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The current era of artificial intelligence and machine learning
(AIML) tools has transformed the workings of vast swaths
of our private, working, and social lives beyond recognition.
It has been found that these tools can solve many problems
in better and faster ways compared to humans. AIML tools
allow machines and related systems to reason and infer almost
like humans, and this has deep intellectual and philosoph-
ical ramifications as well. The areas of machine learning are
broadly classified into supervised, unsupervised, and deep
reinforcement learning (DRL). The last one comes closest to
how humans reason, and various innovations in this area have
many useful applications.

This book covers most of the areas of DRL, with a spe-
cial focus on its mathematical and algorithmic foundations.
Undergraduate and early graduate students should find it to be
a good guide to the fast-developing areas of DRL and its myriad
applications in both technical and social contexts.
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Prologue

THE IDEA OF PUTTING INFORMATION IN A DIGITAL FORM
is quite simple and seems an ordinary technical advance
in hindsight. Over a period, many scientists and engineers
nurtured it at a steady pace, and finally made it possible for the
society to usher in the age of digital revolution. In a relatively
very short time by historical standards, it has transformed the
modern civilization and changed the workings of vast swaths of
our private, working, and social lives beyond recognition. The
idea of machine learning has been one of the key innovations
in this regard.

Machines, specifically those which can think and act like
humans, have been the stuff of science fiction for a long time.
At some deeper level, this concept also connects to our quest
for understanding the essence of human intelligence and con-
sciousness. We are still very far from solving that puzzle, but
the impulse has resulted in very rapid advances in the fields
of machine learning. We have also found that these thinking
machines can solve many problems in better and faster ways
compared to humans.

This book presents a high-level view of the fast developing
discipline of the Reinforcement Learning in its basic and more
sophisticated aspects. Hopefully, it will inspire the reader to
take a deeper dive into this subject as well as help understand
the coming revolution in every aspect of society based on
these ideas.

vii
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CHAPTER 1

Introduction

N THIS CHAPTER, SOME basic concepts behind machine
learning (ML) and their history have been presented.

1.1 ARTIFICIAL INTELLIGENCE (Al)

Al uses data input, computing hardware, and appropriate
software to model the underlying neural circuits mimicking
human learning and problem-solving behavior. It has excelled
at some of the learning and reasoning tasks and surpassed
human capabilities.

A general Al system contains two basic layers.

i. Infrastructure layer:

o Central processing unit (CPU) for serially executed
tasks,
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o Graphics processing unit (GPU) for graphics and
image calculations),

o Dedicated Al chips like Google’s tensor processing
unit (TPU) chips, and

« High-speed networks behind frameworks like
Tensorflow, Caffe, Mxnet, Torch, Keras, PyTorch,
Theano, etc.

ii. Algorithm layer: It contains various types of ML
algorithms which will be elaborated in coming chapters.

1.2 MACHINE LEARNING

In recent times the field of ML has developed very fast and
has branched into many subfields. The following are the most
recognized ML methods.

o Supervised Learning: Labeled data is given as input for
learning.

o Unsupervised Learning: Unlabeled data is given as input
for learning. The combination of unsupervised and
supervised learning is called semi-supervised learning in
which both labeled and unlabeled data are given as input.

e Reinforcement Learning (RL): Learning is based on intel-
ligent agents taking actions to maximize the cumulative
reward from environments.

Neural networks (NNs) model neurons as electronic circuits
and use them as their basic building blocks. They perform
deep learning (DL) when the number of NN layers is increased.
Further classification is determined by these basic methods:

i. Back Propagation NN (BPNN)

The NN circuit signals are used to update earlier layer, a
key discovery behind the NN revolution.
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ii. Convolutional NN (CNN)

It uses the mathematical operation of convolution (an
integral or sum expressing the amount of overlap of
one function with shifted another function) instead of
matrix multiplication in at least one of its layers, and

iii. Recurrent NN (RNN)

The connections between nodes form a directed graph
along a temporal sequence.

The following are some of the important, but nonexhaustive
NN types based on the above paradigms:

i. Feedforward Neural Networks (FFNN): They are the
most basic type of NN consisting of an input layer, one
or more hidden layers, and an output layer, with the data
flowing sequentially through them from the input to the
output layer. They are widely used for image and speech
recognition, natural language processing, and predictive
modeling. In an FFNN, each neuron in the hidden
layer(s) applies an activation function to a weighted
sum of the inputs and passes the output to the next
layer. Their weights and biases get adjusted during the
training to minimize the errors between the predicted
and the actual output.

ii. Perceptron: It is a single-layer NN that takes a set of
inputs, processes them, and produces an output. They
apply weights to the input data and then pass the sum
through an activation function to produce an output.
The activation function is typically a threshold function
that outputs a 1 or 0 depending on whether the sum
is above or below a certain threshold. They are used
for image recognition, signal processing, and control
systems and are somewhat limited in their applications
as they can only solve linearly separable problems in
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iii.

iv.

which the data can be separated into two categories
using a straight line.

Multilayer Perceptron (MLP): It is a type of FFNN com-
monly used for classification tasks. The input layer
receives the raw data. Each following MLP layer consists
of many perceptrons, and the output of one MLP layer
feeds into the next layer as input. The hidden layers in
between transform the input into a form that is suitable
for the output layer, which produces the final prediction.
MLPs have been applied to image recognition, speech
recognition, time series analysis, and natural language
processing.

Recurrent Neural Networks (RNN): They process sequen-
tial input data, such as text and speech The input data is
processed through a series of recurrent neurons, which
take the current input and the output from the pre-
vious time step as input, thus allowing the network to
maintain a memory of previous inputs and context. The
weights and biases of the neurons are adjusted during
training to minimize the error between the predicted
output and the actual output — a process called back
propagation. RNNs are commonly used for language
translation, text generation, speech recognition, and
time series prediction.

Long Short-Term Memory (LSTM): 1t is a type of RNN
for handling long-term dependencies and contains
memory cells, input gates, output gates, and forget gates.

The information flows through the memory cells over
time. The input and forget gates determine which infor-
mation should be stored in the memory cells and which
information should be removed. The output gate then
determines which information should be passed on to
the next layer. Thus, LSTM remembers important infor-
mation over long periods of time and selectively forgets



vi.

Vii.

viii.

Introduction m 5

irrelevant information. They have solved problems
with long-term dependencies effectively in natural
language processing, speech recognition, handwriting
recognition, and other applications where long-term
memory is important.

Radial Basis Function (RBF) Neural Network: It is an
FFNN that uses a set of RBFs to transform its inputs
into outputs. It is composed of an input layer, a hidden
layer, and an output layer. It uses a set of RBFs to trans-
form the input data by calculating the distance between
the input and a set of predefined centers in the hidden
layer. The hidden layer outputs are then combined lin-
early to produce the final output. The weights of the
connections between the hidden and the output layer
are trained using a supervised learning algorithm,
such as backpropagation. RBF networks are often used
for problems with large datasets as they learn to gen-
eralize well and provide good predictions. They are
used for time-series analysis and prediction, financial
forecasting, pattern recognition, classification, and
control tasks.

Convolutional Neural Networks (CNN): These are made
up of convolutional, pooling, and fully connected
layers. The input data is processed through many con-
volutional layers, which apply filters to the input and
extract features. Their output then passes through
pooling layers, which down-sample the data to reduce
its dimension. Finally, the output goes through fully
connected layers for the final classification or predic-
tion. The CNNs are commonly used for image and
video recognition tasks, such as object detection, facial
recognition, and self-driving cars.

Autoencoder: This NN uses unsupervised learning
which does not require labeled data to make



6 m An Introduction to Deep Reinforcement Learning

predictions. It first compresses the input data into
a lower-dimensional representation and then
reconstructs it back into the original format, thus iden-
tifying the most important features of the input data.
They are commonly used in applications such as data
compression, feature extraction, image denoising, and
anomaly detection. For example, NASA uses them to
detect anomalies in spacecraft sensor data.

ix. Sequence to Sequence Models (Seq2Seq): They use an
encoder and a decoder to convert one sequence of data
into another by first encoding the input sequence into
a fixed-length vector. Then the decoder uses this vector
to generate the output sequence one element at a time,
predicting the next element based on the previous one
and the context vector. These models have been used in
natural language processing, machine translation, con-
versational agents, and language translations.

X. Modular Neural Network (MNN): In MNN, each
module is a separate network for solving a spe-
cific subproblem, and all module outputs are then
combined to provide a final output. This approach
makes it easier to build complex systems by combining
simpler modules. They can be more robust than trad-
itional NN, as each module can handle a specific type
of input or noise, so that even if one module fails, the
overall system can still function, as other modules can
take over. MNNs have been used in computer vision,
speech recognition, and robotics.

1.3 APPLICATIONS OF Al

Attempts to understand the nature of intelligence started a
long time ago and various ancient cultures - e.g. Greek, Indian,
Chinese, and others — produced many philosophical ideas about

it. Later tools of mathematics, logic, and engineering ushered
us in the current era of new understanding and applications.
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The field of Al is very broad, with a nonexhaustive list of
subfields given below.

i. Neural Networks: Study the promise and limitations of
computational networking based on neuron models,
e.g., brain modeling, time series prediction, classifica-
tion, etc.

ii. Evolutionary Computation: Study and development of
computer programs correcting and improving them-
selves automatically without human intervention
during execution, e.g., genetic programming, etc.

ili. Vision: Developing machines to understand and inter-
pret the visual input, e.g., object recognition, image
understanding, etc.

iv. Robotics: Building machines capable of autonomous
movement, e.g., intelligent control, autonomous explor-
ation, etc.

v. Expert Systems: Software embodying the facts and rules
of a particular area of knowledge, e.g., decision support
systems, teaching systems, etc.

vi. Speech Processing: Development of systems able to
understand naturally spoken languages, e.g., speech
recognition and processing.

vil. Natural Language Processing: Extraction of meaningand
structure of the written or printed natural languages,
e.g., machine translation.

viii. Planning: Using current data to enumerate steps to
achieve a well-defined goal, e.g., scheduling, etc.

ix. Machine Learning: Study and development of machines
and algorithms capable of learning, e.g., decision
trees, etc.

The new areas for using neural networks are always opening.
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1.4 HISTORICAL DEVELOPMENT

A short history based on the milestones follows based on Royal
Society (UK) Report [1].

i.  18th Century:

« Development of statistical methods which accelerated
the pace of scientific research in general.

Bayes’ Theorem (1763): Usually we have some prior
knowledge of the conditions leading to an event. This
theorem relates them.

P(B|4)P(4)

P(4B)= P(5)

(1.1)

Here P(A) and P(B) are the probabilities of the
occurrence of events A and B independently. P(A4|B)
and P(B|4) are conditional probabilities of occurrence
of event A or B given that B or A is true. This simple
relation has played an outsized role in the development
of AI/ML.

ii.  1950s:

Turing Test (1950): Alan Turing presented the criteria
by which machines can be considered intelligent if its
responses to questions could convince a person that
it is human.

o Checker playing machine (1952): Arthur Samuel
created a machine able to learn to pay checkers using
expert rules and playing against itself.

 Dartmouth workshop (1956): This was a get-together
of the AI/MLs early pioneers. John McCarthy came
up with the term ‘Artificial Intelligence’
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o The Perceptron (1957): Frank Rosenblatt invented the
first ‘neural network’ using a potentiometer and an
electric motor. It could take an input (like a pixel) and
create an output (like a label).

1960s and 1970s: not much, Al winter
1980s:

o ‘Parallel Distributed Processing’ in two volumes
(1986): advocated the use of NN models for ML

1990s:

o Backgammon playing neural network algorithm
(1992): Gerald Tesauro created a backgammon
playing program based on NN, which could match
the best human players.

o Deep Blue beats world chess champion (1997): It
could process 200 million moves per second before
selecting the best one.

2010s:
« IBM’s Watson beats Jeopardy champion (2011):

» ImageNet (2012): A paper by Alex Krizhevsky, Ilya
Sutskever, and Geoftrey Hinton presented a model
that dramatically reduced the error rate in image rec-
ognition systems.

« AlphaGo beats Go champion (2016): Program created
by Google’s DeepMind team won four out of five
games against Chinese master of Go game.

o Libratus beats poker champion (2017): Program
created by Carnegie Mellon University beat top poker
player, and this success was repeated by University of
Alberta’s program Deepstack.

o Transformer architecture: The Google researchers
published a paper ‘Attention is all you need’ (2017)
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starting a new and powerful approach to large lan-
guage models (LLMs).

o Development of foundational LLM models (2018)
trained on vast amounts of unlabeled data started.

vii. 2020s:
o GPT-3 was released by OpenAl (2020).

o GPT-4 was released by Microsoft (2023). It is a mile-
stone toward achieving a ‘General AT’ system.

1.5 SOME GENERAL REMARKS

The new technologies have always created great hopes and
fears in society and AI/ML is not an exception. In addition, it
has raised some philosophical questions about the essence of
human uniqueness. We discuss some of them without giving

definite answers.

The human brain consists of about 86 billion neurons and
100 trillion synapses which often fire asynchronously in par-
allel. Furthermore, it runs on less than 20 watts of power,
making it one of its kind in the natural world. On the other
hand, the number of neurons in an artificial neural network
(ANN) is somewhere between 100 and 1,000. It has been found
that increasing their numbers does not necessarily improve
the network performance. Also in ANN, only the neighboring
layers are connected which, in most cases, are activated
sequentially, and it usually consumes about 200 watts and also
produces heat.

All of this points to the fact that a huge improvement in the
architecture and algorithms of ANN is needed before they can
be comparable to the brain. Still the progress has been remark-
able so far and is accelerating fast.

Our intelligence has many components and a few of them like
recognizing outside objects and events and their understanding
are one of them. This involves comparing new information
against the older stored ones. The AI through neural networks
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also works like that. The NN is trained on known cases and
that training is used for recognizing or classifying the new data.
This aspect of human intelligence has been well captured by
the machines and they can be said to have even surpassed us.
This has been demonstrated by machines beating humans, for
example, in games of chess and Go. It seems that machines will
surpass humans in all such situations sooner or later where this
paradigm is applicable.

Robotics combined with Al is another area where machines
will outperform humans. This is just the extension of the
situations in which traditional machines like cars, planes,
and other similar inventions extend human capabilities. The
working of AI/ML algorithms in real time becomes visible
through machine movements and that is something new. This
has generated in general public’s mind more fear and curiosity
than anything else.

The ANN may also give new insights to better under-
stand the brain by studying how it generates its outputs and
changes in response to new input. That may well provide useful
insights into their working of human and other biological
brains. So, while ANNs are far from being able to replicate the
brain functions in totality, they can still help us solve com-
plex problems such as optimizing logistics for transportation
networks and processing raw photos and videos in medical
imaging, robotics, or facial recognition.

It is still not clear how moral and ethical concerns can be
encoded in the AI/ML algorithms right from the beginning.



CHAPTER 2

Survey of ML

FTER THE ADVENT OF the machine learning (ML) para-
digm, many different approaches to ML were quickly
discovered. They are often characterized as being with or
without deep learning (DL), a very important part of AI/ML.
DL provides a method for approximating arbitrary functions
in high-dimensional feature space (corresponding to large
number of independent features) using NN. It uses input data
as examples and learns the data’s structure and functional
relationships among its features using various algorithms based
on the statistical methods such as linear regression, decision
trees (DT), random forests (RF), support vector machines
(SVMs), artificial neural networks (ANNSs), boosting, etc. An
input layer followed by analysis and an output layer is some-
times called ‘shallow learning’

12 DOI: 10.1201/9781032659800-2
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In contrast, ‘deep learning’ has one or more hidden layers
between input and output layers. At each layer (except input
layer), the following action steps take place:

o At the current layer, the weighted sum of units from the
previous layer is computed.

e A nonlinear transformation or an activation function
(e.g., logistic function, hyperbolic tangent, rectified linear
unit (ReLU), etc.) is applied to the sum.

o This sum and weights on the inter-layer links become the
input to the next layer.

This way, the computations flow forward from input layer to
the output layer. For backpropagation, at output layer and each
hidden layer, one computes the error derivatives backward, and
backpropagates gradients toward the input layer. The weights
are then updated to optimize some chosen loss function.

This basic approach is used in many ways to accomplish
various ML tasks. Some of these approaches are the focus of
this chapter.

2.1 LEARNING FROM PROBLEMS

One way of learning starts from a problem and learns the
methods, techniques, and steps for solving it from known

methods of solution. Here we provide a nonexhaustive list of
the main varieties of this approach (Table 2.1).

2.1.1 Supervised (or Discriminative) Learning

In this approach, labeled historical or experimental data is used
as input for learning. Labels are tagged by experts and con-
tain descriptive features (attributes taking either numerical or
binary values) and target features (desired information). The
learning is also called ‘classification” for discrete and ‘regres-
sion’ for continuous labels. The ML techniques are used to learn
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TABLE 2.1  Varieties of Machine Learning: Learning from Problems

Supervised (or
Discriminative)
Learning

Semi-supervised
Learning

Unsupervised
(or Generative)
Learning

Self-supervised
Learning
Hybrid Learning

(A representative list)
- Multi-layer perceptron (MLP):

i. Feed-forward MLP (FF-MLP)

ii. Back-propagation MLP (BP-MLP)
Convolutional NN (CNN)
Recurrent NN (RNN):

i. Long short-term memory (LSTM)
ii. Bidirectional LSTM (Bi-LSTM)
iii. Gated Recurrent Unit (GRU)

Applicable when data labels are missing or incomplete

(A representative list)

Generative adversarial network (GAN)
Restricted Boltzmann machine (RBM)
Radial basis function network (RBFN)
Self-organizing map (SOM)
Auto-encoder (AE):

i. Sparse AE (SAE)

ii. Denoising AE (DAE)
iii. Contractive AE (CAE)

iv. Variational AE (VAE)
Deep belief network (DBN)

Intermediate between unsupervised and supervised

learning

Integrate more than one of either variety (generative

or discriminative)

i. CNN+LSTM,

ii. AE+GAN, etc.

Generative stack followed by discriminative stack.
i. DBN+MLP,

ii. GAN+CNN,

iii. AE+CNN, etc.

Integrate either variety with non-deep learning

classifier.

i. AE+SVM,

ii. CNN+SVM, etc.

Deep Transfer Learning
Multi-instance Learning
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their functional relationship and this step usually takes much
time and expense. Then, the trained learning system is used to
assign the new incoming data to appropriate target classes.

Some well-known but not exhaustive supervised learning
algorithms are given below.

2.1.1.1 Multilayer Perceptron (MLP)

A feedforward MLP is a simpler version of artificial neural net-
work. It is a next-level progression of single-layer perceptrons,
which can distinguish only linearly separable data.

An MLP consists of at least three layers of fully connected
neurons and maps a set of input values to output values. It
uses a nonlinear activation function (usually a Heaviside step
function) at each individual layer which can be combined to
express any mathematical function in principle. It can dis-
tinguish data that is linearly nonseparable. Backpropagation
algorithm is used to train them and that requires the use of
continuous activation functions, e.g., sigmoid or ReLU. The
MLP components and their roles are as follows:

« Input layer: It has neurons for receiving the initial input
data and each of them represents a feature or dimension
of the input data. The dimensionality of the input data
determines the number of neurons.

+ Hidden layer: These are the layers between the input and
output layers in which each neuron receives inputs from
all other neurons in the previous layer (either the input
or another hidden layer). Then the output is passed to the
next layer. The number of hidden layers and the number
of neurons in each of them are called hyperparameters.
They are determined during the model design phase.

+ Output layer: Neurons at this layer produce the final
output of the network, and their number depends on the
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nature of the task. For example: (i) in binary classifica-
tion, there may be either one or two neurons depending
on the activation function for representing the probability
of belonging to one class, (ii) in multi-class classification
tasks one may require many more neurons.

+ Weights: Neurons in adjacent layers are fully connected
to each other. Each such connection has an associated
weight learned during the training process determining
the strength of the connection.

+ Biasneurons: In addition to the input and hidden neurons,
each layer (except the input layer) usually also has a bias
neuron, giving a constant input to the next layer neurons.
Bias neurons have their own weights associated with each
connection, which is learned during training. They effect-
ively shift the activation function of the neurons in the
subsequent layer to learn an offset or bias in the decision
boundary. By adjusting the bias neuron weights, the MLP
learns to control the threshold for activation to better fit
the training data.

Note: In general machine learning, bias has another
meaning, as it refers to the error introduced by approxi-
mating a real-world problem with a simplified model, thus
measuring how well the model can capture the underlying
patterns in the data. A high bias indicates that the model
is too simplistic and may underfit the data, while a low
bias suggests that the model is capturing the underlying
patterns well.

+ Activation function: Each hidden layer and the output
layer neuron apply an activation function (e.g., sigmoid,
tanh, ReLU, softmax, etc.) to its weighted sum of inputs.
These functions introduce nonlinearity into the network,
allowing it to learn complex patterns in the data.

+ Training: MLPs are trained using the backpropagation
algorithm, which computes gradients of a loss function
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with respect to the model’s parameters. The parameters
are updated iteratively to minimize the loss.

2.1.1.2 Convolutional NN (CNN)

A CNN is a feedforward deep neural network (FF-DNN),
having layers with specific functions for processing data with
multiple arrays, e.g., color image, language, audio spectrogram,
and video. The inspiration behind CNN is the organization of
neurons in our visual cortex. After the input layer, the CNN
layers have the following other layers:

« Convolutional layer: This includes one or more layers that
perform convolutions or dot product of the convolution
kernel (usually Frobenius inner product with ReLU as
activation function) with the layer’s input matrix. This
kernel slides along the input matrix and generates a fea-
ture map contributing to the input of the next layer.

o Pooling layer: It combines the outputs of neuron clusters
at one layer into a single neuron in the next layer, thereby
reducing the dimensions of data. There are two types of
pooling: max pooling and average pooling. The former uses
the maximum value of each local cluster of neurons in the
feature map and the latter takes the average value.

o Fully connected layers: These layers connect every neuron
in one layer to every neuron in another layer as in MLP.

2.1.1.3 Recurrent NN (RNN)

RNN uses output of the previous step as the input to the current
step. In this manner, its output depends on the prior elements
within the sequence. This is done with the help of hidden units
which store the history of past elements using multilayer NN in
which all layers have same weights. RNNs cannot store infor-
mation for long time and have issues of vanishing gradients.
Some of its variations are given below.
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 Long Short-Term Memory (LSTM)

LSTM networks (Hochreiter and Schmidhuber, 1997) and
gated recurrent unit (GRU) (Chung et al., 2014) were
proposed to address the vanishing gradient issue. They use
gating mechanisms to manipulate information through
recurrent cells. Gradient backpropagation or its variants
can be used for training all deep NN. An LSTM memory
cell with long period data storage capability has three
gates: (i) ‘Forget, which decides which previous data will
be kept or discarded; (ii) Input; which controls which
data enters; and (iii) ‘Output, which controls the output.

« Bidirectional LSTM (Bi-LSTM)

They have two hidden layers running in opposite
directions and are trained to predict negative and positive
directions at the same time. It is widely used for natural
language processing.

o Gated Recurrent Unit

In contrast to LSTM, it has only two gates: ‘Reset’ and
‘Update’. It does not discard information from earlier data
sequence.

2.1.2 Semisupervised Learning

Semisupervised learning falls in between supervised and
unsupervised learning. Many times, the desired data comes
without labels or misses some of them. Sometimes, a small
amount of labeled data with large number of unlabeled ones
is available. Acquisition of labeled data is usually very expen-
sive but whatever one has gives more accurate understanding
of the underlying relationships. The algorithm is trained on
both labeled and unlabeled data. This learning method better
mimics the way humans learn.
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The algorithms are a complicated mix of both supervised
and unsupervised learning, e.g., generative models, low-density
separation, Laplacian regularization, etc. The goal is to learn a
function that can accurately predict the output variables based
on the input variables, like supervised learning. Semisupervised
learning builds a model with available labeled data for training
and treats the rest of the unlabeled ones as test data. Some
assumptions are also made implicitly by the algorithm:

« Continuity: The points closer to each other are more
likely to have the same output label.

o Cluster: The data can be divided into discrete clusters
and points in the same cluster are more likely to share an
output label.

o Manifold: The data dimension is lower than that of the
input space, thus allowing the use of distances and dens-
ities defined on the manifold.

2.1.3 Unsupervised (or Generative) Learning

In this approach, unlabeled data is used as input for learning,
and algorithms are used to learn the patterns present in the
data. These patterns capture the inherent probability densities
through neural networks and statistical methods. The net-
work mimics the given data using a learning rule and then uses
the error for correcting its weights and biases. Unsupervised
learning is used for tasks such as clustering, dimensionality
reduction, and anomaly detection.

The sequence of actions are as follows:

« The algorithms search for frequent if-then associations to
discover correlations and co-occurrences within data.

o The model learns useful data structure properties.

o Strong rules within a dataset are identified.
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Some of the well-known learning rules are:

o Hopfield learning: A single self-connected layer mimicking
the magnetic domains in iron is used. This learning layer
can also be used as a content addressable memory.

o Boltzmann machine learning: There are two layers (hidden
vs. visible) with symmetric two-way weights. Boltzmann’s
thermodynamics probability rule at the microscopic level
is used to get at the macroscopic energies.

o Restricted Boltzmann machine (RBM) learning: This is the
regular Boltzmann machine but with a restriction that lat-
eral connections within a layer are prohibited. This makes
further analysis easier.

o Stacked RBM: In this approach many RBMs encode
hidden features hierarchically. After training a single
RBM, another one is added and they are trained together
again. This can go on as needed.

o Helmholtz method: In the stacked RBM, the bidirectional
symmetric connections, separate one-way connections
are used to form a loop. It does both generation and
discrimination.

2.1.3.1 Generative Adversarial Network (GAN)

A GAN (Ian Goodfellow) is a type of neural network architec-
ture for generative modeling to create new plausible samples
on demand. It involves automatically discovering and learning
regularities or patterns in input data so that the model may
be used to generate or output new examples from the original
dataset. GANs are composed of two neural networks:

 Generator G: it creates new data having properties like the
original data

o Discriminator D: it predicts the likelihood of a subsequent
sample being drawn from actual data rather than data
provided by G.
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Both G and D are trained to compete. While G tries to fool and
confuse D by creating more realistic data, D tries to distinguish
the genuine data from the fake data generated by G.

GAN networks are more used for unsupervised learning but
have been also found useful for semisupervised, transfer, and
reinforcement learning tasks. Inverse models, such as bidirec-
tional GAN, can also learn a mapping from data to the latent
space. GAN networks have been used in the areas of healthcare,
image analysis, data augmentation, video generation, voice
generation, pandemics, traffic control, cybersecurity, and
many more.

