, u));
q

u
 (s

1
, 𝑎) ← (1 − 𝛼) q

u
(s

1
, 𝑎) + 𝛼 (𝑟 + 𝛾 max

a A′∈
 q

a′

(s
2

, ′a))

u
1
 ← u

2
, s

1
 ← s

2
if u1 ∈ F then

break

return Q

The algorithm works as follows:

 • The agent starts with RM state u
1
 and environment state s

1

 • It uses its estimate of q
u
1

 (s
1
, .) to select action a.

 • The environment goes to state s
2
.

 • The RM transitions to state u
2
 caused by the events output

by 𝐿 (s
2
, u
1
).

 • The agent updates the optimal q- function q
u
1

(s
1
, a) using

reward output by 𝜎.

 • The agent queries the rewards and RM transitions that

would have occurred had the RM been in any other state u

and uses this information to update the estimate of each q
u
.

Multi-Agent RL (MARL) Algorithms     ■    113

The tabular QRM algorithm is guaranteed to converge to an

optimal policy.

5.4 MARL ALGORITHMS: NEURO- SYMBOLIC

LEARNING

We interact with outside world in a two- tiered manner:

i. Perception through sensory inputs which is mapped into

symbols, and

ii. Cognition which maps the symbols into knowledge

about the environment.

This is further used for supporting abstraction, reasoning by

analogy, and long- term planning.

The NN- based AI algorithms effectively model machine

perception, but for modeling human cognition a different

approach using symbolic knowledge structure is needed.

Neuro- symbolic AI approach supports mapping perception

output to knowledge which enables traceability of knowledge

systems. It combines NN with knowledge- guided symbolic

approaches to create more capable and flexible AI systems

capable of combining both algorithm and application- level

capabilities.

Further analysis of this approach leads to two major

considerations.

Symbolism: It represents objects as symbols and uses rules

of logic to work with them. Let A denote the collection of prop-

ositions and B the general principles. Then historically three

different types of reasoning have been found by logicians for

the symbolic approach.

 • Deductive: One derives A from B only when A is a formal

logical consequence of B.

 • Inductive: One infers B if given A.

114 ■ An Introduction to Deep Reinforcement Learning

 • Abductive: One infers A as an explanation of B without

rigorous logical analysis. This allows preconditions from

consequences which is opposite in direction to induction.

It is apparent that all of them involve working with symbols. It

requires relatively few input symbols for representing know-

ledge of the target system and internal functioning of the

programs is transparent.

It was discovered soon that the symbolic approach does not

work well with noisy and ambiguous real- world data.

Connectionism: It was generally observed that

 • Cognitive processes (attention, problem- solving, memory,

learning, decision- making, language, perception, imagin-

ation, and logic reasoning) arise from neurons and their

connections.

 • Learning occurs through weight modification, minim-

izing cumulative error and with discovery of statistical

patterns in the input data.

Thus, ‘cognition’ can be represented as stemming from the

interconnected networks of uniform ‘neuron’- like units, thus

allowing its representation by neural networks (NNs).

Despite many successes, this approach also has some

shortcomings like lack of compositional generalization and a

verifiable train of logic and no understanding of why a deci-

sion was made. Application of this approach to critical areas

like medical diagnosis, autonomous driving, and mathematical

reasoning has proved very problematic.

Integration of two approaches: Neuro- Symbolic learning
Recently, researchers have tried to combine the above two as

‘Neuro- symbolic’ (NeSy) approach to AI. It was also found that

neural (N) and symbolic (S) components can be combined

in different ways. The following six broad types capture this

integration:

Multi-Agent RL (MARL) Algorithms     ■    115

i. S- N- S: symbols as both input and output.

ii. S[N] : neural as subroutine inside overall symbolic

approach.

iii. N|S: neural and symbolic both at the same co-

routine level.

iv. N:S→N: symbolic rules integrated with NN’s architec-

ture or training.

v. N_ S: symbolic as soft constraint on loss function in

training NN.

vi. N[S] : symbolic engine directly embedded inside an NN

engine, logical reasoning as tensor calculus.

This is a rapidly evolving area of research and does not have a

universally agreed approach yet. Here one such approach will

be described to give a general idea of the research in this field.

5.5 MARL FOR A2C AND A3C

This variation of A2C was developed by Google DeepMind. It

uses many agents with each having its own copy of the environ-

ment. All agents also have their own set of network parameters,

which are different from others. They interact with their envir-

onments asynchronously and learn with each interaction just

like in an A2C algorithms. They learn the conditional prob-

ability P a s(| ,)θ , where θ denotes the agent- specific network

parameters. At the same time, they are also controlled by a

global network, which collects the learning information and

creates a better picture of the environment. This process mimics

the human learning process more accurately as we learn from

various sources.

5.6 MULTI- OBJECTIVE RL (SINGLE AND

MULTI- AGENT)

In most real- world problems, our decisions involve optimiza-

tion of more than a single objective. For example, in medical

116 ■ An Introduction to Deep Reinforcement Learning

situations, we may want to maximize the effectiveness of the

treatment, while minimizing a variety of side effects. Most real-

world decision problems are inherently multi- objective, and

they need a generalization of the single objective RL to multi-

objective one. Many times, all the goals needed by an adequate

solution are combined into a scalar and additive reward

function and numerical rewards or penalties are assigned to

events that can occur in the environment.

For single- agent RL, this leads to fine- tuning the reward

function iteratively until a satisfactory solution is found. This is

an unsatisfactory approach lacking explainability and inability

to handle changing requirements. Mathematically, it implies

that it is always possible to convert a MOMDP into an MDP.

An a priori scalarization function is required for this to work

which may or may not be feasible or desirable.

Some scenarios and examples are presented here:

 • Unknown utility function scenario: There is too much

uncertainty about knowing the correct utility function.

It is preferable to compute a broader set of policies to

respond quickly whenever more information is available.

 • Decision support scenario: The user’s preferences are

unknown or difficult to specify. It is almost identical to

the unknown utility function scenario. The only difference

is that the user selects a policy based on its preference.

Capturing preferences and trade- offs for all stakeholders

across all objectives is difficult, if not impossible. One solu-

tion is to learn a set of optimal policies and let an authority

(local council or government) decide what policy to follow

after a collective decision has been made by a local council

or government.

 • Known utility function scenario: The user’s preferences are

known at the time of learning or planning, so scalarization

Multi-Agent RL (MARL) Algorithms     ■    117

is both possible and feasible. However, sometimes this can

lead to an intractable problem. Usually, since the user’s

preferences are known, it is possible to learn a single

optimal policy.

 • Interactive decision support scenario: The agent learns

both the preferences of the user in the given environment.

During learning, the agent can find user preferences and

remove uncertainty from the user’s utility function. At

various times during the learning phase a user could be

presented with different potential solutions and rank the

solutions in order of preference, so the system gets a more

accurate representation of the users preferences and learns

an optimal solution.

 • Dynamic utility function scenario: The user’s preferences

for certain objectives change over time. Therefore,

applying a priori scalarization would be undesirable. An

optimal approach for the algorithm is to learn a finite

number of policies over time and choose an appro-

priate non- dominated policy for any utility function and

improve upon it. Although there is an infinite amount of

utility functions, they can be covered by a finite number of

policies.

 • Review and adjust scenario: A user may be uncertain about

its objective preferences over time, making utility function

too much uncertain. In this scenario, learning a coverage

set of policies is optimal, so a user can select the policy

accurately reflecting its preferences. The chosen solution

can be reviewed before execution. If the user’s preferences

have changed, selected solution can be adjusted to accur-

ately reflect the updates.

Multi- objective RL tries to overcome these shortcomings. Some

useful approaches are:

118 ■ An Introduction to Deep Reinforcement Learning

i. Stateless/ bandit algorithms:

The well- known Multi- Armed Bandit (MAB) algorithm gives

an optimal exploration/ exploitation strategy for selecting

between different actions (arms). The aim is to minimize the

regret defined as the loss in reward from not selecting the ini-

tially unknown optimal action on every time step). This has

been extended to MORL by extending this concept to multi-

objective regret in which the agent minimizes the number of

Pareto- dominated actions. This general idea has resulted in sev-

eral MORL algorithms like multi- objective χ- armed bandit (the

set of arms is measurable), a modified form of the Hierarchical

Optimistic Optimization (HOO) algorithm, multi- objective

ranked bandits, etc.

ii. Single- policy algorithms:

Extension of existing single- objective model- free value- based

methods, such as Q- learning, to multi- objective situation is

the most widely adopted approach to MORL. It requires two

changes to the learning algorithm.

 • The agent stores Q- values as vectors rather than as

scalars, and

 • The scalarization function has to match the utility function

and should be used to identify the greedy action to per-

form in any given state.

In the case of either weighted or unweighted linear scalarization

function, this is equivalent to transforming the MOMDP into

a corresponding MDP. Extension to nonlinear case is quite

complicated and several approximate methods have been

devised.

Multi-Agent RL (MARL) Algorithms     ■    119

iii. Multi- policy algorithms:

These approaches fall into two classes:

 • Outer loop methods operate on series of single- objective

problems. The simplest outer loop methods iterate through

a series of different parameter settings for a utility function

and re- run a single- policy MORL method for each setting.

 • Inner loop methods directly produce multiple policies by

modifying the algorithm to directly identify and store

multiple- policies in parallel rather than sequentially.

Pareto- Q- learning is a good example of this.

In case of continuous state- action spaces and not fully observ-

able states, policy search or actor- critic algorithms have been

considered.

120 DOI: 10.1201/9781032659800-6

C H A P T E R 6

Recent

Developments

in DRL

The Deep reinforcement learning – both theory and

applications – is developing rapidly. New ideas and

techniques are entering discourse very often. In this chapter

some of them are presented. The list is not exhaustive but hope-

fully introduces the readers to some of the intellectual excite-

ment permeating the research in this area.

Table 6.1 identifies some of the popular DRL algorithms

underlying recent work.

6.1 PHYSICS- BASED NNS AND DRL

A supervised learning NN is a universal function approximator.

However, it is strongly limited if one wants to extrapolate the

desired solution for input variable values situated outside the

range of the training data. This becomes a bottleneck, when in

addition to this, the data is hard to come by due to the nature of

http://dx.doi.org/10.1201/9781032659800-6

Recent Developments in DRL     ■    121

TABLE 6.1 Some DRL Algorithms

Common Algorithms Characteristics

Value-
based
methods

State- Action- Reward-
State- Action (SARSA)

Learn Q function through TD
learning algorithm and use Q
function to generate actions

Deep Q Network (DQN) Combining neural network with
Q- learning and adopting random
strategy, each time learning
uses the action that the current
strategy believes to be the most
valuable, it is easy to overestimate
the Q value.

Double (DQN) The problem of overestimation is
solved by improving the algorithm
that separates selection from
evaluation.

Averaged- DQN By reducing the approximate error
variance in the target value, the
training process is more stable, and
the performance is improved.

Multiple DQN variant
combinations: Rainbow

Combine the six extensions and
improvements of DQN algorithm
and focus on the same agent,
including DDQN, priority- based
reuse pool, competitive network,
multi- step learning, distributed RL
and noise network.

Action
Elimination – DQN

(AE- DQN)

To reduce the probability of
redundant and uncorrelated
actions, a system is proposed to
learn the approximate value of Q-
function and eliminate actions at
the same time, which includes two
deep neural networks: DQN and
action elimination network.

Policy-
based
methods

Recurrent Deterministic
Policy Gradient
(RDPG)

Using RNN, agents can integrate
the characteristics of historical
information and combine it with
deterministic strategy gradient
DPG to solve some observable
problems in POMDP.

(Continued)

122 ■ An Introduction to Deep Reinforcement Learning

Common Algorithms Characteristics

Deep Deterministic
Policy Gradient
(DDPG)

Separate the exploration of action
strategies from the learning and
updating of action strategies,
explore and use random strategies,
and learn to use deterministic
strategies; Increase batch
normalization to prevent gradient
explosion.

Trust Reason Policy
Gradient(TRPG)

The advantage function is
introduced to evaluate the current
action value relative to the average
value, to solve the problem of
inappropriate step selection; The
importance sampling processing
action distribution is introduced
to solve the problem of low data
sampling efficiency.

Proximal Policy
Optimization (PPO)

Use first- order optimization to
minimize the loss function; High
stability and good applicability
in continuity problems; The
implementation is relatively
simple.

Model-
based
methods

Continuous deep
Q- learning based on
model acceleration

The RL algorithm based on model
and without model is effectively
combined to improve efficiency.

Exploration with
Exemplar Models (EX2)

The novelty is estimated by
considering the ease with
which the classifier trained by
discriminant can distinguish a
given state from other states seen
previously so as to solve the sparse
reward problem.

Model- Ensemble
Trust- Region Policy
Optimization
(ME- TRPO)

With the same performance as
the most advanced model- free
algorithm, the sample complexity
is greatly reduced; Model
integration technology is effective
in overcoming model deviation.
The introduction of tpro makes
learning more stable.

TABLE 6.1 (Continued)

Recent Developments in DRL     ■    123

the problem. In addition, the datasets corresponding to specific

boundary conditions, material types, etc., are very hard to gen-

eralize to new and unseen situations.

In the past, many NN methods like DNN, RNN, CNN,

GAN, and Neural Operators have been used for tackling these

problems.

Common Algorithms Characteristics

Temporal Difference
Model(TDM)

Using the relationship between
model- based learning and model-
free learning to learn specific types
of target condition value functions,
the sample complexity in
continuous control tasks is higher
than that in complete model- free
learning, and the performance
is better than that of pure model
algorithm.

Hierarchy-
based
methods

Hierarchical DRL Decisions are made at two levels: the
top- level module receives the state
and selects a new goal, and the
low- level module uses the state
and the selected goal to make
decisions until the goal is achieved
or terminated.

Feudal Network
Hierarchy RL

Using different time resolutions,
using the manager module and the
worker module, it is a consistent,
end- to- end differentiable model,
using directional rather than
absolute goals.

Hierarchical
reinforcement learning
based on Stochastic
Neural Network

First, learn skills in the pretraining
environment and use agent reward
signals to reduce the complexity
of samples; Training advanced
strategies on learning skills can
achieve good performance in
reward sparse or long horizon
tasks.

TABLE 6.1 (Continued)

124 ■ An Introduction to Deep Reinforcement Learning

Many times, the underlying system is known to be described

by known laws of physics in the form of general partial differ-

ential equations (PDEs). Using this information in the learning

stage makes it possible to overcome the problem of data scarcity.

Physics- inspired NNs lie at the intersection of the pure physics-

based system description and pure data- driven explanations.

They ensure consistency with known physics of the system and

also allow extrapolation beyond the available data.

There are four distinct neural network frameworks based on

how the underlying physics is treated.

6.1.1 Physics- Guided Neural Networks (PgNNs)

PgNNs use supervised DL techniques to construct mappings

between formatted inputs and outputs generated from

experiments and computations in a controlled setting. The

mappings are checked extensively to ensure compliance with

physics principles and fundamental rules. Such models require

a rich and sufficient dataset to be trained and used reliably.

The model maps a set of inputs x to outputs y using an

appropriate function F with unknown parameters w such that

y x w= ()F ; . By specifying a particular structure for F, a data-

driven approach fine- tunes the parameters w so that the overall

error between true and model- predicted values is minimized.

The cost of data acquisition for complex physical systems is quite

high. This results in sparse data so the vast majority of state-

of- the- art PgNNs lack robustness and fail to generalize using

interpolation and extrapolation. Some of the other limitations

are also important considerations before deciding to use them.

 • Their training process is solely based on statistics and

generates models based on correlations in statistical

variations. The predictions, thus, are naturally physics-

agnostic and may violate the underlying physics. The

training datasets are usually sparse and do not cover

the entire range of underlying experimental attributes.

Recent Developments in DRL     ■    125

Therefore, the models also fail in blind testing on

conditions outside the scope of training.

 • Their predictions might be incorrect, even for inputs

within the scope of sparse training datasets due to lack of

interpolation capabilities, especially for very wide range of

the attributes. Also, they may not fully satisfy the training-

specific initial and boundary conditions which vary from

one problem to another, making the data generation and

training process prohibitively costly. Additionally, inverse

problems estimate parameters only indirectly related to

these attributes.

 • As they are not resolution- invariant by construction, so

they cannot be trained on a lower resolution and be dir-

ectly inferred on a higher resolution because they are only

designed to learn the solution of physical phenomena for

a single instance (i.e., inputs- outputs). While these models

are optimal with respect to the entire dataset, they may

produce suboptimal results in individual cases. They

may struggle to learn the underlying process for diverse

training dataset, i.e., when the interdependencies between

different input and output pairs are drastically different.

6.1.2 Physics- Informed NNs (PiNNs)

They are data- driven to learn a model and ensure consistency

with the applicable physics. They can generate more robust

models with less data and are effective for ill- posed and inverse

problems. Using domain decomposition allows scaling them to

large problems.

