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ABOUT THIS BOOK

Several excellent books have been published over the past

decade on Deep Learning (DL) and Datacenter Networking.

However, I have not found a book that covers these topics

together—as an integrated deep learning training system—

while also highlighting the architecture of the datacenter

network, especially the backend network, and the demands it

must meet. �is book aims to bridge that gap by o�ering insights

into how Deep Learning workloads interact with and influence

datacenter network design.



SO, WHAT IS DEEP LEARNING?

Deep Learning is a subfield of Machine Learning (ML), which

itself is a part of the broader concept of Artificial Intelligence

(AI). Unlike traditional so�ware systems where machines follow

explicitly programmed instructions, Deep Learning enables

machines to learn from data without manual rule-setting.

At its core, Deep Learning is about training artificial neural

networks. �ese networks are mathematical models composed

of layers of artificial neurons. Di�erent types of networks suit

di�erent tasks—Convolutional Neural Networks (CNNs) for

image recognition, and Large Language Models (LLMs) for

natural language processing, to name a few.

Training a neural network involves feeding it labeled data and

adjusting its internal parameters through a process called

backpropagation. During the forward pass, the model makes a

prediction based on its current parameters. �is prediction is

then compared to the correct label to calculate an error. In the

backward pass, the model uses this error to update its

parameters, gradually improving its predictions. Repeating this

process over many iterations allows the model to learn from the

data and make increasingly accurate predictions.



WHY SHOULD NETWORK ENGINEERS CARE?

Modern Deep Learning models can be extremely large, o�en

exceeding the memory capacity of a single GPU or CPU. In these

cases, training must be distributed across multiple processors.

�is introduces the need for highspeed communication between

GPUs—both within a single server (intranode) and across

multiple servers (inter-node).

Intra-node GPU communication typically relies on high-speed

interconnects like NVLink, with Direct Memory Access (DMA)

operations enabling e�cient data transfers between GPUs.

Inter-node communication, however, depends on the backend

network, either InfiniBand or Ethernet-based. Synchronization

of model parameters across GPUs places strict requirements on

the network: high throughput, ultralow latency, and zero packet

loss. Achieving this in an Ethernet fabric is challenging but

possible.

�is is where datacenter networking meets Deep Learning.

Understanding how GPUs communicate and what the network

must deliver is essential for designing e�ective AI data center

infrastructures.





WHAT THIS BOOK IS—AND ISN’T

�is book provides a theoretical and conceptual overview. It is

not a configuration or implementation guide, although some

configuration examples are included to support key concepts.

Since the focus is on the Deep Learning process, not on

interacting with or managing the model, there are no chapters

covering frontend or management networks. �e storage

network is also outside the scope. �e focus is strictly on the

backend network.

�e goal is to help readers—especially network professionals—

grasp the “big picture” of how Deep Learning impacts data

center networking.



ONE FINAL NOTE

In all my previous books, I’ve used font size �� and single line

spacing. For this book, I’ve increased the font size to �� and the

line spacing to �.��. �is wasn’t to add more pages but to make

the reading experience more comfortable. I’ve also tried to

ensure that figures and their explanations appear on the same

page, which occasionally results in some white space.

I hope you find this book helpful and engaging as you explore

the fascinating intersection of Deep Learning and Datacenter

Networking.



HOW THIS BOOK IS ORGANIZED



PART I – CHAPTERS �-8: DEEP LEARNING AND

DEEP NEURAL NETWORKS

�is part of the book lays the theoretical foundation for

understanding how modern AI models are built and trained. It

introduces the structure and purpose of artificial neurons and

gradually builds up to complete deep learning architectures and

parallel training methods.

Artificial Neurons and Feedforward Networks (Chapters � - �)

�e journey begins with the artificial neuron, also known as a

perceptron, which is the smallest functional unit of a neural

network. It operates in two key steps: performing a matrix

multiplication between inputs and weights, followed by

applying a non-linear activation function to provide an output.

By connecting many neurons across layers, we form a

Feedforward Neural Network (FNN). FNNs are ideal for basic

classification and regression tasks and provide the stepping

stone to more advanced architectures.

Specialized Architectures: CNNs, RNNs, and Transformers

(Chapters � - �)

A�er covering FNNs, this part dives into models designed for

specific data types:



•    Convolutional Neural Networks (CNNs): Optimized for

spatial data like images, CNNs use filters to extract local

features such as edges, textures, and shapes, while keeping

the model size e�cient through weight sharing.

•    Recurrent Neural Networks (RNNs): Designed for

sequential data like text and time series, RNNs maintain a

hidden state that captures previous input history. �is

allows them to model temporal dependencies and context

across sequences.

•    Transformer-based Large Language Models (LLMs):

Unlike RNNs, Transformers use self-attention mechanisms

to weigh relationships between all tokens in a sequence

simultaneously. �is architecture underpins state-of-the-art

language models and enables scaling to billions of

parameters.

Parallel Training and Scaling Deep Learning (Chapter �)

As models and datasets grow, training them on a single GPU

becomes impractical. �is section explores the three major

forms of distributed training:

•    Data Parallelism: Each GPU holds a replica of the model

but processes di�erent mini-batches of input data.

Gradients are synchronized at the end of each iteration to

keep weights aligned.

•    Pipeline Parallelism: �e model is split across multiple

GPUs, with each GPU handling one stage of the forward and



backward pass. Micro-batches are used to keep the pipeline

full and maximize utilization.

•    Tensor (Model) Parallelism: Very large model layers are

broken into smaller slices, and each GPU computes part of

the matrix operations. �is approach enables the training of

ultra-large models that don't fit into a single GPU's memory.



PART II – CHAPTERS � – ��: AI DATA CENTER

NETWORKING

�is part of the book focuses on the network technologies that

enable distributed training at scale in modern AI data centers. It

begins with an overview of GPU-to-GPU memory transfer

mechanisms over Ethernet and then moves on to congestion

control, load balancing strategies, network topologies, and GPU

communication collectives.

RoCEv� and GPU-to-GPU Transfers (Chapter �)

�e section starts by explaining how Direct Memory Access

(DMA) is used to copy data between GPUs across Ethernet using

RoCEv� (RDMA over Converged Ethernet version �). �is

method allows GPUs located in di�erent servers to exchange

large volumes of data without CPU involvement.

DCQCN: Data Center Quantized Congestion Notification

(Chapters �� - ��)

RoCEv�’s performance depends on a lossless transport layer,

which makes congestion management essential. To address this,

DCQCN provides an advanced congestion control mechanism. It

dynamically adjusts tra�c flow based on real-time feedback

from the network to minimize latency and packet loss during

GPU-to-GPU communication.



•    Explicit Congestion Notification (ECN): Network switches

mark packets instead of dropping them when congestion

builds. �ese marks trigger rate adjustments at the sender to

prevent overload.

•    Priority-based Flow Control (PFC): PFC ensures that

tra�c classes like RoCEv� can pause independently,

preventing bu�er overflows without stalling the entire link.

Load Balancing Techniques in AI Tra�c (Chapter ��)

In addition to congestion control, e�ective load distribution is

critical for sustaining GPU throughput during collective

communication. �is section introduces several techniques used

in modern data center fabrics:

•    Flow-based Load Balancing: Assigns entire flows or

flowlets to paths based on real-time link usage or hash-based

distribution, improving path diversity and utilization.

•    Flowlet Switching: Divides a flow into smaller time-

separated bursts ("flowlets") that can be load-balanced

independently without reordering issues.

•    Packet Spraying: Distributes packets belonging to the

same flow across multiple available paths, helping to avoid

link-level bottlenecks.

AI Data Center Network Topologies (Chapter ��)

Next, the section discusses design choices in the East-West

fabric—the internal network connecting GPU servers. It



introduces topologies such as:

•    Top-of-Rack (ToR): Traditional rack-level switching used

to connect servers within a rack.

•    Rail and Rail-Optimized Designs: High-throughput

topologies tailored for parallel GPU clusters. �ese layouts

improve resiliency and throughput, especially during

bursty communication phases in training jobs.

GPU-to-GPU Communication (Chapter ��)

�e part concludes with a practical look at collective

communication patterns used to synchronize GPUs across the

network. �ese collectives are essential for distributed training

workloads:

•    AllReduce: Each GPU contributes and receives a

complete, aggregated copy of the data. Internally, this is

implemented in two phases:

�.    ReduceScatter: GPUs exchange partial results and

compute a portion of the final sum.

�.    AllGather: Each GPU shares its computed segment so

that every GPU receives the complete aggregated result.

• Broadcast: A single GPU (o�en rank �) sends data—

such as communication identifiers or job-level metadata

—to all other GPUs at the start of a training job.



TARGET AUDIENCE

I wrote this book for professionals working in the data center

networking domain—whether in architectural, design, or

specialist roles. It is especially intended for those who are

already involved in, or are preparing to work with, the unique

demands of AI-driven data centers. As AI workloads reshape

infrastructure requirements, this book aims to provide the

technical grounding needed to understand both the deep

learning models and the networking systems that support them.



DISCLAIMERS

�e content of this book is based solely on the author's personal

experience, research, and testing. It has not been reviewed,

validated, or endorsed by Cisco, NVIDIA, or any other

organization or individual. �is book is not intended to serve as

a design or implementation guide. Readers are encouraged to

perform their own validation and testing before applying any of

the concepts or techniques in a production environment.
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CHAPTER �:

ARTIFICIAL NEURON



INTRODUCTION

Before diving into the somewhat complex world of deep

learning, let’s first consider how humans learn new skills

through repetition, feedback, and guidance.

Judo, as a martial art, serves as a good example. I trained in

judo for over �� years. During that time, I learned which

throwing techniques to use to take down an opponent e�ciently

by leveraging their movement, energy, and reactions. But how

did I learn that?

�rough a supervised training process.

Our coach first taught us the throwing techniques and

explained the situations in which they work best. We then

practiced them, starting with static drills where the opponent

stood still. Once the basic movement was learned, we moved on

to pre-arranged sequences that introduced movement and

timing.

Mastering these techniques required thousands of repetitions.

Even then, perfect performance was not guaranteed, due to

variables such as the opponent’s movement, strength, body

length, technical level, and so on.

A�er internalizing several throwing techniques, I reached a

point where I could apply them in situations I hadn't



encountered before. �at’s when I was ready to compete, testing

my skill in real matches, under the control of a referee who

judged and scored the techniques.

How does this relate to Deep Learning?

Deep Learning (DL) is a driving force behind many of today’s

breakthroughs in artificial intelligence. It relies on Deep Neural

Networks (DNNs)—systems made up of interconnected artificial

neurons that learn

to recognize patterns in data. Deep Learning is a subfield of

Machine Learning (ML), which enables computers to learn from

data and make predictions or decisions without being explicitly

programmed for every scenario. In turn, Machine Learning is

part of the broader field of Artificial Intelligence (AI), which

focuses on creating systems that can perform tasks that

normally require human intelligence.

Training a neural network follows similar principles to

learning a judo throwing technique.

In judo, my coach first taught me the correct technique: where

to place my hands, how to shi� my weight, and when to execute

the throw. �is is like supervised learning, where a neural

network is trained with labeled data, input examples paired with

the correct output, just like the coach provides correct

demonstrations and feedback.

A�er I had practiced the technique in a static, controlled

environment, we introduced more complexity by adding

movement. I had to react to the opponent’s motion and timing.



While the feedback was still there, the learning was now more

intuitive and situational, similar to how a model can later

benefit from unlabeled data or semi-supervised methods to

generalize better.

Eventually, I entered competitions. �ere, I faced

unpredictable situations, opponents with di�erent styles, and no

second chances. �is is the equivalent of putting a trained neural

network into production, where it must perform accurately on

real-world data it hasn’t seen before, without further coaching.

Like judo training, training a neural network takes time and

repetition, o�en tens of thousands of iterations. A�er each

iteration, the model’s output is compared to the expected result,

and its internal parameters are adjusted to reduce error. �e

process depends on several factors: dataset size, network

architecture, hardware, and parallelization strategies. While

training may take days or even months, the outcome is a system

that can

respond quickly and reliably, just like a skilled judoka reacting

instinctively in a match.

�e duration of the training process depends on several

factors, such as dataset size, network architecture, hardware,

and selected parallelization strategies (if need). Training a

neural network requires multiple iterations, sometimes even

tens of thousands, where, at the end of each iteration, the

model's output is compared to the actual value. If the di�erence

between these two values is not small enough, the network is

adjusted to improve performance. �e entire process may take



months, but the result is a system that responds accurately and

quickly, providing an excellent user experience.

�is chapter begins by discussing the artificial neuron, and its

functionality. We then move on to the Feedforward Neural

Network (FFNN) model, first explaining its layered structure and

how input data flows through it in a process called the Forward

Pass (FP). Next, we examine how the FFNN is adjusted during

the Backward Pass (BP), which fine-tunes the model by

minimizing errors. �e combination of FP and BP is known as

the Backpropagation Algorithm.



ARTIFICIAL NEURON

An artificial neuron, also known as a perceptron, is a

fundamental building block of any neural network. It functions

as a computational unit that processes input data in two phases.

First, it collects and processes all inputs (matrix multiplication),

and then applies an activation function. Figure �-� illustrates the

basic process without the complex mathematical functions

(which I will explain later for those interested in studying them).

On the le�-hand side, we have a bias term and two input values,

x� and x�. �e bias and inputs are connected to the perceptron

through adjustable weight parameters: w�, w�, and w�,

respectively. During the initial training phase, weight values are

randomly generated.

Weighted Sum and Activation Function

As the first step, the neuron calculates the weighted sum of

inputs x� and x� and adds the bias. A weighted sum simply

means that each input is multiplied by its corresponding weight

parameter, the results are summed, and the bias is added to the

total. �e bias value is set to one, so its contribution is always

equal to the value of its weight parameter. I will explain the

purpose of the bias term later in this chapter. �e result of the

weighted sum is denoted as z, which serves as a pre-activation



value. �is value is then passed through a non-linear activation

function, which produces the actual output of the neuron, 𝑦𝑦^
(y-hat). Before explaining what non-linearity means in the

context of activation functions and why it is used, consider the

following: �e input values fed into a neuron can be any number

between negative infinity (-∞) and positive infinity (+∞).

Additionally, there may be thousands of input values. As a

result, the weighted sum can become a very large positive or

negative value.

Now, think about neural networks with thousands of neurons.

In Feedforward Neural Networks (FFNNs), neurons are

structured into layers: an input layer, one or more hidden layers,

and an output layer. If input values were only processed through

the weighted sum computation and passed to the next layer, the

neuron outputs would grow linearly with each layer. Even if we

applied a linear activation function, the same issue would

persist—the output would continuously increase. With a vast

number of neurons and large input values, this uncontrolled

growth could lead to excessive computational demands, slowing

down the training process. Non-linear activation functions help

keep output values within a manageable range. For example, an

S-shaped Sigmoid activation function squeezes the neuron’s

output to a range between � and �, even for very large input

values.

Let’s go back to Figure �-�, where we first multiply the input

values by their respective weight parameters, sum them, and

then add the bias. Since the bias value is �, it is reasonable to



represent it using only its associated weight parameter in the

formula. If we plot the result z on the horizontal

axis of a two-dimensional chart and draw a vertical line

upwards, we obtain the neuron’s output value y at the point

where the line intersects the S-curve. Simple as that. Naturally,

there is a mathematical definition and equation for this process,

which is depicted in Figure �-�.

Before moving on, there is one more thing to note. In the

figure below, each weight has an associated adjustment knob.

�ese knobs are simply a visual representation to indicate that

weight values are adjustable parameters, which will be tuned by

the backpropagation algorithm in case the model output is not

close enough to expected result. �e backpropagation process is

covered in detail in a dedicated chapter.

Figure �-�: An Architecture of an Artificial Neuron.



Figure �-� shows the mathematical equations for calculating

the weighted sum and the Sigmoid function. �e Greek letter

used in the weighted sum equation is Σ (uppercase Sigma). �e

lowercase i is set to � beneath the Sigma symbol, indicating that

the weighted sum calculation starts from the first pair of

elements: input x� and its corresponding weight w�. �e

notation n=� specifies the total number of paired elements

included in the weighted sum calculation. In our example, both

input values and their respective weights are included.

A�er computing the weighted sum, we add the bias term. �e

result, z, is then passed through the Sigmoid function,

producing the output 𝑦𝑦^. �e Sigmoid function is commonly

represented by the Greek letter σ (lowercase sigma).

�e lower equation in Figure �-� shows how the Sigmoid

function is computed. To obtain the denominator for the

fraction, Euler’s number (e≈�.�����) is raised to the power of -z

and then summed with �. �e final output is simply the

reciprocal of this sum.



Figure �-�: �e Math Behind an Artificial Neuron.

�e formulas can be expressed in an even simpler manner

using dot products, which are commonly used in linear algebra.

Dot products frequently appear in research papers and deep

learning literature.

In Figure �-�, both input values and weights are arranged as

column vectors. �e notation for the input vector uses an

uppercase X, while the weight vector is denoted by an uppercase

W. Although these are technically vectors, it is not a major issue

to illustrate them as a simple matrix for demonstration

purposes. Generally speaking, a matrix has more than one row

and column, as you will learn later.

�e dot product performs a straightforward matrix

multiplication, as shown in the figure. �is greatly simplifies the

computation.



Figure �-�: Matrix Multiplication with Dot Product.

Bias term

Figures �-� and �-� illustrate how changes in the bias weight

parameter a�ect the weighted sum and shi� z horizontally. �is,

in turn, changes the output of the Sigmoid function and the

neuron’s final output.

In Figure �-�, the initial weight values for the bias, input x�,

and input x� are +�.�, +�.�, and -�.�, respectively. �e calculated

weighted sum is z=�.�. Applying the Sigmoid function to output

z=�.�, we obtain an output value of �.���. Figure �-� visualizes

this process: z=�.� is positioned on the horizontal axis, and the

intersection with the S-curve results in an output of �.���.



Figure �-�: Construct of an Artificial Neuron.

Now, we adjust the weight w� associated with the bias from

+�.� down to -�.�. As a result, the weighted sum decreases from

�.�� to �.��, shi�ing z �.� steps to the le� on the horizontal axis.

Applying the Sigmoid function to z, the neuron’s output

decreases from �.��� to �.���.



Figure �-�: Construct of an Artificial Neuron.

In the example calculation above, imagine that input values x�

and x� are zero. Without a bias term, the activation value will be

zero, regardless of how large the weight parameters are.

�erefore, the bias term also allows the neuron to produce non-

zero outputs, even when all input values are

zero.

ReLU Activation Function

A lighter alternative to the Sigmoid activation function is ReLU

(Rectified Linear Unit). �e ReLU activation function is non-

linear for values less than or equal to zero and linear for values

greater than zero. �is means that if the weighted sum z ≤ �, the

output is zero. If z > �, the output is equal to z.



From a computational perspective, ReLU requires fewer CPU

cycles than the Sigmoid function. Figure �-� illustrates how z =

�.� is processed by ReLU, resulting in an output value of 𝑦𝑦^ =

�.�. �e figure also shows two common notations for ReLU. �e

first notation states:

•    If z > �, return z.

•    If z ≤ �, return �.

�e second notation, written as MAX(�,z), simply means

selecting the greater value between � and z.

Figure �-�: Artificial Neuron with a ReLU Activation Function.



NETWORK IMPACT

A single artificial neuron is the smallest unit of a neural

network. �e size of the neuron depends on its connections to

input nodes. Every connection has an associated weight

parameter, which is typically a ��-bit value. In our example,

with � connections and bias, the size of the neuron is � x �� bits =

�� bits.

Although we haven’t defined the size of the input in this

example, let’s assume that each input (x) is an �-bit value, giving

us � x � bits = �� bits for the input data. �us, our single neuron

"model" requires �� bits for the weights plus �� bits for the input

data, totaling ��� bits of memory. �is is small enough to not

require parallelization. Besides, the weight parameters and

input values, the result of weighted sum and the neuron output

must be stored for processing.

However, if the memory requirement of the neural network

model combined with the input data exceeds the memory

capacity of a GPU, a parallelization strategy is needed. �e data

can be split across multiple GPUs within a single server, with

synchronization happening over highspeed NVLink. If the job

must be divided between multiple GPU servers, synchronization

occurs over the backend network, which must provide lossless,

high-speed packet forwarding.



Parallelization strategies will be discussed in the next chapter,

which introduces a Feedforward Neural Network using the

Backpropagation algorithm, and in later chapters dedicated to

Parallelization (Chapter �).



SUMMARY

Deep Learning leverages Neural Networks, which consist of

artificial neurons. An artificial neuron mimics the structure and

operation of a biological neuron. Input data is fed to the neuron

through connections, each with its own weight parameter. �e

neuron uses these weights to calculate a weighted sum of the

inputs, known as the pre-activation value. �is result is then

passed through an activation function, which provides the post-

activation value, or the actual output of the neuron. �e

activation functions discussed in this chapter are the non-linear

ReLU (Rectified Linear Unit) and logistic Sigmoid functions.
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CHAPTER �:

   BACKPROPAGATION

ALGORITHM



INTRODUCTION

�e previous chapter explained the operation of a single

artificial neuron. It covered how input values are multiplied by

their respective weight parameters, summed together, and

combined with a bias term. �e resulting value, z, is then passed

through a non-linear sigmoid function, which squeezed a

neuron’s output value 𝑦𝑦^ between � and �.

In this chapter, we form the smallest possible Feed Forward

Neural Network (FFNN) model using only two neurons. While

this is far from a Deep Neural Network (DNN), a simple NN with

two neurons is su�cient to explain the Backpropagation

algorithm, which is the focus of this chapter.

�e goal is to demonstrate the training process and illustrate

how the Forward Pass (computation phase) first generates a

model output, 𝑦𝑦^. �e algorithm then evaluates the model’s

accuracy by computing the error term using Mean Squared

Error (MSE). �e first training iteration rarely, if ever, produces

a perfect output. To gradually bring the training result closer to

the expected value, the Backward Pass (adjustment and

communication phase) calculates the magnitude and direction

by which the weight values should be adjusted. We are using a

supervised training process with a prelabeled test dataset,

although it is not shown in Figure �-�. Chapter �ree covers the

training datasets in detail.



A�er the training process is completed, we use a test dataset to

evaluate the model's performance. Test dataset also contains

input data and labels, but these labels are not used during

training. Instead, a�er training is complete, the model is

evaluated on the test dataset to measure its performance. At this

phase, we measure how well the predictions from the training

and test phases align. When the model produces the expected

results on the test dataset, it can be taken into production.



FORWARD PASS

Figure �-� illustrates how neuron-a computes a weighted sum

from three input values, adds a bias term, and produces a pre-

activation value za. �is value is then passed through the

Sigmoid activation function. �e output 𝑦𝑦^a from neuron-a

serves as an input for neuron-b, which processes it and generates

the final model output 𝑦𝑦^b. Since these computational steps

were covered in detail in Chapter �, we will not repeat them

here.

As the final step of the Forward Pass, we apply the error

function E to the model output. �e error function measures

how far model output 𝑦𝑦^b is from expected value y. We use the

Mean Squared Error (MSE), which is computed by subtracting

the expected value from the model’s output, squaring the result,

and multiplying it by �.� (or equivalently, dividing by two).



Figure �-�: An Overview of a Complete Forward Pass Process.

On the right side of Figure �-�, we have a two-dimensional

error space. In this space, a symmetric parabolic curve visualizes

the error function. �e curve is centered at the expected value,

which is �.� in our example. �e horizontal axis represents the

model output, 𝑦𝑦^, and the vertical axis represents the error E.

For instance, if the model prediction is �.�, you can draw a

vertical line from this point on the horizontal axis to meet the

parabolic curve. In our case, this intersection shows an error

term of �.���. In real-life scenarios, the error landscape o�en

has many peaks and valleys rather than a simple symmetric

curve.

�e Mean Squared Error (MSE) is a loss function that measures

the di�erence between the predicted values and the expected

values. It provides an overall error value for the model, which is



also called the loss or cost, indicates how far o� the predictions

are.

Next, the gradient is computed by taking the derivative of the

loss function with respect to the model's weights. �is gradient

shows both the direction and the magnitude of the steepest

increase in error. During the Backward Pass, the algorithm

calculates the gradient for each weight. By moving in the

opposite direction of the gradient (using a method called

Gradient Descent), the algorithm adjusts the weights to reduce

the loss. �is process is repeated many times so that the model

output gradually becomes closer to the expected value. �e

Backward pass process is explained right a�er the Learning Rate

section.

�e following sections will cover the processes and

computations performed during the Backward Pass.



Figure �-�: Mean Square Error.



LEARNING RATE

Besides determining the direction in which the error should be

reduced, the process also needs to know the size of each

adjustment step. �is is defined by the Learning Rate. �e

Learning Rate value a�ects how much the weights are adjusted

in response to the gradient during each iteration of the

Backward Pass. A small Learning Rate leads to small, gradual

changes, which may result in slower training but a more stable

convergence. On the other hand, a large Learning Rate can speed

up training by making larger adjustments, yet it might

overshoot the optimal values and cause instability. �erefore,

choosing the right Learning Rate is crucial for e�ective and

e�cient training. �is is illustrated in the Figure ��. We will get

back to Learning Rate in the Backward Pass section.



Figure �-�: Learning Rate.



BACKWARD PASS

�e Forward Pass produces the model output ŷ, which is then

used to compute the model error E. �e closer ŷ is to the

expected value y, the smaller the error, indicating better model

performance. �e purpose of the Backward Pass, as part of the

Backpropagation algorithm, is to adjust the model’s weight

parameters during training in a direction that gradually moves

the model’s predictions closer to the expected values y.

In Figure �-�, the model’s output ŷb depends on the weighted

sum zb of neuron-b. �is weighted sum zb, in turn, is calculated

by multiplying an input value ya by its associated weights w�.

�e same process applies to neuron-a. Backpropagation

algorithm cannot directly modify the results of an activation

function or the weighted sum itself. Nor can it alter the input

values directly. Instead, it calculates weight adjustments, which

are then used to update the model’s weights.

Figure �-� illustrates this dependency chain and provides a

high-level overview of how the Backpropagation algorithm

determines weight adjustments. �e following sections will

explain this process in detail.



Figure �-�: Backpropagation Overview: Backward Pass

Dependency Chain.

�e somewhat crowded Figure �-� illustrates the components

of the backpropagation algorithm, along with their

relationships and dependencies. �e figure consists of three

main blocks. �e rightmost block depicts the calculation of the

error function. �e middle and le� blocks outline the steps for

defining and adjusting new weight values. �e complete

backward pass process is explained next in detail, one step at a

time.



Figure �-�: �e Backward Pass Overview.

Partial Derivative for Error Function – Output Error

�e goal of training a model is to minimize the error, meaning

we want 𝑦𝑦^b (the model's prediction/output) to get as close as

possible to y (the expected value).

A�er computing the error E (=�.���), we compute the partial

derivative of the error function with respect to yb (=�.�), which

shows how small changes in 𝑦𝑦^b a�ects the error E. A

derivative is called partial when one of its input values is held

constant (i.e., not adjusted by the algorithm). In our example,

the expected value y is constant input. �e result of the partial

derivative of the error function indicates how the predicted

output 𝑦𝑦^b should change to minimize the model’s error.



We use the following formula for computing the derivative of

the error function:

MSE

′

 = - (𝑦𝑦 - 𝑦𝑦𝑦𝑦)

MSE

′

 = - (�.� - �.�)

MSE

′

 = �.�

Since the model output yb =�.� is too high, the positive

gradient suggests that it should be lowered by �.�, which is the

derivative of the error function (MSE’). �is makes perfect sense

because by subtracting the MSE's �.� from the model output yb =

�.�, we obtain �.�, which matches the expected value.