2.1.3.2 Restricted Boltzmann Machine (RBM)

The full Boltzmann machines can learn a probability distri-
bution from inputs. Each one of their nodes are connected to
every other node. RBM is their subset which has a limit on
the number of connections between the visible and hidden
layers. They are more efficient for the gradient-based con-
trastive divergence algorithm. They can recognize patterns in
data automatically to develop probabilistic models using either
supervised or unsupervised learning. They have been used for
dimensionality reduction, classification, regression, collabora-
tive filtering, feature learning, topic modeling, etc.

2.1.3.3 Radial Basis Function Network (RBFN)

It is an ANN that uses radial basis functions as activation
functions so that its output depends on their linear combin-
ation and neuron parameters. RBFNs are used for function
approximation, time series prediction, classification, etc.

2.1.3.4 Self-Organizing Map (SOM)

SOM or Kohonen’s map for unsupervised learning was
introduced by Teuvo Kohonen in the 1980s. It does not use
backpropagation for learning but learns by adjusting neuron
weights. It reduces the dimension of data by creating a spatially
organized representation.
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SOMs have two layers: one for input and the other for output
or the feature map. There are no activation functions as weights
are passed to the output layer as they are. The dimensions
of input data and of the neuron weight vector are the same.
Weights are updated using the processes of competition,
cooperation, and adaptation.

2.1.3.5 Autoencoder (AE)
An AE uses neural networks to learn representations for espe-
cially high-dimensional data. It has three parts:

« Encoder compresses the input.
« Code is also generated by encoder.

+ Decoder uses the code to reconstruct the input.

The AEs are used for many deep learning tasks, e.g.,
dimensionality reduction, feature extraction, efficient coding,
generative modeling, denoising, anomaly or outlier detection,
etc. A single-layered AE with a linear activation function AE
is like principal component analysis (PCA). AEs have many
variants which are given below.

o Sparse AE (SAE)

An SAE has a sparsity penalty on the coding layer. It may
have more hidden units than inputs, but only a small
number of them are active at the same time, thus resulting
in a sparse model. They respond to the unique statistical
features of the constrained training data.

« Denoising AE (DAE)
This variant of AE receives a corrupted data point as input.
It is trained to output the original undistorted input by

minimizing the average reconstruction error over the
input, thus ‘denoising’ it. It also alters the reconstruction
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criterion to make it harder to learn the identity function.
DAE is very useful for automatic preprocessing of an
image to boost its recognition accuracy.

« Contractive AE (CAE)

CAE makes the autoencoder robust against small changes
in the training dataset by including a ‘regularizer’ in its
objective function. DAEs and CAEs make reconstruction
and representation robust, respectively.

 Variational AE (VAE)

A VAE is an ANN using probabilistic generative approach
and was introduced by Kingma and Welling (2022).
Assuming an underlying probability distribution for
the source data, it tries to discover the distribution’s
parameters. It is very effective for generative coders for
mapping the input onto a latent vector with the parameters
of a probability distribution, e.g., the mean and variance
of a Gaussian distribution. Initially designed for unsuper-
vised learning, VAE has been extended to semisupervised
and supervised learning.

The main components of a VAE are two NNs.

« The ‘encoder,’ as the first NN, maps the input data to a low-
dimensional latent space of parameters of a variational dis-
tribution. It is thus able to produce many different samples
coming from the same distribution.

o The second ‘decoder’ NN goes in the opposite direction
to map the latent space to the input data space, e.g., to the
means of the variational distribution. Both networks are
trained together using reparameterization. Sometimes
a third NN is used to map to the variance which can be
optimized with gradient descent.
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The model is optimized by calculating ‘the reconstruc-
tion error’ and ‘Kullback-Leibler divergence,” which are both
derived from the free energy expression of the distribution.

2.1.3.6 Deep Belief Network (DBN)

The DBN is composed of many stacked individual unsuper-
vised networks such as AE and RBM connected sequentially.
These are layers of hidden units, with connections between the
layers but not between units within each layer.

Initially DBN is trained with unlabeled data and later is fine-
tuned with labeled ones. It is good at capturing the hierarchical
nature of the input and its deep patterns due to its abilities for
strong feature extraction and classification. In the unsuper-
vised learning phase, DBN learns to reconstruct its input prob-
abilistically so that layers could act as feature detectors. Later,
DBN can be further trained with supervision for the purpose
of classification.

In DBN, each sub-network’s hidden layer serves as the vis-
ible layer for the next. As there are connections between, but
not within, layers, it leads to a fast, layer-by-layer unsupervised
training.

The application of DBN in electroencephalography and drug
discovery has been particularly successful.

2.1.4 Self-Supervised Learning (SSL)

SSL is a particular variation of the unsupervised learning
approach. It can be also thought of as an intermediate between
the supervised and unsupervised learning.

SSL learns from vast amounts of unlabeled data, so it
avoids the cost of labeling and curating it. In contrast to task-
specific supervised learning methods, SSL learns generic
representations useful across many tasks. SSL-based models
learn representations that are more robust to adversarial
examples, label corruption, and input perturbations, and are
fairer compared to their supervised counterparts.
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There have been many recent noteworthy areas of SSLs
applications.

In natural language processing, it has led to advances from
automated machine translation to large language models
trained on web-scale corpus of unlabeled text. A common
SSL objective is to mask a word in the text and predict
the surrounding words. Finding this context allows the
model to capture relationships among words in the text
without the need for any labels. The same SSL model
representations can be used across a range of downstream
tasks such as translating text across languages, summar-
izing, or even generating text, etc.

In computer vision, SSL pushed new bounds on data size
with models such as SEER trained on 1 billion images.
Such models have also matched or in some cases surpassed
models trained on labeled data on benchmarks like
ImageNet. It has also been successfully applied to video,
audio, and time series by defining a pre-text task based
on unlabeled inputs to produce descriptive and intelligible
representations. SSL can also find two views of the same
image formed by adding color or cropping, to be mapped
to similar representations.

In SSL, the task is solved in two steps:

i

ii.

First the artificial neural network (ANN) is initialized
with pseudo-labeled data.

Using the weights and biases found in first step, the
actual task is solved with either supervised or unsuper-
vised learning.

2.1.5 Hybrid Learning

In general, we have two kinds of deep learning models:
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e Generative: This can learn from both labeled and
unlabeled data.

o Discriminative: This cannot learn from unlabeled data but
can outperform generative on labeled data.

Hybrid networks combine the two in various ways to get the
best possible results for tasks at hand.

 Approach 1: Integrate more than one of either variety, e.g.,
CNN+LSTM, AE+GAN, etc.

« Approach 2: Stack generative followed by discriminative,
e.g., DBN+MLP, GAN+CNN, AE+CNN, etc.

o Approach 3: Integrate either variety with non-deep
learning classifier, e.g., AE+SVM, CNN+SVM, etc.

Most of the hybrid networks have focused on supervised
learning and classification tasks.

2.1.6 Deep Transfer Learning (DTL)

DTL uses a previously learned model to solve a new task with
minimum training. The knowledge gained while solving one
problem is stored and then applied or reused to a different but
related problem. As an example, learning from recognizing cars
can be partially used to recognize trucks. It can also be used
to improve the sampling efficiency of a reinforcement learning
agent. It is very useful when a needed amount of labeled data is
unavailable or training on available data is expensive. Recently
it has been used in many fields like natural language processing,
sentiment classification, visual recognition, speech recogni-
tion, spam filtering, etc.

It has a two-stage process of pre-training and fine-tuning.
DTL can be classified as having four main approaches as
follows:
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i. It utilizes instances in source domain by appropriate
weight.

ii. It maps instances from two domains into a new data
space with better similarity.

iii. It reuses a part of the network pretrained in the source
domain based on network.

iv. It uses adversarial approach to transfer features suitable
for two domains.

The last approach has become quite popular recently as it
combines GAN and DTL. DTL can be also classified into
(i) inductive, (ii) transductive, and (iii) unsupervised depending
on the source and target domains.

2.1.7 Multi-Instance Learning (MIL)

MIL is a type of weakly supervised learning in which the learner
receives a set of labeled sets or ‘bags, each containing many
instances. For example, in multi-instance binary classification, a
‘negative-labeled bag’ contains all negative instances. A ‘positive-
labeled bag’ contains at least one positive instance. The learning
process leads one to the underlying concept for correct labeling.

In the simple case of binary classification, a bag labeled
negative has all the negative instances, but one labeled positive
has at least one positive instance. The learner uses a collection
of such bags to either (i) induce a concept that will label indi-
vidual instances correctly or (ii) learn how to label bags without
inducing the concept. MIL is a kind of supervised learning, in
which every training instance has either discrete or real valued
label. It handles situations when training labels come with
incomplete knowledge of labels.

2.2 LEARNING FROM STATISTICAL INFERENCE

Most of the learning methods discussed earlier can also be
understood from a statistical point of view.
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2.2.1 Inductive Inference

It is the same as supervised learning in which general rules are
obtained from the labeled training data. The trained model is
then used to predict the classification/regression properties of
new and unseen data. In general, inductive learning first studies
observation from which conclusions are drawn.

2.2.2 Deductive Inference

In general, deductive learning starts from the known
conclusions or rules which helps the algorithms to classify the
new observations.

2.2.3 Transductive Inference

Transductive learning (introduced by Vladimir Vapnik) was
motivated by the observation that it is easier to learn a spe-
cific function for the specific problem at hand than a general
function applicable to the same problem. Sometimes, it is pref-
erable to induction as that requires solving a more general and
often difficult problem. In those situations, many times it is
easier to get the immediate solution without solving the general
one. Transductive support vector machine (T-SVM) algorithm
is an example of such an approach.

2.3 LEARNING DEPENDING ON TECHNIQUES

This way of looking at ML focusses on learning techniques.
Some important variations are presented next.

2.3.1 Multitask Learning (MTL)

In MTL, multiple learning tasks are solved at the same time by
exploiting features, which are both common and separate across
tasks. This improves efficiency in learning and accuracy of pre-
diction for the task-specific models when compared to situation
when the models are trained separately. Usually, MTL is applied
to stationary learning settings and its extension to nonstationary
environments is called Group Online Adaptive Learning.
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As MTL uses commonalities and differences across many
tasks, to solve them at the same time, this leads to improved
learning efficiency and prediction accuracy. It utilizes inductive
transfer to improve generalization by using the domain infor-
mation contained in the training signals of related tasks.
Learning tasks is done in parallel, so learning each task helps
better learn other tasks. Some good examples are spam filter,
multi-class and multi-label classifications, etc. MTL is particu-
larly useful when the tasks have many common features but are
undersampled.

2.3.2 Active Learning (AL)

In AL, alearning algorithm queries a user (or some other infor-
mation source also called teacher or oracle) to label new data
points with the desired outputs, especially when unlabeled
data is abundant but manual labeling is expensive. With careful
choice the number of examples to learn a concept is often much
lower than the number required in normal supervised learning.

2.3.3 Online Learning (OL)

In OL, data becomes available sequentially and is used to
update the best predictor for future data at each step. This is
different from batch learning for generating the best predictor
by learning on the entire training data set at once.

2.3.4 Ensemble Learning (EL)

EL uses many learning algorithms to obtain performance
that is better than any of the constituent learning algorithms
alone. One can increase the resources to improve the efficiency
of a single algorithm or spread that increase among multiple
algorithms. The latter has been found to give better results.

An ML ensemble consisting of finite set of alternative
models typically has more flexible alternative structures. In
general, EL combines many hypotheses to construct a better
hypothesis.
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EL trains two or more algorithms to a specific classification or
regression task, and they are called ‘base models, ‘base learners’
or ‘weak learners! A diverse collection of weak performing
models are trained to the same modeling task, and as a result,
their outcomes and error values exhibit high variance. Then EL
combines them into a stronger and better performing model.

Ensemble learning uses Bagging (bootstrap-aggregating),
Boosting, or Stacking/Blending techniques to create high vari-
ability base models.

» Bagging generates random samples from the training
observations and tries fitting the same model to each
different sample.

 Boosting is an iterative process to sequentially train each
next base model on the up-weighted errors of the previous
base model’s errors. This produces an additive model to
reduce the final model errors.

o Stacking or Blending trains different base models (with
diverse/high variability) independently and combines
them into the ensemble model.

Common EL applications include Random Forests (exten-
sion of Baggin), Boosted Tree Models, Gradient Boosted Tree
Models.

In one sense, EL compensates for poor learning algorithms
by performing a lot of extra computation. Fast algorithms such
as decision trees and random forests are commonly used for
this purpose.

2.4 REINFORCEMENT LEARNING (RL)

The foundation of RL has its origin in two scientific ideas of

almost a century earlier.

1. Law of Effect
It was coined by Edward Thorndike in 1911 based on animal
research. It is the notion that an animal will repeat satisfactory
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actions and avoid actions producing discomfort. Furthermore,
this says that the learning uses selection to choose the final
course of action after observing how the possible choices
worked. The animal also uses ‘associative learning’ in which
options are associated with positive or negative outcomes.

In 1927, Ivan Pavlov described reinforcement as ‘the
strengthening of a pattern of behavior due to an animal
receiving a stimulus—a reinforcer—in a time-dependent rela-
tionship with another stimulus or with a response’

2. Optimal Control Theory

This has its origin in mathematics and algorithms. Richard
Bellman used them to derive an equation (aptly named Bellman
equation), which returns an optimal value function from given
states of a dynamic system. He further introduced the idea of
Markov decision process (MDP), which is a discrete stochastic
version of the optimal control problem.

With the advent of NN, the RL was combined with it and
deep RL (DRL) was born. In DRL, the agent learns from a
high-dimensional environment using an NN which can be of
two kinds.

i. Online or direct learning: The agent constructs an
explicit model of the fully available environment and
then computes an optimal policy for it.

ii. Offline or indirect learning: Full environment model is
unavailable, so the agent uses one of the two options:

« It uses genetic algorithms, policy gradient methods,
etc., to search the policy space, or

« It finds policy using value-learning methods (e.g.,
temporal difference, Q-learning, etc.) with either
policy (like A2C, etc.) or value iteration schemes (e.g.,
Q-learning, etc.).

In both RL and DRL, the agent is given a task to perform or
a goal to achieve. The overall system has many states and in
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each state an agent can take many possible actions. The agent
chooses the action which maximizes the ‘reward’

i. InRL, the agent accomplishes this task by trial and error.
The reward is presented in a table so it can get that infor-
mation in a straightforward manner. It is possible for the
table to become too complex and many times the agent
is unable to visit some state-action pairs.

ii. In DRL, the agent uses NN to first learn the best pos-
sible state-action combination from an existing data
set. It utilizes that knowledge to a new data set or a situ-
ation. The NN creates a function approximation for
the reward implicitly, which the agent can use even for
unencountered situations.

In coming chapters, we will discuss RL/DRL in more detail.



CHAPTER 3

Basic Mathematics
behind Deep
Reinforcement
Learning

HE ORIGINS OF REINFORCEMENT learning (RL) lie in applied

mathematics and statistics. There are many important
concepts to understand that are essential for mastering both
the theoretical and applied aspects of RL. This chapter focusses
on them.

3.1 A MATHEMATICAL MODEL OF DRL

RL differs from other learning paradigms like unsupervised
learning, supervised learning, etc., in some important ways, as
given below.

o There is no supervision in RL so that there is no one
telling the agent what the next best action is to be taken.
For example, there is no supervisor guiding the robot in
choosing the next moves.

DOI: 10.1201/9781032659800-3 33
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« The feedback to the action taken is delayed and may not
be observed immediately. This is very important as imme-
diate action without feedback may lead to accidents.

« The agent decisions are sequential in time.

« The feedback to the agent depends on the actions taken by
the agent and the uncertainty in the environment.

The RL has some important mathematical underpinnings:

» Markov decision process
 Bellman equations

+ Q-learning

The rest of the chapter will explain these concepts.

3.2 MATHEMATICAL IDEAS BEHIND DRL
3.2.1 Markov Decision Process (MDP)

The MDP used in RL involves the elements (S, A, B 1, 7, s,) with
the following properties:

o {S} = the set of all states s, it may be finite or infinite

o {A} = the set of all actions g, it may be finite or infinite
{P} = probability P(s, ,
at the next time step, after choosing action a, in state s, at
time .

|'s ,»a t) for transitioning to state S

« r=reward function r(s,,a,) for choosing action a, in state
s,, can be either deterministic or stochastic.

o v = the discount factor to avoid accumulation of infinite
future reward, so y<1.

+ 5, = the initial state which is usually taken from a distribu-
tion function.
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MDP is a discounted process with infinite horizon. The Markov
property is defined as follows:

The effect of an action (a) on a state (s) depends only
on that state (s) and not on any prior history of its
development.

It means that no historical memory or the past information
influences the next state. This makes the reasoning about the
future states possible using only the information available in
the current state. This is the basic mathematical framework
behind the RL.

Let us look at these elements of MDP.

3.2.1.1 Actions and Policies
A policy defines how an agent selects actions. They can be
either of the following depending on time horizon.

o Stationary:

It applies for infinite time horizons, and stationary
policies.

 Nonstationary:

It depends on the time step and is useful for the finite time
horizon. There, the cumulative rewards that the agent
seeks to optimize are limited to a finite number of future
time steps.

There is a second criterion for the policies which specifies the
probability of the agent taking an action g, in each state s . Let
the parameters 6 specify other dependencies of the policy, then
it can have the following characteristics.

o Deterministic:Inthis casethe probabilityisa predetermined
time-independent action a.
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ng(st,at)=7r9(s)=a (3.1)

o Stochastic: Also, time-dependent in which case it is the
probability of action % in state %

ne(st,at):P[aAst] (3.2)
Further, an RL agent can be either of the following kinds.

i. Model-free:
This agent has one or more of the following components:

o a value function predicting how good each state, or
each state/action pair is, and

o adirect representation of the policy

The agent learns a policy m(a|s) without explicitly mod-
eling the forward dynamics. It optimizes the policy
by maximizing returns through estimation of policy
gradients. For discrete situations Q-function is learned
and for continuous cases both a value estimate and a
policy is learned.

ii. Model-based:

This agent includes a model of the environment
(estimated transition and reward functions) and a
planning algorithm. The NN-based supervised learning
is used to estimate a model of the environment. The
actions are then learned by model predictive control
using this model.

iii. Mixed agent:
This combines both approaches. For most real-world

problems, the state space is high-dimensional and pos-
sibly continuous as well. In such situations deep learning
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NN methods can be used to learn either policy or the
value function.

o NN can deal with high-dimensional data, e.g., times
series, frames, etc. They can manage exponential
increase in data when adding extra dimensions to the
state or action space.

e NN can be trained incrementally using additional
samples obtained as learning happens.

3.2.1.2 Reward Function r(s, a,)

It is a continuous scalar function in range {0, » } for a given
state-action pair to transition to another state. It indicates the
quality of that state so that it is greater for states more rele-
vant to the solution of the task. Rewards are defined by the
following terms.

* Rewards:
They are associated with single states and indicate the
states’ quality.

o Return:
This indicates the quality of full sequence of decisions
made in reaching the goal. The reward for such a full
sequence is called return.

o Value function:
It is the expected cumulative reward when actions are
taken according to a policy.

Later in this chapter we discuss the varieties of value functions.

3.2.1.3 Discount Factor
The tasks can be of two kinds and that will affect their nature.

- Continuous time and long running tasks
In these tasks it makes sense to discount far-future rewards to
value current information more strongly at the present time.
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To achieve this the discount factor y<1 such that the impact of
faraway rewards is reduced. In this way, the cumulative reward
does not become infinite, and the agent can reach its reward
goal in finite time.

- Episodic tasks
These tasks come to an end, and discounting factor consider-
ations do not apply. So, in these problems, y = 1 is used.

3.3 VALUE AND POLICY FUNCTIONS

In addition to the sets of states and functions we also need
various value functions which are related to rewards. They
depend on the process parameters for controlling the behavior
of the RL agent involving states, actions, or their combinations.
Some commonly used value functions are described next.

3.3.1 State-Only Value Function v, (s)

It is the expected return or reward (denoted by ) starting from
that state under the agent’s policy 7,.

vﬂ(s):En[zykrk+t+l |St :S:| (33)
k=0

The discount factor (y<1) ensures the finiteness of the
accumulated reward.
Expression for value function in terms of policy

3.3.2 State-Action Value Function Q7(s, a)

This is also known simply as Q-function where Q denotes
quality). If the agent’s policy 7, is given, then it is the expected
return or reward starting from that state, taking that action.

Q” (S’a) = Eﬂ: [iykrkﬂﬂ | S, =8,4, = a:| (34)
k=0
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Here

e O7 (s,a) = the expected total future reward (under policy
n with discount factor y) at time ¢ for a given state-action
pair (st ,a, )

o 1, = the reward at time step ¢+1 and so on.

The right-hand side in the above equation is an expectation
value (denoted by E) as the expression inside the bracket is a
random variable.

3.3.3 Action-Only Value Function V7(a,)

It is the value of an action g, at time ¢ under policy 7 over all the
states. It is also denoted just as V-function.

V”(al)=ZQ”(st,a,)ne(st,al) (3.5)

3.3.4 Advantage Value Function A%(s,a,)

It is the difference between the Q-function and V-function, and
it considers the other actions that the agent could have taken.

A”(st,at):Q”(st,at)—V”(at) (3.6)

3.3.5 Policy Function with Maximum Entropy 7%

maxEnt

The previously defined Q-function does not prioritize the
more promising states to be visited by the agent. One way to
implement this idea is to define the policy directly in terms of
exponentiated Q-values.

ne(st,af)ocepr”(st,at) (3.7)

Here the Q-function serves as the negative energy in a
Boltzmann-like distribution, and it assigns a nonzero likelihood
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to all actions. Because of this, the agent becomes aware of all
behaviors that lead to solving the task. This can help the agent
adapt to changing situations in which some of the solutions
might have become infeasible.

The policy defined now is an optimal solution for the
maximum-entropy RL objective.

T
T, . =argmax B [Zrt +H(n(.| st)):| (3.8)

t=0
Here H is the entropy function.

3.4 BELLMAN EQUATIONS (BE)

The value functions follow the Bellman equations named after
their discoverer Richard E. Bellman (1949). The basic idea
behind most of them is the following observation.

Define the cumulative discounted reward function as

T
Rt (]/,T) = z '}/f—(f'*'l)rk =r, + r)/rHZ + yZ,,;H o+ ,},T—(H—l)rT

k=t+1

= rt+1 + y(rm—z + J/rr+3 + +'}/21"t+4 -t J/T_(Hz)rT) (39)

Here the final time T can be infinity and y can be I (but not
both at the same time). One can write the above as a recursive
relation.

Rl(’}/,T)=I’;+]+’}/R[+](j/,T) (310)

3.4.1 BE for the State Value Function V. (s)
It has the following definition.

v, (s)=E[R(%.T)ls, =] (3.11)
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The earlier expression for R (7,T) gives

vn:(s):En:I:rtH ]+yEn: Rt+1(’)/,T)|St :S] (312)

Finally, using the definition of v_(s) leads to the desired BE.

v (8)= E [+ 1, (5.0 )ls, = 5] (3.13)

Without the expectation value operation, it takes the following
equivalent form:

v (s,)=r+ X ¥PGs., |s,.a)v,(s,.,) (3.14)

St

Note that the first term is different. Then the optimized value in
the current state is

v;(st)=r, +maxa(2yP(sr+] |s,,at)vﬂ(st+l) (3.15)

St

This gives the optimal policy for choosing the next action,
which maximizes the future reward.

T (st) = arg max, ZP(SM |s,,a)v. (st) (3.16)

Stal

3.4.2 BE for the State-Action Value Function Q(s,a)

It is given as follows:

0.(s,a)=E [R (7.T)s,=s.a,=a]
=E [t+l + yRHl 10 )|S :S’St =s,at :a]
=E I:f+1+YQn( t+1’ t+1)|sr:S’a,:a:| (317)
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Optimal control policy produces optimal value functions.

Q:; (St ’at ) = rt+1 + maxa, 2 ’yP(StH ‘ St ’at)Qn (SH—I ’ at+1) (3 1 8)

Ser129141

3.4.3 Soft BE for the Value Function of a State

It is like the previous ones but uses a special function called
softmax in the expectation value.

Q(S,,at)zE[rI+y*soﬁmaxa Q(st,a)] (3.19)

Here the softmax function is defined as

softmaxaf(a) = logJepr(a) da (3.20)

The soft BE holds for the optimal Q-function of the entropy
augmented reward function. The soft BE allows solving for
the Q-function using dynamic programming or model-free
temporal difference (TD) learning in tabular state and action
spaces.

Some analytical solutions for Bellman equation are given in
the Appendix.

3.5 LOSS FUNCTIONS

The loss and cost are very important factors for meeting the NN
goals as they measure how good the ML algorithm models the
input data set in predicting the expected outcome. Generally,
it is defined as the difference between the mean squared error
of the predicted Q-value from the target Q-value Q*. In this
context, loss function (LF) is calculated for each sample and
the cost function is its average for all samples. They need to be
minimized to improve the performance of the algorithm.
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LF for classification predicts the probabilities of all the classes
inherent in the input data. Some important ones are described
below. Similarly, LF for regression applies to situations with
continuous variables.

3.5.1 LF for Classification: Binary Cross-Entropy

Loss/Log Loss
This is one of the most used loss functions in classifica-
tion. It measures the performance of a classification model
whose predicted output is a probability value between 0 and
1. It decreases as the predicted probability converges to the
actual label.

=—li[yi log 3, +(1-y Jlog(1-3,)] 321

m

where

« m = the number of training samples,
« i = the ith training sample,

« y, = value of the ith sample, and

« 3 = value of the predicted ith sample.

i

It is called binary classification for two classes and multi-class
classification for more than two classes.

3.5.2 LF for Classification: Hinge Loss

This loss function is highly used in support vector machine
(SVM) model evaluation.

L=max(0,1-yf(x)) (3.22)

where y is the sample value and f (x) is the SVM value.
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It penalizes the wrong predictions and the right predictions
that are not confident. For SVM classifiers it uses class labels -1
and 1.

Loss functions for regression are used for problems with
continuous inputs. Some important ones are given below.

3.5.3 LF for Regression: Mean Square Error
(MSE)/Quadratic Loss/L2 Loss

We define MSE loss function as the average of squared

differences between the actual and the predicted value. It is the

most used regression loss function.

MSE=LY (7, 1) (3.23)

nig

where 7 is the number of training samples, i is the ith training
sample,and y /y isthe value of the ith sample and its predicted
value. The MSE lpenalizes the large errors by squaring them,
which mabkes it less robust to outliers.

3.5.4 LF for Regression: Mean Absolute Error

(MAE)/L1 Loss
The MAE is the average of absolute differences between the
actual and the predicted values. It measures the average magni-
tude of errors in a set of predictions without considering their
directions.

MAE=%i|yi—xi| (3.24)
i=1

where x. /y. is theactual/predicted value and # is the number of
samples. It is more robust to outliers compared to the MSE and
therefore it is preferred if the data is prone to many outliers.
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3.5.5 LF for Regression: Huber Loss/Smooth Mean
Absolute Error

It combines MSE and MAE. It is MAE and becomes quadratic

for small error. That is controlled by a tunable hyperparameter 6.

