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Artificial intelligence has been completely revolutionized by deep learning, which is now 
present in nearly all business applications. Machine learning algorithms have access to 
a tremendous amount of data for research since nearly all information and transactions 
are now recorded digitally. But it’s difficult for conventional machine learning methods to 
investigate the complex correlations found in this so-called Big Data. This is especially 
true for unstructured data like text, speech, and image.

This book serves as an introductory guide to the field of deep learning, aiming to provide 
a comprehensive understanding of its principles, methodologies, and applications. Deep 
learning, a subset of machine learning, has gained prominence due to its ability to 
automatically learn and extract intricate patterns from data, thereby enabling sophisticated 
tasks such as image and speech recognition, natural language processing, and autonomous 
decision-making. 

This book comprises eight chapters; the first chapter discusses the fundamental concepts 
and historical evolution of deep learning, as well as the framework and application of deep 
learning. The second chapter expands on deep neural network models, exploring multilayer 
perceptrons, convolutional neural networks, recurrent neural networks, and other advanced 
architectures like Boltzmann machines and deep autoencoders. 

Chapter 3 shifts focus to deep reinforcement learning techniques, elucidating algorithms 
such as Q-learning, deep Q-networks, and policy gradient methods. The fourth chapter 
specializes in convolutional neural networks (CNNs), offering a detailed examination of 
their components such as filters, pooling, and padding. It also discusses the practical 
implementation of CNNs using TensorFlow. 

Chapter 5 introduces the PyTorch framework, focusing on tensors, gradients, and the 
construction of neural networks using its powerful APIs. The sixth chapter deals with 
generative deep learning techniques, including text generation, neural style transfer, and 
variational autoencoders. These methods enable the creation of new content such as images 
and text, showcasing the creative potential of deep learning models beyond traditional 
classification tasks. The seventh chapter is about advanced deep learning techniques, such 
as attention mechanisms and generative adversarial networks (GANs). These techniques 
enhance model performance by improving focus and generating realistic data, which is 
critical for tasks in natural language processing, computer vision, and creativity-driven 
applications. Chapter 8 concludes by examining the practical applications of deep learning 
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in natural language processing and speech recognition. It covers topics like parsing, 
distributed representations, knowledge graphs, and multimodal learning, showcasing 
how deep learning transforms these domains by enabling accurate understanding and 
generation of human language. 

This book has been written specifically for students and scholars to meet their needs 
in terms of knowledge and to provide them with a broad understanding of business 
information systems.

—Author



LEARNING OBJECTIVES

After studying this chapter, you will be able to:

•	 Understand the structure and function of biological neurons and their artificial 
counterparts.

•	 Know the historical development of deep learning and its key milestones.

•	 Understand the architecture and function of feed-forward neural networks, 
including their layers and activation processes.

•	 Explore and classify different types of deep learning networks based on their 
architectural characteristics and applications.

•	 Understand the functionalities and applications of supervised and unsupervised 
learning networks.

•	 Explore the key components and operations of popular deep learning 
architectures such as CNNs, RNNs, and autoencoders.

•	 Understand the functionalities and applications of leading deep learning 
frameworks like TensorFlow, Caffe, and Keras.

•	 Explore deep learning applications in diverse fields such as healthcare and 
natural language processing.

Introduction to 
Deep Learning1

CHAPTER

KEY TERMS FROM THIS CHAPTER 
Autoencoder						     Cognitive toolkit (CNTK)

Convolutional deep neural network		  Deep learning

Deep neural network				    Natural language processing (NLP)

Recurrent neural network (RNN)			  Supervised learning

Tensor Flow						      Unsupervised learning



2 INTRODUCTION TO DEEP LEARNING

UNIT INTRODUCTION
Human brain is a remarkable organ that processes signals from our senses, it possesses 
an immense capacity to retain a diverse range of experiences, emotions, memories, 
and possibly dreams. The human brain has a rare capacity to make decisions or solve 
intricate issues, surpassing even the abilities of the latest supercomputers. Given this, 
researchers have long aspired to create machines with intelligence like the human brain 
(Choi et al., 2020). In later research, scientists create robots to aid in human activities, 
the development of microscopes capable of automatically detecting diseases, and the 
innovation of self-driving cars. It can autonomously learn and solve increasingly intricate 
problems at a pace comparable to the brain of a person. These needs contribute to 
the most vibrant field of artificial intelligence (AI), often referred to as deep learning 
(Maier et al., 2019).

In this chapter, we introduce foundational principles of deep learning. Beginning 
with an exploration of neurons and their role in artificial neural networks, we trace 
the historical evolution of deep learning, highlighting pivotal advancements. The unit 
explains feed-forward neural networks and their operational mechanisms, alongside 
the crucial backpropagation algorithm used for network training. We categorize deep 
learning networks by their specific applications, emphasizing supervised and unsupervised 
learning paradigms. Additionally, we compare various deep learning frameworks such as 
TensorFlow, PyTorch, Keras, and Caffe, discussing their features and typical use cases. 
Finally, the unit examines prominent applications of deep learning in domains like speech 
recognition, healthcare diagnostics, and natural language processing, demonstrating its 
transformative impact across diverse fields.
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1.1. NEURONS
Neurons are the fundamental building blocks of the human brain. There are tiny sections 
of the brain, roughly the size of wheat, that contain an impressive number of neurons 
(over 10,000) each forming over 6,000 connections to other neurons. The brain captures 
information through neurons, which then process and transmit the result to other cells 
(Vincent & Hope, 1992). The illustration can be seen in Figure 1.1. Dendrites serve as 
receptors for the inputs in neurons, resembling an antenna-like structure. The inputs 
are categorized into strengthened or weakened based on their frequency of usage. The 
power of a connection defines the extent to which the input influences the output of 
a neuron. The input signals undergo a process during which multiplication by their 
respective connection strengths occurs and then combine within the cell body. The 
outcome from these calculations is transformed into a new signal that travels along the 
cell’s axon until it reaches the neurons at its designated destination (Kempermann, 2012).

Figure 1.1. Illustration of biological neuron’s structure.

Source: Ivilin Stoianov, Creative Commons License.

A research journey to unravel the complex mechanisms of neurons within the 
human brain was embarked on by Walter H. Pitts and S.Warren McCulloch in 1943. The 
computer-based artificial design was built, as depicted in Figure 1.2.

In the realm of artificial intelligence, the artificial neuron operates much like its 
biological counterpart. It takes in a series of inputs, denoted as x

1
, x

2
, x

3
....x

n
, and each 

input is assigned a specific weight, represented as w
1
, w

2
, w

3
....w

n
. The neuron then 

calculates the sum of these weighted inputs, which is used to determine the logit for 
the neuron (Chinta & Andersen, 2005).
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Figure 1.2. Illustration of. neuron in an artificial neural net.

Source: geeksforgeeks.org, Creative Commons License.

 					     (1.1)

It is worth noting that certain logit models may incorporate a constant value known 
as the bias. Eventually, the logit transforms by applying function f to get the desired 
result y = f(z). A nonlinear function named activation function is applied to the output 
of the lineal function Z from Eq. (1.1).
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1.2. HISTORY OF DEEP 
LEARNING
The origins of deep learning can be traced back to the early 1940s when Warren McCulloch 
and Walter Pitts pioneered a computer model that aimed to mimic the complexities of the 
human neural system. They utilized mathematical principles and algorithms to simulate 
the cognitive process, which was referred to as “threshold logic.” Multiple algorithms 
are utilized to analyze data and identify objects along with human speech. The output 
for one layer is fed into the next layer as an input (Schmidhuber, 2015).

In 1960, Henry J. Kelley embarked on the development of the Backpropagation Model, 
which was later expanded upon from Stuart Dreyfus in 1962. The initial iteration of 
Backpropagation proved to be particularly efficient or elegant. In the year 1965, Valentin 
Grigor-evich Lapa published a book on cybernetics and methods for forecasting, whereas 
Alexey Grigoryevich Ivakhnenko devised a data handling method that incorporated 
polynomial activation functions (Zhao et al., 2019).

Kunihiko Fukushima made significant contributions to the field of neural networks by 
developing convolutional networks that integrate pooling and many convolutional layers. 
In 1979 Neocognitron was developed, an advanced artificial neural network architecture 
capable of recognizing visual patterns. The Neocognitron was considered the most 
advanced model of its time due to its utilization of innovative learning techniques and 
the incorporation of top-down connections. The selective Attention Model can identify 
distinct patterns. Inference is a concept utilized by Neocognitron to uncover unidentified 
and missing information (Boroumand & Fridrich, 2018).

Seppo Linnainmaa developed a FORTRAN code for backpropagation in the late 
1970s. In the year 1985, Williams and Hinton undertook a study to explore the capacity 
of backpropagation in generating captivating distribution forms. In 1989, Yann LeCun 
made a significant breakthrough at Bell Labs by successfully demonstrating the ability of 
convolutional neural networks to accurately read “handwritten” digits. This achievement 
was made possible by combining backpropagation with these networks. In the past, 
numerous researchers expressed great enthusiasm for Artificial Intelligence. One notable 
example is the work of Dana Cortes and Vladimir Vapnik in 1995, a model known as 
the support vector machine was introduced. The goal of this model is to accurately 
analyze and categorize comparable information. In 1997, Sepp Hochreiter and Juergen 
Schmidhuber presented Long short-term memory (LSTM) as a solution to recurrent 
neural networks (Smith & Colby, 2007).
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A significant turning point in the field of Deep Learning emerged in 1999, with the 
advent of Graphics Processing Units (GPU) that revolutionized the way one approaches 
this area of study. Subsequently, in 2000, researchers identified the Vanishing Gradient 
Problem, which played a crucial role in the ensuing growth of long short-term memory. 
In 2011 and 2012, AlexNet, a network for convolutional neural networks, attained 
remarkable success in various international competitions. In the year 2012, Google Brain 
introduced an innovative project called The Cat Experiment, that effectively addressed 
the difficulties related to unsupervised learning (Figure 1.3) (Briot, 2021).

Figure 1.3. Illustration of roadmap of deep learning history.

Source: Anupama Kandala, Creative Commons License.

Understanding the foundational concepts of neurons, neural networks, and their training algorithms 
like backpropagation is crucial for effectively implementing and optimizing deep learning models in 
various applications.

Remember
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1.3. FEED-FORWARD  
NEURAL NETWORKS
The arrangement of neurons within the human brain demonstrates an ordered pattern, 
the cerebral cortex, a crucial component of human intelligence, comprises six distinct 
cellular layers. Information is transferred between different layers, gradually building 
up a comprehensive understanding based on the input received from the senses (Svozil 
et al., 1997). In the same fashion an artificial neural network comprises several layers, 
that process some input data.

Figure 1.4. Illustration of a neural network at three layers, including two hidden layers, ongoing 
inputs, and two outputs.

Source: Kai Zhang, Creative Commons License.

Figure 1.4 illustrates a three-layer perceptron, which consists of a hidden layer 
containing neurons that utilize nonlinear processes of activation. The three-layer perceptron 
is capable of efficiently handling the computation and decision-making processes for 
any likelihood function, no matter how complex it might be (Sorin et al., 2020). Also, 
Figure 1.4 shows the progression of the connection from the lower-level layer up to 
the higher-level layer. Furthermore, there is a lack of inter-neuronal communication at 
the same level, and also a lack of communication from upper to lower levels. Thus, 
this arrangement is commonly known as a feed-forward network. The middle layer in 
Figure 1.4 depicts the hidden layer, where a neural network operates to solve complex 
problems (Ilonen et al., 2003).
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1.3.1. Backpropagation
Backpropagation is a crucial step in training neural networks and is used to adjust the 
weights of the network based on the results from the previous epoch. The development 
of this technique took place in 1970, but it was not until 1986 that researchers truly 
recognized its potential. This breakthrough came with the publication of a paper by 
Ronald Williams, David Rumelhart, and Geoffrey Hinton. In their work, it was revealed 
that backpropagation not only operates at a faster pace but also offers solutions to 
problems that had previously remained unsolved. Backpropagation is a widely used 
technique in the field of Artificial Neural Networks (ANNs) that enables supervised 
learning. It has been widely used in different fields, including categorization pattern 
recognition, and medical diagnostics. The Backpropagation technique has facilitated 
the integration of multilayer perceptron networks into neural network research, making 
them an indispensable tool (Lillicrap et al., 2020).

The backpropagation algorithm calculates the partial derivatives over the result 

parameter. These derivatives are denoted as 

∂
∂ i

f
w  , where iw  represents the ith parameter 

along with f represents the output.  Take a look at a multiple-layer feedforward neural 
network depicted in Figure 1.2. Suppose there is a neuron i within the output layer 
while the Equation 1.2 represents the error signal generated during the mth iteration 
(Werbos, 1990). 

( ) ( )i i ie m d y m= −
								        (1.2)

where d
i
 represents the desired output over neuron i and y

j 
(m) represents the actual 

output over neuron i. The actual output is computed utilizing the current weights for 
a network at iteration m.

The equation represents the instantaneous error energy value for neuron i.

								        (1.3)

Equation 1.3 represents the total of all ( )iå m values for every neuron in the output 

layer, resulting in the current value ( )iå m .

								        (1.4)

where S represents the collection of neurons that comprise the output layer.

Let’s consider a scenario where one has a training set with N patterns. Equation 4 
provides us with an average square energy used by the network (LeCun et al., 1988).
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			    (1.5)

The backpropagation technique is 
implemented in two ways: batch mode 
and sequential mode. Weight updates are 
performed in the batch mode once an epoch 
is finished. However, updates for either 
sequential mode or stochastic mode occur 
after each training example is given (Wang 
et al., 2020). Here is the Equation 1.6 that 
provides the output expression over neuron 
i.

( ) ( ) ( )
0=

= ∑
n

i ij i
i

y m f w m y m
		   (1.6)

In this context, ‘m’ denotes the overall 
amount of inputs on the neuron ‘i’ from 
the layer before it, while ‘f’ represents the 
activation function used in neuron ‘i.’

The weight update for neuron i is 
determined by a partial derivative for the 

error energy  concerning the corresponding 
weight. This update is proportional to the 
derivative.

 				     (1.7)

Expressed through a chain rule of 
calculus

 	  (1.8)

Equation 1.9 is derived from Equations 
1.2, 1.1, and 1.4

 	 		   (1.9)

 			    (1.10)

( )
( ) ( ) ( )

( ) ( )
( )

0

0

=

=

∂∂
=

∂ ∂
∑∑

n
n

ij iyi i
ij i

iwij wij

w m y mm
f w m y m

m m

( ) ( ) ( )
0=
∑

n

ij i i
i

f w m y m y m
	 (1.11)

Where

( ) ( )
( ) ( )
( ) ( )

0

0
0

=

=
=

∂
=

∂
′ ∑∑

∑

m
n

üi
ü m

i üi

f w m y m
f w m y m

w m y m

By substituting the Equations (1.7), 
(1.8), and (1.9) into Eq. (1.8), the following 
expression is obtained.

  (1.12)

The Delta rule is utilized to calculate 

the correction while is expressed as

		   (1.13)

where η represents an immutable parameter 
utilized to ascertain the pace of learning 
in the backpropagation process (Leung & 
Haykin, 1991).
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1.4. CLASSIFICATION  
OF DEEP LEARNING  
NETWORKS
There are three different classes of deep learning networks, each tailored to specific 
applications such as synthesis, classification, and recognition. These classes are determined 
by the techniques and architectures employed.

•	 Unsupervised Deep Learning Network;

•	 Supervised Deep Learning Network;

•	 Hybrid Deep Learning Networks (Li et al., 2019).

An unsupervised deep learning network is capable of capturing higher-order correlation 
facts for synthesis purposes even in cases where a clear target class is not defined. 
The effectiveness of pattern classification in supervised training of deep networks relies 
on accurately representing a distribution of classes based on the available data. Hybrid 
networks combine the two discriminative and generative components. In addition, 
a combination model is formed by merging similar components, and some authors 
consider reinforcement as one category of deep learning in which the learning process 
is performed by a obtaining a maximal reward (Simon Prince, 2024).
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1.5. DEEP LEARNING  
ARCHITECTURE
One delves into the architecture for deep learning and examines the different approaches 
that are commonly used in this field. Representation of the input data plays a vital 
role in the realm of deep learning. In the conventional approach, the input features are 
derived from the original dataset and incorporated into machine learning algorithms. 
The various stages in the process of engineering involve creating, analyzing, selecting, 
and evaluating the necessary features, which can be quite time-consuming and labor-
intensive. This enables the identification of latent connections among the data that may 
otherwise remain concealed or unfamiliar (Sewak et al., 2020).

Complex data representation in deep learning often involves expressing it as 
compositions of simpler forms and usually represented as a vector input through the 
initial layer. The majority of deep learning algorithms are built upon the conceptual 
framework of Artificial Neural Networks (ANN). These networks consist of interconnected 
nodes referred to as “neurons,” which are organized in layers as depicted in Figure 1.5. 
Hidden units, which are not present in these two layers, store the set of weights (Li et 
al., 2016) and in Figure 1.6 are examples of some popular deep network architectures.

Figure 1.5. Illustration of neural network with hidden or output layers and 1, 2, 1 input.

Source: Weitian Tong, Creative Commons License.
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Performance of the network is computed by the loss function, 
and it measures how well the network models the feature data. 
For a given set of observations, the negative log-likelihood can 
be defined as

				    (1.14)

Where N is the number of observations; yi is the true label for 
observation i; xi is the input features for observation i. To improve 
the weights of an ANN, the loss function is minimized, including 
the negative log-likelihood, shown in Eq. (1.14b).

	  		   (1.14b)

The first term aims to minimize the overall log loss across the 
entire training dataset D.

The second term aims to minimize the p-norm of the learned 
parameter θi, and its impact can be adjusted by tuning the 
parameter λ. Regularization is a technique that helps prevent a 
model from overfitting, ensuring its generalizability. Navigating in 
reverse towards the last layer across the network is an essential 
step in this process (Ahn, 2016). Numerous open-source tools are 
at your disposal for the implementation of deep learning models, 
such tools are Keras3, Deeplearning4j8, –TensorFlow1, PyTorch5, 
CNTK7, Theano2, Caffe6, and Torch4.

Figure 1.6. Illustration of a brief overview of popular deep learning 
architectures. (A) Restricted Boltzmann machine. (B) Recurrent neural 
network (RNN). (C) Autoencoders. (D) Generative adversarial networks.

Source: Manju Khari, Creative Commons License.

Deep learning 
models are often 
characterized 
by their ability 
to automatically 
learn 
representations 
from data, which 
allows them to 
perform tasks 
such as image 
recognition, 
natural language 
processing, and 
even autonomous 
driving with 
impressive 
accuracy.

Did you know?
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1.5.1. Supervised Learning

1.5.1.1. Multilayer Perceptron (MLP)

The multilayer perceptron is composed of 
several hidden layers, with each layer’s 
neurons being fully connected with the 
neurons in the subsequent layer. This type 
of network has a restricted capacity for 
hidden layers but only permits data to flow 
in a single direction. 

Eq. (1.15) illustrates the utilization of 
an activation function that is non-linear σ 
to process the computed sum. 

At this stage, the value of d represents 
the number of units within the previous 
layer, while xj represents the output received 

through the thj  node of the previous layer. 

The terms ijb  or ijw  are commonly referred 
to as bias or weight terms, respectively, 

which are linked to each ijx . In traditional 
networks, the nonlinear functions for 
activation typically include tanh or sigmoid. 
However, in more contemporary networks, 
(ReLU) Rectified Linear Units have become 
a popular choice (Desai & Shah, 2021).

A multilayer perceptron consists of 
several hidden layers, in which

			   (1.15)

By fine-tuning the weights in the hidden 
layers while training, a robust relationship 
between the input x and the output y is 
established. Despite being one of the more 
straightforward models compared to other 
learning architectures that utilize fully 
connected neurons within the final layer 
(Mia et al., 2015).

1.5.1.2. Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) seems 
a specific type of Neural Network that 
utilizes the output of the previous step as 
input for the current step. In conventional 
neural networks, both inputs and outputs 
are regarded as separate entities, with 
no interdependence. It has an important 
application in natural language processing. 
However, when it is necessary to anticipate 
the next word in a sentence, it becomes 
essential to retain the preceding words to 
make accurate predictions (Banerjee et al., 
2019). As a result, RNN was developed to 
address this problem by incorporating a 
Hidden Layer. One of the key aspects of 
RNN is the Hidden state, which retains 
important information for a sequence. 
Uniform parameters are employed for each 
input, enabling the consistent execution 
of tasks across any inputs or just hidden 
layers, ultimately generating the output 
(Tarwani & Edem, 2017). This simplifies 
the parameter complexity, contrary to other 
neural networks. Recurrent Neural Networks 
encompass (Figure 1.7):

•	 Long Short-Term Memory (LSTM);

•	 Gated Recurrent Units (GRU).

Figure 1.7. Illustration of recurrent neural 
network.

Source: geeksforgeeks.org, Creative Commons 
License.

1.5.1.3. Convolutional Neural Network (CNN)

Deep learning has gained significant 
popularity in recent years, especially in the 
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field of image processing. It has been inspired by the structure and function of the 
human and some animal visual systems, particularly the visual cortex. Raw data on 
CNN is subject to local connectivity. 

For instance, a more comprehensive understanding of the image can be Attained 
by perceiving it to be a compilation of local pixel patches, that are processed to a 
convolution operation When examining a 1-dimensional time series, it can be viewed as 
a compilation of the local signal segments (Kattenborn et al., 2021). Here, one presents 
an Eq. (1.16) over 1-dimensional convolution,

( ) ( )1d x a .w t a         
a

C
=−

= −∑
¬

¬ . 	  					     (1.16)

where, the input signal is denoted as x, while the weight function or convolution 
filter is represented by w.

Here is the Eq. (1.17) in 2-dimensional convolution, with k representing the kernel 
and X representing a 2-D grid.

( ) ( )2 , ,= − −∑∑d
m n

C  X m n K i m j n
						      (1.17)

Acquiring feature maps requires calculating weights within the input using a filter 
or kernel. CNN utilizes sparse interactions, Filters in deep learning academic writing 
are often smaller than the input. 

Encouraging parameter sharing in CNN is a natural choice, as each filter serves the 
entire input. The CNN architecture includes two convolutional layers that are accompanied 
by a pooling layer, as shown in Figure 1.8. Convolutional neural networks (CNNs) 
demonstrate optimal performance when utilized for computer vision tasks (Wu, 2017).

Figure 1.8. Illustration of CONVNET and output layers.

Source: Ashley, Creative Commons License.
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1.5.2. Unsupervised Learning

1.5.2.1. Autoencoder (AE)

An autoencoder (AE) has emerged as a prominent model in the field of deep learning, 
illustrating the concept of unsupervised learning through visual representations. At first, 
it was primarily used for supervised learning models when labeled data were scarce. In 
AE, the input undergoes an encoding process that transforms it into a lower-dimensional 
z space (Guo et al., 2020). This encoded representation is then decoded to reconstruct  
the original input x. Thus, the process of encoding and decoding in an encoder can be 
represented by an Equation 1.18 involving a single hidden layer. The weights that have 
been encoded and decoded are denoted as W and W0, respectively. The main goal is to 
reduce the reconstruction error. Z is a dependable and encoded form (Zou et al., 2021).

				    (1.18)

				     (1.19)

Once an AE is properly trained, a single input is fed into the network, activating the 
innermost layer that is hidden for serving as the input of the encoded representation 
(Figure 1.9) (Xu et al., 2021).

Figure 1.9. Illustration of autoencoder.

Source: Arden Dertat, Creative Commons License.

The input data is transformed into a format enabling AE to record the essential 
derived dimensions. It shares similarities with conventional dimensionality reduction 
techniques including (PCA) Principal Component Analysis and (SVD) Singular Value 
Decomposition. The stacking approach is a technique used for learning Deep Autoencoder 
networks (Fan et al., 2019).

•	 Sparse Autoencoder (SAE);

•	 Variational Autoencoder (VAE);

•	 Denoising Autoencoder (DAE).
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1.5.2.2. RBM Restricted Boltzmann Machine

The RBM is a highly effective framework for acquiring a model of input data through 
unsupervised learning. It shares similarities with AE, however RBMs calculate the 
probability distribution derived from the input data provided. Ss a type of generative 
stochastic artificial neural network that can learn a probability distribution over its set 
of inputs. The canonical (RBM) seems a model that includes hidden units h or binary 
visible units v. It also includes an energy function, which is represented by an Equation 
1.20 (Larochelle et al., 2012).

( ), =− − −T T TE v h  b v c v Wv h 			  (1.20)

In the Boltzmann Machine (BM), all units are fully connected. The training of a 
Restricted Boltzmann machine usually involves a stochastic optimization technique such 
as Gibbs sampling. The process results in a comprehensive representation of the input 
data, which is considered the final expression of h. In addition, RBMs can be arranged 
hierarchically, allowing for the creation of a Deep Belief Network (DBN) that is especially 
useful for supervised learning (Zhang et al., 2018).
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1.6. DEEP LEARNING 
FRAMEWORKS
There are many software packages available to help researchers streamline the 
development of deep learning architectures. There are several software packages available 
for deep learning, such as Microsoft Cognitive Toolkit (known as CNTK), Torch, Keras, 
and Deep learning4j, Tensorflow, Caffe, Neural Designer, H2o.ai, and DistBelief had a 
major effect on the business (Figure 1.10) (Nguyen et al., 2019).

Figure 1.10. Illustration of deep learning framework.

Source: Mahesh, Creative Commons License.

1.6.1. Tensorflow
The concept of Tensors is closely linked to the mathematical principles used in engineering 
and physics. Over time, Tensors have also become relevant in computer science, 
particularly in the realm of logic and discrete mathematics. TensorFlow, an open-source 
library, provides a comprehensive platform for both production and research in machine 
learning. It provides APIs for both experienced and novice learners to create applications 
for various platforms such as cloud, mobile, web, and desktop. TensorFlow suggests 
using the Keras API for developing and training deep learning models, especially for 
beginners. When it comes to more complex tasks. The structure of TensorFlow is organized 
into three main components: data processing, model creation, and model training and 
evaluation (Le Glaz et al., 2021). The inputs are accepted as tensors or multi-dimensional 
arrays. A comprehensive operation flowchart is constructed to illustrate the various 
operations applied to the input. Eventually, the desired output is obtained. Thus, the 
name TensorFlow is derived from the concept of tensors flowing through a series of 
operations to generate the desired output. TensorFlow utilizes static graph computation 



18 INTRODUCTION TO DEEP LEARNING

to facilitate the visualization of the neural 
network structure using the Tensorboard. 
TensorFlow offers a range of algorithms 
for various tasks, including boosted tree 
regression, classification, boosted tree 
classification, and linear regression. These 
algorithms provide powerful tools for data 
analysis and modeling (Mandal & Vipparthi, 
2021).

1.6.2. Microsoft Cognitive 
Toolkit
Microsoft Cognitive Toolkit represents an 
invaluable resource for academic writing in 
the realm of deep learning. The concept of 
neural networks is illustrated as a series 
of computational steps, represented by a 
directed graph. The previous iteration of this 
toolkit is known to be the Computational 
Network Toolkit CNTK. The most recent 
release is CNTK v.2.0 Beta 1, which offers 
enhanced C++ and Python APIs and employs 
BrainScript as its specialized language. The 
libraries within the Computational Network 
Toolkit have been built using C++. The 
Python APIs offer a sophisticated interface 
for defining models, implementing learning 
algorithms, reading data, and performing 
distributed training. CNTK 2 is considered 
a valuable addition to Python API, offering 
the protocol buffers serialization feature 
created by Google. CNTK 2 now has the 
Fast R-CNN algorithm, which enables 
efficient object detection. The Fast R-CNN 
algorithm utilizes the concept of reusability 
by incorporating a return on investment 
(ROI) pooling scheme to reuse computations 
using the convolution layers (Etaati & Etaati, 
2019). The Microsoft Cognitive Toolkit is a 
powerful tool for training neural networks to 
categorize and recognize images, text, and 
speech. It is open-source and designed to 
work efficiently across multiple GPUs and 
machines. Microsoft Cognitive Toolkit serves 

as the foundation for various Microsoft 
products, including Xbox, Skype live 
translation, Bing, and Cortana. The platform 
being used offers a variety of neural network 
types, including Feed Forward Network 
(FFN), Convolutional Neural Network (CNN), 
and Sequence-to-Sequence with attention, 
Recurrent/Long short-term memory (RNN/
LSTM). The Microsoft Cognitive Toolkit 
provides a variety of functionalities, 
such as assistance for automatic hyper-
parameter tuning, reinforcement learning, 
unsupervised learning, and generative 
adversarial networks, for that are generative 
(Rajendran, 2023).

1.6.3. Caffe
The convolution Architecture for Feature 
Extraction (Caffe) has a component of a deep 
learning framework created by Berkeley 
AI Research. The speed, capabilities, and 
design of this are truly remarkable. Caffe’s 
impressive speed makes it a valuable 
tool both for industry development and 
academic research. With only one NVIDIA 
K40 GPU, it has the impressive capability 
to process almost 60M images per day. 
The flexible code feature encourages 
ongoing development. Embracing a dynamic 
architectural approach fosters creativity 
and practical implementation. There is a 
deliberate effort to reduce the reliance on 
hard coding during the development of 
models (Garea et al., 2019).

1.6.4. Deep Learning 4j (DL4J)
Deep Learning4j acts as a freely accessible 
open-source library that provides an 
extensive answer for deep learning across 
various applications. The software is 
built on the Java language and enables 
advanced predictive analysis and knowledge 
exploration on both CPU and GPU (Graphics 
Processing Units). DeepLearning4j combines 
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the power of artificial intelligence (AI) 
algorithms with a range of practical 
applications, including cyber forensics, 
predictive analysis, business intelligence, 
network intrusion detection and prevention, 
robotic process automation (RBA), 
recommender systems, Face recognition, 
regression, and other topics are covered. 
DeepLearning4j can import models from 
well-known deep learning structures like 
Keras, Theano, Caffe, and TensorFlow. It 
seamlessly supports both Python and Java 
programming languages, ensuring smooth 
compatibility. DeepLearning4j offers a range 
of features. It is built on a microservices 
architecture, allowing for scalability 
on Hadoop (an open-source framework 
designed for distributed storage and 
processing of large datasets across clusters 
of computers) for handling large amounts 
of data. Additionally, it can utilize GPUs for 
enhanced scalability upon the Amazon Web 
Services (AWS) cloud. It provides APIs over 
Java, Python, and Scala, and is compatible 
with both CPUs and GPUs. DeepLearning4j 
is capable of processing massive amounts of 
data by utilizing clusters (Deng & Yu, 2014). 
The DeepLearning4j framework includes 
the following libraries and components: 
ND4j, JavaCPP, DataVec, and RL4J. ND4j 
is a powerful tool that combines the 
functionality of NumPy with the (JVM). 
ND4j is an impressive library that provides 
efficient processing of matrix data and 
numerical computations. It demonstrates 
exceptional proficiency in handling complex 
concepts and tasks, including various 
mathematical operations, data manipulation, 
and algorithmic optimization, with a focus 
on performance. JavaCPP is a versatile 
tool that allows seamless communication 
between C++ and Java, eliminating the 
need for any additional third-party or 
intermediate applications (Mathew et al., 
2021). DataVec is a powerful tool that 

simplifies the process of transforming raw 
data into a vector format. It also includes 
preprocessing capabilities to ensure that 
the data is ready for training in Machine 
Learning applications. It can handle a 
wide range of data types, including binary 
files, videos, images, text documents, and 
CSV files. RL4J is a powerful tool for Java 
platforms that incorporates cutting-edge 
techniques such as Deep Q Learning and 
Asynchronous Actor-Critic Agents (A3C) 
(Min et al., 2017).

1.6.5. Keras
Keras, an open Source Neural Network 
library developed by François Chollet, 
offers a range of efficient, adaptable, and 
intuitive capabilities on the Python platform. 
It seamlessly integrates with Tensorflow 
or Theano, making it a powerful tool for 
deep learning. Backend is a powerful 
library in Keras that efficiently manages 
the intricate computations required for 
advanced tasks. Keras, on the other hand, 
is focused on providing an advanced API 
wrapper. The backend carries out the 
necessary computations at a lower level, 
utilizing tools such as Theano or Tensorflow 
(Lee & Song, 2019). It is compatible with 
Theano, CNTK, or TensorFlow. The Keras 
High-Level API handles the compilation of 
the model, integration of the optimizer along 
with loss functions, and management of 
the training process using the fit function. 
Keras offers extensive platform and device 
support, allowing for deployment on various 
platforms such as Web browsers with iOS 
with CoreML, Android with Tensorflow 
Android, js support, Raspberry Pi, and 
Cloud engine. Keras is capable of efficiently 
processing large amounts of data, allowing 
for parallel data processing. This feature 
greatly accelerates the training process 
(Chicho & Sallow, 2021).
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1.6.6. Neural Designer
Neural Designer has become a powerful 
tool that simplifies the implementation of 
analytic algorithms, making them more 
manageable. The software is equipped with 
a user-friendly interface that effectively 
guides the workflow and produces precise 
outcomes. It is straightforward to manage 
without the need for programming or block 
diagrams. 

The user interface provides clear 
instructions and guides the user through 
the process (Almási et al., 2016). The Neural 
Viewer is an exceptional visualization tool 
that presents accurate results through 
exportable charts, tables, and pictures. 
By utilizing advanced data pre-processing 
techniques, the process of calculating 
principal components and removing outliers 
becomes more streamlined. Neural Designer 
offers users the ability to create highly 
effective predictive models using a range 
of error and regularization techniques. 