Partial Derivative for the Activation Function

A�er computing the output error, we calculate the derivative of

the activation function f(b) with respect to zb. Neuron-b uses a



ReLU activation function, which states that if the function’s

output is greater than �, the derivative is �; otherwise, it is �. In

our case, the result of the activation function f(b)=�.�, so the

derivative is �.𝑓𝑓 

′

 (𝑦𝑦) = ^

�, if 𝑓𝑓(𝑦𝑦) >�

�, if 𝑓𝑓(𝑦𝑦) ≤ �

Error Term for Neurons

�e error term for neuron-b is calculated by multiplying the

partial derivative of the error function MSE’ = �.�, by the

derivative of the neuron's activation function 𝑓𝑓′

(𝑦𝑦)= �.�. �is

means we propagate the model's error backward using it as a

base value for finetuning the model accuracy (i.e., refining new

weight values). �is is why the term backward pass fits perfectly

for the process.

Error term (Enb) for Neuron-b = MSE’ ⋅ 𝑓𝑓′

(𝑦𝑦) = �.� ⋅ � = �.�



Figure �-�: �e Backward Pass – Error Term for Neuron-b.

A�er computing the error term for neuron-b, the backward

pass moves to the preceding layer, the hidden layer, to calculate

the error term for neuron a. First, the process computes a

weighted sum of w ⋅ E across all connected neurons in the next

layer, output layer in our example. �is sum is then multiplied

by the derivative of the activation function, 𝑓𝑓′(a). Since neuron-

a is only connected to neuron-b, its error term is calculated as

w�⋅ Enb ⋅ 𝑓𝑓′(a), resulting error term for neuron-a, Ean = �.� ⋅ �.� ⋅
�= �.��.



Figure �-�: �e Backward Pass – Error Term for Neuron-a.

Gradient Calculation

A�er computing the error terms for all neurons in every layer,

the algorithm simultaneously calculates gradients for all weight

parameters. Each gradient is determined by multiplying the

input value by the corresponding error term.

In our example, the gradient for weight wa� , which connects

input x� to neuron-a, is calculated by multiplying the input value

x� (=�.�) by the error term Ena of neuron-a (= �.��), resulting in a

gradient of �.��. Similarly, the gradient for weight wb� in

neuron-b is computed by multiplying the output y (=�.�) of the

activation function from neuron-a by the error term Enb of

neuron b (=�.�), yielding a gradient of �.�.



If the test dataset is divided across multiple GPUs, gradients

must be synchronized before computing the actual weight-based

adjustment values. Each GPU sums all received gradients,

including its own. �e sum is then averaged by dividing it by the

number of GPUs. �is process is explained in detail in Chapter �.

Next, the GPUs synchronize these averaged gradients to ensure

that each one uses the same values when calculating the final

weight adjustments. �is process is part of a data parallelization

strategy, where the training dataset is too large to fit into a single

GPU’s memory and is split into micro-batches. Each GPU

processes its micro-batches using the same model with the same

parameters.

Figure �-�: �e Backward Pass – Gradient for Neurons.

Weight Adjustment



�e weight adjustment value is computed by multiplying the

gradient, averaged in our example, by the learning rate η. We

use a learning rate of �.���. �is results in a weight adjustment

of �.��� for weight wa� and �.��� for weight wb�.

�e weight adjustment values are then subtracted from the

initial weights. �is yields an updated weight of �.��� (�.�-�.���)

for wa� and �.��� (�.�-�.���) for wb�.

Figure �-��: �e Backward Pass – Compute New Weight Values.



THE SECOND ITERATION - FORWARD PASS

A�er updating all the weight values, including those associated

with biases, the backpropagation process begins the second

iteration of the forward pass. As shown in Figure �-��, the model

output 𝑦𝑦^b = �.�� is very

close to the expected value y = �.�. �e new MSE = �.��� is

significantly lower than the initial MSE = �.��� computed in the

first iteration.

Figure �-��: �e Second Iteration of the Forward Pass.

In Figure �-��, we have two �-dimensional error spaces. Using

the initial weight values, the model output is �.�, resulting in an

MSE of �.���. A�er adjusting the weights, the model prediction

is �.���, reducing the MSE to �.���.



Figure �-��: Results Comparison.



NETWORK IMPACT

In figure �-�� we have a fully-connected Feed Forward Neural

Network (FFNN) with four layers; input layer, two hidden layers,

and output layer. Training data set is split into two batches, A

and B, which are processed by GPU-A and GPU-B.

A�er computing a model prediction during the forward pass,

the backpropagation algorithm begins the backward pass by

calculating the gradient (output error) for the error function.

Once computed, the gradients are synchronized between the

GPUs. �e algorithm then averages the gradients, and the

process moves to the preceding layer. Neurons in the preceding

layer calculate their gradient by multiplying the weighted sum

of their connected neurons’ averaged gradients and connected

weight with the local activation function’s partial derivative.

�ese neuron-based gradients are then synchronized over

connections (the process is explained in detail in chapter ��).

Before the process moves to the preceding layer, gradients are

averaged. �e backpropagation algorithm executes the same

process through all layers.

If packet loss occurs during the synchronization, it can ruin

the entire training process, which would need to be restarted

unless snapshots were taken. �e cost of losing even a single

packet could be enormous, especially if training has been

ongoing for several days or weeks. Why is a single packet so



important? If the synchronization between the gradients of two

parallel neurons fails due to packet loss, the algorithm cannot

compute the average, and the neurons in the preceding layer

cannot calculate their gradient. Besides, if the connection,

whether the synchronization happens over NVLink, InfiniBand,

Ethernet (RoCE or RoCEv�), or wireless connection, causes a

delay, the completeness of the training slows down. �is causes

GPU under-utilization which is not e�cient from the business

perspective.

Figure �-��: Backward Pass – Gradient Synchronization and

Averaging.
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CHAPTER �:    MULTI-

CLASS

CLASSIFICATION



INTRODUCTION

�is chapter explains the multi-class classification training

process. It begins with an introduction to the MNIST dataset

(Modified National Institute of Standards and Technology).

Next, it describes how the So�Max activation function computes

the probability distribution over digit classes during the forward

pass and how the model’s weight parameters are updated during

the backward pass to improve classification accuracy.

Additionally, the chapter discusses the data parallelization

strategy from a network perspective.



MNIST DATASET

We will use the MNIST dataset, which consists of grayscale

images of handwritten digits, to demonstrate the training

process. �e MNIST dataset includes four binary files: a training

set with ��,��� images and their corresponding labels, and a test

set with ��,��� images and labels. Each image is ��×�� pixels in

size.

�e files are:

train-images-idx�-ubyte: contains the pixel values for the

training images, along with metadata describing the file format.

train-labels-idx�-ubyte:   contains the labels (digits   �–�)

corresponding to each image in the training set.

t��k-images-idx�-ubyte: contains the test images.

t��k-labels-idx�-ubyte: contains the labels for the test images.

Since there are ten possible digits (�–�), the output layer of the

model uses ten neurons, each representing one digit class.

Before training begins, the labels for each image-label pair are

one-hot encoded. �is means that each label is transformed into

a vector of ten elements: the correct class is represented by a � at

its index position, and all other positions are set to �. For

example, if an image corresponds to the digit �, the one-hot



vector would be [�, �, �, �, �, �, �, �, �, �] (index � is set to �,

assuming �-based indexing).

Figure �-�: Training Dataset & Labels– �e MNIST Database.



FORWARD PASS

Model Probability

Figures �-� and �-� illustrate the forward pass process for multi-

class classification. �e Input Layer flattens the �� x�� pixel

image into ��� input parameters, where each parameter

represents the intensity of a pixel (� = black, ��� = white). �ese

��� input values are then passed to all ��� neurons in the Hidden

Layer. Each neuron in the hidden layer receives all ��� inputs,

and each of these inputs is associated with a unique weight.

�erefore, each of ��� neurons have ��� weight parameters, and

total weight parameter count of hidden layer is ��� ���.

In the hidden layer, each neuron computes the weighted sum (

= Matrix Multiplication) of its inputs and then applies the ReLU

activation function to the result. �is process produces ���

activation values, one for each neuron in the hidden layer.

Next, these ��� activation values are fed into the Output Layer,

which consists of �� neurons (corresponding to the �� possible

classes for the MNIST dataset). Each output neuron is connected

to all ��� activation values from the hidden layer. �erefore, the

weight parameter counts in the output layer is ����. Again, each

neuron does matrix multiplication by computing a weighted

sum of its inputs. �e result of this calculation is called a logit.



In the output layer, the So�Max activation function is applied

to these logits. So�Max first computes the exponential of each

logit, using Euler’s number e as the base. �en, it computes the

sum of these exponentials, which in this example is ��.���. �e

probability for each class (denoted as 𝑦𝑦^) is calculated by

dividing each neuron’s exponential by the sum of all

exponentials.

In this example, the output neuron corresponding to class "�"

produces the highest probability, meaning the model predicts

the digit in the image is �. However, since this prediction is

incorrect in the first iteration, the model will adjust its weights

during backpropagation.

In our model, we have ���,��� weight parameters. �e number

of bits used to store each weight parameter in a neural network

depends on the numerical precision chosen for the model. �e

��-bit floating point (FP�� – single precision) is the standard

precision used, where each weight is represented using �� bits (�

bytes). �is format o�ers good precision but can be memory-

intensive for large models. To reduce memory usage and

increase speed, many modern hardware systems use ��-bit

floating point (FP�� – half precision), where each weight is

represented using �� bits (� bytes). �ere is also ��-bit floating

point (FP�� – double precision), which uses �� bits (� bytes),

providing more precision and a larger range than FP��, but at

the cost of increased memory usage.

In our model, using FP��, the memory required for the weight

parameters is ���,��� bytes (� × ���,���).



Figure �-�: Forward pass – Probability Computation.

Cross-Entropy Loss

In our example, the highest probability value (�.���) is provided

by neuron �, though the expected value should be produced by

neuron �. Next, the algorithm computes the cross-entropy loss

by taking the logarithm of the probability value for the expected

neuron, as defined by the one-hot encoded label. In our example,

the probability of the digit being �, computed by neuron �, is

�.���. �e cross-entropy loss is calculated by taking the log of

�.���, resulting in �.���.



Figure �-�: Forward pass – Cross-Entropy Loss.



BACKWARD PASS

Gradient Computing

�e gradient for the neurons in the output layer is calculated by

subtracting the ground truth values (from the one-hot encoded

label) from the probabilities produced by the So�Max function.

�is simplified gradient expression is a result of combining the

So�Max activation with the crossentropy loss, which cancels out

more complex derivative terms. While the cross-entropy loss

influences the training process, its derivative is implicitly

included in this simplified gradient expression.

For neurons in the hidden layer, the gradient is computed by

taking the weighted sum of the gradients from the connected

output neurons. �is sum is then multiplied by the derivative of

the hidden neuron's activation function (such as ReLU). �e

formula for this computation is shown in Figure �-�.



Figure �-�: Backward pass - Gradient Calculation.

Weight Adjustment Values

A�er calculating the gradients for all neurons, the

backpropagation algorithm determines the weight adjustments.

While this process was explained in the previous chapter, let's

briefly recap it here. Each weight adjustment is computed by

multiplying the gradient of the neuron it connects to (the

downstream neuron) by the input that passed through that

weight during the forward pass. �is product represents the

gradient of the weight. �e actual adjustment is then calculated

by multiplying this gradient by the learning rate — a shared

hyperparameter that controls how much the weight is updated

during training.



Figure �-� illustrates the computation from two perspectives:

neuron � in the output layer and neuron � in the hidden layer.

Figure �-�: Backward Pass - Weight Adjustment Value.

Weight Update

Figure �-� depicts how the new weight value is obtained by

adding the adjustment value to the initial weight value.



Figure �-�: Backward Pass – Computing New Value for the Weight

Parameter.

So far, we have explored how the backpropagation algorithm

works in multi-class classification using a single GPU. In this

section, we examine the scenario where the input dataset

exceeds the memory capacity of a single GPU. To handle this, we

adopt a data parallelization strategy that splits the training data

across multiple GPUs. We also analyze the strategy from a

network utilization standpoint.

In Figure �-�, the training data is divided into mini-batches.

�e first half of the mini-batches is stored in system memory

(DRAM-�) on Server-�, and the second half in system memory

(DRAM-�) on Server-�. �is setup illustrates a common

situation: when the data cannot fully fit into a GPU’s VRAM,

inactive mini-batches remain in system memory and are



transferred as needed. Meanwhile, the active mini-batch and the

model weights are loaded into the GPU’s VRAM.

In our example, each mini-batch contains �� grayscale images,

each of size �� × �� pixels, meaning �,��� input features per image.

�e first hidden layer contains ��� neurons, and the output layer

contains �� neurons.

�e total number of weight parameters is as follows:

•    Input to hidden layer:

�� images × ��� neurons × �,��� inputs = �,���,��� weights

•    Hidden to output layer:

��� neurons × �� neurons = �,��� weights

•    Bias weights:

��� (hidden layer) + �� (output layer) = ��� bias values

Once the forward pass (computation phase) is complete, the

backward pass begins. In this phase, gradients are computed for

all neurons using the backpropagation algorithm.

To synchronize gradients across GPUs, we use the All-Reduce

collective communication model (detail explanation in chapter

��), which aggregates gradients from each GPU and ensures that

all GPUs have consistent copies of the model. In our multi-server

setup, this synchronization takes place over the network using

Remote Direct Memory Access (RDMA), a mechanism that

allows one server’s GPU to access another server’s GPU memory



directly, bypassing CPU intervention and avoiding the

traditional network stack. �is form of RDMA (typically via

RoCE or InfiniBand, explained in detail in chapter �) is essential

for minimizing latency and maximizing throughput across the

cluster.

During gradient synchronization, the GPU’s network interface

controller (NIC) transmits data at line rate, o�en resulting in

close to ���% link utilization. Once synchronization is complete,

each GPU averages the gradients and computes updated weight

values.

A�er the weights are updated, the next mini-batch is loaded

into VRAM and training continues. During the compute-

intensive forward and backward passes, network utilization is

low, as most operations are local

to the GPU. When all GPUs are within the same server, high-

speed interconnects like NVLink are typically used to facilitate

fast GPU-to-GPU communication. We will cover intra-server

memory transfers and their performance impact in a later

chapter.

Given that model training can span days to weeks, it is critical

that interGPU communication, particularly across servers, is

lossless and capable of sustaining line-rate performance. To

protect against training loss from network issues, regular

checkpoints (snapshots of model weights) should be taken. Even

a single dropped packet during gradient exchange could cause

the model to diverge or the job to fail, requiring a complete

restart.



Figure �-�: Gradient Synchronization and Network Utilization.
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CHAPTER �:

CONVOLUTIONAL

NEURAL NETWORKS



INTRODUCTION

�e previous chapter explained how Feed-forward Neural

Networks (FNNs) can be used for multi-class classification of �� x

�� pixel handwritten digits from the MNIST dataset. While

FNNs work well for this type of task, they have significant

limitations when dealing with larger, high-resolution color

images.

In neural network terminology, each RGB value of an image is

treated as an input feature. For instance, a high-resolution ���

dpi RGB color image with dimensions �.��� x �.��� inches

contains approximately �.�� million pixels, resulting in roughly

�� million RGB values.

If we use a fully connected FNN for training, all these ��

million input values are fed into every neuron in the first hidden

layer. Each neuron must compute a weighted sum based on these

�� million inputs. �e memory required for storing the weights

depends on the numerical precision format used. For example,

using the ��-bit floating-point (FP��) format, each weight

requires � bytes. �us, the memory requirement per neuron

would be approximately �� MB. If the first hidden layer has

��,��� neurons, the total memory required for storing the

weights in this layer would be around ��� GB.



In contrast, Convolutional Neural Networks (CNNs) use shared

weight matrices called kernels (or filters) across all neurons

within a convolutional layer. For example, if we use a � x �

kernel, there are only � weights per color channel. �is reduces

memory usage and computational costs significantly during

both the forward and backward passes.

Another limitation of FNNs for image recognition is that they

treat each pixel as an independent unit. As a result, FNNs do not

capture the spatial relationships between pixels, making them

unable to recognize the same object if it shi�s within the frame.

Additionally, FNNs cannot detect edges or other important

features. On the other hand, CNNs have a property called

translation invariance, which allows the model to recognize

patterns even if they are slightly shi�ed (small translations

along the x and y axes). �is helps CNNs classify objects more

accurately. Furthermore, CNNs are more robust to minor

rotations or scale changes, though they may still require data

augmentation or specialized network architectures to handle

more complex transformations.



CONVOLUTION LAYER

Convolution Process

�e purpose of the convolution process is to extract features

from the image and reduce the number of input parameters

before passing them through fully-connected layers. �e

convolution operation uses a shared weight matrix called

kernels or filters, which are shared across all neurons within a

convolutional layer. In this example, we use the Prewitt

operator, which consists of two � x � kernels with fixed weight

values for detecting vertical and horizontal edges.

In the first step, these two kernels are positioned over the first

region of the input image, and each pixel value is multiplied by

the corresponding kernel weight. Next, the process computes

the weighted sum, z=�, and the result is passed through the

ReLU activation function. �e resulting activation values,𝑓𝑓 (𝑧𝑧)=� , contribute to the neuron-based output channels.

Since our input image is a grayscale image without color

channels (unlike an RGB image), it has only one input channel.

By using two kernels, we obtain two output channels: one for

detecting vertical edges and the other for detecting horizontal

edges. �e formula for calculating the size of the output channel:

Height = (Image h – Kernel h)/Stride + bias = (�-�)/� + � = �



Width = (Image w – Kernel w)/Stride + bias = (�-�)/� + � = �

Figure �-�: Convolution Layer – Stride One.

A�er calculating the first value for the output channel using

the image values in the first region, the kernel is shi�ed one step

to the right (stride of �) to cover the next region. �e convolution

process calculates the weighted sum based on the values in this

region and the weights of the kernel. �e result is then passed

through the ReLU activation function. �e output of the ReLU

activation function di�ers for the first output channel, it is𝑓𝑓(z)=��; for the second output channel, it is 𝑓𝑓(z)=�.



Figure �-�: Convolution Layer – Stride Two.

Figure �-� depicts the fi�h stride.

Figure �-�: Convolution Layer – Stride Five.



�e sixteenth stride, shown in Figure �-�, is the last one. Now

output channels one and two are filled.

Figure �-�: Convolution Layer – Stride Sixteenth.

Figure �-� shows how the convolution process found one

vertical edge and zero horizontal edge from the input image. �e

convolution process produces two output channels, each with a

size of � × � pixels, while the original input image was � × �

pixels.



Figure �-�: Convolution Layer – Detected Edges

MaxPooling

MaxPooling is used to reduce the size of the output channels if

needed. In our example, where the channel size is relatively

small (� × �), MaxPooling is unnecessary, but we use it here to

demonstrate the process. Similar to convolution, MaxPooling

uses a kernel and a stride. However, instead of fixed weights

associated with the kernel, MaxPooling selects the highest value

from each covered region. �is means there is no computation

involved in creating the new matrix. MaxPooling can be

considered as a layer or part of the convolution layer. Due to its

non-computational nature, I see it as part of the convolution

layer rather than a separate layer.



Figure �-�: Convolution Layer: MaxPooling

The First Convolution Layer: Convolution

In this section, we take a slightly di�erent view of convolutional

neural networks compared to the preceding sections. In this

example, we use the Kirsch operator in the first convolution

layer. It uses � kernels for detecting vertical, horizontal, and

diagonal edges. Similar to the Prewitt operator, the

Kirsch operator uses fixed weight values in its kernels. �ese

values are

shown in Figure �-�.



Figure �-�: Kirsch Operator.

In Figure �-�, we use a pre-labeled �� x �� RGB image for

training. An RGB image has three color channels: red, green,

and blue for each pixel. It is possible to apply all kernels to each

color channel individually, resulting in � x � = �� output

channels. However, we follow the common practice of applying

the kernels to all input channels simultaneously, meaning the

eight Kirsch kernels have a depth of � (matching the RGB

channels). Each kernel processes the RGB values together and

produces one output channel. �us, each neuron uses � (width) x

� (height) x � (depth) = �� weight parameters for calculating the

weighted sum. With a stride value of one, the convolution

process generates eight �� x �� output channels. �e formula for

calculating weighted sum:

�𝑧𝑧=^𝑤𝑤=�

��



^ ^ (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑤𝑤, ℎ, 𝑑𝑑] 𝑥𝑥 𝑘𝑘𝑖𝑖𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 [𝑤𝑤, ℎ, 𝑑𝑑]) + 𝑦𝑦𝑖𝑖𝑖𝑖𝑏𝑏 ℎ=�𝑑𝑑 =�

Figure �-�: �e First Convolution Layer – Convolution Process.

The First Convolution Layer: MaxPooling

To reduce the size of the output channels from the first

convolution layer, we use MaxPooling. We apply eight � x �

kernels, each with a depth of �, corresponding to the output

channels. All kernels process the channels simultaneously,

selecting the highest value among the eight channels.

MaxPooling with this setting reduces the size of each output

channel by half, resulting in eight �� x �� output channels,

which are then used as input channels for the second

convolution layer.



Figure �-�: �e First Convolution Layer – MaxPooling.

The Second Convolution Layer

Figure �-�� shows both the convolution and MaxPooling

processes. �e eight �� x �� output channels produced by the

first convolution layer are used as input channels for the second

convolution layer. In this layer, we use �� kernels whose initial

weight values are randomly selected and adjusted during the

training process. �e kernel size is set to � x �, and the depth is �,

corresponding to the number of input channels. �us, each

kernel calculates a weighted sum over � x � x � = �� parameters

with �� weight values. All �� kernels produce new �� x �� output

channels by applying the ReLU activation function. Before

flattening the output channels, our model applies a MaxPooling

operation, which selects the highest value within the kernel



coverage area (region). �is reduces the size of the output

channels by half, from �� x �� to �� x ��.

If we had used the original image without convolutional

processing as input to the fully connected layer, there would

have been ��,��� input parameters (�� x �� x �). �us, the two

convolution layers reduce the number of input parameters to

�,��� (�� x �� x ��), which is approximately a ��% reduction.

Figure �-��: �e Second Convolution Layer – Convolution and

MaxPooling.



FULLY CONNECTED LAYERS

Before feeding the data into the fully connected layer, the

multidimensional �D array (�D tensor) is converted into a �D

vector. �is produces �,��� input values (�� x �� x ��) for the

input layer. We use �,��� neurons with the ReLU activation

function in the first hidden layer, which is approximately half

the number of input values. In the second hidden layer, we have

�,��� neurons with the ReLU function. �e last layer, the output

layer, has �� neurons using the So�Max function.

Figure �-��: Fully Connected Layer – Convolution and MaxPooling.



BACKPROPAGATION PROCESS

In Fully Connected Neural Networks (FCNNs), every neuron has

its own unique set of weights. In contrast, Convolutional Neural

Networks (CNNs) use parameter sharing, where the same filter

(kernel) is applied across the entire input image. �is approach

not only reduces the number of parameters but also enhances

e�ciency.

Additionally, backpropagation in CNNs preserves the spatial

structure 

�

 of the input data through convolution and pooling

operations. �is helps the network learn spatial features like

edges, textures, and patterns. In contrast, FNNs flatten the input

data into a �D vector, losing any spatial information and making

it harder to capture meaningful patterns in images.
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�

Spatial features refer to the characteristics of an image that

describe the relationship between pixels based on their

positions. �ese features capture the spatial structure of the

image, such as edges, corners, textures, shapes, and patterns,

which are essential for recognizing objects and understanding

the visual content.

https://en.wikipedia.org/wiki/Prewitt_operator


CHAPTER �:

   RECURRENT NEURAL

NETWORKS



INTRODUCTION

So far, this book has introduced two neural network

architectures. �e first one, the Feed-Forward Neural Network

(FNN), works well for simple tasks, such as recognizing

handwritten digits in small-sized images. �e second one, the

Convolutional Neural Network (CNN), is designed for processing

larger images. CNNs can identify objects in images even when

the location or orientation of the object changes.

�is chapter introduces the Recurrent Neural Network (RNN).

Unlike FNNs and CNNs, an RNN’s inputs include not only the

current data but also all the inputs it has processed previously.

In other words, an RNN preserves and uses historical data. �is

is achieved by feeding the output of the previous time step back

into the hidden layer along with the current input vector.

Although RNNs can be used for predicting sequential data of

variable lengths, such as sales figures or a patient’s historical

health records, this chapter focuses on how RNNs can perform

character-based text autocompletion. �e upcoming chapters

will explore word-based text prediction.



TEXT DATASETS

For training the RNN model, we typically use text datasets like

IMDB Reviews or the Wikipedia Text Corpus. However, in this

chapter, we simplify the process by using a tailored dataset

containing only the word "alley". Figure �-� illustrates the steps

involved.

�.    Splitting the text into characters: First, we break the

word into its individual letters (e.g., a, l, l, e, y).

�.    Index mapping: Each character is assigned an

index number, which maps it to a one-hot-encoded

vector. For example, the letter “a” is assigned index �,

corresponding to the one-hot vector [�, �, �, �].

�.    Sequence creation: Finally, we define the sequence

of characters to predict. For example, when the input

character is “a” (input vector [�, �, �, �]), the model

should output the letter “l” (output vector [�, �, �, �]).



Figure �-�: Recurrent Neural Networks – Text Dataset and

One-Hot Encoding.



TRAINING RECURRENT NEURAL NETWORKS

Figure �-� illustrates a simplified view of the RNN training

process. In the previous section, we explained how one-hot

encoding is used to produce an input vector for training. For

example, the character “a” is represented by the input vector [�,

�, �, �], which is fed into the hidden layer. Each neuron in the

hidden layer has its own dedicated weight matrix associated

with the input vector.

Weight Matrices in RNNs

�e weight values associated with input vectors are denoted as

U, while the weights for the recurrent connections (connections

between neurons across time steps) are noted as W. �is

separation is a standard way to distinguish weights for input

processing from those used in recurrent operations.

Weighted Sum Calculation in the Hidden Layer

�e neurons in the hidden layer calculate the weighted sum of

the input vector. Only the sequence corresponding to the � in the

input vector contributes to the calculation, as all other

sequences result in zero when multiplied. �is calculation also

includes a bias term. For example, if the weight matrix for the



input vector [�, �, �, �] is [Un�, Un�, Un�, Un�], only the weight

Un� contributes to the sum.

�e result of this weighted sum for the initial time step is

denoted as h

(-�t)

. �is result is "stored" and used as an input for

the next time step. A�er calculating the weighted sum, it is

passed through an activation function, and the resulting

activation values are fed into the output layer.

Output Layer Operations

In our example, there are two output neurons for simplicity, but

in real-life scenarios, the output layer typically contains the

same number of neurons as the input vector dimensions (four in

this case). Each output neuron calculates a weighted sum of its

inputs, producing a value known as a logit. �ese logits are

passed through the So�Max activation function, which converts

them into probabilities for each output neuron. Note, So�Max

function is discussed in chapter � – Multi-Class Classification.

In this example, the output neuron with the highest

probability corresponds to the third position (not shown in the

figure). �is results in the output vector [�, �, �, �], which

represents the character “l.”



Figure �-�: Recurrent Neural Networks – Basic Operation.



COMPARISON WITH FEED-FORWARD NEURAL

NETWORKS (FNNS)

So far, this process resembles that of a Feed-Forward Neural

Network (FNN). Input vectors are passed from the input layer to

the hidden layer, where the neurons compute weighted sums

and apply an activation function. Since the hidden and output

layers are fully connected, the hidden layer's activation values

are passed to the output layer.