L () =5 (=S () for |y = £ ()] <&

= 5|y—f(x)|—%52, otherwise  (3.25)

where y is the actual value and f'(x) is the predicted value. The
choice of ¢ is critical as it determines what an outlier is. This
loss function should be preferred for the outlier-prone data.

3.5.6 LF for Regression: Log-Cosh Loss

It is the logarithm of the hyperbolic cosine of the prediction
error and is much smoother than MSE. It is twice differenti-
able everywhere, and used for some learning algorithms like
XGBoost which uses Newton’s method to find the optimum.

L(y,y") =Y Jog(cosh(y? - y,))
i=1
= x?/ 2 for small x, |x| - log (2) for large x
(3.26)

Herey? — y, is the predicted error or x. It is mostly like the MSE
but is not affected strongly by the occasional incorrect prediction.

3.5.7 LF for Regression: Quantile Loss

The quantile regression loss function predicts quantiles, which
are values below which a fraction of samples in a group falls.
For a set of predictions, the loss will be its average.

L(v.y)=Y (r=1y,-»r|+ X vy, -»r| 627

. P . P
i=y,<y; z—ylzyl
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where y? — y is the predicted error and y is the hyperparameter.
It is useful for predicting an interval instead of only points.

There are many loss functions specific to the ML tasks like
object and face recognition. They are in most cases special cases
based on the general ideas.

3.6 ACTIVATION FUNCTIONS

The activation functions are used at the internal NN layers to
bring the quantity of interest within (0, 1) interval.

3.6.1 Activation Functions: Sigmoid

It is a mathematical function with a characteristic ‘S’-shaped
curve — hence the name sigmoid. In the area of AI/ML, it is
usually another name for the logistic function defined below
for a single variable.

1
1+e~

a(x)

=1-o(—x) (3.28)

A sigmoid function is convex for values less than a particular
point, and it is concave for values greater than that point. There
is also one inflection point. When used in the NNs, they show
some problems as well.

« Vanishing gradients for very high or very low values.

 Output not centered on 0 which reduces the efficiency of
weight update.

« Exponential operations are slow for computers.
Some other common sigmoid functions are given below.

- Hyperbolic tangent function

2

G(x) = tanh(x) = o

-1 (3.29)
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It has some advantages compared with sigmoid.

o Output interval is 1 and it is centered on 0.

« Negative input is mapped to negative and zero input is
mapped to near-zero.

In binary classification problem, tanh is used for the hidden
layer and the sigmoid is used for the output layer in general.

« Arctangent function
G(x) = arctan (x) (3.30)

o Gudermannian function

o(x) = 2arctan (tanh(g)) (3.31)

3.6.2 Activation Functions: Softmax

It takes a vector z of K real numbers as input and brings out a
probability distribution as output.

o(z) === —i=12,...K (3.32)
€
The vector input components can be negative or greater than
1. The output of the softmax function lies in the interval (0,1)
with all components adding up to 1. The larger components
yield larger probabilities. The softmax function is actually
the well-known Boltzmann probability function of statistical
thermodynamics adapted to ML.
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3.6.3 Activation Functions: Rectified Linear Unit (ReLU)

ReLU is a very popular activation function and is defined as
follows.

O'(x)zmax(O,x),xZOandOfor x<0 (3.33)

Itis O for x less than 0 and x for x greater than or equal to x. It has
the range [0,cc]. ReLU has no gradient saturation problem for
positive x and is computed much faster compared to sigmoid
and tanh. On the other hand, it has also some disadvantages.

« For negative x, it is completely inactive. This is problem-
atic for backpropagation.

« Itis not centered on 0.

There are variations of ReLU which take care of its shortcomings.
Leaky ReLU (LReLU) is defined as

o(x)=x,x>0and ax for x <0 (3.34)

It gives a very small value to negative inputs using small a;

e.g., a = 0.01. Range is also increased to [—oe,c0]. It also solves
the problem of dead ReLU.

 Exponential linear unit (ELU) is defined as

O'(x)zx,x>0anda(e"—l)forxSO. (3.35)

Its negative values bring the mean closer to zero, so it is
zero-centered, and the gradients are also closer to their
natural values. Learning is faster due to a reduced bias
shift effect. Even smaller inputs saturate ELUs to negative
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values, thus decreasing the variations in forward propa-
gation. It is slightly more computationally intensive
compared to ReLU.

o Parametric ReLU (PReLU) is defined as
G(x)zx,x>0andaxf0rx$0. (3.36)

It is a generalization of ReLU such that other versions are
its special cases, e.g.,

o a =0 makes it ReLU,
o a> 0 makes it LReLU, and for
« aas alearnable parameter it is PReLU.

It has a small nonzero slope in the x <0 region so the
problem of ReLU death is avoided.

In actual applications no clear-cut and definitive advantage has
been found between the original ReLU and its variations.

3.7 ENTROPIES AND RELATED FUNCTIONS

The systems of both natural and human-made varieties are built
out of many smaller or less complex entities, e.g., gas made up
of molecules or atoms. Such systems have disorder or chaos as
their inherent property, and it is mathematically captured by
the idea of entropy.

The concept was later applied by Shannon to information. It
has many variations as there are many ways in which the ran-
domness inherent in such systems can be captured. Here we
give a list of entropies with their definitions.

3.7.1 Boltzmann’s Thermodynamic Entropy

It is the starting point of many similar definitions of entropy. For
an isolated state in thermodynamic equilibrium, it is defined as

S = —k,InQ (3.37)
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where & 5 18 Boltzmann’s constant, /» is the natural logarithm,
and () is the number of microstates with energy same as
the system’s energy. The Boltzmann entropy can be further
generalized as

S= —kBTr(f)ln ,3) (3.38)

where P is the density matrix, 77 is the trace, and /7 is the nat-
ural matrix logarithm. All other definitions of entropy can be
derived from it.

3.7.2 Gibbs Entropy
It is defined as

S=—k,> p,Inp, (3.39)

It is the generalization of the Boltzmann entropy. The latter refers
to the situation when the system is in a global thermodynamic
equilibrium. The former does not require the system to be in a
single state. It is also referred to as Boltzmann-Gibbs entropy.

3.7.3 Tsallis Entropy

It is a further generalization of Boltzmann-Gibbs entropy for
nonadditive and nonstandard thermodynamic situations. Let

{p,} be the discrete set of probabilities ( Zpi =1), real number

q be the entropic index, and k be a positive number, then Tsallis
entropy is defined by

S, (P)= ﬁ(pngj (3.40)

1

The usual Botzmann-Gibbs entropy is recovered in the
limitg — 1.
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3.7.4 Rényi Entropy
It is named after Alfred Rényi who generalized the concept of
information while preserving the additivity of independent
events. It is defined as

H,(P)=

1 n
I « 3.41
(g o

HereO< ax< oo, x#1, and p,is the probability for random vari-
able with i=1,...,n. Many other information-theoretic entro-
pies, e.g., Hartley entropy, Shannon entropy, collision entropy,
and min-entropy, are special cases of Rényi entropy. In many
physics-based models it is essentially the trace of the power of
the density matrix.

H,(P)= log (Trp*) (3.42)

-«
The exact analytic expression for Rényi entropy of Heisenberg
XY spin model is known.

3.7.5 Shannon or Information Entropy

The basic idea of entropy in physics was modified and applied
to information theory by Shannon by developing the concept
of information entropy. This gives the average number of bits
so that the information can be stored optimally. For informa-
tion of n symbols, the average number of bits must be at the
least log,n. This idea is captured by the information entropy H
defined by

Discrete case: H = —z‘pl_log2 D, (3.43)

i=1

where p. is the probability of an outcome from the set of all
possibilities. It has some interesting properties: (i) S increases
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to a maximum value of log,n when all p, are equal to1/n, and
(ii) for only one possible outcome the system is perfectly pre-
dictable, and so H = 0.

For continuous probability distribution it is given as

Continuous case: H ZP logP (3.44)

3.7.6 Hartley Entropy

Given a finite set with n elements, if we choose an element ran-
domly, then the information obtained is expressed by Hartley
function, also known as Hartley entropy or max-entropy.

H(P)=log,n (3.45)

3.7.7 Collision Entropy

It is a special case of Rényi entropy when a = 2.
= —log(prJz —log|p|2 (3.46)
i=1

Here |p| = ’2 p} is the geometric length of an n-dimensional
i=1

vector.

3.7.8 Min-Entropy
In the limit ot — oo, Rényi entropy is called min-entropy.

H_(P)=-logmax,p, (3.47)

oo

It is the smallest entropy measure in the family of Rényi entro-
pies — hence its name. It is never larger than Shannon’s entropy.
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3.7.9 Cross-Entropy

This is a generalization of Shannon’s entropy to two probability
distribution P(x)and Q(x) over the same support space.

ZP )log O(x (3.48)

As an example, cross-entropy is minimized between the data
distribution and the model distribution for maximum likeli-
hood estimation in supervised learning.

3.7.10 Relative Entropy or Kullback-Leibler (KL)
Divergence

It is the expectation value of logarithmic difference between two

probability distribution. For discrete probability distributions

(P = ‘true’ and Q = given probability distribution), it is

D (PII0)= 3P (x 10%( i} “2P) ( 53)
(3.49)

The KL divergence and cross-entropy are related as

H(P,0)=H(P)+D,,(P||0) (3.50)

There are many more definitions of entropy relevant to other
branches of mathematics, e.g., Kolmogorov-Sinai entropy,
topological entropy, metric entropy, etc.

3.7.11 Mutual Information

It is a measure of the mutual dependence between two variables
defined as the amount of information obtained about one
random variable by observing the other. It determines how
different the joint distribution of pair (X, Y) is from the product
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of their marginal distributions. It is defined in terms of KL
divergence as

I(X.Y)=Dy (R, ,|IP, ®F,) (3.51)

Broadly speaking, it quantifies the information shared by two
distributions.

3.7.12 Information Gain

It is the amount of information gained about a random signal
or variable X from observing another one Y. It is basically the
KL divergence defined earlier and is another name for the
same. In the context of decision trees, it is the same as mutual
information.

3.7.13 Fisher Information

Many times, one needs the amount of information carried by
an unknown parameter 6 of a distribution which models a
random observable X. This is given by Fisher information /(6),
which depends on covariances.

1(6)- E[(a%log 7(x: e))2 | e] _ J(a%log 7(x, 9))2 7 (x:0)dx
(3.52)

In an equivalent manner, it gives an estimate of the relative
uncertainty in and correlation among the model parameters
based on the local curvature of the cost function.

APPENDIX: SOME ANALYTICAL SOLUTIONS OF
BELLMAN EQUATION

The BE equations are solved using methods of dynamic pro-
gramming. The term ‘programming’ here refers to the original
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meaning of this term introduced by Bellman. It uses recursive
methods to calculate the value of a state by calling on its own
code to complete recursive steps. This approach in its simple
application goes through the entire state space many times.
This inefficiency is addressed by better methods that were
developed afterward.

There are very few known analytically solvable models for
BE. The following examples present a few of them.

i. Model —1

This example is from the area of econometrics.
Input
s = state variable,
Bellman equation: V' (s ) =max, [u (s =5, ) + j/V( S )]
Where u( ) log( ) (3.53)

Solution:
Let

t
to go,VO(st):O
The policy rule: o, (st) =s,,, with (kt) =0
Then

v (s,) be the value function when there are t periods left

Vi (s,)=log(s}) = k log(s,) (3.54)

v, (St ) = max, [log (Stk S, ) + (s ( ” )]

= max, [log(stk t+l)+ )/klog( z+1)] (3.55)

Maximization gives

2y (s,) =~L1og (st —s,,,)+ 7k log(s,.,)]=0  (3.56)
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So that
P L (3.57)
1+ 1+ ,yk t
Substitution leads to
V,(s,)=k(1+ 7k)log(s,)+ D (3.58)

The last term is time independent.

D = yklog(vk)—(1+ yk)log(1+ yk) (3.59)
Iterating the steps n times gives
V. (s,)=k(1+ vk + k> +...+ yk" " )log(s,)+ yD  (3.60)

Asn—> oo, wegeta solution to BE.

v (s,)= 1—kyk log(s, )+ 7[ vklog (k) — (1+ 7&)log(1+ k)]

(3.61)
ii. Model -2
The following continuous example is from quantum control
theory.

Let V" be the optimal value function satisfying the following
Bellman equation.

~0V" =min, {Bf + 2Bt89V*} +20203 V" (3.62)

Completing the squares gives the optimal condition.

B=-a)" (3.63)
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Substitution in the starting BE leads to Hamilton-Jacobi-
Bellman equation.
* * 2 * (3'64)
oy =(0,) —20202 ¥

Let us make an ansatz: V' (¢)= 6/ (1) + g(¢). Then the substi-
tution gives the equations for the unknown functions as

3 foast, f(T)=1 (3.65)
d,g=-40c2f,g(T)=0 3-60)
The solutions are
f(t)zm,g(t)za210g|4(T—t)+1| (3.67)
V*(t)zi+a210g|4(T—t)+l| (3.68)
4T -1)+1



CHAPTER 4

Single-Agent
Algorithms

THE HISTORICAL DEVELOPMENT OF RL started with the
situations where the number of possible states and actions
were finite and discrete. Usually, these could be presented in a
tabular form. Many games of strategy like Go and Chess fall
under this category. Neural networks are not needed for their
solution, so they are not deep RL but simply RL algorithms.

There are many approaches to RL depending on which
aspect is emphasized. This leads to many algorithms, some
of which are very general, and others better suited to specific
problems. We start with general considerations applicable to
the classification of RL algorithms by understanding the applic-
able environment.
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i

ii.

iii.

Single-Agent Algorithms = 59

Deterministic versus stochastic

The reward for every (state, action) pair is known in a
deterministic environment. In stochastic situation they
are known probabilistically.

Finite versus infinite horizon

The agent comes to a stop in the former but can go on
operating indefinitely in the latter scenario.

The environment is static and so it does not vary with
time. Time-varying environments call for different
approaches.

The algorithms have the following general characteristics.

il.

iii.

iv.

Algorithm: The common name by which it is known
is given.

Model: The agent learns either from value or from
policy rewards obtained by going through the (state,
action) pairs. It can be also model free in which case all
possibilities of model are given right at the beginning.

Action: It can be either discrete or continuous.

Policy: For a learned model, one may have either offline
or online learning.

o OFF Policy: A replay buffer memory stores the pre-
vious states and randomly chooses a batch to train
the model. It does not update the model based on the
current performance.

o ON Policy: The model is updated at each episode
based on the current exploration of the agent. It
converges slowly and is a bit noisy because it uses an
exploration only once.

Performance measure: The basic mathematical or stat-
istical measure characterizing the performance of the
algorithm is given.
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The method of temporal difference (TD) learning has been a
very important feature of model-free learning in which the role
of the transition function is replaced by an iterative sequence of
environment samples. The TD here refers to the difference in
values between two time steps used to calculate the value at the
new time step. It works by updating the current estimate of the
state value with an error value based on the estimate of the state
that it has gotten through sampling the environment:

Vs)«<V(s)+alr+yV(s)-V(s)] 4.1)

where s is the current state, s’ is the new state, r is the reward
of the new state, a is the learning rate, and y is the discount
rate. The learning rate a controls how fast the algorithm learns
(or bootstraps), so setting its value too high can be detrimental
since the last value dominates the bootstrap process too much.
Its optimal value is found by experimentation. The last term
subtracts the value of the current state to compute the TD.
Another way to write this update rule is

Vis)«alr+yV ()] + (1 -a)V(s) 4.2)

as the difference between the new TD target and the old value.
Note the absence of transition model T in the formula; TD is a
model-free update formula.

Almost all RL algorithms follow a generic framework and
are typically a variant of the scheme given below. They try
attacking one step or multiple steps of the problem.

o Loop:
Collect trajectories ((transitions — (state, action, reward,
next state, terminated flag)))
(Optionally) Store trajectories in a replay buffer for
sampling
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o Loop:

Sample a mini batch of transitions to compute policy
gradient.

(Optionally) Compute critic Gradient

o Update parameters

The single-agent discrete algorithms apply to situations where
a finite number of actions and states for the agent. Some
well-known algorithms are given in the table below. Simple
value-iteration for discrete states is a simple approach based
on dynamic programming for finding optimal state value-
function. One solves a Bellman equation for Markov Decision
Process (MDP) given by five elements:

i. A set of states representing all possible agent
configurations in the environment,

ii. A set of actions the agent can take in any given state,

iii. Transition probabilities that the agent’s action will be
successful (or not),

iv. Rewards, for arriving to a specific state, and

v. A discount factor y for diminishing future rewards.

One starts at time ¢ with (i) an initial state s, (ii) the initial
reward 7, and (iii) discount factor 0 < y<1. The algorithm
calculates the new value-function after looking at all possible
actions available to the agent and maximizing the value.

v(s,)zrt+ymaxal ZP(SM|S,,at)v(st+l) Vs, (4.3)

St
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The value of being in a state is a sum of

i. Immediate reward in that state, and
ii. The discount factor multiplied with the maximum value

of the expression in the bracket found after calculating it
over all actions allowed in that state.

The expression in the bracket for a chosen action itself is the
value function of the possible transition state multiplied with
transition probabilities of that state and it is summed over all
reachable transition states.

i. Algorithms based on MDP: They are again broadly
classified into the following.
« Model based:
« Model is given: MCTS.
o Model is learned: 12A, World model.
o Model free:
« Value-based and on-policy: SARSA,
« Value-based and oft-policy: Q-learning, DQN.
« Policy-based and gradient-free:
a. Using cross-entropy: QT-opt,
b. Using evolution strategy: SAMUEL.
« Both policy- and gradient-based: Policy gradient,
TRPO/PPO, ACKTR.
ii. Algorithms based on multi-arm-bandits paradigm.
o Action value-based.

o Gradient-based.

In the rest of the chapter some important but (nonexhaustive)
algorithms are introduced.

4.1 Q-LEARNING

Algorithm Model Action Policy Perf. Meas.

Q-Learning | Model-free | Discrete Discrete, off | Q-function
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It is one of the early RL algorithms developed by Chris Watkins
in 1989. In this approach, the learned Q-function at each iter-
ation approximates the optimal value function for action. Given
a state, it is a model-free RL algorithm for learning the value
of an action. It finds an optimal policy so that expected total
reward or Q-function over all successive steps is maximized.
The Bellman equation is used for value iteration. The following
steps illustrate the procedure.

The Q-learning is a model-free algorithm for learning the
value of an action. The agent finds an optimal policy so that
the ‘Q-function’ (the expected total reward) over all successive
steps is maximized. A SARSA agent uses an on-policy learning
to interact with the environment and updates modifiable
parameters after each visit of a state. The Monte Carlo methods
rely on repeated random sampling to approximate situations
which may be deterministic in principle.

In the finite state-action Q-learning, big memory space is
needed for storage. That need makes its generalization to con-
tinuous state-action situation almost impossible. This problem
is solved by approximating the Q-function using deep neural
network called DQN. It computes the Q-values of all possible
actions for a given input state. The size of its input and output
layers is that of the states and all possible actions, respectively.
The agent forwards its state to the DQN and chooses the action
with the highest Q-value.

System Setup

Start at time ¢ with an (i) initial state s, (ii) the initial reward
r, (iii) the initial state-action value-function Q(st,at ),
(iv) learning rate or step size &, and (v) discount factor 0 < y < 1.

Pseudocode

The algorithm uses a Bellman equation for updating a simple
value function by calculating the weighted average of the
current value and the new information.
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Att=0
assign a random value to Q(st,at)
At time t

(i) Choose an action a, and calculate the new Q-function.

QneW(St,at):Q(St,at)+
(x[rt +ymax Q(s,,, a) - Q(st,at)] (4.4)

With

Q(s, a,) = old Q-function value,

r, = reward,

max,Q(s,,,, a)= future Q-function estimate (optimized
for chosen action)

the terms in the Bellman equation above are:

- (1 -wQ(s, a,) = current Q-function weighted by
learning rate
- ar, = the reward (weighted by learning rate) obtained
if action a, is taken
- ay max,Q(s, a,) = the maximum reward (weighted
by learning rate and discount factor) that can be
obtained if new state is s,,;
(ii) Calculate Q™ (s, a,) for all other possible actions a,
and find its maximum value.
(iii) Choose the action corresponding to the
maximum value.
(iv) Update the action corresponding to the maximum value.

Repeat the process for next time steps.
Stop when state s,,, is terminal or final state (Q-function for
this state can be zero)

Applications
The Q-learning has found applications in many areas, out of
which some prominent ones are:

i. Autoconfiguration of online web systems,
ii. News recommendation system, and

iii. Network traffic control system.
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4.2 DEEP Q-LEARNING AND DEEP Q-NETWORK
(DQN)

Algorithm Model Action Policy Perf. Meas.
Deep Model- Continuous | Continuous, | Q-function
Q-Learning free oft

It is the generalization of the finite Q-learning presented before
to continuous states and actions. They cannot be represented
by a table for such situations as the potential combinations can
become infinite. The solution of such systems requires neural
networks (NN) and is indicated by the word ‘Deep’ in the Deep
Q-learning or DQN. Policy gradient is a very important general
tool for these algorithms. They solve the problem of ‘reward
shaping’ or finding the right set of rewards for a given problem.
This is done by a policy which is the probability distribution for
a given state.

4.2.1 Mathematical Formulation
Let

o 0 = the set of parameters defining a policy 7, e.g., the
coeflicients of a polynomial or the weights and biases of
neural network nodes

« 7 = the trajectory (set of states and actions) of an agent
resulting in the reward r(7)

Then the ‘expected’ reward following the policies parameterized
by 0 is given as

J(0)=E, [r(7)]=]n(7)r(z)dn (4.5)

Let 6" denote parameter maximizing J (). That can be found
by first calculating the gradient of J (6),
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VJ(0)=V]n(t)r(r)dr=E [r(7)Viegn(7)] (4.6)
and utilizing the gradient ascent rule for update as

6, =6-+avJ(6) 4.7)

The Policy Gradient Theorem: We use the following obvious
result:
Derivative of the expected reward = the expectation of

the reward X the gradient (or ai) of the log of the policy 7.

This gives
VE, [r(7)]=E, [r(7)Viogn,(7)] (4.8)

The following results are needed for calculating this.

T
* ”9 (T) = P(SO )H”e (at | St )P(SH—I ’ ’/;-H | St ’al) (49)
t=1
. Vlogﬂe(r):iVIOg 7, (at |St> (4.10)

t=1

Giving us the following final expression:

VE, [1(9)]-E, [r(f)(;:v log 7, (4,5, )]]
- :fr(f)ne(a,|s,)wogn9(at|st)df @.11)

t

This result is independent of the ergodic distribution of
states and the environment dynamics. It leads to ‘model-free
algorithms’ bypassing the need to ‘model’ the environment. The
integral can be calculated by sampling many trajectories and
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averaging them out. This method is known as Markov Chain
Monte-Carlo (MCMC), widely used in probabilistic graph-
ical models and Bayesian networks to approximate parametric
probability distributions.

4.2.2 Pseudocode

DQN combines Q-learning with a deep convolutional NN
(CNN) specialized for data arrays. For continuous case the
Q-function is approximated by deep neural networks (DNN)
known as deep Q networks (DQN). After receiving a state as
an input, it outputs the Q-values of all possible actions for that
state. Its input and output layers have sizes of states and actions,
respectively. The agent in each state enters it as an input to the
DQN and chooses the output action with the highest Q-value.

Initialize replay memory D to capacity N.
Initialize action-value function Q with random weights.

for episode = 1; M do
Initialize sequence s, = {x;} and preprocessed sequenced
b1 =¢;(s9)
fort=1;T do
With probability € select a random actiona,
otherwise select a, = max, Q*(4(s), a; 6)
Execute action a, in emulator and observe reward r, and
image X,
Set s, =S, a, X1 and preprocess ¢, = ¢(S.1)
Store transition (¢, a, r,, ¢..1) in D
Sample random minibatch of transitions (¢, a r; ¢;,.1)
from D
Sety, =r; (for terminal ¢,,,)

=r+y maxa,Q(d)m/a’; 0) (for non-terminal ¢,,,)

2
Perform a gradient descent step on (yl. = Q(q)/.,a/.;@))

end for
end for
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Source: ‘Playing Atari with Deep Reinforcement Learning,
Volodymyr Mnih Koray Kavukcuoglu, David Silver, Alex
Graves, loannis Antonoglou, Daan Wierstra, and Martin
Riedmiller, DeepMind Technologies.

4.2.3 Applications

DQN is one of the most widely used algorithms and has many
applications. A brief and incomplete list below tells us about its
range and capabilities.

* Robotics and automation: DQNs have been used in training
robots for tasks ranging from simple object manipulation
to assembly tasks in manufacturing processes. We have:

o The robot states: (i) position and orientation of the
robotic arm, (ii) the gripper’s state (open or closed),
and (iii) the relative position of the objects of interest.

o Theactions: (i) the incremental movements in the joints
of the robot arm, or (ii) gripper control commands.

o The reward function: positive (the arm correctly picks
up, moves, or assembles an object), negative (for
dropping items or incorrect placement).

DQN implementation requires a model of the environ-
ment, e.g., a real-world interface to a physical robot arm,
or a simulated environment and training with a carefully
designed reward function and sufficient exploration of the
state-action space.

o Autonomous vehicles and drones: DQNs are increasingly
being used to train cars and drones for safe and efficient
navigation in their environments.

o For self-driving cars, (i) the states are sensor data from
LIDAR and RADAR readings, camera images, GPS
data, and internal car status data; (ii) the actions are
driving maneuvers such as accelerating, braking, or
steering; (iii) the reward function is positive for safe and
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efficient driving, and negative for traffic rule violations
or unsafe driving behaviors.

o For drones, (i) the state includes information about the
drone’s position, velocity, orientation, battery status,
and data from onboard sensors (like cameras or depth
sensors); (ii) the actions are commands for changing in
thrust and torque for each rotor (for quadcopters); and (iii)
the reward function is positive for efficient navigation to
the target, and negative for crashes or unsafe flight behavior.

o Home and industrial automation: In home automation,
DQNs can learn user habits and control smart home
devices efficiently.

« For smart homes, (i) states are the time of day, whether
residents are athome, which devices are currently on, and
the current energy cos; (ii) the actions are commands,
e.g., adjust a thermostat, turn lights on or off, start a
washing machine, etc.; (iii) the reward function is better
energy efficiency and user comfort preferences.

