Scott Krig

Computer Vision
Metrics

Survey, Taxonomy, and Analysis of Computer
Vision, Visual Neuroscience, and Visual Al

Second Edition

@ Springer

Computer Vision Metrics

Scott Krig

Computer Vision Metrics

Survey, Taxonomy, and Analysis of
Computer Vision, Visual
Neuroscience, and Visual Al

Second Edition

@ Springer

Scott Krig
Krig Research
Folsom, CA, USA

ISBN 978-981-99-3392-1 ISBN 978-981-99-3393-8 (eBook)
https://doi.org/10.1007/978-981-99-3393-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2016, 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher nor
the authors or the editors give a warranty, expressed or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore
189721, Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-99-3393-8

Visual Computing and Visual Al is at an inflexion point where historical
visual computing sciences are being superseded, piece by piece, by newer
Visual Al methods. Seemingly mature visual computing applications are
being improved using Al methods, such as computer graphics algorithms,
image processing, scene analysis, feature representation, object detection, to
name a few. The GPU is being recast to incorporate Visual Al methods,
combining computer vision with computer graphics.

This update to Computer Vision Metrics adds a survey of more recent and
noteworthy visual computing methods and applications, with an updated
taxonomy of architectures and research concepts, including the latest
advances in transformers, attention mechanisms, innovative learning models,
view synthesis using caption classifiers with zero-shot learning, and hybrid
DNNs using a variety of basic features besides convolutional filters. Discus-
sion and analysis are provided to uncover intuition and delve into the essence
of key advancements, with an eye towards the future of third-generation
Visual Al

Vi

Preface

2*.26[3::22333
N :
S ElEEEEEE

|

' IT'S PARADISE
AHUE BUE BURMEI R

Fig. 1 (Top) Deep Learning—It’s Paradise! Image (C) “Wheel of Fortune,” (Middle)
Image (C) Alex Krizhesky, Scott Krig commentary: DNN features resemble unique puzzle
pieces, recursive complex averages of similar features from training data (Bottom) On
building an Al system: Well, it’s remarkably simple... they are connected to a gigantic
complex of computers ... programmed into a tape memory bank..., (C) “Dr. Strangelove”

This is not a how-to book. Rather, this is a comprehensive and coherent
survey of historical and the state-of-the-art methods, with key insights and
intuitions towards future innovations.

Open-source code is the new University and the new academic text-
book. Open-source code resources have now replaced the need for outdated
hands-on classroom learning of specific algorithms for specific applications,
making how-to textbooks obsolete.

The field of computer vision is moving too fast for the academic
coursework to keep up; open-source code is the place to be for algorithm
learning. In fact, most anyone can develop commercial computer vision
products by simple cut and paste and modification of free open-source code
from GitHub or OpenCV (see Midjourney.com, for example). Most academic
research papers provide free source code for the latest research methods, and
this book cites well over 1200 key research papers to dig deeper. The online

Preface

vii

repository GitHub provides a vast library of the latest algorithms from the
latest research papers as open-source code. Also, the OpenCV library also
provides a huge wealth of computer vision and deep learning source code and
good code documentation containing algorithm details and background
including citations of key reference papers for each algorithm—well suited
to classroom use or self-guided learning.

However, this book is well suited for academic coursework or
continuing education for any science discipline that makes use of images
and video data, providing a comprehensive survey and analysis of computer
vision with over 1200 references to the literature enabling deeper research into
any topic, including deep learning and visual neuroscience, suitable for
graduate level coursework to orient students to computer vision thinking of
past, present, and future methods. The chapters are divided in such a way that
various courses can be devised to incorporate a subset of chapters to accom-
modate course requirements. For example, typical course titles include
“Image Sensors and Image Processing,” “Computer Vision and Image
Processing,” “Applied Computer Vision and Imaging Optimizations,” “Fea-
ture Learning, Deep Learning, and Neural Network Architectures,” “Com-
puter Vision Architectures,” “Computer Vision Survey.” Chapters 8 and 12
can be used for Applied Computer Vision course materials. Questions are
available for coursework at the end of each chapter.

This revised edition takes a forward-looking view at Visual Al and
provides an analysis of key trends in research that point the way to third-
generation Visual AI systems, primarily using Associative Multimodal
Learning (AML) using multimodal data discussed in Chap. 12 to provide
classifiers for continuous learning, similar to the human mind, which hold
extreme promise going forward.

Rather than finding a generic or fundamental Artificial General Intelli-
gence (AGI) model, third-generation Al will move in the direction towards
Multiple Intelligences for specific learning domains, rather than a generic
AGI. Multiple Intelligences (MI) theory as pioneered by cognitive psycholo-
gist Dr. Howard Gardner of Harvard will lead the way to learn fundamentally
separate models for multiple modes of human intelligence to address the
different human learning modes such as musical-rthythmic, visual-spatial,
verbal-linguistic, logical-mathematical, bodily—kinesthetic, interpersonal,
intrapersonal, naturalistic, and existential intelligence. See Howard Gardner’s
seminal work Gardner, H. (1983). Frames of mind: The theory of multiple
intelligences. New York: Basic Books.

The classifier becomes the crown jewel! Everyone can have their own
classifier (i.e., a personal learning assistant) to follow them for a lifetime of
continuous learning.

What does the future hold for Computer Vision, Visual Computing, and
Visual Al (~5 years)?

* Over 10 EXAFLOPS + 4 PETABYTES of memory, enabling models with
over 500 TRILLION parameters (i.e., Graphcore Corp. has more than this
today). And of course, NVIDIA will offer 15 Exaflops in 2027.

viii

ImageNet will become less important, as new multimodal data models
come to the forefront; gradient descent training will become less important;
tuning and small-batch training to polish up golden classifiers acting as
personal assistants will occur constantly (hourly, daily) following our
multimodal perceptions and actions; other golden exemplar and metric-
based training will become more common to incorporate multimodal data;
training in small batches will become normal; huge training processes
using billions of training samples will be less important, and handled by
larger corporations with huge compute resources; training will occur more
frequently using smaller training sets in smaller steps to integrate models
into larger libraries of models working together in concert, some private,
some public.

AML classifiers will increase as the next step in third-generation Al. The
classifier becomes the crown jewel for continuous learning and become the
property of the individual owner as it learns their personality, unlike the
large pre-trained foundation data models that are more like the Al
operating system which is updated periodically for everyone.

Ubiquitous Visual Al will be built into portable devices and into the
physical infrastructure of buildings, roadways, communications channels,
utilities, manufacturing, and appliances of the world creating a virtual Al
infrastructure.

Governments Become Major Stakeholders

The world-wide Al race is on, and Visual Al is a key pillar along with Natural
Language Processing (NLP) and various modal Al embedded into automated
systems for commercial, government, and military use. The world will
become highly regulated in terms of Visual Al and all forms of Al; the
world will never be the same going forward, becoming Al autonomous and
Al controlled in many spheres.

Russia on Al

“Artificial intelligence is the future, not only for Russia, but for all humankind.
It comes with colossal opportunities, but also threats that are difficult to predict.
Whoever becomes the leader in this sphere will become the ruler of the world.”
Vladimir Putin, President of Russia, 2017

China Top-Down Al Goals

Notice of the State Council
Issuing the New Generation of Artificial Intelligence Development Plan 1
State Council Document [2017] No. 35
To all people’s governments of provinces, autonomous regions, and municipalities
directly under the central government, all State Council ministries, and all directly
controlled institutions:

Preface

Preface

The “next generation of artificial intelligence development plan” is hereby issued to
you,

please carefully implement.

State Council

July 8, 2017

USA Al Policy: Scattered Across USG Agencies

.. .to foster public trust and confidence in the use of Al, protect our Nation’s values, and
ensure that the use of Al remains consistent with all applicable laws, including those
related to privacy, civil rights, and civil libertiesWatch Trump in 2025.

EU Artificial Intelligence Act

EN ENEUROPEAN COMMISSION Brussels, 21.4.2021
Proposal for a
REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE
(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION
LEGISLATIVE ACTS

Thanks

This work cannot be done without support from people in the computer vision
and Al community who are doing all the work I cannot do, to whom thanks
is due.

Special thanks to Dr. Celine Chan of Springer for support, guidance, and
vision for this book update, and all the little things that make this possible.

Thanks to all those who have provided information and materials, special
thanks to: Dr. Rahul Suthankar for seeing the future for transformers in
computer vision before most people knew, Dr. Juergen Schmidhuber for
suggestions on specific research papers on various curiosity models,
Dr. Alex Nichol for information and materials for point cloud models for
view synthesis, Dr. Romain Futrzynski for transformer illustrations,
Dr. Alexei Mikhailov for information on inverse indexing and hierarchical
learning models, Victor Erukhimov for discussions about product research for
avatar creation and animation, and also thanks to far too many other people I
have forgotten to mention. Thanks to Barnali Ojha for excellent proofreading.

Thanks to my wife who helps me stop working when I need a break and
lets me know when I am exhausted with my work beyond sensibility *but
actually enjoying it.

X Preface

And most of all, thanks to the n¥ who holds all things together and provides
us all with the inspiration to see and learn the wonders of visual perception in
what he has made.

Folsom, CA Scott Krig
March 21, 2025

Contents

1

2D/3D Image Capture and Representation.

Image Sensor Technology
Sensor Materials.

Sensor Photodiode Cells

Sensor Configurations: Mosaic, Foveon, BSI.
Dynamic Range, Noise, and Super Resolution.

Sensor Processing
De-mosaicking.
Dead Pixel Correction.

Color and Lighting Corrections

Geometric Corrections..

Cameras and Computational Imaging
Overview of Computational Imaging
Single-Pixel Computational Cameras.

2D Computational Cameras .

3D Depth Camera Systems . .

Binocular Stereo.
Structured and Coded Light .

Optical Coding: Diffraction Gratings.

Time-of-Flight Sensors
Array Cameras.

Radial Cameras.

Plenoptics: Light Field Cameras

3D Depth Processing Method . . .

Overview of Methods

Problems in Depth Sensing and Processing.
The Geometric Field and Distortions
The Horopter Region, Panum’s Area, and Depth Fusion. . .
Cartesian vs. Polar Coordinates: Spherical Projective

Geometry..............

Depth Granularity

Correspondence

Holes and Occlusion.

NN le) We)Ne) We NNV, BNV, BRU, B CLRNO I \S R

[N T NS TN NG T NS T NG T N I e e e)
W NN = OO0 O JN+kDNDO

24

26
27
27
28
28

Xi

Xii Contents
Multi-view Stereo vt e 29
Sparse Methods: PTAM 29
Dense Methods: DTAM 30
Optical Flow, SLAM, and SFM. 31
3D Representations: Voxels, Depth Maps, Meshes, and Point
Clouds. e 32
SUMMArY 33
Learning ASSIgnNmentsv vttt 33
2 Image Preprocessing, Morphology, Segmentation,

Colorimetry 35
Perspectives on Image Processing. 35
Problems to Solve During Image Preprocessing. 36

Vision Pipelines and Image Preprocessing. 36
COITECtiONS . .+« v vt vttt 37
Enhancements. 38
Preparing Images for Feature Extraction. 38
The Taxonomy of Image Processing Methods 43
Point. 44
Line. 44
ATCA. . o 44
Algorithmic. 44
Data Conversionsuviuuneennnnnennnn. 44
Colorimetry . . . v ov ettt 45
Overview of Color Management Systems 45
Illuminants, White Point, Black Point, and Neutral Axis. .. 46
Device ColorModels. 47
Color Spaces and Color Perception. 47
Gamut Mapping and Rendering Intent. 48
Practical Considerations for Color Enhancements 49
Color Accuracy and Precision. 49
Spatial Filtering 50
Convolutional Filtering and Detection. 50
Kernel Filtering and Shape Selection. 52
PointFiltering 53
Noise and Artifact Filtering 54
Integral Images and Box Filters. 55
Edge Detectors. 56
Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch,
Robinson, and Frei-Chen. 56
Canny Detector. 57
Transform Filtering, Fourier, and Others 58
Fourier Transform Family 58
Fourier Family of Transforms. 60
Other Transforms 61
Morphology and Segmentation. 61
Binary Morphology o .. 61

Gray Scale and Color Morphology 63

Contents xiii
Morphology Optimizations and Refinements. 63
Euclidean Distance Maps. 64
Super-Pixel Segmentation. 64
Depth Segmentation. 65
Color Segmentation., 66

Thresholding 66
Global Thresholding 67
Local Thresholding 70

DNN Segmentation. it it 72
Segmentation: Semantic, Instance, Panoptic. 73
U-Nets for Segmentation, W-Nets. 75

CNN Segmentation Methods 79
CNN Segmentation History 79
FCN Segmentation Method 80
Mask RCNN Method 80
Region Proposals, Rectangular, Segmented Polygon
Regions. 81
Single Shot Object Detection: SDD and YOLO. 82
Two-Shot Object Detection. 85

Segmented Region Descriptors: Color and Texture. 85

[lumination Estimation and Color Corrections for

Segmentation 87

Color Quantizationttt 88

Color Compression and Color Popularity 90

SUMMATY . . o e 95

Learning ASSignments. ov ittt 96

Global and Regional Feature Descriptors. 99

Historical Survey of Features. 99
Key Ideas: Global, Regional, and Local Metrics. 100
Textural Analysis. 102
Statistical Methods 104

Texture Region Metrics. 105
Edge Metrics.o vt 106
Cross-Correlation and Autocorrelation. 108
Fourier Spectrum, Wavelets, and Basis Signatures. 108
Co-occurrence Matrix, Haralick Features. 109
Laws Texture Metricso 118
LBP Local Binary Patterns 119
Dynamic Textures., 120

Statistical Region Metrics 121
Image Moment Features 121
Point Metric Features 121
Global Histogramsttt 123
Local Region Histograms 124
Scatter Diagrams, 3D Histograms 124
Multi-resolution, Multi-scale Histograms 127
Radial Histograms 128

Contour or Edge Histograms 129

Xiv Contents

Basis Space Metrics 129
Fourier Description. 132
Walsh-Hadamard Transform. 133
HAAR Transform. 133
Slant Transform. 134
Zernike Polynomials. L. 134
Steerable Filters 135
Karhunen-Loeve Transform and Hotelling Transform. . . . 135
Wavelet Transform and Gabor Filters. 136
Hough Transform and Radon Transform. 137

Summary 139

Learning Assignments. 139

4 Local Feature Descriptors. 141

Local Features i 142
Detectors, Interest Points, Keypoints, Anchor Points,

Landmarks. 142
Descriptors, Feature Description, Feature Extraction. 142
Sparse Local Pattern Methods 143

Local Feature Attributes 143
Choosing Feature Descriptors and Interest Points 143
Feature Descriptors and Feature Matching 144
Criteria for Goodness 145
Repeatability, Easy vs. Hard toFind 146
Distinctive vs. Indistinctive. 146
Relative and Absolute Position. 146
Matching Cost and Correspondence 146

Distance Functions 147
Early Work on Distance Functions 147
Euclidean or Cartesian Distance Metrics. 148
Grid Distance Metrics 150
Statistical Difference Metrics. 151
Binary or Boolean Distance Metrics. 152

Descriptor Representation. 153
Coordinate Spaces, Complex Spaces. 153
Cartesian Coordinates. 153
Polar and Log Polar Coordinates 154
Radial Coordinates. 154
Spherical Coordinates. 154
Gauge Coordinates.c.ouuuueennnnnnn... 154
Multivariate Spaces, Multimodal Data. 155
Feature Pyramids. 156

Descriptor Density 156
Interest Point and Descriptor Culling. 156
Dense vs. Sparse Feature Description. 157

Descriptor Shape Topologies. 157
Correlation Templates 157

Patches and Shapes. 158

Contents XV

Object Polygon Shapes. 160
Local Binary Descriptor Point-Pair Patterns 161
FREAK Retinal Patterns 162
Brisk Patterns 163
ORB and BRIEF Patterns 163
Descriptor Discrimination. 164
Spectra Discrimination. 165
Region, Shapes, and Pattern Discrimination. 166
Geometric Discrimination Factors. 166
Feature Visualization to Evaluate Discrimination. 167
Accuracy, Trackability 170
Accuracy Optimizations, Subregion Overlap, Gaussian
Weighting, and Pooling 172
Sub-pixel Accuracy 172
Search Strategies and Optimizations. 173
Dense Search. 173
GridSearch. L 173
Multi-scale Pyramid Search. 174
Scale Space and Image Pyramids 174
Feature Pyramids 176
Sparse Predictive Search and Tracking 177
Tracking Region-Limited Search. 177
Segmentation-Limited Search. 177
Depth or Z-Limited Search. 178
Computer Vision, Models, Organization. 178
Feature Space. 179
Object Models.t 179
CONSraintS . . . v vttt e e e 181
Selection of Detectors and Features. 181
Overview of Training 182
Classification of Features and Objects. 183

Classification Frameworks, Supervision, REIN, MOPED. . 185
Feature Learning, Sparse Coding, Convolutional

Networks. o 188
Convolutional Neural Networks, Neural Networks 191
SUMMATY . . oo 192
Learning Assignments. 192
5 Feature Descriptor Attribute Taxonomy 195
Feature Descriptor Families. 196
Prior Work on Computer Vision Taxonomies. 197
Robustness and Accuracy 198
General Robustness Taxonomy 198
Numination. i i i 199
ColorCriteria.o ovv it 199
Incompleteness. 200
Resolution and Accuracy 200

Geometric Distortion. 201

XVi Contents

Efficiency Variables, Costs, and Benefits. 201
Discrimination and Uniqueness. 201
General Vision Metrics Taxonomy 202
Feature Descriptor Family 203
Spectra Dimensions. 204
Spectra Type . . . oot 204
Interest Point. 206
Storage Formats. 207
Data Types.ot 207
Descriptor Memory L 207
Feature Shapes. 208
Feature Pattern. 208
Feature Density i 209
Feature Search Methods 209
Pattern Pair Sampling 210
Pattern Region Size 210
Distance Function. 211
Feature Metric Evaluation. 212
Efficiency Variables, Costs, and Benefits. 212
Image Reconstruction Efficiency Metric. 212
Example Feature Metric Evaluations. 212
Summary 214
Learning ASSIgNMENtS oottt vttt 215
6 Feature Detector and Feature Descriptor Survey. 217
Interest Point Tuning 218
Interest Point Concepts (Keypoints, Detectors) 219
Interest Point Method Survey 221
Laplacian and Laplacian of Gaussian. 222
Moravac Corner Detector. 222
Harris Methods, Harris—Stephens, Shi-Tomasi, and
Hessian Type Detectors. 222
Hessian Matrix Detector and Hessian—Laplace. 223
Difference of Gaussians. 223
Salient Regions. 223
SUSAN, and Trajkovicand Hedly 224
Fast, Faster, and AGHAST 224
Local Curvature Methods 225
Morphological Interest Regions 226
Feature Descriptor Surveyo 227
Local Binary Descriptors. 227
Spectra Descriptors 238
Basis Space Descriptors 261
Polygon Shape Descriptors 263
3D, 4D, Volumetric, and Multimodal Descriptors. 268
Summary 272

Contents xvii

7 Ground Truth Data Topics, Benchmarks, Analysis. 275
What Is Ground Truth Data?. 275
Previous Work on Ground Truth Data: Art vs. Science. 277
General Measures of Quality Performance. 277
Measures of Algorithm Performance. 278
Rosin’s Work on Corners. 279
Key Questions for Constructing Ground Truth Data. 280
Content: Adopt, Modify,orCreate. 280
Survey of Available Ground Truth Data. 280
Fitting Ground Truth Data to Algorithms. 280
Scene Composition and Labeling 282
CompoSition. 283
Labeling. 283
Defining the Goals and Expectations. 284
Mikolajczyk and Schmid Methodology 284
Open Rating Systems i 285
Corner Cases and Limits. 285
Interest Points and Features 285
Robustness Criteria for Ground Truth Data. 286

Mlustrated Robustness Criteria. 286
Using Robustness Criteria for Real Applications. 288
Pairing Metrics with Ground Truth. 289
Pairing and Tuning Interest Points, Features, and Ground
Truth. . .. 289
Examples Using the General Vision Taxonomy. 290
Synthetic Feature Alphabets. 291
Goals for the Synthetic Dataset. 291
Accuracy of Feature Detection via Location Grid 293
Rotational Invariance via Rotated Image Set. 294
Scale Invariance via Thickness and Bounding Box Size. 294
Noise and Blur Invariance 294
Repeatability 294
Real Image Overlays of Synthetic Features. 294
Synthetic Interest Point Alphabet. 294
Synthetic Corner Alphabet. 295
Hybrid Synthetic Overlays on Real Images. 296
Method for Creating the Overlays. 297
Summary 297
Learning Assignments. 298

8 Vision Pipelines and HW/SW Optimizations. 299
Stages, Operations, and Resources. 300
Compute Resource Budgets. 301
Compute Units, ALUs, and Accelerators. 303
Power Use. 304
Memory Use. 304
/O Performance. i 307

The Vision Pipeline Examples. 308

xviii

Contents

Automobile Recognition.
Segmenting the Automobiles.
Matching the Paint Color.
Measuring the Automobile Size and Shape.
Feature Descriptorso
Calibration, Setup, and Ground Truth Data.
Pipeline Stages and Operations.
Operations and Compute Resources.
Criteria for Resource Assignments.

Object Models for Human Body, Generic Objects, Pose Point

Detectorso
Face, Emotion, and Age Recognition.
Calibration and Ground Truth Data.
Interest Point Position Prediction.
Segmenting the Head and Face Using the Bounding Box . .
Face Landmark Identification and Compute Features
Pipeline Stages and Operations.
Operations and Compute Resources.
Criteria for Resource Assignments.

Image Classification.
Segmenting Images and Feature Descriptors.
Pipeline Stages and Operations.
Mapping Operations to Resources
Criteria for Resource Assignments.
Augmented Reality
Calibration and Ground Truth Data.
Feature and Object Description.
Overlays and Tracking
Pipeline Stages and Operations.
Mapping Operations to Resources
Criteria for Resource Assignments.

Acceleration Alternatives.
Memory Optimizations
Minimizing Memory Transfers Between Compute Units . . .
Memory Tiling.
DMA, Data Copy, and Conversions.
Register Files, Memory Caching, and Pinning.

Data Structures, Packing, and Vector vs. Scatter-Gather Data

Organizationo vt e
Coarse-Grain Parallelism.
Compute-Centric vs. Data-Centric.
Threads and Multiple Cores
Fine-Grain Data Parallelism.
SIMD, SIMT, and SPMD Fundamentals.

Shader Kernel Languages and GPGPU

Advanced Instruction Sets and Accelerators.
Vision Algorithm Optimizations and Tuning.
Compiler and Manual Optimizations.

308
309
310
310

312
312
313
314

Contents Xix
Tuning. 340
Feature Descriptor Retrofit, Detectors, Distance
Functions. 341
Boxlets and Convolution Acceleration. 341

Data Type Optimizations, Integer vs. Float. 342
Optimization Resources 342
SUMMATY . . o o 343
Learning ASSignments. v ittt 343

9 Feature Learning Taxonomy and Neuroscience

Background 345
Neuroscience Inspirations for Computer Vision. 346
Feature Generation vs. Feature Learning 348
Terminology of Neuroscience Applied to Computer Vision. ... 348
Classes of Feature Learning 354
Convolutional Feature Weight Learning 354
Local Feature Descriptor Learning 355
Basis Feature Composition and Dictionary Learning 355
Summary Perspective on Feature Learning Methods 356
Machine-Learning Models for Computer Vision............ 356
Expert Systems. 358
Statistical and Mathematical Analysis Methods. 358
Neural Science-Inspired Methods 358
DeepLearning. 359
DNN Hacking and Misclassification. 360
History of Machine Learning (ML) and Feature Learning 361
Historical Survey, 1940s—2010s. 361
1940s and 1950so 362
TO00S . .« oo 363
TOT0S . o e 363
1980S . . v 364
1990s . .« oo 364
2000820108 . . . oo 365
20208 . e 366
Artificial Neural Network (ANN) Taxonomy Overview 367
Feature Learning Overview, 368
Learned Feature Descriptor Types. 368
Hierarchical Feature Learning 369
How Many Features to Learn?. 369
The Power of DNNs. 370
Encoding Efficiency o L. 370
Handcrafted Features vs. Handcrafted Deep Learning 370
Invariance and Robustness Attributes for Feature Learning 372
What Are the Best Features and Learning Architectures?. 372
Merger of Big Data, Analytics, and Computer Vision. 374
Key Technology Enablers. 376
Neuroscience Conceptso vvviiii i 376
Biology and Blueprint. 378

XX Contents
The Elusive Unified Learning Theory 379
Human Visual System Architecture 380
Taxonomy of Feature Learning Architectures. 385
NOtE . . 387
Architecture Topologies. 387
ANNSs (Artificial Neural Networks) 388
FNN (Feed-Forward Neural Network) 388
RNN (Recurrent Neural Network) 389
BEN (Basis Function Network) 389
Ensembles, Hybrids. 389
Architecture Components and Layers. 389
Layer Totals. 391
Layer Connection Topology 392
Memory Model. 392
Training Protocols 393
Input Sampling Methods 393
Dropout, Reconfiguration, Regularization. 394
Preprocessing, Numeric Conditioning 396
Feature Set Dimensions. 397
Feature Initialization. 397
Features, Filters 397
Activation, Transfer Functions. 398
Post-processing, Numeric Conditioning 399
Pooling, Subsampling, Downsampling, Upsampling 400
Classifiers. 402
SuMMmMary 403

10 Feature Learning and Deep Learning Architecture Survey. . 405

Architecture Survey 406
FNN Architecture Survey 407
P—Perceptron. 407
Perceptron Architecture. oL 409
Perceptron Weight Tuning 411
Perceptron Learning, Training, Classification. 412
Multilayer Perceptron (MLP), Cognitron, Neocognitron. 413
COGNItION . . . o vttt e e e 413
NEOCOZNILION . . . oo 415
Concepts for CNNs, Convnets, Deep MLPs. 417
Forward and Backward Pass Through the CNN. 419
Fully Connected (FC) Layers, Flatten, Reduction, Reshape 421
Layersand Depth. 425
Modeling an Artificial Neuron. 427
Convolutional Features, Filters. 428
Transfer Function (Activation Function) 430
Feature Weights and Initialization. 431
Local Receptive Field. 431

Receptive Field Compression via Input Striding or Output
Pooling 431

Contents xxi
Trainable Bias. 432
Memory for Current Neuron State. 432
Backpropagation, Feature Learning, Feature Tuning. 432
Alternatives to Backpropagation. 438
Features per Layer. 439
Compute Cost of Convolutional Features and Layers. 439
Filter Shape and Size. 440
Stacked Convolutions 441
Separable and Fused Convolutions. 442
Convolution vs. Correlation. 443
Pooling, Subsampling 444
Parameters and Hyperparameters. 445
Architecture Parameters. 446
Learning Hyperparameters. 448
LeNet. . .o 449
AlexNet, ZENet 451
VGGNet and Variants MSRA-22, Baidu Deep Image, Deep
Residual Learning 453
Half-CNN e 456
NIN, Maxout.o e 458
GoogLeNet, InceptionNet. 464
MSRA-22, SPP-Net, R-CNN, MSSNN, Fast-R-CNN. 466
Baidu, Deep Image, MINWA 470
SYMNETS—Deep Symmetry Networks. 471
RNN Architecture Survey 475
Concepts for Recurrent Neural Networks 477
RNN Contrasted with CNN 477
Unfoldingan RNNintoan FNN. 479
RNN Weight Sharing and Probabilistic Matching 481
RNN Cell and Network Taxonomy 481
RNN Sequencing and State 483
RNN Memory Models. 485
LSTM,GRU e 487
NTM, RNN-NTM, RL-NTM 489
Multidimensional RNNs, MDRNN 491
2D RNNs and 2D LSTMs for Computer Vision. 492
MDRNN, MDLSTM, DAG-RNN, BDRNN, RRNN. 493
C-RNN,QDRNN. 495
RCL-RCNN . . . 497
dasNeT 498
NAP—Neural Abstraction Pyramid 500
BFN Architecture Survey i 503
Concepts for Machine Learning and Basis Feature Networks. . . 504
Feature Models, Classification Models, Decision Models. 505
Function Basis vs. CNN Basis vs. Other Models. 506

Visual Vocabularies, Bag of Words (BoW) Model, Alternative
Encodings. 507

XXii Contents
Vocabulary Encodings. 509
Sparse Coding and Codebook Learning Overview, K-MEANS,

K-SVD . . 511
Kernel Functions, Kernel Machines, SVM 517
Other Statistical Classification Methods, Decision Trees, Forests,
BOOStINg . . . 521
PNN—Polynomial Neural Network, GMDH 521
HKD—Kernel Descriptor Learning 523
HMP—Sparse Feature Learning 525
HMP Pyramid Sparse Code (PSC) Feature Descriptor. 526
HMP Dictionary Learning with MI-KSVD 527
HMP Multivariate I-RGB-D-N Features 530
M-HMP Multiscale Features 531
HMAX and Neurological Models. 531
The Standard Model of the Visual Pathway 531
Viewpoint Invariance Models. 533
HMAX Feature Hierarchy 534
HMAX Layers.oov vttt e e e 535
SLLayer. 535
ClLayer...... ... 538
S2Layer. 539
C2Layer. . oo 540
VTU Classification., 541
Training Protocols 542
HMO—Hierarchical Model Optimization. 542
Ensemble Methods 543
Deep Neural Network Futures 545
Increasing Depth to the Max—Deep Residual Learning (DRL). . 545
Approximating Complex Models Using a Simpler MLP (Model
Compression) 547
Classifier Decomposition and Recombination. 548
SUMMATIY . .« o e 548
Learning ASSIgNMENtS oot vttt 549

11 Attention, Transformers, Hybrids, and DDNs. 551
Deep Descriptor Networks (DDNs) Overview 552
DDN and CNN Contrasted 552
Learning Model Innovations 554
Classifier Innovations: Hand-Crafted vs. Learned 556
Commodity Models—Foundation Models. 558
Attention Mechanisms 559

Self-Attention 561
Neuroscience of Visual Attention. 562
On the Weakness of FFN Models for Attentional Learning. . . 563
Transient Attention—Sustained Attention. 563
Saccading and Time-Aware Neurons. 563
Local Features and Joint Attention. 563

Attention VariationsSt 564

Contents Xxiii
Attention Element Overview: Encodings and Embeddings. 565
Input Tokenization for Text and Images. 567
Embeddings for Textand Images 568
Rethinking Positional Encodings for Text Tokens and Pixel
Patches. 573
Mlustrated Encodings and Embedding Space. 574
Attention Mechanism Illustrated: Tokens, Embeddings, QKV
Self-Attention. 577
Transformer Architectures for Vision. 584

ViT the First Vision Transformer. 586
ViT Pixel Patch Embeddings. 588
SWiN Transformer. 589
DDN Hybrid Backbones: Multi-feature Networks. 591
PPN—Polynomial Neural Network GMDH 592
Non-local Means Network (NLM-Net). 592
Stand-Alone Self-Attention Network (SASA). 593
Attention + CNN: ViT Lite Variants CvT + CCT, BotNet. . . 594
ATT-CNN: Incorporating Attentional Guidance to CNN
Classifiers.o e 594
FNet Transformer with Fourier Features. 595
Binary Networks: XNOR-Net, Binary Weight Networks
BWN) . . 596
BEIT Visual Vocabulary Features, VICE. 597
Volume Learning for Visual Genomes and Visual DNA 598
Indextron Inverse Index Feature Learning. 601
Summary e 606
Learning ASSignments vv vttt 607
12 Applied and Future Visual Computing Topics. 609
Image Sensor Enhancements. 610
Application Specific Image Sensor Features for HDR and
MOTe. . oottt 610
GPU Incorporation of Neural Networks and Computer
Visionintothe GPU. 610
Imaging Sensor Functions: HDR and Super Resolution
(SR) . oo 612
HDR on a Single CMOS Imager Chip. 612
Super Resolution (SR) Methods: On-Chip and in SOC
Software 613
Super Resolution for Multi-image Mixed Reality MR). 614
Blind Super-Resolution. 615
Super Resolution from a Single Image: SR-GAN DNN. 616
Super Resolution + HDR: HDR-DSP Multi-resolution Super
Resolution. 617
Deep Burst Super-Resolution: Multi-image vs. Single Image
Methods. 618
Panoramics and Image Stitching 618

3D 360-Degree Panoramic Image Stitching. 619

XXiv

Adaptive (APAP) 2D Image Stitching
Stereo Pair Estimation from 2D Images—Deep3D.

View Synthesis.
Introduction.
Background Concepts cooi i
Light Fields and Radiance Fields
Volume Rendering for 3D Light Fields.
Generative Adversarial Networks (GAN’s) and Curiosity
Models.
Diffusion Models.
Text-to-Image Synthesis Models.
Captioned Multiclass Classification, Classifier-Free Guidance,
N-Shot Learning
The AI Third Wave: Continuous Learning and Multi-modal
ModelS.
Associative Multi-modal (Multiclass) Learning (AML)—
Third-Generation Classifiers.
View Synthesis Applications.
CLIP Text-to-Image Synthesis.
GLIDE Model for Image Modeling and Editing
DALLE-2 Text-to-Image View Synthesis, Stable Diffusion,

Neural Radiance Field Code Books, ObSuRf 3D Scene
Segmentationot
POINT-E Text-to-Image View Synthesis.
3D View Synthesis from Two Images + Pose: 3DIM
Avatars and Animation—SMPL and AvatarSDK.
Scientific Imaging Systems o
Polarimetric Imaging and Polarized Light Cameras.
Multi-spectral Imaging
Tomography for Confocal Microscopy and MRI.
Confocal Microscopy and Florescence Imaging
SumMmary
Learning AsSignments. e it

Appendix A: Synthetic Feature Analysis.
Background Goals and Expectations
Test Methodology and Results.
Detector Parameters Are Not Tuned for the Synthetic
Alphabets.
Expectations for Test Results.
Summary of Synthetic Alphabet Ground Truth Images.

Synthetic Interest Point Alphabet
Synthetic Corner Point Alphabet.
Synthetic Alphabet Overlays
Test 1: Synthetic Interest Point Alphabet Detection.

Contents

Contents

XXV
Annotated Synthetic Interest Point Detector Results. 679
Entire Images Available Online 679
Test 2: Synthetic Corner Point Alphabet Detection. 688
Annotated Synthetic Corner Point Detector Results 689
Entire Images Available Online 689
Test 3: Synthetic Alphabets Overlaid on Real Images. 698
Annotated Detector Results on Overlay Images. 698
Test 4: Rotational Invariance for Each Alphabet. 698
Methodology for Determining Rotational Invariance 699
Analysis of Results and Non-repeatability Anomalies 702
CaveatSo v 702
Non-repeatability in Tests land 2. 702
Other Non-repeatability in Test3. 703
TestSummaryt 703
Future Worko 703
Appendix B: Survey of Ground Truth Datasets. 705
Appendix C: Imaging and Computer Vision Resources. 711
Commercial Products 711
Open Source i 712
Organizations, Institutions, and Standards 714
Journals and Their Abbreviations. 715
Conferences and Their Abbreviations. 715
Online Resources it 716
Artificial Intelligence and Computer Vision-Key Research. 716
Neuroscience Journals and Research. 716
Selected Deep Learning Resources. 717
Appendix D: Extended SDM Metrics. 719
Appendix E: The Visual Genome Model (VGM). 731
Neuroscience Inspiration for VGM. 735
Feature and Conceptual Memory Locality 735
Attentional Neural Memory Research. 736
HMAX Model and Visual Cortex Models of the Visual
Pathway 736
Virtually Unlimited Feature Memory 736
Genetic Preexisting Memory 737
Neurogenesis, Neuron Size, and Connectivity 737
Bias and Motivation for Learning New Memory
Impressions. 738
Depth Processing 738
Dual Retinal Processing Pathways: Magno and Parvo. 738
Retinal Processing Model 739
Visual Genomes Model Concepts. 740
Magno and Parvo Features 740
Parvo Retinal Processing 743

Magno Retinal Processing 743

XXVi

Magno Primal Feature Segmentation.
VGM Neuron Model.
VGM Feature Memory Structures.
Visual Genome Sequences, Tiles, Strands, Bundles, Primal
Features.
VGM Proxy Agent.,
SUMMAry
Tile Genome Renderings
Image Set 1: Indoor Scene of Little Girls (Bandits), 24-Bit
RGB 2448 x 3264 Image.o vt
Image Set 2: Outdoor Scene of Giant Sequoia Trees 24-Bit
RGB 2112 x2816Image.,
Image Set 3: Comparative Volume Renderings of Entire
Genome A Feature Space for Sequoias Scene, Representing
Each n-Bit Feature Component for the Volume Coordinates
Xy, and Z. .o
Image Set 4: Comparative Volume Renderings of Entire
Genome A Feature Space for Bandits Scene, Representing
Each n-Bit Feature Component for the Volume Coordinates
X, ¥, and Z. . e e

References.

Contents

Check for
updates

2D/3D Image Capture
and Representation

The changing of bodies into light, and light into bodies, is very conformable to the course of
Nature, which seems delighted with transmutations.
—Isaac Newton

Computer vision starts with images. This chapter surveys a range of topics dealing with capturing,
processing, and representing images, including computational imaging, 2D imaging, and 3D depth
imaging methods, sensor processing, depth-field processing for stereo and monocular multi-view
stereo, and surface reconstruction. A high-level overview of selected topics is provided, with
references for the interested reader to dig deeper. Readers with a strong background in the area of
2D and 3D imaging may benefit from a light reading of this chapter.

Image Sensor Technology

This section provides a basic overview of image sensor technology as a basis for understanding how
images are formed and for developing effective strategies for image sensor processing to optimize the
image quality for computer vision.

Typical image sensors are created from either CCD cells (charge-coupled device) or standard CMOS
cells (complementary metal-oxide semiconductor). The CCD and CMOS sensors share similar
characteristics and both are widely used in commercial cameras. The majority of sensors today use
CMOS cells, though, mostly due to manufacturing considerations. Sensors and optics are often integrated
to create wafer-scale cameras for applications like biology or microscopy, as shown in Fig. 1.1.

I ~~ -~ -~~~ 4+ Micro-lenses

I «——— RGB Color Filters

<+—— CMOS imager
______________________|____|

Fig. 1.1 Common integrated image sensor arrangement with optics and color filters

Image sensors are designed to reach specific design goals with different applications in mind,
providing varying levels of sensitivity and quality. Consult the manufacturer’s information to get
familiar with each sensor. For example, the size and material composition of each photodiode sensor
cell element is optimized for a given semiconductor manufacturing process so as to achieve the best
trade-off between silicon die area and dynamic response for light intensity and color detection.

For computer vision, the effects of sampling theory are relevant—for example, the Nyquist
frequency applied to pixel coverage of the target scene. The sensor resolution and optics together

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 1
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_1&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_1#DOI

2 1 2D/3D Image Capture and Representation

must provide adequate resolution for each pixel to image the features of interest, so it follows that a
feature of interest should be imaged or sampled at least two times greater than the minimum size of the
smallest pixels of importance to the feature. Of course, 2 x oversampling is just a minimum target for
accuracy; in practice, single pixel wide features are not easily resolved.

For best results, the camera system should be calibrated for a given application to determine the
sensor noise and dynamic range for pixel bit depth under different lighting and distance situations.
Appropriate sensor processing methods should be developed to deal with the noise and nonlinear
response of the sensor for any color channel, to detect and correct dead pixels, and to handle modeling
of geometric distortion. If you devise a simple calibration method using a test pattern with fine and
coarse gradations of gray scale, color, and different scales of pixel features, appropriate sensor
processing methods can be devised. In Chap. 2, we survey a range of image processing methods
applicable to sensor processing. But let us begin by surveying the sensor materials.

Sensor Materials

Silicon-based image sensors are most common, although other materials such as gallium (Ga) are used
in industrial and military applications to cover longer IR wavelengths than silicon can reach. Image
sensors range in resolution, depending upon the camera used, from a single pixel phototransistor
camera, through 1D line scan arrays for industrial applications, to 2D rectangular arrays for common
cameras, all the way to spherical arrays for high-resolution imaging. (Sensor configurations and
camera configurations are covered later in this chapter.)

Common imaging sensors are made using silicon as CCD, CMOS, BSI, and Foveon methods, as
discussed a bit later in this chapter. Silicon image sensors have a nonlinear spectral response curve; the
near infrared part of the spectrum is sensed well, while blue, violet, and near UV are sensed less well,
as shown in Fig. 1.2. Note that the silicon spectral response must be accounted for when reading the
raw sensor data and quantizing the data into a digital pixel. Sensor manufacturers make design
compensations in this area; however, sensor color response should also be considered when calibrating
your camera system and devising the sensor processing methods for your application.

0.7 - . ,
Photovoltaic = ======s==ss=-

06 [Blue Enhanced —— | i 1 el =S
UV Enhanced s A

=2 D
E o

Responsivity (A/W)
o
@

0.2

0.0

200 300 400 500 600 700 800 900 1000 1100
Wavelength (nm)

Fig. 1.2 Typical spectral response of a few types of silicon photodiodes. Note the highest sensitivity in the near-infrared
range around 900 nm and nonlinear sensitivity across the visible spectrum of 400—700 nm. Removing the IR filter from a
camera increases the near-infrared sensitivity due to the normal silicon response. (Spectral data image © OSI Optoelec-
tronics Inc. and used by permission)

Image Sensor Technology 3

Sensor Photodiode Cells

One key consideration for image sensors is the photodiode size or cell size. A sensor cell using small
photodiodes will not be able to capture as many photons as a large photodiode. If the cell size is near
the wavelength of the visible light to be captured, such as blue light at 400 nm, then additional
problems must be overcome in the sensor design to correct the image color. Sensor manufacturers take
great care to design cells at the optimal size to image all colors equally well (Fig. 1.3). In the extreme,
small sensors may be more sensitive to noise, owing to a lack of accumulated photons and sensor
readout noise. If the photodiode sensor cells are too large, there is no benefit either, and the die size and
cost for silicon go up, providing no advantage. Common commercial sensor devices may have sensor
cell sizes of around 1 square micron and larger; each manufacturer is different, however, and trade-offs
are made to reach specific requirements.

RGB color spectral overlap
1.00
AN
0.60
\\

0.20

Sensitivity

0.00
390 440 490 540 580 640 690 740

Wavelength (nm)

Fig. 1.3 Primary color assignment to wavelengths. Note that the primary color regions overlap, with green being a good
monochrome proxy for all colors

Sensor Configurations: Mosaic, Foveon, BSI

There are various on-chip configurations for multispectral sensor design, including mosaics and
stacked methods, as shown in Fig. 1.4. In a mosaic method, the color filters are arranged in a mosaic
pattern above each cell. The Foveon' sensor stacking method relies on the physics of depth penetration
of the color wavelengths into the semiconductor material, where each color penetrates the silicon to a
different depth, thereby imaging the separate colors. The overall cell size accommodates all colors, and
so separate cells are not needed for each color.

! Foveon is a registered trademark of Foveon Inc.

4 1 2D/3D Image Capture and Representation

N N

Photo-diode Photo-diode Photo-diode

Stacked
Photo-diodes

Fig. 1.4 (Left) The Foveon method of stacking RGB cells to absorb different wavelengths at different depths, with all
RGB colors at each cell location. (Right) A standard mosaic cell placement with RGB filters above each photodiode, with
filters only allowing the specific wavelengths to pass into each photodiode

Back-side-illuminated (BSI) sensor configurations rearrange the sensor wiring on the die to allow
for a larger cell area and more photons to be accumulated in each cell. See the Aptina [340] white paper
for a comparison of front-side and back-side die circuit arrangement.