MOVING TO THE SECOND TIME STEP

At the second time step, the output vector [�, �, �, �], along with

the weighted sum h

n(t-�)

 from the previous step, is used to

calculate the new weighted sum. �is calculation also includes a

bias term. Since the same model is used at every time step, the

weight matrices remain unchanged. At this time step, only the

weight Un� contributes to the sum, as it corresponds to the non-

zero value in the input vector. �e rest of the process follows the

same steps as in the initial time step. Once time step � is

completed, the process advances to time step �, repeating the

same calculations. �is sequence continues until the training is

completed.



BACKWARD PASS IN RECURRENT NEURAL NETWORKS

�e backward pass in RNNs is called Backpropagation �rough

Time (BPTT) because it involves propagating errors not only

through the network layers but also backward through time

steps. If you think of time steps as stacked layers, the BPTT

process requires fewer computation cycles and memory than

Feed-Forward Neural Network (FNN), because RNN uses shared

weight matrices across the layers while FMM has assigned per-

layer weight values. Like RNN, the Convolutional Neural

Network (CNN), introduced in Chapter �, leverages shared

weight matrices but within a layer not between the layers.



CHALLENGES OF A RNN MODELL

Figure �-� shows the last two time steps of our Recurrent Neural

Network (RNN). At the time step n (on the le� side), there are

two inputs for the weighted sum calculation: Xn (the input at the

current time step) and ht-� (the hidden state from the previous

time step).

First, the model calculates the weighted sum of these inputs.

�e result is then passed through the neuron’s activation

function (Sigmoid in this example). �e output of the activation

function, ht , is fed back into the recurrent layer on the next time

step, n+�. At time step n+�, the ht is combined with the input Xn

to calculate weighted sum. �is result is then passed through the

activation function, which now produces the model's

prediction, 𝑦𝑦^ (y hat). �ese steps are part of the Forward Pass

process.

As the final step in the forward pass, we calculate the model's

accuracy using the Mean Square Error (MSE) function

(explained in Chapter �).

If the model's accuracy is not close enough to the expected

result, it begins the Backward Pass to improve its performance.

�e most used optimization algorithm for minimizing the loss

function during the backward pass is Gradient Descent, which

updates the model's parameters step by step.



�e backward pass process starts by calculating the derivative

of the error function (i.e., the gradient of the error function with

respect to the output activation value) to determine the Output

Error.

Next, the Output Error is multiplied with the derivative of the

activation function to compute the local Error Term for the

neuron. (i.e., the derivative of the activation function with

respect to its input is the local gradient, which determines how

the activation values changes in response to its input change.)

�e error terms are then propagated through all time steps to

calculate the actual Weight Adjustment Values.

In this example, we focus on how the weight value associated

with the recurrent connection is updated. However, this process

also applies to

weights linked to the input values. �e neuron-specific weight

adjustment values are calculated by multiplying the local error

term with the corresponding input value and the learning rate.

�e di�erence between the backward pass process in a

Feedforward Neural Network (FNN) and a Recurrent Neural

Network (RNN) is that the RNN uses Backpropagation �rough

Time (BPTT). In this method, the weight adjustment values from

each time step are accumulated during backpropagation.

Optionally, these accumulated gradients can be averaged over

the number of time steps to prevent the gradient magnitude

from becoming too large for long sequences. �is averaging is

the default behavior in implementations using TensorFlow and



PyTorch frameworks (PyTorch is explained in detail in Chapter

��).

Since the RNN model uses shared weight matrices across all

time steps, only one weight parameter per recurrent connection

needs to be updated. In this simplified example, we have one

recurrent connection because there is only one neuron in the

recurrent layer. However, in real-world scenarios, RNN layers

o�en have hundreds of neurons and thousands of time steps.

Figure �-�: Overview of the Weight Adjustment Process.

Saturated Neurons

Figure �-� depicts the S-curve of the Sigmoid activation

function. It shows how the output of the function (y) changes in

response to variations in the input (z). �e chart illustrates how

the rate of change slows down significantly when the input value



exceeds �.� or falls below -�.�. Beyond these thresholds,

approaching input values of �.� and -�.�, the rate of change

becomes negligible from a learning perspective. �is behavior

can occur due to a poor initial weight assignment strategy,

where the initial weight values are either too small or too large,

potentially causing backpropagation through time (BPTT) to

adjust the weights in the wrong direction. �is issue is

commonly known as neuron saturation.

Another issue illustrated in the figure is that the Sigmoid

activation function output (y) is practically zero when the input

value is less than -�. For example, with z = -�, y = �.����, but with

z = -�, y drops to just �.����. �e problem with these "almost-

zero" output values is that the neuron becomes "dead," meaning

its output (y) has negligible impact on the model's learning

process. In an RNN model, where the neuron's output is reused

in the recurrent layer as the hidden state (h), a close-to-zero

value causes the neuron to "forget" inputs from preceding time

steps.



Figure �-�: �e Problem with the S-curved Sigmoid Function

Figure �-� illustrates a hypothetical RNN with five time steps.

�is example demonstrates how some recurrent connections for

the hidden state values (h) can become insignificant from the

perspective of subsequent time steps. For instance, if the output

of the Sigmoid activation function at time step � (h�) is �.����,

the corresponding value at time step � (h�) would increase by

only �.���� compared to the scenario where h� is zero.

Similarly, in an RNN with ���� time steps, the learning

process is prone to the vanishing gradient problem during

backpropagation through time (BPTT). As gradients are

propagated backward across many time steps, they o�en shrink

exponentially due to repeated multiplication by small values

(e.g., derivatives of activation Sigmoid functions). �is can cause

the learning curve to plateau or decrease, leading to poor weight



updates and suboptimal learning. In severe cases, the learning

process may e�ectively stop, preventing the model from

achieving the expected performance.

Figure �-�: RNN and “Forgotten” History.

When using a data parallelization strategy with Recurrent

Neural Networks (RNNs), input data batches are distributed

across multiple GPUs, each running the same model

independently on its assigned batch. During the

backpropagation through time (BPTT) process, each GPU

calculates gradients locally for its portion of the data. �ese

gradients are then synchronized across all GPUs, typically by

averaging them, to ensure consistent updates to the shared

model parameters.

Since the weight matrices are part of the shared model, the

updated weights remain synchronized across all GPUs a�er each

training step. �is synchronization ensures that all GPUs use the

same model for subsequent forward and backward passes.



However, due to the sequential nature of RNNs, BPTT must

compute gradients step by step, which can still limit scalability

when dealing with long sequences. Despite this, data

parallelization accelerates training by distributing the workload

and reducing the computational burden for each GPU.

We can also implement the model parallelization strategy with

RNNs, which synchronizes both activation values during the

forward pass and gradients during backpropagation.

�e parallelization strategy significantly a�ects network

utilization due to the synchronization process, specifically, what

we synchronize and at what rate. Several upcoming chapters

will focus on di�erent parallelization strategies.
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CHAPTER �:    LONG

SHORT-TERM

MEMORY



INTRODUCTION

As mentioned in the previous chapter, Recurrent Neural

Networks (RNNs) can have hundreds or even thousands of time

steps. �ese basic RNNs o�en su�er from the gradient vanishing

problem, where the network struggles to retain historical

information across all time steps. In other words, the network

gradually "forgets" historical information as it progresses

through the time steps.

One solution to address the horizontal gradient vanishing

problem between time steps is the use of Long Short-Term

Memory (LSTM) based RNN instead of basic RNN. LSTM cells

can preserve historical information across all time steps,

whether the model contains ten or several thousand time steps.

Figure �-� illustrates the overall architecture of an LSTM cell.

It includes three gates: the Forget gate, the Input gate (a.k.a.

Remember gate), and the Output gate. Each gate contains input

neurons that use the Sigmoid activation function. �e reason for

employing the Sigmoid function, as shown in Figure �-� of the

previous chapter, is its ability to produce outputs in the range of

� to �. An output of � indicates that the gate is "closed," meaning

the information is excluded from contributing to the cell's

internal state calculations. An output of �, on the other hand,

means that the information is fully utilized in the computation.

However, the sigmoid function never gives an exact output of



zero. Instead, as the input value becomes more and more

negative (approaching negative infinity), the output gets closer

and closer to zero, but it never actually reaches it. Similarly, the

sigmoid function's output approaches one as the input value

becomes very large (approaching positive infinity). However,

just like with zero, the function never exactly reaches one; it

only gets very close.

As a one way of completely closing any of the gates, you may

set a threshold value manually and define, for example, that the

outputs less than �.�� are interpreted as zero (gate closed). �e

same principle applies to gate opening, you can set the threshold

to, for example, output higher than �.�� are interpreted as one

(gate fully open). However, instead of hard coded threshold,

consider alternatives like smooth activation adjustments.

�is gating mechanism enables LSTM cells to selectively retain

or discard information, allowing the network to manage long-

term dependencies e�ectively.



Figure �-�: Long Short-Term Memory Cell – Architectural

Overview.



LTSM CELL OPERATION

In addition to producing input for the next layer (if one exists),

the output (h) of the LSTM cell serves as input for the next time

step via the recurrent connection. �is process is like how

neurons in a basic RNN operate. �e LSTM cell also has a cell

state (C), which is used to retain historical information utilizes

the Constant Error Carousel (CEC) mechanism, which feeds back

the cell state (C) into the computation process where the new cell

state is calculated. �e following sections briefly describe the

processes how an LSTM cell computes the cell state (C), and the

cell output (h), and explains the role of the gates in the process.

Forget Gate

�e Forget Gate (FG) adjusts the extent to which historical data is

preserved. In Figure �-�, the cell state Ct-� represents historical

data computed by the identity function during a preceding time

step. �e cell state (C ) represents an LSTM cell internal state, not

the LSTM cell output (h), and it is used for protecting historical

data for gradient vanishing during the BPTT. �e adjustment

factor for Ct-� is calculated by a neuron using the Sigmoid

activation function within the FG.

�e neuron in the FG uses shared, input specific weight

matrices for the input data (X�) and the input received from the



preceding LSTM cell's output (ht-�). �ese weight matrices are

shared across FG neurons over all time steps, like the approach

used in a basic Recurrent Neural Network (RNN). As described in

the previous chapter, this sharing reduces the computational

requirements for calculating weight adjustment values during

Backpropagation �rough Time (BPTT). Additionally, the

shared weight matrices help reduce the model memory

utilization by limiting the number of weight variables.

In the figure, the matrix WFG� is associated with the input

received from the preceding time step, while the matrix UFG� is

used for the new input value X�. �e weighted sum (WFG� ⋅ ht-�)+
(UFG� ⋅ X�) is passed through the Sigmoid activation function,

which produces the adjustment factor for the cell state value Ct-

�. �e closer the output of the sigmoid function is to the value

one, the more the original value a�ects the calculation of the

new value. �e same applies to opposite direction, the closer the

output of the sigmoid function is to zero, the less the original

value a�ects the calculation of the new value.

Finally, the output of the FG, referred to as XFG, is computed

by multiplying the Sigmoid output by the cell state Ct-�.



Figure �-�: Long Short-Term Memory Cell – Forget Gate.

Input Gate

�e Input Gate (IG) determines to what extent the input X� and

the output ht-� from the preceding time step a�ect the new cell

state Ct. For this process, the LSTM cell has two neurons. In

Figure �-�, the internal neuron of IG uses the Sigmoid function,

while the Input Activation neuron leverages the ReLU function.

Both neurons use input-specific weight matrices in the same way

as the Forget Gate. �e Input Gate neuron feeds the weighted

sum (WIG� ⋅ ht-�) + (UIG� ⋅ X�) to the sigmoid function. �e output

determines the proportion in which new input values X� and ht-�

influence the computation of the cell's internal value. �e closer

the sigmoid function's output is to one, the more the original

value influences the new value. Conversely, the closer the output



is to zero, the less it influences the new value. �e Input

Activation neuron feeds the weighted sum (WIA� ⋅ ht-�) + (UIA� ⋅
X�) to the ReLU function. �e output is then multiplied by the

output of the Sigmoid function, providing the result of the Input

Gate. At this phase, the LSTM cell has computed output for both

Forget Gate (XFG) and Input Gate (XIG). Next, the LSTM feeds

these values to the Identification Function.

Figure �-�: Long Short-Term Memory Cell – Input Gate.

Output Gate

�e Output Gate determines whether the output of the Output

Activation neuron (ReLU) is fully published, partially published,

or le� unpublished. �e factor of the Output Gate is calculated

based on the input value X� and the output ht-� from the



previous time step. �at said, all Sigmoid neurons and the ReLU

Input Activation function use the same inputs, and they leverage

shared weight matrices. �e input to the Output Activation

neuron is the sum of the outputs from the Forget Gate (X��) and

the Input Gate (X��). In the figure, the sum is represented as f(x)

= X�� + X��. �e operation is computed by a neuron that uses the

Identification function (��F). �e original output of the

Identification function is preserved as the internal cell state (C)

for the next time step through the CEC (Constant Error

Carousel) connection. �e output of the Identification Function

is then passed to the ReLU Output Activation function. �is

output is multiplied by the result of the Output Gate, producing

the actual cell output h�. �is value serves as input to the same

LSTM cell in the next time step. In a multilayer model, the cell

output is also used as input for the subsequent layer.



Figure �-�: Long Short-Term Memory Cell – Output Gate.



LTSM-BASED RECURRENT NEURAL NETWORK

Recap of the Operation of an LSTM Cell

�e previous section introduced the construction and operation

of a single Long Short-Term Memory (LSTM) cell. �is section

briefly discusses an LSTM-based Recurrent Neural Network

(RNN). Before diving into the details, let’s recap how an

individual LSTM cell operates with a theoretical, non-

mathematical example.

Suppose we want our model to produce the sentence: “It was

cloudy, but it is raining now.” �e first part of it refers to the past,

and one of the LSTM cells has stored the tense “was” in its

internal cell state. However, the last portion of the sentence

refers to the present. Naturally, we want the model to forget the

previous tense “was” and update its state to reflect the current

tense “is.”

�e Forget Gate plays a role in discarding unnecessary

information. In this case, the forget gate suppresses the word

“was” by closing its gate (outputting �). �e Input Gate is

responsible for providing a new candidate cell state, which in

this example is the word “is.” �e input gate is fully open

(outputting �) to allow the latest information to be introduced.



�e Identification function computes the updated cell state by

summing the contributions of the forget gate and the input gate.

�is updated cell state represents the memory for the next time

step. Additionally, the updated cell state is passed through an

Output Activation function, which provides the cell’s output.

�e Output Gate controls how much of this activated output is

shared as the public output. In this example, the output gate is

fully open (outputting �), allowing the word “is” to be published

as the final output.



AN OVERVIEW OF AN LSTM-BASED RNN

Figure �-� illustrates an LSTM-based RNN model featuring two

LSTM layers and a So�Max layer. �e input vectors X� and X�,

along with the cell output ht-� from the previous time step, are

fed into all LSTM cells in the input layer. To keep the figure

simple, only two LSTM cells are shown per layer.

�e input vectors pass through gates, producing both the

internal cell state and the cell output. �e internal states are

stored using a Constant Error Carousel (CEC) to be utilized in

subsequent time steps. �e cell output is looped back as an input

vector for the next time step. Additionally, the cell output is

passed to all LSTM cells in the next layer.

Finally, the So�Max layer generates the model's output. Note

that Figure �-� depicts a single time step.



Figure �-�: LSTM based RNN Layer Model.

Figure �-� illustrates a layered LSTM-based Recurrent Neural

Network (RNN) model that processes sequential data across four

time steps. �e model consists of three layers: the input LSTM

layer, a hidden LSTM layer, and a So�Max output layer. Each

gray square labeled "LSTM" represents a layer containing n

LSTM cells.

At the first time step, the input value x� is fed to the LSTM cells

in the input layer. Each LSTM cell computes its internal cell state



(C), applies it to the output activation function, and produces a

cell output (ht ). �is output is passed both to the LSTM cells in

the next time step via recurrent connections and to the LSTM

cells in the hidden layer at the same time step as an input vector.

�e LSTM cells in the hidden layer repeat the process

performed by the input layer LSTM cells. �eir output (ht) is

passed to the So�Max layer, which computes probabilities for

each possible output class, generating the model's predictions

(y�). �e cell output is also passed to the next time step on the

same layer.

�e figure also depicts the autoregressive mode, where the

output of the So�Max layer at the initial time step t� is fed back

as part of the input for the next time step (t+�) in the input layer.

�is feedback loop enables the model to use its predictions from

previous time steps to inform its processing of subsequent time

steps. Autoregressive models are particularly useful in tasks

such as sequence generation, where the output sequence

depends on previously generated elements.

Key Features Depicted in Figure �-�

•    Recurrent Data Flow: �e outputs from each time step

are recurrently fed into the next time step, capturing

temporal dependencies.

•    Layered Structure: �e vertical connections between

layers allow the model to hierarchically process input data,

with higher layers learning progressively abstract features.



•    Autoregressive Feedback: �e use of So�Max outputs as

part of the next time step’s input highlights the

autoregressive nature of the model, commonly used in

sequence prediction and generation tasks.

Figure �-�: LSTM-Based RNN Model with Layered Structure

and Four Time Steps.



CONCLUSION

Figure �-� demonstrates the interplay between sequential and

layered data flow in a multi-layered LSTM model, showcasing

how information is processed both temporally (across time

steps) and hierarchically (across layers). �e autoregressive

feedback loop further illustrates the model’s capability to adapt

its predictions based on prior outputs, making it well-suited for

tasks such as time series forecasting, natural language

processing, and sequence generation.
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CHAPTER �: LARGE

LANGUAGE MODEL

(LLM)



INTRODUCTION

�is chapter introduces the basic operations of Transformer-

based Large Language Models (LLMs), focusing on fundamental

concepts rather than any specific models, such as OpenAI’s GPT

(Generative Pretrained Transformer).

�e chapter begins with an introduction to tokenization and

word embeddings, which convert input words into a format the

model can process. Next, it explains how the transformer

component leverages decoder architecture for input processing

and prediction.

�is chapter has two main goals. First, it explains how an LLM

understands the context of a word. For example, the word

“clear” can be used as a verb (Please, clear the table.) or as an

adjective (�e sky was clear.), depending on the context. Second,

it discusses why LLMs require parallelization across hundreds or

even thousands of GPUs due to the large model size, massive

datasets, and the computational complexity involved.



TOKENIZER AND WORD EMBEDDING MATRIX

As a first step, we import a vocabulary into the model. �e

vocabulary used for training large language models (LLMs)

typically consists of a mix of general and domain-specific terms,

including basic vocabulary, technical terminology, academic

and formal language, idiomatic expressions, cultural references,

as well as synonyms and antonyms. Each word and character are

stored in a word lookup table and assigned a unique token. �is

process is called tokenization.

Many LLMs use Byte Pair Encoding (BPE), which splits words

into subword units. For example, the word "unhappiness" might

be broken down into "un," "happi," and "ness." BPE is widely used

because it e�ectively balances vocabulary size and tokenization

e�ciency, particularly for handling rare words and sub-words.

For simplicity, we use complete words in all our examples.

Figure �-� illustrates the relationship between words in the

vocabulary and their corresponding tokens. Token values start

from � because token � is reserved for padding and token � for

unknown words.

Each token, representing a word, is mapped to a Word

Embedding Vector, which is initially assigned random values.

�e collection of these vectors forms a Word Embedding Matrix.



�e dimensionality of each vector determines how much

contextual information it can encode.

For example, consider the word “clear.” A two-dimensional

vector may distinguish it as either an adjective or a verb but

lacks further contextual information. By increasing the number

of dimensions, the model can capture more context and better

understand the meaning of the word. In the sentence “�e sky

was clear,” the phrase “�e sky was” suggests that "clear" is an

adjective. However, if we extend the sentence to “She decided to

clear the backyard of junk,” the word "clear" now functions as a

verb. More dimensions allow the model to utilize surrounding

words more e�ectively for next-word prediction. For instance,

GPT-� uses ��,���dimensional vectors. Given a vocabulary size

of ��,��� words used by GPT-�, the Word Embedding Matrix has

dimensions of ��,��� × ��,���, resulting in ���,���,���

parameters.

�e context size, defined as the sequence length of vectors,

determines how many preceding words the model considers

when predicting the next word. In GPT-�, the context size is

�,��� tokens.



Figure �-�: Tokenization and Word Embedding Matrix.

Word Embedding

As a first step, when we feed input words into a Natural

Language Processing (NLP) model, we must convert them into a

format the model can understand. �is is a two-step process:

•    Tokenization: Each word is assigned a corresponding

token from a lookup table.

•    Word Embedding: �ese token IDs are then mapped to

vectors using a word embedding lookup table.

To keep things simple, Figure �-� uses two-dimensional

vectors in the embedding matrix. Instead of complete sentences,

we use words, which can be categorized into four groups:

female, male, adult, and child.



�e first word, "Wife," appears in the lookup table with the

token value �. �e corresponding word vector in the lookup

table for token � is [-�.�, -�.�]. �e second word, "Mother," is

assigned the token �, which is associated with the word vector

[-�.�, +�.�], and so on.

Figure �-�: Word Tokenization and Word Embedding.

In Figure �-�, we have a two-dimensional vector space divided

into four quadrants, representing gender (male/female) and age

(child/adult). Tokenized words are mapped into this space.

At the start of the first iteration, all words are placed randomly

within the two-dimensional space. During training, our goal is

to adjust the word vector values so that adults are positioned on

the positive side of the Y-axis and children on the negative side.

Similarly, males are placed in the negative space of the X-axis,

while females are positioned on the positive side.



Figure �-�: Words in the � Dimensional Vector Space in the Initial

State.

Figure �-� illustrates how words may be positioned a�er

successful training. All words representing a male adult are

placed in the upperle� quadrant (adult/male). Similarly, all

other words are positioned in the two-dimensional vector space

based on their corresponding age and gender.



Figure �-�: Words in the � Dimensional Vector Space A�er

Training.

In addition to grouping similar words, such as "adult/female,"

close to each other in an n-dimensional space, there should also

be positional similarities between words in di�erent quadrants.

For example, if we calculate the Euclidean distance between the

words Father and Mother, we might find that their distance is

approximately �.�. �e same pattern applies to word pairs like

Nephew-Niece, Brother-Sister, Husband-Wife, and Father-in-Law–

Mother-in-Law.



However, it is important to note that this example is purely

theoretical. In practice, Euclidean distances in high-

dimensional word embeddings are not fixed but vary depending

on the training data and optimization process. �e relationships

between words are o�en better captured through cosine

similarity rather than absolute Euclidean distances.

Figure �-�: Euclidean Distance.

Positional Embeddings

Since input text o�en contains repeated words with di�erent

meanings depending on their position, an LLM must distinguish

between them. To achieve this, the word embedding process in

Natural Language Processing (NLP) incorporates a Positional



Encoding Vector alongside the Word Embedding Vector,

resulting in the final word representation.

In Figure �-�, the sentence "�e sky is clear, so she finally

decided to clear the backyard" contains the word clear twice.

Repeated words share the same token ID instead of receiving

unique ones. In this example, the is assigned token ID �, and

clear is assigned �. �ese token IDs are then mapped to vectors

using a word embedding lookup table. However, without

positional encoding, words with di�erent meanings would share

the same vector representation.

Focusing on clear (token ID �), it maps to the word embedding

vector [+�.�, +�.�] from the lookup table. Since token IDs do not

capture word position, identical words always receive the same

embedding.

Positional encoding is essential for capturing context and

semantic meaning. As shown in Figure �-�, each input word

receives a Positional Encoding Vector (PE) in addition to its word

embedding. PE can either be learned and adjusted during

training or remain fixed. �e final Word Embedding Vector is

computed by combining both the Word Embedding Vector and

Positional Encoding Vector.



Figure �-�: Tokenization – Positional Embedding Vector.

Calculating the Final Word Embedding

Figure �-� presents the equations for computing the final word

embedding by incorporating positional embeddings. �ere are

three variables:

•    Position (pos) → �e word’s position in the sentence. In

our example, the first occurrence of clear is the fourth word,

so pos = �.

•    Dimension (d) → �e depth of the vector. We use a �-

dimensional vector, so d = �.

•    Index (i) → Specifies the axis of the vector: � for the x-axis

and � for the y-axis.



�e positional embedding is computed using the following

equations:

•    x-axis: sin(pos/�����

�i/d

), where i = �

•    y-axis: cos(pos/�����

�i/d

, where i = �

For clear at position �, with d = �, the resulting �D positional

vector is [-�.�,+�.�]. �is vector is then added to the input word

embedding vector [+�.�, +�.�], resulting in the final word

embedding vector [+�.�, +�.�].

Figure �-� also shows the final word embedding for the second

occurrence

of clear, but the computation is omitted.

Figure �-�: Finals Word Embedding for the �

th

 Word.



TRANSFORMER ARCHITECTURE

Introduction

Sequence-to-sequence (seq�seq) language translation and

Generative Pretrained Transformer (GPT) models are

subcategories of Natural Language Processing (NLP) that utilize

the Transformer architecture. Seq�seq models are typically

using Long Short-Term Memory (LSTM) networks or encoder-

decored based Transformers. In contrast, GPT is an

autoregressive language model that uses decoder-only

Transformer mechanism. �e purpose of this chapter is to

provide an overview of the decoder-only Transformer

architecture.

�e Transformer consists of stacks of decoder modules. A

word embedding vector, a result of the word tokenization and

embbeding, is fed as input to the first decoder module. A�er

processing, the resulting context vector is passed to the next

decodeer, and so on. A�er the final decoder, a so�max layer

evaluates the output against the complete vocabulary to predict

the next word. As an autoregressive model, the predicted word

vector from the so�max layer is converted into a token before

being fed back into the subsequent decoder layer. �is process

involves a token-toword vector transformation prior to re-

entering the decoder.



Each decoder module consists of an attention layer, Add

& Normalization layer and a feedforward neural network (FFNN).

Rather than feeding the embedded word vector (i.e., token

embedding plus positional encoding) directly into the decoder

layers, the Transformer first computes the Query (Q), Key (K),

and Value (V) vectors from the word vector. �ese vectors are

then used in the self-attention mechanism. Initially, the query

vector is multiplied by the key vectors using matrix

multiplication. �e result is then divided by the square root of

the dimension of the key vectors (scaled dot product) to obtain

the logits. �e logits are processed by a so�max layer to compute

probabilities. �e So�Max prediction results are multiplied with

the value vectors to produce a context vector.

Before feeding the context vector into the feedforward neural

network, it is summed with the original word embedding vector

(which includes positional encoding) via a residual connection.

Finally, the output is normalized using layer normalization. �is

normalized output is then passed as input to the FFNN, which

computes the output.

�e basic architecture of the FFNN in the decoder is designed

so that the input layer has as many neurons as the dimension of

the context vector. �e hidden layer, in turn, has four times as

many neurons as the input layer, while the output layer has the

same number of neurons as the input layer. �is design

guarantees that the output vector of the FFNN has the same

dimension as the context vector. Like the attention block, the



FFNN block also employs residual connections and

normalization.

Figure �-�: Decoder-Only Transformer Architecture.

Query, Key and Value Vectors

As pointed out in the Introduction, the word embedding vector

is not used as input to the first decoder. Instead, it is multiplied

by pretrained Query, Key, and Value weight matrices. �e result

of this matrix multiplication, dot product, produces the Query,

Key, and Value vectors, which are use as inputs, and are

processed through the Transformer. Figure �–� show the basic

workflow of this process.



Figure �-�: Query, Key, and Value Vectors.