Furthermore, advanced techniques such 
as Levenberg-Marquardt and quasi-Newton 
methods are incorporated to enhance the 
accuracy of calculations. It offers faster 
processing speed and improved memory 
management through CPU parallelization, 
thanks to GPU acceleration using CUDA 
and OpenMP (Koitmäe et al., 2018).

1.6.7. Torch
Torch, written in Lua, is a programming 
environment similar to Matlab that is used 
for both deep and shallow machine learning 
solutions. It offers a versatile way to build 
tensors, which are mathematical objects 
used in machine learning. The software 
possesses several characteristics, including 
the ability to automatically calculate 
gradients, the capacity to store numerous 
backend tensors for enhanced CPU/GPU 
calculation, and support for high-level 
language, enabling rapid prototyping (de 
Jong et al., 2013).
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1.7. DEEP LEARNING  
APPLICATION
1.7.1. Speech Recognition
Speech recognition harnesses the principles of deep learning and emerges as a leading 
application in the field, leveraging its immense potential with careful precision. In 2010, 
the emergence of deep learning left a lasting impact on the field of speech recognition. 
The traditional recognition of speech systems is Gaussian Mixture Models (GMMs), which 
rely on hidden Markov models (HMMs). In this context, the speech signal is viewed as 
a short-time stationary signal or a piecewise stationary signal. As a result, the Markov 
model is well-suited for this particular application. One drawback of this approach is 
its inefficiency in modeling non-linear functions. Unlike HMMs, neural networks have 
demonstrated their effectiveness in discriminative training. In 2012, Microsoft unveiled 
an innovative iteration of their Microsoft Audio Video Indexing Service (MAVIS) that 
utilized deep learning technology. The findings presented by Microsoft demonstrate the 
effectiveness of deep learning in reducing word error rate (WER) compared to Gaussian 
mixtures (Gaikwad et al., 2010).

1.7.2. Deep Learning in HealthCare
The healthcare system is entering a new era, harnessing cutting-edge technologies to 
deliver timely and appropriate treatment to patients. A recent study discovered that 
utilizing multi-layer neural networks to analyze pharmaceutical data leads to highly 
precise predictive outcomes in a range of clinical contexts. The architecture of deep 
learning is built upon a hierarchical learning structure, allowing it to effectively integrate 
diverse data sources and generate more comprehensive generalizations (Amin et al., 
2021). Several studies have demonstrated the potential of deep learning in revolutionizing 
the healthcare system of the future. By analyzing vast amounts of patient data, deep 
learning algorithms can predict diseases, create personalized prescriptions, suggest 
clinical trials, and provide treatment recommendations. Wang et al. achieved a remarkable 
feat by utilizing temporal deep learning conduct to emerge victorious in the Parkinson’s 
Progression Marker’s Initiative data challenge (Miotto et al., 2018). Their groundbreaking 
work involved identifying the various subtypes of Parkinson’s disease. Conventional 
methods, which rely on matrices or vectors, are not regarded as optimal due to the 
progressive nature of Parkinson’s disease and the challenges in identifying patterns of 
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disease progression. In addition, Wang et 
al. discovered three additional subtypes of 
Parkinson’s disease by utilizing an LSTM 
RNN model. This finding highlights the 
power and promise of models based on deep 
learning in addressing healthcare challenges 
(Malik et al., 2020).

The deep learning architecture commonly 
used in healthcare systems primarily 
consists of Recurrent Neural Networks 
(RNNs), Autoencoders (AEs), convolutional 
neural networks (CNNs), and Restricted 
Boltzmann Machines (RBMs). A notable 
application is the use of deep learning 
algorithms to predict Alzheimer’s disease 
through the analysis of Magnetic Resonance 
Imaging (MRI) scans. Low-field knee MRI 
can be hierarchically represented using 
CNNs to automatically perform cartilage 
region segmentation, enabling the detection 
of osteoarthritis risk. Deep learning is 
employed to partition multiple sclerosis 
lesions within multi-channel 3D MRI scans 
to forecast malignant and benign breast 
lumps. Deep learning is applied to analyze 
data from Electronic Health Records (EHRs) 
in many areas such as laboratory tests, 
diagnoses, prescriptions, and clinical notes 
written in free-text format (Almutairi et al., 
2022). The utilization of the Area under the 
Receiver Operating Characteristic Curve and 
F-score approach demonstrates that the 
accuracy of deep learning surpasses that 
of the classical machine learning process. 
Choi et al have created a remarkable 

model called Doctor AI, which utilizes 
advanced RNNs with gated recurrent unit 
(GRU) to accurately predict diagnoses and 
recommend appropriate medications. Miotto 
et al utilized a three-layer Stacked Denoising 
Autoencoder (SDA) and put forth a profound 
patient representation from the EHRs to 
forecast risks using random forest classifiers 
(Abdullah et al., 2022).

1.7.3. Deep Learning in Natural 
Language Processing
Natural language processing (NLP) involves 
using computational methods to analyze 
human language automatically. Research 
initiatives involving document text and 
language have been gaining momentum 
within the signal-processing community. 
The significant impact of deep learning lies 
in its application to language modeling, 
where it assigns probabilities to sequences 
of linguistic symbols or words. The early 
days of natural language processing (NLP) 
were characterized by batch processing and 
punch cards, with analysis taking up to 7 
minutes (Otter et al., 2020). Groundbreaking 
progress is being made in the realm of 
pattern recognition thanks to the remarkable 
advancements in deep learning algorithms 
along with architectures. According to 
Collobert, a deep learning framework has 
proven to be highly effective in various 
natural language processing tasks, including 
semantic role labeling (SRL), POS tagging, 
and named-entity recognition (NER). Over 
time, numerous iterations of sophisticated 
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algorithms rooted in deep learning have emerged to tackle a wide range of challenging 
tasks in natural language processing (Young et al., 2018).

ACTIVITY 1.1.
Objective: To gain hands-on experience in constructing and training a basic feed-forward 
neural network using a deep learning framework.

Materials Needed:

•	 A computer with Python installed

•	 Deep learning framework (e.g., TensorFlow, PyTorch, Keras)

•	 Sample dataset (e.g., MNIST for image classification)

Instructions:

1.	 Setup Environment:

•	 Install the chosen deep learning framework (e.g., TensorFlow, PyTorch) 
and required dependencies on your computer.

•	 Prepare a development environment with a text editor or an integrated 
development environment (IDE) like Jupyter Notebook.

2.	 Define Neural Network Architecture:

•	 Create a simple feed-forward neural network architecture.

•	 Define the number of layers, neurons per layer, activation functions, and 
output layer for the specific task.
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SUMMARY
•	 The chapter covers foundational concepts and applications of deep learning. It 

starts with an explanation of neurons and their role in artificial neural networks. 
The historical development of deep learning is discussed, tracing its evolution 
and milestones. Feed-forward neural networks are introduced as fundamental 
architectures for processing data. Backpropagation, a key algorithm for training 
neural networks, is explained in detail.

•	 The chapter categorizes deep learning networks based on their functionality 
and structure. It outlines various deep learning architectures and their specific 
applications. Supervised and unsupervised learning paradigms are contrasted, 
highlighting their respective uses in training deep learning models. Popular deep 
learning frameworks such as TensorFlow, Microsoft Cognitive Toolkit (CNTK), 
Caffe, Keras, Neural Designer, Torch, and their roles in facilitating deep learning 
development are examined.

•	 Deep learning applications in speech recognition, healthcare, and natural language 
processing are explored, emphasizing the impact and advancements enabled 
by deep learning techniques in these domains.

REVIEW QUESTIONS
1.	 Define a neuron in the context of deep learning. How does it contribute to 

artificial neural networks?

2.	 Discuss the historical development milestones of deep learning. What were some 
key advancements that paved the way for modern deep learning techniques?

3.	 Explain the architecture and working principle of feed-forward neural networks. 
How do they process input data to produce output?

4.	 What is backpropagation and why is it important in training neural networks? 
Describe its role in adjusting network weights.

5.	 Differentiate between supervised and unsupervised learning in the context of 
deep learning. Provide examples of each and discuss their respective advantages 
and applications.

6.	 Compare and contrast the following deep learning frameworks: TensorFlow, 
PyTorch, Keras, and Caffe. What are their key features, strengths, and typical 
use cases?

7.	 Describe the typical structure of a convolutional neural network (CNN). How is it 
different from other types of deep learning architectures, and what applications 
benefit most from CNNs?

8.	 Explore the role of deep learning in speech recognition. What specific techniques 
and models are commonly used, and what are the challenges in this application 
domain?
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9.	 Discuss the applications of deep learning in healthcare. How is it used to analyze 

medical images, predict outcomes, or improve diagnostic accuracy?

10.	 Examine the role of deep learning in natural language processing (NLP). What are 
some common tasks where deep learning is applied, and how does it compare 
to traditional NLP techniques?

MULTIPLE CHOICE QUESTIONS
1.	 Which algorithm is commonly used for training feed-forward neural networks?

a.	 Gradient Descent

b.	 Random Forest

c.	 K-Means

d.	 Apriori

2.	 What is a primary characteristic of supervised learning in deep learning?

a.	 It does not require labeled data

b.	 It learns from unlabeled data

c.	 It requires a predefined set of input-output pairs

d.	 It is always used for unsupervised tasks

3.	 Which deep learning framework is known for its ease of use and high-level API 
design?

a.	 TensorFlow

b.	 Keras

c.	 Caffe

d.	 Torch

4.	 Which application area typically benefits from deep learning techniques like 
convolutional neural networks (CNNs)?

a.	 Algorithmic trading

b.	 Social media analysis

c.	 Speech recognition

d.	 Statistical analysis

5.	 What is the main advantage of using unsupervised learning in deep learning?

a.	 It requires less computational resources

b.	 It does not need a training phase

c.	 It can discover patterns without labeled data

d.	 It is more accurate than supervised learning
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6.	 Which deep learning framework is developed and maintained by Facebook’s AI 
Research lab (FAIR)?

a.	 Tensor Flow

b.	 Keras

c.	 Caffe

d.	 PyTorch

Answers to Multiple Questions

1. (a); 2. (c); 3. (b); 4. (c); 5. (c); 6. (d).
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LEARNING OBJECTIVES

After studying this chapter, you will be able to:

•	 Understand the historical development and limitations of early artificial neural 
networks.

•	 Know the architecture and training methods of Multilayer Perceptrons (MLPs).

•	 Explore advanced deep learning techniques including Boltzmann Machines and 
Deep Belief Networks (DBNs).

•	 Understand the architecture and components of Convolutional Neural Networks 
(CNNs).

•	 Implement deep attention selective networks (dasNet) for enhancing CNN 
performance.

•	 Comprehend the structure and training process of Recurrent Neural Networks 
(RNNs).

Deep Neural  
Network Models2

CHAPTER

KEY TERMS FROM THIS CHAPTER 
Backpropagation					     Boltzmann machines

Convolutional neural networks (CNNs)		  Deep auto-encoders

Deep belief networks				    Long short-term memory (LSTM)			
Perceptron						      Recurrent neural networks (RNNs)		
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UNIT INTRODUCTION
The idea of deep learning emerged from the study of artificial neural networks. In this 
context, neural networks with numerous hidden layers are widely recognized as deep 
neural networks (DNNs).

MLP DL networks can be now implemented with the backpropagation algorithm, 
gradient descent. The underlying concept of Backpropagation (BP) is quite easy: The 
process entails evaluating the output signal of the neural network’s output layer against 
the actual output via the data for each input/output pair, enabling the detection of any 
errors. Given the ability to calculate the signal flow within the network, it becomes 
possible to adjust the weights between neurons in the various layers. This adjustment 
aims to minimize the error in subsequent iterations. To accomplish this, the weights 
are adjusted based on the magnitude of the error (Srinidhi et al., 2021).

When training deep networks, using only BP can present several challenges. Certain 
challenges arise in the field of deep neural network models. An obstacle that arises is 
the existence of local optima traps within the objective associated with the nonconvex 
function. Another obstacle is the occurrence of vanishing gradients, where the output 
signal diminishes fast as data is carried backward through the layers. To grasp the 
solution to this problem, it is necessary to delve into the historical background of 
artificial neuron networks (ANNs) (Mehrer et al., 2020).

Within this unit, the fundamental principles and sophisticated structures are explained 
that form the basis of contemporary machine learning. Starting with the historical 
progression from early neural networks to the advanced deep neural networks of the 
present, one will discuss important models including Recurrent Neural Networks (RNNs), 
Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Generative 
Models such as Generative Adversarial Networks (GANs) and Variational Auto-encoders 
(VAEs) (Kriegeskorte & Golan, 2019).
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2.1. A CONCISE OVERVIEW 
OF NEURAL NETWORK  
DEVELOPMENT
Artificial Neural Networks originated from the groundbreaking research conducted by 
McCullogh and Pitts. Their work demonstrated basic units, known as artificial neurons, 
possessed the remarkable ability to execute any logical operation, making them capable 
of achieving universal computation. This research was conducted alongside the pioneering 
work of Von Neumann and Turing and was among the first to explore the statistical 
aspects of brain information processing and the development of a machine able to 
replicate it. Frank Rosembalt pioneered the development of the perceptron machine, 
which revolutionized the field of pattern classification. However, this innovative learning 
machine demonstrated its limitations when attempting to solve fundamental problems, 
such as the logic XOR. Minsky and Papert (1969) presented findings that highlighted 
the inherent limitations of perceptrons. As a result, enthusiasm for artificial neural 
networks began to wane (Sze et al., 2017).

In 1983, John Hopfield introduced a unique class of artificial neural networks known 
as the Hopfield networks and demonstrated their remarkable capabilities in pattern 
completion and memory retention. In 1970, Linnainmaa introduced the backpropagation 
algorithm, which discusses the cumulative rounding error in an algorithm. It is worth 
noting that this algorithm was described without any mention of neural networks. In 
the year 1985, Rumelhart, McClelland, and Hinton made a significant breakthrough by 
rediscovering a potent learning rule. This rule enabled them to train artificial neural 
networks with multiple hidden units, effectively addressing the criticism raised by Minsk 
(Samek et al., 2021).

2.1.1. The Multilayer Perceptron
An approach was suggested to tackle issues that might not be readily distinguished 
linearly. Simply put, categorization cannot be achieved by drawing straight lines. Shown 
in Figure 2.1 is an example of a multifaceted perceptron (Popescu et al., 2009). A 
neural network consists of input units which are linked to hidden units with weights, 
w. The hidden units connect to the output through weights, v. Initially, random values 
are assigned to each weight and bias term (Ruck et al., 1990). The transmission of 
information within the network occurs through the weights connecting the input layer 
to its hidden layer, in which a function is computed to describe the net activation. 
Activation functions commonly employed in deep neural network models include sigmoid, 
tanh, and the current (ReLU) rectified linear unities. Next, the process is continued by 
utilizing more weight for the output neurons (Tang et al., 2015).
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Figure 2.1. Illustration of MLP includes input nodes, hidden nodes, and 
output nodes. Training involves identifying the optimal weights, w or v, 
as well as the bias.

Source: Armando Vieira, Creative Commons License.

Basic Perceptron example

Given the neural network of the figure determine the output.

2.1.1.1. Training a DL network
Updating the weights involves two distinct sets: the weights 
connecting the hidden and output layers, along with the weights 
connecting the input and hidden layers. The inaccuracy resulting from 
the initial set of weights can be determined using the minimum mean 
square principle. The algorithm for backpropagation is commonly 
employed to propagate the error caused by the errors within the 
second set of weights (W) in a backward manner. This indicates 
that the errors should be in proportion to the weight contribution. 
The algorithm has two primary parameters: the learning rate and 
momentum, which are used to prevent getting stuck in local minima. 
Additionally, the number of units in the hidden layer is a crucial input. 
Increasing the number of hidden units can enhance computational 
power, however, it may also impact the model’s generalization 
abilities (Gardner & Dorling, 1998).

The selection of network parameters is typically done through 
k-fold cross-validation. This involves dividing the training data 
into k segments, using k–1 segments for training and the extra 
segment for testing. These segments are then swapped to ensure 
a comprehensive evaluation.

The training process of a neural network can be expedited by 
employing the stochastic gradient descent (SGD) algorithm. However, 
gradient descent requires all training samples for optimization, 
SGD just utilizes a portion of the training sample. SGD accelerates 

Neural networks 
have a rich history 
that can be 
traced back to the 
1940s when the 
intricate workings 
of the human 
brain influenced 
early models. 
Nevertheless, 
the practical 
implementation 
of these models 
was constrained 
until a significant 
increase in 
computational 
power and the 
availability of 
large datasets 
in the past few 
decades.

Did you know?
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convergence by utilizing a subset of training samples for every epoch (Attali & Pagès, 
1997).

In 2006, Hinton presented an algorithm for autonomous learning that utilizes a 
method known as contrastive divergence (CD). An effective method for deep generative 
training models is through the use of deep belief networks (DBNs). The CD method is 
an algorithm that follows a sequential learning approach”  that operates layer upon 
layer, as depicted in Figure 2.2. Usually employed for unsupervised tasks, the model 
may be modified for learning under supervision by incorporating a softmax layer as the 
final layer (Zhang et al., 2021).

Figure 2.2. Representation of (CD) simulating contrastive divergence involves employing an MCMC 
process with k steps. CD–1 stops at stage 1 and ignores any further iterations if the input x is 
successfully reconstructed as x1.

Source: Bernardete Ribeiro, Creative Commons License.
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2.2. UNDERSTANDING 
DEEP NEURAL NETWORKS
It has been widely recognized that artificial neural networks with increased hidden layers 
(thus the concept of Deep neural network) possess greater capabilities at addressing 
classification or regression tasks. Once the weights are computed and train these models, 
specifically, to acquire knowledge of the weights or connections that establish links 
between different layers of neurons. The backpropagation algorithm has proven to be 
successful for artificial neural networks with a single hidden layer. Nevertheless, deeper 
architectures pose challenges for this approach, mainly due to the issue of vanishing 
gradients. Put simply, the corrective signal becomes weaker as it progresses towards 
the lower layers (Montavon et al., 2018).

There exists a diverse array of DL approaches and architectures to choose from, 
however, the majority of DNNs can be classified into five primary groups which includes:

•	 Models for unsupervised learning, are aimed at capturing complex relationships 
within data by simultaneously modeling statistical distributions alongside their 
corresponding classes, if provided. In subsequent stages, the application of 
the Bayes rule can be employed to construct a learning machine focusing on 
discrimination (Fong et al., 2019).

•	 Supervised learning models are designed to maximize their ability to accurately 
classify data by utilizing labeled examples during training. Assigning tags to 
each of the outputs is crucial.

•	 Hybrid or semi-supervised networks focus on classifying data by leveraging the 
outputs of a generative model that operates in an unsupervised manner. Using 
information to pretrain the network weights is a widely adopted practice. This 
accelerates the learning process before the stage of supervision.

•	 As depicted in Figure 2.2, understanding the structure of data without labels 
x, or the distribution P(x) in statistical terms, can prove to be more effective 
than relying solely on labeled data with supervised learning (Bau et al., 2020)., 
Reinforcement learning entails the agent engaging with surroundings and 
obtaining feedback upon completion of a series of actions. This type of learning 
is commonly used in the fields of robotics and gaming.

•	 Deep generative models tend to be highly effective in unsupervised and semi-
supervised learning. Their purpose is to uncover the underlying patterns in data 
without the need for labels. These models offer an effective means of understanding 
the hidden structure in datasets (Saleem et al., 2022). Due to their generative nature, 
these models can create a vivid representation of the environment to which they are 
applied. Imagination can be utilized to delve into different aspects of data, analyze 
the structure and dynamics of the world, and ultimately, facilitate decision-making. 
One notable benefit of such models is that can learn the structure of the data on 
their own, eliminating the need for an external loss function.
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Despite the current buzz surrounding deep learning, conventional approaches continue 

to hold significance in addressing machine learning problems, particularly in cases 
where the data volume is limited and input characteristics are relatively uncomplicated. 
Moreover, when confronted with a substantial number of variables about the number 
of training examples, alternative approaches Alternative machine learning methods also 
known as traditional methods, like support vector machines (SVMs) or ensemble methods 
like random forest and extreme gradient boost trees (the XGBoost), can provide more 
straightforward, efficient, and advanced choices (Samek et al., 2016). Some commonly 
utilized architectures in the field of deep neural network models are stacked denoising 
auto-encoders (SdAE), convolutional neural networks (CNNs), deep belief networks, 
and (RNNs) recurrent neural networks. Significant progress in machine vision has been 
made through the use of CNNs, establishing this type of DNN as the benchmark for 
image processing. Nevertheless, a wide range of DNN variations can be employed in 
diverse business contexts, contingent upon factors such as initialization, architecture, 
connectivity, training method, and loss functions (Golovko et al., 2016).

Figure 2.3 provides a concise overview of these widely used DNN architectures. Here 
are some helpful guidelines for gaining an in-depth grasp of the terms and prevalent 
kinds of deep neural networks.

Figure 2.3. Illustration of Four widely used classes for deep learning architectures at data analysis. 
(A). A Convolutional neural network (CNN) consists of multiple convolutional and subsampling 
layers, which can be further enhanced with fully connected layers to create a deep architecture. 
(B). the stacked auto-encoder is composed of numerous sparse auto-encoders. (C). One way to 
train a DBN is by sequentially freezing the weights of each layer and passing the output to the 
next layer. (D). The RBM architecture consists of a visible layer along with an additional layer 
of hidden units.

Source: Bernardete Ribeiro, Creative Commons License.
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2.3. BOLTZMANN  
MACHINES
The Boltzmann machine represents a probabilistic variation of the Hopfield network, 
incorporating hidden units. It is named after the Boltzmann distribution (Ackley et al., 
1985).

The energy function of a Boltzmann device can be defined similarly as in the Hopfield 
network, with the sole distinction being the assignment of separate labels for hidden 
units, h, and visible units, v.

		  (2.1)

In this context, the notation used includes v for visible units, h for hidden units, b 

for bias, and ijw  for the weights connecting units i and j.

Based on this energy function, the likelihood of a combined configuration involving 
both the visible unit and the hidden unit can be determined as follows:

					     (2.2)

The determination of the probability for visible/hidden units occurs through the 
process of marginalization of the joint probability. For instance, when considering the 
hidden units as a whole, it is possible to derive the probability distribution of the visible 
units (Zhang et al., 2018).

						      (2.3)

Now, this technique can be employed for testing visible units.

After the training of a Boltzmann machine is finished and it reaches thermal equilibrium, 
the probability distribution, p (v, h), keeps constant just like its energy distribution 
also becomes stable. Nevertheless, the likelihood of every visible and hidden unit can 
fluctuate, and its energy might not be at its lowest level (Fischer & Igel, 2014).

The training procedure of a Boltzmann machine entails optimizing the parameters 
to increase the likelihood of the data that is observed. The conventional goal function 
involves utilizing gradient descent on the logarithm for the likelihood function (Upadhya 
& Sastry, 2019).
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The algorithm operates as detailed. Initially, a log-likelihood function of visible units 

is calculated.

				    (2.4)

Now, the next step is to calculate the derivative of the log-likelihood function for 
w and then simplify the expression.

						      (2.5)

				   (2.6)

In this context, the symbol ‘d’ represents the concept of expectation. Gradient 
consists of two components. The first part of the analysis focuses on evaluating the 
slope of an energy function concerning the conditionally concerning distribution p (h 
|v). The next step involves calculating the anticipated gradient of the energy functions 
for the general distribution over all states.

Calculating these expectations is typically a challenging task since it requires 
summing over a vast array of potential states or configurations. One common method for 
addressing this issue involves utilizing Markov chain Monte Carlo (MCMC) to estimate 
these values (Larochelle & Bengio, 2008).

		  (2.7)

Here, <× > represents expectation.

Equation (2.7) represents the contrast between the expected value of state products 
when data is input into visible states along the expected value of state products when 
no data is input. The initial term is computed by averaging the gradient of the energy 
function while the visible or hidden units are influenced by observed data samples.

Calculating the first term is straightforward, while the second one poses a greater 
challenge. It requires running a series of Markov chains across all potential states 
until get converge to the equilibrium distribution of the current model. Only then one 
can compute the average gradient of the energy function. The invention of the limited 
Boltzmann machine was a result to improve upon the limitations of traditional Boltzmann 
Machines and enhance the capabilities of neural networks in learning complex data 
distributions. (Hjelm et al., 2014).

2.3.1. Restricted Boltzmann Machines
Hinton and Sejnowski are credited with inventing the Boltzmann machine (RBM). The 
Restricted Boltzman Machine is a specific type of Boltzmann Machine with a restricted 
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architecture that simplifies the learning process. Boltzmann Machines have connections 
between all pairs of nodes, including within the same layer. Restricted Boltzmann 
Machines (RBMs) does not have connections between nodes within the same layer. 
RBM’s can be trained more efficiently.

Figure 2.4 depicts the application of the constrained Boltzmann machine, a variant of 
the Boltzmann machine. The link between visible units and hidden units is eliminated, 
resulting in a bipartite graph. By imposing this limitation, the energy function in the 
RBM becomes significantly more straightforward (Jin et al., 2019).

			   (2.8)

Figure 2.4. Illustration of restricted Boltzmann machine. With the restriction that there are no 
connections between hidden units (h

j
 = 1, …, J nodes) and no connections between visible units 

(v
i
 = 1, …, I nodes), the Boltzmann machine turns into a restricted Boltzmann machine. The 

model now is a bipartite graph.

Source: Bryan Catanzaro, Creative Commons License.

2.3.2. Contrastive Divergence
The RBM can be trained using an identical methodology to that of a Boltzmann machine. 
Due to the straightforwardness of the energy function used by the Restricted Boltzmann 
Machine (RBM), the method of sampling for inferring the next term of Eq. (2.7) becomes 
simpler. Although this learning technique may seem simple, it nevertheless requires a 
substantial number of sample steps to accurately estimate the distribution of the model 
(Hinton, 2002).

To highlight the challenges associated with this sampling mechanism and to streamline 
the subsequent introduction, it is possible to rephrase Eq. (2.7) using alternative notations:

					    (2.8)
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In this context, 0p  is used to represent the data distribution, while ∞p  is used to 
represent the model distribution. The remaining notations remain the same. Thus, the 
challenge with the mentioned methods lies in the need for a potentially endless number 
of sampling steps to calculate the model distribution (Bengio & Delalleau, 2009).

Hinton successfully addressed this problem by introducing a technique called 
contrastive divergence. Based on empirical evidence, it has been discovered that achieving 
convergence to a model distribution does not require an infinite number of sampling 
steps. A finite number of k steps of sampling seems sufficient. Thus, Equation 2.9 can 
be reformulated as follows:

				    (2.9)

It has been demonstrated by Hinton that utilizing a value of k = 1 is adequate 
for the algorithm used for learning to reach convergence. This algorithm is commonly 
referred to as CD1 (Yu et al., 2021).

2.3.3. Deep Belief Nets
DBN is a type of deep neural network that is composed of multiple layers of RBMs, 
stacked on top of each other. A groundbreaking discovery was made, demonstrating 
the ability to stack and train (RBMs) in a layer-wise manner. Figure 2.5 depicts the 
configuration for a three-layer profound belief network. Unlike the Restricted Boltzmann 
Machine (RBM), the Deep Belief Network (DBN) allows for bidirectional connections only 
on the top layer, enabling information flow from both the top-down and bottom-up. The 
lowest tiers that follow are composed exclusively of directional connections. A Deep 
Belief Network (DBN) may be understood as a complex generative model, in which each 
neuron functions as a probabilistic unit (Hinton et al., 2006).

Figure 2.5. Illustration of deep belief networks. Except the top layer, the lower levels do not 
have bidirectional connections. They only have connections that go across the top to the bottom.

Source: Jesse Engel, Creative Commons License.
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Thus, the model only requires a sample to reach thermal equilibrium in the upper 
layer before transferring the data to the visible states (Salakhutdinov & Murray, 2008). 
DBNs are trained by a two-step procedure: layer-wise pre-training followed by parameter 
fine-tuning. The process of layer-wise pre-training involves training individual layers 
sequentially. Once the initial layer has been trained, the connections are then locked in 
place, allowing for the addition of a new layer on top. The next layer is trained using 
the same methodology as the initial layer, and this process is repeated for multiple 
layers as necessary. This pre-training may be viewed as a highly effective method for 
initializing the weights (Mohamed et al., 2011).

Refinement is conducted to further improve the network through the utilization of 
one of two distinct refinement strategies which includes:

•	 Improving a Generative Model: Refining a generative model involves utilizing a 
contrastive variant of the wake-sleep algorithm, a method that draws inspiration 
from neuroscience. During the wake phase, there is a flow of information from 
the lower layer to the upper layer, which helps in adjusting the weights in a 
downward-upward manner. This adjustment is crucial for creating a representation 
on the upper layer. During the sleep phase, there is a reversal of the process 
where the information is transmitted downwards to modify the connections 
from top to bottom (Le Roux & Bengio, 2010).

•	 Fine-Tuning For a Discriminative Model: In this scenario, the process of fine-
tuning a DBN is to apply standard backpropagation on a pre-trained network, 
utilizing the labels for the data upon the higher layer.

In addition to offering a solid network initialization, the DBN possesses several other 
noteworthy properties. Firstly, all types of data can be utilized, including unlabeled data 
sets. Furthermore, it can be regarded to be a probabilistic generative method that proves 
to be valuable in the Bayesian framework. Furthermore, the issue of over-fitting can be 
successfully mitigated through the utilization of pre-training and the implementation of 
robust regularizes, such as dropout.

Nevertheless, a DBN encounters the subsequent challenges:

•	 DBNs pose a challenge when it comes to inference due to the presence of the 
“explaining away” effect.

•	 Traditional DBN models are limited to greedy retraining, lack the capability for 
joint optimization across all layers.

•	 Approximate inference operates in a feed-forward manner, with no exchange 
of information between lower and higher levels (Movahedi et al., 2017).

2.3.4. Deep Boltzmann Machines
Salakhutdinov introduced the deep Boltzmann machine. Figure 2.6 illustrates a three-
layer Boltzmann machine with multiple layers. In the previous section, it was mentioned 
that there is a difference between DBM and DBN. This distinction lies in the way data 
circulates on bidirectional connections within the bottom layers of DBM (Taherkhani 
et al., 2018).
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Figure 2.6. Illustration deep Boltzmann machine (DBM). DBM has a composite structure consisting 
of many restricted Boltzmann machines.

Source: David H. Ackley, Creative Commons License.

The power function of a (DBM) with numerous hidden layers can be characterized 
as an extension of the energy function of a (RBM). Equation (2.10) demonstrates this 
concept for a (DBM) with N hidden layers:

	 (2.10)

Due to similarities of energy functions, training a DBM utilizing contrastive divergence 
(CD1) is also possible. There are certain similarities between DBN and DBM as Both 
of these neural networks are heavily influenced by the restricted Boltzmann machine. 
The bidirectional structure of a DBM allows for the detection and analysis of intricate 
patterns within datasets (Passos & Papa, 2020).
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2.4. CONVOLUTIONAL 
NEURAL NETWORKS
The CNN consists of multiple blocks that contain stacked layers of various types. Every 
block is comprised of convolutional and pooling layers, typically utilizing max pooling. These 
modules are typically organized vertically, either layered on top of one another or with the 
addition of a softmax logistic layer to form a deep model. CNN utilizes a range of techniques 
that render them exceptionally proficient in the realm of image processing (Li et al., 2021). 

These techniques involve the use of pooling, weight sharing, or adaptive filters. 
Subsampling is used in the layer of convolution to select representative samples for 
the next layer, which helps to improve the overall performance of the model. Weight 
sharing or pooling schemes, often utilizing max pooling, enable CNNs to achieve desirable 
conservation properties such as translation invariance. CNNs have shown impressive 
effectiveness and are widely used in the field of machine vision and image recognition 
(Gu et al., 2018). Convolutional Neural Networks (CNNs) operate on a sequence of signals 
rather than a single feature vector. In completely linked neural networks, each activation 
unit is coupled to every input of the characteristics vector. Weights are assigned to 
each unit based on the features in the input. Convolutional layers, in contrast to other 
layer types, employ weight share by sliding a small filter of weights through the input 
vector and 2D input map, commonly used for images. This procedure applies convolution 
to each overlapping region in the input map using the filter (Yamashita et al., 2018).

Convolutional neural networks (CNNs) that include max pooling have the potential 
to accurately replicate the early stages of a primate’s visual cortex. These networks 
can produce feature detectors that align with biological mechanisms, like Gabor filters. 
Nevertheless, after being trained, the CNN functions as a straightforward feed-forward 
mechanism with unchanging weights. In a recent study, Stollenga introduced a novel 
approach to CNNs known as deep attention selective networks (dasNet). This iteration 
of CNNs incorporates post-processing behavior, resulting in improved performance (Lavin 
& Gray, 2016). This architecture showcases the capacity to incorporate selective attention 
in CNNs by permitting every layer to influence all other layers through multiple iterations 
into an image. This is accomplished through distinct connections, coming from the lower 
levels and higher levels, which govern the behavior within the convolutional filters. 
The weights of these distinct connections represent a control policy that is acquired by 
reinforcement learning after the CNN has completed standard supervised learning training. 
The attentional policy may alter the properties of an input image across several iterations 
to enhance the classification of challenging cases that were not effectively addressed during 
the initial supervised training. The dasNet architecture enables automated inspection of 
internal CNN filters, eliminating the need for manual verification (Bilal et al., 2017).

Convolutional Neural Networks (CNNs) were created for image processing tasks, have demonstrated their 
adaptability by effectively addressing other fields like natural language processing and speech recognition.

Remember
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2.5. DEEP  
AUTO-ENCODERS
Auto-encoder describes a type of deep neural network that produces the input data 
as its output. When these structures are trained with extra noise, they can serve as 
generative models and are commonly known as denoising auto-encoders. A possible 
training method for an auto-encoder involves a step-by-step approach, resembling the 
technique used for Deep Belief Networks (DBNs), to build a complex model (Karim et 
al., 2020).