The arrangement of sensor cells also affects the color response. For example, Fig. 1.5 shows various
arrangements of primary color (R, G, B) sensors as well as white (W) sensors together, where W
sensors have a clear or neutral color filter. The sensor cell arrangements allow for a range of pixel
processing options—for example, combining selected pixels in various configurations of neighboring
cells during sensor processing for a pixel formation that optimizes color response or spatial color
resolution. In fact, some applications just use the raw sensor data and perform custom processing to
increase the resolution or develop alternative color mixes.

Bayer RGBG Bayer RGBW
Kodak RGBW1 Kodak RGBW2 Kodak RGBW2 RGBC

Fig. 1.5 Several different mosaic configurations of cell colors, including white, primary RGB colors, and secondary
CYM cells. Each configuration provides different options for sensor processing to optimize for color or spatial resolution.
(Image used by permission, © Intel Press, from Building Intelligent Systems)

Image Sensor Technology 5

The overall sensor size and format determines the lens’ size as well. In general, a larger lens lets in
more light, so larger sensors are typically better suited to digital cameras for photography applications.
In addition, the cell placement aspect ratio on the die determines pixel geometry—for example, a 4:3
aspect ratio is common for digital cameras while 3:2 is standard for 35 mm film. The sensor
configuration details are worth understanding in order to devise the best sensor processing and
image preprocessing pipelines.

Dynamic Range, Noise, and Super Resolution

Current state-of-the-art sensors provide at least 8 bits per color cell and usually are 12—14 bits. Sensor
cells require area and time to accumulate photons, so smaller cells must be designed carefully to avoid
problems. Noise may come from optics, color filters, sensor cells, gain and A/D converters,
postprocessing, or the compression methods, if used. Sensor readout noise also affects effective
resolution, as each pixel cell is read out of the sensor, sent to an A/D converter, and formed into
digital lines and columns for conversion into pixels. Better sensors will provide less noise and higher
effective bit resolution; however, effective resolution can be increased using super resolution methods,
by taking several images in rapid succession averaged together to reduce noise [811], or alternatively,
the sensor position can be micro-MEMS-dithered to create image sequences to average together to
increase resolution. A good survey of de-noising is found in the work by Ibenthal [339].

In addition, sensor photon absorption is different for each color and may be problematic for blue,
which can be the hardest color for smaller sensors to image. In some cases, the manufacturer may
attempt to provide a simple gamma-curve correction method built into the sensor for each color, which
is not recommended. For demanding color applications, consider colorimetric device models and color
management (as will be discussed in Chap. 2), or even by characterizing the nonlinearity for each color
channel of the sensor and developing a set of simple corrective LUT transforms. (Noise-filtering
methods applicable to depth sensing are also covered in Chap. 2.)

Sensor Processing

Sensor processing is required to de-mosaic and assemble the pixels from the sensor array, and also to
correct sensing defects. We discuss the basics of sensor processing in this section.

Typically, a dedicated sensor processor is provided in each imaging system, including a fast HW
sensor interface, optimized VLIW and SIMD instructions, and dedicated fixed-function hardware
blocks to deal with the massively parallel pixel-processing workloads for sensor processing. Usually,
sensor processing is transparent, automatic, and set up by the manufacturer of the imaging system, and
all images from the sensor are processed the same way. A bypass may exist to provide the raw data that
can allow custom sensor processing for applications like digital photography.

De-mosaicking

Depending on the sensor cell configuration, as shown in Fig. 1.5, various de-mosaicking algorithms are
employed to create a final RGB pixel from the raw sensor data. A good survey by Losson et al. [336]
and another by Xin et al. [337] provide some background on the challenges involved and the various
methods employed.

6 1 2D/3D Image Capture and Representation

One of the central challenges of de-mosaicking is pixel interpolation to combine the color channels
from nearby cells into a single pixel. Given the geometry of sensor cell placement and the aspect ratio
of the cell layout, this is not a trivial problem. A related issue is color cell weighting—for example,
how much of each color should be integrated into each RGB pixel. Since the spatial cell resolution in a
mosaicked sensor is greater than the final combined RGB pixel resolution, some applications require
the raw sensor data to take advantage of all the accuracy and resolution possible, or to perform special
processing to either increase the effective pixel resolution or do a better job of spatially accurate color
processing and de-mosaicking.

Dead Pixel Correction

A sensor, like an LCD display, may have dead pixels. A vendor may calibrate the sensor at the factory
and provide a sensor defect map for the known defects, providing coordinates of those dead pixels for
use in corrections in the camera module or driver software. In some cases, adaptive defect correction
methods [338] are used on the sensor to monitor the adjacent pixels to actively look for defects and
then to correct a range of defect types, such as single pixel defects, column or line defects, and defects
such as 2 x 2 or 3 x 3 clusters. A camera driver can also provide adaptive defect analysis to look for
flaws in real time and perhaps provide special compensation controls in a camera setup menu.

Color and Lighting Corrections

Color corrections are required to balance the overall color accuracy as well as the white balance. As
shown in Fig. 1.2, color sensitivity is usually very good in silicon sensors for red and green, but less
good for blue, so the opportunity for providing the most accurate color starts with understanding and
calibrating the sensor.

Most image sensor processors contain a geometric processor for vignette correction, which
manifests as darker illumination at the edges of the image, as discussed in Chap. 7 (Table 7.1) on
robustness criteria. The corrections are based on a geometric warp function, which is calibrated at the
factory to match the optics vignette pattern, allowing for a programmable illumination function to
increase illumination toward the edges. For a discussion of image warping methods applicable to
vignetting, see Ref. [417].

Geometric Corrections

A lens may have geometric aberrations or may warp toward the edges, producing images with radial
distortion, a problem that is related to the vignetting discussed above and shown in Chap. 7 (Fig. 7.6).
To deal with lens distortion, most imaging systems have a dedicated sensor processor with a hardware-
accelerated digital warp unit similar to the texture sampler in a GPU. The geometric corrections are
calibrated and programmed in the factory for the optics. See Ref. [417] for a discussion of image
warping methods.

Cameras and Computational Imaging

Many novel camera configurations are making their way into commercial applications using compu-
tational imaging methods to synthesize new images from raw sensor data—for example, depth

Cameras and Computational Imaging 7

cameras and high dynamic range cameras. As shown in Fig. 1.6, a conventional camera system uses a
single sensor, lens, and illuminator to create 2D images. However, a computational imaging camera
may provide multiple optics, multiple programmable illumination patterns, and multiple sensors,
enabling novel applications such as 3D depth sensing and image relighting, taking advantage of the
depth information, mapping the image as a texture onto the depth map, and introducing new light
sources and then re-rendering the image in a graphics pipeline. Since computational cameras are
beginning to emerge in consumer devices and will become the front end of computer vision pipelines,
we survey some of the methods used.

Image Enhancements 2D
- Color Enhancements Sensor
- Filtering, Contrast

Single Lens Single Flash

Computational Imaging

- High Dynamic Range HDR
High Frame Rates
3D Depth Maps

1 Programmable Flash

Multi-lens Optics Arrays
Plenoptic Lens Arrays

- Pattern Projectors
- Multi-Flash

Sphere/Ball Lenses 'y

- Focal Plane Refocusing
- Focal Sweep f
- Rolling Shutter T
- Panorama Stitching
- Image Relighting

Fig. 1.6 Comparison of computational imaging systems with conventional cameras. (Top) Simple camera model with
flash, lens, and imaging device followed by image enhancements like sharpening and color corrections. (Bottom)
Computational imaging using programmable flash, optics arrays, and sensor arrays, followed by computational imaging
applications. NOT SHOWN: super resolution [811] discussed earlier

Overview of Computational Imaging

Computational imaging [344, 347] provides options for synthesizing new images from the raw image
data. A computational camera may control a programmable flash pattern projector, a lens array, and
multiple image sensors, as well as synthesize new images from the raw data, as illustrated in Fig. 1.6.
To dig deeper into computational imaging and explore the current research, see the CAVE Computer
Vision Laboratory at Columbia University and the Rochester Institute of Technology Imaging
Research. Here are some of the methods and applications in use.

Single-Pixel Computational Cameras

Single-pixel computational cameras can reconstruct images from a sequence of single photo detector
pixel images of the same scene. The field of single-pixel cameras [77, 78] falls into the domain of
compressed sensing research, which also has applications outside image processing extending into
areas such as analog-to-digital conversion.

As shown in Fig. 1.7, a single-pixel camera may use a micro-mirror array or a digital mirror device
(DMD), similar to a diffraction grating. The gratings are arranged in a rectangular micro-mirror grid
array, allowing the grid regions to be switched on or off to produce binary grid patterns. The binary
patterns are designed as a pseudorandom binary basis set. The resolution of the grid patterns is adjusted
by combining patterns from adjacent regions—for example, a grid of 2 x 2 or 3 x 3 micro-mirror
regions.

8 1 2D/3D Image Capture and Representation

Scene

Photodiode Bitstream

Reconstruction Image

DMD
Array

Fig. 1.7 A single-pixel imaging system where incoming light is reflected through a DMD array of micro-mirrors onto a
single photodiode. The grid locations within the micro-mirror array can be opened or closed to light, as shown here, to
create binary patterns, where the white grid squares are reflective and open, and the black grid squares are closed. (Image
used by permission, © R.G. Baraniuk, Compressive Sensing Lecture Notes)

A sequence of single-pixel images is taken through a set of pseudorandom micro lens array patterns,
then an image is reconstructed from the set. In fact, the number of pattern samples required to
reconstruct the image is lower than the Nyquist frequency, since a sparse random sampling approach
is used and the random sampling approach has been proven in the research to be mathematically
sufficient [77, 78]. The grid basis-set sampling method is directly amenable to image compression,
since only a relatively sparse set of patterns and samples are taken. Since the micro-mitror array uses
rectangular shapes, the patterns are analogous to a set of HAAR basis functions. (For more informa-
tion, see Figs. 3.21, 6.21, and 6.22.)

The DMD method is remarkable, in that an image can be reconstructed from a fairly small set of
images taken from a single photo detector, rather than a 2D array of photo detectors as in a CMOS or
CCD image sensor. Since only a single sensor is used, the method is promising for applications with
wavelengths outside the near IR and visible spectrum imaged by CMOS and CCD sensors. The DMD
method can be used, for example, to detect emissions from concealed weapons or substances at
invisible wavelengths using non-silicon sensors sensitive to nonvisible wavelengths.

2D Computational Cameras

Novel configurations of programmable 2D sensor arrays, lenses, and illuminators are being developed
into camera systems as computational cameras [354-356], with applications ranging from digital
photography to military and industrial uses, employing computational imaging methods to enhance the
images after the fact. Computational cameras borrow many computational imaging methods from
confocal imaging [349] and confocal microscopy [350, 351]—for example, using multiple illumina-
tion patterns and multiple focal plane images. They also draw on research from synthetic aperture radar
systems [352] developed after World War II to create high-resolution images and 3D depth maps using
wide baseline data from a single moving-camera platform. Synthetic apertures using multiple image
sensors and optics for overlapping fields of view using wafer-scale integration are also topics of
research [349]. We survey here a few computational 2D sensor methods, including high resolution
(HR), high dynamic range (HDR), and high frame rate (HF) cameras.

The current wave of commercial digital megapixel cameras, ranging from around 10 megapixels on
up, provides resolution matching or exceeding high-end film used in a 35 mm camera [342], so a pixel
from an image sensor is comparable in size to a grain of silver on the best resolution film. On the

Cameras and Computational Imaging 9

surface, there appears to be little incentive to go for higher resolution for commercial use, since current
digital methods have replaced most film applications and film printers already exceed the resolution of
the human eye.

However, very high resolution gigapixel imaging devices are being devised and constructed as an
array of image sensors and lenses, providing advantages for computational imaging after the image is
taken. One configuration is the 2D array camera, composed of an orthogonal 2D array of image
sensors and corresponding optics; another configuration is the spherical camera as shown in Fig. 1.8
[341, 345], developed as a DARPA research project at Columbia University CAVE.

Sensor Array
.= - . 3
Sensor \ »"-“'-ol' i
Array
3
153
8l
3
5|3
3
R 3
(b) A 4n FOV design

¢ 82,000 pixels »

[¢—— 22,000 —p|

Resistor Dollar Bill 2D Barcode Fingerprint

Fig. 1.8 (Top) Components of a very high resolution gigapixel camera, using a novel spherical lens and sensor
arrangement. (Bottom) The resulting high-resolution images shown at 82,000 x 22,000 = 1.7 gigapixels. (All figures
and images used by permission © Shree Nayar Columbia University CAVE research projects)

10 1 2D/3D Image Capture and Representation

High dynamic range (HDR) cameras [346-348] can produce deeper pixels with higher bit resolu-
tion and better color channel resolution by taking multiple images of the scene bracketed with different
exposure settings and then combining the images. This combination uses a suitable weighting scheme
to produce a new image with deeper pixels of a higher bit depth, such as 32 pixels per color channel,
providing images that go beyond the capabilities of common commercial CMOS and CCD sensors.
HDR methods allow faint light and strong light to be imaged equally well, and can combine faint light
and bright light using adaptive local methods to eliminate glare and create more uniform and pleasing
image contrast.

High frame rate (HF) cameras [355] are capable of capturing a rapid succession of images of the
scene into a set and combining the set of images using bracketing techniques to change the exposure,
flash, focus, white balance, and depth of field.

3D Depth Camera Systems

Using a 3D depth field for computer vision provides an understated advantage for many applications,
since computer vision has been concerned in large part with extracting 3D information from 2D
images, resulting in a wide range of accuracy and invariance problems. Novel 3D descriptors are being
devised for 3D depth field computer vision and are discussed in Chap. 6.

With depth maps, the scene can easily be segmented into foreground and background to identify
and track simple objects. Digital photography applications are incorporating various computer vision
methods in 3-space and thereby becoming richer. Using selected regions of a 3D depth map as a mask
enables localized image enhancements such as depth-based contrast, sharpening, or other
preprocessing methods.

Cameras and Computational Imaging

Table 1.1 Selected methods for capturing depth information

Depth sensing Illumination

technique of sensor method Characteristics

Parallax and hybrid | 2/1/ | Passive— Positional shift measurement in FOV between two camera positions,

Parallax array | normal lighting | such as stereo, mult-view stereo, or array cameras

Size mapping 1 Passive— Utilizes color tags of specific size to determine range and position
normal lighting

Depth of focus 1 Passive— Multi-frame with scanned focus
normal lighting

Differential 1 Passive— Two-frame image capture at different magnifications, creating a

magnification normal lighting | distance-based offset

Structured light 1 Active— Multi-frame pattern projection
projected
lighting

Time of flight 1 Active—pulsed | High-speed light pulse with special pixels measuring return time of
lighting reflected light

Shading shift 1 Active— Two-frame shadow differential measurement between two light
alternating sources as different positions
lighting

Pattern spreading 1 Active—multi- | Projected 2D spot pattern expanding at different rate from camera
beam lighting lens field spread

Beam tracking 1 Active— Two-point light sources mounted on objects in FOV to be tracked
lighting on
object(s)

Spectral focal 1 Passive— Focal length varies for each color wavelength, with focal sweep to

sweep normal lighting | focus on each color and compute depth [366]

Diffraction gratings | 1 Passive— Light passing through sets of gratings or light guides provides depth
normal lighting | information [368]

Conical radial 1 Passive— Light from a conical mirror is imaged at different depths as a toroid

mirror normal lighting | shape, depth is extracted from the toroid [361]

Source: Courtesy of Ken Salsmann Aptina [357], with a few other methods added by the author

As shown in Table 1.1, there are many ways to extract depth from images. In some cases, only a
single camera lens and sensor are required, and software does the rest. Note that the illumination
method is a key component of many depth-sensing methods, such as structured light methods.
Combinations of sensors, lenses, and illumination are used for depth imaging and computational
imaging, as shown in Fig. 1.9. We survey a few selected depth-sensing methods in this section.

(W AN
e NN
e
(WA N
N

'feéé 'ﬁééi

AN

— >‘.§7_
,—l:, >.,‘;!_ = o Ball Lens
P R o o I
LN CRR RN W] (W]
BOONLOC RO A LEH ons Ay
AEE e c. \.u - oY
....... " N) An 'y,
o W \n N
AR) < 5.5/ Sensor y

¥
X
[
§
X
E
/sy
L.
awwm
uww
e 78
=am
gl (= =
zma
au
xww
Y
=

Fig. 1.9 A variety of lens and sensor configurations for common cameras: (a) conventional, (b) time-of-flight, (¢) stereo,
(d) array, (e) plenoptic, (f) spherical with ball lens

12 1 2D/3D Image Capture and Representation

Depth sensing is not a new field and is covered very well in several related disciplines with huge
industrial applications and financial resources, such as satellite imaging, remote sensing, photogram-
metry, and medical imaging. However, the topics involving depth sensing are of growing interest in
computer vision with the advent of commercial depth-sensing cameras such as Kinect, enabling
graduate students on a budget to experiment with 3D depth maps and point clouds using a mobile
phone or PC.

Multi-view stereo (MVS) depth sensing has been used for decades to compute digital elevation
maps or DEMs, and digital terrain maps or DTMs, from satellite images using RADAR and LIDAR
imaging, and from regional aerial surveys using specially equipped airplanes with high-resolution
cameras and stable camera platforms, including digital terrain maps overlaid with photos of adjacent
regions stitched together. Photo mosaicking is a related topic in computer vision that is gaining
attention. The literature on digital terrain mapping is rich with information on proper geometry models
and disparity computation methods. In addition, 3D medical imaging via CAT and MRI modalities is
backed by a rich research community, uses excellent depth-sensing methods, and offers depth-based
rendering and visualization. However, it is always interesting to observe the “reinvention” in one field,
such as computer vision, of well-known methods used in other fields. As Solomon said, “There is
nothing new under the sun.” In this section we approach depth sensing in the context of computer
vision, citing relevant research, and leave the interesting journey into other related disciplines to the
interested reader.

Binocular Stereo

Stereo [362, 363, 367] may be the most basic and familiar approach for capturing 3D depth maps, as
many methods and algorithms are in use, so we provide a high-level overview here with selected
standard references. The first step in stereo algorithms is to parameterize the projective transformation
from world coordinate points to their corresponding image coordinates by determining the stereo
calibration parameters of the camera system. Open-source software is available for stereo calibration.”
Note that the L/R image pair is rectified prior to searching for features for disparity computation. Stereo
depth r is computed, as shown in Fig. 1.10.

An excellent survey of stereo algorithms and methods is found in the work of Scharstein and
Szeliski [370] and also Lazaros [371]. The stereo geometry is a combination of projective and
Euclidean [367]; we discuss some of the geometric problems affecting their accuracy later in this
section. The standard online resource for comparing stereo algorithms is provided by Middlebury
College,” where many new algorithms are benchmarked and comparative results provided, including
the extensive ground truth datasets discussed in Appendix B.

The fundamental geometric calibration information needed for stereo depth includes the following
basics.

* Camera Calibration Parameters. Camera calibration is outside the scope of this work; however,
the parameters are defined as 11 free parameters [362, 365]—three for rotation, three for translation,
and five intrinsic—plus one or more lens distortion parameters to reconstruct 3D points in world
coordinates from the pixels in 2D camera space. The camera calibration may be performed using
several methods, including a known calibration image pattern or one of many self-calibration
methods [366]. Extrinsic parameters define the location of the camera in world coordinates, and

2 http://opencv.org, Camera Calibration and 3D Reconstruction.
3 https://vision.middlebury.edu/~schar/stereo/web/results.php.

http://opencv.org
https://vision.middlebury.edu/~schar/stereo/web/results.php

Cameras and Computational Imaging 13

intrinsic parameters define the relationships between pixel coordinates in camera image
coordinates. Key variables include the calibrated baseline distance between two cameras at the
principal point or center point of the image under the optics; the focal length of the optics; their pixel
size and aspect ratio, which is computed from the sensor size divided by pixel resolution in each
axis; and the position and orientation of the cameras.

+ Fundamental Matrix or Essential Matrix. These two matrices are related, defining the popular
geometry of the stereo camera system for projective reconstruction [366—-368]. Their derivation is
beyond the scope of this work. Either matrix may be used, depending on the algorithms employed.
The essential matrix uses only the extrinsic camera parameters and camera coordinates, and the
fundamental matrix depends on both the extrinsic and intrinsic parameters and reveals pixel
relationships between the stereo image pairs on epipolar lines.

In either case, we end up with projective transformations to reconstruct the 3D points from the 2D
camera points in the stereo image pair.
Stereo processing steps are typically as follows

1. Capture: Photograph the left/right image pair simultaneously.

2. Rectification: Rectify left/right image pair onto the same plane, so that pixel rows x coordinates and
lines are aligned. Several projective warping methods may be used for rectification [367]. Rectifica-
tion reduces the pattern match problem to a 1D search along the x-axis between images by aligning
the images along the x-axis. Rectification may also include radial distortion corrections for the
optics as a separate step; however, many cameras include a built-in factory-calibrated radial
distortion correction.

3. Feature Description: For each pixel in the image pairs, isolate a small region surrounding each
pixel as a target feature descriptor. Various methods are used for stereo feature description
[94, 180].

4. Correspondence: Search for each target feature in the opposite image pair. The search operation is
typically done twice, first searching for left-pair target features in the right image and then right-pair
target features in the left image. Subpixel accuracy is required for correspondence to increase depth
field accuracy.

5. Triangulation: Compute the disparity or distance between matched points using triangulation
[369]. Sort all L/R target feature matches to find the best quality matches, using one of many
methods [370].

6. Hole Filling: For pixels and associated target features with no corresponding good match, there is a
hole in the depth map at that location. Holes may be caused by occlusion of the feature in either of
the L/R image pairs, or simply by poor features to begin with. Holes are filled using local region
nearest-neighbor pixel interpolation methods.

Stereo depth-range resolution is an exponential function of distance from the viewpoint: in general,
the wider the baseline, the better the long-range depth resolution. A shorter baseline is better for close-
range depth (see Figs. 1.10 and 1.20). Human-eye baseline or interpupillary distance has been
measured as between 50 and 75 mm, averaging about 70 mm for males and 65 mm for females.

1 2D/3D Image Capture and Representation

’ : \

L/R Rectified Co-Planar Irrlyé;ge Peiir, with pattern search windows

i) R
™ > < T
It 73 EN
N
/ ~N
/.I H
/P, L/R Inag
P Principal
Ray
,,,,,,,,,,,,,,,, : -
Jf="Focal Length 5 A
""""""""" :/ b = Baseline
r==bf/d : 1
‘ dl . d= dl - dr . d’

Fig. 1.10 Simplified schematic of basic binocular stereo principles

Multi-view stereo (MVYS) is a related method to compute depth from several views using different
baselines of the same subject, such as from a single or monocular camera, or an array of cameras.
Monocular, MVS, and array camera depth sensing are covered later in this section.

Structured and Coded Light

Structured or coded light uses specific patterns projected into the scene and imaged back, then

measured to determine depth; see Fig. 1.11. We define the following approaches for using structured
light for this discussion [375]:

Spatial single-pattern methods, requiring only a single illumination pattern in a single image.
Timed multiplexing multi-pattern methods, requiring a sequence of pattern illuminations and
images, typically using binary or n-array codes, sometimes involving phase shifting or dithering the

patterns in subsequent frames to increase resolution. Common pattern sequences include gray
codes, binary codes, sinusoidal codes, and other unique codes.

Cameras and Computational Imaging 15
_ I —
I —
I
I —
| S
a.
_ _ I
L E—
_ I ee—
I
b.
HE_ N
— EEE
Settecssesss — HoeE E
L)
c. _— aenn T EE
e. £

compressive structured light [376]

For example, in the original Microsoft Kinect 3D depth camera, structured light consisting of
several slightly different microgrid patterns or pseudorandom points of infrared light are projected into
the scene, then a single image is taken to capture the spots as they appear in the scene. Based on
analysis of actual systems and patent applications, the original Kinect computes the depth using several
methods, including (1) the size of the infrared spot—Ilarger dots and low blurring mean the location is
nearer, while smaller dots and more blurring mean the location is farther away; (2) the shape of the
spot—a circle indicates a parallel surface, an ellipse indicates an oblique surface; and (3) by using
small regions or a micro-pattern of spots together so that the resolution is not very fine—however,
noise sensitivity is good. Depth is computed from a single image using this method, rather than
requiring several sequential patterns and images.

Multi-image methods are used for structured light, including projecting sets of time-sequential
structured and coded patterns, as shown in Fig. 1.11. In multi-image methods, each pattern is sent
sequentially into the scene and imaged, then the combination of depth measurements from all the
patterns is used to create the final depth map.

Industrial, scientific, and medical applications of depth measurements from structured light can
reach high accuracy, imaging objects up to a few meters in size with precision that extends to
micrometer range. Pattern projection methods are used, as well as laser-stripe pattern methods using
multiple illumination beams to create wavelength interference; the interference is measured to compute
the distance. For example, common dental equipment uses small, hand-held laser range finders inserted
into the mouth to create highly accurate depth images of tooth regions with missing pieces, and the
images are then used to create new, practically perfectly fitting crowns or fillings using CAD/CAM
micro-milling machines.

Of course, infrared light patterns do not work well outdoors in daylight; they become washed out by
natural light. Also, the strength of the infrared emitters that can be used is limited by practicality and
safety. The distance for effectively using structured light indoors is restricted by the amount of power
that can be used for the IR emitters; perhaps 5 m is a realistic limit for indoor infrared light. Kinect
claims a range of about 4 m for the current TOF (time of flight) method using uniform constant infrared
illumination, while the first-generation Kinect sensor had similar depth range using structured light.

16 1 2D/3D Image Capture and Representation

In addition to creating depth maps, structured or coded light is used for measurements employing
optical encoders, as in robotics and process control systems. The encoders measure radial or linear
position. They provide IR illumination patterns and measure the response on a scale or reticle, which is
useful for single-axis positioning devices like linear motors and rotary lead screws. For example,
patterns such as the binary position code and the reflected binary gray code [374] can be converted
easily into binary numbers (see Fig. 1.11). The gray code set elements each have a Hamming distance
of 1 between successive elements.

Structured light methods suffer problems when handling high-specular reflections and shadows;
however, these problems can be mitigated by using an optical diffuser between the pattern projector
and the scene using the diffuse structured light methods [373] designed to preserve illumination
coding. In addition, multiple-pattern structured light methods cannot deal with fast-moving scenes;
however, the single-pattern methods can deal well with frame motion, since only one frame is required.

Optical Coding: Diffraction Gratings

Diffraction gratings are one of many methods of optical coding [377] to create a set of patterns for
depth-field imaging, where a light structuring element, such as a mirror, grating, light guide, or special
lens, is placed close to the detector or the lens. The original Kinect system is reported to use a
diffraction grating method to create the randomized infrared spot illumination pattern. Diffraction
gratings [360, 361] above the sensor, as shown in Fig. 1.12, can provide angle-sensitive pixel sensing.
In this case, the light is refracted into surrounding cells at various angles, as determined by the
placement of the diffraction gratings or other beam-forming elements, such as light guides. This
allows the same sensor data to be processed in different ways with respect to a given angle of view,

yielding different images.

H I E E E E " =" E =N
o O s O |

Gratings

Photo-diodes

Fig. 1.12 Diffraction gratings above silicon used to create the Talbot Effect (first observed around 1836) for depth
imaging. (For more information, see Ref. [360].) Diffraction gratings are a type of light-structuring element

This method allows the detector size to be reduced while providing higher resolution images using a
combined series of low-resolution images captured in parallel from narrow aperture diffraction
gratings. Diffraction gratings make it possible to produce a wide range of information from the same
sensor data, including depth information, increased pixel resolution, perspective displacements, and
focus on multiple focal planes after the image is taken. A diffraction grating is a type of illumination
coding device.

As shown in Fig. 1.13, the light-structuring or coding element may be placed in several
configurations, including (see [377]):

Cameras and Computational Imaging 17

* Object side coding: close to the subjects

+ Pupil plane coding: close to the lens on the object side
» Focal plane coding: close to the detector

* Illumination coding: close to the illuminator

Optical A
Optical Encoder Optical N
Encoder Optical | X2 Encoder + A
Encoder l Illuminator W‘?
>
%g o8

Lens Lens Lens

Lens

Detector Detector Detector Detector

Fig. 1.13 Various methods for optical structuring and coding of patterns [377]: (Left to right): Object side coding, pupil
plane coding, focal plane coding, illumination coding, or structured light. The illumination patterns are determined in the
optical encoder

Note that illumination coding is shown as structured light patterns in Fig. 1.11, while a variant of
illumination coding is shown in Fig. 1.7, using a set of mitrors that are opened or closed to create
patterns.

Time-of-Flight Sensors

By measuring the amount of time taken for infrared light to travel and reflect, a time-of-flight (TOF)
sensor is created [380]. A TOF sensor is a type of range finder or laser radar [379]. Several single-chip
TOF sensor arrays and depth camera solutions are available, such as the second version of the Kinect
depth camera. The basic concept involves broadcasting infrared light at a known time into the scene,
such as by a pulsed IR laser, and then measuring the time taken for the light to return at each pixel.
Submillimeter accuracy at ranges up to several hundred meters is reported for high-end systems [379],
depending on the conditions under which the TOF sensor is used, the particular methods employed in
the design, and the amount of power given to the IR laser.

Each pixel in the TOF sensor has several active components, as shown in Fig. 1.14, including the IR
sensor well, timing logic to measure the round-trip time from illumination to detection of IR light, and
optical gates for synchronization of the electronic shutter and the pulsed IR laser. TOF sensors provide
laser range-finding capabilities. For example, by gating the electronic shutter to eliminate short round-
trip responses, environmental conditions such as fog or smoke reflections can be reduced. In addition,
specific depth ranges, such as long ranges, can be measured by opening and closing the shutter at
desired time intervals.

18 1 2D/3D Image Capture and Representation

IR Sensor <+—> Pulsed IR Laser

Timing Controls

Fig. 1.14 A hypothetical TOF sensor configuration. Note that the light pulse length and sensor can be gated together to
target specific distance ranges

Ilumination methods for TOF sensors may use very short IR laser pulses for a first image, acquire a
second image with no laser pulse, and then take the difference between the images to eliminate ambient
IR light contributions. By modulating the IR beam with an RF carrier signal using a photonic mixer
device (PMD), the phase shift of the returning IR signal can be measured to increase accuracy—which
is common among many laser range-finding methods [380]. Rapid optical gating combined with
intensified CCD sensors can be used to increase accuracy to the submillimeter range in limited
conditions, even at ranges above 100 m. However, multiple IR reflections can contribute errors to
the range image, since a single IR pulse is sent out over the entire scene and may reflect off several
surfaces before being imaged.

Since the depth-sensing method of a TOF sensor is integrated with the sensor electronics, there is
very low processing overhead required compared to stereo and other methods. However, the
limitations of IR light for outdoor situations still remain [378], which can affect the depth accuracy.

LIDAR (Light Detection and Ranging) is a MONOCHROME method of illuminating a scene with
pulsed laser, and measuring the reflections from the scene and composing a 3D distance map. NOTE:
for this discussion, a 3D range map is loosely considered a spectrum. LIDAR is method of TOF (Time
of Flight) depth imaging. LIDAR systems are used in high-end depth-sensing applications in satellite
imaging, high-end industrial applications (including autonomous vehicles), and military applications.
LIDAR has been used in Autonomous Vehicle Systems and is capable of depth imaging at better
resolution and distance than RGB camera imaging. LIDAR lasers and detectors in a given system may
use IR, visible light, UV, or other spectrum. Commercial LIDAR systems using pulsed light lasers
have a depth range up to 300 m while maintaining high x, y, z spatial resolution and accuracy,

Cameras and Computational Imaging 19

compared to human visual system with a depth resolution of perhaps only 20 yards of stereo range due
to the left-right eye baseline distance, and as discussed in this chapter, the human visual system
interpolates distances beyond the 20-yard stereo range using other visual cues, but with relative,
learned accuracy. LIDAR systems are much more expensive than RGB depth cameras, due to the
LIDAR system synchronization and control system driving the LIDAR illumination lasers, and the
critical timing and synchronization logic required to measure reflected light deltas at the sensors and
synthesize the 3D image and depth field.

Array Cameras

As shown earlier in Fig. 1.9, an array camera contains several cameras, typically arranged in a 2D
array, such as a 3 x 3 array, providing several key options for computational imaging. Commercial
array cameras for portable devices are beginning to appear. They may use the multi-view stereo
method to compute disparity, utilizing a combination of sensors in the array, as discussed earlier. Some
of the key advantages of an array camera include a wide baseline image set to compute a 3D depth map
that can see through and around occlusions, higher-resolution images interpolated from the lower-
resolution images of each sensor, all-in-focus images, and specific image refocusing at one or more
locations. The maximum aperture of an array camera is equal to the widest baseline between the
Sensors.

Radial Cameras

A conical, or radial, mirror surrounding the lens and a 2D image sensor create a radial camera [343],
which combines both 2D and 3D imaging. As shown in Fig. 1.15, the radial mirror allows a 2D image
to form in the center of the sensor and a radial toroidal image containing reflected 3D information
forms around the sensor perimeter. By processing the toroidal information into a point cloud based on
the geometry of the conical mirror, the depth is extracted and the 2D information in the center of the
image can be overlaid as a texture map for full 3D reconstruction.

Camera Mirror Subject

Fig. 1.15 (Left) Radial camera system with conical mirror to capture 3D reflections. (Center) Captured 3D reflections
around the edges and 2D information of the face in the center. (Right) 3D image reconstructed from the radial image 3D
information and the 2D face as a texture map. (Images used by permission © Shree Nayar Columbia University CAVE)

20 1 2D/3D Image Capture and Representation

Plenoptics: Light Field Cameras

Plenoptic methods create a 3D space defined as a light field, created by multiple optics. Plenoptic
systems use a set of micro-optics and main optics to image a 4D light field and extract images from the
light field during postprocessing [353, 381, 382]. Plenoptic cameras require only a single image sensor,
as shown in Fig. 1.16. The 4D light field contains information on each point in the space and can be
represented as a volume dataset, treating each point as a voxel, or 3D pixel with a 3D oriented surface,
with color and opacity. Volume data can be processed to yield different views and perspective
displacements, allowing focus at multiple focal planes after the image is taken. Slices of the volume
can be taken to isolate perspectives and render 2D images. Rendering a light field can be done by using
ray tracing and volume rendering methods [383, 384].

it
Subjects Main Lens Micro-Lens Array Sensor

Fig. 1.16 A plenoptic camera illustration. Multiple independent subjects in the scene can be processed from the same
sensor image. Depth of field and focus can be computed for each subject independently after the image is taken, yielding
perspective and focal plane adjustments within the 3D light field

In addition to volume and surface renderings of the light field, a 2D slice from the 3D field or
volume can be processed in the frequency domain by way of the Fourier Projection Slice Theorem
[385], as illustrated in Fig. 1.17. This is the basis for medical imaging methods in processing 3D MRI
and CAT scan data. Applications of the Fourier Projection Slice method to volumetric and 3D range
data are described by Levoy [382, 385] and Krig [108]. The basic algorithm is described as follows:

1. The volume data are forward transformed, using a 3D FFT into magnitude and phase data.

2. To visualize, the resulting 3D FFT results in the frequency volume and is rearranged by octant
shifting each cube to align the frequency O data around the center of a 3D Cartesian coordinate
system in the center of the volume, similar to the way 2D frequency spectrums are quadrant shifted
for frequency spectrum display around the center of a 2D Cartesian coordinate system.

3. A planar 2D slice is extracted from the volume parallel to the FOV plane where the slice passes
through the origin (center) of the volume. The angle of the slice taken from the frequency domain
volume data determines the angle of the desired 2D view and the depth of field.

4. The 2D slice from the frequency domain is run through an inverse 2D FFT to yield a 2D spatial
image corresponding to the chosen angle and depth of field.

3D Depth Processing Method 21

A
< L4 >
2 !:\>
/ 3d 3d
v Forward Mag. Phase
3D Light Field SR FET A
Volume s .
\ A
Extract 2D Slices \
from Mag/Phase <’;:>‘ \ R
‘\
@ ‘\ \‘
Wl T
2D Reverse 2D 2D
image <:| 2D FFT Mag. Phase

Fig. 1.17 Graphic representation of the algorithm for the Fourier Projection Slice Theorem, which is one method of
light field processing. The 3D Fourier space is used to filter the data to create 2D views and renderings [108, 382,
385]. (Image used by permission, © Intel Press, from Building Intelligent Systems)

3D Depth Processing Method

For historical reasons, several terms with their acronyms are used in discussions of depth-sensing and
related methods, so we cover some overlapping topics in this section. Table 1.1 earlier provided a
summary at a high level of the underlying physical means for depth sensing. Regardless of the depth-
sensing method, there are many similarities and common problems. Postprocessing, the depth infor-
mation is critical, considering the calibration accuracy of the camera system, the geometric model of
the depth field, the measured accuracy of the depth data, any noise present in the depth data, and the
intended application.

We survey several interrelated depth-sensing topics here, including

» Sparse depth-sensing methods

* Dense depth-sensing methods

» Optical flow

* Simultaneous localization and mapping (SLAM)
» Structure from motion (SFM)

* 3D surface reconstruction, 3D surface fusion

* Monocular depth sensing

» Stereo and multi-view stereo (MVS)

* Common problems in depth sensing

Human depth perception relies on a set of innate and learned visual cues, which are outside the
scope of this work and overlap into several fields, including optics, ophthalmology, and psychology

22 1 2D/3D Image Capture and Representation

[394]; however, we provide an overview of the above selected topics in the context of depth
processing.

Overview of Methods

For this discussion of depth-processing methods, depth sensing falls into two major categories based
on the methods shown in Table 1.1:

* Sparse depth methods, using computer vision methods to extract local interest points and features.
Only selected points are assembled into a sparse depth map or point cloud. The features are tracked
from frame to frame as the camera or scene moves, and the sparse point cloud is updated. Usually
only a single camera is needed.

* Dense depth methods, computing depth at every pixel. This creates a dense depth map, using
methods such as stereo, TOF, or MVS. It may involve one or more cameras.

Many sparse depth methods use standard monocular cameras and computer vision feature tracking,
such as optical flow and SLAM (which are covered later in this section), and the feature descriptors are
tracked from frame to frame to compute disparity and sparse depth. Dense depth methods are usually
based more on a specific depth camera technology, such as stereo or structured light. There are
exceptions, as covered next.

Problems in Depth Sensing and Processing

The depth-sensing methods each has specific problems; however, there are some common problems
we can address here. To begin, one common problem is geometric modeling of the depth field, which is
complex, including perspective and projections. Most depth-sensing methods treat the entire field as a
Cartesian coordinate system, and this introduces slight problems into the depth solutions. A camera
sensor is a 2D Euclidean model, and discrete voxels are imaged in 3D Euclidean space; however,
mapping between the camera and the real world using simple Cartesian models introduces geometric
distortion. Other problems include those of correspondence, or failure to match features in separate
frames, and noise and occlusion. We look at such problems in this next section.

The Geometric Field and Distortions

Field geometry is a complex area affecting both depth sensing and 2D imaging. For commercial
applications, geometric field problems may not be significant, since locating faces, tracking simple
objects, and augmenting reality are not demanding in terms of 3D accuracy. However, military and
industrial applications often require high precision and accuracy, so careful geometry treatment is in
order. To understand the geometric field problems common to depth-sensing methods, let us break
down the major areas:

* Projective geometry problems, dealing with perspective.

+ Polar and spherical geometry problems, dealing with perspective as the viewing frustum spreads
with distance from the viewer.

» Radial distortion, due to lens aberrations.

3D Depth Processing Method 23

» Coordinate space problems, due to the Cartesian coordinates of the sensor and the voxels, and the
polar coordinate nature of casting rays from the scene into the sensor.

The goal of this discussion is to enumerate the problems in depth sensing, not to solve them, and to
provide references where applicable. Since the topic of geometry is vast, we can only provide a few
examples here of better methods for modeling the depth field. It is hoped that, by identifying the
geometric problems involved in depth sensing, additional attention will be given to this important
topic. The complete geometric model, including corrections, for any depth system is very complex.
Usually, the topic of advanced geometry is ignored in popular commercial applications; however, we
can be sure that advanced military applications such as particle beam weapons and missile systems do
not ignore those complexities, given the precision required.

Several researchers have investigated more robust nonlinear methods of dealing with projective
geometry problems [395, 396] specifically by modeling epipolar geometry-related distortion as 3D
cylindrical distortion, rather than as planar distortion, and by providing reasonable compute methods
for correction. In addition, the work of Lovegrove and Davison [411] deals with the geometric field
using a spherical mosaicking method to align whole images for depth fusion, increasing the accuracy
due to the spherical modeling.

The Horopter Region, Panum’s Area, and Depth Fusion

As shown in Fig. 1.18, the Horopter region, first investigated by Ptolemy and others in the context of
astronomy, is a curved surface containing 3D points that are the same distance from the observer and at
the same focal plane. Panum’s area is the region surrounding the Horopter where the human visual
system fuses points in the retina into a single object at the same distance and focal plane. It is a small
miracle that the human vision system can reconcile the distances between 3D points and synthesize a
common depth field! The challenge with the Horopter region and Panum’s area lies in the fact that a
postprocessing step to any depth algorithm must be in place to correctly fuse the points the way the
human visual system does. The margin of error depends on the usual variables, including baseline and
pixel resolution, and the error is most pronounced toward the boundaries of the depth field and less
pronounced in the center. Some of the spherical distortion is due to lens aberrations toward the edges
and can be partially corrected as discussed earlier in this chapter regarding geometric corrections
during early sensor processing.

24 1 2D/3D Image Capture and Representation

Fused Depth Points

——

Panum’s Area

-

Fig. 1.18 Problems with stereo and multi-view stereo methods, showing the Horopter region and Panum’s area, and
three points in space that appear to be the same point from the left eye’s perspective but different from the right eye’s
perspective. The three points surround the Horopter in Panum’s area and are fused by humans to synthesize apparent
depth

Cartesian vs. Polar Coordinates: Spherical Projective Geometry

As illustrated in Fig. 1.19, a 2D sensor as used in a TOF or monocular depth-sensing method has
specific geometric problems as well; the problems increase toward the edges of the field of view. Note
that the depth from a point in space to a pixel in the sensor is actually measured in a spherical
coordinate system using polar coordinates, but the geometry of the sensor is purely Cartesian, so that
geometry errors are baked into the cake.

Because stereo and MVS methods also use single 2D sensors, the same problems that affect single
sensor depth-sensing methods also affect multi-camera methods, compounding the difficulties in
developing a geometry model that is accurate and computationally reasonable.

3D Depth Processing Method 25

Fig. 1.19 A 2D depth sensor and lens with exaggerated imaging geometry problems dealing with distance, where depth
is different depending on the angle of incidence on the lens and sensor. Note that P; and P, are equidistant from the focal
plane; however, the distance of each point to the sensor via the optics is not equal, so computed depth will not be accurate
depending on the geometric model used

Depth Granularity

As shown in Fig. 1.20, simple Cartesian depth computations cannot resolve the depth field into a linear
uniform grain size; in fact, the depth field granularity increases exponentially with the distance from
the sensor, while the ability to resolve depth at long ranges is much less accurate.