PiNNS remediate the generalizability issue by performing

supervised learning tasks while obeying laws of physics given

as general nonlinear PDEs or ordinary differential equations

(ODEs). They use deep NNs with a series of fully connected layers

and a variant of gradient descent optimization. The learning or

training process and hyperparameter tuning are conducted

manually and depend on problem- dependent sample size.

126 ■ An Introduction to Deep Reinforcement Learning

They incorporate a weakly imposed loss function consisting

of the residuals of physics equations and boundary constraints.

They also leverage automatic differentiation to differentiate

the neural network outputs with respect to their inputs (i.e.,

spatiotemporal coordinates and model parameters). By min-

imizing the loss function, the network can closely approximate

the solution. As a result, PiNNs benefit from the long- standing

achievements in mathematical physics. They are limited due

to theoretical (e.g., convergence and stability) and implemen-

tation considerations (e.g., neural network design, boundary

condition management, and optimization).

Let us assume that the physics of the system of interest can

be described using nonlinear PDEs of the general form.

 u N u t
t

+ [] = ∈[]; , ,λ 0 0 T (6.1)

Here u t x,() is the solution function and N u,λ[] is a nonlinear

PDE operator with model parameters λ. This setup applies to a

wide range of problems in mathematical physics, e.g., conser-

vation laws, diffusion processes, advection– diffusion– reaction

systems, kinetic equations, etc. The PiNN solution to these

systems uses two NNs. The first NN is a supervised learning

NN using the available but incomplete and scarce data and

it approximates the true solution u t x,() under the constraint

from a loss function. Let

 • t x i N
u

i

u

i

u
, , , , ,{ } =()1 = the time and space point values

corresponding to the training data u t x
u

i

u

i,(), and

 • u i Ni

u
{ } =(), , , ,1 = the mean values.

The loss function is chosen as the mean square error (MSE
u
).

 MSE
N

u t x u
u

u i

N

u

i

u

i i

u

= () −
=
∑1
1

2

, (6.2)

Recent Developments in DRL     ■    127

The second NN is a feed forward NN (also called multilayer

perceptron or MLP) used for computing f t x u N u
t

, ;() = + []λ

on a finite set of chosen time and space point values (called col-
location points). It transforms the input to an output through

a layer of neurons using either linear maps between units in

successive layers or scalar nonlinear activation functions within

layers. Some of the popular activation functions are sigmoid,

hyperbolic tangent, and rectified linear unit (ReLU) functions.

Let t x i N
f
i

f
i

f
, , , , ,{ } =()1 be the chosen collocation points for

f t x,(). They are different from the time and space points of the

first NN. The corresponding loss function MSE
f
 is chosen as

 MSE
N

f t x
f

f i

N

f

i

f

i

f

= ()
=
∑1
1

2

, (6.3)

The MSE
f
 enforces the structure imposed by the system PDE

at the collocation points. These collocation points are added

to the space and time points of the training data in the first

NN. The shared parameters between the two NN are learned by

minimizing the two MSEs, i.e., total MSE MSE MSE
u f

= + . The

supervised training in the first NN now

 • Includes this additional loss constraint due to physics,

 • Integrates the mathematical model into the network,

 • Reinforces the loss function with a residual term from the

PDEs governing the system, and

 • Further acts as a penalizing term to restrict the space of

acceptable solutions.

Two distinct classes of algorithms have been devised using these

considerations: (i) continuous time models as data- efficient
spatiotemporal function approximators and (ii) discrete time

128 ■ An Introduction to Deep Reinforcement Learning

models using implicit Runge– Kutta methods with unlimited

number of temporal stages.

Some new approaches in this area use operator regres-

sion and equivariant neural network architectures with built-

in physical constraints. Distributed PiNNs (DPiNNs) and

distributed physics- informed extreme learning machines

(DPiELMs) have been developed for approximating PDEs with

strong nonlinearity or sharp gradients.

PiNNs come with several limitations and shortcomings:

 • Their training may face gradient vanishing problems and

can be prohibitively slow for practical three- dimensional

problems. They limit low- dimensional spatiotemporal

parameterization due to using fully connected layers.

 • There is no theoretical proof of convergence for PiNNs

when applied to problems governed by nonlinear PDEs.

Additionally, all deep learning (DL) models including

PiNNs generally fail to realize theoretical global minima.

 • PiNNs loss function has many terms with relative

weighting affecting the predicted solution.

 There are, currently, no guidelines for selecting weights

optimally. Different loss function terms may compete

during training, thus reducing the training process stability.

PiNNs are also harder to train for an ill- posed optimization

problem as they depend on soft physical constraints.

 • PiNNs have bias induced by low frequency and they fre-

quently fail to solve nonlinear PDEs for high- frequency

or multiscale structures. As they learn the solutions to a

given PDE for a single instance, they need a new NN to

train for a new instance of the functional parameters or

coefficients. This limits their generalization (e.g., spatio-

temporal extrapolation). Additionally, they face diffi-

culties in learning the solutions to inverse problems in

heterogeneous media.

Recent Developments in DRL     ■    129

6.1.3 Physics- Encoded Neural Networks (PeNNs)

For situations when the explicit form of differential equations

is not fully known, PeNNs are more helpful. They leverage

advanced architectures to address issues with data sparsity

and the lack of generalization encountered by both PgNNs

and PiNNs. They can forcibly encode the known physics into

their core architecture and can extend the NN’s learning cap-

ability from instance learning (used by PgNNs and PiNNs) to

continuous learning. Some approaches like physics- encoded

recurrent convolutional neural network (PeRCNN) and neural

ordinary differential equations (NeuralODE) have shown much

improvement over PiNNs.

The encoding mechanisms of the underlying physics in

PeNNs are fundamentally different from those in PiNNs.

Additionally, both NNs can be integrated to achieve the desired

nonlinearity of the model. The NNs generated by PeNNs per-

form better in the presence of data sparsity and poor model

generalizability when compared with PgNNs and PiNNs.

The most important limitation of PeNNs occurs in training

and is similar to PgNNs and PiNNs. Their architecture is also

comparatively more complex. Their advantage lies in their

(i) more efficient algorithms in the finite- dimensional setting,

(ii) their ability to provide transferable solutions, (iii) their

robustness against data scarcity, and (iv) their generalizability

compared to PgNNs and PiNNs.

6.1.4 Neural Operators (NOs)

The NOs use supervised learning in a manner that is different

from previous categories of PgNN, PiNN, and PeNN. They

learn the underlying linear and nonlinear continuous operators

(such as integrals and fractional Laplacians) by using advanced

architectures (e.g., DeepONet). Their data- intensive learning

resembles the PgNNs, as they both enforce the physics of the

problem by using labeled input- – output dataset pairs. However,

130 ■ An Introduction to Deep Reinforcement Learning

NOs are also very different from PgNNs which cannot be

generalized due to under- parameterization.

NOs can be combined with PiNNs and PeNNs to train a

model for learning complex nonlinearity in physical systems

with extremely high generalization accuracy. They are very

robust for applications requiring real- time inference. Most

of the DL methods like PgNNs, PiNNs, and PeNNs gen-

erally map the solution of a physical phenomenon for a

single instance (e.g., a certain spatiotemporal domain and

boundary conditions to solve a PDE using PiNN), and thus

must re- train or further train (e.g., transfer learning) to

map the solution under a different instant. One can instead

use NOs to

 • Learn nonlinear mappings between function spaces and

the underlying linear and nonlinear continuous operators,

 • Enforce the physics of the problem using labeled input–

output dataset pairs and also provide enhanced gen-

eralization, interpretability, continuous learning, and

computational efficiency compared to PgNNs, PiNNs, and

PeNNs, and

 • Use NN- based mesh- invariant, infinite- dimensional

operators that do not require a prior understanding

of PDEs.

NOs work with data to learn the resolution invariant solution

and can be trained on one spatiotemporal resolution and suc-

cessfully inferred on any other. This resolution invariance is

achieved because NOs learn continuous functions rather than

discretized vectors by parameterizing the model in function

spaces. They are very robust for applications requiring real-

time inference. Three main NOs have been proposed recently,

namely, (i) deep operator networks (DeepONets), (ii) Fourier

NO (FNO), and (iii) graph NO (GNO).

Recent Developments in DRL     ■    131

6.1.5 Physics- Informed Reinforcement Learning (PiRL)

In the traditional DRL approaches, the quality and efficiency

of input samples has been a major problem. Model- based RL

improves on this by learning the transition dynamics and

reward function of the environment to generate sample system

trajectories. It then backpropagates through them to update

the policy by using the differentiability of the model. This can

be further improved by using a much more accurate, physics-

informed neural network- based dynamics model.

One of the common approaches for implementing PiRL has

three steps:

i. Interaction with the environment: Current policy for

connecting states to actions is used to interact with the

environment and gather data.

ii. Learning the model: The data collected in the first step is

used to learn the model for system dynamics. There are

two approaches for this step.

 • Given the current state and action the next state is

predicted by training a standard deep NN (DNN).

 • In another approach the underlying Lagrangian of the

model is used to derive the equations of motion from

which the next state of the system is predicted.

iii. Learning the behavior: The model learned in the second

step is used to generate imaginary trajectories.

Afterwards, the policy is updated by backpropagating through

them. This is accomplished by using the physics behind the

model and the differentiability of the resulting equations. In

reward learning a network is trained to map the next state to

the reward using the Absolute Error Loss (also known as L1

loss) between the predicted reward and the ground truth as the

loss function.

132 ■ An Introduction to Deep Reinforcement Learning

These general ideas and methods can be adapted to study

many systems and phenomena of interest with an underlying

physics- based model.

6.2 TRANSFORMERS

Transformer in a neural network (NN) setting is a DL model

and is generally used for sequence modeling and sequence-

to- sequence prediction. Basically, it transforms one sequence

of input into another depending on the problem statement.

This task is also performed by other DL models like RNNs and

LSTMs but unlike them the transformers process the entire

sequence at once and use the mechanism of ‘attention’ to weigh

parts of input differently.

Recently, they have shown tremendous success in natural

language processing (NLP), computer vision, and similar

other tasks.

There are many variations on this simple idea resulting in

different architectures.

 • The original Encoder- Decoder Transformer (EDT) is a

sequence- to- sequence transformer.

 • Bidirectional Encoder Representations from Transformer

(BERT) is an encoder- only transformer.

 • Generative Pretrained Transformer (GPT) is a decoder-

only transformer.

Here encoder and decoder refer to the main components of

their architecture.

The basic structure of a transformer is made of many layers.

i. Inputs: They are the numeric representation of the

sequence to be transformed. As text directly can’t

be used as NN input, a tokenizer is used to generate

Recent Developments in DRL     ■    133

numeric representation for each token which is then

sent to the encoder.

ii. The input embedding layer: It generates input

embeddings of model dimension d
m

 (generally chosen

as 512 but can be different) for each token.

iii. The positional embedding layer: It encodes informa-

tion about every token t’s position (denoted by 2i).

(,) , , /
PE t PE t N

i i

i d
model() () = () =

+
−

2 2 1

2sin cos t*θ θ θ

 N the largest k i e g N i
d
m , . ., , , , ,= ∀ ∈ … −









10000 0 1
2

1

The position encoding output is added to the input embed-
ding layer.

iv. The attention layer: It uses the concept of ‘attention’
to provide importance to a few key tokens in the input
sequence by altering the token embeddings. The calcula-
tion of ‘attention’ needs the following matrices and vectors.

 • The Query, Key, and Value weight matrices are,

 • Q d d
w m k

= =Query weight matrix dimension(X�),
 • K

w
 = Key weight matrix (dimension = d d

m k
X�), and

 • V
w
 = Value weight matrix (dimension = d d

m v
X�).

 • The Query, Key, and Value matrices use the token
matrix E (dimension = n X d

m
) generated at the input

embedding layer. Then for n tokens they are,
 • Q = E X Q

w
 = Query matrix (dimension = n X d

k
),

 • K = E X K
w

 = Key matrix (dimension = n X d
k
), and

 • V = E X V
w
 = Value matrix (dimension = n X

d d
v k
).Each of these matrices has rows andn

or d
v
 (generally 64 but can be different) columns.

134 ■ An Introduction to Deep Reinforcement Learning

Those columns are the Query, Key, and Value vectors
belonging to the corresponding matrices.

These matrices are derived from the linear transformations

of the input sequence as described above. Typically, Q corres-

ponds to the current element, K represents other elements, and

V encapsulates information to be aggregated.

Then the ‘attention’ for each token n is defined as

 Attention Q K V softmax QK d V
n

T
k

n
, , /()  = ()



 (6.4)

By definition, softmax z
e

e
i

z

i

K
z

i

i

() =
=∑ 1

. The attention is calculated

for each token.
The basic idea behind ‘attention’ assumes that given an input

text, it is possible to allocate distinct weights to individual

words to capture dependencies and contextual relationships

within the sequence. Each element within the sequence has its

unique representation.

The association weight between the current element and

others is determined by calculating the similarity between the

Q and K matrices through their dot product normalized using

the softmax function. The normalized weights are then applied

to the corresponding values, followed by their aggregation.

This results in a representation encompassing the association

between the current word and other words in the text and is

formally expressed as ‘attention’ given above.

v. The multi- head attention layer: It is a stack of par-

allel attention layers with n x d
m

 dimension. It helps in

understanding different aspects of a sequence (e.g., sen-

tence or a language). Each head in this layer takes in the

positional encoding generated earlier and produces an

Recent Developments in DRL     ■    135

output of shape n x d
k
 each. This output from all heads

is then concatenated to produce a single output of the

dimension n x d
m

. LSTM or RNN cannot be used for this

purpose as they may lack sufficient memory for complex

tasks like Language Translation.

vi. Generative pretrained transformer and ChatGPT

There are two core techniques behind this new and revo-

lutionary application which has brought AI to everyone’s

attention.

i. Transformer as the backbone architecture: It has become an

essential foundation for the recent development of large

language models, such as BERT and GPT. Transformer

idea has also been extended from language to visuals, so

that it has become a unified backbone architecture for

both NLP and computer vision.

ii. Autoregressive Generative Pretraining: These methods

have become the foundation of GPT models as they

handle the statistical analysis of time series data very

well. These models specify that the output variable is lin-

early dependent on its preceding values. For NLP, they

predict the subsequent word given the previous word,

or the last probable word given the following words.

The models learn a joint distribution of sequence data,

employing previous time steps as inputs to forecast each

variable in the sequence. The joint distribution p x
θ () can

be factorized into a product of conditional distributions,

as demonstrated below:

 p x p x p x x p x x x x
n nθ θ θ θ() = () ()… …()−1 2 1 1 2 1

| | , , , (6.5)

The RNNs are architecturally similar, and they use the pre-

vious hidden state but autoregressive models use previous

136 ■ An Introduction to Deep Reinforcement Learning

time steps as input. They are like a feed- forward network

that incorporates all preceding time- step variables as inputs.

Recently, the autoregressive approach has been extended to

continuous variables as well.

6.3 GENERATIVE AI

Generative AI (GAI) is a type of AI which learns the patterns

and structures of the input data in one media in detail and

then generates output data of different types of media (e.g.,

text, images, etc.) when prompted. Traditional AI focusses on

detecting patterns, making decisions, improving analytics, clas-

sifying data, etc. using CNN, RNN, RL, etc. GAI produces new

contents, responses, synthetic data, etc., using Transformers,

GANs, and variable auto- encoders. The recent excitement

about GAI is due to the simplicity of its user interfaces.

The GANs, transformers, and large language models allowed

the GAI to take off even though this technical approach was

first used in 1960s chatbots. Especially, transformers made it

possible to train ever- larger models, e.g., billions of pages of

text, without labeling all the data in advance. This resulted in

answers with more depth using the idea of ‘attention’ to track

the connections between words across pages, chapters, and

books and connections to analyze codes, proteins, chemicals,

DNA, etc. Further innovations in multimodal AI allowed con-

tent generation across the media, e.g., images from text, etc.

Basic generative model denoted by Pmodel has the following

properties:

 • Given a dataset of observations X generated according to

an unknown distribution Pdata, the Pmodel can mimic Pdata.

 • By sampling from Pmodel, observations that appear to have

been drawn from Pdata can be generated.

 • Generative DL consists in applying DL techniques to learn

Pmodel.

Recent Developments in DRL     ■    137

Table 6.2 summarizes these points.

The GAI can use DRL methods to increase its capabilities with

three types of applications as shown in the table above.

6.3.1 Model Generation without Specified Objectives

RL is especially useful for deriving generative models for non-

differentiable losses, e.g., GANs can be used for text- generation

for which traditional techniques are not suitable. It can also be

applied to domains in which feasibility and correctness (e.g.,

running code as above) are very essential. RL can produce

observations that appear to have been drawn from the domain

of interest even when such domain cannot be modeled by

means of generative functions and corresponding differenti-

able losses. It can also derive more complex generative strat-

egies (e.g., through hierarchical RL) and reduce the model

dependence on training data.