Stacking auto-encoders allows for the creation of a network with multiple layers, 
resulting in a more complex and powerful model. This is achieved by extracting the 
results of the auto-encoder from one layer and using them as input for the layer above. 
During the unsupervised pre-training process, each layer is trained individually to minimize 
mistakes when reconstructing its input. After the pre-training phase, the network can 
be fine-tuned by adding a softmax layer and applying supervised backpropagation. This 
process is similar to what is done for multilayer perceptrons (Basati & Faghih, 2022).

A stacked denoising auto-encoder (SdAE) is a variant of an auto-encoder (AE) that 
adds randomness by injecting noise to the input. This aids in preventing the model 
from merely duplicating the input. When attempting to encode the input and reverse 
the impact of corruption, it is important to capture the statistical dependency in the 
inputs (Tong et al., 2018).
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2.6. RECURRENT NEURAL 
NETWORKS
Conventional machine learning techniques, such as support vector machines, feed-forward 
networks, and logistic regression, are known for their utility in capturing temporal 
processes without explicitly incorporating time as a spatial concept. Unfortunately, this 
assumption fails to capture long-range dependencies and is of limited use in intricate 
temporal patterns (Schuster & Paliwal, 1997). Recurrent neural networks are now a 
diverse set of models that can be differentiated from end to end, making them suitable 
for gradient-based training. 

Figure 2.7. Representation of various network architectures.

Source: Geoffrey E. Hinton, Creative Commons License.
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And can also be regularized using common techniques like dropout or noise injection. 

Recurrence plays a crucial role in tackling complex problems, such as language, as it 
appears to be a fundamental aspect of various brain mechanisms. Figure 2.7 provides 
a visual representation of various neural networks, such as recurrent networks (Graves 
et al., 2007).

Jordan introduced the fundamental structure of Recurrent Neural Networks (RNNs) 
as feed-forward networks that consist of a solitary hidden layer, enhanced with separate 
units. The output node data are sent by special units, which subsequently relay these 
values to any hidden nodes in the subsequent time step. Through the utilization of 
specialized units, the network can retain information regarding previous activities, 
provided that the output values align with those specific actions. In addition, the nodes 
within the Jordan networks have self-connections (Dernoncourt et al., 2017).

The architecture recommended by Elman is simpler. Every unit on a hidden layer 
follows with a context unit. Every unit in the network receives input from the previously 
executed step through a fixed-weighted edge. The value is then fed to an identical 
hidden node j through a standard edge. This architecture can be seen as a basic RNN, 
where each hidden node is connected to itself through a recurrent edge. The concept 
of self-connected hidden nodes through fixed-weight recurrent edges is crucial in the 
later research on LSTM networks (Hammer, 2000).

RNNs are a type of architecture that can be used to learn patterns that occur over time 
or in a specific order. A recurrent neural network (RNN) can anticipate the subsequent 
data point within a sequence by leveraging the information from the preceding data 
samples. As an example, in text analysis, a technique involves using a sliding window 
to examine preceding words and make predictions about the subsequent word or 
group of words within the sentence. Recurrent neural networks (RNNs) are commonly 
trained using the long short-term memory (LSTM) algorithm developed by Schmidhuber 
or gated recurrent units (GRUs). On the other hand, training them to capture long-
term dependencies can be quite challenging due to the notorious issues of gradient 
vanishing and gradient explosion, as well as the need for meticulous optimization of 
hyperparameters (Schäfer & Zimmermann, 2007).

Deep neural network models have gained significant popularity in recent years, 
particularly due to the emergence of various techniques. These include bidirectional 
learning, which involves predicting sequences in both forward and backward directions, 
as well as attentive mechanisms that enable the utilization of dynamic-size window 
sliding. These advancements have proven especially valuable in constructing language 
models (Rodriguez et al., 1999).

Figure 2.8 illustrates the interplay between multiple RNNs and patterns of vectors 
for the input and output. Each rectangle symbolizes a single vector. Input vectors are 
located at the bottom, whereas the output vectors are placed at the top. The middle 
rectangles are used to store the state of the RNN.
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Figure 2.8. Illustration of Topologies of recurrent networks.

Source: Chris Olah, Creative Commons License.

2.6.1. RNNs for Reinforcement Learning
Reinforcement learning (RL) involves the use of reward signals that are delayed refining 
the parameters from the learning machine. One of the most difficult obstacles in RL 
involves tasks where the environment’s state is just partially observable, requiring 
consideration of hidden states. These tasks are often called non-Markovian tasks and 
partially observable Markov decision processes (POMDP). Several pragmatic problems 
belong to this group, including maze navigation challenges. Hidden states, on the other 
hand, add complexity to the problem as the agents must not only learn how to map 
environmental states to actions but also accurately identify their current environmental 
state at every location (Perrusquía & Yu, 2021).

RNNs trained with LSTM are well-suited for tackling intricate tasks, especially 
in cases where there is no pre-existing model of the environment. It is possible to 
construct an online model that can learn to make predictions based on observations 
and rewards. This enables the model to comprehend the surroundings and decompose 
it into a sequence of Markovian subtasks. Subsequently, each subtask can be resolved 
by an active controller that associates observations with suitable actions. An alternate 
approach involves addressing the secret condition by integrating the selected action 
with both the present observation and an illustration of past observations and acts. 
The current observing, when paired with an illustration of the past, is thought to be 
capable of generating a Markovian state signal (Mousavi et al., 2018).

When dealing with a maze navigation task, it can be challenging for various methods 
to handle long-term dependencies between events. This is particularly true when 
T-junctions appear identical and the only way to differentiate them is by considering the 
previous sequence of events. In these instances, finding a simple solution to break down 
the task into smaller, sequential steps is not possible. Instead, the agent is required 
to retain and recall the pertinent information. Schmidhuber proposed LSTM units as a 
solution to address this issue. These units incorporate a memory state or a forgetting 
term which are learned from data, as shown in Figure 2.9.
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Figure 2.9. Illustration of a memory gate that allows for forgetting in an LSTM cell.

Source: Jacob Andreas, Creative Commons License.

Significant advancements have been made in reinforcement learning, which involves 
training an agent to make optimal decisions in a specific environment to maximize its 
overall reward. These advancements have been achieved by harnessing the power of 
deep learning to create effective feature representations (Geravanchizadeh & Roushan, 
2021).

2.6.2. LSTMs
RNNs can connect past information to solve the current task. As an illustration, one can 
utilize preceding words to anticipate the subsequent word within a sentence. LSTM 
networks have a unique form of RNN that can grasp long-term connections. These 
models were first introduced in 1997 by Hochreiter and Schmidhuber. Over time, it has 
been refined and has gained popularity in various fields, including language translation 
and video processing.

LSTMs were specifically developed to address issues related to long-term dependencies 
and the challenges of vanishing and exploding gradients. The LSTM’s repeating module 
consists of four interconnected layers: cell state, input, output, and forget gate. The LSTM 
architecture possesses the capability to selectively modify or incorporate information 
into the cell state, which is governed by gates that effectively regulate the flow of 
information. Gate structures consist of a neural neuron with a sigmoid or tanh activation 
function, combined with a point-wise multiplication operation (Greff et al., 2016).
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In LSTM, every memory cell is equipped 
with a node that has a recurrent edge of 
weight 1, allowing the gradient to propagate 
through multiple time steps without 
diminishing or amplifying excessively (Eck 
& Schmidhuber, 2002).

Recurrent neural networks possess 
the ability to retain information over long 
periods, thanks to the slowly changing 
weights during training. Additionally, also 
have short-term memory in the form of 
activations that are passed from one node 
to the next. The LSTM architecture includes 
a memory cell that serves as an intermediate 
storage component. A memory cell consists 
of multiple components (Gers et al., 2002).

•	 Input Node: This unit functions as a 
node that gets activation from either 
the input layers from the current 
time step or the hidden layer from 
the prior time step (t–1). The whole 
weighted input is calculated using 
a hyperbolic tangent function of 
activation.

•	 Input Gate: A gate is a component 
that receives activating signals on 
the current data x (t) and the hidden 
layer from the previous time step. 
Nevertheless, its importance lies 
in its ability to multiply the value 
for a different node, rather than 
simply adding it. If the current 
value is 0 suggests that the input 
should be ignored, a value equals 
1 indicates that the input should 
be fully retained in the memory. 
The flow of information from every 
other node becomes disconnected 
(Sundermeyer et al., 2015).

•	 Internal State: This is a recurrent 
edge that is self-connected and has 
a constant unit weight. Due to the 
constant weight of this edge, faults 
can propagate across neighboring 

time steps without diminishing or 
amplifying.

•	 Forget Gates: Understanding the 
importance of these models is 
crucial in the network to effectively 
release the information stored in 
its internal state (Camargo et al., 
2019).

•	 Output Gate: The value kept within 
a cell of memory is chosen by the 
interaction between the internal 
state and the output gate. The 
starting internal state is processed 
using a tanh-activated work to 
ensure that the output over each 
cell keeps a similar dynamic range 
as the typical tanh hidden unit 
(Vaswani et al., 2016).

LSTM has proven to be highly effective 
in handling classification and prediction 
tasks for evolving time series. And have 
consistently outperformed traditional 
methods including hidden Markov models 
and various sequence learning approaches 
in a diverse array of applications. However, 
it can be quite demanding in terms of 
computational resources (Li et al., 2015).

GRUs, or Gated Recurrent Units, are 
a type of recurrent neural network (RNN), 
were first developed by Felix Greff, who 
initially referred to them as forget gates The 
forget and input gates are merged to form 
a single “update gate.” In addition, the cell 
state and hidden state are merged along 
with other adjustments. The final model has 
seen a rise in popularity due to its reduced 
complexity in comparison to standard LSTM 
models. Greff conducted a thorough analysis 
of various popular variants and discovered 
that it is nearly impossible to differentiate 
(Soutner & Müller, 2013).
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ACTIVITY 2.1.
Objective:

To gain hands-on experience in constructing, training, and evaluating a CNN using 
the MNIST dataset.

Materials Needed:

•	 A computer with Python installed

•	 TensorFlow or PyTorch library

•	 MNIST dataset

Steps:

1.	 Setup:

•	 Install TensorFlow or PyTorch.

•	 Import necessary libraries and load the MNIST dataset.

2.	 Model Construction and Compilation:

•	 Define a simple CNN architecture with convolutional, pooling, and fully 
connected layers.

•	 Compile the model with a loss function (e.g., categorical cross-entropy) 
and an optimizer (e.g., Adam).

3.	 Model Training and Evaluation:

•	 Train the CNN on the training data.

•	 Evaluate the trained model on the test data.
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SUMMARY

•	 The chapter provides an overview of various neural network architectures and 
models. It begins with a historical perspective on neural networks, highlighting 
their evolution. The Multilayer Perceptron (MLP) is introduced as a fundamental 
neural network model. Deep Neural Networks (DNNs) are explored next, 
emphasizing their increased depth and complexity compared to traditional models.

•	 Boltzmann Machines and Restricted Boltzmann Machines (RBMs) are discussed 
in the context of probabilistic models. Contrastive Divergence is presented as 
a training method for RBMs. Deep Belief Nets (DBNs) and Deep Boltzmann 
Machines (DBMs) are covered as hierarchical probabilistic models.

•	 Convolutional Neural Networks (CNNs) are detailed, focusing on their architecture 
suited for processing grid-like data such as images. Deep Auto-encoders are 
introduced as neural networks used for unsupervised learning tasks. Recurrent 
Neural Networks (RNNs) and their applications in tasks like reinforcement 
learning are discussed, with specific attention to Long Short-Term Memory 
networks (LSTMs).

REVIEW QUESTIONS

1.	 Briefly explain the historical progression from the Multilayer Perceptron to Deep 
Neural Networks.

2.	 What are the key differences between Boltzmann Machines and Restricted 
Boltzmann Machines?

3.	 Describe the Contrastive Divergence algorithm and its role in training Boltzmann 
Machines.

4.	 Summarize the primary characteristics and applications of Convolutional Neural 
Networks (CNNs).

5.	 What are Deep Auto-encoders and how do they differ from traditional auto-
encoders?

6.	 Explain the significance of Long Short-Term Memory (LSTM) networks in handling 
sequential data.

MULTIPLE CHOICE QUESTIONS

1.	 What is the primary function of Contrastive Divergence in training Boltzmann 
Machines?

a.	 Regularization

b.	 Feature extraction

c.	 Error minimization

d.	 Parameter estimation
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2.	 Which type of neural network architecture is specifically designed for processing 

sequential data?

a.	 Recurrent Neural Networks

b.	 Convolutional Neural Networks

c.	 Deep Auto-encoders

d.	 Deep Belief Nets

3.	 `Which neural network model is well-suited for image recognition tasks due to 
its ability to capture spatial hierarchies?

a.	 Restricted Boltzmann Machines

b.	 Deep Belief Nets

c.	 Convolutional Neural Networks

d.	 Deep Boltzmann Machines

4.	 What distinguishes Long Short-Term Memory (LSTM) networks from traditional 
Recurrent Neural Networks (RNNs)?

a.	 LSTMs have deeper layers

b.	 LSTMs have an internal memory mechanism

c.	 LSTMs use convolutional filters

d.	 LSTMs are faster to train

5.	 Which generative model framework leverages a competition between a generator 
and a discriminator to generate realistic data samples?

a.	 Variational Auto-encoders

b.	 Deep Boltzmann Machines

c.	 Generative Adversarial Networks

d.	 Deep Belief Nets

6.	 What is the primary objective of Variational Auto-encoders (VAEs) in neural 
network applications?

a.	 Discrimination of data classes

b.	 Feature extraction from raw data

c.	 Generation of new data samples

d.	 Compression of input data

Answers to Multiple Questions
1. (d); 2. (a); 3. (c); 4. (b); 5. (c); 6. (c).
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After studying this chapter, you will be able to:

•	 Understand Markov Decision Processes (MDPs) and value iteration in RL.

•	 Explore Q-learning and deep-Q learning for complex environment solutions.

•	 Understand policy gradient methods for learning optimal policies in RL.

•	 Know the application of neural networks in continuous state space problems.

•	 Grasp the benefits of actor-critic methods in RL efficiency and stability.
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UNIT INTRODUCTION
Reinforcement learning, or RL for short, is a fascinating field within machine learning 
that focuses on teaching an agent how to make decisions in an environment to achieve 
the highest possible reward. It is natural in deep reinforcement learning to limit the 
learning approach to deep learning.

In academic writing, it is common to define the environment mathematically to be 
a Markov decision process (MDP). MDPs involve a collection of states, denoted as s ∈ 
S, which represent various locations on a map. The agent has a finite set of actions, 

denoted as a ∈ A. The function T (s, a, ′s ) = P ( 1+St  = ′s  | St  = s, A = a) allows the 
agent to transition from one state to another, A reward function is defined as a mapping 

from a state, action, and subsequent state to real numbers R (s, a, ′s ). Additionally, 
one introduces a discount factor γ ∈ [0, 1] which will be explained shortly (Mousavi et 
al., 2018). Typically, actions have a probabilistic nature, meaning that T represents a 
distribution that determines the likely resulting state when an action is taken in a given 
state. The models are referred to as Markov decision processes due to their adherence to 
the Markov assumption, which states that the history of how one arrives at the current 
state is irrelevant as long as one knows the present state (Arulkumaran et al., 2017).

MDPs operate on a discrete time scale. During the agent’s operation, it is situated 
in a particular state, where it selects an action that results in a transition to a different 
state, and subsequently receives a reward, typically with a value of zero (Gronauer & 
Diepold, 2022).

The objective is to optimize the discounted future reward, as specified by

				    (3.1)

If γ < 1, then the sum mentioned is finite. If the value of γ is absent or equal to 1, 
the sum has the potential to increase indefinitely, leading to a more intricate analysis 
in mathematics. A common value for γ is .9. The term γt in Equation 3.1 is referred to 
as discounted future reward as the iterative multiplication by a value less than one 
results in the model assigning less importance to rewards in the future in comparison 
to immediate rewards. This approach is sensible considering the finite lifespan of 
individuals (François et al., 2018).

To compute the optimal policy, which is a strategy that maximizes the expected 
cumulative reward, the Value Iteration algorithm is a fundamental method in a Markov 
Decision Process MDP. A policy refers to a function π(s) = a that determines the action 

an agent should take for each specified state. An optimal policy, represented as ð* (s), 
results in the highest hoped-for discounted future reward when specific actions are 
taken (Ladosz et al., 2022).
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Figure 3.1. Illustration of the value iteration algorithm.

Source: Eugene Charniak, Creative Commons License.

This chapter explains integrating reinforcement learning alongside deep learning 
techniques. This comprehensive guide explores the core principles and algorithms. It 
delves into essential concepts such as Actor-Critic Methods, Q-learning, Value Iteration, 
Policy Gradient Methods, and Basic Deep-Q Learning (DQN). The main emphasis is 
placed on comprehending the utilization of artificial neural networks to estimate value 
functions and policies to tackle intricate decision-making problems in spaces with a high 
number of dimensions. This unit offers an in-depth comprehension of the theoretical 
and practical elements of deep reinforcement teaching (Wang et al., 2022).
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3.1. VALUE ITERATION
Before delving into the intricacies of solving MDPs, it is crucial to address a fundamental 
question: does the agent possess prior knowledge of the functions T and R, or does it 
need to explore the environment and learn these functions while formulating its policy? 
It becomes much simpler when one knows T or R, so begin with that scenario (Spaan 
& Vlassis, 2005). Within this section, it is assumed that there exists a limited quantity 
of states, denoted as “s”.

Value iteration is the simplest technique for policy learning in MDPs. (In fact, it 
can be argued that this algorithm is not a traditional learning algorithm, as it does not 
require training examples or direct interaction with the environment.) The algorithm 
can be found in Figure 3.1. V represents a value function that consists of a vector with 
a size of |s|. Each entry in V(s) relates to the optimal expected discounted reward that 
can be achieved when starting in different states. The Q function, also known as Q, is 
a table that holds the current estimation of the discounted reward for taking action in 
states. It has a size of |s| by |a|. The value function V assigns a real-number value to 
each state, indicating the desirability of reaching that state. Higher values correspond 
to more favorable states. The Q value provides a more detailed analysis by estimating 
the expected values for every state-action pair. When values in V are accurate, then 
line 2(a)i may appropriately set Q (s, a). The value for Q (s, a) is determined by adding 

the immediate reward R (s, a, ′s ) to the value for the resulting state, as indicated by 
V. Given the non-deterministic nature of actions, it becomes necessary to consider the 
summation of all potential states one can expect (Dai et al., 2011).

Figure 3.2. Illustration of the frozen-lake problem.

Source: Yoshua Bengio, Creative Commons License.

After obtaining the correct Q value, one can establish the optimal policy π by 

consistently selecting the action a = arg ′maxa  Q (s, ′a ). The function arg maxx  g(x) 
returns the value of x that maximizes g(x).

Now examine a straightforward MDP known as the frozen-lake problem. This particular 
game is just one of several included in the Open AI Gym, which is a collection of 
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computer games designed for experimentation with reinforcement learning. The games 
all have consistent APIs, making them ideal for academic research in this field. Figure 
3.2 displays a 4 * 4 grid, which represents the lake. The game aims to navigate from 
the initial position (state 0 at the upper left) towards the destination (lower right) while 
avoiding any pitfalls in the ice. Whenever an action leads us to the goal state, may get 
rewarded with a value of 1. Each of the other state-action-state triples receives a reward 
of zero. When encountering a hole state or reaching the goal state, the game comes to 
a halt. Upon restarting, get returned to the initial state (Luo et al., 2019). Alternatively, 
the down (d), left (l), right (r), or up (u) directions (represented by the numbers zero to 
three) may be taken, although there is a chance of deviating from the intended path. 
Indeed, the open-ended AI Gym game is designed in such a way that when one takes 
an action, such as moving right, there is an equal probability of transitioning to any 
one of the nearest states, except for the exact opposite direction (e.g., left). This design 
makes the game quite slippery and unpredictable. If a particular action would cause 
us to move away from the lake, it rather maintain a team in the same state where one 
began (Mann et al., 2015).

Figure 3.3. Illustration of state values after the first and second iterations of value iteration.

Source: Peter Brown, Creative Commons License.

To calculate V and Q to the frozen lake, it is necessary to iterate with all states 
s or recalculate V (s) multiple times. Now examine state 1. To determine the optimal 
action for a given state, it is necessary to calculate the Q (1, a) value for each of the 
available actions. The maximum Q value is selected and assigned to the corresponding 
state value, V (1). Alright, now begin by calculating the outcome of moving to the left, 
Q (1, l). To accomplish this, it is necessary to calculate the sum of all game states, 
denoted as s’. In the game, there are a total of 16 states. However, when starting from 
state 1, one can reach three among them with a probability greater than zero. These 
states include states 0, 5, or 1 itself (Goyal & Grand, 2023). This limitation occurs when 
attempting to move up, but being blocked through the lake boundary, resulting in no 
movement at all:

Q (1, l) =	 .33 • (0 + .9 • 0) + ..33 • (0 + .9 • 0) + .33 • (0 + .9 • 0)	 	 (3.2)

=	 0 + 0 + 0										          (3.3)

=	 0											           (3.4)

One of the terms in the equation indicates that there is a 33% chance of transitioning 
to state 0 when trying to move left. There is no reward for this action, and the expected 
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future reward is calculated as 0.9 multiplied by 0. The value is zero, which occurs when 
one chooses to go left, slip down to state 5, or stay in state 1. Therefore, Q (1, l) = zero. 
Since the V values of the three states that can be reached to state 1 are all 0, it follows 
that Q (1, d) and Q (1, u) are also 0. Consequently, line 2(a)ii establishes V (1) as 0.

Interestingly, during the initial iteration, V remains at zero until one reaches state 14. 
It is at this point that one observes non-zero values of Q(14, d), Q(14, r), and Q(14, u):

Q (14, d) = .33 · (0 + .9 · 0) + .33 · (0 + .9 · 0) + .33 · (1 + .9 · 0) = .33

Q (14, r) = .33 · (0 + .9 · 0) + .33 · (0 + .9 · 0) + .33 · (1 + .9 · 0) = .33

Q (14, u) = .33 · (0 + .9 · 0) + .33 · (0 + .9 · 0) + .33 · (1 + .9 · 0) = .33

and V (14) = .33.

Displayed in Figure 3.3 is a table for V values following the initial iteration. Value 
iteration is a prominent algorithm used to achieve an optimal policy by maintaining 
tables of the most accurate function value estimates. Thus, the term “tabular methods” 
is derived (Chen & Meyn, 1999).

Figure 3.4. Illustration of collecting statistics for an open AI gym game.

Source: John Cocke, Creative Commons License.

In the second iteration, like before, most values remain at 0. However, this time, 
states 10 and 13 contain non-zero Q and V entries. This is because one can now move 
from these states to state 14, and has just observed, that V (14) is now equal to 0.33. 
The V values after the second iteration are displayed on the right-hand side of Figure 
3.3. Another perspective on value iteration suggests that each update to V (and Q) 
integrates precise knowledge about the immediate future outcome (reward R), only to 
revert toward the initially imprecise information already embedded in these functions. 
Over time, the functions gradually incorporate additional details about states that have 
not been encountered yet (Wei et al., 2015).
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3.2. Q-LEARNING
Value iteration assumes that the learner possesses comprehensive knowledge of the 
model environment. Now explore the contrasting scenario of model-free learning, this 
is the Q-learning algorithm. The agent can navigate the environment by taking actions, 
and receiving feedback on the reward and the subsequent state. However, it lacks 
knowledge of the precise probabilities of movement or the reward function T, R (Watkins 
& Dayan, 1992).

Given the assumption that our environment follows a Markov decision procedure, 
a straightforward approach to planning in a model-free setting would involve exploring 
the environment randomly, gathering data on T and R, and subsequently constructing a 
policy using the Q table, as explained in the previous section. Figure 3.4 presents the 
key aspects of a program designed to accomplish this task. A frozen-lake game is created 
in line 1. At the beginning of a game, one initiates the process by calling the reset () 
function. One iteration in the frozen-lake game concludes when one encounters a hole 
or successfully reaches the goal state. The outermost loop (line 2) indicates that the 
game will be executed 1000 times. In the inner loop of the code (line 4), it is specified 
that the game is terminated after 99 steps. In practice, it is unlikely to encounter such 
a scenario where one either gets stuck or achieves the goal before that point (Clifton 
& Laber, 2020). According to Line 5, the next action is randomly generated at each 
step. There are four available actions: left, right, and up, down, represented by the 
numbers 0 to 3 accordingly Step 6 is of utmost importance. The step function accepts 
a single argument, the action that should be executed, and then provides four values 
as its output. One aspect to consider is the state of the game after the action is taken, 
represented by an integer ranging from 0 to 15. Another factor is the reward one 
obtains, usually 0 but occasionally 1 in FL. In the given figure, the third state, referred 
to as “dn,” serves as an indicator to determine whether the game has ended. It is a 
binary value, representing either true or false. This state will be true if the agent falls 
into a hole or reaches the goal. Information regarding the true probability of transition 
is disregarded in model-free learning (Dayan & Watkins, 1992).

In 2015, DeepMind achieved a breakthrough in AI research with the development of 
DQN. This groundbreaking achievement paved the way for the development of AlphaGo, 
an AI that made history by defeating a world champion in the game of Go. Engaging 
in simultaneous learning and exploration would be more advantageous, allowing the 
knowledge gained to shape our path. A deep understanding of this game allows one 
to gain valuable insights. One uncovers new knowledge about a wider range of states 
with each step forward. This is done by making a decision based on the probability ϵ. 
There are two options: randomly selecting a move (with probability ϵ) or choosing a 
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move based on a different probability (1 − ϵ). Make decisions based on what is acquired 
thus far. When ϵ is held constant, this strategy is called an epsilon-greedy approach 
(Jang et al., 2019).

It is a commonly observed practice for ϵ to decrease gradually over time, which is 
known as an epsilon-decreasing strategy. A straightforward approach is to introduce a 
corresponding hyper parameter E and define ϵ=E/(E+1), where i represents the number 
of gameplays. (The value of E represents the number of games during which one 
transitions from a state of mostly random actions to a state of mostly learned actions) As 
one might anticipate, the decision of whether to explore or rely on existing knowledge 
of the game can significantly impact the speed at which one acquires new skills. This 
phenomenon is commonly referred to as the exploration-exploitation tradeoff, where 
utilizing our game knowledge is considered exploiting the information one has already 
acquired (Millán et al., 2002).

The development of DQN by DeepMind in 2015 was a significant milestone in AI 
research, leading to the creation of AlphaGo, the first AI to defeat a world champion 
in the game of Go.

Fun Fact

One effective approach to balancing exploration and exploitation involves converting 
the values provided by the Q function into a probability distribution. Instead of always 
selecting the action using the highest value, an action is chosen based on this distribution. 
(The second method is referred to as the greedy algorithm.) Therefore, in the given 
scenario where one has three available actions and their corresponding Q values are 
[4, 1, 1], it would be reasonable to select the first two actions approximately two-thirds 
for the time, and so on (Guo et al., 2004).

Q-learning is widely recognized as one of the pioneering and highly regarded 
algorithms for model-free learning, effectively balancing the crucial aspects of exploration 
and exploitation. The fundamental concept revolves around the direct learning of the Q 
or V tables, rather than focusing on learning R and T. In Figure 3.4, there are a couple 
of modifications that need to be made. Firstly, on line 5, we will no more act completely 
randomly. Secondly, on line 7, one must change Q and V, not R and T (Kumar et al., 
2020).

After providing a thorough explanation at line 5, now shift focus to line 7.

The update equations one uses for Q-learning are

		  (3.5)

						      (3.6)

On line 6 of the figure, one finds in states, takes action a, and transitions to state 
a’ after taking a step within the game.
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The updated value of Q (s, a) seems a combination influenced by α, which determines 

the weight given to the previous value or the new information. α can be thought of as 
a learning rate. Usually, α tends to be on the smaller side. To clarify the necessity of 
these equations, it is beneficial to compare them with lines 2(a)i or 2(a)ii via the value 
iteration algorithm shown in Figure 3.1. There, with the algorithm provided with R and 
T, one could calculate the sum of all potential outcomes resulting from the action taken. 
Unfortunately, in Q-learning, achieving this is not possible (Ahmadabadi & Asadpour, 
2002). One gets left with only the final result of the action. And findings are derived 
from a single move in the investigation of the environment. Let’s consider the scenario 
where one finds himself in a state 14 of Figure 3.2. However, what is not known is that 
there exists a minuscule probability (.0001) that, if one decides to move downwards from 
this state, thus will meet with a rather unfavorable “reward” of -10. It is highly unlikely 
that this scenario will occur, but if it does, it will significantly disrupt the current state 
of affairs. It is important for the algorithm to avoid placing excessive importance on any 
individual move. Value iteration involves considering both the transition probabilities 
(T) and the rewards (R). This algorithm takes into account the potential for negative 
rewards and the low likelihood of their occurrence (Goldberg & Kosorok, 2012).
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3.3. BASIC DEEP-Q  
LEARNING
After mastering tabular Q learning, one is now ready to delve into the realm of deep 
Q learning. Just like with the tabular version, one begins with the schema depicted in 
Figure 3.4. This time, the approach is significantly shifting as one no longer relies on a 
table to represent the Q function. Instead, utilize a neural network model (Ramaswamy 
& Hüllermeier, 2021). As previously mentioned, machine learning involves the task of 
approximating a function that closely resembles a target function. For example, the 
target function could map pixels from an image to a value of ten integers, representing 
the corresponding digit. One gets provided with the value for the function on specific 
inputs, and the objective is to develop a function that accurately approximates its output 
to all those values. In doing so, one aims to determine the results of the function in 
locations where its value was not provided, when it comes to deep-Q learning, the 
analogy of function approximation is highly relevant. The main goal is to approximate 
the Q function, which is unknown, using neural networks. One can achieve this by 
exploring the Markov decision-making procedure and continuously learning from our 
experiences (Chen et al., 2020).

It is important to note that the transition from tabular towards deep-learning models 
cannot be explained by the frozen-lake example. This particular problem is well-suited for 
tabular Q learning. Deep-Q learning becomes necessary in situations where the number 
of states is too vast to be feasibly represented in a table format (Kumar et al., 2019).

An important milestone in the resurgence of neural networks was the development 
of a single model capable of utilizing deep-Q learning across multiple Atari games. This 
program was developed from DeepMind, a startup that was acquired by Google in 
2014. DeepMind successfully trained one program to master various games by utilizing 
the visual representation of the games through pixel images (Tan et al., 2020). Every 
combination of pixels represents a state. Without much thought, one cannot recall the 
exact image size utilized in the study, but if it were as tiny as those 28 ∗ 28 photos 
one employed for MNIST, alongside each pixel was binary (on or off), it would result in 
a staggering 2784 potential combinations of pixel values. Consequently, in theory, this 
multitude of states should be required in the Q table. In any case, the number of items 
is far too extensive to be accepted by a tabular scheme (It was discovered that the 
dimensions of an Atari game window are 210 ∗ 160 RGB). Yet the DeepMind program 
effectively reduced this to a smaller size of 84 ∗ 84 in black and white. It will revisit 
more complex scenarios beyond the frozen lake environment in subsequent discussions 
(Zhang et al., 2018).
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When it comes to obtaining a movement recommendation, the 

approach of replacing the Q table with a neural network function 
simplifies the process. Instead of referring to the Q table directly, 
one utilizes a one-layer neural network by inputting the state, 
as depicted in Figure 3.5. The code snippet for generating the 
Q function’s model parameters can be found in Figure 3.6. The 
current state, represented as the scalar input, is processed through 
a transformation process. This involves converting it into a one-hot 
vector, denoted as oneH, which is then passed through a layer of 
linear units. The shape of Q is 16 ∗ 4, with 16 representing the 
size of a one-hot vector for states along with 4 indicating the total 
amount of possible actions. The qVals represent the values in Q(s), 
while outAct, which is the highest value in the Q table, serves as 
the recommended policy (Qiao et al., 2018).

Figure 3.6 implies that one gets focused on playing a single game 
at a time. This means that when inputting a state and receiving a 
policy recommendation, there is only one game being considered. In 
the typical approach to neural networks, this represents an entire 
batch size of a single one. As an illustration, an input state, inptSt, 
represents the numerical value of the current state that the actor 
is in. It can be inferred which oneH is a vector (Camci et al., 2022).

Figure 3.5. Illustration of Frozen-lake deep-Q-learning NN.

Source: Yoshua Bengio, Creative Commons License.

Figure 3.6. Illustration of TF model parameters for the Q learning function.

Source: Pascal Vincent, Creative Commons License.

The emergence of 
Deep-Q Learning 
(DQN) marked 
a significant 
milestone in 
the field of AI. 
It showcased 
the remarkable 
potential of 
integrating 
reinforcement 
learning in deep 
neural networks 
by enabling AI to 
surpass human 
performance on 
Atari games.

Did you know?
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Next, as matmul function requires two matrices, one invokes it using [oneH]. 
Consequently, the matrix qVals will have a shape of [1, 4], containing solely the Q 
values for a single action (up, down, etc.). Finally, the shape of outAct is [1], indicating 
that the recommended action is outAct [0]. It is important to understand the level of 
detail one provides when presenting the remaining code in deep-Q learning (Ge et al., 
2019) as shown in Figure 3.7.

It is worth noting that the algorithm makes a decision on which action to choose. 
This decision can either be random, particularly at the start of the learning process, 
or it can be based on the recommendation provided by the Q-table, especially as the 
learning process nears its conclusion. When utilizing deep-Q learning, one obtains the 
recommendation from the Q-table by inputting the present state s to the neural network 
depicted in Figure 3.5. Based on the highest value among the four possible actions (up, 
down, right, or left), one selects the corresponding action. After obtaining the action, 
one proceeds to execute it and observe the outcome, which is then used as a learning 
opportunity. Of course, in the realm of deep learning, a loss function is essential for 
this purpose (Gupta et al., 2019).

