
Computer Vision
Metrics
Survey, Taxonomy, and Analysis of Computer
Vision, Visual Neuroscience, and Visual AI

Second Edition

Scott Krig

Computer Vision Metrics

Scott Krig

Computer Vision Metrics

Survey, Taxonomy, and Analysis of
Computer Vision, Visual
Neuroscience, and Visual AI

Second Edition

Scott Krig
Krig Research
Folsom, CA, USA

ISBN 978-981-99-3392-1 ISBN 978-981-99-3393-8 (eBook)
https://doi.org/10.1007/978-981-99-3393-8

The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2016, 2025
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher nor
the authors or the editors give a warranty, expressed or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore
189721, Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-99-3393-8

Preface

Visual Computing and Visual AI is at an inflexion point where historical

visual computing sciences are being superseded, piece by piece, by newer

Visual AI methods. Seemingly mature visual computing applications are

being improved using AI methods, such as computer graphics algorithms,

image processing, scene analysis, feature representation, object detection, to

name a few. The GPU is being recast to incorporate Visual AI methods,

combining computer vision with computer graphics.

This update to Computer Vision Metrics adds a survey of more recent and

noteworthy visual computing methods and applications, with an updated

taxonomy of architectures and research concepts, including the latest

advances in transformers, attention mechanisms, innovative learning models,

view synthesis using caption classifiers with zero-shot learning, and hybrid

DNNs using a variety of basic features besides convolutional filters. Discus-

sion and analysis are provided to uncover intuition and delve into the essence

of key advancements, with an eye towards the future of third-generation

Visual AI.

v

vi Preface

Fig. 1 (Top) Deep Learning—It’s Paradise! Image (C) “Wheel of Fortune,” (Middle)

Image (C) Alex Krizhesky, Scott Krig commentary: DNN features resemble unique puzzle

pieces, recursive complex averages of similar features from training data (Bottom) On

building an AI system: Well, it’s remarkably simple... they are connected to a gigantic

complex of computers ... programmed into a tape memory bank..., (C) “Dr. Strangelove”

This is not a how-to book. Rather, this is a comprehensive and coherent

survey of historical and the state-of-the-art methods, with key insights and

intuitions towards future innovations.

Open-source code is the new University and the new academic text-

book. Open-source code resources have now replaced the need for outdated

hands-on classroom learning of specific algorithms for specific applications,

making how-to textbooks obsolete.

The field of computer vision is moving too fast for the academic

coursework to keep up; open-source code is the place to be for algorithm

learning. In fact, most anyone can develop commercial computer vision

products by simple cut and paste and modification of free open-source code

from GitHub or OpenCV (see Midjourney.com, for example). Most academic

research papers provide free source code for the latest research methods, and

this book cites well over 1200 key research papers to dig deeper. The online

repository GitHub provides a vast library of the latest algorithms from the

latest research papers as open-source code. Also, the OpenCV library also

provides a huge wealth of computer vision and deep learning source code and

good code documentation containing algorithm details and background

including citations of key reference papers for each algorithm—well suited

to classroom use or self-guided learning.

Preface vii

However, this book is well suited for academic coursework or

continuing education for any science discipline that makes use of images

and video data, providing a comprehensive survey and analysis of computer

vision with over 1200 references to the literature enabling deeper research into

any topic, including deep learning and visual neuroscience, suitable for

graduate level coursework to orient students to computer vision thinking of

past, present, and future methods. The chapters are divided in such a way that

various courses can be devised to incorporate a subset of chapters to accom-

modate course requirements. For example, typical course titles include

“Image Sensors and Image Processing,” “Computer Vision and Image

Processing,” “Applied Computer Vision and Imaging Optimizations,” “Fea-

ture Learning, Deep Learning, and Neural Network Architectures,” “Com-

puter Vision Architectures,” “Computer Vision Survey.” Chapters 8 and 12

can be used for Applied Computer Vision course materials. Questions are

available for coursework at the end of each chapter.

This revised edition takes a forward-looking view at Visual AI and

provides an analysis of key trends in research that point the way to third-

generation Visual AI systems, primarily using Associative Multimodal

Learning (AML) using multimodal data discussed in Chap. 12 to provide

classifiers for continuous learning, similar to the human mind, which hold

extreme promise going forward.

Rather than finding a generic or fundamental Artificial General Intelli-

gence (AGI) model, third-generation AI will move in the direction towards

Multiple Intelligences for specific learning domains, rather than a generic

AGI. Multiple Intelligences (MI) theory as pioneered by cognitive psycholo-

gist Dr. Howard Gardner of Harvard will lead the way to learn fundamentally

separate models for multiple modes of human intelligence to address the

different human learning modes such as musical–rhythmic, visual–spatial,

verbal–linguistic, logical–mathematical, bodily–kinesthetic, interpersonal,

intrapersonal, naturalistic, and existential intelligence. See Howard Gardner’s

seminal work Gardner, H. (1983). Frames of mind: The theory of multiple

intelligences. New York: Basic Books.

The classifier becomes the crown jewel! Everyone can have their own

classifier (i.e., a personal learning assistant) to follow them for a lifetime of

continuous learning.

What does the future hold for Computer Vision, Visual Computing, and

Visual AI (~5 years)?

• Over 10 EXAFLOPS + 4 PETABYTES of memory, enabling models with

over 500 TRILLION parameters (i.e., Graphcore Corp. has more than this

today). And of course, NVIDIA will offer 15 Exaflops in 2027.

viii Preface

• ImageNet will become less important, as new multimodal data models

come to the forefront; gradient descent training will become less important;

tuning and small-batch training to polish up golden classifiers acting as

personal assistants will occur constantly (hourly, daily) following our

multimodal perceptions and actions; other golden exemplar and metric-

based training will become more common to incorporate multimodal data;

training in small batches will become normal; huge training processes

using billions of training samples will be less important, and handled by

larger corporations with huge compute resources; training will occur more

frequently using smaller training sets in smaller steps to integrate models

into larger libraries of models working together in concert, some private,

some public.

• AML classifiers will increase as the next step in third-generation AI. The

classifier becomes the crown jewel for continuous learning and become the

property of the individual owner as it learns their personality, unlike the

large pre-trained foundation data models that are more like the AI

operating system which is updated periodically for everyone.

• Ubiquitous Visual AI will be built into portable devices and into the

physical infrastructure of buildings, roadways, communications channels,

utilities, manufacturing, and appliances of the world creating a virtual AI

infrastructure.

Governments Become Major Stakeholders

The world-wide AI race is on, and Visual AI is a key pillar along with Natural

Language Processing (NLP) and various modal AI embedded into automated

systems for commercial, government, and military use. The world will

become highly regulated in terms of Visual AI and all forms of AI; the

world will never be the same going forward, becoming AI autonomous and

AI controlled in many spheres.

Russia on AI

“Artificial intelligence is the future, not only for Russia, but for all humankind.

It comes with colossal opportunities, but also threats that are difficult to predict.

Whoever becomes the leader in this sphere will become the ruler of the world.”

Vladimir Putin, President of Russia, 2017

China Top-Down AI Goals

Notice of the State Council

Issuing the New Generation of Artificial Intelligence Development Plan 1

State Council Document [2017] No. 35

To all people’s governments of provinces, autonomous regions, and municipalities

directly under the central government, all State Council ministries, and all directly

controlled institutions:

Preface ix

The “next generation of artificial intelligence development plan” is hereby issued to

you,

please carefully implement.

State Council

July 8, 2017

USA AI Policy: Scattered Across USG Agencies

. . .to foster public trust and confidence in the use of AI, protect our Nation’s values, and

ensure that the use of AI remains consistent with all applicable laws, including those

related to privacy, civil rights, and civil libertiesWatch Trump in 2025.

EU Artificial Intelligence Act

EN ENEUROPEAN COMMISSION Brussels, 21.4.2021

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE

(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION

LEGISLATIVE ACTS

Thanks

This work cannot be done without support from people in the computer vision

and AI community who are doing all the work I cannot do, to whom thanks

is due.

Special thanks to Dr. Celine Chan of Springer for support, guidance, and

vision for this book update, and all the little things that make this possible.

Thanks to all those who have provided information and materials, special

thanks to: Dr. Rahul Suthankar for seeing the future for transformers in

computer vision before most people knew, Dr. Juergen Schmidhuber for

suggestions on specific research papers on various curiosity models,

Dr. Alex Nichol for information and materials for point cloud models for

view synthesis, Dr. Romain Futrzynski for transformer illustrations,

Dr. Alexei Mikhailov for information on inverse indexing and hierarchical

learning models, Victor Erukhimov for discussions about product research for

avatar creation and animation, and also thanks to far too many other people I

have forgotten to mention. Thanks to Barnali Ojha for excellent proofreading.

Thanks to my wife who helps me stop working when I need a break and

lets me know when I am exhausted with my work beyond sensibility *but

actually enjoying it.

x Preface

And most of all, thanks to the ֵתא who holds all things together and provides

us all with the inspiration to see and learn the wonders of visual perception in

what he has made.

Folsom, CA Scott Krig

March 21, 2025

Contents

1 2D/3D Image Capture and Representation 1

Image Sensor Technology 1

Sensor Materials . 2

Sensor Photodiode Cells 3

Sensor Configurations: Mosaic, Foveon, BSI 3

Dynamic Range, Noise, and Super Resolution 5

Sensor Processing . 5

De-mosaicking 5

Dead Pixel Correction . 6

Color and Lighting Corrections . 6

Geometric Corrections . 6

Cameras and Computational Imaging 6

Overview of Computational Imaging 7

Single-Pixel Computational Cameras 7

2D Computational Cameras . . 8

3D Depth Camera Systems 10

Binocular Stereo 12

Structured and Coded Light 14

Optical Coding: Diffraction Gratings 16

Time-of-Flight Sensors 17

Array Cameras 19

Radial Cameras 19

Plenoptics: Light Field Cameras 20

3D Depth Processing Method 21

Overview of Methods 22

Problems in Depth Sensing and Processing 22

The Geometric Field and Distortions 22

The Horopter Region, Panum’s Area, and Depth Fusion . . . 23

Cartesian vs. Polar Coordinates: Spherical Projective

Geometry 24

Depth Granularity . 25

Correspondence . 26

Holes and Occlusion 27

Surface Reconstruction and Fusion 27

Noise 28

Monocular Depth Processing . 28

xi

xii Contents

Multi-view Stereo . 29

Sparse Methods: PTAM 29

Dense Methods: DTAM . . 30

Optical Flow, SLAM, and SFM 31

3D Representations: Voxels, Depth Maps, Meshes, and Point

Clouds 32

Summary 33

Learning Assignments 33

2 Image Preprocessing, Morphology, Segmentation,

Colorimetry 35

Perspectives on Image Processing 35

Problems to Solve During Image Preprocessing 36

Vision Pipelines and Image Preprocessing 36

Corrections . 37

Enhancements 38

Preparing Images for Feature Extraction 38

The Taxonomy of Image Processing Methods 43

Point 44

Line . 44

Area 44

Algorithmic 44

Data Conversions 44

Colorimetry . 45

Overview of Color Management Systems 45

Illuminants, White Point, Black Point, and Neutral Axis . . . 46

Device Color Models . . 47

Color Spaces and Color Perception 47

Gamut Mapping and Rendering Intent 48

Practical Considerations for Color Enhancements 49

Color Accuracy and Precision . 49

Spatial Filtering 50

Convolutional Filtering and Detection 50

Kernel Filtering and Shape Selection 52

Point Filtering 53

Noise and Artifact Filtering 54

Integral Images and Box Filters 55

Edge Detectors . 56

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch,

Robinson, and Frei–Chen 56

Canny Detector . 57

Transform Filtering, Fourier, and Others 58

Fourier Transform Family 58

Fourier Family of Transforms 60

Other Transforms 61

Morphology and Segmentation 61

Binary Morphology . 61

Gray Scale and Color Morphology 63

Contents xiii

Morphology Optimizations and Refinements 63

Euclidean Distance Maps . 64

Super-Pixel Segmentation 64

Depth Segmentation 65

Color Segmentation . 66

Thresholding 66

Global Thresholding 67

Local Thresholding . 70

DNN Segmentation 72

Segmentation: Semantic, Instance, Panoptic 73

U-Nets for Segmentation, W-Nets 75

CNN Segmentation Methods 79

CNN Segmentation History . 79

FCN Segmentation Method 80

Mask RCNN Method 80

Region Proposals, Rectangular, Segmented Polygon

Regions 81

Single Shot Object Detection: SDD and YOLO 82

Two-Shot Object Detection . . 85

Segmented Region Descriptors: Color and Texture 85

Illumination Estimation and Color Corrections for

Segmentation 87

Color Quantization 88

Color Compression and Color Popularity 90

Summary 95

Learning Assignments 96

3 Global and Regional Feature Descriptors 99

Historical Survey of Features 99

Key Ideas: Global, Regional, and Local Metrics 100

Textural Analysis 102

Statistical Methods 104

Texture Region Metrics . 105

Edge Metrics . 106

Cross-Correlation and Autocorrelation 108

Fourier Spectrum, Wavelets, and Basis Signatures 108

Co-occurrence Matrix, Haralick Features 109

Laws Texture Metrics 118

LBP Local Binary Patterns 119

Dynamic Textures 120

Statistical Region Metrics 121

Image Moment Features 121

Point Metric Features 121

Global Histograms 123

Local Region Histograms 124

Scatter Diagrams, 3D Histograms 124

Multi-resolution, Multi-scale Histograms 127

Radial Histograms . 128

Contour or Edge Histograms . 129

xiv Contents

Basis Space Metrics 129

Fourier Description . 132

Walsh–Hadamard Transform 133

HAAR Transform . 133

Slant Transform . 134

Zernike Polynomials 134

Steerable Filters . 135

Karhunen–Loeve Transform and Hotelling Transform 135

Wavelet Transform and Gabor Filters 136

Hough Transform and Radon Transform 137

Summary 139

Learning Assignments 139

4 Local Feature Descriptors 141

Local Features 142

Detectors, Interest Points, Keypoints, Anchor Points,

Landmarks 142

Descriptors, Feature Description, Feature Extraction 142

Sparse Local Pattern Methods . 143

Local Feature Attributes 143

Choosing Feature Descriptors and Interest Points 143

Feature Descriptors and Feature Matching 144

Criteria for Goodness 145

Repeatability, Easy vs. Hard to Find 146

Distinctive vs. Indistinctive 146

Relative and Absolute Position 146

Matching Cost and Correspondence 146

Distance Functions 147

Early Work on Distance Functions 147

Euclidean or Cartesian Distance Metrics 148

Grid Distance Metrics 150

Statistical Difference Metrics . 151

Binary or Boolean Distance Metrics 152

Descriptor Representation . 153

Coordinate Spaces, Complex Spaces 153

Cartesian Coordinates . 153

Polar and Log Polar Coordinates . 154

Radial Coordinates 154

Spherical Coordinates . 154

Gauge Coordinates 154

Multivariate Spaces, Multimodal Data 155

Feature Pyramids 156

Descriptor Density 156

Interest Point and Descriptor Culling 156

Dense vs. Sparse Feature Description 157

Descriptor Shape Topologies . 157

Correlation Templates 157

Patches and Shapes . 158

Contents xv

Object Polygon Shapes 160

Local Binary Descriptor Point-Pair Patterns 161

FREAK Retinal Patterns 162

Brisk Patterns 163

ORB and BRIEF Patterns . 163

Descriptor Discrimination . 164

Spectra Discrimination 165

Region, Shapes, and Pattern Discrimination 166

Geometric Discrimination Factors 166

Feature Visualization to Evaluate Discrimination 167

Accuracy, Trackability 170

Accuracy Optimizations, Subregion Overlap, Gaussian

Weighting, and Pooling 172

Sub-pixel Accuracy 172

Search Strategies and Optimizations 173

Dense Search . . 173

Grid Search . 173

Multi-scale Pyramid Search . 174

Scale Space and Image Pyramids 174

Feature Pyramids 176

Sparse Predictive Search and Tracking 177

Tracking Region-Limited Search 177

Segmentation-Limited Search . 177

Depth or Z-Limited Search . 178

Computer Vision, Models, Organization 178

Feature Space 179

Object Models . 179

Constraints . . 181

Selection of Detectors and Features 181

Overview of Training . 182

Classification of Features and Objects 183

Classification Frameworks, Supervision, REIN, MOPED . . 185

Feature Learning, Sparse Coding, Convolutional

Networks . 188

Convolutional Neural Networks, Neural Networks 191

Summary 192

Learning Assignments 192

5 Feature Descriptor Attribute Taxonomy 195

Feature Descriptor Families . 196

Prior Work on Computer Vision Taxonomies 197

Robustness and Accuracy 198

General Robustness Taxonomy 198

Illumination 199

Color Criteria . 199

Incompleteness 200

Resolution and Accuracy . . . 200

Geometric Distortion . 201

xvi Contents

Efficiency Variables, Costs, and Benefits 201

Discrimination and Uniqueness . 201

General Vision Metrics Taxonomy 202

Feature Descriptor Family . 203

Spectra Dimensions . 204

Spectra Type 204

Interest Point 206

Storage Formats 207

Data Types 207

Descriptor Memory 207

Feature Shapes 208

Feature Pattern 208

Feature Density 209

Feature Search Methods 209

Pattern Pair Sampling 210

Pattern Region Size 210

Distance Function . 211

Feature Metric Evaluation 212

Efficiency Variables, Costs, and Benefits 212

Image Reconstruction Efficiency Metric 212

Example Feature Metric Evaluations 212

Summary 214

Learning Assignments 215

6 Feature Detector and Feature Descriptor Survey 217

Interest Point Tuning 218

Interest Point Concepts (Keypoints, Detectors) 219

Interest Point Method Survey . . . 221

Laplacian and Laplacian of Gaussian 222

Moravac Corner Detector . 222

Harris Methods, Harris–Stephens, Shi–Tomasi, and

Hessian Type Detectors . 222

Hessian Matrix Detector and Hessian–Laplace 223

Difference of Gaussians 223

Salient Regions . 223

SUSAN, and Trajkovic and Hedly 224

Fast, Faster, and AGHAST 224

Local Curvature Methods 225

Morphological Interest Regions . 226

Feature Descriptor Survey . 227

Local Binary Descriptors . 227

Spectra Descriptors . 238

Basis Space Descriptors . 261

Polygon Shape Descriptors 263

3D, 4D, Volumetric, and Multimodal Descriptors 268

Summary 272

Learning Assignments 272

Contents xvii

7 Ground Truth Data Topics, Benchmarks, Analysis 275

What Is Ground Truth Data? 275

Previous Work on Ground Truth Data: Art vs. Science 277

General Measures of Quality Performance 277

Measures of Algorithm Performance 278

Rosin’s Work on Corners 279

Key Questions for Constructing Ground Truth Data 280

Content: Adopt, Modify, or Create . 280

Survey of Available Ground Truth Data 280

Fitting Ground Truth Data to Algorithms 280

Scene Composition and Labeling 282

Composition 283

Labeling . 283

Defining the Goals and Expectations 284

Mikolajczyk and Schmid Methodology 284

Open Rating Systems 285

Corner Cases and Limits 285

Interest Points and Features . 285

Robustness Criteria for Ground Truth Data 286

Illustrated Robustness Criteria 286

Using Robustness Criteria for Real Applications 288

Pairing Metrics with Ground Truth 289

Pairing and Tuning Interest Points, Features, and Ground

Truth 289

Examples Using the General Vision Taxonomy 290

Synthetic Feature Alphabets 291

Goals for the Synthetic Dataset 291

Accuracy of Feature Detection via Location Grid 293

Rotational Invariance via Rotated Image Set 294

Scale Invariance via Thickness and Bounding Box Size 294

Noise and Blur Invariance 294

Repeatability 294

Real Image Overlays of Synthetic Features 294

Synthetic Interest Point Alphabet 294

Synthetic Corner Alphabet 295

Hybrid Synthetic Overlays on Real Images 296

Method for Creating the Overlays 297

Summary 297

Learning Assignments 298

8 Vision Pipelines and HW/SW Optimizations 299

Stages, Operations, and Resources 300

Compute Resource Budgets 301

Compute Units, ALUs, and Accelerators 303

Power Use 304

Memory Use 304

I/O Performance 307

The Vision Pipeline Examples 308

xviii Contents

Automobile Recognition 308

Segmenting the Automobiles . 309

Matching the Paint Color 310

Measuring the Automobile Size and Shape 310

Feature Descriptors . 311

Calibration, Setup, and Ground Truth Data 312

Pipeline Stages and Operations . 312

Operations and Compute Resources 313

Criteria for Resource Assignments 314

Object Models for Human Body, Generic Objects, Pose Point

Detectors 315

Face, Emotion, and Age Recognition 316

Calibration and Ground Truth Data 318

Interest Point Position Prediction 318

Segmenting the Head and Face Using the Bounding Box . . 319

Face Landmark Identification and Compute Features 320

Pipeline Stages and Operations . 321

Operations and Compute Resources 322

Criteria for Resource Assignments 322

Image Classification . 323

Segmenting Images and Feature Descriptors 324

Pipeline Stages and Operations . 325

Mapping Operations to Resources 326

Criteria for Resource Assignments 326

Augmented Reality 327

Calibration and Ground Truth Data 328

Feature and Object Description 329

Overlays and Tracking 329

Pipeline Stages and Operations . 330

Mapping Operations to Resources 331

Criteria for Resource Assignments 331

Acceleration Alternatives . . 332

Memory Optimizations 333

Minimizing Memory Transfers Between Compute Units . . . 333

Memory Tiling . 333

DMA, Data Copy, and Conversions 334

Register Files, Memory Caching, and Pinning 334

Data Structures, Packing, and Vector vs. Scatter-Gather Data

Organization . 334

Coarse-Grain Parallelism 335

Compute-Centric vs. Data-Centric 335

Threads and Multiple Cores . 335

Fine-Grain Data Parallelism . 336

SIMD, SIMT, and SPMD Fundamentals 336

Shader Kernel Languages and GPGPU 338

Advanced Instruction Sets and Accelerators 338

Vision Algorithm Optimizations and Tuning 339

Compiler and Manual Optimizations 340

Contents xix

Tuning 340

Feature Descriptor Retrofit, Detectors, Distance

Functions 341

Boxlets and Convolution Acceleration 341

Data Type Optimizations, Integer vs. Float 342

Optimization Resources . . 342

Summary 343

Learning Assignments 343

9 Feature Learning Taxonomy and Neuroscience

Background 345

Neuroscience Inspirations for Computer Vision 346

Feature Generation vs. Feature Learning 348

Terminology of Neuroscience Applied to Computer Vision 348

Classes of Feature Learning 354

Convolutional Feature Weight Learning 354

Local Feature Descriptor Learning 355

Basis Feature Composition and Dictionary Learning 355

Summary Perspective on Feature Learning Methods 356

Machine-Learning Models for Computer Vision 356

Expert Systems 358

Statistical and Mathematical Analysis Methods 358

Neural Science-Inspired Methods 358

Deep Learning . 359

DNN Hacking and Misclassification . 360

History of Machine Learning (ML) and Feature Learning 361

Historical Survey, 1940s–2010s . 361

1940s and 1950s . . 362

1960s . 363

1970s . 363

1980s . 364

1990s . 364

2000s–2010s 365

2020s– 366

Artificial Neural Network (ANN) Taxonomy Overview 367

Feature Learning Overview 368

Learned Feature Descriptor Types 368

Hierarchical Feature Learning 369

How Many Features to Learn? 369

The Power of DNNs 370

Encoding Efficiency . 370

Handcrafted Features vs. Handcrafted Deep Learning 370

Invariance and Robustness Attributes for Feature Learning 372

What Are the Best Features and Learning Architectures? 372

Merger of Big Data, Analytics, and Computer Vision 374

Key Technology Enablers 376

Neuroscience Concepts 376

Biology and Blueprint . 378

xx Contents

The Elusive Unified Learning Theory 379

Human Visual System Architecture . . 380

Taxonomy of Feature Learning Architectures 385

Note 387

Architecture Topologies . 387

ANNs (Artificial Neural Networks) . 388

FNN (Feed-Forward Neural Network) 388

RNN (Recurrent Neural Network) 389

BFN (Basis Function Network) . 389

Ensembles, Hybrids 389

Architecture Components and Layers 389

Layer Totals 391

Layer Connection Topology . 392

Memory Model . 392

Training Protocols . 393

Input Sampling Methods 393

Dropout, Reconfiguration, Regularization 394

Preprocessing, Numeric Conditioning 396

Feature Set Dimensions . 397

Feature Initialization 397

Features, Filters 397

Activation, Transfer Functions 398

Post-processing, Numeric Conditioning 399

Pooling, Subsampling, Downsampling, Upsampling 400

Classifiers 402

Summary 403

10 Feature Learning and Deep Learning Architecture Survey . . 405

Architecture Survey 406

FNN Architecture Survey 407

P—Perceptron 407

Perceptron Architecture 409

Perceptron Weight Tuning 411

Perceptron Learning, Training, Classification 412

Multilayer Perceptron (MLP), Cognitron, Neocognitron 413

Cognitron . 413

Neocognitron 415

Concepts for CNNs, Convnets, Deep MLPs 417

Forward and Backward Pass Through the CNN 419

Fully Connected (FC) Layers, Flatten, Reduction, Reshape 421

Layers and Depth 425

Modeling an Artificial Neuron 427

Convolutional Features, Filters 428

Transfer Function (Activation Function) 430

Feature Weights and Initialization 431

Local Receptive Field 431

Receptive Field Compression via Input Striding or Output

Pooling . 431

Contents xxi

Trainable Bias 432

Memory for Current Neuron State . 432

Backpropagation, Feature Learning, Feature Tuning 432

Alternatives to Backpropagation . . 438

Features per Layer 439

Compute Cost of Convolutional Features and Layers 439

Filter Shape and Size 440

Stacked Convolutions 441

Separable and Fused Convolutions 442

Convolution vs. Correlation 443

Pooling, Subsampling 444

Parameters and Hyperparameters 445

Architecture Parameters . 446

Learning Hyperparameters 448

LeNet 449

AlexNet, ZFNet . 451

VGGNet and Variants MSRA-22, Baidu Deep Image, Deep

Residual Learning 453

Half-CNN 456

NiN, Maxout . 458

GoogLeNet, InceptionNet 464

MSRA-22, SPP-Net, R-CNN, MSSNN, Fast-R-CNN 466

Baidu, Deep Image, MINWA . 470

SYMNETS—Deep Symmetry Networks 471

RNN Architecture Survey 475

Concepts for Recurrent Neural Networks 477

RNN Contrasted with CNN 477

Unfolding an RNN into an FNN 479

RNN Weight Sharing and Probabilistic Matching 481

RNN Cell and Network Taxonomy . 481

RNN Sequencing and State 483

RNN Memory Models . 485

LSTM, GRU 487

NTM, RNN-NTM, RL-NTM . 489

Multidimensional RNNs, MDRNN 491

2D RNNs and 2D LSTMs for Computer Vision 492

MDRNN, MDLSTM, DAG-RNN, BDRNN, RRNN 493

C-RNN, QDRNN . 495

RCL-RCNN 497

dasNeT . 498

NAP—Neural Abstraction Pyramid . 500

BFN Architecture Survey . . 503

Concepts for Machine Learning and Basis Feature Networks . . . 504

Feature Models, Classification Models, Decision Models 505

Function Basis vs. CNN Basis vs. Other Models 506

Visual Vocabularies, Bag of Words (BoW) Model, Alternative

Encodings . 507

xxii Contents

Vocabulary Encodings 509

Sparse Coding and Codebook Learning Overview, K-MEANS,

K-SVD 511

Kernel Functions, Kernel Machines, SVM 517

Other Statistical Classification Methods, Decision Trees, Forests,

Boosting 521

PNN—Polynomial Neural Network, GMDH 521

HKD—Kernel Descriptor Learning 523

HMP—Sparse Feature Learning 525

HMP Pyramid Sparse Code (PSC) Feature Descriptor 526

HMP Dictionary Learning with MI-KSVD 527

HMP Multivariate I-RGB-D-N Features 530

M-HMP Multiscale Features . 531

HMAX and Neurological Models 531

The Standard Model of the Visual Pathway 531

Viewpoint Invariance Models 533

HMAX Feature Hierarchy 534

HMAX Layers 535

S1 Layer 535

C1 Layer 538

S2 Layer 539

C2 Layer 540

VTU Classification 541

Training Protocols 542

HMO—Hierarchical Model Optimization 542

Ensemble Methods 543

Deep Neural Network Futures 545

Increasing Depth to the Max—Deep Residual Learning (DRL) . . 545

Approximating Complex Models Using a Simpler MLP (Model

Compression) 547

Classifier Decomposition and Recombination 548

Summary 548

Learning Assignments 549

11 Attention, Transformers, Hybrids, and DDNs 551

Deep Descriptor Networks (DDNs) Overview 552

DDN and CNN Contrasted 552

Learning Model Innovations . 554

Classifier Innovations: Hand-Crafted vs. Learned 556

Commodity Models—Foundation Models 558

Attention Mechanisms . 559

Self-Attention 561

Neuroscience of Visual Attention . . 562

On the Weakness of FFN Models for Attentional Learning . . . 563

Transient Attention—Sustained Attention 563

Saccading and Time-Aware Neurons 563

Local Features and Joint Attention 563

Attention Variations . 564

Contents xxiii

Attention Element Overview: Encodings and Embeddings 565

Input Tokenization for Text and Images 567

Embeddings for Text and Images 568

Rethinking Positional Encodings for Text Tokens and Pixel

Patches 573

Illustrated Encodings and Embedding Space 574

Attention Mechanism Illustrated: Tokens, Embeddings, QKV

Self-Attention 577

Transformer Architectures for Vision . 584

ViT the First Vision Transformer 586

ViT Pixel Patch Embeddings . 588

SWiN Transformer . 589

DDN Hybrid Backbones: Multi-feature Networks 591

PPN—Polynomial Neural Network GMDH 592

Non-local Means Network (NLM-Net) 592

Stand-Alone Self-Attention Network (SASA) 593

Attention + CNN: ViT Lite Variants CvT + CCT, BotNet . . . 594

ATT-CNN: Incorporating Attentional Guidance to CNN

Classifiers 594

FNet Transformer with Fourier Features 595

Binary Networks: XNOR-Net, Binary Weight Networks

(BWN) 596

BEIT Visual Vocabulary Features, VICE 597

Volume Learning for Visual Genomes and Visual DNA 598

Indextron Inverse Index Feature Learning 601

Summary 606

Learning Assignments 607

12 Applied and Future Visual Computing Topics 609

Image Sensor Enhancements 610

Application Specific Image Sensor Features for HDR and

More 610

GPU Incorporation of Neural Networks and Computer

Vision into the GPU . 610

Imaging Sensor Functions: HDR and Super Resolution

(SR) 612

HDR on a Single CMOS Imager Chip 612

Super Resolution (SR) Methods: On-Chip and in SOC

Software 613

Super Resolution for Multi-image Mixed Reality (MR) 614

Blind Super-Resolution . 615

Super Resolution from a Single Image: SR-GAN DNN 616

Super Resolution + HDR: HDR-DSP Multi-resolution Super

Resolution . 617

Deep Burst Super-Resolution: Multi-image vs. Single Image

Methods 618

Panoramics and Image Stitching 618

3D 360-Degree Panoramic Image Stitching 619

xxiv Contents

Adaptive (APAP) 2D Image Stitching . 620

Stereo Pair Estimation from 2D Images—Deep3D 622

View Synthesis . 622

Introduction 623

Background Concepts 625

Light Fields and Radiance Fields . 625

Volume Rendering for 3D Light Fields 627

Generative Adversarial Networks (GAN’s) and Curiosity

Models 630

Diffusion Models 632

Text-to-Image Synthesis Models 634

Captioned Multiclass Classification, Classifier-Free Guidance,

N-Shot Learning . 635

The AI Third Wave: Continuous Learning and Multi-modal

Models 637

Associative Multi-modal (Multiclass) Learning (AML)—

Third-Generation Classifiers 640

View Synthesis Applications 644

CLIP Text-to-Image Synthesis . 644

GLIDE Model for Image Modeling and Editing 646

DALLE-2 Text-to-Image View Synthesis, Stable Diffusion,

Imagen 647

Neural Radiance Fields (NeRF) . 650

NeRF and NeRF-OSR 651

Neural Radiance Field Code Books, ObSuRf 3D Scene

Segmentation 652

POINT-E Text-to-Image View Synthesis 653

3D View Synthesis from Two Images + Pose: 3DiM 654

Avatars and Animation—SMPL and AvatarSDK 655

Scientific Imaging Systems . 659

Polarimetric Imaging and Polarized Light Cameras 660

Multi-spectral Imaging 662

Tomography for Confocal Microscopy and MRI 664

Confocal Microscopy and Florescence Imaging 666

Summary 668

Learning Assignments 668

Appendix A: Synthetic Feature Analysis 671

Background Goals and Expectations 672

Test Methodology and Results . 672

Detector Parameters Are Not Tuned for the Synthetic

Alphabets . 674

Expectations for Test Results . 675

Summary of Synthetic Alphabet Ground Truth Images 675

Synthetic Interest Point Alphabet . 675

Synthetic Corner Point Alphabet . 676

Synthetic Alphabet Overlays 676

Test 1: Synthetic Interest Point Alphabet Detection 676

Appendix C: Imaging and Computer Vision Resources 711

Appendix E: The Visual Genome Model (VGM) 731

Contents xxv

Annotated Synthetic Interest Point Detector Results 679

Entire Images Available Online . 679

Test 2: Synthetic Corner Point Alphabet Detection 688

Annotated Synthetic Corner Point Detector Results 689

Entire Images Available Online . 689

Test 3: Synthetic Alphabets Overlaid on Real Images 698

Annotated Detector Results on Overlay Images 698

Test 4: Rotational Invariance for Each Alphabet 698

Methodology for Determining Rotational Invariance 699

Analysis of Results and Non-repeatability Anomalies 702

Caveats 702

Non-repeatability in Tests 1 and 2 . 702

Other Non-repeatability in Test 3 703

Test Summary 703

Future Work 703

Appendix B: Survey of Ground Truth Datasets 705

Commercial Products 711

Open Source 712

Organizations, Institutions, and Standards 714

Journals and Their Abbreviations . 715

Conferences and Their Abbreviations . 715

Online Resources 716

Artificial Intelligence and Computer Vision-Key Research 716

Neuroscience Journals and Research 716

Selected Deep Learning Resources 717

Appendix D: Extended SDM Metrics 719

Neuroscience Inspiration for VGM . 735

Feature and Conceptual Memory Locality 735

Attentional Neural Memory Research 736

HMAX Model and Visual Cortex Models of the Visual

Pathway 736

Virtually Unlimited Feature Memory 736

Genetic Preexisting Memory . 737

Neurogenesis, Neuron Size, and Connectivity 737

Bias and Motivation for Learning New Memory

Impressions 738

Depth Processing . 738

Dual Retinal Processing Pathways: Magno and Parvo 738

Retinal Processing Model 739

Visual Genomes Model Concepts 740

Magno and Parvo Features 740

Parvo Retinal Processing 743

Magno Retinal Processing 743

xxvi Contents

Magno Primal Feature Segmentation 744

VGM Neuron Model 744

VGM Feature Memory Structures . 746

Visual Genome Sequences, Tiles, Strands, Bundles, Primal

Features . 747

VGM Proxy Agent . 750

Summary 751

Tile Genome Renderings . 751

Image Set 1: Indoor Scene of Little Girls (Bandits), 24-Bit

RGB 2448 × 3264 Image 751

Image Set 2: Outdoor Scene of Giant Sequoia Trees 24-Bit

RGB 2112 × 2816 Image 754

Image Set 3: Comparative Volume Renderings of Entire

Genome A Feature Space for Sequoias Scene, Representing

Each n-Bit Feature Component for the Volume Coordinates

x, y, and z 757

Image Set 4: Comparative Volume Renderings of Entire

Genome A Feature Space for Bandits Scene, Representing

Each n-Bit Feature Component for the Volume Coordinates

x, y, and z 758

References . 761

The changing of bodies into light, and light into bodies, is very conformable to the course of

Nature, which seems delighted with transmutations.