Let’s take a closer look at the process using numbers. A�er

tokenizing the input words and applying positional encoding,

we obtain a final �dimensional word matrix. To reduce

computation cycles, the process reduces the dimension of the

Query vector from � to �. Because we want the Query vector to be

three-dimensional, we use three �-dimensional column vectors,

each of which is multiplied by the word vector.

Figure �-��: Calculating the Query Vector.

Figure �–�� depicts the calculation process, where each

component of the word vector is multiplied by its corresponding



component in the Query weight matrix. �e weighted sum of

these results forms a threedimensional Query vector. �e Key

and Value vectors are calculated using the same method. �e

same Query, Key, and Value (Q, K, V) weight matrices are used

across all words (tokens) within a single self-attention layer in a

Transformer model. �is ensures that each token is processed in

the same way, maintaining consistency in the attention

computations. However, each decoder layer in the Transformer

has its own dedicated Q, K, and V weight matrices, meaning that

every layer learns di�erent transformations of the input tokens,

allowing deeper layers to capture more abstract representations.

Figure �-��: Calculating the Query Vector.

Attention Layer

Figure �-�� depicts what happens in the first three components

of the Attention layer a�er calculating the Query, Key, and Value



vectors. In this example, we focus on the word “clear”, and try to

predict the next word. Its Query vector is multiplied by its own

Key vector as well as by all the Key vectors generated for the

preceding words. Each multiplication produces its own score.

Note that the score values shown in the figure are theoretical

and are not derived from the actual Qv × Kv matrix

multiplication; however, the remaining values are based on

these calculations. Additionally, in our example, we use one-

dimensional values (instead of actual vectors) to keep the figures

and calculations simple. In reality, these are n-dimensional

vectors.

A�er the Qv × Kv matrix multiplication, the resulting scores

are divided by the square root of the vector depth, yielding

logits, i.e., the input values for the so�max function. �e

so�max function then computes the exponential of each logit

(using Euler’s number, approximately �.�����) and divides each

result by the sum of all exponentials. For example, the value

�.��, corresponding to the first word, is divided by ���.��,

resulting in a probability of �.���. Note that the sum of the

probabilities is �.�. So�max ensures that the attention scores

sum to �, making them interpretable as probabilities and helping

the model decide which input tokens to focus on when

generating an output. In our example, the token for the word

“clear” has the highest probability at this stage. �e word

“decided” has the second highest probability score (�.���),

which indicates that the semantics of “clear”, which has the

highest probability score (�.���), can be interpreted as an verb

answering the question: “What she decided to do?



Figure �-��: Attention Layer, the First �ree Steps.

Next, the So�Max probabilities are multiplied by each token's

Value vector (matrix multiplication). �e resulting vectors are

then summed, producing the Context vector for the token

associated with the word “clear.” Note that the components of

the Value vectors are example values and are not derived from

actual computations.



Figure �-��: Attention Layer, the Fourth Step.

Add & Normalization

As the final step, the Word vector, which includes positional

encoding, is added to the context vector via a Residual

Connection. �e result is then passed through a normalization

process, where the vector’s components are summed and

divided by the vector’s dimension, yielding the mean (µ). �is

mean value is then used for standard deviation calculation: the

mean is subtracted from each of the three vector components,

and the results are squared. �ese squared values are then

summed, divided by three (the vector’s dimension), and the

square root of this result gives the final output vector [�.��, -�.��,

-�.��] of the Add & Normalize layer.



Figure �-��: Add & Normalize Layer – Residual Connection and

Layer Normalization.

Feed Forward Neural Network

Within the decoder module, the feedforward neural network

uses the output vector from the Add & Normalize layer as its

input. In our example, the FFNN have one neuron in input layer

for each component of the vector. �is layer simply passes the

input values to the hidden layer, where each neuron first

calculates a weighted sum and then applies the ReLU activation

function. In our example, the hidden layer contains nine

neurons (three times the number of input neurons). �e output

from the hidden layer is then fed to the output layer, where the

neurons again compute a weighted sum and apply the ReLU

activation function. Note that in transformer-based decoders,

the FFNN is applied to each token individually. �is means that



each token-related output from the attention layer is processed

separately by the same FFNN model with shared weights,

ensuring a consistent transformation of each token's

representation regardless of its position in the sequence.

Figure �-��: Fully Connected Feed Forward Neural Network

(FFNN).

�e final decoder output is computed in the Add & Normalize

layer, similarly as Add & Normalize a�er the attention layer. �is

produces the decoder output, which is used as the input for the

next decoder module.



Figure �-��: Add & Normalize Layer – Residual Connection and

Layer Normalization.

Next Word Probability Computation – SoftMax

Function

�e output of the last decoder module does not directly

represent the next word. Instead, it must be transformed into a

probability distribution over the entire vocabulary. First, the

decoder output is passed through a weight matrix that maps it to

a new vector, where each element corresponds to a word in the

vocabulary.

For example, in Figure �-�� the vocabulary consists of ��

words. �ese words are tokenized and linked to their

corresponding word embeddings vector. �at said, the word

embedding matrix serves as a weight matrix.



Figure �-��: Hidden State Vector and Word Embedding Matrix.

Figure �-�� illustrates how the decoder output vector (i.e., the

hidden state h) is multiplied by all word embedding vectors to

produce a new vector of logits.

Figure �-��: Logits Calculation – Dot Product of Hidden State and

Complete Vocabulary.

Next, the So�Max function is applied to the logits. �is

function converts the logits into probabilities by exponentiating

each logit and then normalizing by the sum of all exponentiated

logits. �e result is a probability distribution in which each value

represents the likelihood of selecting a particular word as the

next token.

Figure �-��: Probability Calculation - Adding Logits to So�Max

Function



Finally, the word with the highest probability is selected as the

next token. �is token is then mapped back to its corresponding

word using a token-to-word lookup. �is initiates the next

iteration, where the token is converted into its word embedding

vector and used together with positional encoding to create the

actual word embedding for the next iteration.

Figure �-��: Word-to-Token, and Token-to-Word Embedding

Process.

In theory, our simple example shows that the model can assign

the highest probability to the correct word. For instance, by

analyzing the position of the word “clear” relative to its

preceding words, the model is able to infer the context. When

the context implies that an action is directed toward a known

target, the article “the” receives the highest probability score

and is predicted as the next word.



CONCLUSION

We use pretty simple examples in this chapter. However, GPT-�,

for example, is built on a deep Transformer architecture

comprising �� decoder blocks. Each decoder block is divided into

three primary sublayers:

•    Attention Layer: �is layer implements multi-head self-

attention using four key weight matrices, one each for the

query, key, and value projections, plus one for the output

projection. Together, these matrices account for roughly

��� million trainable parameters per block.

•    Add & Normalize Layers: Each block employs two

residual connections paired with layer normalization. �e

first Add & Normalize operation occurs immediately a�er

the Attention Layer, and the second follows the Feed-

Forward Neural Network (FFNN) layer. Although essential

for stabilizing training, the parameters in each

normalization step are relatively few, typically on the order

of tens of thousands.

•    Feed-Forward Neural Network (FFNN) Layer: �e FFNN

consists of two linear transformations with an intermediate

expansion (usually about four times the model’s hidden

size). �is layer contributes approximately �.� billion

parameters per block.



Aggregating the parameters from all �� decoder blocks, and

including additional parameters from the token embeddings,

positional encodings, and other components, the entire GPT-�

model totals around ��� billion trainable parameters. �is is why

parallelism is essential: the training process must be distributed

across multiple GPUs and executed according to a selected

parallelization strategy. �e second part of the book discusses

about Parallelization.
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CHAPTER �:

PARALLELISM

STRATEGIES IN DEEP

LEARNING



INTRODUCTION

Figure �-� depicts some of the model parameters that need to be

stored in GPU memory: a) Weight matrices associated with

connections to the preceding layer, b) Weighted sum (z), c)

Activation values (y), d) Errors (E), e) Local gradients (local 𝛻𝛻),

f) Gradients received from peer GPUs (remote ∇), g) Learning

rates (LR), and h) Weight adjustment values (𝛥𝛥𝑤𝑤). In addition,

the training and test datasets, along with the model code, must

also be stored in GPU memory. However, a single GPU may not

have enough memory to accommodate all these elements. To

address this limitation, an appropriate parallelization strategy

must be chosen to e�ciently distribute computations across

multiple GPUs. �is chapter introduces the most common

strategies include Data Parallelism, Model Parallelism, Pipeline

Parallelism, and Tensor Parallelism.



Figure �-�: Overview of Neural Networks Parameters.



DATA PARALLELISM

In data parallelization, each GPU has an identical copy of the

complete model but processes di�erent mini-batches of data.

Gradients from all GPUs are synchronized and averaged before

updating the model. �is approach is e�ective when the model

fits within a single GPU’s memory.

In Figure �-�, the batch of training data is split into eight

micro-batches. �e first four micro-batches are processed by

GPU A�, while the remaining four micro-batches are processed

by GPU A�. Both GPUs share the same model, and their input

data are processed through all layers to generate a model

prediction. �e computation during the forward pass does not

involve network load tra�c. A�er computing the model error,

the backpropagation algorithm starts the backward pass. �e

first step involves calculating the derivative of the model error,

which is synchronized across the GPUs. Next, the error is

propagated backward to calculate neuron-based errors, which

are then used to compute gradients for each weight parameter.

�ese gradients are synchronized across the GPUs (Chapter ��

explains the process in detail). �e backpropagation algorithm

running on GPUs then sums the gradients and divides the result

by the number of GPUs.

In our simple two-GPU example, this process does not

generate excessive network tra�c, although the GPUs can use



���% of their NICs forwarding capacity. However, if hundreds or

even thousands of GPUs are used, the network tra�c becomes

significantly larger.

Inter-GPU network communication within a single server

(using PCIe, NVLink) or between multiple servers (over

InfiniBand, Ethernet, wireless) requires packet forwarding with

minimal latency and in a lossless manner. Minimal latency is

required to keep the training time as short as possible, while

lossless transport is essential because training will pause if even

a single packet is lost during synchronization. In the worst-case

scenario, if no snapshot of the training progress is taken, the

entire training process

must be restarted from the beginning. Training a Large

Language Model can take months or more.

Now, consider the electricity costs if training had already been

running for two months and had to be restarted due to a single

packet loss.

Power Consumption Example:

•    A single GPU consumes roughly ���W under full load.

•    Total power consumption for ��,��� GPUs:

��� W×��,���=��,���,��� W=��.� MW

•    For two months (�� days = �,��� hours) of training:

��.� MW×�,��� hours=��,��� MWh=��,���,���



• If electricity costs ��.�� per kWh, the total training

cost will be: ��,���,��� kWh×�.��=�,���,��� USD

Figure �-�: Data Parallelism Overview.



MODEL PARALLELISM WITH PIPELINE PARALLELISM

Model Parallelism is used when a neural network model is too

large to fit into the memory of a single GPU. In this approach,

di�erent layers of the model are assigned to di�erent GPUs. Each

GPU is responsible for executing the computations, such as

matrix multiplications and activation functions, associated with

its designated layers. �is allows the model to be trained across

multiple GPUs without requiring the entire model to be loaded

into each one.

Pipeline Parallelism, in turn, is a common implementation of

model parallelism, further optimizes training by dividing each

training batch into smaller micro-batches. �ese micro-batches

are processed in a pipelined manner across the GPUs. While one

GPU is working on a forward pass for one micro-batch, another

GPU can start processing the next micro-batch, thereby

increasing hardware utilization and throughput.

�

st

. Time Step — Active GPUs: ��% - Idle GPUs: �a, �b,

�b

In Figure �-�, we have two GPU nodes, Host A and Host B, each

equipped with two GPUs. �e first hidden layer is initialized on

GPU �a, while the second hidden layer runs on GPU �a. �e third

hidden layer and the output layer are placed on Host B, on GPUs



�b and �b, respectively. �is setup enables a layer-wise model

parallelism strategy across four GPUs.

In this example, four mini-batches are processed sequentially

by GPU �a on Host A. At time step t₁, GPU �a performs a matrix

multiplication and applies an activation function to produce the

first intermediate output, y₁. �is result is stored in its local

VRAM and then transferred to the VRAM of GPU �a using Direct

Memory Access (DMA) over a high-speed NVLink connection.

At this stage, the overall cluster GPU utilization is only ��%,

since only GPU �a is actively computing. Although data is being

copied to GPU �a, that GPU is not yet active because the DMA

transfer bypasses the GPU's.

Figure �-�: Model Parallelism with Pipeline Parallelism – Time Step

�.

�

nd

. Time Step — Active GPUs: ��% - Idle GPUs: �b, �b



At time step t₂, GPU �a begins processing the second mini-batch

by performing matrix multiplication and applying the activation

function to produce output y₂. �is output is stored in its local

VRAM and then transferred to GPU �a via DMA over NVLink,

just like in the previous step.

Meanwhile, GPU �a, which received y₁ during time step t₁, now

becomes active. It reads y₁ from its VRAM, processes it through

the second hidden layer, and produces an output. �is result is

then transferred to remote GPU �b, which holds the third

hidden layer. �e transfer occurs over the backend Ethernet

network using RoCEv� (RDMA over Converged Ethernet version

�).

At this stage, GPUs �a and �a are actively computing, and GPU

�b is receiving data via RDMA. However, GPU �b is not yet

actively computing.

Figure �-�: Model Parallelism with Pipeline Parallelism – Time

Step �.



�

rd

. Time Step— Active GPUs: ��% - Idle GPUs: �b

At time step t₃, the pipeline continues to fill. GPU �a begins

processing the third mini-batch X� by performing matrix

multiplication and activation on the input, producing y₃. �is

output is stored in its local VRAM and transferred to GPU �a over

NVLink using DMA.

Simultaneously, GPU �a processes the output y₂, received at t₂

from GPU �a, through the second hidden layer. �e resulting

activation value is transferred over the backend network to GPU

�b on Host B.

At the same time, GPU �b begins processing y₁ from its local

VRAM. �is intermediate result, originally received at t₂, is now

passed through the third hidden layer. Once processed, the

output is stored local VRAM, from where it is copied to VRAM of

remote GPU �b for final output layer computation.

All of these operations occur concurrently across the GPUs,

e�ectively utilizing the pipeline. At this point, three out of the

four GPUs are performing computation, raising the cluster's

GPU utilization to ��%.



Figure �-�: Model Parallelism with Pipeline Parallelism – Time Step

�.

�

th

. Time Step— Active GPUs: ���% - Idle GPUs: none

At time step t₄, the pipeline is fully active. GPU �a processes the

fourth mini-batch X�, producing output y₄ and transferring it to

GPU �a over NVLink. Simultaneously, GPU �a processes y₃ and

sends the result to GPU �b on Host B over the backend Ethernet

network using RoCEv�.

At the same time, GPU �b processes y₂. Once completed, the

output is transferred locally over NVLink to GPU �b, which

begins computing the final output layer for y₁, related to the first

mini-batch X�.

At currently step t₄, all four GPUs are actively computing, and

the pipeline reaches maximum throughput. GPU utilization is

now ���%.



In addition to the forward computation, GPU �b now initiates

the backward pass related to the first mini-batch. It calculates

the model error E₁ from the model output 𝑦𝑦^
�

 and propagates it

backward to GPU �b. At the same time, GPU �b computes the

weight adjustment values for the weight vectors related to first

mini-batch X₁ and updates its local weights. �ese updated

weights will then be used in the next iteration of the forward

pass during matrix multiplication.

Figure �-�: Model Parallelism with Pipeline Parallelism – Time Step

�.

�

th

. Time Step — Active GPUs: ��% - Idle GPUs: �a

At time step t₅, the system continues forward computation while

also propagating the backward pass.

Forward Pass: GPU �a is now idle, having completed all four

mini-batches. GPU �a processes the output y₄, received from

GPU �a and transferring its output y₄ to GPU �b using RoCEv�.



GPU �b processes y₃ and sends the result over NVLink to GPU �b.

GPU �b processes y₂ through the output layer.

Backward pass: A�er receiving the error E₁ in the previous

time step, GPU �b computes the gradient G₁, which is then used

to calculate the weight update for the weight vectors related to

the first mini-batch X₁. GPU �b also propagates the error E₁

backward to GPU �a. Simultaneously, GPU �b performs the same

process, computing the weight updates for the second mini-

batch X₂. �ese updated weights will then be used in the next

iteration of the forward pass during matrix multiplication.

At this point, the forward and backward passes start to

overlap, with GPUs working on di�erent mini-batches in both

directions.

Figure �-�: Model Parallelism with Pipeline Parallelism – Time Step

�.

Figures �-� through �-�� illustrate how the backward pass

progresses across all GPUs, showing how mini-batch-specific



errors are computed at each layer and used to update the weight

matrices. �ese errors are then propagated backward all the way

to GPU �a.

Additionally, Figures �-� through �-�� depict how GPU

utilization changes across the time steps during the backward

pass. As each GPU completes its respective tasks

6

th

. Time Step — Three Active GPUs, One Idle GPU:

Overall GPU Utilization ��%

•    GPU �b computes new weights for the third mini-batch

X₃.

•    GPU �a computes new weights for the second mini-

batch X₂.

•    GPU �a computes new weights for the first mini-batch

X₁.



Figure �-�: Model Parallelism with Pipeline Parallelism – Time

Step �.

�

th

. Time Step — Four Active GPUs: Overall GPU

Utilization ���%

•    GPU �b computes new weights for the fourth mini-batch

X₄.

•    GPU �b computes new weights for the third mini-batch

X₃.

•    GPU �a computes new weights for the second mini-

batch X₂.

•    GPU �a computes new weights for the first mini-batch

X₁.

Figure �-�: Model Parallelism with Pipeline Parallelism – Time

Step �.



8

th

. Time Step — Three Active GPUs: One Idle GPU:

Overall GPU Utilization ��%

•  GPU �b computes new weights for the fourth mini-batch

X₄.

•  GPU �a computes new weights for the third mini-batch

X₃.

•  GPU �a computes new weights for the second mini-batch

X₂.

Figure �-��: Model Parallelism with Pipeline Parallelism –

Time Step �.

�

th

. Time Step — Two Active GPUs: Two Idle GPUs:

Overall GPU Utilization ��%

•    GPU �a computes new weights for the fourth mini-batch

X₄.



•    GPU �a computes new weights for the third mini-batch

X₃.

Figure �-��: Model Parallelism with Pipeline Parallelism –

Time Step �.

��

th

. Time Step — One Active GPU: three Idle GPUs:

Overall GPU Utilization ��%

• GPU �a computes new weights for the fourth mini-batch X₄.



Figure �-��: Model Parallelism with Pipeline Parallelism – Time

Step ��.

A�er completing the backward pass process, the second

iteration of forward pass can be initialized.

Figure �-�� gives an overall view of pipelined model

parallelization. �is kind of illustration is o�en used to explain

the concept, as it clearly shows the challenge of underutilized

GPU resources. �e white boxes indicate periods when the GPUs

are idle. As you can see, the overall GPU utilization in the figure

isn't great. �ere are several research e�orts and practical

solutions that can improve this and make training much more

e�cient. But the goal here is simply to explain the basic idea

behind pipelined model parallelization. It's up to the reader to

dig deeper into the topic if they're interested.

Figure �-��: Pipeline Bubble.



TENSOR PARALLELISM

�e previous section described how Pipeline Parallelism

distributes entire layers across multiple GPUs. However, Large

Language Models (LLMs) based on transformer architectures

contain billions of parameters, making this approach

insu�cient.

For example, GPT-� has approximately ��� million parameters

in a single self-attention layer and about �.� billion parameters in

a feedforward layer, and these figures apply to just one

transformer block. Since GPT-� has �� transformer blocks, the

total parameter count reaches approximately ��� billion. When

adding embedding and normalization parameters, the total

increases to roughly ��� billion parameters. �e number of

parameters in a single layer alone o�en exceeds the memory

capacity of a single GPU, making Pipeline Parallelism

insu�cient. Additionally, performing large matrix

multiplications on a single GPU would be extremely slow and

ine�cient. Tensor Parallelism addresses this challenge by

splitting computations within individual layers across multiple

GPUs rather than assigning whole layers to separate GPUs, as

done in Pipeline Parallelism.

Chapter � introduces Transformer architecture but for

memory refreshing, figure �-�� illustrates a stack of decoder



modules in a transformer architecture. Each decoder module

consists of a Self-Attention layer and a Feedforward layer. �e

figure also shows how an input word, represented by x�, is first

mapped to a token. �e token, in turn, receives a positional word

embedding vector through lookups in the word embedding and

position embedding tables.

�e resulting word vector is used to compute Query (Q) and

Key (K) matrices, which, in turn, produces logits via dot

products. �ese logits are then passed through the So�Max

function. �e resulting matrix from the So�Max function is

multiplied with the Value (V) matrices. A�er Add

& Normalization computation, the resulting matrix is fed into

the Feedforward, fully connected, neural network.

Figure �-��: An Overview of a Transformer Architecture.



Self-Attention Layer

In most cases, the word embedding matrix fits within a single

GPU. �is is because a typical embedding matrix is

approximately ��� MB, which is significantly smaller than large

Transformer layers that can contain billions of parameters.

Another reason for keeping the embedding matrix on a single

GPU is e�cient lookup operations. Unlike large matrix

multiplications, embedding lookups are memory-e�cient and

do not impose significant computational overhead. Splitting the

embedding matrix across multiple GPUs would introduce high

communication costs, as each GPU would store only a fraction of

the vocabulary. �is would require frequent crossGPU

communication for token lookups, increasing latency and

reducing e�ciency. A�er the embedding lookup, the embedding

vectors are broadcasted to all GPUs before the Transformer

computations start.

However, in very large-scale models (such as GPT-� with ���

billion parameters), embeddings may be sharded across multiple

GPUs using distributed embeddings or model parallelism

techniques. One approach is row-wise parallelism, where the

vocabulary is split across GPUs, and each GPU stores only a

fraction of the embeddings, handling lookups for the tokens it

owns.

Figure �-�� illustrates how the positional word embedding

matrix (Eepv) is multiplied with the Query (Q), Key (K), and

Value (V) matrices to produce the corresponding Q, K, and V



vectors. �e Query and Key vectors are then used as inputs to the

self-attention layer.

Figure �-��: Local Query (Q), Key (K), and Value (V) Matrices.

Figure �-�� illustrates how the Query, Key, and Value matrices

are sharded across two GPUs. �e first fragments of these

matrices are assigned to GPU A�, while the second fragments are

assigned to GPU A�. �e positional word embedding matrix

(Eevp ) is also distributed between GPU A� and GPU A�. Matrix

multiplication is then performed between the corresponding

fragment of Eevp and the respective shards of the Q, K, and V

matrices.



Figure �-��: Shared Query (Q), Key (K), and Value (V) Matrices.

Figure �-�� illustrates the cross-GPU communication involved

in the forward pass of the Self-Attention layer when using

Tensor Parallelism. In this example, both the word embedding,

and positional embedding matrices fit within GPU A�. A�er

computing the positional word embeddings for the input words,

the resulting vectors are broadcasted to GPU A�.

Since we are using Tensor Parallelism, the Query (Q), Key (K),

and Value (V) matrices are partitioned across GPU A� and GPU

A�. Once each GPU has computed its assigned slices of the Q, K,

and V vectors, the Q and K vectors are shared between GPUs

using an All-Gather operation. �is ensures that each GPU

receives the missing parts of the Q and K matrices,

reconstructing the complete matrices across GPUs. Only the Q

and K matrices are synchronized; the V matrix remains local to

each GPU.



�e Q and K matrices are then used in the Self-Attention layer,

where the first operation is a matrix multiplication between the

Query vectors and Key vectors for all tokens. �e process is

explained in detail in Chapter �. �e resulting scores are used to

compute logits, which are inputs to the So�Max function, using

scaled dot-product attention. �e output of the So�Max

function is then multiplied by the local fragment of the V matrix

on each GPU.

�e So�Max operation produces a Context Vector (Cv) for each

input word, which serves as the input to the Feedforward Neural

Network (FFN) layer. �at said, the So�Max in the self-attention

layer is not the final prediction layer, it’s used to compute

attention weights. �e feedforward network processes the

context vectors token representations produced by self-

attention, not the predicted token. �e final prediction is

typically made by a separate output projection followed by a

So�Max over the vocabulary.



Figure �-��: Tensor Parallelism in Self-Attention Layer.

Feedforward Layer

Figure �-�� illustrates a Feedforward layer in the decoder module

of a transformer. �e feedforward network consists of two

hidden layers and an output layer. In addition to Tensor

Parallelism, we also employ Model Parallelism with Pipeline

Parallelism.

�e first hidden layer is split between GPU A� and GPU B�, both

located in the same server. �e weight matrices for neurons �–�

reside in GPU A�, while the weight matrices for neurons �–� are

in GPU B�. �e inter-GPU communication between GPU A� and

GPU B� occurs over NVLinks, which I refer to as the High-speed

Domain (HsD).



�e second hidden layer is distributed across GPU A� and GPU

B� within the same server. GPU A� holds the weight matrices for

neurons �–�, while GPU B� contains the weight matrices for

neurons �–�. �e inter-GPU connection between GPU A� and

GPU B� also utilizes NVLinks.

�e output layer is divided between GPU A� and GPU B�, both

residing in the same server. �e weight matrix for neuron � is

stored in GPU A�, while the weight matrix for neuron � is in GPU

B�. Inter-GPU communication occurs over NVLinks.

Additionally, GPU A�, GPU A�, and GPU A� are interconnected

via Rail Switch-� across the Backend Network. Similarly, GPU B�,

GPU B�, and GPU B� are connected via Rail Switch-� across the

Backend Network.

Figure �-��: Tensor, Model and Pipeline Parallelism in

Feedforward Layer.



Backpropagation

Forward pass

First Hidden Layer (H�): �e input to H�, the output of the Self-

Attention block a�er the Add & Norm step (context vectors), is

shared with GPU A� and GPU B�. Each GPU then performs its

local matrix multiplication. A�er these local computations are

complete, the partial outputs are synchronized between GPU A�

and GPU B� using an All-Gather operation. �is synchronization

ensures that the complete H� output (ynA�+B�) is

calculated before it is passed to the next stage. Because GPU A�

and GPU B� reside on the same server, the communication

occurs over a high-speed domain via NVLink.

In the context of pipeline parallelism, H� constitutes one

pipeline stage. Once its context vector-based output is fully

assembled, it is sent to the GPUs responsible for the next layer.

Specifically, GPU A� and GPU B� first pass the output computed

from the first context vector (C�), and then the GPUs process the

next context vector. �is communication occurs over the

backend network. GPU A�, GPU A�, and GPU A� are all

connected to the same rail switch, so the RDMA packets traverse

only one switch. �e same design applies to GPU B�, GPU B�, and

GPU B�. If communication between GPUs connected to di�erent

rail switches is required, the rail switches must be

interconnected via spine switches.



Second Hidden Layer (H�): �e complete output from H�

(obtained a�er synchronization in the previous stage) is

pipelined to GPUs A� and B�. Each of these GPUs performs its

own local matrix multiplication. As before, a�er the local

computations, the partial outputs from GPU A� and GPU B� are

synchronized via an All-Gather operation, forming the complete

H� output (ynA�+B�).

�e synchronization and forwarding between hidden layer �

and output layer, and within an output layer follow the same

model as in the previous hidden layers.

�is hybrid approach, using tensor parallelism within each

stage and pipeline parallelism across stages, helps balance the

computational load and memory usage across the six GPUs while

minimizing idle time.

Although the focus of this section is on tensor parallelism,

pipeline parallelism is also discussed because large language

models (LLMs) can process multiple sentences from their

vocabulary simultaneously during the training process.