However, it is worth discussing the loss function used in deep-Q learning. This 
question is of utmost importance since, as one has observed throughout, during the initial 
stages of learning, and remain uncertain about the quality of our actions. Nevertheless, 
there are certain facts that one is aware of: On average, the estimation of Q (s, a) is 
more accurate when considering the state one arrives in after taking action in state s. 
This is because one looks one move ahead (Stember & Shalu, 2022).

					     (3.7)

Therefore, the loss is calculated as the squared difference between the observed 
outcome after taking a step and the predicted values obtained from the Q table or 
function. This is commonly referred to as the squared-error loss or quadratic loss (Ning 
et al., 2021).

			   (3.8)

The discrepancy between the Q value calculated from the network (the first term) 
and the Q value that one can determine by noticing the actual reward over the next 
action plus a Q value one step within the future (the second term) is referred to as 
the temporal difference error, or TD (0). If one were to consider the potential outcomes 
two steps ahead, one would arrive at TD (1) (Sumanas et al., 2022).

Continuing from the code in Figure 3.6, Figure 3.7 provides the remaining TF code. 
The subsequent lines construct the rest of the TensorFlow graph. Now look at the 
remaining code, paying particular attention to lines 7, 11,13, 14, 19, or 25. It applies 
the fundamental AI Gym “wandering” technique. That is, get aligned with the entire 
Figure 3.4. One generates the game (line 7) and engages in 2000 individual games (line 
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11), with each one commencing with the game (Galkin et al., 2021). Reset the function 
on line 13. There is a limit of 99 moves per episode (line 14). The move is executed in 
line 19. The game has concluded, as evidenced by the flag that one has designated as 
“dn” on line 25.

Two gaps need to be addressed, specifically lines 15–17 and 20–22. In the code, line 
15 represents the forward pass. Here, the neural network is provided with its current 
state and returns a vector for length 1. The subsequent line then converts this vector 
into a scalar representing the action number. In line 18, one also incorporates a small 
probability for the program to choose a random action. By exploring the entire game 
space, one can guarantee comprehensive coverage. Lines 20–22 involve the computation 
of the loss and the subsequent backward pass to modify the model parameters. The 
purpose of lines 1–5 is to establish the TensorFlow graph for calculating and updating 
the loss (Jeong & Kim, 2019).

The program’s performance falls short compared to tabular Q learning. However, 
as previously mentioned, tabular methods are well-suited for the frozen-lake MDP (Wu 
et al., 2018).

Figure 3.7. Illustration of the remainder of deep-Q-learning code.

Source: Chris Colah, Creative Commons License.



72 INTRODUCTION TO DEEP LEARNING

Figure 3.8. Illustration of a cart pole.

Source: Ian Goodfellow, Creative Commons License.
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3.4. POLICY GRADIENT 
METHODS
Next, one explores a challenging problem in Open AI Gym that goes beyond the 
capabilities of traditional tabular methods. Specifically, the focus on the cart pole problem 
and introducing a cutting-edge technique in deep reinforcement learning called policy 
gradients. A “cart pole,” depicted in Figure 3.8, consists of a cart positioned on a one-
dimensional track. A state comprises four values: the cart’s position and the pole’s 
angle following the previous and current move. Values are assigned at successive time 
intervals to facilitate the program in determining the path of motion. The player can 
take two possible actions: Move the cart either to the right or towards the left. The 
magnitude of the impulse remains constant (Agarwal et al., 2021). If the cart moves too 
far to the right or left, or if the top of the pole moves too far from the perpendicular, 
the step signals that the current game is over, and one needs to reset it to start a new 
one. Each action one takes before reaching a point of failure results in a single unit of 
reward. Of course, the objective is to maintain optimal positioning of the cart or pole 
for as long as feasible. Given that the state is represented by a four-tuple containing 
actual numbers, it is important to note that the number of potential states is infinite. 
Consequently, tabular methods are not applicable in this scenario (Zhang et al., 2020).

Up until now, the neural network models have been employed to estimate a Q function 
for the Markov Decision Process (MDP). In this section, one presents a method that 
involves the direct modeling of the policy function by the neural network. Once more, 
our focus lies on model-free learning. It embraces the approach of exploring the gaming 
environment, initially making random choices for actions but eventually transitioning 
to relying on the recommendations of the neural network. Throughout this chapter, a 
significant challenge arises in determining a suitable loss function due to the lack of 
knowledge regarding the optimal actions to be taken (Ghosh et al., 2020).

When utilizing deep-Q learning, one takes a step forward with each move, relying 
on the understanding that by making a move, receiving a reward, and transitioning 
to a different state, the comprehension of the immediate surroundings becomes more 
refined. The loss was calculated by comparing the predicted outcome, based on previous 
knowledge (such as the Q function), with the actual outcome (Daskalakis et al., 2020).

Here one explores a unique approach. Now consider a scenario where one goes 
through a complete iteration of the game with no making any adjustments to our network. 
For instance, it makes a series of 20 moves (providing directions for the cart) before 
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the pole eventually tip over. In this case, exploration and exploitation are managed by 
selecting actions based on a probability distribution that is derived by the Q function, 
instead of simply choosing the action with the highest Q value (Liu et al., 2020).

In this particular scenario, the discounted reward to the initial state (D0(s, a)) 
can be calculated by considering all the subsequent states and actions that one has 
previously experimented with:

							       (3.9)

After taking a certain number of steps, it becomes possible to calculate a future 

discounted reward of every state-action combination is , ia  using a recurrence relation 
(Perdomo et al., 2021).

									        (3.10)

					     (3.11)

In the order of states one gets through, the reduced future reward for the fourth 
state (such as when implementing action, a) is represented as D4. Once again, it is 
important to acknowledge that it has acquired new knowledge in this instance. As an 
illustration, before attempting the initial random sequence of moves, one must understand 
the potential reward is completely unknown Later on, it becomes evident that a value 
of 10 is achievable (Hambly & Yang, 2021) and in fact, a sensible choice for a random 
sequence of actions). Alternatively, it has been established that in the event of a fall 

occurring on the move 10, the value of Q ( 9s , 9a ) = 0 is determined to be 0.

An effective loss function that encompasses these principles and numerous others is:

						     (3.12)

Let’s break this down. It’s important to highlight that the term on the right is the 
cross-entropy loss. On its own, it encourages the network to take action when it is in 

state ts . Naturally, on its own, this holds little value as, especially during the initial 
stages of learning, one opts for random action selection (Matsubara et al., 2006).

Now let us explore the impact of the tD  values on this. Specifically, let us say that 

0a  was an unfavorable response to 0s . As an illustration, let’s consider a scenario where 
the cart is in the center or the pole is initially leaning towards the right. In this case, 
if one decides to move the cart to the left, it will cause the pole to lean even more 
towards the right (Ammar et al., 2014).
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Figure 3.9. Illustration of deep learning architecture for REINFORCE.

Source: Aaron Courville, Creative Commons License.

It is evident that, under the same conditions, the value for D0 is 
comparatively smaller in this scenario compared to a right movement 
choice. The rationale behind this is that, assuming all other factors 
remain constant, if the initial move is favorable, the pole or cart 
will stay within the boundaries for a longer duration (n is larger), 
resulting in larger D values. Equation 3.12 assigns a greater loss 

to a subpar 0a  compared to a superior one, effectively training the 
neural network to favor the latter (Russo, 2023).

The combination of this architecture and loss function is commonly 
referred to as REINFORCE. Figure 3.9 depicts the fundamental 
structure. It is worth noting that the neural network is utilized in two 
distinct manners. First, examining the left-hand side, one provides 
the neural network with a solitary state, which, as previously stated, 
consists of a four-tuple of real numbers representing the cart’s 
position and velocity, as well as the pole’s position and velocity. In 
this mode, one obtains probabilities for selecting the two available 
actions, as shown in the middle-right section of the figure. In this 
mode, the rewards and actions are not provided with values. This is 
because one does not know them and thus does not need them for 
computing loss on this point. Once all the moves to a complete game 
have been executed, the neural network is employed in a different 
mode (Gargiani et al., 2022). Now, provide an order of actions and 
rewards, and then one instructs it to calculate the loss and carry 
out backpropagation. During the training phase, it is essential to 

Experience 
relive in DQN 
is a valuable 
technique that 
contributes to 
the stability 
of training. It 
involves the 
storage of past 
experiences and 
their random 
sampling 
during training. 
This process 
effectively 
reduces the 
correlation among 
consecutive 
updates, leading 
to improved 
training 
outcomes.

Remember
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calculate actions using two distinct methods. Initially, the neural network is provided 
with the states one encounters. Subsequently, the policy calculation layers calculate 
the probabilities of different actions for each state. Additionally, the actions taken are 
directly inputted as a placeholder. When making decisions in game-playing mode, one 
does not always select the action at the highest probability. Instead, of making random 
choices based on the action probabilities (Russo, 2023).

Figure 3.10. Illustration of TF graph instructions for cart-pole policy gradient NN.

Source: Xavier Glorot, Creative Commons License.

To calculate the loss based on Equation 3.12, one requires both components. Figure 
3.10 provides the TensorFlow code for constructing the policy gradient neural network, 
utilizing the loss function described in Equation 3.12. Additionally, Figure 3.11 presents 
pseudocode outlining the process of utilizing the neural network to learn a policy and 
make decisions within the game environment. Let’s begin by examining the pseudocode. 
It is worth noting that this outermost loop (line 2) involves playing 3001 sessions for 
the game. In the inner loop (line 2b), we engage in the game session until the step 
indicates completion (line D) or until we have made 999 moves. One selects a random 
action based on probabilities generated by our neural network (lines i, ii) or subsequently 
acts within the game. One stores the outcomes in the list to maintain a comprehensive 
record of the events. Once the action results in a final state, the model parameters are 
updated accordingly (Wierstra et al., 2010).

As depicted in Figure 3.10, the output is determined by processing the current-
state values through a two-layer neural network. This network consists of linear units 
W and O, which are conveniently divided by a tf.relu activation function. The resulting 
values are then passed through a softmax function to convert the logits to probabilities. 
Recalling from previous applications of multilayer neural networks, the dimensions of 
the first layer are [input-size, hidden-size], or the dimensions of the second layer are 
[hidden-size, output-size]. In this case, one has selected a value of 8 for the hidden-size 
hyperparameter (Hambly et al., 2023).

As we have developed a novel loss function in this study, it did not rely on a 
standard one found in the TF library. Consequently, the computation of the loss had to 
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be constructed using fundamental TF functions, as depicted in the latter part of Figure 
3.10. As an illustration, in all of our previous neural networks, the process of moving 
forward and backward was closely intertwined, with no computations from external 
TensorFlow sources being utilized (Ding et al., 2020).

Figure 3.11. Illustration of pseudocode for a policy-gradient-training NN for cart pole.

Source: John Glover, Creative Commons License.

Figure 3.12. Extracting action probabilities from the tensor of all probabilities.

Source: J�urgen Schmidhuber, Creative Commons License.

In this context, the values of reward are obtained from an external source. The 
reward serves as a temporary placeholder and is provided based on the instructions 
outlined in lines A, B, and C in Figure 3.11. Likewise, actions serve as a temporary 
substitute (Zhao et al., 2012).

The final three lines for Figure 3.10 present a more recognizable scenario, where 
the loss is simply calculated based on the quantities derived from Equation 3.12. One 
utilizes the Adam optimizer for our optimization process. The acquainted gradient-
descent optimizer could have been utilized by simply substituting it in and increasing 
the learning rate. This would have resulted in achieving nearly comparable performance, 
although not quite at the same level. The Adam optimizer is a bit more intricate and 
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is widely regarded as superior. There are 
several notable distinctions between it and 
gradient descent, with the most significant 
one being the incorporation of momentum. 
An optimizer that incorporates momentum 
is designed to maintain the movement of 
a parameter value in the same direction 
if it has been consistently moving in that 
direction recently. This behavior is more 
pronounced compared to the standard 
gradient descent algorithm (Agarwal et al., 
2020).

These two lines in Figure 3.10, which 
establish indices and actProbs, remain. 
Firstly, shift the focus away from the 
technical details and instead direct our 
attention towards the objectives at hand. It 
is essential to implement the transformation 
depicted in Figure 3.12. Displayed on the 
left is the result of a forward pass, which 
calculates the likelihood of each potential 
action (r and l) being the optimal choice 
(Lincoln et al., 2011).

To achieve this transformation, one relies 
on the gather function. This function takes 
two arguments and extracts each element 
of the tensor-based on the given numeric 
indices. It then combines these elements to 
create a new tensor.

tf.gather (tensor, indices)

As an illustration, given a tensor with 
values ((1,3), (4,6), (2,1), (3,3)), or a set of 
indices (3,1,3), the resulting output would be 
((3,3), (4,6), (3,3)). In our case, one converts 
the action’s probability matrix shown on the 

left for Figure 3.12 into a probability vector. 
It depends upon the line before it to assign 
indices to the appropriate list. This allows 
tf.gather to collect the probabilities of only 
the actions stated by the vector actions 
(Grondman et al., 2012).

It is beneficial to revisit and thoroughly 
examine the connection between Q-learning 
and REINFORCE. Firstly, there are variations 
in the methods used to gather information 
about the environment to provide input 
to the neural network. Q-learning takes a 
single step and then evaluates the accuracy 
of the neural network’s prediction about the 
actual outcome. Upon reviewing Equation 
3.8, which represents the Q-learning function 
for loss, it becomes evident that when the 
prediction or outcome aligns, no further 
updates are required (Fenjiro & Benbrahim, 
2018). Using the REINFORCE method, one 
adopts a different approach. Instead of 
updating neural network parameters after 
each step and waiting until an entire 
episode is completed. An episode represents 
a full game, beginning with the initial state 
and continuing until the game indicates 
its completion. It is worth noting that 
an alternative approach could have been 
employed, such as utilizing the REINFORCE 
parameter alteration schedule instead of Q 
learning. This hinders the learning process 
by reducing the frequency of parameter 
changes. However, it is offset by the fact 
that it can make more effective changes as 
one calculates the actual discounted reward 
(Ishihara & Igarashi, 2006).
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3.5. ACTOR-CRITIC  
METHODS
After examining the distinctions between Q learning and REINFORCE, the main focus 
now shifts to their commonalities. The neural network is responsible for computing in 
two ways a policy or, in the case of Q-learning, a function that can be easily utilized 
to generate a policy. This policy dictates that for any given state, the recommended 
action is to choose the action that maximizes the Q-value (Q(s, a)). In this section, one 
will explore programs that consist of two neural network subcomponents, each having 
its loss functions (Parisi et al., 2019). 

The first subcomponent is an actor program, while the second subcomponent is a critic 
program. This particular type of RL is commonly referred to as the actor-critic method. 
In this section, one will explore the benefits of the actor-critic technique, commonly 
referred to as a2c. Choosing this option is advantageous for several reasons. Firstly, 
it has proven to be highly effective in practice. Additionally, one has the flexibility to 
adopt an incremental approach, beginning with the REINFORCE algorithm. The initial 
iteration is referred to as a2c. Once more, one put it to the test in the cart-pole game 
(Dutta & Upreti, 2022).

The technique is referred to as advantage actor-critic due to its utilization of the 
concept of “advantage.” An important benefit of a state-action pair lies in the disparity 
between the Q value associated with the state-action pair and the value of the state 
itself:

A(s, a) = Q(s, a) − V (s)							       (3.13)

It is commonly anticipated that the advantage would be a negative value due to 

the computation of V(s) in value iteration, where an arg amax  is performed over the 
available actions (Demir et al., 2022). Nevertheless, when it comes to favorable actions, 
A is significantly large in the realm of negative numbers, thereby serving as a metric 
to gauge the quality of an action within a specific state about the state as a whole 
(Zanette et al., 2021).

Next, the loss incurred by a2c from examining a sequence of acts to a start state 
towards the final stage of a game is defined as follows:

				    (3.14)
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The approach closely resembles the REINFORCE loss of Equation 3.12, with the 

only difference being the replacement of tD (s, a), the discounted reward, with (tA  s, a) 

One has named the loss  AL  to distinguish it from the overall loss for a2c, which, as 

shown below, includes a separate loss CL  related to the critic (Paschalidis et al., 2009).

It is important to note that the loss function of REINFORCE is designed to incentivize 
actions that result in greater rewards. Currently, there is a focus on promoting actions 
that outperform other potential actions in a given state. Although there is some merit 
to this argument, one must question why it would be superior to simply promoting 
high-reward actions directly (Nakamura et al., 2007).

The explanation lies in the variance of A (s, a). Variance of a function refers to the 
expected square difference between the function’s value and its mean value. It can be 
understood that functions with significant variations exhibit high variance, in comparison 
to Q, A should demonstrate considerably lower variance (Rosenstein et al., 2004). Take 
a closer look at the cart pole. Given the game’s responsiveness to our actions and the 
pole’s movement, the distinction between moving left and moving right is minimal. 
Consequently, A remains small across the entire state space. On the other hand, let’s 
compare this with Q. After learning about 100 games, the cart-pole game is only able 
to last for an average of 20 moves before failing. However, a policy that is considered 
moderately well can achieve 200 or more moves (Holzleitner et al., 2021).

When all other factors are held constant, it is simpler to estimate a function that has 
low variance compared to one that has high variance. The simplest function of all is one 
that remains constant with no variation. Therefore, if A is significantly more manageable 
to estimate, it has the potential to compensate for the drawback of maximizing A instead 
of Q directly. It appears this is the case. The computation of A remains uncertain at 
this stage. Now, let’s move on to our next item of discussion (Peters et al., 2005).

Recalling, in the REINFORCE algorithm, one traverses a path according to our 
current policy until the end of a game. And then utilize the discounted reward D

t 
(s, a) 

via Equation 3.11 to estimate Q (s, a). Now, one can utilize this information to serve 
a dual purpose by using it as our estimation of Q while calculating A (Equation 3.13). 
Regarding V (s),

Figure 3.13. Illustration of TF code added to Figures 3.10 and 3.11 for a2c build into our NN a 
sub network just to compute it.

Source: Arthur Juliani, Creative Commons License.
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Figure 3.13 provides additional code for building the TF network, going beyond 

what is necessary for REINFORCE (Figure 3.10). One has developed two-layer fully 
connected neural networks, v10ut and v20ut, to calculate V, which represents the 
value function of the critic. The model is trained to generate accurate estimates of V 
by minimizing the difference between the actual rewards and the predictions made by 
the neural network (cLoss). The actor loss in this case is derived from Equation 3.14 
and therefore incorporates the advantage function (Aslani et al., 2017). By making these 
modest adjustments, our REINFORCE algorithm is transformed into a2c–.

Advancing beyond a2c–, actual a2c introduces two additional enhancements. An issue 
with REINFORCE (and its derivative a2c–) is that learning only occurs after playing a 
complete game. In the early stages of cart-pole, where each game is relatively short, 
this doesn’t pose much of a constraint (Veeriah et al., 2017). However, games utilizing 
REINFORCE tend to have a considerable length of a few hundred moves, while a2c– 
games tend to be even longer. A2c has the potential to enhance this aspect by updating 
the model’s parameters at an earlier stage and with greater frequency (Nguyen et al., 
2021).

A key strategy is to halt game execution at regular intervals, such as every 50 
actions, to update the parameters of the model. Unfortunately, this was not achievable 
in REINFORCE. The purpose of observing a complete game’s sequence of actions had 
been to obtain an accurate estimation of the Q values associated with the actions 
one as a species executed. However, a2c enables us to approximate the estimate by 
combining the total rewards obtained in the previous 50 moves with the V value for 
the final state. Next, one reset the list variable to its initial state at the 51st move and 
then repeat this process once more after 50 moves (Nam et al., 2021) (Pushed to the 
extreme, this may also free a2c from the constraint of REINFORCE’s limitation to games 
in explicit game restarts.)

Another enhancement in full a2c involves utilizing multiple environments. It was 
observed from the beginning that conducting a batch of instruction examples provides 
an advantage by making better use of efficient matrix multiplication capabilities. When 
considering the computation of the next game action, it is not feasible to play only one 
game at a time. Engaging in multiple games is akin to consolidating examples in this 
context (Su et al., 2021).
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ACTIVITY 3.1.
Objective
To understand the key concepts and relationships in Deep-Q Learning (DQN).

Materials Needed

•	 Large paper or whiteboard

•	 Markers or pens

•	 Post-it notes or index cards

Steps

1.	 Identify and Arrange Key Concepts:

•	 Write down terms related to DQN (e.g., Deep Reinforcement Learning, 
Q-learning, Neural Networks, Experience Replay, Target Networks, Bellman 
Equation, and Exploration vs. Exploitation, Epsilon-Greedy Strategy, State, 
Action, Reward, and Policy) on post-it notes or index cards.

•	 Arrange these terms on a large sheet of paper or whiteboard.

2.	 Connect and Discuss:

•	 Draw lines to connect related concepts, annotating the connections.

•	 Present and discuss the concept map with the class, explaining the 
relationships and receiving feedback.
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SUMMARY

•	 The chapter explores reinforcement learning (RL) methodologies starting with 
Markov Decision Processes (MDPs) and value iteration, where an agent learns 
optimal policies by iteratively updating expected rewards for state-action pairs. 
It contrasts this with Q-learning, a model-free approach that allows agents to 
learn directly from interactions with an environment, balancing exploration and 
exploitation through strategies like epsilon-greedy methods.

•	 The discussion advances into deep-Q learning, utilizing neural networks to 
approximate the Q-function, which is essential for handling complex environments 
such as Atari games where tabular methods are impractical due to large state 
spaces.

•	 Policy gradient methods, such as REINFORCE, use neural networks to directly 
learn optimal policies in reinforcement learning. They eschew traditional Q-tables, 
making them suitable for continuous state spaces like the cart-pole problem.

•	 Actor-Critic methods like A2C enhance learning efficiency by combining actor 
networks for policy determination with critic networks for state-action value 
estimation. This approach, leveraging advantages to quantify action effectiveness, 
improves stability and learning speed compared to pure policy gradients.

REVIEW QUESTIONS

1.	 What is Deep Reinforcement Learning, and how does it differ from traditional 
reinforcement learning?

2.	 Explain the concept of Value Iteration and describe its process in reinforcement 
learning.

3.	 What is Q-learning, and how does it function without a model of the environment?

4.	 Describe the Basic Deep-Q Learning (DQN) algorithm and its key techniques 
for stabilizing training.

5.	 What are Policy Gradient Methods, and why are they useful for high-dimensional 
action spaces and continuous control problems?

6.	 `Explain the Actor-Critic Methods and the roles of the actor and critic in these 
methods. How do they work together to improve policy learning?

MULTIPLE CHOICE QUESTIONS

1.	 Which of the following best describes Deep Reinforcement Learning?

a.	 Combining reinforcement learning with deep learning.

b.	 Combining supervised learning with clustering techniques.

c.	 Using neural networks to approximate supervised learning tasks.

d.	 Implementing unsupervised learning in high-dimensional spaces.
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2.	 What is the primary objective of Value Iteration in reinforcement learning?

a.	 To directly optimize the policy by gradient ascent.

b.	 To compute optimal policies by iteratively updating value functions.

c.	 To approximate Q-functions using neural networks.

4.	 To evaluate the current policy using Monte Carlo simulations.

3.	 In Q-learning, what is the purpose of the Q-function?

a.	 To estimate the value of taking a specific action in a given state.

b.	 To model the transition probabilities of the environment.

c.	 To represent the policy directly.

d.	 To calculate the gradient of the reward function.

4.	 Which technique is employed in Basic Deep-Q Learning (DQN) to stabilize training?

a.	 Temporal Difference Learning

b.	 Policy Gradient

c.	 Experience Replay and Target Networks

d.	 Monte Carlo Methods

5.	 `Policy Gradient Methods are particularly suited for which type of problems?

a.	 Problems with discrete action spaces.

b.	 Supervised learning problems.

c.	 High-dimensional action spaces and continuous control problems.

d.	 Clustering and classification problems.

6.	 What is the role of the ‘critic’ in Actor-Critic Methods?

a.	 To directly optimize the policy.

b.	 To estimate value functions and evaluate actions taken by the actor.

c.	 To store and replay experiences for training.

d.	 To generate random actions for exploration.

Answers to Multiple Questions
1. (a); 2. (b); 3. (a);  4. (c); 5. (c); 6. (b).
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LEARNING OBJECTIVES

After studying this chapter, you will be able to:

•	 Understand the role of filters, strides, and padding in convolutional neural 
networks.

•	 Understand convolutional filters and their application in image processing.

•	 Illustrate the role of convolutional filters in feature extraction from images.

•	 Understand the multilevel convolution concept.

•	 Implement a two-layer convolutional neural network model in TensorFlow for 
enhanced image recognition accuracy.

•	 Understand bias addition and pooling techniques to enhance convolutional 
neural network performance in TensorFlow.

Convolutional 
Neural Networks4

CHAPTER

KEY TERMS FROM THIS CHAPTER 
Convolution					     Filters

Image processing				    Max pooling

Neural network (NN)			   Padding

Strides					     TensorFlow (TF)
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UNIT INTRODUCTION
All of the neural networks that have been discussed thus far have been fully connected. 
In other words, the linear units at each layer are interconnected with the linear units 
at the subsequent layer. Nevertheless, there is no obligation for neural networks to 
adhere to this specific structure. It is possible to develop a scenario in which a linear 
unit selectively transmits its output to a subset of the units in the subsequent layer. It 
is slightly more challenging, but not excessively difficult, to observe that training can 
accurately calculate the weight derivatives during the backward pass when it knows 
the connected units (Li et al., 2021). Convolutional neural networks are a specific type 
of partially connected neural networks. Continuing our discussion on the Mnist data 
set, one delves into the practical applications of Convolutional Neural Networks in the 
field of computer vision (Gu et al., 2018).

After an inspection of the dataset, it can be seen particular light intensities at 
particular positions in the image with specific digits. Therefore, it is possible to establish 
a correlation between the number 1 and the position (8, 14) by assigning high values. 
However, this is not how individuals typically operate. Taking pictures of each digit in a 
bright room may increase the pixel values by 10, but it is unlikely to significantly impact 
the categorization. In scene recognition, the focus lies on the disparities in pixel values 
rather than their exact values. Also, the distinctions hold significance solely among values 
that are near each other (Yamashita et al., 2018). Imagine yourself in a compact space, 
illuminated by a solitary light bulb positioned in one corner. The perception of a light 
patch in a distant wallpaper may involve the reflection of fewer photons compared to a 
nearby “dark” patch close to the bulb. The key factor in understanding the dynamics of 
a scene lies in the analysis of local variations in light intensity, particularly focusing on 
the concept of “local” and “differences.” Computer vision investigators are well aware 
of this and have widely embraced convolutional techniques as the standard responses 
to such facts (Krichen, 2023).

Figure 4.1. A basic filter for detecting horizontal lines.

Source: Tomas Mikolov, Creative Commons License.

This unit delves into Convolutional Neural Networks (CNNs), examining essential 
concepts like filters, strides, and pooling. These concepts are vital for comprehending 
how CNNs identify and interpret trends in images. In addition, the unit examines the 
concepts of multilevel convolution, TF convolution, and the architecture of CNNs. It 
also delves into the wide range of applications of CNNs, from recognition of images to 
medical imaging (Nebauer, 1998).



CONVOLUTIONAL NEURAL NETWORKS 93

4.1. FILTERS, STRIDES, 
AND PADDING
A convolutional filter, often referred to as the convolutional kernel, is a small array 
of numbers. When analyzing a black-and-white image, it can be represented as a 
two-dimensional array. The Mnist dataset comprises black-and-white images, which 
simplifies our needs. To include color, it would be essential to use an array using three 
dimensions and three two-dimensional arrays representing the red, blue, and green 
(RGB) wavelengths of light. This arrangement allows for the reconstruction of all colors. 
Currently, the disregard of complexities associated with color is ignored. One will revisit 
them at a later point (Naseri & Mehrdad, 2023).

Examine the convolution filter shown in Figure 4.1. When applying the filter to a 
section of an image, the product of dots is calculated from the filter and a corresponding 
portion of the picture that has the same dimensions. It is important to keep in mind 
that when calculating the dot product for two vectors, the corresponding elements are 
multiplied together and then summed to obtain a single value. In this context, one 
extends this concept to arrays with two or more dimensions. The process involves 
multiplying every element of the arrays and subsequently summing all the products 
(Hashemi, 2019).

In a more formal context, the convolution kernel is regarded as a function, often 
known as a kernel function. The value of V for that function is determined by evaluating 
it at the coordinates (x, y) on image I:

		  (4.1)	

In a formal sense, convolution involves the operation of two functions, I or K, resulting 
in a third function that executes the operation on the right side (Liu et al., 2022).

Figure 4.2. Illustration of Image of a small square.

Source: Suriyadeepan Ram, Creative Commons License.
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For typical purposes, one can bypass the official definition and 
proceed directly to the operations on the right-hand side. In typical 
scenarios, the points x, and y will be considered to be located in or 
close to the center of the patch being analyzed (Lee et al., 2018). 
Thus, in the case of the previously given 4 * 4 kernel, the two 
m and n can vary from -2 to +1. If we utilize the filter displayed 
in Figure 4.1 to analyze a particular portion of the square image 
illustrated in Figure 4.2. The lower two rows for this filter are 
positioned over the zeros in the image, while the uppermost four 
elements in this filter are positioned over the 2.0s in the square. 
Consequently, the filter’s value in this patch is number 6. It is 
important to mention that in the case where all the pixels have a 
value of zero, the resulting filter value would also be zero. However, 
even if every single patch consisted of only the number 10, the 
resulting value remains a zero. This filter prioritizes patches to a 
horizontal line running by the middle, with higher values upon the 
top and fewer ones below. It is worth noting that filters can be 
designed to detect variations in light intensities instead of focusing 
on their exact values. In addition, filters typically concentrate on 
local changes as they are generally smaller than entire images. A 
filter kernel can be designed to prioritize picture patches containing 
straight lines in different directions, like those from upper left to 
lower right (Kamath et al., 2019).

In the previous discussion, one has described the filter in the 
way that it was intentionally created by the programmer to identify 
specific features in the image. This approach was commonly used 
before the emergence of deep convolutional neural network filtering. 
One notable characteristic of deep-learning strategies is the way the 
filter values serve as parameters for the neural network, which are 
acquired through the backward pass. In our ongoing conversation 
about the operation of convolution, one will conveniently overlook this 
aspect and proceed with the presentation of our pre-designed filters 
till the next section (Salomon et al., 2017). Furthermore, the process 
involves the application of a filter not only to the image patch but 
also to the entire image. Applying the filter to multiple patches in 
the image is a vital step in the process. Typically, a wide range of 
filters are employed, each to detect a particular characteristic within 
the image (Reinel et al., 2021). Upon finishing, the feature values 
can be passed to any number of fully connected layers, followed 
by softmax and ultimately the loss function. The architecture is 
depicted in Figure 4.3. In our representation, a convolution filter 
layer is depicted as a three-dimensional box. This is due to a bank 
of filters can be visualized to be a three-dimensional tensor, with 
dimensions of height, width, and the number of different filters 
(Romanuke, 2018).

CNNs draw 
inspiration from 
the intricate 
structure of the 
animal visual 
cortex. The 
hierarchical 
arrangement of 
CNNs, alongside 
layers detecting 
fundamental 
traits like edges 
and textures 
advancing to more 
intricate features, 
mirrors the way 
visual data is 
processed in the 
brain.

Did you know?
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Figure 4.3. Illustration of An image recognition architecture with convolution filters.

Source: David E Rumelhart, Creative Commons License.

Observe the intentional lack of specificity in the previous statement about the 
convolution for a filter with a “large number” of patches within an image. To improve 
clarity, first establish the concept of stride, which refers to the distance between two 
instances of applying a filter (Dorj et al., 2018). Applying a filter at each extra pixel 
can be achieved by using a stride of two. To further specify, one refers to both the 

horizontal stride hs  or the vertical stride vs . As one traverses the image, the filter is 

applied at regular intervals of hs  pixels. Upon reaching the end of a line, one proceeds 

to descend vertically by vs  lines and then repeats the procedure. Even when a stride 
for two is used, the filter is still applied to all pixels within the region, rather than just 
every other one. The stride only impacts the location of the filter’s next application 
(Chou et al., 2019).

Now, establish the understanding of the ”end of a line” when utilizing a filter. 
Padding on the convolution is specified to achieve this. TensorFlow provides two options 
for padding: Valid and Same. Once the filters have been convolved with a specific patch 

of the image, one proceeds to shift hs  to the right (Batchuluun et al., 2018).

Figure 4.4. Illustration of End of line with valid and same padding.

Source: Eugene Charnak, Creative Commons License.
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There are three possible scenarios: (a) 
when one is not near the image boundary, 
they can continue working upon this line, 
(b) when the leftmost pixel of the following 
convolution patch grows beyond the image 
edge, or (c) if a leftmost pixel which the 
filters look into is in the rightmost part of 
the image, yet the pixel is over the end of 
the image. In case (b), the process of same 
padding comes to a halt, while in case (c), 
it is the process of Valid that stops (Adem, 
2022). 

As shown in Figure 4.4, the image 
width is 28 pixels, the filter dimensions 
are 4 pixels wide by 2 pixels high, and 
the stride value is set to 1. When using 
valid padding, the process stops at pixel 
24, following zero-based counting. This 
occurs because the stride would lead to 
pixel 25 or accommodating a filter with a 
width of 4 would necessitate a 29th pixel 
that is not present. The convolution would 
continue until reaching pixel 27, using the 
same padding. It is common practice to 
make the same choice within the vertical 
direction once one gets to the bottom of 
the image (Pang et al., 2020).