—Isaac Newton

2D/3D Image Capture
and Representation 1

Computer vision starts with images. This chapter surveys a range of topics dealing with capturing,

processing, and representing images, including computational imaging, 2D imaging, and 3D depth

imaging methods, sensor processing, depth-field processing for stereo and monocular multi-view

stereo, and surface reconstruction. A high-level overview of selected topics is provided, with

references for the interested reader to dig deeper. Readers with a strong background in the area of

2D and 3D imaging may benefit from a light reading of this chapter.

Image Sensor Technology

This section provides a basic overview of image sensor technology as a basis for understanding how

images are formed and for developing effective strategies for image sensor processing to optimize the

image quality for computer vision.

Typical image sensors are created from either CCD cells (charge-coupled device) or standard CMOS

cells (complementary metal-oxide semiconductor). The CCD and CMOS sensors share similar

characteristics and both are widely used in commercial cameras. The majority of sensors today use

CMOS cells, though,mostly due tomanufacturing considerations. Sensors and optics are often integrated

to create wafer-scale cameras for applications like biology or microscopy, as shown in Fig. 1.1.

Micro-lenses

RGB Color Filters

CMOS imager

Fig. 1.1 Common integrated image sensor arrangement with optics and color filters

Image sensors are designed to reach specific design goals with different applications in mind,

providing varying levels of sensitivity and quality. Consult the manufacturer’s information to get

familiar with each sensor. For example, the size and material composition of each photodiode sensor

cell element is optimized for a given semiconductor manufacturing process so as to achieve the best

trade-off between silicon die area and dynamic response for light intensity and color detection.

For computer vision, the effects of sampling theory are relevant—for example, the Nyquist

frequency applied to pixel coverage of the target scene. The sensor resolution and optics together

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_1&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_1#DOI

must provide adequate resolution for each pixel to image the features of interest, so it follows that a

feature of interest should be imaged or sampled at least two times greater than the minimum size of the

smallest pixels of importance to the feature. Of course, 2 × oversampling is just a minimum target for

accuracy; in practice, single pixel wide features are not easily resolved.

2 1 2D/3D Image Capture and Representation

For best results, the camera system should be calibrated for a given application to determine the

sensor noise and dynamic range for pixel bit depth under different lighting and distance situations.

Appropriate sensor processing methods should be developed to deal with the noise and nonlinear

response of the sensor for any color channel, to detect and correct dead pixels, and to handle modeling

of geometric distortion. If you devise a simple calibration method using a test pattern with fine and

coarse gradations of gray scale, color, and different scales of pixel features, appropriate sensor

processing methods can be devised. In Chap. 2, we survey a range of image processing methods

applicable to sensor processing. But let us begin by surveying the sensor materials.

Sensor Materials

Silicon-based image sensors are most common, although other materials such as gallium (Ga) are used

in industrial and military applications to cover longer IR wavelengths than silicon can reach. Image

sensors range in resolution, depending upon the camera used, from a single pixel phototransistor

camera, through 1D line scan arrays for industrial applications, to 2D rectangular arrays for common

cameras, all the way to spherical arrays for high-resolution imaging. (Sensor configurations and

camera configurations are covered later in this chapter.)

Common imaging sensors are made using silicon as CCD, CMOS, BSI, and Foveon methods, as

discussed a bit later in this chapter. Silicon image sensors have a nonlinear spectral response curve; the

near infrared part of the spectrum is sensed well, while blue, violet, and near UV are sensed less well,

as shown in Fig. 1.2. Note that the silicon spectral response must be accounted for when reading the

raw sensor data and quantizing the data into a digital pixel. Sensor manufacturers make design

compensations in this area; however, sensor color response should also be considered when calibrating

your camera system and devising the sensor processing methods for your application.

Fig. 1.2 Typical spectral response of a few types of silicon photodiodes. Note the highest sensitivity in the near-infrared
range around 900 nm and nonlinear sensitivity across the visible spectrum of 400–700 nm. Removing the IR filter from a

camera increases the near-infrared sensitivity due to the normal silicon response. (Spectral data image # OSI Optoelec-

tronics Inc. and used by permission)

Image Sensor Technology 3

Sensor Photodiode Cells

One key consideration for image sensors is the photodiode size or cell size. A sensor cell using small

photodiodes will not be able to capture as many photons as a large photodiode. If the cell size is near

the wavelength of the visible light to be captured, such as blue light at 400 nm, then additional

problems must be overcome in the sensor design to correct the image color. Sensor manufacturers take

great care to design cells at the optimal size to image all colors equally well (Fig. 1.3). In the extreme,

small sensors may be more sensitive to noise, owing to a lack of accumulated photons and sensor

readout noise. If the photodiode sensor cells are too large, there is no benefit either, and the die size and

cost for silicon go up, providing no advantage. Common commercial sensor devices may have sensor

cell sizes of around 1 square micron and larger; each manufacturer is different, however, and trade-offs

are made to reach specific requirements.

Fig. 1.3 Primary color assignment to wavelengths. Note that the primary color regions overlap, with green being a good

monochrome proxy for all colors

Sensor Configurations: Mosaic, Foveon, BSI

There are various on-chip configurations for multispectral sensor design, including mosaics and

stacked methods, as shown in Fig. 1.4. In a mosaic method, the color filters are arranged in a mosaic

pattern above each cell. The Foveon1 sensor stacking method relies on the physics of depth penetration

of the color wavelengths into the semiconductor material, where each color penetrates the silicon to a

different depth, thereby imaging the separate colors. The overall cell size accommodates all colors, and

so separate cells are not needed for each color.

1 Foveon is a registered trademark of Foveon Inc.

4 1 2D/3D Image Capture and Representation

Stacked

Photo-diodes

R

B

G

R filterB filter G filter

Photo-diode Photo-diode Photo-diode

Fig. 1.4 (Left) The Foveon method of stacking RGB cells to absorb different wavelengths at different depths, with all

RGB colors at each cell location. (Right) A standard mosaic cell placement with RGB filters above each photodiode, with

filters only allowing the specific wavelengths to pass into each photodiode

Back-side-illuminated (BSI) sensor configurations rearrange the sensor wiring on the die to allow

for a larger cell area and more photons to be accumulated in each cell. See the Aptina [340] white paper

for a comparison of front-side and back-side die circuit arrangement.

The arrangement of sensor cells also affects the color response. For example, Fig. 1.5 shows various

arrangements of primary color (R, G, B) sensors as well as white (W) sensors together, where W

sensors have a clear or neutral color filter. The sensor cell arrangements allow for a range of pixel

processing options—for example, combining selected pixels in various configurations of neighboring

cells during sensor processing for a pixel formation that optimizes color response or spatial color

resolution. In fact, some applications just use the raw sensor data and perform custom processing to

increase the resolution or develop alternative color mixes.

Fig. 1.5 Several different mosaic configurations of cell colors, including white, primary RGB colors, and secondary

CYM cells. Each configuration provides different options for sensor processing to optimize for color or spatial resolution.

(Image used by permission, # Intel Press, from Building Intelligent Systems)

Image Sensor Technology 5

The overall sensor size and format determines the lens’ size as well. In general, a larger lens lets in

more light, so larger sensors are typically better suited to digital cameras for photography applications.

In addition, the cell placement aspect ratio on the die determines pixel geometry—for example, a 4:3

aspect ratio is common for digital cameras while 3:2 is standard for 35 mm film. The sensor

configuration details are worth understanding in order to devise the best sensor processing and

image preprocessing pipelines.

Dynamic Range, Noise, and Super Resolution

Current state-of-the-art sensors provide at least 8 bits per color cell and usually are 12–14 bits. Sensor

cells require area and time to accumulate photons, so smaller cells must be designed carefully to avoid

problems. Noise may come from optics, color filters, sensor cells, gain and A/D converters,

postprocessing, or the compression methods, if used. Sensor readout noise also affects effective

resolution, as each pixel cell is read out of the sensor, sent to an A/D converter, and formed into

digital lines and columns for conversion into pixels. Better sensors will provide less noise and higher

effective bit resolution; however, effective resolution can be increased using super resolution methods,

by taking several images in rapid succession averaged together to reduce noise [811], or alternatively,

the sensor position can be micro-MEMS-dithered to create image sequences to average together to

increase resolution. A good survey of de-noising is found in the work by Ibenthal [339].

In addition, sensor photon absorption is different for each color and may be problematic for blue,

which can be the hardest color for smaller sensors to image. In some cases, the manufacturer may

attempt to provide a simple gamma-curve correction method built into the sensor for each color, which

is not recommended. For demanding color applications, consider colorimetric device models and color

management (as will be discussed in Chap. 2), or even by characterizing the nonlinearity for each color

channel of the sensor and developing a set of simple corrective LUT transforms. (Noise-filtering

methods applicable to depth sensing are also covered in Chap. 2.)

Sensor Processing

Sensor processing is required to de-mosaic and assemble the pixels from the sensor array, and also to

correct sensing defects. We discuss the basics of sensor processing in this section.

Typically, a dedicated sensor processor is provided in each imaging system, including a fast HW

sensor interface, optimized VLIW and SIMD instructions, and dedicated fixed-function hardware

blocks to deal with the massively parallel pixel-processing workloads for sensor processing. Usually,

sensor processing is transparent, automatic, and set up by the manufacturer of the imaging system, and

all images from the sensor are processed the same way. A bypass may exist to provide the raw data that

can allow custom sensor processing for applications like digital photography.

De-mosaicking

Depending on the sensor cell configuration, as shown in Fig. 1.5, various de-mosaicking algorithms are

employed to create a final RGB pixel from the raw sensor data. A good survey by Losson et al. [336]

and another by Xin et al. [337] provide some background on the challenges involved and the various

methods employed.

6 1 2D/3D Image Capture and Representation

One of the central challenges of de-mosaicking is pixel interpolation to combine the color channels

from nearby cells into a single pixel. Given the geometry of sensor cell placement and the aspect ratio

of the cell layout, this is not a trivial problem. A related issue is color cell weighting—for example,

how much of each color should be integrated into each RGB pixel. Since the spatial cell resolution in a

mosaicked sensor is greater than the final combined RGB pixel resolution, some applications require

the raw sensor data to take advantage of all the accuracy and resolution possible, or to perform special

processing to either increase the effective pixel resolution or do a better job of spatially accurate color

processing and de-mosaicking.

Dead Pixel Correction

A sensor, like an LCD display, may have dead pixels. A vendor may calibrate the sensor at the factory

and provide a sensor defect map for the known defects, providing coordinates of those dead pixels for

use in corrections in the camera module or driver software. In some cases, adaptive defect correction

methods [338] are used on the sensor to monitor the adjacent pixels to actively look for defects and

then to correct a range of defect types, such as single pixel defects, column or line defects, and defects

such as 2 × 2 or 3 × 3 clusters. A camera driver can also provide adaptive defect analysis to look for

flaws in real time and perhaps provide special compensation controls in a camera setup menu.

Color and Lighting Corrections

Color corrections are required to balance the overall color accuracy as well as the white balance. As

shown in Fig. 1.2, color sensitivity is usually very good in silicon sensors for red and green, but less

good for blue, so the opportunity for providing the most accurate color starts with understanding and

calibrating the sensor.

Most image sensor processors contain a geometric processor for vignette correction, which

manifests as darker illumination at the edges of the image, as discussed in Chap. 7 (Table 7.1) on

robustness criteria. The corrections are based on a geometric warp function, which is calibrated at the

factory to match the optics vignette pattern, allowing for a programmable illumination function to

increase illumination toward the edges. For a discussion of image warping methods applicable to

vignetting, see Ref. [417].

Geometric Corrections

A lens may have geometric aberrations or may warp toward the edges, producing images with radial

distortion, a problem that is related to the vignetting discussed above and shown in Chap. 7 (Fig. 7.6).

To deal with lens distortion, most imaging systems have a dedicated sensor processor with a hardware-

accelerated digital warp unit similar to the texture sampler in a GPU. The geometric corrections are

calibrated and programmed in the factory for the optics. See Ref. [417] for a discussion of image

warping methods.

Cameras and Computational Imaging

Many novel camera configurations are making their way into commercial applications using compu-

tational imaging methods to synthesize new images from raw sensor data—for example, depth

cameras and high dynamic range cameras. As shown in Fig. 1.6, a conventional camera system uses a

single sensor, lens, and illuminator to create 2D images. However, a computational imaging camera

may provide multiple optics, multiple programmable illumination patterns, and multiple sensors,

enabling novel applications such as 3D depth sensing and image relighting, taking advantage of the

depth information, mapping the image as a texture onto the depth map, and introducing new light

sources and then re-rendering the image in a graphics pipeline. Since computational cameras are

beginning to emerge in consumer devices and will become the front end of computer vision pipelines,

we survey some of the methods used.

Cameras and Computational Imaging 7

Single Lens

Multi-lens optics Arrays

- Plenoptic lens arrays

- Sphere/ball lenses

Single Flash

Programmable Flash

- Pattern Projectors

- Multi-Flash

Computational Imaging

- High Dynamic Range HDR

- High Frame Rates

- 3D Depth Maps

- Focal Plane Refocusing

- Focal Sweep

- Rolling Shutter

- Panorama Stitching

- Image Relighting

2D

Sensor

2D

Sensor

Array

Multi-lens optics Arrays

- Plenoptic lens arrays

- Sphere/ball lenses

2D

Sensor

Array

2D

Sensor

Array

2D

Sensor

Array

Image Enhancements

- Color Enhancements

- Filtering, Contrast

Multi-lens optics Arrays

- Plenoptic lens arrays

- Sphere/ball lenses

Multi-lens Optics Arrays

- Plenoptic Lens Arrays

- Sphere/Ball Lenses

Fig. 1.6 Comparison of computational imaging systems with conventional cameras. (Top) Simple camera model with

flash, lens, and imaging device followed by image enhancements like sharpening and color corrections. (Bottom)

Computational imaging using programmable flash, optics arrays, and sensor arrays, followed by computational imaging

applications. NOT SHOWN: super resolution [811] discussed earlier

Overview of Computational Imaging

Computational imaging [344, 347] provides options for synthesizing new images from the raw image

data. A computational camera may control a programmable flash pattern projector, a lens array, and

multiple image sensors, as well as synthesize new images from the raw data, as illustrated in Fig. 1.6.

To dig deeper into computational imaging and explore the current research, see the CAVE Computer

Vision Laboratory at Columbia University and the Rochester Institute of Technology Imaging

Research. Here are some of the methods and applications in use.

Single-Pixel Computational Cameras

Single-pixel computational cameras can reconstruct images from a sequence of single photo detector

pixel images of the same scene. The field of single-pixel cameras [77, 78] falls into the domain of

compressed sensing research, which also has applications outside image processing extending into

areas such as analog-to-digital conversion.

As shown in Fig. 1.7, a single-pixel camera may use a micro-mirror array or a digital mirror device

(DMD), similar to a diffraction grating. The gratings are arranged in a rectangular micro-mirror grid

array, allowing the grid regions to be switched on or off to produce binary grid patterns. The binary

patterns are designed as a pseudorandom binary basis set. The resolution of the grid patterns is adjusted

by combining patterns from adjacent regions—for example, a grid of 2 × 2 or 3 × 3 micro-mirror

regions.

8 1 2D/3D Image Capture and Representation

Fig. 1.7 A single-pixel imaging system where incoming light is reflected through a DMD array of micro-mirrors onto a

single photodiode. The grid locations within the micro-mirror array can be opened or closed to light, as shown here, to

create binary patterns, where the white grid squares are reflective and open, and the black grid squares are closed. (Image

used by permission, # R.G. Baraniuk, Compressive Sensing Lecture Notes)

A sequence of single-pixel images is taken through a set of pseudorandom micro lens array patterns,

then an image is reconstructed from the set. In fact, the number of pattern samples required to

reconstruct the image is lower than the Nyquist frequency, since a sparse random sampling approach

is used and the random sampling approach has been proven in the research to be mathematically

sufficient [77, 78]. The grid basis-set sampling method is directly amenable to image compression,

since only a relatively sparse set of patterns and samples are taken. Since the micro-mirror array uses

rectangular shapes, the patterns are analogous to a set of HAAR basis functions. (For more informa-

tion, see Figs. 3.21, 6.21, and 6.22.)

The DMD method is remarkable, in that an image can be reconstructed from a fairly small set of

images taken from a single photo detector, rather than a 2D array of photo detectors as in a CMOS or

CCD image sensor. Since only a single sensor is used, the method is promising for applications with

wavelengths outside the near IR and visible spectrum imaged by CMOS and CCD sensors. The DMD

method can be used, for example, to detect emissions from concealed weapons or substances at

invisible wavelengths using non-silicon sensors sensitive to nonvisible wavelengths.

2D Computational Cameras

Novel configurations of programmable 2D sensor arrays, lenses, and illuminators are being developed

into camera systems as computational cameras [354–356], with applications ranging from digital

photography to military and industrial uses, employing computational imaging methods to enhance the

images after the fact. Computational cameras borrow many computational imaging methods from

confocal imaging [349] and confocal microscopy [350, 351]—for example, using multiple illumina-

tion patterns and multiple focal plane images. They also draw on research from synthetic aperture radar

systems [352] developed after World War II to create high-resolution images and 3D depth maps using

wide baseline data from a single moving-camera platform. Synthetic apertures using multiple image

sensors and optics for overlapping fields of view using wafer-scale integration are also topics of

research [349]. We survey here a few computational 2D sensor methods, including high resolution

(HR), high dynamic range (HDR), and high frame rate (HF) cameras.

The current wave of commercial digital megapixel cameras, ranging from around 10 megapixels on

up, provides resolution matching or exceeding high-end film used in a 35 mm camera [342], so a pixel

from an image sensor is comparable in size to a grain of silver on the best resolution film. On the

surface, there appears to be little incentive to go for higher resolution for commercial use, since current

digital methods have replaced most film applications and film printers already exceed the resolution of

the human eye.

Cameras and Computational Imaging 9

However, very high resolution gigapixel imaging devices are being devised and constructed as an

array of image sensors and lenses, providing advantages for computational imaging after the image is

taken. One configuration is the 2D array camera, composed of an orthogonal 2D array of image

sensors and corresponding optics; another configuration is the spherical camera as shown in Fig. 1.8

[341, 345], developed as a DARPA research project at Columbia University CAVE.

Fig. 1.8 (Top) Components of a very high resolution gigapixel camera, using a novel spherical lens and sensor

arrangement. (Bottom) The resulting high-resolution images shown at 82,000 × 22,000 = 1.7 gigapixels. (All figures

and images used by permission # Shree Nayar Columbia University CAVE research projects)

10 1 2D/3D Image Capture and Representation

High dynamic range (HDR) cameras [346–348] can produce deeper pixels with higher bit resolu-

tion and better color channel resolution by taking multiple images of the scene bracketed with different

exposure settings and then combining the images. This combination uses a suitable weighting scheme

to produce a new image with deeper pixels of a higher bit depth, such as 32 pixels per color channel,

providing images that go beyond the capabilities of common commercial CMOS and CCD sensors.

HDR methods allow faint light and strong light to be imaged equally well, and can combine faint light

and bright light using adaptive local methods to eliminate glare and create more uniform and pleasing

image contrast.

High frame rate (HF) cameras [355] are capable of capturing a rapid succession of images of the

scene into a set and combining the set of images using bracketing techniques to change the exposure,

flash, focus, white balance, and depth of field.

3D Depth Camera Systems

Using a 3D depth field for computer vision provides an understated advantage for many applications,

since computer vision has been concerned in large part with extracting 3D information from 2D

images, resulting in a wide range of accuracy and invariance problems. Novel 3D descriptors are being

devised for 3D depth field computer vision and are discussed in Chap. 6.

With depth maps, the scene can easily be segmented into foreground and background to identify

and track simple objects. Digital photography applications are incorporating various computer vision

methods in 3-space and thereby becoming richer. Using selected regions of a 3D depth map as a mask

enables localized image enhancements such as depth-based contrast, sharpening, or other

preprocessing methods.

Cameras and Computational Imaging 11

Table 1.1 Selected methods for capturing depth information

Depth sensing

technique of sensor

Illumination

method Characteristics

Parallax and hybrid

Parallax

2/1/

array

Passive—

normal lighting

Positional shift measurement in FOV between two camera positions,

such as stereo, mult-view stereo, or array cameras

Size mapping 1 Passive—

normal lighting

Utilizes color tags of specific size to determine range and position

Depth of focus 1 Passive—

normal lighting

Multi-frame with scanned focus

Differential

magnification

1 Passive—

normal lighting

Two-frame image capture at different magnifications, creating a

distance-based offset

Structured light 1 Active—

projected

lighting

Multi-frame pattern projection

Time of flight 1 Active—pulsed

lighting

High-speed light pulse with special pixels measuring return time of

reflected light

Shading shift 1 Active—

alternating

lighting

Two-frame shadow differential measurement between two light

sources as different positions

Pattern spreading 1 Active—multi-

beam lighting

Projected 2D spot pattern expanding at different rate from camera

lens field spread

Beam tracking 1 Active—

lighting on

object(s)

Two-point light sources mounted on objects in FOV to be tracked

Spectral focal

sweep

1 Passive—

normal lighting

Focal length varies for each color wavelength, with focal sweep to

focus on each color and compute depth [366]

Diffraction gratings 1 Passive—

normal lighting

Light passing through sets of gratings or light guides provides depth

information [368]

Conical radial

mirror

1 Passive—

normal lighting

Light from a conical mirror is imaged at different depths as a toroid

shape, depth is extracted from the toroid [361]

Source: Courtesy of Ken Salsmann Aptina [357], with a few other methods added by the author

As shown in Table 1.1, there are many ways to extract depth from images. In some cases, only a

single camera lens and sensor are required, and software does the rest. Note that the illumination

method is a key component of many depth-sensing methods, such as structured light methods.

Combinations of sensors, lenses, and illumination are used for depth imaging and computational

imaging, as shown in Fig. 1.9. We survey a few selected depth-sensing methods in this section.

RGB TOF 1 2 3

4 5 6

7 8 9

L
RGB

R
RGB

Ball Lens

Lens Array

Sensor Array

RGB

a. b.

c.

d.

e.

f.

Fig. 1.9 A variety of lens and sensor configurations for common cameras: (a) conventional, (b) time-of-flight, (c) stereo,

(d) array, (e) plenoptic, (f) spherical with ball lens

12 1 2D/3D Image Capture and Representation

Depth sensing is not a new field and is covered very well in several related disciplines with huge

industrial applications and financial resources, such as satellite imaging, remote sensing, photogram-

metry, and medical imaging. However, the topics involving depth sensing are of growing interest in

computer vision with the advent of commercial depth-sensing cameras such as Kinect, enabling

graduate students on a budget to experiment with 3D depth maps and point clouds using a mobile

phone or PC.

Multi-view stereo (MVS) depth sensing has been used for decades to compute digital elevation

maps or DEMs, and digital terrain maps or DTMs, from satellite images using RADAR and LIDAR

imaging, and from regional aerial surveys using specially equipped airplanes with high-resolution

cameras and stable camera platforms, including digital terrain maps overlaid with photos of adjacent

regions stitched together. Photo mosaicking is a related topic in computer vision that is gaining

attention. The literature on digital terrain mapping is rich with information on proper geometry models

and disparity computation methods. In addition, 3D medical imaging via CAT and MRI modalities is

backed by a rich research community, uses excellent depth-sensing methods, and offers depth-based

rendering and visualization. However, it is always interesting to observe the “reinvention” in one field,

such as computer vision, of well-known methods used in other fields. As Solomon said, “There is

nothing new under the sun.” In this section we approach depth sensing in the context of computer

vision, citing relevant research, and leave the interesting journey into other related disciplines to the

interested reader.

Binocular Stereo

Stereo [362, 363, 367] may be the most basic and familiar approach for capturing 3D depth maps, as

many methods and algorithms are in use, so we provide a high-level overview here with selected

standard references. The first step in stereo algorithms is to parameterize the projective transformation

from world coordinate points to their corresponding image coordinates by determining the stereo

calibration parameters of the camera system. Open-source software is available for stereo calibration.2

Note that the L/R image pair is rectified prior to searching for features for disparity computation. Stereo

depth r is computed, as shown in Fig. 1.10.

An excellent survey of stereo algorithms and methods is found in the work of Scharstein and

Szeliski [370] and also Lazaros [371]. The stereo geometry is a combination of projective and

Euclidean [367]; we discuss some of the geometric problems affecting their accuracy later in this

section. The standard online resource for comparing stereo algorithms is provided by Middlebury

College,3 where many new algorithms are benchmarked and comparative results provided, including

the extensive ground truth datasets discussed in Appendix B.

The fundamental geometric calibration information needed for stereo depth includes the following

basics.

• Camera Calibration Parameters. Camera calibration is outside the scope of this work; however,

the parameters are defined as 11 free parameters [362, 365]—three for rotation, three for translation,

and five intrinsic—plus one or more lens distortion parameters to reconstruct 3D points in world

coordinates from the pixels in 2D camera space. The camera calibration may be performed using

several methods, including a known calibration image pattern or one of many self-calibration

methods [366]. Extrinsic parameters define the location of the camera in world coordinates, and

2 http://opencv.org, Camera Calibration and 3D Reconstruction.
3 https://vision.middlebury.edu/~schar/stereo/web/results.php.

http://opencv.org
https://vision.middlebury.edu/~schar/stereo/web/results.php

Cameras and Computational Imaging 13

intrinsic parameters define the relationships between pixel coordinates in camera image

coordinates. Key variables include the calibrated baseline distance between two cameras at the

principal point or center point of the image under the optics; the focal length of the optics; their pixel

size and aspect ratio, which is computed from the sensor size divided by pixel resolution in each

axis; and the position and orientation of the cameras.

• Fundamental Matrix or Essential Matrix. These two matrices are related, defining the popular

geometry of the stereo camera system for projective reconstruction [366–368]. Their derivation is

beyond the scope of this work. Either matrix may be used, depending on the algorithms employed.

The essential matrix uses only the extrinsic camera parameters and camera coordinates, and the

fundamental matrix depends on both the extrinsic and intrinsic parameters and reveals pixel

relationships between the stereo image pairs on epipolar lines.

In either case, we end up with projective transformations to reconstruct the 3D points from the 2D

camera points in the stereo image pair.

Stereo processing steps are typically as follows

1. Capture: Photograph the left/right image pair simultaneously.

2. Rectification: Rectify left/right image pair onto the same plane, so that pixel rows x coordinates and

lines are aligned. Several projective warping methods may be used for rectification [367]. Rectifica-

tion reduces the pattern match problem to a 1D search along the x-axis between images by aligning

the images along the x-axis. Rectification may also include radial distortion corrections for the

optics as a separate step; however, many cameras include a built-in factory-calibrated radial

distortion correction.

3. Feature Description: For each pixel in the image pairs, isolate a small region surrounding each

pixel as a target feature descriptor. Various methods are used for stereo feature description

[94, 180].

4. Correspondence: Search for each target feature in the opposite image pair. The search operation is

typically done twice, first searching for left-pair target features in the right image and then right-pair

target features in the left image. Subpixel accuracy is required for correspondence to increase depth

field accuracy.

5. Triangulation: Compute the disparity or distance between matched points using triangulation

[369]. Sort all L/R target feature matches to find the best quality matches, using one of many

methods [370].

6. Hole Filling: For pixels and associated target features with no corresponding good match, there is a

hole in the depth map at that location. Holes may be caused by occlusion of the feature in either of

the L/R image pairs, or simply by poor features to begin with. Holes are filled using local region

nearest-neighbor pixel interpolation methods.

Stereo depth-range resolution is an exponential function of distance from the viewpoint: in general,

the wider the baseline, the better the long-range depth resolution. A shorter baseline is better for close-

range depth (see Figs. 1.10 and 1.20). Human-eye baseline or interpupillary distance has been

measured as between 50 and 75 mm, averaging about 70 mm for males and 65 mm for females.

14 1 2D/3D Image Capture and Representation

P
xyz

b = Baseline

L/R Rectified Co-Planar Image Pair, with pattern search windows

L/R Image Pair P
r

P
l

L sensor R sensor

Principal

Ray

f = Focal Length

d
l

d
r

r = bf / d

d = d
l

- d
r

r

Fig. 1.10 Simplified schematic of basic binocular stereo principles

Multi-view stereo (MVS) is a related method to compute depth from several views using different

baselines of the same subject, such as from a single or monocular camera, or an array of cameras.

Monocular, MVS, and array camera depth sensing are covered later in this section.

Structured and Coded Light

Structured or coded light uses specific patterns projected into the scene and imaged back, then

measured to determine depth; see Fig. 1.11. We define the following approaches for using structured

light for this discussion [375]:

• Spatial single-pattern methods, requiring only a single illumination pattern in a single image.

• Timed multiplexing multi-pattern methods, requiring a sequence of pattern illuminations and

images, typically using binary or n-array codes, sometimes involving phase shifting or dithering the

patterns in subsequent frames to increase resolution. Common pattern sequences include gray

codes, binary codes, sinusoidal codes, and other unique codes.

Cameras and Computational Imaging 15

a.

b.

c. d.
e.

f.

Fig. 1.11 Selected structured light patterns and methods: (a) gray codes, (b) binary codes, (c) regular spot grid, (d)

randomized spot grid (as used in original Kinect), (e) sinusoidal phase shift patters, (f) randomized pattern for

compressive structured light [376]

For example, in the original Microsoft Kinect 3D depth camera, structured light consisting of

several slightly different microgrid patterns or pseudorandom points of infrared light are projected into

the scene, then a single image is taken to capture the spots as they appear in the scene. Based on

analysis of actual systems and patent applications, the original Kinect computes the depth using several

methods, including (1) the size of the infrared spot—larger dots and low blurring mean the location is

nearer, while smaller dots and more blurring mean the location is farther away; (2) the shape of the

spot—a circle indicates a parallel surface, an ellipse indicates an oblique surface; and (3) by using

small regions or a micro-pattern of spots together so that the resolution is not very fine—however,

noise sensitivity is good. Depth is computed from a single image using this method, rather than

requiring several sequential patterns and images.

Multi-image methods are used for structured light, including projecting sets of time-sequential

structured and coded patterns, as shown in Fig. 1.11. In multi-image methods, each pattern is sent

sequentially into the scene and imaged, then the combination of depth measurements from all the

patterns is used to create the final depth map.