For example, in a hypothetical stereo vision system with a baseline of 70 mm using 480 p video
resolution, as shown in Fig. 1.20, depth resolution at 10 m drops off to about 1/2 m; in other words, at
10 m away, objects may not appear to move in Z unless they move at least plus or minus 1/2 m in Z.
The depth resolution can be doubled simply by doubling the sensor resolution. As distance increases,
humans increasingly use monocular depth cues to determine depth, such as for size of objects, rate of
an object’s motion, color intensity, and surface texture details.

26 1 2D/3D Image Capture and Representation

y Y Pixel size: 480 / 10 meter = 20.8 mm
T Z, granularity = 465 mm

Y Pixel size: 480 / 5 meter = 10.4 mm

i £ 1000 -
Z, granularity= 116 mm g
.8
o
g
g /
Y Pixel size: 480 / 3 meter = 6.25 mm 2
. -
Z, granularity =41 mm 5
Y Pixel size: 480 / 2 meter = 2.4 mm ?
. 5 |
Z, granularity =19 mm j;, 10
Y Pixel size: 480 / 1 meter =2 mm E)
Z, granularity =4 mm i‘_f_
23
o) 1 T T T . T T T ,
480p Sensor 480p Sensor 12 3 4 5 6 7 8 9 10

Distance From Sensor in meters

Stereo system, 480p sensors, 70mm baseline, 4.3mm focal length
Sensor Y die size = .672mm

Sensor Y Pixel size: .0014mm

Zy Granularity = (.0014mm * 22 mm) /(4.3 mm * 70 mm)

Fig. 1.20 Z depth granularity nonlinearity problems for a typical stereo camera system. Note that practical depth sensing
using stereo and MVS methods has limitations in the depth field, mainly affected by pixel resolution, baseline, and focal
length. At 10 m, depth granularity is almost %2 m, so an object must move at least + or — ’2 m in order for a change in
measured stereo depth to be computed

Correspondence

Correspondence, or feature matching, is common to most depth-sensing methods, see Nikolaus et al.
[802] for novel deep learning approaches. For a taxonomy of stereo feature matching algorithms, see
Scharstein and Szeliski [370]. Here, we discuss correspondence along the lines of feature descriptor
methods and triangulation as applied to stereo, multi-view stereo, and structured light.

Subpixel accuracy is a goal in most depth-sensing methods, so several algorithms exist [398]. It is
popular to correlate two patches or intensity templates by fitting the surfaces to find the highest match;
however, Fourier methods are also used to correlate phase [397, 399], similar to the intensity
correlation methods.

For stereo systems, the image pairs are rectified prior to feature matching so that the features are
expected to be found along the same line at about the same scale, as shown in Fig. 1.10; descriptors
with little or no rotational invariance are suitable [94, 181]. A feature descriptor such as a correlation
template is fine, while a powerful method such as the SIFT feature description method [132] is overkill.
The feature descriptor region may be a rectangle favoring disparity in the x-axis and expecting little
variance in the y-axis, such as a rectangular 3 x 9 descriptor shape. The disparity is expected in the x-
axis, not the y-axis. Several window sizing methods for the descriptor shape are used, including fixed
size and adaptive size [370].

Multi-view stereo systems are similar to stereo; however, the rectification stage may not be as
accurate, since motion between frames can include scaling, translation, and rotation. Since scale and

3D Depth Processing Method 27

rotation may have significant correspondence problems between frames, other approaches to feature
description have been applied to MVS, with better results. A few notable feature descriptor methods
applied to multi-view and wide baseline stereo include the MSER [160] method (also discussed in
Chap. 6), which uses a blob-like patch, and the SUSAN [135, 136] method (also discussed in Chap. 6),
which defines the feature based on an object region or segmentation with a known centroid or nucleus
around which the feature exists.

For structured light systems, the type of light pattern will determine the feature, and correlation of
the phase is a popular method [399]. For example, structured light methods that rely on phase-shift
patterns using phase correlation [397] template matching claim to be accurate to 1/100th of a pixel.
Other methods are also used for structured light correspondence to achieve subpixel accuracy [397].

Holes and Occlusion

When a pattern cannot be matched between frames, a hole exists in the depth map. Holes can also be
caused by occlusion. In either case, the depth map must be repaired, and several methods exist for
doing that. A hole map should be provided, showing where the problems are. A simple approach, then,
is to fill the hole and use bilinear interpolation within local depth map patches. Another simple
approach is to use the last known-good depth value in the depth map from the current scan line.

More robust methods for handling occlusion exist [401, 402] using more computationally expen-
sive but slightly more accurate methods, such as adaptive local windows to optimize the interpolation
region. Yet another method of dealing with holes is surface fusion into a depth volume [382] (covered
next), whereby multiple sequential depth maps are integrated into a depth volume as a cumulative
surface, and then a depth map can be extracted from the depth volume.

Surface Reconstruction and Fusion

A general method of creating surfaces from depth map information is surface reconstruction. Com-
puter graphics methods can be used for rendering and displaying the surfaces. The basic idea is to
combine several depth maps to construct a better surface model, including the RGB 2D image of the
surface rendered as a texture map. By creating an iterative model of the 3D surface that integrates
several depth maps from different viewpoints, the depth accuracy can be increased, occlusion can be
reduced or eliminated, and a wider 3D scene viewpoint is created.

The work of Curless and Levoy [382] presents a method of fusing multiple range images or depth
maps into a 3D volume structure. The algorithm renders all range images as iso-surfaces into the
volume by integrating several range images. Using a signed distance function and weighting factors
stored in the volume data structure for the existing surfaces, the new surfaces are integrated into the
volume for a cumulative best-guess at where the actual surfaces exist. Of course, the resulting surface
has several desirable properties, including reduced noise, reduced holes, reduced occlusion, multiple
viewpoints, and better accuracy (see Fig. 1.21).

28 1 2D/3D Image Capture and Representation

Raw Z depth map

v

Raw : Volume

- 6DOF pose via ICP |
XYZ vertex map & P XYZ vertex map &
Surface normal map * Surface normal map

*

Volume surface

integration 3D surface rendering
4
a. Method of volume integration, b. TSDF or truncated signed
6DOF camera pose, and surface distance function used to
rendering used in Kinect Fusion compute the zero-crossing at the
[279, 403]. estimated surface [382].

Fig. 1.21 (Right) The Curless and Levoy [382] method for surface construction from range images, or depth maps.
Shown here are three different weighted surface measurements projected into the volume using ray casting. (Left)
Processing flow of Kinect Fusion method

A derivative of the Curless and Levoy method applied to SLAM is the Kinect Fusion approach
[403], as shown in Fig. 1.22, using compute-intensive SIMD parallel real-time methods to provide not
only surface reconstruction, but also camera tracking and the 6DOF or 6-degrees-of-freedom camera
pose via surface alignment from frame to frame. Raytracing and texture mapping are used for surface
renderings. There are yet other methods for surface reconstruction from multiple images [407, 475].

Noise

Noise is another problem with depth sensors [339], and various causes include low illumination and, in
some cases, motion noise, as well as inferior depth-sensing algorithms or systems. Also, the depth
maps are often very fuzzy, so image preprocessing may be required, as discussed in Chap. 2, to reduce
apparent noise. Many prefer the bilateral filter for depth map processing [258], since it respects local
structure and preserves the edge transitions. In addition, other noise filters have been developed to
remedy the weaknesses of the bilateral filter, which are well suited to remove depth noise, including the
Guided Filter [413], which can perform edge-preserving noise filtering like the bilateral filter, the
Edge-Avoiding Wavelet method [415], and the Domain Transform filter [416].

Monocular Depth Processing

Monocular, or single sensor depth sensing, creates a depth map from pairs of image frames using the
motion from frame to frame to create the stereo disparity. The assumptions for stereo processing with a
calibrated fixed geometry between stereo pairs do not hold for monocular methods, since each time the
camera moves, the camera pose must be recomputed. Camera pose is a 6 degrees-of-freedom (6DOF)
equation, including x, y, and z linear motion along each axis and roll, pitch, and yaw rotational motion
about each axis. In monocular depth-sensing methods, the camera pose must be computed for each
frame as the basis for comparing two frames and computing disparity.

3D Depth Processing Method 29

Note that computation of the 6DOF matrix can be enhanced using inertial sensors, such as the
accelerometer and MEMS gyroscope [410], as the coarse alignment step, followed by visual feature-
based surface alignment methods discussed later in regard to optical flow. Since commodity inertial
sensors are standard with mobile phones and tablets, inertial pose estimation will become more
effective and commonplace as the sensors mature. While the accuracy of commodity accelerometers
is not very good, monocular depth-sensing systems can save compute time by taking advantage of the
inertial sensors for pose estimation. Monocular depth estimation using Vision Transformers has been
shown to improve the state of the art in voxel modeling, see Vision Transformers for Dense Prediction
René Ranftl Alexey Bochkovskiy Intel Labs rene.ranftl@intel.com Vladlen Koltun, 2021. See
Chap. 12 for details on View Synthesis for related depth estimation methods, including full 3D avatar
generation from monocular images and image sequences.

Multi-view Stereo

The geometry model for most monocular multi-view stereo (MVS) depth algorithms is based on
projective geometry and epipolar geometry; a good overview of both is found in the classic text by
Hartley and Zisserman [367]. A taxonomy and accuracy comparison of six MVS algorithms is
provided by Seitz et al. [406]. We look at a few representative approaches in this section.

Sparse Methods: PTAM

Sparse MVS methods create a sparse 3D point cloud, not a complete depth map. The basic goals for
sparse depth are simple: track the features from frame to frame, compute feature disparity to create
depth, and perform 6DOF alignment to localize the new frames and get the camera pose. Depending on
the application, sparse depth may be ideal to use as part of a feature descriptor to add invariance to
perspective viewpoint or to provide sufficient information for navigating that is based on a few key
landmarks in the scene. Several sparse depth-sensing methods have been developed in the robotics
community under the terms SLAM, SFM, and optical flow (discussed below).

However, we first illustrate sparse depth sensing in more detail by discussing a specific approach:
Parallel Tracking and Mapping (PTAM) [386, 387], which can both track the 6DOF camera pose and
generate a sparse depth map suitable for light-duty augmented reality applications, allowing avatars to
be placed at known locations and orientations in the scene from frame to frame. The basic algorithm
consists of two parts, which run in parallel threads: a tracking thread for updating the pose, and a
mapping thread for updating the sparse 3D point cloud. We provide a quick overview of each next.

The mapping thread deals with a history buffer of the last N keyframes and an N-level image
pyramid for each frame in a history buffer, from which the sparse 3D point cloud is continually refined
using the latest incoming depth features via a bundle adjustment process (which simply means fitting
new 3D coordinates against existing 3D coordinates by a chosen minimization method, such as the
Levenberg—Marquardt [332]). The bundle adjustment process can perform either a local adjustment
over a limited set of recent frames or global adjustment over all the frames during times of low scene
motion when time permits.

The tracking thread scans the incoming image frames for expected features, based on projecting
where known-good features last appeared, to guide the feature search, using the 6DOF camera pose as
a basis for the projection. A FAST9 [109] corner detector is used to locate the corners, followed by a
Shi—-Tomasi [128] non-maximal suppression step to remove weak corner candidates (discussed in

30 1 2D/3D Image Capture and Representation

Chap. 6 in more detail). The feature matching stage follows a coarse-to-fine progression over the image
pyramid to compute the 6DOF pose.

Target features are computed in new frames using an 8 x 8§ patch surrounding each selected corner.
Reference features are computed also as 8 x 8 patches from the original patch taken from the first-
known image where they were found. To align the reference and target patches prior to feature
matching, the surface normal of each reference patch is used for pre-warping the patch against the
last-known 6DOF camera pose, and the aligned feature matching is performed using zero-mean SSD
distance.

One weakness of monocular depth sensing shows up when there is a failure to localize; that is, if
there is too much motion, or illumination changes too much, the system may fail to localize and the
tracking stops. Another weakness is that the algorithm must be initialized entirely for a specific
localized scene or workspace, such as a desktop. For initialization, PTAM follows a five-point stereo
calibration method that takes a few seconds to perform with user cooperation. Yet another weakness is
that the size of the 3D volume containing the point cloud is intended for a small, localized scene or
workspace. However, on the positive side, the accuracy of the 3D point cloud is very good, close to the
pixel size; the pose is accurate enough for AR or gaming applications; and it is possible to create a 360°
perspective point cloud by walking around the scene. PTAM has been implemented on a mobile phone
[386] using modest compute and memory resources, with trade-offs for accuracy and frame rate.

rative surface alignment !
ution over Image Pyramid !
I

Fig. 1.22 Graphic representaion of the dense whole-image alignment solution of adjacent frames to obtain the 6DOF
camera pose using ESM [412]

Dense Methods: DTAM

Dense monocular depth sensing is quite compute-intensive compared to sparse methods, so the
research and development are much more limited. The goals are about the same as for sparse
monocular depth—namely, compute the 6DOF camera pose for image alignment, but create a dense
every-pixel depth map instead of a sparse point cloud. For illustration, we highlight key concepts from
a method for Dense Tracking and Mapping (DTAM), developed by Newcombe et al. [409].

While the DTAM goal is to compute dense depth at each pixel rather than sparse depth, DTAM
shares some of the same requirements with PTAM [387], since both are monocular methods. Both
DTAM and PTAM are required to compute the 6DOF pose for each new frame in order to align the
new frames to compute disparity. DTAM also requires a user-assisted monocular calibration method
for the scene, and it uses the PTAM calibration method. And DTAM is also intended for small,
localized scenes or workspaces. DTAM shares several background concepts taken from the Spherical
Mosaicking method of Lovegrove and Davison [411], including the concept of whole image align-
ment, based on the Efficient Second Order Minimization (ESM) method [412], which is reported to
find a stable surface alignment using fewer iterations than LK methods [388] as part of the process to
generate the 6DOF pose.

3D Depth Processing Method 31

Apparently, both DTAM and spherical Mosaicking use a spherical coordinate geometry model to
mosaic the new frames into the dense 3D surface proceeding from coarse to fine alignment over the
image pyramid to iterate toward the solution of the 6DOF camera pose change from frame to frame.
The idea of whole-image surface alignment is shown in Fig. 1.22. The new and existing depth surfaces
are integrated using a localized guided-filter method [413] into the cost volume. That is, the guided
filter uses a guidance image to merge the incoming depth information into the cost volume.

DTAM also takes great advantage of SIMD instructions and highly thread-parallel SIMT GPGPU
programming to gain the required performance necessary for real-time operation on commodity GPU
hardware.

Optical Flow, SLAM, and SFM

Optical flow measures the motion of features and patterns from frame to frame in the form of a
displacement vector. Optical flow is similar to sparse monocular depth-sensing methods, and it can be
applied to wide baseline stereo matching problems [393]. Since the field of optical flow research and its
applications is vast [389—-391], we provide only an introduction here with an eye toward describing the
methods used and features obtained.

Optical flow can be considered a sparse feature-tracking problem, where a feature can be considered
a particle [392], so optical flow and particle flow analysis are similar. Particle flow analysis is applied
to diverse particle field flow-analysis problems, including weather prediction, simulating combustion
and explosives, hydro-flow dynamics, and robot navigation. Methods exist for both 2D and 3D optical
flow. The various optical flow algorithms are concerned with tracking-feature descriptors or matrices,
rather than with individual scalars or pixels, within consecutive fields of discrete scalar values. For
computer vision, the input to the optical flow algorithms is a set of sequential 2D images and pixels, or
3D volumes and voxels, and the output is a set of vectors showing direction of movement of the
tracked features.

Many derivations and alternatives to the early Lucas Kanade (LK) method [388-391] are used for
optical flow (see [135] for example); however, this remains the most popular reference point, as it uses
local features in the form of correlation templates (as discussed in Chap. 6). Good coverage of the state-
of-the-art methods based on LK is found in Lucas Kanade 20 years on, by Baker and Matthews
[407]. The Efficient Second Order Minimization (ESM) method [412] is related to the LK method.
ESM is reported to be a stable solution using fewer iterations than LK. LK does not track individual
pixels; rather, it relies on the pixel neighborhood, such as a 3 x 3 matrix or template region, and tries to
guess which direction the features have moved, iteratively searching the local region and averaging the
search results using a least-squares solution to find the best guess.

While there are many variations on the LK method [389-391], key assumptions of most LK-derived
optical flow methods include small displacements of features from frame to frame, rigid features, and
sufficient texture information in the form of localized gradients in order to identify features. Various
methods are used to find the local gradients, such as Sobel and Laplacian (discussed in Chap. 2). Fields
with large feature displacements from frame to frame and little texture information are not well suited
to the LK method. That is because the LK algorithm ignores regions with little gradient information by
examining the eigenvalues of each local matrix to optimize the iterative solution. However, more
recent and robust research methods are moving beyond the limitations of LK [389, 390] and include
Deepflow [292], which is designed for deformable features and large displacement optical flow [321],
using multilayer feature scale hierarchies [295] similar to convolutional networks [288].

Applications of surface reconstruction to localization and mapping are used in simultaneous
localization and mapping (SLAM) and in structure from motion (SFM) methods—for example, in

32 1 2D/3D Image Capture and Representation

robotics navigation. One goal of SLAM is to localize, or find the current position and the 6DOF camera
pose. Another goal is to create a local region map, which includes depth. To dig deeper into SLAM and
SFM methods, see the historical survey by Bailey and Durrant-Whyte [404, 405].

3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds

Depth information is represented and stored in a variety of convertible formats, depending on the
intended use. We summarize here some common formats; see also Fig. 1.23.

Fig. 1.23 Various 3D depth formats. Renderings of a Zernike polynomial. (Left to right): A depth map, a polygon mesh
rendering using 3D quads, a point cloud rendering equivalent of voxels

The ability to convert between depth formats is desirable for different algorithms and easy to
do. Common 3D depth formats include:

+ 2D Pixel Array, 3D Depth Map: A 2D pixel array is the default format for 2D images in memory,
and it is the natural storage format for many processing operations, such as convolution and
neighborhood filtering. For depth map images, the pixel value is the Z, or depth value. Each
point in the array may contain {color, depth}.

* 3D Voxel Volume: A 3D volumetric data structure composed of a 3D array of voxels is ideal for
several algorithms, including depth map integration for 3D surface reconstruction and raytracing of
surfaces for graphical renderings. A voxel is a volume element, like a pixel is a picture element. Each
voxel may contain {color, normal}; the depth coordinates are implicit from the volume structure.

* 3D Polygon Mesh: Storing 3D points in a standard 3D polygon mesh provides a set of connected
points or vertices, each having a surface normal, 3D coordinates, color, and texture. Mesh formats
are ideal for rendering surfaces in a GPU pipeline, such as OpenGL or DirectX. Each point in the
mesh may contain {x, y, z, color, normal} and is associated with neighboring points in a standard
pattern such as a quad or triangle describing the surface.

+ 3D Point Cloud: This is a sparse structure that is directly convertible to a standard 3D polygon
mesh. The point cloud format is ideal for sparse monocular depth-sensing methods. Each point in
the cloud may contain {x, y, z, color, normal}.

The Sapiens family of 3D human models by Khirodkar et. al [1027] as the authors state:
“Sapiens... supports four fundamental human-centric vision tasks: 2D pose estimation, body-part
segmentation, depth estimation, and surface normal prediction.” These models train on 2D images, can
be fine-tuned for specific images, and are available on Hugging Face, as provided by Meta Labs. Also,
Apple provides the Depth Pro Monocular Depth Mapping model [1028] from Bockkovshi et. al, which
is accelerated to real time using the Mx family of Neural Processors in the SOC.

Learning Assignments 33

Summary

In this chapter, we survey image sensing methods and sensor image processing methods as the first step
in the vision pipeline. We cover the image sensor technologies available, with an eye toward image
preprocessing that may be useful for getting the most from the image data, since image sensoring
methods often dictate the image preprocessing required. (More discussion on image preprocessing is
provided in Chap. 2.) Sensor configurations used for both 2D and 3D imaging were discussed, as well
as a wide range of camera configurations used for computational imaging to create new images after
the data are captured, such as HDR images and image refocusing. Depth imaging approaches are
covered here as well, and include stereo and time of flight, since mobile devices are increasingly
offering 3D depth camera technology for consumer applications. Depth maps can be used in computer
vision to solve many problems, such as 3D feature description and 3D image segmentation of
foreground and background objects. The topic of 3D depth processing and 3D features is followed
throughout this book; Chap. 6 covers 3D feature descriptors, and Chap. 7 and Appendix B cover 3D
ground truth data.

Learning Assignments

1. Name at least two types of semiconductor materials used to create imaging sensors and discuss the
trade-offs between each sensor material from a manufacturing perspective, and from an end user
perspective.

2. Discuss the visible RGB, IR, and UV wavelength response curve of silicon imaging sensors and

optionally draw a diagram showing the spectral responses.

. Name at least one material that can be used as a near-IR filter for a silicon image sensor.

4. Discuss dynamic range in camera systems, bits per pixel, and when dynamic range becomes
critical.

5. Discuss color cell mosaic patterns on image sensors, and some of the implications of the patterns
for assembling the cells into color pixels. For example, silicon cell size and arrangement.

6. Describe how color de-mosaicking algorithms work.

7. Describe a range of camera and image sensor calibrations, and how they are established.

8. Name a few sensor calibration adjustments that must be made to the image sensor color cell data
after sensor readout, prior to assembling the color cells into RGB pixels.

9. Discuss a few types of corrections that must be made to the assembled pixels after they are
assembled from the image sensor.

10. Describe how to compose a high dynamic range (HDR) image from several image frames.

11. Describe how to compute the data rate to read out pixels from an RGB camera, assuming each
RGB component contains 16 bits, the frame rate is 60 frames per second, and the frame size is
7680 x 4320 pixels (UHDTV).

12. Describe at a high level at least three methods for computing depth from camera images, including
stereo, multi-view stereo, structured or coded light, and time of flight sensors.

13. Discuss the trade-offs between stereo depth sensing and monocular depth sensing.

14. Discuss the basic steps involved in stereo algorithms, such as image rectification and alignment,
and other steps.

15. Describe structured light patterns, and how they work.

16. Describe how the Horopter region and Panum’s area affect depth sensing.

(O]

34

17.

18.
19.
20.
21.

22.

1 2D/3D Image Capture and Representation

Discuss problems created by occlusion in stereo processing, such as holes in the stereo field, and
how the problems can be solved.

Describe how 2D surface fusion of several images can be performed using a 3D voxel buffer.
Discuss how monocular depth sensing is similar to stereo depth sensing.

Describe the calibration parameters for a stereo camera system, including baseline.

Describe how to compute the area a pixel covers in an image at a given distance from the
camera. HINT: camera sensor resolution is one variable.

Discuss voxels, depth maps, and point clouds.

t')

Check for
updates

1 entered, and found Captain Nemo deep in algebraical calculations of x and other quantities.
—Jules Verne, 20,000 Leagues Under The Sea

This chapter describes the methods used to prepare images for further analysis, including interest point
and feature extraction. The focus is on image preprocessing for computer vision, so we do not cover the
entire range of image processing topics applied to areas such as computational photography and photo
enhancements, so we refer the interested reader to various other standard resources in Digital Image
Processing and Signal Processing as we go along [4, 9, 276, 277], and we also point out interesting
research papers that will enhance understanding of the topics.

Note
Readers with a strong background in image processing may benefit from a light reading of this chapter.

Perspectives on Image Processing

Image processing is a vast field that cannot be covered in a single chapter. So why do we discuss image
preprocessing in a book about computer vision? The reason is that image preprocessing is typically
ignored in discussions of feature description. Some general image processing topics are covered here in
light of feature description, intended to illustrate rather than to proscribe, as applications and image
data will guide the image preprocessing stage.

Some will argue that image preprocessing is not a good idea, since it distorts or changes the true
nature of the raw data. However, intelligent use of image preprocessing can provide benefits and solve
problems that ultimately lead to better local and global feature detection. We survey common methods
for image enhancements and corrections that will affect feature analysis downstream in the vision
pipeline in both favorable and unfavorable ways, depending on how the methods are employed.

Image preprocessing may have dramatic positive effects on the quality of feature extraction and the
results of image analysis. Image preprocessing is analogous to the mathematical normalization of a
data set, which is a common step in many feature descriptor methods. Or to make a musical analogy,
think of image preprocessing as a sound system with a range of controls, such as raw sound with no
volume controls; volume control with a simple tone knob; volume control plus treble, bass, and mid; or
volume control plus a full graphics equalizer, effects processing, and great speakers in an acoustically
superior room. In that way, this chapter promotes image preprocessing by describing a combination of
corrections and enhancements that are an essential part of a computer vision pipeline.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 35
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_2&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_2#DOI

36 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Problems to Solve During Image Preprocessing

Raw image data directly from a camera may have a variety of problems, as discussed in Chap. 1, and
therefore it is not likely to produce the best computer vision results. This is why careful consideration
of image preprocessing is fundamental. For example, a local binary descriptor using gray scale data
will require different preprocessing than will a color SIFT algorithm; additionally, some exploratory
work is required to fine-tune the image preprocessing stage for best results. We explore image
preprocessing by following the vision pipelines of four fundamental families of feature description
methods, with some examples, as follows:

. Local Binary Descriptors (LBP, ORB, FREAK, others)

. Spectra Descriptors (SIFT, SURF, others)

. Basis Space Descriptors (FFT, wavelets, others)

. Polygon Shape Descriptors (blob object area, perimeter, centroid)

AW N~

These families of feature description metrics are developed into a taxonomy in Chap. 5. Before that,
though, Chap. 4 discusses feature descriptor building concepts, while Chap. 3 covers global feature
description and then Chap. 6 surveys local feature description. The image preprocessing methods and
applications introduced here are samples, but a more developed set of examples, following various
vision pipelines, is developed in Chap. 8, including application-specific discussions of the
preprocessing stage.

Vision Pipelines and Image Preprocessing
Table 2.1 lists common image preprocessing operations, with examples from each of the four

descriptor families, illustrating both differences and commonality among these image preprocessing
steps, which can be applied prior to feature description.

Table 2.1 Possible image preprocessing enhancements and corrections as applied to different vision pipelines

Local binary (LBP, | Spectra (SIFT, Basis space (FFT, Polygon shape (Blob
Image preprocessing ORB) SURF) Codebooks) Metrics)
Illumination X X X X
corrections
Blur and focus X X X X
corrections
Filtering and noise X X X X
removal
Thresholding X
Edge enhancements X X
Morphology X
Segmentation X
Region processing and X X X
filters
Point processing X
Math and statistical X X
processing
Color space X X X
conversions

Problems to Solve During Image Preprocessing 37

Local binary features deal with the pixel intensity comparisons of point-pairs. This makes the
comparisons relatively insensitive to local illumination, brightness, and contrast, so there may not be
much need for image preprocessing to achieve good results. Current local binary pattern methods as
described in the literature do not typically call for much image preprocessing; they rely on a simple
local comparison threshold that can be adjusted to account for illumination or contrast.

Spectra descriptors, such as SIFT (which acts on local region gradients) and SURF (which uses
HAAR-like features with integrated pixel values over local regions), offer diverse preprocessing
opportunities. Methods that use image pyramids often perform some image preprocessing on the
image pyramid to create a scale space representation of the data using Gaussian filtering to smooth the
higher levels of the pyramid. Basic illumination corrections and filtering may be useful to enhance the
image prior to computing gradients—for example, to enhance the contrast within a band of intensities
that likely contain gradient-edge information for the features. But in general, the literature does not
report good or bad results for any specific methods used to preprocess the image data prior to feature
extraction, and therein resides the opportunity.

Basis space features are usually global or regional, spanning a regular shaped such as a Fourier
transform computed over the entire image or block. However, basis space features may be part of the
local features, such as the Fourier spectrum of the LBP histogram, which can be computed over
histogram bin values of a local descriptor to provide rotational invariance. Another example is the
Fourier descriptor used to compute polygon factors for radial line segment lengths showing the
roundness of a feature to provide rotational invariance. See Chap. 3, especially Fig. 3.20.

The most complex descriptor family is the polygon shape-based descriptors, which potentially
require several image preprocessing steps to isolate the polygon structure and shapes in the image for
measurement. Polygon shape description pipelines may involve everything from image enhancements
to structural morphology and segmentation techniques. Setting up the preprocessing for polygon
feature shape extraction typically involves more work than any other method, since thresholds and
segmentation require fine-tuning to achieve good results. Also note that polygon shape descriptors are
not local patterns but, rather, larger regional structures with features spanning many tens and even
hundreds of pixels, so the processing can be more intensive as well.

In some cases, image preprocessing is required to correct problems that would otherwise adversely
affect feature description; we look at this next.

Corrections

During image preprocessing, there may be artifacts in the images that should be corrected prior to
feature measurement and analysis. Here are various candidates for correction.

* Sensor corrections. Discussed in Chap. 1, these include dead pixel correction, geometric lens
distortion, and vignetting.

+ Lighting corrections. Lighting can introduce deep shadows that obscure local texture and struc-
ture; also, uneven lighting across the scene might skew results. Candidate correction methods
include rank filtering, histogram equalization, and LUT remap.

* Noise. This comes in many forms and may need special image preprocessing. There are many
methods to choose from, some of which are surveyed in this chapter.

* Geometric corrections. If the entire scene is rotated or taken from the wrong perspective, it may be
valuable to correct the geometry prior to feature description. Some features are more robust to
geometric variation than others, as discussed in Chaps. 4—6.

38 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

+ Color corrections. It can be helpful to redistribute color saturation or correct for illumination
artifacts in the intensity channel. Typically, color hue is one of the more difficult attributes to
correct, and it may not be possible to correct using simple gamma curves and the SRGB color space.
We cover more accurate colorimetry methods later in this chapter.

Enhancements

Enhancements are used to optimize for specific feature measurement methods, rather than fix
problems. Familiar image processing enhancements include sharpening and color balancing. Here
are some general examples of image enhancement with their potential benefits to feature description.

* Scale-space pyramids. When a pyramid is constructed using an octave scale (or a non-octave scale
interval) and pixel decimation to subsample images to create the pyramid, subsampling artifacts and
jagged pixel transitions are introduced. Part of the scale-space pyramid building process involves
applying a Gaussian blur filter to the subsampled images, which removes the jagged artifacts. Also,
anti-aliased scaling is available in the GPU hardware.

* Illumination. In general, illumination can always be enhanced. Global illumination can be
enhanced using simple LUT remapping and pixel point operations and histogram equalizations,
and pixel remapping. Local illumination can be enhanced using gradient filters, local histogram
equalization, and rank filters.

* Blur and focus enhancements. Many well-known filtering methods for sharpening and blurring
may be employed at the preprocessing stage. For example, to compensate for pixel aliasing artifacts
introduced by rotation that may manifest as blurred pixels which obscure fine detail, sharpen filters
can be used to enhance the edge features prior to gradient computations. Or, conversely, the rotation
artifacts may be too strong and can be removed by blurring.

In any case, the preprocessing enhancements or corrections are dependent on the descriptor using
the images and the application.

Preparing Images for Feature Extraction

Each family of feature description methods has different goals for the preprocessing stage of the
pipeline. Let us look at a few examples from each family here and examine possible image
preprocessing methods for each.

Local Binary Family Preprocessing

The local binary descriptor family is primarily concerned with point-pair intensity value comparisons,
and several point-pair patterns are illustrated in Chap. 4 for common methods such as FREAK,
BRISK, BRIEF, and ORB. As illustrated in Fig. 2.1, the comparative difference (<, >, =) between
points is all that matters, so hardly any image preprocessing seems needed. Based on this discussion,
here are two approaches for image preprocessing:

Problems to Solve During Image Preprocessing 39

1. Preserve pixels as is. Do nothing except use a pixel value-difference compare threshold, such as
done in the Census transform and other methods, since the threshold takes care of filtering noise and
other artifacts.

if (|point]l — point2| > threshold)

2. Use filtering. In addition to using the compare threshold, apply a suitable filter to remove local
noise, such as a smoothing or rank filter. Or, take the opposite approach and use a sharpen filter to
amplify small differences, perhaps followed by a smoothing filter. Either method may prove to
work, depending on the data and application.

Figure 2.1 uses center-neighbor point-pair comparisons in a 3 X 3 local region to illustrate the
difference between local threshold and a preprocessing operation for the local binary pattern LBP, as
follows:

» Left image: Original unprocessed local 3 x 3 region data; compare threshold = 5, dark pixels > 5
from center pixel.

+ Left center image: Compare threshold = 10; note pattern shape is different simply by changing the
threshold.

* Right center image: After a Laplacian sharpening filter is applied to 3 % 3 region, note that the center
pixel value is changed from 52 to 49, so with the compare threshold set to 5 the pattern is now
different from original on the left.

» Right image: Threshold on Laplacian filtered data set to 10; note different resulting binary patterns.

35 53 59 35 53 59 35 53 59 35 53 59
38 52 47 38 52 47 38 49 47 38 49 47
48 60 51 48 60 51 48 60 51 48 60 51

Fig. 2.1 How the LBP can be affected by preprocessing, showing the compare threshold value effects. (Left) Compare
threshold = 5. (Center left) Compare threshold = 10. (Center right) Original data after Laplacian filter applied. (Right)
Compare threshold = 5 on Laplacian filtered data

Spectra Family Preprocessing
Due to the wide range of methods in the spectra category, it is difficult to generalize the potential
preprocessing methods that may be useful. For example, SIFT is concerned with gradient information
computed at each pixel. SURF is concerned with combinations of HAAR wavelets or local rectangular
regions of integrated pixel values, which reduces the significance of individual pixel values.

For the integral image-based methods using HAAR-like features such as SURF and Viola Jones,
here are a few hypothetical preprocessing options.

1. Do nothing. HAAR features are computed from integral images simply by summing local region
pixel values; no fine structure in the local pixels is preserved in the sum, so one option is to do
nothing for image preprocessing.

2. Noise removal. This does not seem to be needed in the HAAR preprocessing stage, since the
integral image summing in local regions has a tendency to filter out noise.

40 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

3. Illumination problems. This may require preprocessing; for example, contrast enhancement may
be a good idea if the illumination of the training data is different from the current frame. One
preprocessing approach in this situation is to compute a global contrast metric for the images in the
training set, and then compute the same global contrast metric in each frame and adjust the image
contrast if the contrast diverges beyond a threshold to get closer to the desired global contrast
metric. Methods for contrast enhancement include LUT remapping, global histogram equalization,
and local adaptive histogram equalization.

4. Blur. If blur is a problem in the current frame, it may manifest similar to a local contrast problem, so
local contrast enhancement may be needed, such as a sharpen filter. Computing a global statistical
metric such as an SDM as part of the ground truth data to measure local or global contrast may be
useful; if the current image diverges too much in contrast, a suitable contrast enhancement may be
applied as a preprocessing step.

Note in Fig. 2.2 that increasing the local-region contrast results in larger gradients and more
apparent edges. A feature descriptor that relies on local gradient information is affected by the local
contrast.

Fig. 2.2 The effects of local contrast on gradients and edge detection: (Left) Original image and Sobel edges. (Right)
Contrasted adjusted image to amplify local region details and resulting Sobel edges

For the SIFT-type descriptors that use local area gradients, preprocessing may be helpful to enhance
the local gradients prior to computation, so as to affect certain features:

1. Blur. This will inhibit gradient magnitude computation and may make it difficult to determine
gradient direction, so perhaps a local rank filter, high-pass filter, or sharpen filter should be
employed.

2. Noise. This will exacerbate local gradient computations and make them unreliable, so perhaps
applying one of several existing noise-removal algorithms can help.

3. Contrast. If local contrast is not high enough, gradient computations are difficult and unreliable.
Perhaps a local histogram equalization, LUT remap, rank filter, or even a sharpen filter can be
applied to improve results.

Basis Space Family Preprocessing

It is not possible to generalize image preprocessing for basis space methods, since they are quite
diverse, according to the taxonomy we are following in this work. As discussed in Chaps. 46, basis
space methods include Fourier, wavelets, visual vocabularies, KTL, and others. However, here we
provide a few general observations on preprocessing.

Problems to Solve During Image Preprocessing Y

1. Fourier Methods, Wavelets, Slant transform, Walsh Hadamard, KLT. These methods trans-
form the data into another domain for analysis, and it is hard to suggest any preprocessing without
knowing the intended application. For example, computing the Fourier spectrum produces magni-
tude and phase, and phase is shown to be useful in feature description to provide invariance to blur,
as reported in the LPQ linear phase quantization method described in Chap. 6, so a blurry image
may not be a problem in this case.

2. Sparse coding and visual vocabularies. These methods which employ local feature descriptors,
which could be SURF, SIFT, LBP, or any other desired feature, are derived from pixels in the
spatial domain. Therefore, the method for feature description will determine the best approach for
preprocessing. For example, methods that use correlation and raw pixel patches as sparse codes may
not require any preprocessing. Or perhaps some minimal preprocessing can be used, such as
illumination normalization to balance contrast, local histogram equalization, or a LUT contrast
remap.

In Fig. 2.3, the contrast adjustment does not have much effect on Fourier methods, since there is no
dominant structure in the image. Fourier spectrums typically reveal that the dominant structure and
power is limited to lower frequencies that are in the center of the quadrant-shifted 2D plot. For images
with dominant structures, such as lines and other shapes, the Fourier power spectrum will show the
structure and perhaps preprocessing may be more valuable. Also, the Fourier power spectrum display
is scaled to a logarithmic value and does not show all the details linearly, so a linear spectrum rendering
might show the lower frequencies scaled and magnified better for erase of viewing.

Fig. 2.3 In this example, no benefit is gained from preprocessing as shown in the Fourier spectrum; (Left) Before.
(Right) After contrast adjusting the input image

Polygon Shape Family Preprocessing

Polygon shapes are potentially the most demanding features when considering image preprocessing
steps, since as shown in Table 2.1, the range of potential preprocessing methods is quite large and the
choice of methods to employ is very data-dependent. Possibly because of the challenges and intended
use-cases for polygon shape measurements, they are used only in various niche applications, such as
cell biology.

One of the most common methods employed for image preparation prior to polygon shape
measurements is to physically correct the lighting and select the subject background. For example,
in automated microscopy applications, slides containing cells are prepared with florescent dye to
highlight features in the cells, then the illumination angle and position are carefully adjusted under
magnification to provide a uniform background under each cell feature to be measured; the resulting
images are then much easier to segment.

42 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.4 Use of thresholding to solve problems during image preprocessing to prepare images for polygon shape
measurement: (Left) Original image. (Center) Thresholded red channel image. (Right) Perimeter tracing above a
threshold

Fig. 2.5 Another sequence of morphological preprocessing steps preceding polygon shape measurement: (Left)
Original image. (Center) Range thresholded and dilated red color channel. (Right) Morphological perimeter shapes
taken above a threshold

As illustrated in Figs. 2.4 and 2.5, if the preprocessing is wrong, the resulting shape feature
descriptors are not very useful. Next we list some of the more salient options for preprocessing prior
to shape-based feature extraction, then we will survey a range of other methods later in this chapter.

1. INlumination corrections. Typically critical for defining the shape and outline of binary features.
For example, if perimeter tracking or boundary segmentation is based on edges or thresholds,
uneven illumination will cause problems, since the boundary definition becomes indistinct. If the
illumination cannot be corrected, then other segmentation methods not based on thresholds are
available, such as texture-based segmentation.

2. Blur and focus corrections. Perhaps not as critical as illumination for polygon shape detection,
since the segmentation of object boundary and shape is less sensitive to blur.

3. Filtering and noise removal. Shape detection is somewhat tolerant of noise, depending on the
type of noise. Shot noise or spot noise may not present a problem and is easily removed using
various noise-cleaning methods.

4. Thresholding. This is critical for polygon shape detection methods. Many thresholding methods
are employed, ranging from the simple binary thresholding to local adaptive thresholding methods
discussed later in this chapter. Thresholding is a problematic operation and requires algorithm
parameter fine-tuning in addition to careful control of the light source position and direction to deal
with shadows.

5. Edge enhancements. May be useful for perimeter contour definition.

The Taxonomy of Image Processing Methods 43

6. Morphology. One of the most common methods employed to prepare polygon shapes for
measurement, covered later in this chapter in some detail. Morphology is used to alter the shapes,
presumably for the better, mostly by combinations or pipelines of erosion and dilation operations,
as shown in Fig. 2.5. Morphological examples include object area boundary cleanup, spur
removal, and general line and perimeter cleanup and smoothing.

7. Segmentation. These methods use structure or texture in the image, rather than threshold, as a
basis for dividing an image into connected regions or polygons. A few common segmentation
methods are surveyed later in this chapter.

8. Area/Region processing. Convolution filter masks such as sharpen or blur, as well as statistical
filters such as rank filters or media filters, are potentially useful prior to segmentation.

9. Point processing. Arithmetic scaling of image data point by point, such as multiplying each pixel
by a given value followed by a clipping operation, as well as LUT processing, often is useful prior
to segmentation.

10. Color space conversions. Critical for dealing accurately with color features, covered later in this
chapter.

As shown in Fig. 2.4, a range thresholding method uses the red color channel, since the table
background has a lot of red color and can be thresholded easily in red to remove the table top. The
image is thresholded by clipping values outside an intensity band; note that the bottom right USB stick
is gone after thresholding, since it is red and below the threshold. Also note that the bottom center
white USB stick is also mostly gone, since it is white (max RGB values) and above the threshold. The
right image shows an attempt to trace a perimeter above a threshold; it is still not very good, as more
preprocessing steps are needed.

The Taxonomy of Image Processing Methods

Before we survey image preprocessing methods, it is useful to have a simple taxonomy to frame the
discussion. The taxonomy suggested is a set of operations, including point, line, area, algorithmic, and
data conversions, as illustrated in Fig. 2.6. The basic categories of image preprocessing operations
introduced in Table 2.1 fit into this simple taxonomy. Note that each stage of the vision pipeline,
depending on intended use, may have predominant tasks and corresponding preprocessing operations.

Vision Pipeline Stage Operation
| Sensor Processing Point ‘
| Image Pre-Processing Line ‘
| Global Metrics Area |
| Local Feature Metrics Algorithmic ‘
| Classification, Learning Data conversion |
| Augment, Render, Control Math ‘

Fig. 2.6 Simplified, typical image processing taxonomy, as applied across the vision pipeline

44 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

We provide a brief introduction to the taxonomy here, followed by a more detailed discussion in
Chap. 5. Note that the taxonomy follows memory layout and memory access patterns for the image
data. Memory layout particularly affects performance and power.

Point

Point operations deal with 1 pixel at a time, with no consideration of neighboring pixels. For example,
point processing operations can be divided into math, Boolean, and pixel value compare substitution
sections, as shown in Table 2.2 in the section later on “Point Filtering.” Other point processing
examples include color conversions and numeric data conversions.

Line

Line operations deal with discrete lines of pixels or data, with no regard to prior or subsequent lines.
Examples include the FFT, which is a separable transform, where pixel lines and columns can be
independently processed in parallel as 1D FFT line operations. If an algorithm requires lines of data,
then optimizations for image preprocessing memory layout, pipelined read/write, and parallel
processing can be made. Optimizations are covered in Chap. 8.

Area

Area operations typically require local blocks of pixels—for example, spatial filtering via kernel
masks, convolution, morphology, and many other operations. Area operations generate specific
types of memory traffic and can be parallelized using fine-grained methods such as common shaders
in graphics processors and coarse-grained thread methods.

Algorithmic

Some image preprocessing methods are purely serial or algorithmic code. It is difficult or even
impossible to parallelize these blocks of code. In some cases, algorithmic blocks can be split into a
few separate threads for coarse-grained parallelism or else pipelined, as discussed in Chap. 8.