The choice of when to stop is referred to 
as padding, as it involves the utilization of 
“imaginary” pixels when moving horizontally 
with the same padding. The left side of a 
filter falls for the image boundary, while 
the right side does not. Within TensorFlow, 
the imaginary pixels are at a value of zero 
(Traore et al., 2018). When using the Same 
padding, it becomes necessary to extend 
the image’s boundaries with fictitious 
pixels. In most cases, actual padding is 
not necessary when using valid padding. 
This occurs because one terminates the 
process of convolving before any portion 
of the filter shifts adjacent to the edge of 
the image. When padding is required, it is 
distributed evenly over all edges (Prusa & 
Khoshgoftaar, 2017).

Due to the significance of this data for 
future utilization, an individual supplies 
the count of patch convolutions used in a 
horizontal direction with identical padding:

h hi s   				    (4.2)

The ratio x in Equation (4.2) is rounded 
up to the nearest integer. The function 
returns a small integer that is ≥ x. To 
understand the necessity of the ceiling 
function, consider a situation in which 
the width of the image is an odd number 
of pixels, like five, and the stride is two. 
Initially, the filter is applied to the patch 
0–2 in the horizontal direction (Pang et al., 
2017). After that, it shifts to the right by 
two positions and is utilized in the range 
of 2–4. Once position 4 is reached, it needs 
to be applied to 4–6. Given the width of 5, 
it is important to note that there is not a 
position 6. However, when using the same 
padding, an additional zero is added after 
a line to ensure that the filter can process 
positions 4-6. As a result, the total number 
of applications increases to 4. Without 
the addition of extra zeros, the equation 
mentioned would utilize the floor function 
instead of the ceiling (Kubanek et al., 2019). 
Similarly, the vertical direction follows the 

same logic, resulting in /v vi s .

The integer is horizontally aligned for 
valid padding

( )1h h hi f s− +   			  (4.3)

If the final equation is not identified, 

ensure that one understands that −h hi   f  
is the frequency at which one can shift 
(without exceeding the available space) 
when the stride is set to one. The number 
of applications is equal to the sum of one 
and the number of shifts (Pamula, 2018).
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Although it utilizes fictional pixels, the 

same padding is popular due to its ability to 
maintain the same output size as the original 
image if combined with a stride of one. It is 
common for one to merge multiple layers of 
convolution, with each output serving as the 
input for the subsequent layer. Regardless of 
the length of the stride, appropriate padding 
always results in an output that is less than 
the input. Through successive convolution 
layers, the outcome gradually diminishes 
starting from the outermost regions (Zhang 
et al., 2018).

Before delving into the implementation, 
it is essential to explore the impact of 
convolution on image representation. 
The core component of a convolutional 
neural network in TensorFlow is the two-
dimensional convolution function, together 
with some additional optional named 
arguments that one will disregard for now 
(Fotouhi et al., 2021). 

tf.nn.conv2d(input, filters, strides, padding)

The ”2d” in the name indicates that the 
process uses convolving an image. (Also, 
there are variations of convolutional neural 
networks that are designed to process one-
dimensional items, such as audio signals, 
or even three-dimensional objects like video 
clips.) 

As one would anticipate, the initial 
parameter pertains to the batch size for 
each of the images. Until now, the concept 
of an individual picture has been seen as 
a 2D array of numbers, with each number 
representing a specific light intensity. 
Considering the inclusion of the batch 
size, it is important to note that the input 
takes the form of a three-dimensional tensor 
(Shalbaf et al., 2020).

However, the tt.nn.conv2d function 
requires that every image be expressed 

as a three-dimensional object, where the 
last dimension is a vector representing the 
channels. As mentioned before, standard 
color images are composed of three channels: 
green, blue, and red. When analyzing 
images, it is crucial to understand that they 
are depicted as a two-dimensional array of 
pixels, where each pixel has a set of intensity 
values. The list includes a solitary value 
to represent black-and-white photographs, 
however, there are three values for colored 
images (Hossain & Sajib, 2019).

Figure 4.5. Illustration of a simple filter for 
horizontal ketchup line detection.

Source: James L McClelland, Creative Commons 
License.

Convolution filters follow the same 
principle. A filter of size m by n is capable 
of matching with a corresponding number 
of pixels. It is worth mentioning that each 
pixel or filter possesses multiple channels. 
An interesting example is a filter specifically 
designed to identify the horizontal edges of 
ketchup bottles, as depicted in Figure 4.5. 
While the input light seems predominantly 
red, the filter’s topmost row is strongly 
activated, whereas it is less activated in 
the blue and green channels. The following 
two rows require a reduction in the amount 
of red color, to create a contrast, while 
increasing the presence of blue and green 
colors (Ghazal, 2022).

Figure 4.6 depicts an easy TF example 
that shows the application of a small 
convolutions feature to a simple image 
artificially created artificially. As previously 
mentioned, the initial input for conv2D 
involves a 4D tensor, specifically referred to 
as the constant I. In the preceding comment, 
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one illustrates the model as a basic 2D array, excluding the additional dimensions 
introduced by batch size (in this case, one) or channel size (also one). The second 
parameter is a 4D tensor of filters, marked as W. A comment is included to illustrate a 
2D version of the tensor, without the additional dimensions representing the number of 
channels and number of filters (one each) (Ardakani et al., 2017). Next, one demonstrates 
the implementation of the conv2D function using horizontal and vertical strides of one, 
along with valid padding. Upon examining the outcome, it becomes apparent that it 
is in a 4D format, consisting of batch size (1), height (2), width (2), and channels (1). 
Both the width and height for the image are significantly smaller due to the use of 
valid padding. Additionally, the filter has a high activity level (6), which is expected as 
it is specifically designed to detect vertical lines that are present in the image (Ma et 
al., 2017).
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4.2. A SIMPLE TF  
CONVOLUTION
Next, an example that demonstrates the process of transforming the feed-forward TF 
Mnist program to a model using convolutional neural networks is presented in Figure 
4.7. As previously mentioned, the crucial call is TF function tf.nn.conv2d (Bi et al., 2021). 
Figure 4.7 displays the information on line 5.

Figure 4.6. Illustration of A basic TensorFlow (TF) exercise utilizing conv2D

Source: Richard S Sutton, Creative Commons License.

Figure 4.7. Illustration of primary code needed to turn into a convolutional NN.

Source: Amey Varangaonkar., Creative Commons License.
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image = tf.reshape(img,[100, 28, 28, 1])

One will examine each code line 
individually starting with line 1. The 
image can be represented as a four-
dimensional tensor, specifically a vector 
of three-dimensional images. To meet the 
requirements of tf.nn.conv2d, a batch size 
of 100 was selected, which requires the 
presence of 100 3D images. The reshape 
function processes the input data to 
transform the input to a shape of 28x28. 
The final value represents that there is only 
one input channel. TF reshape function acts 
similarly to the reshape function found in 
Numpy (Tajmirriahi et al., 2022).

[height, width, channels, number]

The filter parameters for the neural 
network model are generated in line 3 
with an initial mean of zero and a standard 
deviation of 0.1, consequently, the model 
can learn these values (Park et al., 2020). 
Filters of size 4 by 4 are selected, with pixels 
having one channel. Additionally, four filters 
in total are chosen. It is important to note 
that all these parameters height and width 
of the filter, as well as the number of filters 
created, are called hyperparameters. The 
total number of channels (in this instance, 
1) is set by the number of channels present 
in the image and remains constant. 

convOut = tf.nn.conv2d(image, flts, [1, 2, 
2, 1], “SAME”)

In line 5, the argument passed to tf.nn.
conv2d relates to the filters that will be 
utilized. This tensor has a unique shape, 
consisting of four dimensions. The strides 
parameter for tf.nn.conv2d requires a list 
consisting of four integers to specify the 
stride size within each dimension of the 
input. Upon examination of line 5, it is 
evident that strides 1, 2, 2, and 1 have 
been selected. Typically, the values of 
the first and final elements are set to 1 

in most cases. It is difficult to envision a 
scenario that could not be 1. Indeed, the 
initial dimension represents the distinct 3D 
images within the batch (Wang et al., 2018). 
By setting the stride in this dimension to 
two, it would effectively be skipping each 
additional image. Interestingly, in the case 
where the final stride is greater than one, 
such as two, and there are three color 
channels, the blue and red light would 
selectively be focused on, while disregarding 
the green channel. Stride values are often 
chosen such as (1, 1, 1, 1) for typical cases. 
However, if the intention is to convolve 
each additional image patch within both 
vertical and horizontal directions, a stride 
of (1, 2, 2, 1) can be used. It is common 
to come across discussions about tf.nn.
conv2d where instructions emphasize the 
requirement for the initial and final strides 
to be one (Kondylidis et al., 2018).

The last parameter, padding, should 
be set to one from the recognized padding 
types in TF, such as SAME. The output 
of the conv2d function bears a striking 
resemblance to its input. Similarly, the output 
is also a 4D tensor, and just like the input, 
the first dimension in the output represents 
the batch size. The result is a collection 
of convolution outputs, with each output 
corresponding to an input image (Ackroyd, 
1971). The two dimensions provided show 
the quantity of filter applications in both 
the horizontal and vertical directions. The 
last dimension of the output tensor indicates 
the quantity of filters being applied to the 
image during convolution (Saia et al., 2015). 
Put simply, the output’s form is

[batch-size, horizontal-size, vertical-size, 
number-filters]

In line 11, the 784 values are passed into 
an entirely connected layer that generates 
logits for each image. These logits are 
then inputted into softmax, and the cross-
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entropy loss is computed (not depicted in Figure 4.7). This results in a straightforward 
convolutional neural network for Mnist. In addition, it is worth noting that in line 7 
mentioned earlier, a nonlinearity is introduced within the output from the convolution or 
the input for the layer that is completely connected. This holds significant importance. 
As previously observed, the absence of nonlinear activation functions within linear units 
leads to a lack of improvement (Xu et al., 2017).
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4.3. MULTILEVEL  
CONVOLUTION
As previously mentioned, the accuracy can be enhanced by transitioning from a single 
layer of convolution to multiple layers. Within this section, one will proceed to develop 
a model consisting of two layers (Yang et al., 2019).

An important aspect of multilevel convolution is to maintain the same format of 
the input image input Both consist of batch size vectors containing 3D images, where 
the images are 2D with an additional dimension representing the total number of 
channels. Therefore, the result obtained from one layer for convolution can serve as the 
input for a subsequent layer, which is precisely the approach taken. When discussing 
the image produced by the data, the final dimension represents the quantity of color 
channels (Amin et al., 2019). When referring to the conv2d output, one describes the 
last dimension as the number of distinct filters within the convolution layer. The term 
“filter” used in this context is quite appropriate. It can be compared to a light color 
filter to selectively allow just blue light to pass through a lens, after a colored filter 
is placed directly in front of it. Three filters allow us to obtain images in the RGB 
spectrum. The hypothetical image generated by the filter is like the example shown in 
Figure 4.1. In addition, similar to weights assigned to filters for images with RGB, the 
second convolution layer also has weights for every channel of output from the first 
(Mohanty & Meher, 2012).

The code for transforming the feed-forward Minst NN to a two-layer convolution 
model is provided in Figure 4.8. Lines 1–4 replicate the initial lines of Figure 4.7, with 
the exception that in line 2, the initial convolution layer is enhanced to 16, as opposed 
to the previous version which had 4 filters. The creation of both second convolution 
layer filters, flts2, is attributed to Line 2. It should be noted that there are a total of 
32 of these items (Tian et al., 2021). This is demonstrated in Line 5 when the values 
for all 32 filters are used as the input channel values for the second convolution layer.

In line 7, the image is represented linearly with 1568 scalar values. These values 
correspond to the height for a weight matrix (W) which is responsible for transforming 
the image values in 10 logits.
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Figure 4.8. Illustration of primary code needed to turn into a two-layer 
convolutional NN.

Source: Rui Zhao, Creative Commons License.

When considering the model as a whole, it is important to see 
the overall progression. Initially, one gets an image with dimensions 
of 28 ∗ 28. Eventually, we obtain a “picture” with dimensions of 
7 ∗ 7. Additionally, at each position in the 2D array, there are 32 
distinct filter values. In other words, one has divided the image 
in 49 patches, with each patch initially consisting of 4 * 4 pixels 
and now being represented with 32 filter values. Given that this 
enhances efficiency, one may infer that these figures are indicative of 
significant aspects of the activities occurring within their respective 
4 ∗ 4 sections (Du & Ward, 2009).

Indeed, this appears to be true. Although the values within the 
filters may initially seem confusing, studying them at the introductory 
levels might uncover some underlying rationale in their design. 
Figure 4.9 displays the 4 ∗ 4 weights for four out of all eighth 
first-level convolution filter coefficients that were acquired during 
a single execution of the code depicted in Figure 4.7. These all 
numbers are difficult to understand however, referring to Figure 
4.10 should assist. Figure 4.10 was generated by printing the filter 
that had the highest value overall of 14 for 14 points within the 
image following the initial convolution layer. This filter was applied 
to our typical image of a 7. Soon enough, the image of a 7 becomes 
apparent amidst a sea of zeros, indicating that filter 0 corresponds 
to a section consisting entirely of zeros (Kiranyaz et al., 2021).

Convolutional 
Neural Networks 
(CNNs) have 
transformed 
computer vision 
tasks, such as 
identifying and 
detecting objects 
in images, in a 
groundbreaking 
manner. Their 
capacity to 
autonomously 
acquire structured 
models of data 
has resulted 
in notable 
progress in 
various domains, 
including medical 
imaging and 
autonomous 
driving.

Did you know?
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Figure 4.9. Illustration of Four of the eight filters generated in a single iteration of the two-layer 
convolutional NN labeled as 0, 1, 2, and 7.

Source: Steven Miller, Creative Commons License.

Figure 4.10. Illustration of The most prominent feature is identified for each of the 14 of 14 
points at layer 1.

Source: Felix Mohr, Creative Commons License.

It is worth mentioning that the diagonal edge of the number 7 on the right side 
consists mostly of 7s, while the lower part of the image represents the number 1. The 
arg-max function in Numpy is used to determine the index for the highest value in a 
provided list of numbers. The pixel values within the empty zones have been assigned 
a value of zero, causing all the filters to provide a result of zero. This is the expected 
behavior when every number is equal and the arg-max function comes back with the 
first value (Kuo, 2016). Figure 4.11 bears resemblance to Figure 4.10, with the distinction 
being that it illustrates the filters that exhibit the highest level of activity in the second 
layer of the model.
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4.4. CONVOLUTION  
DETAILS
4.4.1. Biases
Biases can also be incorporated into the convolution kernels. This point has not been 
discussed yet. It is worth noting that in the most recent example, multiple filters were 
applied to each patch. Specifically, within line 2 of Figure 4.8, it has specified the usage 
of 16 distinct filters (Greenland, 1996).

Figure 4.11. Illustration of most active features for all 7 by 7 points in layer 2 after processing.

Source: Andrew W, Creative Commons License.

Introducing a bias into the program can lead to an imbalance in the weight assigned 
to different filter channels. This is achieved by incorporating a distinct value into the 
convolution output of the channel. Thus, the number of bias variables within a given 
convolution layer is equal to the total number of output channels. In Figure 4.8, additional 
biases may be added to the first convolution layer by inserting a code snippet between 
lines 3 and 4:

bias = tf.Variable(tf.zeros [16]) convOut += bias

Implicit broadcasting is a fundamental concept in certain computational processes. 
The shape of convOut is [100, 14, 14, 16], while the shape of bias is [16]. Therefore, 
when they are added together, it results in the creation of [100, 14, 14] versions of 
bias (MacCoun, 1998).
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4.4.2. Pooling
For larger pictures, such as those with dimensions of 1000 ∗ 1000 pixels, the difference 
in image size in the original image along with the values inputted into a layer that is 
entirely linked followed by softmax on the end becomes significantly more pronounced. 
There are TensorFlow functions available to assist with this reduction (Wischik et al., 
2008). It is important to observe the program in which the reduction occurred because 
the strides within convolution were limited to every other patch. An alternative approach 
is the next:

convOut = tf.nn.conv2d(image, flts, [1,1,1,1], “SAME”)

convOut =  tf.nn.max pool(convOut,  [1,2,2,1],  [1,2,2,1],  “SAME”).

This set of line serves as a replacement for line 3 in Figure 4.8. Instead of employing 
the convolutional neural network having a stride of two, first it is employed the 
convolutional neural network having a stride of one. Therefore, convOut has a shape of 
[batchSz, 28, 28, 1] with no reduction within image size. The subsequent line provides 
a decrease in image size that precisely matches the stride for two that was initially 
employed (Zafar et al., 2022).

One important function in this context is the max pool, which identifies the highest 
value within a filter’s region at the image, like the conv2d, it has three identical 
arguments. One aspect to consider is the 4D tensor for images one uses as a standard, 
and the strides and padding need to be considered. In the given example, the max pool 
operation is applied to the convOut, which is the 4D output from the initial convolution. 
It is accomplishing this stride in [1, 2, 2, 1]. One aspect to consider is examining each 
image on the batch size, while another important aspect is examining each channel. 
The two 2s indicate a horizontal and vertical shift of two units before repeating the 
operation. The size of the region in which the maximum is to be found can be specified 
as the second argument. In the typical scenario, the initial and final 1s are essentially 
predetermined, while the two 2s in the middle indicate that one needs to calculate the 
maximum value within a 2 * 2 patch of convOut (Sun et al., 2017).

Figure 4.12 illustrates the comparison between two methods of achieving a four-fold 
drop in dimensionality using the Mnist program, and the reduction is applied to a 4 * 
4 image (the numbers are randomly selected). Applying the filter with a stride of two 
(Same padding) in the top row resulted in an array of filter values with dimensions of 
2 x 2. In the second row, the filter was applied with a stride of one, resulting in the 
creation of a 4 * 4 array for values. Next, for every individual 2 ∗ 2 patch, the highest 
value is extracted to generate the final array located in the lower right part of the 
diagram. It is worth mentioning that there is another type of pooling called average 
pool. This type of pooling functions similarly to the max pool, with the only difference 
being that the value over a pool is calculated as the average for the individual values, 
rather than the maximum (Cui et al., 2017).
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Figure 4.12. Illustration of factor of 4 dimensionality reduction, with and without max pool.

Source: Georey Hinton, Creative Commons License.
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ACTIVITY 4.1.
Objective: To visually explore how convolutional filters operate on images to extract 
features.

Materials Needed:

•	 Python environment with TensorFlow or similar library installed

•	 Sample image(s)

•	 Jupyter Notebook or similar IDE

Steps:

1.	 Setup:

•	 Set up the programming environment with TensorFlow or another library 
installed.

•	 Load and display a sample image.

2.	 Apply Convolutional Filter:

•	 Define a simple convolutional filter (e.g., edge detector, blur filter).

•	 Apply the filter to the image and visualize the resulting feature map.

3.	 Experiment and Discuss:

•	 Modify the filter parameters (e.g., size, weights).

•	 Discuss how different filters affect feature extraction and image 
representation.
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SUMMARY

•	 The chapter on Convolutional Neural Networks covers essential concepts including 
filters, strides, padding, and pooling. Filters are used to extract features from 
input data, with strides determining the step size of the filter’s movement 
across the input. Padding adjusts input dimensions to ensure consistent output 
size after convolution.

•	 TensorFlow provides a straightforward method for convolution operations. 
Multilevel convolution involves stacking multiple layers of convolutions to 
learn hierarchical features. Details of convolution include weight sharing and 
feature map dimensions. Biases are additional learnable parameters that adjust 
output along with weights. Pooling reduces feature map size by aggregating 
neighboring values.

REVIEW QUESTIONS
1.	 Describe the role of filters in Convolutional Neural Networks (CNNs). How do 

they contribute to feature extraction?

2.	 `Explain how padding, strides, and filter size influence the output dimensions 
of convolutional layers.

3.	 Compare and contrast max pooling and average pooling. In what scenarios 
might one be preferred over the other?

4.	 What is the purpose of biases in convolutional layers? How do they impact the 
learning process in CNNs?

5.	 Discuss the concept of multilevel convolution in CNNs. How does stacking 
multiple convolutional layers contribute to learning hierarchical features?

6.	 Explain the term “local connectivity” in the context of convolutional operations. 
How does it relate to the efficiency of CNNs compared to fully connected 
networks?

7.	 How does the depth of a CNN (number of convolutional layers) affect its 
performance and ability to learn complex representations?

MULTIPLE CHOICE QUESTIONS
1.	 What role do filters play in Convolutional Neural Networks (CNNs)?

a.	 They determine the size of the input data.

b.	 They extract features from input data.

c.	 They control the learning rate.

d.	 They define the activation function.
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2.	 What does “padding” refer to in CNNs?

a.	 Adding extra layers to the network.

b.	 Adjusting the learning rate dynamically.

c.	 Adding zeros around the input data.

d.	 Increasing the size of filters.

3.	 How does increasing stride affect the output size in CNNs?

a.	 It increases the size of the output.

b.	 It decreases the size of the output.

c.	 It has no effect on the output size.

d.	 It reduces the number of filters.

4.	 What does a pooling layer in a CNN do?

a.	 Increases the size of feature maps.

b.	 Adds more filters to the network.

c.	 Reduces the dimensionality of feature maps.

d.	 Introduces non-linearities in the network.

5.	 Why are biases used in convolutional layers?

a.	 To prevent over fitting.

b.	 To add non-linearity to the model.

c.	 To normalize the input data.

d.	 To shift the activation function.

Answers to Multiple Questions

1. (b); 2. (c); 3. (b); 4. (c); 5. (d).
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After studying this chapter, you will be able to:

•	 Understand the basics of tensors in PyTorch and their role in deep learning.

•	 Learn tensor creation, types, and operations in PyTorch.

•	 Learn tensor creation methods and operations in PyTorch.

•	 Understand automatic gradient computation in deep learning frameworks.

•	 Differentiate between static and dynamic computation graphs in DL.

•	 Discover how to build and customize neural network architectures using 
PyTorch’s nn.Module
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UNIT INTRODUCTION
Advancements in Reinforcement Learning (RL), particularly when combined with DL, 
have opened up new possibilities for tackling increasingly complex problems. One reason 
for this is the advancement of deep learning techniques and resources. This chapter 
focuses on PyTorch, a powerful tool that allows us to effortlessly implement complex 
deep learning models using Python code (Gao et al., 2020).

This chapter does not claim to be a comprehensive guide to DL, as the field is 
vast and constantly evolving. However, it will address that assuming you already have 
a solid understanding of deep learning fundamentals, let’s dive into the specifics and 
implementation details of the PyTorch library. Libraries built on PyTorch that aim to 
simplify common problems in deep learning The PyTorch ignite library will be utilized 
in a few of the examples (Virtsionis et al., 2022).

This module delves into fundamental concepts in deep learning using PyTorch, a 
highly adaptable framework that has gained widespread popularity due to its versatility 
and computational efficiency. The unit starts with an introduction to tensors, which are 
the core data structure in PyTorch. It covers how to create, manipulate, and perform 
operations on tensors (Laporte et al., 2019). The content explores the utilization of GPU 
acceleration to improve performance and covers the concept of gradients for automatic 
differentiation, which is crucial for optimizing neural networks. The unit also explores 
the fundamental components of neural networks and the process of designing custom 
layers, offering practical insights into the construction and customization of deep learning 
architectures (Novac et al., 2022).
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5.1. TENSORS
Tensors serve as the foundational component of all deep learning frameworks. The 
concept may seem unknown at first, but in reality, a tensor is simply a multi-dimensional 
array. Comparing to school math, a solitary number can be likened to a point, which 
lacks dimensionality. On the other hand, a vector possesses one dimension, similar to 
a line segment, and a matrix is a two-dimensional entity. Parallelepiped of numbers 
can be used to represent three-dimensional number collections, although they lack a 
distinct name like a matrix. It is possible to retain the term “tensor” when referring to 
collections with higher dimensions (Bi et al., 2021).

It is important to mention that tensors used in deep learning have only a minor 
connection to tensors used in tensor calculus or tensor algebra. A multi-dimensional array 
is referred to as a tensor in deep learning terminology. On the other hand, a tensor in 
mathematics is a mapping between vector spaces. Although in some circumstances it can 
be expressed as a multi-dimensional array, its semantic value is far richer. Mathematicians 
typically disapprove of individuals who assign well-established mathematical words to 
label unrelated concepts, so exercise caution (Figure 5.1) (Zhang et al., 2014).

Figure 5.1. Illustration of the going from a single number to an n-dimensional tensor.

Source: Maxim Lapan, Creative Commons License.

5.1.1. The Creation of Tensors
Those who have become familiar with the NumPy library (as suggested) are already 
aware that its main purpose is to efficiently manage multi-dimensional arrays. Although 
not referred to as tensors in NumPy, these arrays are indeed tensors. Tensors are 
extensively utilized in scientific computations as a versatile means of storing data. For 
example, a color image can be represented as a three-dimensional tensor, incorporating 
the dimensions of width, height and color plane (McCrea & Mikhail, 1956).

In addition to dimensions, a tensor is defined by the nature of its elements. PyTorch 
supports a total of eight types, including three float types and five integer types. The 
float types consist of 16-bit, 32-bit, and 64-bit, whereas the integer types encompass 
8-bit signed, 8-bit unsigned, 16-bit, 32-bit, and 64-bit. Torch has distinct classes to 



118 INTRODUCTION TO DEEP LEARNING

represent tensors of various sorts, with torch being the most frequently utilized. A 
FloatTensor, which represents a 32-bit float, is used in PyTorch. ByteTensor is an 8-bit 
unsigned integer, and torch.LongTensor is a data type in PyTorch that represents a 64-
bit signed integer. One can find the remaining information in the PyTorch documentation 
(Pirani,1955).

PyTorch offers three different methods for creating tensors:

•	 To call a constructor of the required type, one can simply use the appropriate 
constructor.

•	 Converting a NumPy array or a Python list into a tensor is a common practice. 
The type will be determined based on the array’s type in this scenario.

•	 One can instruct PyTorch to generate a tensor with the desired data. As an 
illustration, the torch.zeros() function can be utilized to generate a tensor that 
is populated with zero values (Zhao et al., 2021).

Let’s explore some examples of these methods by examining a simple session:

Here, one included both PyTorch and NumPy libraries and initialized a tensor of 
size 3×2 without assigning any values to it. PyTorch, by default, assigns memory for 
the tensor without any initialization (Zhang et al., 2006). In order to clear the content 
of the tensor, it is necessary to utilize its operation:

There are two different types of operations that can be performed on tensors: in 
place operations and functional operations. Operations that modify the tensor’s content 
have an underscore appended to their name. Following this, the object is then returned. 
The accomplished alteration creates a copy of the tensor, leaving the original tensor 
unaltered. In general, doing processes in place results in better performance and less 
memory utilization (McRae et al., 2016).

A possible method for creating a tensor is to use its constructor and provide a Python 
iterable, such as a tuple or list, to serve as the contents of the newly created tensor:
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Here, an identical tensor using NumPy, initializing all its values to zero will be 
generated:

A NumPy array can be used as the input for the torch tensor method, which will 
produce a tensor with the appropriate shape. In the example above, a NumPy array 
was created with an initial value of zero. By default, this resulted in the creation of a 
double (64-bit float) array (Segal, 1956).

Therefore, the tensor obtained has a Double Tensor type, as demonstrated in the 
previous example by the dtype value. Typically, in deep learning, there is no need for 
double precision as it can lead to unnecessary memory usage and performance issues. 
It is generally recommended to utilize the 32-bit float type, or possibly the 16-bit float 
type, as they provide enough precision. In order to create a tensor, it is necessary to 
explicitly specify the type of NumPy array:

One possible approach is to specify the desired tensor type using the dtype argument 
in the torch.tensor function. However, it is important to note that this argument requires 
a PyTorch type specification, not a NumPy one. The torch package contains various 
types in PyTorch, such as float32 and uint8.



120 INTRODUCTION TO DEEP LEARNING

5.1.2. Scalar Tensors
Starting from the 0.4.0 release, PyTorch has included support for zero-dimensional 
tensors, which represent scalar values. These tensors can be generated through various 
operations, such as calculating the sum of all values within a tensor. In the past, the 
solution involved creating a tensor with a single dimension equal to one (Bergmann, 
1968).

The solution proved effective, although it required additional indexation to access the 
desired value. Currently, the torch.tensor() function allows for the creation and support 
of zero-dimensional tensors, which are returned by the relevant functions (Horndeski, 
1974). Using the special item () technique, one can retrieve a tensor’s Python value:

5.1.3. Tensor Operations
There are numerous operations that can be performed on tensors, and the list is extensive. 
It is important to mention that besides the previously mentioned in-place and functional 
variations (i.e., with and without an underscore, like abs () and abs_ (), there are two 
sources to investigate for operations: the torch package and the tensor class. Typically, 
the function takes the tensor as an argument in the first case. It operates on the tensor 
that is being called (Lee & Cichocki, 2018)

Typically, tensor operations in PyTorch aim to mirror their counterparts in NumPy. 
Therefore, if there is a general function in NumPy, it is likely that PyTorch will offer a 
similar one. Some examples include the functions torch.transpose (), torch.stack(), and 
torch.cat () (Hackbusch & Kühn, 2009).

5.1.4. GPU Tensors
PyTorch effortlessly supports CUDA GPUs, allowing for automatic selection between CPU 
and GPU versions for all operations. The decision is determined by the type of tensors 
being manipulated (Lyakh, 2015). All the tensor types I mentioned have equivalents 
for both CPU and GPU. There is a little difference in the location of GPU tensors, as 
they are found in the torch.cuda package rather than just torch. As an example, a 
torch.FloatTensor is a tensor with a 32-bit floating-point data type that is stored in the 
memory of the CPU. However, torch.cuda.FloatTensor is the equivalent for GPU usage 
(Navarro et al., 2020).
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To transition from CPU to GPU, one can utilize the tensor 

technique, to(device), which duplicates the tensor onto a designated 
device (which can be either GPU or CPU). If the tensor is already 
located on the device, no further action will be performed and the 
original tensor will be returned (Huang et al., 2022).

There are various methods to specify the device type. To begin 
with, a simple way to specify the device is by using a string name. 
For CPU memory, one can use “cpu”, while for GPU, you can use 
“cuda”. An optional device index can be added to a GPU device 
specification after the colon (Liu et al., 2022). Since the index starts 
at zero, the second GPU card in the system, for example, can be 
addressed as “cuda: 1”.

An alternative and marginally more effective approach to indicate 
a device in the to() method is by utilizing the torch.device class, 
which allows for the inclusion of the device name and an optional 
index. To access the current device of your tensor, one can use the 
device property (Yang et al., 2019).

Here, a tensor was created on the CPU and then transferred 

to the GPU memory. The computations can utilize both copies, and 

the user doesn’t need to worry about any GPU-specific details:

PyTorch tensors 
have the ability 
to handle several 
sorts of input, 
not simply 
numeric data. 
This versatility 
allows them to be 
used for a variety 
of deep learning 
applications 
that go beyond 
typical arithmetic 
calculations.

Did you know?
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5.2. GRADIENTS
Despite the availability of transparent GPU support, engaging in all these tensor operations 
may not be worthwhile without the crucial “killer feature” of automatic gradient 
computation. This functionality was initially developed in the Caffe toolkit and later 
became widely adopted in deep learning libraries (Clarke, 1975).

Implementing and debugging the computation of gradients manually was a highly 
challenging task, even for the most basic neural network (NN). You had to perform 
calculations on your functions, apply the chain rule, and then implement the results, 
hoping that everything was done correctly. Engaging in this exercise can provide valuable 
insights into the inner workings of deep learning. However, it may not be adequate to 
repetition when implemented in various neural network architectures (Julesz, 1986).

Fortunately, those days are long gone, similar to the era of the early days of 
electronics with soldering irons and vacuum tubes! Now, constructing a neural network 
with numerous layers can be done by simply assembling it from preexisting components 
or, in more advanced cases, manually defining the transformation expression (Rivest et 
al., 1993).

Each gradient is carefully calculated, backpropagated, and implemented into the 
network. In order to accomplish this, it is necessary to specify the network architecture 
in terms of the deep learning library used. Although some parameters may vary, the 
overall structure must be consistent. This involves defining the sequence in which the 
network will process inputs and generate outputs (Figure 5.2) (Vergassola et al., 2007).

Figure 5.2. Illustration of data and gradients flowing through the NN.

Source: Rosenblatt, Creative Commons License.

The calculation method used for your gradients can have a significant impact. There 
are two methods or strategies:

•	 Static Graph: With this approach, it is crucial to specify your calculations, and 
they cannot be modified later on. Before any computation is made, the DL library 
will process and optimize the graph. This model is implemented in various deep 
learning toolkits, including TensorFlow (<2) and Theano.
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•	 Dynamic Graph: There is no requirement to precisely specify your graph in advance 

before executing it. Instead, you only need to execute the operations that you 
wish to use for transforming your data. Throughout this process, the library 
will carefully document the sequence of operations executed. When instructed 
to calculate gradients, the system will methodically examine its past activities, 
combining the gradients of the network parameters. This technique is commonly 
referred to as notebook gradients and is utilized in Chainer, PyTorch,and other 
similar frameworks (Sehnke et al., 2010).

There are pros and cons to both approaches. As an example, utilizing a static graph 
typically results in faster performance since all computations can be efficiently executed 
on the GPU, thereby reducing the data transfer overhead. When working with a static 
graph, the library offers a higher level of flexibility when it comes to optimizing the order 
of computations or potentially removing certain parts of the graph (Ellis et al., 2012).