Industrial, scientific, and medical applications of depth measurements from structured light can

reach high accuracy, imaging objects up to a few meters in size with precision that extends to

micrometer range. Pattern projection methods are used, as well as laser-stripe pattern methods using

multiple illumination beams to create wavelength interference; the interference is measured to compute

the distance. For example, common dental equipment uses small, hand-held laser range finders inserted

into the mouth to create highly accurate depth images of tooth regions with missing pieces, and the

images are then used to create new, practically perfectly fitting crowns or fillings using CAD/CAM

micro-milling machines.

Of course, infrared light patterns do not work well outdoors in daylight; they become washed out by

natural light. Also, the strength of the infrared emitters that can be used is limited by practicality and

safety. The distance for effectively using structured light indoors is restricted by the amount of power

that can be used for the IR emitters; perhaps 5 m is a realistic limit for indoor infrared light. Kinect

claims a range of about 4 m for the current TOF (time of flight) method using uniform constant infrared

illumination, while the first-generation Kinect sensor had similar depth range using structured light.

16 1 2D/3D Image Capture and Representation

In addition to creating depth maps, structured or coded light is used for measurements employing

optical encoders, as in robotics and process control systems. The encoders measure radial or linear

position. They provide IR illumination patterns and measure the response on a scale or reticle, which is

useful for single-axis positioning devices like linear motors and rotary lead screws. For example,

patterns such as the binary position code and the reflected binary gray code [374] can be converted

easily into binary numbers (see Fig. 1.11). The gray code set elements each have a Hamming distance

of 1 between successive elements.

Structured light methods suffer problems when handling high-specular reflections and shadows;

however, these problems can be mitigated by using an optical diffuser between the pattern projector

and the scene using the diffuse structured light methods [373] designed to preserve illumination

coding. In addition, multiple-pattern structured light methods cannot deal with fast-moving scenes;

however, the single-pattern methods can deal well with frame motion, since only one frame is required.

Optical Coding: Diffraction Gratings

Diffraction gratings are one of many methods of optical coding [377] to create a set of patterns for

depth-field imaging, where a light structuring element, such as a mirror, grating, light guide, or special

lens, is placed close to the detector or the lens. The original Kinect system is reported to use a

diffraction grating method to create the randomized infrared spot illumination pattern. Diffraction

gratings [360, 361] above the sensor, as shown in Fig. 1.12, can provide angle-sensitive pixel sensing.

In this case, the light is refracted into surrounding cells at various angles, as determined by the

placement of the diffraction gratings or other beam-forming elements, such as light guides. This

allows the same sensor data to be processed in different ways with respect to a given angle of view,

yielding different images.

Photo-diodes

Gratings

Fig. 1.12 Diffraction gratings above silicon used to create the Talbot Effect (first observed around 1836) for depth

imaging. (For more information, see Ref. [360].) Diffraction gratings are a type of light-structuring element

This method allows the detector size to be reduced while providing higher resolution images using a

combined series of low-resolution images captured in parallel from narrow aperture diffraction

gratings. Diffraction gratings make it possible to produce a wide range of information from the same

sensor data, including depth information, increased pixel resolution, perspective displacements, and

focus on multiple focal planes after the image is taken. A diffraction grating is a type of illumination

coding device.

As shown in Fig. 1.13, the light-structuring or coding element may be placed in several

configurations, including (see [377]):

Cameras and Computational Imaging 17

• Object side coding: close to the subjects

• Pupil plane coding: close to the lens on the object side

• Focal plane coding: close to the detector

• Illumination coding: close to the illuminator

DetectorDetector DetectorDetector

Optical

Encoder +

Illuminator

Optical

Encoder

Optical

Encoder

Optical

Encoder

Lens
LensLensLens

Fig. 1.13 Various methods for optical structuring and coding of patterns [377]: (Left to right): Object side coding, pupil

plane coding, focal plane coding, illumination coding, or structured light. The illumination patterns are determined in the

optical encoder

Note that illumination coding is shown as structured light patterns in Fig. 1.11, while a variant of

illumination coding is shown in Fig. 1.7, using a set of mirrors that are opened or closed to create

patterns.

Time-of-Flight Sensors

By measuring the amount of time taken for infrared light to travel and reflect, a time-of-flight (TOF)

sensor is created [380]. A TOF sensor is a type of range finder or laser radar [379]. Several single-chip

TOF sensor arrays and depth camera solutions are available, such as the second version of the Kinect

depth camera. The basic concept involves broadcasting infrared light at a known time into the scene,

such as by a pulsed IR laser, and then measuring the time taken for the light to return at each pixel.

Submillimeter accuracy at ranges up to several hundred meters is reported for high-end systems [379],

depending on the conditions under which the TOF sensor is used, the particular methods employed in

the design, and the amount of power given to the IR laser.

Each pixel in the TOF sensor has several active components, as shown in Fig. 1.14, including the IR

sensor well, timing logic to measure the round-trip time from illumination to detection of IR light, and

optical gates for synchronization of the electronic shutter and the pulsed IR laser. TOF sensors provide

laser range-finding capabilities. For example, by gating the electronic shutter to eliminate short round-

trip responses, environmental conditions such as fog or smoke reflections can be reduced. In addition,

specific depth ranges, such as long ranges, can be measured by opening and closing the shutter at

desired time intervals.

18 1 2D/3D Image Capture and Representation

IR Sensor

Sensor Gate / Shutter

Pulsed IR Laser

Pulsed Light Gate

Timing Controls

IR Illuminated

Scene

Fig. 1.14 A hypothetical TOF sensor configuration. Note that the light pulse length and sensor can be gated together to
target specific distance ranges

Illumination methods for TOF sensors may use very short IR laser pulses for a first image, acquire a

second image with no laser pulse, and then take the difference between the images to eliminate ambient

IR light contributions. By modulating the IR beam with an RF carrier signal using a photonic mixer

device (PMD), the phase shift of the returning IR signal can be measured to increase accuracy—which

is common among many laser range-finding methods [380]. Rapid optical gating combined with

intensified CCD sensors can be used to increase accuracy to the submillimeter range in limited

conditions, even at ranges above 100 m. However, multiple IR reflections can contribute errors to

the range image, since a single IR pulse is sent out over the entire scene and may reflect off several

surfaces before being imaged.

Since the depth-sensing method of a TOF sensor is integrated with the sensor electronics, there is

very low processing overhead required compared to stereo and other methods. However, the

limitations of IR light for outdoor situations still remain [378], which can affect the depth accuracy.

LIDAR (Light Detection and Ranging) is a MONOCHROME method of illuminating a scene with

pulsed laser, and measuring the reflections from the scene and composing a 3D distance map. NOTE:

for this discussion, a 3D range map is loosely considered a spectrum. LIDAR is method of TOF (Time

of Flight) depth imaging. LIDAR systems are used in high-end depth-sensing applications in satellite

imaging, high-end industrial applications (including autonomous vehicles), and military applications.

LIDAR has been used in Autonomous Vehicle Systems and is capable of depth imaging at better

resolution and distance than RGB camera imaging. LIDAR lasers and detectors in a given system may

use IR, visible light, UV, or other spectrum. Commercial LIDAR systems using pulsed light lasers

have a depth range up to 300 m while maintaining high x, y, z spatial resolution and accuracy,

compared to human visual system with a depth resolution of perhaps only 20 yards of stereo range due

to the left-right eye baseline distance, and as discussed in this chapter, the human visual system

interpolates distances beyond the 20-yard stereo range using other visual cues, but with relative,

learned accuracy. LIDAR systems are much more expensive than RGB depth cameras, due to the

LIDAR system synchronization and control system driving the LIDAR illumination lasers, and the

critical timing and synchronization logic required to measure reflected light deltas at the sensors and

synthesize the 3D image and depth field.

Cameras and Computational Imaging 19

Array Cameras

As shown earlier in Fig. 1.9, an array camera contains several cameras, typically arranged in a 2D

array, such as a 3 × 3 array, providing several key options for computational imaging. Commercial

array cameras for portable devices are beginning to appear. They may use the multi-view stereo

method to compute disparity, utilizing a combination of sensors in the array, as discussed earlier. Some

of the key advantages of an array camera include a wide baseline image set to compute a 3D depth map

that can see through and around occlusions, higher-resolution images interpolated from the lower-

resolution images of each sensor, all-in-focus images, and specific image refocusing at one or more

locations. The maximum aperture of an array camera is equal to the widest baseline between the

sensor s.

Radial Cameras

A conical, or radial, mirror surrounding the lens and a 2D image sensor create a radial camera [343],

which combines both 2D and 3D imaging. As shown in Fig. 1.15, the radial mirror allows a 2D image

to form in the center of the sensor and a radial toroidal image containing reflected 3D information

forms around the sensor perimeter. By processing the toroidal information into a point cloud based on

the geometry of the conical mirror, the depth is extracted and the 2D information in the center of the

image can be overlaid as a texture map for full 3D reconstruction.

Fig. 1.15 (Left) Radial camera system with conical mirror to capture 3D reflections. (Center) Captured 3D reflections

around the edges and 2D information of the face in the center. (Right) 3D image reconstructed from the radial image 3D

information and the 2D face as a texture map. (Images used by permission # Shree Nayar Columbia University CAVE)

20 1 2D/3D Image Capture and Representation

Plenoptics: Light Field Cameras

Plenoptic methods create a 3D space defined as a light field, created by multiple optics. Plenoptic

systems use a set of micro-optics and main optics to image a 4D light field and extract images from the

light field during postprocessing [353, 381, 382]. Plenoptic cameras require only a single image sensor,

as shown in Fig. 1.16. The 4D light field contains information on each point in the space and can be

represented as a volume dataset, treating each point as a voxel, or 3D pixel with a 3D oriented surface,

with color and opacity. Volume data can be processed to yield different views and perspective

displacements, allowing focus at multiple focal planes after the image is taken. Slices of the volume

can be taken to isolate perspectives and render 2D images. Rendering a light field can be done by using

ray tracing and volume rendering methods [383, 384].

Subjects Main Lens SensorMicro-Lens Array

Fig. 1.16 A plenoptic camera illustration. Multiple independent subjects in the scene can be processed from the same

sensor image. Depth of field and focus can be computed for each subject independently after the image is taken, yielding

perspective and focal plane adjustments within the 3D light field

In addition to volume and surface renderings of the light field, a 2D slice from the 3D field or

volume can be processed in the frequency domain by way of the Fourier Projection Slice Theorem

[385], as illustrated in Fig. 1.17. This is the basis for medical imaging methods in processing 3D MRI

and CAT scan data. Applications of the Fourier Projection Slice method to volumetric and 3D range

data are described by Levoy [382, 385] and Krig [108]. The basic algorithm is described as follows:

1. The volume data are forward transformed, using a 3D FFT into magnitude and phase data.

2. To visualize, the resulting 3D FFT results in the frequency volume and is rearranged by octant

shifting each cube to align the frequency 0 data around the center of a 3D Cartesian coordinate

system in the center of the volume, similar to the way 2D frequency spectrums are quadrant shifted

for frequency spectrum display around the center of a 2D Cartesian coordinate system.

3. A planar 2D slice is extracted from the volume parallel to the FOV plane where the slice passes

through the origin (center) of the volume. The angle of the slice taken from the frequency domain

volume data determines the angle of the desired 2D view and the depth of field.

4. The 2D slice from the frequency domain is run through an inverse 2D FFT to yield a 2D spatial

image corresponding to the chosen angle and depth of field.

3D Depth Processing Method 21

Fig. 1.17 Graphic representation of the algorithm for the Fourier Projection Slice Theorem, which is one method of

light field processing. The 3D Fourier space is used to filter the data to create 2D views and renderings [108, 382,

385]. (Image used by permission, # Intel Press, from Building Intelligent Systems)

3D Depth Processing Method

For historical reasons, several terms with their acronyms are used in discussions of depth-sensing and

related methods, so we cover some overlapping topics in this section. Table 1.1 earlier provided a

summary at a high level of the underlying physical means for depth sensing. Regardless of the depth-

sensing method, there are many similarities and common problems. Postprocessing, the depth infor-

mation is critical, considering the calibration accuracy of the camera system, the geometric model of

the depth field, the measured accuracy of the depth data, any noise present in the depth data, and the

intended application.

We survey several interrelated depth-sensing topics here, including

• Sparse depth-sensing methods

• Dense depth-sensing methods

• Optical flow

• Simultaneous localization and mapping (SLAM)

• Structure from motion (SFM)

• 3D surface reconstruction, 3D surface fusion

• Monocular depth sensing

• Stereo and multi-view stereo (MVS)

• Common problems in depth sensing

Human depth perception relies on a set of innate and learned visual cues, which are outside the

scope of this work and overlap into several fields, including optics, ophthalmology, and psychology

[394]; however, we provide an overview of the above selected topics in the context of depth

processing.

22 1 2D/3D Image Capture and Representation

Overview of Methods

For this discussion of depth-processing methods, depth sensing falls into two major categories based

on the methods shown in Table 1.1:

• Sparse depth methods, using computer vision methods to extract local interest points and features.

Only selected points are assembled into a sparse depth map or point cloud. The features are tracked

from frame to frame as the camera or scene moves, and the sparse point cloud is updated. Usually

only a single camera is needed.

• Dense depth methods, computing depth at every pixel. This creates a dense depth map, using

methods such as stereo, TOF, or MVS. It may involve one or more cameras.

Many sparse depth methods use standard monocular cameras and computer vision feature tracking,

such as optical flow and SLAM (which are covered later in this section), and the feature descriptors are

tracked from frame to frame to compute disparity and sparse depth. Dense depth methods are usually

based more on a specific depth camera technology, such as stereo or structured light. There are

exceptions, as covered next.

Problems in Depth Sensing and Processing

The depth-sensing methods each has specific problems; however, there are some common problems

we can address here. To begin, one common problem is geometric modeling of the depth field, which is

complex, including perspective and projections. Most depth-sensing methods treat the entire field as a

Cartesian coordinate system, and this introduces slight problems into the depth solutions. A camera

sensor is a 2D Euclidean model, and discrete voxels are imaged in 3D Euclidean space; however,

mapping between the camera and the real world using simple Cartesian models introduces geometric

distortion. Other problems include those of correspondence, or failure to match features in separate

frames, and noise and occlusion. We look at such problems in this next section.

The Geometric Field and Distortions

Field geometry is a complex area affecting both depth sensing and 2D imaging. For commercial

applications, geometric field problems may not be significant, since locating faces, tracking simple

objects, and augmenting reality are not demanding in terms of 3D accuracy. However, military and

industrial applications often require high precision and accuracy, so careful geometry treatment is in

order. To understand the geometric field problems common to depth-sensing methods, let us break

down the major areas:

• Projective geometry problems, dealing with perspective.

• Polar and spherical geometry problems, dealing with perspective as the viewing frustum spreads

with distance from the viewer.

• Radial distortion, due to lens aberrations.

3D Depth Processing Method 23

• Coordinate space problems, due to the Cartesian coordinates of the sensor and the voxels, and the

polar coordinate nature of casting rays from the scene into the sensor.

The goal of this discussion is to enumerate the problems in depth sensing, not to solve them, and to

provide references where applicable. Since the topic of geometry is vast, we can only provide a few

examples here of better methods for modeling the depth field. It is hoped that, by identifying the

geometric problems involved in depth sensing, additional attention will be given to this important

topic. The complete geometric model, including corrections, for any depth system is very complex.

Usually, the topic of advanced geometry is ignored in popular commercial applications; however, we

can be sure that advanced military applications such as particle beam weapons and missile systems do

not ignore those complexities, given the precision required.

Several researchers have investigated more robust nonlinear methods of dealing with projective

geometry problems [395, 396] specifically by modeling epipolar geometry-related distortion as 3D

cylindrical distortion, rather than as planar distortion, and by providing reasonable compute methods

for correction. In addition, the work of Lovegrove and Davison [411] deals with the geometric field

using a spherical mosaicking method to align whole images for depth fusion, increasing the accuracy

due to the spherical modeling.

The Horopter Region, Panum’s Area, and Depth Fusion

As shown in Fig. 1.18, the Horopter region, first investigated by Ptolemy and others in the context of

astronomy, is a curved surface containing 3D points that are the same distance from the observer and at

the same focal plane. Panum’s area is the region surrounding the Horopter where the human visual

system fuses points in the retina into a single object at the same distance and focal plane. It is a small

miracle that the human vision system can reconcile the distances between 3D points and synthesize a

common depth field! The challenge with the Horopter region and Panum’s area lies in the fact that a

postprocessing step to any depth algorithm must be in place to correctly fuse the points the way the

human visual system does. The margin of error depends on the usual variables, including baseline and

pixel resolution, and the error is most pronounced toward the boundaries of the depth field and less

pronounced in the center. Some of the spherical distortion is due to lens aberrations toward the edges

and can be partially corrected as discussed earlier in this chapter regarding geometric corrections

during early sensor processing.

24 1 2D/3D Image Capture and Representation

Panum’s Area

Horopter

Fused Depth Points

Fig. 1.18 Problems with stereo and multi-view stereo methods, showing the Horopter region and Panum’s area, and

three points in space that appear to be the same point from the left eye’s perspective but different from the right eye’s

perspective. The three points surround the Horopter in Panum’s area and are fused by humans to synthesize apparent

depth

Cartesian vs. Polar Coordinates: Spherical Projective Geometry

As illustrated in Fig. 1.19, a 2D sensor as used in a TOF or monocular depth-sensing method has

specific geometric problems as well; the problems increase toward the edges of the field of view. Note

that the depth from a point in space to a pixel in the sensor is actually measured in a spherical

coordinate system using polar coordinates, but the geometry of the sensor is purely Cartesian, so that

geometry errors are baked into the cake.

Because stereo and MVS methods also use single 2D sensors, the same problems that affect single

sensor depth-sensing methods also affect multi-camera methods, compounding the difficulties in

developing a geometry model that is accurate and computationally reasonable.

3D Depth Processing Method 25

Sensor

P
2

P
3

P
1

Fig. 1.19 A 2D depth sensor and lens with exaggerated imaging geometry problems dealing with distance, where depth

is different depending on the angle of incidence on the lens and sensor. Note that P1 and P2 are equidistant from the focal

plane; however, the distance of each point to the sensor via the optics is not equal, so computed depth will not be accurate

depending on the geometric model used

Depth Granularity

As shown in Fig. 1.20, simple Cartesian depth computations cannot resolve the depth field into a linear

uniform grain size; in fact, the depth field granularity increases exponentially with the distance from

the sensor, while the ability to resolve depth at long ranges is much less accurate.

For example, in a hypothetical stereo vision system with a baseline of 70 mm using 480 p video

resolution, as shown in Fig. 1.20, depth resolution at 10 m drops off to about 1/2 m; in other words, at

10 m away, objects may not appear to move in Z unless they move at least plus or minus 1/2 m in Z.

The depth resolution can be doubled simply by doubling the sensor resolution. As distance increases,

humans increasingly use monocular depth cues to determine depth, such as for size of objects, rate of

an object’s motion, color intensity, and surface texture details.

0

26 1 2D/3D Image Capture and Representation

Y Pixel size: 480 / 2 meter = 2.4 mm

Zy granularity = 19 mm

Y Pixel size: 480 / 3 meter = 6.25 mm

Zy granularity = 41 mm

Y Pixel size: 480 / 1 meter = 2 mm

Zy granularity = 4 mm

Y Pixel size: 480 / 5 meter = 10.4 mm

Zy granularity= 116 mm

Y Pixel size: 480 / 10 meter = 20.8 mm

Zy granularity = 465 mm

Stereo system, 480p sensors, 70mm baseline, 4.3mm focal length

Sensor Y die size = .672mm

Sensor Y Pixel size: .0014mm

Zy Granularity = (.0014mm * Z2 mm) / (4.3 mm * 70 mm)

Distance From Sensor in meters
D

ep
th

 g
ra

n
u

la
ri

ty
 o

r
re

so
lu

ti
o
n
 i

n
m

m

1

10

100

1000

1 2 3 4 5 6 7 8 9 1480p Sensor480p Sensor

Fig. 1.20 Z depth granularity nonlinearity problems for a typical stereo camera system. Note that practical depth sensing

using stereo and MVS methods has limitations in the depth field, mainly affected by pixel resolution, baseline, and focal

length. At 10 m, depth granularity is almost ½ m, so an object must move at least + or - ½ m in order for a change in

measured stereo depth to be computed

Correspondence

Correspondence, or feature matching, is common to most depth-sensing methods, see Nikolaus et al.

[802] for novel deep learning approaches. For a taxonomy of stereo feature matching algorithms, see

Scharstein and Szeliski [370]. Here, we discuss correspondence along the lines of feature descriptor

methods and triangulation as applied to stereo, multi-view stereo, and structured light.

Subpixel accuracy is a goal in most depth-sensing methods, so several algorithms exist [398]. It is

popular to correlate two patches or intensity templates by fitting the surfaces to find the highest match;

however, Fourier methods are also used to correlate phase [397, 399], similar to the intensity

correlation methods.

For stereo systems, the image pairs are rectified prior to feature matching so that the features are

expected to be found along the same line at about the same scale, as shown in Fig. 1.10; descriptors

with little or no rotational invariance are suitable [94, 181]. A feature descriptor such as a correlation

template is fine, while a powerful method such as the SIFT feature description method [132] is overkill.

The feature descriptor region may be a rectangle favoring disparity in the x-axis and expecting little

variance in the y-axis, such as a rectangular 3 × 9 descriptor shape. The disparity is expected in the x-

axis, not the y-axis. Several window sizing methods for the descriptor shape are used, including fixed

size and adaptive size [370].

Multi-view stereo systems are similar to stereo; however, the rectification stage may not be as

accurate, since motion between frames can include scaling, translation, and rotation. Since scale and

rotation may have significant correspondence problems between frames, other approaches to feature

description have been applied to MVS, with better results. A few notable feature descriptor methods

applied to multi-view and wide baseline stereo include the MSER [160] method (also discussed in

Chap. 6), which uses a blob-like patch, and the SUSAN [135, 136] method (also discussed in Chap. 6),

which defines the feature based on an object region or segmentation with a known centroid or nucleus

around which the feature exists.

3D Depth Processing Method 27

For structured light systems, the type of light pattern will determine the feature, and correlation of

the phase is a popular method [399]. For example, structured light methods that rely on phase-shift

patterns using phase correlation [397] template matching claim to be accurate to 1/100th of a pixel.

Other methods are also used for structured light correspondence to achieve subpixel accuracy [397].

Holes and Occlusion

When a pattern cannot be matched between frames, a hole exists in the depth map. Holes can also be

caused by occlusion. In either case, the depth map must be repaired, and several methods exist for

doing that. A hole map should be provided, showing where the problems are. A simple approach, then,

is to fill the hole and use bilinear interpolation within local depth map patches. Another simple

approach is to use the last known-good depth value in the depth map from the current scan line.

More robust methods for handling occlusion exist [401, 402] using more computationally expen-

sive but slightly more accurate methods, such as adaptive local windows to optimize the interpolation

region. Yet another method of dealing with holes is surface fusion into a depth volume [382] (covered

next), whereby multiple sequential depth maps are integrated into a depth volume as a cumulative

surface, and then a depth map can be extracted from the depth volume.

Surface Reconstruction and Fusion

A general method of creating surfaces from depth map information is surface reconstruction. Com-

puter graphics methods can be used for rendering and displaying the surfaces. The basic idea is to

combine several depth maps to construct a better surface model, including the RGB 2D image of the

surface rendered as a texture map. By creating an iterative model of the 3D surface that integrates

several depth maps from different viewpoints, the depth accuracy can be increased, occlusion can be

reduced or eliminated, and a wider 3D scene viewpoint is created.

The work of Curless and Levoy [382] presents a method of fusing multiple range images or depth

maps into a 3D volume structure. The algorithm renders all range images as iso-surfaces into the

volume by integrating several range images. Using a signed distance function and weighting factors

stored in the volume data structure for the existing surfaces, the new surfaces are integrated into the

volume for a cumulative best-guess at where the actual surfaces exist. Of course, the resulting surface

has several desirable properties, including reduced noise, reduced holes, reduced occlusion, multiple

viewpoints, and better accuracy (see Fig. 1.21).

28 1 2D/3D Image Capture and Representation

b. TSDF or truncated signed

distance function used to

compute the zero-crossing at the

estimated surface [382].

Raw Z depth map

Raw

XYZ vertex map &

Surface normal map

6DOF pose via ICP

Volume surface

integration 3D surface rendering

Volume

XYZ vertex map &

Surface normal map

a. Method of volume integration,

6DOF camera pose, and surface

rendering used in Kinect Fusion

[279, 403].

Fig. 1.21 (Right) The Curless and Levoy [382] method for surface construction from range images, or depth maps.

Shown here are three different weighted surface measurements projected into the volume using ray casting. (Left)

Processing flow of Kinect Fusion method

A derivative of the Curless and Levoy method applied to SLAM is the Kinect Fusion approach

[403], as shown in Fig. 1.22, using compute-intensive SIMD parallel real-time methods to provide not

only surface reconstruction, but also camera tracking and the 6DOF or 6-degrees-of-freedom camera

pose via surface alignment from frame to frame. Raytracing and texture mapping are used for surface

renderings. There are yet other methods for surface reconstruction from multiple images [407, 475].

Noise

Noise is another problem with depth sensors [339], and various causes include low illumination and, in

some cases, motion noise, as well as inferior depth-sensing algorithms or systems. Also, the depth

maps are often very fuzzy, so image preprocessing may be required, as discussed in Chap. 2, to reduce

apparent noise. Many prefer the bilateral filter for depth map processing [258], since it respects local

structure and preserves the edge transitions. In addition, other noise filters have been developed to

remedy the weaknesses of the bilateral filter, which are well suited to remove depth noise, including the

Guided Filter [413], which can perform edge-preserving noise filtering like the bilateral filter, the

Edge-Avoiding Wavelet method [415], and the Domain Transform filter [416].

Monocular Depth Processing

Monocular, or single sensor depth sensing, creates a depth map from pairs of image frames using the

motion from frame to frame to create the stereo disparity. The assumptions for stereo processing with a

calibrated fixed geometry between stereo pairs do not hold for monocular methods, since each time the

camera moves, the camera pose must be recomputed. Camera pose is a 6 degrees-of-freedom (6DOF)

equation, including x, y, and z linear motion along each axis and roll, pitch, and yaw rotational motion

about each axis. In monocular depth-sensing methods, the camera pose must be computed for each

frame as the basis for comparing two frames and computing disparity.

3D Depth Processing Method 29

Note that computation of the 6DOF matrix can be enhanced using inertial sensors, such as the

accelerometer and MEMS gyroscope [410], as the coarse alignment step, followed by visual feature-

based surface alignment methods discussed later in regard to optical flow. Since commodity inertial

sensors are standard with mobile phones and tablets, inertial pose estimation will become more

effective and commonplace as the sensors mature. While the accuracy of commodity accelerometers

is not very good, monocular depth-sensing systems can save compute time by taking advantage of the

inertial sensors for pose estimation. Monocular depth estimation using Vision Transformers has been

shown to improve the state of the art in voxel modeling, see Vision Transformers for Dense Prediction

René Ranftl Alexey Bochkovskiy Intel Labs rene.ranftl@intel.com Vladlen Koltun, 2021. See

Chap. 12 for details on View Synthesis for related depth estimation methods, including full 3D avatar

generation from monocular images and image sequences.

Multi-view Stereo

The geometry model for most monocular multi-view stereo (MVS) depth algorithms is based on

projective geometry and epipolar geometry; a good overview of both is found in the classic text by

Hartley and Zisserman [367]. A taxonomy and accuracy comparison of six MVS algorithms is

provided by Seitz et al. [406]. We look at a few representative approaches in this section.

Sparse Methods: PTAM

Sparse MVS methods create a sparse 3D point cloud, not a complete depth map. The basic goals for

sparse depth are simple: track the features from frame to frame, compute feature disparity to create

depth, and perform 6DOF alignment to localize the new frames and get the camera pose. Depending on

the application, sparse depth may be ideal to use as part of a feature descriptor to add invariance to

perspective viewpoint or to provide sufficient information for navigating that is based on a few key

landmarks in the scene. Several sparse depth-sensing methods have been developed in the robotics

community under the terms SLAM, SFM, and optical flow (discussed below).

However, we first illustrate sparse depth sensing in more detail by discussing a specific approach:

Parallel Tracking and Mapping (PTAM) [386, 387], which can both track the 6DOF camera pose and

generate a sparse depth map suitable for light-duty augmented reality applications, allowing avatars to

be placed at known locations and orientations in the scene from frame to frame. The basic algorithm

consists of two parts, which run in parallel threads: a tracking thread for updating the pose, and a

mapping thread for updating the sparse 3D point cloud. We provide a quick overview of each next.

The mapping thread deals with a history buffer of the last N keyframes and an N-level image

pyramid for each frame in a history buffer, from which the sparse 3D point cloud is continually refined

using the latest incoming depth features via a bundle adjustment process (which simply means fitting

new 3D coordinates against existing 3D coordinates by a chosen minimization method, such as the

Levenberg–Marquardt [332]). The bundle adjustment process can perform either a local adjustment

over a limited set of recent frames or global adjustment over all the frames during times of low scene

motion when time permits.

The tracking thread scans the incoming image frames for expected features, based on projecting

where known-good features last appeared, to guide the feature search, using the 6DOF camera pose as

a basis for the projection. A FAST9 [109] corner detector is used to locate the corners, followed by a

Shi–Tomasi [128] non-maximal suppression step to remove weak corner candidates (discussed in

Chap. 6 in more detail). The feature matching stage follows a coarse-to-fine progression over the image

pyramid to compute the 6DOF pose.

30 1 2D/3D Image Capture and Representation

Target features are computed in new frames using an 8 × 8 patch surrounding each selected corner.

Reference features are computed also as 8 × 8 patches from the original patch taken from the first-

known image where they were found. To align the reference and target patches prior to feature

matching, the surface normal of each reference patch is used for pre-warping the patch against the

last-known 6DOF camera pose, and the aligned feature matching is performed using zero-mean SSD

distance.

One weakness of monocular depth sensing shows up when there is a failure to localize; that is, if

there is too much motion, or illumination changes too much, the system may fail to localize and the

tracking stops. Another weakness is that the algorithm must be initialized entirely for a specific

localized scene or workspace, such as a desktop. For initialization, PTAM follows a five-point stereo

calibration method that takes a few seconds to perform with user cooperation. Yet another weakness is

that the size of the 3D volume containing the point cloud is intended for a small, localized scene or

workspace. However, on the positive side, the accuracy of the 3D point cloud is very good, close to the

pixel size; the pose is accurate enough for AR or gaming applications; and it is possible to create a 360°

perspective point cloud by walking around the scene. PTAM has been implemented on a mobile phone

[386] using modest compute and memory resources, with trade-offs for accuracy and frame rate.

Iterative surface alignment

solution over Image Pyramid

Fig. 1.22 Graphic representaion of the dense whole-image alignment solution of adjacent frames to obtain the 6DOF

camera pose using ESM [412]

Dense Methods: DTAM

Dense monocular depth sensing is quite compute-intensive compared to sparse methods, so the

research and development are much more limited. The goals are about the same as for sparse

monocular depth—namely, compute the 6DOF camera pose for image alignment, but create a dense

every-pixel depth map instead of a sparse point cloud. For illustration, we highlight key concepts from

a method for Dense Tracking and Mapping (DTAM), developed by Newcombe et al. [409].

While the DTAM goal is to compute dense depth at each pixel rather than sparse depth, DTAM

shares some of the same requirements with PTAM [387], since both are monocular methods. Both

DTAM and PTAM are required to compute the 6DOF pose for each new frame in order to align the

new frames to compute disparity. DTAM also requires a user-assisted monocular calibration method

for the scene, and it uses the PTAM calibration method. And DTAM is also intended for small,

localized scenes or workspaces. DTAM shares several background concepts taken from the Spherical

Mosaicking method of Lovegrove and Davison [411], including the concept of whole image align-

ment, based on the Efficient Second Order Minimization (ESM) method [412], which is reported to

find a stable surface alignment using fewer iterations than LK methods [388] as part of the process to

generate the 6DOF pose.

3D Depth Processing Method 31

Apparently, both DTAM and spherical Mosaicking use a spherical coordinate geometry model to

mosaic the new frames into the dense 3D surface proceeding from coarse to fine alignment over the

image pyramid to iterate toward the solution of the 6DOF camera pose change from frame to frame.

The idea of whole-image surface alignment is shown in Fig. 1.22. The new and existing depth surfaces

are integrated using a localized guided-filter method [413] into the cost volume. That is, the guided

filter uses a guidance image to merge the incoming depth information into the cost volume.

DTAM also takes great advantage of SIMD instructions and highly thread-parallel SIMT GPGPU

programming to gain the required performance necessary for real-time operation on commodity GPU

hardware.

Optical Flow, SLAM, and SFM

Optical flow measures the motion of features and patterns from frame to frame in the form of a

displacement vector. Optical flow is similar to sparse monocular depth-sensing methods, and it can be

applied to wide baseline stereo matching problems [393]. Since the field of optical flow research and its

applications is vast [389–391], we provide only an introduction here with an eye toward describing the

methods used and features obtained.

Optical flow can be considered a sparse feature-tracking problem, where a feature can be considered

a particle [392], so optical flow and particle flow analysis are similar. Particle flow analysis is applied

to diverse particle field flow-analysis problems, including weather prediction, simulating combustion

and explosives, hydro-flow dynamics, and robot navigation. Methods exist for both 2D and 3D optical

flow. The various optical flow algorithms are concerned with tracking-feature descriptors or matrices,

rather than with individual scalars or pixels, within consecutive fields of discrete scalar values. For

computer vision, the input to the optical flow algorithms is a set of sequential 2D images and pixels, or

3D volumes and voxels, and the output is a set of vectors showing direction of movement of the

tracked features.