There are some limitations of this approach as learning

without supervision is a hard task, when the reward is sparse,

e.g., sequence generation of long text or music, where the

reward is available only at the last timestep. In addition to the

techniques for obtaining a denser reward, a potential solution

might be an intrinsic reward. Ensuring a sufficient exploration

of all possible actions while still exploiting the most promising

ones to collect higher rewards is one of the key problems in RL.

6.3.2 Generation of Outputs While Concurrently
Maximizing an Objective Function

RL for objective maximization can consider generators adapted

for domains or for specific problems, or for tasks difficult to

model through differentiable functions. Also, pretrained models

can be fine- tuned to given requirements and specifications. The

goal is to derive the best possible examples according to some

specific target functions. Any desired and quantifiable property

can be Reward Function. Apart from text or music generation,

other domains might be considered as well.

138 ■ An Introduction to Deep Reinforcement Learning

TABLE 6.2 DRL in GAI

Goal Reward Advantages Limitations

Mere
generation

• GAN’s
discriminative
signal

• Log- likelihood
of realor
predicted
targets

• Constraint
satisfaction

• Model
domains have
nondifferentiable
objectives

• Adapts GAN to
sequential tasks

• Can
implement RL
strategies, e.g.,
hierarchical RL

• No supervision
learning
is hard

• Pretraining
can prevent an
appropriate
exploration

Objective
maximization

• Test- time
metrics

• Countable
desired or undesired
characteristics

• Distance- based
measures

• Quantifiable
properties

• Output of ML
algorithms

• Quantifiable
requirements
 satisfied

• Generator from a
specific domain
toward desirable
sub- domains
optimized

• Gap between
training and
evaluation
reduced

• Not every
desirable
property is
quantifiable

Improving
not easily
quantifiable
characteristics

Output of a model
trained to
reproduce
human or
AI feedback
about non-
quantifiable
properties (e.g.,
helpfulness,
appropriateness,
creativity, etc.)

• Satisfies
nonquantifiable
requirements,
e.g., the
alignment
problem

• Requires
preferences
between
candidates
instead of
defining a
mathematical
measure of
desired property

• Getting user
preferences
expensive

• Users may
misbehave,
disagree, or
be biased

• Reward
modeling is
difficult

• Prone to
jailbreaks out
of alignment

Source Reinforcement Learning for Generative AI: State of the Art,
Opportunities and Open Research Challenges, by Giorgio
Franceschelli and Mirco Musolesi, arXiv:2308.00031v4 [cs.LG] 8
Feb 2024.

Recent Developments in DRL     ■    139

There are some drawbacks of this approach like its very high

computational cost due to the number of iterations required for

convergence. In addition, certain desired properties (e.g. harm-

lessness or appropriateness) can be difficult to quantify. New

metrics are then required, and a gap between training objective

and test score might be inevitable.

6.3.3 Embedding of Desired Characteristics, Which
Cannot be Easily Captured by Means of an
Objective Function, into the Generative Process

Reward modeling introduces a great level of flexibility in RL

for GAI. Generative models can be trained to produce con-

tent with appropriate and of sufficient quality, by aligning them

with human preferences. It becomes essential when a quantifi-

able measure might not exist or information to derive it might

be hard to obtain.

Sometimes reward modeling may lead to reduction of

the diversity to a single reward function. This may cause the

majority views to disproportionately prevail. In addition,

seemingly well- performing preference- based reward models

might fail to generalize. More advanced approaches may be

required to mitigate this problem and completely prevent cer-

tain undesired behaviors.

6.4 EXPLAINABLE AI AND RL

Explainable AI (XAI) is a type of AI with an architecture such

that the reasoning behind its decision can be understood or

explained. In traditional AI, the inner mechanism of the NN

is like a blackbox that can answer ‘yes’ or ‘no’ type questions

but the reasoning behind it is mostly untraceable. There are

many situations e.g., in legal and medical field, where answers

to other ‘wh’ questions (such as ‘why,’ ‘when,’ ‘where, etc.) are

needed but usual AI cannot answer them. XAI considerations

and methods should be able to handle the following concerns.

140 ■ An Introduction to Deep Reinforcement Learning

(i) Transparency
This is provided if XAI justifications are such that min-
imally a human should be able to understand it. In its
absence situations can arise in which a false training can
be used to tweak any AI/ ML model to providing uneth-
ical benefits to an interested party.

(ii) Trust and confidence
Trust is essential if humans have to rely on any AI/ ML
outcome. A logical and scientific justification for any
prediction and conclusion should be available.

(iii) Bias and fairness
There is a trade- off between bias and variance in AI/ ML
models. It must be handled so that bias is reduced, and
one can believe the predictions of the model.

The XAI aims to provide an understanding of how AI models

work and reasons beyond the decisions they make, allowing

users to understand their results. This is particularly important

as AI becomes more integrated into everyday life and critical

decision- making processes such as healthcare and finance.

The XAI explanations should also improve the AI model per-

formance based on understanding its decision- making strat-

egies so that explanations about the model outputs can help

tune the ML system parameters better. For the DNN- based

XAI building an explanation is challenging for two reasons: (i)

DNNs offer excellent performances at the price of high inner

complexity of the models and (ii) the explanations should be

humanly understandable, which many times are unavailable.

The XAI techniques can be divided into two broad categories:

i. Transparent methods, e.g., logistic regression, support

vector machine (SVM), Bayesian classifier, K- nearest-

neighbors (KNN), decision trees (DT), rule- based

learning (simple conditional if- else form or first- order

predictive logic), and fuzzy inference systems are simple

Recent Developments in DRL     ■    141

to represent and interpret. They are more useful when

internal feature correlations are less complex. There are

three main approaches to transparency.

 • Simulatability implies that the model must be human-

executable, e.g., sparse matrix model is easier to inter-

pret than dense matrix one as it is easy to justify and

visualize by humans.

 • Decomposability means that each aspect of the model

from input of data to hyperparameters and inherent

calculations should be easy to understand.

 • Algorithmic transparency defines algorithm level inter-

pretability from input of given data to final decision or

classification. With the help of visualization users can

understand how the model reacts to different situations.

ii. Post- hoc methods work better for data with nonlinear rela-

tionship or higher complexity. After receiving a trained

and/ or tested AI model as input, such methods generate

useful approximations of the model’s inner working and

decision logic as feature importance scores, rule sets, heat

maps, or natural language. They are further classified into

model agnostic and model- specific methods.

 • Model- agnostic explanations observe the change in

output after perturbing the samples. Then they extract

feature importance scores and build a simplified local

model that approximates the original model’s behavior

near the original samples. These tools use pairwise

analysis and can be used for any AI/ ML model.

 • Model- specific techniques find explanations specific

to the given algorithm and relevant to the internal

structure of the learning model, such as (i) finding the

impact factors and correlations of the most important

features, (ii) condition- based explanations answering

‘why’ questions, and (iii) finding simple rules capturing

the complex input– output relations of the given model.

142 ■ An Introduction to Deep Reinforcement Learning

6.4.1 Explainable RL

The impressive performance and remarkable recent

achievements of RL systems can be attributed to combining

RL with DL. However, explainability, which refers to the

understanding of the system’s decision- making process, is

lacking. In response to this challenge, the new explainable

RL (XRL) field has emerged and is growing rapidly to help us

understand the RL systems.

The XAI focuses on many forms of learning like unsupervised

and supervised learning. In supervised learning, observations

are assumed to be independent and identically distributed and

the goal is to minimize the risk with immediate response. In con-

trast, the agent in RL learns to maximize the return with rewards

as the responses, which are not necessarily provided immedi-

ately. Hence, the agent needs to consider the short- term and

long- term consequences in addition to the immediate response

when learning to make decisions. Accordingly, methods to

explain these RL- specific characteristics are different from XAI.

The following considerations are very important for XRL.

i. Trust: One way to understand trust is whether a stake-

holder is willing to delegate the decision- making to the

AI system. Thus, if one is inclined to let the AI system

decide on its behalf, then it trusts the system. Also, trust

can be the confidence that the system will behave as

intended.

ii. New insight: This is the ability to extract knowledge

from the AI system to gain a new understanding of the

problem at hand. Creating an RL system is not only for

making decisions but also for gaining novel insights into

the domain.

iii. Making adjustments: It should be possible to change an

AI system for correcting and improving it. Different

quantities, such as accuracy and return indicate the

Recent Developments in DRL     ■    143

system’s performance but lack the ability to find, fix,

and improve it. Hence, knowing how the system works,

and also its strengths and weaknesses is required to find

bugs, fix them, determine when the system might fail,

and improve it.

iv. Fairness and being ethical: These ensure that the AI

system does not make decisions that, for example, might

discriminate based on skin color or gender and com-

plies with ethical standards.

Apart from these reasons, there are others like effective human

and AI collaboration, privacy, and accountability that motivate

the need for explainability.

6.5 GRAPH NEURAL NETWORKS (GNNS)

GNNs are evolutions of CNNs and graph embedding. They can

work with usually highly complex data structures given as a

graph, e.g., a grid of pixels, to predict a class. Like Recurrence

NN used in text classification, the GNNs are applied to graph

structures where every word is a node in a sentence. They were

introduced when CNNs were applied to complex graphs with

arbitrarily large sizes but failed to achieve optimal results. They

are particularly used in pattern recognition, social networks

analysis, recommendation systems, and semantic analysis.

In general, GNNs are used in predicting nodes, edges, and

graph- based tasks. A node can be a person, place, or thing,

connected with the edges defining the relationships between

them. The edges can be directed and undirected based on direc-

tional dependencies. In general graphs exist in non- Euclidean

spaces which sometimes makes it harder to interpret them.

Some of the types of GNN are the following.

 • Graph Convolutional Networks (GCNs): They are like

traditional CNNs containing graph convolution, linear

144 ■ An Introduction to Deep Reinforcement Learning

layer, and non- learner activation function. There are two

major types Spatial GCNs and Spectral GCNs.

 • Graph Auto- Encoder Networks (GAENNs): They learn

graph representation using an encoder and attempt to

reconstruct input graphs using a decoder. The encoder

and decoders are joined by a bottleneck layer.

 • Recurrent Graph Neural Networks (RGNNs): They

are good with multi- relational graphs where a single

node has multiple relations. They use regularizers to

boost smoothness and eliminate over- parameterization.

RGNNs use less computation power to produce better

results. They are used in generating text, machine trans-

lation, speech recognition, generating image descriptions,

video tagging, and text summarization.

 • Gated Graph Neural Networks (GGNNs): They are better

than the RGNNs in performing tasks with long- term

dependencies. Like GRUs, they use gates to remember

and forget information in different states.

6.5.1 GNN and DRL

State- of- the- art DRL- based networking solutions use standard

NN. e.g., fully connected, convolutional, etc., which are usually

unable to learn from information structured as graphs.

One of the solutions proposed to mitigate this problem is to

relate Q- function to the graph metrics of the GNN. The GNN-

based DRL agent defines the actions to apply on the network

topology. The actions allocate the demands on one of the can-

didate paths. The DRL agent implements the DQN algorithm,

where the Q- function is modeled by a GNN. At the same time,

the environment (i) defines the optimization problem to solve,

(ii) stores the network topology, together with the link features,

(iii) generates the reward once an action is performed.

In the iterative learning process, the agent receives a graph-

structured network state observation from the environment.

Recent Developments in DRL     ■    145

The GNN constructs a graph representation with topology

links as the graph entities. An iterative message- passing algo-

rithm running between the links’ hidden states outputs a global

hidden state encoding the topology and processed by a DNN.

At the end of this phase, the GNN outputs a Q- function esti-

mate. This is evaluated over a limited set of actions, and finally

the DRL agent selects the action with the highest Q- value.

Application of DRL in GNN is still a very active research area.

6.6 BINARIZED NNS (BNN)

Regular NNs need powerful GPUs for training. Even after

quantization the NN weights have int8 precision, which

makes training and inference still very compute- intensive

and not very energy- cost- friendly. The BNN is a new type of

neural network which stores weights in binary values, i.e., 1

and – 1, also known as 1- bit quantization. This uses just 1 bit

for weights and/ or activations instead of full precision values

and substitutes complex multiply- accumulate operations with

bitwise logic operations. Thus, computation and memory foot-

print are reduced drastically so that they become very suitable

for embedded devices and microcontrollers.

6.7 REINFORCEMENT LEARNING FROM HUMAN

FEEDBACK (RLHF)

In usual DRL approach, the agent learns the policy giving

the optimal reward function by trial- and- error iterations.

However, explicitly defining a reward function that accur-

ately approximates human preferences is challenging. RLHF

is a technique for aligning an intelligent agent with human

preferences. In this approach, first a reward model is trained in

a supervised manner to represent human preferences directly.

This reward function is then used to improve an agent’s policy

through an optimization algorithm like proximal policy opti-

mization (PPO).

146 ■ An Introduction to Deep Reinforcement Learning

The algorithm was introduced by OpenAI for enhancing

text continuation or summarization based on human feedback;

later it was reused in InstructGPT. RLHF has been applied

to many areas of machine learning, e.g., text summarization,

conversational agents, text- to- image models, etc. One of the

problems with RLHF is the high cost of acquiring high- quality

preference data without any biases.

6.8 QUANTUM RL

First we have to understand the basis of quantum computing

using some basic concepts of quantum mechanics.

6.8.1 Single and Multi- Qubit Systems

The basic unit of classical information is a single bit which can

be either in state 0 or in state 1. A sequence of n such bits can

represent 2n unique values and the bit register can only be in

one of these 2n states at any point in time. On the other hand,

the basic unit of quantum information is a single qubit with |0⟩

and |1⟩ as its two distinct, orthogonal states. These basis states
span a two- dimensional Hilbert space, which contains all 1-

qubit (pure) quantum states. The qubits can be realized physic-

ally in many ways, e.g., spin systems of subatomic particles, ion

traps, neutral atoms, or superconducting circuits. An arbitrary

qubit can not only be in |0⟩ and |1⟩ states but also be in a super-
position of both.

 |Ψ⟩ = Α |0⟩ + Β |1⟩ (6.6)

The amplitudes α and β are complex numbers satisfying

α β
2 2

1+ = . Alternatively, one can write

 ψ
θ θ

φ= +





cos e sin
i

2
0

2
1 (6.7)

Recent Developments in DRL     ■    147

This representation makes it possible to visualize the state of

a 1- qubit system on the surface of the Bloch sphere, in which

the north and south poles on the z- axis correspond to the basis

states |0> and |>1. They are the computational basis states of a

single qubit. Alternatively, qubits can be represented in other

ways also.

 • By the poles related to the x- axis

 + =
+

− =
−0 1

2

0 1

2
, (6.8)

 • By a complex combination

 R
i

L
i

=
+

=
−0 1

2

0 1

2
, (6.9)

 • By a column vector

 0
1

0
1

0

1
→









 →









,

An n- qubit system gives access to the 2n- dimensional Hilbert

space, in which an arbitrary pure quantum state is given as

 ψ = + + +
−

c c c
n0 1 2 1

00 00 00 01 11 11··· ··· ··· ··· (6.10)

The basis states consist of tensor products of the individual

qubits. The state ψ has 2n complex amplitudes, whose abso-

lute squared values must sum up to 1. Due to the principle

of superposition, an n- qubit system can encode and process

148 ■ An Introduction to Deep Reinforcement Learning

information scaling in O (2n), while for a classical setting, it is

limited to O (n).

6.8.1.1 Evolution of Closed Quantum Systems

The quantum computation is achieved by operators acting

on the Hilbert space. They describe the time evolution of a

closed quantum system and are reversible, so they can be

represented as unitary matrices, i.e., for an operator U it

must hold that U †U = I. This constraint preserves the length.

The operators are:

 X Y
i

i
Z

x y z
: , : , := =









 = =

−







 = =

−








σ σ σ

0 1

1 0

0

0

1 0

0 1

(6.11)

The operator for arbitrary rotation with θ about axis i as

 R e
i

i
iθ

θ
σ() =

−
2 (6.12)

The last 1- qubit operator is the Hadamard matrix:

 H :=
−











1

2

1 1

1 1
 (6.13)

The 1- qubit operators can be extended to act a multi- qubit

system. For example, the most relevant 2- qubit operators are

the controlled X (CX) and controlled Z (CZ), where one qubit

acts as the control and the other acts as the target. Similarly,

the CX- gate flips the amplitudes of the target qubit and the CZ

operator performs a conditional phase flip.

6.8.1.2 Extracting Classical Information via Measurements

For quantum systems, in order to extract information, an

observable quantity has to be measured, which is a Hermitian

Recent Developments in DRL     ■    149

operator O such that O† = O. The eigenstates of O define a basis

of the quantum system’s Hilbert space.

After measuring an observable O, the device outputs an

eigenvalue of O and the system is in the corresponding eigen-

state. Let |0⟩, |1⟩, ..., |N − 1⟩ be the basis defined by observ-

able O and c0, c1, ..., cN the corresponding amplitudes of state

|ψ⟩ expressed in this basis. Then measuring O gives the out-

come λi with probability c
i

2

. Consequently, having obtained λi,

the post- measurement state of the system is |i⟩. The quantum

circuits represent the measurement process with quantum

circuit diagrams as the computing steps of a quantum algo-

rithm. The diagrams give its sequence of operators, states, and

measurement.