« For manufacturing automation, (i) states for optimizing
production schedules are manufacturing line, current
work orders, historical data etc., and in logistics, states can
be the configurations of autonomous forklifts or conveyor
systems, etc.; (ii) actions for automation maximize effi-
ciency and minimize downtime, etc., and for logistics they
optimize the efficient movement of goods within a ware-
house; (iii) the reward function these and similar cases
improve operational efficiency, reduce costs, and main-
tain safety standards. The actual implementation of DQNs
would have to manage high-dimensional state and action
spaces, delayed rewards, and the need for safe exploration.

e Personalized medical treatment recommendations: (i) the
states are patient-specific factors such as age, gender,
preexisting conditions, genetic information, progression
of the disease, etc., (ii) the actions are various treatment
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options such as medications, dosages, surgery, or other
therapies, etc.; (iii) the reward are better patient outcomes
to maximize the effectiveness of treatment and minimize
side effects or complications, etc.

o Financial portfolio management and trading: For trading
strategies and managing portfolios, (i) the states are
current portfolio holdings, recent market trends, rele-
vant economic indicators, etc., (ii) the actions are buying,
selling, holding different assets, etc., (iii) the reward is the
profitability of these actions.

The new applications of DQN are being discovered and utilized
as machine learning spreads through different activities.

4.3 STATE-ACTION-REWARD-STATE-ACTION
(SARSA)

Algorithm Model Action Policy Perf. Meas.
SARSA Model-free | discrete Discrete, on | Q-function

A SARSA agent follows an on-policy learning algorithm in
which it interacts with the environment and updates modifi-
able parameters after each visit of a state. The acronym for the
quintuple (sl ,A,,T S, 4, ) is SARSA.

In on-policy learning a single policy function is used for
(downward) action selection and (upward) value backup
towards the learning target. SARSA is an on-policy algorithm,
and it updates values directly on the single policy. The same
policy function is used for exploration behavior and for the
target policy. The SARSA update is given by

Q(St/ at) < Q(St/ at) + a[rtﬂ + YQ(SHU at+1) - Q(St/ at)]
(4.12)

And it looks very much like TD, although it uses state-action
values, whereas TD deals with state values.
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On-policy learning selects an action, evaluates it in the envir-
onment, and moves on to better actions, guided by the behavior
policy. It samples the state space with a given behavior policy,
and improves that by backing up values of the selected actions.
Note that the term Q(s,,,, a.,;) can also be written as Q(s,,;,
ni(s,,,)), highlighting the difference with off-policy learning.
SARSA updates its Q-values using the Q-value of the next state
s and the current policy’s action. The primary advantage of on-
policy learning is that it directly optimizes the target of interest
and converges quickly by learning with direct behavior values.
The sample inefficiency is usually its biggest drawback.

4.3.1 Mathematical Formulation

The Q-function for a state-action is updated by an error,
adjusted by the learning rate .

Q"ew (St’at): Q(st’at)+ OCI:I’t + ’}/Q(Stﬂ’atﬁ-l) - Q(St’at>:|
(4.13)

Q-functions represent the possible reward received in the next
time step for taking the action a, in state s , plus the discounted
future reward received from the next state-action observation.
SARSA itself learns the Q-function associated with taking the
policy it follows.

4.3.2 Pseudocode

The algorithm consists of the following steps:

At time &
Start in the current state s, ,
Choose the action a,,
Get the reward r, for choosing this action,
At next time step t+1,
enter the state s, after taking that action, and finally
choose the next action a,,, in its new state.
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4.3.3 Applications

SARSA has been used to train robots for autonomous driving,
gaming agents to play chess and other games, autonomous
vehicles to drive in complex environments.

4.4 SARSA-A
Algorithm Model Action Policy Perf.
Meas.
SARSA-A Model- | Discrete | Discrete, | Q-function
free on

The signifier 4 in SARSA-A refers to the ‘eligibility traces
e (s,a). They are mathematical objects designed to improve the
convergence of temporal difference (TD) methods and are used
in implementing online Monte Carlo and in problems without
episodes. They offer improved computational efficiency by

i. Using a short-term memory vector,

ii. Storing a single vector memory instead of a list of fea-
ture vectors, and

iii. Learning continuously rather than waiting for results at
the end of an episode.

4.4.1 Mathematical Formulation

Consider the following multi-step returns at some time-step t:
qr(l) = rz+1 + /J/Qn' <S1+1’at+1 )(SARSA) (41 4)

qt(Z) = };+2 + }/ZQn (Sr+2’at+2) (41 5)

qt(k) =T + yrr+2 Tt yk_lrnk et kan (st+k’at+k) (41 6)
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¢ =r_ +yr_ +...+7r(MC) 4.17)

As we can see, the process covers returns of all the steps from
SARSA to Monte Carlo (MC). In SARSA(A) one combines
them to reach a middle ground between those two methods to
exercise control over the bias/variance trade-oft. We define a
return g* giving more weight to closer trajectories and average
over multiple n-step returns.

=(1- /l)i/lnflq; (4.18)

n=l1

Here A = 0 is SARSA and A = 1 is MC. It allows us to control
how far the algorithm should go. For intermediate values of A,
each past experience is given a weight, used for updates called
an ‘eligibility trace, one for each function approximator param-
eter. This strategy generates an exponentially decaying impact
of rewards over time.

The expression for updated Q-function is given as

O(s,»a,,)=0(s,. a )+ ade (s.a) (4.19)

Here

I 5[ t+l+,}/Q< t+1’ t+1)_Q(St’ar)
ii. e(s,a)=1yke_(s,a)+1 for(s,a)z(st,at)

= yﬂ,e (s,a) otherwise

Eligibility trace triggers an update of all recently visited state-
action values.
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4.4.2 Pseudocode

The algorithm is given below.

Repeat (for each episode): e(s, a), for ¥(s, a)

Choose initial (sy, a,) and Q(s,, a,)

Repeat (for each episode): Choose action a,
Observe r,,, and s, using policy derived from
Q-function

6t “hat yQ(StH/aPr]) - Q(St/at)
e (s,a) « Ye_ (s,a)+1 for V(s,a)
Q (SHV at+1) < Q (St’ at) + aélet (S’ a)

Until s, is terminal

4.4.3 Applications

SARSA-A has been used to train robots for similar tasks as
regular SARSA algorithms.

4.5 ADVANTAGE ACTOR CRITIC (A2C)

Algorithm Model Action Policy Perf. Meas.

A2C Model-free | Continuous | Continuous | Value functions
and policy
optimizations

The RL methods belong to two broad classes of methods.

i. Based on value functions:
It assigns each state-action pair to a value. The critic is a
value-based neural network, and it measures how good
the action is.

ii. Based on optimizing the policies directly without using
value functions:
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The actor is a policy-based neural network, and it controls
the RL agent’s action. Both run in parallel and the real-
time feedback from critic improves the actor.

Actor critic methods like A2C (also A3C and SAC) combine
both approaches.

In general, the Actor module of the system decides the next
action to take. It is not aware if the action is the best possible in
the given environment. Now the Critic module enters the scene
and evaluates the proposed action’s optimality. It also suggests
how the actor should adjust the parameters to maximize the
reward. This approach is especially important when the envir-
onment is dynamic.

In A2C, the value function is the advantage function.

A(st,at):Q(st,at)—V(st) (4.20)
Where

. Q(s t,at) = the Q-value for the action or maximum future
reward in that state

. V(s ,) = the average value of that state.

A positive advantage pushes the gradient in that direction and
vice versa.

4.5.1 Mathematical Formulation

Finding a good baseline using state value and computing it
is not straightforward either. Let us approximate it using one
more parameter w and denote it by the bootstrapped return
V@(s). This idea leads to the Actor-Critic methods in which
there are two entities called Actor’ and ‘Critic’ defined by
functions 7, (at |S;) and V' (s), respectively. One must com-
pute both gradients now.



76 m An Introduction to Deep Reinforcement Learning

DefineG, =R, +yV*° (sm) (4.21)
Here

+ G, = asingle step bootstrapped return,
e R =is the immediate reward,

o Vo (s . ) = bootstrapped value-estimate of the next state in
the trajectory.

The actor’s gradient is calculated as

VE, [r(7]=E, [(i[c —ve(s)]Vieg,(a,|s, ))] (4.22)

t=1

The critic’s objective J(®) is generally taken to be the mean
squared error (MSE) or a less harsh Huber loss.

Critic’s objective

1
as MSE:J(0) = 5[ G, -7 s, I (4.23)
as Huber loss:
(@)=2[G,-ve(s)] . forl G-y (s,)< &
2 t t 2. t 1) 1= %
=0|G —V* (St )‘ - % 0? otherwise (4.24)

The critic’s parameters w is updated by using Stochastic gra-
dient descent (SGD) giving the Critic’s gradient as

Vi(w)=G,—V(s,) for MSE (4.25)

4.5.2 Pseudocode

Initialize parameters (s,6,w) and learning rates ( o, O‘W)
Sample 5 ~ m,(als)
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for t=1.. 7. do
Sample reward r ~ R(s,a) and next state "~ P(s”|s,a)
Sample the next action 5" ~ m(a’|s)
Update g g+ a,Q, (s,a)V Jogma|s)
Compute TD error §=r+1Q, (s,a)-Q (sa)
Update Q-function parameter ,, « \ + a 8V Q (s,a)
Moveto 5 5 and s« ¢
At next time step t+1,
enter the state s after taking that action, and finally
end for

Based on Lilian Weng’s post ‘Policy Gradient algorithms’
At each step, both Critic and the Actor networks are updated.

4.5.3 Applications

A2C networks have been used to train robots for similar tasks
as other similar algorithms.

4.6 ASYNCHRONOUS ADVANTAGE ACTOR
CRITIC (A3C)

Algorithm Model Action Policy Perf. Meas.

A3C Model-free | Continuous | Continuous | Value functions
and policy
optimizations

The A3C was developed by Google DeepMind and became
public in 2016. Unlike DQN which uses a single agent, it uses
many agents, each with its own network parameters and a copy
of the same environment. Their interaction with the environ-
ment is not coordinated globally, so it is ‘asynchronous, hence
the name. Each agent is controlled by a global network, so it
allows for experimenting with more diversified environment.
This mitigates the problem of RL sample correlation.
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Just like in A2C, the A3C agent learns the Value Function
from the critic and updates its or actor’s optimal policy function.
It determines the conditional probability for choosing action a
in state s and uses Advantage Function to determine how much
better the rewards were compared to its expectation. The asyn-
chronous (parallel and distributed) gradient descent is used
for optimization of DNN controllers. The training stage uses
parallel networks efficiently and independently by adjusting
the direction of each training thread. In this way, multiple
actor-learners instantiate the environment separately, collect
experience, update the gradients, and send it to a central target
network. It was found that this parallel operation stabilizes the
training.

4.6.1 Mathematical Formulation

It is the same as in A2C but is parallelized for many actors inde-
pendently and later combined for central update.

4.6.2 Pseudocode

Initialize parameters (s, 6,w ) and learning rates ( % &, )
Sample a~ m,(als)
input:
assume (globally shared) parameter vectors 6 and ¢ = 0,
counter T =0
assume thread-specific parameter vectors g and ¢’
initialize thread step counter t < 1
repeat

reset gradients: d6 <— 0 and d¢ «— 0.

synchronize thread-specific parameters g =6 and ¢ = ¢

t, =t

start

get state s,

repeat
choose action a, wrt policy ma,|s,;0)
receive reward r, and new state s,,,
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tet+1and T« T+1
until terminal § or ¢ _¢

start

=t
R = 0 (for terminal s,)or V(st,mgabg) (for non-terminal )
for ie(t—],...,tmn) do t
R« s + ¥R
accumulate gradient.

wrt ¢ : dO« do+V logma, |5,.;0’)(R—V(sl.;¢’))

Wit g do e dg+d(R-V (s;¢)) /g
end for
update asynchronously g using 4g and ¢ using ¢
until 7 T

4.6.3 Application

A3C has been found to stabilize the training and surpassed the
performance of earlier methods in Atari game environment,
motor control problems, and navigating 3D mazes.

4.7 SOFT ACTOR CRITIC (SAC)

Algorithm Model Action Policy Perf. Meas.

SAC Model-free | Continuous | Continuous | Value functions

SAC attains SOTA performance in continuous control tasks,
e.g., robotic locomotion and manipulation by maximizing the
‘entropy’ in policy and the expected reward from the environ-
ment. This approach encourages the state space exploration,
improves the transition data collection, and prevents prema-
ture convergence to bad local optima by allowing good policies.

4.7.1 Mathematical Formulation

A two-step policy iteration technique alternating between
policy evaluation and policy improvement is used. Starting
from a given initial policy 7, some metric between the current
policy and the derived update policy is minimized. Specially in



80 m An Introduction to Deep Reinforcement Learning

tabular case, an exact solution to MDP can be found by alter-
nating between policy evaluation and policy improvement.

i. In the policy evaluation step, the accurate value function
for current policy is found by repeatedly evaluating the
Bellman operator 7.

[T |(5)=E, | r(s.0)+ vE, [V ()1 @4.260)

For soft policy iteration, the policy’s entropy as an additional
reward term is added to the original Bellman operator.

[7.0(s,5a,)|=7(s,,0,)+ VE, .,
[Q(s,ﬂ,a’) ~logr(d’ s, )] (4.27)

Its repeated application to any initial Q function is
guaranteed to converge to the optimal ‘Soft’ Q function.
ii. In the policy improvement step, the Bellman optimality
operator 7" is applied repeatedly on given initial value
function V' so that it converges to the true (optimal)
value function V™.

[7%V]=max [T V] (4.28)
The optimal policy 7" can be constructed from the optimal
value function V™. For the soft policy improvement step,

the Kullback-Leibler (KL) distance (‘divergence’) J(o)
between the two distributions is minimized.

epr(S, )
Zaepr(s,.)

This leads to an improved policy.

J(w)=E| KL(7(.|s,) || (4.29)

T, = argmian(a)) (4.30)

new
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This update scheme guarantees monotonic improvement of the

policy in the tabular case. In an alternate scheme, NN calculates
Soft Q-function as the mean and variance with the current state
as input, and Soft Policy as a Gaussian distribution with the
mean and variance from above.

4.7.2 Alternate Method

Both Q-function and policy parameters are updated with the
experience data collected from a policy different from the
current one. For every actor roll-out, all the transition data is
saved in a replay buffer D.

ii.

Q-function optimization: It is done at every update step
by using the gradient of the mean squared loss between
the predicted action-value and the target action-value g,.

J,(6)= E(s“a’)ND[%(QG (st,at)—q,)z] (4.31)

where

qt = Ea~7rw(.|sm) [F (St’at ) + Qe (st+l ’a) - O(lOg ﬂ:w(a, | SH—l)
(4.32)

Here the o-term represents the ‘entropy temperature;
i.e., weight given to the ‘randomness’ of policy versus the
reward from the environment.

Policy update: The actions are the hyperbolic tangent
Gaussian policy parameters sampled from the mean and
covariance output of the policy neural network.

a, = tanh(u) (4.33)
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Also, the action is modified as:

log m(a| s) = log (u| s) - i log(1 - tank® (u,)) (4.34)

i=1

The logu(u|s) represents the cumulative distribution
function (CDF) computed with the mean and variance from the
policy neural network. The policy parameter can be optimized
by minimizing a simplified form of the KL divergence.

J(@)=E ,|E, ., {otogz,(als,)-0,(s.a)}| 435

The parameter « is updated through the gradient of the
objective function including the desired minimum entropy -
given below:

J,=E[-x(als;0)-af | (4.36)

4.7.3 Pseudocode

It is like the Actor-Critic case given earlier with appropriate
modifications.

4.7.4 Applications

It has been found to be very successful in robotic applications.

4.8 DEEP DETERMINISTIC POLICY
GRADIENTS (DDPQ)

Algorithm | Model Action Policy Perf. Meas.

DDPG Model-free | Continuous | Off-policy | Like deep Q-learning

Often one encounters a situation in which the policy is differ-
entiable, but actions are non-stochastic. It becomes then harder
to build a policy, and in these cases an action for a given state is
learnt directly by a maximization objective.
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we = argmax O (s,a) (4.37)

In general, this maximization is computationally hard as
one must search the entire space for a given action-value
function. An algorithm known as Deterministic Policy Gradient
(DPG) has handled such situations in which the argmax is
approximated by a function approximator. Its realization using
NN is called DDPG.

4.8.1 Mathematical Formulation

The DPG algorithm can be expressed using the following
equations.

+ Q-learning is minimized with the MSBE loss with SGD.

2
L(¢’D) = E(x,a,r,s',d)ED 2 (Q¢ (S,Cl) - y(I”,S,,d)) (438)

(s.a,r.s’,d)eB

y(rs'sd)=r+y(1-d)0, (s', Hy (s')) (4.39)

tar;

« Policy learning is solved by gradient ascent for policy
parameters.

max,E,_,0, (5,42, (s)) (4.40)

4.8.2 Pseudocode

Input: Initialize parameters g (policy), ¢ (Q-function) and D
(empty relay buffer)

Set target and main parameters as equal, i.e., 6,, < 0,
¢large ¢
Repeat:
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Observe state s, select action a = Cliplu,(s)+e,a,,,,a
with ¢ Gaussian
Execute as, observe next state s, reward ,, and
determine if ¢ is terminal from signal d
Store (s,a,r,5",d) in replay buffer D, if s is terminal then
reset environment state.

If updating then
For however many updates do

Randomly sample a batch of transitions

B=(s,a,r,s’,d) from D

low high] ’

Compute: y(r,s’,d)=r+y(1- d)Q%g (s’,,ue (5’))

targ

1 S (Q¢(5/a) - y(r/s’/d))2

Update Q-function: V,
|B| (s,a,r,s’,d)eB

. 1
Update policy: V¢E2Q¢(S,,Lle(5))

seB
Update target networks: Darg < PPy + (1-0)9,

0. «po.  +(1-0)6

targ targ

End for
End if
Until convergence

4.8.3 Applications

DDPG has been applied to a wide range of continuous con-
trol problems, including robotics, gaming, and autonomous
navigation, e.g., robot arm control, autonomous navigation
in high-dimensional state spaces, video games with DRL
agent, etc.
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4.9 TWIN-DELAYED DEEP DETERMINISTIC POLICY
GRADIENTS (TD3PG)

Algorithm

Model

Action

Policy

Perf. Meas.

TD3PG

Model-free

Continuous

Off policy

Value function

Just like DDPG, the TD3PG algorithm is also an actor-critic
RL agent. It extends the DDPG by reducing the value function
overestimates. The significant features of a TD3PG agent are:

It learns two Q-value functions and uses the minimum of
the two for policy updates.

It updates the policy and targets less frequently than the Q
functions.

It adds noise to the target action during policy updates,
which makes the policy less likely to exploit actions with
high Q-value estimates.

It can implement both TD3 and delayed TD3
algorithms. The latter uses only one Q-value function
with smoothing of the target policy and delayed policy
and target updates.

4.9.1 Mathematical Formulation

The TD3PG algorithm is a slightly modified form of the DDPG
one. It can be expressed with the following equations.

« Add a Gaussian noise in the initialized action and update

reward with this included. y < r+ ymin_ ,0, (s',El)

 Update critic with loss function.

0, < argmin, N™' Z(y -0, (s, a))2

(4.47)

« Update actor with the deterministic policy gradient.
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Vi (9)=N"EV 0, (s.a)|_,  V,F(s) (442)

4.9.2 Pseudocode

Input: Initialize (i) critic Q-functions (Qe ,Q, ) and actor ,

(policy) with random parameters, (ii) target networks with
0«06, 0 0, ¢« ¢, and iii target buffer B.
for t=1to T do

select action with Gaussian noise g ~ 7'L'¢(S)+e, observe

reward r and new state ¢’
store (s,a,r,s”) in buffer B

—b++/b? —4ac

o ’
sample a small set of N transitions (5,a,7,$ ) By

from B
3 7, (s)+e €~ clipl N (0, 0),—c,cl,

y r+ ymin,.:mQa (s,3)

update critics 6, < argmin, N~ Z(y -Q, (s,a))2

if t mod d then
update ¢ by the deterministic policy
gradient V¢/(¢) =N ZVaQ91 (5, a) |a:”¢(5) V¢ﬂ¢ (S)
update target networks g . 79 4 (1-17)0
¢ —19+(1-17)¢ ’ ’ :

end if

end for

4.9.3 Applications

TD3PG has been applied to gain further improvements in
the solutions to similar problems as handled by DDPG in
general.
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4.10 TRUST REGION POLICY
OPTIMIZATION (TRPO)

Algorithm Model Action Policy Perf. Meas.

TRPO Continuous | Continuous | On-policy Advantage fn.
or discrete

It is a DRL algorithm using Stochastic gradient (SG) method to
implement trust region update. It guaranteed policy improve-
ment by a local approximation to the loss function due to the
new policy.

4.10.1 Mathematical Formulation

Let us begin with given quantities: (i) expected discounted
reward T](T[), (ii) visitation frequency p”(s), (iii) advantage
function 4 (s|a), and (iv) policy function 7(a|s). Then the
TRPO loss function is written as

L (7, )=n(z,)+2p, ()27, (als)d, (sla) (4.43)

More explicitly, the TRPO approach maximizes an objective
function.

a. It is initially maxBLCP ! (9), where

LePt (0) -E ¢ I:r, (9) 2[] = Loss function due to conserva-

tive policy iteration with

Et [...] = the empirical average over a finite batch of
samples alternating between sampling and optimiza-
tion, and

~

A, = estimator of advantage function at step t =

or (st,a,)—V”(at)
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b. It is modified by a constraint bound by KL diver-
gence (D,,) over trust region maxef;t |:rt (9);1[} such

that D, {n'eom (.|st ), 7T, (|s, )} <9, and

old?
c. For a better result, it is sometimes replaced

(9 Onew) = (old, new) vector of policy parameters.

by an unconstrained optimization:
max, E, |:”, (6)4,-pBD,, {”% (.|s1),7r9/w | st)}:| with g
T (at|5:)
as a numerical coefficient and (6)= = ratio
ﬂeo,d (at|st)

of old and new policy values at time t.
4.10.2 Pseudocode

Input: Initialize (i) policy parameters 90, (i) initial value
function parameters Oy (iii) KL-divergence limit 8,
(iv) backtracking coefficient ¢, and (v) maximum number
of backtracking steps K.
fork=0,1,2,... do
run policy n(6,), collect trajectories D, _, compute
rewards R,
compute advantage function A, using current value
function Vm
estimate policy gradient as

1 T
8 Yl 2 Zvelogﬂe(at | St) |9k Az

k =
|Dk teD, t=0

Use the conjugate gradient algorithm to compute
X =~ H &

(H, = Hessian of the sample-
averaged KL-divergence.)
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Backtrack line search to update the policy with

-
X, Hiyx,

9k+1:0k+a/[ ]xk, je{0,1,2,...,K}

(j = the smallest value for improving sample loss
while satisfying KL-div. constraint)
Use MSE regression to fit the value function via some
gradient descent algorithm:

T

. 1
@y, = argmin, |Dk|T T 2(V¢ (5t) -R )2

€D, t=0

end for

4.10.3 Applications

Under proper assumptions TRPO is guaranteed to provide
monotonic improvement.

4.1T PROXIMAL POLICY OPTIMIZATION (PPO)

Algorithm Model Action Policy Perf. Meas.
PPO Continuous | Discrete or On-policy | Advantage
Continuous function

Like TRPO, which uses second-order methods, the PPO also
tries to get the biggest possible improvement in policy but uses
first-order methods. It has two variations.

o PPO-Penalty: Itisa KL-constrained update like the TRPO,
but penalizes the KL-divergence in the objective function
by automatically adjusting the penalty coeflicient.

« PPO-Clip doesn't use either KL divergence term or any
constraint but clips the objective function to remove
incentives for the new policy to get far from the old policy.

Here, we'll focus on PPO-Clip.
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4.11.1 Mathematical Formulation
The policy is updated using the following expression.

= argmax ,E , (s a,@k,e) (4.44)

0 (5.0)

k+1

One uses minibatch SGD to maximize the objective L given by

&A”"A (s,a),g(e,A”Bk (s,a)) (4.45)

T 9,

(S a,b 9) min

YV

Here

g(e,A)=(1+e)A for AZO,(I—E)A for A<0 (4.46)
4.11.2 Pseudocode

Input: Initialize (i) policy parameters 6, (ii) initial value
function parameters ¢, .
fork=0,1,2,... do

run policy 77:(9k) , collect trajectories D, , compute

rewards R

compute advantage function A using current value
function V

update polikcy by maximizing PPO-Clip objective:

6,,, = argmax, |D 7 Zme T A”"k (s,a), g(e,A""k (s,a)) :

€D, t=0

via SGD with Adam (a particular SGD variant)
Use MSE regression to fit the value function via some
gradient descent algorithm:

¢k+1=argmin| | %g( () )2

end for
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The PPO method has been a very successful RL algorithm and
is the preferred method for solving identification and classifi-
cation problems.

4.12 LONG SHORT-TERM MEMORY (LSTM)

Algorithm Model Action Policy Perf. Meas.
LSTM Continuous | Discrete or On-policy | Advantage
Continuous function

The general structure of recurrent neural network (RNN) includes
input, output, and hidden layers. The last one contains neurons
with memory, so it allows information to persist. In general,
their information content does not persist for a long time due to
vanishing or blowing up of the gradients of the parameters. The
LSTM uses a specialized and more capable neuron consisting of
three gates for handling time series problems, e.g., planning, and
other time-dependent tasks. The three gates of LSTM are:

i. Forget gate: It chooses whether to keep or forget the pre-
vious timestamp’s information.

ii. Input gate: It adds or updates information.

iii. Output gate: It passes the updated information to the
next timestamp.

In addition, the LSTM neuron has two states.

i. Hidden state: Short-term memory with information
H (t) at current timestamp and H (1—1) at previous
timestamp.

ii. Cell state: Long-term memory with information C(¢) at
current timestamp and C (7 — 1) at previous timestamp.

The updating for different states is done using sigmoid, tanh, or
other similar functions.
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4.12.1 Mathematical Formulation
Let

X, = input vector at time ¢,

h, and h,_| = hidden state or output vector of LSTM unit,

W and U (with appropriate suffixes) = weight matrices for
different gates,

b (with appropriate suffixes) = bias vectors for different gates,

® = Operator for the elementwise or Hadamard product,

d and h = Superscripts denoting number of input features
and hidden units,

o = sigmoid function,
g
Then operations at different gates are:
Forgetgate f =0, (Wf.xt +U h_ +b, ), /€ (O,l)h
Input gate i, =0, (Wl_x[ +Uh_ + bl,), i € (O,I)h
Output gate 0,=0, (Wox[ + Uoh,_] + bo), 0, € (O,l)h
The hidden state operations are:
Memory cell input activation vector ¢, = O, ( Wx+Unh _ +b. ),
€ (—l,l)h
ft ®ct—1 + it ®Et
Hidden state or output vector 4 =0, ® 0,(c,), h, € (-11)

Ct
Ct

Cell state vector
h

4.12.2 Pseudocode

Input: Initialize (i) sequence length = L, (ii) hidden state
vector f, and
fori=01,2,.7do
ifi=0
h_ = random (), . = random ()
else
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ht4 B ht, Ct—1_ Ct

fi=0, (fot +Uh,_ +b,)
i, =0, (Wx +Uh_ +b,)
0,=0, (Woxt +Uh  + bo)
& =0, (Wx +Uh_ +b)
G =ft®ct—1 + it ®6t

h,=o0,®a,(c,)
end for

4.12.3 Applications

The RNNs using LSTM units are trained using gradient des-
cent. They have led to many remarkable successes in playing
games and controlling robots.