However, despite the increased computational overhead, dynamic graph provides 
developers with greater flexibility. As an example, one could state, “In the case of this 
particular dataset, it is possible to utilize this network twice, while for another dataset, a 
distinct model can be used with gradients clipped based on the batch mean.” One of the 
notable advantages of the dynamic graph model is its ability to express transformations 
in a more natural and “Pythonic” manner, which adds to its appeal. Ultimately, it boils 
down to utilizing a Python library that offers an array of functions. Simply use these 
functions and witness the library’s enchanting capabilities (Wierstra et al., 2010).
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5.3. TENSORS AND  
GRADIENTS
Performing computations using tensor methods and functions provided by torch is made 
easier with PyTorch tensors, which come with a convenient built-in gradient calculation 
and tracking machinery. Simply convert your data into tensors and you’re ready to go. 
Certainly, if you find yourself in need of delving into the underlying low-level complexities, 
you have the option to do so. However, in the majority of cases, PyTorch effortlessly 
fulfills your expectations (Meneveau, 2011).

Every tensor possesses various attributes associated with gradients:

•	 grad: A tensor property that stores the computed gradients, maintaining the 
same shape.

•	 is_leaf: This tensor’s origin can be determined by its construction. If it was 
created by the user, it will be marked as True. However, if it is a result of a 
function transformation, it will be marked as False.

•	 requires_grad: Indicates whether or not gradients need to be calculated for this 
tensor. This value is obtained by leaf tensors during the construction process 
(using functions like torch.zeros() or torch.tensor()). It is then inherited by other 
tensors. Typically, the constructor has a default setting of requires_grad=False. 
Therefore, if you want gradients to be determined for your tensor, you must 
explicitly indicate this (Hasan et al., 2001).

To further understand all this gradient-leaf apparatus, let’s look at this session:

In the code provided, two tensors were created. One of the tasks involves the 
calculation of gradients, while the other does not.

Therefore, we have performed element-wise addition on both vectors (resulting in 
vector [3, 3]), multiplied each element by two, and then calculated their sum (Casotto 
& Fantino, 2009). The outcome is a tensor of zero dimensions, with a value of 12. This 
is basic arithmetic at this point. Now, let us examine the fundamental graph that has 
been generated by our expressions (Figure 5.3):
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Figure 5.3. Graph representation of the expression.

Source: Ronald Fisher, Creative Commons License.

Upon inspecting the attributes of our tensors, it becomes evident that v1 and v2 
stand as the sole leaf nodes. It is worth noting that every variable, with the exception 
of v2, necessitates the calculation of gradients:

Let’s now instruct PyTorch to calculate our graph’s gradients:

By invoking the backward function, PyTorch is able to compute the numerical derivative 
of the v_res variable in relation to any variable present in our graph. Put simply, how do 
slight modifications to the v_res variable impact the remaining components of the graph? 
In this specific example, a gradient value of two indicates that increasing any element 
of v1 by one will cause the resulting value of v_res to increase by two (Zengerer, 2018).

As stated, PyTorch specifically computes gradients solely for leaf tensors that have 
the condition  requires_grad=True. Unfortunately, when attempting to examine the 
gradients of v2, no results are obtained:
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Efficiency is a key factor when it comes to computations and memory. In practice, 
networks often consist of a vast number of optimized parameters, with numerous 
intermediate operations being executed on them. During gradient descent optimization, 
the focus lies only in adjusting the model’s parameters (weights) based on the gradients 
of loss. Gradients of intermediate matrix multiplication are not of interest in this process 
(White et al., 1997).

Certainly, if you are interested in computing the gradients of input data (which can 
be valuable for generating adversarial examples to deceive existing neural networks 
or adjusting pre-trained word embeddings), you can easily achieve this by setting 
requires_grad=True when creating the tensor.

Essentially, there are all the necessary components to optimally execute a specific 
neural network. This chapter will cover additional functions that serve as higher-
level components for constructing neural network designs. They also include popular 
optimization algorithms and commonly used loss functions. Nevertheless, it is important 
to remember that these additional features can be effortlessly reintroduced in a DL 
design. PyTorch is highly favored among deep learning researchers because to its elegant 
and flexible nature (Lazar & Po, 2015).



DEEP LEARNING WITH PYTORCH 127

5.4. NN BUILDING BLOCKS
The torch.nn package contains numerous pre-defined classes that offer fundamental 
functional blocks. All of them are specifically designed to facilitate practice, incorporating 
features such as support for mini-batches, sensible default settings, and suitable weight 
initialization (Amato et al., 2023). Every module adheres to the convention of being 
callable, which implies that each instance of a class can be a function when supplied 
with its parameters.

As an example, the linear class incorporates a feed-forward layer that can include 
a bias if desired:

In this study, a feed-forward layer was created with two inputs and five outputs. 
The layer was randomly initialized and then applied to a float tensor. You can utilize 
the nn.module base class, which is the foundation class for all classes in the torch.
nn packages, to create your own higher-level NN blocks (Nguyen et al., 2016). In the 
following part, you will discover how to accomplish this; in the meantime, let us examine 
practical techniques that every nn.Module child offers. They are listed below:

•	 The parameters () provide an iterator of all the variables that necessitate gradient 
computation, specifically the weights of the module.

•	 The zero_grad () method is in charge of zeroing out every parameter’s gradient.

•	 The function to(device) is used to transfer all module parameters to a specified 
device, whether it is the CPU or GPU.

•	 The state_dict () function returns a dictionary containing all the module parameters, 
making it a valuable tool for model serialization (Tama et al., 2000).

•	 The load_state_dict () function is used to initialize the module using the state 
dictionary.

There is a highly convenient class available that enables you to easily combine 
various layers into a pipeline: Sequential. An effective approach to illustrate Sequential 
is by providing an example:
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A three-layer neural network with softmax activation on the output is defined 
here. It is applied along dimension 1, with rectified linear unit (ReLU) dropout and 
nonlinearities. Let’s push something through it:
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5.5. CUSTOM LAYERS
In this last section the nn.Module class is briefly described, which serves as the base 
parent for all neural network building components provided by PyTorch. It serves as 
more than just a unifying parent for the current layers; it has additional functions and 
purposes. By inheriting from the nn.Module class, you have the ability to construct 
custom components that may be combined, reused, and seamlessly integrated into the 
PyTorch framework (Titanto & Dirgahayu, 2014).

The nn.Module offers extensive functionality to its subclasses:

It keeps a record of all the submodules that are included in the current module. 
For example, a building block can consist of two feed-forward layers that are utilized 
to carry out the transformation of the block.

•	 Functions are available to handle all parameters of the registered submodules. 
There are several useful methods available for this module. You can access a 
complete list of parameters using the parameters () method. If you need to 
reset the gradients to zero, you can use the zero_grads() method. Additionally, 
you have the flexibility to move the module to either the CPU or GPU by using 
the to(device) method. If you want to serialize or deserialize the module, you 
can utilize the state_dict() and load_state_dict() methods. Lastly, if you need to 
apply any custom transformations, you can do so using the apply () method.

•	 The convention of applying Modules to data is established. Each module must 
carry out its data transformation within the forward () method by overriding it 
(Brahmakshatriya et al., 2024).

Additional functions are available for more advanced use cases, including the option 
to register a hook function for adjusting module transformation or gradients flow.

These features enable us to seamlessly incorporate our submodels into more advanced 
models, which proves to be highly valuable when tackling intricate problems. Whether 
it’s a basic linear transformation or a complex ResNet with multiple layers, as long 
as they adhere to the conventions of nn.Module, both can be managed in a similar 
manner. This is extremely useful for simplifying code and making it reusable.In order 
to simplify our lives, the authors of PyTorch have made the building of modules easier 
by employing thoughtful design and utilizing Python’s powerful features. To construct 
a custom module, one typically need to perform two tasks: registering submodules and 
implementing the forward() method (Lee et al., 2008).

Now, let’s explore how to achieve this for Sequential example from the previous 
section, but in a manner that is more versatile and can be used repeatedly:
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Our module class inherits from nn.Module. Three parameters are passed in the 
constructor: the input size, the output size, and an optional dropout probability. One 
of the initial steps is to invoke the constructor of the parent class in order to facilitate 
its initialization (Schmitt et al., 2008).

In order to proceed, a nn.Sequential object with several layers must be created and 
assigned to the “pipe” class field. This module will automatically register when we 
assign a Sequential instance to our field. Like all the other classes in the nn package, 
nn.Sequential also derives from nn.Module. It does not require any function calls to 
register. All that is left to do is link our submodules to the appropriate fields. Once the 
constructor is complete, all the fields will be automatically registered. If desired, there 
is a function in nn.Module that can be used to register submodules.

Here, our data transformation implementation must take precedence over the 
forward function. We only need to request that they alter the data because our module 
is essentially a very basic wrapper around other layers. It is important to mention that 
when applying a module to the data, we need to treat the module as callable by calling 
the module instance with the appropriate parameters, instead of using the forward() 
function of the nn.Module class. The reason for this behavior is that when we consider 
an instance as callable, nn.Module takes priority by overriding the call () method. This 
method invokes our forward () function and carries out some complex operations with 
the nn.Module. Calling forward () directly can disrupt the responsibility of nn.Module, 
leading to potential negative consequences (Niese et al., 2014).

So, that’s the process we must follow to define our own module. Now, let’s put it 
into practice:
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We set up our module by specifying the desired number of inputs 
and outputs. Next, we generate a tensor and instruct our module 
to apply a transformation to it, using the convention of treating it 
as a callable object. Next, we display the structure of our network 
using nn. To create a visually pleasing representation of the inner 
structure, the module replaces the functions str() and repr(). We 
finally show the result of the change of the network (Farahani & 
Safari, 2015). The output that our code should generate should look 
somewhat like this:

Indeed, all the information regarding the dynamic nature of 
PyTorch remains accurate. The forward() method is used for each 
batch of data, allowing you to perform complex data transformations 
such as hierarchical softmax or applying a random choice of network. 
There are no limitations on the complexity of the operations you can 
perform. There is no restriction on the number of arguments that 
can be passed to your module. If you prefer, you have the option 
to create a module that includes multiple required parameters and 
numerous optional arguments, and it will work perfectly (Bichri et 
al., 2023).

Understanding 
gradients in 
PyTorch is 
crucial as they 
enable automatic 
differentiation, 
which simplifies 
the process 
of optimizing 
neural network 
parameters 
during training 
by computing 
how each 
parameter affects 
the final output.

Remember
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ACTIVITY 5.1.
Objective: Gain practical experience in constructing, training, and evaluating a neural 
network using PyTorch.

Steps:

1.	 Network Definition:

•	 Define a neural network architecture using torch.nn.Module, specifying 
layers and activation functions.

2.	 Training and Optimization:

•	 Prepare a dataset (e.g., synthetic data or MNIST), convert it into PyTorch 
tensors, and set up data loaders.

•	 Implement a training loop with a chosen loss function (e.g., CrossEntropyLoss) 
and optimizer (e.g., SGD or Adam).

•	 Iterate through batches, compute predictions, calculate loss, backpropagate 
gradients, and update model parameters.

3.	 Evaluation and Reflection:

•	 Evaluate the trained model on a validation set to assess performance 
metrics such as accuracy or loss.

•	 Reflect on challenges encountered, insights gained, and the practical 
applications of neural networks in PyTorch.
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SUMMARY

•	 This chapter provides an overview of important concepts for utilizing PyTorch 
in deep learning applications. It begins with an introduction to tensors, which 
are the fundamental data structures in PyTorch. It provides a comprehensive 
overview of how to create, manipulate, and perform operations on tensors. One 
must grasp the concepts of scalar tensors, tensor operations, and leveraging 
GPU tensors to enhance performance and expedite computations.

•	 The chapter also explores gradients and explains their significance in automatic 
differentiation for optimizing neural network parameters during training. Moreover, 
it explores into the fundamental elements of neural networks and the development 
of personalized layers, providing a hands-on method for designing and expanding 
deep learning structures using PyTorch.

REVIEW QUESTIONS
1.	 What is a tensor in PyTorch and how is it used in deep learning?

2.	 Explain the significance of GPU tensors in PyTorch. How do they impact 
computational performance?

3.	 What role do gradients play in PyTorch, and how are they computed during 
neural network training?

4.	 How can custom layers be implemented and why are they useful in PyTorch?

5.	 Describe the process of creating and training a neural network using PyTorch.

MULTIPLE CHOICE QUESTIONS
1.	 What is a tensor in PyTorch?

a.	 A data structure for storing numbers arranged in multiple dimensions.

b.	 A type of neural network layer.

c.	 A deep learning framework.

d.	 A type of GPU processor.

2.	 Which of the following is true about GPU tensors in PyTorch?

a.	 They are used for storing non-numeric data.

b.	 They accelerate computations due to parallel processing capabilities.

c.	 They are slower than CPU tensors.

d.	 They cannot perform tensor operations.

3.	 What is the purpose of gradients in PyTorch?

a.	 They are used to create neural network layers.

b.	 They define the shape of tensor dimensions.

c.	 They optimize neural network parameters during training.
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d.	 They are used for GPU computations.

4.	 Which component of PyTorch is responsible for automatic differentiation?

a.	 Gradients

b.	 Tensors

c.	 Neural network layers

d.	 Custom layers

5.	 What do custom layers enable in PyTorch?

a.	 They allow defining new types of GPUs.

b.	 They facilitate high-level operations like matrix multiplication.

c.	 They improve tensor creation efficiency.

d.	 They enable users to create unique neural network architectures.

Answers to Multiple Questions

1. (a); 2. (b); 3. (c); 4. (a); 5. (d).
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LEARNING OBJECTIVES

After studying this chapter, you will be able to:

•	 Understand how LSTM networks generate sequence data and their 
applications.

•	 Know the importance of sampling strategy in text generation using LSTM 
models.

•	 Understand the principles and process of neural style transfer using convnets.

•	 Understand the roles of content and style loss in neural style transfer.

•	 Understand the principles of image generation using variational autoencoders 
(VAEs).

•	 Learn the concept of latent spaces and how they enable image editing.

Generative Deep 
Learning6

CHAPTER

KEY TERMS FROM THIS CHAPTER 
Concept vector				    Generative adversarial networks (GAN)

Language model				    Latent space

LSTM (Long short-term memory)		 Neural style transfer

Recurrent neural networks (RNN)	 Sequence data generation

Softmax temperature			   Variational Autoencoders (VAE)
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UNIT INTRODUCTION
Beyond reactive skills like operating an automobile and passive ones like object recognition, 
artificial intelligence can mimic human mental processes and even human artistic 
endeavors. When it was firstly claimed that most of the cultural content in the not-
too-distant future will be produced with significant assistance from AIs, even seasoned 
machine-learning practitioners expressed complete incredulity (Salakhutdinov, 2015). That 
was 2014, but later, the initial skepticism diminished rapidly. During the summer of 2015, 
Google’s DeepDream algorithm provided us with a fascinating display of transforming 
images into a mesmerizing blend of dog eyes and pareidolic artifacts. The following 
year, in 2016, a fascinating application, the Prisma, helped to effortlessly convert our 
photos into stunning paintings, each showcasing a unique artistic style. In the summer 
of 2016, a unique short film called Sunspring was created. The film was directed using 
a script generated by the Long Short-Term Memory (LSTM) algorithm. The algorithm 
successfully generated dialogue for the characters in the movie. Besides film, also music 
has been generated by a neural network (Sousa et al., 2021).

Admittedly, the artistic creations generated by AI thus far have been of relatively 
low quality. Artificial intelligence is still far from being able to match the creativity and 
skill of human screenwriters, painters, and composers. However, the goal was never to 
replace humans. Artificial intelligence is not meant to replace our own intelligence or 
creativity, but rather to enhance our lives and work with a different kind of intelligence. 
In various domains, particularly in creative endeavors, humans will utilize AI as a tool to 
enhance their own skills, resulting in augmented intelligence rather than solely relying 
on artificial intelligence (Goodfellow et al., 2020).

An important aspect of artistic creation involves developing high technical skills, 
which is the part of the artistic creation process that many people find unattractive or 
even unnecessary. That is where artificial intelligence comes in. The statistical structure 
can be observed in our perceptual modalities, language, and artwork. Mastering this 
framework is what deep-learning algorithms succeed in. Machine-learning models have 
the ability to grasp the underlying patterns in images, music, and stories, enabling them 
to generate new artworks that possess similar characteristics to the ones they have 
been trained on (Bian & Xie, 2021).

This unit delves into the complex concepts of artificial intelligence, specifically in 
the fields of text and image generation. This resource explores various topics related 
to generating diverse sequence data, including Generative Recurrent Networks, Text 
Generation using LSTM models, and effective sampling strategies. In addition, the 
chapter covers topics such as Variational Autoencoders for image generation, Neural 
Style Transfer, and Concept Vectors for image editing (Kallioras & Lagaros, 2020).
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6.1. TEXT GENERATION 
WITH LSTM
Let’s start with the application of recurrent neural networks for sequence data generation. 
Text generation can be used as an example, but the methods can be applied to different 
kinds of sequence data. For example, one could utilize these techniques to generate new 
music by working with sequences of musical notes. Similarly, paintings stroke can be 
generated by analyzing time series of brushstroke data, such as those recorded while 
an artist paints on an iPad (Li & Zhang, 2021).

Sequence data production has diverse applications that extend beyond the creation 
of artistic content. It has achieved success in various applications, such as utilizing 
speech synthesis and generating discourse for chat bots. Google developed the Smart 
Reply option in 2016, which used similar methods to automatically generate a variety 
of short responses for emails or text messages (Islam et al., 2019).

6.1.1. Generative Recurrent Networks Brief History
Even in the machine-learning community, relatively few people knew the initials LSTM 
by the end of 2014. Successful uses of recurrent networks for sequence data production 
only began to be acknowledged until 2016. Still, these methods have a long history, 
dating back to the development of the LSTM algorithm in 1997. In its early phases, the 
new algorithm was used to produce text character by character (Wang et al., 2017).

In 2002, Douglas Eck, a researcher working at Schmidhuber’s laboratory in Switzerland, 
conducted experiments with Long Short-Term Memory (LSTM) in the domain of music 
production. The results were really encouraging. Eck presently holds a position as a 
researcher at Google Brain, where he founded a research group named Magenta in the 
year 2016. The primary objective of Magenta is to utilize cutting-edge deep-learning 
techniques to create captivating music. Occasionally, it can take a significant amount 
of time for promising concepts to gain traction (Briot, 2021).

Alex Graves made notable advancements in the field of recurrent networks and 
their utilization in producing sequence data during the late 2000s and early 2010s. Some 
consider his 2013 research on utilizing recurrent mixture density networks to produce 
handwriting that resembles human penmanship using time series of pen positions as 
a significant breakthrough (Creswell et al., 2018).

At that moment, the use of neural networks sparked the idea of machines with the 
ability to dream, which greatly influenced the development of Keras. Graves discreetly 
included a remark in a 2013 arXiv preprint server: “Generating sequential data is the 
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closest computers come to experiencing dreams.” Years later, many 
of these advancements are now widespread, but back then, it was 
hard not to be amazed by the potential after witnessing Graves’s 
impressive demonstrations (Gui et al., 2021).

Over time, recurrent neural networks have proven to be highly 
effective in various domains such as dialogue generation, music 
generation, speech synthesis, image generation, and molecule design. 
They were even utilized to create a screenplay that was subsequently 
brought to life by a cast of live actors (Pater, 2019).

6.1.2. Process of Generating Sequence Data
When it comes to producing sequence data in deep learning, a 
commonly used method is to train a network, typically an RNN or a 
convnet, to forecast the subsequent token or tokens in a sequence. 
This is accomplished by utilizing the tokens that come before as 
input. When provided with the input “the cat is on the ma,” the 
network is instructed to forecast the target t, which represents 
the subsequent character. In the context of textual data, tokens 
typically refer to words or characters. A language model is a type 
of neural network that can accurately estimate the probability of the 
next token based on the preceding tokens. A language model is a 
representation of the fundamental structure of language, particularly 
its statistical patterns (Yang et al., 2021).

After obtaining a well-trained language model, it becomes 
possible to generate new sequences by sampling from it. This is 
achieved by supplying a starting sequence of text, referred to as 
conditioning data, and directing the model to produce the subsequent 
character or word. Multiple tokens can be generated simultaneously, 
which is quite remarkable (Soibelman & Kim, 2002). The resulting 
output is then incorporated into the input data, and this procedure 
is repeated several times, as displayed in Figure 6.1.

This loop enables the generation of sequences of varying lengths 
that accurately capture the underlying structure of the data used 
to train the model. These sequences closely resemble sentences 
written by humans. In the example provided in this section, we will 
explore the usage of an LSTM layer. It will be trained to predict the 
following character, N + 1, by feeding it strings of N characters taken 
from a text corpus. The output of the model will be a probability 
distribution for the next character, which is a softmax over all 
possible characters. The name “character-level neural language 
model” refers to this LSTM (Nekrutenko & Taylor, 2012).

LSTM networks 
are often used in 
text generation 
tasks because 
of their capacity 
to capture 
long-range 
dependencies 
in sequences, 
enabling the 
production of 
coherent text 
paragraphs.

Did you know?
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Figure 6.1. Illustration of generating text character by character using a language model.

Source: François Chollet, Creative Commons License.

6.1.3. The Importance of the 
Sampling Strategy
In terms of text generation, the character 
that is chosen next is quite important. 
Greedy sampling is a fundamental technique 
that involves repeatedly choosing the most 
likely character to show up next. However, 
this method leads to repetitive, foreseeable 
sequences that lack the appearance of 
cohesive language. A more interesting 
method takes slightly unexpected decisions: 
it incorporates randomness into the 
sampling process, by selecting characters 
based on their probability distribution for 
the next character (Hirzel & Guisan, 2002). 
This technique is referred to as stochastic 
sampling (remember that stochasticity refers 
to randomness in this domain).

In this scenario, if the probability of e 
being the next character is 0.3, as per the 
model, you will select it 30% of the time. It is 
important to mention that greedy sampling 
can also be viewed as sampling from a 
probability distribution. In this distribution, 
a single character is assigned a probability 
of 1, while the probabilities of all other 
characters are set to 0.

Sampling from the softmax output of 
the model is quite interesting. It enables 

the possibility of sampling even improbable 
characters, resulting in sentences that are 
more intriguing and occasionally showcasing 
creativity by generating new, authentic-
sounding words that were not present 
in the training data. However, there is a 
drawback to this approach: it lacks a method 
to regulate the level of randomness in the 
sampling procedure (Cousens et al., 2002).

What is the reason for wanting more or 
less randomness? Let’s explore a hypothetical 
situation: completely random sampling. Here, 
the next character is selected randomly from 
a uniform probability distribution, ensuring 
that each character has an equal chance of 
being chosen. This scheme demonstrates a 
significant degree of randomness; in simpler 
terms, the probability distribution linked 
to it possesses a high level of entropy. 
Obviously, it will not generate anything 
that grabs attention (Ludwig et al., 2022).

On the opposite end of the spectrum, 
greedy sampling fails to generate 
anything of interest. It lacks any element 
of randomness, resulting in a probability 
distribution with minimal entropy. Sampling 
from the probability distribution generated 
by the model’s softmax function provides 
a balanced approach between the two 
extremes. However, there are many 
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intermediate points with different levels of entropy that you may find interesting to 
explore (Franco et al., 2005).

Reducing the level of randomness in the generated sequences can lead to a more 
structured outcome, making them appear more realistic. On the other hand, increasing 
the level of randomness can result in sequences that are more unexpected and 
imaginative. When experimenting with generative models, it is beneficial to vary the 
level of randomness in the generation process. As humans, we have the final decision 
on what we find interesting in the data generated. However, determining the level of 
interest is a subjective matter, and it is impossible to predict where the optimal point 
of entropy will be (Madrid & Zayas, 2007).

In order to control the degree of unpredictability in the sampling procedure, a 
softmax temperature parameter is incorporated. This parameter establishes the degree 
of surprise or predictability in choosing the subsequent character by calculating the 
entropy of the probability distribution used for sampling. Upon receiving a temperature 
value, a new probability distribution is computed using the original distribution, which 
is the softmax output of the model. This is accomplished by modifying the weights in 
the subsequent manner (Erbaş & Christie, 2007).

High temperatures lead to sampling distributions with increased entropy, resulting in 
more unexpected and disorganized generated data. On the other hand, data generated 
at lower temperatures is more predictable and less random (see Figure 6.2).

Figure 6.2. One probability distribution with a distinct reweighting. High temperature = more 
random; Low temperature = more deterministic.

Source: Bradley, D., Creative Commons License.
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6.2. NEURAL STYLE 
TRANSFER
Neural style transfer, an important progress in picture alteration propelled by deep 
learning, was first presented by Leon Gatys et al. in the summer of 2015. The neural 
style transfer algorithm has seen significant advancements and led to a multitude of 
versions since its initial release. As a result, it has become a popular feature in various 
smartphone photo applications. To maintain simplicity, this section will focus exclusively 
on the formulation described in the original publication (Jing et al., 2019).

Neural style transfer is the process of applying the artistic style of a reference image 
to a target image, while maintaining the original content of the target image. This is 
an example shown in Figure 6.3.

Figure 6.3. Illustration of style transfer example.

Source: D. Koller, Creative Commons License.

Within this context, style refers to the complex details such as colors, textures, and 
visual patterns found in the image, observed at different spatial scales. On the other 
hand, content refers to the overall macrostructure of the image at a higher level. As an 
example, the artistic style shown in Figure 6.4 (featuring Starry Night by Vincent Van 
Gogh) is characterized by blue-and-yellow circular brushstrokes, while the Tübingen 
photograph showcases buildings as its subject matter (Singh et al., 2021).

The concept of style transfer, closely linked to texture generation, has been a 
topic of interest in the image-processing community for a long time before the born of 
neural style transfer in 2015. However, the recent advancements in deep learning have 
revolutionized style transfer, surpassing the capabilities of traditional computer-vision 
techniques. This has sparked a remarkable surge in creative applications of computer 
vision (Cai et al., 2023).

The fundamental concept behind implementing style transfer is the core principle 
of all deep-learning algorithms: defining a loss function to specify the desired outcome 
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and minimizing this loss. You have a clear goal in mind: preserving the essence of the 
original image while incorporating the artistic style of the reference image (Han et al., 
2018). If content and style could be precisely defined mathematically, then the ideal 
loss function to minimize would be as follows:

In this context, distance is considered a standard or typical expectation. The L2 norm 
is a mathematical function that measures the magnitude of a vector. In the context of 
image analysis, “content” refers to a function that examines an image and produces a 
representation of its visual information, while “style” refers to a function that examines 
an image and produces a representation of its artistic characteristics (Cheng et al., 2019).

By reducing this loss, the generated image adopts a style that closely resembles 
the reference image, while preserving the original content of the generated image. This 
enables us to accomplish the intended style transfer, in accordance with our criteria 
(Virtusio et al., 2021).

Gatys made a fundamental observation that deep convolutional neural networks 
provide a mathematical definition for style and content functions. Let’s explore.

6.2.1. The Content Loss
It is well-known that activations from lower layers in a network provide specific information 
about the image, but activations from higher layers contain broader and more conceptual 
information. Put simply, convolutional neural networks (convnet’s)  layers break down 
the image into different spatial scales through their activations. Therefore, it is expected 
that the higher layers in a convnet would capture the broader and more conceptual 
aspects of a picture (Hayn, 1995).

Finding the L2 norm between a higher layer in a pretrained convolutional neural 
network’s activations is one potential solution for content loss. This is done by comparing 
the activations of the target image with those of the generated image. Ensuring that, 
when observed from the higher layer, the produced image will bear resemblance to 
the initial target image. If we consider that the higher layers of a convnet accurately 
represent the content of the input images, then this method effectively preserves the 
image content (Lyzwinski, 2014).

6.2.2. The Style Loss
While the style loss, as defined by Gatys, makes use of many layers of a convolutional 
neural network, the content loss only requires one higher layer. The goal of the style 
loss is to accurately capture the visual attributes of the style reference image at various 
spatial scales extracted by the convolutional neural network, rather than only emphasizing 
one scale. Gatys uses the Gram matrix of a layer’s activations to calculate the style 
loss. The Gram matrix is obtained by taking the dot product of the feature maps of a 



GENERATIVE DEEP LEARNING 147
specific layer (Jiang et al., 2021). The inner 
product serves as a means for showing 
the interrelationships among the features 
of the layer. The feature correlations in 
question capture statistical information 
about the patterns observed at a particular 
spatial scale. These patterns are known to 
correspond to the visual textures that are 
present at this scale, as observed through 
empirical evidence.

As a result, the style loss concentrates 
on preserving internal linkages that are 
consistent between the generated image 
and the style-reference image’s activations 
of different layers. This guarantees that 
the textures that are present at different 
spatial scales appear consistently in the 
style-reference image and the generated 
image (Ye et al., 2020).

In short, a pre-trained convnet can be 
utilized to establish a loss function that 
achieves the following objectives:

•	 To maintain the integrity of the 
content, it is important to maintain 
constant high-level layer activations 
between the target content image 
and the generated image. It is 
crucial for the convolutional neural 
network (convnet) to accurately 
recognize that both the target 
picture and the produced image 
contain the same content.

•	 Maintain comparable correlations 
between activations for both lower-
level and higher-level layers to 
ensure consistency. The generation 
of the image and the style-reference 
image must have comparable 
textures at different spatial scales 
to effectively capture feature 
correlations (Liu et al., 2021).

Now, let ’s  analyze a Keras 
implementation of the neural style transfer 

technique from 2015. It is somewhat similar 
to the DeepDream implementation described 
in the previous section, as you will see.

6.2.2.1. Transfer of Neural Styles in Keras

Any pre-trained convnet can be used to 
implement neural style transfer. Here, you 
will utilize Gatys’s VGG19 network.

This is the standard procedure:

•	 Develop a network that can 
efficiently compute VGG19 layer 
activations for the target image, 
style-reference image, and 
generated image simultaneously.

•	 Use the layer activations calculated 
from these three photos to define the 
previously described loss function. 
The objective is to decrease this 
function in order to achieve style 
transmission.

•	 Implement a gradient-descent 
algorithm to minimize the loss 
function (Ma et al., 2024).

First, let’s define the paths to the target 
image and the style-reference image. You’ll 
eventually resize all the processed photos 
to a shared height of 400 pixels to ensure 
that they are all roughly the same size 
(large size differences make style transfer 
more challenging).

For loading, preparing, and post 
processing the pictures that enter and exit 
the VGG19 convolutional neural network, 
you require a few auxiliary functions.
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Let’s configure the network for VGG19. It receives three input images: the style 
reference image, the target image, and a placeholder that contains the generated image. 
A placeholder is a symbolic tensor that uses Numpy arrays to receive values from 
outside sources. The created picture’s placeholder variables will change over time, but 
the target image and style-reference stay constant and are therefore defined using K 
constant (Zhou et al., 2022).

Now let’s determine the content loss, which will ensure that the generated image 
and the target image are seen similarly by the top layer of the VGG19 convolutional 
network.

The lack of style comes next. The Gram matrix of an input matrix, which depicts 
the correlations discovered in the original feature matrix, is computed using an auxiliary 
function (Jackson et al., 2019).
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Furthermore, an additional loss component, known as the total variation loss, is 
included. This loss operates on the individual pixels of the resulting combination image. 
It enhances the spatial coherence in the resulting image, hence preventing highly 
pixelated results. One approach to understanding it is as a type of regularization loss.

These three losses are combined and given different weights to determine the 
overall loss to minimize. For calculating the content loss, only the block5_conv2 layer 
is utilized as the upper layer. However, when it comes to calculating the style loss, a 
range of layers, including both low-level and high-level levels, are used. Lastly, the total 
variation loss at the end is included (Barzilay et al., 2021).

To fine-tune the content loss’s contribution to the overall loss, the content weight 
coefficient should be modified based on the style-reference image and content picture 
under use. The desired content will appear more prominently in the final image if the 
content is given a higher weight.
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At last, the gradient-descent process will be established. In the original Gatys et al. 
paper, the optimization process is carried out using the L-BFGS algorithm, which will 
be utilized in this case as well. Although the L-BFGS algorithm is readily available in 
SciPy, it is worth noting that there are a couple of minor drawbacks associated with 
the implementation in SciPy:

•	 It is necessary to provide two different functions: one for the value of the loss 
function and another for the value of the gradients.

•	 This method can only be used with two-dimensional vectors, while you have 
a three-dimensional image array.

Computing the value of the loss function and the value of the gradients separately 
would be wasteful due to unnecessary computation. This would result in a nearly twofold 
decrease in speed compared to computing them together. To address this problem, a 
Python class called Evaluator is created that efficiently computes both the loss value 
and the gradients value. Upon the initial invocation of the class, it will provide the loss 
value and subsequently maintain the gradients for next invocations (Olson et al., 2021).

Finally, SciPy’s L-BFGS algorithm can be used to carry out the gradient-ascent 
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process. After each algorithm iteration, there is a choice to save the currently generated 
image. It is worth noting that in this context, a single iteration corresponds to 20 steps 
of gradient ascent (Yoo et al., 2021).

Figure 6.4 depicts the resultant image. It is important to note that this approach 
essentially accomplishes image retexturing, or the transfer of textures. It is most effective 
when used with style reference images that have distinct textures and strong self-
similarity, and with content targets that do not need a lot of detail to be identifiable. 
It is generally unable to accomplish complex tasks such as translating the artistic style 
of one portrait to another. The method exhibits a greater resemblance to classical 
signal processing rather than artificial intelligence; hence it should not be anticipated 
to function miraculously.

Figure 6.4. Illustration of iterative image.

Source: Behnke, S., Creative Commons License.