Data Conversions

While the tasks are mundane and obvious, significant time can be spent doing simple data conversions.
For example, integer sensor data may be converted to floating point for geometric computations or
color space conversions. Data conversions are a significant part of image preprocessing in many cases.
Example conversions include:

+ Integer bit-depth conversions (8/16/32/64)

* Floating point conversions (single precision to double precision)
» Fixed point to integer or float

* Any combination of float to integer and vice versa

Colorimetry 45

+ Color conversions to and from various color spaces
+ Conversion for basis space compute, such as integer to and from float for FFT

Design attention to data conversions and performance are in order and can provide a good return on
investment, as discussed in Chap. 8.

Colorimetry

In this section, we provide a brief overview of color science to guide feature description, with attention
to color accuracy, color spaces, and color conversions. If a feature descriptor is using color, then the
color representation and processing should be carefully designed, accurate, and suited to the applica-
tion. For example, in some applications it is possible to recognize an object using color alone, perhaps
recognizing an automobile using its paint color, assuming that the vendor has chosen a unique paint
color each year for each model. By combining a color descriptor (see Refs. [805—807], especially van
de Weijer and Schmidt [808]) with another simple feature, such as shape, an effective multivariate
descriptor can be devised.

Color Science is a well-understood field defined by international standards and amply described in
the literature [211-213]. We list only a few resources here.

+ The Rochester Institute of Technology’s Munsel Color Science Laboratory is among the leading
research institutions in the area or color science and imaging. It provides a wide range of resources
and has strong ties to industry imaging giants such as Kodak, Xerox, and others.

* The International Commission on Illumination (CIE) provides standard illuminant data for a range
of light sources as it pertains to color science, as well as standards for the well-known color spaces
CIE XYZ, CIE Lab, and CIE Luv.

* The ICC International Color Consortium provides the ICC standard color profiles for imaging
devices, as well as many other industry standards, including the sRGB color space for color
displays.

* Proprietary color management systems, developed by industry leaders, include the Adobe CMM
and Adobe RGB, Apple ColorSync, and HP ColorSmart; perhaps the most advanced is Microsoft’s
Windows Color System, which is based on Canon’s earlier Kyuanos system using on CIECAMO2.

Overview of Color Management Systems

A full-blown color management system may not be needed for a computer vision application, but the
methods of color management are critical to understand when you are dealing with color. As illustrated
in Fig. 2.7, a color management system converts colors between the device color spaces, such as RGB
or SRGB, to and from a colorimetric color space, such as CIE Luv, Lab, Jch, or Jab, so as to perform
color gamut mapping. Since each device can reproduce color only within a specific gamut or color
range, gamut mapping is required to convert the colors to the closest possible match, using the
mathematical models of each color device.

46 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Camera " Printer
RGB Gamut CMYK
Device Mapping Device
Model Model

Display

sRGB

Device

Model

Fig. 2.7 Color management system with an RGB camera device model, SRGB display device model, CMYK printer
device model, gamut mapping module, and an illuminant model

Illuminants, White Point, Black Point, and Neutral Axis

An illuminant is a light source such as natural light or a fluorescent light, defined as the white point
color by its spectral components and spectral power or color temperature. The white point color value
in real systems is never perfectly white and is a measured quantity. The white point value and the
oppositional black point value together define the endpoints of the neutral axis (gray scale intensity) of
the color space, which is not a perfectly straight color vector.

Color management relies on accurate information and measurements of the light source, or the
illuminant. Color cannot be represented without accurate information about the light source under
which the color is measured, since color appears different under florescent light versus natural light,
and so on. The CIE standards define several values for standard illuminants, such as D65, shown in
Fig. 2.8.

Colorimetry 47

. . 0.9+
White Point

]) 08 £
Saturation
red T

074

green

Hue Angle

0.6

500
0.51

0.4

Neutral Axis

0.31

.) 1 02 03 04 05 06 07 08
Black Point p

Fig. 2.8 (Left) Representation of a color space in three dimensions, neutral axis for the amount of white, hue angle for
the primary color, and saturation for amount of color present. (Right) CIE XYZ chromaticity diagram showing values of
the standard illuminant D65 OE as the white point, and the color primaries for R, G, and B

Device Color Models

Real devices like printers, displays, and cameras conventionally reproduce colors as compared against
standard color patches that have been measured using calibrated light sources and spectrographic
equipment—for example, the widely used Munsel color patches that define color in terms hue, value,
and chroma (HVC) against standard illuminants. In order to effectively manage colors for a given
device, a mathematical model or device color model must be created for each device, defining the
anomalies in the device color gamut and its color gamut range.

For the color management system to be accurate, each real device must be spectrally characterized
and modeled in a laboratory to create a mathematical device model, mapping the color gamut of each
device against standard illumination models. The device model is used in the gamut transforms
between color spaces.

Devices typically represent color using the primary and secondary colors RGB and CYMK. RGB is
a primary, additive color space; starting with black, the RGB color primaries red, green, and blue are
added to create colors. CYMK is a secondary color space, since the color components cyan, yellow,
and magenta, are secondary combinations of the RGB primary colors; cyan = green plus blue,
magenta = red plus blue, and yellow = red plus green. CYMK is also a subtractive color space,
since the colors are subtracted from a white background to create specific colors.

Color Spaces and Color Perception

Colorimetric spaces represent color in abstract terms such as lightness, hue or color, and color
saturation. Each color space is designed for a different reason, and each color space is useful for
different types of analysis and processing. Examples of simple color spaces include HSV (hue,
saturation, value) and HVC (hue, value, chroma). In the case of the CIE color spaces, the RGB
color components are replaced by the standardized value CIE XYZ components as a basis for defining
the CIE Luv and CIE Lab color spaces.

48 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

At the very high end of color science, we have the more recent CIECAMO02 color models and color
spaces such as Jch and Jab. CIECAMO2 goes beyond just the colorimetry of the light source and the
color patch itself to offer advanced color appearance modeling considerations that include the
surroundings under which colors are measured [211, 216].

While CIECAMO2 may be overkill for most applications, it is worth some study. Color perception
varies widely based on the surrounding against which the colors are viewed, the spectrum and angles of
combined direct and ambient lighting, and the human visual system itself, since people do not all
perceive color in the same way.

Gamut Mapping and Rendering Intent

Gamut mapping is the art and science of converting color between two color spaces and getting the best
fit. Since the color gamuts of each device are different, gamut mapping is a challenge, and there are
many different algorithms in use, with no clear winner. Depending on the intent of the rendering,
different methods are useful—for example, gamut mapping from camera color space to a printer color
space is different from mapping to an LCD display for viewing.

The CAMO2 system provides a detailed model for guidance. For example, a color imaging device
may capture the color blue very weakly, while a display may be able to display blue very well. Should
the color gamut fitting method use color clipping or stretching? How should the difference between
color gamuts be computed? Which color space? For an excellent survey of over 90 gamut mapping
methods, see the work of Morovic [214].

In Fig. 2.9 (left image), the SRGB color space is shown as fitting inside the Adobe RGB color space,
illustrating that SRGB does not cover a gamut as wide as Adobe RGB. Each color gamut reproduces
color differently, and each color space may be linear or warped internally. The right image in Fig. 2.9
illustrates one gamut mapping method to determine the nearest color common to both color gamuts,
using Euclidean distance and clipping; however, there are many other gamut mapping distance
methods as well. Depending on the surrounding light and environment, color perception changes
further complicating gamut mapping.

Lightness

Nearest Color
in destination
gamut

’ @« True Color,

outside
gamut

100

L.
-

0 50

400 ST 80 sReB-sald Color Saturation
b* a Adobe RGB - wireframe

Fig. 2.9 The central problem of gamut mapping: (Left) Color sSRGB and Adobe RGB color gamuts created using
Gamutvision software. (Right) Gamut mapping details

Colorimetry 49

In gamut mapping, there is a source gamut and a destination gamut. For example, the source could
be a camera and the destination could be an LCD display. Depending on the rendering intent of the
gamut conversion, different algorithms have been developed to convert color from source to destina-
tion gamuts. Using the perceptual intent, color saturation is mapped and kept within the boundaries of
the destination gamut in an effort to preserve relative color strength; and out-of-gamut colors from the
source are compressed into the destination gamut, which allows for a more reversible gamut map
translation. Using the colorimetric intent, colors may be mapped straight across from source to
destination gamut, and colors outside the destination gamut are simply clipped.

A common method of color correction is to rely on a simple gamma curve applied to the intensity
channel to help the human eye better visualize the data, since the gamma curve brightens up the dark
regions and compresses the light regions of the image, similar to the way the human visual system
deals with light and dark regions. However, gamut correction bears no relationship to the true sensor
data, so a calibrated, colorimetrically sound approach is recommended instead.

Practical Considerations for Color Enhancements

For image preprocessing, the color intensity is usually the only color information that should be
enhanced, since the color intensity alone carries a lot of information and is commonly used. In
addition, color processing cannot be easily done in RGB space while preserving relative color. For
example, enhancing the RGB channels independently with a sharpen filter will lead to Moiré fringe
artifacts when the RGB channels are recombined into a single rendering. So to sharpen the image, first
forward-convert RGB to a color space such as HSV or YIQ, then sharpen the V or Y component, and
then inverse-convert back to RGB. For example, to correct illumination in color, standard image
processing methods such as LUT remap or histogram equalization will work, provided they are
performed in the intensity space.

As a practical matter, for quick color conversions to gray scale from RGB, here are a few methods.
(1) The G color channel is a good proxy for gray scale information, since as shown in the sensor
discussion in Chap. 1, the RB wavelengths in the spectrum overlap heavily into the G wavelengths.
(2) Simple conversion from RGB into gray scale intensity I can be done by taking I = (R + G + B)/3.
(3) The YIQ color space, used in the NTSC television broadcast standards, provides a simple forward/
backward method of color conversion between RGB and a gray scale component Y, as follows:

[R 7 1 0.9663 0.6210 Y
G| =|1 —-02721 —-06474| |1
LB | L1 —1.1070 1.7046 Q
(YT [0.299 0.587 0.114 R
I | =10595716 —0.274453 —0.321263 | |G
L Q] 10.211456 —0.522591 0.311135 B

Color Accuracy and Precision

If color accuracy is important, 8 bits per RGB color channel may not be enough. It is necessary to study
the image sensor vendor’s data sheets to understand how good the sensor really is. At the time of this

50 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

writing, common image sensors are producing 10—14 bits of color information per RGB channel. Each
color channel may have a different spectral response, as discussed in Chap. 1.

Typically, green is a good and fairly accurate color channel on most devices; red is usually good as
well and may also have near infrared sensitivity if the IR filter is removed from the sensor; and blue is
always a challenge since the blue wavelength can be hardest to capture in smaller silicon wells, which
are close to the size of the blue wavelength, so the sensor vendor needs to pay special attention to blue
sensing details.

Spatial Filtering

Filtering on discrete pixel arrays is considered spatial filtering, or time domain filtering, in contrast to
filtering in the frequency domain using Fourier methods. Spatial filters are alternatives to frequency
domain methods, and versatile processing methods are possible in the spatial domain.

Convolutional Filtering and Detection

Convolution is a fundamental signal processing operation easily computed as a discrete spatial
processing operation, which is practical for 1D, 2D, and 3D processing. The basic idea is to combine,
or convolve, two signals together, changing the source signal to be more like the filter signal. The
source signal is the array of pixels in the image; the filter signal is a weighted kernel mask, such as a
gradient peak shape and oriented edge shape or an otherwise weighted shape. For several examples of
filter kernel mask shapes, see the section later in the chapter that discusses Sobel, Scharr, Prewitt,
Roberts, Kirsch, Robinson, and Frei—Chen filter masks.

Convolution is typically used for filtering operations such as low-pass, band pass, and high-pass
filters, but many filter shapes are possible to detect features, such as edge detection kernels tuned
sensitive to edge orientation, or even point, corner, and contour detectors. Convolution is used as a
detector in the method of convolution networks [60], as discussed in Chap. 4.

The sharpen kernel mask in Fig. 2.10 (center image) is intended to amplify the center pixel in
relation to the neighboring pixels. Each pixel is multiplied by its kernel position, and the result (right
image) shows the center pixel as the sum of the convolution, which has been increased or amplified in
relation to the neighboring pixels.

35 43 49 -1 -1 -1 35 43 49
38 52 47 ol B 8 -1 = 38 67 47
42 44 51 -1 -1 -1 42 44 51

—(35+43 +49 + 47 + 51 + 44 + 42 + 38) + (52*8) = 67

Fig. 2.10 Convolution, in this case a sharpen filter: (Left to right) Image data, sharpen filter, and resulting image data

Spatial Filtering 51

A convolution operation is typically followed up with a set of postprocessing point operations to
clean up the data. Following are some useful postprocessing steps; many more are suggested in the
“Point Filtering” section that follows later in the chapter.

switch (post_processor)

{

case RESULT ASIS:
break;

case RESULT PLUS_ VALUE:
sum + = value;
break;

case RESULT MINUS_ VALUE:
sum - = value;
break;

case RESULT PLUS ORIGINAL TIMES VALUE:
sum = sum + (result * value) ;
break;

case RESULT MINUS ORIGINAL TIMES VALUE:
sum = sum - (result * value) ;
break;

case ORIGINAL PLUS RESULT TIMES VALUE:
sum = result + (sum * value) ;
break;

case ORIGINAL MINUS RESULT TIMES VALUE:
sum = result - (sum * value) ;
break;

case ORIGINAL LOW CLIP:
sum = (result <value ? value : result) ;
break;

case ORIGINAL HIGH CLIP:
sum = (result > value ? value : result) ;
break;

}

switch (post_processing sign)

{

case ABSOLUTE_VALUE:

if (sum< 0) sum = -sum;
if (sum> limit) sum = limit;
break;

case POSITIVE ONLY:
if (sum< 0) sum = 0;
if (sum> limit) sum = limit;
break;

case NEGATIVE_ONLY:
if (sum> 0) sum = 0;
if (-sum> limit) sum = -limit;
break;

case SIGNED:
if (sum> limit) sum = limit;
if (-sum> limit) sum = -limit;
break;

}

Convolution is used to implement a variety of common filters including:

* Gradient or sharpen filters, which amplify and detect maxima and minima pixels. Examples
include Laplacian.

52 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

+ Edge or line detectors, where lines are connected gradients that reveal line segments or contours.
Edge or line detectors can be steerable to a specific orientation, like vertical, diagonal, horizontal, or
omnidirectional; steerable filters as basis sets are discussed in Chap. 3.

* Smoothing and blur filters, which take neighborhood pixels.

Kernel Filtering and Shape Selection

Besides convolutional methods, kernels can be devised to capture regions of pixels generically for
statistical filtering operations, where the pixels in the region are sorted into a list from low to high
value. For example, assuming a 3 x 3 kernel region, we can devise the following statistical filters:

sort (&kernel, &image, &coordinates, &sorted list) ;
switch (filter type)
{
case RANK FILTER:
// Pick highest pixel in the list, rank = 8 for a 3 x 3 kernel 0..8
// Could also pick the lowest, middle, or other rank
image [center pixel] = sorted list [rank];
break;
case MEDIAN FILTER:
// Median value is kernel size /2, (3 X3 =9)/2 =4 in this case
image [center pixel] = sorted list [median];
break;
case MAJORITY FILTER:
// Find the pixel value that occurs most often, count sorted pixel values
count (&sorted list, &counted list);
image [center pixel] = counted_ list[0];
break;

The rank filter is a simple and powerful method that sorts each pixel in the region and substitutes a
pixel of desired rank for the center pixel, such as substitution of the highest pixel in the region for the
center pixel, or the median value or the majority value.

Shape Selection or Forming Kernels

Any regional operation can benefit from shape selection kernels to select pixels from the region and
exclude others. Shape selection, or forming, can be applied as a preprocessing step to any image
preprocessing algorithm or to any feature extraction method. Shape selection kernels can be binary
truth kernels to select which pixels from the source image are used as a group, or to mark pixels that
should receive individual processing. Shape selection kernels, as shown in Fig. 2.11, can be applied to
local feature descriptors and detectors also; similar but sometimes more complex local region pixel
selection methods are often used with local binary descriptor methods, as discussed in Chap. 4.

Spatial Filtering 53

T F T
F T F
T F T

Fig. 2.11 Truth and shape kernels: (Left) A shape kernel gray kernel position indicating a pixel to process or use—for
example, a pixel to convolve prior to a local binary pattern point-pair comparison detector. (Right) A truth shape kernel
specifying pixels to use for region average, favoring diagonals—T means use this pixel, F means do not use

Point Filtering

Individual pixel processing is typically overlooked when experimenting with image preprocessing.
Point processing is amenable to many optimization methods, as will be discussed in Chap. 8.
Convolution, as discussed above, is typically followed by point postprocessing steps. Table 2.2
illustrates several common pixel point processing methods in the areas of math operations, Boolean
operations, and compare and substitution operations, which seem obvious but can be quite valuable for
exploring image enhancement methods to enhance feature extraction.

54 2 Image Preprocessing, Morphology, Segmentation, Colorimetry
Table 2.2 Possible point operations

// Math ops /I Compare and Substitution ops
NAMES math_ops[] = { NAMES change_ops[] = {

"src + value -> dst", "if (src = thresh) value -> dst",
"src - value -> dst", "if (src = dst) value -> dst",

"src * value -> dst", "if (src ! = thresh) value -> dst",
"src / value -> dst", "if (src ! = thresh) src -> dst",
"(src + dst) * value -> dst", "if (src ! = dst) value -> dst",
"(src - dst) * value -> dst", "if (src ! = dst) src -> dst",

"(src * dst) * value -> dst", "if (src > = thresh) value -> dst",
"(src / dst) * value -> dst", "if (src > = thresh) src -> dst",
"sqroot(src) + value -> dst", "if (src > = dst) value -> dst",
"src * src + value -> dst", "if (src > = dst) src -> dst",
"exp(src) + value -> dst", "if (src < = thresh) value -> dst",
"log(src) + value -> dst", "if (src < = thresh) src -> dst",
"log10(src) + value -> dst", "if (src < = dst) value -> dst",
"pow(src A value) -> dst", "if (src < = dst) src -> dst",

"sin(src) + value -> dst", "if (lo < = src < = hi) value -> dst",
"cos(src) + value -> dst", "if (lo < = src < = hi) src -> dst",
"tan(src) + value -> dst", I8

"(value / max(all_src)) * src -> dst",
"src - mean(all_src) -> dst",
"absval(src) + value -> dst",

IS

// Boolean ops

NAMES bool_ops[] = {

"src AND value -> dst",

"src OR value -> dst",

"src XOR value -> dst",

"src AND dst -> dst",

"src OR dst -> dst",

"src XOR dst -> dst",

"NOT(src) -> dst",

"LO_CLIP(src, value) -> dst",
"LO_CLIP(src, dst) -> dst",
"HI_CLIP(src, value) -> dst",
"HI_CLIP(src, dst) -> dst",

I

Noise and Artifact Filtering

Noise is usually an artifact of the image sensor, but not always. There are several additional artifacts
that may be present in an image as well. The goal of noise removal is to remove the noise without
distorting the underlying image, and the goal of removing artifacts is similar. Depending on the type of
noise or artifact, different methods may be employed for preprocessing. The first step is to classify the
noise or artifact, and then to devise the right image preprocessing strategy.

* Speckle, random noise. This type of noise is apparently random and can be removed using a rank
filter or median filter.

» Transient frequency spike. This can be determined using a Fourier spectrum and can be removed
using a notch filter over the spike; the frequency spike will likely be in an outlier region of the
spectrum and may manifest as a bright spot in the image.

+ Jitter and judder line noise. This is an artifact particular to video streams, usually due to telecine
artifacts, motion of the camera, or the image scene and is complex to correct. It is primarily line
oriented rather than just single-pixel oriented.

Spatial Filtering 55

* Motion blur. This can be caused by uniform or nonuniform motion and is a complex problem;
several methods exist for removal; see Ref. [261].

Standard approaches to noise removal are discussed by Gonzalez [4]. The most basic approach is to
remove outliers, and various approaches are taken, including thresholding and local region-based
statistical filters such as the rank filter and median filter. Weighted image averaging is also sometime
used for removing noise from video streams; assuming the camera and subjects are not moving, it can
work well. Although deblurring or Gaussian smoothing convolution kernels are sometimes used to
remove noise, such methods may cause smearing and may not be the best approach.

A survey of noise-removal methods and a performance comparison model are provided by Buades
et al. [438]. This source includes a description of the author’s NL-means method, which uses nonlocal
pixel value statistics in addition to Euclidean distance metrics between similar weighted pixel values
over larger image regions to identify and remove noise.

Integral Images and Box Filters

Integral images are used to quickly find the average value of a rectangular group of pixels. An integral
image is also known as a summed area table, where each pixel in the integral image is the integral sum
of all pixels to the left and above the current pixel. The integral image can be calculated quickly in a
single pass over the image. Each value in the summed area table is calculated using the current pixel
value from the image i(n,m) combined with previous entries s(#n,/m) made into the summed area table,
as follows:

s(xy) = i(xy) +s(x—Ly) +s(ry—1) —slx—1Ly—1)

As shown in Fig. 2.12, to find a HAAR rectangle feature value from the integral image, only four
points in the integral image table A, B, C, D are used, rather than tens or hundreds of points from the
image. The integral image sum of a rectangle region can then be divided by the size of the rectangle
region to yield the average value, which is also known as a box filter.

05 02 05 02 05 07 12 14 05A 07 12 B 14
03 06 03 06 08 16 24 32 08 16 24 32
05 02 05 02 13 23 36 46 13 D 23 36C 46
03 06 03 06 16 32 48 64 16 32 48 64

Fig. 2.12 (Left) Pixels in an image. (Center) Integral image. (Right) Region where a box filter value is computed from
four points in the integral image: sum = s(A) + s(D) — s(B) — s(C)

Integral images and box filters are used in many computer vision methods, such as HAAR filters
and feature descriptors. Integral images are also used as a fast alternative to a Gaussian filter of a small
region, as a way to lower compute costs. In fact, descriptors with a lot of overlapping region
processing, such as BRISK [103], make effective use of integral images for descriptor building and
use integral images as a proxy for a fast Gaussian blur or convolution.

56 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Edge Detectors

The goal of an edge detector is to enhance the connected gradients in an image, which may take the
form of an edge, contour, line, or some connected set of edges. Many edge detectors are simply
implemented as kernel operations, or convolutions, and we survey the common methods here.

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei—-Chen
The Sobel operator detects gradient magnitude and direction for edge detection. The basic method is
shown here.

1. Perform two-directional Sobel filters (x and y axis) using basic derivative kernel approximations
such as 3 x 3 kernels, using values as follows:

-1 -2 —1

Ss=(0 0 0
12 1
-1 0 1

Se=| -2 0 2
-1 0 1

2. Calculate the total gradient as G, = [S,+IS,
3. Calculate the gradient direction as theta = ATAN(S,/S,)

4. Calculate gradient magnitude Gy, = \/Sy*> + Sx*

Variations exist in the area size and shape of the kernels used for Sobel edge detection. In addition to
the Sobel kernels shown above, other similar kernel sets are used in practice, so long as the kernel
values cancel and add up to zero, such as those kernels proposed by Scharr, Prewitt, Roberts,
Robinson, and Frei—Chen, as well as Laplacian approximation kernels. The Frei—-Chen kernels are
designed to be used together at a set, so the edge is the weighted sum of all the kernels. See Ref. [4] for
more information on edge detection masks. Some kernels have compass orientations, such as those
developed by Kirsch, Robinson, and others (see Fig. 2.13).

Edge Detectors

Fig. 2.13

3 10 3 3 0 -3
0 0 0 10 0 -10 | Sscharr
-3 =10 -3 3 0 -3
10 01
0 -1 -1 0 Roberts
1 1 1 10 -1
o 0 o0 1 0 -1 | Prewitt
-1 -1 -1 10 -1
0 1 0 .5 1 .5 11 1 1 -2 1 -2 1 =2
1-41 1 -6 1 1-81 -2 4 -2 1 4 1 |Laplacians
0 1 0 .5 1 .5 11 0 1 -2 1 -2 1 -2
5 5 5 5 5 -3 5 -3 5 -3 -3 -3
-3 0 -3 5 0 -3 5 0 -3 5 -3 | Kirsch Compass
-3 -3 -3 -3 -3 -3 5 -3 =3 5 -3
-3 -3 -3 -3 -3 -3 -3 -3 5 -3 5
-3 0 -3 -3 0 5 -3 0 5 -3 5 | Kirsch Compass
5 5 5 -3 5 5 -3 -3 5 -3 -3 =3
-101 0 1 2 1 2 1 2
-2 0 2 -1 0 1 0o 0 o 1 -1 | Robinson Compass
-1 01 -2 -1 0 -1 -2 -1 0 -1 -2
10 -1 0 -1 -2 -1 -2 -1 -2 -1 0
2 0 -2 i 0 -1 0o 0 0 -1 0 1| Robinson Compass
10 -2 2 1 0 1 2 1 0o 1 2
1 1 yz 1 1 -1 0 1 1 0o -1 2
0 0 o1, -v2 0 V2 |- 1 0 -1 |Frei-Chen
2V 2 2V 2 2V 2
-1 -2 -1 -1 0 1 Nz 1 o
1 N2 -1 o 1 (0 -1 0 1 (-1 01
1 0o -1 |, - ([-1 0 -1}, 2|0 00 Frei-Chen
2N2 |y 1 7 0 -1 0 10 -1
1 1 -2 1 1 -2 1 -2 1 111
E -2 4 2|, -1 4 1], ; 1 1 1| Frei-Chen
1 -2 1 -2 1 =2 111

Several edge detection kernel masks

Canny Detector

57

The Canny method [125] is similar to the Sobel-style gradient magnitude and direction method, but it
adds postprocessing to clean up the edges.

1. Perform a Gaussian blur over the image using a selected convolution kernel (7 x 7, 5, 5, etc.),

depending on the level of low-pass filtering desired.

2. Perform two-directional Sobel filters (x and y axes) and find the edge strength as |Gl = |G| + 1G,l and
edge direction as theta = ATAN(G,/G,) and round the direction to one of the four directions 0, 90,
180, or 270.

3. Perform non-maximal value suppression in the direction of the gradient to set to zero (0) pixels not
on an edge (minima values).

4. Perform hysteresis thresholding within a band (high, low) of values along the gradient direction to
eliminate edge aliasing and outlier artifacts and to create better connected edges.

58 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Transform Filtering, Fourier, and Others

This section deals with basis spaces and image transforms in the context of image filtering, the most
common and widely used being the Fourier transform. A more comprehensive treatment of basis
spaces and transforms in the context of feature description is provided in Chap. 3. A good reference for
transform filtering in the context of image processing is provided by Pratt [9].

Why use transforms to switch domains? To make image preprocessing easier or more effective, or
to perform feature description and matching more efficiently. In some cases, there is no better way to
enhance an image or describe a feature than by transforming it to another domain—for example, for
removing noise and other structural artifacts as outlier frequency components of a Fourier spectrum, or
to compact describe and encode image features using HAAR basis features.

Fourier Transform Family

The Fourier transform is very well known and covered in the standard reference by Bracewell [191],
and it forms the basis for a family of related transforms. Several methods for performing fast Fourier
transform (FFT) are common in image and signal processing libraries. Fourier analysis has touched
nearly every area of world affairs, through science, finance, medicine, and industry, and has been
hailed as “the most important numerical algorithm of our lifetime” [246]. Here, we discuss the
fundamentals of Fourier analysis, and a few branches of the Fourier transform family with image
preprocessing applications.

The Fourier transform can be computed using optics, at the speed of light [231]. However, we are
interested in methods applicable to digital computers.

Fundamentals

The basic idea of Fourier analysis [4, 9, 191] is concerned with decomposing periodic functions into a
series of sine and cosine waves (Fig. 2.14). The Fourier transform is bidirectional, between a periodic
wave and a corresponding series of harmonic basis functions in the frequency domain, where each
basis function is a sine or cosine function, spaced at whole harmonic multiples from the base
frequency. The result of the forward FFT is a complex number composed of magnitude and phase
data for each sine and cosine component in the series, also referred to as real data and imaginary data.

Transform Filtering, Fourier, and Others 59

x/ i M
‘N\/ / .,\ \ﬁ{ /\‘

_ _-//.

Fig. 2.14 (Left) Harmonic series of sine waves. (Right) Fourier harmonic series of sine and cosine waves

Arbitrary periodic functions can be synthesized by summing the desired set of Fourier basis
functions, and periodic functions can be decomposed using the Fourier transform into the basic
functions as a Fourier series, see Fig. 2.15. The Fourier transform is invertible between the time
domain of discrete pixels and the frequency domain, where both magnitude and phase of each basis
function are available for filtering and analysis, magnitude being the most commonly used component.

How is the FFT implemented for 2D images or 3D volumes? The Fourier transform is a separable
transform and so can be implemented as a set of parallel 1D FFT line transforms. So, for 2D images
and 3D volumes, each dimension, such as the x, y, z dimension, can be computed in place, in parallel as
independent x lines, then the next dimension or y columns can be computed in place as parallel lines,
then the z dimension can be computed as parallel lines in place, and the final results are scaled
according to the transform. Any good 1D FFT algorithm can be set up to process 2D images or 3D
volumes using parallelization.

1.0 i
05
A Dt " PR s Y i ‘
05 1 15 %
05}
—1.0%

Fig. 2.15 Fourier series and Fourier transform concepts showing a square wave approximated from a series of Fourier
harmonics

For accuracy of the inverse transform to go from frequency space back to pixels, the FFT
computations will require two double precision 64-bit floating point buffers to hold the magnitude
and phase data, since transcendental functions such as sine and cosine require high floating point
precision for accuracy; using 64-bit double precision floating point numbers for the image data allows
a forward transform of an image to be computed, followed by an inverse transform, with no loss of
precision compared to the original image—of course, very large images will need more than double
precision.

60 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Since 64-bit floating point is typically slower and of higher power, owing to the increased compute
requirements and silicon real estate in the ALU, as well as the heavier memory bandwidth load,
methods for FFT optimization have been developed using integer transforms, and in some cases fixed
point, and these are good choices for many applications.

Note in Fig. 2.16 that the low-pass filter (center right) is applied to preserve primarily low-frequency
information toward the center of the plot and it reduces high-frequency components toward the edges,
resulting in the filtered image at the far right.

Fig. 2.16 Basic Fourier filtering: (Left) Original. (Center left) Fourier spectrum. (Center right) Low-pass filter shape
used to multiply against Fourier magnitude. (Right) Inverse transformed image with low-pass filter

A key Fourier application is filtering, where the original image is forward-transformed into
magnitude and phase; the magnitude component is shown as a Fourier power spectrum of the
magnitude data, which reveals structure in the image as straight lines and blocks, or outlier structures
or spots that are typically noise. The magnitude can be filtered by various filter shapes, such as high-
pass, low-pass, band pass, and spot filters to remove spot noise, to affect any part of the spectrum.

In Fig. 2.16, a circular symmetric low-pass filter shape is shown with a smooth distribution of filter
coefficients from 1 to 0, with high multiplicands in the center at the low frequencies, ramping down to
zero toward the high frequencies at the edge. The filter shape is multiplied in the frequency domain
against the magnitude data to filter out the higher frequency components, which are toward the outside
of the spectrum plot, followed by an inverse FFT to provide the filtered image. The low-frequency
components are toward the center; typically these are most interesting and so most of the image power
is contained in the low-frequency components. Any other filter shape can be used, such as a spot filter,
to remove noise or any of the structure at a specific location of the spectrum.

Fourier Family of Transforms

The Fourier transform is the basis for a family of transforms [4], some of which are:

1. DFT, FFT. The discrete version of the Fourier transform, often implemented as a fast version, or
FFT, commonly used for image processing. There are many methods of implementing the
FFT [191].

2. Sine transform. Fourier formulation composed of only sine terms.

. Cosine transform. Fourier formulation composed of only cosine terms.

4. DCT, DST, MDCT. The discrete Fourier transform is implemented in several formulations:
discrete sine transform (DST), discrete cosine transform (DCT), and the modified discrete cosine
transform (MDCT). These related methods operate on a macroblock, such as 16 x 16 or 8 x 8 pixel
region, and can therefore be highly optimized for compute use with integers rather than floating
point. Typically, the DCT is implemented in hardware for video encode and decode applications for

[SV)

Morphology and Segmentation 61

motion estimation of the macro blocks from frame to frame. The MDCT operates on overlapping
macroblock regions for compute efficiency.

5. Fast Hartley transform, DHT. This was developed as an alternative formulation of the Fourier
transform for telephone transmission analysis about 1925, forgotten for many years, then
rediscovered and promoted again by Bracewell [191] as an alternative to the Fourier transform.
The Hartley transform is a symmetrical formulation of the Fourier transform, decomposing a signal
into two sets of sinusoidal functions taken together as a cosine-and-sine or cas() function, where cas
(vx) = cos(vx) + sin(vx). This includes positive and negative frequency components and operates
entirely on real numbers for input and output. The Hartley formulation avoids complex numbers as
used in the Fourier complex exponential exp(j @ x). The Hartley transform has been developed into
optimized versions called the DHT, shown to be about equal in speed to an optimized FFT.

Other Transforms

Several other transforms may be used for image filtering, including wavelets, steerable filter banks, and
others that will be described in Chap. 3, in the context of feature description. Note that transforms often
have many common uses and applications that overlap, such as image description, image coding,
image compression, and feature description.

Morphology and Segmentation

For simplicity, we define the goal of morphology as shape and boundary definition, and the goal of
segmentation is to define regions with internal similarity, such as textural or statistical similarity.
Morphology is used to identify features as polygon-shaped regions that can be described with shape
metrics, as will be discussed in Chaps. 3 and 6, distinct from local interest point and feature descriptors
using other methods. An image is segmented into regions to allow independent processing and analysis
of each region according to some policy or processing goal. Regions cover an area smaller than the
global image, but usually larger than local interest point features, so an application might make use of
global, regional, and small local interest point metrics together as an object signature.

An excellent review of several segmentation methods can be found in work by Haralick and Shapiro
[272]. In practice, segmentation and morphology are not easy: results are often less useful than
expected, trial and error is required, too many methods are available to provide any strict guidance,
and each image is different. So here we only survey the various methods to introduce the topic and
illustrate the complexity. An overview of region segmentation methods is shown in Table 2.3.

Binary Morphology

Binary morphology operates on binary images, which are created from other scalar intensity channel
images. Morphology [9] is used to morph a feature shape into a new shape for analysis by removing
shape noise or outliers, and by strengthening predominant feature characteristics. For example, isolated
pixels may be removed using morphology, thin features can be fattened, and the predominant shape is
still preserved. Note that morphology all by itself is quite a large field of study, with applications to
general object recognition, cell biology, medicine, particle analysis, and automated microscopy. We
introduce the fundamental concepts of morphology here for binary images, and then follow this section
with applications to gray scale and color data.

62

2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Table 2.3 Segmentation methods

Method Description
Morphological The region is defined based on thresholding and morphology operators
segmentation

Texture-based
segmentation

The texture of a region is used to group like textures into connected regions

Transform-based
segmentation

Basic space features are used to segment the image

Edge boundary
segmentation

Gradients or edges alone are used to define the boundaries of the region with edge linking
in some cases to form boundaries

Color segmentation

Color information is used to define regions

Super-pixel segmentation

Kernels and distance transforms are used to group pixels and change their values to a
common value

Gray scale/luminance
segmentation

Grayscale thresholds or bands are used to define the regions

Depth segmentation

Depth maps and distance from viewer are used to segment the image into foreground,
background, or other gradations of interscene features

Binary morphology starts with binarizing images, so typically thresholding is first done to create
images with binary-valued pixels composed of 8-bit black and white values, 0-value = black and
255-value = white. Thresholding methods are surveyed later in this chapter, and thresholding is critical
prior to morphology.

Binary morphology is a neighborhood operation and can use a forming kernel with truth values, as
shown in Fig. 2.17. The forming kernel guides the morphology process by defining which surrounding
pixels contribute to the morphology. Figure 2.17 shows two forming kernels: kernel a, where all pixels
touching the current pixel are considered, and kernel b, where only orthogonally adjacent pixels are
considered.

Fig. 2.17 3 x 3 forming
kernels and binary erosion 111]1 o|1]0
and dilation using the

kernels; other kernel sizes 1]10(1 1]10f1
and data values may be 1111 1 ol1lo
useful in a given
application. (Image used by Kernel a Kemel b
permission, © Intel Press,
from Building Intelligent
Systems)

Erode (AND) Original Gfy= fNna Gfy=fn

Original Glfi= f@a Gfi=f@b

Dilate (OR)

Morphology and Segmentation 63

The basic operations of morphology include Boolean AND, OR, NOT. The notation used for the
fundamental morphological operations is U for dilation and N for erosion. In binary morphology,
dilation is a Boolean OR operator, while erosion is a Boolean AND operator. In the example provided
in Fig. 2.17, only kernel elements with a “1” are used in the morphology calculation, allowing for
neighborhood contribution variations. For erosion, the pixels under all true forming kernel elements
are AND’d together; the result is 1 if all are true and the pixel feature remains, otherwise the pixel
feature is eroded or set to 0.

All pixels under the forming true kernel must be true for erosion of the center pixel. Erosion
attempts to reduce sparse features until only strong features are left. Dilation attempts to inflate sparse
features to make them fatter, only 1 pixel under the forming kernel elements must be true for dilation of
the center pixel, corresponding to Boolean OR.

Based on simple erosion and dilation, a range of morphological operations are derived as shown
here, where @& = dilation and & = erosion.

Erode G(fy=feb

Dilate GH=fab

Opening GfH=(Uebob

Closing G(fy=(cbab

Morphological gradient G(f)y=foboaG(f)=fob-fob
Morphological internal gradient Gif)=f-feb

Morphological external gradient Ge(f)=fob-f

Gray Scale and Color Morphology

Gray scale morphology is useful to synthesize and combine pixels into homogeneous intensity bands
or regions with similar intensity values. Gray scale morphology can be used on individual color
components to provide color morphology affecting hue, saturation, and color intensity in various color
spaces.

For gray scale morphology or color morphology, the basic operations are MIN, MAX, and
MINMAX, where pixels above the MIN are changed to the same value and pixels below the MAX
are changed to the same value, while pixels within the MINMAX range are changed to the same value.
MIN and MAX are a form of thresholding, while MINMAX allows bands of pixel values to be
coalesced into equal values forming a homogenous region.

Morphology Optimizations and Refinements

Besides simple morphology [9], there are other methods of morphological segmentation using
adaptive methods [216-218]. Also, the MorphoLibJ package (also a plugin for imageJ FiJi) contains
one of the most comprehensive and high quality suites of morphological methods including segmen-
tation, filtering, and labeling. The simple morphology methods rely on using a fixed kernel across the
entire image at each pixel and assume the threshold is already applied to the image; while the adaptive
methods combine the morphology operations with variable kernels and variable thresholds based on
the local pixel intensity statistics. This allows the morphology to adapt to the local region intensity and,
in some cases, produce better results. Auto-thresholding and adaptive thresholding methods are
discussed later in this chapter and are illustrated in Figs. 2.24 and 2.26.

64 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Euclidean Distance Maps

The distance map, or Euclidean distance map (EDM), converts each pixel in a binary image into the
distance from each pixel to the nearest background pixel, so the EDM requires a binary image for
input. The EDM is useful for segmentation, as shown in Fig. 2.18, where the EDM image is
thresholded based on the EDM values—in this case, similar to the ERODE operator.

Fig. 2.18 Preprocessing sequence: (Left) Image after thresholding and erosion. (Center) EDM showing gray levels
corresponding to distance of pixel to black background. (Right) Simple binary thresholded EDM image

Super-Pixel Segmentation

A super-pixel segmentation method [219-221] attempts to collapse similar pixels in a local region into
a larger super-pixel region of equal pixel value, so similar values are subsumed into the larger super-
pixel. Super-pixel methods are commonly used for digital photography applications to create a scaled
or watercolor special effect. Super-pixel methods treat each pixel as a node in a graph, and edges
between regions are determined based on the similarity of neighboring pixels and graph distance (see
Fig. 2.19).

Fig. 2.19 Comparison of various super-pixel segmentation methods. (Image © Dr. Radhakrishna Achanta, used by
permission)

Feature descriptors may be devised based on super-pixels, including super-pixel value histograms,
shape factors of each polygon-shaped super-pixel, and spatial relationships of neighboring super-pixel
values. Apparently little work has been done on super-pixel-based descriptors; however, the potential
for several degrees of robustness and invariance seems good. We survey a range of super-pixel
segmentation methods next.

Morphology and Segmentation 65

Graph-Based Super-Pixel Methods

Graph-based methods structure pixels into trees based on the distance of the pixel from a centroid
feature or edge feature for a region of like-valued pixels. The compute complexity varies depending on
the method.

* SLIC Method [220] Simple Linear Iterative Clustering (SLIC) creates super-pixels based on a 5D
space, including the CIE Lab color primaries and the XY pixel coordinates. The SLIC algorithm
takes as input the desired number of super-pixels to generate and adapt well to both gray scale and
RGB color images. The clustering distance function is related to the size of the desired number of
super-pixels and uses a Euclidean distance function for grouping pixels into super-pixels.

+ Normalized Cuts [222, 223] Uses a recursive region partitioning method based on local texture and
region contours to create super-pixel regions.

* GS-FH Method [224] The graph-based Felzenszwalb and Huttenlocher method attempts to
segment image regions using edges based on perceptual or psychological cues. This method uses
the minimum length between pixels in the graph tree structure to create the super-pixel regions. The
computational complexity is O(nLog n), which is relatively fast.

* SL Method [224] The Super-pixel Lattice (SL) method finds region boundaries within tiled image
regions or strips of pixels using the graph cut method.

Gradient-Ascent-Based Super-Pixel Methods

Gradient ascent methods iteratively refine the super-pixel clusters to optimize the segmentation until
convergence criteria are reached. These methods use a tree graph structure to associate pixels together
according to some criteria, which in this case may be the RGB values or Cartesian coordinates of the
pixels, and then a distance function or other function is applied to create regions. Since these are
iterative methods, the performance can be slow.

* Mean-Shift [225] Works by registering off the region centroid based on a kernel-based mean
smoothing approach to create regions of like pixels.

e Quick-Shift [223] Similar to the mean-shift method, but does not use a mean blur kernel and
instead uses a distance function calculated from the graph structure based on RGB values and XY
pixel coordinates.

+ Watershed [226] Starts from local region pixel value minima points to find pixel value-based
contour lines defining watersheds, or basin contours inside which similar pixel values can be
substituted to create a homogeneous pixel value region.

* Turbopixels [210] Uses small circular seed points placed in a uniform grid across the image around
which super-pixels are collected into assigned regions, and then the super-pixel boundaries are
gradually expanded into the unassigned region, using a geometric flow method to expand the
boundaries using controlled boundary value expansion criteria, so as to gather more pixels together
into regions with fairly smooth and uniform geometric shape and size.

Depth Segmentation

Depth information, such as a depth map as shown in Fig. 2.20, is ideal for segmenting objects based on
distance. Depth maps can be computed from a wide variety of depth sensors and methods, including a
single camera, as discussed in Chap. 1. Depth cameras, such as the Microsoft Kinect camera, are
becoming more common. A depth map is a 2D image or array, where each pixel value is the distance or
Z value.