4.13 GENERATIVE ADVERSARIAL NETWORK (GAN)

Algorithm Model Action Policy Perf. Meas.

GAN XX Continuous XX XX

In GAN approach, two networks contest one another for
improved outcome in DRL. The given unsupervised learning
problem is formulated as a game between two competing
networks known as Generative and Discriminative networks. In
this contest gain of one network becomes loss of another one.
The overall approach is as follows:

i. Generative network or generator G generates random
synthetic samples from a latent data distribution, e.g.,
multivariate normal distribution. For image generation,
a deconvolutional NN or a deterministic FFNN is used.
Its objective is to increase the error rate of the discrim-
inative network.
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ii. Discriminative network discriminator D is trained using a
known dataset until a desired accuracy is attained. It takes
the samples provided by G and tries to distinguish them
from the true data distribution by classifying the sample as
real or false. For image generation, a convolutional NN is
used to map a sample to a binary classification probability.

The GAN game is then formulated as a zero-sum game for
the value of the cross-entropy loss between the discriminator’s
prediction and the identity of the image as real or generated.
Independent backpropagation method is used in both networks
so that G produces better samples, while D becomes better at
recognizing synthetic samples.

4.13.1 Pseudocode

Here D and G denote discriminator and generator, respectively.

Input: number of steps k for discriminator
for number of training iterations do
for k steps do

generate samples {z0),..., z("}from a noise
distribution p_ (z)
choose examples %x(”,...,x(m)} from data
distribution p, . (x
update the discriminator by ascending stochastic gradient:

B % ,2:‘ [/ogD (x(’)) +log (1 — /D) (C(z(’) )):I

end for

generate samples {Z(”,-../Z(m)}from a noise
distribution P, (2)

update the generator by descending stochastic gradient:

IR ’
vV, —Ylog(1-D(G(z"
o, 7y 208 (1-D(G2")
end for
GANSs versus Actor-Critic (AC) method

The AC and GAN methods look similar, but they differ signifi-
cantly from one another as given in Table 4.1.
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TABLE 4.1 GANs versus AC

Properties GAN

Actor-Critic

Aims GANSs aim to learn the
underlying distribution
of the data and afterward
generate new samples
that were not in the
original data set.

They are typically
formulated as a max-min
optimization or saddle-
point problem.

Convexity ~ GANSs are inherently
nonconvex.

Components In GANSs, G approximates
the data distribution,
and D evaluates the
distribution of the
generator

Learning GANs work in an
unsupervised learning
setting and mimic the
distribution of the
given data assumed to
be independent and
identically distributed
(iid).

Supervision In GANs, G gets
supervision from D
and it signals G about
how good or bad the
generated data are. If D is
removed, then G cannot
be trained at all.

AC solves a stochastic optimal
control problem from data,
without prior knowledge of
the environment and learns
the model of the environment
either implicitly or explicitly.

The actor (like G) tracks the
policy P(s,a| 6) (6 = the
distribution specific vector of
parameters).

The critic (like D) tracks the
value function representing the
‘goodness’ of actor’s policy.

AC:s are originally convex but
their approximate solution is
usually nonconvex, e.g., with
DL.

In AC, the actor approximates
the policy, i.e., the distribution
P(a|s), and the critic evaluates
this policy.

ACs work in the RL or a
sequential decision-making
setting — the action chosen at
the current step affects the data
seen in the future. AC methods
explore the environment and
learn to act nearly optimally.

In ACs, the critic improves the
supervision to the actor. The
actor can be trained without
the critic, in which case, one is
simply learning the policy by
estimating its future reward.
The critic helps make this
estimation better.
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4.13.2 Applications

GANS have been applied to many problems successfully, e.g.,
image inpainting, super resolution, Steganography or hiding
data in images, synthetic data generation for training models,
image and video recognition, etc.

4.14 NORMALIZED ADVANTAGE
FUNCTION (NAF)

Algorithm Model Action Policy Perf. Meas.
NAF Continuous

Methods for Q-learning can be used for both discrete and con-
tinuous cases.

« The optimal Q-function for discrete action sets is given as
o (S,,at) =E, [rt +ymax Q" (s’,a’)|sl,at] (4.47)

The agent goes through a well-defined discrete action
space usually given as a table.

o In continuous cases the action selection step requires
taking arg max over all possible actions.

a, =max O (st,a; 0) (4.48)

The Q-learning methods have difficulty in these situations.

Methods like DDPG have been developed to solve this
problem with two NN output streams. NAF is another similar
method in which the NNs estimate the value and advantage
functions separately. The advantage function is expressed as a
quadratic function of the state parameters.
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A(x,ul6") ——[u (x|6" ] P(x|6")[u—p(x)6)] 4.49
There are three output streams now:

i. the value function V(x| 0 ),

ii. a state-dependent, positive-definite square
matrix formed with a lower-triangular matrix L:
P(x|0’°): L(x|6°)L(x|6")T, and

iii. the action u(x|9“) which always maximizes the Q-
function, since it is quadratic in u.

Afterward, these three streams are combined to give the
Q-function.

O(x,u|62)= A(x,u|6*)+V (x|6) (4.50)

Here 69,64,0" are the parameters of the Q-function, value
function and the advantage functions, respectively.

4.13.1 Pseudocode

Randomly initialize normalized Q network Q(x,u | 62)
Initialize target network Q" with weight 62 — 62.
Initialize replay buffer R« 0.

for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state x, ~ p(x1)

fort=1,...,T do
for iteration = 1,...,/ do
Select action u, = ,u(xt|6#) +N,

Execute u, and observe r and x,_,

Store transition (x u[,r[,xm) in R
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Set y, =1+ W’(X,'H | QQ/)
Update g2 by minimizing the loss
1

L= NZ()’; - Qlx,y, | GQ))Z

Update the target network: 62 « 762 +(1- 1) 6%
end for

end for
end for

4.15 SELF-ORGANIZING MAPS (SOM)

Algorithm Model Action Policy Perf. Meas.
SOM Continuous

A SOM, based on Kohonen map, is applied to unsupervised
learning without using backpropagation. It creates a low-
dimensional representation (usually two-dimensional) of
a higher-dimensional data while preserving its topological
structure. It moves its ‘neurons’ closer to the data points and
finds probable clusters by using a neighborhood function for
retaining the data topology.

SOMs have only two layers, one for the input and one for
the output or the feature map. There is no activation function,
so weights pass to output layer unchanged. Both weight and
the input vectors have the same dimension. The weights are
updated using the processes of competition, cooperation, and
adaptation.

i. Competition: This step computes the Euclidean distance
between each output layer neuron and the input data.
The neuron with the lowest distance (‘winner’) is chosen
as the winner.
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ii. Cooperation: This step chooses the ‘neighbors’ using a
kernel function dependent on time (increment for the
new input) and distance (between the winner and target
neuron).

iii. Adaptation: This step updates the neurons using the
following relation

w,=w, + n(t)hl.k (t)(x(”) -w ) (4.51)

k k

Here

—t/T,

o n(r)=n,e"'" is the learning rate for determining how

much the weights must be adjusted.

2

d
o h, (t):exp{—zo_z”‘(t)) is the neighborhood kernel

function depending on d, (the distance between the

winner and the other neuron) and 0'([) (the time-
dependent neighborhood size).

« o(t)=0,e™"" is the neighborhood size decay rule.

4.15.1 Pseudocode

Randomly initialize weights to some small values.
Repeat until convergence
Select the next input pattern x™ from the database.
Find the unit w, that best matches x”

i(x)= argmin/.‘

x’”—W.|
J

Update the weights of winner w, and its neighbors w,
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w, =w, +1(t).h, (t).(x’” —Wk)

Decrease the learning rate n(t) and
neighborhood size of(t)

4.16 REINFORCE GRADIENT WITH AND
WITHOUT BASELINE

Algorithm Model Action Policy | Perf. Meas.
REINFORCE: gradient Continuous

REINFORCE is the acronym for REward Increment = Non-
negative Factor x Offset Reinforcement x Characteristic
Eligibility.

REINFORCE without baseline:

The gradient of policy 7, (al |sl) does not depend on reward
r(7), but it makes the variance of the MCMC sampling quite
large. Define:

G, = the discounted return,

As the past rewards do not contribute anything, so the policy
gradient can be replaced by G.

VE, [r(7)]=E, [(ngog 7y(a,ls, ))] (4.52)

This is the basis of the MCMC policy gradient algorithm
REINFORCE.

It is an MCMC policy gradient algorithm for the episodic
case and therefore it requires a complete episode to get the
sample proportional to the gradient. It then updates the policy
parameter with the step size.
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REINFORCE with baseline:

The above algorithm prescription does not totally alleviate the
problem related to sampling. It uses the Monte Carlo method
which has high variance and consequently slow learning. So, a
baseline parameter b is introduced for the gradient to reduce its
variance. Then the above expression is modified as:

VE, [r(7)]=E, [(i(q ~b)Vlog,(a, |5, )H (4.53)

t=1

It can be proved that

E, [(ibVlog 7y(a,ls, ))] =0 (4.54)

t=1

The baseline parameter b reduces the variance as well as keeps
the gradient still unbiased. A good baseline is the current state-
value defined as the expected return given a state following the
policy 7, or V' (s)= E, [Gt |s, = s].



CHAPTER 5

Multi-Agent RL
(MARL) Algorithms

S A SUBFIELD OF RL, multi-agent reinforcement learning

(MARL) studies the behavior of many learning agents
coexisting in a shared environment. Each agent seeks its own
reward and acts to advance its own interests. There are two
cases to distinguish.

« In a cooperative case, MARL agents work together to
maximize a given goal.

« In a competitive case, the agent interests are opposed to
those of others.

MARL uses the theory of repeated games combined with the
pursuit of finding ideal algorithms that maximize rewards.
While single-agent RL tries to find the algorithm that gets the
biggest rewards for one agent, MARL evaluates and quantifies

102 DOI: 10.1201/9781032659800-5
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social metrics, such as cooperation, reciprocity, equity, social
influence, language, and discrimination.

5.1 COOPERATION VERSUS COMPETITION

When many agents share the same environment, their
interests might be aligned or misaligned. MARL allows
exploring all the different alignments and how they affect the
agents’ behavior:

 Pure competition settings: The agents’ rewards are exactly
opposite to each other, and therefore they are playing a
zero-sum game against each other, e.g., games like Go and
chess, and projects like AlphaGo and Deep Blue. Neither
agent takes actions that benefit its opponent.

o Pure cooperation settings: The agents get the exact same
rewards, and therefore they are playing with each other.
MARL approach is used to explore how agents with
identical interests can communicate and work together.
Pure cooperation settings are explored in recreational
cooperative games like Overcooked, and in real-world
robotics scenarios. In pure cooperation settings, agents
converge to specific ‘conventions’ when coordinating
with each other.

o Mixed-sum settings: These cover situations which com-
bine elements of both cooperation and competition, e.g.,
self-driving cars, such that each car minimizes the time it
takes to reach its destination, but all cars have the shared
interest of avoiding a traffic collision.

Classic matrix games such as Prisoner’s dilemma and rec-
reational games such as Diplomacy and StarCraft II are
good examples. These settings sometime create commu-
nication and social dilemmas.
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5.2 GENERAL CONSIDERATIONS FOR MARL
5.2.1 Training

The approaches to training must consider the following
possibilities:

i. Train all agents independently so that each agent
considers all others as part of the environment and learns
its own policy in a fully decentralized approach or

ii. Implement Centralized Learning with Decentralized
Execution (CLDE) in which one takes in the state of the
environment and returns an action for each agent in the
form of a single joint action vector, thus learning a single
policy for all agents.

5.2.2 Single-Agent Setting as Reference

There are many new considerations for implementing DRL
algorithms when the number of agents increases beyond 1. We
first recall the single-agent situation for further reference. Let
an agent at a given time step ¢

i. beina states, (from state space S) and
ii. choose an action a, (from action space A) to
ili. transition to state s, by

iv. receiving reward r..

Then, this agent’s value function for policy 7z is given by the
following expression:

vﬂ (St) = En’ [gykrk+t+l:| (51 )

Here y € [0, 1] is the discount factor and £_is the expectation
value operator.
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The value function for optimal policy 7* can be obtained by
using Bellman’s equation.

v, (s, ) = max, Zp(s”ew | St,a)[r(st,a) +yv (s”ew)] (5.2)

Similarly, the optimal Q-value is given by appropriate Bellman’s
equation.

Q; (S’ % ) - ;p(snew | Si at)[r (St 4, ) + ymaxaﬂew Q:; (Snew, a™ )]
(5.3)

Here p(s"™"|s,,a,) is the probability of transitioning to the new
state s after taking action a, in state s,.

5.2.3 Basic Equations for the Multi-Agent Q-Function
Framework

The mathematical framework of the most MARL methods
focusses on finding an optimum Q-value and/or policy. For
MARL cases, a modified version of the above optimal Q-value
equation is the following:

o (s,ax |7r7x)
r(s,ax,a_x)+ }/ZP(S”"W |s,a .a_) (5.4)

S A
—X —X
a*X

* [ onew ynew
maxawax (s ,a )

X
Here

i. a_=theaction of agent x
ii. a__=theaction vector of all agents except agent x.
iii. g = the policy vector of all agents except agent x.

iv. P = the transition probability among the states.
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5.2.4 Basic Equations for the Multi-Agent Policy-Function
Framework

The above equations can be written using policy as a param-
eter during learning to optimize a policy-based function. The
equation can be solved using policy gradient methods for
finding an approximation to the gradient.

The MARL framework is a stochastic game based on the
Markov decision process represented formally as:

« Game represented as the tuple S, actions 4,,4,,...,4

Rewards R ,R,,...,R , (n = the number of agents), P (tra:1-
sition function)

o A=A XA, X...XA4 isthe joint action space of all agents,

e §x A xS~ Ris the reward function of each agent,

o The state transition function P: Sx A x § - [0, 1]

 H =joint policy

o Reward function is bounded.

State transitions are the result of all agents acting together and
the rewards depend on the joint policy. The reward R for the
ith agent under the joint policy H is given by:

R"=E[R, |S = s, 4,,=a,H] (5.5)

t+1
The corresponding Bellman equation for Q-function is:
Q:'H (S’a> = EiH [Rr+1 + J/Q:'H (Sr+1 ’At+1 ) | St =S, Ar = a] (56)

There is a similar equation for value function.
In general, the stochastic games are of three kinds:

i. Fully cooperative: All agents have the same reward
(R =R,=...=R )and their goal is to maximize it.
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iii.

Multi-Agent RL (MARL) Algorithms = 107

Fully competitive: The agents have opposite goals, e.g.,
forn=2,R =-R

Mixed games: The agents’ rewards are usually different
and correlated.

5

5.2.5 An Example

There are three primary challenges associated with MADRL. In
this example, an approach to their solutions is given which can
be used in other similar situations.

Problem representation: We need to represent an arbi-
trary number of agents without changing the architecture
of the deep Q-Network. To solve this problem, a number
of simplifying assumptions are made: (i) environment is
two-dimensional, (ii) time and space are discrete, and (iii)
there are two types of agents (allies and opponents).

The global system state can be represented as an image-
like tensor, with each channel containing agent- and
environment-specific information. This representation
can now be used to take advantage of convolutional neural
networks (CNN) which work well for image classification
tasks. The image tensor is of size 4 _W_ H, where W and H
are the height and width of our two-dimensional domain
and four is the number of channels in the image. Each
channel encodes a different set of information from the
global state in its pixel values. The channels can be broken
down in the following way:

Background Channel: contains information about any

obstacles in the environment

Opponent Channel: contains information about all the
opponents

Ally Channel: contains information about all the allies

Self Channel: contains information about the agent
making the decision
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Note that channels in the image-like representation are
sparse. In both the opponent and ally channels, each non-
zero pixel value encodes the number of opponents or allies
in that specific position.

o Multi-agent training: When many agents interact in an
environment, their actions may directly impact the actions
of other agents. So, the agents must be able to reason about
one another for intelligent actions. One trains one agent
at a time and keeps the policies of all the other agents
fixed during this period. After a set number of iterations,
the policy learned by the training agent gets distributed
to all the other agents of its type. Specifically, an agent
distributes its policy to all its allies. In this way one set
of agents incrementally improves its policy over time. The
learning process itself is not distributed, but the policy
execution is distributed, because each agent has its own
NN controller. Each agent must be aware of the locations
of all the other agents, but it does not need to tell the other
agents about its intent.

o Agent ambiguity: Consider a scenario where two ally
agents occupy the same position in the environment. The
image-like state representation for each agent will be iden-
tical, so their policies will be the same. To break this sym-
metry, a stochastic policy for agents is used in which an
agent’s action is drawn from a distribution. For example, it
can be a softmax over the NN’s Q-values. This allows allies
to take different actions if they occupy the same state and
break the ambiguity.

5.3 REWARD MACHINES (RMS) FOR MARL

RM is a kind of reward function generalized to the multi-agent
scenario. It encodes a non-Markovian reward in a type of
finite-state machine. It takes subsets of propositional variables
as input and outputs real numbers as reward values.
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RM abstracts the current environment state to sets of high-level
events.

o Input: It is the current RM state u € U and the environ-
ment state S € S

o Output: It is a collection of multiple concurrent events
which are passed as unordered sequence to the RM. It
depends both on the environment and on the current pro-
gress through the task specifying local labeling functions.

RMs decompose a complex task into several stages and sim-
plify the stage-specific operations.

Reward functions are part of the MDP formalism of a single
RL agent, and they have been generalized to ‘Reward Machines’
for the case of the multi-agent RL. They use finite state
machines (FSM) to allow the team-level task to be decomposed
into subtasks for individual agents. Its output value depends
on the present state and the current input symbol and can be
characterized by the following elements:

i. A finite set of states,
ii. An initial state,
iii. An input alphabet,
iv. An output alphabet,

v. A transition function map from (states, input alphabet)
to input alphabet, and

vi. An output function map from (states, input alphabet)
to input alphabet. The lengths of input and output
are equal.

RMs use a particular form of FSM called ‘Mealy’ machines
for the structured representation of reward functions using
concatenations, loops, and conditional rules. Given an RM
framework, the agents can separate the team-level tasks into
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stages and learn the stage-specific behaviors for the overall
task. Q-Learning for reward machines (QRM) decomposes the
problem to improve sample efficiency and uses q-learning to
update each subtask policy in parallel, which guarantees con-
vergence to an optimal policy. QRM can be combined with
DRL methods.

5.3.1 Markov Game, Nash Equilibrium, and Pareto
Optimality

Markov games (MG) are multi-agent generalization of Markov

decision process (MDP), which itself is the basic framework for

the single-agent RL. In MG framework, many agents interact

simultaneously within a shared environment and with each

other. It is given by the following elements:

i. A set of interacting agents {1, 2, ..., N}, N>1

ii. A set of states observed by all agents representing all
possible agent configurations in the environment,

iii. A set of joint actions of the agents which is a collection
of the individual action spaces of all agents,

iv. Transition probabilities for the chance of a state
transition,

v. Individual rewards, specific to an agent for arriving at a
new state by taking a specific action,

vi. A discount factor y for diminishing future rewards.

In multi-agent situation, the best response is found by taking
multiple reward functions. In general, this may not be the
best. That is determined by the Nash equilibrium, which is a
solution such that no one agent can improve upon the policy
when other agents’ policies are fixed. This situation of non-
uniqueness is called Pareto optimal, when no agent action is
available that makes one get more reward without making
others worse off.
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5.3.2 Pareto Optimality

A strategy is called Pareto-optimal or Pareto-efficient if a
strategy or policy profile dominates all others if no agent using
a chosen strategy profile can be better off without making
another agent using the same profile more efficient. A Pareto
improvement is defined as any adjustments to a strategy profile
that makes the resulting strategy profile more Pareto efficient.
So a strategy profile m* is a Pareto eflicient solution if it is not
Pareto dominated by any other strategy profiles. It maximizes
the overall welfare defined as the sum of all agents’ utilities
without emphasizing individual rational decisions.

5.3.3 Nash Equilibrium

Itis a state in which no individual agent can increase its expected
return by unilaterally deviating from their policy. It means that
all agent strategies are the best responses to the other agents’
strategy. It is not unique and computing it in complex situations
may even be impossible. In such situations e-Nash equilibrium
is more tractable. It relaxes the requirements by allowing the
agent to deviate if it improves its expected returns by more than
some value €.

5.3.4 Q-Learning with RMs (QRM)

It is an algorithm that learns a collection of q-functions, one for
each RM state u € U, corresponding to the optimal policies for
each stage of the task.

A naive approach to applying RMs in the MARL setting
would be to treat the entire team as a single agent and use QRM
to learn a centralized policy. This approach quickly becomes
intractable due to the exponential scaling of the number of
states and actions with the number of agents. Furthermore, it
assumes agents communicate with a central controller at every
time step, which may be undesirable from an implementation
standpoint.
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A basic RM algorithm for Q-learning is given below (Ref: Neary)

Input: R = (U, u, ,2,06,0,F), L vy a
Outpth—{ :Sx A~ R|ueU}
Q « Inltla/lzeQFunct/ons ()
for n = 1 to NumEpisodes do
u “u s environmentinitialState ()
fort =0 to NumStemps do
a « getAction (qu] ,S)
s, « executeActions (s,, a)
T, u, « rewardsMach ineOutput(u1, L (52, u1))
g, (sydc-aq, (s,a+al+y max,_, q,
(52 , a)
forue U, u#u, do
r, u' < rewardMachineOutput(u, L(52/ u);
q, (s, a)«(1-a) q,(s, ) +a@+y max,_, q,
(5 ,a’))
u < u,rs < s,
if’ u,; € F then
break
return Q

The algorithm works as follows:

+ The agent starts with RM state #, and environment state s,

o It uses its estimate of q, (s,.) to select action a.

« The environment goes to state S,

« The RM transitions to state u, caused by the events output
by L (s, u,).

« The agent updates the optimal q-function qu]( s, a) using
reward output by o.

o The agent queries the rewards and RM transitions that
would have occurred had the RM been in any other state u
and uses this information to update the estimate of each g, .
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The tabular QRM algorithm is guaranteed to converge to an
optimal policy.

5.4 MARL ALGORITHMS: NEURO-SYMBOLIC
LEARNING

We interact with outside world in a two-tiered manner:

i. Perception through sensory inputs which is mapped into
symbols, and

ii. Cognition which maps the symbols into knowledge
about the environment.

This is further used for supporting abstraction, reasoning by
analogy, and long-term planning.

The NN-based Al algorithms effectively model machine
perception, but for modeling human cognition a different
approach using symbolic knowledge structure is needed.
Neuro-symbolic Al approach supports mapping perception
output to knowledge which enables traceability of knowledge
systems. It combines NN with knowledge-guided symbolic
approaches to create more capable and flexible AI systems
capable of combining both algorithm and application-level
capabilities.

Further analysis of this approach leads to two major
considerations.

Symbolism: It represents objects as symbols and uses rules
of logic to work with them. Let A denote the collection of prop-
ositions and B the general principles. Then historically three
different types of reasoning have been found by logicians for
the symbolic approach.

o Deductive: One derives A from B only when A is a formal
logical consequence of B.

o Inductive: One infers B if given A.
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o Abductive: One infers A as an explanation of B without
rigorous logical analysis. This allows preconditions from
consequences which is opposite in direction to induction.

It is apparent that all of them involve working with symbols. It
requires relatively few input symbols for representing know-
ledge of the target system and internal functioning of the
programs is transparent.

It was discovered soon that the symbolic approach does not
work well with noisy and ambiguous real-world data.
Connectionism: It was generally observed that

« Cognitive processes (attention, problem-solving, memory,
learning, decision-making, language, perception, imagin-
ation, and logic reasoning) arise from neurons and their
connections.

o+ Learning occurs through weight modification, minim-
izing cumulative error and with discovery of statistical
patterns in the input data.

Thus, ‘cognition’ can be represented as stemming from the
interconnected networks of uniform ‘neuron’-like units, thus
allowing its representation by neural networks (NNs).

Despite many successes, this approach also has some
shortcomings like lack of compositional generalization and a
verifiable train of logic and no understanding of why a deci-
sion was made. Application of this approach to critical areas
like medical diagnosis, autonomous driving, and mathematical
reasoning has proved very problematic.

Integration of two approaches: Neuro-Symbolic learning
Recently, researchers have tried to combine the above two as
‘Neuro-symbolic’ (NeSy) approach to Al It was also found that
neural (N) and symbolic (S) components can be combined
in different ways. The following six broad types capture this
integration:
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i. S8-N-S: symbols as both input and output.

ii. S[N]: neural as subroutine inside overall symbolic
approach.

ili. N|S: neural and symbolic both at the same co-
routine level.

iv. N:S—N: symbolic rules integrated with NN’s architec-
ture or training.

v. N_S: symbolic as soft constraint on loss function in
training NN.

vi. N[S]: symbolic engine directly embedded inside an NN
engine, logical reasoning as tensor calculus.

This is a rapidly evolving area of research and does not have a
universally agreed approach yet. Here one such approach will
be described to give a general idea of the research in this field.

5.5 MARL FOR A2C AND A3C

This variation of A2C was developed by Google DeepMind. It
uses many agents with each having its own copy of the environ-
ment. All agents also have their own set of network parameters,
which are different from others. They interact with their envir-
onments asynchronously and learn with each interaction just
like in an A2C algorithms. They learn the conditional prob-
ability P(a|s,0), where 6 denotes the agent-specific network
parameters. At the same time, they are also controlled by a
global network, which collects the learning information and
creates a better picture of the environment. This process mimics
the human learning process more accurately as we learn from

various sources.

5.6 MULTI-OBJECTIVE RL (SINGLE AND
MULTI-AGENT)

In most real-world problems, our decisions involve optimiza-
tion of more than a single objective. For example, in medical
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situations, we may want to maximize the effectiveness of the
treatment, while minimizing a variety of side effects. Most real-
world decision problems are inherently multi-objective, and
they need a generalization of the single objective RL to multi-
objective one. Many times, all the goals needed by an adequate
solution are combined into a scalar and additive reward
function and numerical rewards or penalties are assigned to
events that can occur in the environment.

For single-agent RL, this leads to fine-tuning the reward
function iteratively until a satisfactory solution is found. This is
an unsatisfactory approach lacking explainability and inability
to handle changing requirements. Mathematically, it implies
that it is always possible to convert a MOMDP into an MDP.
An a priori scalarization function is required for this to work
which may or may not be feasible or desirable.