6.8.2 Quantum RL (QRL)

It is the study and application of quantum ML (QML) as

described above to RL tasks. QML integrates quantum

algorithms with ML programs mostly for the classical data used

in quantum computing. Qubits (and in principle Qudits) with

relevant quantum operations are used to improve the compu-

tational speed and data storage. In general, QRL handles com-

putationally difficult subroutines. Most of them take one of the

following approaches.

 • Quantum- inspired RL algorithms, e.g., amplitude

amplification- based action selection

 • Variable quantum circuits (VQCs)- based function

approximation for actor, critic, MARL, etc.

 • RL algorithms with quantum subroutines, e.g., quantum

policy or value iteration, projective simulation, Boltzmann

machines for function approximation, etc.

 • Full QRL, e.g., quantum policy iteration, quantum gra-

dient estimation, etc.

150 ■ An Introduction to Deep Reinforcement Learning

6.8.3 Variational Quantum Circuits

The VQCs combine the strength of both classical and quantum

computation. They use quantum circuits with tunable

parameters on noisy intermediate- scale quantum (NISQ) hard-

ware optimizing them iteratively on a classical computer. Those

parameters then become weights in an artificial NN. The DRL

combined with NISQ computation is an RL agent interacting

with the environment. It then gains knowledge of backgrounds

and derives the policy for making the optimal decision.

The VQC can model any function approximators, classifiers,

and even quantum- many body physics that are intractable

on classical computers. Even without any quantum error

correction, or fault- tolerant quantum computation, they have

been shown to avoid the complex quantum errors existing in

other quantum devices. Just like classical NN, they can approxi-

mate any analytic action- value function of DRL.

The foundations of QC, and by implication QML, were

established with the development of the theory of quantum

physics in the early 20th century. Feynman had proposed the

idea of taking advantage of quantum mechanics for computing

in the early 1980s. QC potentially provides efficient solutions to

classically intractable problems

6.8.4 Quantum RL Algorithms

Most often, RL is used to:

 • Generate a solution for a quantum control problem, e.g.,

to learn quantum error correction strategies or to generate

control policies at a lower error rate.

 • Optimize a variational quantum algorithm (VQA).

 • Optimize supervised and unsupervised learning.

 • Employ VQCs as function approximators.

In the method of amplitude amplification, as it is used in Grover-

type search algorithms, several qubit registers embed the states

Recent Developments in DRL     ■    151

and actions relevant for the RL system in a suitable Hilbert

space. Starting from a uniform superposition, amplitudes

favored by the reward or the value function are selectively amp-

lified based on Born’s rule, i.e., a measurement is carried out on

the qubit register with regard to the ‘action- basis.’

Projective Simulation (PS): Another QRL method is based on

PS, which in the broadest sense is a particular learning para-

digm and similar in spirit to RL. Based on experiences made

through interaction with the environment, a memory network

is created by the agent. The network has a directed structure

with adaptive weights between the nodes of the network. The

learning process and action selection are based on a random

process (more precisely, a random walk) on the graph of the

network, with the transition probabilities between nodes being

given by the respective adaptive weights. PS can be ‘quantized’

by replacing the random walk with a so- called quantum

random walk. Possible quantum advantages over classical PS

lie in the acceleration of the process of action selection.

Quantum Boltzmann Machines: Boltzmann machines are used

as function approximators. These models are assumed to be

advantageous compared to typical NNs in environments with

large action spaces. Boltzmann machines are closely related to

energy- based models. For specific instances, those allow for

a quantum representation, which enables potential quantum

speed- up for post- NISQ devices.

Quantum Subroutines: Another approach to go from RL to QRL

replaces certain subroutines in existing RL approaches. One

idea is to replace policy or value iteration with some quantum-

enhanced analogs. While this approach is limited to universal,

fault- tolerant and error- corrected quantum hardware, several

such algorithms have been proposed.

152 DOI: 10.1201/9781032659800-7

C H A P T E R 7

Applications of RL

As everyday news confirms, AI/ ML has emerged as a

revolutionary technology applied in practically every area

of human endeavor. In many situations it has solved problems

deemed insoluble using standard techniques of analytical

modeling and computational programming. In this chapter

we will try to give a glimpse of the depth and breadth of these

applications focused on RL.

7.1 SELF- DRIVING CARS

RL agents applied to traffic pattern can learn traffic density,

vehicle flow patterns, speed, etc., in real time and continuously.

They can then adapt the system in the preferred direction and

keep repeating this in real time to make traffic safer and its flow

smoother across times, climates, and seasons.

http://dx.doi.org/10.1201/9781032659800-7

Applications of RL     ■    153

RL is behind the related new technology of self- driving cars

which promises to revolutionize personal transportation. The

DRL network trains self- driving cars by using sensor data feed-

back collected during driving sessions in varied and unfamiliar

terrains. This way they learn and avoid accidents anywhere in

principle. Some cities on the west coast have allowed them on

the roads, which is a sign of the maturity of this approach.

Autonomous driving (AD) systems contain many perception-

level tasks for which high precision has been achieved using

DRL. In addition to perception, AD systems must deal with

other tasks for which classical supervised learning methods are

not applicable.

(i) The prediction of the agent’s action changes future
sensor observations received from the environment, e.g.,
determining the optimal driving speed in an urban area.

(ii) Supervisory signals such as time to collision (TTC)
and lateral error w.r.t. [sic] to optimal trajectory of the
agent, represent the dynamics of the agent, as well [as]
uncertainty in the environment. Such problems require
defining the stochastic cost function to be maximized.

(iii) The agent is required to learn new configurations of
the environment and predict an optimal decision at each
instant while driving. This represents a high- dimensional
space given the number of unique configurations under
which the agent and environment are observed.

In all such scenarios RL methods provide the best approach

to an optimized solution to the problems outlined above. AD

tasks where RL could be applied include the following:

 • Controller optimization

 • Path planning and trajectory optimization

 • Motion planning and dynamic path planning

154 ■ An Introduction to Deep Reinforcement Learning

 • Development of high- level driving policies for complex

navigation tasks

 • Scenario- based policy learning for highways, intersections,

merges and splits

 • Reward learning with inverse RL from expert data for intent

prediction of traffic actors such as pedestrian and vehicles

 • Learning of policies for ensuring safety and performing

risk estimation.

Before discussing the applications of DRL to AD tasks we briefly

review the state space, action space, and rewards schemes in

AD setting.

7.1.1 State Spaces, Action Spaces, and Rewards

Commonly used state space features for an autonomous vehicle

under consideration (called ego- vehicle) include the following:

i. Position, heading, and velocity of ego- vehicle.

ii. Same for other obstacles in the sensor view of the ego-

vehicle. To avoid variations in the dimension of the

state space, a Cartesian or Polar occupancy grid around

the ego vehicle is used.

iii. Lane information such as lane number (ego- lane or

others).

iv. Path curvature.

v. Past and future trajectory of the ego- vehicle.

vi. Longitudinal information such as time- to- collision (TTC)

vii. Scene information such as traffic laws and signal locations.

AD uses the following kinds of data:

i. Raw sensor data such as camera images, LiDAR, radar,

etc., for finer contextual information.

Applications of RL     ■    155

ii. Condensed abstracted data for reducing the complexity

of the state space.

iii. In between data or a mid- level representation such as

2D bird’s- eye view. It is sensor agnostic but still close to

the spatial organization of the scene, retaining the spa-

tial layout of roads which graph- based representations

cannot do.

A vehicle policy must control several continuous- valued

actuators, e.g., steering angle, throttle, and brake, and discrete-

valued ones controlling gear changes. The continuous action

space can be discretized uniformly by dividing the range of con-

tinuous actuators (such as steering angle, throttle, and brake)

into equal sized bins. Discretization has to be done carefully

as it can lead to jerky or unstable trajectories if the step values

between actions are too large. There is also a trade- off between

having enough discrete steps to allow for smooth control and

not having so many steps that action selections become pro-

hibitively expensive to evaluate. As an alternative, continuous

values for actuators may also be handled by DRL algorithms

which learn a policy directly (e.g. DDPG). Designing reward

functions for DRL agents for autonomous driving is still very

much an open question, but many approaches are becoming

available.

7.1.2 Motion Planning and Trajectory Optimization

Motion planning ensures the existence of a path between target

and destination. Path planning in dynamic environments and

varying vehicle dynamics is a key AD problem, e.g., negotiating

right to pass through in an intersection, merging into highways,

etc. The DDPG algorithm has been found quite useful in hand-

ling these situations. Classical RL methods are used to perform

optimal control in stochastic settings, e.g., the Linear Quadratic

156 ■ An Introduction to Deep Reinforcement Learning

Regulator (LQR) in linear regimes and iterative LQR (iLQR)

for nonlinear regimes are utilized.

7.1.3 Simulator and Scenario Generation Tools

AD datasets address supervised learning setup with training

sets containing image, label pairs for various modalities. RL

requires an environment where state- action pairs can be

recovered while modeling dynamics of the vehicle state, envir-

onment, as well as the stochasticity in the movement and

actions of the environment and agent, respectively. Various

simulators have been developed for this purpose.

7.1.4 Learn from Demonstrations (LfD) and Inverse
Reinforcement Learning (IRL) for AD Applications

LfD agent mimics the behavior of an expert. Sometimes a CNN

is trained to map raw pixels from a single front- facing camera

directly to steering commands. Using a relatively small training

dataset from humans/ experts, the system learns to drive in

traffic on local roads with or without lane markings and on

highways. The network learns image representations that detect

the road successfully, without being explicitly trained to do so.

Maximum entropy inverse RL is one of the methods used for

this purpose.

7.2 VIDEO GAMES

Video games have long been of great interest to AI researchers,

especially Atari games which are used to test control problems.

The use of AI in its design has made the games better in the way

people play them. The researchers are now trying to achieving

super- human- level performance in playing them. The appli-

cation of DRL enables agents to learn making decisions in

high- dimensional environments and it has brought many

developments in this area.

Applications of RL     ■    157

Example: Atari Game – Pong

The environment consists of

 • Two solid rebounding walls at the top and bottom

 • Two agents represented by paddles and a ball.

The actions that the agent can perform are:

 • Move up or

 • Move down.

The objective is to keep shuttling the ball without letting it

touch the leftmost and rightmost walls. Every time an agent

fails to prevent the ball from touching the side walls, a penalty

is levied. Training needs to be done to aid the agent in decision-

making – to either go up or go down.

In a supervised learning approach, a label needs to be given

to every sequence of actions. This is very problematic:

1. The human controlling the agent must be highly skilled

in order to get high performance rates.

2. The dataset created must be large enough to cover all

possible action sequences.

3. Since the model is trained on a dataset created by a

human, the performance can at best be equal to him/ her.

So supervised learning cannot be used to perform better than

humans.

DRL overcomes these problems. Its framework is very

similar to that of supervised learning. There is an input frame,

a neural network, and an output action, the difference being

that there is no target label in DRL. Policy network trained

using policy gradient has been found the most useful. They

consider a random network which takes a high- dimensional

158 ■ An Introduction to Deep Reinforcement Learning

image frame from the game engine as an input. This produces

a random output action – either up or down which is sent back

to the network which then produces the next frame. After every

single choice, the game simulator executes the action and gives

a reward as feedback. If an agent wins, a reward of + 1 is given;

if it loses, a penalty of – 1 is given, else 0.

The goal of this entire setting is to maximize the reward

obtained and make the agent learn the most appropriate deci-

sion at a given stage. In the policy gradient solution, the credit

assignment problem must be solved. The entire sequence of

actions should not be discarded because of a negative penalty

at the end. It might be the case that the intermediate steps were

beneficial and some of the later steps were not.

The importance of DRL and policy gradient solution is

observed in a sparse reward setting like the game ‘Montezuma’s

revenge.’ The game environment and action sequences can be

so complex that the number of sequences leading to the goal

is very small. The agent will have limited positive examples

to follow if it takes up random exploration. To overcome this

problem, reward shaping is used. Reward shaping refers to the

process of creating a reward function that is designed manually

to direct the policy toward a specific behavior. However, reward

shaping is not an optimal approach. The DRL approach to video

games has led to impressive results in control problems.

7.3 HEALTHCARE

RL- related models and approaches have been widely applied

in healthcare domains for some time now. In the early days

the focus was on applying dynamic programming to develop

pharmacokinetic/ pharmacodynamic models. With the tre-

mendous theoretical and technical achievements in gener-

alization, representation, and efficiency in recent years, RL

approaches have been successfully applied in a number of

healthcare domains as well. Broadly, they have been applied to

three domains:

Applications of RL     ■    159

i. Dynamic treatment regimes in chronic diseases and

critical care

ii. Automated medical diagnosis

iii. Others such as health resources allocation and sched-

uling, optimal process control, drug discovery and

development, as well as health management.

7.3.1 Dynamic Treatment Regimes (DTR)

One of the goals of healthcare decision- making is to develop

effective treatment regimes that can dynamically adapt to the

varying clinical states and improve the long- term benefits of

patients. DTR provide a new paradigm to automate the process

of developing new effective treatment regimes for individual

patients with long- term care.

RL in healthcare has been used in automated medical diag-

nosis, resource scheduling, drug discovery and development,

health management, etc. It has also helped in creating DTR. It

works as follows:

 • The data based on the current clinical observations and

assessments of the patient is entered into the DTR system.

 • The DTR system already has the previous medical his-

tory data of the patient. Using RL agent, it then outputs

a suggestion on treatment type, drug dosages, and

appointment timing for every stage of the patient’s journey

to full recovery. It helps in making time- dependent

decisions for the best treatment for a patient at a spe-

cific time.

Using DTR, medical professionals can save time, energy, and

efforts needed to consult with multiple parties. It contains a

sequence of decision rules to determine the course of actions

(e.g., treatment type, drug dosage, or reexamination timing) at

a time point according to the current health status and prior

160 ■ An Introduction to Deep Reinforcement Learning

treatment history of an individual patient. They are tailored for

generating new scientific hypotheses and developing optimal

treatments across or within groups of patients. Utilizing

data generated from the Sequential Multiple Assignment

Randomized Trial (SMART), a DTR can be derived to optimize

the final clinical outcome of particular interest. Some relations

are as follows:

i. The series of decision rules in DTRs are equivalent to

the policies in RL.

ii. The treatment outcomes are expressed by the reward

functions.

iii. The inputs in DTRs are a set of clinical observations and

assessments of patients.

iv. The outputs are the treatments options at each stage,

equivalent to the states and actions in RL, respectively.

RL can achieve time- dependent decisions on the best treatment

for each patient at each decision time, thus accounting for het-

erogeneity across patients. This precise treatment does not rely

on the identification of any accurate mathematical models or

explicit relationship between treatments and outcomes. These

solutions improve the long- term outcomes by considering

delayed effect of treatments, which is the major character-

istic of medical treatment. Finally, by careful engineering of

the reward function using expert or domain knowledge, RL

provides an elegant way to multi- objective optimization of

treatment between efficacy and the raised side effect.

The domains of applying RL in DTRs can be classified into

two main categories: chronic diseases and critical care.

7.3.2 Chronic Diseases

Chronic diseases, e.g., diabetes, hypertension, schizo-

phrenia, etc., are big public health issues worldwide, claiming

Applications of RL     ■    161

a considerable portion of death every year. They last a long

period of three months or more and require continuous clin-

ical observation and medical care. Their long- term treatment

contains a sequence of medical intervention that must con-

sider the changing health status of a patient and adverse effects

occurring from previous treatment. In general, the relationship

of treatment duration, dosage, and type against the patient’s

response is too complex to be explicitly specified. RL has been

utilized to automate the discovery and generation of optimal

DTRs in a variety of chronic diseases including cancer, dia-

betes, anemia, HIV, and several common mental illnesses.

7.3.3 Critical Care

Critical care is for more seriously ill or injured patients

needing special medical treatments and nursing care. Usually,

these patients require intensive care unit (ICU) for intensive

monitoring and close attention. They may also need sedation,

nutrition, blood product administration, fluid and vasoactive

drug therapy, hemodynamic endpoints, glucose control, and

mechanical ventilation.

Much effort has been made in developing guidelines and

standardization of the various aspects of ICU interventions. It

is now possible to generate rich ICU data in a variety of formats

for the applications of RL in critical care. However, the inherent

3C (compartmentalization, corruption, and complexity)

features indicate that critical care data are usually noisy, biased,

and incomplete.

7.4 MARKETING AND ADVERTISING

The capitalist economy is centered on increasing profits by

stimulating consumption and using natural and human

resources to make products and services for that purpose.

Marketing and advertising are backbones of this approach. The

ML approach here works as follows.

162 ■ An Introduction to Deep Reinforcement Learning

i. Real- time advertising to target audiences
Real- time bidding platforms, A/ B testing, and automatic ad

optimization are the methods used for this purpose. A series

of advertisements is placed in the marketplace. The DNN-

based host automatically serves the best- performing ads in the

best spots for the lowest prices. The marketing and advertising

platforms learn in real time the most effective ads and display

them more frequently and prominently.