66 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.20 Depth images from Middlebury Data set: (Left) Original image. (Right) Corresponding depth image. (Data
courtesy of Daniel Scharstein and used by permission)

Many uncertainties in computer vision arise out of the problems in locating three-dimensional
objects in a two-dimensional image array, so adding a depth map to the vision pipeline is a great asset.
Using depth maps, images can be easily segmented into the foreground and background, as well as be
able to segment-specific features or objects—for example, segmenting by simple depth thresholding.

Depth maps are often very fuzzy and noisy, depending on the depth sensing method, so image
preprocessing may be required. However, there is no perfect filtering method for depth map cleanup.
Many practitioners prefer the bilateral filter [258] and variants, since it preserves local structure and
does a better job of handling the edge transitions.

Color Segmentation

Sometimes color alone can be used to segment and threshold, and there are many methods to use color
guidance to processing and segment the image, and we explore various color processing and segmen-
tation methods throughout this chapter. Using the right color component can easily filter out features
from an image. For example, in Fig. 2.5, we started from a red channel image from an RGB set, and the
goal was to segment out the USB sticks from the table background. Since the table is brown and
contains a lot of red, the red channel provides useful contrast with the USB sticks allowing segmenta-
tion via red. It may be necessary to color-correct the image to get the best results, such as gamut
corrections or boosting the hue or saturation of each color to accentuate difference.

Thresholding

The goal of thresholding is to segment the image at certain intensity levels to reveal features such as
foreground, background, and specific objects. A variety of methods exist for thresholding, ranging
from global to locally adaptive. In practice, thresholding is very difficult and often not satisfactory by
itself and must be tuned for the dataset and combined with other preprocessing methods in the vision
pipeline.

One of the key problems in thresholding is nonuniform illumination, so applications that require
thresholding, like cell biology and microscopy, pay special attention to cell preparation, specimen

Thresholding 67

spacing, and light placement. Since many images do not respond well to global thresholding involving
simple methods, local methods are often required, which use the local pixel structure and statistical
relationships to create effective thresholds. Both global and local adaptive methods for thresholding are
discussed here. A threshold can take several forms:

» Floor Lowest pixel intensity allowed

» Ceiling Highest pixel intensity allowed

+ Ramp Shape of the pixel ramp between floor and ceiling, such as linear or log
* Point May be a binary threshold point with no floor, ceiling, or ramp

Global Thresholding

Thresholding entire images at a globally determined thresholding level is sometimes a good place to
start to explore the image data, but typically local features will suffer and be unintelligible as a result.
Thresholding can be improved using statistical methods to determine the best threshold levels. Lookup
tables (LUT) can be constructed, guided by statistical moments to create the floor, ceiling, and ramps
and the functions to perform rapid LUT processing on images, or false-color the images for
visualization.

i
I
L}
I
]
]
L]
L]
1

~ | by
Y
n_/

L
L
L]
] -
o U I-
I
I
'
'
i

<
r
L e

Fig. 2.21 Histogram annotated with arrows showing peaks and valleys, and dotted lines showing regions of similar
intensities defined using hysteresis thresholds

Histogram Peaks and Valleys, and Hysteresis Thresholds
Again we turn to the old stand-by, the image histogram. Peaks and valleys in the histogram may
indicate thresholds useful for segmentation and thresholding [271]. A hysteresis region marks pixels
with similar values and is easy to spot in the histogram, as shown in Fig. 2.21. Also, many image
processing programs have interactive sliders to allow the threshold point and even regions to be set
with the pointer device.' Take some time and get to know the image data via the histogram and become
familiar with using interactive thresholding methods.

If there are no clear valleys between the histogram peaks, then establishing two thresholds, one on
each side of the valley, is a way to define a region of hysteresis. Pixel values within the hysteresis

'See the open-source package Image]J2, and menu item Image — Adjust-Brightness/Contrast for interactive
thresholding.

68 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

region are considered inside the object. Further, the pixels can be classified together as a region using
the hysteresis range and morphology to ensure region connectivity.

LUT Transforms, Contrast Remapping

Simple lookup tables (LUTs) are very effective for contrast remapping and global thresholding, and
interactive tools can be used to create the LUTs. Once the interactive experimentation has been used to
find the best floor, ceiling, and ramp function, the LUTs can be generated into table data structures and
used to set the thresholds in fast code. False-coloring the image using pseudo-color LUTs is common
and quite valuable for understanding the thresholds in the data. Various LUT shapes and ramps can be
devised. See Fig. 2.22 for an example using a linear ramp function.

Fig. 2.22 Contrast corrections: (Left) Original image shows palm frond detail compressed into a narrow intensity range
obscuring details. (Center) Global histogram equalization restores some detail. (Right) LUT remap function spreads the
intensity values to a narrower range to reveal details of the palm fronds. The section of the histogram under the diagonal
line is stretched to cover the full intensity range in the right image; other intensity regions are clipped. The contrast
corrected image will yield more gradient information when processed with a gradient operator such as Sobel

Histogram Equalization and Specification

Histogram equalization spreads pixel values between a floor and ceiling using a contrast remapping
function, with the goal of creating a histogram with approximately equal bin counts approaching a
straight-line distribution (see Fig. 2.23). While this method works well for gray scale images, color
images should be equalized in the intensity channel of a chosen color space, such as HSV
V. Equalizing each RGB component separately and re-rendering will produce color moiré artifacts.
Histogram equalization uses a fixed region and a fixed remapping for all pixels in the region; however,
adaptive local histogram equalization methods are available [266].

Thresholding 69

Fig. 2.23 (Left) Original image and histogram. (Right) Histogram equalized image and histogram

It is possible to create a desired histogram shape or value distribution, referred to as histogram
specification, and then remap all pixel values from the source image to conform to the specified
histogram shape. The shape may be created directly, or else the histogram shape from a second image
may be used to remap the source image to match the second image. With some image processing
packages, the histogram specification may be interactive, and points on a curve may be placed and
adjusted to create the desired histogram shape.

Global Auto Thresholding

Various methods have been devised to automatically find global thresholds based on statistical
properties of the image histogram [440-442] and in most cases the results are not very good unless
some image preprocessing precedes the auto thresholding. Table 2.4 provides a brief survey of auto
thresholding methods, while Fig. 2.24 displays renderings of each method.

Table 2.4 Selected few global auto-thresholding methods derived from basic histogram features [259]

Method Description

Default A variation of the IsoData method, also known as iterative intermeans

Huang Huang’s method of using fuzzy thresholding

Intermodes Iterative histogram smoothing

IsoData Iterative pixel averaging of values above and below a threshold to derive a new threshold above the
composite average

Li Iterative cross-entropy thresholding

MaxEntropy | Kapur-Sahoo-Wong (Maximum Entropy) algorithm

Mean Uses mean gray level as the threshold

MinError Iterative method from Kittler and Illingworth to converge on a minimum error threshold

Minimum Iterative histogram smoothing, assuming a bimodal histogram

Moments Tsai’s thresholding algorithm intending to threshold and preserve the original image moments

Otsu Otsu clustering algorithms to set local thresholds by minimizing variance

Percentile Adapts the threshold based on preset allocations for foreground and background pixels

RenyiEntropy | Another entropy-based method

Shanbhag Uses fuzzy set metrics to set the threshold

Triangle Uses image histogram peak, assumes peak is not centered, sets threshold in largest region on either
side of peak

70 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

A
5

MaxEntropy

o
\u! "
17y

N’
f

L]
RenyiEntropy Shanbhag -

Percennle

Trlangle

Fig. 2.24 Renderings of selected auto-thresholding methods. (Images generated using ImagelJ auto threshold plug-ins
[259])

Local Thresholding

Local thresholding methods take input from the local pixel region and threshold each pixel separately.
Here are some common and useful methods.

Local Histogram Equalization

Local histogram equalization divides the image into small blocks, such as 32 x 32 pixels, and computes
a histogram for each block, then re-renders each block using histogram equalization. However, the
contrast results may contain block artifacts corresponding to the chosen histogram block size. There
are several variations for local histogram equalization, including Contrast Limited Adaptive Local
Histogram Equalization (CLAHE) [260].

Integral Image Contrast Filters

A histogram-related method uses integral images to compute local region statistics without the need to
compute a histogram, then pixels are remapped accordingly, which is faster and achieves a similar
effect as shown in Fig. 2.25.

Thresholding 71

Fig. 2.25 Integral image filter from ImagelJ to remap contrast in local regions, similar to histogram equalization: (Left)
Original. (Center) 20 x 20 regions. (Right) 40 x 40 regions

Local Auto Threshold Methods

Local thresholding adapts the threshold based on the immediate area surrounding each target pixel in
the image, so local thresholding is more like a standard area operation or filter [440—442]. Local auto
thresholding methods are available in standard software packages.” Figure 2.26 provides some
example adaptive local thresholding methods, summarized in Table 2.5.

Bernsen

MidGrey Niblack Sauvola

Fig. 2.26 Renderings of a selected few local auto and local thresholding methods using ImageJ plug-ins [259]

2 See the open-source package ImageJ2, menu item Image — Adjust — Auto Local Threshold | Auto Threshold.

72 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Table 2.5 Selected few local auto-thresholding methods [259]

Method Description
Bernsen Bernsen’s algorithm using circular windows instead of rectangles and local midgray values
Mean Uses the local gray level mean as the threshold
Median Uses the local gray level mean as the threshold
MidGrey Uses the local area gray level mean—C (where C is a constant)
Niblack Niblack’ s algorithm is:
p = (p > mean + k * standard_deviation — c)? object:background
Sauvola Sauvola’s variation of Niblack:
p = (p > mean * (1 + k * (standard_deviation/r — 1)))? object:background

DNN Segmentation

Segmentation is another term for morphology: both are concerned with defining the boundaries of
regions, or thinking in the inverse direction, segmentation groups associated pixels together under
various criteria such as color or brightness. Several methods for segmentation exist. However, while
older systems were primarily concerned with simpler segmentation and morphology methods, newer
segmentation methods using deep learning have been developed which can divide an image into
regions by assigning a class to each pixel as surveyed below also.

A critical and fundamental part of the human visual system is segmentation, where the visual scene
is divided into regions which are persistent in visual memory as we look around. The segmentation
process is constantly happening—the visual system is continually adjusting the segmentation criteria
according to the scene changes and according to the current attentional focus and goal for visual
analysis. So, there are several segmentations under consideration concurrently at any one time in the
visual cortex, apparently computed at different focal points and stored in short-term visual memory, at
hand for visual analysis, and what-if queries by the central cortex reasoning executive.

DNN Segmentation 73

Fig. 2.27 The simultaneous variant granularity of segmentations kept at attention in short-term visual memory in the
visual cortex for use by the central reasoning executive for what-if analysis and scene queries; super-pixel methods
shown here

Figure 2.27 shows several example simultaneous segmentations like those maintained in the visual
cortex for each scene, each with different levels of detail and color focus. Each segmentation region
may be further refocused and divided into subregions according to their task at hand, to locate
particular objects, shapes, color, lighting, and combinations.

Following along the lines of BERT, GPT, and large NLP foundation models, the Segment Anything
Model [1011] from Kirillov et al. contains the largest collection of training images, with over 1 billion
learned segmentation masks from 11 M training images. This work is a major milestone in segmenta-
tion and we urge readers to read the paper since we did not survey this method here. Various learning
methods are described which enable zero-shot AML style learning and interpolations of new
segmentations by interpolating between segmentations in the model, so new segmentations are learned
on the fly. For more on AML, see The Al third wave: Continuous Learning and Multimodal Models
and Associative Multimodal Learning (AML) Chap. 12.

Segmentation: Semantic, Instance, Panoptic
Segmentation can be described using different terms depending on the segmentation analysis goals. In

one scenario, the goal is to assign each pixel to a class label and perhaps color each segmented region
the same: this has been called semantic segmentation. Another goal is to delineate pixel regions

74 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

describing a particular object class to count them and perhaps color each instance separately, such as
people or cars—this has been called instance segmentation. As shown in Fig. 2.28, Kirillov et al. [930]
develop a method of combining semantic and instance segmentation into a single system, which they
refer to as Panoptic segmentation, see Fig. 777. Several other panoptic segmentation systems have
been proposed since Kirillov, for example a similar system is proposed by deGeus et al. [931].

(c) instance segmentation (d) panoptic segmentation

Fig. 2.28 The segmentation terminology. (Image (C) Kirillov et al. [930])

The term panoptic segmentation as defined by Kirillov et al. is intended to enlarge the scope of
segmentation to better assist in scene analysis, by “including everything visible in one view” under the
panoptic umbrella. As the authors state, panoptic becomes a more global view of segmentation, where
every pixel in an image must be assigned to a class, and color-coded accordingly, including location
and positional information of all segments. An evaluation metric is also suggested, Panoptic Quality
(PQ), in order to evaluate the effectiveness of any given panoptic segmentation method, leading to the
development of more and better methods by comparing PQ scores, which is a good idea.

Note that since panoptic segmentation is a more recent term used by some practitioners to describe
the combination of instance and semantic methods (*some practitioners do not use the term panoptic),
the panoptic practitioners also propose to rename the other established segmentation terms to fit the
panoptic distinctions, by renaming segmentation terms into the vernacular: as ‘things’ and ‘stuff’.

L = stuff : semantic segmentation, classes colored equally
L™ = things : instance segmentation, instances colored separately

L = L UL" = things + stuff = panoptic segmentation

DNN Segmentation 75

Refer to Fig. 2.28

Alternatively,
things + stuff = pile (“in the vernacular :)

DNN architectures have been designed specifically to segment images using U-Nets which vary
from the standard LeNet style as described in Chaps. 9 and 10. The computations resourced required
for DNN segmentation are begging to be suitable for general use, approaching real-time use. We will
survey some of the DNN segmentation methods here.

U-Nets for Segmentation, W-Nets

Possibly the most influential method for deep learning neural network segmentation came in 2015 with
the U-Net method proposed by Ronneberger et al. [932] intended for biomedical image segmentation
and cell biology. The U-Net is a symmetrical architecture; there is an input encoder which processes
the input image to downscale features into scaled encodings, and an output decoder section which
processes the input encodings by upscaling, using skip-connections to feed forward original pixel
details.

The U-Net architecture is a specialization of the encoder-decoder architecture. The U-Net, in some
respects, acts like a like a multi-resolution image pixel feature compressor, which creates pixel feature
embeddings at multiple resolutions, connected serially to a multilevel feature expander which decodes
the feature embeddings at various resolutions to re-project into image space, reconstructing features at
multiple levels of resolution.

1 64 64
128 64 64 2
input
imrfge >) P P output
tile B - il segmentation
a 2 map
S K 3 g
> o *
N Of @
~| =] © i
wn| g wn
*128 128
256 128
o :\ (=]
Stk
' 256 256 512 256 t
ML L d o >
SE E 2 Al & =5 CONV 3x3. RelLU
= A - - copy and cro
¥ 512 s 1024 12 t Py p
8.".". & [eimei ¥ max pool 2x2
o a = o
S ©§ 102 g5 o 4 up-conv 2x2
8 I:: *w =» conv 1x1
o™ o~

Fig. 2.29 The symmetrical U-Net architecture. (Image (C) 2015 Olaf Ronneberger et al. [932])

76 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

The U-Net is divided into two halves as shown in Fig. 2.29:

* Encoder: The encoder is like a contracting down-sampler which reduces the resolution of the image
to several levels in a set of progressively down-sampled feature layers. The features represent
different levels of detail. Each level of detail is passed forward to the corresponding resolution in the
decoder section using long skip connections, intended to preserve all frequency details for optimal
resolution.

* Decoder: The decoder is like an expanding up-sampler which extrapolates new features, simulta-
neously increasing the feature resolution size while decreasing the feature size until it reaches a
single pixel—the last layer of features created are a single pixel in size, at full image resolution. The
new features are optimized by combining features in the decoder path at each level with
corresponding features from the encoder for the same level of resolution. The encoder features
are carried forward using the long skip-connections shown as gray arrows in Fig. 2.29. Features in
the encoder path still retain higher resolution details which are lost in the decoder path due to down-
sampling, so both encoder and decoder features are combined to perform the final segmentation and
up-sampling. The decoder up-sampling process continues until the full-sized image is represented at
the pixel level in a segmented manner at full pixel resolution. The output includes a binary
segmentation mask for each segmented region (0-pixel = not in region, 1-pixel = in region).

Note that the encoder and decoder are symmetrical with respect to image resolution: the idea is to
encode at multiple resolutions, and then decode to reconstruct each learned and encoded pixel feature
at each level of higher resolution until the image is reconstructed at the final resolution (input
resolution = output resolution).

The decoder stage is where the encoded image is translated into the segmentation map. For each
layer, skip connections carry and crop the encoded image at the corresponding input layer and
resolution across the U-Net in the corresponding resolution decoder stage—the skip value is linearly
combined with the result passed forward from the prior segmentation decoder layer; the intuition is that
the combination of values will smooth out disturbances and spikes in the data, since the original
encoded data would otherwise be lost.

Until the model is completely trained, the binary segmentation masks will have problems such as
broken or incomplete borders around some pixel regions. The U-Net training process includes a cross-
entropy loss function which produced weights to prioritize the importance of pixels when creating the
masks. The masks are trained by comparing the ground truth masks with learned masks, using the loss
parameter to tune parameters successively for each training sample, until the mask accuracy is optimal.

The U-Net authors use a training process incorporating data augmentation to add more samples to
the training set. The augmentations chosen should be realistic in terms of the type of images used for
the segmentation application, and for the original medical apps tested against the U-Net,
augmentations included affine transforms like rotation, scaling, and shifting, as well as gray scale
modifications for contrast and brightness, and random and random elastic deformations which are
especially useful in medical images because (to put it colloquially) biological samples are often
“squishy,” meaning that the outputs of the elastic deformations are still “realistic.”

See the General Robustness Taxonomy section in Chap. 5 for details on data augmentation
methods, as well as Chap. 7, Fig. 7.1.

Major features of U-Net and key intuitions are summarized here.

+ U-Net combines a contracting path of down-sampled resolution and a symmetric up-sampling path
to enable precise pixel locations to be grouped semantically.

» U-Net is designed to avoid losing resolution and high frequency detail, as seen in the typical CNN
pooling layers that reduce resolution, since typical CNN’s funnel all data down in resolution to a

DNN Segmentation 77

final FC layer (see Chap. 9) which has no WHERE information <x,y coordinates>, just WHAT
information (i.e., learned features representing kernel functions). CNN’s models and FC classifiers
do not contain any positional information—they produce and operate on position-less puzzle
pieces.

« U-Net replaces the pooling layers with up-sampling layers using transpose convolution to
up-sample and increase resolution in the decoder path, see Fig. 2.29.

* Long skip-connections are used to pass down-sampled features across several layers of the U-Net to
carry forward resolution detail to the decoding stage to preserve detail. See Drozdzal et al. [934] for
more details on long skip connections.

* The encoder makes something analogous to spatially condensed super-pixels; the decoder
EXPANDS super-pixels incorporating the resolution detail from the encoder.

* The original use of short skip-connections (ResNets He et al. 2015 surveyed in Chap. 10) was for
fixing problems with gradient descent training when near-zero values would otherwise be encoun-
tered, so short skip-connections bypassing a single layer fixed the problem by “passing over a weak
connection” and propagating values forward that would otherwise be lost. The short skip-
connections smooth out the basin of attraction during gradient descent computations by eliminating
near-zero values that act as transients.

+ The U-Net operates on arbitrary sized images; this is very different and a major innovation
compared to typical CNN’s which use a fixed-size input image pipeline for both training and
inference.

» U-Net can be trained on small datasets, which is also a major advantage, and a departure from the
huge training sets often used to train DNN’s. To augment the training set, training data are
augmented using image augmentations including elastic deformations to introduce specific invari-
ance into the model.

As shown in Fig. 2.29, the image input stage (the encoder stage) on the left carries full resolution
image tiles which are processed and passed on to the next layer. Each layer is convolutionally
processed using 3 % 3 convolution and weight matrices and RELU, then down-sampled 2x using a
max pool layer (shown as a red arrow) prior to passing the image tiles forward to the next layer (see
Fig. 2.31).

The up-convolution shown by the 2 x 2 green arrows in the decoder stage up-samples the image
using transposed convolution, as shown in Fig. 2.30, to be inversely symmetric with the corresponding
max-pool down-sampling in the input encoder layer—to simulate higher image resolution to be
combined with the skip-connection data. To understand transposed convolution with a 3 x 3 kernel
example, we point out that a normal 2d convolution (without image padding) with stride 1 reduces the
image output size by removing a single row from the top, bottom, and a single column from the left and
right edges of the image (n = 2), while a 2 x 2 convolution only removes one row and one column from
the output (n — 7). So, transposed convolution performs the inverse, to add the lost outer perimeter
rows/columns back into the output image by using a rearrangement of the kernel by adding zeros to
pad the output and make it larger (see Fig. 2.30).

78 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

zero-added zero-padded image filter result
kernel image
ar 1 | 0fo]o]ofo 1|1 Lt
- E S —
11 = 0 01 1]o 1|1 LN LEE
| 1 0 0 0 L1 (1|1
0]0]01]01]0

Fig. 2.30 Transpose Convolution to up-sample an image. This example uses an up-sampling stride of 2 and a 2 x 2
kernel, the transpose method is like an inverse convolution that pads the image in order to fill-in image details from small
to large—normal convolution makes the image smaller by 1 row and 1 column for a 2 x 2 kernel size

U-Net outperforms previous segmentation methods on a variety of benchmarks, has become a
standard go-to architecture for segmentation, and has been extended and improved by several
researchers. For example, the UNet++ version uses a redesigned skip connection method to connect
a set of several shallow independent U-Nets at the same resolution via the redesigned skip connections.
The U-Net has also been extended to cover 3D segmentation—for details see Cigek et al. [933]. W-Net
[991] from Wu et al. is another U-Net variant, which improves on the U-Net embeddings by passing
them forward to a second stage U-Net for pixel embedding learning. The resulting architecture
contains two sequentially connected U-Nets, so the resulting network is W-shaped. The second
stage U-Net learns pixel embeddings, improving from the first stage using a distance regression
model to create additional distance embeddings, which are concatenated onto the first stage pixel
embeddings, which promotes faster clustering of similar pixel embeddings.

U-Nets are a very successful architecture, developed and modified for a range of applications
besides segmentation. For a taxonomy and review of U-Net variants, including volumetric 3D U-Nets,
see Azad et al. [935] (Fig. 2.31).

Fig. 2.31 U-Net Segmentation results showing pairs of ground truth reference images and segmented images: ground
truth (a, ¢) and segmentation results (b, d). (Image (C) 2015 Olaf Ronneberger et al. [932])

CNN Segmentation Methods 79

CNN Segmentation Methods

Convolutional neural networks using FFN architectures were used for successful segmentation
systems prior to the U-Net and provided some inspiration. (For details on CNN and FNN
architectures, see Chaps. 9 and 10.) U-Net is currently among the most effective methods for
CNN-based segmentation.

Segmentation is a form of region proposal. Typically, segmentation algorithms either scan the
image multiple times to locate objects for segmentation in several passes, or else find a way to locate
regions and detect objects in one pass. For some segmentation algorithm, object detection guides
segmentation.

CNN segmentation algorithms try to identify all pixels that are part of the detected object class. For
example, if a car is detected, all the pixels contained on the car will be segmented together into a group.
However, the algorithmic details of how each pixel is assigned to the detected class vary with each
segmentation method and are outside the scope if this survey. But at a high level, the classifier section
of the DNN first detects the class object as a set of features in a set of feature maps of learned features,
then the pixels in each detected feature matching the class are identified positionally by mapping
backwards from the detected feature maps to the actual positions in the image where the feature is
found. This method is not fool proof, since occlusion and other problems might prevent each pixel
from being properly assigned to the detected class, but it works well enough most of the time.

We survey CN region proposal methods and segmentation methods in the following sections.

One earlier segmentation example is the FCN Segmentation Network developed by Long et al.
[936], which is a feed-forward neural network architecture. Another more recent example of CNN
segmentation approach is the Mask RCNN from He et al. [937] which creates mask proposals for
analysis. We will briefly review both methods in later sections. We will also look at the history of CNN
segmentation methods next, including a very brief survey of a few key innovations along the way.

CNN Segmentation History

Here we briefly review the historical progression of segmentation methods, from the earliest FCN
method, through RCNN methods, and finally on to Mask RCNN, one of the most recent accepted
methods.

To start, the FCN method from Long et al. 2014 [936] was likely the first FFN to be devised for
pixel-level segmentation, capable of assigning a class label to each pixel in an image. We survey FCN
in more details later.

Next, RCNN from Girshick [937] generates rough segmentations or sub-segmentations from the
image as candidate regions, combining similar regions together into larger regions to represent the
final candidate region proposals—2000 regions were generated as the default. The main idea is that the
RCNN learns features via standard CNN gradient descent training, and then feeds the features to an
SVM classifier to locate target objects, with refinements to accurately create the four-coordinates <x,y,
dx,dy> of the bounding boxes localizing the objects. The candidate search algorithm is hard-coded, not
learned.

Next, Girshick, Ren, He, and Sun made improvements to RCNN called Fast R-CNN [938], which
generated the region proposals directly from the CNN model feature map at a fixed size to feed into an
FC layer for softmax classification, replacing the SVN classification.

80 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Next, Ren, Girshick et al. [939] improved his own Fast R-CNN by devising the FASTER R-CNN
method to directly generate region proposals without needing to separately generate the 2000 region
proposals as in FAST-RCNN.

Finally, the most recent method we review is Mask RCNN from He et al. [937], which is further an
optimization of Faster R-CNN method from Girshick, Ren et al. [939], based on earlier work on FAST-
RCNN and RCNN. We survey Mask RCNN in more details later.

FCN Segmentation Method

The FCN segmentation network from Long et al. [936] was likely the first FFN to be devised for pixel-
level segmentation, capable of assigning a class label to each pixel in an image. FCN is an end-to-end
solution to segmentation and does not require pre- or postprocessing steps, such as supervised
pretraining, or precomputing superpixels or region proposals as other existing methods.

FCN was informed from the best earlier work in CNN architectures available in 2014, such as
AlexNet, VGG-Net, and GoogLeNet, see Chap. 10 for details on these CNN’s and others.

CNN’s learn features at a coarse granularity, due to the size limitations of the input images, and also
due to the strides taken from input resolution to final layers, which can be 10x or more coarser than the
input layer. To overcome the loss of resolution and positional accuracy, FCN also used a novel skip
connection method to combine various levels of pixel granularity from coarse to fine, deep, and
shallow, to preserve appearance details at each resolution in the network to generate accurate details
for each pixel <x,y coordinate>, and also to preserve pixel positional accuracy for creating the
segmentation boundaries.

Other key findings from the FCN research include:

+ The authors experimented with methods for preserving spatial resolution and pixel positions in the
areas of pooling, stride, and convolutional filter size; the design reflects the key learnings.

+ Also, training data augmentation by jittering at the pixel level was tried but produced no noticeable
improvement.

* Also, training on a grid of larger overlapping image patches (i.e., patch sampling) produced no
significant improvement over whole-image training.

The FCN was the first successful FNN method for training pixel-level classification for segmenta-
tion using a single FNN and achieved excellent benchmark results for its time.

Mask RCNN Method

Mask RCNN from He et al. [937] combines the best of Faster RCNN and FAST RCCN, and RNN in
one architecture. MASK-RCN is both a region proposal method for generating masks and a segmen-
tation method combined; realized as polygon-shaped regions segmentations containing all pixels in an
object from a trained class.

Mask R-CNN adds a branch prediction feature to generate object masks that run in parallel with the
bounding box predictor. The objects in the image and the segmentation masks are detected simulta-
neously. Mask R-CNN is simpler to generalize to incorporate other object description tasks, such as
pose estimation, in the same network. The reported benchmark scores for the 2016 COCO challenge
outperformed all other methods.

CNN Segmentation Methods 81

Region Proposals, Rectangular, Segmented Polygon Regions

Note that segmentation is a method of generating polygon-shaped region proposals; other methods for
object detection commonly generate rectangular region proposals; rectangular regions and polygonal
regions each have the applications.

Region proposals can be generated with or without DNN’s, using other methods for segmentation
and morphology, which we discuss in this chapter as well as Chap. 6. However, DNN methods for
region proposal generation have proliferated with available computer power and larger training sets.

Segmentation methods and morphology can use regional proposal networks, otherwise referred to
as object detection networks, which may generate either polygonal regions, or more commonly
rectangular bounding box regions.

Masks or region proposals, commonly implemented as bounding boxes around objects like people
or cars, are fundamental methods of object detection: the regions grossly segment an image into
collections of overlapping regions of interest, which can be fed forward to various region analysis
networks for object analysis tasks, such as pose analysis of human shapes and joints, or position and
orientation analysis of vehicles in self-driving car systems.

Optimizations to the CNN-based region proposal methods exist under one-shot and two-shot
detector methods. YOLO and SSD use a single-pass through the CNN to detect and segment objects
in one shot, while RCNN, FCN, and Mask RCNN use a two-pass method: the first pass generates the
region proposals, the second pass detects objects within the proposed regions. We survey each of these
methods in more detail below.

Object Detectors and Object Descriptors

In the context of segmentation using CNN neural networks, note that RCNN, Fast-CNN, and Faster-
CNN are multi-shot object detectors, each generating rectangular object region proposals which can be
used for object detection, rather than segmentation, since segmentation is another type of region
proposal for object detection: a polygon-shaped region proposal. Each of the CNN networks is trained
on a dataset, such as Imagenet or COCO, and can detect objects in the training set, then create a
bounding box around the objects, as well as classify each pixel detected for the object class.

NOTE: Besides CNN methods of segmentation and object detection such as RCNN, object
detection and object description are generic terms applied across diverse computer vision methods.
Note that in this chapter we survey a wide range of basic color-based segmentation methods, and in
Chap. 6, we survey many methods of detecting objects without CNN’s.

For example, see Fig. 6.31 and Chap. 6; polygon-shaped descriptors used for particle analysis,
which uses a perimeter-following detector algorithm to segment regions of specific pixel values (such
as binary segmentation) or sets of pixel values within the range [n. . .m] to isolate a group of pixels.
Also, many other methods of object detection and segmentation can be found in this chapter. Here we
put segmentation region proposals into the context of generic object detectors. Note that one method
for object detection uses a combination of Interest Point Detectors like FAST and Harris methods and
Feature Descriptors like SURF and SIFT to describe the regions surrounding the interest points.

For machine learning methods using neural networks, often the object detector finds regions of
pixels within rectangular grids, while the object feature is a DNN learned feature trained on multiple
samples used together with some trained classifier such as a FC Softmax or SVM. Either way, we have
the same paradigm for detectors (Table 2.6):

Object Detectors: learned—OR handcrafted mathematically described
Object Descriptors: learned—OR handcrafted mathematically described
Segmentation: can use Object Detectors or Object Descriptors

82 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Table 2.6 The concepts of feature learning vs. handcrafted feature description; for more, see Chap. 6; Interest Point
Detector and Feature Descriptor Survey

Interest Point Detector Feature Descriptor Object Detector Object Features

* Mathematical * Handcrafted * Learned by CNN * Trained by CNN
« Positional Detector * Surrounds Interest Point « Positional Detector * Learned Descriptor Set
Laplace SIFT One Stage Detectors CNN

Moravic SIFT-PCA « YOLO Transformer

Harris SURF - SSD

Hessian BRISK Two Stage Detectors

FAST FREAK « RCNN

SUSAN . « FCN

e Histograms ¢ MaskRCNN

Perimeter-Followers ..

Color Segmentation

Object detectors are a commodity item. Many pretrained object detector models are available from
open source github and public ONYX models, and available from major companies such as Apple,
Google, OpenAl, Microsoft, Meta, and more. Pretrained object models are available for applications
such as human body analysis (20 or more body joints for activity analysis), facial expression points
(30 or more points for emotion and age recognition), and hand models (includes 20 or more points for
hand/finger joint detection), self-driving car applications (detect cars, signs, people, ...), animal
detection, and more. Next we will look at various single-shot region proposal methods and the various
search strategies to find them (i.e., object detectors), particularly those used for segmentation.

Single Shot Object Detection: SDD and YOLO

Single Shot Object Detection (SSD) methods make predictions about the presence or absence of
objects within a region of the image in a single-pass, by objects from trained object classes such as
Imagenet. The end goal is to devise an object detection image search strategy that is effective under
various constraints, and that can be optimized.

Here we discuss single-pass detectors in general, then we provide more detailed surveys of two
specific one-shot methods:

* YOLO from Redmon et al. [941].
* SSD Single Shot Multibox Detector [942] by Liu et al.

Single-shot detectors, like two-shot or multi-shot detectors, assign all relevant pixels in the image to
the detected class object and create a bounding box around the region and optionally label the region.
The single-pass operation makes SSD computationally efficient. However, single shot detectors can be
less accurate for detecting smaller image objects due to the internal algorithm used to subdivide the
image into a set of smaller grid regions, each of which can be searched separately but may some
objects.

Instead of using sliding window, single-shot methods in this survey divide the image using a grid,
where each grid cell is processed separately by the detector. Detection of objects simply means
predicting the class and location of an object within each grid cell region by passing the grid section
into the CNN.

Since objects may overlap the hard grid cell regions, the term “anchor box” is often used to describe
the offsets for overlapping boxes crossing grid cells to locate objects that span grid cells. Also, an

CNN Segmentation Methods 83

aspect ratio prior is defined in the object detection framework to account for objects that may have a
slightly different pixel aspect ratio due to affine deformation (i.e., warped shapes), so objects may be
recognized under affine deformations. Also, a zoom level range prior can be used to find objects closer
or farther away, or just different sized.

NOTE: YOLO and SSD are not the first methods to devise novel search single-pass strategies—
similar methods have been employed in computer vision for treatment of object scales, occlusion of
objects, and other issues. To dig deeper into search strategies, see Chap. 3, Search Strategies and
Optimizations. Also, see The SWiN transformer (Chap. 11) which also divides the input image space
into a hierarchical multi-scale grid of cells for both feature learning and object detection, using a
shifted window approach to traverse and overlap between the grid cells.

Single-shot detector inference scores are not always correct, mostly due to the grid size restrictions,
and are subject to image scale problems, occlusion, and partial overlap of objects between grid regions.
However, grids are preferred over sliding window style detectors like CNN style n x n template masks,
which do not allow for partial object detection outside the n x n region—the entire object must be
present inside the n x n template mask for a solid correlation match.

SSD

The SSD segmentation method by Liu et al. [942] is a one-shot approach using an FFN. The SSD
architecture includes a backbone with a VGG-16 section followed by a set of additional layers at the
end of the backbone, which predict alignment offsets and rectangular regions for different scales and
offsets of the best scoring regions. Also, the detector uses multiple feature map scales that represent
different resolutions for multi-scale detection.

Extra Feature Layers
VGG-16 A
. through Convs 3 layer

f
Classifier : Conv: 3x3x{dx{Classes+d))

Classifier : Conv: 3x3x(6x(Classes+d])

1%
wen i Conv: 3x3x{dx(Classes+d)) | &
Coend 3 | 3
2 10 Conf10_2 | Comet1_2
1004 512 58 ;4 |

"""""" Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conw: 1x1x128
Conv: 3x3x512-52 Conv: 3x3x256-52 Conv: 3x3x256-51 Conv: 3x3x256-51

74.3mAP
59FPS

SSD

| Detections:8732 per Class |
| Non-Maximum Suppression |

Fig. 2.32 The SSD architecture, composed of a VGG-16 network followed by added layers for region alignment of the
best scoring objects. (Image (C) Liu et al. [942], courtesy Springer ECCV)

As shown in Fig. 2.32, convolutional feature layers are added to the end of the truncated VGG
backbone, each added layer being progressively lower resolution to allow multi-scale predictions. SSD
predicts feature matches at multiple scales, and this is a key innovation compared to other detectors that
operate on a single resolution of features.

SSD eliminates the tedious proposal generation stages and pixel/feature resampling stages of multi-
pass methods by combining all computations in a one-pass network approach to optimize computer
performance, which also simplifies training, which only requires the input image and corresponding
default ground truth boxes for each image. For each box, the shape and offset and confidence scores are
predicted for all object classes in the trained model.

84 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

YoLO

The YOLO method (You Only Look Once) from Redmon et al. [941] is an optimized feature detector
which has influenced much follow-on research into subsequent improvements and versions (YOLO
versions 1-12 at least). Both low-power and highly performant versions of the code have been
developed in various versions using C++ and Python, running on CPU, or parallelized for GPU’s.
The code versions are mostly open-sourced.

Until YOLO, detectors worked by sequentially operating on regions of the image searching for
targets—several sequential searches (look many times). However, YOLO instead parallelized the
detector search, so the image was only searched once (you only look once). YOLO divides the
image into search regions and predicts one or more bounding boxes within the regions, and scores
the detections in each bounding box with a probabilistic weighting. So, YOLO developed an optimized
approach for subsequent detectors to follow.

YOLO’s regional grid search method provides clear performance and classification advantages over
other detectors using single classifier CNN’s that require hundreds or thousands of sequential
predictions over the entire image. And YOLO looks at the entire image in a global context all at
once inside each grid (which is simple to parallelize in software on GPU’s), enabling a faster, simpler,
and intuitive method of comparing detection scores over the grid regions across the entire image,
providing a global context to the classifier (see Fig. 2.33).

Here, we will survey and refer to the latest version of YOLO-7 and omit the history of progressive
developments and improvements since the inception in 2015. YOLO uses a single-shot detector using
a fully convolutional neural network (CNN) to process an image. YOLO is not like the other region
detectors in the RCNN family, so we will dig into the differences below. YOLO can provide a
classification score for up to 9000 trained classes within a grid of image regions in a single pass and
can operate in real-time on the right hardware.

—umyp e SHE

== 1 '_
i T

Bounding boxes + confidence

'a\‘_;

"
VAT e sl LLE‘“EFT

S x S grid on input %40 Final detections

Class probability map

Fig.2.33 Key concepts of YOLO: §xS grid applied to image for detector searching; Class probability map generated by
detector search shows strongest class similarity grid cells; Bounding box candidates generated from grid cells; Final
detections showing regions of highest scoring classes with generated bounding boxes. (Image (C) Joseph Redmon et al.
[941], courtesy Springer and CVPR)

Segmented Region Descriptors: Color and Texture 85

YOLO version YOLO 9000 has demonstrated superior results by being trained jointly on a
combination of Imagenet and COCO training data—this provides about 9000 trained object classes,
giving YOLO the ability to detect objects in each class, and also to detect objects with no labeled
training data at a high probability which fall outside or in between the 9000 trained classes (i.e., multi-
class interpolation or zero-shot learning).

First, YOLO splits the input image into a search grid, and then assigns each grid region a set of
n subregional bounding boxes in the grid. Each bounding box is evaluated with the class detectors and
assigned a classification score after validation against a scoring threshold value; object scores exceed-
ing the threshold are considered detected. YOLO-7 can process 608 x 608 pixel images, runs very fast
compared to most methods, and can operate up to 155 frames per second when using a GPU
accelerator, but runs slower on low-power devises like phones.

Like other grid-search methods, YOLO struggles with common detection problems such as small
objects, i.e., objects at extreme scales, occlusion, and objects with lighting and color variations.

To deal with object size variations, YOLO developed a set of default bounding boxes with varying
scales and aspect ratios, to use along with predicted offsets inside the boxes for evaluating objects
detected at various positions inside the bounding boxes. The end result is better handling of multiple
scales and aspect ratios. The SSD method, surveyed earlier, uses a similar strategy.

Two-Shot Object Detection

Two steps are used for two-shot object detection: (1) create positional proposals for where objects may
be located, usually rectangular proposal regions, (2) refine the proposals and make prediction scores
for each proposal region. Two-shot object detection and prediction can be more accurate than single-
shot detectors, and more computationally expensive since several passes over the image must be made,
with one inference pass through the network for each region to create a final score.

Examples of two-shot detectors include those surveyed already above: CFN, RCNN, Fast-RCNN,
Faster-RCNN, MASK RCNN.

Segmented Region Descriptors: Color and Texture

Note that a segmented region can be used as the basis for computing a feature descriptor for object
detection, rather than relying on a CNN to learn the features. After the image is segmented into regions,
each region can be described by various metrics and statistics, useful for object detection and
description. To dig deeper into research on segmented regions, see Synthetic Vision by Scott
Krig [476].

According to Krig, using a wide set of segmentations taken under various parameters to yield
several segmentations of the same region that are not on a grid is optimal, to simulate visual saccading
of the human eye. Then using a common set of feature description metrics, all regions are described,
believed to be the optimum approach to using segmentations for object detection and description,
rather than relying on a single segmentation algorithm as is the case for the CNN methods we surveyed
above. Many overlapping segmentations are needed to model the human visual system, since segmen-
tation results vary widely and none are optimum (see Figs. 2.34 and 2.35).

86 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.34 Examples of segmentation using different parameters for the same region. The differences are due to the
image preprocessing and segmentation algorithm used. NOTE: several segmentation methods and parameters should be
used together on the same image for best analysis, no single segmentation method is optimal for all scenes. (Image
(C) Scott Krig [476])

Fig. 2.35 The centroid of region segments can be used in devising feature descriptors which associate segmented
regions together into a whole object, as this set of images shows segmentation at a low and a higher level of granularity,
with lines connecting the centroids of related regions containing a squirrel. (Image (C) Scott Krig [476])

Color descriptors of segmented regions are valuable for object detection and description, as
illustrated in Figs. 2.36 and 2.37, illustrating texture description concepts using a color descriptor
for each pixel within a segmented textured region, quantized at different RGB resolutions. For
example, each pixel is a segmented region that is used to describe texture metrics or color metrics,

useful for object description or object detection.

Fig. 2.36 6D ([x, x — 1], [y, y — 1], [z, z — 1],R,G,B) Spatial Dependency Matrices (SDM) at different quantization
levels (i.e., different pixel group size) shown as lighted, shaded 3D volume surface renderings, revealing local texture of
all pixels in a polygonal region. Renderings are quantized at varying RGB color bit resolutions which segment the pixels
and collapse similar pixel values together: left to right, SDM projected from 2-bit, 3-bit, 4-bit, 5-bit, 8-bit resolutions.
(Image (C) Scott Krig [476]. For details on Spatial Dependency Matrices see Chap. 3, Co-occurrence Matrix, Haralick
Features, and Fig. 3.7)

lllumination Estimation and Color Corrections for Segmentation 87

Fig. 2.37 3D volume projections (R,G,B) of pixels in a local polygonal region as unshaded transparent volume
renderings of local RGB texture information from segmented regions, assigning x,y,z values to r,g,b color intensity
values. (Image (C) Scott Krig [476])

lllumination Estimation and Color Corrections for Segmentation

To create accurate segmentations, color properties of the image are crucial. Color estimations and

subsequent colorimetrically accurate corrections may be necessary, see also Chap. 2 Fig. 2.8, and also

Chap. 2 section “Illuminants, White Point, Black Point, and Neutral Axis” for relevant discussions.
Here we survey a few topics and methods for color corrections including:

* [llumination estimation (i.e., light color) which is color-channel aware (i.e., RGB, Luv, etc.)
* Illuminant-based estimations (surface color) which treat color channels separately

Dongliang et al. [943] develop an approach that is able to detect two (2) distinct light illuminations by
the surface of an image and also provides a method to accurately measure the illuminants on the surface,
allowing for the white balance across the neutral axis to be corrected. The method uses a novel approach
of measuring the color space on large image subregions, rather than across the entire image (see
Fig. 2.38). So, illumination is detected specifically for local features, rather than attempting to estimate
the illumination value across the whole image—good idea. Note that this method does not attempt to treat
illumination and shadow separately; however, shadows merit separate modeling and treatment.