Some scenarios and examples are presented here:

o Unknown utility function scenario: There is too much
uncertainty about knowing the correct utility function.
It is preferable to compute a broader set of policies to
respond quickly whenever more information is available.

o Decision support scenario: The users preferences are
unknown or difficult to specify. It is almost identical to
the unknown utility function scenario. The only difference
is that the user selects a policy based on its preference.
Capturing preferences and trade-offs for all stakeholders
across all objectives is difficult, if not impossible. One solu-
tion is to learn a set of optimal policies and let an authority
(local council or government) decide what policy to follow
after a collective decision has been made by a local council
or government.

o Known utility function scenario: The user’s preferences are
known at the time of learning or planning, so scalarization
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is both possible and feasible. However, sometimes this can
lead to an intractable problem. Usually, since the user’s
preferences are known, it is possible to learn a single
optimal policy.

o Interactive decision support scenario: The agent learns
both the preferences of the user in the given environment.
During learning, the agent can find user preferences and
remove uncertainty from the user’s utility function. At
various times during the learning phase a user could be
presented with different potential solutions and rank the
solutions in order of preference, so the system gets a more
accurate representation of the users preferences and learns
an optimal solution.

o Dynamic utility function scenario: The user’s preferences
for certain objectives change over time. Therefore,
applying a priori scalarization would be undesirable. An
optimal approach for the algorithm is to learn a finite
number of policies over time and choose an appro-
priate non-dominated policy for any utility function and
improve upon it. Although there is an infinite amount of
utility functions, they can be covered by a finite number of
policies.

 Review and adjust scenario: A user may be uncertain about
its objective preferences over time, making utility function
too much uncertain. In this scenario, learning a coverage
set of policies is optimal, so a user can select the policy
accurately reflecting its preferences. The chosen solution
can be reviewed before execution. If the user’s preferences
have changed, selected solution can be adjusted to accur-
ately reflect the updates.

Multi-objective RL tries to overcome these shortcomings. Some
useful approaches are:
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i. Stateless/bandit algorithms:

The well-known Multi-Armed Bandit (MAB) algorithm gives
an optimal exploration/exploitation strategy for selecting
between different actions (arms). The aim is to minimize the
regret defined as the loss in reward from not selecting the ini-
tially unknown optimal action on every time step). This has
been extended to MORL by extending this concept to multi-
objective regret in which the agent minimizes the number of
Pareto-dominated actions. This general idea has resulted in sev-
eral MORL algorithms like multi-objective y-armed bandit (the
set of arms is measurable), a modified form of the Hierarchical
Optimistic Optimization (HOO) algorithm, multi-objective
ranked bandits, etc.

ii. Single-policy algorithms:

Extension of existing single-objective model-free value-based
methods, such as Q-learning, to multi-objective situation is
the most widely adopted approach to MORL. It requires two
changes to the learning algorithm.

o The agent stores Q-values as vectors rather than as
scalars, and

o The scalarization function has to match the utility function
and should be used to identify the greedy action to per-
form in any given state.

In the case of either weighted or unweighted linear scalarization
function, this is equivalent to transforming the MOMDP into
a corresponding MDP. Extension to nonlinear case is quite
complicated and several approximate methods have been
devised.
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iii. Multi-policy algorithms:
These approaches fall into two classes:

o Outer loop methods operate on series of single-objective
problems. The simplest outer loop methods iterate through
a series of different parameter settings for a utility function
and re-run a single-policy MORL method for each setting.

o Inner loop methods directly produce multiple policies by
modifying the algorithm to directly identify and store
multiple-policies in parallel rather than sequentially.
Pareto-Q-learning is a good example of this.

In case of continuous state-action spaces and not fully observ-
able states, policy search or actor-critic algorithms have been
considered.



CHAPTER 6

Recent
Developments
in DRL

THE Deep reinforcement learning - both theory and
applications - is developing rapidly. New ideas and
techniques are entering discourse very often. In this chapter
some of them are presented. The list is not exhaustive but hope-
tully introduces the readers to some of the intellectual excite-
ment permeating the research in this area.

Table 6.1 identifies some of the popular DRL algorithms
underlying recent work.

6.1 PHYSICS-BASED NNS AND DRL

A supervised learning NN is a universal function approximator.
However, it is strongly limited if one wants to extrapolate the
desired solution for input variable values situated outside the
range of the training data. This becomes a bottleneck, when in
addition to this, the data is hard to come by due to the nature of
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TABLE 6.1
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Some DRL Algorithms

Common Algorithms

Characteristics

Value-
based
methods

Policy-
based
methods

State-Action-Reward-
State-Action (SARSA)

Deep Q Network (DQN)

Double (DQN)

Averaged-DQN

Multiple DQN variant
combinations: Rainbow

Action
Elimination - DQN
(AE-DQN)

Recurrent Deterministic
Policy Gradient
(RDPG)

Learn Q function through TD
learning algorithm and use Q
function to generate actions

Combining neural network with
Q-learning and adopting random
strategy, each time learning
uses the action that the current
strategy believes to be the most
valuable, it is easy to overestimate
the Q value.

The problem of overestimation is
solved by improving the algorithm
that separates selection from
evaluation.

By reducing the approximate error
variance in the target value, the
training process is more stable, and
the performance is improved.

Combine the six extensions and
improvements of DQN algorithm
and focus on the same agent,
including DDQN, priority-based
reuse pool, competitive network,
multi-step learning, distributed RL
and noise network.

To reduce the probability of
redundant and uncorrelated
actions, a system is proposed to
learn the approximate value of Q-
function and eliminate actions at
the same time, which includes two
deep neural networks: DQN and
action elimination network.

Using RNN, agents can integrate
the characteristics of historical
information and combine it with
deterministic strategy gradient
DPG to solve some observable
problems in POMDP.

(Continued)
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TABLE 6.1 (Continued)
Common Algorithms Characteristics
Deep Deterministic Separate the exploration of action
Policy Gradient strategies from the learning and
(DDPG) updating of action strategies,
explore and use random strategies,
and learn to use deterministic
strategies; Increase batch
normalization to prevent gradient
explosion.
Trust Reason Policy The advantage function is
Gradient(TRPG) introduced to evaluate the current
action value relative to the average
value, to solve the problem of
inappropriate step selection; The
importance sampling processing
action distribution is introduced
to solve the problem of low data
sampling efficiency.
Proximal Policy Use first-order optimization to
Optimization (PPO) minimize the loss function; High
stability and good applicability
in continuity problems; The
implementation is relatively
simple.

Model- Continuous deep The RL algorithm based on model
based Q-learning based on and without model is effectively
methods  model acceleration combined to improve efficiency.

Exploration with The novelty is estimated by
Exemplar Models (EX2)  considering the ease with
which the classifier trained by
discriminant can distinguish a
given state from other states seen
previously so as to solve the sparse
reward problem.
Model-Ensemble With the same performance as
Trust-Region Policy the most advanced model-free
Optimization algorithm, the sample complexity
(ME-TRPO) is greatly reduced; Model

integration technology is effective
in overcoming model deviation.
The introduction of tpro makes
learning more stable.
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TABLE 6.1 (Continued)

Common Algorithms Characteristics
Temporal Difference Using the relationship between
Model(TDM) model-based learning and model-

free learning to learn specific types
of target condition value functions,
the sample complexity in
continuous control tasks is higher
than that in complete model-free
learning, and the performance

is better than that of pure model

algorithm.
Hierarchy- Hierarchical DRL Decisions are made at two levels: the
based top-level module receives the state
methods and selects a new goal, and the

low-level module uses the state
and the selected goal to make
decisions until the goal is achieved
or terminated.

Feudal Network Using different time resolutions,

Hierarchy RL using the manager module and the

worker module, it is a consistent,
end-to-end differentiable model,
using directional rather than
absolute goals.

Hierarchical First, learn skills in the pretraining
reinforcement learning  environment and use agent reward
based on Stochastic signals to reduce the complexity
Neural Network of samples; Training advanced

strategies on learning skills can
achieve good performance in
reward sparse or long horizon
tasks.

the problem. In addition, the datasets corresponding to specific
boundary conditions, material types, etc., are very hard to gen-
eralize to new and unseen situations.

In the past, many NN methods like DNN, RNN, CNN,
GAN, and Neural Operators have been used for tackling these
problems.
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Many times, the underlying system is known to be described
by known laws of physics in the form of general partial differ-
ential equations (PDEs). Using this information in the learning
stage makes it possible to overcome the problem of data scarcity.
Physics-inspired NNs lie at the intersection of the pure physics-
based system description and pure data-driven explanations.
They ensure consistency with known physics of the system and
also allow extrapolation beyond the available data.

There are four distinct neural network frameworks based on
how the underlying physics is treated.

6.1.1 Physics-Guided Neural Networks (PgNNs)

PgNNs use supervised DL techniques to construct mappings
between formatted inputs and outputs generated from
experiments and computations in a controlled setting. The
mappings are checked extensively to ensure compliance with
physics principles and fundamental rules. Such models require
a rich and sufficient dataset to be trained and used reliably.
The model maps a set of inputs x to outputs y using an
appropriate function F with unknown parameters w such that

y=F(x;w). By specifying a particular structure for F, a data-
driven approach fine-tunes the parameters w so that the overall
error between true and model-predicted values is minimized.
The cost of data acquisition for complex physical systems is quite
high. This results in sparse data so the vast majority of state-
of-the-art PgNNs lack robustness and fail to generalize using
interpolation and extrapolation. Some of the other limitations
are also important considerations before deciding to use them.

o Their training process is solely based on statistics and
generates models based on correlations in statistical
variations. The predictions, thus, are naturally physics-
agnostic and may violate the underlying physics. The
training datasets are usually sparse and do not cover
the entire range of underlying experimental attributes.
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Therefore, the models also fail in blind testing on
conditions outside the scope of training.

o Their predictions might be incorrect, even for inputs
within the scope of sparse training datasets due to lack of
interpolation capabilities, especially for very wide range of
the attributes. Also, they may not fully satisfy the training-
specific initial and boundary conditions which vary from
one problem to another, making the data generation and
training process prohibitively costly. Additionally, inverse
problems estimate parameters only indirectly related to
these attributes.

« As they are not resolution-invariant by construction, so
they cannot be trained on a lower resolution and be dir-
ectly inferred on a higher resolution because they are only
designed to learn the solution of physical phenomena for
a single instance (i.e., inputs-outputs). While these models
are optimal with respect to the entire dataset, they may
produce suboptimal results in individual cases. They
may struggle to learn the underlying process for diverse
training dataset, i.e., when the interdependencies between
different input and output pairs are drastically different.

6.1.2 Physics-Informed NNs (PiNNs)

They are data-driven to learn a model and ensure consistency
with the applicable physics. They can generate more robust
models with less data and are effective for ill-posed and inverse
problems. Using domain decomposition allows scaling them to
large problems.

PiINNS remediate the generalizability issue by performing
supervised learning tasks while obeying laws of physics given
as general nonlinear PDEs or ordinary differential equations
(ODEs). They use deep NNs with a series of fully connected layers
and a variant of gradient descent optimization. The learning or
training process and hyperparameter tuning are conducted
manually and depend on problem-dependent sample size.
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They incorporate a weakly imposed loss function consisting
of the residuals of physics equations and boundary constraints.
They also leverage automatic differentiation to differentiate
the neural network outputs with respect to their inputs (i.e.,
spatiotemporal coordinates and model parameters). By min-
imizing the loss function, the network can closely approximate
the solution. As a result, PINNs benefit from the long-standing
achievements in mathematical physics. They are limited due
to theoretical (e.g., convergence and stability) and implemen-
tation considerations (e.g., neural network design, boundary
condition management, and optimization).

Let us assume that the physics of the system of interest can
be described using nonlinear PDEs of the general form.

u, +N[u;A|=0,:€[0,T] (6.1)

Here u (t,x) is the solution function and N [u, /1] is a nonlinear
PDE operator with model parameters A. This setup applies to a
wide range of problems in mathematical physics, e.g., conser-
vation laws, diffusion processes, advection-diffusion-reaction
systems, kinetic equations, etc. The PiINN solution to these
systems uses two NNs. The first NN is a supervised learning
NN using the available but incomplete and scarce data and
it approximates the true solution #(#,x) under the constraint
from a loss function. Let

. {t;,x;},(izl,,,N”) = the time and space point values
corresponding to the training data u (t; ,X! ), and

. {ui},(i = 1,,,Nu) = the mean values.

The loss function is chosen as the mean square error (MSE) ).

1) 0N
MSE, =Vu;‘u<t;,xl’l)—u“ 6.2)
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The second NN is a feed forward NN (also called multilayer
perceptron or MLP) used for computing f (¢,x)=u, + N[u; 1]
on a finite set of chosen time and space point values (called col-
location points). It transforms the input to an output through
a layer of neurons using either linear maps between units in
successive layers or scalar nonlinear activation functions within
layers. Some of the popular activation functions are sigmoid,
hyperbolic tangent, and rectified linear unit (ReLU) functions.

Let {t"f,x}},(i =1,,,N f) be the chosen collocation points for

/(#,x). They are different from the time and space points of the
first NN. The corresponding loss function MSE , is chosen as

2 f

Nf
MSE, = le £ (6.3)

£ i=l

The MSE , enforces the structure imposed by the system PDE
at the collocation points. These collocation points are added
to the space and time points of the training data in the first
NN. The shared parameters between the two NN are learned by
minimizing the two MSEs, i.e., total MSE = MSE, + MSE - The
supervised training in the first NN now

o Includes this additional loss constraint due to physics,
« Integrates the mathematical model into the network,

o Reinforces the loss function with a residual term from the
PDEs governing the system, and

o Further acts as a penalizing term to restrict the space of
acceptable solutions.

Two distinct classes of algorithms have been devised using these
considerations: (i) continuous time models as data-efficient
spatiotemporal function approximators and (ii) discrete time
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models using implicit Runge-Kutta methods with unlimited
number of temporal stages.

Some new approaches in this area use operator regres-
sion and equivariant neural network architectures with built-
in physical constraints. Distributed PiNNs (DPiNNs) and
distributed physics-informed extreme learning machines
(DPiELMs) have been developed for approximating PDEs with
strong nonlinearity or sharp gradients.

PiNNs come with several limitations and shortcomings:

o Their training may face gradient vanishing problems and
can be prohibitively slow for practical three-dimensional
problems. They limit low-dimensional spatiotemporal
parameterization due to using fully connected layers.

o There is no theoretical proof of convergence for PiNNs
when applied to problems governed by nonlinear PDEs.
Additionally, all deep learning (DL) models including
PiNNs generally fail to realize theoretical global minima.

o PiNNs loss function has many terms with relative
weighting affecting the predicted solution.

There are, currently, no guidelines for selecting weights
optimally. Different loss function terms may compete
during training, thus reducing the training process stability.
PiNNs are also harder to train for an ill-posed optimization
problem as they depend on soft physical constraints.

« PiNNs have bias induced by low frequency and they fre-
quently fail to solve nonlinear PDEs for high-frequency
or multiscale structures. As they learn the solutions to a
given PDE for a single instance, they need a new NN to
train for a new instance of the functional parameters or
coefficients. This limits their generalization (e.g., spatio-
temporal extrapolation). Additionally, they face diffi-
culties in learning the solutions to inverse problems in
heterogeneous media.
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6.1.3 Physics-Encoded Neural Networks (PeNNs)

For situations when the explicit form of differential equations
is not fully known, PeNNs are more helpful. They leverage
advanced architectures to address issues with data sparsity
and the lack of generalization encountered by both PgNNs
and PiNNs. They can forcibly encode the known physics into
their core architecture and can extend the NN’s learning cap-
ability from instance learning (used by PgNNs and PiNNs) to
continuous learning. Some approaches like physics-encoded
recurrent convolutional neural network (PeRCNN) and neural
ordinary differential equations (NeuralODE) have shown much
improvement over PiNNs.

The encoding mechanisms of the underlying physics in
PeNNs are fundamentally different from those in PiNNs.
Additionally, both NNs can be integrated to achieve the desired
nonlinearity of the model. The NNs generated by PeNNs per-
form better in the presence of data sparsity and poor model
generalizability when compared with PgNNs and PiNNs.

The most important limitation of PeNNs occurs in training
and is similar to PgNNs and PiNNs. Their architecture is also
comparatively more complex. Their advantage lies in their
(i) more efficient algorithms in the finite-dimensional setting,
(ii) their ability to provide transferable solutions, (iii) their
robustness against data scarcity, and (iv) their generalizability
compared to PgNNs and PiNNs.

6.1.4 Neural Operators (NOs)

The NOs use supervised learning in a manner that is different
from previous categories of PgNN, PiNN, and PeNN. They
learn the underlying linear and nonlinear continuous operators
(such as integrals and fractional Laplacians) by using advanced
architectures (e.g., DeepONet). Their data-intensive learning
resembles the PgNNs, as they both enforce the physics of the
problem by using labeled input--output dataset pairs. However,
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NOs are also very different from PgNNs which cannot be
generalized due to under-parameterization.

NOs can be combined with PiNNs and PeNNs to train a
model for learning complex nonlinearity in physical systems
with extremely high generalization accuracy. They are very
robust for applications requiring real-time inference. Most
of the DL methods like PgNNs, PiNNs, and PeNNs gen-
erally map the solution of a physical phenomenon for a
single instance (e.g., a certain spatiotemporal domain and
boundary conditions to solve a PDE using PiNN), and thus
must re-train or further train (e.g., transfer learning) to
map the solution under a different instant. One can instead
use NOs to

« Learn nonlinear mappings between function spaces and
the underlying linear and nonlinear continuous operators,

« Enforce the physics of the problem using labeled input-
output dataset pairs and also provide enhanced gen-
eralization, interpretability, continuous learning, and
computational efficiency compared to PgNNs, PiNNs, and
PeNNs, and

o Use NN-based mesh-invariant, infinite-dimensional
operators that do not require a prior understanding
of PDEs.

NOs work with data to learn the resolution invariant solution
and can be trained on one spatiotemporal resolution and suc-
cessfully inferred on any other. This resolution invariance is
achieved because NOs learn continuous functions rather than
discretized vectors by parameterizing the model in function
spaces. They are very robust for applications requiring real-
time inference. Three main NOs have been proposed recently,
namely, (i) deep operator networks (DeepONets), (ii) Fourier
NO (ENO), and (iii) graph NO (GNO).
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6.1.5 Physics-Informed Reinforcement Learning (PiRL)

In the traditional DRL approaches, the quality and efficiency
of input samples has been a major problem. Model-based RL
improves on this by learning the transition dynamics and
reward function of the environment to generate sample system
trajectories. It then backpropagates through them to update
the policy by using the differentiability of the model. This can
be further improved by using a much more accurate, physics-
informed neural network-based dynamics model.

One of the common approaches for implementing PiRL has
three steps:

i. Interaction with the environment: Current policy for
connecting states to actions is used to interact with the
environment and gather data.

ii. Learning the model: The data collected in the first step is
used to learn the model for system dynamics. There are
two approaches for this step.

o Given the current state and action the next state is
predicted by training a standard deep NN (DNN).

« Inanother approach the underlying Lagrangian of the
model is used to derive the equations of motion from
which the next state of the system is predicted.

iii. Learning the behavior: The model learned in the second
step is used to generate imaginary trajectories.

Afterwards, the policy is updated by backpropagating through
them. This is accomplished by using the physics behind the
model and the differentiability of the resulting equations. In
reward learning a network is trained to map the next state to
the reward using the Absolute Error Loss (also known as L1
loss) between the predicted reward and the ground truth as the
loss function.
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These general ideas and methods can be adapted to study
many systems and phenomena of interest with an underlying
physics-based model.

6.2 TRANSFORMERS

Transformer in a neural network (NN) setting is a DL model
and is generally used for sequence modeling and sequence-
to-sequence prediction. Basically, it transforms one sequence
of input into another depending on the problem statement.
This task is also performed by other DL models like RNNs and
LSTMs but unlike them the transformers process the entire
sequence at once and use the mechanism of ‘attention’ to weigh
parts of input differently.

Recently, they have shown tremendous success in natural
language processing (NLP), computer vision, and similar
other tasks.

There are many variations on this simple idea resulting in
different architectures.

o The original Encoder-Decoder Transformer (EDT) is a
sequence-to-sequence transformer.

« Bidirectional Encoder Representations from Transformer
(BERT) is an encoder-only transformer.

o Generative Pretrained Transformer (GPT) is a decoder-
only transformer.

Here encoder and decoder refer to the main components of
their architecture.
The basic structure of a transformer is made of many layers.

i. Inputs: They are the numeric representation of the
sequence to be transformed. As text directly can’t
be used as NN input, a tokenizer is used to generate
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numeric representation for each token which is then
sent to the encoder.

ii. The input embedding layer: It generates input
embeddings of model dimension @ (generally chosen
as 512 but can be different) for each token.

iii. The positional embedding layer: It encodes informa-
tion about every token s position (denoted by 2i).

(PE(t),,,PE(t),,,)=(sinb, cosB), 0= t*N "

d
N > the largestk,ie.g.,N =10000,Vi e {0,1,...,7’”—1}

The position encoding output is added to the input embed-
ding layer.

iv. The attention layer: It uses the concept of ‘attention’
to provide importance to a few key tokens in the input
sequence by altering the token embeddings. The calcula-
tion of ‘attention’ needs the following matrices and vectors.

 The Query, Key, and Value weight matrices are,
o Q. =Query weight matrix (dimension=d_Xd, ),
« K = Key weight matrix (dimension =d_Xd,), and
oV, = Value weight matrix (dimension =d_Xd ).

o The Query, Key, and Value matrices use the token
matrix E (dimension = n X d_) generated at the input
embedding layer. Then for n tokens they are,

« Q=EXQ_ = Query matrix (dimension =n Xd,),
« K=EXK_ = Keymatrix (dimension =nXd, ), and
« V=E XV, = Value matrix (dimension = n X
d ).Each of these matrices hasn rows and d,
or d (generally 64 but can be different) columns.
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Those columns are the Query, Key, and Value vectors
belonging to the corresponding matrices.

These matrices are derived from the linear transformations
of the input sequence as described above. Typically, Q corres-
ponds to the current element, K represents other elements, and
V encapsulates information to be aggregated.

Then the ‘attention’ for each token n is defined as

[Attention(Q,K,V)]n = [sqﬁmax(QKT /\/Z)V:I (6.4)

¥4

By definition, softmax(zi) = %. The attention is calculated
e
i=1

for each token.

The basic idea behind ‘attention’ assumes that given an input
text, it is possible to allocate distinct weights to individual
words to capture dependencies and contextual relationships
within the sequence. Each element within the sequence has its
unique representation.

The association weight between the current element and
others is determined by calculating the similarity between the
Q and K matrices through their dot product normalized using
the softmax function. The normalized weights are then applied
to the corresponding values, followed by their aggregation.
This results in a representation encompassing the association
between the current word and other words in the text and is

formally expressed as ‘attention’ given above.

v. The multi-head attention layer: It is a stack of par-
allel attention layers with n xd dimension. It helps in
understanding different aspects of a sequence (e.g., sen-
tence or a language). Each head in this layer takes in the
positional encoding generated earlier and produces an
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output of shape n x d, each. This output from all heads
is then concatenated to produce a single output of the
dimension nxd . LSTM or RNN cannot be used for this
purpose as they may lack sufficient memory for complex
tasks like Language Translation.

vi. Generative pretrained transformer and ChatGPT

There are two core techniques behind this new and revo-
lutionary application which has brought AI to everyone’s
attention.

i. Transformer asthe backbone architecture: Ithasbecome an
essential foundation for the recent development of large
language models, such as BERT and GPT. Transformer
idea has also been extended from language to visuals, so
that it has become a unified backbone architecture for
both NLP and computer vision.

ii. Autoregressive Generative Pretraining: These methods
have become the foundation of GPT models as they
handle the statistical analysis of time series data very
well. These models specify that the output variable is lin-
early dependent on its preceding values. For NLP, they
predict the subsequent word given the previous word,
or the last probable word given the following words.
The models learn a joint distribution of sequence data,
employing previous time steps as inputs to forecast each
variable in the sequence. The joint distribution p, (x) can
be factorized into a product of conditional distributions,
as demonstrated below:

Dy (x) = pe(xl)po(xzpcl)...pe (xn|x1,x2,...,xn_1) (6.5)

The RNNGs are architecturally similar, and they use the pre-
vious hidden state but autoregressive models use previous
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time steps as input. They are like a feed-forward network
that incorporates all preceding time-step variables as inputs.
Recently, the autoregressive approach has been extended to
continuous variables as well.

6.3 GENERATIVE Al

Generative Al (GAI) is a type of Al which learns the patterns
and structures of the input data in one media in detail and
then generates output data of different types of media (e.g.,
text, images, etc.) when prompted. Traditional Al focusses on
detecting patterns, making decisions, improving analytics, clas-
sifying data, etc. using CNN, RNN, RL, etc. GAI produces new
contents, responses, synthetic data, etc., using Transformers,
GANSs, and variable auto-encoders. The recent excitement
about GAI is due to the simplicity of its user interfaces.

The GANS, transformers, and large language models allowed
the GAI to take off even though this technical approach was
first used in 1960s chatbots. Especially, transformers made it
possible to train ever-larger models, e.g., billions of pages of
text, without labeling all the data in advance. This resulted in
answers with more depth using the idea of ‘attention’ to track
the connections between words across pages, chapters, and
books and connections to analyze codes, proteins, chemicals,
DNA, etc. Further innovations in multimodal AI allowed con-

tent generation across the media, e.g., images from text, etc.
Basic generative model denoted by P, has the following
properties:

« Given a dataset of observations X generated according to
an unknown distribution P,,,,, the P, ,, can mimic P,,,,.

model

« By sampling from P, observations that appear to have

mode
been drawn from P,,,, can be generated.

« Generative DL consists in applying DL techniques to learn
P

model*
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Table 6.2 summarizes these points.
The GAI can use DRL methods to increase its capabilities with
three types of applications as shown in the table above.

6.3.1 Model Generation without Specified Objectives

RL is especially useful for deriving generative models for non-
differentiable losses, e.g., GANs can be used for text-generation
for which traditional techniques are not suitable. It can also be
applied to domains in which feasibility and correctness (e.g.,
running code as above) are very essential. RL can produce
observations that appear to have been drawn from the domain
of interest even when such domain cannot be modeled by
means of generative functions and corresponding differenti-
able losses. It can also derive more complex generative strat-
egies (e.g., through hierarchical RL) and reduce the model
dependence on training data.

There are some limitations of this approach as learning
without supervision is a hard task, when the reward is sparse,
e.g., sequence generation of long text or music, where the
reward is available only at the last timestep. In addition to the
techniques for obtaining a denser reward, a potential solution
might be an intrinsic reward. Ensuring a sufficient exploration
of all possible actions while still exploiting the most promising
ones to collect higher rewards is one of the key problems in RL.