The same platforms use RL to associate similar companies,

products, and services to prioritize for certain customers.

The choice is reinforced if the consumer clicks or uses other

signals of engagement, so the same strategy is repeated. The ads

consumers receive are usually from companies with websites

previously visited, or bought from before, or situated in the

same industry as a company from which a previous purchase

was made.

ii. Recommendation systems
The DRL systems and learning machines are further used to gen-

erate recommendation shown as tabs like ‘Frequently Bought

Together,’ ‘Customers Also Liked,’ ‘Recommended Reading,’

etc. On news websites, they queue the next story, articles, etc.,

to the customer based on his/ her previous preferences. They

analyze customers’ behavior in real time and also generate

rewards to keep them engaged and interested.

A variation on this application is used to improve video

streaming, e.g., Netflix. RL is used to improve the perform-

ance of its algorithms that determine which video to play

next. Recommendations for new titles are made based on past

choices. It starts with an initial guess about what movie the

user will like based on his/ her previous viewing habits. Then it

recommends something new with the same or better rating. If

the user selects it, then the rating specific to that user is changed

for future interaction.

Applications of RL     ■    163

These systems have a dark side which is not good for encour-

aging critical thinking as they reward impulsive behavior based

on emotions. Their use on news websites and social media has

exacerbated the social fragmentation and entrenched the ideo-

logical divisions. The society at large may have to revisit these

issues in future.

7.5 IMAGE AND PATTERN RECOGNITION

This is one of the most important uses of RL as it is used in both

regular and security settings. RL agents can start with a given

image and then identify objects sequentially until individual

items in the total image are cataloged. Artificial vision systems

also use deep convolution NNs with large, labeled datasets as

inputs and map images to human- generated scene descriptions

from simulation engines.

Some more examples of RL in image processing include the

following:

 • Robots with visual sensors learning from their surrounding

environment.

 • Scanners for understanding and interpretation of the text.

 • Image preprocessing and segmentation of medical images,

e.g., CT scans.

 • Traffic analysis and real- time road processing by video

segmentation and frame- by- frame image processing.

 • Χλοσεδ- χιρχνιτ τελεϖισιον (CCTV) cameras for traffic

and crowd analytics

Table 7.1 presents a sample of problems in this area and

algorithms used to solve them.

7.6 AUTOMATED ROBOTS AND DRONES

While most robots do not look like their pop culture

representations, their capabilities are just as impressive. The

164 ■ An Introduction to Deep Reinforcement Learning

more robots learn using RL, the more accurate they become,

and the quicker they can complete a previously arduous task.

They can also perform duties that would be dangerous for

people with far less consequences. For these reasons, aside from

requiring some oversight and regular maintenance, robots are a

cost- effective and efficient alternative to manual labor.

Some more examples of RL in this area include the use of

robots to:

TABLE 7.1 Some Image Classification Tasks and Applied Algorithms

Item Objective Algorithm

1 Dimensionality reduction DRL- based Q- learning
2 Applying dynamic policy in active

learning
Dynamic policy

3 Learning the data selection criterion Deep Q- learning, CNN
(VGG- 16), and ResNet.

4 Enhancing the classification when
training samples are lacking

Few- shot learning

5 Solving the misclassification problem in
the soft- attention mechanisms

DSFnet

6 Localizing the objects in scenes Pre- trained CNN, - Deep
Q- network

7 Detection of the objects in images using
a hierarchical technique

Q- learning

8 Providing an Aesthetics Aware
framework based on RL (A2- RL) to
improve image cropping

LSTM

9 Providing a Fast Aesthetics- Aware
Adversarial framework based on RL
(Fast A3RL) to improve image cropping

LSTM and Adversarial
learning

10 Providing a Fast Aesthetics- Aware
Adversarial framework based on RL
(Fast A3RL) to improve image cropping

Double DQN

11 Lightweight network for large- scale
image classification with visual
attention and Gaussian modeling

Redefined Markov process
for RL with Gaussian
distribution

12 Model for autonomous exploration of
vehicles

Double deep Q- learning
(DDQN), Faster R- CNN

Applications of RL     ■    165

 • Deliver food to tables in restaurants.

 • Identify lower shelves in grocery stores and order more

products.

 • Assemble products and inspect for defects in factories.

 • Count, track, and manage inventory.

 • Deliver goods.

 • Travel long and short distances.

 • Input, organize, and report on data.

 • Grasp and handle objects of all different shapes and sizes.

The list is nonexhaustive. As we continue to test robotic abil-

ities, new features are being added to expand their potential.

These successes show the ability of DRL to control robotic

systems with high- dimensional state or observation space with

highly nonlinear dynamics. Some of the tasks are highly chal-

lenging, which cannot be handled by conventional decision-

making, planning, and control approaches.

The achievements of DRL have been mostly in simulation

or game environments. Extending them to physical world

presents additional challenges.

i. Collection of trial- and- error samples directly in the

physical world is often inefficient and/ or unsafe for the

RL agents.

ii. It is usually impossible to simulate the complex real

world exactly.

Still progress has been made in applying DRL to many phys-

ical environments, e.g., champion- level drone racing, quad-

ruped locomotion control integrated into production- level

quadruped systems (e.g., ANYbotics, Swiss- Mile, and Boston

Dynamics), etc.

166 ■ An Introduction to Deep Reinforcement Learning

Some areas have seen rapid progress in applying DRL:

 • Locomotion: DRL has enabled mature quadruped loco-

motion control. Hardware accessibility is an important

contributing factor. Even in the mature quadruped loco-

motion domain, open questions remain, such as:

i. Effectively integrating locomotion with downstream

tasks via RL

ii. Enabling efficient and safe real- world learning.

 • Navigation: DRL has shown potential for local planning,

global exploration, and constructing end- to- end naviga-

tion solutions, but the solutions lack explainability and

safety guarantees. Therefore, it has not been deployed

widely.

i. Visual navigation: While end- to- end RL excels in

simulation, most real- world successes deploy modular

designs and learn components of the navigation stack.

Joint reasoning jointly with navigation and locomo-

tion enables agile legged and aerial navigation. Model-

free, end- to- end policies show promise for structured

indoor environments like homes, while modular

architectures boost performance without sacrificing

guarantees and generalization. RL- based vision- and-

language navigation is relatively underexplored in

real- world settings but promising given the recent

advances in vision- language models.

ii. Legged navigation: For agile legged and aerial navi-

gation, jointly learning navigation and locomotion

yields promising results. Yet, involving locomotion

complicates the training of long- horizon navigation

policies.

Applications of RL     ■    167

 • Manipulation: DRL has been applied to both stationary

and dynamic manipulation tasks like pick- and- place,

contact- rich manipulation, in- hand manipulation, and

non- prehensile manipulation. Stationary manipulation

refers to an agent’s control of its environment through

selective contact. Robots require manipulation capabil-

ities such as pick- and- place, mechanical assembly, in-

hand manipulation, non- prehensile manipulation, etc., to

be useful. Manipulation poses several challenges for both

analytical and learning- based methods, as the mechanics

of contact are complex and difficult to model, and open-

world manipulation requires strong generalization and

fast online learning. It poses fundamental difficulties

for RL:

a. Large observation and action spaces make real- world

exploration prohibitively time- consuming and unsafe.

b. Reward function design requires domain knowledge.

c. Tasks are often long- horizon.

d. Instantaneous environment resets are usually unreal-

istic in real- world tasks.

 • Despite these challenges, RL has achieved notable successes

in domains where the space of tasks is more constrained –

grasping, in- hand manipulation, and assembly – rather

than less, e.g., end- to- end pick- and- place. These more

constrained tasks allow for a priori reward design and

zero- shot sim- to- real transfer, whereas open- world pick-

and- place and contact- rich manipulation require gen-

eralizing to diverse objects and tasks. The limitations of

physical simulation may also preclude scaling sim- to- real

for contact- rich tasks.

168 ■ An Introduction to Deep Reinforcement Learning

7.7 NATURAL LANGUAGE PROCESSING (NLP)

NLP tasks are some of the most important uses of RL. Some

examples include:

 • Text prediction,

 • Text summarization,

 • Question answering,

 • Machine translation, etc.

RL agents train with patterns in texts and speech, and then

mimic the language, diction, and syntax people speak to each

other every day.

In NLP, the goal is to develop computer programs capable

of communicating with humans using natural language. As an

example, machine translation helps humans speaking different

languages to understand each other by translating from one

natural language to another. Over the years, NLP research has

been transformed by ML algorithms and deep neural networks

as neural language models such as BERT and various versions of

GPT. These new approaches define natural languages as prob-

ability distributions over sentences rather than using definitive

sets specified by grammars.

An important NLP approach uses n- grams, which is a

sequence of written symbols of length n. The n- gram model is

the probability distribution of n- grams defined as Markov chain

of length n- 1. The DNNs, such as the recurrent long short- term

memory (LSTM) network, have allowed the researchers to

replace probabilistic language models with those based on DNNs.

The LSTM has been successfully applied to machine translation

which was not possible with the approach based on language

grammars alone. These new neural models contain thousands of

parameters that are estimated iteratively from a massive number

of training examples gathered from the Internet.

Applications of RL     ■    169

There are five main categories of MDP- based NLP problems.

i. Conversational systems: They are the most studied ones,

and they involve finding an optimal dialog policy that

should be followed by an automated system during a con-

versation with a human user. A very important advance-

ment in this area occurred in 2016, when researchers

from Stanford University, Ohio State University, and

Microsoft Research used RL to generate dialogues

using two RL agents. They applied policy gradient

methods to reward coherence, informativity, and ease

of answering in simulated conversations. The outcome

has been adopted very widely in business customer ser-

vice departments. The other four categories also use RL

methods. In some of them, it is even not easy to identify

the elements of a well- defined MDP.

ii. Syntactic parsing: It consists of analyzing a string made

of symbols belonging to some alphabet, either in nat-

ural or in programming languages, using a set of rules

called grammar. There could be many ways to perform

parsing, depending on the final goal of the system, e.g.,

construction of a compiler for a new programming lan-

guage, an application of language understanding for

human– computer interaction, etc. A grammar can gen-

erate many parsing trees and each of these trees specifies

the valid structure for sentences of the corresponding

language. Since parsing can be represented as a sequen-

tial search problem with a parse tree as the final goal

state, RL methods are tools well suited for the under-

lying sequential decision problem. In general, a parse is

obtained as a path when an optimal policy is used in

each MDP.

iii. Language understanding: It can also be posed as an

MDP and therefore RL algorithms can be applied.

170 ■ An Introduction to Deep Reinforcement Learning

Furthermore, they can be implemented together with

DNN to cope with the massive amount of data that text

understanding applications typically require.

iv. Text generation systems: They automatically generate

valid sentences in natural language given a language

model. The optimization generates valid substring

sequences that subsequently complete a whole sen-

tence with some meaning in the domain of the appli-

cation. For example, given a vector representation of

a set of variables in a computational system and their

corresponding values, an RL algorithm generates a sen-

tence in English (or any other natural language). This

communicates specific and meaningful information to

a human user.

 Generating navigational instructions for humans has

been one of the first areas for this approach. Here, the

system decides first the content to be communicated

to the human, and then builds the correct instructions

adding word by word. The reward function is

implemented as a hidden Markov model or as a Bayesian

network. The RL process is carried out with a hierarch-

ical algorithm using semi- MDPs. Other approaches

combining IRL and GANs have also been used in which

the reward and the policy functions are learned alter-

nately with a discriminator and a generator.

 In a text generation task, the corresponding MDP works

as follows:

a. Each state is a feature vector describing the current

state of the system containing enough information to

generate the output string.

b. Actions add or delete words.

c. Every transition to next state is determined by the

resulting string, after adding or deleting a word.

Applications of RL     ■    171

d. The reward function is learned from a corpus of

labeled data or from human feedback.

v. Machine translation: It consists in automatically trans-

lating sentences from one natural language to another

one using a computing device with a program. It receives

text (or speech) in some language as input and automat-

ically generates text (or speech), with the same meaning

in a different language. They are used mostly as online

translation systems. Neural machine translation is the

preferred approach now in which large NNs predict the

likelihood of a sequence of words.

 Currently RNN, such as LSTM network, is the preferred

MT method. Two RNNs function as an encoder and a

decoder:

a. The encoder updates its weights as it receives a sequence

of input words to extract the meaning of the sentence.

It internally encodes the meaning of the source text.

b. The decoder updates its corresponding weights to

generate the correct sequence of output words of

the translated sentence. It decodes using an internal

representation and outputs a translated sentence with

the correct meaning.

 RL has been used to tackle the problems of exposure

bias, i.e., the discrepancy between ground- truth-

dependent prediction during training and model-

output- dependent prediction during testing, and

inconsistency between the training and test objectives.

7.8 SOME OTHER AREAS

RL methods are being used in a wide variety of areas in add-

ition to those mentioned above. Some of them are:

a. Finding the ways to reduce energy consumption espe-

cially in data centers. Google achieved a 40% reduction

172 ■ An Introduction to Deep Reinforcement Learning

in energy spending without the need for human inter-

vention by developing RL and AI methods for this pur-

pose. The steps in achieving energy reduction are the

following:

 • DNN using DRL is fed snapshots of data from the data

centers every five minutes.

 • DNN predicts future energy consumptions for different

combinations of the data.

 • System identifies actions leading to minimal power

consumption subject to a set standard of safety criteria.

 • These actions are implemented in the data center.

 • The local control system verifies the actions.

A similar approach is used in setting the thermostat or the level

of light in the room.

b. In trading, one tries to predict future prices of stocks

before deciding whether to buy or sell. RL agents help

in this by optimizing the buy/ sell action for maximizing

the future monetary reward based on the current state of

knowledge. The optimization must consider factors like

availability of money, risk appetite, and access to relevant

information.

The entry of RL agents has also encouraged very fast real-

time trading using dueling RL agents for making short- term

profits. Only the future will tell if this use of RL is good for

attaining socially desirable ends like decreasing inequality.

c. Climate change, poverty and inequality, responsible

wealth generation and resource management, education,

government, and military are some of the areas in which

RL methods have been found to be very useful.

173

Epilogue

The idea of reinforcement learning combined with

neural network has revolutionized the field of machine

learning. It has led to an explosion of applications in several

fields of social and scientific importance. It is difficult to fore-

cast the future of RL but certainly we can look forward to

more and more exciting applications of this seminal idea in

near future.

Like many scientific and technological applications, RL

can be also used for unsavory ends that harm individuals

and societies. We must exert our utmost effort to prevent this

and, in cases where this is not possible, at least to minimize

repercussions. That is easier said than done as it will involve

widespread collective awareness and social effort.

In the future, we can envision the areas of application of

RL expanding to solve more and more social and scientific

problems. It will be one of the most widely available tools in the

hands of researchers as well as decision- makers. Let us hope

that it will help in solving some of the pressing problems cur-

rently facing humanity, like environmental degradation and

inequality.

https://taylorandfrancis.com

175

Acknowledgments

I thank Noah Weston for suggesting exploring the area

of machine learning. I also want to acknowledge the stimu-

lating discussions on RL with Professors Jay Kuo (University

of Southern California) and Mani Srivastava (University of

California at Los Angeles) and my colleagues Peng Wang and

Venkat Dasari.

https://taylorandfrancis.com

177

Bibliography

Books

 1. Deep Reinforcement Learning, by Aske Plaat, arxiv:

2201.02135

 2. Auto- Encoding Variational Bayes, by D. Kingma and M.

Welling, arXiv:1312.6114v11 [stat.ML] 10 Dec 2022

 3. Reinforcement Learning for Generative AI: State of the Art,
Opportunities and Open Research Challenges, by Giorgio

Franceschelli and Mirco Musolesi, arXiv:2308.00031v4 [cs.

LG] 8 Feb 2024

Reviews and Surveys

 1. “Deep Reinforcement Learning: An Overview”, Yuxi Li

(yuxili@gmail.com), arXiv: 1701.07274v6 [cs.LG]

 2. “Deep Learning: A Comprehensive Overview on Techniques,

Taxonomy, Applications and Research Directions”, Iqbal H.

Sarker, SN Computer Science 2, 420, 2021. https:// doi.org/

10.1007/ s42 979- 021- 00815- 1

 3. “Towards Data- and Knowledge- Driven Artificial

Intelligence: A Survey on Neuro- Symbolic Computing”,

Wenguan Wang and Yi Yang, arXiv:2210.15889v1 [cs.AI],

28 Oct 2022

 4. “Symbolic and Statistical Theories of Cognition: Towards

Integrated Artificial Intelligence”, Maruyama, Y., International
Conference on Software Engineering and Formal Methods
129(146), 2020.

https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1

178 ■ Bibliography

5. “A Comprehensive Survey of Loss Functions in Machine

Learning”, Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian,

Annals of Data Science 9, 187– 212, 2022. https:// doi.org/

10.1007/ s40 745- 020- 00253- 51 3

6. “Loss Functions”, Sparsh Gupta, https:// buil tin.com/ mach

ine- learn ing/ com mon- loss- functi ons, Apr. 17, 2022.