Many derivations and alternatives to the early Lucas Kanade (LK) method [388–391] are used for

optical flow (see [135] for example); however, this remains the most popular reference point, as it uses

local features in the form of correlation templates (as discussed in Chap. 6). Good coverage of the state-

of-the-art methods based on LK is found in Lucas Kanade 20 years on, by Baker and Matthews

[407]. The Efficient Second Order Minimization (ESM) method [412] is related to the LK method.

ESM is reported to be a stable solution using fewer iterations than LK. LK does not track individual

pixels; rather, it relies on the pixel neighborhood, such as a 3 × 3 matrix or template region, and tries to

guess which direction the features have moved, iteratively searching the local region and averaging the

search results using a least-squares solution to find the best guess.

While there are many variations on the LK method [389–391], key assumptions of most LK-derived

optical flow methods include small displacements of features from frame to frame, rigid features, and

sufficient texture information in the form of localized gradients in order to identify features. Various

methods are used to find the local gradients, such as Sobel and Laplacian (discussed in Chap. 2). Fields

with large feature displacements from frame to frame and little texture information are not well suited

to the LK method. That is because the LK algorithm ignores regions with little gradient information by

examining the eigenvalues of each local matrix to optimize the iterative solution. However, more

recent and robust research methods are moving beyond the limitations of LK [389, 390] and include

Deepflow [292], which is designed for deformable features and large displacement optical flow [321],

using multilayer feature scale hierarchies [295] similar to convolutional networks [288].

Applications of surface reconstruction to localization and mapping are used in simultaneous

localization and mapping (SLAM) and in structure from motion (SFM) methods—for example, in

robotics navigation. One goal of SLAM is to localize, or find the current position and the 6DOF camera

pose. Another goal is to create a local region map, which includes depth. To dig deeper into SLAM and

SFM methods, see the historical survey by Bailey and Durrant-Whyte [404, 405].

32 1 2D/3D Image Capture and Representation

3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds

Depth information is represented and stored in a variety of convertible formats, depending on the

intended use. We summarize here some common formats; see also Fig. 1.23.

Fig. 1.23 Various 3D depth formats. Renderings of a Zernike polynomial. (Left to right): A depth map, a polygon mesh

rendering using 3D quads, a point cloud rendering equivalent of voxels

The ability to convert between depth formats is desirable for different algorithms and easy to

do. Common 3D depth formats include:

• 2D Pixel Array, 3D Depth Map: A 2D pixel array is the default format for 2D images in memory,

and it is the natural storage format for many processing operations, such as convolution and

neighborhood filtering. For depth map images, the pixel value is the Z, or depth value. Each

point in the array may contain {color, depth}.

• 3D Voxel Volume: A 3D volumetric data structure composed of a 3D array of voxels is ideal for

several algorithms, including depth map integration for 3D surface reconstruction and raytracing of

surfaces for graphical renderings. A voxel is a volume element, like a pixel is a picture element. Each

voxel may contain {color, normal}; the depth coordinates are implicit from the volume structure.

• 3D Polygon Mesh: Storing 3D points in a standard 3D polygon mesh provides a set of connected

points or vertices, each having a surface normal, 3D coordinates, color, and texture. Mesh formats

are ideal for rendering surfaces in a GPU pipeline, such as OpenGL or DirectX. Each point in the

mesh may contain {x, y, z, color, normal} and is associated with neighboring points in a standard

pattern such as a quad or triangle describing the surface.

• 3D Point Cloud: This is a sparse structure that is directly convertible to a standard 3D polygon

mesh. The point cloud format is ideal for sparse monocular depth-sensing methods. Each point in

the cloud may contain {x, y, z, color, normal}.

The Sapiens family of 3D human models by Khirodkar et. al [1027] as the authors state:

“Sapiens… supports four fundamental human-centric vision tasks: 2D pose estimation, body-part

segmentation, depth estimation, and surface normal prediction.” These models train on 2D images, can

be fine-tuned for specific images, and are available on Hugging Face, as provided by Meta Labs. Also,

Apple provides the Depth Pro Monocular Depth Mapping model [1028] from Bockkovshi et. al, which

is accelerated to real time using the Mx family of Neural Processors in the SOC.

Learning Assignments 33

Summary

In this chapter, we survey image sensing methods and sensor image processing methods as the first step

in the vision pipeline. We cover the image sensor technologies available, with an eye toward image

preprocessing that may be useful for getting the most from the image data, since image sensoring

methods often dictate the image preprocessing required. (More discussion on image preprocessing is

provided in Chap. 2.) Sensor configurations used for both 2D and 3D imaging were discussed, as well

as a wide range of camera configurations used for computational imaging to create new images after

the data are captured, such as HDR images and image refocusing. Depth imaging approaches are

covered here as well, and include stereo and time of flight, since mobile devices are increasingly

offering 3D depth camera technology for consumer applications. Depth maps can be used in computer

vision to solve many problems, such as 3D feature description and 3D image segmentation of

foreground and background objects. The topic of 3D depth processing and 3D features is followed

throughout this book; Chap. 6 covers 3D feature descriptors, and Chap. 7 and Appendix B cover 3D

ground truth data.

Learning Assignments

1. Name at least two types of semiconductor materials used to create imaging sensors and discuss the

trade-offs between each sensor material from a manufacturing perspective, and from an end user

perspective.

2. Discuss the visible RGB, IR, and UV wavelength response curve of silicon imaging sensors and

optionally draw a diagram showing the spectral responses.

3. Name at least one material that can be used as a near-IR filter for a silicon image sensor.

4. Discuss dynamic range in camera systems, bits per pixel, and when dynamic range becomes

critical.

5. Discuss color cell mosaic patterns on image sensors, and some of the implications of the patterns

for assembling the cells into color pixels. For example, silicon cell size and arrangement.

6. Describe how color de-mosaicking algorithms work.

7. Describe a range of camera and image sensor calibrations, and how they are established.

8. Name a few sensor calibration adjustments that must be made to the image sensor color cell data

after sensor readout, prior to assembling the color cells into RGB pixels.

9. Discuss a few types of corrections that must be made to the assembled pixels after they are

assembled from the image sensor.

10. Describe how to compose a high dynamic range (HDR) image from several image frames.

11. Describe how to compute the data rate to read out pixels from an RGB camera, assuming each

RGB component contains 16 bits, the frame rate is 60 frames per second, and the frame size is

7680 × 4320 pixels (UHDTV).

12. Describe at a high level at least three methods for computing depth from camera images, including

stereo, multi-view stereo, structured or coded light, and time of flight sensors.

13. Discuss the trade-offs between stereo depth sensing and monocular depth sensing.

14. Discuss the basic steps involved in stereo algorithms, such as image rectification and alignment,

and other steps.

15. Describe structured light patterns, and how they work.

16. Describe how the Horopter region and Panum’s area affect depth sensing.

17.

34 1 2D/3D Image Capture and Representation

Discuss problems created by occlusion in stereo processing, such as holes in the stereo field, and

how the problems can be solved.

18. Describe how 2D surface fusion of several images can be performed using a 3D voxel buffer.

19. Discuss how monocular depth sensing is similar to stereo depth sensing.

20. Describe the calibration parameters for a stereo camera system, including baseline.

21. Describe how to compute the area a pixel covers in an image at a given distance from the

camera. HINT: camera sensor resolution is one variable.

22. Discuss voxels, depth maps, and point clouds.

Image Preprocessing, Morphology,
Segmentation, Colorimetry 2

I entered, and found Captain Nemo deep in algebraical calculations of x and other quantities.

—Jules Verne, 20,000 Leagues Under The Sea

This chapter describes the methods used to prepare images for further analysis, including interest point

and feature extraction. The focus is on image preprocessing for computer vision, so we do not cover the

entire range of image processing topics applied to areas such as computational photography and photo

enhancements, so we refer the interested reader to various other standard resources in Digital Image

Processing and Signal Processing as we go along [4, 9, 276, 277], and we also point out interesting

research papers that will enhance understanding of the topics.

Note

Readers with a strong background in image processing may benefit from a light reading of this chapter.

Perspectives on Image Processing

Image processing is a vast field that cannot be covered in a single chapter. So why do we discuss image

preprocessing in a book about computer vision? The reason is that image preprocessing is typically

ignored in discussions of feature description. Some general image processing topics are covered here in

light of feature description, intended to illustrate rather than to proscribe, as applications and image

data will guide the image preprocessing stage.

Some will argue that image preprocessing is not a good idea, since it distorts or changes the true

nature of the raw data. However, intelligent use of image preprocessing can provide benefits and solve

problems that ultimately lead to better local and global feature detection. We survey common methods

for image enhancements and corrections that will affect feature analysis downstream in the vision

pipeline in both favorable and unfavorable ways, depending on how the methods are employed.

Image preprocessing may have dramatic positive effects on the quality of feature extraction and the

results of image analysis. Image preprocessing is analogous to the mathematical normalization of a

data set, which is a common step in many feature descriptor methods. Or to make a musical analogy,

think of image preprocessing as a sound system with a range of controls, such as raw sound with no

volume controls; volume control with a simple tone knob; volume control plus treble, bass, and mid; or

volume control plus a full graphics equalizer, effects processing, and great speakers in an acoustically

superior room. In that way, this chapter promotes image preprocessing by describing a combination of

corrections and enhancements that are an essential part of a computer vision pipeline.

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_2

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_2&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_2#DOI

x x

x x

x x

x

x x

x

36 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Problems to Solve During Image Preprocessing

Raw image data directly from a camera may have a variety of problems, as discussed in Chap. 1, and

therefore it is not likely to produce the best computer vision results. This is why careful consideration

of image preprocessing is fundamental. For example, a local binary descriptor using gray scale data

will require different preprocessing than will a color SIFT algorithm; additionally, some exploratory

work is required to fine-tune the image preprocessing stage for best results. We explore image

preprocessing by following the vision pipelines of four fundamental families of feature description

methods, with some examples, as follows:

1. Local Binary Descriptors (LBP, ORB, FREAK, others)

2. Spectra Descriptors (SIFT, SURF, others)

3. Basis Space Descriptors (FFT, wavelets, others)

4. Polygon Shape Descriptors (blob object area, perimeter, centroid)

These families of feature description metrics are developed into a taxonomy in Chap. 5. Before that,

though, Chap. 4 discusses feature descriptor building concepts, while Chap. 3 covers global feature

description and then Chap. 6 surveys local feature description. The image preprocessing methods and

applications introduced here are samples, but a more developed set of examples, following various

vision pipelines, is developed in Chap. 8, including application-specific discussions of the

preprocessing stage.

Vision Pipelines and Image Preprocessing

Table 2.1 lists common image preprocessing operations, with examples from each of the four

descriptor families, illustrating both differences and commonality among these image preprocessing

steps, which can be applied prior to feature description.

Table 2.1 Possible image preprocessing enhancements and corrections as applied to different vision pipelines

Image preprocessing

Local binary (LBP,

ORB)

Spectra (SIFT,

SURF)

Basis space (FFT,

Codebooks)

Polygon shape (Blob

Metrics)

Illumination

corrections

x x

Blur and focus

corrections

x x

Filtering and noise

removal

x x

Thresholding x

Edge enhancements x x

Morphology x

Segmentation x

Region processing and

filters

x x

Point processing x x

Math and statistical

processing

Color space

conversions

x x

Problems to Solve During Image Preprocessing 37

Local binary features deal with the pixel intensity comparisons of point-pairs. This makes the

comparisons relatively insensitive to local illumination, brightness, and contrast, so there may not be

much need for image preprocessing to achieve good results. Current local binary pattern methods as

described in the literature do not typically call for much image preprocessing; they rely on a simple

local comparison threshold that can be adjusted to account for illumination or contrast.

Spectra descriptors, such as SIFT (which acts on local region gradients) and SURF (which uses

HAAR-like features with integrated pixel values over local regions), offer diverse preprocessing

opportunities. Methods that use image pyramids often perform some image preprocessing on the

image pyramid to create a scale space representation of the data using Gaussian filtering to smooth the

higher levels of the pyramid. Basic illumination corrections and filtering may be useful to enhance the

image prior to computing gradients—for example, to enhance the contrast within a band of intensities

that likely contain gradient-edge information for the features. But in general, the literature does not

report good or bad results for any specific methods used to preprocess the image data prior to feature

extraction, and therein resides the opportunity.

Basis space features are usually global or regional, spanning a regular shaped such as a Fourier

transform computed over the entire image or block. However, basis space features may be part of the

local features, such as the Fourier spectrum of the LBP histogram, which can be computed over

histogram bin values of a local descriptor to provide rotational invariance. Another example is the

Fourier descriptor used to compute polygon factors for radial line segment lengths showing the

roundness of a feature to provide rotational invariance. See Chap. 3, especially Fig. 3.20.

The most complex descriptor family is the polygon shape-based descriptors, which potentially

require several image preprocessing steps to isolate the polygon structure and shapes in the image for

measurement. Polygon shape description pipelines may involve everything from image enhancements

to structural morphology and segmentation techniques. Setting up the preprocessing for polygon

feature shape extraction typically involves more work than any other method, since thresholds and

segmentation require fine-tuning to achieve good results. Also note that polygon shape descriptors are

not local patterns but, rather, larger regional structures with features spanning many tens and even

hundreds of pixels, so the processing can be more intensive as well.

In some cases, image preprocessing is required to correct problems that would otherwise adversely

affect feature description; we look at this next.

Corrections

During image preprocessing, there may be artifacts in the images that should be corrected prior to

feature measurement and analysis. Here are various candidates for correction.

• Sensor corrections. Discussed in Chap. 1, these include dead pixel correction, geometric lens

distortion, and vignetting.

• Lighting corrections. Lighting can introduce deep shadows that obscure local texture and struc-

ture; also, uneven lighting across the scene might skew results. Candidate correction methods

include rank filtering, histogram equalization, and LUT remap.

• Noise. This comes in many forms and may need special image preprocessing. There are many

methods to choose from, some of which are surveyed in this chapter.

• Geometric corrections. If the entire scene is rotated or taken from the wrong perspective, it may be

valuable to correct the geometry prior to feature description. Some features are more robust to

geometric variation than others, as discussed in Chaps. 4–6.

38 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

• Color corrections. It can be helpful to redistribute color saturation or correct for illumination

artifacts in the intensity channel. Typically, color hue is one of the more difficult attributes to

correct, and it may not be possible to correct using simple gamma curves and the sRGB color space.

We cover more accurate colorimetry methods later in this chapter.

Enhancements

Enhancements are used to optimize for specific feature measurement methods, rather than fix

problems. Familiar image processing enhancements include sharpening and color balancing. Here

are some general examples of image enhancement with their potential benefits to feature description.

• Scale-space pyramids. When a pyramid is constructed using an octave scale (or a non-octave scale

interval) and pixel decimation to subsample images to create the pyramid, subsampling artifacts and

jagged pixel transitions are introduced. Part of the scale-space pyramid building process involves

applying a Gaussian blur filter to the subsampled images, which removes the jagged artifacts. Also,

anti-aliased scaling is available in the GPU hardware.

• Illumination. In general, illumination can always be enhanced. Global illumination can be

enhanced using simple LUT remapping and pixel point operations and histogram equalizations,

and pixel remapping. Local illumination can be enhanced using gradient filters, local histogram

equalization, and rank filters.

• Blur and focus enhancements. Many well-known filtering methods for sharpening and blurring

may be employed at the preprocessing stage. For example, to compensate for pixel aliasing artifacts

introduced by rotation that may manifest as blurred pixels which obscure fine detail, sharpen filters

can be used to enhance the edge features prior to gradient computations. Or, conversely, the rotation

artifacts may be too strong and can be removed by blurring.

In any case, the preprocessing enhancements or corrections are dependent on the descriptor using

the images and the application.

Preparing Images for Feature Extraction

Each family of feature description methods has different goals for the preprocessing stage of the

pipeline. Let us look at a few examples from each family here and examine possible image

preprocessing methods for each.

Local Binary Family Preprocessing

The local binary descriptor family is primarily concerned with point-pair intensity value comparisons,

and several point-pair patterns are illustrated in Chap. 4 for common methods such as FREAK,

BRISK, BRIEF, and ORB. As illustrated in Fig. 2.1, the comparative difference (<, >, =) between

points is all that matters, so hardly any image preprocessing seems needed. Based on this discussion,

here are two approaches for image preprocessing:

Problems to Solve During Image Preprocessing 39

1. Preserve pixels as is. Do nothing except use a pixel value-difference compare threshold, such as

done in the Census transform and other methods, since the threshold takes care of filtering noise and

other artifacts.

if point1- point2j j> thresholdð Þ

2. Use filtering. In addition to using the compare threshold, apply a suitable filter to remove local

noise, such as a smoothing or rank filter. Or, take the opposite approach and use a sharpen filter to

amplify small differences, perhaps followed by a smoothing filter. Either method may prove to

work, depending on the data and application.

Figure 2.1 uses center-neighbor point-pair comparisons in a 3 × 3 local region to illustrate the

difference between local threshold and a preprocessing operation for the local binary pattern LBP, as

follows:

• Left image: Original unprocessed local 3 × 3 region data; compare threshold = 5, dark pixels > 5

from center pixel.

• Left center image: Compare threshold = 10; note pattern shape is different simply by changing the

threshold.

• Right center image: After a Laplacian sharpening filter is applied to 3 × 3 region, note that the center

pixel value is changed from 52 to 49, so with the compare threshold set to 5 the pattern is now

different from original on the left.

• Right image: Threshold on Laplacian filtered data set to 10; note different resulting binary patterns.

38 52

5335

47

59

48 60 51

38 52

5335

47

59

48 60 51

38 49

5335

47

59

48 60 51

38 49

5335

47

59

48 60 51

Fig. 2.1 How the LBP can be affected by preprocessing, showing the compare threshold value effects. (Left) Compare

threshold = 5. (Center left) Compare threshold = 10. (Center right) Original data after Laplacian filter applied. (Right)

Compare threshold = 5 on Laplacian filtered data

Spectra Family Preprocessing

Due to the wide range of methods in the spectra category, it is difficult to generalize the potential

preprocessing methods that may be useful. For example, SIFT is concerned with gradient information

computed at each pixel. SURF is concerned with combinations of HAAR wavelets or local rectangular

regions of integrated pixel values, which reduces the significance of individual pixel values.

For the integral image-based methods using HAAR-like features such as SURF and Viola Jones,

here are a few hypothetical preprocessing options.

1. Do nothing. HAAR features are computed from integral images simply by summing local region

pixel values; no fine structure in the local pixels is preserved in the sum, so one option is to do

nothing for image preprocessing.

2. Noise removal. This does not seem to be needed in the HAAR preprocessing stage, since the

integral image summing in local regions has a tendency to filter out noise.

40 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

3. Illumination problems. This may require preprocessing; for example, contrast enhancement may

be a good idea if the illumination of the training data is different from the current frame. One

preprocessing approach in this situation is to compute a global contrast metric for the images in the

training set, and then compute the same global contrast metric in each frame and adjust the image

contrast if the contrast diverges beyond a threshold to get closer to the desired global contrast

metric. Methods for contrast enhancement include LUT remapping, global histogram equalization,

and local adaptive histogram equalization.

4. Blur. If blur is a problem in the current frame, it may manifest similar to a local contrast problem, so

local contrast enhancement may be needed, such as a sharpen filter. Computing a global statistical

metric such as an SDM as part of the ground truth data to measure local or global contrast may be

useful; if the current image diverges too much in contrast, a suitable contrast enhancement may be

applied as a preprocessing step.

Note in Fig. 2.2 that increasing the local-region contrast results in larger gradients and more

apparent edges. A feature descriptor that relies on local gradient information is affected by the local

contrast.

Fig. 2.2 The effects of local contrast on gradients and edge detection: (Left) Original image and Sobel edges. (Right)

Contrasted adjusted image to amplify local region details and resulting Sobel edges

For the SIFT-type descriptors that use local area gradients, preprocessing may be helpful to enhance

the local gradients prior to computation, so as to affect certain features:

1. Blur. This will inhibit gradient magnitude computation and may make it difficult to determine

gradient direction, so perhaps a local rank filter, high-pass filter, or sharpen filter should be

employed.

2. Noise. This will exacerbate local gradient computations and make them unreliable, so perhaps

applying one of several existing noise-removal algorithms can help.

3. Contrast. If local contrast is not high enough, gradient computations are difficult and unreliable.

Perhaps a local histogram equalization, LUT remap, rank filter, or even a sharpen filter can be

applied to improve results.

Basis Space Family Preprocessing

It is not possible to generalize image preprocessing for basis space methods, since they are quite

diverse, according to the taxonomy we are following in this work. As discussed in Chaps. 4–6, basis

space methods include Fourier, wavelets, visual vocabularies, KTL, and others. However, here we

provide a few general observations on preprocessing.

Problems to Solve During Image Preprocessing 41

1. Fourier Methods, Wavelets, Slant transform, Walsh Hadamard, KLT. These methods trans-

form the data into another domain for analysis, and it is hard to suggest any preprocessing without

knowing the intended application. For example, computing the Fourier spectrum produces magni-

tude and phase, and phase is shown to be useful in feature description to provide invariance to blur,

as reported in the LPQ linear phase quantization method described in Chap. 6, so a blurry image

may not be a problem in this case.

2. Sparse coding and visual vocabularies. These methods which employ local feature descriptors,

which could be SURF, SIFT, LBP, or any other desired feature, are derived from pixels in the

spatial domain. Therefore, the method for feature description will determine the best approach for

preprocessing. For example, methods that use correlation and raw pixel patches as sparse codes may

not require any preprocessing. Or perhaps some minimal preprocessing can be used, such as

illumination normalization to balance contrast, local histogram equalization, or a LUT contrast

remap.

In Fig. 2.3, the contrast adjustment does not have much effect on Fourier methods, since there is no

dominant structure in the image. Fourier spectrums typically reveal that the dominant structure and

power is limited to lower frequencies that are in the center of the quadrant-shifted 2D plot. For images

with dominant structures, such as lines and other shapes, the Fourier power spectrum will show the

structure and perhaps preprocessing may be more valuable. Also, the Fourier power spectrum display

is scaled to a logarithmic value and does not show all the details linearly, so a linear spectrum rendering

might show the lower frequencies scaled and magnified better for erase of viewing.

Fig. 2.3 In this example, no benefit is gained from preprocessing as shown in the Fourier spectrum; (Left) Before.

(Right) After contrast adjusting the input image

Polygon Shape Family Preprocessing

Polygon shapes are potentially the most demanding features when considering image preprocessing

steps, since as shown in Table 2.1, the range of potential preprocessing methods is quite large and the

choice of methods to employ is very data-dependent. Possibly because of the challenges and intended

use-cases for polygon shape measurements, they are used only in various niche applications, such as

cell biology.

One of the most common methods employed for image preparation prior to polygon shape

measurements is to physically correct the lighting and select the subject background. For example,

in automated microscopy applications, slides containing cells are prepared with florescent dye to

highlight features in the cells, then the illumination angle and position are carefully adjusted under

magnification to provide a uniform background under each cell feature to be measured; the resulting

images are then much easier to segment.

42 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.4 Use of thresholding to solve problems during image preprocessing to prepare images for polygon shape

measurement: (Left) Original image. (Center) Thresholded red channel image. (Right) Perimeter tracing above a

threshold

Fig. 2.5 Another sequence of morphological preprocessing steps preceding polygon shape measurement: (Left)

Original image. (Center) Range thresholded and dilated red color channel. (Right) Morphological perimeter shapes

taken above a threshold

As illustrated in Figs. 2.4 and 2.5, if the preprocessing is wrong, the resulting shape feature

descriptors are not very useful. Next we list some of the more salient options for preprocessing prior

to shape-based feature extraction, then we will survey a range of other methods later in this chapter.

1. Illumination corrections. Typically critical for defining the shape and outline of binary features.

For example, if perimeter tracking or boundary segmentation is based on edges or thresholds,

uneven illumination will cause problems, since the boundary definition becomes indistinct. If the

illumination cannot be corrected, then other segmentation methods not based on thresholds are

available, such as texture-based segmentation.

2. Blur and focus corrections. Perhaps not as critical as illumination for polygon shape detection,

since the segmentation of object boundary and shape is less sensitive to blur.

3. Filtering and noise removal. Shape detection is somewhat tolerant of noise, depending on the

type of noise. Shot noise or spot noise may not present a problem and is easily removed using

various noise-cleaning methods.

4. Thresholding. This is critical for polygon shape detection methods. Many thresholding methods

are employed, ranging from the simple binary thresholding to local adaptive thresholding methods

discussed later in this chapter. Thresholding is a problematic operation and requires algorithm

parameter fine-tuning in addition to careful control of the light source position and direction to deal

with shadows.

5. Edge enhancements. May be useful for perimeter contour definition.

The Taxonomy of Image Processing Methods 43

6. Morphology. One of the most common methods employed to prepare polygon shapes for

measurement, covered later in this chapter in some detail. Morphology is used to alter the shapes,

presumably for the better, mostly by combinations or pipelines of erosion and dilation operations,

as shown in Fig. 2.5. Morphological examples include object area boundary cleanup, spur

removal, and general line and perimeter cleanup and smoothing.

7. Segmentation. These methods use structure or texture in the image, rather than threshold, as a

basis for dividing an image into connected regions or polygons. A few common segmentation

methods are surveyed later in this chapter.

8. Area/Region processing. Convolution filter masks such as sharpen or blur, as well as statistical

filters such as rank filters or media filters, are potentially useful prior to segmentation.

9. Point processing. Arithmetic scaling of image data point by point, such as multiplying each pixel

by a given value followed by a clipping operation, as well as LUT processing, often is useful prior

to segmentation.

10. Color space conversions. Critical for dealing accurately with color features, covered later in this

chapter.

As shown in Fig. 2.4, a range thresholding method uses the red color channel, since the table

background has a lot of red color and can be thresholded easily in red to remove the table top. The

image is thresholded by clipping values outside an intensity band; note that the bottom right USB stick

is gone after thresholding, since it is red and below the threshold. Also note that the bottom center

white USB stick is also mostly gone, since it is white (max RGB values) and above the threshold. The

right image shows an attempt to trace a perimeter above a threshold; it is still not very good, as more

preprocessing steps are needed.

The Taxonomy of Image Processing Methods

Before we survey image preprocessing methods, it is useful to have a simple taxonomy to frame the

discussion. The taxonomy suggested is a set of operations, including point, line, area, algorithmic, and

data conversions, as illustrated in Fig. 2.6. The basic categories of image preprocessing operations

introduced in Table 2.1 fit into this simple taxonomy. Note that each stage of the vision pipeline,

depending on intended use, may have predominant tasks and corresponding preprocessing operations.

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Classification, Learning

Augment, Render, Control

noitarepOegatSenilepiPnoisiV

Point

Line

Area

Algorithmic

Data conversion

Math

Fig. 2.6 Simplified, typical image processing taxonomy, as applied across the vision pipeline

44 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

We provide a brief introduction to the taxonomy here, followed by a more detailed discussion in

Chap. 5. Note that the taxonomy follows memory layout and memory access patterns for the image

data. Memory layout particularly affects performance and power.

Point

Point operations deal with 1 pixel at a time, with no consideration of neighboring pixels. For example,

point processing operations can be divided into math, Boolean, and pixel value compare substitution

sections, as shown in Table 2.2 in the section later on “Point Filtering.” Other point processing

examples include color conversions and numeric data conversions.

Line

Line operations deal with discrete lines of pixels or data, with no regard to prior or subsequent lines.

Examples include the FFT, which is a separable transform, where pixel lines and columns can be

independently processed in parallel as 1D FFT line operations. If an algorithm requires lines of data,

then optimizations for image preprocessing memory layout, pipelined read/write, and parallel

processing can be made. Optimizations are covered in Chap. 8.

Area

Area operations typically require local blocks of pixels—for example, spatial filtering via kernel

masks, convolution, morphology, and many other operations. Area operations generate specific

types of memory traffic and can be parallelized using fine-grained methods such as common shaders

in graphics processors and coarse-grained thread methods.

Algorithmic

Some image preprocessing methods are purely serial or algorithmic code. It is difficult or even

impossible to parallelize these blocks of code. In some cases, algorithmic blocks can be split into a

few separate threads for coarse-grained parallelism or else pipelined, as discussed in Chap. 8.

Data Conversions

While the tasks are mundane and obvious, significant time can be spent doing simple data conversions.

For example, integer sensor data may be converted to floating point for geometric computations or

color space conversions. Data conversions are a significant part of image preprocessing in many cases.

Example conversions include:

• Integer bit-depth conversions (8/16/32/64)

• Floating point conversions (single precision to double precision)

• Fixed point to integer or float

• Any combination of float to integer and vice versa

Colorimetry 45

• Color conversions to and from various color spaces

• Conversion for basis space compute, such as integer to and from float for FFT

Design attention to data conversions and performance are in order and can provide a good return on

investment, as discussed in Chap. 8.

Colorimetry

In this section, we provide a brief overview of color science to guide feature description, with attention

to color accuracy, color spaces, and color conversions. If a feature descriptor is using color, then the

color representation and processing should be carefully designed, accurate, and suited to the applica-

tion. For example, in some applications it is possible to recognize an object using color alone, perhaps

recognizing an automobile using its paint color, assuming that the vendor has chosen a unique paint

color each year for each model. By combining a color descriptor (see Refs. [805–807], especially van

de Weijer and Schmidt [808]) with another simple feature, such as shape, an effective multivariate

descriptor can be devised.

Color Science is a well-understood field defined by international standards and amply described in

the literature [211–213]. We list only a few resources here.

• The Rochester Institute of Technology’s Munsel Color Science Laboratory is among the leading

research institutions in the area or color science and imaging. It provides a wide range of resources

and has strong ties to industry imaging giants such as Kodak, Xerox, and others.

• The International Commission on Illumination (CIE) provides standard illuminant data for a range

of light sources as it pertains to color science, as well as standards for the well-known color spaces

CIE XYZ, CIE Lab, and CIE Luv.

• The ICC International Color Consortium provides the ICC standard color profiles for imaging

devices, as well as many other industry standards, including the sRGB color space for color

displays.

• Proprietary color management systems, developed by industry leaders, include the Adobe CMM

and Adobe RGB, Apple ColorSync, and HP ColorSmart; perhaps the most advanced is Microsoft’s

Windows Color System, which is based on Canon’s earlier Kyuanos system using on CIECAM02.

Overview of Color Management Systems

A full-blown color management system may not be needed for a computer vision application, but the

methods of color management are critical to understand when you are dealing with color. As illustrated

in Fig. 2.7, a color management system converts colors between the device color spaces, such as RGB

or sRGB, to and from a colorimetric color space, such as CIE Luv, Lab, Jch, or Jab, so as to perform

color gamut mapping. Since each device can reproduce color only within a specific gamut or color

range, gamut mapping is required to convert the colors to the closest possible match, using the

mathematical models of each color device.

46 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.7 Color management system with an RGB camera device model, sRGB display device model, CMYK printer

device model, gamut mapping module, and an illuminant model

Illuminants, White Point, Black Point, and Neutral Axis

An illuminant is a light source such as natural light or a fluorescent light, defined as the white point

color by its spectral components and spectral power or color temperature. The white point color value

in real systems is never perfectly white and is a measured quantity. The white point value and the

oppositional black point value together define the endpoints of the neutral axis (gray scale intensity) of

the color space, which is not a perfectly straight color vector.

Color management relies on accurate information and measurements of the light source, or the

illuminant. Color cannot be represented without accurate information about the light source under

which the color is measured, since color appears different under florescent light versus natural light,

and so on. The CIE standards define several values for standard illuminants, such as D65, shown in

Fig. 2.8.

Colorimetry 47

N
e

u
tr

a
l

A
x
is

White Point

Black Point

Hue Angle
Saturation

red

green

blue

Fig. 2.8 (Left) Representation of a color space in three dimensions, neutral axis for the amount of white, hue angle for

the primary color, and saturation for amount of color present. (Right) CIE XYZ chromaticity diagram showing values of

the standard illuminant D65 OE as the white point, and the color primaries for R, G, and B

Device Color Models

Real devices like printers, displays, and cameras conventionally reproduce colors as compared against

standard color patches that have been measured using calibrated light sources and spectrographic

equipment—for example, the widely used Munsel color patches that define color in terms hue, value,

and chroma (HVC) against standard illuminants. In order to effectively manage colors for a given

device, a mathematical model or device color model must be created for each device, defining the

anomalies in the device color gamut and its color gamut range.

For the color management system to be accurate, each real device must be spectrally characterized

and modeled in a laboratory to create a mathematical device model, mapping the color gamut of each

device against standard illumination models. The device model is used in the gamut transforms

between color spaces.

Devices typically represent color using the primary and secondary colors RGB and CYMK. RGB is

a primary, additive color space; starting with black, the RGB color primaries red, green, and blue are

added to create colors. CYMK is a secondary color space, since the color components cyan, yellow,

and magenta, are secondary combinations of the RGB primary colors; cyan = green plus blue,

magenta = red plus blue, and yellow = red plus green. CYMK is also a subtractive color space,

since the colors are subtracted from a white background to create specific colors.