6.3.2 Generation of Outputs While Concurrently
Maximizing an Objective Function

RL for objective maximization can consider generators adapted
for domains or for specific problems, or for tasks difficult to
model through differentiable functions. Also, pretrained models
can be fine-tuned to given requirements and specifications. The
goal is to derive the best possible examples according to some
specific target functions. Any desired and quantifiable property
can be Reward Function. Apart from text or music generation,
other domains might be considered as well.
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TABLE 6.2 DRL in GAI

Goal Reward Advantages Limitations
Mere o GAN’s o Model » No supervision
generation discriminative domains have learning
signal nondifferentiable  is hard
o Log-likelihood objectives o Pretraining
of realor o Adapts GAN to can prevent an
predicted sequential tasks appropriate
targets o Can exploration
» Constraint implement RL
satisfaction strategies, e.g.,
hierarchical RL
Objective o Test-time  Quantifiable » Not every
maximization metrics requirements desirable
« Countable satisfied property is
desiredorundesired ¢ Generator froma  quantifiable
characteristics specific domain
« Distance-based toward desirable
measures sub-domains
 Quantifiable optimized
properties « Gap between
« Output of ML training and
algorithms evaluation
reduced
Improving Output of a model « Satisfies o Getting user
not easily trained to nonquantifiable preferences
quantifiable reproduce requirements, expensive
characteristics ~ human or e.g., the « Users may
Al feedback alignment misbehave,
about non- problem disagree, or
quantifiable » Requires be biased
properties (e.g., preferences o Reward
helpfulness, between modeling is
appropriateness,  candidates difficult
creativity, etc.) instead of  Proneto
defining a jailbreaks out
mathematical of alignment
measure of
desired property
Source Reinforcement Learning for Generative AL State of the Art,

Opportunities and Open Research Challenges, by Giorgio
Franceschelli and Mirco Musolesi, arXiv:2308.00031v4 [cs.LG] 8

Feb 2024.
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There are some drawbacks of this approach like its very high
computational cost due to the number of iterations required for
convergence. In addition, certain desired properties (e.g. harm-
lessness or appropriateness) can be difficult to quantify. New
metrics are then required, and a gap between training objective
and test score might be inevitable.

6.3.3 Embedding of Desired Characteristics, Which
Cannot be Easily Captured by Means of an
Objective Function, into the Generative Process

Reward modeling introduces a great level of flexibility in RL
for GAI. Generative models can be trained to produce con-
tent with appropriate and of sufficient quality, by aligning them
with human preferences. It becomes essential when a quantifi-
able measure might not exist or information to derive it might
be hard to obtain.

Sometimes reward modeling may lead to reduction of
the diversity to a single reward function. This may cause the
majority views to disproportionately prevail. In addition,
seemingly well-performing preference-based reward models
might fail to generalize. More advanced approaches may be
required to mitigate this problem and completely prevent cer-
tain undesired behaviors.

6.4 EXPLAINABLE Al AND RL

Explainable AI (XAI) is a type of Al with an architecture such
that the reasoning behind its decision can be understood or
explained. In traditional AI, the inner mechanism of the NN
is like a blackbox that can answer ‘yes’ or ‘no’ type questions
but the reasoning behind it is mostly untraceable. There are
many situations e.g., in legal and medical field, where answers
to other ‘wh’ questions (such as ‘why,” ‘when,” ‘where, etc.) are
needed but usual AT cannot answer them. XAI considerations

and methods should be able to handle the following concerns.
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(i) Transparency

This is provided if XAl justifications are such that min-
imally a human should be able to understand it. In its
absence situations can arise in which a false training can
be used to tweak any AI/ML model to providing uneth-
ical benefits to an interested party.

(ii) Trust and confidence

Trust is essential if humans have to rely on any AI/ML
outcome. A logical and scientific justification for any
prediction and conclusion should be available.

(iii) Bias and fairness

There is a trade-off between bias and variance in AI/ML
models. It must be handled so that bias is reduced, and
one can believe the predictions of the model.

The XAI aims to provide an understanding of how AI models
work and reasons beyond the decisions they make, allowing
users to understand their results. This is particularly important
as Al becomes more integrated into everyday life and critical
decision-making processes such as healthcare and finance.
The XAI explanations should also improve the AI model per-
formance based on understanding its decision-making strat-
egies so that explanations about the model outputs can help
tune the ML system parameters better. For the DNN-based
XAI building an explanation is challenging for two reasons: (i)
DNNs offer excellent performances at the price of high inner
complexity of the models and (ii) the explanations should be
humanly understandable, which many times are unavailable.
The XAl techniques can be divided into two broad categories:

i. Transparent methods, e.g., logistic regression, support
vector machine (SVM), Bayesian classifier, K-nearest-
neighbors (KNN), decision trees (DT), rule-based
learning (simple conditional if-else form or first-order
predictive logic), and fuzzy inference systems are simple
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to represent and interpret. They are more useful when

internal feature correlations are less complex. There are
three main approaches to transparency.

Simulatability implies that the model must be human-
executable, e.g., sparse matrix model is easier to inter-
pret than dense matrix one as it is easy to justify and
visualize by humans.

Decomposability means that each aspect of the model
from input of data to hyperparameters and inherent
calculations should be easy to understand.

Algorithmic transparency defines algorithm level inter-
pretability from input of given data to final decision or
classification. With the help of visualization users can
understand how the model reacts to different situations.

Post-hoc methods work better for data with nonlinear rela-
tionship or higher complexity. After receiving a trained

and/or tested Al model as input, such methods generate
useful approximations of the model’s inner working and
decision logic as feature importance scores, rule sets, heat

maps, or natural language. They are further classified into
model agnostic and model-specific methods.

Model-agnostic explanations observe the change in
output after perturbing the samples. Then they extract
feature importance scores and build a simplified local
model that approximates the original model’s behavior
near the original samples. These tools use pairwise
analysis and can be used for any AI/ML model.

Model-specific techniques find explanations specific
to the given algorithm and relevant to the internal
structure of the learning model, such as (i) finding the
impact factors and correlations of the most important
features, (ii) condition-based explanations answering
‘why’ questions, and (iii) finding simple rules capturing
the complex input-output relations of the given model.
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6.4.1 Explainable RL

The impressive performance and remarkable recent
achievements of RL systems can be attributed to combining
RL with DL. However, explainability, which refers to the
understanding of the system’s decision-making process, is
lacking. In response to this challenge, the new explainable
RL (XRL) field has emerged and is growing rapidly to help us
understand the RL systems.

The XAl focuses on many forms of learning like unsupervised
and supervised learning. In supervised learning, observations
are assumed to be independent and identically distributed and
the goal is to minimize the risk with immediate response. In con-
trast, the agent in RL learns to maximize the return with rewards
as the responses, which are not necessarily provided immedi-
ately. Hence, the agent needs to consider the short-term and
long-term consequences in addition to the immediate response
when learning to make decisions. Accordingly, methods to
explain these RL-specific characteristics are different from XAIL

The following considerations are very important for XRL.

i. Trust: One way to understand trust is whether a stake-
holder is willing to delegate the decision-making to the
Al system. Thus, if one is inclined to let the Al system
decide on its behalf, then it trusts the system. Also, trust
can be the confidence that the system will behave as
intended.

ii. New insight: This is the ability to extract knowledge
from the Al system to gain a new understanding of the
problem at hand. Creating an RL system is not only for
making decisions but also for gaining novel insights into
the domain.

iii. Making adjustments: It should be possible to change an

AT system for correcting and improving it. Different
quantities, such as accuracy and return indicate the
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system’s performance but lack the ability to find, fix,
and improve it. Hence, knowing how the system works,
and also its strengths and weaknesses is required to find
bugs, fix them, determine when the system might fail,
and improve it.

iv. Fairness and being ethical: These ensure that the AI
system does not make decisions that, for example, might
discriminate based on skin color or gender and com-
plies with ethical standards.

Apart from these reasons, there are others like effective human
and Al collaboration, privacy, and accountability that motivate
the need for explainability.

6.5 GRAPH NEURAL NETWORKS (GNNS)

GNNss are evolutions of CNNs and graph embedding. They can
work with usually highly complex data structures given as a
graph, e.g., a grid of pixels, to predict a class. Like Recurrence
NN used in text classification, the GNNs are applied to graph
structures where every word is a node in a sentence. They were
introduced when CNNs were applied to complex graphs with
arbitrarily large sizes but failed to achieve optimal results. They
are particularly used in pattern recognition, social networks
analysis, recommendation systems, and semantic analysis.

In general, GNNs are used in predicting nodes, edges, and
graph-based tasks. A node can be a person, place, or thing,
connected with the edges defining the relationships between
them. The edges can be directed and undirected based on direc-
tional dependencies. In general graphs exist in non-Euclidean
spaces which sometimes makes it harder to interpret them.

Some of the types of GNN are the following.

« Graph Convolutional Networks (GCNs): They are like
traditional CNNs containing graph convolution, linear
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layer, and non-learner activation function. There are two
major types Spatial GCNs and Spectral GCNGs.

« Graph Auto-Encoder Networks (GAENNSs): They learn
graph representation using an encoder and attempt to
reconstruct input graphs using a decoder. The encoder
and decoders are joined by a bottleneck layer.

« Recurrent Graph Neural Networks (RGNNs): They
are good with multi-relational graphs where a single
node has multiple relations. They use regularizers to
boost smoothness and eliminate over-parameterization.
RGNNs use less computation power to produce better
results. They are used in generating text, machine trans-
lation, speech recognition, generating image descriptions,
video tagging, and text summarization.

+ Gated Graph Neural Networks (GGNNs): They are better
than the RGNNs in performing tasks with long-term
dependencies. Like GRUs, they use gates to remember
and forget information in different states.

6.5.1 GNN and DRL

State-of-the-art DRL-based networking solutions use standard
NN. e.g., fully connected, convolutional, etc., which are usually
unable to learn from information structured as graphs.

One of the solutions proposed to mitigate this problem is to
relate Q-function to the graph metrics of the GNN. The GNN-
based DRL agent defines the actions to apply on the network
topology. The actions allocate the demands on one of the can-
didate paths. The DRL agent implements the DQN algorithm,
where the Q-function is modeled by a GNN. At the same time,
the environment (i) defines the optimization problem to solve,
(ii) stores the network topology, together with the link features,
(iii) generates the reward once an action is performed.

In the iterative learning process, the agent receives a graph-
structured network state observation from the environment.
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The GNN constructs a graph representation with topology
links as the graph entities. An iterative message-passing algo-
rithm running between the links’ hidden states outputs a global
hidden state encoding the topology and processed by a DNN.
At the end of this phase, the GNN outputs a Q-function esti-
mate. This is evaluated over a limited set of actions, and finally
the DRL agent selects the action with the highest Q-value.
Application of DRL in GNN is still a very active research area.

6.6 BINARIZED NNS (BNN)

Regular NNs need powerful GPUs for training. Even after
quantization the NN weights have int8 precision, which
makes training and inference still very compute-intensive
and not very energy-cost-friendly. The BNN is a new type of
neural network which stores weights in binary values, i.e., 1
and -1, also known as 1-bit quantization. This uses just 1 bit
for weights and/or activations instead of full precision values
and substitutes complex multiply-accumulate operations with
bitwise logic operations. Thus, computation and memory foot-
print are reduced drastically so that they become very suitable
for embedded devices and microcontrollers.

6.7 REINFORCEMENT LEARNING FROM HUMAN

FEEDBACK (RLHF)

In usual DRL approach, the agent learns the policy giving
the optimal reward function by trial-and-error iterations.
However, explicitly defining a reward function that accur-
ately approximates human preferences is challenging. RLHF
is a technique for aligning an intelligent agent with human
preferences. In this approach, first a reward model is trained in
a supervised manner to represent human preferences directly.
This reward function is then used to improve an agent’s policy
through an optimization algorithm like proximal policy opti-
mization (PPO).
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The algorithm was introduced by OpenAl for enhancing
text continuation or summarization based on human feedback;
later it was reused in InstructGPT. RLHF has been applied
to many areas of machine learning, e.g., text summarization,
conversational agents, text-to-image models, etc. One of the
problems with RLHF is the high cost of acquiring high-quality
preference data without any biases.

6.8 QUANTUM RL

First we have to understand the basis of quantum computing
using some basic concepts of quantum mechanics.

6.8.1 Single and Multi-Qubit Systems

The basic unit of classical information is a single bit which can
be either in state 0 or in state 1. A sequence of #n such bits can
represent 2" unique values and the bit register can only be in
one of these 2" states at any point in time. On the other hand,
the basic unit of quantum information is a single qubit with |0)
and |1) as its two distinct, orthogonal states. These basis states
span a two-dimensional Hilbert space, which contains all 1-
qubit (pure) quantum states. The qubits can be realized physic-
ally in many ways, e.g., spin systems of subatomic particles, ion
traps, neutral atoms, or superconducting circuits. An arbitrary
qubit can not only be in |0) and |1) states but also be in a super-
position of both.

|¥)=A|0)+ B |1) (6.6)

The amplitudes o« and  are complex numbers satisfying
|0¢|2 + |ﬁ|2 = 1. Alternatively, one can write

|l//> =(cosg|0>+e’¢sing|l>) (6.7)
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This representation makes it possible to visualize the state of
a 1-qubit system on the surface of the Bloch sphere, in which
the north and south poles on the z-axis correspond to the basis
states |0> and |>1. They are the computational basis states of a
single qubit. Alternatively, qubits can be represented in other
ways also.

« By the poles related to the x-axis

0)+])
=,

By a complex combination

)

NG

« By a column vector

o-{io)

An n-qubit system gives access to the 2"-dimensional Hilbert
space, in which an arbitrary pure quantum state is given as

|w)=¢,]00--:00) +¢,|00 - O1) +-+¢,, [11:11) (6.10)

The basis states consist of tensor products of the individual
qubits. The state | y) has 2" complex amplitudes, whose abso-
lute squared values must sum up to 1. Due to the principle
of superposition, an n-qubit system can encode and process
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information scaling in O (2"), while for a classical setting, it is
limited to O (n).

6.8.1.1 Evolution of Closed Quantum Systems

The quantum computation is achieved by operators acting
on the Hilbert space. They describe the time evolution of a
closed quantum system and are reversible, so they can be
represented as unitary matrices, i.e., for an operator U it
must hold that U TU = I. This constraint preserves the length.
The operators are:

0 1 0 —i 1 0
X=0 = Y =0 = L =0 =
T 110 Y li 0 =10 -1

(6.11)

The operator for arbitrary rotation with 6 about axis i as
0
R(O)=e 2" (6.12)

The last 1-qubit operator is the Hadamard matrix:

1|1 1
:E[l _1] (6.13)

The 1-qubit operators can be extended to act a multi-qubit
system. For example, the most relevant 2-qubit operators are
the controlled X (CX) and controlled Z (CZ), where one qubit
acts as the control and the other acts as the target. Similarly,
the CX-gate flips the amplitudes of the target qubit and the CZ
operator performs a conditional phase flip.

6.8.1.2 Extracting Classical Information via Measurements
For quantum systems, in order to extract information, an
observable quantity has to be measured, which is a Hermitian
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operator O such that O” = O. The eigenstates of O define a basis
of the quantum system’s Hilbert space.

After measuring an observable O, the device outputs an
eigenvalue of O and the system is in the corresponding eigen-
state. Let |0), |1), ..., [N — 1) be the basis defined by observ-
able O and ¢, ¢, ..., ¢y the corresponding amplitudes of state
|y) expressed in this basis. Then measuring O gives the out-

come A; with probability |cl. |2. Consequently, having obtained A,
the post-measurement state of the system is |i). The quantum
circuits represent the measurement process with quantum
circuit diagrams as the computing steps of a quantum algo-
rithm. The diagrams give its sequence of operators, states, and
measurement.

6.8.2 Quantum RL (QRL)

It is the study and application of quantum ML (QML) as
described above to RL tasks. QML integrates quantum
algorithms with ML programs mostly for the classical data used
in quantum computing. Qubits (and in principle Qudits) with
relevant quantum operations are used to improve the compu-
tational speed and data storage. In general, QRL handles com-
putationally difficult subroutines. Most of them take one of the
following approaches.

o Quantum-inspired RL algorithms, e.g., amplitude
amplification-based action selection

o Variable quantum circuits (VQCs)-based function
approximation for actor, critic, MARL, etc.

 RL algorithms with quantum subroutines, e.g., quantum
policy or value iteration, projective simulation, Boltzmann
machines for function approximation, etc.

 Full QRL, e.g., quantum policy iteration, quantum gra-
dient estimation, etc.
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6.8.3 Variational Quantum Circuits

The VQCs combine the strength of both classical and quantum
computation. They use quantum circuits with tunable
parameters on noisy intermediate-scale quantum (NISQ) hard-
ware optimizing them iteratively on a classical computer. Those
parameters then become weights in an artificial NN. The DRL
combined with NISQ computation is an RL agent interacting
with the environment. It then gains knowledge of backgrounds
and derives the policy for making the optimal decision.

The VQC can model any function approximators, classifiers,
and even quantum-many body physics that are intractable
on classical computers. Even without any quantum error
correction, or fault-tolerant quantum computation, they have
been shown to avoid the complex quantum errors existing in
other quantum devices. Just like classical NN, they can approxi-
mate any analytic action-value function of DRL.

The foundations of QC, and by implication QML, were
established with the development of the theory of quantum
physics in the early 20th century. Feynman had proposed the
idea of taking advantage of quantum mechanics for computing
in the early 1980s. QC potentially provides efficient solutions to
classically intractable problems

6.8.4 Quantum RL Algorithms
Most often, RL is used to:

« Generate a solution for a quantum control problem, e.g.,
to learn quantum error correction strategies or to generate
control policies at a lower error rate.

 Optimize a variational quantum algorithm (VQA).

« Optimize supervised and unsupervised learning.

Employ VQCs as function approximators.

In the method of amplitude amplification, as it is used in Grover-
type search algorithms, several qubit registers embed the states
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and actions relevant for the RL system in a suitable Hilbert
space. Starting from a uniform superposition, amplitudes
favored by the reward or the value function are selectively amp-
lified based on Born’ rule, i.e., a measurement is carried out on
the qubit register with regard to the ‘action-basis’

Projective Simulation (PS): Another QRL method is based on
PS, which in the broadest sense is a particular learning para-
digm and similar in spirit to RL. Based on experiences made
through interaction with the environment, a memory network
is created by the agent. The network has a directed structure
with adaptive weights between the nodes of the network. The
learning process and action selection are based on a random
process (more precisely, a random walk) on the graph of the
network, with the transition probabilities between nodes being
given by the respective adaptive weights. PS can be ‘quantized’
by replacing the random walk with a so-called quantum
random walk. Possible quantum advantages over classical PS
lie in the acceleration of the process of action selection.

Quantum Boltzmann Machines: Boltzmann machines are used
as function approximators. These models are assumed to be
advantageous compared to typical NNs in environments with
large action spaces. Boltzmann machines are closely related to
energy-based models. For specific instances, those allow for
a quantum representation, which enables potential quantum
speed-up for post-NISQ devices.

Quantum Subroutines: Another approach to go from RL to QRL
replaces certain subroutines in existing RL approaches. One
idea is to replace policy or value iteration with some quantum-
enhanced analogs. While this approach is limited to universal,
fault-tolerant and error-corrected quantum hardware, several
such algorithms have been proposed.



CHAPTER 7

Applications of RL

AS EVERYDAY NEWS CONFIRMS, AI/ML has emerged as a
revolutionary technology applied in practically every area
of human endeavor. In many situations it has solved problems
deemed insoluble using standard techniques of analytical
modeling and computational programming. In this chapter
we will try to give a glimpse of the depth and breadth of these
applications focused on RL.

7.1 SELF-DRIVING CARS

RL agents applied to traffic pattern can learn traffic density,
vehicle flow patterns, speed, etc., in real time and continuously.
They can then adapt the system in the preferred direction and
keep repeating this in real time to make traffic safer and its flow

smoother across times, climates, and seasons.
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RL is behind the related new technology of self-driving cars
which promises to revolutionize personal transportation. The
DRL network trains self-driving cars by using sensor data feed-
back collected during driving sessions in varied and unfamiliar
terrains. This way they learn and avoid accidents anywhere in
principle. Some cities on the west coast have allowed them on
the roads, which is a sign of the maturity of this approach.

Autonomousdriving (AD) systems contain many perception-
level tasks for which high precision has been achieved using
DRL. In addition to perception, AD systems must deal with
other tasks for which classical supervised learning methods are
not applicable.

(i) The prediction of the agent’s action changes future
sensor observations received from the environment, e.g.,
determining the optimal driving speed in an urban area.

(ii) Supervisory signals such as time to collision (TTC)
and lateral error w.r.t. [sic] to optimal trajectory of the
agent, represent the dynamics of the agent, as well [as]
uncertainty in the environment. Such problems require
defining the stochastic cost function to be maximized.

(iii) The agent is required to learn new configurations of
the environment and predict an optimal decision at each
instant while driving. This represents a high-dimensional
space given the number of unique configurations under
which the agent and environment are observed.

In all such scenarios RL methods provide the best approach
to an optimized solution to the problems outlined above. AD
tasks where RL could be applied include the following:

« Controller optimization
« Path planning and trajectory optimization

» Motion planning and dynamic path planning
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» Development of high-level driving policies for complex
navigation tasks

« Scenario-based policylearning for highways, intersections,
merges and splits

« Reward learning with inverse RL from expert data for intent
prediction of traffic actors such as pedestrian and vehicles

o Learning of policies for ensuring safety and performing
risk estimation.

Before discussing the applications of DRL to AD tasks we briefly
review the state space, action space, and rewards schemes in
AD setting.

7.1.1 State Spaces, Action Spaces, and Rewards

Commonly used state space features for an autonomous vehicle
under consideration (called ego-vehicle) include the following:

i. Position, heading, and velocity of ego-vehicle.

ii. Same for other obstacles in the sensor view of the ego-
vehicle. To avoid variations in the dimension of the
state space, a Cartesian or Polar occupancy grid around
the ego vehicle is used.

iii. Lane information such as lane number (ego-lane or
others).

iv. Path curvature.
v. Past and future trajectory of the ego-vehicle.
vi. Longitudinal information such as time-to-collision (TTC)

vii. Scene information such as traffic laws and signal locations.
AD uses the following kinds of data:

i. Raw sensor data such as camera images, LiDAR, radar,
etc., for finer contextual information.
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ii. Condensed abstracted data for reducing the complexity
of the state space.

iii. In between data or a mid-level representation such as
2D bird’s-eye view. It is sensor agnostic but still close to
the spatial organization of the scene, retaining the spa-
tial layout of roads which graph-based representations
cannot do.

A vehicle policy must control several continuous-valued
actuators, e.g., steering angle, throttle, and brake, and discrete-
valued ones controlling gear changes. The continuous action
space can be discretized uniformly by dividing the range of con-
tinuous actuators (such as steering angle, throttle, and brake)
into equal sized bins. Discretization has to be done carefully
as it can lead to jerky or unstable trajectories if the step values
between actions are too large. There is also a trade-off between
having enough discrete steps to allow for smooth control and
not having so many steps that action selections become pro-
hibitively expensive to evaluate. As an alternative, continuous
values for actuators may also be handled by DRL algorithms
which learn a policy directly (e.g. DDPG). Designing reward
functions for DRL agents for autonomous driving is still very
much an open question, but many approaches are becoming
available.

7.1.2 Motion Planning and Trajectory Optimization

Motion planning ensures the existence of a path between target
and destination. Path planning in dynamic environments and
varying vehicle dynamics is a key AD problem, e.g., negotiating
right to pass through in an intersection, merging into highways,
etc. The DDPG algorithm has been found quite useful in hand-
ling these situations. Classical RL methods are used to perform
optimal control in stochastic settings, e.g., the Linear Quadratic
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Regulator (LQR) in linear regimes and iterative LQR (iLQR)
for nonlinear regimes are utilized.

7.1.3 Simulator and Scenario Generation Tools

AD datasets address supervised learning setup with training
sets containing image, label pairs for various modalities. RL
requires an environment where state-action pairs can be
recovered while modeling dynamics of the vehicle state, envir-
onment, as well as the stochasticity in the movement and
actions of the environment and agent, respectively. Various
simulators have been developed for this purpose.

7.1.4 Learn from Demonstrations (LfD) and Inverse
Reinforcement Learning (IRL) for AD Applications

LfD agent mimics the behavior of an expert. Sometimes a CNN
is trained to map raw pixels from a single front-facing camera
directly to steering commands. Using a relatively small training
dataset from humans/experts, the system learns to drive in
traffic on local roads with or without lane markings and on
highways. The network learns image representations that detect
the road successfully, without being explicitly trained to do so.
Maximum entropy inverse RL is one of the methods used for
this purpose.

7.2 VIDEO GAMES

Video games have long been of great interest to Al researchers,
especially Atari games which are used to test control problems.
The use of Al in its design has made the games better in the way

people play them. The researchers are now trying to achieving
super-human-level performance in playing them. The appli-
cation of DRL enables agents to learn making decisions in
high-dimensional environments and it has brought many
developments in this area.
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Example: Atari Game - Pong

The environment consists of

« Two solid rebounding walls at the top and bottom

 Two agents represented by paddles and a ball.
The actions that the agent can perform are:

o Move up or

o Move down.

The objective is to keep shuttling the ball without letting it
touch the leftmost and rightmost walls. Every time an agent
fails to prevent the ball from touching the side walls, a penalty
is levied. Training needs to be done to aid the agent in decision-
making - to either go up or go down.

In a supervised learning approach, a label needs to be given
to every sequence of actions. This is very problematic:

1. The human controlling the agent must be highly skilled
in order to get high performance rates.

2. The dataset created must be large enough to cover all
possible action sequences.

3. Since the model is trained on a dataset created by a
human, the performance can at best be equal to him/her.

So supervised learning cannot be used to perform better than
humans.

DRL overcomes these problems. Its framework is very
similar to that of supervised learning. There is an input frame,
a neural network, and an output action, the difference being
that there is no target label in DRL. Policy network trained
using policy gradient has been found the most useful. They
consider a random network which takes a high-dimensional
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image frame from the game engine as an input. This produces
a random output action - either up or down which is sent back
to the network which then produces the next frame. After every
single choice, the game simulator executes the action and gives
a reward as feedback. If an agent wins, a reward of +1 is given;
if it loses, a penalty of -1 is given, else 0.

The goal of this entire setting is to maximize the reward
obtained and make the agent learn the most appropriate deci-
sion at a given stage. In the policy gradient solution, the credit
assignment problem must be solved. The entire sequence of
actions should not be discarded because of a negative penalty
at the end. It might be the case that the intermediate steps were
beneficial and some of the later steps were not.