On the other hand, during the inference when answering to

our questions, LLMs use autoregressive next-word prediction. In

this process, the final So�Max layer of the Transformer

calculates the probabilities over the vocabulary to predict the

next token. �is predicted token is then converted into a word

and mapped to a new token. �e lookup process assigns the

token a positional embedding vector, which is used to compute

the Query, Key, and Value vectors that feed into the



Transformer's self-attention layer. Consequently, pipeline

parallelism is not required during the inference phase.

Backward pass

�e error propagates backward from the Feedforward Neural

Network (FFNN) layer to the Self-Attention layer. �e

backpropagation process in a Transformer follows a sequential

order, meaning the error from the output propagates first to the

FFNN layer, and from there, it continues backward to the Self-

Attention mechanism.

�e process begins at the output layer, where the error is

computed using the So�Max function and cross-entropy loss.

�is error is then backpropagated through the FFNN layer,

where gradients for the weight matrices are computed. Since the

FFNN weights are split across multiple GPUs in Tensor

Parallelism, each GPU computes its local gradient. An AllReduce

operation is then performed to synchronize these gradients

across GPUs, ensuring that all GPUs have the correct weight

updates before proceeding.

Once the gradients for the FFNN weights are synchronized,

the error propagates back to the Self-Attention layer. Here,

gradients for the Query (Q), Key (K), and Value (V) matrices are

computed. Since these matrices were split across GPUs during

the forward pass, the missing Q and K fragments must be

gathered before calculating gradients. An All-Gather operation

is used to collect Q and K values across GPUs. Once each GPU



has a complete Q and K matrix, it computes the required

gradients locally. A�er the local gradient computation, an All-

Reduce operation is performed to ensure all GPUs have the

synchronized gradients before updating the weights.

A�er both layers complete their gradient computations and

synchronizations, the optimizer updates the weights, and the

next iteration begins. �e key communication phases include

All-Gather for assembling required Q and K values before

gradient computation and All-Reduce for synchronizing

gradients before weight updates.
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CHAPTER �:    RDMA

BASICS



INTRODUCTION

Remote Direct Memory Access (RDMA) architecture enables

e�cient data transfer between Compute Nodes (CN) in a High-

Performance Computing (HPC) environment. RDMA over

Converged Ethernet version � (RoCEv�) utilizes a routed IP

Fabric as a transport network for RDMA messages. Due to the

nature of RDMA packet flow, the transport network must

provide lossless, low-latency packet transmission. �e RoCEv�

solution uses UDP in the transport layer, which does not handle

packet losses caused by network congestion (bu�er overflow on

switches or on a receiving Compute Node). To avoid bu�er

overflow issues, Priority Flow Control (PFC) and Explicit

Congestion Notification (ECN) are used as signaling mechanisms

to react to bu�er threshold violations by requesting a lower

packet transfer rate (Chapter �� describes these in detail).

Before moving to RDMA processes, let’s take a brief look at our

example Compute Nodes. Figure �-� illustrates our example

Compute Nodes (CN). Both Client and Server CNs are equipped

with one Graphical Processing Unit (GPU). �e GPU has a RDMA

capable Network Interface Card (RNIC) with one interface.

Additionally, the GPU has Device Memory Units to which it has a

direct connection, bypassing the CPU. In real life, a CN may

have several GPUs, each with multiple memory units. Intra-GPU

communication within the CN happens over high-speed



NVLink. �e connection to remote CNs occurs over the NIC,

which has at least one highspeed uplink port/interface.

Figure �-� also shows the basic idea of a stacked Fine-Grained

�D DRAM (FG-DRAM) solution. In our example, there are four

vertically interconnected DRAM dies, each divided into eight

Banks. Each Bank contains four memory arrays, each consisting

of rows and columns that

contain memory units (transistors whose charge indicates

whether a bit is set to � or �). FG-DRAM enables cross-DRAM

grouping into Ranks, increasing memory capacity and

bandwidth.

�e upcoming sections introduce the required processes and

operations when the Client Compute Node wants to write data

from its device memory to the Server Compute Node’s device

memory. I will discuss the design models and requirements for

lossless IP Fabric in later chapters.



Figure �-�: Fine-Grained DRAM High-Level Architecture.





AN OVERVIEW OF RDMA PROCESSES

�e focus of the following sections is to provide an overview of

the processes involved when our example application writes data

from the Client Compute Node’s (CCN) device memory to the

Server Compute Node’s (SCN) device memory. �is section is

divided into four paragraphs:

a) memory allocation and registration, b) creation of

queue pairs, c) connection initiation, and d) write

operations from the perspectives of both the CCN and

SCN.

Memory Allocation and Registration

First, we allocate a Protection Domain (PD). You can think of the

PD as a tenant in IP networking. It enables the creation of a

dedicated, private environment for your objects, like a Virtual

Routing and Forwarding (VRF) instance in traditional

networking, where the "objects" are IP addresses and routing

tables. A�er allocating the PD, we allocate a memory block from

the physical device memory and register it. During the memory

registration process, we define the size of the memory block and

set its access rights. In our example, we have set the access rights

for registered memory in the CCN to Local Read and in the SCN



to Remote Write. Next, we associate the registered device

memory space with the PD.

Note that the allocated physical memory may not be

contiguous; therefore, the registration process creates a virtual,

contiguous memory block. As a result of these processes, we

receive a local memory access key, or L_Key. When we register

memory for an RDMA write operation and assign it Remote

Write access, we receive a remote memory key, or R_Key. �is is

the case with the SCN. �e R_Key is sent to the CCN over a

management connection (which is outside the scope of this

chapter). At this phase, both nodes have registered device

memory associated with the PD. Additionally, L_Keys and

R_Keys are generated.

Figure �-�: Memory Allocation and Registration.



Create Queue Pairs

A Work Queue (WQ) is a bi-directional virtual communication

channel between the RNIC and the device memory. �e WQ

consists of two queues: the send queue (for RDMA send and

write operations) and the receive queue (for receive operations).

A Queue Pair (QP) is composed of these two queues. A

Completion Queue (CQ) is used to notify the application of the

completion status of an RDMA operation. Each QP is assigned a

Service Type, which defines the connection's service level

(Reliable or Unreliable) and type (Connection: point-to-point or

Datagram: point-to-multipoint). In our example, we are using a

Reliable Connection (RC).

When creating a Queue Pair, we bind it with the same PD to

which our registered virtual memory block is associated. We

also bind the send and receive queues to either the same or

di�erent completion queues. Next, we set the service type for

the QP. During the QP creation process, we also define the

maximum number of send and receive Work Requests and their

maximum message size.

To establish a communication channel between Compute

Nodes, the port on the NIC of the CCN and SCN must belong to

the same partition. Each port of the NICs acts as an Endpoint in

the RDMA domain. Every port has a Partition Key (P_Key) Table



with at least one P_Key. A�er creating a Queue Pair, we query a

P_Key from the specific port, set the QP state to INIT (initialize),

and set the P_Key value. �e CCN sends the P_Key to the SCN

within the Connection Request during the connection initiation

process. �e CCN includes the P_Key in every RDMA message,

and the receiving node verifies that the P_Key in the datagram

matches the target QP's P_Key.

You can think of the P_Key as a virtual connection identifier

for Queue Pairs, similar to how the VXLAN Network Identifier

(VNI) in a VXLAN header identifies a VXLAN segment. In our

example, the QP on the CCN is identified as �x��������, and the

P_Key associated with it is �x����.

Figure �-�: Create Queue Pairs.

RDMA Connection Initiation



At this phase, the application on the CCN starts the connection

initialization by sending a Request for Communication (REQ)

message to the application on the SCN. �e REQ message

includes the Local Communication Identifier (LID) and the

Global Unique Identifier for the Channel Adapter (Local CA

GUID). �e Local CA GUID identifies the NIC, while the Local

Communication ID identifies the port on the NIC. �e REQ

message also carries the Local QP number (�x��������), QP

service type (Reliable Connection), starting Packet Sequence

Number (PSN: �x���abc), P_Key value (�x����), and payload

size (����).

�e Reply message from the SCN describes the local and

remote Communication IDs, QP number, and PSN. �e CCN

responds to the Reply message with a Ready to Use (RTU)

message. During the connection initialization process, the QP

state transitions from INIT to Ready to Send and Ready to

Receive states. A�er the connection is initiated, the application

on the CCN can start the RDMA Write process.



Figure �-�: RDMA Connection Initiation.

Work Request Message

A�er successfully initiating the connection, the application on

the CCN can begin the RDMA Write operation. It creates a Work

Request (WR) and posts it to the assigned QP’s send queue as a

Work Request Entity (WRE). �e WRE contains the following

information:

▪ Work Request Identifier: Identifies the WR and serves as a

pointer in the completion queue to signal the application when

the WR has been processed.

▪ OpCode: Specifies the type of operation, such as RDMA Write

in our example.



▪ Local Bu�er Address and Length: Describes the location in

local device memory from which data is written to SCN

memory, along with the length of the data.

▪ Local Memory Key (L_Key): Used for accessing the local

memory bu�er.

▪ Send Flag: Indicates that successful processing of the WR

should be signaled to the application through the Completion

Queue.

▪ Remote Bu�er Address: Specifies the target memory location

on the SCN.

▪ Remote Key (R_Key): Used for accessing the remote memory

bu�er on the SCN. �e R_Key is received over management

connection from the SCN.

�e NIC retrieves the Work Request from the send queue.

Based on the WR information, it constructs an InfiniBand Base

Transport Header (IB BTH), which includes the P_Key and

Destination QP identifier obtained during

the connection initiation process. Because of the Reliable

Connection service type, the Ack Required value is set to Yes.

�e RDMA Write operation requires an RDMA Extended

Transport Header (RETH), which details the destination

memory bu�er, R_Key, and data length. �e IB BTH and RETH

headers are encapsulated within Ethernet/IP/UDP headers. �e

destination port ���� in the UDP header indicates that the next

header is IB BTH.



Wrapped inside Eth/IP/UDP/IB BTH/RETH headers the data is

forwarded towards the SCN.

Figure �-�: Work Request Message – Step �.

When the SCN receives the RDMA Write message, it checks

the received P_Key and assigns the ingress port. Additionally, it

validates the R_Key to ensure it matches what was published to

the CCN over the management connection. A�er these

validations, the NIC translates the virtual device memory

address to physical memory access and sends the RDMA Write

information to the QP’s Receive Queue. Finally, once the RDMA

write operation is completed, the application is notified via the

Completion Queue that the job is done.



Figure �-�: Work Request Message – Step �.
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CHAPTER ��:

   CHALLENGES IN AI

FABRIC DESIGN



INTRODUCTION

Figure ��-� illustrates a simple distributed GPU cluster

consisting of three GPU hosts. Each host has two GPUs and a

Network Interface Card (NIC) with two interfaces. Intra-host

GPU communication uses high-speed NVLink interfaces, while

inter-host communication takes place via NICs over slower PCIe

buses.

GPU-� on each host is connected to Rail Switch A through

interface E�. GPU-� uses interface E� and connects to Rail Switch

B. In this setup, interhost communication between GPUs

connected to the same rail passes through a single switch.

However, communication between GPUs on di�erent rails goes

over three hops Rail–Spine–Rail switches.

In Figure ��-�, we use a data parallelization strategy where a

training dataset is split into six micro-batches, which are

distributed across the GPUs. All GPUs use the shared

feedforward neural network model and compute local model

outputs. Next, each GPU calculates the model error and begins

the backward pass to compute neuron-based gradients. �ese

gradients indicate how much, and in which direction, the

weight parameters should be adjusted to improve the training

result (see Chapter � for details).



Figure ��-�: Rail-Optimized Topology.



EGRESS INTERFACE CONGESTIONS

A�er computing all gradients, each GPU stores the results in a

local memory bu�er and starts a communication phase where

computed gradients are shared with other GPUs. During this

process, the data (gradients) is being sent from one GPU and

written to another GPU's memory (RDMA Write operation).

RDMA is explained in detail in Chapter �.

Once all gradients have been received, each GPU averages the

results (AllReduce) and broadcasts the aggregated gradients to

the other GPUs. �is ensures that all GPUs update their model

parameters (weights) using the same gradient values. �e

Backward pass process and gradient calculation are explained in

Chapter �.

Figure ��-� illustrates the tra�c generated during gradient

synchronization from the perspective of GPU-� on Host-�.

Gradients from the local host’s GPU-� are received via the high-

speed NVLink interface,

while gradients from GPUs in other hosts are transmitted over

the backend switching fabric. In this example, all hosts are

connected to Rail Switches using ��� Gbps fiber links. Since

GPUs can communicate at line rate, gradient synchronization

results in up to ��� Gbps of egress tra�c toward interface E� on

Host-�, via Rail Switch A. �is may cause congestion, and packet



drops if the egress bu�er on Rail Switch A or the ingress bu�er

on interface E� is not deep enough to accommodate the queued

packets.

Figure ��-�: Congestion During Backward Pass.



SINGLE POINT OF FAILURE

�e training process of a neural network is a long-running,

iterative task where GPUs must communicate with each other.

�e frequency and pattern of this communication depend on the

chosen parallelization strategy. For example, in data parallelism,

communication occurs during the backward pass, where GPUs

synchronize gradients. In contrast, model parallelism and

pipeline parallelism involve communication even during the

forward pass, as one GPU sends activation results to the next

GPU holding the subsequent layer. It is important to understand

that communication issues a�ecting even a single GPU can delay

or interrupt

the entire training process. �is makes the AI fabric

significantly more sensitive to single points of failure compared

to traditional data center fabrics.

Figure ��-� highlights several single points of failure that may

occur in real-world environments. A host connection can

become degraded or completely fail due to issues in the host,

NIC, rail switch, transceiver, or connecting cable. Any of these

failures can isolate a GPU. While this might not seem serious in

large clusters with thousands of GPUs, as discussed in the

previous section, even one isolated or failed GPU can halt the

training process.



Problems with interfaces, transceivers, or cables in inter-

switch links can cause congestion and delays. Similar issues

arise if a spine switch is malfunctioning. �ese types of failures

typically a�ect inter-rail tra�c but not intra-rail

communication. A failure in a rail switch can isolate all GPUs

connected to that rail, creating a critical point of failure for a

subset of the GPU cluster.

Figure ��-�: Single-Point Failures.



HEAD-OF-LINE BLOCKING

In this example GPU clusters, NCCL (NVIDIA Collective

Communications Library) has built a topology where gradients

are first sent from GPU-� to GPU-� over NVLink, and then

forwarded from GPU-� to other GPU-�s via Rail switch B.

However, this setup may lead to head-of-line blocking. �is

happens when GPU-� is already busy sending its own gradients

to the other GPUs, and now it also needs to forward GPU-�’s

gradients. Since the PCIe and NIC bandwidth is limited, GPU-�’s

tra�c may need to wait in line behind GPU-�’s tra�c. �is

queueing delay is called head-of-line blocking, and it can slow

down the whole training process. �e problem is more likely to

happen when many GPUs rely on a single GPU or NIC for

forwarding tra�c to another rail. Even if only one GPU is

overloaded, it can cause delays for others too.



Figure ��-�: Head-of-Line Blocking.



HASH-POLARIZATION WITH ECMP

First, when two GPUs open a Queue Pair (QP) between each

other, all gradient synchronization tra�c is typically sent over

that QP. From the network point of view, this looks like one large

flow between the GPUs. In deep learning training, gradient data

can be hundreds of megabytes or even gigabytes, depending on

the model size. So, when it is sent over one QP, the network sees

it as a single high-bandwidth flow. �is kind of tra�c is o�en

called an elephant flow, because it can take a big share of the link

bandwidth. �is becomes a problem when multiple large flows

are hashed to the same uplink or spine port. If that happens, one

link can get overloaded while others remain underused. �is is

one of the reasons we see hash polarization and head-of-line

blocking in AI clusters. Hash polarization is a condition where

the load-balancing hash algorithm used in ECMP (Equal-Cost

Multi-Path) forwarding results in uneven distribution of tra�c

across multiple available paths.

For example, in Figure ��-�, GPU-� in Host-� and GPU-� in

Host-� both send tra�c to GPU-� at a rate of ��� Gbps. �e ECMP

hash function in Rail Switch A selects the link to Spine � for both

flows. �is leads to a situation where one spine link carries ���

Gbps of tra�c, while the other remains idle. �is is a serious

problem in AI clusters because training jobs generate large

volumes of east-west tra�c between GPUs, o�en at line rate.



When tra�c is unevenly distributed due to hash polarization,

some links become congested while others are idle. �is causes

packet delays and retransmissions, which can slow down

gradient synchronization and reduce the overall training speed.

In large-scale clusters, even a small imbalance can have a

noticeable impact on job completion time and resource

e�ciency.

Figure ��-�: ECMP Hash-Polarization.

In the previous sections, we explored some of the key

challenges that can impact performance and reliability in GPU-

based AI clusters, such as link congestion, single points of

failure, head-of-line blocking, and hash polarization in ECMP

routing.

�e rest of this book focuses on how these problems can be

mitigated or even fully avoided. We will look at design choices,

transport optimizations, network-aware scheduling, and



alternative topologies that help improve the robustness and

e�ciency of the AI fabric.
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CHAPTER ��:

   CONGESTION

AVOIDANCE

As explained in the preceding chapter, “Egress Interface

Congestions,” both the Rail switch links to GPU servers and the

inter-switch links can become congested during gradient

synchronization. It is essential to implement congestion control

mechanisms specifically designed for RDMA workloads in AI

fabric back-end networks because congestion slows down the

learning process and even a single packet loss may restart the

whole training process.

�is section begins by introducing Explicit Congestion

Notification (ECN) and Priority-based Flow Control (PFC), two

foundational technologies used in modern lossless Ethernet

networks. ECN allows switches to mark packets, rather than

dropping them, when congestion is detected, enabling

endpoints to react proactively. PFC, on the other hand, o�ers

per-priority flow control, which can pause selected tra�c classes

while allowing others to continue flowing.



Finally, we describe how Datacenter Quantized Congestion

Notification (DCQCN) combines ECN and PFC to deliver a

scalable and lossless transport mechanism for RoCEv� tra�c in

AI clusters.



GPU-TO-GPU RDMA WRITE WITHOUT CONGESTION

�e figure ��-� illustrates a standard Remote Direct Memory

Access (RDMA) Write operation between two GPUs. �is

example demonstrates how GPU-� on Host-� transfers local

gradients (∇₁ and ∇₂) from memory to GPU-� on Host-�. Both

GPUs use RDMA-capable NICs connected to Rail Switch A via

��� Gbps uplinks.

�e RDMA Write operation proceeds through the following

seven steps:

�.    To initiate the data transfer, GPU-� on Host-�

submits a work request to its RDMA NIC over the PCIe

bus over the pre-established Queue Pair �x������.

�.    �e RDMA NIC encodes the request by inserting

the OpCode (RDMA Write) and Queue Pair Number

(�x������) into the InfiniBand Transport Header

(IBTH). It wraps the IBTH and RETH (not shown in the

figure) headers with Ethernet, IP, UDP, and Ethernet

headers. �e NIC sets the DSCP value to �� and the ECN

bits to �� (indicating ECN-capable transport) in the IP

header's ToS octet. �e DSCP value ensures that the

switch can identify and prioritize RoCEv� tra�c. �e

destination UDP port is set to ���� (not shown in the

figure).



�.    Upon receiving the packet on interface

Ethernet�/��, the Rail switch classifies the tra�c as

RoCEv� based on the DSCP value of ��.

�.    �e switch maps DSCP �� to QoS-Group �.

�.    QoS Group � uses egress priority queue �, which is

configured with bandwidth allocation and congestion

avoidance parameters (WRED Min, WRED Max, and

Drop thresholds) optimized for RDMA tra�c.

�.    �e packet count on queue � does not exceed the

WRED minimum threshold, so packets are forwarded

without modification.

�.    �e RDMA NIC on Host-� receives the packet,

strips o� the Ethernet, IP, and UDP headers, and

processes the RDMA headers. �e payload is delivered

directly into the memory of GPU-� on Host-� without

CPU involvement, completing the RDMA Write

operation.



Figure ��-�: Overview of Remote DMA operation Under

Normal Condition.



EXPLICIT CONGESTION NOTIFICATION -ECN

Because gradient synchronization requires a lossless network

service, it is essential to have a proactive congestion detection

system that can respond before bu�er overflows occur. �is

system must also include a signalling mechanism that allows the

receiver to request the sender to reduce its transmission rate or

temporarily pause tra�c when necessary.

Data Center Quantized Congestion Notification (DCQCN) is a

congestion control scheme designed for RoCEv� that leverages

both Explicit Congestion Notification (ECN) and Priority Flow

Control (PFC) for active queue management. �is section focuses

on ECN.

In IPv�, the last two bits (bits � and �) of the ToS (Type of

Service) byte are reserved for ECN marking. With two bits, four

ECN codepoints are defined:

�� – Not ECN-Capable Transport (Not-ECT)

� � – ECN-Capable Transport (ECT)

��    – ECN-Capable Transport (ECT)

��    – Congestion Experienced (CE)

Figure ��-� illustrates how ECN is used to prevent packet drops

when congestion occurs on egress interface Ethernet�/��. ECN



operates based on two queue thresholds: WRED Minimum and

WRED Maximum. When the queue depth exceeds the WRED

Minimum but remains below the WRED Maximum, the switch

begins to randomly mark forwarded packets with ECN ��

(Congestion Experienced). If the queue depth exceeds the WRED

Maximum, all packets are marked with ECN ��. �e Drop

�reshold defines the upper limit beyond which packets are no

longer marked but instead dropped.

In Figure ��-�, GPU-� on Host-� transfers gradient values from

its local memory to the memory of GPU-� on Host-�. Although

not shown in the figure for simplicity, other GPUs connected to

the same rail switch also participate in the synchronization

process with GPU-� on Host-�. Multiple simultaneous elephant

flows towards GPU-� reach the rail switch, causing egress queue

� on interface Ethernet�/�� to exceed the WRED Maximum

threshold. As a result, the switch begins marking outgoing

packets with ECN �� (step �), while still forwarding them to the

destination GPU.



Figure ��-�: Congested Egress Interface – ECN Congestion

Experienced.

A�er receiving a data packet marked with ECN ��, the

destination RDMA NIC must inform the sender about network

congestion. �is is accomplished using a Congestion Notification

Packet (CNP), which provides feedback at the RDMA transport

layer.

�.    Upon detecting the ECN �� in the IP header’s ToS bits of

an incoming packet, the RDMA NIC on Host-� generates a

CNP message. It sets the OpCode in the IBTH header to �x��,

identifying the message as a CNP. Besides the FECN bit is set

to �, indicating that the NIC experienced congestion. �e

Queue Pair number used for the original memory copy (e.g.,

�x������) is reused, ensuring the feedback reaches the

correct sender-side transport context. In the IP header, the



DSCP field is set to ��, allowing switches to distinguish the

CNP from standard RoCEv� data tra�c.

�.    When the CNP reaches the Rail switch (interface

Ethernet�/��), it is classified based on DSCP ��, which is

associated with CNP tra�c in the QoS configuration.

�.    DSCP �� maps the packet to QoS group �, which is

reserved for congestion feedback signaling.

�.    QoS group � is associated with strict-priority egress

queue �, ensuring that CNP packets are forwarded with the

highest priority. �is guarantees that congestion signals are

not delayed behind other types of tra�c.

�.    �e switch forwards the CNP to the originating NIC on

Host-�. Because of the strict-priority handling, the feedback

arrives quickly even during severe congestion.

�.    Upon receiving the CNP, the sender-side RDMA NIC

reduces its transmission rate for the a�ected Queue Pair by

increasing inter-packet delay. �is is achieved by holding

outgoing packets longer in local bu�ers, e�ectively reducing

tra�c injection into the congested fabric.

As transmission rates decrease, the pressure on the egress

queue at the Rail switch’s interface Ethernet�/�� (connected to

Host-�) is gradually relieved. Bu�er occupancy falls below the

WRED Minimum �reshold, ending ECN marking. Once

congestion is fully cleared, the RDMA NIC slowly ramp up its

transmission rate. �is gradual marking strategy helps prevent



sudden tra�c loss and gives the sender time to react by adjusting

its sending rate before the bu�er overflows.

Figure ��-�: Receiving NIC Generates CNP - Sender NIC Delay

Transmit.



DSCP-BASED PRIORITY FLOW CONTROL (PFC)

Priority Flow Control (PFC) is a mechanism designed to prevent

packet loss during network congestion by pausing tra�c

selectively based on priority levels. While the original IEEE

���.�Qbb standard operates at Layer �, using the Priority Code

Point (PCP) field in Ethernet headers, AI Fabrics rely on Layer �

forwarding, where traditional Layer �-based PFC is no longer

applicable. To extend lossless behavior across routed (Layer �)

networks, DSCP-based PFC is used.

In DSCP-based PFC, the Di�erentiated Services Code Point

(DSCP) field in the IP header identifies the tra�c class or

priority. Switches map specific DSCP values to internal tra�c

classes and queues. If congestion occurs on an ingress interface

and a particular priority queue fills beyond a threshold, the

switch can send a PFC pause frame back to the sender switch,

instructing it to temporarily stop sending tra�c of that class—

just as in Layer � PFC, but now triggered based on Layer �

classifications.

�is behavior di�ers from Explicit Congestion Notification

(ECN), which operates at Layer � as well but signals congestion

by marking packets instead of stopping tra�c. ECN acts on the

egress port, informing the receiver to notify the sender to

reduce the transmission rate over time. In



contrast, PFC acts immediately at the ingress port, pausing

tra�c flow in real time to avoid bu�er overflows and packet

drops.

PFC relies on two thresholds to control flow: xOFF and xON.

�e xOFF threshold defines the point at which the switch

generates a pause frame when a priority queue reaches a

congested state. Once triggered, upstream devices halt

transmission of that tra�c class. �e switch continuously

monitors its bu�er occupancy, and when the level drops below

the xON threshold, it sends a PFC frame with a Quanta value of �

for the a�ected priority. �is signals the upstream device that it

can resume transmission for that specific priority queue.

A key requirement for PFC to function correctly is the

provisioning of bu�er headroom. �e switch must reserve

enough bu�er space per priority class to accommodate in-flight

tra�c while the pause frame propagates to the sender and takes

e�ect.

DSCP-based PFC enables lossless packet delivery over routed

networks, which is especially important for technologies like

RoCEv� (RDMA over Converged Ethernet v�), where even

minimal packet loss can cause significant performance

degradation.

DSCP-Based PFC Process over a Layer � Routed Interface

(Example Scenario)

�is example illustrates how DSCP-based Priority Flow

Control (PFC) operates across a routed Layer � fabric during



congestion. We walk through a four-step process, beginning

with bu�er overflow and ending with tra�c pausing on the

correct priority queue.

Step �: Buffer Overflow on Rail Switch C (Egress to

GPU-�, Host �)

In a GPU cluster, multiple GPUs are sending high-throughput

RDMA tra�c to GPU on Host-�. In Figure ��-� Rail Switch C is

responsible for forwarding tra�c toward GPU-�. �e egress

interface on Switch C (E��/��) that connects to GPU-� becomes

congested. Due to the overflow of egress

queue �, packets from ingress queue � on interface E�/��

cannot be placed into egress queue �.

Step �: xOFF Threshold Exceeded

Priority queue � of has two configured thresholds:

•    xOFF threshold: Triggers a pause when bu�er usage

exceeds this level.

•    xON threshold: Triggers a resume when the bu�er has

drained su�ciently.