RAW image Corrected moment Qur correction Ground truth correction

Fig. 2.38 The corrected illumination white balance across the neutral axis. (Image (C) Dongliang et al. [943], courtesy
Springer and CVPR)

88 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

When the two illuminants are estimated under the Dongliang model, they are treated separately and
not combined together and used to correct the sub-images, which is a logical next step for this line of
correction. However, a user preference is provided to choose one of the illuminants to apply to the
entire image, so the user preference determines what is correct and pleasing. Future work along these
lines could include a deep learning method trained using image statistics from each subregion
compared to the proposed illumination corrections to learn the perceptual preferences, assuming
such a dataset is devised.

For related work on illumination estimation, see Lin [944]. For an overview of Single Image Depth
Estimation which influences illumination estimation, see Mertan et al. [945]. For color estimations for
separate color channels which is combined for final color estimation and corrections, see Laakom
et al. [946].

Color Quantization

Color Quantization is intended to reduce the number of colors in an image to an essential set of colors
to represent the image, such as reducing an 24-bit RGB image into a color image having perhaps
256 most popular actual colors. Many methods exist to accomplish the color reduction goal. By
representing the image using fewer colors (a) compression is achieved, and (b) a form of color
segmentation is achieved by mapping all pixel values to their closest essential color (Fig. 2.39).

Color Quantization 89

Fig. 2.39 RGB Bit Quantization: color images shown using reduced color bit depth. Top left: 2-bits per RGB color
(4 values for each color), top right: 3-bits per RGB color (8 values for each color), bottom left: 4-bits per RGB color
(16 values for each color), bottom right: 5-bits per RGB color (32 values for each color). Note that 5-bit color is often
virtually indistinguishable from 8-bit color. (Image (C) Scott Krig [476])

History of Color Quantization Here is a bit of display monitor history contributing to color
quantization research. In the early days of color monitors and frame buffers during the 1970s and
1980s, using only 8-bits to contain all RGB colors was common, since 24-bit color with 8 bits for each
RGB color was not affordable due to the memory cost. Color display monitors were large, heavy
vacuum tube devices—there were no LCD displays. Like today, the monitor and display hardware is
the most costly part of the system. Early 24-bit full-color frame buffers using 8-bits per each RGB color
(8-8-8 = 24) were unaffordable to all except the government-funded elite scientists and engineers, so a
color frame buffer memory with 931,600 bytes for a 640 x 480 image was not cheap and very
impressive.

920 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Therefore, color popularity and color quantization methods were developed to display 24-bit color
images reduced into 3-3-2 RGB color using only 8-bits for the frame buffer, 3-bits for red, 3 for green,
and 2 for blue.

| Bito [Bite | Bit2 [Bit3 _[Bitd _[Bit5 | Bité | Bit7 |

Red O Red 1 Red2 Green0 Green1l Green2 Bluel Blue 2
RGB color

2-2-2 Red 0 Red 1 - Green0 Greenl -— Blue 0 Blue 1

RGB color

2-BIT RGB Color LUT s one for each RGB
(binary) (binary)

Display 2-bit RGB color RGB

Fig. 2.40 An early 8-bit frame buffer architecture supporting 3-3-2 and 2-2-2 RGB color by mapping separate fields of
an 8-bit pixel to separate RGB LUT’s (lookup tables) for pixel display. NOTE: Imaging Technology Inc. was one such
company in the 1980s

So as shown in Fig. 2.40, some frame buffers such as those from Imaging Technology Inc. (early
1980s) provided an 8-bit color frame buffer using separate 8-bit RGB LUT’s (256 values for each RGB
lookup table) to support 24-bit RGB color as three separate 3-bit or 2-bit colors, where 3-3-2 color
(3-bit red, 3-bits green, and 2-bits blue) was into the top bits of the 8-bit of each LUT’s, or else 2-2-2
color using 2-bits for each R,G,B was mapped into the 8-bit LUT’s.

We survey a few Color Compression and Color Popularity methods in the next section, which are
more accurate than simple bit mappings such as 3-3-2 to reduce color resolution into more acceptable
and realistic colors.

Color Compression and Color Popularity

Color compression can be used to reduce the displayed colors down into a smaller set.

Color Compression and Color Popularity 91

We only survey color representation topics at a high level. To dig deeper into color quantization
methods, see Heckbert [947], and [948-950]. See also Learning to Structure an Image with Few
Colors, Hou et al. [952].

Various methods exist to reduce the color space, see Fig. 2.41 for an example of the Median Cut
method by Heckbert [947].

One method of color compression is color popularity, which creates a histogram of all colors used
and selects perhaps the top 256 colors from the histogram as their color set. Then, actual 24-bit pixels
in an image region are replaced by the nearest color value in the reduced color space, such as the color
popularity histogram list method, or even a standard color set of perhaps 2000 chosen values. The final
step is to replace the existing 8-8-8 RGB pixel colors with the most popular colors that are colorimet-
rically close to the original values in the color list, using simple distance functions to find color
similarity, such as SSD or SAD.

Note that colors can be quantized to any bit depth prior to finding popularity, since often too much
color resolution is counter-productive—for basic analysis it may be best perhaps to stick with 5 bits or
8-bits per RGB component (see Figs. 2.41, 2.42, 2.43, and 2.44).

Color resolution itself may be used to reduce the color space, for example, the 24-bit color
resolution of values 0x8fR 0x6¢cG 0x40B can be replaced with the color 0x80R 0x70G 0x40B and
be visually close enough. Replacing all pixel values with the nearest value in a Standard Color Map of
an arbitrary number of values such as 2000 unique colors may also be sufficient (see Fig. 2.39).

Color quantization is another method, which reduces the bit resolution of each color from 8-8-8
RGB to 5-5-5 RGB as a first step, and then each reduced resolution 5-5-5 RGB color is mapped to find
the closest 8-8-8RGB popularity colors.

According to Heckbert [947], here are a few common color popularity methods.

* The MEDIAN_CUT method creates a 3D color cube RGB histogram and then splits the cube space
into smaller sub-cubes representing cubic color clusters. The final color for each cube is a centroid
or average value of all the colors assigned to the sub-cube.

+ The POPULARITY_LIST method actually starts from a list of all RGB colors in the 2D genome
region and then sorts the colors into a list of the most popular colors and replaces colors outside the
list with the closest color from the list.

* The K-MEANS_CLUSTERING method produces clusters of similar colors.

92 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.41 Color analysis illustration: (left) a 2D image region with predominantly green and reddish tints, and (right) the
3D volume RGB color space distribution shown for the median cut algorithm to identify the 256 most popular colors.
(Image (C) Scott Krig [476])

For segmented region color popularity comparison, two regions are run separately through the
popularity algorithm, producing two color maps and percentage arrays. Then, the color maps and
percentages can be compared using one of the several novel color distance functions described by Krig
[476] as shown below, including parameters to control all color distance functionality.

Color Compression and Color Popularity 93

Comparison of MEDIAN CUT (5M) and POPULARITY_LIST (5P)

5-bit input RGB color component data, usually 256 unique popularity colors produced
1

I 1

5M_RAW -RAW

5P_RAW-RAW

5M_CENTERED- RAW
5P_CENTERED- RAW
5M_LAB_CONSTANT -RAW
5P_LAB_CONSTANT -RAW
5M_SATURATION_BOOST -RAW
5P_SATURATION_BOOST -RAW
5M_RAW-SHARP

5P_RAW-SHARP

5M_CENTERED- SHARP
5P_CENTERED- SHARP
5M_LAB_CONSTANT -SHARP
5P_LAB_CONSTANT -SHARP
5M_SATURATION_BOOST -SHARP
5P_SATURATION_BOOST -SHARP
5SM_RAW-RETINEX
5P_RAW-RETINEX
5M_CENTERED- RETINEX
5P_CENTERED- RETINEX
5M_LAB_CONSTANT -RETINEX
5P_LAB_CONSTANT -RETINEX
5M_SATURATION_BOOST -RETINEX
5P_SATURATION_BOOST -RETINEX

Fig. 2.42 Comparison of 5-bit color input to both MEDIAN_CUT (5M) and POPULARITY_LIST methods (5P); both
methods produce similar results. The legend shows 24 rows, each row either MEDIAN_CUT (5M = 5-bits Median Cut)
or POPULARITY (5P = 5-bits Popularity) color maps for the input images (raw, sharped, and retinex-sharpened) with
color leveling applied for raw, saturation boost, Lab constant, and centered spaces, for details on the images and the color
processing algorithms used see Krig [476]. (Image (C) Scott Krig [476])

94

brush
genome_id0d9b0a17008b008b

right head
genome_id 04b5076800920092

front squirrel
genome_id 0188087000920082

2 Image Preprocessing, Morphology, Segmentation, Colorimetry

leaves stucco

genome_id 040c02fd008e008e genome_id 023708ec008a008a
left head head (lo-res)

genome_id 0554076600920092 genome_id 051402e400950095
saddle enhanced saddle rotated

genome_id 01360aae00a200a2 genome_id Obef09c200a600a6

Fig. 2.43 Segmented regions in RGB color, which are analyzed for color popularity as shown in Fig. 2.44. (Image

(C) Scott Krig [476])

Summary 95

brush

1
(LR BITRE e B
i (I QL] 1 Ll

| n mil [}
mipme LR I e
Wi] RREIR ()
(B B TRILU o HimE e
i mvim

right head left head

front squirrel saddle enhanced saddle rotated

Fig. 2.44 Color popularity results for the segmented regions in Fig. 2.43 and their colors. See Fig. 2.42 for the legend
for interpreting the color on each row. (Image (C) Scott Krig [476])

See Heckbert [947] for details on color popularity methods and other methods. Another good source
for understanding color popularity is [951] End-to-end Optimized Image Compression Johannes Ballé
et al. [951]. See also Learning to Structure an Image with Few Colors, Hou et al. [952].

A statistical comparison of several Image color space reduction methods, including reducing bits
per color, as well as popularity methods, is covered in the comparison of the ColorCNN network
against selected algorithms such as Median Cut and Octrees, see Hou et al. [952].

Summary
In this chapter, we survey image processing as a preprocessing step that can improve image analysis

and feature extraction. We explore several color quantization and color reduction methods. We color
management systems, colorimetric spaces, color processing, segmentation, and object detection. We

926 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

survey segmentation methods using neural networks, such as the U-Net architecture, and the history of
segmentation using neural networks, beginning with region proposals using Mask-RCNN using
CNN’s. In addition, we examine a wider range of texture metrics and color corrections. The YOLO
architecture is surveyed, which provides a basis for general object detection and customization. A
simple taxonomy of general image processing operations for points, lines, and regions is developed to
guide the discussion, with background for filter design using spatial kernels. Fourier processing is
covered for 1D, 2D, and 3D cases, as well as a general discussion of related transforms such as Slant,
Hadamard, and Walsh. Morphology methods are presented, along with an introduction to super pixels.
Various methods for object detection are introduced, such as YOLO. Segmentation methods are
surveyed, in particular semantic and instance segmentation using neural networks, as well as regional
metrics such as texture which can be used in the segmented regions.

Learning Assignments

1. Discuss why image processing is used to improve computer vision pipelines to make the images
more amenable to specific feature descriptors.

2. Discuss problems that image preprocessing can solve for gradient-based features descriptors such
as SIFT.

3. Discuss how image processing goals are influenced in part by the image sensor.

4. Describe some goals for image processing in a general sense, such as goals for corrections and
goals for enhancements.

5. Discuss why image preprocessing is important for optimizing a system for making effective use of
a given feature descriptor such as SIFT, and why the image preprocessing should be designed
specifically for the given feature descriptor.

6. Describe a hypothetical computer vision application, sketch out an architecture including the
feature descriptors used, describe the goals for image preprocessing prior to feature extraction, and
discuss the image processing algorithms chosen to reach the goals.

7. Describe an image processing pipeline to improve the quality of images taken from a very high
speed camera (4000 fps) in a low light environment (poor indoor lighting), including the
objectives for selecting each algorithm and alternatives to each algorithm.

8. Describe an image processing pipeline for correcting color images in an outdoor environment in
very bright direct sunlight, including the objectives for selecting each algorithm, and alternatives
to each algorithm.

9. Discuss how noise affects feature descriptor algorithms.

10. Discuss algorithms to reduce noise, and algorithms to amplify noise.

11. Discuss how noise is related to contrast.

12. Discuss general illumination problems in images, how to detect illumination problems using
statistical and image analysis methods, and general approaches to correct the illumination.

13. Discuss how contrast remapping works, and how it can be used to improve image contrast.

14. Describe an image processing pipeline to prepare images for a segmentation algorithm that is
based on following connected gradients or intensity ridges.

15. A basic taxonomy for image processing operations can be described based on the region: (1) point
operations, (2) line operations, and (3) area operations. Describe each of the three types of region
operations in a general sense, describe the limitations of each of the three approaches, and name at
least one example algorithm for each of the three approaches.

16. Describe the following color spaces: RGB (additive), CYMK (subtractive), and HSV.

Learning Assignments 97

17.

18.
19.

20.

21.
22.
23.
24.
25.
26.
27.

28.

29.
30.

31.
32.

33.
34.

35.

36.

37.

38.

39.

40.

41.
42.

Discuss how color image processing works in color intensity space, and why processing in
intensity space is usually most effective, compared to processing other color space components
such as saturation or hue.

Discuss why color processing in RGB space leads to color moire effects.

Describe the goals of a color management system, including why color management is needed,
and provide a few examples.

Describe the basic components of a color management system, including the illumination model,
the input color space model, and the output color space model.

Describe how color gamut mapping works in general, and the problems encountered.

Describe how rendering intent is related to gamut mapping.

Describe illumination model parameters including white point, black point, and neutral axis.
Discuss color saturation, including causes and mitigation strategies.

Discuss color resolution, 8-bit color vs. 16-bit color, and when color resolution is critical.
Describe a few examples when image processing over local spatial regions is advantageous.
Describe how the dot product and convolution are related, and how they are implemented by
sketching out an algorithm.

Provide the kernel matrix values of a few 3 x 3 convolution kernels, including a sharpen filter
kernel and a blur filter kernel.

Discuss why the values of a convolutional filtering kernel should sum to zero.

Discuss useful postprocessing numerical conditioners applied to convolution results, such as
absolute value.

Describe how to detect noise in the image (for example, histograms and other methods), and
spatial filtering approaches for noise removal.

Compare the Sobel edge detector algorithm and the Canny edge detector algorithm.

Provide the kernel matrix for a few types of edge detectors used for convolutional filtering.
Compare Fourier Transform filtering in the frequency domain with convolutional kernel filtering
in the discreet spatial domain and describe the comparative strengths and weaknesses of each
method for image processing.

Describe the integral image algorithm and how the integral image is used to implement box filters.
Discuss the general goals for image segmentation and describe at least one segmentation algorithm
using pseudo-code.

Describe the binary morphology operations ERODE and DILATE, discuss the intended use, and
provide example 3 X 3 binary kernels for ERODE and DILATE.

Describe the gray-scale morphology operations MIN and MAX, discuss the intended use, and
provide example 3 x 3 gray-scale kernels for MIN and MAX.

Discuss in general how a super-pixel algorithm works.

Discuss contrast remapping, and how it can be implemented using lookup tables.

Compare histogram equalization of global and local regions.

Describe the histogram specification algorithm.

t')

Check for
updates

Measure twice, cut once.
—Carpenter’s saying

This chapter covers the metrics of general feature description, often used for whole images and image
regions, including textural, statistical, model-based, and basis space methods. Texture, a key metric, is
a well-known topic within image processing, and it is commonly divided into structural and statistical
methods. Structural methods look for features such as edges and shapes, while statistical methods are
concerned with pixel value relationships and statistical moments. Methods for modeling image texture
also exist, primarily useful for image synthesis rather than for description. Basis spaces, such as the
Fourier space, are also used for feature description.

It is difficult to develop clean partitions between the related topics in image processing and
computer vision that pertain to global vs. regional vs. local feature metrics; there is considerable
overlap in the applications of most metrics. However, for this chapter, we divide these topics along
reasonable boundaries, though those borders may appear to be arbitrary. Similarly, there is some
overlap between discussions here on global and regional features and topics that are covered in Chap. 2
on image processing and that are discussed in Chap. 6 on local features. In short, many methods are
used for local, regional, and global feature description, as well as image processing, such as the Fourier
transform and the LBP.

But we begin with a brief survey of some key ideas in the field of texture analysis and general vision
metrics.

Historical Survey of Features

To compare and contrast global, regional, and local feature metrics, it is useful to survey and trace the
development of the key ideas, approaches, and methods used to describe features for machine vision.
This survey includes image processing (textures and statistics) and machine vision (local, regional, and
global features). Historically, the choice of feature metrics was limited to those that were computable at
the time, given the limitations in compute performance, memory, and sensor technology. As time
passed and technology developed, the metrics have become more complex to compute, consuming
larger memory footprints. The images are becoming multimodal, combining intensity, color, multiple
spectrums, depth sensor information, multiple-exposure settings, high dynamic range imagery, faster
frame rates, and more precision and accuracy in x, y, and z depth. Increases in memory bandwidth and
compute performance, therefore, have given rise to new ways to describe feature metrics and perform
analysis.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 99
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_3&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_3#DOI

100 3 Global and Regional Feature Descriptors

Many approaches to texture analysis have been tried; these fall into the following categories

+ Structural, describing texture via a set of micro-texture patterns known as texels. Examples include
the numerical description of natural textures such as fabric, grass, and water. Edges, lines, and
corners are also structural patterns, and the characteristics of edges within a region, such as edge
direction, edge count, and edge gradient magnitude, are useful as texture metrics. Histograms of
edge features can be made to define texture, similar to the methods used in local feature descriptors
such as SIFT (described in Chap. 6).

+ Statistical, based on gray level statistical moments describing point pixel area properties, and
includes methods such as the co-occurrence matrix or SDM. For example, regions of an image with
color intensity within a close range could be considered as having the same texture. Regions with
the same histogram could be considered as having the same texture.

* Model-based, including fractal models, stochastic models, and various semi-random fields. Typi-
cally, the models can be used to generate synthetic textures, but may not be effective in recognizing
texture, and we do not cover texture generation.

* Transform or basis-based, including methods such as Fourier, Wavelets, Gabor filters, Zernike,
and other basis spaces, which are treated here as a subclass of the statistical methods (statistical
moments); however, basis spaces are used in transforms for image processing and filtering as well.

Key Ideas: Global, Regional, and Local Metrics

Let us take a brief look at a few major trends and milestones in feature metrics research. While this
brief outline is not intended to be a precise, inclusive look at all key events and research, it describes
some general trends in mainstream industry thinking and academic activity.

1960s, 1970s, 1980s—Whole-Object Approaches

During this period, metrics describe mostly whole objects, larger regions, or images; pattern matching
was performed on large targets via FFT spectral methods and correlation; recognition methods
included object, shape, and texture metrics; and simple geometric primitives were used for object
composition. Low-resolution images such as NTSC, PAL, and SECAM were common—primarily
gray scale with some color when adequate memory was available. Some satellite images were
available to the military with higher resolution, such as LANDSAT images from NASA and SPOT
images from France.

Some early work on pattern recognition began to use local interest points and features: notably,
Moravec [446] developed a local interest point detector in 1981, and in 1988, Harris and Stephens
[127] developed local interest point detectors. Commercial systems began to appear, particularly the
View PRB in the early 1980s, which used digital correlation and scale space super-pixels for coarse to
fine matching, and real-time image processing and pattern recognition systems were introduced by
Imaging Technology. Rack-mounted imaging and machine vision systems began to be replaced by
workstations and high-end PCs with add-on imaging hardware, array processors, and software libraries
and applications by companies such as Krig Research.

Early 1990s—Partial-Object Approaches

Compute power and memory were increasing, enabling more attention to local feature methods, such
as developments from Shi and Tomasi [128] improving the Harris detector methods, Kitchen and
Rosenfeld [174] developing gray level corner detection methods, and methods by Wang and Brady
[179]. Image moments over polygon shapes were computed using Zernike polynomials in 1990 by

Historical Survey of Features 101

Khotanzad and Hong [234]. Scale space theory was applied to computer vision by Moravec [446], and
many other researchers followed this line of thinking into the future, such as Lowe [132] in 2004.

Metrics described smaller pieces of objects or object components and parts of images; there was
increasing use of local features and interest points. Large sets of sub-patterns or basis vectors were used
and corresponding metrics were developed. There was increased use of color information; more
methods appeared to improve invariance for scale, rotational, or affine variations; and recognition
methods were developed based on finding parts of an object with appropriate metrics. Higher image
resolution, increased pixel depths, and color information were increasingly used in the public sector
(especially in medical applications), along with new affordable image sensors, such as the KODAK
MEGA-PLUS, which provided a 1024 x 1024 image.

Mid-1990s—Local Feature Approaches

More focus was put on metrics that identify small local features surrounding interest points in images.
Feature descriptors added more details from a window or patch surrounding each feature, and
recognition was based on searching for sets of features and matching descriptors with more complex
classifiers. Descriptor spectra included gradients, edges, and colors.

Late 1990s—Classified Invariant Local Feature Approaches

New feature descriptors were developed and refined to be invariant to changes in scale, lightness,
rotation, and affine transformations. Work by Schmidt and Mohr [296] advanced and generalized the
local feature description methods. Features acted as an alphabet for spelling out complex feature
descriptors or vectors whereby the vectors were used for matching. The feature matching and
classification stages were refined to increase speed and effectiveness using neural nets and other
machine learning methods [113].

Early 2000s—Scene and Object Modeling Approaches

Scenes and objects were modeled as sets of feature components or patterns with well-formed
descriptors; spatial relationships between features were measured and used for matching; and new
complex classification and matching methods used boosting and related methods to combine strong
and weak features for more effective recognition. The SIFT [132] algorithm from Lowe was published;
SUREF was also published by Bay et al. [131], taking a different approach using HAAR features rather
than just gradients. The Viola—Jones method [431] was published, using HAAR features and a boosted
learning approach to classification, accelerating matching. The OpenCV library for computer vision
was developed by Bradski at INTEL™ and released as open source.

Mid-2000s—Finer-Grain Feature and Metric Composition Approaches

The number of researchers in this field began to mushroom; various combinations of features and
metrics (bags of features) were developed by Csurka et al. [198] to describe scenes and objects using
key points as described by Sivic [447]; new local feature descriptors were created and old ones refined;
and there was increased interest in real-time feature extraction and matching methods for commercial
applications. Better local metrics and feature descriptors were analyzed, measured, and used together
for increased pattern match accuracy. Also, feature learning and sparse feature codebooks were
developed to decrease pattern space, speed up search time, and increase accuracy.

Post-2010—Multimodal Feature Metrics Fusion

There has been increasing use of depth sensor information and depth maps to segment images and
describe features and create VOXEL metrics, for example, see Rusu et al. [329]; for example, 2D
texture metrics are expressed in 3-space. 3D depth sensing methods proliferate, increasing use of high-

102 3 Global and Regional Feature Descriptors

resolution images and high dynamic range (HDR) images to enhance feature accuracy, and greater bit
depth and accuracy of color images allows for valuable color-based metrics and computational
imaging. Increased processing power and cheap, plentiful memory handle larger images on low-cost
compute platforms. Faster and better feature descriptors using binary patterns have been developed and
matched rapidly using Hamming distance, such as FREAK by Alahi et al. [102] and ORB by Rublee
et al. [94]. Multimodal and multivariate descriptors [698, 699] are composed of image features with
other sensor information, such as accelerometers and positional sensors.

Future computing research may even come full circle, when sufficient compute and memory
capacity exist to perform the older methods, like correlation across multiple scales and geometric
perspectives in real-time using parallel and fixed-function hardware methods. This would obviate some
of the current focus on small invariant sets of local features and allow several methods to be used
together, synergistically. Therefore, the history of development in this field is worth knowing, since it
might repeat itself in a different technological embodiment.

Since there is no single solution for obtaining the right set of feature metrics, all the methods
developed over time have applications today and are still in use.

Textural Analysis

One of the most basic metrics is texture, which is the description of the surface of an image channel,
such as color intensity, like an elevation map or terrain map. Texture can be expressed globally or
within local regions. Texture can be expressed locally by statistical relationships among neighboring
pixels in a region, and it can be expressed globally by summary relationships of pixel values within an
image or region. For a sampling of the literature covering a wide range of texture methods, see Refs.
[12, 14-18, 27, 28, 30, 31, 38].

According to Gonzalez [4], there are three fundamental classes of texture in image analysis:
statistical, structural, and spectral. Statistical measures include histograms, scatter plots, and SDMs.
Structural techniques are more concerned with locating patterns or structural primitives in an image,
such as parallel lines, regular patterns, and so on. These techniques are described in [1, 5, 8,
268]. Spectral texture is derived from analysis of the frequency domain representation of the data.
That is, a fast Fourier transform is used to create a frequency domain image of the data, which can then
be analyzed using Fourier techniques.

Histograms reveal overall pixel value distributions, but say nothing about spatial relationships.
Scatter plots are essentially two-dimensional histograms and do not reveal any spatial relationships. A
good survey is found in Ref. [267].

Texture has been used to achieve several goals

» Texture-based segmentation (covered in Chap. 2).
« Texture analysis of image regions (covered in this chapter).
» Texture synthesis, creating images using synthetic textures (not covered in this book).

In computer vision, texture metrics are devised to describe the perceptual attributes of texture by
using discrete methods. For instance, texture has been described perceptually with several properties,
including:

¢ Contrast
e Color
¢ Coarseness

Historical Survey of Features 103

+ Directionality
* Line-likeness
* Roughness

» Constancy

* Grouping

* Segmentation

If textures can be recognized, then image regions can be segmented based on texture and the
corresponding regions can be measured using shape metrics such as area, perimeter, and centroid
(as discussed in Chap. 6). Chapter 2 included a survey of segmentation methods, some of which are
based on texture. Segmented texture regions can be recognized and compared for computer vision
applications. Micro-textures of a local region, such as the LBP discussed in detail in Chap. 6, can be
useful as a feature descriptor, and macro-textures can be used to describe a homogenous texture of a
region such as a lake or field of grass, and therefore, have natural applications to image segmentation.
In summary, texture can be used to describe global image content, image region content, and local
descriptor region content. The distinction between a feature descriptor and a texture metric may be
small.

Sensor limitations combined with compute and memory capabilities of the past have limited the
development of texture metrics to mainly 2D gray scale metrics. However, with the advances toward
pervasive computational photography in every camera providing higher resolution images, higher
frame rates, deeper pixels, depth imaging, more memory, and faster compute, we can expect that
corresponding new advances in texture metrics will be made.

Here is a brief historical survey of texture metrics.

1950s Through 1970s—Global Uniform Texture Metrics

Autocorrelation or cross-correlation was developed by Kaizer [24] in 1955 as a method of looking for
randomness and repeating pattern features in aerial photography, where autocorrelation is a statistical
method of correlating a signal or image with a time-shifted version of itself, yielding a computationally
simple method to analyze ground cover and structures.

Bajcsy [23] developed Fourier spectrum methods in 1973 using various types of filters in the
frequency domain to isolate various types of repeating features as texture.

Gray level spatial dependency matrices, GLCMs and SDMs, or co-occurrence matrices [6] were
developed and used by Haralick in 1973, along with a set of summary statistical metrics from the
SDMs to assist in numerical classification of texture. Some, but not all, of the summary metrics have
proved useful; however, analysis of SDMs and development of new SDM metrics have continued,
involving methods such as 2D visualization and filtering of the SDM data within spatial regions [21],
as well as adding new SDM statistical metrics, some of which are discussed in this chapter.

1980s—Structural and Model-Based Approaches for Texture Classification

While early work focused on micro-textures describing statistical measures between small kernels of
adjacent pixels, macro-textures developed to address the structure of textures within a larger region.
Laws developed texture energy-detection methods in 1979 and 1980 [22, 25, 26], as well as texture
classifiers, which may be considered the forerunners of some of the modern classifier concepts. The
Laws method could be implemented as a texture classifier in a parallel pipeline with stages for taking
gradients via a set of convolution masks over Gaussian-filtered images to isolate texture micro-
features, followed by a Gaussian smoothing stage to deal with noise, followed by the energy calcula-
tion from the combined gradients, followed by a classifier which matched texture descriptors.

104 3 Global and Regional Feature Descriptors

Eigenfilters were developed by Ade [27] in 1983 as an alternative to the Laws gradient or energy
methods and SDMs; eigenfilters are implemented using a covariance matrix representation of local
3 x 3 pixel region intensities, which allows texture analysis and aggregation into structure based on the
variance within eigenvectors in the covariance matrix.

Structural approaches were developed by Davis [28] in 1979 to focus on gross structure of texture
rather than primitives or micro-texture features. Hough transforms were invented in 1972 by Duda and
Hart [192] as a method of finding lines and curves, and it was used by Eichmann and Kasparis [14] in
1988 to provide invariant texture description.

Fractal methods and Markov random field methods were developed into texture descriptors, and
while these methods may be good for texture synthesis, they do not map well to texture classification,
since both Fractal and Markov random field methods use random fields, thus there are limitations when
applied to real-world textures that are not random.

1990s—Optimizations and Refinements to Texture Metrics

In 1993, Lam and Ip [15, 31] used pyramid segmentation methods to achieve spatial invariance, where
an image is segmented into homogenous regions using Voronoi polygon tessellation and irregular
pyramid segmentation techniques around Q points taken from a binary thresholded image; five shape
descriptors are calculated for each polygon: area, perimeter, roundness, orientation, and major/minor
axis ratio, combined into texture descriptors.

Local binary patterns (LBP) were developed in 1994 by Ojala et al. [142] as a novel method of
encoding both pattern and contrast to define texture [12, 14, 17, 18]; since then, hundreds of
researchers have added to the LBP literature in the areas of theoretical foundations, generalization
into 2D and 3D, domain-specific interest point descriptors used in face detection, and spatiotemporal
applications to motion analysis [16]. LBP research remains quite active at this time. LBPs are covered
in detail in Chap. 6. There are many applications for the powerful LBP method as texture metric, a
feature descriptor, and an image processing operator, the latter of which was discussed in Chap. 2.

2000 to Today—More Robust Invariant Texture Metrics and 3D Texture

Feature metrics research is investigating texture metrics that are invariant to scale, rotation, lighting,
perspective, and so on to approach the capabilities of human texture discrimination. In fact, texture is
used interchangeably as a feature descriptor in some circles. The work by Pun and Lee [29] is an
example of development of rotational invariant texture metrics, as well as scale invariance. Invariance
attributes are discussed in the general taxonomy in Chap. 5.

The next wave of metrics being developed increasingly will take advantage of 3D depth informa-
tion. One example is the surface shape metrics developed by Spence [30] in 2003, which provide a
bump-map type metric for affine invariant texture recognition and texture description with scale and
perspective invariance. Chapter 6 also discusses some related 3D feature descriptors.

Statistical Methods

The topic of statistical methods is vast, and we can only refer the reader to selected literature as we go
along. One useful and comprehensive resource is the online NIST National Institute of Science and
Technology Engineering Statistics Handbook,' including examples and links to additional resources
and tools.

! See the NIST online resource for engineering statistics: https:/www.itl.nist.gov/div898/handbook/.

https://www.itl.nist.gov/div898/handbook/

Texture Region Metrics 105

Statistical methods may be drawn upon at any time to generate novel feature metrics. Any feature,
such as pixel values or local region gradients, can be expressed statistically by any number of methods.
Simple methods, such as the histogram shown in Fig. 3.1, are invaluable. Basic statistics such as
minimum, maximum, and average values can be seen easily in the histogram shown in Chap. 2 in
Fig. 2.21. We survey several applications of statistical methods to computer vision here.

I 0]
0 255

Fig. 3.1 Histogram with linear scale values (black) and log scale values (gray), illustrating how the same data are
interpreted differently based on the chart scale

Texture Region Metrics

Now we look in detail at the specific metrics for feature description based on texture. Texture is one of
the most-studied classes of metrics. It can be thought of in terms of the surface—for example, a burlap
bag compared to silk fabric. There are many possible textural relationships and signatures that can be
devised in a range of domains, with new ones being developed all the time. In this section we survey
some of the most common methods for calculating texture metrics:

+ Edge metrics

* Cross-correlation

* Fourier spectrum signatures

» Co-occurrence matrix, Haralick features, extended SDM features
* Laws texture metrics

» Tessellation

* Local binary patterns (LBP)

* Dynamic textures

Within an image, each image region has a texture signature, where texture is defined as a common
structure and pattern within that region. Texture signatures may be a function of position and intensity
relationships, as in the spatial domain, or be based on comparisons in some other function basis and
feature domain, such as frequency space using Fourier methods.

Texture metrics can be used to both segment and describe regions. Regions are differentiated based
on texture homogeneousness, and as a result, texture works well as a method for region segmentation.
Texture is also a good metric for feature description, and as a result, it is useful for feature detection,
matching, and tracking.

106 3 Global and Regional Feature Descriptors

Appendix B contains several ground truth datasets with example images for computing texture
metrics, including the CUReT reflectance and texture database from Columbia University. Several key
papers describe the metrics used against the CUReT dataset [19, 32, 33, 55], including the appearance
of a surface as a bidirectional reflectance distribution function (BRDF) and a bidirectional texture
function (BTF).

These metrics are intended to measure texture as a function of direction and illumination, to capture
coarse details and fine details of each surface. If the surface texture contains significant sub-pixel detail
not apparent in single pixels or groups of pixels, the BRDF reflectance metrics can capture the coarse
reflectance details. If the surface contains pixel-by-pixel difference details, the BTF captures the fine
texture details.

Edge Metrics

Edges, lines, contours, or ridges are basic textural features [268, 269]. A variety of simple metrics can
be devised just by analyzing the edge structure of regions in an image. There are many edge metrics in
the literature, and a few are illustrated here.

Computing edges can be considered on a continuum of methods from interest point to edges, where
the interest point may be a single pixel at a gradient maxima or minima, with several connected
gradient maxima pixels composed into corners, ridges line segments, or a contours. In summary, a
gradient point is a degenerate edge, and an edge is a collection of connected gradient points.

The edge metrics can be computed locally or globally on image regions as follows

» Compute the gradient g(d) at each pixel, selecting an appropriate gradient operator g() and select the
appropriate kernel size or distance d to target either micro- or macro-edge features.

+ The distance d or kernel size can be varied to achieve different metrics; many researchers have used
3 x 3 kernels.

+ Compute edge orientation by binning gradient directions for each edge into a histogram; for
example, use 45° angle increment bins for a total of 8 bins at 0°, 45°, 90°, 135°, 180°, 225°, 270°.

Several other methods can be used to compute edge statistics. The representative methods are
shown here; see also Shapiro and Stockton [443] for a standard reference.

Edge Density
Edge density can be expressed as the average value of the gradient magnitudes g, in a region.

__ &u(d)
4™ pixels in region ’

Edge Contrast
Edge contrast can be expressed as the ratio of the average value of gradient magnitudes to the
maximum possible pixel value in the region.

B
max pixel value

c =

Texture Region Metrics 107

Edge Entropy
Edge randomness can be expressed as a measure of the Shannon entropy of the gradient magnitudes.

E. = ng(xi) logbgm(xi)'
i=0

Edge Directivity
Edge directivity can be expressed as a measure of the Shannon entropy of the gradient directions.

Ec=)_gy(x)log, gq(x:).
i=0

Edge Linearity
Edge linearity measures the co-occurrence of collinear edge pairs using gradient direction, as shown by
edges a-b in Fig. 3.2.

| a. b.
R — —>
e

1

Fig. 3.2 Gradient direction of edges a, b, ¢, d used to illustrate relationships for edge metrics

E| = cooccurrence of colinear edge pairs.

Edge Periodicity
Edge periodicity measures the co-occurrence of identically oriented edge pairs using gradient direc-
tion, as shown by edges a—c in Fig. 3.2.

E, = cooccurrence of identically oriented edge pairs.

Edge Size
Edge size measures the co-occurrence of opposite oriented edge pairs using gradient direction, as
shown by edges a—d in Fig. 3.2.

E = cooccurrence of opposite oriented edge pairs.

Edge Primitive Length Total
Edge primitive length measures the total length of all gradient magnitudes along the same direction.

E, = total length of gradient magnitudes with same direction.

108 3 Global and Regional Feature Descriptors

Cross-Correlation and Autocorrelation

Cross-correlation [24] is a metric showing similarity between two signals with a time displacement
between them. Autocorrelation is the cross-correlation of a signal with a time-displaced version of
itself. In the literature on signal processing, cross-correlation is also referred to as a sliding inner
product or sliding dot product. Typically, this method is used to search a large signal for a smaller
pattern.

frg=f(=1)xg().

Using the Wiener—Khinchin theorem as a special case of the general cross-correlation theorem,
cross-correlation can be written as simply the Fourier transform of the absolute square of the function
f,» as follows:

() =Fu[I1LP] o).

In computer vision, the feature used for correlation may be a 1D line of pixels or gradient
magnitudes, a 2D pixel region, or a 3D voxel volume region. By comparing the features from the
current image frame and the previous image frame using cross-correlation derivatives, we obtain a
useful texture change correlation metric.

By comparing displaced versions of an image with itself, we obtain a set of either local or global
autocorrelation texture metrics. Autocorrelation can be used to detect repeating patterns or textures in
an image, and also to describe the texture in terms of fine or coarse, where coarse textures show the
autocorrelation function dropping more slowly than that of fine textures. See also the discussion of
correlation in Chap. 6 and Fig. 6.20.

Fourier Spectrum, Wavelets, and Basis Signatures

Basis transforms, such as the FFT, decompose a signal into a set of basis vectors from which the signal
can be synthesized or reconstructed. Viewing the set of basis vectors as a spectrum is a valuable
method for understanding image texture and creating a signature. Several basis spaces are discussed in
this chapter, including Fourier, HAAR, wavelets, and Zernike.

Although computationally expensive and memory-intensive, the Fast Fourier Transform (FFT) is
often used to produce a frequency spectrum signature. The FFT spectrum is useful for a wide range of
problems. The computations typically are limited to rectangular regions of fixed sizes, depending on
the radix of the transform (see Bracewell [191]).

As shown in Fig. 3.3, Fourier spectrum plots reveal definite image features useful for texture and
statistical analysis of images. For example, Fig. 3.10 shows an FFT spectrum of LBP pattern metrics.
Note that the Fourier spectrum has many valuable attributes, such as rotational invariance, as shown in
Fig. 3.3, where a texture image is rotated 90° and the corresponding FFT spectrums exhibit the same
attributes, only rotated 90°.

Wavelets [191] are similar to Fourier methods and have become increasingly popular for texture
analysis [29], discussed later in the section on basis spaces.

Texture Region Metrics 109

Fig. 3.3 (Top row) Example images with texture. (Bottom row) Texture and shape information revealed in the
corresponding FFT power spectrums

Note that the FFT spectrum as a texture metric or descriptor is rotational invariant, as shown in the
bottom left image of Fig. 3.3. FFT spectra can be taken over rectangular 2D regions. Also, 1D arrays
such as annuli or Cartesian coordinates of the shape taken around the perimeter of an object shape can
be used as input to an FFT and as an FFT descriptor shape metric.

Co-occurrence Matrix, Haralick Features

Haralick [6] proposed a set of 2D texture metrics calculated from directional differences between
adjacent pixels, referred to as co-occurrence matrices, Spatial dependency matrices (SDM) spatial
dependency matrices (SDM), or gray level co-occurrence matrices (GLCM)Spatial dependency
matrices (SDM). A complete set of four (4) matrices is calculated by evaluating the difference
between adjacent pixels in the x, y, diagonal x, and diagonal y directions, as shown in Fig. 3.4, and
further illustrated with a 4 x 4 image and corresponding co-occurrence tables shown in Fig. 3.5.

One benefit of the SDM as a texture metric is that it is easy to calculate in a single pass over the
image. The SDM is also fairly invariant to rotation, which is often a difficult robustness attribute to
attain. Within a segmented region or around an interest point, the SDM plot can be a valuable texture
metric all by itself, therefore useful for texture analysis, feature description, noise detection, and pattern
matching.

For example, if a camera has digital-circuit readout noise, it will show up in the SDM for the
x direction only if the lines are scanned out of the sensor one at a time in the x direction, so using the
SDM information will enable intelligent sensor processing to remove the readout noise. However, it
should be noted that SDM metrics are not always useful alone and should be qualified with additional
feature information. The SDM is primarily concerned with spatial relationships, with regard to spatial
orientation and frequency of occurrence. So, it is primarily a statistical measure.

110 3 Global and Regional Feature Descriptors

The SDM is calculated in four orientations, as shown in Fig. 3.4. Since the SDM is only concerned
with adjacent pairs of pixels, these four calculations cover all possible spatial orientations. SDMs could
be extended beyond 2 x 2 regions by using forming kernels extending into 5 x 5,7 x 7,9 x 9, and other
dimensions.

A spatial dependency matrix is basically a count of how many times a given pixel value occurs next
to another pixel value. Figure 3.5 illustrates the concept. For example, assume we have an 8-bit image
(0.255). If an SDM shows that pixel value x frequently occurs adjacent to pixels within the range x + 1
to x — 1, then we would say that there is a “smooth” texture at that intensity. However, if pixel value
x frequently occurs adjacent to pixels within the range x + 70 to x — 70, we would say that there is quite
a bit of contrast at that intensity, if not noise.

X Y Diagonal X Diagonal Y

> A

v

Fig. 3.4 Four different vectors used for the Haralick texture features, where the difference of each pixel in the image is
plotted to reveal the texture of the image

4x4 image

N0 1 2 3 N0 1 2 3
1 o[l4 2 1 0 ol o 2 o
Al d v 0° Pp1[2 4 0o o 0° PLlo 4 2 o
2.1 2)2 21 0 6 1 2|2 2 2 2
2|2 | 3l3 3|0 0 1 2 3lo o 2 o
(a) (c) (d)
wﬂ
135° as°
e |5 1o N0 1 2 3 N0 1 2 3
ol2 1 3 o of4 1 0 o
5-{ =k -1 0° 138° 1|1 2 1 0 s° P12 2 o
) ! 23 1 0 2 2|0 2 4 1
4|3 |2 3[o o 2 o 3|0 0 1 0
—aE © ®

(b)
Fig. 3.5 (a) 4 x 4 Pixel image, with gray values in the range 0-3. (b) Nearest neighbor angles corresponding to SDM
tables. (c—f) With neighborhood counts for each angle

A critical point in using SDMs is to be sensitive to the varied results achieved when sampling over
small vs. large image areas. By sampling the SDM over a smaller area (say 64 x 64 pixels), details will
be revealed in the SDMs that would otherwise be obscured. The larger the size of the sample image
area, the more the SDM will be populated. And the more samples taken, the more likely that detail will
be obscured in the SDM image plots. Actually, smaller areas (i.e., 64 x 64 pixels) are a good place to
start when using SDMs, since smaller areas are faster to compute and will reveal a lot about local
texture.

The Haralick metrics are shown in Fig. 3.6.

Texture Region Metrics

111

Angular Second Moment

Contrast

Correlation

Sum of Squares: Variance

Inverse Difference Moment

Sum Average

Sum Variance
Sum Entropy
Entropy

Difference Variance

Difference Entropy

Info. Measure of Correlation 1

Info. Measure of Correlation 2

Max. Correlation coeff.