7. “Physics- Informed Neural Networks: A Deep Learning

Framework for Solving Forward and Inverse Problems

Involving Nonlinear Partial Differential Equations”, M.

Raissi, P. Perdikaris, and G.E. Karniadakis, Journal of
Computational Physics 378, 686– 707, 2019.

8. “A Mathematical Theory of Communication”, C. E.

Shannon, The Bell System Technical Journal 27, 379– 423,

623– 656, July, October, 1948.

9. arXiv: 1612.03365 Multi- Instance Learning Survey.

 10. arXiv: 1701.07274 DRL Overview.

Other Materials

 1. www.qua ntam agaz ine.org/ art ific ial- neu ral- nets- fina lly-

yield- clues- to- how- bra ins- learn- 20210 218/

 2. https:// bdte chta lks.com/ 2020/ 06/ 22/ dir ect- fit- art ific ial- neu

ral- netwo rks/

 3. www.nat ure.com/ artic les/ d41 586- 019- 02212- 4

 4. https:// tow ards data scie nce.com/ the- diff eren ces- betw een-

art ific ial- and- bio logi cal- neu ral- netwo rks- a8b46 db82 8b7

 5. https:// sea rche nter pris eai.tec htar get.com/ feat ure/ How-

neu ral- netw ork- train ing- meth ods- are- mode led- after- the

human- brain

 6. www.nat ure.com/ artic les/ s41 467- 019- 11786- 6

 7. “Can Artificial Intelligence Replicate the Human Brain?”,

Genevieve Hayes, https:// blogs.ora cle.com/ ai- and- data scie

nce/ post/ reinfo rcem ent- learn ing- proxi mal- pol icy- optim

izat ion- ppo

 8. “What Is Generative AI? Everything You Need to Know”

(techtarget.com), George Lawton, June 2023.

https://doi.org/10.1007/s40745-020-00253-51
https://doi.org/10.1007/s40745-020-00253-51
https://builtin.com/machine-learning/common-loss-functions
https://builtin.com/machine-learning/common-loss-functions
http://www.quantamagazine.org/artificial-neural-nets-finally-yield-clues-to-how-brains-learn-20210218/
http://www.quantamagazine.org/artificial-neural-nets-finally-yield-clues-to-how-brains-learn-20210218/
https://bdtechtalks.com/2020/06/22/direct-fit-artificial-neural-networks/
https://bdtechtalks.com/2020/06/22/direct-fit-artificial-neural-networks/
http://www.nature.com/articles/d41586-019-02212-4
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://searchenterpriseai.techtarget.com/feature/How-neural-network-training-methods-are-modeled-after-the
https://searchenterpriseai.techtarget.com/feature/How-neural-network-training-methods-are-modeled-after-the
http://www.nature.com/articles/s41467-019-11786-6
https://blogs.oracle.com/ai-and-datascience/post/reinforcement-learning-proximal-policy-optimization-ppo
https://blogs.oracle.com/ai-and-datascience/post/reinforcement-learning-proximal-policy-optimization-ppo
https://blogs.oracle.com/ai-and-datascience/post/reinforcement-learning-proximal-policy-optimization-ppo

Bibliography     ■    179

9. “Physics- Informed Model- Based Reinforcement

Learning”, Adithya Ramesh and Balaraman Ravindran,

arXiv:2212.02179v4 [cs.LG] 14 May 2023.

 10. “Physics- informed Reinforcement Learning for Perception

and Reasoning about Fluids”, Beatriz Moya, Alberto

Badias, David Gonzalez, Francisco Chinesta, and Elias

Cueto, arXiv: 2203.05775v1 [cs.CV], 11 Mar 2022.

 11. “Explainable AI: Current Status and Future Directions”,

P GOHEL et al., arXiv:2107.07045v1 [cs.LG], 12 Jul 2021.

 12. “Quantum Machine Learning”, Wikipedia.

 13 “A Survey on Quantum Reinforcement Learning”, Nico

Meyer, Christian Ufrecht, Maniraman Periyasamy, Daniel

D. Scherer, Axel Plinge, and Christopher Mutschler,

arXiv:2211.03464v1 [quant- ph], 7 Nov 2022.

 14. “Variational Quantum Circuits for Deep Reinforcement

Learning”, Samuel Yen- Chi Chen, Chao- Han Huck Yang,

Jun Qi, Pin- Yu Chen, Xiaoli Ma, and Hsi- Sheng Goan,

arXiv:1907.00397v3 [cs.LG], 20 Jul 2020.

 15. “Physics- Guided, Physics- Informed, and Physics-

Encoded Neural Networks in Scientific Computing”,

Salah A. Faroughia, Nikhil M. Pawara, Ceelio

Fernandes, Maziar Raissi, Subasish Das, Nima

K. Kalantarie, and Seyed Kourosh Mahjour, arxiv [cs.

LG] 2211.07377v2, 2022.

 16. “Formal Algorithms for Transformers”, Mary Phuong

and Marcus Hutter (DeepMind), arXiv: 2207.09238v1,

2022.

 17. “One Small Step for Generative AI, One Giant Leap

for AGI: A Complete Survey on ChatGPT in AIGC

Era”, Chaoning Zhang et al., arXiv:2304.06488v1 [cs.

CY], 2303.

 18. “A Complete Survey on Generative AI (AIGC): Is ChatGPT

from GPT- 4 to GPT- 5 All You Need?”, Chaoning Zhang

et al., arXiv:2303.11717, 2023.

180 ■ Bibliography

 19. “Scientists’ Perspectives on the Potential for Generative

AI in Their Fields”, Meredith Ringel Morris, arXiv: 2304.

01420v1, 2023.

 20. www.anal ytic svid hya.com/ blog/ 2020/ 11/ entr opy- a- key-

conc ept- for- all- data- scie nce- beginn ers/

 21. https:// thea isum mer.com/ Deep _ Q_ L earn ing/

 22. www.rebell ionr esea rch.com/ convol utio nal- neu ral- netw

ork- explai ned

 23. https:// med ium.com/ analyt ics- vid hya/ act ivat ion- functi

ons- all- you- need- to- know- 355a8 50d0 25e

 24. www.mathwo rks.com/ help/ reinfo rcem ent- learn ing/ ug/

td3- age nts.html

 25. https:// spi nnin gup.ope nai.com/ en/ lat est/ alg orit hms/

ppo.html

 26. https:// mac hine lear ning mast ery.com/ how- to- code- the-

gen erat ive- adve rsar ial- netw ork- train ing- algori thm- and-

loss- functi ons/

 27. https:// spi nnin gup.ope nai.com/ en/ lat est/ alg orit hms/

trpo.html

 28. www.v7l abs.com/ blog/ deep- reinfo rcem ent- learn

ingguide#:~:text= There%20are%20two%20main%20

types%20of%20Reinforcement%20Learning,1%20

1.%20Mo del- based%20a lgor ithms%202%202.%

20Model- free%20algorithms

 29. https:// en.wikipe dia.org/ wiki/ Lon g_ sh ort- term _ mem ory

 30. https:// tow ards data scie nce.com/ induct ive- vs- trans duct

ive- learn ing- e608 e786 f7d

 31. “Variational Autoencoder”, Wikipedia.

 32. “A Cookbook of Self- Supervised Learning”, Randall

Balestriero et al., arXiv:2304.12210v2 [cs.LG], 28 Jun 2023.

 33. “Activation Functions — All You Need To Know!”, Sukanya

Bag, Feb 13, 2021. https:// med ium.com/ analyt ics- vid hya/

act ivat ion- functi ons- all- you- need- to- know- 355a8 50d0 25e

 34. “A Survey of Information Entropy Metrics for Complex

Networks”, Yamila M. Omar and Peter Plapper, Entropy

2020, 22, 1417; doi:10.3390/ e22121417

http://www.analyticsvidhya.com/blog/2020/11/entropy-a-key-concept-for-all-data-science-beginners/
http://www.analyticsvidhya.com/blog/2020/11/entropy-a-key-concept-for-all-data-science-beginners/
https://theaisummer.com/Deep_Q_Learning/
http://www.rebellionresearch.com/convolutional-neural-network-explained
http://www.rebellionresearch.com/convolutional-neural-network-explained
https://medium.com/analytics-vidhya/activation-functions-all-you-need-to-know-355a850d025e
https://medium.com/analytics-vidhya/activation-functions-all-you-need-to-know-355a850d025e
http://www.mathworks.com/help/reinforcement-learning/ug/td3-agents.html
http://www.mathworks.com/help/reinforcement-learning/ug/td3-agents.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://machinelearningmastery.com/how-to-code-the-generative-adversarial-network-training-algorithm-and-loss-functions/
https://machinelearningmastery.com/how-to-code-the-generative-adversarial-network-training-algorithm-and-loss-functions/
https://machinelearningmastery.com/how-to-code-the-generative-adversarial-network-training-algorithm-and-loss-functions/
https://spinningup.openai.com/en/latest/algorithms/trpo.html
https://spinningup.openai.com/en/latest/algorithms/trpo.html
http://www.v7labs.com/
http://www.v7labs.com/
http://www.v7labs.com/
http://www.v7labs.com/
http://www.v7labs.com/
https://en.wikipedia.org/wiki/Long_short-term_memory
https://towardsdatascience.com/inductive-vs-transductive-learning-e608e786f7d
https://towardsdatascience.com/inductive-vs-transductive-learning-e608e786f7d
https://medium.com/analytics-vidhya/activation-functions-all-you-need-to-know-355a850d025e
https://medium.com/analytics-vidhya/activation-functions-all-you-need-to-know-355a850d025e

Bibliography     ■    181

 35. “Learning Diverse Skills via Maximum Entropy Deep

Reinforcement Learning”, Haoran Tang and Tuomas

Haarnoja, https:// bair.berke ley.edu/ blog/ 2017/ 10/ 06/ soft-

q- learn ing/

 36. Solution to BE arXiv:quant- ph/ 0407192v2, 21 Mar 2005.

 37. 9 Deep Reinforcement Learning | The Mathematical

Engineering of Deep Learning (2021) (deeplearningmath.

org).

 38. “Multi- agent Reinforcement Learning: A Comprehensive

Survey”, Dom Huh and Prasant Mohapatra,

arXiv:2312.10256v2 [cs.MA], 3 Jul 2024.

 39. “A Survey on Multi- Agent Deep Reinforcement

Learning: From the Perspective of Challenges and

Applications”, Wei Du and Shifei Ding, Artificial Intelligence
Review 54, 3215– 3238, 2021. https:// doi.org/ 10.1007/ s10

462- 020- 09938- y

 40. “Reinforcement Learning with Reward Machines in

Stochastic Games”, Jueming Hu et al., arXiv:2305.17372v3

[cs.MA], 28 Aug 2023.

 41. “Reward Machines for Cooperative Multi- Agent

Reinforcement Learning”, Cyrus Neary, Zhe Xu, Bo Wu,

and Ufuk Topcu, arXiv:2007.01962 [cs.MA]

 42. “MultiAgent Deep Reinforcement Learning: A Survey”,

Sven Gronauer and Klaus Diepold.

 43. “A Practical Guide to Multi- Objective Reinforcement

Learning and Planning”, Conor F. Hayes et al.,

arXiv:2103.09568v1 [cs.AI], 17 Mar 2021.

 44. “Neurosymbolic AI – Why, What, and How”, Amit Sheth,

Kaushik Roy, and Manas Gaur, arXiv:2305.00813v1 [cs.

AI], 1 May 2023.

 45. “Multi- Agent Deep Reinforcement Learning”, Maxim

Egorov, Stanford University; Zhang, H. and Yu, T. (2020).

“Taxonomy of Reinforcement Learning Algorithms”,

In: Dong, H., Ding, Z., and Zhang, S. (Eds), Deep
Reinforcement Learning. Springer, Singapore. https:// doi.

org/ 10.1007/ 978- 981- 15- 4095- 0_ 3

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/
https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/
https://doi.org/10.1007/s10462-020-09938-y
https://doi.org/10.1007/s10462-020-09938-y
https://doi.org/10.1007/978-981-15-4095-0_3
https://doi.org/10.1007/978-981-15-4095-0_3

182 ■ Bibliography

 46. “Reinforcement Learning Algorithms: An Overview and

Classification”, Fadi AlMahamid and Katarina Grolinger,

arXiv:2209.14940v1 [cs.LG], 29 Sep 2022.

 47. “Introduction to Multi- Arm Bandits”, Slivkins, Aleksandrs.

https:// arxiv.org/ pdf/ 1904.07272.pdf

 48. SOM algorithm. https:// tow ards data scie nce.com/ self- org

aniz ing- maps- 1b7d2 a84e 065

 49. Continuous Deep Q- Learning with Model- based
Acceleration”, Shixiang Gu, Timothy Lillicrap, Ilya

Sutskever, Sergey Levine, arXiv: 1603.00748v1 [cs.LG], 2

Mar 2016.

 50. How to Code the GAN Training Algorithm and Loss

Functions – MachineLearningMastery.compseudo_ code_

lstm.py at Github

 51. Tutorial on LSTMs: A Computational Perspective | by

Manu Rastogi | Towards Data Science.

 52. “LSTM: A Search Space Odyssey”, Klaus Greff, Rupesh

K. Srivastava, Jan Koutn´ık, Bas R. Steunebrink, and

J¨urgen Schmidhuber, arXiv:1503.04069v2 [cs.NE], 4

Oct 2017.

 53. Long short- term memory – Wikipedia.

 54. Proximal Policy Optimization — Spinning Up

Documentation (openai.com).

 55. Proximal Policy Optimization — Spinning Up

Documentation (openai.com).

 56. Trust Region Policy Optimization — Spinning Up

Documentation (openai.com).

 57. TD3: Learning to Run with AI. Learn to build one of the

most powerful… | by Donal Byrne | Towards Data Science.

 58. Twin- Delayed Deep Deterministic (TD3) Policy Gradient

Agents – MATLAB & Simulink (mathworks.com).

 59. Deep Deterministic Policy Gradient — Spinning Up

Documentation (openai.com).

 60. https:// tow ards data scie nce.com/ in- depth- rev iew- of- soft-

actor- cri tic- 91448 aba6 3d4 Chris Yoon.

https://arxiv.org/pdf/1904.07272.pdf
https://towardsdatascience.com/self-organizing-maps-1b7d2a84e065
https://towardsdatascience.com/self-organizing-maps-1b7d2a84e065
https://towardsdatascience.com/in-depth-review-of-soft-actor-critic-91448aba63d4
https://towardsdatascience.com/in-depth-review-of-soft-actor-critic-91448aba63d4

Bibliography     ■    183

 61. “Continuous Deep Q- Learning with Model- based
Acceleration”, Shixiang Gu, Timothy Lillicrap, Ilya

Sutskever, and Sergey Levine, arXiv: 1603.00748v1 [cs.LG]

2 Mar 2016.

 62. https:// tow ards data scie nce.com/ pol icy- gradie nts- in- a-

nutsh ell- 8b72f 9743 c5d

 63. “Connecting Generative Adversarial Networks and Actor-
Critic Methods”, Pfau, David and Oriol Vinyals, arXiv pre-

print arXiv:1610.01945 (2016).

 64. “Review of Deep Reinforcement Learning”, Keyuan Yu,

Kun Jin2, and Xiangyang Deng, IEEE IMCEC

ISSN:2693- 2776.

 65. www.datac amp.com/ tutor ial/ compre hens ive- intro duct

ion- graph- neu ral- netwo rks- gnns- tutor ial

 66. “Deep Reinforcement Learning Meets Graph Neural

Networks: Exploring a Routing Optimization Use

Case”, Paul Almasan, Jos´e Su´arez- Varela, Krzysztof

Rusek, Pere Barlet- Ros, and Albert Cabellos- Aparicio,

arXiv:1910.07421v3 [cs.NI], 7 Oct 2022.

 67. “Explainable Reinforcement Learning (XRL): A Systematic

Literature Review and Taxonomy”, Yanzhe Bekkemoen,

Machine Learning 113, 355– 441, 2024. https:// doi.org/

10.1007/ s10 994- 023- 06479- 7)

 68. “Deep Reinforcement Learning for Autonomous

Driving: A Survey”, B Ravi Kiran, Ibrahim Sobh, Victor

Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil

Yogamani, and Patrick Pérez, arXiv:2002.00444v2 [cs.LG],

23 Jan 2021.

 69. “Reinforcement Learning in Healthcare: A Survey”,

Chao Yu, Jiming Liu, Fellow, IEEE, and Shamim Nemati,

arXiv:1908.08796v4 [cs.LG], 24 Apr 2020.