Once priority queue � on ingress interface E�/�� exceeds its

xOFF threshold, the switch takes immediate action to prevent

packet loss by generating a PFC pause message targeted at the

sender. �e sender in this case is Spine Switch �, which is



sending tra�c to Rail Switch C, over interface E�/��, for

delivery to GPU-�.

Step �: Generating a PFC Pause Frame (MAC Control

Frame)

To pause the sender, Rail Switch C generates an Ethernet MAC

Control frame with:

•    Ethertype �x����: �is indicates a MAC Control frame,

used for pause-related operations (standardized in IEEE

���.�x). Inside this frame, a PFC opcode (�x����) specifies

it's a Priority-based Pause (PFC) message.

•    Class Enable Vector (CEV): �is �-bit field indicates

which priority queues should be paused. Each bit

corresponds to one of the � possible tra�c classes (�–�). For

example, if bit � is set to �, it tells the sender to pause tra�c

for priority queue � only, while all other bits remain �. In

our case, the CEV is ���� ����. Note that the rightmost bit

represents queue �.

•    Quanta Field(s): For each enabled priority (bit set to �), a

corresponding quanta value is specified. �is value defines

the duration of the pause, measured in units of ��� bit times.

For a ��� Gbps interface:

•    � bit time = � / ���,���,���,��� seconds ≈ �.�

picoseconds



•    � quanta = ��� × �.� ps = �.�� nanoseconds

•    If the pause quanta is set to maximum value �xFFFF

(�����), the pause duration is roughly ��.� microseconds.

�is pause frame is sent back to the sender Spine Switch �.

Since the DSCP-based classification maps back to priority queue

�, and the switches share the same mapping, Spine Switch � will

interpret this correctly.

Step �: Spine Switch � Pauses Transmission on Priority

Queue �

Upon receiving the PFC frame on its ingress interface E�/��

connected to Rail Switch C, Spine Switch � examines the class

enable vector.

•    Since bit � is set, the switch knows to pause

transmission of all frames mapped to priority queue � (DSCP

value �� in our example) on egress interface E�/��.

Tra�c for other priority queues continues una�ected.

Spine Switch � holds o� transmission of priority � tra�c until

it receives a subsequent PFC frame with quanta = �, indicating

“resume,” or a pause duration timeout occurs, a�er which the

switch resumes sending unless another pause is received.



Figure ��-�: Priority Flow Control – Pause Frame.

�e following example shows how Priority Flow Control (PFC)

events can cascade upstream when congestion persists in a

routed Layer � fabric. �is scenario builds on the earlier case,

where Spine Switch � paused tra�c to Rail Switch C. Now, we

observe how that pause a�ects tra�c originating from Rail

Switches A and B.

Step �: Congestion on Spine Switch � Egress Queue to

Rail Switch C

As described in the previous figure, Spine Switch � received a

PFC frame from Rail Switch C and responded by pausing tra�c



on priority queue � on its egress interface E�/�� (towards Rail

Switch C). Because this interface is no longer sending tra�c,

frames destined for GPU-� via Rail Switch C begin to accumulate

in Spine Switch �’s egress queue �. �is build-up causes

backpressure that impacts the ingress side of the switch.

Step 6: xOFF Threshold Exceeded on Spine Switch �

Ingress Interfaces

Spine Switch � receives incoming tra�c from Rail Switch A

(interface E�/��) and Rail Switch B (interface E�/��). Both

switches are sending tra�c mapped to priority queue � (e.g.,

DSCP ��). As the egress queue to Rail Switch C becomes full and

cannot drain, the corresponding ingress bu�ers on interfaces

E�/�� and E�/�� also begin to fill up, specifically for queue �.

Eventually, the xOFF thresholds on both ingress interfaces are

exceeded, indicating that congestion is now impacting the

reception of new packets on these ports.

Step �: Spine Switch � Sends PFC Pause Frames to Rail

Switch A and B

To avoid dropping packets due to ingress bu�er overflow, Spine

Switch � generates PFC MAC Control frames on both E�/�� and

E�/��. �e class enable vector has bit � set, instructing the

sender to pause tra�c corresponding to priority queue �. A

suitable quanta value is included to define the pause duration.



�ese control frames travel back to Rail Switch A and Rail Switch

B respectively.

Step 8: Rail Switches A and B Pause Queue � Traffic to

Spine Switch �

Upon receiving the PFC frames, both Rail Switch A and Rail

Switch B interpret the class enable vector and pause all tra�c

mapped to priority queue � (e.g., DSCP ��), still forwarding

tra�c on other priority queues una�ected. �is marks the

upstream propagation of congestion: a single bottleneck on the

path to GPU-� can trigger PFC reactions all the way back to

multiple source switches.

Figure ��-�: Priority Flow Control – Cascading E�ect.



Steps �a – ��: Downstream Resume and Congestion

Recovery

Figure ��-� illustrates how the PFC-based congestion recovery

process extends from Rail Switches A and B all the way to the

GPU NICs, while simultaneously resolving the initial congestion

at Rail Switch C.

As a result of the earlier PFC pause frames:

•    Rail Switch A and Rail Switch B have paused sending

priority queue � tra�c to Spine Switch �.

•    In turn, Spine Switch � has paused its own egress tra�c

toward Rail Switch C on interface E�/��.

�is pause allows queue � on Rail Switch C’s egress interface

E��/�� (toward GPU-�) to drain, as no new tra�c is arriving, and

the GPU continues to consume incoming data.

Once the bu�er utilization for priority queue � drops below the

configured xON threshold, Rail Switch C initiates congestion

recovery.

•    It sends a MAC Control Frame (Ethertype �x����) back

to Spine Switch �.

•    �e class enable vector has bit � set (indicating priority

queue �).

•    �e quanta value is set to �, signaling that it is now safe

to resume transmission.



Upon receiving this resume message, Spine Switch � can begin

sending tra�c again on priority queue �, restoring throughput

toward GPU-� and continuing the flow of RDMA tra�c through

the network. �is recovery mechanism operates consistently

across the entire AI fabric.

Figure ��-�: Priority Flow Control – PCIe Bus Congested: Cascading

E�ect.



LLDP WITH DCBX

PFC negotiation is performed using the Link Layer Discovery

Protocol (LLDP), which carries Data Center Bridging eXchange

(DCBX) TypeLength-Value (TLV) structures. At the time of

writing, DCBX exists in two versions: IEEE and CEE. �e IEEE

mode (defined in ���.�Qbb and ���.�Qaz) is standards-based and

supported by most modern data center switches from various

vendors. �is mode is also known as DCBXv�. Some older Cisco

Nexus models support only the Cisco/Converged Enhanced

Ethernet (CEE) mode. Capture ��-� shows the packet format of a

standards-based IEEE DCBX TLV within an LLDP message.

Ethernet II:

Source MAC:

Destination MAC:

Link Layer Discovery Protocol

Chassis Subtype = MAC address, ID

Port Subtype: = Interface name, ID

Time To Live: ��� sec

IEEE ���.� - ETS Configuration

IEEE ���.� - ETS Recommendation



IEEE ���.� - Priority Flow Control Configuration

<snipped for brevity>

���� =

Max

PF

C

Enabled Tra�c

Classes

...� = PFC for Priority � - Disabled

..�. = PFC for Priority � - Disabled

.�.. = PFC for Priority � - Disabled

....�... = PFC for Priority � - Enabled

<snipped for brevity>

IEEE ���.� - Application Protocol

End of LLDPDU

Capture ��-�: PCF: LLDP with IEEE DBCXv� TLV .



DATA CENTER QUANTIZED CONGESTION

NOTIFICATION (DCQCN)

Data Center Quantized Congestion Notification (DCQCN) is a

hybrid congestion control method. DCQCN brings together both

Priority Flow Control (PFC) and Explicit Congestion Notification

(ECN) so that we can get high throughput, low latency, and

lossless delivery across our AI fabric. In this approach, each

mechanism plays a specific role in addressing di�erent aspects of

congestion, and together they create a robust flowcontrol system

for RDMA tra�c.

DCQCN tackles two main issues in large-scale RDMA

networks:

�.    Head-of-Line Blocking and Congestion Spreading: �is is

caused by PFC’s pause frames, which stop tra�c across

switches.

�.    �roughput Reduction with ECN Alone: When the ECN

feedback is too slow, packet loss may occur despite the rate

adjustments.

DCQCN uses a two-tiered approach. It applies ECN early on to

gently reduce the sending rate at the GPU NICs, and it uses PFC

as a backup to quickly stop tra�c on upstream switches (hop-by-

hop) when congestion becomes severe.



How DCQCN Combines ECN and PFC

DCQCN carefully combines Explicit Congestion Notification

(ECN) and Priority Flow Control (PFC) in the right sequence:

Early Action with ECN:

When congestion begins to build up, the switch uses WRED

thresholds (minimum and maximum) to mark packets. �is

signals the sender to gradually reduce its transmission rate. As a

result, the GPU NIC slows down, and tra�c continues flowing—

just at a reduced pace—without abrupt pauses.

Backup Action with PFC:

If congestion worsens and the queue continues to grow, the

bu�er may reach the xOFF threshold. At this point, the switch

sends PFC pause frames hop by hop to upstream devices. �ese

devices respond by temporarily stopping tra�c for that specific

priority queue, helping prevent packet loss.

Resuming Tra�c:

Once the bu�er has drained and the queue drops below the

xON threshold, the switch sends a resume message (a PFC frame

with a quanta value of �). �is tells the upstream device it can

start sending tra�c again.

Why ECN Must Precede xOFF

It is very important that the ECN thresholds (WRED minimum

and maximum) are used before the xOFF threshold is reached



for three main reasons:

Graceful Rate Adaptation: Early ECN marking helps the GPU

NIC (sender) reduce its transmission rate gradually. �is smooth

adjustment avoids sudden stops and leads to more stable tra�c

flows.

Avoiding Unnecessary PFC Events: If the sender adjusts its rate

early with ECN feedback, the bu�ers are less likely to fill up to

the xOFF level. �is avoids the need for abrupt PFC pause frames

that can cause head-of-line blocking and backpressure on the

network.

Maintaining Fabric Coordination: With early ECN marking, the

sender receives feedback before congestion becomes severe.

While the ECN signal is not shared directly with other switches,

the sender's rate adjustment helps reduce overall pressure on the

network fabric.

What Happens If xOFF Is Reached Before ECN Marking?

Imagine that the ingress queue on Spine Switch � (from Rail

Switch A) fills rapidly without ECN marking:

Sudden Pause: �e bu�er may quickly hit the xOFF threshold

and trigger an immediate PFC pause.

Downstream E�ects: An abrupt stop in tra�c from Rail Switch

A leads to sudden backpressure. �is can cause head-of-line

blocking and disturb GPU communication, leading to

performance jitter or instability at the application level.



Oscillations: When the queue finally drains and reaches the

xON threshold, tra�c resumes suddenly. �is can cause

recurring congestion and stop-and-go patterns that hurt overall

performance.

By allowing ECN to mark packets early, the network gives the

sender time to reduce its rate smoothly. �is prevents abrupt

stops and helps maintain a stable, e�cient fabric.

Figure �� recaps how the example DCQCN process works:

Time t�: (�) Tra�c associated with priority queue � on Rail-�’s

egress interface � crosses the WRED minimum threshold.

Time t�: (�) Rail-� begins randomly marking ECN bits as �� on

packets destined for GPU-� on the Host-�.

Time t�: (�) �e RDMA NIC starts sending CNP messages to the

sender GPU-� on Host-�.

Time t�: (�) In response to the CNP message, the sending GPU-

� on Host-� reduces its transmission rate by holding packets

longer in its egress queue. (�) At the same time, egress queue � on

Rail-� remains congested. (�) Since packets cannot be forwarded

from ingress interface � to egress interface �’s queue �, ingress

interface � also becomes congested, eventually crossing the PFC

xOFF threshold.

Time t�: (�) As a result, Rail-� sends a PFC xOFF message to

Spine-A over Inter-Switch Link �. (�) In response, Spine-A halts

forwarding tra�c for the specified pause duration.



Time t�: (�) Due to the forwarding pause, the egress queue of

interface � on Spine-A becomes congested, which in turn (��)

causes congestion on its ingress interface �.

Time t�: (��) �e number of packets waiting in egress queue �

on interface � of Rail-� drops below the WRED minimum

threshold. (��) �is allows packets from the bu�er of interface �

to be forwarded.

Time t�: (��) �e packet count on ingress interface � of Rail-�

falls below the PFC xON threshold, triggering the PFC

resume/unpause message to Spine-A. (��) Spine-A resumes

forwarding tra�c to Rail-�.

A�er the PFC resume message is sent, Spine-A starts

forwarding tra�c again toward Rail-�. �e congestion on Spine-

A’s interface � gets cleared as packets leave the bu�er. �is also

helps the ingress interface � on Spine-A to drain. On Rail-�, as

interface � can now forward packets, queue � gets more room,

and the flow to GPU-� becomes smoother again.

�e RDMA NIC on the sender GPU monitors the situation.

Since there are no more CNP messages coming in, the GPU

slowly increases its sending

rate. At the same time, the ECN marking on Rail-� stops, as

queue lengths stay below the WRED threshold. Tra�c flow

returns to normal, and no more PFC pause messages are needed.

�e whole system stabilizes, and data can move again without

delay or packet loss.



Figure ��-�: DCQCN: ECN and PFC Interaction .

DCQCN Configuration

Figure ��-� shows the six steps to enable DCQCN on a switch. �e

figure assumes that the RDMA NIC marks RoCEv� tra�c with

DSCP ��.

First, we classify the packets based on the DSCP value in the

IPv� header. Packets marked with DSCP �� are identified as

RoCEv� packets, while packets marked with DSCP �� are

classified as CNP.

A�er classification, we add an internal QoS label to the packets

to place them in the correct output queue. �e mapping between

internal QoS labels and queues is fixed and does not require

configuration.



Next, we define the queue type, allocate bandwidth, and set

ECN thresholds. A�er scheduling is configured, we enable PFC

and set its threshold values. A common rule of thumb for the

relationship between ECN and PFC thresholds is: xON < WRED

Min < WRED Max < xOFF.

To apply these settings, we enable them at the system level.

Finally, we apply the packet classification to the ingress interface

and enable the PFC watchdog on the egress interface. Because

PFC is a sub-TLV in the LLDP Data Unit (LLDPDU), both LLDP

and PFC must be enabled on every interswitch link.

Figure ��-�: Applying DCQCN to Switch.

Step �: Packet Classification

�e classification configuration is used to identify di�erent

types of tra�c based on their DSCP values. In our example we



have one for RoCEv� tra�c and another for Congestion

Notification Packets (CNP). �e “class-map type qos match-any

ROCEv�” line defines a class map named “ROCEv�” that matches

any packet marked with DSCP value ��, which is commonly used

for RDMA tra�c. Similarly, the “class-map type qos match-any

CNP” defines another class map named “CNP” that matches

packets marked with DSCP value ��, typically used for

congestion signaling in RDMA environments. �ese class maps

serve as the foundation for downstream policies, enabling

di�erentiated handling of tra�c types. Note that the names

“ROCEv�” and “CNP” are not system-reserved; they are simply

user-defined labels that can be renamed, as long, as the

references are consistent throughout the configuration.

class-map type qos match-any ROCEv�

match dscp ��

class-map type qos match-any CNP

match dscp ��

Example ��-�: Classification.

Step �: Internal QoS Label for Queueing

�e marking configuration assigns internal QoS labels to

packets that have already been classified. �is is done using a

policy map named QOS_CLASSIFICATION, which refers to the

previously defined class maps. Within this policy, packets that

match the “ROCEv�” class are marked with qos-group �, and



those matching the “CNP” class are marked with qos-group �.

Any other tra�c that doesn't fit these two categories falls into

the default class and is marked with qos-group �. �ese QoS

groups are internal identifiers that the switch uses in later stages

for queuing and scheduling, to decide how each packet should be

treated. Just like class maps, the name of the policy map itself is

user-defined and can be anything descriptive, provided it is

correctly referenced in other parts of the configuration.

policy-map type qos QOS_CLASSIFICATION

class ROCEv�

set qos-group � class CNP

set qos-group � class class-default

set qos-group �

Example ��-�: Marking.

Step �: Scheduling

�e queuing configuration defines how tra�c is scheduled and

prioritized on the output interfaces, based on the internal QoS

groups that were assigned earlier. �is is handled by a policy

map named “QOS_EGRESS_PORT,” which maps tra�c to

di�erent hardware output queues. Each queue is identified by a

class, such as c-out-�q-q� (fixed names: �q = eight queues, q� =

queue number �). For example, queue � is configured with

priority level �, which gives it strict priority over all other tra�c.

Queue � is assigned bandwidth remaining percent ��, meaning



that it is guaranteed half of the remaining bandwidth a�er

strict-priority tra�c has been serviced. In addition to

bandwidth allocation, queue � includes congestion management

features through the random-detect command. �is enables

Weighted Random Early Detection (WRED), a mechanism that

helps avoid congestion by randomly mark packets as queue

depth increases. �e minimum-threshold and maximum-threshold

define the WRED minimum and maximum values (from ��� KB

to ���� KB) at which packets begin marked. �e drop-probability

� determines the likelihood of packet mark when the maximum

threshold is reached, with higher numbers indicating higher

marking rates. �e weight � setting controls how queue size is

averaged. A weight of � means use instantaneous queue depth

(no averaging). Finally, ecn enables Explicit Congestion

Notification, allowing network devices to signal congestion

without dropping packets, without the ecn option switch drops

packet based on WRED min/max values. �e remaining queues

are configured with either zero percent of remaining

bandwidth, e�ectively disabling

them for general use, or with a share of the remaining

bandwidth. �is queuing policy ensures that RoCEv� tra�c

receives adequate resources with congestion feedback, while

CNP messages always get through with strict priority.

policy-map type queuing QOS_EGRESS_PORT

class type queuing c-out-�q-q�

bandwidth remaining percent �



...

class type queuing c-out-�q-q�

bandwidth remaining percent ��

random-detect minimum-threshold ��� kbytes maximum-

threshold ���� kbytes drop-probability � weight � ecn

...

class type queuing c-out-�q-q�

priority level �

Example ��-�: Queuing (Output Scheduling).

Step �: Enable PFC for Queue

�e Network QoS configuration defines the low-level,

hardware-based characteristics of tra�c handling within the

switch, such as enabling lossless behavior and setting the

maximum transmission unit (MTU) size for each tra�c class. In

this example, the policy-map type network-qos qos_network is

used to configure how tra�c is handled inside the switch fabric.

Under this policy, the class type network-qos c-�q-nq� is

associated with pause pfc-cos �, which enables Priority Flow

Control (PFC) on Class of Service (CoS) �. �is is critical for

RoCEv� tra�c, which depends on a lossless transport layer. �e

MTU is also defined here, with bytes (jumbo frame) set for class �

tra�c.



policy-map type network-qos qos_network class type network-

qos c-�q-nq�

mtu ����

pause pfc-cos �

Example ��-�: Queuing (Output Scheduling).

Priority Flow Control Watchdog

�e Priority Flow Control (PFC) watchdog is a mechanism that

protects the network from tra�c deadlocks caused by stuck PFC

pause frames. In RDMA environments like RoCEv�, PFC is used

to create lossless classes of tra�c by pausing tra�c flows instead

of dropping packets. However, if a device fails to release the

pause or a misconfiguration causes PFC frames to persist, tra�c

in the a�ected class can become permanently blocked, leading to

what is called a "head-of-line blocking" condition. To mitigate

this risk, the priority-flow-control watch-dog-interval on

command enables the PFC watchdog feature. When enabled, the

switch monitors tra�c in each PFC-enabled queue for signs of

persistent pause conditions. If it detects that tra�c has been

paused for too long, indicating a potential deadlock, it can take

corrective actions, such as generating logs, resetting internal

counters, or even discarding paused tra�c to restore flow.

priority-flow-control watch-dog-interval on Example ��-�:

Priority Flow Control (PFC) Watchdog.

Step �: Bind and Apply QoS Settings



System-level QoS policies bind all the previously defined QoS

components together and activate them across the switch. �is

is done using the system qos configuration block, which applies

the appropriate policy maps globally. �e service-policy type

network-qos qos_network command activates the network-qos

policy defined earlier, ensuring that MTU sizes and PFC

configurations are enforced across the switch fabric. �e

command service-policy type queuing output QOS_EGRESS_PORT

applies the queuing policy at the output interface level, enabling

priority queuing, bandwidth allocation, and congestion

management as tra�c exits the switch. �ese system-level

bindings are essential because, without them, the individual

QoS policies, classification, marking, queuing, and fabric-level

configuration, would remain inactive. By applying the policies

under system qos, the switch is instructed to treat

tra�c according to the rules and priorities defined in each

policy map. �is final step ensures end-to-end consistency in

QoS behavior, from ingress classification to fabric transport and

egress scheduling, providing a complete and operational

quality-of-service framework tailored for latency-sensitive,

lossless applications like RoCEv�.

system qos

service-policy type network-qos qos_network

service-policy type queuing output QOS_EGRESS_PORT

Example ��-�: Priority Flow Control (PFC) Watchdog.

Step �: Interface-Level Configuration



�e interface-level configuration attaches the previously

defined QoS policies and enables PFC-specific features for a given

port. In our example, the configuration is applied to

Ethernet�/��, but the same approach can be used for any

interface where you need to enforce QoS and PFC settings. �e

first command, priority-flow-control mode auto, enables Priority

Flow Control (PFC) on the interface in auto-negotiation mode.

�is means the interface will automatically negotiate PFC with

its link partner, allowing for lossless tra�c handling by pausing

specific tra�c classes instead of dropping packets. �e priority-

flow-control watch-dog command enables the PFC watchdog for

this interface, which ensures that if any PFC pause frames are

stuck or persist for too long, the watchdog will take corrective

action to prevent a deadlock situation. �is helps maintain the

overall health of the network by preventing tra�c congestion or

blockages due to PFC-related issues.

Lastly, the service-policy type qos input QOS_CLASSIFICATION

command applies the QoS classification policy on incoming

tra�c, ensuring that packets are classified and marked

according to their DSCP values as defined in the

QOS_CLASSIFICATION policy. �is classification enables

downstream QoS treatment, including proper queuing,

scheduling, and priority handling.

interface Ethernet �/��

priority-flow-control mode auto

priority-flow-control watch-dog



service-policy type qos input QOS_CLASSIFICATION

Example ��-�: Interface Level Configuration.
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CHAPTER ��:    FLOW,

FLOWLET, AND

PACKET-BASED LOAD

BALANCING



INTRODUCTION

�ough BGP supports the traditional Flow-based Layer � Equal

Cost Multi-Pathing (ECMP) tra�c load balancing method, it is

not the best fit for a RoCEv�-based AI backend network. �is is

because GPU-to-GPU communication creates massive elephant

flows, which RDMA-capable NICs transmit at line rate. �ese

flows can easily cause congestion in the backend network.

In ECMP, all packets of a single flow follow the same path. If

that path becomes congested, ECMP does not adapt or reroute

tra�c. �is leads to uneven bandwidth usage across the

network. Some links become overloaded, while others remain

idle. In AI workloads, where multiple high-bandwidth flows

occur at the same time, this imbalance can degrade

performance.

Deep learning models rely heavily on collective operations like

all-reduce, all-gather, and broadcast. �ese generate dense

tra�c patterns between GPUs, o�en at terabit-per-second

speeds. If these flows are not evenly distributed, a single

congested path can slow down the entire training job.

�is chapter introduces two alternative load balancing

methods to traditional Flow-Based with Layer � ECMP: �)

Flowlet-Based Load Balancing with Adaptive Routing, and �)

Packet-Based Load Balancing with Packet Spraying. Both aim to



improve tra�c distribution in RoCEv�-based AI backend

networks, where conventional flow-based routing o�en leads to

congestion and underutilized links. �ese advanced methods are

designed to handle the unique tra�c patterns of AI workloads

more e�ciently.



RDMA WRITE OPERATION

Before we explore the load balancing solution, let’s first walk

through a simplified example of how the RDMA WRITE memory

copy operation works. In Figure ��-�, we have two GPU servers:

Host � and Host �, each with one GPU. By this point, the memory

has already been allocated and registered, and the Queue Pair

(QP) has been created on both sides, so the data transfer can

begin.

On GPU-� of Host �, gradients are stored in memory regions

highlighted in green, orange, and blue. Each colored section

represents a portion of local memory that will be written to

GPU-� on Host �. To transfer the data, the RDMA NIC on Host �

splits the write operation into three flowlets (green, orange, and

blue). Rather than sending the entire data block as a single

continuous stream, each flowlet is treated as a segment of the

same RDMA Write operation.

RDMA Write First

�e first message carries the RDMA Extended Transport Header

(RETH) in its payload. �is header tells the receiving RDMA NIC

where in the remote memory the incoming data should be

written. In our example, data from memory block �B of GPU-�

on Host � is written to memory block �C of GPU-� on Host �.



�e RETH contains the R_Key, which gives permission to write

to the remote memory region. It also includes the length of the

data being transferred and the virtual address of the target

memory location on Host �.

�e operation code in the InfiniBand Base Transport Header

(IBTH) is set to RDMA Write First, indicating that this is the first

message in the sequence. �e IBTH also describes the Partition

Key (interface identifier), the Destination Queue Pair number,

and the Packet Sequence Number (PSN) that helps ensure

packets are processed in the correct order.

When this first packet arrives at Host �, the RDMA NIC uses

the Virtual Address information in the RETH header to write the

payload directly into memory block �C.

Figure ��-�: RDMA WRITE First.



RDMA Write Middle

�e second message has the opcode RDMA Write Middle and

PSN �, which tells the receiver that this packet comes a�er the

first one with PSN �. �e payload of this Flowlet is written right

a�er the previous block, into memory block �D on Host �. �e

RDMA NIC ensures that the order is maintained based on PSNs,

and it knows exactly where to place the data thanks to the

original o�set from the first packet.

Figure ��-�: RDMA WRITE Middle.

RDMA Write Last

�e third message has the opcode RDMA Write Last, indicating

that this is the final message in the sequence. With PSN �, it

follows directly a�er PSN �. �e payload in this packet is written

into memory block �E, which comes directly a�er �D.



Figure ��-�: RDMA WRITE Last.

In a multi-packet RDMA Write operation, each Flowlet

represents a continuous block of data being transferred from the

source GPU to the destination GPU. Data within packets must

arrive in the correct order because only the first packet includes

the full addressing information in the RDMA Extended

Transport Header (RETH). �is header tells the receiver where

in memory the data should be written.

Packets marked as RDMA Write Middle and RDMA Write Last

depend on this information and must follow the sequence

defined by the Packet Sequence Numbers (PSNs). If packets are

delivered out of order, the receiving RDMA NIC cannot process

them immediately. Instead, it must hold them in memory and

wait for the missing earlier packets to arrive. �is bu�ering

increases memory usage and processing overhead. In high-

speed environments, this can lead to performance degradation

or even packet drops, especially when bu�ers fill up under heavy



load.



FLOW-BASED LOAD BALANCING WITH LAYER � ECMP

Figure ��-� depicts the problem with flow-based load balancing

when used in an AI fabric backend network. In our example, we

have four hosts, each equipped with two GPUs: GPU-� and GPU-

�. �e RDMA NICs connected to GPU-�s are linked to switch

Rail-�, and the RDMA NICs connected to GPU-�s are linked to

Rail-�. Tra�c between NICs on Rail-� and Rail-� is forwarded

through either Spine-� or Spine-�.

We use a basic data parallelization strategy, where the training

dataset is divided into mini-batches and distributed across all

eight GPUs. To keep the example simple, Figure ��-� only shows

the all-reduce gradient synchronization flow from the GPU-�s on

Hosts �, �, and � to the GPU-� on Host �. In real-world training, a

full-mesh all-reduce operation takes place between all GPUs.