Color Spaces and Color Perception

Colorimetric spaces represent color in abstract terms such as lightness, hue or color, and color

saturation. Each color space is designed for a different reason, and each color space is useful for

different types of analysis and processing. Examples of simple color spaces include HSV (hue,

saturation, value) and HVC (hue, value, chroma). In the case of the CIE color spaces, the RGB

color components are replaced by the standardized value CIE XYZ components as a basis for defining

the CIE Luv and CIE Lab color spaces.

48 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

At the very high end of color science, we have the more recent CIECAM02 color models and color

spaces such as Jch and Jab. CIECAM02 goes beyond just the colorimetry of the light source and the

color patch itself to offer advanced color appearance modeling considerations that include the

surroundings under which colors are measured [211, 216].

While CIECAM02 may be overkill for most applications, it is worth some study. Color perception

varies widely based on the surrounding against which the colors are viewed, the spectrum and angles of

combined direct and ambient lighting, and the human visual system itself, since people do not all

perceive color in the same way.

Gamut Mapping and Rendering Intent

Gamut mapping is the art and science of converting color between two color spaces and getting the best

fit. Since the color gamuts of each device are different, gamut mapping is a challenge, and there are

many different algorithms in use, with no clear winner. Depending on the intent of the rendering,

different methods are useful—for example, gamut mapping from camera color space to a printer color

space is different from mapping to an LCD display for viewing.

The CAM02 system provides a detailed model for guidance. For example, a color imaging device

may capture the color blue very weakly, while a display may be able to display blue very well. Should

the color gamut fitting method use color clipping or stretching? How should the difference between

color gamuts be computed? Which color space? For an excellent survey of over 90 gamut mapping

methods, see the work of Morovic [214].

In Fig. 2.9 (left image), the sRGB color space is shown as fitting inside the Adobe RGB color space,

illustrating that sRGB does not cover a gamut as wide as Adobe RGB. Each color gamut reproduces

color differently, and each color space may be linear or warped internally. The right image in Fig. 2.9

illustrates one gamut mapping method to determine the nearest color common to both color gamuts,

using Euclidean distance and clipping; however, there are many other gamut mapping distance

methods as well. Depending on the surrounding light and environment, color perception changes

further complicating gamut mapping.

Fig. 2.9 The central problem of gamut mapping: (Left) Color sRGB and Adobe RGB color gamuts created using

Gamutvision software. (Right) Gamut mapping details

Colorimetry 49

In gamut mapping, there is a source gamut and a destination gamut. For example, the source could

be a camera and the destination could be an LCD display. Depending on the rendering intent of the

gamut conversion, different algorithms have been developed to convert color from source to destina-

tion gamuts. Using the perceptual intent, color saturation is mapped and kept within the boundaries of

the destination gamut in an effort to preserve relative color strength; and out-of-gamut colors from the

source are compressed into the destination gamut, which allows for a more reversible gamut map

translation. Using the colorimetric intent, colors may be mapped straight across from source to

destination gamut, and colors outside the destination gamut are simply clipped.

A common method of color correction is to rely on a simple gamma curve applied to the intensity

channel to help the human eye better visualize the data, since the gamma curve brightens up the dark

regions and compresses the light regions of the image, similar to the way the human visual system

deals with light and dark regions. However, gamut correction bears no relationship to the true sensor

data, so a calibrated, colorimetrically sound approach is recommended instead.

Practical Considerations for Color Enhancements

For image preprocessing, the color intensity is usually the only color information that should be

enhanced, since the color intensity alone carries a lot of information and is commonly used. In

addition, color processing cannot be easily done in RGB space while preserving relative color. For

example, enhancing the RGB channels independently with a sharpen filter will lead to Moiré fringe

artifacts when the RGB channels are recombined into a single rendering. So to sharpen the image, first

forward-convert RGB to a color space such as HSV or YIQ, then sharpen the V or Y component, and

then inverse-convert back to RGB. For example, to correct illumination in color, standard image

processing methods such as LUT remap or histogram equalization will work, provided they are

performed in the intensity space.

As a practical matter, for quick color conversions to gray scale from RGB, here are a few methods.

(1) The G color channel is a good proxy for gray scale information, since as shown in the sensor

discussion in Chap. 1, the RB wavelengths in the spectrum overlap heavily into the G wavelengths.

(2) Simple conversion from RGB into gray scale intensity I can be done by taking I = (R + G + B)/3.

(3) The YIQ color space, used in the NTSC television broadcast standards, provides a simple forward/

backward method of color conversion between RGB and a gray scale component Y, as follows:

R

G

B

¼

1 0:9663 0:6210

1 - 0:2721 - 0:6474

1 - 1:1070 1:7046

Y

I

Q

Y

I

Q

¼

0:299 0:587 0:114

0:595716 - 0:274453 - 0:321263

0:211456 - 0:522591 0:311135

R

G

B

Color Accuracy and Precision

If color accuracy is important, 8 bits per RGB color channel may not be enough. It is necessary to study

the image sensor vendor’s data sheets to understand how good the sensor really is. At the time of this

writing, common image sensors are producing 10–14 bits of color information per RGB channel. Each

color channel may have a different spectral response, as discussed in Chap. 1.

50 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Typically, green is a good and fairly accurate color channel on most devices; red is usually good as

well and may also have near infrared sensitivity if the IR filter is removed from the sensor; and blue is

always a challenge since the blue wavelength can be hardest to capture in smaller silicon wells, which

are close to the size of the blue wavelength, so the sensor vendor needs to pay special attention to blue

sensing details.

Spatial Filtering

Filtering on discrete pixel arrays is considered spatial filtering, or time domain filtering, in contrast to

filtering in the frequency domain using Fourier methods. Spatial filters are alternatives to frequency

domain methods, and versatile processing methods are possible in the spatial domain.

Convolutional Filtering and Detection

Convolution is a fundamental signal processing operation easily computed as a discrete spatial

processing operation, which is practical for 1D, 2D, and 3D processing. The basic idea is to combine,

or convolve, two signals together, changing the source signal to be more like the filter signal. The

source signal is the array of pixels in the image; the filter signal is a weighted kernel mask, such as a

gradient peak shape and oriented edge shape or an otherwise weighted shape. For several examples of

filter kernel mask shapes, see the section later in the chapter that discusses Sobel, Scharr, Prewitt,

Roberts, Kirsch, Robinson, and Frei–Chen filter masks.

Convolution is typically used for filtering operations such as low-pass, band pass, and high-pass

filters, but many filter shapes are possible to detect features, such as edge detection kernels tuned

sensitive to edge orientation, or even point, corner, and contour detectors. Convolution is used as a

detector in the method of convolution networks [60], as discussed in Chap. 4.

The sharpen kernel mask in Fig. 2.10 (center image) is intended to amplify the center pixel in

relation to the neighboring pixels. Each pixel is multiplied by its kernel position, and the result (right

image) shows the center pixel as the sum of the convolution, which has been increased or amplified in

relation to the neighboring pixels.

38 52

4335

47

49

42 44 51

–1 8

–1–1

–1

–1

–1 –1 –1

38 67

4335

47

49

42 44 51

=*

–(35 + 43 + 49 + 47 + 51 + 44 + 42 + 38) + (52*8) = 67

Fig. 2.10 Convolution, in this case a sharpen filter: (Left to right) Image data, sharpen filter, and resulting image data

Spatial Filtering 51

A convolution operation is typically followed up with a set of postprocessing point operations to

clean up the data. Following are some useful postprocessing steps; many more are suggested in the

“Point Filtering” section that follows later in the chapter.

switch (post_processor)
{
case RESULT_ASIS:
break;

case RESULT_PLUS_VALUE:
sum + = value;
break;

case RESULT_MINUS_VALUE:
sum - = value;
break;

case RESULT_PLUS_ORIGINAL_TIMES_VALUE:
sum = sum + (result * value);
break;

case RESULT_MINUS_ORIGINAL_TIMES_VALUE:
sum = sum - (result * value);
break;

case ORIGINAL_PLUS_RESULT_TIMES_VALUE:
sum = result + (sum * value);
break;

case ORIGINAL_MINUS_RESULT_TIMES_VALUE:
sum = result - (sum * value);
break;

case ORIGINAL_LOW_CLIP:
sum = (result < value ? value : result);
break;

case ORIGINAL_HIGH_CLIP:
sum = (result > value ? value : result);
break;

}
switch (post_processing_sign)
{
case ABSOLUTE_VALUE:
if (sum < 0) sum = -sum;
if (sum > limit) sum = limit;
break;

case POSITIVE_ONLY:
if (sum < 0) sum = 0;
if (sum > limit) sum = limit;
break;

case NEGATIVE_ONLY:
if (sum > 0) sum = 0;
if (-sum > limit) sum = -limit;
break;

case SIGNED:
if (sum > limit) sum = limit;
if (-sum > limit) sum = -limit;
break;

}

Convolution is used to implement a variety of common filters including:

• Gradient or sharpen filters, which amplify and detect maxima and minima pixels. Examples

include Laplacian.

52 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

• Edge or line detectors, where lines are connected gradients that reveal line segments or contours.

Edge or line detectors can be steerable to a specific orientation, like vertical, diagonal, horizontal, or

omnidirectional; steerable filters as basis sets are discussed in Chap. 3.

• Smoothing and blur filters, which take neighborhood pixels.

Kernel Filtering and Shape Selection

Besides convolutional methods, kernels can be devised to capture regions of pixels generically for

statistical filtering operations, where the pixels in the region are sorted into a list from low to high

value. For example, assuming a 3 × 3 kernel region, we can devise the following statistical filters:

sort(&kernel, &image, &coordinates, &sorted_list);
switch (filter_type)
{
case RANK_FILTER:
// Pick highest pixel in the list, rank = 8 for a 3 × 3 kernel 0..8
// Could also pick the lowest, middle, or other rank
image[center_pixel] = sorted_list[rank];
break;

case MEDIAN_FILTER:
// Median value is kernel size / 2, (3 × 3 = 9)/2 = 4 in this case
image[center_pixel] = sorted_list[median];
break;

case MAJORITY_FILTER:
// Find the pixel value that occurs most often, count sorted pixel values
count(&sorted_list, &counted_list);
image[center_pixel] = counted_list[0];
break;

}

The rank filter is a simple and powerful method that sorts each pixel in the region and substitutes a

pixel of desired rank for the center pixel, such as substitution of the highest pixel in the region for the

center pixel, or the median value or the majority value.

Shape Selection or Forming Kernels

Any regional operation can benefit from shape selection kernels to select pixels from the region and

exclude others. Shape selection, or forming, can be applied as a preprocessing step to any image

preprocessing algorithm or to any feature extraction method. Shape selection kernels can be binary

truth kernels to select which pixels from the source image are used as a group, or to mark pixels that

should receive individual processing. Shape selection kernels, as shown in Fig. 2.11, can be applied to

local feature descriptors and detectors also; similar but sometimes more complex local region pixel

selection methods are often used with local binary descriptor methods, as discussed in Chap. 4.

Spatial Filtering 53

F T

FT

F

T

T F T

Fig. 2.11 Truth and shape kernels: (Left) A shape kernel gray kernel position indicating a pixel to process or use—for

example, a pixel to convolve prior to a local binary pattern point-pair comparison detector. (Right) A truth shape kernel

specifying pixels to use for region average, favoring diagonals—T means use this pixel, F means do not use

Point Filtering

Individual pixel processing is typically overlooked when experimenting with image preprocessing.

Point processing is amenable to many optimization methods, as will be discussed in Chap. 8.

Convolution, as discussed above, is typically followed by point postprocessing steps. Table 2.2

illustrates several common pixel point processing methods in the areas of math operations, Boolean

operations, and compare and substitution operations, which seem obvious but can be quite valuable for

exploring image enhancement methods to enhance feature extraction.

54 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Table 2.2 Possible point operations

// Math ops // Compare and Substitution ops

NAMES math_ops[] = {

"src + value -> dst",

"src - value -> dst",

"src * value -> dst",

"src / value -> dst",

"(src + dst) * value -> dst",

"(src - dst) * value -> dst",

"(src * dst) * value -> dst",

"(src / dst) * value -> dst",

"sqroot(src) + value -> dst",

"src * src + value -> dst",

"exp(src) + value -> dst",

"log(src) + value -> dst",

"log10(src) + value -> dst",

"pow(src ^ value) -> dst",

"sin(src) + value -> dst",

"cos(src) + value -> dst",

"tan(src) + value -> dst",

"(value / max(all_src)) * src -> dst",

"src - mean(all_src) -> dst",

"absval(src) + value -> dst",

};

// Boolean ops

NAMES bool_ops[] = {

"src AND value -> dst",

"src OR value -> dst",

"src XOR value -> dst",

"src AND dst -> dst",

"src OR dst -> dst",

"src XOR dst -> dst",

"NOT(src) -> dst",

"LO_CLIP(src, value) -> dst",

"LO_CLIP(src, dst) -> dst",

"HI_CLIP(src, value) -> dst",

"HI_CLIP(src, dst) -> dst",

};

NAMES change_ops[] = {

"if (src = thresh) value -> dst",

"if (src = dst) value -> dst",

"if (src ! = thresh) value -> dst",

"if (src ! = thresh) src -> dst",

"if (src ! = dst) value -> dst",

"if (src ! = dst) src -> dst",

"if (src > = thresh) value -> dst",

"if (src > = thresh) src -> dst",

"if (src > = dst) value -> dst",

"if (src > = dst) src -> dst",

"if (src < = thresh) value -> dst",

"if (src < = thresh) src -> dst",

"if (src < = dst) value -> dst",

"if (src < = dst) src -> dst",

"if (lo < = src < = hi) value -> dst",

"if (lo < = src < = hi) src -> dst",

};

Noise and Artifact Filtering

Noise is usually an artifact of the image sensor, but not always. There are several additional artifacts

that may be present in an image as well. The goal of noise removal is to remove the noise without

distorting the underlying image, and the goal of removing artifacts is similar. Depending on the type of

noise or artifact, different methods may be employed for preprocessing. The first step is to classify the

noise or artifact, and then to devise the right image preprocessing strategy.

• Speckle, random noise. This type of noise is apparently random and can be removed using a rank

filter or median filter.

• Transient frequency spike. This can be determined using a Fourier spectrum and can be removed

using a notch filter over the spike; the frequency spike will likely be in an outlier region of the

spectrum and may manifest as a bright spot in the image.

• Jitter and judder line noise. This is an artifact particular to video streams, usually due to telecine

artifacts, motion of the camera, or the image scene and is complex to correct. It is primarily line

oriented rather than just single-pixel oriented.

Spatial Filtering 55

• Motion blur. This can be caused by uniform or nonuniform motion and is a complex problem;

several methods exist for removal; see Ref. [261].

Standard approaches to noise removal are discussed by Gonzalez [4]. The most basic approach is to

remove outliers, and various approaches are taken, including thresholding and local region-based

statistical filters such as the rank filter and median filter. Weighted image averaging is also sometime

used for removing noise from video streams; assuming the camera and subjects are not moving, it can

work well. Although deblurring or Gaussian smoothing convolution kernels are sometimes used to

remove noise, such methods may cause smearing and may not be the best approach.

A survey of noise-removal methods and a performance comparison model are provided by Buades

et al. [438]. This source includes a description of the author’s NL-means method, which uses nonlocal

pixel value statistics in addition to Euclidean distance metrics between similar weighted pixel values

over larger image regions to identify and remove noise.

Integral Images and Box Filters

Integral images are used to quickly find the average value of a rectangular group of pixels. An integral

image is also known as a summed area table, where each pixel in the integral image is the integral sum

of all pixels to the left and above the current pixel. The integral image can be calculated quickly in a

single pass over the image. Each value in the summed area table is calculated using the current pixel

value from the image i(n,m) combined with previous entries s(n,m) made into the summed area table,

as follows:

s x, yð Þ ¼ i x, yð Þ þ s x- 1, yð Þ þ s x, y- 1ð Þ- s x - 1, y- 1ð Þ

As shown in Fig. 2.12, to find a HAAR rectangle feature value from the integral image, only four

points in the integral image table A, B, C, D are used, rather than tens or hundreds of points from the

image. The integral image sum of a rectangle region can then be divided by the size of the rectangle

region to yield the average value, which is also known as a box filter .

05 02 05 02

03 06 03 06

05 02 05 02

03 06 03 06

05 07 12 14

08 16 24 32

13 23 36 46

16 32 48 64

05 07 12 14

08 16 24 32

13 23 36 46

16 32 48 64

A

D

B

C

Fig. 2.12 (Left) Pixels in an image. (Center) Integral image. (Right) Region where a box filter value is computed from

four points in the integral image: sum = s(A) + s(D) - s(B) - s(C)

Integral images and box filters are used in many computer vision methods, such as HAAR filters

and feature descriptors. Integral images are also used as a fast alternative to a Gaussian filter of a small

region, as a way to lower compute costs. In fact, descriptors with a lot of overlapping region

processing, such as BRISK [103], make effective use of integral images for descriptor building and

use integral images as a proxy for a fast Gaussian blur or convolution.

56 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Edge Detectors

The goal of an edge detector is to enhance the connected gradients in an image, which may take the

form of an edge, contour, line, or some connected set of edges. Many edge detectors are simply

implemented as kernel operations, or convolutions, and we survey the common methods here.

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei–Chen

The Sobel operator detects gradient magnitude and direction for edge detection. The basic method is

shown here.

1. Perform two-directional Sobel filters (x and y axis) using basic derivative kernel approximations

such as 3 × 3 kernels, using values as follows:

Sy ¼

- 1 - 2 - 1

0 0 0

1 2 1

Sx ¼

- 1 0 1

- 2 0 2

- 1 0 1

2. Calculate the total gradient as Gv = jSx|+|Sy|

3. Calculate the gradient direction as theta = ATAN(Sy/Sx)

4. Calculate gradient magnitude Gm = Sy2 þ Sx2

Variations exist in the area size and shape of the kernels used for Sobel edge detection. In addition to

the Sobel kernels shown above, other similar kernel sets are used in practice, so long as the kernel

values cancel and add up to zero, such as those kernels proposed by Scharr, Prewitt, Roberts,

Robinson, and Frei–Chen, as well as Laplacian approximation kernels. The Frei–Chen kernels are

designed to be used together at a set, so the edge is the weighted sum of all the kernels. See Ref. [4] for

more information on edge detection masks. Some kernels have compass orientations, such as those

developed by Kirsch, Robinson, and others (see Fig. 2.13).

Edge Detectors 57

33

22

–3–3

1010

00

–3–3

33

–10–10

00 00

33

33

1010

00

–3–3

–3–3

–10–1000

00

11

–1–1

00

00

11

–1–1

00

00

00 00 00

1111 11

–1–1–1–1 –1–1

00

00

00

11

11

11

–1–1

–1–1

–1–1

00

00

0011

11 11–4–4 –2–2–2–2

00

00 00

11

11 1111

.5.5 11

11

11

11

11 11

–6–6

.5.5 .5.5

.5.5

11 11

11

–8–8

00

11 –2–2 11

–2–2 11

44

–2–2–2–2

11

11–2–2

44 11

11

–2–2

55

55

55

55

55

55

55

55

55

55 55

55

55

55

55

55 55 55

55

55 55

55

55

–3–3

–3–3

–3–3

–3–3–3–3

–3–3

–3–3 –3–3 –3–3

–3–3

–3–3

–3–3

–3–3

–3–3 –3–3 –3–3

–3–3

–3–3–3–3

55

0055 00

00

–3–3

–3–3 –3–3

–3–3

–3–3 00

–3–3 –3–3

–3–3

–3–3

–3–3

–3–3 –3–3 –3–3 –3–3 –3–3 –3–3

00–3–3 –3–3 00–3–3

–3–3

00 11–1–1

–2–2 00 11–1–1

–2–2

11

00

00

11

–1–1

00

11

–1–1

00 0000

00

00 11 11

–1–1

–1–1

00

00

00

–1–1

–2–2 –1–1 0011–1–1

22 22 22

–2–2

11

22

11

11

00

00

00

–1–1

–2–2

–2–2

11

00

22

–1–1 –2–2

11

–1–1

00

00 00 00 00

–1–1 –2–2 –1–1

11 1122 00

–1–1

–2–2

11 22

11

22

2222

22

00

11

–1–1

0000

–1–1

11 00–1–1 00

00

00–1–1

11

11

11 00 –1–1

–1–1

11

2– 2–

2– 2–

2– 2–

2– 2–
22 22

11

22 22

11

22 22

11

22 22

00

00

11 00

11

–1–1 00

–1–1 –1–1

00

00–1–1 11

00 00 00

11

–1–1 00

00 –1–1

00

00

00

–1–1

–1–1

–2–2

11

11

–2–2 ,,

11

11

11

11 –2–2

11

11

–2–2

–2–2

–2–211–2–2

–2–2

–2–2

44 11

11

11

11

11

11

11

11 11

11 11

1144
11

66

11

66

11

22

11

33
Frei–ChenFrei–Chen

Frei–ChenFrei–Chen

Frei–ChenFrei–Chen

Robinson CompassRobinson Compass

Robinson CompassRobinson Compass

Kirsch CompassKirsch Compass

Kirsch CompassKirsch Compass

LaplaciansLaplacians

RobertsRoberts

PrewittPrewitt

ScharrScharr

11

22
,, ,,

,, ,,

,,

Fig. 2.13 Several edge detection kernel masks

Canny Detector

The Canny method [125] is similar to the Sobel-style gradient magnitude and direction method, but it

adds postprocessing to clean up the edges.

1. Perform a Gaussian blur over the image using a selected convolution kernel (7 × 7, 5, 5, etc.),

depending on the level of low-pass filtering desired.

2. Perform two-directional Sobel filters (x and y axes) and find the edge strength as |G|= |Gx| + |Gy| and

edge direction as theta = ATAN(Gy/Gx) and round the direction to one of the four directions 0, 90,

180, or 270.

3. Perform non-maximal value suppression in the direction of the gradient to set to zero (0) pixels not

on an edge (minima values).

4. Perform hysteresis thresholding within a band (high, low) of values along the gradient direction to

eliminate edge aliasing and outlier artifacts and to create better connected edges.

58 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Transform Filtering, Fourier, and Others

This section deals with basis spaces and image transforms in the context of image filtering, the most

common and widely used being the Fourier transform. A more comprehensive treatment of basis

spaces and transforms in the context of feature description is provided in Chap. 3. A good reference for

transform filtering in the context of image processing is provided by Pratt [9].

Why use transforms to switch domains? To make image preprocessing easier or more effective, or

to perform feature description and matching more efficiently. In some cases, there is no better way to

enhance an image or describe a feature than by transforming it to another domain—for example, for

removing noise and other structural artifacts as outlier frequency components of a Fourier spectrum, or

to compact describe and encode image features using HAAR basis features.

Fourier Transform Family

The Fourier transform is very well known and covered in the standard reference by Bracewell [191],

and it forms the basis for a family of related transforms. Several methods for performing fast Fourier

transform (FFT) are common in image and signal processing libraries. Fourier analysis has touched

nearly every area of world affairs, through science, finance, medicine, and industry, and has been

hailed as “the most important numerical algorithm of our lifetime” [246]. Here, we discuss the

fundamentals of Fourier analysis, and a few branches of the Fourier transform family with image

preprocessing applications.

The Fourier transform can be computed using optics, at the speed of light [231]. However, we are

interested in methods applicable to digital computers.

Fundamentals

The basic idea of Fourier analysis [4, 9, 191] is concerned with decomposing periodic functions into a

series of sine and cosine waves (Fig. 2.14). The Fourier transform is bidirectional, between a periodic

wave and a corresponding series of harmonic basis functions in the frequency domain, where each

basis function is a sine or cosine function, spaced at whole harmonic multiples from the base

frequency. The result of the forward FFT is a complex number composed of magnitude and phase

data for each sine and cosine component in the series, also referred to as real data and imaginary data.

Transform Filtering, Fourier, and Others 59

Fig. 2.14 (Left) Harmonic series of sine waves. (Right) Fourier harmonic series of sine and cosine waves

Arbitrary periodic functions can be synthesized by summing the desired set of Fourier basis

functions, and periodic functions can be decomposed using the Fourier transform into the basic

functions as a Fourier series, see Fig. 2.15. The Fourier transform is invertible between the time

domain of discrete pixels and the frequency domain, where both magnitude and phase of each basis

function are available for filtering and analysis, magnitude being the most commonly used component.

How is the FFT implemented for 2D images or 3D volumes? The Fourier transform is a separable

transform and so can be implemented as a set of parallel 1D FFT line transforms. So, for 2D images

and 3D volumes, each dimension, such as the x, y, z dimension, can be computed in place, in parallel as

independent x lines, then the next dimension or y columns can be computed in place as parallel lines,

then the z dimension can be computed as parallel lines in place, and the final results are scaled

according to the transform. Any good 1D FFT algorithm can be set up to process 2D images or 3D

volumes using parallelization.

Fig. 2.15 Fourier series and Fourier transform concepts showing a square wave approximated from a series of Fourier

harmonics

For accuracy of the inverse transform to go from frequency space back to pixels, the FFT

computations will require two double precision 64-bit floating point buffers to hold the magnitude

and phase data, since transcendental functions such as sine and cosine require high floating point

precision for accuracy; using 64-bit double precision floating point numbers for the image data allows

a forward transform of an image to be computed, followed by an inverse transform, with no loss of

precision compared to the original image—of course, very large images will need more than double

precision.

60 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Since 64-bit floating point is typically slower and of higher power, owing to the increased compute

requirements and silicon real estate in the ALU, as well as the heavier memory bandwidth load,

methods for FFT optimization have been developed using integer transforms, and in some cases fixed

point, and these are good choices for many applications.

Note in Fig. 2.16 that the low-pass filter (center right) is applied to preserve primarily low-frequency

information toward the center of the plot and it reduces high-frequency components toward the edges,

resulting in the filtered image at the far right.

Fig. 2.16 Basic Fourier filtering: (Left) Original. (Center left) Fourier spectrum. (Center right) Low-pass filter shape

used to multiply against Fourier magnitude. (Right) Inverse transformed image with low-pass filter

A key Fourier application is filtering, where the original image is forward-transformed into

magnitude and phase; the magnitude component is shown as a Fourier power spectrum of the

magnitude data, which reveals structure in the image as straight lines and blocks, or outlier structures

or spots that are typically noise. The magnitude can be filtered by various filter shapes, such as high-

pass, low-pass, band pass, and spot filters to remove spot noise, to affect any part of the spectrum.

In Fig. 2.16, a circular symmetric low-pass filter shape is shown with a smooth distribution of filter

coefficients from 1 to 0, with high multiplicands in the center at the low frequencies, ramping down to

zero toward the high frequencies at the edge. The filter shape is multiplied in the frequency domain

against the magnitude data to filter out the higher frequency components, which are toward the outside

of the spectrum plot, followed by an inverse FFT to provide the filtered image. The low-frequency

components are toward the center; typically these are most interesting and so most of the image power

is contained in the low-frequency components. Any other filter shape can be used, such as a spot filter,

to remove noise or any of the structure at a specific location of the spectrum.

Fourier Family of Transforms

The Fourier transform is the basis for a family of transforms [4], some of which are:

1. DFT, FFT. The discrete version of the Fourier transform, often implemented as a fast version, or

FFT, commonly used for image processing. There are many methods of implementing the

FFT [191].

2. Sine transform. Fourier formulation composed of only sine terms.

3. Cosine transform. Fourier formulation composed of only cosine terms.

4. DCT, DST, MDCT. The discrete Fourier transform is implemented in several formulations:

discrete sine transform (DST), discrete cosine transform (DCT), and the modified discrete cosine

transform (MDCT). These related methods operate on a macroblock, such as 16 × 16 or 8 × 8 pixel

region, and can therefore be highly optimized for compute use with integers rather than floating

point. Typically, the DCT is implemented in hardware for video encode and decode applications for

Morphology and Segmentation 61

motion estimation of the macro blocks from frame to frame. The MDCT operates on overlapping

macroblock regions for compute efficiency.

5. Fast Hartley transform, DHT. This was developed as an alternative formulation of the Fourier

transform for telephone transmission analysis about 1925, forgotten for many years, then

rediscovered and promoted again by Bracewell [191] as an alternative to the Fourier transform.

The Hartley transform is a symmetrical formulation of the Fourier transform, decomposing a signal

into two sets of sinusoidal functions taken together as a cosine-and-sine or cas() function, where cas

(vx) = cos(vx) + sin(vx). This includes positive and negative frequency components and operates

entirely on real numbers for input and output. The Hartley formulation avoids complex numbers as

used in the Fourier complex exponential exp(j ω x). The Hartley transform has been developed into

optimized versions called the DHT, shown to be about equal in speed to an optimized FFT.

Other Transforms

Several other transforms may be used for image filtering, including wavelets, steerable filter banks, and

others that will be described in Chap. 3, in the context of feature description. Note that transforms often

have many common uses and applications that overlap, such as image description, image coding,

image compression, and feature description.

Morphology and Segmentation

For simplicity, we define the goal of morphology as shape and boundary definition, and the goal of

segmentation is to define regions with internal similarity, such as textural or statistical similarity.

Morphology is used to identify features as polygon-shaped regions that can be described with shape

metrics, as will be discussed in Chaps. 3 and 6, distinct from local interest point and feature descriptors

using other methods. An image is segmented into regions to allow independent processing and analysis

of each region according to some policy or processing goal. Regions cover an area smaller than the

global image, but usually larger than local interest point features, so an application might make use of

global, regional, and small local interest point metrics together as an object signature.

An excellent review of several segmentation methods can be found in work by Haralick and Shapiro

[272]. In practice, segmentation and morphology are not easy: results are often less useful than

expected, trial and error is required, too many methods are available to provide any strict guidance,

and each image is different. So here we only survey the various methods to introduce the topic and

illustrate the complexity. An overview of region segmentation methods is shown in Table 2.3.

Binary Morphology

Binary morphology operates on binary images, which are created from other scalar intensity channel

images. Morphology [9] is used to morph a feature shape into a new shape for analysis by removing

shape noise or outliers, and by strengthening predominant feature characteristics. For example, isolated

pixels may be removed using morphology, thin features can be fattened, and the predominant shape is

still preserved. Note that morphology all by itself is quite a large field of study, with applications to

general object recognition, cell biology, medicine, particle analysis, and automated microscopy. We

introduce the fundamental concepts of morphology here for binary images, and then follow this section

with applications to gray scale and color data.

62 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Table 2.3 Segmentation methods

Method Description

Morphological

segmentation

The region is defined based on thresholding and morphology operators

Texture-based

segmentation

The texture of a region is used to group like textures into connected regions

Transform-based

segmentation

Basic space features are used to segment the image

Edge boundary

segmentation

Gradients or edges alone are used to define the boundaries of the region with edge linking

in some cases to form boundaries

Color segmentation Color information is used to define regions

Super-pixel segmentation Kernels and distance transforms are used to group pixels and change their values to a

common value

Gray scale/luminance

segmentation

Grayscale thresholds or bands are used to define the regions

Depth segmentation Depth maps and distance from viewer are used to segment the image into foreground,

background, or other gradations of interscene features

Binary morphology starts with binarizing images, so typically thresholding is first done to create

images with binary-valued pixels composed of 8-bit black and white values, 0-value = black and

255-value = white. Thresholding methods are surveyed later in this chapter, and thresholding is critical

prior to morphology.

Binary morphology is a neighborhood operation and can use a forming kernel with truth values, as

shown in Fig. 2.17. The forming kernel guides the morphology process by defining which surrounding

pixels contribute to the morphology. Figure 2.17 shows two forming kernels: kernel a, where all pixels

touching the current pixel are considered, and kernel b, where only orthogonally adjacent pixels are

considered.

Fig. 2.17 3 × 3 forming

kernels and binary erosion

and dilation using the

kernels; other kernel sizes

and data values may be

useful in a given

application. (Image used by

permission, # Intel Press,

from Building Intelligent

Systems)

Morphology and Segmentation 63

The basic operations of morphology include Boolean AND, OR, NOT. The notation used for the

fundamental morphological operations is [for dilation and \ for erosion. In binary morphology,

dilation is a Boolean OR operator, while erosion is a Boolean AND operator. In the example provided

in Fig. 2.17, only kernel elements with a “1” are used in the morphology calculation, allowing for

neighborhood contribution variations. For erosion, the pixels under all true forming kernel elements

are AND’d together; the result is 1 if all are true and the pixel feature remains, otherwise the pixel

feature is eroded or set to 0.

All pixels under the forming true kernel must be true for erosion of the center pixel. Erosion

attempts to reduce sparse features until only strong features are left. Dilation attempts to inflate sparse

features to make them fatter, only 1 pixel under the forming kernel elements must be true for dilation of

the center pixel, corresponding to Boolean OR.

Based on simple erosion and dilation, a range of morphological operations are derived as shown

here, where + = dilation and - = erosion.

Erode G(f) = f - b

Dilate G(f) = f + b

Opening G(f) = (f + b) - b

Closing G(f) = (f - b) + b

Morphological gradient G(f) = f - b or G(f) = f + b - f - b

Morphological internal gradient G i(f) = f - f - b

Morphological external gradient G e(f) = f + b - f

Gray Scale and Color Morphology

Gray scale morphology is useful to synthesize and combine pixels into homogeneous intensity bands

or regions with similar intensity values. Gray scale morphology can be used on individual color

components to provide color morphology affecting hue, saturation, and color intensity in various color

spaces.