The importance of DRL and policy gradient solution is
observed in a sparse reward setting like the game ‘Montezuma’s
revenge. The game environment and action sequences can be
so complex that the number of sequences leading to the goal
is very small. The agent will have limited positive examples
to follow if it takes up random exploration. To overcome this
problem, reward shaping is used. Reward shaping refers to the
process of creating a reward function that is designed manually
to direct the policy toward a specific behavior. However, reward
shaping is not an optimal approach. The DRL approach to video
games has led to impressive results in control problems.

7.3 HEALTHCARE

RL-related models and approaches have been widely applied
in healthcare domains for some time now. In the early days
the focus was on applying dynamic programming to develop
pharmacokinetic/ pharmacodynamic models. With the tre-
mendous theoretical and technical achievements in gener-
alization, representation, and efficiency in recent years, RL
approaches have been successfully applied in a number of
healthcare domains as well. Broadly, they have been applied to
three domains:
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i. Dynamic treatment regimes in chronic diseases and
critical care

ii. Automated medical diagnosis

iii. Others such as health resources allocation and sched-
uling, optimal process control, drug discovery and
development, as well as health management.

7.3.1 Dynamic Treatment Regimes (DTR)

One of the goals of healthcare decision-making is to develop
effective treatment regimes that can dynamically adapt to the
varying clinical states and improve the long-term benefits of
patients. DTR provide a new paradigm to automate the process
of developing new effective treatment regimes for individual
patients with long-term care.

RL in healthcare has been used in automated medical diag-
nosis, resource scheduling, drug discovery and development,
health management, etc. It has also helped in creating DTR. It
works as follows:

o The data based on the current clinical observations and
assessments of the patient is entered into the DTR system.

o The DTR system already has the previous medical his-
tory data of the patient. Using RL agent, it then outputs
a suggestion on treatment type, drug dosages, and
appointment timing for every stage of the patient’s journey
to full recovery. It helps in making time-dependent
decisions for the best treatment for a patient at a spe-
cific time.

Using DTR, medical professionals can save time, energy, and
efforts needed to consult with multiple parties. It contains a
sequence of decision rules to determine the course of actions
(e.g., treatment type, drug dosage, or reexamination timing) at
a time point according to the current health status and prior
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treatment history of an individual patient. They are tailored for
generating new scientific hypotheses and developing optimal
treatments across or within groups of patients. Utilizing
data generated from the Sequential Multiple Assignment
Randomized Trial (SMART), a DTR can be derived to optimize
the final clinical outcome of particular interest. Some relations
are as follows:

i. The series of decision rules in DTRs are equivalent to
the policies in RL.

ii. The treatment outcomes are expressed by the reward
functions.

iii. The inputs in DTRs are a set of clinical observations and
assessments of patients.

iv. The outputs are the treatments options at each stage,
equivalent to the states and actions in RL, respectively.

RL can achieve time-dependent decisions on the best treatment
for each patient at each decision time, thus accounting for het-
erogeneity across patients. This precise treatment does not rely
on the identification of any accurate mathematical models or
explicit relationship between treatments and outcomes. These
solutions improve the long-term outcomes by considering
delayed effect of treatments, which is the major character-
istic of medical treatment. Finally, by careful engineering of
the reward function using expert or domain knowledge, RL
provides an elegant way to multi-objective optimization of
treatment between efficacy and the raised side effect.

The domains of applying RL in DTRs can be classified into
two main categories: chronic diseases and critical care.

7.3.2 Chronic Diseases

Chronic diseases, e.g., diabetes, hypertension, schizo-
phrenia, etc., are big public health issues worldwide, claiming
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a considerable portion of death every year. They last a long
period of three months or more and require continuous clin-
ical observation and medical care. Their long-term treatment
contains a sequence of medical intervention that must con-
sider the changing health status of a patient and adverse effects
occurring from previous treatment. In general, the relationship
of treatment duration, dosage, and type against the patient’s
response is too complex to be explicitly specified. RL has been
utilized to automate the discovery and generation of optimal
DTRs in a variety of chronic diseases including cancer, dia-
betes, anemia, HIV, and several common mental illnesses.

7.3.3 Critical Care

Critical care is for more seriously ill or injured patients
needing special medical treatments and nursing care. Usually,
these patients require intensive care unit (ICU) for intensive
monitoring and close attention. They may also need sedation,
nutrition, blood product administration, fluid and vasoactive
drug therapy, hemodynamic endpoints, glucose control, and
mechanical ventilation.

Much effort has been made in developing guidelines and
standardization of the various aspects of ICU interventions. It
is now possible to generate rich ICU data in a variety of formats
for the applications of RL in critical care. However, the inherent
3C (compartmentalization, corruption, and complexity)
features indicate that critical care data are usually noisy, biased,
and incomplete.

7.4 MARKETING AND ADVERTISING

The capitalist economy is centered on increasing profits by
stimulating consumption and using natural and human
resources to make products and services for that purpose.
Marketing and advertising are backbones of this approach. The

ML approach here works as follows.
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i. Real-time advertising to target audiences

Real-time bidding platforms, A/B testing, and automatic ad
optimization are the methods used for this purpose. A series
of advertisements is placed in the marketplace. The DNN-
based host automatically serves the best-performing ads in the
best spots for the lowest prices. The marketing and advertising
platforms learn in real time the most effective ads and display
them more frequently and prominently.

The same platforms use RL to associate similar companies,
products, and services to prioritize for certain customers.
The choice is reinforced if the consumer clicks or uses other
signals of engagement, so the same strategy is repeated. The ads
consumers receive are usually from companies with websites
previously visited, or bought from before, or situated in the
same industry as a company from which a previous purchase
was made.

ii. Recommendation systems

The DRL systems and learning machines are further used to gen-
erate recommendation shown as tabs like ‘Frequently Bought
Together, ‘Customers Also Liked, ‘Recommended Reading,
etc. On news websites, they queue the next story, articles, etc.,
to the customer based on his/her previous preferences. They
analyze customers’ behavior in real time and also generate
rewards to keep them engaged and interested.

A variation on this application is used to improve video
streaming, e.g., Netflix. RL is used to improve the perform-
ance of its algorithms that determine which video to play
next. Recommendations for new titles are made based on past
choices. It starts with an initial guess about what movie the
user will like based on his/her previous viewing habits. Then it
recommends something new with the same or better rating. If
the user selects it, then the rating specific to that user is changed
for future interaction.
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These systems have a dark side which is not good for encour-
aging critical thinking as they reward impulsive behavior based
on emotions. Their use on news websites and social media has
exacerbated the social fragmentation and entrenched the ideo-
logical divisions. The society at large may have to revisit these
issues in future.

7.5 IMAGE AND PATTERN RECOGNITION

This is one of the most important uses of RL as it is used in both
regular and security settings. RL agents can start with a given
image and then identify objects sequentially until individual
items in the total image are cataloged. Artificial vision systems
also use deep convolution NNs with large, labeled datasets as
inputs and map images to human-generated scene descriptions
from simulation engines.

Some more examples of RL in image processing include the
following:

« Robotswith visual sensorslearning from their surrounding
environment.

« Scanners for understanding and interpretation of the text.

« Image preprocessing and segmentation of medical images,
e.g., CT scans.

o Traffic analysis and real-time road processing by video
segmentation and frame-by-frame image processing.

« Xhooed-ypxvit tedediotov (CCTV) cameras for traffic
and crowd analytics

Table 7.1 presents a sample of problems in this area and
algorithms used to solve them.

7.6 AUTOMATED ROBOTS AND DRONES

While most robots do not look like their pop culture
representations, their capabilities are just as impressive. The




164 = An Introduction to Deep Reinforcement Learning

TABLE 7.1  Some Image Classification Tasks and Applied Algorithms
Item Objective Algorithm
1 Dimensionality reduction DRL-based Q-learning

10

11

12

Applying dynamic policy in active
learning
Learning the data selection criterion

Enhancing the classification when
training samples are lacking

Solving the misclassification problem in
the soft-attention mechanisms

Localizing the objects in scenes

Detection of the objects in images using
a hierarchical technique

Providing an Aesthetics Aware
framework based on RL (A2-RL) to
improve image cropping

Providing a Fast Aesthetics-Aware
Adversarial framework based on RL
(Fast A3RL) to improve image cropping

Providing a Fast Aesthetics-Aware
Adversarial framework based on RL
(Fast A3RL) to improve image cropping

Lightweight network for large-scale
image classification with visual
attention and Gaussian modeling

Model for autonomous exploration of
vehicles

Dynamic policy

Deep Q-learning, CNN
(VGG-16), and ResNet.
Few-shot learning

DSFnet

Pre-trained CNN, -Deep
Q-network
Q-learning

LSTM

LSTM and Adversarial
learning

Double DQN

Redefined Markov process
for RL with Gaussian
distribution

Double deep Q-learning
(DDQN), Faster R-CNN

more robots learn using RL, the more accurate they become,
and the quicker they can complete a previously arduous task.
They can also perform duties that would be dangerous for
people with far less consequences. For these reasons, aside from
requiring some oversight and regular maintenance, robots are a
cost-effective and efficient alternative to manual labor.

Some more examples of RL in this area include the use of
robots to:
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o Deliver food to tables in restaurants.

« Identify lower shelves in grocery stores and order more
products.

« Assemble products and inspect for defects in factories.
« Count, track, and manage inventory.

« Deliver goods.

« Travel long and short distances.

« Input, organize, and report on data.

« Grasp and handle objects of all different shapes and sizes.

The list is nonexhaustive. As we continue to test robotic abil-
ities, new features are being added to expand their potential.

These successes show the ability of DRL to control robotic
systems with high-dimensional state or observation space with
highly nonlinear dynamics. Some of the tasks are highly chal-
lenging, which cannot be handled by conventional decision-
making, planning, and control approaches.

The achievements of DRL have been mostly in simulation
or game environments. Extending them to physical world
presents additional challenges.

i. Collection of trial-and-error samples directly in the
physical world is often inefficient and/or unsafe for the
RL agents.

ii. It is usually impossible to simulate the complex real
world exactly.

Still progress has been made in applying DRL to many phys-
ical environments, e.g., champion-level drone racing, quad-
ruped locomotion control integrated into production-level
quadruped systems (e.g., ANYbotics, Swiss-Mile, and Boston
Dynamics), etc.
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Some areas have seen rapid progress in applying DRL:

o Locomotion: DRL has enabled mature quadruped loco-
motion control. Hardware accessibility is an important
contributing factor. Even in the mature quadruped loco-
motion domain, open questions remain, such as:

i. Effectively integrating locomotion with downstream
tasks via RL

ii. Enabling efficient and safe real-world learning.

Navigation: DRL has shown potential for local planning,
global exploration, and constructing end-to-end naviga-
tion solutions, but the solutions lack explainability and
safety guarantees. Therefore, it has not been deployed
widely.

i. Visual navigation: While end-to-end RL excels in
simulation, most real-world successes deploy modular
designs and learn components of the navigation stack.
Joint reasoning jointly with navigation and locomo-
tion enables agile legged and aerial navigation. Model-
free, end-to-end policies show promise for structured
indoor environments like homes, while modular
architectures boost performance without sacrificing
guarantees and generalization. RL-based vision-and-
language navigation is relatively underexplored in
real-world settings but promising given the recent
advances in vision-language models.

ii. Legged navigation: For agile legged and aerial navi-
gation, jointly learning navigation and locomotion
yields promising results. Yet, involving locomotion
complicates the training of long-horizon navigation
policies.
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« Manipulation: DRL has been applied to both stationary
and dynamic manipulation tasks like pick-and-place,
contact-rich manipulation, in-hand manipulation, and
non-prehensile manipulation. Stationary manipulation
refers to an agents control of its environment through
selective contact. Robots require manipulation capabil-
ities such as pick-and-place, mechanical assembly, in-
hand manipulation, non-prehensile manipulation, etc., to
be useful. Manipulation poses several challenges for both
analytical and learning-based methods, as the mechanics
of contact are complex and difficult to model, and open-
world manipulation requires strong generalization and
fast online learning. It poses fundamental difficulties
for RL:

a. Large observation and action spaces make real-world
exploration prohibitively time-consuming and unsafe.

b. Reward function design requires domain knowledge.
c. Tasks are often long-horizon.

d. Instantaneous environment resets are usually unreal-
istic in real-world tasks.

« Despite these challenges, RLhasachieved notable successes
in domains where the space of tasks is more constrained -
grasping, in-hand manipulation, and assembly - rather
than less, e.g., end-to-end pick-and-place. These more
constrained tasks allow for a priori reward design and
zero-shot sim-to-real transfer, whereas open-world pick-
and-place and contact-rich manipulation require gen-
eralizing to diverse objects and tasks. The limitations of
physical simulation may also preclude scaling sim-to-real
for contact-rich tasks.
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7.7 NATURAL LANGUAGE PROCESSING (NLP)

NLP tasks are some of the most important uses of RL. Some
examples include:

o Text prediction,
o Text summarization,
o Question answering,

o Machine translation, etc.

RL agents train with patterns in texts and speech, and then
mimic the language, diction, and syntax people speak to each
other every day.

In NLP, the goal is to develop computer programs capable
of communicating with humans using natural language. As an
example, machine translation helps humans speaking different
languages to understand each other by translating from one
natural language to another. Over the years, NLP research has
been transformed by ML algorithms and deep neural networks
as neural language models such as BERT and various versions of
GPT. These new approaches define natural languages as prob-
ability distributions over sentences rather than using definitive
sets specified by grammars.

An important NLP approach uses n-grams, which is a
sequence of written symbols of length n. The n-gram model is
the probability distribution of n-grams defined as Markov chain
of length n-1. The DNNs, such as the recurrent long short-term
memory (LSTM) network, have allowed the researchers to
replace probabilistic language models with those based on DNN.
The LSTM has been successfully applied to machine translation
which was not possible with the approach based on language
grammars alone. These new neural models contain thousands of
parameters that are estimated iteratively from a massive number
of training examples gathered from the Internet.
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There are five main categories of MDP-based NLP problems.

L

ii.

1il.

Conversational systems: They are the most studied ones,
and they involve finding an optimal dialog policy that
should be followed by an automated system duringa con-
versation with a human user. A very important advance-
ment in this area occurred in 2016, when researchers
from Stanford University, Ohio State University, and
Microsoft Research used RL to generate dialogues
using two RL agents. They applied policy gradient
methods to reward coherence, informativity, and ease
of answering in simulated conversations. The outcome
has been adopted very widely in business customer ser-
vice departments. The other four categories also use RL
methods. In some of them, it is even not easy to identify
the elements of a well-defined MDP.

Syntactic parsing: It consists of analyzing a string made
of symbols belonging to some alphabet, either in nat-
ural or in programming languages, using a set of rules
called grammar. There could be many ways to perform
parsing, depending on the final goal of the system, e.g.,
construction of a compiler for a new programming lan-
guage, an application of language understanding for
human-computer interaction, etc. A grammar can gen-
erate many parsing trees and each of these trees specifies
the valid structure for sentences of the corresponding
language. Since parsing can be represented as a sequen-
tial search problem with a parse tree as the final goal
state, RL methods are tools well suited for the under-
lying sequential decision problem. In general, a parse is
obtained as a path when an optimal policy is used in
each MDP.

Language understanding: It can also be posed as an
MDP and therefore RL algorithms can be applied.
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Furthermore, they can be implemented together with
DNN to cope with the massive amount of data that text
understanding applications typically require.

iv. Text generation systems: They automatically generate
valid sentences in natural language given a language
model. The optimization generates valid substring
sequences that subsequently complete a whole sen-
tence with some meaning in the domain of the appli-
cation. For example, given a vector representation of
a set of variables in a computational system and their
corresponding values, an RL algorithm generates a sen-
tence in English (or any other natural language). This
communicates specific and meaningful information to
a human user.

Generating navigational instructions for humans has
been one of the first areas for this approach. Here, the
system decides first the content to be communicated
to the human, and then builds the correct instructions
adding word by word. The reward function is
implemented as a hidden Markov model or as a Bayesian
network. The RL process is carried out with a hierarch-
ical algorithm using semi-MDPs. Other approaches
combining IRL and GANs have also been used in which
the reward and the policy functions are learned alter-
nately with a discriminator and a generator.

In a text generation task, the corresponding MDP works
as follows:

a. Each state is a feature vector describing the current
state of the system containing enough information to
generate the output string.

b. Actions add or delete words.

c. Every transition to next state is determined by the
resulting string, after adding or deleting a word.
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d. The reward function is learned from a corpus of
labeled data or from human feedback.

V. Machine translation: It consists in automatically trans-
lating sentences from one natural language to another
one using a computing device with a program. It receives
text (or speech) in some language as input and automat-
ically generates text (or speech), with the same meaning
in a different language. They are used mostly as online
translation systems. Neural machine translation is the
preferred approach now in which large NNs predict the
likelihood of a sequence of words.

Currently RNN, such as LSTM network, is the preferred
MT method. Two RNNs function as an encoder and a
decoder:

a. Theencoder updates its weights as it receives a sequence
of input words to extract the meaning of the sentence.
It internally encodes the meaning of the source text.

b. The decoder updates its corresponding weights to
generate the correct sequence of output words of
the translated sentence. It decodes using an internal
representation and outputs a translated sentence with
the correct meaning.

RL has been used to tackle the problems of exposure
bias, i.e., the discrepancy between ground-truth-
dependent prediction during training and model-
output-dependent prediction during testing, and
inconsistency between the training and test objectives.

7.8 SOME OTHER AREAS

RL methods are being used in a wide variety of areas in add-
ition to those mentioned above. Some of them are:

a. Finding the ways to reduce energy consumption espe-
cially in data centers. Google achieved a 40% reduction
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in energy spending without the need for human inter-
vention by developing RL and AI methods for this pur-
pose. The steps in achieving energy reduction are the
following:

« DNN using DRL is fed snapshots of data from the data
centers every five minutes.

« DNN predicts future energy consumptions for different
combinations of the data.

« System identifies actions leading to minimal power
consumption subject to a set standard of safety criteria.

« These actions are implemented in the data center.

« The local control system verifies the actions.

A similar approach is used in setting the thermostat or the level
of light in the room.

b. In trading, one tries to predict future prices of stocks
before deciding whether to buy or sell. RL agents help
in this by optimizing the buy/sell action for maximizing
the future monetary reward based on the current state of
knowledge. The optimization must consider factors like
availability of money, risk appetite, and access to relevant
information.

The entry of RL agents has also encouraged very fast real-
time trading using dueling RL agents for making short-term
profits. Only the future will tell if this use of RL is good for
attaining socially desirable ends like decreasing inequality.

c. Climate change, poverty and inequality, responsible
wealth generation and resource management, education,
government, and military are some of the areas in which
RL methods have been found to be very useful.



Epilogue

THE IDEA OF REINFORCEMENT learning combined with
neural network has revolutionized the field of machine
learning. It has led to an explosion of applications in several
fields of social and scientific importance. It is difficult to fore-
cast the future of RL but certainly we can look forward to
more and more exciting applications of this seminal idea in
near future.

Like many scientific and technological applications, RL
can be also used for unsavory ends that harm individuals
and societies. We must exert our utmost effort to prevent this
and, in cases where this is not possible, at least to minimize
repercussions. That is easier said than done as it will involve
widespread collective awareness and social effort.

In the future, we can envision the areas of application of
RL expanding to solve more and more social and scientific
problems. It will be one of the most widely available tools in the
hands of researchers as well as decision-makers. Let us hope
that it will help in solving some of the pressing problems cur-
rently facing humanity, like environmental degradation and
inequality.
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Computer vision, 25, 132
Conservation laws, 126
Continuous probability
distribution, 52
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Conversational agents, 6
Conversational systems, 169
Convolutional layer, 17
Convolutional Neural Networks
(CNN), 2, 5,17, 67,107, 143
Cost function, 42
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Data arrays, 67
Data augmentation, 21
Data-efficient spatiotemporal
function approximators, 127
Decision trees (DT), 12, 54, 140
Deconvolutional neural network, 93
Deductive inference, 28
Deep Belief Network (DBN), 24
application of, 24
Deep Blue, 9, 103
Deep deterministic policy gradients
(DDPG), 82-84, 96, 122
applications of, 84
mathematical formulation of, 83
pseudocode of, 83-84
Deep learning (DL), 2, 12, 13, 25,
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Deep neural networks (DNN),
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optimization of, 78
Deep operator networks
(DeepONets), 130
Deep Q-Network (DQN), 63,
65-70, 77,107,121
algorithm, 144
applications of, 68-70
mathematical formulation, 65-67
pseudocode, 67-68
Deep reinforcement learning (DRL),
31,68, 120
achievements of, 165
action-value function of, 150
algorithms, 121-123
applications of, 154
in Generative Al (GAI), 138
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Deep Transfer Learning
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Density matrix, 50
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Direct learning, 31
Discriminative learning model, 26
Discriminative network, 93
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Distributed PiNNs (DPiNNs), 128
Double deep Q-learning (DDQN),
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Dynamic treatment regimes (DTR),
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E
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Encoder-Decoder Transformer
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min-entropy, 52
mutual information, 53-54
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Multi-agent policy-function
framework, basic equations
for, 106-107
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Multi-agent reinforcement learning
(MARL), 102
for A2C and A3C, 115
cooperation versus competition,
103
general considerations for
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neuro-symbolic learning, 113-115
pure competition settings, 103
pure cooperation settings, 103
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Multi-objective RL, 115-119
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single-policy algorithms, 118
stateless/bandit algorithms, 118
unknown utility function
scenario, 116
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20, 23, 31, 46, 65, 114, 173
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policy-based, 75
Q-values, 108
value-based, 74
Neural operators (NOs), 129-130
Neural ordinary differential
equations (NeuralODE), 129
Neuro-symbolic (NeSy) learning, 114
Noisy intermediate-scale quantum
(NISQ) hardware, 150
Normalized advantage function
(NAF), 96-98
pseudocode of, 97-98
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Nash equilibrium, 110, 111
Natural language processing (NLP),
5-6,7,18, 25,132, 168-171
MDP-based problems, 169-171
conversational systems, 169
language understanding,
169-170
machine translation, 171
syntactic parsing, 169
text generation systems,
170-171
n-gram model, 168

Object recognition, 7

Off-policy learning, 71

Online learning (OL), 29, 31, 167

On-policy learning algorithm,
70-71

OpenAl 10, 146

Optimal control theory, 31

Optimal value function, 31, 42

Output gate, 91

Output layer, 15-16, 47
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Parallel Distributed Processing, 9

Parametric ReLU (PReLU), 49

Pareto optimality, 110, 111

Path planning, in dynamic
environments, 155

Pattern recognition, 5, 163

Pavlov, Ivan, 31

Perceptron, 3, 9

Physics-based NNS, 120-124

Physics-encoded neural networks
(PeNNs), 129
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network (PeRCNN), 129

Physics-guided neural networks
(PgNNGs), 124-125

Physics-informed NNs (PiNNs),
125-128

limitations and shortcomings of,
128
proof of convergence for, 128

Physics-informed reinforcement
learning (PiRL), 131-132

Policy Gradient algorithms, 77

Policy Gradient theorem, 66-67

Policy iteration technique, 79

Pooling layer, 17

Positional embedding layer, 133

Principal component analysis
(PCA), 22

Prisoner’s dilemma, 103

Probability distribution, 53

of n-gram models, 168

Projective simulation (PS), 149, 151

Proximal policy optimization
(PPO), 89-91, 122, 145

applications of, 91
mathematical formulation of, 90
pseudocode of, 90

Q

Quantum algorithm, 149
Quantum Boltzmann machines, 151
Quantum circuits, 150
Quantum computation, 148-149
fault-tolerant, 150
foundations of, 150
Quantum control theory, 56, 150
Quantum error correction, 150
Quantum random walk, 151
Quantum RL (QRL)
algorithms, 150-151
application of, 149
projective simulation (PS), 151
quantum Boltzmann machines,
151
quantum subroutines, 151
single and multi-qubit systems,
146-148
evolution of closed quantum
systems, 148
extracting classical information
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variational quantum circuits
(VQCs), 150
Quantum speed-up, for post-NISQ
devices, 151
Quantum subroutines, 151
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Q-function, 42, 63, 71, 73
Bellman equation for, 106
optimization, 81

Q-learning, 31, 34, 62-64
applications of, 64
deep Q-Learning, 65-70
finite state-action, 63
generalization of, 65
methods for, 96

Q-Learning for reward machines

(QRM), 110, 111-113

Quadratic loss, 44

Quadruped locomotion control, 166

Quantile loss, 45-46

Radial Basis Function (RBF) Neural
Network, 5, 21

Random forests (RF), 12

Random variable, probability for, 51

Reconstruction error, 24

Recreational games, 103

Rectified linear unit (ReLU), 13, 15,
48-49, 127

generalization of, 49

Recurrent Deterministic Policy
Gradient (RDPG), 121

Recurrent Graph Neural Networks
(RGNNs), 144

Recurrent Neural Networks (RNN),
2,4,17,91
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multi-agent, 109, 115-119
NISQ computation, 150
for objective maximization, 137
single-agent, 102, 115-119
time-dependent decisions, 160
vision-and-language navigation
based on, 166
Reinforcement learning from human
feedback (RLHF), 145-146
Relative entropy, 53
Rényi, Alfred, 51
Rényi entropy, 51, 52
of Heisenberg XY spin model, 51
Restricted Boltzmann machine
(RBM) learning, 20, 21
Reward Function, 137
Reward Machines (RMS), 108-113
Q-Learning for reward machines
(QRM), 110
Reward shaping, problem of, 65
Robotics, 7, 11, 68
Rosenblatt, Frank, 9
Rule-based learning, 140
Runge-Kutta methods, 128
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Samuel, Arthur, 8
SARSA-\, 72-74
applications of, 74
mathematical formulation of, 72-73
pseudocode, 74
Scalar nonlinear activation, 127
Self-driving cars, 68, 152-156
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optimization, 155-156
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Self-Organizing Map (SOM), 21,
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adaptation, 99
competition, 98
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pseudocode of, 99-100
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18-19, 24-25
applications of, 25
Sequence to Sequence Models
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Sequence-to-sequence transformer,
132
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Randomized Trial
(SMART), 160
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Shannon entropy, 51-52
generalization of, 53
Sigmoid functions, 46-47
Signal processing, 3
Single-agent discrete algorithms, 61
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Smart homes, 69
Smooth mean absolute error, 45
Soft actor critic (SAC), 79-82
alternate method, 81-82
mathematical formulation, 79-81
pseudocode, 82
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Soft policy iteration, 80
Soft Q-function, 81
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Speech processing, 7
Speech recognition, 3-7, 26, 144
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State-action-reward-state-action
(SARSA), 70-72, 121
algorithms, 74
applications of, 72
mathematical formulation, 71
pseudocode, 71
Stateless/bandit algorithms, 118
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Stochastic gradient descent (SGD),
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model evaluation, 43
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Syntactic parsing, 169
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Text prediction, 168
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Transductive support vector
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algorithm, 28
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basic structure of, 132-136
components of, 132
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Trust region policy optimization
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mathematical formulation of,
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Turing, Alan, 8
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