As a starting point, the GPU-�s on the three le�most hosts

begin the RDMA process to copy data from their memory to the

memory of GPU-� on Host �. �ese GPU-�s are all connected to

Rail-�. Instead of sending one large flow, the RDMA NICs split

the data into flowlets, small bursts of data from the larger

transfer. �ese flowlets arrive at the Rail-� switch, where the

�tuple L� ECMP hash algorithm unfortunately selects the same

uplink for all three flows.



Since the switch cannot forward all the data at wire speed, it

stores some of the packets in the bu�er, causing congestion.

Similar congestion may also occur at the spine switches. As

explained earlier in Chapter ��, egress bu�er overflow may

trigger ECN (Explicit Congestion Notification) and PFC (Priority

Flow Control) mechanisms to prevent packet loss.

Figure ��-�: Layer � Load balancing.



FLOWLET-BASED LOAD BALANCING WITH ADAPTIVE

ROUTING

Adaptive routing is a dynamic method that actively monitors

link utilization and reacts to network congestion in real time. In

Figure ��-�, the �-tuple hash algorithm initially selects the same

uplink for all flowlets, just like in the previous example.

However, once the utilization of the interswitch link between

Rail-� and Spine-� goes over threshold, the adaptive routing

mechanism detects the increased load and starts redirecting

some of the flowlets to an alternate, less congested path, through

Spine-�.

By distributing the flowlets across multiple paths, adaptive

routing helps to reduce bu�er buildup and avoid potential

packet drops. �is not only improves link utilization across the

fabric but also helps maintain consistent throughput for time-

sensitive operations like RDMA-based gradient synchronization.

In AI workloads, where delays or packet loss can slow down or

even interrupt training, adaptive routing plays a critical role in

maintaining system performance.



Figure ��-�: Dynamic Flow Balancing.



PACKET-BASED LOAD BALANCING WITH PACKET

SPRAYING

Packet spraying is a load balancing method where individual

packets from the same flow are distributed across multiple

equal-cost paths. �e idea is to use all available links evenly and

reduce the chance of congestion on any single path.

In a RoCEv�-based AI backend network, however, packet

spraying presents serious challenges. RoCEv� relies on lossless

and in-order packet delivery. When packets are sprayed over

di�erent paths, they can arrive out of order at the destination.

�is packet reordering can disrupt RDMA operations and reduce

the overall performance of GPU-to-GPU communication.



Figure ��-�: Packet Spraying: OpCode: RDMA Write First, Middle,

and Last.

RDMA Write Only

NVIDIA’s RDMA NICs starting from ConnectX-� support the

RDMA Write Only operation, where a RETH header is included

in every packet. Figure ��-� shows how the RDMA NIC uses the

OpCode: RDMA Write Only in the IBTH header for each

message. With this OpCode, every message also includes a RETH

header, which holds information about the destination memory

block reserved for the data carried in the payload. �is allows

the receiving RDMA NIC to write data directly to the correct

memory location without relying on prior messages in the

transfer sequence.

RDMA Write Only, when combined with Packet-Based Load

Balancing using Packet Spraying, brings significant benefits.

Since each packet is selfcontained and includes full memory

addressing information, the network fabric can forward

individual packets over di�erent paths without worrying about

packet ordering or context loss. �is enables true flowlet or even

per-packet load balancing, which helps spread tra�c more

evenly across available links, avoids hotspots, and reduces

queuing delays.



Figure ��-�: Packet Spraying: OpCode: TDMA Write Only.



CONFIGURING PER-PACKET LOAD BALANCING ON

CISCO NEXUS SWITCHES

At the time of writing, Cisco Nexus ���� Series Cloud Scale

switches (����-FX�, GX, GX�, and HX-TOR), starting from NX-

OS Release ��.�(�)F, support Dynamic Load Balancing (DLB)—

including flowlet-based and per-packet (packet spraying) load

balancing. DLB is supported on Layer � physical interfaces in IP-

routed and VXLAN fabrics for unicast IPv� and IPv� tra�c.

When DLB is enabled, egress QoS and access policies are not

applied to flows using DLB. Similarly, TX SPAN configured on an

egress interface does not capture DLB tra�c. For hardware and

so�ware support details, refer to Cisco’s o�cial documentation.

Example ��-� shows a basic configuration for enabling per-

packet load balancing:

switch(config)# hardware profile dlb switch(config-dlb)# dlb-

interface Eth�/� switch(config-dlb)# dlb-interface Eth�/�

switch(config-dlb)# mac-address aa:bb:cc:dd:ee:� switch(config-

dlb)# mode per-packet

Example ��-�: Configuring Per-Packet Load Balancing Packet

Spraying.

Note: �e DLB MAC acts as a virtual next-hop MAC address.

It’s not tied to any specific physical interface. �is decouples the



MAC from the physical path, allowing the switch to choose a

di�erent egress port for each packet. �e same DLB MAC address

must be configured on all participating switches. If you do not

specify a DLB MAC, the default DLB MAC ��:CC:CC:CC:CC:CC is

applied.
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CHAPTER ��:

   BACKEND NETWORK

TOPOLOGIES



INTRODUCTION

Although there are best practices for AI Fabric backend

networks, such as Data Center Quantized Congestion Control

(DCQCN) for congestion avoidance, rail-optimized routed Clos

fabrics, and Layer � Rail-Only topologies for small-scale

implementations, each vendor o�ers its own validated design.

�is approach is beneficial because validated designs are

thoroughly tested, and when you build your system based on the

vendor’s recommendations, you receive full vendor support and

avoid having to reinvent the wheel.

However, instead of focusing on any specific vendor’s design,

this chapter explains general design principles for building a

resilient, non-blocking, and lossless Ethernet backend network

for AI workloads.

Before diving into backend network design, this chapter first

provides a high-level overview of a GPU server based on NVIDIA

H��� GPUs. �e first section introduces a shared NIC

architecture, where � GPUs share two NICs. �e second section

covers an architecture where each of the � GPUs has a dedicated

NIC.

Shared NIC



Figure ��-� illustrates a shared NIC approach. In this example

setup, NVIDIA H��� GPUs �–� are connected to NVSwitch chips

�-�, �-�, �-�, and �-� on baseboard-�, while GPUs �–� are

connected to NVSwitch chips �-�, �-�, �-�, and �-� on baseboard-

�. Each GPU connects to all four NVSwitch chips on its

respective baseboard using a total of �� NVLink � connections: �

links to chip �-�, � links to chip �-�, � links to chip �-�, and � links

to chip �-�.

�e NVSwitch chips themselves are paired between the two

baseboards. For example, chip �-� on baseboard-� connects to

chip �-� on baseboard-� with four NVLink connections, chip �-�

connects to chip �-�, and so on. �is design forms a fully

connected crossbar topology across the entire system.

�anks to this balanced pairing, GPU-to-GPU communication

is very e�cient whether the GPUs are located on the same

baseboard or on di�erent baseboards. Each GPU can achieve up

to ��� GB/s of total GPU-to-GPU bandwidth at full NVLink �

speed.

For inter-GPU server connection, GPUs are also connected to a

shared NVIDIA ConnectX-� ��� GbE NIC through a PEX�����

PCIe Gen� switch. Each GPU has a dedicated PCIe Gen� x�� link

to the switch, providing up to �� GB/s of bidirectional

bandwidth (�� GB/s in each direction) between the GPU and the

switch. �e ConnectX-� (���Gbps) NIC is also connected to the

same PCIe switch, enabling high-speed data transfers between

remote GPUs and the NIC through the PCIe fabric.



While each GPU benefits from a high-bandwidth, low-latency

PCIe connection to the switch, the NIC itself has a maximum

network bandwidth of ��� GbE, which corresponds to roughly

�� GB/s. �erefore, the PCIe switch is not a bottleneck; instead,

the NIC’s available bandwidth must be shared among all eight

GPUs. In scenarios where multiple GPUs are sending or

receiving data simultaneously, the NIC becomes the limiting

factor, and the bandwidth is divided between the GPUs.

In real-world AI workloads, however, GPUs rarely saturate

both the PCIe interface and the NIC at the same time. Data

transfers between the GPUs and the NIC are o�en bursty and

asynchronous, depending on the training or inference pipeline

stage. For example, during deep learning training, large

gradients might be exchanged periodically, but not every GPU

constantly sends data at full speed. Additionally, many

optimizations like gradient compression, pipeline parallelism,

and overlapping computation with communication further

reduce the likelihood of sustained full-speed congestion.

As a result, even though the NIC bandwidth must be shared,

the shared ConnectX-� design generally provides su�cient

network performance for typical AI workloads without

significantly impacting training or inference times.

In high-performance environments, such as large-scale

training workloads or GPU communication across nodes, this

shared setup can become a bottleneck. Latency may increase

under load, and data transfer speeds can slow down.



Despite these challenges, the design is still useful in many

cases. It is well-suited for development environments, smaller

models, or setups where cost is a primary concern. If the

workload does not require maximum GPU-to-network

performance, sharing a NIC across GPUs can be a reasonable and

e�cient solution. However, for optimal performance and full

support for technologies like GPUDirect RDMA, it is better to

use a dedicated NIC for each GPU.

Figure ��-�: Shared NIC GPU Server.

NIC per GPU

Figure ��-� builds on the shared NIC design from Figure ��-� but

takes a di�erent approach. In this setup, each GPU has its own

dedicated ConnectX-� ��� GbE NIC. All NICs are connected to

the PCIe Gen� switch, just like in the earlier setup, but now each



GPU uses its own PCIe Gen� x�� connection to a dedicated NIC.

�is design eliminates the need for NIC sharing and allows every

GPU to use the full �� GB/s PCIe bandwidth independently.

�e biggest advantage of this design is in GPU-to-NIC

communication. �ere is no bandwidth contention at the PCIe

level, and each GPU can fully utilize RDMA and GPUDirect

features with its own NIC. �is setup improves network

throughput and reduces latency, especially in multinode

training workloads where GPUs frequently send and receive

large amounts of data over Ethernet.

�e main drawback of this setup is cost. Adding one NIC per

GPU increases both hardware costs and power consumption. It

also requires more switch ports and cabling, which may a�ect

system design. Still, these trade-o�s are o�en acceptable in

performance-critical environments.

�is overall design reflects NVIDIA’s DGX and HGX

architecture, where GPUs are fully interconnected using NVLink

and NVSwitch and each GPU is typically paired with a dedicated

ConnectX or BlueField NIC to maximize network performance.

In addition, this configuration is well suited for rail-optimized

backend networks, where consistent per-GPU network

bandwidth and predictable east-west tra�c patterns are

important.



Figure ��-�: Dedicated NIC per GPU.

Before moving to the design sections, it is worth mentioning

that the need for a high-performance backend network, and

how it is designed, is closely related to the size of the neural

networks being used. Larger models require more GPU memory

and o�en must be split across multiple GPUs or even servers.

�is increases the need for fast, low-latency communication

between GPUs, which puts more pressure on the backend

network.

Figure ��-� shows a GPU server with � GPUs. Each GPU has ��

GB of memory, giving a total of ��� GB GPU memory. �is kind

of setup is common in high-performance AI clusters.

�e figure also shows three examples of running large

language models (LLMs) with di�erent parameter sizes:

•    �B model: �is model has � billion parameters and

needs only approximately �� GB of memory. It fits on a single



GPU if model parallelism is not required.

•    ��B model: �is larger model has �� billion parameters

and needs approximately ��� GB of memory. It cannot fit

into one GPU, so it must use at least two GPUs. In this case,

the GPUs communicate using intrahost GPU connections

across NVLink.

•    ���B model: �is large model has ��� billion

parameters and needs approximately ��� GB of memory. It

does not fit into one server. Running this model requires at

least �� GPUs across multiple servers. �e GPUs must use

both intra-GPU connections inside a server and inter-GPU

connections between servers.

�is figure highlights how model size directly a�ects memory

needs, and the number of GPUs required. As models grow,

parallelism and fast GPU interconnects become essential.

Figure ��-�: Model Size and Required GPUs.



DESIGN SCENARIOS

Single Rail Switch Design with Dedicated, Single-Port

NICs per GPU

Figure ��-� illustrates a single rail switch design. �e switch

interfaces are divided into three groups of eight ��� Gbps

interface each. �e first group of eight ports is reserved for Host-

�, the second group for Host-�, and the third group for Host-�.

Each host has eight GPUs, and each GPU is equipped with a

dedicated, single-port NIC.

Within each group, ports are assigned to di�erent VLANs to

separate tra�c into di�erent logical rails. Specifically, the first

port of each group belongs to the VLAN representing Rail-�, the

second port belongs to Rail-�, and so on. �is pattern continues

across all three host groups.

Benefits

•    Simplicity: �e architecture is very easy to design,

configure, and troubleshoot. A single switch and

straightforward VLAN assignment simplify management.

•    Cost-E�ectiveness: Only one switch is needed, reducing

capital expenditure (CapEx) compared to dual-rail or

redundant designs. Less hardware also means lower



operational expenditure (OpEx), including reduced power,

cooling, and maintenance costs. Additionally, fewer devices

translate to lower subscription-based licensing fees and

service contract costs, further improving the total cost of

ownership.

•    E�cient Use of Resources: Ports are used e�ciently by

directly mapping each GPU’s NIC to a specific port on the

switch, minimizing wasted capacity.

•    Low Latency within the Rail: Since all communications

stay within the same switch, latency is minimized,

benefiting tightly-coupled GPU workloads.

•    Su�cient for Smaller Deployments: In smaller clusters

or test environments where absolute redundancy is not

critical, this design is perfectly su�cient.

Drawbacks

•    No Redundancy: A single switch creates a single point of

failure. If the switch fails, all GPU communications are lost.

•    Limited Scalability: Expanding beyond the available

switch ports can be challenging. Adding more hosts or GPUs

might require replacing the switch or redesigning the

network.

•    Potential Oversubscription: With all GPUs sending and

receiving tra�c through the same switch, there’s a risk of

oversubscription, especially under heavy AI workload

patterns where network tra�c bursts are common.



•    Di�cult Maintenance: So�ware upgrades or hardware

maintenance on the switch impact all connected hosts,

making planned downtime more disruptive.

•    Not Suitable for High Availability (HA) Requirements:

Critical AI workloads, especially in production

environments, o�en require dualrail (redundant)

networking to meet high availability requirements. �is

design would not meet such standards.

Single rail designs are cost-e�cient and simple but lack

redundancy and scalability, making them best suited for small

or non-critical AI deployments.

Figure ��-�: Single Rail Switch Design: GPU with Single Port NIC.

Dual-Rail Switch Topology with Dedicated, Dual-Port

NICs per GPU



In this topology, each host contains � GPUs, and each GPU has a

dedicated dual-port NIC. �e NICs are connected across two

independent Rail switches equipped with ��� Gbps interfaces.

�is design ensures that every GPU has redundant network

connectivity through separate switches, maximizing

performance, resiliency, and failover capabilities.

Each Rail switch independently connects to one port of each

NIC, creating a dual-homed connection per GPU. To ensure

seamless operations and redundancy, the two switches must

logically appear as a single device to the host NICs, even though

they are physically distinct systems.

Benefits

•    High Availability: �e failure of a single switch, link, or

NIC port does not isolate any GPU, maintaining system

uptime.

•    Load Balancing: Tra�c can be distributed across both

switches, maximizing bandwidth utilization and reducing

bottlenecks.

•    Scalability: Dual-rail architectures can be extended

easily to larger deployments while maintaining predictable

performance and redundancy.

•    Operational Flexibility: Maintenance can o�en be

performed on one switch without service disruption.

Drawbacks



•    Higher Cost: Requires two switches, twice the number

of cables, and dual-port NICs, increasing CapEx and OpEx.

•    Complexity: Managing a dual-rail environment

introduces more design complexity due to Multi-Chassis

Link Aggregation (MLAG).

•    Increased Power and Space Requirements: Two switches

and more cabling demand more rack space, power, and

cooling.

Challenges of Multi-Chassis Link Aggregation (MLAG)

To create a logical channel between dual-port NICs and two

switches, the switches must be presented as a single logical

device to each NIC. MultiChassis Link Aggregation (MLAG) is

o�en used for this purpose. MLAG allows a host to see both

switch uplinks as part of the same LAG (Link Aggregation

                                              Group).

Another solution is to assign the two NIC ports to di�erent

VLANs without bundling them into a LAG, though this approach

may limit bandwidth utilization and redundancy benefits

compared to MLAG.

MLAG introduces several challenges:

•    MAC Address Synchronization: Both switches must

advertise the same MAC address to the host NICs, allowing

the two switches to appear as a single device.



•    Port Identification: A common approach to building

MLAG is to use the same interface numbers on both

switches. �erefore, the system must be capable of uniquely

identifying each member link internally.

•    Control Plane Synchronization: �e two switches must

exchange state information (e.g., MAC learning, link status)

to maintain a consistent and synchronized view of the

network.

•    Failover Handling: �e switches must detect failures

quickly and handle them gracefully without disrupting

existing sessions, requiring robust failure detection and

recovery mechanisms.

Vendor-Specific MLAG Solutions

�e following list shows some of the vendor proprietary

MLAG:

•    Cisco Virtual Port Channel (vPC): Cisco's vPC allows two

Nexus switches to appear as one logical switch to connected

devices, synchronizing MAC addresses and forwarding

state.

•    Juniper Virtual Chassis / MC-LAG: Juniper o�ers Virtual

Chassis and MC-LAG solutions, where two or more switches

operate with a shared control plane, presenting themselves

as a single switch to the host.



•    Arista MLAG: Arista Networks implements MLAG with a

simple peerlink architecture, supporting independent

control planes while synchronizing forwarding state.

•    NVIDIA/Mellanox MLAG: Mellanox switches also o�er

MLAG solutions, o�en optimized for HPC and AI workloads.

Standards-Based Alternative: EVPN ESI Multihoming

Instead of vendor-specific MLAG, a standards-based approach

using Ethernet Segment Identifier (ESI) Multihoming under BGP

EVPN can be used. In this model:

•    Switches advertise shared Ethernet segments (ESIs) to

the host over BGP EVPN.

•    Hosts see multiple physical links but treat them as part

of a logical redundant connection.

•    EVPN ESI Multihoming allows for interoperable

solutions across vendors, but typically adds more

complexity to the control plane compared to simple MLAG

setups.



Figure ��-�: Dual Rail Switch Design: GPU with Dual-Port NIC.

Cross-Rail Communication over NVLink in Rail-Only

Topologies

In the introduced single- and dual-rail topologies (Figures ��-�

and ��-�), each GPU is connected to a dedicated NIC, and each

NIC connects to a specific Rail switch. However, there is no

direct cross-rail connection between the switches themselves —

no additional spine layer interconnecting the rails. As a result, if

a GPU needs to send data to a destination GPU that belongs to a

di�erent rail, special handling is required within the host before

the data can exit over the network.

For example, consider a memory copy operation where GPU-�

(connected to Rail �) on Host-� needs to send data to GPU-�

(connected to Rail �) on Host-�. Since GPU-�’s NIC is associated

with Rail � and GPU-� expects data arriving over Rail �, the

communication path must traverse multiple stages:



�.    Intra-Host Transfer: �e data is first copied locally over

NVLink from GPU-� to GPU-� within Host-�. NVLink

provides a high-bandwidth, low-latency connection

between GPUs inside the same server.

�.    NIC Transmission: Once the data resides in GPU-�’s

memory, it can be sent out through GPU-�’s NIC, which

connects to Rail �.

�.    Inter-Host Transfer: �e packet travels over Rail �

through one of the Rail switches to reach Host-�.

�.    Destination Reception: Finally, the data is delivered to

GPU-� on Host-�.

�is method ensures that each network link (and

corresponding NIC) is used according to its assigned rail without

needing direct switch-to-switch rail interconnects.

To coordinate and optimize such multi-step communication,

NVIDIA Collective Communications Library (NCCL) plays a

critical role. NCCL automatically handles GPU-to-GPU

communication across multiple nodes and rails, selecting the

appropriate path, initiating memory copies over NVLink, and

scheduling transmissions over the correct NICs — all while

maximizing bandwidth and minimizing latency. �e upcoming

chapter will explore NCCL in greater detail.

Figure ��-� illustrates how the upcoming topology in Figure ��-

� maps NIC-to-Rail connections, transitioning from a switch

interface-based view to a rail-based view. Figure ��-� shows a



partial interface layout of a Cisco Nexus ����D-GX�A switch and

how its interfaces are grouped into di�erent rails as follows:

•   Rail-� Interfaces: �, �, �, ��

•   Rail-� Interfaces: ��, ��, ��, ��

•   Rail-� Interfaces: ��, ��, ��, ��

•   Rail-� Interfaces: ��, ��, ��, ��

•   Rail-� Interfaces: �, �, �, ��

•   Rail-� Interfaces: ��, ��, ��, ��

•   Rail-� Interfaces: ��, ��, ��, ��

•   Rail-� Interfaces: ��, ��, ��, ��

However, a port-based layout becomes extremely messy when

describing larger implementations. �erefore, the common

practice is to reference the rail number instead of individual

switch interface identifiers.



Figure ��-�: Interface Block to Rail Mapping.

Figure ��-� provides an example showing how each NIC is now

connected to a rail instead of being directly mapped to a specific

physical interface. In this approach, each rail represents a

logical group of physical interfaces, simplifying the overall

design and making larger deployments easier to visualize and

document.

In our example "Host-Segment" (an uno�cial name), we have

four hosts, each equipped with eight GPUs — �� GPUs in total.

Each GPU has a dedicated ��� Gbps dual-port NIC. All GPUs are

connected to two rail switches over a � × ��� Gbps MLAG,

providing ��� Gbps of transmission speed per GPU.



Figure ��-�: Example Figure of Connecting �� Dual-Port NICs �

Rails on � Switches.

Figure ��-� shows how multiple Host-Segments can be

connected. �e figure illustrates a simplified two-tier, three-

stage Clos fabric topology, where full-mesh Layer � links are

established between the four Rail switches (leaf switches) and

the Spine switches. �e figure also presents the link capacity

calculations. Each Rail switch has �� × ��� Gbps connections to

the hosts, providing a total downlink capacity of �.� Tbps.

Since oversubscription is generally not preferred in GPU

clusters — to maintain high performance and low latency — the

uplink capacity from each Rail switch to the Spine layer must

also match �.� Tbps. To achieve this, each Rail switch must have

uplinks capable of an aggregate transfer rate of �.� Tbps. �is

can be implemented either by using native ��� Gbps interfaces

or by forming a logical Layer � port channel composed of two

��� Gbps links per Spine connection. Additionally, Inter-Switch



capacity can be increased by adding more switches in the Spine

layer. �is is one of the benefits of a Clos fabric: the capacity can

be scaled without the need to replace ��� Gbps interfaces with

��� Gbps interfaces, for example.

�is topology forms a Pod and supports �� GPUs in total and

provides a non-blocking architecture, ensuring optimal east-

west tra�c performance between GPUs across di�erent Host-

Segments.

In network design, the terms "two-tier" and "three-stage" Clos

fabric describe di�erent aspects of the same overall topology.

"Two-tier" focuses on the physical switch layers (typically Leaf

and Spine) and describes the depth of the topology, o�ering a

hierarchy view of the architecture. Essentially, it's concerned

with how many switching layers are present. On the other hand,

three-stage Clos describes the logical data path a packet follows

when moving between endpoints: Leaf–Spine–Leaf. It focuses on

how data moves through the network and the stages tra�c flows

through. �erefore, while a two-tier topology refers to the

physical switch structure, a three-stage Clos describes the logical

path taken by packets, which crosses through three stages: Leaf,

Spine, and Leaf. �ese two perspectives are complementary, not

contradictory, and together they provide a complete view of the

Clos network design.



Figure ��-�: AI fabric – Pod Design.

Figure ��-� extends the previous example by adding a second

��-GPU Pod, creating a larger multi-Pod architecture. To

interconnect the two Pods, four Super-Spine switches are

introduced, forming an additional aggregation layer above the

Spine layer. Each Pod retains its internal two-tier Clos fabric

structure, with Rail switches fully meshed to the Spine switches

as described earlier. �e Spine switches from both Pods are then

connected northbound to the Super-Spine switches over Layer �

links.

Due to the introduction of the Super-Spine layer, the complete

system now forms a three-tier, five-stage Clos topology. �is

design supports scalable expansion while maintaining

predictable latency and high bandwidth between GPUs across

di�erent Pods. Like the Rail-to-Spine design, maintaining a non-

blocking architecture between the Spine and SuperSpine layers



is critical. Each Spine switch aggregates �.� Tbps of tra�c from

its Rail switches; therefore, the uplink capacity from each Spine

to the Super-Spine layer must also be �.� Tbps.

�is can be achieved either by using native ��� Gbps links or

logical Layer � port channels composed of two ��� Gbps links

per Super-Spine connection. All Spine switches are fully meshed

with all Super-Spine switches to ensure high availability and

consistent bandwidth. �is architecture enables seamless east-

west tra�c between GPUs located in di�erent Pods, ensuring

that inter-Pod communication maintains the same non-blocking

performance as intra-Pod tra�c.

Figure ��-�: AI fabric – Multi-Pod Design.

Rail Desings in GPU Fabric

When building a scalable, resilient GPU network fabric, the

design of the rail layer, the portion of the topology that



interconnects GPU servers via Top-of-Rack (ToR) switches, plays

a critical role. �is section explores three di�erent models:

Multi-rail-per-switch, Dual-rail-per-switch, and Single-rail-per-

switch. All three support dual-NIC-per-GPU designs, allowing

each GPU to connect redundantly to two separate switches,

thereby removing the Rail switch as a single point of failure.

Multi-Rail-per-Switch

In this model, multiple small subnets and VLANs are

configured per switch, with each logical rail mapped to a subset

of physical interfaces. For example, a single ��-port switch

might host four or eight logical rails using distinct Layer � and

Layer � domains. Because all logical rails share the same physical

device, isolation is logical. As a result, a hardware or so�ware

failure in the switch can impact all rails and their associated

GPUs, creating a large failure domain. �is model is not part of

NVIDIA’s validated Scalable Unit (SU) architecture but may suit

test environments,

development clusters, or small-scale GPU fabrics where

hardware cost e�ciency is a higher priority than strict fault

isolation. From a CapEx perspective, multi-rail-per-switch is the

most economical, requiring fewer switches.

Figure ��-�� illustrates the multi-rail-per-switch architecture,

where each rail is implemented as a separate VLAN-subnet pair

mapped to a subset of switch ports. In the figure, interfaces �–�

are assigned to subnet ��.�.�.�/�� and VLAN ���, while

interfaces �–� are mapped to subnet ��.�.�.�/�� and VLAN ���.



Each VLAN maintains its own MAC address table, learning GPU

NIC MACs through ingress tra�c. Although not shown in the

figure, the Rail switch acts as the default gateway for all eight

VLANs. �e figure also illustrates the BGP process when a Clos

architecture with a spine layer is used to connect rail switches.

All directly connected subnets are installed into the local

Routing Information Base (RIB) as connected routes. �ese

routes are then imported into the BGP Loc-RIB. Next, the routes

pass through the BGP output policy engine, where they are

aggregated into a single summary route: ��.�.�.�/��. �is

aggregate is placed into the BGP Adj-RIB-Out. When the BGP

Update message is sent to a peer, the NEXT_HOP attribute is set

accordingly.

Figure ��-��: Multi-Rail per Switch.

Dual-Rail-per-Switch



While dual-rail-per-switch improves manageability and is

easier to scale, it shares the same limitation: both logical rails

reside within a single physical switch, so the failure domain

remains large. A single switch failure or misconfiguration a�ects

both rails and all associated GPUs.