2,00 4)
Z:ol 1{2 'ZJ |P[I J }"

22, (0) pid)-mu,
T, Ty

Jl=

Where u, .4, ,0,. and o,
are the means and std. deviations
of p, and p,, , the partial probability
density functions
LI (i- ,u}' p(i.j)
LI, ——p(i.j)
(iy
ip,., (i)

Where x and y are the coordinates (row and
column) of an entry in the co-occurrence matrix,
and py,y(i) is the probability of co-occurrence
matrix coodinates summing to x+y

= (} Puay (i)
Yip, (ilog{ by, (D)} = 1,
-3):.p(i,;]log[p(l,_;})
25 p,, (i)
-2, (i)log{p,., (i)}
_HX - XY
max {HX ,HY }
1
(1-exp[-2(HxY2- HXY)])?
Where HXY=-2., p(i, j)log(p(i.). HX ,
HY are the entropies of p, and p, , HXYI=
-L.Z,p(i.j)log{p. (i) p, (J)} HXY2 =
“£.2,p (i) p, ()og{p. () p, (J)}

Square root of the second largest eigenvalue of Q

Where Qi+ /)=

" op(i)p, (k)

Fig. 3.6 Haralick texture metrics. (Image used by permission, © Intel Press, from Building Intelligent Systems)

112 3 Global and Regional Feature Descriptors

The statistical characteristics of the SDM have been extended by several researchers to add more
useful metrics [21], and SDMs have been applied to 3D volumetric data by a number of researchers
with good results [20].

Extended SDM Metrics (Krig SDM Metrics)

Extensions to the Haralick metrics have been developed by the author [21], primarily motivated by a
visual study of SDM plots as shown in Fig. 3.7. Applications for the extended SDM metrics include
texture analysis, data visualization, and image recognition. The visual plots of the SDMs alone are
valuable indicators of pixel intensity relationships and are worth using along with histograms to get to
know the data.

Mat ruPlot{I.nageCooccurrenca

InfgT]= mtruPiot[Imquooccurrence[

64

1 2 40 54 1 o W ol
1k 3 1+ 1
= o W G

OutEs}=
40 . 40 40 40
"n
%
L]

Lo o g " M e & " s G

1 % 4 6 1 E1) @ 8

Fig. 3.7 Pair of image co-occurrence matrix plots (x-axis plots) computed over 64 bins in the bottom row corresponding
to the images in the top row

Texture Region Metrics 113

The extended SDM metrics include centroid, total coverage, low-frequency coverage, total power,
relative power, locus length, locus mean density, bin mean density, containment, linearity, and
linearity strength. The extended SDM metrics capture key information that is best observed by looking
at the SDM plots. In many cases the extended SDM metric is to be computed four times, once for each
SDM direction of 0°, 45°, 90°, and 135°, as shown in Fig. 3.5.

The SDMs are interesting and useful all by themselves when viewed as an image. Many of the
texture metrics suggested are obvious after viewing and understanding the SDMs; others are neither
obvious nor apparently useful until developing a basic familiarity with the visual interpretation of
SDM image plots. Next, we survey the following:

+ Example SDMs showing four directional SDM maps: A complete set of SDMs would contain
four different plots, one for each orientation. Interpreting the SDM plots visually reveals useful
information. For example, an image with a smooth texture will yield a narrow diagonal band of
co-occurrence values; an image with wide texture variation will yield a larger spread of values; a
noisy image will yield a co-occurrence matrix with outlier values at the extrema. In some cases,
noise may only be distributed along one axis of the image—perhaps, across rows or the x axis,
which could indicate sensor readout noise as each line is read out of the sensor, suggesting a row- or
line-oriented image preparation stage in the vision pipeline to compensate for the camera.

* Extended SDM texture metrics: The addition of 12 other useful statistical measures to those
proposed by Haralick.

* Some code snippets: These illustrate the extended SDM computations; full source code is shown in
Appendix D.

In Fig. 3.7, several of the extended SDM metrics can be easily seen, including containment and
locus mean density. Note that the right image does not have a lot of outliner intensity points or noise
(good containment); most of the energy is centered along the diagonal (tight locus), showing a rather
smooth set of image pixel transitions and texture, while the left image shows a wider range of intensity
values. For some images, wider range may be noise spread across the spectrum (poor containment),
revealing a wider band of energy and contrast between adjacent pixels.

Metric 1: Centroid

To compute the centroid, for each SDM bin p(i,j), the count of the bin is multiplied by the bin
coordinate for x, y and also the total bin count is summed. The centroid calculation is weighted to
compute the centroid based on the actual bin counts, rather than an unweighted “binary” approach of
determining the center of the binning region based on only bin data presence. The result is the weighted
center of mass over the SDM bins.

x = jp(ij)
n m
centroid = Z Z y = ip(i,))
i—0 j=0 o

z=p(i.j)
centroid, = J
’ Z
centroid, = X
b4

114 3 Global and Regional Feature Descriptors

Metric 2: Total Coverage

This is a measure of the spread, or range of distribution, of the binning. A small coverage percentage
would be indicative of an image with few gray levels, which corresponds in some cases to image
smoothness. For example, a random image would have a very large coverage number, since all or most
of the SDM bins would be hit. The coverage feature metrics (2, 3, 4), taken together with the linearity
features suggested below (11, 12), can give an indication of image smoothness.

nom (1 if |=0<p(i)),
coverage, = Z Z <

i—0 j=0 \ 0 otherwise
coverage,

coverage, = (I’l " m)

Metric 3: Low-Frequency Coverage

For many images, any bins in the SDM with bin counts less than a threshold value, such as 3, may be
considered as noise. The low-frequency coverage metric, or noise metric, provides an idea of how
much of the binning is in this range. This may be especially true as the sample area of the image area
increases. For whole images, a threshold of 3 has proved to be useful for determining if a bin contains
noise for a data range of 0-255, and using the SDM over smaller local kernel regions may use all the
values with no thresholding needed.

n m 1,
coverage, = Z Z if 0<p(i,j) < 3()

i=0 j=0 else| -0
coverage,

coverage, = (I’l ” m)

Metric 4: Corrected Coverage
Corrected coverage is the total coverage with noise removed.

coverage, = coverage, — coverage,.

Metric 5: Total Power

The power metric provides a measure of the swing in value between adjacent pixels in an image and is
computed in four directions. A smooth image will have a low power number because the differences
between pixels are smaller. Total power and relative power are interrelated, and relative power is
computed using the total populated bins (z) and total difference power ().

n

z+ =1,
power, = Z Z if p(i,j)iO(>

= |i— |

3

power, = t.

Metric 6: Relative Power
The relative power is calculated based on the scaled total power using nonempty SDM bins ¢, while the
total power uses all bins.

Texture Region Metrics 115

t
power; = —.

Metric 7: Locus Mean Density

For many images, there is a “locus” area of high-intensity binning surrounding the bin axis (locus axis
is where adjacent pixels are of the same value x = y) corresponding to a diagonal line drawn from the
upper left corner of the SDM plot. The degree of clustering around the locus area indicates the amount
of smoothness in the image. Binning from a noisy image will be scattered with little relation to the
locus area, while a cleaner image will show a pattern centered about the locus.

n o m + =1,
locusC:Z Z if0<|i—j|<7<)

i=0 =0 d+ = p(i,))

locusy = é
b4
The locus mean density is an average of the bin values within the locus area. The locus is the area
around the center diagonal line, within a band of 7 pixels on either side of the identity line (x = y) that
passes down the center of each SDM. However, the number 7 is not particularly special, but based
upon experience, it just gives a good indication of the desired feature over whole images. This feature
is good for indicating smoothness.

Metric 8: Locus Length

The locus length measures the range of the locus concentration about the diagonal. The algorithm for
locus length is a simple count of bins populated in the locus area; a threshold band of 7 pixels about the
locus has been found useful.

y = length = 0;

while (y < 256) {

X = count = 0;

while (x < 256) {
n=|y-x|;
if (pl[i,j] == 0) && (n < 7) count++;
X++;

1

if (!count) length++;

Y+

}

Metric 9: Bin Mean Density
This is simply the average bin count from nonempty bins.

n m

density, = Z Z if p(i,j)#0(v =p(i,j).z+=1)

density, =

116 3 Global and Regional Feature Descriptors

Metric 10: Containment

Containment is a measure of how well the binning in the SDM is contained within the boundaries or
edges of the SDM, and there are four edges or boundaries, for example, assuming a data range
[0...255], there are containment boundaries along rows 0 and 255, and along columns 0 and 255.
Typically, the bin count m is 256 bins, or possibly less such as 64. To measure containment, basically
the perimeters of the SDM bins are checked to see if any binning has occurred, where the perimeter
region bins of the SDM represent extrema values next to some other value. The left image in Fig. 3.7
has lower containment than the right image, especially for the low values.

containment; = i if p (,0)#0 (a+=1)
=0

containment, = i if p (i,m)#0 (2+=1)
i=0

containment; = zm: if p (0,i)#0 (c3+=1)
i=0

containment, = Zm: if p mi)#0 (aa+=1)
i=0

(c1 +ca+c3+ca)

containment, = 1.0 —
4m

If extrema are hit frequently, this probably indicates some sort of overflow condition such as
numerical overflow, sensor saturation, or noise. The binning is treated unweighted. A high contain-
ment number indicates that all the binning took place within the boundaries of the SDM. A lower
number indicates some bleeding. This feature appears visually very well in the SDM plots.

Metric 11: Linearity

The linearity characteristic may only be visible in a single orientation of the SDM, or by comparing
SDMs. For example, the image in Fig. 3.8 reveals some linearity variations across the set of SDMs.
This is consistent with the image sensor used (older tube camera).

m z+=1,
linearity, = Z if p(jm,j)>1 ()
=0 I+ = p(256j.)
. . Z
hneaﬂtYnormalized = %

L l
linearity oo = — | — *m
‘ z

Texture Region Metrics 117

Fig. 3.8 SDMs from old
tube camera showing
linearity variations in the
sensor and include full set
of 0°, 45°, 90°, and 135°
SDM:s. (Public domain
image from National
Archives)

256x256 pixels, 5-bit; 64K 256x256 pixels. 8-bit; 64K

soMOUadrantan BUCT nna (150%

256x256 pixels: 8-bit; 64K

800

B 0 |
0 255

Count: 117992 Min: 10
Mean: 115.695 Max: 255
StdDev: 47.322 Mode: 125 (2140)

118 3 Global and Regional Feature Descriptors

Table 3.1 Extended SDM metrics from Fig. 3.8

Metric 0° 45° 90° 135° Ave.
Xcentroid 115 115 115 115 115
Ycentroid 115 115 115 115 115
Low_frequency_coverage 0.075 0.092 0.103 0.108 0.095
Total_coverage 0.831 0.818 0.781 0.780 0.803
Corrected_coverage 0.755 0.726 0.678 0.672 0.708
Total_power 2.000 3.000 5.000 5.000 3.750
Relative_power 17.000 19.000 23.000 23.000 20.500
Locus_length 71 72 71 70 71
Locus_mean_density 79 80 74 76 77
Bin_mean_density 21 19 16 16 18
Containment 0.961 0.932 0.926 0912 0.933
Linearity 0.867 0.848 0.848 0.848 0.853
Linearity_strength 1.526 1.557 0.973 1.046 1.276

Metric 12: Linearity Strength
The algorithm for linearity strength is shown in Metric 11. If there is any linearity present in a given
angle of SDM, both linearity strength and linearity will be comparatively higher at this angle than the
other SDM angles (Table 3.1).

Laws Texture Metrics

The Laws metrics [22, 25, 26] provide a structural approach to texture analysis, using a set of masking
kernels to measure texture energy or variation within fixed sized local regions, similar to the 2 x 2
region SDM approach, but using larger pixel areas to achieve different metrics.

The basic Laws algorithm involves classifying each pixel in the image into texture based on local
energy, using a few basic steps

1. The mean average intensity from each kernel neighborhood is subtracted from each pixel to
compensate for illumination variations.

2. The image is convolved at each pixel using a set of kernels, each of which sums to zero, followed by
summing the results to obtain the absolute average value over each kernel window.

3. The difference between the convolved image and the original image is measured, revealing the
Laws energy metrics.

Laws define a set of nine separable kernels to produce a set of texture region energy metrics, and
some of the kernels work better than others in practice. The kernels are composed via matrix
multiplication from a set of four vector masks, L5, ES, S5, and RS, described below. The kernels
were originally defined as 5 % 5 masks, but 3 x 3 approximations have been used also, as shown below.

5 x5 form

L5 Level Detector [1 4 6 4 1]
E5 Edge Detector [— 1 -2 0 2 1]
S5 Spot Detector [—-1 0 2 0 1]
R5 Ripple Detector [1 -4 6 —4 1]

3 x 3 approximations of 5 x 5 form

Texture Region Metrics

L3 Level Detector
E3 Edge Detector
S3 Spot Detector
R3 Ripple Detector

(1 2
(-1 0
(-1 2
[

1]

1]

—1]

119

*NOTE : cannot be reproduced in 3 x 3 form].

-1 -1 -2 -1

0] * [1,2,1] = [0 0 O

1 1 2 1

E3L3 E3S3 L3S3

-1 01 1 0-1 -1 -2 -1

-2 0 2] [—2 0 2 [2 4 2]

-1 01 1 0-1 -1 -2 -1

E5L5 E5S5 L5S5

-1 -2 0 2 1 1 2 0-2-1 -1 -4 -6 -4 -1
-4 -8 0 8 4 0 0 0 0 O 0O 0 0 0 O
-6 -12 0 12 6 -2 -4 0 4 2 2 8 12 8 2
-4 -8 0 8 4 0 0 0 0 O 0 0 0 0 O
-1 -2 0 2 1 1 2 0-2 -1 -1 -4 -6 -4 -1

Fig. 3.9 L3E3 kernel composition example

To create 2D masks, vectors Ln, En, Sn, and Rn (as shown above) are convolved together as
separable pairs into kernels; a few examples are shown in Fig. 3.9.
Note that Laws texture metrics have been extended into 3D for volumetric texture analysis [34, 35].

LBP Local Binary Patterns

In contrast to the various structural and statistical methods of texture analysis, the LBP operator
[16, 37] computes the local texture around each region as an LBP binary code, or micro-texture,
allowing simple micro-texture comparisons to segment regions based on like micro-texture. (See the
very detailed discussion on LBP in Chap. 6 for details and references to the literature, and especially
Fig. 6.6.) The LBP operator [142] is quite versatile, easy to compute, consumes a low amount of
memory, and can be used for texture analysis, interest points, and feature description. As a result, the
LBP operator is discussed in several places in this book.

As shown in Fig. 3.10, the uniform set of LBP operators, composed of a subset of the possible LBPs
that are by themselves rotation invariant, can be binned into a histogram, and the corresponding bin
values are run through an FFT as a 1D array to create an FFT spectrum, which yields a robust metric
with strong rotational invariance.

120 3 Global and Regional Feature Descriptors

0.06 0.25
\
0.2 e
0.04 \
0.15
\
0.1 Ny
0.02 .
0.05¢ \
f’
0 0
10 20 30 40 50 10 20 30
0.06 0.25
\
0.2 2
0.04 \
0.15
\
0.1 \
0.02 <
0.059
0
10 20 30 40 50 10 20 30

Fig. 3.10 (Left) Texture images. (Center) LBP histograms. (Right) FFT spectrum plots of the histograms which reveal
the rotational invariance property of the LBP histograms. Note that while the histogram binning looks different for the
rotated images, the FFT spectrums look almost identical. (Image © Springer-Verlag London Limited from Computer
Vision Using Local Binary Patterns)

Dynamic Textures

Dynamic textures are a concept used to describe and track textured regions as they change and morph
dynamically from frame to frame [12, 13]. For example, dynamic textures may be textures in motion,
like sea waves, smoke, foliage blowing in the wind, fire, facial expressions, gestures, and poses. The
changes are typically tracked in spatiotemporal sets of image frames, where the consecutive frames are
stacked into volumes for analysis as a group. The three dimensions are the XY frame sizes, and the
Z dimension is derived from the stack of consecutive framesn — 2, n — 1, n.

A close cousin to dynamic texture research is the field of activity recognition (discussed in Chap. 6),
where features are parts of moving objects that compose an activity—for example, features on arms
and legs that are tracked frame to frame to determine the type of motion or activity, such as walking or
running. One similarity between activity recognition and dynamic textures is that the features or
textures change from frame to frame over time, so for both activity recognition and dynamic texture
analysis, tracking features and textures often requires a spatiotemporal approach involving a data
structure with a history buffer of past and current frames, which provides a volumetric representation to
the data.

For example, VLBP and LBP-TOP (discussed in Chap. 6) provide methods for dynamic texture
analysis by using the LBP constructed to operate over three dimensions in a volumetric structure,
where the volume contains image frames n — 2, n — 1, and »n stacked into the volume.

Statistical Region Metrics 121

Statistical Region Metrics

Describing texture in terms of statistical metrics of the pixels is a common and intuitive method. Often
a simple histogram of a region will be sufficient to describe the texture well enough for many
applications. There are also many variations of the histogram, which lend themselves to a wide
range of texture analysis. So this is a good point at which to examine histogram methods. Since
statistical mathematics is a vast field, we can only introduce the topic here, dividing the discussion into
image moment features and point metric features.

Image Moment Features

Image moments [4, 444] are scalar quantities, analogous to the familiar statistical measures such as
mean, variance, skew, and kurtosis. Moments are well suited to describe polygon shape features and
general feature metric information such as gradient distributions. Image moments can be based on
either scalar point values or basis functions such as Fourier or Zernike methods discussed later in the
section on basis space.

Moments can describe the projection of a function onto a basis space—for example, the Fourier
transform projects a function onto a basis of harmonic functions. Note that there is a conceptual
relationship between 1D and 2D moments in the context of shape description. For example, the 1D
mean corresponds to the 2D centroid, and the 1D minimum and maximum correspond to the 2D major
and minor axis. The 1D minimum and maximum also correspond to the 2D bounding box around the
2D polygon shape (also see Fig. 6.29).

In this work, we classify image moments under the term polygon shape descriptors in the taxonomy
(see Chap. 5). Details on several image moments used for 2D shape description are covered in Chap. 6,
under “Object Shape Metrics for Blobs and Objects.”

Common properties of moments in the context of 1D distributions and 2D images include

e Zeroth-order moment is the mean or 2D centroid.

¢ Central moments describe variation around the mean or 2D centroid.

* First-order central moments contain information about 2D area, centroid, and size.

* Second-order central moments are related to variance and measure 2D elliptical shape.

+ Third-order central moments provide symmetry information about the 2D shape, or skewness.
¢ Fourth-order central moments measure 2D distribution as tall, short, thin, short, or fat.

* Higher-level moments may be devised and composed of moment ratios, such as covariance.

Moments can be used to create feature descriptors that are invariant to several robustness criteria,
such as scale, rotation, and affine variations. The taxonomy of robustness and invariance criteria is
provided in Chap. 5. For 2D shape description, in 1961, Hu developed a theoretical set of seven 2D
planar moments for character recognition work, derived using invariant algebra, that are invariant
under scale, translation, and rotation [7]. Several researchers have extended Hu’s work. An excellent
resource for this topic is Moments and Moment Invariants in Pattern Recognition, by Jan Flusser
et al. [444].

Point Metric Features

Point metrics can be used for the following: (1) feature description, (2) analysis and visualization,
(3) thresholding and segmentation, and (4) image processing via programmable LUT functions

122 3 Global and Regional Feature Descriptors

(discussed in Chap. 2). Point metrics are often overlooked. Using point metrics to understand the
structure of the image data is one of the first necessary steps toward devising the image preprocessing
pipeline to prepare images for feature analysis. Again, the place to start is by analysis of the histogram,
as shown in Figs. 3.1 and 3.11. The basic point metrics can be determined visually, such as minima,
maxima, peaks, and valleys. False coloring of the histogram regions for data visualization is simple
using color lookup tables to color the histogram regions in the images.

Guitar Roads

—— — 7
1500 1000 500 0 0 500 1000 1500

—rT LN S S L e

Fig. 3.11 Two image histograms side by side, for analysis

Here is a summary of statistical point metrics

* Quantiles, median, rescale: By sorting the pixel values into an ordered list, as during the histogram
process, the various quartiles can be found, including the median value. Also, the pixels can be
rescaled from the list and used for pixel remap functions (as described in Chap. 2).

* Mix, max, mode: The minimum and maximum values, together with histogram analysis, can be
used to guide image preprocessing to devise a threshold method to remove outliers from the data.
The mode is the most common pixel value in the sorted list of pixels.

* Mean, harmonic mean, and geometric mean: Various formulations of the mean are useful to
learn the predominant illumination levels, dark or light, to guide image preprocessing to enhance
the image for further analysis.

Statistical Region Metrics 123

+ Standard deviation, skewness, and kurtosis: These moments can be visualized by looking at the
SDM plots.

» Correlation: Topic was covered earlier in this chapter under cross-correlation and autocorrelation.

* Variance, covariance: The variance metric provides information on pixel distribution, and covari-
ance can be used to compare variance between two images. Variance can be visualized to a degree
in the SDM, also as shown in this chapter.

» Ratios and multivariate metrics: Point metrics by themselves may be useful, but multivariate
combinations or ratios using simple point metrics can be very useful as well. Depending on the
application, the ratios themselves form key attributes of feature descriptors (as described in
Chap. 6). For example, mean:min, mean:max, median: mean, area: perimeter.

Global Histograms

Global histograms treat the entire image. In many cases, image matching via global histograms is
simple and effective, using a distance function such as SSD. As shown in Fig. 3.12, histograms reveal
quantitative information on pixel intensity, but not structural information. All the pixels in the region
contribute to the histogram, with no respect to the distance from any specific point or feature. As
discussed in Chap. 2, the histogram itself is the basis of histogram modification methods, allowing the
shape of the histogram to be stretched, compressed, or clipped as needed, and then used as an inverse
lookup table to rearrange the image pixel intensity levels.

Fig. 3.12 2D histogram shapes for different images

124 3 Global and Regional Feature Descriptors

Local Region Histograms

Histograms can also be computed over local regions of pixels, such as rectangles or polygons, as well
as over sets of feature attributes, such as gradient direction and magnitude or other spectra. To create a
polygon region histogram feature descriptor, first a region may be segmented using morphology to
create a mask shape around a region of interest, and then only the masked pixels are used for the
histogram.

Local histograms of pixel intensity values can be used as attributes of a feature descriptor, and also
used as the basis for remapping pixel values from one histogram shape to another, as discussed in
Chap. 2, by reshaping the histogram and reprocessing the image accordingly. Chapter 6 discusses a
range of feature descriptors such as SIFT, SURF, and LBP, which make use of feature histograms to
bin attributes such as gradient magnitude and direction.

Scatter Diagrams, 3D Histograms

The scatter diagram can be used to visualize the relationship or similarity between two image datasets
for image analysis, pattern recognition, and feature description. Pixel intensity from two images or
image regions can be compared in the scatter plot to visualize how well the values correspond. Scatter
diagrams can be used for feature and pattern matching under limited translation invariance, but they are
less useful for affine, scale, or rotation invariance. Figure 3.13 shows an example using a scatter
diagram to look for a pattern in an image; the target pattern is compared at different offsets; the smaller
the offset, the better the correspondence. In general, tighter sets of peak features indicate a strong
structural or pattern correspondence; more spreading of the data indicates weaker correspondence. The
farther away the pattern offset moves, the lower the correspondence.

Statistical Region Metrics 125

800
600

400
200

200
150
100

50

{=]

o

100 200 100 200

Fig. 3.13 Scatter diagrams, rendered as 3D histograms, of an image and a target pattern at various displacements. Top
row: (left) image, (center) target pattern from image, (right) SDM of pattern with itself. Center row: (left) target and
image offset 1,1, (right) target and image offset 8,8. Bottom row: (left) target and image offset 16,16, (right) target and
image offset 32,32

Note that by analyzing the peak features compared to the low-frequency features, correspondence
can be visualized. Figure 3.14 shows scatter diagrams from two separate images. The lack of peaks
along the axis and the presence of spreading in the data show low structural or pattern correspondence.

126 3 Global and Regional Feature Descriptors

Fig. 3.14 Scatter diagram from two different images showing low correspondence along diagonal

The scatter plot can be made, pixel by pixel, from two images, where pixel pairs form the Cartesian
coordinate for scatter plotting using the pixel intensity of image 1 which is used as the x coordinate, and
the pixel intensities of image 2 as the y coordinate, then the count of pixel pair correspondence is
binned in the scatter plot. The bin count for each coordinate can be false-colored for visualization.
Figure 3.15 provides some code for illustration purposes.

Statistical Region Metrics 127

r1.x = sarea.x;
r1.y = sarea.y;
r1.z = sarea.z;

r1.dx = dx;
r1.dy =1;
r1.dz=1;

r2.x = darea.x;
r2.y = darea.y;
r2.z = darea.z;
r2.dx = dx;
r2.dy = 1;
r2.dz=1;

/* INITIALIZE DATA */
for (x=0; x < 0x10000; mbin[x] = (int)0, x++);
gf = c->grain;
if (gf <=0) gf = 1;
if (gf > dx) gf = dx;
z=0;
while (z < dz) {
r1.y = sarea.y;
r2.y = darea.y;
y=0;
while (y < dy) {
pix_read(c->soid, &r1, data1);
pix_read(c->doid, &r2, data2);
for (x=0; x < dx; mbin[((data2[x] << 8)&0xff00) + (data1[x] & Oxff)]++, x += gf);

y+=df,
r1.y += gf;
r2.y += gf;

}

z +=df;

r1.z += df;

r2.z += df;

}

Fig.3.15 Code to illustrate binning 8-bit data for a scatter diagram comparing two images pixel by pixel and binning the
results for plotting

For feature detection, as shown in Fig. 3.12, the scatter plot may reveal enough correspondence at
coarse translation steps to reduce the need for image pyramids in some feature detection and pattern
matching applications. For example, the step size of the pattern search and compare could be optimized
by striding or skipping pixels, searching the image at 8 or 16 pixel intervals, rather than at every pixel,
reducing feature detection time. In addition, the scatter plot data could first be thresholded to a binary
image, masked to show just the peak values, converted into a bit vector, and measured for correspon-
dence using HAMMING distance for increased performance.

Multi-resolution, Multi-scale Histograms

Multi-resolution histograms have been used for texture analysis [123] and also for feature recognition
[123]. The PHOG descriptor described in Chap. 6 makes use of multi-scale histograms of feature
spectra—in this case, gradient information. Note that the multi-resolution histogram provides scale
invariance for feature description. For texture analysis [123], multi-resolution histograms are
constructed using an image pyramid, and then a histogram is created for each pyramid level and
concatenated together [10], which is referred to as a multi-resolution histogram. This histogram has the

128 3 Global and Regional Feature Descriptors

desirable properties of algorithm simplicity, fast computation, low memory requirements, noise
tolerance, and high reliability across spatial and rotational variations. See Fig. 3.16. A variation on
the pyramid is used in the method of Zhao and Pietikainen [12], employing a multidimensional

pyramid image set from a volume.
0 255 0 255

O
]

Count: 11770 Min: 0 Count: 15376 Min: 3 Count: 17018 Min: 46
Mean: 189.904 Max: 255 Mean: 205.206 Max: 255 Mean: 210.395 Max: 255
StdDev: 108.862 Mode: 255 (8469) StdDev: 59.977 Mode: 255 (3052) StdDev: 42.774 Mode: 255 (998)

Fig. 3.16 Multi-resolution histogram image sequence. Note that the multiple histograms are taken at various Gaussian
blur levels in an attempt to create more invariant feature descriptors

Steps involved in creating and using multi-resolution histograms are as follows

. Apply Gaussian filter to image.

. Create an image pyramid.

. Create histograms at each level.

. Normalize the histograms using L1 norm.

. Create cumulative histograms.

. Create difference histograms or DOG images (differences between pyramid levels).
. Renormalize histograms using the difference histograms.

. Create a feature vector from the set of difference histograms.

. Use L1 norm as distance function for comparisons between histograms.

O 0 1N U A W=

Radial Histograms

For some applications, computing the histogram using radial samples originating at the shape centroid
can be valuable [107, 108]. To do this, a line is cast from the centroid to the perimeter of the shape, and
pixel values are recorded along each line and then binned into histograms. See Fig. 3.17.

Basis Space Metrics 129

ol
(o] L
- . 3.0t
=~
T ; ! 25
) A 2.0F
et s 15F
1.0f
g 05)
10 20 30 40 50 60 70

Fig. 3.17 Radial histogram illustrations [107, 108]
Contour or Edge Histograms

The perimeter or shape of an object can be the basis of a shape histogram, which includes the pixel
values of each point on the perimeter of the object binned into the histogram. Besides recording the
actual pixel values along the perimeter, the chain code histogram (CCH) that is discussed in Chap. 6
shows the direction of the perimeter at connected edge point coordinates. Taken together, the CCH and
contour histograms provide useful shape information.

Basis Space Metrics

Features can be described in a basis space, which involves transforming pixels into an alternative basis
and describing features in the chosen basis, such as the frequency domain. What is a basis space and
what is a transform? Consider the decimal system, which is base 10, and the binary system which is
base 2. We can change numbers between the two number systems by using a transform. A Fourier
transform uses sine and cosine as basis functions in frequency space, so that the Fourier transform can
move pixels between the time-domain pixel space and the frequency space. Basis space moments
describe the projection of a function onto a basis space [444]—for example, the Fourier transform
projects a function onto a basis of harmonic functions.

Basis spaces and transforms are useful for a wide range of applications, including image coding and
reconstruction, image processing, feature description, and feature matching. As shown in Fig. 3.18,
image representation and image coding are closely related to feature description. Images can be
described using coding methods or feature descriptors, and images also can be reconstructed from
the encodings or from the feature descriptors. Many methods exist to reconstruct images from
alternative basis space encodings, ranging from lossless RLE methods to lossy JPEG methods; in
Chap. 4, we provide illustrations of images that have been reconstructed from only local feature
descriptors (see Figs. 4.12, 4.13, and 4.14).

130 3 Global and Regional Feature Descriptors

Infinity
A Continuous
scene

Discreet
pixels

Basis
Features

Level of Reconstruction Detail

Local
Feature
Descriptors

p Infinity

Basis Feature Set Size

Fig.3.18 An oversimplified spectrum of basis space options, showing feature set size and complexity of description and
reconstruction

As illustrated in Fig. 3.18, a spectrum of basis spaces can be imagined, ranging from a continuous
real function or live scene with infinite complexity, to a complete raster image, a JPEG compressed
image, a frequency domain, or other basis representations, down to local feature descriptor sets. Note
that the more detail that is provided and used from the basis space representation, the better the real
scene can be recognized or reconstructed. So the trade-off is to find the best representation or
description, in the optimal basis space, to reach the invariance and accuracy goals using the least
amount of compute and memory.

Transforms and basis spaces are a vast field within mathematics and signal processing, which are
covered quite well in other works, so here we only introduce common transforms useful for image
coding and feature description. We describe their key advantages and applications and refer the reader
to the literature as we go. See Fig. 3.19.

Basis Space Metrics 131

Transform
*
[| | |
Rectangular Basis Statistical Basis Directional Basis Sinusoidal Basis
Walsh-Hadamard Karhunlﬁn-Loucve, Hough Fourier
1969 Hotelling, PCA 1962 1807
1933
Slant B | Radon | FFT
1973 SVD 1917 1965
Haar Zernike . .
1909 — 1934 — Sine/Cosine
Steerable Filters DCT
1991 [1974,1977
Hartley
B 1925
Wavelets
1909, 1974
—
Gabor
1948

Fig. 3.19 Various basis transforms used in image processing and computer vision

Since we are dealing with discrete pixels in computer vision, we are primarily interested in discrete
transforms, especially those which can be accelerated with optimized software or fixed-function
hardware. However, we also cover a few integral transform methods that may be slower to compute
and less used. Here is an overview:

* Global or local feature description. It is possible to use transforms and basis space representations
of images as a global feature descriptor, allowing scenes and larger objects to be recognized and
compared. The 2D FFT spectrum is only one example, and it is simple to compare FFT spectrum
features using SAD or SSD distance measures.

+ Image coding and compression. Many of the transforms have proved valuable for image coding
and image compression. The basic method involves transforming the image, or block regions of the

132 3 Global and Regional Feature Descriptors

image, into another basis space. For example, transforming blocks of an image into the Fourier
domain allows the image regions to be represented as sine and cosine waves. Then, based on the
amount of energy in the region, a reduced amount of frequency space components can be stored or
coded to represent the image. The energy is mostly contained in the lower-frequency components,
which can be observed in the Fourier power spectrum such as shown in Fig. 2.16; the high-
frequency components can be discarded and the significant lower-frequency components can be
encoded, thus some image compression is achieved with a small loss of detail. Many novel image
coding methods exist, such as that using a basis of scaled Laplacian features over an image
pyramid [270].

Fourier Description

The Fourier family of transforms was covered in detail in Chap. 2, in the context of image
preprocessing and filtering. However, the Fourier frequency components can also be used for feature
description. Using the forward Fourier transform, an image is transformed into frequency components,
which can be selectively used to describe the transformed pixel region, commonly done for image
coding and compression, and for feature description.

The Fourier descriptor provides several invariance attributes, such as rotation and scale. Any array
of values can be fed to an FFT to generate a descriptor—for example, a histogram. A common
application is illustrated in Fig. 3.20, describing the circularity of a shape and finding the major and
minor axis as the extrema frequency deviation from the sine wave. A related application is finding the
endpoints of a flat line segment on the perimeter by fitting FFT magnitudes of the harmonic series as
polar coordinates against a straight line in Cartesian space.

Fig. 3.20 Fourier descriptor of the odd-shaped polygon surrounding the circle on the left

Basis Space Metrics 133

In Fig. 3.20, a complex wave is plotted as a dark gray circle unrolled around a sine wave function or
a perfect circle. Note that the Fourier transform of the lengths of each point around the complex
function yields an approximation of a periodic wave, and the Fourier descriptor of the shape of the
complex wave is visible. Another example illustrating Fourier descriptors is shown in Fig. 6.29.

Walsh—-Hadamard Transform

The Hadamard transform [4, 9] uses a series of square waves with the value of +1 or —1, which is ideal
for digital signal processing. It is amenable to optimizations, since only signed addition is needed to
sum the basis vectors, making this transform much faster than sinusoidal basis transforms. The basis
vectors for the harmonic Hadamard series and corresponding transform can be generated by sampling
Walsh functions, which make up an orthonormal basis set; thus, the combined method is commonly
referred to as the Walsh—Hadamard transform; see Fig. 3.21.

Fig. 3.21 (Left) Walsh—-Hadamard basis set. (Center) HAAR basis set. (Right) Slant basis set

HAAR Transform

The HAAR transform [4, 9] is similar to the Fourier transform, except that the basis vectors are HAAR
features resembling square waves, and similar to wavelets. HAAR features, owing to their orthogonal
rectangular shapes, are suitable for detecting vertical and horizontal image features that have near-
constant gray level. Any structural discontinuities in the data, such as edges and local texture, cannot
be resolved very well by the HAAR features; see Figs. 3.21 and 6.21.

134 3 Global and Regional Feature Descriptors

Slant Transform

The Slant transform [242], as illustrated in Fig. 3.21, was originally developed for television signal
encoding and was later applied to general image coding [4, 241]. The Slant transform is analogous to
the Fourier transform, except that the basis functions are a series of slant, sawtooth, or triangle waves.
The slant basis vector is suitable for applications where image brightness changes linearly over the
length of the function. The slant transform is amenable to discrete optimizations in digital systems.
Although the primary applications have been image coding and image compression, the slant trans-
form is amenable to feature description. It is closely related to the Karhunen—Loeve transform and the
Slant-Hadamard transform [439].

Zernike Polynomials

Fritz Zernike, 1953 Nobel Prize winner, devised Zernike polynomials during his quest to develop the
phase contrast microscope, while studying the optical properties and spectra of diffraction gratings.
The Zernike polynomials [230-232] have been widely used for optical analysis and modeling of the
human visual system and for assistance in medical procedures such as laser surgery. They provide an
accurate model of optical wave aberrations expressed as a set of basis polynomials, illustrated in
Fig. 3.22.

2
%

Fig. 3.22 The first 18 Zernike modes. Note various aberrations from a perfect filter; top left image is the perfect filter.
(Images © Dr. Thomas Salmon at Northeastern State University and used by permission)

Zernike polynomials are analogous to steerable filters [319], which also contain oriented basis sets
of filter shapes used to identify oriented features and take moments to create descriptors. The Zernike
model uses radial coordinates and circular regions, rather than rectangular patches as used in many
other feature description methods.

Zernike methods are widely used in optometry to model human eye aberrations. Zernike moments
are also used for image watermarking [236] and image coding and reconstruction [237, 239]. The
Zernike features provide scale and rotational invariance, in part due to the radial coordinate symmetry
and increasing level of detail possible within the higher-order polynomials. Zernike moments are used
in computer vision applications by comparing the Zernike basis features against circular patches in
target images [234, 235].

Fast methods to compute the Zernike polynomials and moments exist [233, 238, 240], which
exploit the symmetry of the basis functions around the x and y axes to reduce computations and also to
exploit recursion.

Basis Space Metrics 135

Steerable Filters

Steerable filters are loosely considered as basis functions here and can be used for both filtering or
feature description. Conceptually similar to Zernike polynomials, steerable filters [319, 331] are
composed by synthesizing steered or oriented linearly combinations of chosen basis functions, such
as quadrature pairs of Gaussian filters and oriented versions of each function, in a simple transform.

Many types of filter functions can be used as the basis for steerable filters [320, 322]. The filter
transform is created by combining together the basis functions in a filter bank, as shown in Fig. 3.23.
Gain is selected for each function, and all filters in the bank are summed, then adaptively applied to the
image. Pyramid sets of basis functions can be created to operate over scale. Applications include
convolving oriented steerable filters with target image regions to determine filter response strength,
orientation, and phase. Other applications include filtering images based on orientation of features,
contour detection, and feature description.

Basis -
Filter Gain
Bank Factc{rs
Filter
Summing
Input Filtered
Impage) Image

Fig. 3.23 (Left) Steerable filters basis set showing eight orientations of the first-order Gaussian filter. (Right) How
steerable filters can be combined for directional filtering. Filter images generated using ImagelJ Fiji Steerable] plugin
from Design of Steerable Filters for Feature Detection Using Canny-Like Criteria, M. Jacob, M. Unser, PAMI 2004

For feature description, there are several methods that could work—for example, convolving each
steerable basis function with an image patch. The highest one or two filter responses or moments from
all the steerable filters can then be chosen as the set-ordinal feature descriptor, or all the filter responses
can be used as a feature descriptor. As an optimization, an interest point can first be determined in the
patch, and the orientation of the interest point can be used to select the one or two steerable filters
closest to the orientation of the interest point; then the closest steerable filers are used as the basis to
compute the descriptor.

Karhunen—Loeve Transform and Hotelling Transform

The Karhunen—Loeve transform (KLT) [4, 9] was devised to describe a continuous random process as
a series expansion, as opposed to the Fourier method of describing periodic signals. Hotelling later
devised a discrete equivalent of the KLT using principal components. “KLT” is the most common
name referring to both methods.

The basis functions are dependent on the eigenvectors of the underlying image, and computing
eigenvectors is a compute-intensive process with no established fast transform known. The KLT is not
separable to optimize over image blocks, so the KLT is typically used for PCA on small datasets such
as feature vectors used in pattern classification, clustering, and matching.

136 3 Global and Regional Feature Descriptors

Wavelet Transform and Gabor Filters

Wavelets, as the name suggests, are short waves or wavelets [283]. Think of a wavelet as a short-
duration pulse such as a seismic tremor, starting and ending at zero, rather than a continuous or
resonating wave. Wavelets are convolved with a given signal, such as an image, to find similarity and
statistical moments. Wavelets can therefore be implemented like convolution kernels in the spatial
domain. See Fig. 3.24.

Fig. 3.24 Wavelet concepts using a “Mexican top hat” wavelet basis. (Top) A few scaled Mexican top hats derived from
the mother wavelet. (Bottom) A few translated wavelets

Wavelet analysis is a vast field [247, 248] with many applications and useful resources available,
including libraries of wavelet families and analysis software packages [245]. Fast wavelet transforms
(FWTs) exist in common signal and image processing libraries. Several variants of the wavelet
transform include:

* Discrete wavelet transform (DWT)

+ Stationary wavelet transform (SWT)

» Continuous wavelet transform (CWT)

+ Lifting wavelet transform (LWT)

+ Stationary wavelet packet transform (SWPT)
+ Discrete wavelet packet transform (DWPT)
 Fractional Fourier transform (FRFT)

» Fractional wavelet transform (FRWT)

Wavelets are designed to meet various goals and are crafted for specific applications; there is no
single wavelet function or basis. For example, a set of wavelets can be designed to represent the
musical scale, where each note (such as middle C) is defined as having a duration of an eighth note
wavelet pulse, and then each wavelet in the set is convolved across a signal to locate the corresponding
notes in the musical scale.

When designing wavelets, the mother wavelet is the basis of the wavelet family, and then daughter
wavelets are derived using translation, scaling, or compression of the mother wavelet. Ideally, a set of
wavelets are overlapping and complementary so as to decompose data with no gaps and be mathemat-
ically reversible.

Wavelets are used in transforms as a set of nonlinear basis functions, where each basis function can
be designed as needed to optimally match a desired feature in the input function. So, unlike transforms
which use a uniform set of basis functions—as the Fourier transform uses sine and cosine functions—
wavelets use a dynamic set of basis functions that are complex and nonuniform in nature. See Fig. 3.25.

Basis Space Metrics 137

d)OO @ (« "

Fig. 3.25 Various 2D wavelet shapes: (left to right) Top hat, Shannon, Dabechies, Smylet, Coiflett

Wavelets have been used as the basis for scale and rotation invariant feature description [208],
image segmentation [243, 244], shape description [209], and obviously image and signal filtering of all
the expected varieties, denoising, image compression, and image coding. A set of application-specific
wavelets could be devised for feature description.

Gabor Functions

Wavelets can be considered an extension of the earlier concept of Gabor functions [249, 282], which
can be derived for imaging applications as a set of 2D-oriented bandpass filters. Gabor’s work was
centered on the physical transmission of sound and problems with Fourier methods involving time-
varying signals like sirens that could not be perfectly represented as periodic frequency information.
Gabor proposed a more compact representation than Fourier analysis could provide, using a concept
called atoms that recorded coefficients of the sound that could be transmitted more compactly. See
Fig. 3.26.

(a) frequency-tuned (static envelope)

(b) velocity-tuned (moving envelope)

Fig. 3.26 This figure showing Gabor filters (top) frequency tuned, and (bottom) velocity tuned. Images © Springer-
Verlag, taken from CVPR 2010, “Facial expression recognition using Gabor motion energy filters, Tingfan Wu, Bartlett,
M.S. Movellan, Javier R”

Hough Transform and Radon Transform

The Hough transform [192-194] and the Radon transform [255] are related, and the results are
equivalent, in the opinion of many [251, 256]; see Fig. 3.27. The Radon transform is an integral
transform, while the Hough transform is a discrete method, therefore much faster. The Hough method
is widely used in image processing and can be accelerated using a GPU [254] with data parallel
methods. The Radon algorithm is slightly more accurate and perhaps more mathematically sound and
is often associated with X-ray tomography applied to reconstruction from X-ray projections. We focus
primarily on the Hough transform, since it is widely available in image processing libraries.