In addition, it is worth mentioning that the execution time of this style-transfer 
algorithm is quite long. However, the setup’s transformation is simple and can be easily 
learned by a compact and efficient feed forward convnet, given the availability of suitable 
training data. Efficient style transfer can be accomplished by initially investing significant 
computational resources in generating training examples for a specific style-reference 
image, as described in the method outlined here. Subsequently, a simple convnet can 
be trained to acquire the ability to perform this style-specific transformation. After 
completing the necessary steps, the process of stylizing an image becomes incredibly 
fast. It simply involves performing a forward pass of a small convnet (Tripp et al., 2020).
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6.3. GENERATING IMAGES 
WITH VARIATIONAL  
AUTOENCODERS
Exploring the vast potential of creative AI, one of the most popular and successful 
applications involves sampling from a latent space of images. This process allows for 
the creation of entirely new images or the editing of existing ones, opening up exciting 
possibilities for artistic expression. It is important to understand some fundamental 
concepts related to image generation. Implementation of Variational autoencoders (VAEs) 
and generative adversarial networks (GANs), are two main approaches in this subject. 
These methods can be used with text, music, and sound among other kinds of data. 
However, the primarily focus is on the application of these techniques to images, as 
they have yielded some interesting results in practice (Cristovao et al., 2020).

6.3.1. Sampling From Latent Spaces of Images
The main concept behind image generation involves creating a compact representation 
space where each point can be transformed into a visually convincing image. 

Figure 6.5. Illustration of learning of an image latent vector space and then sampling fresh 
images from it.

Source: Belkin, M., Creative Commons License.

For GANs, the module that can accomplish this mapping is called a generator; for 
VAEs, it is called a decoder. It takes a latent point as input and outputs an image, 
which is a grid of pixels. One can take intentional or random samples of points from 
a latent space once it has been established (Vahdat et al., 2021). Then original, never-
before-seen visuals are created by mapping these points to image space (see Figure 6.5).
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Figure 6.6. Illustration of tom white created a continuous space of faces 
using VAEs.

Source: Jaitly, N., Creative Commons License.

6.3.2. Concept Vectors for Image Editing
The concept remains unchanged: when provided with a latent space 
of representations, or an embedding space, specific directions within 
the space can capture significant dimensions of variation in the 
original data. Within the context of image analysis, it is possible to 
identify a specific vector, let’s call it “s,” that represents a smile. 
This means that if we have a latent point “z” that represents a 
particular face, adding the smile vector “s” to “z” will result in a 
new latent point that represents the same face, but with a smile 
(Hu et al., 2013). After discovering a suitable vector, images can be 
altered by projecting them into a concealed space, making significant 
changes to their representation, and then projecting them back into 
image space through decoding. Concept vectors exist for a number 
of picture space variation dimensions. For example, when it comes 
to faces, there are vectors that can be used to change a male face 
into a feminine face, take off spectacles, add sunglasses, and more. 
Tom White, from Victoria University School of Design in New Zealand, 
discovered a concept vector called “smile” (Figure 6.7). This vector 
was obtained by training VAEs on a dataset of celebrity faces, 
specifically the CelebA dataset (Farbman et al., 2010).

Figure 6.7. The smile vector.

Source: Dauphin, Y. Creative Commons License.

Effective 
sampling 
strategies 
in sequence 
generation 
are crucial 
for balancing 
exploration 
(generating novel 
sequences) and 
exploitation 
(choosing 
high-quality 
sequences), 
ensuring diverse 
and meaningful 
outputs.

Remember
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ACTIVITY 6.1.
Objective: To gain practical understanding of Generative Deep Learning techniques.

Materials Needed:

•	 Python environment with TensorFlow or PyTorch;

•	 Jupyter notebook or IDE for coding.

Steps:

1.	 `Implementing LSTM for Text Generation:

•	 Use TensorFlow or PyTorch to build an LSTM model.

•	 Train the model on a small dataset (e.g., text from a book or dataset).

•	 Generate new text sequences and analyze the results.

2.	 Exploring Neural Style Transfer:

•	 Implement a basic Neural Style Transfer algorithm.

•	 Experiment with different content and style images.

•	 Discuss the impact of content loss and style loss on the generated images.
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SUMMARY

•	 The chapter explores different techniques and applications within the field. The 
exploration begins with delving into Text Generation using LSTM models and 
offers a historical perspective on Generative Recurrent Networks.

•	 The chapter highlights the significance of sampling strategies in generating 
sequence data and introduces Neural Style Transfer, explaining techniques like 
Content Loss and Style Loss. In addition, it explores the utilization of Variational 
Autoencoders to create images and explores different methods for extracting 
information from the concealed spaces of images.

•	 Finally, it concludes by exploring the use of concept vectors in image editing, 
providing valuable insights into the manipulation and editing of images using 
learned concepts.

REVIEW QUESTIONS

1.	 What is the role of LSTM models in text generation within Generative Deep 
Learning?

2.	 How has the development of Generative Recurrent Networks evolved over time?

3.	 Why sampling strategies are important in sequence generation, and what are 
some common approaches?

4.	 Explain Neural Style Transfer and the roles of content loss and style loss in 
image transformation.

5.	 How do Variational Autoencoders (VAEs) contribute to image generation in 
Generative Deep Learning?

6.	 What are concept vectors in image editing, and how are they used to manipulate 
image features?

MULTIPLE CHOICE QUESTIONS

1.	 Which architecture is commonly used for Text Generation in Generative Deep 
Learning?

a.	 LSTM

b.	 CNN

c.	 Transformer

d	 GAN

2.	 What are the primary components used in Neural Style Transfer?

a.	 Encoder and Decoder

b.	 Discriminator and Generator

c.	 Content Loss and Style Loss

d.	 Activation and Pooling Layers
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3.	 Variational Autoencoders (VAEs) are useful for:

a.	 Image classification

b.	 Image generation

c.	 Image segmentation

d.	 Image enhancement

4.	 Sampling strategies in sequence generation refer to:

a.	 Randomly selecting data points

b.	 Selecting the most probable sequences

c.	 Removing outliers from the dataset

d.	 Balancing exploration and exploitation

5.	 Concept vectors in image editing allow for:

a.	 Enhancing resolution of images

b.	 Adding new objects to images

c.	 Manipulating specific image features

d.	 Filtering noise from images

Answers to Multiple Questions

1. (a); 2. (c); 3. (b); 4. (d); 5. (c).
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After studying this chapter, you will be able to:

•	 Understand selective attention mechanisms in human vision and sensory 
processing.

•	 Understand the reinforcement learning for visual attention in computer vision 
tasks.

•	 Explore attention mechanisms in neural machine translation.

•	 Understand generative and discriminative models in machine learning.

•	 Learn the architecture and applications of GANs and DCGANs.

•	 Explore conditional GANs and their use in context-based image generation.

•	 Understand the concept and mechanism of competitive learning.
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UNIT INTRODUCTION
People do not consciously utilize all the available information from their surroundings 
at any given moment. Instead, the emphasis is placed on sections of the data that 
pertain to the current objective. This concept is known as attention, in the context of 
AI. Applications of artificial intelligence can also benefit from the integration (insertion) 
of new ideas. Attention-based models use various strategies, such as reinforcement 
learning, to concentrate on data segments that are pertinent to the assigned job. In 
recent decades, several methods have been applied to improve performance (Han et 
al., 2018).

These models have a strong connection to attention models, but they differ in that 
the attention is primarily directed towards specific parts of the stored data. One way 
to understand the process is by comparing it to the way humans access memory to 
complete specific tasks. Humans possess a vast reservoir of information stored within 
the memory cells of their brains. Nevertheless, only a fraction of the information is 
typically accessed at a time, focusing solely on the aspects that are important to the 
current task (Sadad et al., 2021).

In the same was as contemporary computers possess large memory units, computer 
programs are crafted to efficiently and systematically access this memory by utilizing 
variables as indirect addressing mechanisms. Hidden states are present in all neural 
networks, serving as a form of memory. Nevertheless, the close integration of data 
access and computations poses a challenge in terms of separation.

Through careful control of memory access and the incorporation of addressing 
mechanisms, the resulting neural network exhibits computational patterns that closely 
resemble human brain behavior. Typically, these networks exhibit superior generalization 
capabilities compared to conventional neural networks when making predictions on data 
that is not part of the training set (Zaidi & El Naqa, 2021).

One technique to pay attention to a neural network’s memory internally is by 
selective memory access. The final design is referred to as a neural Turing machine or 
memory network.

Generative adversarial networks are specifically designed to generate models of 
data by using samples. These networks can generate highly realistic samples from 
data through the utilization of two adversarial networks. A network is used to create 
artificial samples, while another network acts as a classifier to determine if the samples 
are real or synthetic (Mutasa et al., 2020).

A competitive game leads to the gradual enhancement of the generator, until the 
discriminator becomes incapable of differentiating between genuine and fake samples. 
In addition, by concentrating on a certain kind of context, such an image caption, it is 
possible to guide the creation of particular kinds of desired samples.
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Attention mechanisms frequently face the challenge of making difficult choices 

regarding which specific aspects of the data to focus on. This decision can be compared 
to the choices faced by an algorithm that uses reinforcement learning. While some 
attention-based model building strategies strongly rely on reinforcement learning, others 
do not (Jeyaraj & Nadar, 2020).

Memory networks are a class of topology closely related to neural Turing computers. 
Lately, there has been some potential in developing question-answering systems, although 
the outcomes are still in their early stages. The development of a neural Turing machine 
has the potential to unlock a multitude of unexplored possibilities in the field of artificial 
intelligence. Like in the past, the success of neural networks relies heavily on having 
access to large amounts of data and powerful computational resources (Abdullakutty 
et al., 2021).

This chapter explores advanced deep learning techniques that are essential for 
contemporary machine learning applications. The exploration starts with Attention 
Mechanisms, which have the ability to selectively enhance the performance of neural 
networks by focusing on inputs that are relevant. Next, Generative Adversarial Networks 
(GANs) will be discussed, which present an interesting framework where two networks 
engage in a competitive battle to produce real data, specifically in the context of image 
generation tasks. The unit concludes with Competitive Learning, a mechanism in which 
neurons engage in a competitive process to effectively represent patterns in data (Garg 
et al., 2021).

Figure 7.1. Illustration of resolutions in various ocular areas. Macula captures most of what we 
focus on.

Source: Charu C. Aggarwal, Creative Commons License.
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7.1. ATTENTION  
MECHANISMS
It is uncommon for individuals to utilize all their sensory inputs to complete particular 
tasks. Let’s explore the challenge of locating a specific address based on a house number 
and street name. Thus, a crucial aspect of the assignment is to determine the numerical 
value displayed on either the mailbox or the door of a residence. During this process, 
the retina frequently captures a wider view of the scene, even though our attention is 
rarely directed towards the entire image. The retina contains a small area called the 
macula, which includes a central fovea. This fovea has an exceptionally high resolution 
in comparison to the rest of the eye (Niu et al., 2021).

In this particular area, there is a significant number of cones (a photoreceptor cell) 
that are sensitive to color, while the rest of the eye, especially the outer parts, have 
lower resolution and are mainly composed of rods (a photoreceptor cell more sensitive 
to low light intensity) that are not sensitive to color. Figure 7.1 displays the various 
regions of the eye. The fovea concentrates on the numbers when searching a street 
number, and the general picture lands on a certain region of the retina that corresponds 
to the macula (and especially the fovea). While it is possible to recognize the presence 
of objects in our peripheral vision, relying on them for tasks that require attention to 
detail is extremely challenging. As an example, reading letters that are projected on 
the outer edges of the retina can be quite challenging (Guo et al., 2022).

Measuring about 1.5 mm in diameter, the foveal area is a minuscule portion of the 
overall retina. The eye efficiently transmits only a small fraction of the image’s surface 
area that reaches the retina. This approach has a clear advantage from a biological 
standpoint. It selectively transmits a small portion of the image in high resolution, 
minimizing the internal processing needed for the task at hand (Kardakis et al., 2021).

While selective attention to visual stimuli is particularly easy to grasp because to the 
structure of the eye, selectivity is not limited to visual characteristics alone. Depending 
on the circumstance, the majority of the human senses such as hearing and smell are 
frequently extremely focused. Similarly, the concept of attention in relation to computer 
vision will be discussed initially, followed by an exploration of other domains such as 
text (Brauwers & Frasincar, 2021).

One noteworthy use of attention stems from the photos taken by Google Street 
View, an amazing tool created by Google to locate online street photos in many different 
nations. For this type of retrieval, a method is needed to establish a connection between 
houses and their street numbers. Even though the street number can be captured in 
the image, it must be extracted from the image itself.

Is it possible to methodically identify the street address numbers from a large 
image of the front of a house? It is crucial to adopt a systematic approach in order to 
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effectively concentrate on specific elements 
within an image and locate the desired 
information. One of the main challenges in 
this scenario is the difficulty in pinpointing 
the relevant section of the image based 
on the available information. Therefore, 
a methodical approach is necessary for 
searching specific sections of the image 
by leveraging knowledge acquired from 
previous iterations (LIU et al., 2021).

It is helpful to take inspiration from 
the functioning of biological organisms in 
this case. Biological organisms use the 
visual clues they are focusing on to quickly 
determine where to look next to obtain what 
they seek. For example, our eyes naturally 
move to the upper left or right to find the 
street number when our attention is directed 
to the doorknob. Our learnt brain circuits 
and our past experiences have shaped this 
habit.

The goal of reinforcement learning 
techniques, which is what this iterative 
process sounds like, is to continuously learn 
from past steps what to do to obtain rewards 
(i.e., complete a job like finding the street 
number). Several uses of attention are paired 
with reinforcement learning.

The idea of attention is particularly 
applicable to natural language processing, 
as important information can often be hidden 
within long passages of text. This problem 
commonly arises in various applications like 
question answering systems and machine 
translation. In these cases, the recurrent 
neural network needs to encode the entire 
sentence into a vector of fixed length (Niv 
et al., 2015).

Because of this, it is frequently 
difficult for the recurrent neural network 
to concentrate on the crucial elements 
of the source sentence while converting 
it into the target sentence. In situations 

like this, it can be helpful to translate the 
statement by aligning the target sentence 
with pertinent parts of the source sentence. 
When constructing a particular element of 
the target sentence, attention processes are 
helpful for identifying the relevant source 
phrase parts (Choi et al., 2018).

It is worth mentioning that attention 
mechanisms can be approached from different 
perspectives, not just limited to reinforcement 
learning. Indeed, most attention techniques 
used in natural language models do not 
depend on reinforcement learning. Instead, 
they use attention to allocate varied levels 
of significance to distinct components of 
the information in a versatile manner (Yan 
et al., 2019).

7.1.1. Recurrent Models of 
Visual Attention
Reinforcement learning plays a crucial role 
in the study of recurrent models of visual 
attention, enabling researchers to direct 
their attention towards significant features 
within an image. One approach is to utilize a 
straightforward neural network to enhance 
the clarity of specific areas in an image 
that are focused on a particular point. As 
one develops a deeper comprehension of 
the image and determines the pertinent 
sections to explore, the placement may 
change over time (Guo et al., 2023).

Identifying a particular spot at a specific 
moment is referred to as a glimpse. The 
controller, a recurrent neural network, is 
used to precisely calculate the location at 
every time-stamp. In making this selection, 
the feedback from the previous time-stamp’s 
glance is taken into account. Research has 
demonstrated that when a convolutional 
neural network is used instead of a simple 
neural network, often known as a “glimpse 
network,” superior classification results can 
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be achieved when image processing is combined with reinforcement-based training 
(Spratling & Johnson, 2004).

Next, a dynamic environment where the viewable portions of the image may fluctuate 
with time-stamp t, and the image may be partially observable is explored. Starting from 
a generic picture Xt fixed in time, and later on other specialized situations. By treating 
certain neural network components as “black boxes,” the whole architecture can be 
explained in a modular fashion. Below is a description of these modular sections:

•	 Glimpse Sensor: When presented with an image, a glimpse sensor is able 
to generate a retina-like representation of the image, based on the given 
representation. The glimpse sensor is designed to work within the limitations 
of bandwidth constraints. It can only access a small, high-resolution portion of 
the image, specifically centered at . This is similar to how the eye perceives 
an image in the physical world. The resolution of an image specific location 
decreases as it moves away from the previous location . The image’s reduced 
representation is indicated by ρ (,,.). The glimpse sensor, shown in Figure 7.2’s 
top left corner, is an essential component of a broader glimpse network. Below 
is a detailed discussion of the network that follows (Osman & Samek, 2019).

Figure 7.2. Illustration of the recurrent architecture for leveraging visual attention.

Source: D. Ackley, Creative Commons License.

•	 Glimpse Network: The glimpse representation ρ (,, .) and the glimpse location  
are encoded into hidden spaces by the glimpse network, which is made up of 
the glimpse sensor and linear layers. Following that, the two are merged into 
a single concealed representation by the utilization of an additional linear layer. 
The output, , serves as the input to the  time-stamp of the hidden layer of the 
recurrent neural network. Figure 7.2 provides a partial view of the network, 
located in the lower-right corner (Le Meur et al., 2006).
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•	 Recurrent Neural Network: At every time-stamp, the recurrent neural network is 

in charge of producing the action-driven outputs that eventually result in rewards. 
The glimpse network, which incorporates the glimpse sensor as a component of 
the glance network, is a subset of the recurrent neural network. The rewards 
are linked to the network’s output activity at a specific time-stamp, referred 
to as “a

t
”. In a simple case, the reward could be the label of the object or a 

numerical value, as demonstrated in the example of Google Street view (Cox et 
al., 2022). In addition, it provides the location of a specific point in the image 
for the next time-stamp, instructing the glimpse network on where to direct its 
attention. The probability of acting at is computed as the output π (). Probability 
is often implemented using the softmax function, a widely used tool in policy 
networks. The recurrent network is trained using an objective function from 
the REINFORCE framework to maximize the expected reward over time. The 
reward for each action logπ()  is calculated by multiplying the logarithm of the 
probability of taking that action with the advantage of that action (Sussner & 
Esmi, 2011). Thus, the general strategy involves using a reinforcement learning 
technique to simultaneously learn the attention locations and actionable outputs. 
It is interesting to observe that the recurrent network’s hidden states h

t
 contain 

the encoded history of its actions. Figure 7.2 showcases the neural network’s 
overall architecture on the right-hand side. It is important to note that the 
glimpse network is an integral component of the overall architecture. This is 
because the recurrent network relies on a glimpse of the image or current scene 
to carry out computations at each time-stamp (Deco & Rolls, 2004).

7.1.2. Attention Mechanisms for Machine Translation
Machine translation often relies on recurrent neural networks, specifically those that 
utilize long short-term memory (LSTM). In the following discussion, we utilize universal 
symbols that pertain to any type of recurrent neural network, although the LSTM is 
generally the favored method in such situations. In order to simplify the explanation, 
we utilize a neural network with only one layer. This choice is also reflected in all the 
visual representations of the neural structures (Choi et al., 2018).

In real-world applications, it is common to utilize multiple layers, making it easy to 
extend the simplified explanation to scenarios with multiple layers. There are multiple 
approaches to integrating attention into neural machine translation. In this discussion, 
our main focus is on a method introduced by Luong, which presents an enhancement 
to the initial mechanism proposed by Bahdanau (Aljohany et al., 2022).

It is important to understand that there are two recurrent neural networks involved in 
this process. One network takes the source sentence and converts it into a representation 
of a fixed length. The other network then takes this representation and converts it into 
the target sentence. Therefore, this serves as a simple example of sequence-to-sequence 
learning, a commonly used technique in neural machine translation (He et al., 2021).

The source and target networks have hidden states represented by  and  respectively. 
The hidden state  corresponds to the t-th word in the source sentence, while   corresponds 
to the t-th word in the target sentence.



168 INTRODUCTION TO DEEP LEARNING

Through the use of attention-based methods, the hidden states  undergo a 
transformation to become enhanced states , with the assistance of an attention layer 
for additional processing. The attention layer plays a crucial role in enhancing the target 
hidden states by incorporating relevant information from the source hidden states. This 
integration process leads to a more refined and improved set of target hidden states 
(Zhang et al., 2018).

To effectively execute attention-based processing, the objective is to locate a source 
representation that closely aligns with the ongoing processing of the current target 
hidden state . One way to accomplish this is by creating a context vector  through the 
similarity-weighted average of the source vectors (Li et al., 2021).

					     (7.1)

 in this instance indicates the source sentence’s length. This approach to creating 
the context vector is the simpler of the multiple versions that have been covered. There 
are, nevertheless, a number of additional options, some of which have restrictions. 
There is a way to understand this weighting by considering the concept of an attention 
variable a(t, s) (Lee et al., 2021). This variable helps determine the significance of the 
source word s in relation to the target word t.

					     (7.2)

The attention vector at is a specific vector that refers to [a (t, 1), a (t, 2),... a(t, )]  It 
is specifically associated with the target word t. The vector can be seen as a collection 
of weights that represent probabilities, with a total sum of 1. Its size is determined by 
the length of the source sentence, Ts. It is apparent that the formula for Equation 7.1 
is the sum of the source hidden vectors (Nath et al., 2024), where a(t, s) represents 
the target word t’s attention weight toward the source word s. To put it differently, 
we can express Equation 7.1 in the following manner

						      (7.3)

This approach aims to find the most relevant contextual representation of the 
source hidden states for the current target hidden state. The importance of relevance 
is determined by calculating the similarity between the hidden states of the source 
and target, which is then represented in the attention vector (Liu & Chen, 2022). As a 
result, a new target hidden state , is generated by combining the information from the 
context and the original target hidden state in the following manner



ADVANCED DEEP LEARNING TECHNIQUES 169

		 (7.4)

For the final prediction, this new hidden representation  is used instead of the 
original hidden representation . Figure 7.4 shows the general design of the attention-
sensitive system. Take note of the improvements from Figure 7.3 that include an attention 
mechanism. The global attention model is the name given to this model. Because all 
source words are given a probabilistic weight and no hard decisions are made regarding 
which word is more relevant to a target word, this model is known as a soft attention 
model (Mohamed et al., 2021).

Figure 7.3. Illustration of machine translation without attention.

Source: G. Hinton, Creative Commons License.

Figure 7.4. Illustration of machine translation with attention.

Source: G. Hinton, Creative Commons License.
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7.2. GENERATIVE  
ADVERSARIAL  
NETWORKS (GANS)
Since both generative and discriminative models are utilized to create generative 
adversarial networks, we will first go over their concepts before moving on to generative 
adversarial networks. The following are these two categories of learning models:

•	 Discriminative Models: Given the feature values , discriminative models calculate 
the conditional probability P ( of the label y. Logistic regression serves as an 
example of a discriminative model (Pan et al., 2019).

•	 Generative Models: The joint probability P (represents the generative probability 
of a data instance and can be evaluated using generative models. It is crucial 
to keep in mind that the joint probability can be used in the following manner 
to use the Bayes rule to estimate the conditional probability of y given X.

( ) ( )
( )

( )
( )

, ,
|

,
z

P X y P X y
P y X

P X P X z
= =

∑ 					     (7.5) 

The generative model exemplified by the naïve Bayes classifier.

Supervised settings exclusively utilize discriminative models, while generative models 
find application in both unsupervised and supervised settings. As an example, in a 
multiclass scenario, it is possible to construct a generative model for a specific class by 
establishing a suitable prior distribution for that class. Samples from the prior distribution 
can then be used to generate class examples (Saxena & Cao, 2021).

Similarly, using a probabilistic model with a preset prior, it is possible to generate 
every single data point in the dataset from a certain distribution. In the variational 
autoencoder, this technique is frequently employed. The procedure involves choosing 
data points to serve as a prior from a Gaussian distribution, which are then used as 
input for the decoder. The objective is to produce samples that closely mirror the given 
data (Creswell et al., 2018).
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7.2.1. Generating Image Data by using GANs
GANs are often used to generate diverse image objects with different contextual 
backgrounds. Undoubtedly, the utilization of GANs for generating images is extremely 
prevalent. The generator used in the image setting is commonly known as a deconvolutional 
network. The following discusses the famous method for creating a deconvolutional 
network for the GAN. Consequently, the previously mentioned GAN is frequently 
referred to as a DCGAN. It is important to note that transposed convolution has mostly 
supplanted the phrase “de convolution” in recent years, as the former can be a little 
misleading (Wang et al., 2018).

Figure 7.5. Illustration of DCGAN Convolution architecture.

Source: L. Bottou, Creative Commons License.

Figure 7.6. Illustration of the smooth transitions of the image in each row as a resulting of 
altering the input noise.

Source: M. Arjovsky, Creative Commons License.

The decoder’s starting point is 100-dimensional Gaussian noise, which is used 
to initiate the process. Ten thousand four-by-four feature maps are created from the 
hundred-dimensional Gaussian noise. One way to accomplish this is by performing a 
matrix multiplication on the 100-dimensional input using a fully connected approach 
(Skandarani et al., 2023). The resulting output is then reshaped into a tensor. As a 
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result, the layers become shallower by half, but their lengths and widths double. For 
example, there are 512 feature maps in the second layer and 256 feature maps in the 
third layer (Lei et al., 2012).

Figure 7.7. Illustration of semantic importance of arithmetic operations on input noise.

Source: M.Arjovsky, Creative Commons License.

Nevertheless, it may seem odd to increase the length and width through convolution, 
as convolutions typically reduce the spatial map size, unless extra zero padding is 
used. Using transposed convolutions with a fractional value of 0.5 or fractionally strided 
convolutions is one method to do this. The scenario is very similar to unit strides when 
it comes to fractional strides. One way to think about it is as a convolution that takes 
place after stretching the input volume spatially. Either interpolated values or zeros can 
be inserted between rows and columns to accomplish this stretching (Han et al., 2019).

Using convolution on this input with a stride of 1 is equivalent to using fractional 
steps on the original input because the input volume has already been increased by a 
certain factor. Using pooling and unpooling techniques to control the spatial footprints 
is an additional approach to take into consideration in place of fractionally strided 
convolutions. In the case of fractionally strided convolutions, pooling and unpooling 
procedures are not required. Figure 7.5 provides an overview of the generator architecture 
in DCGAN (Sorin et al., 2020).

The images produced are highly responsive to the variations in the noise samples. 
Examples of the images generated using multiple noise samples are shown in Figure 
7.6. An interesting example can be found in the sixth row, where a room undergoes 
a gradual transformation from being windowless to having a spacious window. In the 
case of the variational autoencoder, smooth transitions are also seen. Vector arithmetic 
can be used to alter the noise samples, enabling meaningful interpretation (Maclin & 
Shavlik, 1995).

For instance, one may add the noise sample of a happy male and subtract the noise 
sample of a neutral lady from the smiling woman. The generator uses this noise sample 
to produce an image sample of a happy man. This particular situation is displayed in 
Figure 7.7.
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A convolutional neural network design has been used in the 

discriminator; however, the leaky ReLU was utilized in place of the 
ReLU. After being flattened, the discriminator’s last convolutional 
layer is sent through a sigmoid output. Both the discriminator and 
the generator did not utilize fully connected layers. Convolutional 
neural networks typically use the ReLU activation. To lessen any 
issues with the vanishing and ballooning gradient concerns, batch 
normalization was applied (Porkodi et al., 2023).

7.2.2. Conditional Generative Adversarial 
Networks
An additional input entity has an impact on both the discriminator 
and the generator in conditional adversarial generative networks 
(CGANs). This object has the ability to assume various forms, such 
as a caption, a label, or even another object that belongs to the same 
category. Usually, the input comprises of pairs of desired objects 
and their corresponding contexts. Usually, the contexts have some 
domain-specific relationship to the target objects that the model 
learns (Wang et al., 2018).

A setting like “smiling girl,” for example, would bring up a 
picture of a happy girl. It is vital to remember that the CGAN can 
produce a wide range of images for smiling girls, with the exact 
choice being determined by the noise input value. Therefore, using 
its imagination and ingenuity, the CGAN is able to generate a 
universe of target things (Zhang et al., 2019).

Generative 
Adversarial 
Networks (GANs) 
consist of two 
neural networks 
generator and 
discriminator that 
compete against 
each other to 
produce realistic 
synthetic data, 
such as images.

Remember
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Figure 7.8. Illustration of various forms of conditional generators for adversarial networks. The 
examples are purely illustrative and should not be considered as an actual output from a CGAN.

Source: M. R. Caruana, Creative Commons License.

Various kinds of conditional generators for adversarial networks are shown in Figure 
7.8. The samples do not represent actual CGAN output; rather, they are simply illustrative 
in nature. The generator has the potential to produce stable objects regardless of the 
noise input. The range of target objects becomes more limited, while the context becomes 
more complex compared to the desired output. Consequently, it often happens that the 
modeled objects are more complex than the surrounding inputs. For example, it is more 
customary for the object to be a picture and the context to be a caption, rather than 
the reverse. However, both scenarios are theoretically possible (Aggarwal et al., 2019).

Figure 7.8 showcases various examples of conditioning in conditional GANs. The 
context is crucial in providing the necessary input for the conditioning process. Typically, 
the context can be of any object data type, while the resulting output can be of a 
different data type. One of the most interesting applications of CGAN involves situations 
where the context is relatively simple (such as a caption) compared to the complex 
generated output (such as an image) (Souibgui & Kessentini, 2020).

When faced with such situations, CGANs demonstrate a notable ability to generate 
imaginative solutions to complete incomplete information. The specific details may vary 
based on the noise input provided to the generator. Here are a few examples of object-
context pairs:

Labels can be assigned to each object. The label serves as the conditioning factor 
for generating images. For example, in the MNIST dataset, the conditioning variable can 
take on values between 0 and 9, representing the labels. The generator is responsible 
for producing an image that matches the given conditioning, specifically a digit. 
Similarly, when working with an image data set, you can use a label like “carrot” to 
represent the desired condition, and the expected result would be an image displaying 
a carrot. In the initial research on conditional adversarial nets, the experiments yielded 
a 784-dimensional representation of a digit by utilizing a label that ranged from 0 to 9 
(Douzas & Bacao, 2018). The type of the target object and its context may be the same, 
but the context’s information content may differ from the target objects. As an example, 
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consider a scenario where a sketch of a 
purse created by a human artist is compared 
to a photograph of the same purse, but with 
every complex detail added. Here’s another 
example: Imagine a criminal suspect drawn 
by an artist, with the target object derived 
from the subject’s real photo. This situation 
offers some background information for 
comprehending the generator’s output 
(Oliveira et al., 2018).

The objective is to utilize a provided 
sketch to create a range of real samples 
with carefully filled-in details. An example 
is shown in the upper section of Figure 
7.8. When working with complex depictions 
of contextual entities, like photographs or 
textual sentences, it may be essential to 
transform them into a multidimensional 
representation using an encoder. This 
allows for the fusion of multidimensional 
Gaussian noise. An encoder can take 
different forms depending on the context. 
For image context, it may be a convolutional 
network, while for text context, it could be 
a recurrent neural network or a word2vec 

model (Luo et al., 2021). Every object can 
be linked to a written description, such 
as an image paired with a caption, which 
gives it additional meaning. The caption 
serves as the foundation for the object’s 
characteristics. The concept is that by 
offering a context such as “blue bird with 
sharp claws,” the generator is expected to 
produce a fantasy image that accurately 
portrays this description (Guo et al., 2019). 
A visual representation of a happy young 
girl can be seen in Figure 7.8.

It is worth noting that an image context 
can be utilized to generate a caption using 
a GAN, as demonstrated at the bottom of 
the figure. On the other hand, it is more 
frequently observed that complicated 
objects, such as images, are created from 
simpler contexts like captions, rather than 
the other way around. The availability of 
various supervised learning methods makes 
it possible to generate simple objects, such 
as caption or labels, from complicated 
objects like images with greater accuracy 
(Ma et al., 2021).
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7.3. COMPETITIVE  
LEARNING
The learning techniques covered in this book mostly concentrate on correcting mistakes in 
the neural network by varying its weights. A different paradigm is offered by competitive 
learning, where the goal is not only to map inputs to outputs and fix mistakes. Instead, 
the neurons engage in a competitive process to determine which subset of similar input 
data they will respond to, and then adjust their weights accordingly. Consequently, 
the learning process exhibits notable differences compared to the commonly used 
backpropagation algorithm in neural networks (Grossberg, 1987).

The following is the general concept of training. When the weight vectors of an 
input and output neuron are more comparable, the activation of the output neuron 
increases. It is expected that the input and the neuron’s weight vector are of the same 
dimensionality. Using the weight vector’s and the input’s Euclidian distances to calculate 
the activation is a common technique. Greater activations occur at shorter distances. 
The output unit that activates in response to an input the highest is deemed the winner 
and is advanced toward the input (Ahalt et al., 1990).

The winner-take-all technique modifies only the neuron with the highest activation 
that emerges as the winner, leaving the other neurons unchanged. Additional variations 
of the competitive learning paradigm enable the involvement of neighboring neurons in 
the update process, as determined by predefined relationships. In addition, there are also 
mechanisms available that enable neurons to inhibit each other (Gutiérrez et al., 2019).

These regularization techniques are beneficial for learning representations with a 
certain kind of predefined structure, which is important for applications such as two-
dimensional visualization. First, we go over a basic implementation of the winner-take-all 
strategy in the competitive learning algorithm (Revilla et al., 2008).

Consider the following: an input vector (X) in dimension d, paired with the weight 
vector , which corresponds to the ith neuron in the same number of dimensions. Let’s 
look at an example where we use m neurons overall, which is typically considerably less 
than the amount of the data collection n. The following steps function by repeatedly 
taking a sample of X from the input data and performing subsequent calculations (Kaski 
& Kohonen, 1994).

•	 For every i, we calculate the Euclidean distance  If a particular neuron has the 
lowest Euclidean distance value, it is deemed the winner. It is important to 
consider that the value of | is regarded as the activation value of the ith neuron.
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•	 The following rule is applied to update the pth neuron:

( )p p pW W X Wα⇐ + − 						      (7.6) 

The learning rate in this case is α > 0. The value of α is usually 
substantially smaller than 1. Sometimes, as the algorithm advances, 
the learning rate α decreases (Yair et al., 1992).