 70. “An Extensive Review of Applications, Methods and

Recent Advances in Deep Reinforcement Learning”, Shiva

Shashank Dhavala, C. Srihari, R. Rashmi and K. Vanishree,

5th International Congress on Human- Computer Interaction,

https://towardsdatascience.com/policy-gradients-in-a-nutshell-8b72f9743c5d
https://towardsdatascience.com/policy-gradients-in-a-nutshell-8b72f9743c5d
http://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial
http://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial
https://doi.org/10.1007/s10994-023-06479-7
https://doi.org/10.1007/s10994-023-06479-7

184 ■ Bibliography

Optimization and Robotic Applications (HORA), 2023.

DOI: 10.1109/ HORA58378.2023.10156687

 71. “Survey on Reinforcement Learning for Language

Processing”, Victor Uc- Cetina, Nicolas Navarro- Guerrero,

Anabel Martin- Gonzalez, Cornelius Weber, and Stefan

Wermter, arXiv:2104.05565v3 [cs.CL], 15 Mar 2022.

 72. “Deep Reinforcement Learning for Robotics: A Survey

of Real- World Successes”, Chen Tang, Ben Abbatematteo,

Jiaheng Hu, Rohan Chandra, Roberto Mart´in- Mart´in,

and Peter Stone, arXiv:2408.03539v3 [cs.RO], 16 Sep 2024.

 73. “Reinforcement Learning in Image Classification: A Review”,

Norah Alrebdi, Sarah Alrumiah, Atheer Almansour, and

Murad Rassam, 2022 2nd International Conference on
Computing and Information Technology (ICCIT), Jan. 25 –

27, 2022.

 74. “A Survey on Quantum Reinforcement Learning”, Nico

Meyer, Christian Ufrecht, Maniraman Periyasamy, Daniel

D. Scherer, Axel Plinge, and Christopher Mutschler,

arXiv:2211.03464v2 [quant- ph], 8 Mar 2024.

 75. Reinforcement learning from human feedback – Wikipedia.

 76. https:// med ium.com/ geek cult ure/ bin ary- neu ral- netwo

rks- a- game- chan ger- in- mach ine- learn ing- 6ae00 13d3 dcb

https://medium.com/geekculture/binary-neural-networks-a-game-changer-in-machine-learning-6ae0013d3dcb
https://medium.com/geekculture/binary-neural-networks-a-game-changer-in-machine-learning-6ae0013d3dcb

185

Index

A

Absolute error loss, 131
Activation functions, 16

Rectified Linear Unit

(ReLU), 48– 49

sigmoid function, 46– 47

softmax function, 47

Active learning (AL), 29

Advantage actor critic (A2C), 74– 77

applications of, 77

mathematical formulation

of, 75– 76

pseudocode of, 76– 77

value function, 75

Advantage Function, 78

Advection– diffusion– reaction

systems, 126

Aerial navigation, 166

Agent ambiguity, 108

Agent- specific network, 115

Algorithmic transparency, 141

AlphaGo program, 9, 103

Artificial intelligence (AI)

applications of, 6– 7

basic layers of

algorithm layer, 2

infrastructure layer, 1– 2

development of, 8– 10

Artificial neural networks (ANNs),

10, 12, 25

Associative learning, 31

Asynchronous advantage actor critic

(A3C), 77– 79

Attention layer, 133– 134

Autoencoder (AE), 5– 6, 22, 23

Automated robots and drones,

163– 167

Autonomous driving (AD)

systems, 153

Autoregressive generative

pretraining, 135

B

Back Propagation NN

(BPNN), 2, 98

Bayesian classifier, 140

Bayesian networks, 67, 170

Bayes’ Theorem, 8

Bellman equations (BE), 31, 34,

40– 42, 63

analytical solutions of, 54– 57

for Markov Decision Process

(MDP), 61

for Q- function, 106

for state- action value function

Qπ(s,a), 41– 42

for state value function

Vπ(s), 40– 41

for value function of a state, 42

Bellman operator, 80

186 ■ Index

Bias neurons, 16
Bidirectional encoder

representations from
transformer (BERT),
132, 135

Bidirectional LSTM (Bi- LSTM), 18
Binarized NNS (BNN), 145
Binary classification, 43

Bloch sphere, 147

Boltzmann– Gibbs entropy. See

Gibbs entropy

Boltzmann machine learning, 20

Boltzmann machines, for function

approximation, 149, 151

Boltzmann probability function, 47

Boltzmann’s constant, 50

Boltzmann’s thermodynamic

entropy, 49– 50

Born’s rule, 151

C

Cartesian occupancy grid, 154

Cell state vector, 92

Centralized Learning with

Decentralized Execution

(CLDE), 104

Central processing unit (CPU), 1

ChatGPT, 135– 136

Closed quantum systems, evolution

of, 148

Collision entropy, 51, 52

Collocation points, 127

Computational basis states, 147

Computer vision, 25, 132

Conservation laws, 126

Continuous probability

distribution, 52

Contractive AE (CAE), 23

Conversational agents, 6

Conversational systems, 169

Convolutional layer, 17

Convolutional Neural Networks

(CNN), 2, 5, 17, 67, 107, 143

Cost function, 42

Cross- entropy, 53, 94

Cumulative discounted reward

function, 40

Cumulative distribution function

(CDF), 82

Cybersecurity, 21

D

Dartmouth workshop, 8

Data arrays, 67

Data augmentation, 21

Data- efficient spatiotemporal

function approximators, 127

Decision trees (DT), 12, 54, 140

Deconvolutional neural network, 93

Deductive inference, 28

Deep Belief Network (DBN), 24

application of, 24

Deep Blue, 9, 103

Deep deterministic policy gradients

(DDPG), 82– 84, 96, 122

applications of, 84

mathematical formulation of, 83

pseudocode of, 83– 84

Deep learning (DL), 2, 12, 13, 25,

36, 128

Deep neural networks (DNN),

67, 168

optimization of, 78

Deep operator networks

(DeepONets), 130

Deep Q- Network (DQN), 63,

65– 70, 77, 107, 121

algorithm, 144

applications of, 68– 70

mathematical formulation, 65– 67

pseudocode, 67– 68

Deep reinforcement learning (DRL),

31, 68, 120

achievements of, 165

action- value function of, 150

algorithms, 121– 123

applications of, 154

in Generative AI (GAI), 138

Index     ■    187

hierarchical, 123

importance of, 158

mathematical ideas behind,

34– 38

mathematical model of, 33– 34

Deepstack (University of Alberta’s

program), 9

Deep Transfer Learning

(DTL), 26– 27

Denoising AE (DAE), 22– 23

Density matrix, 50

power of, 51

Direct learning, 31

Discriminative learning model, 26

Discriminative network, 93

Discriminative network

discriminator, 94

Distributed physics- informed

extreme learning machines

(DPiELMs), 128

Distributed PiNNs (DPiNNs), 128

Double deep Q- learning (DDQN),

121, 164

Dynamic treatment regimes (DTR),

159– 160

decision rules in, 160

E

Eligibility trace, 73

Encoder- Decoder Transformer

(EDT), 132

Encoder- only transformer, 132

Ensemble learning (EL), 29– 30

Entropic index, 50

Entropies

Boltzmann’s thermodynamic

entropy, 49– 50

collision entropy, 52

cross- entropy, 53

definitions of, 49

Fisher information, 54

Gibbs entropy, 50

Hartley entropy, 52

information gain, 54

Kullback– Leibler (KL)

divergence, 53

min- entropy, 52

mutual information, 53– 54

relative entropy, 53

Rényi entropy, 51

Shannon or information

entropy, 51– 52

Tsallis entropy, 50

Entropy temperature, 81

Episodic tasks, 38

Euclidean distance, 98

Evolutionary computation, 7

Expert systems, 7

Explainable AI (XAI)

considerations important for,

142– 143

DNN- based, 140

explainable RL, 142– 143

model- agnostic explanations,

141

model- specific techniques, 141

and reinforcement learning (RL),

139– 143

Explainable RL, 142– 143

Exponential linear unit

(ELU), 48– 49

F

Feedforward deep neural network

(FF- DNN), 17

Feedforward Neural Networks

(FFNN), 3, 4, 127

deterministic, 93

Financial portfolio management

and trading, 70

Finite state machines (FSM),

109

First- order predictive logic, 140

Fisher information, 54

Forget gate, 91

Fully connected layers, 5, 17,

125, 128

Fuzzy inference systems, 140

188 ■ Index

G

Gated Graph Neural Networks

(GGNNs), 144

Gated recurrent unit (GRU), 18

Gaussian distribution, 23, 81

Gaussian noise, 85– 86

Gaussian policy, 81

Generative Adversarial Network

(GAN), 20– 21, 27, 93– 96, 170

versus actor- critic (AC)

method, 94– 95

applications of, 96

pseudocode of, 94

Generative AI (GAI), 136– 139

deep RL (DRL) in, 138

embedding of desired

characteristics, 139

generation of outputs while

concurrently maximizing an

objective function, 137– 139

model generation without

specified objectives, 137

Generative learning model, 26

Generative modeling, neural

network architecture for, 20

Generative pretrained transformer

(GPT), 132, 135– 136

Gibbs entropy, 50

Google, 171

DeepMind, 9, 77, 115

tensor processing unit (TPU)

chips, 2

Gradient backpropagation, 18

Graph auto- encoder networks

(GAENNs), 144

Graph Convolutional Networks

(GCNs), 143– 144

Graphics processing unit (GPU), 2

Graph neural networks (GNNS),

143– 145

Group Online Adaptive

Learning, 28

Grover- type search algorithms, 150

Gudermannian function, 47

H

Hadamard matrix, 148

Hamilton– Jacobi– Bellman

equation, 57

Handwriting recognition, 5

Hartley entropy, 51, 52

Healthcare, 158– 161

Chronic diseases, 160– 161

critical care, 161

dynamic treatment regimes

(DTR), 159– 160

Helmholtz method, 20

Hermitian operator, 148– 149

Hidden layer, 15, 47

Hidden Markov model, 170

Hidden state, 91

Hierarchical Optimistic

Optimization (HOO)

algorithm, 118

Hilbert space, 146– 147, 149

Hinge loss, 43– 44

Hinton, Geoffrey, 9

Hopfield learning, 20

Huber loss, 45, 76

Human– computer interaction, 169

Human intelligence, 11

Human learning, 1, 115

Hybrid learning, 25– 26

Hyperparameters, 15, 45– 46,

125, 141

I

IBM’s Watson, 9

If- else logic, 140

ImageNet, 9, 25

Image recognition system, 3, 9, 163

Image understanding, 7

Indirect learning, 31

Inductive inference, 28

Information gain, 54

Information- theoretic

entropies, 51– 52

Input embedding layer, 133

Index     ■    189

Input gate, 91

Input layer, 15

InstructGPT, 146

Intelligent control, 7

Inverse Reinforcement Learning

(IRL), 156, 170

Ion traps, 146

Iterative LQR (iLQR), 156

J

Jointly learning navigation,

166

K

Kinetic equations, 126

K- nearest- neighbors (KNN), 140

Kohonen’s map, 21, 98. See also Self-

Organizing Map (SOM)

Kohonen, Teuvo, 21

Kolmogorov– Sinai entropy, 53

Krizhevsky, Alex, 9

Kullback– Leibler (KL) divergence,

24, 53, 80, 89

L

Labeled data, acquisition of, 18

Language translations, 6

Language understanding, 169– 170

Laplacian regularization, 19

Large language models (LLMs), 10

Law of Effect, 30– 31

Leaky ReLU (LReLU), 48

Learn from Demonstrations (LfD),

156

Learning algorithms, 45

Learning from problems, See also

Machine learning (ML)

deep transfer learning (DTL),

26– 27

hybrid learning, 25– 26

multi- instance learning (MIL), 27

self- supervised learning (SSL),

24– 25

semisupervised learning, 18– 19

supervised (or discriminative)

learning, 13– 15

convolutional NN (CNN), 17

multilayer perceptron (MLP),

15– 17

recurrent NN (RNN), 17– 18

unsupervised (or generative)

learning, 19– 20

autoencoder (AE), 22– 24

Deep Belief Network (DBN), 24

generative adversarial network

(GAN), 20– 21

radial basis function network

(RBFN), 21

restricted Boltzmann machine

(RBM), 21

self- organizing map (SOM),

21– 22

Learning from statistical inference,

27

deductive inference, 28

inductive inference, 28

transductive learning, 28

Linear activation function, 22

Linear Quadratic Regulator (LQR),

155– 156

Linear regression, 12

Log- cosh loss, 45

Logistic regression, 140

Long- horizon navigation policies,

166

Long Short- Term Memory (LSTM),

4– 5, 18, 91– 93, 168

applications of, 93

mathematical formulation of, 92

pseudocode of, 92

three gates of, 91

two states of, 91

Long- term memory, 5, 91

Loss function (LF), 42– 46

for classification

binary cross- entropy loss/ log

loss, 43

hinge loss, 43– 44

190 ■ Index

for regression

Huber loss/ smooth mean

absolute error, 45

log- cosh loss, 45

mean absolute error (MAE)/ L1

loss, 44

mean square error (MSE)/

quadratic loss/ L2 loss, 44

quantile loss, 45– 46

M

Machine learning (ML), 2– 6, 7, 12,

171

active learning (AL), 29

Boltzmann probability function, 47

ensemble learning (EL), 29– 30

multitask learning (MTL), 28– 29

online learning (OL), 29

varieties of, 14

Machine translation, 6, 7, 25, 168

Markov Chain Monte- Carlo

(MCMC), 67

Markov decision process (MDP),

31, 34– 35

algorithms based on, 62

Bellman equation for, 61

elements of

actions and policies, 35– 37

discount factor, 37– 38

reward function r(st, at), 37

multi- agent generalization of, 110

Markov games (MG), 110

Max- entropy, 52

Max pooling, 17

McCarthy, John, 8

‘Mealy’ machines, 109

Mean absolute error (MAE), 44

Mean square error (MSE), 44, 76,

126

Memory cells, 4

input activation vector, 92

Metric entropy, 53

Microcontrollers, 145

Min- entropy, 51, 52

Model- Ensemble Trust- Region

Policy Optimization (ME-

TRPO), 122

Model- free algorithms, 66

Model- free learning, 60

Modular Neural Network (MNN), 6

Monte Carlo (MC) methods, 63,

73, 101

‘Montezuma’s revenge’ game, 158

Motion planning and trajectory

optimization, 155– 156

Multi- agent policy- function

framework, basic equations

for, 106– 107

Multi- agent Q- function framework,

basic equations for, 105

Multi- agent reinforcement learning

(MARL), 102

for A2C and A3C, 115

cooperation versus competition,

103

general considerations for

basic equations for the multi-

agent policy- function

framework, 106– 107

basic equations for the

multi- agent Q- function

framework, 105

examples, 107– 108

single- agent setting as

reference, 104– 105

training, 104

mixed- sum settings, 103

neuro- symbolic learning, 113– 115

pure competition settings, 103

pure cooperation settings, 103

reward machines (RMS) for,

108– 113

Markov game, 110

Nash equilibrium, 111

Pareto optimality, 111

Q- Learning with RMs (QRM),

111– 113

Index     ■    191

Multi- agent training, 108

Multi- arm- bandits paradigm,

algorithms based on, 62

Multi- armed bandit (MAB)

algorithm, 118

Multi- class classification, 43

Multi- instance binary classification,

27

Multi- Instance Learning (MIL), 27

Multilayer Perceptron (MLP), 4,

17, 127

layers of, 15– 17

Multi- objective RL, 115– 119

decision support scenario, 116

dynamic utility function scenario,

117

inner loop methods, 119

interactive decision support

scenario, 117

known utility function scenario,

116– 117

multi- policy algorithms, 119

outer loop methods, 119

review and adjust scenario, 117

single- policy algorithms, 118

stateless/ bandit algorithms, 118

unknown utility function

scenario, 116

Multitask learning (MTL), 28– 29

N

Nash equilibrium, 110, 111

Natural language processing (NLP),

5– 6, 7, 18, 25, 132, 168– 171

MDP- based problems, 169– 171

conversational systems, 169

language understanding,

169– 170

machine translation, 171

syntactic parsing, 169

text generation systems,

170– 171

n- gram model, 168

Network traffic control system, 64

Neural networks (NNs), 2, 7, 9– 11,

20, 23, 31, 46, 65, 114, 173

deconvolutional, 93

learning capability from instance

learning, 129

policy- based, 75

Q- values, 108

value- based, 74

Neural operators (NOs), 129– 130

Neural ordinary differential

equations (NeuralODE), 129

Neuro- symbolic (NeSy) learning, 114

Noisy intermediate- scale quantum

(NISQ) hardware, 150

Normalized advantage function

(NAF), 96– 98

pseudocode of, 97– 98

O

Object recognition, 7

Off- policy learning, 71

Online learning (OL), 29, 31, 167

On- policy learning algorithm,

70– 71

OpenAI, 10, 146

Optimal control theory, 31

Optimal value function, 31, 42

Output gate, 91

Output layer, 15– 16, 47

P

Parallel Distributed Processing, 9

Parametric ReLU (PReLU), 49

Pareto optimality, 110, 111

Path planning, in dynamic

environments, 155

Pattern recognition, 5, 163

Pavlov, Ivan, 31

Perceptron, 3, 9

Physics- based NNS, 120– 124

Physics- encoded neural networks

(PeNNs), 129

192 ■ Index

Physics- encoded recurrent

convolutional neural

network (PeRCNN), 129

Physics- guided neural networks

(PgNNs), 124– 125

Physics- informed NNs (PiNNs),

125– 128

limitations and shortcomings of,

128

proof of convergence for, 128

Physics- informed reinforcement

learning (PiRL), 131– 132

Policy Gradient algorithms, 77

Policy Gradient theorem, 66– 67

Policy iteration technique, 79

Pooling layer, 17

Positional embedding layer, 133

Principal component analysis

(PCA), 22

Prisoner’s dilemma, 103

Probability distribution, 53

of n- gram models, 168

Projective simulation (PS), 149, 151

Proximal policy optimization

(PPO), 89– 91, 122, 145

applications of, 91

mathematical formulation of, 90

pseudocode of, 90

Q

Q- function, 42, 63, 71, 73

Bellman equation for, 106

optimization, 81

Q- learning, 31, 34, 62– 64

applications of, 64

deep Q- Learning, 65– 70

finite state- action, 63

generalization of, 65

methods for, 96

Q- Learning for reward machines

(QRM), 110, 111– 113

Quadratic loss, 44

Quadruped locomotion control, 166

Quantile loss, 45– 46

Quantum algorithm, 149

Quantum Boltzmann machines, 151

Quantum circuits, 150

Quantum computation, 148– 149

fault- tolerant, 150

foundations of, 150

Quantum control theory, 56, 150

Quantum error correction, 150

Quantum random walk, 151

Quantum RL (QRL)