For gray scale morphology or color morphology, the basic operations are MIN, MAX, and

MINMAX, where pixels above the MIN are changed to the same value and pixels below the MAX

are changed to the same value, while pixels within the MINMAX range are changed to the same value.

MIN and MAX are a form of thresholding, while MINMAX allows bands of pixel values to be

coalesced into equal values forming a homogenous region.

Morphology Optimizations and Refinements

Besides simple morphology [9], there are other methods of morphological segmentation using

adaptive methods [216–218]. Also, the MorphoLibJ package (also a plugin for imageJ FiJi) contains

one of the most comprehensive and high quality suites of morphological methods including segmen-

tation, filtering, and labeling. The simple morphology methods rely on using a fixed kernel across the

entire image at each pixel and assume the threshold is already applied to the image; while the adaptive

methods combine the morphology operations with variable kernels and variable thresholds based on

the local pixel intensity statistics. This allows the morphology to adapt to the local region intensity and,

in some cases, produce better results. Auto-thresholding and adaptive thresholding methods are

discussed later in this chapter and are illustrated in Figs. 2.24 and 2.26.

64 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Euclidean Distance Maps

The distance map, or Euclidean distance map (EDM), converts each pixel in a binary image into the

distance from each pixel to the nearest background pixel, so the EDM requires a binary image for

input. The EDM is useful for segmentation, as shown in Fig. 2.18, where the EDM image is

thresholded based on the EDM values—in this case, similar to the ERODE operator.

Fig. 2.18 Preprocessing sequence: (Left) Image after thresholding and erosion. (Center) EDM showing gray levels

corresponding to distance of pixel to black background. (Right) Simple binary thresholded EDM image

Super-Pixel Segmentation

A super-pixel segmentation method [219–221] attempts to collapse similar pixels in a local region into

a larger super-pixel region of equal pixel value, so similar values are subsumed into the larger super-

pixel. Super-pixel methods are commonly used for digital photography applications to create a scaled

or watercolor special effect. Super-pixel methods treat each pixel as a node in a graph, and edges

between regions are determined based on the similarity of neighboring pixels and graph distance (see

Fig. 2.19).

Fig. 2.19 Comparison of various super-pixel segmentation methods. (Image # Dr. Radhakrishna Achanta, used by

permission)

Feature descriptors may be devised based on super-pixels, including super-pixel value histograms,

shape factors of each polygon-shaped super-pixel, and spatial relationships of neighboring super-pixel

values. Apparently little work has been done on super-pixel-based descriptors; however, the potential

for several degrees of robustness and invariance seems good. We survey a range of super-pixel

segmentation methods next.

Morphology and Segmentation 65

Graph-Based Super-Pixel Methods

Graph-based methods structure pixels into trees based on the distance of the pixel from a centroid

feature or edge feature for a region of like-valued pixels. The compute complexity varies depending on

the method.

• SLIC Method [220] Simple Linear Iterative Clustering (SLIC) creates super-pixels based on a 5D

space, including the CIE Lab color primaries and the XY pixel coordinates. The SLIC algorithm

takes as input the desired number of super-pixels to generate and adapt well to both gray scale and

RGB color images. The clustering distance function is related to the size of the desired number of

super-pixels and uses a Euclidean distance function for grouping pixels into super-pixels.

• Normalized Cuts [222, 223] Uses a recursive region partitioning method based on local texture and

region contours to create super-pixel regions.

• GS-FH Method [224] The graph-based Felzenszwalb and Huttenlocher method attempts to

segment image regions using edges based on perceptual or psychological cues. This method uses

the minimum length between pixels in the graph tree structure to create the super-pixel regions. The

computational complexity is O(nLog n), which is relatively fast.

• SL Method [224] The Super-pixel Lattice (SL) method finds region boundaries within tiled image

regions or strips of pixels using the graph cut method.

Gradient-Ascent-Based Super-Pixel Methods

Gradient ascent methods iteratively refine the super-pixel clusters to optimize the segmentation until

convergence criteria are reached. These methods use a tree graph structure to associate pixels together

according to some criteria, which in this case may be the RGB values or Cartesian coordinates of the

pixels, and then a distance function or other function is applied to create regions. Since these are

iterative methods, the performance can be slow.

• Mean-Shift [225] Works by registering off the region centroid based on a kernel-based mean

smoothing approach to create regions of like pixels.

• Quick-Shift [223] Similar to the mean-shift method, but does not use a mean blur kernel and

instead uses a distance function calculated from the graph structure based on RGB values and XY

pixel coordinates.

• Watershed [226] Starts from local region pixel value minima points to find pixel value-based

contour lines defining watersheds, or basin contours inside which similar pixel values can be

substituted to create a homogeneous pixel value region.

• Turbopixels [210] Uses small circular seed points placed in a uniform grid across the image around

which super-pixels are collected into assigned regions, and then the super-pixel boundaries are

gradually expanded into the unassigned region, using a geometric flow method to expand the

boundaries using controlled boundary value expansion criteria, so as to gather more pixels together

into regions with fairly smooth and uniform geometric shape and size.

Depth Segmentation

Depth information, such as a depth map as shown in Fig. 2.20, is ideal for segmenting objects based on

distance. Depth maps can be computed from a wide variety of depth sensors and methods, including a

single camera, as discussed in Chap. 1. Depth cameras, such as the Microsoft Kinect camera, are

becoming more common. A depth map is a 2D image or array, where each pixel value is the distance or

Z value.

66 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.20 Depth images from Middlebury Data set: (Left) Original image. (Right) Corresponding depth image. (Data

courtesy of Daniel Scharstein and used by permission)

Many uncertainties in computer vision arise out of the problems in locating three-dimensional

objects in a two-dimensional image array, so adding a depth map to the vision pipeline is a great asset.

Using depth maps, images can be easily segmented into the foreground and background, as well as be

able to segment-specific features or objects—for example, segmenting by simple depth thresholding.

Depth maps are often very fuzzy and noisy, depending on the depth sensing method, so image

preprocessing may be required. However, there is no perfect filtering method for depth map cleanup.

Many practitioners prefer the bilateral filter [258] and variants, since it preserves local structure and

does a better job of handling the edge transitions.

Color Segmentation

Sometimes color alone can be used to segment and threshold, and there are many methods to use color

guidance to processing and segment the image, and we explore various color processing and segmen-

tation methods throughout this chapter. Using the right color component can easily filter out features

from an image. For example, in Fig. 2.5, we started from a red channel image from an RGB set, and the

goal was to segment out the USB sticks from the table background. Since the table is brown and

contains a lot of red, the red channel provides useful contrast with the USB sticks allowing segmenta-

tion via red. It may be necessary to color-correct the image to get the best results, such as gamut

corrections or boosting the hue or saturation of each color to accentuate difference.

Thresholding

The goal of thresholding is to segment the image at certain intensity levels to reveal features such as

foreground, background, and specific objects. A variety of methods exist for thresholding, ranging

from global to locally adaptive. In practice, thresholding is very difficult and often not satisfactory by

itself and must be tuned for the dataset and combined with other preprocessing methods in the vision

pipeline.

One of the key problems in thresholding is nonuniform illumination, so applications that require

thresholding, like cell biology and microscopy, pay special attention to cell preparation, specimen

spacing, and light placement. Since many images do not respond well to global thresholding involving

simple methods, local methods are often required, which use the local pixel structure and statistical

relationships to create effective thresholds. Both global and local adaptive methods for thresholding are

discussed here. A threshold can take several forms:

Thresholding 67

• Floor Lowest pixel intensity allowed

• Ceiling Highest pixel intensity allowed

• Ramp Shape of the pixel ramp between floor and ceiling, such as linear or log

• Point May be a binary threshold point with no floor, ceiling, or ramp

Global Thresholding

Thresholding entire images at a globally determined thresholding level is sometimes a good place to

start to explore the image data, but typically local features will suffer and be unintelligible as a result.

Thresholding can be improved using statistical methods to determine the best threshold levels. Lookup

tables (LUT) can be constructed, guided by statistical moments to create the floor, ceiling, and ramps

and the functions to perform rapid LUT processing on images, or false-color the images for

visualization.

Fig. 2.21 Histogram annotated with arrows showing peaks and valleys, and dotted lines showing regions of similar

intensities defined using hysteresis thresholds

Histogram Peaks and Valleys, and Hysteresis Thresholds

Again we turn to the old stand-by, the image histogram. Peaks and valleys in the histogram may

indicate thresholds useful for segmentation and thresholding [271]. A hysteresis region marks pixels

with similar values and is easy to spot in the histogram, as shown in Fig. 2.21. Also, many image

processing programs have interactive sliders to allow the threshold point and even regions to be set

with the pointer device.1 Take some time and get to know the image data via the histogram and become

familiar with using interactive thresholding methods.

If there are no clear valleys between the histogram peaks, then establishing two thresholds, one on

each side of the valley, is a way to define a region of hysteresis. Pixel values within the hysteresis

1 See the open-source package ImageJ2, and menu item Image → Adjust-Brightness/Contrast for interactive

thresholding.

region are considered inside the object. Further, the pixels can be classified together as a region using

the hysteresis range and morphology to ensure region connectivity.

68 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

LUT Transforms, Contrast Remapping

Simple lookup tables (LUTs) are very effective for contrast remapping and global thresholding, and

interactive tools can be used to create the LUTs. Once the interactive experimentation has been used to

find the best floor, ceiling, and ramp function, the LUTs can be generated into table data structures and

used to set the thresholds in fast code. False-coloring the image using pseudo-color LUTs is common

and quite valuable for understanding the thresholds in the data. Various LUT shapes and ramps can be

devised. See Fig. 2.22 for an example using a linear ramp function.

Fig. 2.22 Contrast corrections: (Left) Original image shows palm frond detail compressed into a narrow intensity range

obscuring details. (Center) Global histogram equalization restores some detail. (Right) LUT remap function spreads the

intensity values to a narrower range to reveal details of the palm fronds. The section of the histogram under the diagonal

line is stretched to cover the full intensity range in the right image; other intensity regions are clipped. The contrast

corrected image will yield more gradient information when processed with a gradient operator such as Sobel

Histogram Equalization and Specification

Histogram equalization spreads pixel values between a floor and ceiling using a contrast remapping

function, with the goal of creating a histogram with approximately equal bin counts approaching a

straight-line distribution (see Fig. 2.23). While this method works well for gray scale images, color

images should be equalized in the intensity channel of a chosen color space, such as HSV

V. Equalizing each RGB component separately and re-rendering will produce color moiré artifacts.

Histogram equalization uses a fixed region and a fixed remapping for all pixels in the region; however,

adaptive local histogram equalization methods are available [266].

Thresholding 69

Fig. 2.23 (Left) Original image and histogram. (Right) Histogram equalized image and histogram

It is possible to create a desired histogram shape or value distribution, referred to as histogram

specification, and then remap all pixel values from the source image to conform to the specified

histogram shape. The shape may be created directly, or else the histogram shape from a second image

may be used to remap the source image to match the second image. With some image processing

packages, the histogram specification may be interactive, and points on a curve may be placed and

adjusted to create the desired histogram shape.

Global Auto Thresholding

Various methods have been devised to automatically find global thresholds based on statistical

properties of the image histogram [440–442] and in most cases the results are not very good unless

some image preprocessing precedes the auto thresholding. Table 2.4 provides a brief survey of auto

thresholding methods, while Fig. 2.24 displays renderings of each method.

Table 2.4 Selected few global auto-thresholding methods derived from basic histogram features [259]

Method Description

Default A variation of the IsoData method, also known as iterative intermeans

Huang Huang’s method of using fuzzy thresholding

Intermodes Iterative histogram smoothing

IsoData Iterative pixel averaging of values above and below a threshold to derive a new threshold above the

composite average

Li Iterative cross-entropy thresholding

MaxEntropy Kapur-Sahoo-Wong (Maximum Entropy) algorithm

Mean Uses mean gray level as the threshold

MinError Iterative method from Kittler and Illingworth to converge on a minimum error threshold

Minimum Iterative histogram smoothing, assuming a bimodal histogram

Moments Tsai’s thresholding algorithm intending to threshold and preserve the original image moments

Otsu Otsu clustering algorithms to set local thresholds by minimizing variance

Percentile Adapts the threshold based on preset allocations for foreground and background pixels

RenyiEntropy Another entropy-based method

Shanbhag Uses fuzzy set metrics to set the threshold

Triangle Uses image histogram peak, assumes peak is not centered, sets threshold in largest region on either

side of peak

70 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.24 Renderings of selected auto-thresholding methods. (Images generated using ImageJ auto threshold plug-ins

[259])

Local Thresholding

Local thresholding methods take input from the local pixel region and threshold each pixel separately.

Here are some common and useful methods.

Local Histogram Equalization

Local histogram equalization divides the image into small blocks, such as 32 × 32 pixels, and computes

a histogram for each block, then re-renders each block using histogram equalization. However, the

contrast results may contain block artifacts corresponding to the chosen histogram block size. There

are several variations for local histogram equalization, including Contrast Limited Adaptive Local

Histogram Equalization (CLAHE) [260].

Integral Image Contrast Filters

A histogram-related method uses integral images to compute local region statistics without the need to

compute a histogram, then pixels are remapped accordingly, which is faster and achieves a similar

effect as shown in Fig. 2.25.

Thresholding 71

Fig. 2.25 Integral image filter from ImageJ to remap contrast in local regions, similar to histogram equalization: (Left)

Original. (Center) 20 × 20 regions. (Right) 40 × 40 regions

Local Auto Threshold Methods

Local thresholding adapts the threshold based on the immediate area surrounding each target pixel in

the image, so local thresholding is more like a standard area operation or filter [440–442]. Local auto

thresholding methods are available in standard software packages.2 Figure 2.26 provides some

example adaptive local thresholding methods, summarized in Table 2.5.

Fig. 2.26 Renderings of a selected few local auto and local thresholding methods using ImageJ plug-ins [259]

2 See the open-source package ImageJ2, menu item Image → Adjust → Auto Local Threshold | Auto Threshold.

72 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Table 2.5 Selected few local auto-thresholding methods [259]

Method Description

Bernsen Bernsen’s algorithm using circular windows instead of rectangles and local midgray values

Mean Uses the local gray level mean as the threshold

Median Uses the local gray level mean as the threshold

MidGrey Uses the local area gray level mean—C (where C is a constant)

Niblack Niblack’ s algorithm is:

p = (p > mean + k * standard_deviation - c)? object:background

Sauvola Sauvola’s variation of Niblack:

p = (p > mean * (1 + k * (standard_deviation/r - 1)))? object:background

DNN Segmentation

Segmentation is another term for morphology: both are concerned with defining the boundaries of

regions, or thinking in the inverse direction, segmentation groups associated pixels together under

various criteria such as color or brightness. Several methods for segmentation exist. However, while

older systems were primarily concerned with simpler segmentation and morphology methods, newer

segmentation methods using deep learning have been developed which can divide an image into

regions by assigning a class to each pixel as surveyed below also.

A critical and fundamental part of the human visual system is segmentation, where the visual scene

is divided into regions which are persistent in visual memory as we look around. The segmentation

process is constantly happening—the visual system is continually adjusting the segmentation criteria

according to the scene changes and according to the current attentional focus and goal for visual

analysis. So, there are several segmentations under consideration concurrently at any one time in the

visual cortex, apparently computed at different focal points and stored in short-term visual memory, at

hand for visual analysis, and what-if queries by the central cortex reasoning executive.

DNN Segmentation 73

Fig. 2.27 The simultaneous variant granularity of segmentations kept at attention in short-term visual memory in the

visual cortex for use by the central reasoning executive for what-if analysis and scene queries; super-pixel methods

shown here

Figure 2.27 shows several example simultaneous segmentations like those maintained in the visual

cortex for each scene, each with different levels of detail and color focus. Each segmentation region

may be further refocused and divided into subregions according to their task at hand, to locate

particular objects, shapes, color, lighting, and combinations.

Following along the lines of BERT, GPT, and large NLP foundation models, the Segment Anything

Model [1011] from Kirillov et al. contains the largest collection of training images, with over 1 billion

learned segmentation masks from 11 M training images. This work is a major milestone in segmenta-

tion and we urge readers to read the paper since we did not survey this method here. Various learning

methods are described which enable zero-shot AML style learning and interpolations of new

segmentations by interpolating between segmentations in the model, so new segmentations are learned

on the fly. For more on AML, see The AI third wave: Continuous Learning and Multimodal Models

and Associative Multimodal Learning (AML) Chap. 12.

Segmentation: Semantic, Instance, Panoptic

Segmentation can be described using different terms depending on the segmentation analysis goals. In

one scenario, the goal is to assign each pixel to a class label and perhaps color each segmented region

the same: this has been called semantic segmentation. Another goal is to delineate pixel regions

describing a particular object class to count them and perhaps color each instance separately, such as

people or cars—this has been called instance segmentation. As shown in Fig. 2.28, Kirillov et al. [930]

develop a method of combining semantic and instance segmentation into a single system, which they

refer to as Panoptic segmentation, see Fig. 777. Several other panoptic segmentation systems have

been proposed since Kirillov, for example a similar system is proposed by deGeus et al. [931].

74 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.28 The segmentation terminology. (Image (C) Kirillov et al. [930])

The term panoptic segmentation as defined by Kirillov et al. is intended to enlarge the scope of

segmentation to better assist in scene analysis, by “including everything visible in one view” under the

panoptic umbrella. As the authors state, panoptic becomes a more global view of segmentation, where

every pixel in an image must be assigned to a class, and color-coded accordingly, including location

and positional information of all segments. An evaluation metric is also suggested, Panoptic Quality

(PQ), in order to evaluate the effectiveness of any given panoptic segmentation method, leading to the

development of more and better methods by comparing PQ scores, which is a good idea.

Note that since panoptic segmentation is a more recent term used by some practitioners to describe

the combination of instance and semantic methods (*some practitioners do not use the term panoptic),

the panoptic practitioners also propose to rename the other established segmentation terms to fit the

panoptic distinctions, by renaming segmentation terms into the vernacular: as ‘things’ and ‘stuff’ .

Lst ¼ stuff : semantic segmentation, classes colored equally

Lth ¼ things : instance segmentation, instances colored separately

L ¼ Lst [Lth ¼ things þ stuff ¼ panoptic segmentation

DNN Segmentation 75

Refer to Fig. 2.28

Alternatively,

thingsþ stuff ¼ pile *in the vernacular :ð Þ

DNN architectures have been designed specifically to segment images using U-Nets which vary

from the standard LeNet style as described in Chaps. 9 and 10. The computations resourced required

for DNN segmentation are begging to be suitable for general use, approaching real-time use. We will

survey some of the DNN segmentation methods here.

U-Nets for Segmentation, W-Nets

Possibly the most influential method for deep learning neural network segmentation came in 2015 with

the U-Net method proposed by Ronneberger et al. [932] intended for biomedical image segmentation

and cell biology. The U-Net is a symmetrical architecture; there is an input encoder which processes

the input image to downscale features into scaled encodings, and an output decoder section which

processes the input encodings by upscaling, using skip-connections to feed forward original pixel

details.

The U-Net architecture is a specialization of the encoder-decoder architecture. The U-Net, in some

respects, acts like a like a multi-resolution image pixel feature compressor, which creates pixel feature

embeddings at multiple resolutions, connected serially to a multilevel feature expander which decodes

the feature embeddings at various resolutions to re-project into image space, reconstructing features at

multiple levels of resolution.

Fig. 2.29 The symmetrical U-Net architecture. (Image (C) 2015 Olaf Ronneberger et al. [932])

76 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

The U-Net is divided into two halves as shown in Fig. 2.29:

• Encoder: The encoder is like a contracting down-sampler which reduces the resolution of the image

to several levels in a set of progressively down-sampled feature layers. The features represent

different levels of detail. Each level of detail is passed forward to the corresponding resolution in the

decoder section using long skip connections, intended to preserve all frequency details for optimal

resolution.

• Decoder: The decoder is like an expanding up-sampler which extrapolates new features, simulta-

neously increasing the feature resolution size while decreasing the feature size until it reaches a

single pixel—the last layer of features created are a single pixel in size, at full image resolution. The

new features are optimized by combining features in the decoder path at each level with

corresponding features from the encoder for the same level of resolution. The encoder features

are carried forward using the long skip-connections shown as gray arrows in Fig. 2.29. Features in

the encoder path still retain higher resolution details which are lost in the decoder path due to down-

sampling, so both encoder and decoder features are combined to perform the final segmentation and

up-sampling. The decoder up-sampling process continues until the full-sized image is represented at

the pixel level in a segmented manner at full pixel resolution. The output includes a binary

segmentation mask for each segmented region (0-pixel = not in region, 1-pixel = in region).

Note that the encoder and decoder are symmetrical with respect to image resolution: the idea is to

encode at multiple resolutions, and then decode to reconstruct each learned and encoded pixel feature

at each level of higher resolution until the image is reconstructed at the final resolution (input

resolution = output resolution).

The decoder stage is where the encoded image is translated into the segmentation map. For each

layer, skip connections carry and crop the encoded image at the corresponding input layer and

resolution across the U-Net in the corresponding resolution decoder stage—the skip value is linearly

combined with the result passed forward from the prior segmentation decoder layer; the intuition is that

the combination of values will smooth out disturbances and spikes in the data, since the original

encoded data would otherwise be lost.

Until the model is completely trained, the binary segmentation masks will have problems such as

broken or incomplete borders around some pixel regions. The U-Net training process includes a cross-

entropy loss function which produced weights to prioritize the importance of pixels when creating the

masks. The masks are trained by comparing the ground truth masks with learned masks, using the loss

parameter to tune parameters successively for each training sample, until the mask accuracy is optimal.

The U-Net authors use a training process incorporating data augmentation to add more samples to

the training set. The augmentations chosen should be realistic in terms of the type of images used for

the segmentation application, and for the original medical apps tested against the U-Net,

augmentations included affine transforms like rotation, scaling, and shifting, as well as gray scale

modifications for contrast and brightness, and random and random elastic deformations which are

especially useful in medical images because (to put it colloquially) biological samples are often

“squishy,” meaning that the outputs of the elastic deformations are still “realistic.”

See the General Robustness Taxonomy section in Chap. 5 for details on data augmentation

methods, as well as Chap. 7, Fig. 7.1.

Major features of U-Net and key intuitions are summarized here.

• U-Net combines a contracting path of down-sampled resolution and a symmetric up-sampling path

to enable precise pixel locations to be grouped semantically.

• U-Net is designed to avoid losing resolution and high frequency detail, as seen in the typical CNN

pooling layers that reduce resolution, since typical CNN’s funnel all data down in resolution to a

DNN Segmentation 77

final FC layer (see Chap. 9) which has no WHERE information <x,y coordinates>, just WHAT

information (i.e., learned features representing kernel functions). CNN’s models and FC classifiers

do not contain any positional information—they produce and operate on position-less puzzle

pieces.

• U-Net replaces the pooling layers with up-sampling layers using transpose convolution to

up-sample and increase resolution in the decoder path, see Fig. 2.29.

• Long skip-connections are used to pass down-sampled features across several layers of the U-Net to

carry forward resolution detail to the decoding stage to preserve detail. See Drozdzal et al. [934] for

more details on long skip connections.

• The encoder makes something analogous to spatially condensed super-pixels; the decoder

EXPANDS super-pixels incorporating the resolution detail from the encoder.

• The original use of short skip-connections (ResNets He et al. 2015 surveyed in Chap. 10) was for

fixing problems with gradient descent training when near-zero values would otherwise be encoun-

tered, so short skip-connections bypassing a single layer fixed the problem by “passing over a weak

connection” and propagating values forward that would otherwise be lost. The short skip-

connections smooth out the basin of attraction during gradient descent computations by eliminating

near-zero values that act as transients.

• The U-Net operates on arbitrary sized images; this is very different and a major innovation

compared to typical CNN’s which use a fixed-size input image pipeline for both training and

inference.

• U-Net can be trained on small datasets, which is also a major advantage, and a departure from the

huge training sets often used to train DNN’s. To augment the training set, training data are

augmented using image augmentations including elastic deformations to introduce specific invari-

ance into the model.

As shown in Fig. 2.29, the image input stage (the encoder stage) on the left carries full resolution

image tiles which are processed and passed on to the next layer. Each layer is convolutionally

processed using 3 × 3 convolution and weight matrices and RELU, then down-sampled 2× using a

max pool layer (shown as a red arrow) prior to passing the image tiles forward to the next layer (see

Fig. 2.31).

The up-convolution shown by the 2 × 2 green arrows in the decoder stage up-samples the image

using transposed convolution, as shown in Fig. 2.30, to be inversely symmetric with the corresponding

max-pool down-sampling in the input encoder layer—to simulate higher image resolution to be

combined with the skip-connection data. To understand transposed convolution with a 3 × 3 kernel

example, we point out that a normal 2d convolution (without image padding) with stride 1 reduces the

image output size by removing a single row from the top, bottom, and a single column from the left and

right edges of the image (n = 2), while a 2 × 2 convolution only removes one row and one column from

the output (n - 1). So, transposed convolution performs the inverse, to add the lost outer perimeter

rows/columns back into the output image by using a rearrangement of the kernel by adding zeros to

pad the output and make it larger (see Fig. 2.30).

78 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.30 Transpose Convolution to up-sample an image. This example uses an up-sampling stride of 2 and a 2 × 2

kernel, the transpose method is like an inverse convolution that pads the image in order to fill-in image details from small

to large—normal convolution makes the image smaller by 1 row and 1 column for a 2 × 2 kernel size

U-Net outperforms previous segmentation methods on a variety of benchmarks, has become a

standard go-to architecture for segmentation, and has been extended and improved by several

researchers. For example, the UNet++ version uses a redesigned skip connection method to connect

a set of several shallow independent U-Nets at the same resolution via the redesigned skip connections.

The U-Net has also been extended to cover 3D segmentation—for details see Çiçek et al. [933]. W-Net

[991] from Wu et al. is another U-Net variant, which improves on the U-Net embeddings by passing

them forward to a second stage U-Net for pixel embedding learning. The resulting architecture

contains two sequentially connected U-Nets, so the resulting network is W-shaped. The second

stage U-Net learns pixel embeddings, improving from the first stage using a distance regression

model to create additional distance embeddings, which are concatenated onto the first stage pixel

embeddings, which promotes faster clustering of similar pixel embeddings.

U-Nets are a very successful architecture, developed and modified for a range of applications

besides segmentation. For a taxonomy and review of U-Net variants, including volumetric 3D U-Nets,

see Azad et al. [935] (Fig. 2.31).

Fig. 2.31 U-Net Segmentation results showing pairs of ground truth reference images and segmented images: ground

truth (a, c) and segmentation results (b, d). (Image (C) 2015 Olaf Ronneberger et al. [932])

CNN Segmentation Methods 79

CNN Segmentation Methods

Convolutional neural networks using FFN architectures were used for successful segmentation

systems prior to the U-Net and provided some inspiration. (For details on CNN and FNN

architectures, see Chaps. 9 and 10.) U-Net is currently among the most effective methods for

CNN-based segmentation.

Segmentation is a form of region proposal. Typically, segmentation algorithms either scan the

image multiple times to locate objects for segmentation in several passes, or else find a way to locate

regions and detect objects in one pass. For some segmentation algorithm, object detection guides

segmentation.

CNN segmentation algorithms try to identify all pixels that are part of the detected object class. For

example, if a car is detected, all the pixels contained on the car will be segmented together into a group.

However, the algorithmic details of how each pixel is assigned to the detected class vary with each

segmentation method and are outside the scope if this survey. But at a high level, the classifier section

of the DNN first detects the class object as a set of features in a set of feature maps of learned features,

then the pixels in each detected feature matching the class are identified positionally by mapping

backwards from the detected feature maps to the actual positions in the image where the feature is

found. This method is not fool proof, since occlusion and other problems might prevent each pixel

from being properly assigned to the detected class, but it works well enough most of the time.

We survey CN region proposal methods and segmentation methods in the following sections.

One earlier segmentation example is the FCN Segmentation Network developed by Long et al.

[936], which is a feed-forward neural network architecture. Another more recent example of CNN

segmentation approach is the Mask RCNN from He et al. [937] which creates mask proposals for

analysis. We will briefly review both methods in later sections. We will also look at the history of CNN

segmentation methods next, including a very brief survey of a few key innovations along the way.

CNN Segmentation History

Here we briefly review the historical progression of segmentation methods, from the earliest FCN

method, through RCNN methods, and finally on to Mask RCNN, one of the most recent accepted

methods.

To start, the FCN method from Long et al. 2014 [936] was likely the first FFN to be devised for

pixel-level segmentation, capable of assigning a class label to each pixel in an image. We survey FCN

in more details later.

Next, RCNN from Girshick [937] generates rough segmentations or sub-segmentations from the

image as candidate regions, combining similar regions together into larger regions to represent the

final candidate region proposals—2000 regions were generated as the default. The main idea is that the

RCNN learns features via standard CNN gradient descent training, and then feeds the features to an

SVM classifier to locate target objects, with refinements to accurately create the four-coordinates <x,y,

dx,dy> of the bounding boxes localizing the objects. The candidate search algorithm is hard-coded, not

learned.

Next, Girshick, Ren, He, and Sun made improvements to RCNN called Fast R-CNN [938], which

generated the region proposals directly from the CNN model feature map at a fixed size to feed into an

FC layer for softmax classification, replacing the SVN classification.

80 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Next, Ren, Girshick et al. [939] improved his own Fast R-CNN by devising the FASTER R-CNN

method to directly generate region proposals without needing to separately generate the 2000 region

proposals as in FAST-RCNN.

Finally, the most recent method we review is Mask RCNN from He et al. [937], which is further an

optimization of Faster R-CNN method from Girshick, Ren et al. [939], based on earlier work on FAST-

RCNN and RCNN. We survey Mask RCNN in more details later.

FCN Segmentation Method

The FCN segmentation network from Long et al. [936] was likely the first FFN to be devised for pixel-

level segmentation, capable of assigning a class label to each pixel in an image. FCN is an end-to-end

solution to segmentation and does not require pre- or postprocessing steps, such as supervised

pretraining, or precomputing superpixels or region proposals as other existing methods.

FCN was informed from the best earlier work in CNN architectures available in 2014, such as

AlexNet, VGG-Net, and GoogLeNet, see Chap. 10 for details on these CNN’s and others.

CNN’s learn features at a coarse granularity, due to the size limitations of the input images, and also

due to the strides taken from input resolution to final layers, which can be 10× or more coarser than the

input layer. To overcome the loss of resolution and positional accuracy, FCN also used a novel skip

connection method to combine various levels of pixel granularity from coarse to fine, deep, and

shallow, to preserve appearance details at each resolution in the network to generate accurate details

for each pixel <x,y coordinate>, and also to preserve pixel positional accuracy for creating the

segmentation boundaries.

Other key findings from the FCN research include:

• The authors experimented with methods for preserving spatial resolution and pixel positions in the

areas of pooling, stride, and convolutional filter size; the design reflects the key learnings.

• Also, training data augmentation by jittering at the pixel level was tried but produced no noticeable

improvement.

• Also, training on a grid of larger overlapping image patches (i.e., patch sampling) produced no

significant improvement over whole-image training.

The FCN was the first successful FNN method for training pixel-level classification for segmenta-

tion using a single FNN and achieved excellent benchmark results for its time.

Mask RCNN Method

Mask RCNN from He et al. [937] combines the best of Faster RCNN and FAST RCCN, and RNN in

one architecture. MASK-RCN is both a region proposal method for generating masks and a segmen-

tation method combined; realized as polygon-shaped regions segmentations containing all pixels in an

object from a trained class.

Mask R-CNN adds a branch prediction feature to generate object masks that run in parallel with the

bounding box predictor. The objects in the image and the segmentation masks are detected simulta-

neously. Mask R-CNN is simpler to generalize to incorporate other object description tasks, such as

pose estimation, in the same network. The reported benchmark scores for the 2016 COCO challenge

outperformed all other methods.

CNN Segmentation Methods 81

Region Proposals, Rectangular, Segmented Polygon Regions

Note that segmentation is a method of generating polygon-shaped region proposals; other methods for

object detection commonly generate rectangular region proposals; rectangular regions and polygonal

regions each have the applications.

Region proposals can be generated with or without DNN’s, using other methods for segmentation

and morphology, which we discuss in this chapter as well as Chap. 6. However, DNN methods for

region proposal generation have proliferated with available computer power and larger training sets.

Segmentation methods and morphology can use regional proposal networks, otherwise referred to

as object detection networks, which may generate either polygonal regions, or more commonly

rectangular bounding box regions.

Masks or region proposals, commonly implemented as bounding boxes around objects like people

or cars, are fundamental methods of object detection: the regions grossly segment an image into

collections of overlapping regions of interest, which can be fed forward to various region analysis

networks for object analysis tasks, such as pose analysis of human shapes and joints, or position and

orientation analysis of vehicles in self-driving car systems.

Optimizations to the CNN-based region proposal methods exist under one-shot and two-shot

detector methods. YOLO and SSD use a single-pass through the CNN to detect and segment objects

in one shot, while RCNN, FCN, and Mask RCNN use a two-pass method: the first pass generates the

region proposals, the second pass detects objects within the proposed regions. We survey each of these

methods in more detail below.