�is design resembles the dual-rail concept used in scalable AI

clusters, but NVIDIA’s SU approach calls for two separate

physical switches per rail, which provides full physical isolation.

Dual-rail-per-switch hits a middle ground in terms of CapEx and

OpEx: fewer switches are required than in the single-rail model,

and operational complexity is reduced compared to multi-rail.

It’s o�en a good choice for intermediate-scale environments

where some fault tolerance and cost control must be balanced.

Figure ��-�� illustrates a dual-rail-per-switch design, where the

switch interfaces are divided evenly between two separate rails.

Rail � uses interfaces � through �� and is assigned to subnet

��.�.�.�/�� (VLAN ���). Rail � uses interfaces �� through �� and is

assigned to subnet ��.�.���.�/�� (VLAN ���). Each VLAN has its

own MAC address table, and the rail switch serves as the default

gateway for both. �e individual /�� subnets are redistributed

into the BGP process and summarized as ��.�.�.�/�� for

advertisement toward the spine layer.



Figure ��-��: Dual-Rail Switch.

Single-Rail-per-Switch

�is model o�ers the highest level of physical isolation. Each

switch forms a single rail, serving its connected GPU servers

through one subnet and one VLAN. No logical separation is

needed, as each rail is entirely independent in hardware. As a

result, a switch failure a�ects only the GPU servers attached to

that specific rail, yielding a small, predictable failure domain.

�e design closely aligns with NVIDIA’s Scalable Unit (SU)

architecture, in which each rack or rack group includes its own

rail switch, and horizontal scaling is achieved by repeating

modular, self-contained units.

While this model demands the highest CapEx, due to the one-

to-one mapping between switches and rails, it o�ers major



operational advantages. Configuration is simpler,

troubleshooting is faster, and the risk of cascading faults is

minimized. �ere is no need for route summarization, or custom

BGP redistribution logic. Over time, these benefits help drive

down OpEx, particularly in large-scale or mission-critical GPU

clusters.

To ensure optimal hardware utilization, it is important to

align the number of GPU servers per rack with the switch’s port

capacity. Otherwise, underutilized ports can lead to

ine�ciencies in infrastructure cost and resource planning.

Figure ��-�� illustrates a simplified single-rail-per-switch

topology. All interfaces from � to �� operate within a single rail,

configured with subnet ��.�.�.�/�� and VLAN ���. �e rail

switch serves as the default gateway, and because the full /��

subnet is used without subnetting, route summarization is not

needed.



Figure ��-��: Single-Rail Switch.

AI Fabric Architecture Conclusion

Figure ��-�� illustrates one way to describe the overall

architecture of an AI Fabric. It is divided into three domains. �e

first domain, called the Segment, includes GPU hosts and Rail

switches. �e second domain, the Pod, aggregates multiple

segments using Spine switches. In cases where NCCL builds a

topology where cross-rail inter-host tra�c is first copied to

the local GPU memory (located on the destination rail) and

then sent over the GPU NIC to the remote GPU via the correct

Rail switch, a Pod architecture with Spine switches may not be

necessary. �e third domain, multi-Pod, interconnects multiple

pods using Super Spine switches, enabling large-scale AI Fabric

deployments. Figure ��-�� also depicts global settings and

properties shared across the AI Fabric backend network.

Segment: GPU I/O Topology and Rail Switch Fabric Profile

GPU I/O Topology: Each GPU connects to the network through a

NIC. You can either dedicate a NIC to each GPU or share one NIC

among multiple GPUs. NICs may have single, dual, or quad ports

and support speeds such as ���, ���, or ��� Gbps. �e

interconnect type can be InfiniBand, RoCEv�, or NVLink. A

segment typically includes multiple hosts.

Rail Switch Fabric Profile: Rail switches connect directly to GPU

hosts. Each rail handles a group of NIC ports. You can map rails



one-to-one to switches for physical isolation or map multiple

rails per switch for logical isolation. In the latter case, two or

more rails can be mapped per switch depending on performance

and capacity requirements. Rail switches are responsible for

ingress packet classification and for mapping RoCEv� tra�c to

the correct queues.

Pod: Spine Switch Profile:

Spine switches aggregate multiple Rail switches, forming a

Pod that consists of n segments. Spine switches enable cross-rail

communication between GPUs. �ey use high-density, high-

speed ports. When the Spine layer is used, the result is a �-tier, �-

stage architecture.

Multi-Pod: Super Spine Switch Profile

Super Spine switches provide inter-Pod connectivity. �ey are

built with very high port density to support all connected Spine

switches. When the Super Spine layer is used, the architecture

becomes a �-tier, �-stage fabric.

Global AI Fabric Profile

All layers are governed by the Global AI Fabric Profile. �is

profile defines the control plane (eBGP, iBGP, BGP EVPN), the

data plane (Ethernet, VXLAN), Layer � ECMP strategies (flow-

based, flowlet-based, or perpacket), congestion control



mechanisms (ECN marking, PFC), inter-switch link monitoring

(BFD), and global MTU settings.

Figure ��-��: AI fabric Architecture Description.

Hash Polarization

In �-tier or �-tier topologies, there is an inherent risk of hash

polarization. Consider a fully connected Clos topology with four

leaf switches and four spine switches. Each leaf connects to all



spine switches and uses ECMP (Equal-Cost Multi-Path) to

distribute tra�c across these equal-cost paths. When each leaf

receives a flow from its locally connected host, and all flows are

destined for the same endpoint, the ECMP hash function on

each leaf determines which spine switch to use as the next hop.

If the ECMP hash function on all leaf switches produces the

same result — for example, all leafs selecting the same spine

switch as the next hop — then that spine becomes a bottleneck.

It receives all flows and must forward them toward the

destination, typically through the same inter-switch link. �is

can lead to bu�er overflows or congestion on that path.

�is scenario, where multiple flows are consistently mapped

to the same next-hop due to deterministic hash outcomes and

similar flow characteristics, is known as hash polarization. It

o�en arises when the entropy in the fields used for ECMP

hashing (e.g., source and destination IP addresses and ports) is

low. When flows have similar headers and the hash function

lacks variability, tra�c is not evenly spread across available

paths.

Hash polarization can be mitigated in several ways. �ese

include increasing entropy in the hash inputs, tuning the hash

algorithm to better distribute flows, or using adaptive

techniques like flowlet-based load balancing or congestion-

aware rehashing. However, one e�ective method to eliminate

hash polarization is through topological design — specifically,

by altering the cabling pattern between leaf and spine switches.



Even if ECMP hashing is deterministic, it is possible to

physically design the topology so that not all leaf switches are

connected to the same subset of spines. In a traditional Clos

network, every leaf connects to every spine. If each leaf applies

the same hash function and flow headers are similar,

tra�c can converge on the same spine — causing the exact

polarization problem described earlier.

To address this, one can build a partially connected fabric

where each leaf connects to a distinct subset of spines, and each

spine serves a subset of leafs. �is breaks the symmetry required

for hash polarization to occur. Even if all leaf switches produce

the same hash result, the next-hop cannot be the same for every

leaf — because that spine may not be reachable by all of them.

�is intentional topological asymmetry ensures that tra�c is

distributed across multiple spine switches regardless of hash

outcomes.

Such structured cabling approaches o�en rely on

deterministic design patterns and can scale e�ciently while

reducing the risk of bottlenecks caused by hash polarization.

�e result is improved load distribution without relying solely

on hash tuning or adaptive forwarding mechanisms.
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CHAPTER ��: GPU

CLUSTER

COMMUNICATION

MODEL

�e focus of this chapter is to describe what is needed to start a

training job and give an overview what happens during the job.

In that sense, this is a kind of closing chapter for our “Deep

Learning in AI DC journey”. Figure ��-� shows a high-level, yet

simplified architecture and the main building blocks of two GPU

hosts, each with four GPUs and their external network

connections. Both hosts are part of the same training cluster. As

a prerequisite in our example, the following so�ware packages

are installed on both hosts:

PyTorch with CUDA and NCCL Support: PyTorch is a deep

learning framework that manages the entire training workflow,

including data loading, model definition, parallel execution, and

gradient synchronization. It defines the structure of the neural



network, such as the number of layers, neurons per layer,

activation functions, and initializes the weights automatically.

CUDA (Compute Unified Device Architecture): CUDA is a

parallel computing platform and API model from NVIDIA.

PyTorch uses CUDA for memory allocation for the data you

move from CPU memory (DRAM) to GPU memory (VRAM),

including batch tensors, model weights, and intermediate

variables during the forward/backward passes. In the forward

pass, CUDA does matrix multiplication, computes neuron

output values y using the activation functions (e.g., ReLU, Tanh,

Sigmoid) and computes the model error. CUDA also handles the

backward pass, where it calculates gradients needed for weight

updates and updates local weights.

NCCL (NVIDIA Collective Communication Library): NCCL is a

multiGPU, topology-aware collective algorithm designed for

high-performance data exchange between GPUs, especially in

multi-GPU and multi-node systems. It is used during the

gradient communication phase of training, where computed

gradients are exchanged between GPUs. For example, a�er

CUDA computes gradients on each GPU, NCCL transfers those

gradients to other GPUs using collective communication

operations. At the time of writing, NCCL supports the following

operations: AllReduce, Broadcast, Reduce, AllGather, and

ReduceScatter.

PyTorch, CUDA, and NCCL processes and dependencies are

explained detail in upcoming section.



Figure ��-�: GPU Cluster overall Communication Model.



DISTRIBUTING NCCL UNIQUE ID FOR GPUS IN A

TRAINING CLUSTER

Before GPUs across multiple nodes can communicate e�ciently

during distributed training, they must first agree on a shared

context, a communicator, that defines who is participating and

how data will be exchanged. To enable this, the NVIDIA

Collective Communications Library (NCCL) requires a special

identifier known as the NCCL Unique ID. �is ID is generated

once by a designated master process and then shared with all

other processes in the training job. It acts as a session identifier,

ensuring that every participating GPU process joins the same

communication group. Without it, there would be no common

reference point for building the communication topologies

(such as rings or trees) used in operations like AllReduce or

Broadcast. In essence, the NCCL Unique ID enables coordinated

initialization and makes collective communication possible in a

distributed GPU environment. �e NCCL Unique ID is

distributed over TCP connection. �e following two section

describes the process.

Opening TCP Socket to Master Node

When the training job is launched using the torchrun command

shown in Figure ��-�, PyTorch’s distributed framework starts



one process per GPU on each node. �ese processes are later

identified by their global rank ID. Typically, the process with

rank ID � is assigned the master role, which means it creates and

distributes the NCCL Unique ID to all other processes (i.e., ranks

running on other GPUs).

�e global rank IDs are calculated by multiplying the --

node_rank=n variable with the --nproc_per_node=� value

(processes per node) and then adding the local GPU rank. �is

results in the following global rank IDs:

Host A: GPU � - Rank ID: � * � + � = �

Host A: GPU � - Rank ID: � * � + � = �

Host A: GPU � - Rank ID: � * � + � = �

Host A: GPU � - Rank ID: � * � + � = �

Host B: GPU � - Rank ID: � * � + � = �

Host B: GPU � - Rank ID: � * � + � = �

Host B: GPU � - Rank ID: � * � + � = �

Host B: GPU � - Rank ID: � * � + � = �

Since GPU � on Host A (node rank �) has the global rank ID �,

it becomes the master rank. PyTorch opens a TCP listener on

this GPU at ���.���.��.���:�����, using the values of --

master_addr=���.���.��.��� and --master_port=�����. �e script

parameter --nnodes=� specifies that there are two nodes in the

cluster, and



--nproc_per_node=� indicates that four processes (one

per GPU) are running on each node. Armed with this

information, the master rank expects � connection

requests (from ranks � through �).

All other ranks start a three-way handshake process for

opening TCP socket with the master process. �e ranks �-� on

the host B use --master_addr = ���.���.��.��� as a destination IP

address, while local ranks �-� use the loopback IP address

���.�.�.�. All ranks use the --master_port=����� as destination

TCP port.

�is connection phase enables a rendezvous process, during

which the master distributes the NCCL Unique ID so that GPUs

can form a communication topology for collective operations.

�ere is a loose but useful analogy between the NCCL

rendezvous process and the Rendezvous Point (RP) in Layer �

multicast networking. In both cases, the rendezvous acts as a

coordination mechanism. �e NCCL rendezvous process

distributes a unique NCCL identifier from a master process to all

GPU processes participating in distributed training. Similarly, a

multicast RP serves as a shared point which distributes the data

frames from the sender to multiple receivers.



Figure ��-�: Opening TCP Socket with the Master Rank.

Distributing the NCCL Unique ID Over Established TCP

Sockets

Once all ranks have established TCP connections with the

master process (rank ID �), the next step is to distribute the

NCCL Unique ID. �e master process generates this identifier

and sends it to all other ranks (� through �) using the already

established TCP connections.

�ese connections typically run over the frontend or

management network, depending on the cluster configuration.

Figure ��-� illustrates the state of the connections from the

perspective of the master process.

�e NCCL Unique ID serves as a namespace identifier for the

job, ensuring that only processes belonging to the same training



job can participate in the same communication group. �is is

particularly important in environments where multiple

distributed jobs may be running concurrently on the same set of

nodes. �e unique ID isolates jobs from each other and prevents

cross-talk between unrelated processes. All ranks then use this

unique ID to initialize their local NCCL communicators,

ensuring they join the same communication group. �is

distribution phase is critical: the NCCL Unique ID acts as a

bootstrap mechanism, allowing all GPU processes to join the

same communication group and participate in collective

operations like all-reduce and broadcast.



Figure ��-�: Redistribution NCCL unique Id over TCP Socket.

NCCL Broadcast Collective and Model Parameter

Synchronization

At this point, each process already has a local copy of the model,

and all GPUs are ready to begin synchronized training. �e first

step is to ensure that every GPU starts with identical model

parameters. NCCL handles this automatically, using the chosen

communication topology.

A�er the master process (rank �, running on GPU � of Host A)

shares the NCCL Unique ID with all other processes over TCP

sockets, the NCCL library builds a tree topology. �is topology is

used for sending model parameters to all other GPUs using the

Broadcast collective. Figure ��-� illustrates how the master

process, running on GPU � of Host A, distributes its model

parameters to all other processes. GPUs with global rank IDs �-�

are on the same host as the master process, so NCCL uses direct

memory copy over high-speed NVLink. �ese transfers happen

without involving the CPU or operating system, and no Queue



Pairs are needed, making intra-node communication extremely

fast and e�cient.

If GPUs are located on di�erent hosts, NCCL sets up Queue

Pairs (QPs) to create fast, direct data paths between the master

process and remote processes. �ese connections use the

backend network, which in our example is a routed Layer � Clos

Fabric (the network layout is excluded for simplicity).

Figure ��-�: Model Parameters Distribution by Master Rank �.

Gradient Synchronization Using AllReduce Collective

A�er synchronizing model parameters, the first iteration of the

forward pass begins simultaneously on all GPUs in the cluster.

During the forward pass, GPU-specific mini-batches are

processed through all layers of the model by performing matrix



multiplications followed by activation function operations at

each layer. A�er computing the model output y, each GPU starts

the backward pass. Let’s assume the last layer has ����

parameters and each GPU computes gradients for all ����

parameters. �ese gradients are stored in a reserved memory

region called a bucket.

Next, each GPU divides its bucket into four chunks, each

containing ��� gradients (since ���� parameters / � GPUs = ���

gradients per chunk). At this point, every GPU has four chunks

labeled A–D, each with ��� gradients. When using the AllReduce

collective in a unidirectional ring topology, the operation is

implemented as ReduceScatter followed by AllGather.

In our example, shown in figure ��-�, we have two nodes (Host

A and Host B), each with four GPUs. Every GPU has computed all

���� gradients and organized them into four local chunks (A–D)

in VRAM. In this example, GPU � (with global rank �, we’ll use

global ranks from now on) is responsible for averaging chunk A,

rank � (Blue GPU �) for chunk B, rank � (Green GPU �) for chunk

C, and Rank � (Yellow GPU �) for chunk D. Intra-node GPU

connections use high-speed NVLink, while inter-node

connections use RoCEv�.



Figure ��-�: AllReduce in Ring Topology with ReduceScatter and

AllReduce Operations.

ReduceScatter: First Iteration

In Figure ��-�, the ring topology from Figure ��-� is still in use,

but the GPUs are laid out in a linear sequence for easier

visualization of the AllReduce data flow.

During the ReduceScatter phase of the AllReduce operation,

each rank sends the chunk it is responsible for to the next rank

in the ring:

•    Rank � sends chunk A� to Rank �

•    Rank � sends chunk B� to Rank �

•    Rank � sends chunk C� to Rank �



•    Rank � sends chunk D� to Rank �

Each of these chunks contains gradients for a specific portion

of the parameter space, and each rank is responsible for

reducing (i.e., summing) that portion across all GPUs as data

circulates around the ring.



Figure ��-�: ReduceScatter: �e First Iteration.

Figure ��-� shows the status of gradient synchronization a�er

the first send iteration in the ReduceScatter phase. At this point,

each GPU has sent its assigned chunk to the next GPU in the ring

topology and has also received one chunk from its neighbor:

•    Rank � has received chunk D� from rank �

•    Rank � has received chunk A� from rank �

•    Rank � has received chunk B� from rank �

•    Rank � has received chunk C� from rank �

A�er this first send (iteration � of the ReduceScatter phase),

each GPU still holds three original chunks in local memory, plus

one partially reduced chunk. Each GPU adds the received chunk

to its local version of the same chunk. For example, rank � adds

chunk D� to D� (chunk D = D� + D�).



�is is only the first partial reduction. To complete the full

reduction for its assigned chunk, each GPU must receive and

sum the corresponding chunks from the remaining GPUs over

the next three iterations. By the end of the ReduceScatter phase

(a�er three iterations in a �-GPU ring), each GPU holds exactly

one fully reduced chunk, though not necessarily the one it

originally owned.

Figure ��-�: ReduceScatter: Chunks A�er the First Iteration.

ReduceScatter: Second Iteration

�e figure ��-� shows the second iteration of the

ReduceScatter phase:

•    Rank � sends the partially averaged chunk D (Sum of D�

+ D�) to Rank �.



•    Rank � sends the partially averaged chunk A (Sum of A�

+ A�) to Rank �.

•    Rank � sends the partially averaged chunk B (Sum of B�

+ B�) to Rank �.

•    Rank � sends the partially averaged chunk C (Sum of C�

+ C�) to Rank �.

Figure ��-�: ReduceScatter: �e Second Iteration.



A�er the second ReduceScatter iteration, each rank now

holds:

•    One chunk that has been partially reduced twice (local

chunk + two remote chunks)

•    Two original chunks that have not yet been involved in

any communication

•    One chunk that was sent out during this iteration

Here’s the specific status per rank:

Rank �:

•    Holds partially reduced chunk C = C� + C� + C� (just

received from Rank � and added to local C�)

•    Still has original chunks A� and B�

•    Sent out chunk D = D� + D�



Rank �:

•    Holds partially reduced chunk D = D� + D� + D�

•    Still has original chunks B� and C�

•    Sent out chunk A = A� + A�

Rank �:

•    Holds partially reduced chunk A = A� + A� + A�

•    Still has original chunks C� and D�

•    Sent out chunk B = B� + B�

Rank �:

•    Holds partially reduced chunk B = B� + B� + B�

•    Still has original chunks A� and D�

•    Sent out chunk C = C� + C�



Figure ��-�: ReduceScatter: Chunks A�er the Second Iteration.

ReduceScatter: �ird Iteration

�e figure ��-�� shows the third iteration of the ReduceScatter

phase:



•    Rank � sends the partially averaged chunk C (Sum of C�

+ C�+ C�) to Rank �.

•    Rank � sends the partially averaged chunk D (Sum of D�

+ D� + D�) to Rank �.

•    Rank � sends the partially averaged chunk A (Sum of A�

+ A� + A�) to Rank �.

•    Rank � sends the partially averaged chunk B (Sum of B�

+ B� + B�) to Rank �.



Figure ��-��: ReduceScatter: the �ird Iteration.

A�er the third ReduceScatter iteration, the ReduceScatter

phase is complete. Each rank now holds one fully reduced

chunk, which includes contributions from all four GPUs.

However, these fully reduced chunks are not located on their

original owner ranks. Each rank receives one final chunk and

completes its reduction by summing it with its local copy. At this

point:

•    Rank � holds fully reduced chunk B = B� + B� + B� + B�

•    Rank � holds fully reduced chunk C = C� + C� + C� + C�

•    Rank � holds fully reduced chunk D = D� + D� + D� + D�



•    Rank � holds fully reduced chunk A = A� + A� + A� + A�

Figure ��-��: ReduceScatter: Chunks A�er the �ird Iteration.

�e ReduceScatter operation is the first step in the Ring

AllReduce process and is responsible for aggregating gradient

data across all GPUs in a distributed training setup. Its goal is to

compute the sum (or average) of each gradient. At the end of the

ReduceScatter phase:

•    Each GPU holds one fully reduced chunk, which

includes contributions from all four GPUs.

•    �e reduced chunk is not necessarily local to the GPU

that now holds it, it’s owned by a di�erent rank.



AllGather: �e first Iteration

Now that the ReduceScatter phase has completed, the

AllGather phase begins. Its job is to distribute the fully reduced

chunks back to all GPUs, so that each one ends up with a

complete, synchronized copy of all gradients, ready to be used to

update the model.

In the first iteration of AllGather:

•    Each GPU sends the fully reduced chunk it currently

holds to the next GPU in the ring.

•    At the same time, it receives a new reduced chunk from

the previous GPU.

Here’s what happens on each rank during this iteration:

•    Rank � sends reduced chunk B to Rank � and receives

chunk A from Rank �.

•    Rank � sends reduced chunk C to Rank � and receives

chunk B from Rank �.

•    Rank � sends reduced chunk D to Rank � and receives

chunk C from Rank �.

•    Rank � sends reduced chunk A to Rank � and receives

chunk D from Rank �.



Figure ��-��: AllGather: the First Iteration.

Each GPU now holds two reduced chunks: the one it originally

reduced

during ReduceScatter, and one received from its neighbor.

�is process

continues for three iterations, a�er which all GPUs will have a

complete,

fully averaged set of gradients.



Figure ��-��: AllGather: Chunks A�er the First Iteration.

AllGather: �e Second Iteration

In the second iteration, each GPU again sends the most

recently received chunk to the next GPU in the ring. �is

continues the process of distributing fully reduced gradient

chunks to all peers.

Here’s what happens:

•    Rank � sends chunk A (received from Rank � in iteration

�) to Rank �



•    Rank � sends chunk B (received from Rank �) to Rank �

•    Rank � sends chunk C (received from Rank �) to Rank �

•    Rank � sends chunk D (received from Rank �) to Rank �

Figure ��-��: AllGather: the Second Iteration.

Each GPU now holds three fully reduced chunks:

•    Rank � has: A (original), B, and D

•    Rank � has: B (original), C, and A

•    Rank � has: C (original), D, and B

•    Rank � has: D (original), A, and C

Only one chunk is still missing per GPU, which will be received

in the third and final AllGather iteration, completing the

synchronization.





Figure ��-��: AllGather: Chunks A�er the Second Iteration.

AllGather: �ird Iteration

In the final AllGather iteration, each GPU sends the chunk it

received during the second iteration to the next GPU in the ring.

A�er this operation, all GPUs have a complete set of

synchronized gradient chunks.

Here’s what happens:

•    Rank � sends chunk D to Rank �

•    Rank � sends chunk A to Rank �

•    Rank � sends chunk B to Rank �

•    Rank � sends chunk C to Rank �



Figure ��-��: AllGather: the �ird Iteration.

At this point, each GPU has received all four reduced chunks

(A, B, C, and D), and all GPUs now have a complete set of ����

gradients, each fully reduced (summed across all GPUs).

�e AllReduce process computes the sum of each gradient

across all GPUs, but in data-parallel training, we usually want

the average gradient. So, a�er receiving all four chunks (each

containing ��� gradients), every GPU performs element-wise

division by the number of GPUs (which is � in your setup). �is

means:

•    Each of the ���� gradients is divided by �.

•    �e result is the average gradient, which represents the

combined learning signal from all GPUs' local mini-batches.



�ese averaged gradients are then used to update the model

weights locally, and since all GPUs now have the same gradient

values, each model replica remains perfectly synchronized.



Figure ��-��: AllGather: All Chunks Synchronized and Averaged.

Finalizing the AllReduce Operation

At the end of the AllGather phase, each GPU holds a complete,

fully reduced set of all gradients, in our example, ���� values

that represent the sum of corresponding gradients from all

GPUs. �is means the synchronization is now complete: all GPUs

have identical gradient vectors, and model consistency across

the cluster is guaranteed. However, the goal of distributed

training is typically to compute the average gradient, not the

sum. To achieve this, each GPU simply divides each of the ����

gradient values by the number of participating GPUs, in our

case, four. �is is a local operation, performed independently on

each GPU, without further communication.

Because all GPUs perform this averaging on the same

synchronized data, the result remains consistent across the

cluster. No additional synchronization is needed a�er this step.



�e model is now ready for a consistent weight update across all

GPUs, and the next training iteration can begin.
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BACK COVER TEXT

Deep Learning for Network Engineers bridges the gap between

AI theory and modern data center network infrastructure. �is

book o�ers a technical foundation for network professionals

who want to understand how Deep Neural Networks (DNNs)

operate—and how GPU clusters communicate at scale.

Part I (Chapters �–�) explains the mathematical and

architectural principles of deep learning. It begins with the

building blocks of artificial neurons and activation functions,

and then introduces Feedforward Neural Networks (FNNs) for

basic pattern recognition, Convolutional Neural Networks

(CNNs) for more advanced image recognition, Recurrent Neural

Networks (RNNs) for sequential and time-series prediction, and

Transformers for large-scale language modeling using self-

attention. �e final chapters present parallel training strategies

used when models or datasets no longer fit into a single GPU. In

data parallelism, the training dataset is divided across GPUs,

each processing di�erent mini-batches using identical model

replicas. Pipeline parallelism segments the model into



sequential stages distributed across GPUs. Tensor (or model)

parallelism further divides large model layers across GPUs when

a single layer no longer fits into memory.�ese approaches

enable training jobs to scale e�ciently across large GPU clusters.

Part II (Chapters �–��) focuses on the networking technologies

and fabric designs that support distributed AI workloads in

modern data centers. It explains how RoCEv� enables direct

GPU-to-GPU memory transfers over Ethernet, and how

congestion control mechanisms like DCQCN, ECN, and PFC

ensure lossless high-speed transport. You’ll also learn about AI-

specific load balancing techniques, including flow-based,

flowlet-based, and per-packet spraying, which help avoid

bottlenecks and keep GPU throughput high. Later chapters

examine GPU collectives such as AllReduce—used to

synchronize model parameters across all workers— alongside

ReduceScatter and AllGather operations. �e book concludes

with a look at rail-optimized topologies that keep multi-rack

GPU clusters e�cient and resilient.

�is book is not a configuration or deployment guide. Instead,

it equips you with the theory and technical context needed to

begin deeper study or participate in cross-disciplinary

conversations with AI engineers and systems designers.

Architectural diagrams and practical examples clarify complex

processes—without diving into implementation details.

Readers are expected to be familiar with routed Clos fabrics,

BGP EVPN control planes, and VXLAN data planes. �ese



technologies are assumed knowledge and are not covered in the

book.

Whether you're designing next-generation GPU clusters or

simply trying to understand what happens inside them, this

book provides the missing link between AI workloads and

network architecture.
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