algorithms, 150– 151

application of, 149

projective simulation (PS), 151

quantum Boltzmann machines,

151

quantum subroutines, 151

single and multi- qubit systems,

146– 148

evolution of closed quantum

systems, 148

extracting classical information

via measurements, 148– 149

variational quantum circuits

(VQCs), 150

Quantum speed- up, for post- NISQ

devices, 151

Quantum subroutines, 151

R

Radial Basis Function (RBF) Neural

Network, 5, 21

Random forests (RF), 12

Random variable, probability for, 51

Reconstruction error, 24

Recreational games, 103

Rectified linear unit (ReLU), 13, 15,

48– 49, 127

generalization of, 49

Recurrent Deterministic Policy

Gradient (RDPG), 121

Recurrent Graph Neural Networks

(RGNNs), 144

Recurrent Neural Networks (RNN),

2, 4, 17, 91

Index     ■    193

Reinforce gradient, with and

without baseline, 100– 101

Reinforcement learning (RL), 2, 26,

30– 32, 33, 40, 74, 173

applications in critical care, 161

Explainable AI (XAI) and,

139– 143

hierarchical, 137

historical development of, 58

key problems in, 137

multi- agent, 109, 115– 119

NISQ computation, 150

for objective maximization, 137

single- agent, 102, 115– 119

time- dependent decisions, 160

vision- and- language navigation

based on, 166

Reinforcement learning from human

feedback (RLHF), 145– 146

Relative entropy, 53

Rényi, Alfred, 51

Rényi entropy, 51, 52

of Heisenberg XY spin model, 51

Restricted Boltzmann machine

(RBM) learning, 20, 21

Reward Function, 137

Reward Machines (RMS), 108– 113

Q- Learning for reward machines

(QRM), 110

Reward shaping, problem of, 65

Robotics, 7, 11, 68

Rosenblatt, Frank, 9

Rule- based learning, 140

Runge– Kutta methods, 128

S

Samuel, Arthur, 8

SARSA- λ, 72– 74

applications of, 74

mathematical formulation of, 72– 73

pseudocode, 74

Scalar nonlinear activation, 127

Self- driving cars, 68, 152– 156

Cartesian occupancy grid, 154

inverse reinforcement learning

(IRL) for AD applications,

156

lane information, 154

learn from demonstrations (LfD),

156

motion planning and trajectory

optimization, 155– 156

Polar occupancy grid, 154

simulator and scenario

generation tools, 156

state spaces, action spaces, and

rewards, 154– 155

time- to- collision (TTC), 154

Self- Organizing Map (SOM), 21,

98– 100

adaptation, 99

competition, 98

cooperation, 99

pseudocode of, 99– 100

Semi- supervised learning (SSL), 2,

18– 19, 24– 25

applications of, 25

Sequence to Sequence Models

(Seq2Seq), 6

Sequence- to- sequence transformer,

132

Sequential Multiple Assignment

Randomized Trial

(SMART), 160

Shallow learning, 12

Shannon entropy, 51– 52

generalization of, 53

Sigmoid functions, 46– 47

Signal processing, 3

Single- agent discrete algorithms, 61

Single vector memory, 72

Smart homes, 69

Smooth mean absolute error, 45

Soft actor critic (SAC), 79– 82

alternate method, 81– 82

mathematical formulation, 79– 81

pseudocode, 82

194 ■ Index

Softmax function, 42, 47, 108, 134

Soft policy improvement, 80

Soft policy iteration, 80

Soft Q- function, 81

Space point values, 127

Sparse AE (SAE), 22

Speech processing, 7

Speech recognition, 3– 7, 26, 144

Stacked RBM, 20

StarCraft II game, 103

State- action- reward- state- action

(SARSA), 70– 72, 121

algorithms, 74

applications of, 72

mathematical formulation, 71

pseudocode, 71

Stateless/ bandit algorithms, 118

Stochastic gradient (SG), 87

Stochastic gradient descent (SGD),

76

Supervised learning, 2, 27, 29, 129,

157

NN- based, 36

Supervisory signals, 153

Support vector machines (SVMs),

12, 140

model evaluation, 43

Sutskever, Ilya, 9

Syntactic parsing, 169

T

Temporal difference (TD) learning,

42, 60, 72

Temporal difference model (TDM),

123

Tensor processing unit (TPU)

chips, 2

Tesauro, Gerald, 9

Text generation systems, 4, 170– 171

Text prediction, 168

Text summarization, 144, 146, 168

Thermodynamic equilibrium, 49– 50

Thorndike, Edward, 30

Time series prediction, 4, 5, 7, 21

Time to collision (TTC), 153– 154

Topological entropy, 53

Traffic control, 21

Trained learning system, 15

Training, 16– 17

Transductive learning, 28

Transductive support vector

machine (T- SVM)

algorithm, 28

Transformers

architecture, 9, 135

basic structure of, 132– 136

components of, 132

Trust Reason Policy

Gradient(TRPG), 122

Trust region policy optimization

(TRPO)

applications of, 89

mathematical formulation of,

87– 88

pseudocode of, 88– 89

Tsallis entropy, 50

Tunable hyperparameter, 45

Turing, Alan, 8

Turing Test, 8

Twin- delayed deep deterministic

policy gradients (TD3PG)

algorithm of, 85

applications of, 86

mathematical formulation of,

85– 86

pseudocode of, 86

U

Unsupervised (or generative)

learning, 2, 19– 20, 93

V

Value and policy functions

action- only value function Vπ(at),

39

advantage value function Aπ(st,at),

39

Index     ■    195

policy function with maximum

entropy π*
maxEnt, 39– 40

state- action value function

Qπ(s, a), 38– 39

state- only value function vπ(s),

38

Value Function, 37– 42, 78

Vapnik, Vladimir, 28

Variable quantum circuits (VQCs),

149, 150

Variational AE (VAE), 23

components of, 23

Variational quantum algorithm

(VQA), 150

Video games, 156– 158

Video generation, 21

Vision- and- language navigation,

166

Visual navigation, 166

Voice generation, 21

X

XGBoost, 45

https://taylorandfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Prologue
	Chapter 1 Introduction
	1.1 Artificial Intelligence (AI)
	1.2 Machine Learning
	1.3 Applications of AI
	1.4 Historical Development
	1.5 Some General Remarks

	Chapter 2 Survey of ML
	2.1 Learning From Problems
	2.1.1 Supervised (Or Discriminative) Learning
	2.1.1.1 Multilayer Perceptron (MLP)
	2.1.1.2 Convolutional NN (CNN)
	2.1.1.3 Recurrent NN (RNN)

	2.1.2 Semisupervised Learning
	2.1.3 Unsupervised (Or Generative) Learning
	2.1.3.1 Generative Adversarial Network (GAN)
	2.1.3.2 Restricted Boltzmann Machine (RBM)
	2.1.3.3 Radial Basis Function Network (RBFN)
	2.1.3.4 Self-Organizing Map (SOM)
	2.1.3.5 Autoencoder (AE)
	2.1.3.6 Deep Belief Network (DBN)

	2.1.4 Self-Supervised Learning (SSL)
	2.1.5 Hybrid Learning
	2.1.6 Deep Transfer Learning (DTL)
	2.1.7 Multi-Instance Learning (MIL)

	2.2 Learning From Statistical Inference
	2.2.1 Inductive Inference
	2.2.2 Deductive Inference
	2.2.3 Transductive Inference

	2.3 Learning Depending On Techniques
	2.3.1 Multitask Learning (MTL)
	2.3.2 Active Learning (AL)
	2.3.3 Online Learning (OL)
	2.3.4 Ensemble Learning (EL)

	2.4 Reinforcement Learning (RL)

	Chapter 3 Basic Mathematics Behind Deep Reinforcement Learning
	3.1 A Mathematical Model of DRL
	3.2 Mathematical Ideas Behind DRL
	3.2.1 Markov Decision Process (MDP)
	3.2.1.1 Actions and Policies
	3.2.1.2 Reward Function R(s_t, A_t)
	3.2.1.3 Discount Factor

	3.3 Value and Policy Functions
	3.3.1 State-Only Value Function Vπ(s)
	3.3.2 State-Action Value Function Qπ(s, A)
	3.3.3 Action-Only Value Function Vπ(at)
	3.3.4 Advantage Value Function Aπ(st,at)
	3.3.5 Policy Function With Maximum Entropy Π*maxEnt

	3.4 Bellman Equations (BE)
	3.4.1 BE for the State Value Function Vπ(s)
	3.4.2 BE for the State-Action Value Function Qπ(s,a)
	3.4.3 Soft BE for the Value Function of a State

	3.5 Loss Functions
	3.5.1 LF for Classification: Binary Cross-Entropy Loss/Log Loss
	3.5.2 LF for Classification: Hinge Loss
	3.5.3 LF for Regression: Mean Square Error (MSE)/Quadratic Loss/L2 Loss
	3.5.4 LF for Regression: Mean Absolute Error (MAE)/L1 Loss
	3.5.5 LF for Regression: Huber Loss/Smooth Mean Absolute Error
	3.5.6 LF for Regression: Log-Cosh Loss
	3.5.7 LF for Regression: Quantile Loss

	3.6 Activation Functions
	3.6.1 Activation Functions: Sigmoid
	3.6.2 Activation Functions: Softmax
	3.6.3 Activation Functions: Rectified Linear Unit (ReLU)

	3.7 Entropies and Related Functions
	3.7.1 Boltzmann’s Thermodynamic Entropy
	3.7.2 Gibbs Entropy
	3.7.3 Tsallis Entropy
	3.7.4 Rényi Entropy
	3.7.5 Shannon Or Information Entropy
	3.7.6 Hartley Entropy
	3.7.7 Collision Entropy
	3.7.8 Min-Entropy
	3.7.9 Cross-Entropy
	3.7.10 Relative Entropy Or Kullback–Leibler (KL) Divergence
	3.7.11 Mutual Information
	3.7.12 Information Gain
	3.7.13 Fisher Information

	Appendix: Some Analytical Solutions of Bellman Equation
	i. Model – 1
	ii. Model – 2

	Chapter 4 Single-Agent Algorithms
	4.1 Q-Learning
	4.2 Deep Q-Learning and Deep Q-Network (DQN)
	4.2.1 Mathematical Formulation
	4.2.2 Pseudocode
	4.2.3 Applications

	4.3 State-Action-Reward-State-Action (SARSA)
	4.3.1 Mathematical Formulation
	4.3.2 Pseudocode
	4.3.3 Applications

	4.4 SARSA-λ
	4.4.1 Mathematical Formulation
	4.4.2 Pseudocode
	4.4.3 Applications

	4.5 Advantage Actor Critic (A2C)
	4.5.1 Mathematical Formulation
	4.5.2 Pseudocode
	4.5.3 Applications

	4.6 Asynchronous Advantage Actor Critic (A3C)
	4.6.1 Mathematical Formulation
	4.6.2 Pseudocode
	4.6.3 Application

	4.7 Soft Actor Critic (SAC)
	4.7.1 Mathematical Formulation
	4.7.2 Alternate Method
	4.7.3 Pseudocode
	4.7.4 Applications

	4.8 Deep Deterministic Policy Gradients (DDPG)
	4.8.1 Mathematical Formulation
	4.8.2 Pseudocode
	4.8.3 Applications

	4.9 Twin-Delayed Deep Deterministic Policy Gradients (TD3PG)
	4.9.1 Mathematical Formulation
	4.9.2 Pseudocode
	4.9.3 Applications

	4.10 Trust Region Policy Optimization (TRPO)
	4.10.1 Mathematical Formulation
	4.10.2 Pseudocode
	4.10.3 Applications

	4.11 Proximal Policy Optimization (PPO)
	4.11.1 Mathematical Formulation
	4.11.2 Pseudocode
	4.11.3 Applications

	4.12 Long Short-Term Memory (LSTM)
	4.12.1 Mathematical Formulation
	4.12.2 Pseudocode
	4.12.3 Applications

	4.13 Generative Adversarial Network (GAN)
	4.13.1 Pseudocode
	4.13.2 Applications

	4.14 Normalized Advantage Function (NAF)
	4.13.1 Pseudocode

	4.15 Self-Organizing Maps (SOM)
	4.15.1 Pseudocode

	4.16 REINFORCE Gradient With and Without Baseline

	Chapter 5 Multi-Agent RL (MARL) Algorithms
	5.1 Cooperation Versus Competition
	5.2 General Considerations for MARL
	5.2.1 Training
	5.2.2 Single-Agent Setting as Reference
	5.2.3 Basic Equations for the Multi-Agent Q-Function Framework
	5.2.4 Basic Equations for the Multi-Agent Policy-Function Framework
	5.2.5 An Example

	5.3 Reward Machines (RMs) for MARL
	5.3.1 Markov Game, Nash Equilibrium, and Pareto Optimality
	5.3.2 Pareto Optimality
	5.3.3 Nash Equilibrium
	5.3.4 Q-Learning With RMs (QRM)

	5.4 MARL Algorithms: Neuro-Symbolic Learning
	5.5 MARL for A2C and A3C
	5.6 Multi-Objective RL (Single and Multi-Agent)

	Chapter 6 Recent Developments in DRL
	6.1 Physics-Based NNs and DRL
	6.1.1 Physics-Guided Neural Networks (PgNNs)
	6.1.2 Physics-Informed NNs (PiNNs)
	6.1.3 Physics-Encoded Neural Networks (PeNNs)
	6.1.4 Neural Operators (NOs)
	6.1.5 Physics-Informed Reinforcement Learning (PiRL)

	6.2 Transformers
	6.3 Generative AI
	6.3.1 Model Generation Without Specified Objectives
	6.3.2 Generation of Outputs While Concurrently Maximizing an Objective Function
	6.3.3 Embedding of Desired Characteristics, Which Cannot Be Easily Captured By Means of an Objective Function, Into the Generative Process

	6.4 Explainable AI and RL
	6.4.1 Explainable RL

	6.5 Graph Neural Networks (GNNs)
	6.5.1 GNN and DRL

	6.6 Binarized NNs (BNN)
	6.7 Reinforcement Learning From Human Feedback (RLHF)
	6.8 Quantum RL
	6.8.1 Single and Multi-Qubit Systems
	6.8.1.1 Evolution of Closed Quantum Systems
	6.8.1.2 Extracting Classical Information Via Measurements

	6.8.2 Quantum RL (QRL)
	6.8.3 Variational Quantum Circuits
	6.8.4 Quantum RL Algorithms

	Chapter 7 Applications of RL
	7.1 Self-Driving Cars
	7.1.1 State Spaces, Action Spaces, and Rewards
	7.1.2 Motion Planning and Trajectory Optimization
	7.1.3 Simulator and Scenario Generation Tools
	7.1.4 Learn From Demonstrations (LfD) and Inverse Reinforcement Learning (IRL) for AD Applications

	7.2 Video Games
	Example: Atari Game – Pong

	7.3 Healthcare
	7.3.1 Dynamic Treatment Regimes (DTR)
	7.3.2 Chronic Diseases
	7.3.3 Critical Care

	7.4 Marketing and Advertising
	7.5 Image and Pattern Recognition
	7.6 Automated Robots and Drones
	7.7 Natural Language Processing (NLP)
	7.8 Some Other Areas

	Epilogue
	Acknowledgments
	Bibliography
	Index