Object Detectors and Object Descriptors

In the context of segmentation using CNN neural networks, note that RCNN, Fast-CNN, and Faster-

CNN are multi-shot object detectors, each generating rectangular object region proposals which can be

used for object detection, rather than segmentation, since segmentation is another type of region

proposal for object detection: a polygon-shaped region proposal. Each of the CNN networks is trained

on a dataset, such as Imagenet or COCO, and can detect objects in the training set, then create a

bounding box around the objects, as well as classify each pixel detected for the object class.

NOTE: Besides CNN methods of segmentation and object detection such as RCNN, object

detection and object description are generic terms applied across diverse computer vision methods.

Note that in this chapter we survey a wide range of basic color-based segmentation methods, and in

Chap. 6, we survey many methods of detecting objects without CNN’s.

For example, see Fig. 6.31 and Chap. 6; polygon-shaped descriptors used for particle analysis,

which uses a perimeter-following detector algorithm to segment regions of specific pixel values (such

as binary segmentation) or sets of pixel values within the range [n. . .m] to isolate a group of pixels.

Also, many other methods of object detection and segmentation can be found in this chapter. Here we

put segmentation region proposals into the context of generic object detectors. Note that one method

for object detection uses a combination of Interest Point Detectors like FAST and Harris methods and

Feature Descriptors like SURF and SIFT to describe the regions surrounding the interest points.

For machine learning methods using neural networks, often the object detector finds regions of

pixels within rectangular grids, while the object feature is a DNN learned feature trained on multiple

samples used together with some trained classifier such as a FC Softmax or SVM. Either way, we have

the same paradigm for detectors (Table 2.6):

Object Detectors: learned—OR handcrafted mathematically described

Object Descriptors: learned—OR handcrafted mathematically described

Segmentation: can use Object Detectors or Object Descriptors

82 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Table 2.6 The concepts of feature learning vs. handcrafted feature description; for more, see Chap. 6; Interest Point

Detector and Feature Descriptor Survey

Interest Point Detector

• Mathematical

• Positional Detector

Feature Descriptor

• Handcrafted

• Surrounds Interest Point

Object Detector

• Learned by CNN

• Positional Detector

Object Features

• Trained by CNN

• Learned Descriptor Set

Laplace

Moravic

Harris

Hessian

FAST

SUSAN

. . .

Perimeter-Followers

Color Segmentation

. . .

SIFT

SIFT-PCA

SURF

BRISK

FREAK

. . .

Histograms

. . .

One Stage Detectors

• YOLO

• SSD

Two Stage Detectors

• RCNN

• FCN

• MaskRCNN

CNN

Transformer

Object detectors are a commodity item. Many pretrained object detector models are available from

open source github and public ONYX models, and available from major companies such as Apple,

Google, OpenAI, Microsoft, Meta, and more. Pretrained object models are available for applications

such as human body analysis (20 or more body joints for activity analysis), facial expression points

(30 or more points for emotion and age recognition), and hand models (includes 20 or more points for

hand/finger joint detection), self-driving car applications (detect cars, signs, people, . . .), animal

detection, and more. Next we will look at various single-shot region proposal methods and the various

search strategies to find them (i.e., object detectors), particularly those used for segmentation.

Single Shot Object Detection: SDD and YOLO

Single Shot Object Detection (SSD) methods make predictions about the presence or absence of

objects within a region of the image in a single-pass, by objects from trained object classes such as

Imagenet. The end goal is to devise an object detection image search strategy that is effective under

various constraints, and that can be optimized.

Here we discuss single-pass detectors in general, then we provide more detailed surveys of two

specific one-shot methods:

• YOLO from Redmon et al. [941].

• SSD Single Shot Multibox Detector [942] by Liu et al.

Single-shot detectors, like two-shot or multi-shot detectors, assign all relevant pixels in the image to

the detected class object and create a bounding box around the region and optionally label the region.

The single-pass operation makes SSD computationally efficient. However, single shot detectors can be

less accurate for detecting smaller image objects due to the internal algorithm used to subdivide the

image into a set of smaller grid regions, each of which can be searched separately but may some

objects.

Instead of using sliding window, single-shot methods in this survey divide the image using a grid,

where each grid cell is processed separately by the detector. Detection of objects simply means

predicting the class and location of an object within each grid cell region by passing the grid section

into the CNN.

Since objects may overlap the hard grid cell regions, the term “anchor box” is often used to describe

the offsets for overlapping boxes crossing grid cells to locate objects that span grid cells. Also, an

aspect ratio prior is defined in the object detection framework to account for objects that may have a

slightly different pixel aspect ratio due to affine deformation (i.e., warped shapes), so objects may be

recognized under affine deformations. Also, a zoom level range prior can be used to find objects closer

or farther away, or just different sized.

CNN Segmentation Methods 83

NOTE: YOLO and SSD are not the first methods to devise novel search single-pass strategies—

similar methods have been employed in computer vision for treatment of object scales, occlusion of

objects, and other issues. To dig deeper into search strategies, see Chap. 3, Search Strategies and

Optimizations. Also, see The SWiN transformer (Chap. 11) which also divides the input image space

into a hierarchical multi-scale grid of cells for both feature learning and object detection, using a

shifted window approach to traverse and overlap between the grid cells.

Single-shot detector inference scores are not always correct, mostly due to the grid size restrictions,

and are subject to image scale problems, occlusion, and partial overlap of objects between grid regions.

However, grids are preferred over sliding window style detectors like CNN style n × n template masks,

which do not allow for partial object detection outside the n × n region—the entire object must be

present inside the n × n template mask for a solid correlation match.

SSD

The SSD segmentation method by Liu et al. [942] is a one-shot approach using an FFN. The SSD

architecture includes a backbone with a VGG-16 section followed by a set of additional layers at the

end of the backbone, which predict alignment offsets and rectangular regions for different scales and

offsets of the best scoring regions. Also, the detector uses multiple feature map scales that represent

different resolutions for multi-scale detection.

Fig. 2.32 The SSD architecture, composed of a VGG-16 network followed by added layers for region alignment of the

best scoring objects. (Image (C) Liu et al. [942], courtesy Springer ECCV)

As shown in Fig. 2.32, convolutional feature layers are added to the end of the truncated VGG

backbone, each added layer being progressively lower resolution to allow multi-scale predictions. SSD

predicts feature matches at multiple scales, and this is a key innovation compared to other detectors that

operate on a single resolution of features.

SSD eliminates the tedious proposal generation stages and pixel/feature resampling stages of multi-

pass methods by combining all computations in a one-pass network approach to optimize computer

performance, which also simplifies training, which only requires the input image and corresponding

default ground truth boxes for each image. For each box, the shape and offset and confidence scores are

predicted for all object classes in the trained model.

84 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

YOLO

The YOLO method (You Only Look Once) from Redmon et al. [941] is an optimized feature detector

which has influenced much follow-on research into subsequent improvements and versions (YOLO

versions 1–12 at least). Both low-power and highly performant versions of the code have been

developed in various versions using C++ and Python, running on CPU, or parallelized for GPU’s.

The code versions are mostly open-sourced.

Until YOLO, detectors worked by sequentially operating on regions of the image searching for

targets—several sequential searches (look many times). However, YOLO instead parallelized the

detector search, so the image was only searched once (you only look once). YOLO divides the

image into search regions and predicts one or more bounding boxes within the regions, and scores

the detections in each bounding box with a probabilistic weighting. So, YOLO developed an optimized

approach for subsequent detectors to follow.

YOLO’s regional grid search method provides clear performance and classification advantages over

other detectors using single classifier CNN’s that require hundreds or thousands of sequential

predictions over the entire image. And YOLO looks at the entire image in a global context all at

once inside each grid (which is simple to parallelize in software on GPU’s), enabling a faster, simpler,

and intuitive method of comparing detection scores over the grid regions across the entire image,

providing a global context to the classifier (see Fig. 2.33).

Here, we will survey and refer to the latest version of YOLO-7 and omit the history of progressive

developments and improvements since the inception in 2015. YOLO uses a single-shot detector using

a fully convolutional neural network (CNN) to process an image. YOLO is not like the other region

detectors in the RCNN family, so we will dig into the differences below. YOLO can provide a

classification score for up to 9000 trained classes within a grid of image regions in a single pass and

can operate in real-time on the right hardware.

Fig. 2.33 Key concepts of YOLO: S×S grid applied to image for detector searching; Class probability map generated by

detector search shows strongest class similarity grid cells; Bounding box candidates generated from grid cells; Final

detections showing regions of highest scoring classes with generated bounding boxes. (Image (C) Joseph Redmon et al.

[941], courtesy Springer and CVPR)

Segmented Region Descriptors: Color and Texture 85

YOLO version YOLO 9000 has demonstrated superior results by being trained jointly on a

combination of Imagenet and COCO training data—this provides about 9000 trained object classes,

giving YOLO the ability to detect objects in each class, and also to detect objects with no labeled

training data at a high probability which fall outside or in between the 9000 trained classes (i.e., multi-

class interpolation or zero-shot learning).

First, YOLO splits the input image into a search grid, and then assigns each grid region a set of

n subregional bounding boxes in the grid. Each bounding box is evaluated with the class detectors and

assigned a classification score after validation against a scoring threshold value; object scores exceed-

ing the threshold are considered detected. YOLO-7 can process 608 × 608 pixel images, runs very fast

compared to most methods, and can operate up to 155 frames per second when using a GPU

accelerator, but runs slower on low-power devises like phones.

Like other grid-search methods, YOLO struggles with common detection problems such as small

objects, i.e., objects at extreme scales, occlusion, and objects with lighting and color variations.

To deal with object size variations, YOLO developed a set of default bounding boxes with varying

scales and aspect ratios, to use along with predicted offsets inside the boxes for evaluating objects

detected at various positions inside the bounding boxes. The end result is better handling of multiple

scales and aspect ratios. The SSD method, surveyed earlier, uses a similar strategy.

Two-Shot Object Detection

Two steps are used for two-shot object detection: (1) create positional proposals for where objects may

be located, usually rectangular proposal regions, (2) refine the proposals and make prediction scores

for each proposal region. Two-shot object detection and prediction can be more accurate than single-

shot detectors, and more computationally expensive since several passes over the image must be made,

with one inference pass through the network for each region to create a final score.

Examples of two-shot detectors include those surveyed already above: CFN, RCNN, Fast-RCNN,

Faster-RCNN, MASK RCNN.

Segmented Region Descriptors: Color and Texture

Note that a segmented region can be used as the basis for computing a feature descriptor for object

detection, rather than relying on a CNN to learn the features. After the image is segmented into regions,

each region can be described by various metrics and statistics, useful for object detection and

description. To dig deeper into research on segmented regions, see Synthetic Vision by Scott

Krig [476].

According to Krig, using a wide set of segmentations taken under various parameters to yield

several segmentations of the same region that are not on a grid is optimal, to simulate visual saccading

of the human eye. Then using a common set of feature description metrics, all regions are described,

believed to be the optimum approach to using segmentations for object detection and description,

rather than relying on a single segmentation algorithm as is the case for the CNN methods we surveyed

above. Many overlapping segmentations are needed to model the human visual system, since segmen-

tation results vary widely and none are optimum (see Figs. 2.34 and 2.35).

86 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.34 Examples of segmentation using different parameters for the same region. The differences are due to the

image preprocessing and segmentation algorithm used. NOTE: several segmentation methods and parameters should be

used together on the same image for best analysis, no single segmentation method is optimal for all scenes. (Image

(C) Scott Krig [476])

Fig. 2.35 The centroid of region segments can be used in devising feature descriptors which associate segmented

regions together into a whole object, as this set of images shows segmentation at a low and a higher level of granularity,

with lines connecting the centroids of related regions containing a squirrel. (Image (C) Scott Krig [476])

Color descriptors of segmented regions are valuable for object detection and description, as

illustrated in Figs. 2.36 and 2.37, illustrating texture description concepts using a color descriptor

for each pixel within a segmented textured region, quantized at different RGB resolutions. For

example, each pixel is a segmented region that is used to describe texture metrics or color metrics,

useful for object description or object detection.

Fig. 2.36 6D ([x, x - 1], [y, y - 1], [z, z - 1],R,G,B) Spatial Dependency Matrices (SDM) at different quantization

levels (i.e., different pixel group size) shown as lighted, shaded 3D volume surface renderings, revealing local texture of

all pixels in a polygonal region. Renderings are quantized at varying RGB color bit resolutions which segment the pixels

and collapse similar pixel values together: left to right, SDM projected from 2-bit, 3-bit, 4-bit, 5-bit, 8-bit resolutions.

(Image (C) Scott Krig [476]. For details on Spatial Dependency Matrices see Chap. 3, Co-occurrence Matrix, Haralick

Features, and Fig. 3.7)

Illumination Estimation and Color Corrections for Segmentation 87

Fig. 2.37 3D volume projections (R,G,B) of pixels in a local polygonal region as unshaded transparent volume

renderings of local RGB texture information from segmented regions, assigning x,y,z values to r,g,b color intensity

values. (Image (C) Scott Krig [476])

Illumination Estimation and Color Corrections for Segmentation

To create accurate segmentations, color properties of the image are crucial. Color estimations and

subsequent colorimetrically accurate corrections may be necessary, see also Chap. 2 Fig. 2.8, and also

Chap. 2 section “Illuminants, White Point, Black Point, and Neutral Axis” for relevant discussions.

Here we survey a few topics and methods for color corrections including:

• Illumination estimation (i.e., light color) which is color-channel aware (i.e., RGB, Luv, etc.)

• Illuminant-based estimations (surface color) which treat color channels separately

Dongliang et al. [943] develop an approach that is able to detect two (2) distinct light illuminations by

the surface of an image and also provides a method to accurately measure the illuminants on the surface,

allowing for the white balance across the neutral axis to be corrected. The method uses a novel approach

of measuring the color space on large image subregions, rather than across the entire image (see

Fig. 2.38). So, illumination is detected specifically for local features, rather than attempting to estimate

the illumination value across the whole image—good idea. Note that this method does not attempt to treat

illumination and shadow separately; however, shadows merit separate modeling and treatment.

Fig. 2.38 The corrected illumination white balance across the neutral axis. (Image (C) Dongliang et al. [943], courtesy

Springer and CVPR)

88 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

When the two illuminants are estimated under the Dongliang model, they are treated separately and

not combined together and used to correct the sub-images, which is a logical next step for this line of

correction. However, a user preference is provided to choose one of the illuminants to apply to the

entire image, so the user preference determines what is correct and pleasing. Future work along these

lines could include a deep learning method trained using image statistics from each subregion

compared to the proposed illumination corrections to learn the perceptual preferences, assuming

such a dataset is devised.

For related work on illumination estimation, see Lin [944]. For an overview of Single Image Depth

Estimation which influences illumination estimation, see Mertan et al. [945]. For color estimations for

separate color channels which is combined for final color estimation and corrections, see Laakom

et al. [946].

Color Quantization

Color Quantization is intended to reduce the number of colors in an image to an essential set of colors

to represent the image, such as reducing an 24-bit RGB image into a color image having perhaps

256 most popular actual colors. Many methods exist to accomplish the color reduction goal. By

representing the image using fewer colors (a) compression is achieved, and (b) a form of color

segmentation is achieved by mapping all pixel values to their closest essential color (Fig. 2.39).

Color Quantization 89

Fig. 2.39 RGB Bit Quantization: color images shown using reduced color bit depth. Top left: 2-bits per RGB color

(4 values for each color), top right: 3-bits per RGB color (8 values for each color), bottom left: 4-bits per RGB color

(16 values for each color), bottom right: 5-bits per RGB color (32 values for each color). Note that 5-bit color is often

virtually indistinguishable from 8-bit color. (Image (C) Scott Krig [476])

History of Color Quantization Here is a bit of display monitor history contributing to color

quantization research. In the early days of color monitors and frame buffers during the 1970s and

1980s, using only 8-bits to contain all RGB colors was common, since 24-bit color with 8 bits for each

RGB color was not affordable due to the memory cost. Color display monitors were large, heavy

vacuum tube devices—there were no LCD displays. Like today, the monitor and display hardware is

the most costly part of the system. Early 24-bit full-color frame buffers using 8-bits per each RGB color

(8-8-8 = 24) were unaffordable to all except the government-funded elite scientists and engineers, so a

color frame buffer memory with 931,600 bytes for a 640 × 480 image was not cheap and very

impressive.

90 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Therefore, color popularity and color quantization methods were developed to display 24-bit color

images reduced into 3-3-2 RGB color using only 8-bits for the frame buffer, 3-bits for red, 3 for green,

and 2 for blue.

Fig. 2.40 An early 8-bit frame buffer architecture supporting 3-3-2 and 2-2-2 RGB color by mapping separate fields of

an 8-bit pixel to separate RGB LUT’s (lookup tables) for pixel display. NOTE: Imaging Technology Inc. was one such

company in the 1980s

So as shown in Fig. 2.40, some frame buffers such as those from Imaging Technology Inc. (early

1980s) provided an 8-bit color frame buffer using separate 8-bit RGB LUT’s (256 values for each RGB

lookup table) to support 24-bit RGB color as three separate 3-bit or 2-bit colors, where 3-3-2 color

(3-bit red, 3-bits green, and 2-bits blue) was into the top bits of the 8-bit of each LUT’s, or else 2-2-2

color using 2-bits for each R,G,B was mapped into the 8-bit LUT’s.

We survey a few Color Compression and Color Popularity methods in the next section, which are

more accurate than simple bit mappings such as 3-3-2 to reduce color resolution into more acceptable

and realistic colors.

Color Compression and Color Popularity

Color compression can be used to reduce the displayed colors down into a smaller set.

Color Compression and Color Popularity 91

We only survey color representation topics at a high level. To dig deeper into color quantization

methods, see Heckbert [947], and [948–950]. See also Learning to Structure an Image with Few

Colors, Hou et al. [952].

Various methods exist to reduce the color space, see Fig. 2.41 for an example of the Median Cut

method by Heckbert [947].

One method of color compression is color popularity, which creates a histogram of all colors used

and selects perhaps the top 256 colors from the histogram as their color set. Then, actual 24-bit pixels

in an image region are replaced by the nearest color value in the reduced color space, such as the color

popularity histogram list method, or even a standard color set of perhaps 2000 chosen values. The final

step is to replace the existing 8-8-8 RGB pixel colors with the most popular colors that are colorimet-

rically close to the original values in the color list, using simple distance functions to find color

similarity, such as SSD or SAD.

Note that colors can be quantized to any bit depth prior to finding popularity, since often too much

color resolution is counter-productive—for basic analysis it may be best perhaps to stick with 5 bits or

8-bits per RGB component (see Figs. 2.41, 2.42, 2.43, and 2.44).

Color resolution itself may be used to reduce the color space, for example, the 24-bit color

resolution of values 0×8fR 0×6cG 0×40B can be replaced with the color 0×80R 0×70G 0×40B and

be visually close enough. Replacing all pixel values with the nearest value in a Standard Color Map of

an arbitrary number of values such as 2000 unique colors may also be sufficient (see Fig. 2.39).

Color quantization is another method, which reduces the bit resolution of each color from 8-8-8

RGB to 5-5-5 RGB as a first step, and then each reduced resolution 5-5-5 RGB color is mapped to find

the closest 8-8-8RGB popularity colors.

According to Heckbert [947], here are a few common color popularity methods.

• The MEDIAN_CUT method creates a 3D color cube RGB histogram and then splits the cube space

into smaller sub-cubes representing cubic color clusters. The final color for each cube is a centroid

or average value of all the colors assigned to the sub-cube.

• The POPULARITY_LIST method actually starts from a list of all RGB colors in the 2D genome

region and then sorts the colors into a list of the most popular colors and replaces colors outside the

list with the closest color from the list.

• The K-MEANS_CLUSTERING method produces clusters of similar colors.

92 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.41 Color analysis illustration: (left) a 2D image region with predominantly green and reddish tints, and (right) the

3D volume RGB color space distribution shown for the median cut algorithm to identify the 256 most popular colors.

(Image (C) Scott Krig [476])

For segmented region color popularity comparison, two regions are run separately through the

popularity algorithm, producing two color maps and percentage arrays. Then, the color maps and

percentages can be compared using one of the several novel color distance functions described by Krig

[476] as shown below, including parameters to control all color distance functionality.

Color Compression and Color Popularity 93

Fig. 2.42 Comparison of 5-bit color input to both MEDIAN_CUT (5M) and POPULARITY_LIST methods (5P); both

methods produce similar results. The legend shows 24 rows, each row either MEDIAN_CUT (5M = 5-bits Median Cut)

or POPULARITY (5P = 5-bits Popularity) color maps for the input images (raw, sharped, and retinex-sharpened) with

color leveling applied for raw, saturation boost, Lab constant, and centered spaces, for details on the images and the color

processing algorithms used see Krig [476]. (Image (C) Scott Krig [476])

94 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Fig. 2.43 Segmented regions in RGB color, which are analyzed for color popularity as shown in Fig. 2.44. (Image

(C) Scott Krig [476])

Summary 95

Fig. 2.44 Color popularity results for the segmented regions in Fig. 2.43 and their colors. See Fig. 2.42 for the legend

for interpreting the color on each row. (Image (C) Scott Krig [476])

See Heckbert [947] for details on color popularity methods and other methods. Another good source

for understanding color popularity is [951] End-to-end Optimized Image Compression Johannes Ballé

et al. [951]. See also Learning to Structure an Image with Few Colors, Hou et al. [952].

A statistical comparison of several Image color space reduction methods, including reducing bits

per color, as well as popularity methods, is covered in the comparison of the ColorCNN network

against selected algorithms such as Median Cut and Octrees, see Hou et al. [952].

Summary

In this chapter, we survey image processing as a preprocessing step that can improve image analysis

and feature extraction. We explore several color quantization and color reduction methods. We color

management systems, colorimetric spaces, color processing, segmentation, and object detection. We

survey segmentation methods using neural networks, such as the U-Net architecture, and the history of

segmentation using neural networks, beginning with region proposals using Mask-RCNN using

CNN’s. In addition, we examine a wider range of texture metrics and color corrections. The YOLO

architecture is surveyed, which provides a basis for general object detection and customization. A

simple taxonomy of general image processing operations for points, lines, and regions is developed to

guide the discussion, with background for filter design using spatial kernels. Fourier processing is

covered for 1D, 2D, and 3D cases, as well as a general discussion of related transforms such as Slant,

Hadamard, and Walsh. Morphology methods are presented, along with an introduction to super pixels.

Various methods for object detection are introduced, such as YOLO. Segmentation methods are

surveyed, in particular semantic and instance segmentation using neural networks, as well as regional

metrics such as texture which can be used in the segmented regions.

96 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Learning Assignments

1. Discuss why image processing is used to improve computer vision pipelines to make the images

more amenable to specific feature descriptors.

2. Discuss problems that image preprocessing can solve for gradient-based features descriptors such

as SIFT.

3. Discuss how image processing goals are influenced in part by the image sensor.

4. Describe some goals for image processing in a general sense, such as goals for corrections and

goals for enhancements.

5. Discuss why image preprocessing is important for optimizing a system for making effective use of

a given feature descriptor such as SIFT, and why the image preprocessing should be designed

specifically for the given feature descriptor.

6. Describe a hypothetical computer vision application, sketch out an architecture including the

feature descriptors used, describe the goals for image preprocessing prior to feature extraction, and

discuss the image processing algorithms chosen to reach the goals.

7. Describe an image processing pipeline to improve the quality of images taken from a very high

speed camera (4000 fps) in a low light environment (poor indoor lighting), including the

objectives for selecting each algorithm and alternatives to each algorithm.

8. Describe an image processing pipeline for correcting color images in an outdoor environment in

very bright direct sunlight, including the objectives for selecting each algorithm, and alternatives

to each algorithm.

9. Discuss how noise affects feature descriptor algorithms.

10. Discuss algorithms to reduce noise, and algorithms to amplify noise.

11. Discuss how noise is related to contrast.

12. Discuss general illumination problems in images, how to detect illumination problems using

statistical and image analysis methods, and general approaches to correct the illumination.

13. Discuss how contrast remapping works, and how it can be used to improve image contrast.

14. Describe an image processing pipeline to prepare images for a segmentation algorithm that is

based on following connected gradients or intensity ridges.

15. A basic taxonomy for image processing operations can be described based on the region: (1) point

operations, (2) line operations, and (3) area operations. Describe each of the three types of region

operations in a general sense, describe the limitations of each of the three approaches, and name at

least one example algorithm for each of the three approaches.

16. Describe the following color spaces: RGB (additive), CYMK (subtractive), and HSV.

Learning Assignments 97

17. Discuss how color image processing works in color intensity space, and why processing in

intensity space is usually most effective, compared to processing other color space components

such as saturation or hue.

18. Discuss why color processing in RGB space leads to color moire effects.

19. Describe the goals of a color management system, including why color management is needed,

and provide a few examples.

20. Describe the basic components of a color management system, including the illumination model,

the input color space model, and the output color space model.

21. Describe how color gamut mapping works in general, and the problems encountered.

22. Describe how rendering intent is related to gamut mapping.

23. Describe illumination model parameters including white point, black point, and neutral axis.

24. Discuss color saturation, including causes and mitigation strategies.

25. Discuss color resolution, 8-bit color vs. 16-bit color, and when color resolution is critical.

26. Describe a few examples when image processing over local spatial regions is advantageous.

27. Describe how the dot product and convolution are related, and how they are implemented by

sketching out an algorithm.

28. Provide the kernel matrix values of a few 3 × 3 convolution kernels, including a sharpen filter

kernel and a blur filter kernel.

29. Discuss why the values of a convolutional filtering kernel should sum to zero.

30. Discuss useful postprocessing numerical conditioners applied to convolution results, such as

absolute value.

31. Describe how to detect noise in the image (for example, histograms and other methods), and

spatial filtering approaches for noise removal.

32. Compare the Sobel edge detector algorithm and the Canny edge detector algorithm.

33. Provide the kernel matrix for a few types of edge detectors used for convolutional filtering.

34. Compare Fourier Transform filtering in the frequency domain with convolutional kernel filtering

in the discreet spatial domain and describe the comparative strengths and weaknesses of each

method for image processing.

35. Describe the integral image algorithm and how the integral image is used to implement box filters.

36. Discuss the general goals for image segmentation and describe at least one segmentation algorithm

using pseudo-code.

37. Describe the binary morphology operations ERODE and DILATE, discuss the intended use, and

provide example 3 × 3 binary kernels for ERODE and DILATE.

38. Describe the gray-scale morphology operations MIN and MAX, discuss the intended use, and

provide example 3 × 3 gray-scale kernels for MIN and MAX.

39. Discuss in general how a super-pixel algorithm works.

40. Discuss contrast remapping, and how it can be implemented using lookup tables.

41. Compare histogram equalization of global and local regions.

42. Describe the histogram specification algorithm.

Measure twice, cut once.

—Carpenter’s saying

But we begin with a brief survey of some key ideas in the field of texture analysis and general vision

metrics.

Global and Regional Feature Descriptors 3

This chapter covers the metrics of general feature description, often used for whole images and image

regions, including textural, statistical, model-based, and basis space methods. Texture, a key metric, is

a well-known topic within image processing, and it is commonly divided into structural and statistical

methods. Structural methods look for features such as edges and shapes, while statistical methods are

concerned with pixel value relationships and statistical moments. Methods for modeling image texture

also exist, primarily useful for image synthesis rather than for description. Basis spaces, such as the

Fourier space, are also used for feature description.

It is difficult to develop clean partitions between the related topics in image processing and

computer vision that pertain to global vs. regional vs. local feature metrics; there is considerable

overlap in the applications of most metrics. However, for this chapter, we divide these topics along

reasonable boundaries, though those borders may appear to be arbitrary. Similarly, there is some

overlap between discussions here on global and regional features and topics that are covered in Chap. 2

on image processing and that are discussed in Chap. 6 on local features. In short, many methods are

used for local, regional, and global feature description, as well as image processing, such as the Fourier

transform and the LBP.

Historical Survey of Features

To compare and contrast global, regional, and local feature metrics, it is useful to survey and trace the

development of the key ideas, approaches, and methods used to describe features for machine vision.

This survey includes image processing (textures and statistics) and machine vision (local, regional, and

global features). Historically, the choice of feature metrics was limited to those that were computable at

the time, given the limitations in compute performance, memory, and sensor technology. As time

passed and technology developed, the metrics have become more complex to compute, consuming

larger memory footprints. The images are becoming multimodal, combining intensity, color, multiple

spectrums, depth sensor information, multiple-exposure settings, high dynamic range imagery, faster

frame rates, and more precision and accuracy in x, y, and z depth. Increases in memory bandwidth and

compute performance, therefore, have given rise to new ways to describe feature metrics and perform

analysis.

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_3

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_3&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_3#DOI

•

•

•

•

moments); however, basis spaces are used in transforms for image processing and filtering as well.

some general trends in mainstream industry thinking and academic activity.

and applications by companies such as Krig Research.

100 3 Global and Regional Feature Descriptors

Many approaches to texture analysis have been tried; these fall into the following categories

Structural, describing texture via a set of micro-texture patterns known as texels. Examples include

the numerical description of natural textures such as fabric, grass, and water. Edges, lines, and

corners are also structural patterns, and the characteristics of edges within a region, such as edge

direction, edge count, and edge gradient magnitude, are useful as texture metrics. Histograms of

edge features can be made to define texture, similar to the methods used in local feature descriptors

such as SIFT (described in Chap. 6).

Statistical, based on gray level statistical moments describing point pixel area properties, and

includes methods such as the co-occurrence matrix or SDM. For example, regions of an image with

color intensity within a close range could be considered as having the same texture. Regions with

the same histogram could be considered as having the same texture.

Model-based, including fractal models, stochastic models, and various semi-random fields. Typi-

cally, the models can be used to generate synthetic textures, but may not be effective in recognizing

texture, and we do not cover texture generation.

Transform or basis-based, including methods such as Fourier, Wavelets, Gabor filters, Zernike,

and other basis spaces, which are treated here as a subclass of the statistical methods (statistical

Key Ideas: Global, Regional, and Local Metrics

Let us take a brief look at a few major trends and milestones in feature metrics research. While this

brief outline is not intended to be a precise, inclusive look at all key events and research, it describes

1960s, 1970s, 1980s—Whole-Object Approaches

During this period, metrics describe mostly whole objects, larger regions, or images; pattern matching

was performed on large targets via FFT spectral methods and correlation; recognition methods

included object, shape, and texture metrics; and simple geometric primitives were used for object

composition. Low-resolution images such as NTSC, PAL, and SECAM were common—primarily

gray scale with some color when adequate memory was available. Some satellite images were

available to the military with higher resolution, such as LANDSAT images from NASA and SPOT

images from France.

Some early work on pattern recognition began to use local interest points and features: notably,

Moravec [446] developed a local interest point detector in 1981, and in 1988, Harris and Stephens

[127] developed local interest point detectors. Commercial systems began to appear, particularly the

View PRB in the early 1980s, which used digital correlation and scale space super-pixels for coarse to

fine matching, and real-time image processing and pattern recognition systems were introduced by

Imaging Technology. Rack-mounted imaging and machine vision systems began to be replaced by

workstations and high-end PCs with add-on imaging hardware, array processors, and software libraries

Early 1990s—Partial-Object Approaches

Compute power and memory were increasing, enabling more attention to local feature methods, such

as developments from Shi and Tomasi [128] improving the Harris detector methods, Kitchen and

Rosenfeld [174] developing gray level corner detection methods, and methods by Wang and Brady

[179]. Image moments over polygon shapes were computed using Zernike polynomials in 1990 by

Khotanzad and Hong [234]. Scale space theory was applied to computer vision by Moravec [446], and

many other researchers followed this line of thinking into the future, such as Lowe [132] in 2004.

Historical Survey of Features 101

Metrics described smaller pieces of objects or object components and parts of images; there was

increasing use of local features and interest points. Large sets of sub-patterns or basis vectors were used

and corresponding metrics were developed. There was increased use of color information; more

methods appeared to improve invariance for scale, rotational, or affine variations; and recognition

methods were developed based on finding parts of an object with appropriate metrics. Higher image

resolution, increased pixel depths, and color information were increasingly used in the public sector

(especially in medical applications), along with new affordable image sensors, such as the KODAK

MEGA-PLUS, which provided a 1024 × 1024 image.

Mid-1990s—Local Feature Approaches

More focus was put on metrics that identify small local features surrounding interest points in images.

Feature descriptors added more details from a window or patch surrounding each feature, and

recognition was based on searching for sets of features and matching descriptors with more complex

classifiers. Descriptor spectra included gradients, edges, and colors.

Late 1990s—Classified Invariant Local Feature Approaches

New feature descriptors were developed and refined to be invariant to changes in scale, lightness,

rotation, and affine transformations. Work by Schmidt and Mohr [296] advanced and generalized the

local feature description methods. Features acted as an alphabet for spelling out complex feature

descriptors or vectors whereby the vectors were used for matching. The feature matching and

classification stages were refined to increase speed and effectiveness using neural nets and other

machine learning methods [113].

Early 2000s—Scene and Object Modeling Approaches

Scenes and objects were modeled as sets of feature components or patterns with well-formed

descriptors; spatial relationships between features were measured and used for matching; and new

complex classification and matching methods used boosting and related methods to combine strong

and weak features for more effective recognition. The SIFT [132] algorithm from Lowe was published;

SURF was also published by Bay et al. [131], taking a different approach using HAAR features rather

than just gradients. The Viola–Jones method [431] was published, using HAAR features and a boosted

learning approach to classification, accelerating matching. The OpenCV library for computer vision

was developed by Bradski at INTEL™ and released as open source.