138 3 Global and Regional Feature Descriptors

» O » O

Fig. 3.27 Line detection: (Left) Original image. (Center) Radon Transform. (Right) Hough Transform. The brightness
of the transform images reveals the relative strength of the accumulators, and the sinusoidal line intersections indicate the
angular orientation of features

Key applications for the Hough and Radon transforms are shape detection and shape description of
lines, circles, and parametric curves. The main advantages include:

* Robust to noise and partial occlusion
+ Fill gaps in apparent lines, edges, and curves
+ Can be parameterized to handle various edge and curve shapes

The disadvantages include

* Look for one type or parameterization of a feature at a time, such as a line

* Colinear segments are not distinguished and lumped together

* May incorrectly fill in gaps and link edges that are not connected

* Length and position of lines are not determined, but this can be done in image space

The Hough transform is primarily a global or regional descriptor and operates over larger areas. It
was originally devised to detect lines and has been subsequently generalized to detect parametric
shapes [257], such as curves and circles. However, adding more parameterization to the feature
requires more memory and compute. Hough features can be used to mark region boundaries described
by regular parametric curves and lines. The Hough transform is attractive for some applications, since
it can tolerate gaps in the lines or curves and is not strongly affected by noise or some occlusion, but
morphology and edge detection via other methods is often sufficient, so the Hough transform has
limited applications.

The input to the Hough transform is a gradient magnitude image, which has been thresholded,
leaving the dominant gradient information. The gradient magnitude is used to build a map revealing all
the parameterized features in the image—for example, lines at a given orientation or circles with a
given diameter. For example, to detect lines, we map each gradient point in the pixel space into the
Hough parameter space, parameterized as a single point (d, @) corresponding to all lines with
orientation angle @ at distance d from the origin. Curve and circle parameterization uses different
variables [257]. The parameter space is quantized into cells or accumulator bins, and each accumulator
is updated by summing the number of gradient lines passing through the same Hough points. The
accumulator method is modified for detecting parametric curves and circles. Thresholding the accu-
mulator space and reprojecting only the highest accumulator values as overlays back onto the image
are useful to highlight features.

Learning Assignments 139

Summary

This chapter provides a selected history of global and regional metrics, with the treatment of local
feature metrics deferred until Chaps. 4 and 6. Some historical context is provided on the development
of structural and statistical texture metrics, as well as basis spaces useful for feature description, and
several common regional and global metrics. A wide range of topics in texture analysis and statistical
analysis are surveyed with applications to computer vision.

Since it is difficult to cleanly partition all the related topics in image processing and computer
vision, there is some overlap of topics here and in Chaps. 2, 4, 5, and 6.

Learning Assignments

1. Discuss when to use a global image processing operation vs. a local or regional image processing
operation.
2. Discuss in general how global image statistics can guide image preprocessing for computer vision
applications, and specifically name one global image metric and discuss how it can be applied.
3. Compare global image feature metrics and local feature descriptors in general, and discuss a
specific example global feature metric and compare it to a specific local feature descriptor.
. Describe global image texture in general terms.
. Discuss how a 2d histogram of an image can be used to understand image texture.
. Discuss how the 2d Fourier Series of an image is used to understand image texture.
. Discuss how the Haralick texture metrics based on the co-occurrence matrix are used to understand
image texture.
. Discuss how Spatial Dependency Matrix (SDM) plots are used to understand image texture.
. Discuss statistical moments of an image histogram, including at least the mean value and variance,
and how these features are useful as global image descriptors.
10. Describe a multi-resolution histogram built from an image pyramid, and how to interpret the
results of the histogram.
11. Describe how a Fourier description of the shape of a circle is created from the Fourier Series, and
how it is useful as a shape descriptor.
12. Describe basis features for the HAAR transform, Slant Transform, and Walsh-Hadamard
Transform.
13. Compare Wavelet features to Fourier Series features.
14. Describe the Hough Transform and the Radon Transform algorithms, and how they are used as a
global image metric for shape detection.

U)WV I N

\O o0

Check for
updates

Local Feature Descriptors 4

Science, my boy, is made up of mistakes, but they are mistakes which it is useful to make,
because they lead little by little to the truth.
—Jules Verne, Journey to the Center of the Earth

In this chapter, we examine several concepts related to local feature descriptor design—namely local
patterns, shapes, spectra, distance functions, classification, matching, and object recognition. The main
focus is local feature metrics, as shown in Fig. 4.1. This discussion follows the general vision
taxonomy that is presented in Chap. 5 and includes key fundamentals for understanding interest
point detectors and feature descriptors, as surveyed in Chap. 6, including selected concepts common
to both detector and descriptor methods. Note that the opportunity always exists to modify as well as
mix and match detectors and descriptors to achieve the best results.

Vision Pipeline Stages

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Classification, Learning

Augment, Render, Control

Fig. 4.1 Various stages in the vision pipeline; this chapter focuses on local feature metrics and classification and
learning

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 141
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_4&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_4#DOI

142 4 Local Feature Descriptors

Local Features

We focus on the design of local feature descriptors and how they are used in training, classification,
and machine learning. The discussion follows the feature taxonomy as is presented in Chap. 5 and as is
illustrated in Fig. 5.1. The main elements are: (1) shape (for example, rectangle or circle); (2) pattern
(either dense sampling or sparse sampling); and (3) spectra (binary values, scalars, sparse codes, or
other values). A dense patterned feature will use each pixel in the local region, such as each pixel in a
rectangle, while a sparse feature will use only selected pixels from the region.

In addition to the many approaches to shape and pattern, there are numerous approaches taken for
the spectra, ranging from gradient-based patch methods to sparse local binary pattern methods. The
main topics covered here include:

+ Detectors, used to locate interesting features in the image.

+ Descriptors, used to describe the regions surrounding interesting features.

* Descriptor attributes, such as feature robustness and invariance.

» Classification, used to create databases of features and optimal feature matching.

* Recognition, used to match detected features in target images against trained features.
+ Feature learning, or machine learning methods.

Based on the concepts presented this chapter, the vision taxonomy offered in Chap. 5 provides a
way to summarize and analyze the feature descriptors and their attributes, thereby enabling limited
comparison between the different approaches.

Detectors, Interest Points, Keypoints, Anchor Points, Landmarks

A detector finds interesting features in the image. The terminology in the literature for discussing an
“interesting feature” includes several interchangeable terms, such as keypoint, landmark, interest point,
or anchor point, all of which refer to features such as corners, edges, or patterns that can be found
repeatedly with high likelihood. In Chap. 6, we survey many detector methods, along with various
design approaches. In some cases, the keypoint detector is used to determine the orientation vector of
the surrounding feature descriptor—for example, by computing the overall gradient orientation of the
corner. The uncertain or low-quality keypoints are commonly filtered out prior to feature description.
Note that many keypoint methods operate on smaller pixel regions, such as 3 x 3 for the LBP and 7 x 7
for FAST.

The keypoint location itself may not be enough for feature matching; however, some methods
discussed here rely on keypoints only, without a feature descriptor. Feature description provides more
information around each keypoint and may be computed over larger regions and multiple scales, such
as SIFT and ORB.

Descriptors, Feature Description, Feature Extraction

A feature descriptor can be computed at each key point to provide more information about the pixel
region surrounding the keypoint. However, in methods that compute features across a fixed-size pixel
grid such as the Viola—Jones method [117], no interest point is necessary, since the grid defines the
descriptor region. Feature description typically uses some combination of color or gray scale intensity
channels, as well as local information such as gradients and colors. Feature description takes place over

Local Feature Attributes 143

a shape, such as a square or circle. In some cases, pixel point-pair sample patterns are used to compute
or compare selected pixel values to yield a descriptor vector—for example, as shown later, in Fig. 4.8.

Typically, an interest point provides some amount of invariance and robustness—for example, in
scale and rotation. In many cases, the orientation of the descriptor is determined from the interest point,
and the descriptor provides other invariance attributes. Combining the interest point with the descriptor
provides a larger set of invariance attributes. And if several descriptors are associated together from the
same object, object recognition is possible.

For example, a descriptor may contain multivariate, multidimensional, and multigeometric
quantities calculated over several intensity channels, multiple geometric scales, and multiple
perspectives (see Varma [699] and Vedaldi [698] for more on multivariate descriptors). A multivariate
descriptor may contain RGBD data (red, green, blue, and Z depth data); a multidimensional descriptor
may contain feature descriptions at various levels of zoom across an image pyramid; and a
multigeometry descriptor may contain a set of feature descriptions computed across affine transforms
of the local image patch or region.

There is no right or wrong method for designing features; many approaches are taken. For example,
a set of metrics including region shape, region texture, and region color of an object may be helpful in
an application to locate fruit, while another application may not need color or shape and can rely
instead on sets of interest points, feature descriptors, and their spatial relationships. In fact, combining
several weaker descriptor methods into a multivariate descriptor is often the best approach.

Computing feature descriptors from an image is commonly referred to as feature extraction.

Sparse Local Pattern Methods

While some methods describe features densely within regular sampling grids across an image, such as
the PHOG [157] method discussed in Chap. 6, other methods such as FREAK [102] use sparse local
patterns to sample pixels anchored at interest points to create the descriptor. Depending on the method,
the shapes may be trained, learned, or chosen by design, and many topologies of shapes and patterns
are in current use.

To frame the discussion on sparse local pattern and descriptor methods, notice that there is a
contrast with global and regional descriptor methods, which typically do not rely on sparse local
patterns. Instead, global and regional methods typically use dense sampling of larger shapes such as
rectangles or other polygons. For example, polygon shape descriptors, as discussed in Chap. 6, may
delineate or segment the feature region using dense methods such as mathematical morphology and
region segmentation. Global and regional descriptor metrics, such as texture metrics, histograms, or
SDMs discussed in Chap. 3, are typically computed across cohesive, dense regions rather than sparse
regions.

Local Feature Attributes

This section discusses how features are chosen to provide the desired attributes of feature goodness,
such as invariance and robustness.

Choosing Feature Descriptors and Interest Points

Both the interest point detector and the feature description method must be chosen to work well
together and to work well for the type of images being processed. Robustness attributes such as

144 4 Local Feature Descriptors

contrast, scale, and rotation must be considered for both the detector and the descriptor pair. As shown
in Appendix A, each interest point detector is best designed to find specific types of features, and
therefore no single method is good for all types of images.

For example, FAST and Harris methods typically find many small mono-scale interest points, while
other methods, such as that used in SIFT, find fewer, larger and finely tuned multi-scale interest points.
Some tuning of the interest point detector parameters is expected, so as to make them work at all, or
else some preprocessing of the images maybe needed to help the detector find the interest points in the
first place. (Chapter 6 provides a survey of interest point methods and background mathematical
concepts.)

Feature Descriptors and Feature Matching

Feature description is foundational to feature matching, leading to image understanding, scene
analysis, and object tracking. The central problems in feature matching include how to determine if
a feature is differentiated from other similar features, and if the feature is part of a larger object.

The method of determining a feature match is critical, for many reasons; these reasons include
compute cost, memory size, repeatability, accuracy, and robustness. While a perfect match is ideal, in
practice a relative match is determined by a distance function, where the incoming set of feature
descriptors is compared with known feature descriptors. But we’ll discuss several distance functions
later in this chapter.

Table 4.1 Some attributes for good feature descriptors and interest points. (See also Fig. 5.2 for the general robustness
criteria)

Good Feature Metric

Attributes

Scale invariance
Perspective invariance
Rotational invariance
Translation invariance
Reflection invariance
Affine invariance
Noise invariance
Illumination invariance

Compute efficiency
Distinctiveness

Compact to describe
Occlusion robustness

Focus or blur robustness

Clutter and outlier
robustness

Details

Should be able to find the feature at different scales

Should be able to find the feature from different perspectives in the field of view
The feature should be recognized in various rotations within the image plane
The feature should be recognized in various positions in the FOV

The feature should be recognized as a mirror image of itself

The feature should be recognized under affine transforms

The feature should be detectable in the presence of noise

The feature should be recognizable in various lighting conditions including changes in
brightness and contrast

The feature descriptor should be efficient to compute and match

The feature should be distinct and detectable, with a low probability of mis-match,
amenable to matching from a database of features

The feature should not require large amounts of memory to hold details

The feature or set of features can be described and detected when parts of the feature or
feature set are occluded

The feature or set of features can be detected at varying degrees of focus (i.e., image
pyramids can provide some of this capability)

The feature or set of features can be detected in the presence of outlier features and clutter

Local Feature Attributes 145

Criteria for Goodness

Measuring the goodness of features can be done one attribute at a time. A general list of goodness
attributes for feature landmarks is provided in Table 4.1. Note that this list is primarily about invariance
and robustness: these are the key concepts, since performance can be tuned using various optimization
methods, as discussed in Chap. 8. Of course, in a given application, some attributes of goodness are
more important than others; this is discussed in Chap. 7, in connection with ground truth data.

How do we know a feature is good for an application? We may divide the discussion between the
interest point methods and the descriptor method and the combined robustness and invariance
attributes provided by both as shown in Table 4.1. The interest point at which the feature is anchored
is critical, since if the anchor is not good and cannot be easily and repeatedly found, the resulting
descriptor is calculated at a suboptimal location.

Note that in many cases, image preprocessing is key to creating a good feature as shown in Fig. 4.2.
If the image data have problems that can be corrected or improved, the feature description should be
done after the image preprocessing. Note that many feature description methods rely on local image
enhancements during descriptor creation, such as Gaussian blur of regions around keypoints for noise
removal, so image preprocessing should complement the descriptor method. Each preprocessing
method has drawbacks and advantages; see Table 2.1 and Chap. 2 for information on image
preprocessing.

Fig. 4.2 (Left) SURF feature descriptors calculated over original image. (Right) Image has been preprocessed using
histogram equalization prior to feature extraction and therefore a different but overlapping set of features is found

146 4 Local Feature Descriptors

Repeatability, Easy vs. Hard to Find

Ideally, the feature will be easy to find in an image, meaning that the feature description contains
sufficient information to be robust under various conditions as shown in Table 4.1, such as contrast and
brightness variations, scale, and rotation. Repeatability applies particularly to interest point detection,
so the choice of interest point detector method is critical. (Appendix A contains example images
showing interesting nonrepeatability anomalies for several common interest point detectors.)

Some descriptors, such as SIFT [132, 146], are known to be robust under many imaging conditions.
This is not too surprising, since SIFT is designed to be discriminating over multiple dimensions, such
as scale and rotation, using carefully composed sets of local region gradients with a weighting factor
applied to increase the importance of gradients closer to the center of the feature. But the robustness
and repeatability come at a compute cost. SIFT [132, 146] is one of the most computationally
expensive methods; however, Chap. 6 surveys various SIFT optimizations and variations.

Distinctive vs. Indistinctive

A descriptor is distinctive if:

* The feature can be differentiated from other, similar feature regions of the image.
+ Different feature vectors are unique in the feature set.
* The feature can be matched effectively using a suitable distance function.

A feature is indistinct if similar features cannot be distinguished; this may be caused by a lack of
suitable image preprocessing, insufficient information in the descriptor, or an unsuitable distance
function chosen for the matching stage. Of course, adding information into a simpler descriptor to
make the descriptor a hybrid multivariate or multi-scale descriptor may be all that is needed to improve
distinctiveness. For example, color information can be added to distinguish between skin tones.

Relative and Absolute Position

Positional information, such as coordinates, can be critical for feature goodness. For example, to
associate features together using constraints on the corner position of human eyes, interest point
coordinates are needed. These enable more accurate identification and location of the eyes by using, as
part of an intelligent matching process, the distance and angles between the eye corner locations.

With the increasing use of depth sensors, simply providing the Z or depth location of the feature in
the descriptor itself may be enough to easily distinguish a feature from the background. Position in the
depth field is a powerful bit of information, and since computer vision is often concerned with finding
3D information in a 2D image field, the Z depth information can be an invaluable attribute for feature
goodness.

Matching Cost and Correspondence

Feature matching is a measurement of the correspondence between two or more features using a
distance function (discussed next in this section). Note here that feature matching has a cost in terms of

Distance Functions 147

memory and compute time. For example, if a feature descriptor is composed of an array of 8-bit bytes,
such as an 18 x 18 pixel correlation template, then the feature matching cost is the compute time and
memory required to compare two 18 x 18 (324) pixel regions against each other, where the matching
method or distance function used may be SAD, SSD, or similar difference metric. Another example
involves local binary descriptors such as the LBP (linear binary patterns), which are stored as bit
vectors, where the matching cost is the time to perform the Hamming distance function, which operates
by comparing two binary vectors via Boolean XOR followed by a bit count to provide the match
metric.

In general, distance functions are well-known mathematical functions that are applied to computer
vision; however, some are better suited than others in terms of computability and application to a
specific vision task. For example, SSD, SAD, cosine distance, and Hamming distance metrics have
been implemented in silicon as computer machine language instructions in some architectures, owing
to their wide applicability. So choosing a distance function that is accelerated in silicon can be an
advantage.

The feature database is another component of the matching cost, so the organization of the database
and feature search contribute to the cost. We briefly touch on this topic later in this chapter.

Distance Functions

This section provides a general discussion of distance functions used for clustering, classification, and
feature matching. Often the appropriate distance function for an application is unknown, therefore
several distance functions should be tried to find the best one, or a new one should be devised. For
example, a distance function can be augmented to selectively compare distance only for nonzero
datums (intersection), or where one datum is zero and the other is not (outliers), or only for datums
which exceed a threshold. Be creative. Note that distance functions can be taken over several
dimensions—for example, 2D image arrays for feature descriptor matching, 3D voxel volumes for
point cloud matching, and multidimensional spaces for multivariate descriptors. Since this is a brief
overview, a deeper treatment is available by Pele [472], Varma [699], Vedaldi [698], Cha [809], Duda
[750], and Deza [810].

Note that kernel machines [305, 535], discussed later in this chapter, and in more detail in Chap. 10
in the section “Kernel Functions, Kernel Machines, SVM,” provide an automated framework to
classify a feature space and substitute chosen distance function kernels.

Early Work on Distance Functions

In 1968, Rosenfeld and Pfaltz [95] developed novel methods for determining the distance between
image features, which they referred to as “a given subset of the picture,” where the feature shapes used
in their work included diamonds, squares, and triangles. The distance metrics they studied include
some methods that are no longer in common use today:

* Hexagonal distance from a single point (Cartesian array)
» Hexagonal distance from a single point (staggered array)
* Octagonal distance from a single point

+ City block distance from blank areas

148

4 Local Feature Descriptors

* Square distances from blank areas

+ Hexagonal distance from blank areas

* Octagonal distance from blank areas

* Nearest integer to Euclidean distance from a single point

This early work by Rosenfeld and Pfaltz is fascinating, since the output device used to render the
images was ASCII characters printed on a CRT terminal or line printer, as shown in Fig. 4.3.

Fig. 4.3 An early
Rosenfeld and Pfaltz
rendering that illustrates a
distance function (square
distance in this case) using
a line printer as the output
device. (Image ©) reprinted
from Rosenfeld and Pfaltz,
Pattern Recognition
(Oxford: Pergamon Press,
1968), 1:33-61. Used with
permission from Elsevier)

9L 7 53T, 9. 7. 5555555555555555555555555555555. 7.9 .. 5.7.9.1
129725 3515%cTs%ccscnsncscsescsscvscscsssssssteleVeledeBeTa9el
1. ‘.O,Is.jclcq-ﬂ 333333!3“33‘!! LELEE R -!-rﬂj
1e9a725.3.1.9725.3ccsunccsnssnscnssssnssannIedala9.1.3.5.7.9.1

sFalatedalboaTalelds sdatals

la9eT25+3410947454 3 licesssscsnssnsncscnnaladise ?-9 le 3-9 ? 9 1
9999

L9 T 5.3, 1. 9. 7.5, 3. 1. 99999999999 999. 1. 3.5 . T.9. 1.3, 5.7.9. 1
l!q:rC,"l‘-‘-rn’.,.I-'-..D....Ol.’.....’ll.”_,.,l’_Ill’-s'T.v.l
[9.7.5. 3. 1. 9. 1.5 3. L. 9. TTT T T I TITT777.9. 1. 3.5. 7.9 1. 3.5. 7.9 1
1090725:3.1.92725.301.9T0vuccnsvnnnseTaPeload 5.7.9.1.3.5.7.9.1

1a9eTe%43.1.9.725.301. 9.?.5.........9.1.!.1.! S ?.9 123.5.7.9.1
19 T.5.3.1.9.7.5.3.1.9.7.5.333333
1e9eaTe5:30109e705:301090Te53cennede5eTe9ule3e5.729.123.5.7.9.1
LTS 3 9. 7. 5. 3. 1L 9. T 5. L T 3L 5. T 9. 1L 3L 5. 7.9 1.3 5.T.9. 1
109aTe5030109aTe5.301.9.70530]1 123.5.729.123.5.7.9.1.3.5.7.9.1

3.5.7.9.1.53.5.7.9.1.3.5.7.9.

1a9eTe5030009eT054321294T70%30000e305.T29.123.5.7.9.1.3.5.7.9.1
1.9.7.5.3,1.9.7.5.3.1.9.7.5. 3333033, 5. 7. 9. 1.5.4.7.9.1.5.5.7.9.1
1e9eTe5.300090T705.3010e9eTcSccnccnnnaSelePuledeb.7e9e0e3u5.7.9.1
l.o;v;r.m:‘r:f.—r:nmss

1.9

0970
9.7 5.3.[."-7_5-.!:1“]“““1 « 35 T.9. T.3.5.7.9.
0907050301094 Te503aussssssscsnssssssnsnssssIafaTe9uladeb.7.9.1

e9.T7.5.3.1.9.7. 9.............-.-........-....5.?.9.] 3-5 7. 9-1
e T 53197 55555555555555555555

“Square™ distances (d,) from a single poinL

Euclidean or Cartesian Distance Metrics

The Euclidean distance metrics include basic Euclidean geometry identities in Cartesian coordinate
spaces; in general, these are simple and obvious to use.

Euclidean Distance

This is the simple distance between two points.

Euclidean Distance[{a, b}, {x,y}| = \/(a —x)?+(b—y)?

Distance Functions 149

Squared Euclidean Distance
This is faster to compute and omits the square root.

Squared Euclidean Distance[{a, b}, {x,y}| = (a —x)* + (b—y)*

Cosine Distance or Similarity
This is angular distance, or the normalized dot product between two vectors to yield similarity of vector
angle; also useful for 3D surface normal and viewpoint matching.

A-B
A[lllBIl

cos(0) =

ax + by

Va? +b? \/)m

Cosine Distance[{a, b}, {x,y}] = 1—

Sum of Absolute Differences (SAD) or L1 Norm
The difference between vector elements is summed and taken as the total distance between the vectors.
Note that SAD is equivalent to Manhattan distance.

nl n2

SAD(d1,da) = > (dili.j] = afinj])

Sum of Squared Differences (SSD) or L2 Norm
The difference between vector elements is summed and squared and taken as the total distance between
the vectors; commonly used in video decoding for motion estimation.

150 4 Local Feature Descriptors

nl n2

SSD(d1.d2)= Y~ > (difi.j] — dofi.j))?

Correlation Distance
This is the correlation difference coefficient between two vectors, similar to cosine distance.

1 — (u—Mean[u]) - (v—Mean[v])
|| —Mean[u]||||v—Mean[v]||

(a—i—%(—a—b)) <x+%(—x—y)) + <%(—a—b)+b) (%(—x—y)-&-y)

Abs[a+L(—a—b)]* +Abs[L(—a—b)+b]’ \/Abs[x—&—%(—x—y)]z Abs[L(—x—y)+y]’

Clu,v)=

Cl{a.b}{xy}] =

Hellinger Distance

An effective alternative to Euclidean distance, Hellinger distance sometimes yields better accuracy for
histogram-type distance metrics, as reported in the ROOTSIFT [143] optimization of SIFT. Hellinger
distance, which can be formulated in a few different forms, is defined for L1 normalized histogram
vectors as:

n

H(xy)= > (VE, = v/3)

i=1

Grid Distance Metrics

These metrics calculate distance analogous to paths on grids. Therefore, the distance is measured as
grid steps.

Manhattan Distance
Also known as city block difference or rectilinear distance, this measures distance via the route along a
grid; there may be more than one path along a grid with equal distance.

Manhattan Distance[{a, b}, {x,y}] = Abs(a — x) + Abs(b —y)

Distance Functions 151

Chebyshev Distance

Also known as chessboard difference, this measures the greatest difference along a grid between two
vectors. Note in the illustration below that each side of the triangle would have a Chebyshev distance,
or length of 5, but in Euclidean space, one of the lines, the hypotenuse, is longer than the others.

Chebyshev Distance[{a, b}, {x,y}| =Max[Abs(a — x), Abs(b—1y)]

Statistical Difference Metrics

These metrics are based on statistical features of the vectors, and therefore the distance metrics need
not map into a Euclidean space.

Earth Movers Distance (EMD) or Wasserstein Metric

Earth movers distance measures the cost to transform a multidimensional vector, such as a histogram,
into another vector. The analogy is an earth mover (bulldozer) moving dirt between two groups of piles
to make the piles of dirt in each group the same size. The EMD assumes there is a ground distance
between the features in the vector—for example, the distance between bins in a histogram. The EMD is
computed to be the minimal cost for the transform, which integrates the distance moved d * the amount
moved f, subject to a few constraints.

m

COST(P,Q,F) = Z Zdﬂ‘u

i=1 j=1
Once the cost is computed, the result is normalized.
EMD(P.0)= 3 Ydify S 37,
i=1 j=1 i=1 j=1

The EMD has a high compute cost and can be useful for image analysis, but EMD is not an efficient
metric for feature matching.

Mahalanobis Distance
Also known as quadratic distance, this computes distance using mean and covariance; it is scale
invariant.

152 4 Local Feature Descriptors

4= ((5-%)"s " (m-x))

nl n2
SSD(di.dx) = > > fl+iy+))—glx+i—diy,—d))’

i=—nl j=-—n2

where X; = mean of feature vector 1, and X; = mean of feature vector 2.

Bray Curtis Distance
This is equivalent to a ratio of the sums of absolute differences and sums, such as a ratio of norms of
Manhattan distances. Bray Curtis dissimilarity is sometimes used for clustering data.

Abs(a —x) + Abs(b —y) + Abs(c — z)

Bray Curtis Distance[{a, b, c},{x,y,z}] = Abs(a +x) - Abs(b - y) F Abs(c £ 2)

Canberra Distance
This measures the distance between two vectors of equal length:

Abs(a — x) Abs(b—y)
Abs(a) + Abs(x) | Abs(b) + Abs(y)

Canberra Distance[{a, b}, {x,y}] =

Binary or Boolean Distance Metrics

These metrics rely on set comparisons and Boolean algebra concepts, which makes this family of
metrics attractive for optimization on digital computers.

LO Norm
The LO norm is a count of nonzero elements in a vector and is used in the Hamming Distance metric
and other binary or Boolean metrics.

[|x0[| = #(ilx; # 0)

Hamming Distance

This measures the binary difference or agreement between vectors of equal length—for example, string
or binary vectors. Hamming distance for binary bit vectors can be efficiently implemented in digital
computers with either complete machine language instructions or as an XOR operation followed by a

bit count operation. Hamming distance is a favorite for matching local binary descriptors, such as LBP,
FREAK, CENSUS, BRISK, BRIEF, and ORB.

+ String distance: 5 = 0001100111 = compare ‘“HelloThere” and “HelpsThing”
* Binary distance: 3 = 10100010 = (01001110) XOR (11001100)
* Bit count of (u XOR v)

Descriptor Representation 153

Jaccard Similarity and Dissimilarity

The ratio of pairwise similarity of a binary set (0,1 or true, false) over the number of set elements. Set 1
below contains two bits with the same pairwise value as Set 2, so the similarity is 2/5 and the
dissimilarity is 3/5. Jaccard similarity can be combined with Hamming distance.

e Set1: {1,0,1,1,0}

+ Set2: {1,1,0,1,1}

* Jaccard Similarity: 2/5 = 0.4

» Jaccard Dissimilarity: 3/5 = 0.6

Descriptor Representation

This section discusses how information is represented in the descriptors, including coordinates spaces
useful for feature description and matching, with some discussion of multimodal data and feature
pyramids. Here we provide an overview of shapes and styles, see Table 5.1 and Fig. 5.2 for details on
computer vision feature shape taxonomies and accepted invariance and robustness qualities for
Sfeatures.

Coordinate Spaces, Complex Spaces

There are many coordinate systems used in computer vision, so being able to transform data between
coordinate systems is valuable. Coordinate spaces are analogous to basis spaces. Often, choosing the
right coordinate system provides advantages for feature representation, computation, or matching.
Complex spaces may include multivariate collections of scalar and vector variables, such as gradients,
color, binary patterns, and statistical moments of pixel regions (see Fig. 4.4).

v

v

Fig. 4.4 Coordinate spaces, Cartesian, polar, radial, and spherical

Cartesian Coordinates

Images are typically captured in the time domain in a Cartesian space, and for many applications,
translating to other coordinate spaces is needed. The human visual system views the world as a
complex 3D spherical coordinate space and humans can, through a small miracle, map the 3D space

154 4 Local Feature Descriptors

into approximate or relative Cartesian coordinates. Computer imaging systems capture data and
convert it to Cartesian coordinates, but depth perception and geometric accuracy are lost in the
conversion. (Chapter 1 provided a discussion of depth-sensing methods and 3D imaging systems,
including geometric considerations.)

Polar and Log Polar Coordinates

Many descriptors mentioned later in Chap. 6 use a circular descriptor region to match the human
visual system. Therefore, polar coordinates are logical candidates to bin the feature vectors. For
example, the GLOH [115] method uses polar coordinates for histogram gradient binning, rather than
Cartesian coordinates as used in the original SIFT [132] method. GLOH can be used as a retrofit for
SIFT and has proved to increase accuracy [115]. Since the circular sampling patterns tend to provide
better rotational invariance, polar coordinates and circular sampling are a good match for descriptor
design.

Radial Coordinates

The RIFF descriptor (described later in Chap. 6) uses a local radial coordinate system to describe
rotationally invariant gradient-based feature descriptors. The radial coordinate system is based on a
radial gradient transform (RGT) that normalizes vectors for invariant binning.

As shown in Figs. 4.4 and 6.27, the RGT creates a local coordinate system within a patch region
¢ and establishes two orthogonal basis vectors (r,f) relative to any point p in the patch, r for the radial
vector, and ¢ for the tangential vector. The measured gradients g at all points p are projected onto the
radial coordinate system (r.), so that the gradients are represented in a locally invariant fashion relative
to the interest point c at the center of the patch. When the patch is rotated about c, the gradients rotate
also, and the invariant representation holds.

Spherical Coordinates

Spherical coordinates, also referred to as 3D polar coordinates, can be applied to the field of 3D
imaging and depth sensing to increase the accuracy for description and analysis. For example, depth
cameras today typically only provide (x,y) an Z depth information for each sample. However, this is
woefully inadequate to describe the complex geometry of space, including warping, radial distortion,
and nonlinear distance between samples. Chapter 1 discussed the complexities of 3D space, depth
measurements, and coordinate systems.

Gauge Coordinates
The G-SURF methods [155] use a differential geometry concept [156] of a local region Gauge coordinate

system to compute the features. Gauge coordinates are local to the image feature, and they carry
advantages for geometrical accuracy. Gauge derivatives are rotation and translation invariant.

Descriptor Representation 155

Multivariate Spaces, Multimodal Data

Multivariate spaces combine several quantities, such as Tensor spaces which combine scalar and
vector values, and are commonly used in computer vision. While raw image data may be scalar values
only, many feature descriptors compute local gradients at each pixel, so the combination of pixel scalar
value and gradient vector forms a tensor or multivariate space. For example, color spaces (see Chap. 2)
may represent color as a set of scalar and vector quantities, such as the hue, saturation, and value (HSV)
color space illustrated in Fig. 2.8, where the vectors include HS with H hue as the vector angle and S
saturation as the vector magnitude. V is another vector with two purposes, first as the axis origin for the
HS vector and second as the color intensity or gray scale vector V. It is often useful to convert raw RGB
data into such color spaces for ease of analysis—for example, to be able to uniformly change the color
intensity of all colors together so as to affect brightness or contrast.

In general, by increasing the dimensions of the feature space, more discrimination and robustness
can be added. For example, the LBP pattern as described later in Chap. 6 can be extended into multiple
variables by adding features such as a rotational invariant representation (RILBP); or by replicating the
LBP across RGB color cannels as demonstrated in the color LBP descriptor; or by extending the LBP
pattern into spatiotemporal 3-space, like the LBP-TOP to add geometric distortion invariance.

Multimodal sensor data are becoming widespread with the proliferation of mobile devices that have
built-in GPS, compass, temperature, altimeter, inertial, and other sensors. An example of a multimodal,
multivariate descriptor is the SIFT-GAFD [207] method, as illustrated in Fig. 4.5, which adds
accelerometer information in the form of a gravity vector to the SIFT descriptor. The gravity vector
is referred to as global orientation, and the SIFT local pixel region gradient is referred to as the local
orientation.

Pixel
gradient
vector

Gravity
vector

Fig. 4.5 Multimodal descriptor using accelerometer data in the form of a gravity vector, in a feature descriptor as used in
the SIFT-GAFD method [207]. The gravity vector of global orientation can be used for feature orientation with respect to
the environment

156 4 Local Feature Descriptors

Feature Pyramids

Many feature descriptors are computed in a mono-scale fashion using pixel values at a given scale
only, and then for feature detection and matching the feature is searched for in a scale space image
pyramid. However, by computing the descriptor at multiple scales and storing multiple scaled
descriptors together in a feature pyramid, the feature can be detected on mono-scale images with
scale variance without using a scale space pyramid.

For interest point and feature descriptor methods, scale invariance can be addressed either by:
(1) scaling the images prior to searching, as in the scale space pyramid methods discussed later in this
chapter; or (2) scaling and pyramiding multiple scales of the feature in the descriptor. Shape-based
methods are by nature more scale invariant than interest point and feature descriptor methods, since
shape-based methods depend on larger polygon structures and shape metrics.

Descriptor Density

Depending on the image data, there will be a different number of good interest points and features,
since some images have more pronounced texture. And depending on the detector method used,
images with high texture structure, or wider pixel intensity range differences, will likely generate more
interest points than images with low contrast and smooth texture.

A good rule of thumb is that between 0.1% and 1% of the pixels in an image can yield raw,
unfiltered interest points. The more sensitive detectors such as FAST and the Harris detector family are
at the upper end of this range (see Appendix A). Of course, detector parameters are tuned to reduce
unwanted detection for each application.

Interest Point and Descriptor Culling

In fact, even though the interest point looks good, the corresponding descriptor computed at the interest
point may not be worth using and will be discarded in some cases. Both interest points and descriptors
are culled. So tuning the detector and descriptor together are critical trial-and-error processes. Using
our base assumption of 0.1-1% of the pixels yielding valid raw interest points, we can estimate the
possible detected interest points based on video resolution, as shown in Table 4.2.

Depending on the approach, the detector may be run only at mono-scale or across a set of scaled
images in an image pyramid scale space. For scale space search methods, the interest point detector is
run at each pixel in each image in the pyramid. What methods can be used to cull interest points to
reduce the interest point density to a manageable number?

One method to select the best interest points is to use an adaptive detector tuning method
(as discussed in Chap. 6 under “Interest Point Tuning”). Other approaches include only choosing
interest points at a given threshold distance apart—for example, an interest point that cannot be

Table 4.2 Possible range of detected interest points per image

480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD
Resolution | 640 x 480 1920 x 1080 | 3840 x 2160 | 7680 x 4320
Pixels 307,200 2,073,600 8,294,400 | 33,177,600

Interest points | 300-3k | 2k-21k | 8k-83k | 33k-331k

Descriptor Shape Topologies 157

adjacent to another interest point within a five-pixel window, with the best candidate point selected
within the threshold.

Another method is to vary the search strategy as discussed in this chapter—for example, search for
features at a lower resolution of the image pyramid, identify the best features, and record their
positions, and perhaps search at higher levels of the pyramid to confirm the feature location, then
compute the descriptors. This last method has the drawback of missing fine-grain features by default,
since features may only be present at full image resolution.

Yet another method is to look for interest points every other pixel or within grid-sized regions. All
of the above methods are used in practice, and other methods exist besides.

Dense vs. Sparse Feature Description

A dense descriptor makes use of all the pixels in the region or patch. By “dense” we mean that the
kernel sampling pattern includes all the pixels, since a sparse kernel may select specific pixels to use or
ignore. SIFT and SURF are classic examples of dense descriptors, since all pixels in rectangular
regions contribute to the descriptor computation.

Many feature description methods, especially local binary descriptor methods, are making use of
sparse patterns, where selected pixels are used from a region rather than all the pixels. The FREAK
descriptor demonstrates one of the most ingenious methods of sparse sampling by modeling the human
visual system, using a circular search region, and leveraging the finer resolution sampling closer to the
center of the region, as well as tuning a hierarchy of local sampling patterns of increasing resolution for
optimal results. Not only can sparse features potentially use less memory and reduce computations, but
the sparse descriptor can be spread over a wider area to compensate for feature anomalies that occur in
smaller regions.

Descriptor Shape Topologies

For this discussion, we view descriptor shape fopology with an eye toward surveying the various
shapes of the pixel regions used for descriptor computations. Part of the topology is the shape or
boundary, and part of the topology is the choice of dense vs. sparse sampling patterns, discussed later
in this chapter. Sampling and pattering methods range from the simple rectangular regions up to the
more complex sparse local binary descriptor patterns. As discussed in Chap. 6, both 2D and 3D
descriptors are being designed to use a wide range of topologies. Let us look at a few topological
design considerations, such as patch shape, sub-patches, strips, and deformable patches.

Which shape is better? The answer is subjective and we do not attempt to provide absolute answers,
just offer a survey.

Correlation Templates

An obvious shape is the simple rectangular regions commonly used by correlation template matching
methods. The descriptor is thus the mugshot, or actual image in the template region. To select
subspaces within the rectangle, a mask can be used—for example, it could be a circular mask inside
the bounding rectangle to mask off peripheral pixels from consideration.

158 4 Local Feature Descriptors

Note

Rectangles are the last invariant feature shape, yet recent Al methods for transformers and CNNs
surveyed in Chaps. 9-12 use rectangular areas of interest for feature learning. Many other feature
shapes and attributes will eventually be used in Al for feature learning, since Al is currently at a very
primitive stage. See Table 5.1 and Fig. 5.2 for details on computer vision feature shape taxonomies and
accepted invariance and robustness qualities for features.

Patches and Shapes

The literature commonly refers to the feature shape as a patch, and usually a rectangular shape is
assumed. Patch shapes are commonly rectangular owing to the ease of coding 2D array memory
access. Circular patches are widely used in the local binary descriptor methods.

However, many descriptors also compute features over multiple patches or regions, not just a single
patch. Here are some common variations on patch topology.

Single Patches, Subpatches

Many descriptors limit the patch count to a single 2D patch. This is true of most common descriptors
that are surveyed in Chap. 6. However, some of the local binary descriptors use a set of integral image
subpatches at specific points within the larger patch—for example, BRIEF uses a 5 X 5 integral image
subpatch at each sample point in the local binary pattern, within the larger 31 x 31 pixel patch region,
so the value of each subpatch becomes the value used for the point-pair comparison. The goal is to filter
the values at each point to remove noise.

Deformable Patches

Rather than using a rigid shape, such as a fixed-size rectangle or a circle, feature descriptors can be
designed with deformation in mind, such as scale deformations [293, 294], and affine or homographic
deformation [186], to enable more robust matching. Examples include the DeepFlow [283, 325] deep
matching method, and RFM2.3, as discussed in Chap. 6. Also, the D-NETS [106] method, using the
fully connected or sparse connected topology, can be considered to be deformable in terms of
invariance of the placement of the strip patterns; see Fig. 4.7 and the discussion of D-nets in
Chap. 6. Many feature learning methods discussed later in this chapter also use deformed features
for training.

Fixed descriptor shapes, such as rigid rectangles and circles, can detect motion under a rigid motion
hypothesis, where the entire descriptor is expected to move with some amount of variance, such as in
scale or affine transformation. However, for activity recognition and motion, a more deformable
descriptor model is needed, and DeepFlow [292, 325] bridges the gap between descriptor matching
methods and optical flow matching methods, using deformable patches and deep matching along the
lines of deep learning networks.

Multi-patch Sets

The SIFT descriptor uses multi-patch sets of three patches from adjacent DoG images taken from the
scale space pyramid structure, as shown in Fig. 6.15. Several other methods, such as the LBP-TOP and
VLBP shown in Fig. 6.12, use sets of patches spread across a volume structure. LBP-TOP uses patches
from adjacent planes, and the VLBP uses intersecting patches in 3-space. Dynamic texture methods
use sets of three adjacent patches from spatiotemporal image frame sets, as frame n — 2, frame n — 1,
and frame — O (current frame).

Descriptor Shape Topologies 159

TPLBP, FPLBP

The three-patch LBP TPLBP and four-patch LBP FPLBP [206] utilize novel multi-patch sampling
patterns to add sparse local structure into a composite LBP descriptor. As shown in Fig. 4.6, the three-
patch LBP uses a radial set of LBP patterns composed using alternating sets of three patches, and the
four-patch LBP uses a more distributed pairing of patches over a wider range.

Fig. 4.6 Novel multi-patch sets developed by Wolf et al. [206]. (Left) The TPLBP compares the values from three-patch
sets around the ring to compute the LBP code, eight sets total, so there is one set for each LBP bit. (Right) The four-patch
LBP uses four patches to computed bits using two symmetrically distributed patches from each ring, to produce each bit
in the LBP code. The radius of each ring is a variable, the patch pairing is a variable, and the number of patches per ring is
a variable; here, there are eight patches per ring

Strip and Radial Fan Shapes

Radial fans or spokes originating at the feature interest point location or shape centroid can be used as
the descriptor sampling topology—for example, with Fourier shape descriptors (as discussed in
Chap. 6; see especially Fig. 6.29).

D-NETS Strip Patterns

The D-NETS method developed by Hundelshausen and Sukthankar [106] uses a connected graph-
shaped descriptor pattern with variations in the sampling pattern possible. The authors suggest that the
method is effective using three different patterns, as shown in Fig. 4.7:

1. Fully connected graph at interest points
2. Sparse or iterative connected graph at interest points
3. Densely sampled graph over a chosen grid

160 4 Local Feature Descriptors

Fig. 4.7 Reduced resolution examples of the D-NETS [106] sampling patterns. (Left) Full dense connectivity at interest
points. (Center) Sparse connectivity at interest points. (Right) Dense connectivity over a regular sampling grid. The
D-NETS authors note that a dense sampling grid with 10 pixel spacing is preferred over sampling at interest points

The descriptor itself is composed of a set of d-tokens, which are strips of raw pixel values rather than
a value from a patch region: the strip is the region, and various orientations of lines are the pattern. The
sampling along the strip is between 80% and 20% of the strip length rather than the entire length,
omitting the endpoints, which is claimed to reduce the contribution of noisy interest points. The
sampled points are combined into a set s of uniform chunks of pixels and normalized and stored into a
discrete d-token descriptor.

Object Polygon Shapes

The object and polygon shape methods scan globally and regionally to find the shapes in the entire
image frame or region. The goal is to find an object or region that is cohesive. A discussion of the
fundamental methods for segmentation polygon shapes for feature descriptors is provided here,
including:

* Morphological object boundary methods
+ Texture or regional structural methods

» Superpixel or pixel similarity methods

* Depth map segmentation

Chapter 6 provides details on a range of object shape factors and metrics used to statistically
describe the features of polygon shape. Note that this topic is often discussed in the