Weight vectors are considered prototypes in competitive learning, 
just like centroids are in k-means clustering. The winning prototype is 
then adjusted slightly towards the training instance. The α parameter 
controls how much the point’s movement, , is influenced by the 
distance between the weight vector and the point (Pal et al., 1996). 
It is worth noting that k-means clustering can also accomplish similar 
objectives, although it takes a different approach. Indeed, once a 
point is assigned to the winning centroid, it gradually shifts that 
centroid closer to the training instance by a small distance during 
each iteration. Competitive learning offers a range of possibilities 
within this framework, making it suitable for unsupervised tasks 
such as clustering and dimensionality reduction (Boisot, 1995).

This is a very ambiguous activity we propose to run following 
the exercise: https://keras.io/examples/generative/conditional_gan/

Competitive 
Learning in 
neural networks 
is inspired by 
biological neurons 
competing to 
activate based 
on input stimuli, 
contributing to 
efficient pattern 
recognition 
and learning 
in artificial 
intelligence 
systems.

Did you know?
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ACTIVITY 7.1.
Objective: Explore and understand advanced deep learning techniques including Attention 
Mechanisms, Generative Adversarial Networks (GANs), and Competitive Learning.

Implement a code to generate an handwritten image of a number between 0 and 9 
from the MINST Dataset, see the following example as a guide https://keras.io/examples/
generative/conditional_gan/ from Keras.io.

Materials Needed:

•	 Access to a computer with deep learning libraries (e.g., TensorFlow, PyTorch);

•	 Internet access for research and tutorials.

Activity Steps:

•	 Introduction and Hands-on Implementation

•	 Begin with a brief introduction to Attention Mechanisms, GANs, and Competitive 
Learning, emphasizing their applications and benefits.

•	 Implement and run the GAN network code example from Keras.io and explain 
each of the steps.

•	 Allow participants to work through the code, experimenting with parameters 
and datasets.

•	 Encourage discussion among participants to share insights, challenges, and 
solutions.

•	 Conclude with a group discussion to reflect on the practical implications and 
potential future applications of these techniques.
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SUMMARY

•	 The chapter “Advanced Deep Learning Techniques” explores various important 
subjects in modern machine learning. The article explores Attention Mechanisms, 
which improve the performance of neural networks by directing their attention to 
important inputs. Applying the concept of Recurrent Models of Visual Attention 
to visual data has shown significant improvements in tasks such as object 
recognition.

•	 Attention mechanisms in machine translation enhance translations by selectively 
focusing on specific parts of sentences. Generative Adversarial Networks (GANs) 
present a framework in which two neural networks engage in a competitive 
process to produce lifelike data, particularly images. Exploring the application 
of GANs for Image Generation provides a comprehensive analysis of this topic.

•	 Conditional Generative Adversarial Networks enhance GANs by incorporating 
additional information to influence the generated outputs. Competitive Learning 
delves into models where neurons engage in a fierce competition to efficiently 
represent data patterns.

REVIEW QUESTIONS

1.	 How do Attention Mechanisms improve deep learning models?

2.	 What are Recurrent Models of Visual Attention, and how are they applied in 
computer vision?

3.	 Explain the concept and structure of Generative Adversarial Networks (GANs).

4.	 Provide a specific application where GANs are used and explain their advantages.

5.	 What distinguishes Conditional Generative Adversarial Networks (cGANs) from 
traditional GANs?

6.	 What is Competitive Learning in neural networks, and how does it contribute 
to pattern recognition?

MULTIPLE CHOICE QUESTIONS

1.	 What do Attention Mechanisms in deep learning primarily enhance?

a.	 Data preprocessing

b.	 Model regularization

c.	 Memory utilization

d.	 Input relevance selection

2.	 Recurrent Models of Visual Attention are most beneficial for improving:

a.	 Image classification

b.	 Speech recognition
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c.	 Text summarization

d.	 Object detection

3.	 Generative Adversarial Networks (GANs) consist of:

a.	 One network for generation and one for reinforcement

b.	 Two networks that compete against each other

c.	 Three networks that collaborate on image generation

d.	 A hierarchical structure of multiple networks

4.	 `What is a primary application of GANs?

a.	 Document classification

b.	 Sentiment analysis

c.	 Image generation

d.	 Regression analysis

5.	 Conditional Generative Adversarial Networks (cGANs) improve upon traditional 
GANs by:

a.	 Introducing attention mechanisms

b.	 Using reinforcement learning

c.	 Conditioning generated outputs on additional information

d.	 Applying unsupervised learning techniques

6.	 Competitive Learning in neural networks involves:

a.	 Collaboration between neurons to enhance learning speed

b.	 Neurons working independently to improve robustness

c.	 Reinforcement of synaptic connections between neurons

d.	 Neurons competing to determine which best matches the input pattern

Answers to Multiple Questions

1. (b); 2. (c); 3. (c); 4. (c); 5. (c); 6. (d).
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LEARNING OBJECTIVES

After studying this chapter, you will be able to:

•	 Comprehend the transformative impact of deep learning on natural language 
processing.

•	 Learn about syntactic parsing and Google’s SyntaxNet for NLP tasks.

•	 Understand the concept and application of distributed word representations in 
NLP

•	 Understand knowledge graph representation, completion, and embedding 
techniques NLP.

•	 Understand multimodal learning and neural models for image caption 
generation.

•	 Know the advanced techniques in automatic speech recognition using deep 
learning.

Applications of 
Deep Learning8

CHAPTER

KEY TERMS FROM THIS CHAPTER 
Deep learning (DL)				    Knowledge graphs (KG)

Long short-term memory (LSTM)		 Machine translation

Natural language processing (NLP)	 Parsing

Recurrent neural networks (RNN)	 Sequence-to-sequence models

SyntaxNet					     Word embedding’s
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UNIT INTRODUCTION
DL has changed the field of Natural Language Processing (NLP), making significant 
advancements in understanding and processing human language. DL has had a significant 
impact in this particular field, following its influence in image and audio processing. As an 
example, the majority of NLP projects conducted at Stanford University, a highly esteemed 
institution in this field, revolve around research on deep learning (Chadha et al., 2015).

Language understanding is a challenging problem in AI due to several factors. First 
of all, given that every language can include hundreds of thousands of words, it is a 
high-dimensional undertaking. Secondly, the data is skewed, meaning that certain words 
or phrases occur more frequently than others due to the zip law distribution. Thirdly, 
language data follows grammar rules with intricate structures, where even a single 
word, negation, or punctuation mark can significantly alter the meaning. Additionally, 
the meaning of words is deeply intertwined with implicit cultural assumptions. Unlike 
images, text does not possess a distinct spatial-temporal organization. Consequently, 
words that are adjacent to each other may not necessarily pertain to the same concept, 
in contrast to the interconnectedness of pixels in images (Sarikaya et al., 2014). With 
the increasing availability of a vast amount of data on the Internet, Deep Learning (DL) 
is a logical choice for addressing the various challenges associated with comprehending 
human language. Below is a list of significant issues linked to NLP:

•	 Parsing;
•	 Part of speech tagging;
•	 Translation;
•	 Text summarization;
•	 Name entity recognition (NER);
•	 Sentiment analysis;
•	 Question and answer (conversational);
•	 Topic modeling;
•	 Disambiguation.
DL enhances the precision of various challenging NLP tasks, particularly parsing, 

which involves part-of-speech tagging and translation (Li, 2018). Nevertheless, despite 
the enhanced precision, many aspects of these challenges persist, and the technology 
is not yet prepared for complete commercialization, particularly in the context of 
unconstrained conversations (Lauriola et al., 2022). Deep learning models for language 
compactly extract information encoded in training data after extensive training on a 
big amount of data. Language models, trained on movie subtitles, can produce simple 
responses to questions about the colors or facts of objects. Complex tasks like machine 
translation can be resolved by using conditional language models in conjunction with 
recent sequence-to-sequence models. Although simpler models like n-grams rely on a 
limited amount of prior words to predict the next word, they remain an essential element 
in language modeling. It has been shown by recent studies on large-scale language 
models that combining RNNs with n-grams can be quite successful because of their 
complementing features (Izbassarova et al., 2020).
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8.1. PARSING
Parsing is the process of dissecting a sentence into its individual components, such 
as nouns, verbs, adverbs, etc., and establishing the syntactic connections between 
them. This relationship is known as the parsing tree. The challenge is complex due to 
the uncertainty in potential decompositions (see Figure 8.1) that show two alternative 
methods of analyzing a sentence (Berridge & Robinson, 2003).

Figure 8.1. Illustration of two possible parsings of a sentence.

Source: Armando Vieira, Creative Commons License.

For example, there are at least two alternative dependent parses for the sentence 
“Alice drove down the street in her car.” The first fits the (true) interpretation in which 
Alice is operating her vehicle, whereas the second fits the (ludicrous but plausible) 
interpretation in which Alice is inside her vehicle. Because the preposition “in” might 
modify either drove or street, there is uncertainty. Humans use common sense to 
distinguish between these possibilities as we are aware that automobiles are not capable 
of locating streets. Information is highly tough for machines that are integrating this 
environment (Kennedy, 2016). Google has recently unveiled SyntaxNet, a cutting-edge 
solution designed to address the complex parsing problem. (The code is developed 
using TensorFlow and is available on GitHub, A sentence containing 20 to 30 words 
can exhibit a wide range of syntactic structures. Google used a cutting-edge globally 
normalized transition-based neural network model to achieve outstanding outcomes in 
part-of-speech tagging, dependency parsing, and sentence compression. The model is a 
simple feed-forward neural network that operates on a task-specific transition scheme. 
However, it is possible to attain comparable or even better levels of accuracy when 
compared to recurrent models (Fodor, 1978). A feed-forward neural network using 
SyntaxNet analyzes a sentence and produces a distribution of potential syntactical 
dependencies, or hypotheses. SyntaxNet applies an independent analysis to each word, 
evaluating many hypotheses using a heuristic search approach known as beam search. 
When new, more highly scored hypotheses arise, it discards only the most implausible 
ones. The main idea is based on a fresh demonstration of the label bias issue. Parsey 
McParseface, a SyntaxNet English language parser, is regarded as the best parser and 
has occasionally outperformed human accuracy. The service was recently extended to 
around 40 languages (Momma & Phillips, 2018).
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8.2. DISTRIBUTED  
REPRESENTATIONS
A fundamental issue in natural language processing (NLP) is the high dimensionality of 
data, which creates a vast search space and makes grammatical rule inference difficult. 
Hinton was one of the first to suggest that thick, scattered representations could be 
used to represent words. Bengio originally created this concept in the area of statistical 
language modeling. Semantics may be readily accessed and knowledge from other fields 
and even languages can be transmitted due to distributed representations (Zheng & 
Callan, 2015).

Word embedding refers to the process of learning a distributed representation for 
each word, typically in a vectorized form. Word2vec has gained significant popularity 
as a widely-used method for generating distributed word representations. This library 
offers a publicly accessible implementation of skip-gram vector representations for words, 
which is known for its efficiency.

Mikolov’s work served as the foundation for both the model and its execution. Every 
word in a sizable corpus is used as input in Word2vec, and the words that surround 
it within a specified window are used as outputs. The neural network that has been 
trained as a classifier is then fed (see Figure 8.2). Following training, it will project 
the probability that each word will truly show up in the window surrounding the focal 
word (Rissman & Wagner, 2012).

Furthermore, the authors go beyond just implementing the model by offering vector 
representations of words and phrases. These representations are obtained through 
training the model on a massive data set consisting of approximately 100 billion 
words from Google News. Vectors have the potential to be incredibly high-dimensional, 
encompassing an extensive range of words and phrases. It is worth noting that these 
vector representations have the ability to capture linear regularities in the language, 
which is very interesting (Gelder, 1992). For example, when we apply a vectorized 
word equation by subtracting “Spain” from “Madrid” and adding “France,” the result 
is “Paris.”

Word2vec is a highly popular method for solving NLP problems, often used 
after applying the bag of words (BOW) technique with the Term Frequency-Inverse 
Document Frequency (TF-IDF) trick. It is relatively simple to apply and evaluate for 
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comprehending concealed connections between words. Gensim 
is a Python implementation of Word2vec that is highly regarded 
and extensively documented. Word2vec can be utilized either with 
pre-trained vectors or taught to acquire the embeddings from the 
beginning, using a substantial training corpus, often consisting of 
millions of documents (Howard & Kahana, 2002).

Figure 8.2.. Left: The word2vec model representation of a siamese network. 
The vectorized version of the word is contained in the hidden nodes h1,…, 
hN. Right: The word2vec schematic represented by skip-gram.

Source: Bernardete Ribeiro, Creative Commons License.

Quoc Le introduced an original strategy for encoding complete 
paragraphs, using a technique similar to Word2vec. This method, 
known as Paragraph Vector, has proven to be highly effective. Every 
paragraph is associated with a vector, while each individual word 
is also associated with a vector. Next, the paragraph vector and 
word vectors are combined by either averaging or concatenating 
them. This combination is used to make predictions about the next 
word based on a given context. This functions as a memory unit 
that locates the absent part in the given context, or, to put it more 
simply, the paragraph’s subject (Hummel & Holyoak, 1997).

The context vectors are sampled from a sliding window that 
runs the length of the text paragraph and have a fixed length. 
Although it is separated from other paragraphs, the paragraph vector 
is shared by all contexts that are created from the same paragraph.

Kiros presented an innovative approach to encoding sentences 
by utilizing unsupervised learning and skip-through vectors. Within 

Distributed 
representations, 
such as word 
embeddings 
generated by 
models like 
Word2Vec or 
GloVe, capture 
semantic links 
between words 
by considering 
their contextual 
usage in 
extensive text 
corpora. These 
representations 
facilitate the 
comprehension 
and manipulation 
of language by 
deep learning 
models more 
efficiently 
compared to 
conventional 
approaches.

Remember
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a given section, the model used a recurrent network (RNN) to rebuild neighboring 
sentences. Related vector representations are created for sentences that have similar 
semantic and syntactic properties (Chrisman, 1991).

The model underwent evaluation on a range of tasks, encompassing image-sentence 
ranking, benchmark sentiment, subjectivity data sets, semantic similarity, question-type 
classification, paraphrase detection. The result was an encoder capable of generating 
robust and flexible sentence representations (Bowers, 2002).
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8.3. KNOWLEDGE GRAPHS 
AND REPRESENTATION
In artificial intelligence, reasoning about entities and their relationships is a major challenge. 
Such questions are often formulated as reasoning over knowledge representations that 
are graph-structured. The majority of earlier research on knowledge reasoning and 
representation relies on a standard pipeline that includes knowledge graph inference, 
relationship extraction, entity resolution and co-reference, and named entity recognition 
(NER). Although this procedure has the potential to be successful, it may also cause 
the errors from each component subsystem to compound (Ji et al., 2021).

Entities in a graph are linked by relations, forming a network of connections. These 
entities can also be categorized based on their relations, such as when Socrates is 
identified as a philosopher. Linked data has revolutionized the way we interlink various 
data sets in the Semantic Web. In 2012, Google introduced the concept of knowledge 
graph to explain how it uses semantic knowledge in web search. When referring to 
other online knowledge bases, such as DBpedia, this word has become increasingly 
common (Alshahrani et al., 2017).

The knowledge graph (KG), which consists of things (nodes) and their relationships 
(edges), is a complex and potent visual representation of structured data. A direct 
bipartite graph, with people in one set of nodes and movies in the other, can be used 
to illustrate a recommendation system. Similar to a weighted graph, rankings might 
be seen as advantageous. Moreover, other forms of benefits can be integrated, like 
the depiction of the text the user employed in the movie review or the tags the user 
assigned to the movie (Sowa, 1992).

Figure 8.3 shows how a typical knowledge graph (KG) is often sparse and incomplete, 
even if it may include billions of relational facts (edges) and millions of entities. The goal 
of the task known as knowledge graph completion is to populate a graph by inferring 
links between nodes based on previously established connections. The objective is to 
discover new relational facts, often known as triples (Peng et al., 2023).
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Figure 8.3. Illustration of an example of a knowledge graph.

Source: Varun Chandola, Creative Commons License.

This work could be viewed as an extension to plain text relation extraction. For 
the following reasons, knowledge graph completion is more challenging, much like link 
prediction in social network research: Knowledge graphs comprise nodes, which are 
entities with varying types and properties, and edges, which are relations of various 
kinds (not only on-off connections) in KG. Measuring the existence and nature of the 
relationship between two nodes is how the KG algorithm’s quality is assessed (Choudhary 
et al., 2021).

Two large and well-known KG databases are DBpedia and Freebase. About 50 
million nodes (entities) are connected by roughly 3 billion facts (edges) in Freebase. 
The majority of Web crawling and classification companies, including as Wolfram Alpha, 
Google, and Baidu, have solutions based on KGs (Nickel et al., 2015).
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Embedding knowledge graphs into a continuous vector space has proven to be an 

incredibly valuable technique, drawing inspiration from the power of neural networks. 
There are various methods available, including TransE and TransH, which are known for 
their simplicity and effectiveness. TransE is a model that creates vector representations 
for entities and relationships, based on Mikolov’s research (Nicholson & Greene, 2020).

The core principle underlying TransE is that the relationship between two items can 
be shown as a displacement between their embeddings. This means that when (h,r,t) 
is true, there is a relationship between the entities (see Figure 8.4). Due to certain 
limitations in TransE’s ability to model complex relationships, a new approach called 
TransH was introduced. This method allows entities to have different representations 
depending on the type of relationship they are involved in (Tiwari et al., 2021) ransH 
and TransE both assume that relations and entities are embedded in the same space.

Figure 8.4. Idea behind TransE model (head, relation, tail).

Source: Arindam Banerjee, Creative Commons License.

Since they represent relations and entities as tensors, neural tensor networks (NTNs), 
which were first proposed by R. Socher, are renowned for their increased expressiveness. 
However, they require more computational resources and do not demonstrate significant 
performance improvements compared to simpler methods (Niu et al., 2020).

Typically, there are three methods for comparing different approaches: relation type 
prediction, entity prediction, and triple prediction. Both of these aspects are assessed 
using a ranking scale, with the highest N performance being the focus (typically N=1 
and N=10). The final task involves classifying the model’s performance in distinguishing 
genuine relationships from random ones (Chen et al., 2020).

KG completion, which is the process of predicting and filling in missing information, 
has various applications, particularly in personal assistants like Google Now and Cortana. 
These techniques can assist in addressing questions related to authors and their books, 
specifically focusing on the book A from author X. Google has released an API that 
allows anyone to obtain data from its Knowledge Graph (KG). Since the shutdown 
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of Freebase in December 2014, users have the ability to find entities in the Google 
Knowledge Graph by using standard schema types thanks to the Knowledge Graph 
API. The output is provided in JSON format (Sikos & Philp, 2020).

In a recent study, H. Wuang’s RCNET technique outperformed humans in 
comprehending complicated material linked to IQ test questions. They conducted tests 
on many kinds of issues.

1.	 Analogy: Similar to how isobar is to temperature, isotherm?

•	 Atmosphere;

•	 Pressure;

•	 Wind;

•	 Current;

•	 Latitude.

2.	 Analogy II: Choose two words (one from each set of brackets) that, when 
combined with the capital words, make a sense.

•	 ACT (stage, audience, play);

•	 CHAPTER (book, verse, read).

3.	 Classification: Which one stands out as unusual?

•	 Quite;

•	 Calm;

•	 Serene;

•	 Relaxed;

•	 Unruffled.

4.	 Synonym: What word most closely resembles irrationality?

•	 Irredeemable;

•	 Intransigent;

•	 Unsafe;

•	 Nonsensical;

•	 Lost.

5.	 Antonym: What term best contrasts with “musical”?

•	 Loud;

•	 Discordant;

•	 Verbal;

•	 Lyrical;

•	 Euphonious.

These tasks can be quite challenging due to the various interpretations of words 
and the complex relationships between them. In order to address these challenges, 
the authors used a framework that aimed to enhance word embedding by taking into 
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account both the multiple meanings of words and the relationships between them (Fan 
et al., 2017) (see Figure 8.5).

Figure 8.5. Illustration of RCNET for IQ test.

Source: Antoine Bordes, Creative Commons License.

The variational graph auto-encoder (VGAE) is a framework that utilizes the variational 
auto-encoder (VAE) to perform unsupervised learning and link prediction on knowledge 
graphs (KG). The authors obtained understandable representations for undirected graphs 
through the use of latent variables.

 Using an inner product decoder and a graph convolutional network (GCN) encoder, 
the researchers were able to predict linkages in citation networks with similar results 
as compared to the DeepWalk model’s spectral clustering method. This model has the 
ability to seamlessly integrate node features, resulting in enhanced prediction performance 
(Liu et al., 2018).

Bansal recently introduced a comprehensive method for question answering that 
directly represents the elements and relationships in the text as memory slots. Instead of 
depending on an external knowledge graph, they relied on the idea that all the necessary 
information is in the text itself. This was achieved through the use of memory-based 
neural network models for language understanding (Sheth et al., 2019).

Munkhdalai introduced RelNet, an innovative method that enhances memory-
augmented neural networks by incorporating a relational memory. This enables the 
model to effectively analyze and understand the connections between various entities in 
textual data, thus enhancing its reasoning capabilities. It is a comprehensive approach 
that can access and modify information stored in memory edges and slots (Zhang et al., 
2020). The memory slots show the entities, and the edges, which are each shown as a 
vector, indicate the connections between these entities. Only by answering questions 
about the text one can get any sort of guidance (Wang et al., 2022).
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8.4. NATURAL LANGUAGE 
TRANSLATION
Translating natural language has proven to be a challenging task that has yet to find 
a satisfactory solution, despite decades of research in the field of artificial intelligence. 
Conventional deep neural networks (DNNs) face certain limitations when it comes to 
addressing this issue. One such limitation is the need for inputs and targets to be 
encoded with fixed-dimensional vectors. This poses a significant constraint when dealing 
with sequences of varying lengths (Abbaszade et al., 2021).

In addition, certain tasks, like document classification, can be effectively accomplished 
using a bag-of-words approach that disregards word order. However, in the case of 
translation, the sequence of words becomes crucial. The phrases “Virus killed by 
raging scientist” and “Scientist killed by raging virus” share the same bag-of-words 
representations (Hirschberg & Manning, 2015).

The quality of translation is evaluated by utilizing the BLEU metric, which computes 
the geometric mean of the n-gram precisions for various values of n, typically ranging 
from 1 to a designated upper limit of 4. The BLEU score takes into consideration a 
penalty for brevity in order to address the issue of very short translations that may 
have high precision (Khan et  al., 2020).

In contrast to traditional statistical machine translation, deep neural networks 
(DNNs) use a single neural network to effectively represent the probability distributions 
of both languages and optimize a translation score. Models typically transform a source 
sentence into a vector of a predetermined length using an encoder-decoder structure. A 
decoder then uses this vector to produce the matching translation (Green et al., 2015).

The best choice for processing the input sequence and condensing it into a single, 
high-dimensional vector is to use Recurrent Neural Networks (RNNs) equipped with 
Long Short-Term Memory (LSTM) units. A further LSTM then uses this vector to obtain 
the output sequence. The second LSTM depends on the input sequence, which sets it 
apart from a recurrent neural network language model.

Given the possibility of large time gaps between the inputs and their matching 
outputs, the LSTM is a perfect fit for this specific task due to its exceptional capacity 
to learn from data with complex temporal connections (Luo et al., 2021).
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Sutskever (2014) used RNNs with long short-term memory (LSTM) units to produce 

remarkable results. In an English-to-French translation challenge, this method performed 
better than the traditional phrase-based machine translation system. The network was 
made up of two models: the first LSTM, which was an encoding model, and the second 
LSTM, a decoding model. They used a technique called stochastic gradient descent 
without incorporating momentum. Additionally, they made the decision to reduce the 
learning rate by half twice during each epoch, but only after the initial five epochs 
(Khurana et al., 2023). The approach demonstrates exceptional performance, surpassing 
the top-performing neural network NLP systems and achieving results on par with the 
best published outcomes of non-neural network approaches, even those that incorporate 
explicit domain expertise. Their system received a BLEU score of 36.5 when it was used 
to review candidate translations from another system.

The implementation required the use of eight GPUS, and the training process lasted 
for a duration of ten days. Each layer of the LSTM was allocated its own GPU, while an 
extra four GPUs were dedicated only to the computation of softmax. With 1,000 nodes 
in each of the LSTM’s hidden layers, the implementation was created in C++. There 
were 160,000 words in the input vocabulary and 80,000 words in the output vocabulary. 
Weights were randomly initialized, and their values were limited to a specific range 
(Alarifi & Alwadain, 2020). For the English-to-French translation challenge, Bahdanau 
used auto-encoders and a variable-length encoding mechanism to obtain translation 
performance close to the current state-of-the-art phrase-based system (Figure 8.6). (The 
weighted geometric average of the probability inverses is called perplexity.)

( ) ( )logxp x
e p x∑  

Figure 8.6. Illustration of the accuracy of the BLEU score for translation using sequence to 
sequence as a function of the duration of the sentence. Note the stability of model when dealing 
with long sentences.

Source: Simply, Creative Commons License.
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The Google team has released a comprehensive document outlining the implementation 
of their new machine translation algorithm, which launched in November 2016. The 
system operates at the character level and makes use of bi-directionally stacked Long 
Short-Term Memory (LSTM) units with attention mechanisms. It follows the traditional 
encoder-decoder structure (Herzog & Wazinski, 1994).

The implementation is done using TensorFlow, and the team asserts that it achieves 
a level of translation performance that is comparable to that of humans. This holds true 
for various language pairs, including English to French, Spanish, and even Chinese, 
even when dealing with lengthy sentences. One limitation is that it can only translate 
individual sentences, making it unable to provide context for the entire document (Ali, 
2016). Take a look at the original paper titled “Google’s Neural Machine Translation 
System: Bridging the Gap between Human and Machine Translation.”
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8.5. MULTIMODAL  
LEARNING AND Q&A
The computer vision and natural language processing (NLP) field are becoming more 
closely connected. For example, the task of generating captions is far more challenging 
compared to tasks such as image categorization or object recognition. In addition to 
precisely describing the things in the image, the caption should also explain any activities 
or interactions between them.

A recent study has made significant progress in automatically generating detailed 
descriptions of images using natural language. Vinyals presents a model that utilizes a 
neural network to handle both image processing and language generation in a seamless 
manner. It produces coherent sentences in a human-like manner based on an input 
image. Check out “Show and Tell: A Neural Image Caption Generator.” They were able 
to attain BLEU scores that were equivalent to those achieved by people on the COCO 
and Flickr datasets (Hannan et al., 2020).

In addition, modern approaches to natural language processing have been able to 
grasp the meaning of language by connecting it to the visual domain. The relationship 
between words and the interpretation of phrases can be likened to the relationship 
between images and words. Captions can be viewed as abstract representations of 
visuals. The latest methods for solving the image-caption, entailment, and hypernym 
problems entail creating distributed representations, or embeddings, from images or 
words. This efficient technique maps similar things to neighbor locations in a high-
dimensional embedding space. Images are retrieved from text using a metric (typically 
the cosine), and vice versa.

With Vendrov’s order-embedding technique, users can learn a mapping that retains 
order instead of distance in the embedding space, allowing them to take advantage of 
the partial-order structure of the visual-semantic hierarchy (Uppal et al., 2022).

The study demonstrated that order-embedding achieves exceptional outcomes in 
hypernymy prediction and caption-image retrieval, as well as delivering impressive 
performance in natural language inference. They conducted experiments using the 
Microsoft COCO data set, which consisted of over 120,000 images. Each image was 
accompanied by a minimum of five human-annotated captions.

They achieved a top one/top ten accuracy of 23.3 percent/65.0 percent in caption 
retrieval and 18.0 percent/57.6 percent in picture retrieval (Yuan et al., 2020).
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8.6. SPEECH  
RECOGNITION
Voice to text translation is referred to as automatic speech recognition (ASR) difficulty. 
It is an old machine learning problem that was difficult to resolve using conventional 
methods that depended on Markov chain processes (Gaikwad et al., 2010).

The data sets Switchboard and TIMIT serve as the reference standards for this 
problem. TIMIT comprises high-quality recordings of 630 speakers representing eight 
prominent dialects of American English. Each speaker reads ten sentences that are 
phonetically dense. Every utterance in the TIMIT corpus has a 16-bit, 16 kHz speech 
waveform file along with time-aligned phonetic, orthographic, and word transcriptions.

The initial use of deep belief networks (DBNs) to the TIMIT data set yielded an 
accuracy rate of approximately 23%. Currently, the utilization of a DBN with post-
regularization on the final layer yields an accuracy level of 16.5%. Many mobile applications 
now heavily depend on voice recognition due to its exceptional accuracy (Abdel-Hamid 
et al., 2014).

Graves revolutionized the field by using a cutting-edge technique known as deep 
bidirectional LSTM, which yielded an impressive 17.7 percent error rate reduction in 
the TIMIT database. They utilized a comprehensive approach to accurately translate 
sequences using recurrent neural networks. These methods remove the requirement of 
presegmenting the acoustic data by directly enhancing the probability of the desired 
sequence using the input sequence. With the help of the auditory training data, they 
are able to acquire an implicit language model.

Recently, an ASR model for text-to-voice translation was proposed by a Baidu 
team. Deep learning substitutes a single neural model for feature extraction modules, 
improving the algorithm’s performance. In a number of languages, the Deep Speech 2 
algorithm comes close to human accuracy. End-to-end deep learning using a bidirectional 
RNN that was trained in both clean and noisy settings forms the basis of this system 
(Morgan & Bourlard, 1995).

11,940 hours of Mandarin speech and 9,400 hours of English speech were used to 
train the speech system. During training, the data was enhanced through the use of 
data synthesis. Tens of exaFLOPs are needed to train a single model at these scales, 
and executing them on a single GPU would take three to six weeks (Malik et al., 2021).

Microsoft revealed a new algorithm in August 2017 that brought the industry-
standard Switchboard test’s error rate down to 5.1% for accurate audio transcription. 
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On the other hand, a single human transcriptionist makes 5.9% of errors on average. 
It made use of both bidirectional LSTM and CNNs.

However, a Temple study shows that Google leads in the accuracy of voice-activated 
personal assistants. See Figure 8.7.

Figure 8.7. Illustration of the accuracy of several personal assistants.

Source: Nicolas Usunier, Creative Commons License.

DeepMind has recently made a release WaveNet is a remarkable product that excels 
in voice synthesis, commonly known as text-to-speech (TTS) or speech synthesis. It 
offers exceptional quality in this process. Conventional models depend on concatenative 
TTS, which involves recording numerous short speech fragments from one speaker and 
then combining them to create full utterances. WaveNet meticulously recreates the 
audio signal’s raw waveform, producing surprisingly natural speech. WaveNet has the 
capability to effectively model a wide range of audio, encompassing various genres 
such as music (Lippmann, 1997).
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ACTIVITY 8.1.
Objective: Explore practical applications of deep learning in natural language processing 
(NLP).

Activity Steps:

•	 Introduce parsing, distributed representations, knowledge graphs, translation, 
multimodal learning, QA systems, speech recognition, and pooling.

•	 Explore the experiment code for text classification, which is found here: https://
keras.io/examples/nlp/text_classification_from_scratch/.

•	 Divide into groups, analyze and explain each step in the code, and test it with 
new examples. Share findings, discuss challenges, and ethical implications.
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SUMMARY

•	 The chapter delves into the main methodologies and advancements in these 
fields. The discussion starts with an exploration of parsing techniques, which 
entail the analysis of language structures through the use of deep learning 
models.

•	 The next section explores the distributed representations, showcasing their 
remarkable ability to capture semantic relationships within language data. It 
discusses the concept of knowledge representation using graphs and highlights 
the role of deep learning in organizing and retrieving complex networks.

•	 The chapter additionally discusses natural language translation, highlighting the 
impact of deep learning models on machine translation tasks. Topics such as 
multimodal learning and question answering systems are addressed. It delves 
into the complexities of speech recognition techniques, with a particular focus 
on how deep learning can be used to enhance the precision and speed of 
converting spoken language into written text.

REVIEW QUESTIONS

1.	 What is parsing in natural language processing, and how do deep learning 
techniques enhance it?

2.	 How do distributed representations benefit natural language understanding? 
Provide a brief example.

3.	 Explain the role of knowledge graphs in deep learning for natural language 
processing.

4.	 How has deep learning transformed machine translation? Provide a key 
improvement.

5.	 Describe the concept of multimodal learning in the context of AI.

MULTIPLE CHOICE QUESTIONS

1.	 Which deep learning technique is primarily used for syntactic analysis of language 
structures?

a.	 Knowledge representation

b.	 Distributed representations

c.	 Parsing

d.	 Multimodal learning

2.	 What is the primary benefit of distributed representations in natural language 
processing?

a.	 Improved syntactic analysis

b.	 Efficient knowledge retrieval
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c.	 Capturing semantic relationships

d.	 Enhancing speech recognition

3.	 In which application does deep learning often employ knowledge representation 
using graphs?

a.	 Natural language translation

b.	 Speech recognition

c.	 Question answering systems

d.	 Knowledge retrieval

4.	 Which task involves the use of deep learning models to convert spoken language 
into text?

a.	 Parsing

b.	 Multimodal learning

c.	 Speech recognition

d.	 Distributed representations

5.	 What is the primary role of pooling operations in deep learning for natural 
language processing?

a.	 Enhancing feature extraction

b.	 Improving syntactic analysis

c.	 Optimizing knowledge representation

d.	 Enabling multimodal learning

Answers to Multiple Questions

1. (c); 2. (c); 3. (d); 4. (c); 5. (a).
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