Mid-2000s—Finer-Grain Feature and Metric Composition Approaches

The number of researchers in this field began to mushroom; various combinations of features and

metrics (bags of features) were developed by Csurka et al. [198] to describe scenes and objects using

key points as described by Sivic [447]; new local feature descriptors were created and old ones refined;

and there was increased interest in real-time feature extraction and matching methods for commercial

applications. Better local metrics and feature descriptors were analyzed, measured, and used together

for increased pattern match accuracy. Also, feature learning and sparse feature codebooks were

developed to decrease pattern space, speed up search time, and increase accuracy.

Post-2010—Multimodal Feature Metrics Fusion

There has been increasing use of depth sensor information and depth maps to segment images and

describe features and create VOXEL metrics, for example, see Rusu et al. [329]; for example, 2D

texture metrics are expressed in 3-space. 3D depth sensing methods proliferate, increasing use of high-

resolution images and high dynamic range (HDR) images to enhance feature accuracy, and greater bit

depth and accuracy of color images allows for valuable color-based metrics and computational

imaging. Increased processing power and cheap, plentiful memory handle larger images on low-cost

compute platforms. Faster and better feature descriptors using binary patterns have been developed and

matched rapidly using Hamming distance, such as FREAK by Alahi et al. [102] and ORB by Rublee

et al. [94]. Multimodal and multivariate descriptors [698, 699] are composed of image features with

other sensor information, such as accelerometers and positional sensors.

102 3 Global and Regional Feature Descriptors

Future computing research may even come full circle, when sufficient compute and memory

capacity exist to perform the older methods, like correlation across multiple scales and geometric

perspectives in real-time using parallel and fixed-function hardware methods. This would obviate some

of the current focus on small invariant sets of local features and allow several methods to be used

together, synergistically. Therefore, the history of development in this field is worth knowing, since it

might repeat itself in a different technological embodiment.

Since there is no single solution for obtaining the right set of feature metrics, all the methods

developed over time have applications today and are still in use.

Textural Analysis

One of the most basic metrics is texture, which is the description of the surface of an image channel,

such as color intensity, like an elevation map or terrain map. Texture can be expressed globally or

within local regions. Texture can be expressed locally by statistical relationships among neighboring

pixels in a region, and it can be expressed globally by summary relationships of pixel values within an

image or region. For a sampling of the literature covering a wide range of texture methods, see Refs.

[12, 14–18, 27, 28, 30, 31, 38].

According to Gonzalez [4], there are three fundamental classes of texture in image analysis:

statistical, structural, and spectral. Statistical measures include histograms, scatter plots, and SDMs.

Structural techniques are more concerned with locating patterns or structural primitives in an image,

such as parallel lines, regular patterns, and so on. These techniques are described in [1, 5, 8,

268]. Spectral texture is derived from analysis of the frequency domain representation of the data.

That is, a fast Fourier transform is used to create a frequency domain image of the data, which can then

be analyzed using Fourier techniques.

Histograms reveal overall pixel value distributions, but say nothing about spatial relationships.

Scatter plots are essentially two-dimensional histograms and do not reveal any spatial relationships. A

good survey is found in Ref. [267].

Texture has been used to achieve several goals

• Texture-based segmentation (covered in Chap. 2).

• Texture analysis of image regions (covered in this chapter).

• Texture synthesis, creating images using synthetic textures (not covered in this book).

In computer vision, texture metrics are devised to describe the perceptual attributes of texture by

using discrete methods. For instance, texture has been described perceptually with several properties,

including:

• Contrast

• Color

• Coarseness

Historical Survey of Features 103

• Directionality

• Line-likeness

• Roughness

• Constancy

• Grouping

• Segmentation

If textures can be recognized, then image regions can be segmented based on texture and the

corresponding regions can be measured using shape metrics such as area, perimeter, and centroid

(as discussed in Chap. 6). Chapter 2 included a survey of segmentation methods, some of which are

based on texture. Segmented texture regions can be recognized and compared for computer vision

applications. Micro-textures of a local region, such as the LBP discussed in detail in Chap. 6, can be

useful as a feature descriptor, and macro-textures can be used to describe a homogenous texture of a

region such as a lake or field of grass, and therefore, have natural applications to image segmentation.

In summary, texture can be used to describe global image content, image region content, and local

descriptor region content. The distinction between a feature descriptor and a texture metric may be

small.

Sensor limitations combined with compute and memory capabilities of the past have limited the

development of texture metrics to mainly 2D gray scale metrics. However, with the advances toward

pervasive computational photography in every camera providing higher resolution images, higher

frame rates, deeper pixels, depth imaging, more memory, and faster compute, we can expect that

corresponding new advances in texture metrics will be made.

Here is a brief historical survey of texture metrics.

1950s Through 1970s—Global Uniform Texture Metrics

Autocorrelation or cross-correlation was developed by Kaizer [24] in 1955 as a method of looking for

randomness and repeating pattern features in aerial photography, where autocorrelation is a statistical

method of correlating a signal or image with a time-shifted version of itself, yielding a computationally

simple method to analyze ground cover and structures.

Bajcsy [23] developed Fourier spectrum methods in 1973 using various types of filters in the

frequency domain to isolate various types of repeating features as texture.

Gray level spatial dependency matrices, GLCMs and SDMs, or co-occurrence matrices [6] were

developed and used by Haralick in 1973, along with a set of summary statistical metrics from the

SDMs to assist in numerical classification of texture. Some, but not all, of the summary metrics have

proved useful; however, analysis of SDMs and development of new SDM metrics have continued,

involving methods such as 2D visualization and filtering of the SDM data within spatial regions [21],

as well as adding new SDM statistical metrics, some of which are discussed in this chapter.

1980s—Structural and Model-Based Approaches for Texture Classification

While early work focused on micro-textures describing statistical measures between small kernels of

adjacent pixels, macro-textures developed to address the structure of textures within a larger region.

Laws developed texture energy-detection methods in 1979 and 1980 [22, 25, 26], as well as texture

classifiers, which may be considered the forerunners of some of the modern classifier concepts. The

Laws method could be implemented as a texture classifier in a parallel pipeline with stages for taking

gradients via a set of convolution masks over Gaussian-filtered images to isolate texture micro-

features, followed by a Gaussian smoothing stage to deal with noise, followed by the energy calcula-

tion from the combined gradients, followed by a classifier which matched texture descriptors.

104 3 Global and Regional Feature Descriptors

Eigenfilters were developed by Ade [27] in 1983 as an alternative to the Laws gradient or energy

methods and SDMs; eigenfilters are implemented using a covariance matrix representation of local

3 × 3 pixel region intensities, which allows texture analysis and aggregation into structure based on the

variance within eigenvectors in the covariance matrix.

Structural approaches were developed by Davis [28] in 1979 to focus on gross structure of texture

rather than primitives or micro-texture features. Hough transforms were invented in 1972 by Duda and

Hart [192] as a method of finding lines and curves, and it was used by Eichmann and Kasparis [14] in

1988 to provide invariant texture description.

Fractal methods and Markov random field methods were developed into texture descriptors, and

while these methods may be good for texture synthesis, they do not map well to texture classification,

since both Fractal and Markov random field methods use random fields, thus there are limitations when

applied to real-world textures that are not random.

1990s—Optimizations and Refinements to Texture Metrics

In 1993, Lam and Ip [15, 31] used pyramid segmentation methods to achieve spatial invariance, where

an image is segmented into homogenous regions using Voronoi polygon tessellation and irregular

pyramid segmentation techniques around Q points taken from a binary thresholded image; five shape

descriptors are calculated for each polygon: area, perimeter, roundness, orientation, and major/minor

axis ratio, combined into texture descriptors.

Local binary patterns (LBP) were developed in 1994 by Ojala et al. [142] as a novel method of

encoding both pattern and contrast to define texture [12, 14, 17, 18]; since then, hundreds of

researchers have added to the LBP literature in the areas of theoretical foundations, generalization

into 2D and 3D, domain-specific interest point descriptors used in face detection, and spatiotemporal

applications to motion analysis [16]. LBP research remains quite active at this time. LBPs are covered

in detail in Chap. 6. There are many applications for the powerful LBP method as texture metric, a

feature descriptor, and an image processing operator, the latter of which was discussed in Chap. 2.

2000 to Today—More Robust Invariant Texture Metrics and 3D Texture

Feature metrics research is investigating texture metrics that are invariant to scale, rotation, lighting,

perspective, and so on to approach the capabilities of human texture discrimination. In fact, texture is

used interchangeably as a feature descriptor in some circles. The work by Pun and Lee [29] is an

example of development of rotational invariant texture metrics, as well as scale invariance. Invariance

attributes are discussed in the general taxonomy in Chap. 5.

The next wave of metrics being developed increasingly will take advantage of 3D depth informa-

tion. One example is the surface shape metrics developed by Spence [30] in 2003, which provide a

bump-map type metric for affine invariant texture recognition and texture description with scale and

perspective invariance. Chapter 6 also discusses some related 3D feature descriptors.

Statistical Methods

The topic of statistical methods is vast, and we can only refer the reader to selected literature as we go

along. One useful and comprehensive resource is the online NIST National Institute of Science and

Technology Engineering Statistics Handbook,1 including examples and links to additional resources

and tools.

1 See the NIST online resource for engineering statistics: https://www.itl.nist.gov/div898/handbook/.

https://www.itl.nist.gov/div898/handbook/

Texture Region Metrics 105

Statistical methods may be drawn upon at any time to generate novel feature metrics. Any feature,

such as pixel values or local region gradients, can be expressed statistically by any number of methods.

Simple methods, such as the histogram shown in Fig. 3.1, are invaluable. Basic statistics such as

minimum, maximum, and average values can be seen easily in the histogram shown in Chap. 2 in

Fig. 2.21. We survey several applications of statistical methods to computer vision here.

Fig. 3.1 Histogram with linear scale values (black) and log scale values (gray), illustrating how the same data are

interpreted differently based on the chart scale

Texture Region Metrics

Now we look in detail at the specific metrics for feature description based on texture. Texture is one of

the most-studied classes of metrics. It can be thought of in terms of the surface—for example, a burlap

bag compared to silk fabric. There are many possible textural relationships and signatures that can be

devised in a range of domains, with new ones being developed all the time. In this section we survey

some of the most common methods for calculating texture metrics:

• Edge metrics

• Cross-correlation

• Fourier spectrum signatures

• Co-occurrence matrix, Haralick features, extended SDM features

• Laws texture metrics

• Tessellation

• Local binary patterns (LBP)

• Dynamic textures

Within an image, each image region has a texture signature, where texture is defined as a common

structure and pattern within that region. Texture signatures may be a function of position and intensity

relationships, as in the spatial domain, or be based on comparisons in some other function basis and

feature domain, such as frequency space using Fourier methods.

Texture metrics can be used to both segment and describe regions. Regions are differentiated based

on texture homogeneousness, and as a result, texture works well as a method for region segmentation.

Texture is also a good metric for feature description, and as a result, it is useful for feature detection,

matching, and tracking.

106 3 Global and Regional Feature Descriptors

Appendix B contains several ground truth datasets with example images for computing texture

metrics, including the CUReT reflectance and texture database from Columbia University. Several key

papers describe the metrics used against the CUReT dataset [19, 32, 33, 55], including the appearance

of a surface as a bidirectional reflectance distribution function (BRDF) and a bidirectional texture

function (BTF).

These metrics are intended to measure texture as a function of direction and illumination, to capture

coarse details and fine details of each surface. If the surface texture contains significant sub-pixel detail

not apparent in single pixels or groups of pixels, the BRDF reflectance metrics can capture the coarse

reflectance details. If the surface contains pixel-by-pixel difference details, the BTF captures the fine

texture details.

Edge Metrics

Edges, lines, contours, or ridges are basic textural features [268, 269]. A variety of simple metrics can

be devised just by analyzing the edge structure of regions in an image. There are many edge metrics in

the literature, and a few are illustrated here.

Computing edges can be considered on a continuum of methods from interest point to edges, where

the interest point may be a single pixel at a gradient maxima or minima, with several connected

gradient maxima pixels composed into corners, ridges line segments, or a contours. In summary, a

gradient point is a degenerate edge, and an edge is a collection of connected gradient points.

The edge metrics can be computed locally or globally on image regions as follows

• Compute the gradient g(d) at each pixel, selecting an appropriate gradient operator g() and select the

appropriate kernel size or distance d to target either micro- or macro-edge features.

• The distance d or kernel size can be varied to achieve different metrics; many researchers have used

3 × 3 kernels.

• Compute edge orientation by binning gradient directions for each edge into a histogram; for

example, use 45° angle increment bins for a total of 8 bins at 0°, 45°, 90°, 135°, 180°, 225°, 270°.

Several other methods can be used to compute edge statistics. The representative methods are

shown here; see also Shapiro and Stockton [443] for a standard reference.

Edge Density

Edge density can be expressed as the average value of the gradient magnitudes gm in a region.

Ed ¼
gm dð Þ

pixels in region
:

Edge Contrast

Edge contrast can be expressed as the ratio of the average value of gradient magnitudes to the

maximum possible pixel value in the region.

Ec ¼
Ed

max pixel value
:

Texture Region Metrics 107

Edge Entropy

Edge randomness can be expressed as a measure of the Shannon entropy of the gradient magnitudes.

Ee ¼
n

i¼0

gm xið Þ log bgm xið Þ :

Edge Directivity

Edge directivity can be expressed as a measure of the Shannon entropy of the gradient directions.

Ee =

n

i= 0

gd xið Þ log b gd xið Þ :

Edge Linearity

Edge linearity measures the co-occurrence of collinear edge pairs using gradient direction, as shown by

edges a–b in Fig. 3.2.

Fig. 3.2 Gradient direction of edges a, b, c, d used to illustrate relationships for edge metrics

El = cooccurrence of colinear edge pairs:

Edge Periodicity

Edge periodicity measures the co-occurrence of identically oriented edge pairs using gradient direc-

tion, as shown by edges a–c in Fig. 3.2.

Ep ¼ cooccurrence of identically oriented edge pairs:

Edge Size

Edge size measures the co-occurrence of opposite oriented edge pairs using gradient direction, as

shown by edges a–d in Fig. 3.2.

Es = cooccurrence of opposite oriented edge pairs:

Edge Primitive Length Total

Edge primitive length measures the total length of all gradient magnitudes along the same direction.

Et ¼ total length of gradient magnitudes with same direction:

108 3 Global and Regional Feature Descriptors

Cross-Correlation and Autocorrelation

Cross-correlation [24] is a metric showing similarity between two signals with a time displacement

between them. Autocorrelation is the cross-correlation of a signal with a time-displaced version of

itself. In the literature on signal processing, cross-correlation is also referred to as a sliding inner

product or sliding dot product. Typically, this method is used to search a large signal for a smaller

pattern.

f * g= f - tð Þ * g tð Þ :

Using the Wiener–Khinchin theorem as a special case of the general cross-correlation theorem,

cross-correlation can be written as simply the Fourier transform of the absolute square of the function

fv, as follows:

c tð Þ=F v f vj j2 tð Þ:

In computer vision, the feature used for correlation may be a 1D line of pixels or gradient

magnitudes, a 2D pixel region, or a 3D voxel volume region. By comparing the features from the

current image frame and the previous image frame using cross-correlation derivatives, we obtain a

useful texture change correlation metric.

By comparing displaced versions of an image with itself, we obtain a set of either local or global

autocorrelation texture metrics. Autocorrelation can be used to detect repeating patterns or textures in

an image, and also to describe the texture in terms of fine or coarse, where coarse textures show the

autocorrelation function dropping more slowly than that of fine textures. See also the discussion of

correlation in Chap. 6 and Fig. 6.20.

Fourier Spectrum, Wavelets, and Basis Signatures

Basis transforms, such as the FFT, decompose a signal into a set of basis vectors from which the signal

can be synthesized or reconstructed. Viewing the set of basis vectors as a spectrum is a valuable

method for understanding image texture and creating a signature. Several basis spaces are discussed in

this chapter, including Fourier, HAAR, wavelets, and Zernike.

Although computationally expensive and memory-intensive, the Fast Fourier Transform (FFT) is

often used to produce a frequency spectrum signature. The FFT spectrum is useful for a wide range of

problems. The computations typically are limited to rectangular regions of fixed sizes, depending on

the radix of the transform (see Bracewell [191]).

As shown in Fig. 3.3, Fourier spectrum plots reveal definite image features useful for texture and

statistical analysis of images. For example, Fig. 3.10 shows an FFT spectrum of LBP pattern metrics.

Note that the Fourier spectrum has many valuable attributes, such as rotational invariance, as shown in

Fig. 3.3, where a texture image is rotated 90° and the corresponding FFT spectrums exhibit the same

attributes, only rotated 90°.

Wavelets [191] are similar to Fourier methods and have become increasingly popular for texture

analysis [29], discussed later in the section on basis spaces.

Texture Region Metrics 109

Fig. 3.3 (Top row) Example images with texture. (Bottom row) Texture and shape information revealed in the

corresponding FFT power spectrums

Note that the FFT spectrum as a texture metric or descriptor is rotational invariant, as shown in the

bottom left image of Fig. 3.3. FFT spectra can be taken over rectangular 2D regions. Also, 1D arrays

such as annuli or Cartesian coordinates of the shape taken around the perimeter of an object shape can

be used as input to an FFT and as an FFT descriptor shape metric.

Co-occurrence Matrix, Haralick Features

Haralick [6] proposed a set of 2D texture metrics calculated from directional differences between

adjacent pixels, referred to as co-occurrence matrices, Spatial dependency matrices (SDM) spatial

dependency matrices (SDM), or gray level co-occurrence matrices (GLCM)Spatial dependency

matrices (SDM). A complete set of four (4) matrices is calculated by evaluating the difference

between adjacent pixels in the x, y, diagonal x, and diagonal y directions, as shown in Fig. 3.4, and

further illustrated with a 4 × 4 image and corresponding co-occurrence tables shown in Fig. 3.5.

One benefit of the SDM as a texture metric is that it is easy to calculate in a single pass over the

image. The SDM is also fairly invariant to rotation, which is often a difficult robustness attribute to

attain. Within a segmented region or around an interest point, the SDM plot can be a valuable texture

metric all by itself, therefore useful for texture analysis, feature description, noise detection, and pattern

matching.

For example, if a camera has digital-circuit readout noise, it will show up in the SDM for the

x direction only if the lines are scanned out of the sensor one at a time in the x direction, so using the

SDM information will enable intelligent sensor processing to remove the readout noise. However, it

should be noted that SDM metrics are not always useful alone and should be qualified with additional

feature information. The SDM is primarily concerned with spatial relationships, with regard to spatial

orientation and frequency of occurrence. So, it is primarily a statistical measure.

110 3 Global and Regional Feature Descriptors

The SDM is calculated in four orientations, as shown in Fig. 3.4. Since the SDM is only concerned

with adjacent pairs of pixels, these four calculations cover all possible spatial orientations. SDMs could

be extended beyond 2 × 2 regions by using forming kernels extending into 5 × 5, 7 × 7, 9 × 9, and other

dimensions.

A spatial dependency matrix is basically a count of how many times a given pixel value occurs next

to another pixel value. Figure 3.5 illustrates the concept. For example, assume we have an 8-bit image

(0.255). If an SDM shows that pixel value x frequently occurs adjacent to pixels within the range x + 1

to x - 1, then we would say that there is a “smooth” texture at that intensity. However, if pixel value

x frequently occurs adjacent to pixels within the range x + 70 to x- 70, we would say that there is quite

a bit of contrast at that intensity, if not noise.

X Y Diagonal X Diagonal Y

Fig. 3.4 Four different vectors used for the Haralick texture features, where the difference of each pixel in the image is

plotted to reveal the texture of the image

Fig. 3.5 (a) 4 × 4 Pixel image, with gray values in the range 0–3. (b) Nearest neighbor angles corresponding to SDM

tables. (c–f) With neighborhood counts for each angle

A critical point in using SDMs is to be sensitive to the varied results achieved when sampling over

small vs. large image areas. By sampling the SDM over a smaller area (say 64 × 64 pixels), details will

be revealed in the SDMs that would otherwise be obscured. The larger the size of the sample image

area, the more the SDM will be populated. And the more samples taken, the more likely that detail will

be obscured in the SDM image plots. Actually, smaller areas (i.e., 64 × 64 pixels) are a good place to

start when using SDMs, since smaller areas are faster to compute and will reveal a lot about local

texture.

The Haralick metrics are shown in Fig. 3.6.

Texture Region Metrics 111

Fig. 3.6 Haralick texture metrics. (Image used by permission, # Intel Press, from Building Intelligent Systems)

112 3 Global and Regional Feature Descriptors

The statistical characteristics of the SDM have been extended by several researchers to add more

useful metrics [21], and SDMs have been applied to 3D volumetric data by a number of researchers

with good results [20].

Extended SDM Metrics (Krig SDM Metrics)

Extensions to the Haralick metrics have been developed by the author [21], primarily motivated by a

visual study of SDM plots as shown in Fig. 3.7. Applications for the extended SDM metrics include

texture analysis, data visualization, and image recognition. The visual plots of the SDMs alone are

valuable indicators of pixel intensity relationships and are worth using along with histograms to get to

know the data.

Fig. 3.7 Pair of image co-occurrence matrix plots (x-axis plots) computed over 64 bins in the bottom row corresponding

to the images in the top row

Texture Region Metrics 113

The extended SDM metrics include centroid, total coverage, low-frequency coverage, total power,

relative power, locus length, locus mean density, bin mean density, containment, linearity, and

linearity strength. The extended SDM metrics capture key information that is best observed by looking

at the SDM plots. In many cases the extended SDM metric is to be computed four times, once for each

SDM direction of 0°, 45°, 90°, and 135°, as shown in Fig. 3.5.

The SDMs are interesting and useful all by themselves when viewed as an image. Many of the

texture metrics suggested are obvious after viewing and understanding the SDMs; others are neither

obvious nor apparently useful until developing a basic familiarity with the visual interpretation of

SDM image plots. Next, we survey the following:

• Example SDMs showing four directional SDM maps: A complete set of SDMs would contain

four different plots, one for each orientation. Interpreting the SDM plots visually reveals useful

information. For example, an image with a smooth texture will yield a narrow diagonal band of

co-occurrence values; an image with wide texture variation will yield a larger spread of values; a

noisy image will yield a co-occurrence matrix with outlier values at the extrema. In some cases,

noise may only be distributed along one axis of the image—perhaps, across rows or the x axis,

which could indicate sensor readout noise as each line is read out of the sensor, suggesting a row- or

line-oriented image preparation stage in the vision pipeline to compensate for the camera.

• Extended SDM texture metrics: The addition of 12 other useful statistical measures to those

proposed by Haralick.

• Some code snippets: These illustrate the extended SDM computations; full source code is shown in

Appendix D.

In Fig. 3.7, several of the extended SDM metrics can be easily seen, including containment and

locus mean density. Note that the right image does not have a lot of outliner intensity points or noise

(good containment); most of the energy is centered along the diagonal (tight locus), showing a rather

smooth set of image pixel transitions and texture, while the left image shows a wider range of intensity

values. For some images, wider range may be noise spread across the spectrum (poor containment),

revealing a wider band of energy and contrast between adjacent pixels.

Metric 1: Centroid

To compute the centroid, for each SDM bin p(i,j), the count of the bin is multiplied by the bin

coordinate for x, y and also the total bin count is summed. The centroid calculation is weighted to

compute the centroid based on the actual bin counts, rather than an unweighted “binary” approach of

determining the center of the binning region based on only bin data presence. The result is the weighted

center of mass over the SDM bins.

centroid ¼
n

i¼0

m

j¼0

x ¼ jp i, jð Þ

y ¼ ip i, jð Þ

z ¼ p i, jð Þ

centroidy ¼
y

z

centroidx ¼
x

z

114 3 Global and Regional Feature Descriptors

Metric 2: Total Coverage

This is a measure of the spread, or range of distribution, of the binning. A small coverage percentage

would be indicative of an image with few gray levels, which corresponds in some cases to image

smoothness. For example, a random image would have a very large coverage number, since all or most

of the SDM bins would be hit. The coverage feature metrics (2, 3, 4), taken together with the linearity

features suggested below (11, 12), can give an indication of image smoothness.

coveragec ¼
n

i¼0

m

j¼0

1 if - 0< p i, jð Þ,j

0 otherwise

coveraget ¼
coveragec
n * mð Þ

:

Metric 3: Low-Frequency Coverage

For many images, any bins in the SDM with bin counts less than a threshold value, such as 3, may be

considered as noise. The low-frequency coverage metric, or noise metric, provides an idea of how

much of the binning is in this range. This may be especially true as the sample area of the image area

increases. For whole images, a threshold of 3 has proved to be useful for determining if a bin contains

noise for a data range of 0–255, and using the SDM over smaller local kernel regions may use all the

values with no thresholding needed.

coveragec ¼
n

i¼0

m

j¼0

if 0< p i, jð Þ< 3
1,

else - 0j

coveragel ¼
coveragec
n * m ð Þ

:

Metric 4: Corrected Coverage

Corrected coverage is the total coverage with noise removed.

coveragen = coveraget - coveragel:

Metric 5: Total Power

The power metric provides a measure of the swing in value between adjacent pixels in an image and is

computed in four directions. A smooth image will have a low power number because the differences

between pixels are smaller. Total power and relative power are interrelated, and relative power is

computed using the total populated bins (z) and total difference power (t).

powerc ¼
n

i¼0

m

j¼0

if p i, jð Þ≠ 0
zþ ¼ 1,

tþ ¼ i- jj j

powert ¼ t:

Metric 6: Relative Power

The relative power is calculated based on the scaled total power using nonempty SDM bins t, while the

total power uses all bins.

Texture Region Metrics 115

powerr =
t

z
:

Metric 7: Locus Mean Density

For many images, there is a “locus” area of high-intensity binning surrounding the bin axis (locus axis

is where adjacent pixels are of the same value x = y) corresponding to a diagonal line drawn from the

upper left corner of the SDM plot. The degree of clustering around the locus area indicates the amount

of smoothness in the image. Binning from a noisy image will be scattered with little relation to the

locus area, while a cleaner image will show a pattern centered about the locus.

locusc ¼
n

i¼0

m

j¼0

if 0< i- jj j< 7
zþ ¼ 1,

dþ ¼ p i, jð Þ

locusd ¼
d

z
:

The locus mean density is an average of the bin values within the locus area. The locus is the area

around the center diagonal line, within a band of 7 pixels on either side of the identity line (x = y) that

passes down the center of each SDM. However, the number 7 is not particularly special, but based

upon experience, it just gives a good indication of the desired feature over whole images. This feature

is good for indicating smoothness.

Metric 8: Locus Length

The locus length measures the range of the locus concentration about the diagonal. The algorithm for

locus length is a simple count of bins populated in the locus area; a threshold band of 7 pixels about the

locus has been found useful.

y = length = 0;
while (y < 256) {
x = count = 0;
while (x < 256) {
n = |y-x|;
if (p[i,j] == 0) && (n < 7) count++;
x++;

}
if (!count) length++;
y++;
}

Metric 9: Bin Mean Density

This is simply the average bin count from nonempty bins.

densityc ¼
n

i¼0

m

j¼0

if p i, jð Þ≠ 0 v ¼ p i, jð Þ, zþ ¼ 1ð Þ

densityb ¼
v

z
:

116 3 Global and Regional Feature Descriptors

Metric 10: Containment

Containment is a measure of how well the binning in the SDM is contained within the boundaries or

edges of the SDM, and there are four edges or boundaries, for example, assuming a data range

[0. . .255], there are containment boundaries along rows 0 and 255, and along columns 0 and 255.

Typically, the bin count m is 256 bins, or possibly less such as 64. To measure containment, basically

the perimeters of the SDM bins are checked to see if any binning has occurred, where the perimeter

region bins of the SDM represent extrema values next to some other value. The left image in Fig. 3.7

has lower containment than the right image, especially for the low values.

containment1 ¼
m

i¼0

if p i, 0ð Þ≠ 0 c1þ ¼ 1ð Þ

containment2 ¼
m

i¼0

if p i,mð Þ≠ 0 c2þ ¼ 1ð Þ

containment3 ¼
m

i¼0

if p 0, ið Þ≠ 0 c3þ ¼ 1ð Þ

containment4 ¼
m

i¼0

if p m, ið Þ≠ 0 c4þ ¼ 1ð Þ

containmentt ¼ 1:0-
c1 þ c2 þ c3 þ c4ð Þ

4m
:

If extrema are hit frequently, this probably indicates some sort of overflow condition such as

numerical overflow, sensor saturation, or noise. The binning is treated unweighted. A high contain-

ment number indicates that all the binning took place within the boundaries of the SDM. A lower

number indicates some bleeding. This feature appears visually very well in the SDM plots.

Metric 11: Linearity

The linearity characteristic may only be visible in a single orientation of the SDM, or by comparing

SDMs. For example, the image in Fig. 3.8 reveals some linearity variations across the set of SDMs.

This is consistent with the image sensor used (older tube camera).

linearityc ¼
m

j¼0

if p jm, jð Þ> 1
zþ ¼ 1,

lþ ¼ p 256j, jð Þ

linearitynormalized ¼
z

m

linearitystrength ¼
l

z
- * m- 1

:

Texture Region Metrics 117

Fig. 3.8 SDMs from old

tube camera showing

linearity variations in the

sensor and include full set

of 0°, 45°, 90°, and 135°

SDMs. (Public domain

image from National

Archives)

118 3 Global and Regional Feature Descriptors

Table 3.1 Extended SDM metrics from Fig. 3.8

Metric 0° 45° 90° 135° Ave.

Xcentroid 115 115 115 115 115

Ycentroid 115 115 115 115 115

Low_frequency_coverage 0.075 0.092 0.103 0.108 0.095

Total_coverage 0.831 0.818 0.781 0.780 0.803

Corrected_coverage 0.755 0.726 0.678 0.672 0.708

Total_power 2.000 3.000 5.000 5.000 3.750

Relative_power 17.000 19.000 23.000 23.000 20.500

Locus_length 71 72 71 70 71

Locus_mean_density 79 80 74 76 77

Bin_mean_density 21 19 16 16 18

Containment 0.961 0.932 0.926 0.912 0.933

Linearity 0.867 0.848 0.848 0.848 0.853

Linearity_strength 1.526 1.557 0.973 1.046 1.276

Metric 12: Linearity Strength

The algorithm for linearity strength is shown in Metric 11. If there is any linearity present in a given

angle of SDM, both linearity strength and linearity will be comparatively higher at this angle than the

other SDM angles (Table 3.1).

Laws Texture Metrics

The Laws metrics [22, 25, 26] provide a structural approach to texture analysis, using a set of masking

kernels to measure texture energy or variation within fixed sized local regions, similar to the 2 × 2

region SDM approach, but using larger pixel areas to achieve different metrics.

The basic Laws algorithm involves classifying each pixel in the image into texture based on local

energy, using a few basic steps

1. The mean average intensity from each kernel neighborhood is subtracted from each pixel to

compensate for illumination variations.

2. The image is convolved at each pixel using a set of kernels, each of which sums to zero, followed by

summing the results to obtain the absolute average value over each kernel window.

3. The difference between the convolved image and the original image is measured, revealing the

Laws energy metrics.

Laws define a set of nine separable kernels to produce a set of texture region energy metrics, and

some of the kernels work better than others in practice. The kernels are composed via matrix

multiplication from a set of four vector masks, L5, E5, S5, and R5, described below. The kernels

were originally defined as 5 × 5 masks, but 3 × 3 approximations have been used also, as shown below.

5 × 5 form

L5 Level Detector 1 4 6 4 1

E5 Edge Detector - 1 - 2 0 2 1

S5 Spot Detector - 1 0 2 0 1

R5 Ripple Detector 1 - 4 6 - 4 1

3 × 3 approximations of 5 × 5 form

]

Texture Region Metrics 119

L3 Level Detector 1 2 1½]

E3 Edge Detector - 1 0 1½]

S3 Spot Detector - 1 2 - 1½]

R3 Ripple Detector *NOTE : cannot be reproduced in 3 × 3 form½ :

Fig. 3.9 L3E3 kernel composition example

To create 2D masks, vectors Ln, En, Sn, and Rn (as shown above) are convolved together as

separable pairs into kernels; a few examples are shown in Fig. 3.9.

Note that Laws texture metrics have been extended into 3D for volumetric texture analysis [34, 35].

LBP Local Binary Patterns

In contrast to the various structural and statistical methods of texture analysis, the LBP operator

[16, 37] computes the local texture around each region as an LBP binary code, or micro-texture,

allowing simple micro-texture comparisons to segment regions based on like micro-texture. (See the

very detailed discussion on LBP in Chap. 6 for details and references to the literature, and especially

Fig. 6.6.) The LBP operator [142] is quite versatile, easy to compute, consumes a low amount of

memory, and can be used for texture analysis, interest points, and feature description. As a result, the

LBP operator is discussed in several places in this book.

As shown in Fig. 3.10, the uniform set of LBP operators, composed of a subset of the possible LBPs

that are by themselves rotation invariant, can be binned into a histogram, and the corresponding bin

values are run through an FFT as a 1D array to create an FFT spectrum, which yields a robust metric

with strong rotational invariance.

120 3 Global and Regional Feature Descriptors

Fig. 3.10 (Left) Texture images. (Center) LBP histograms. (Right) FFT spectrum plots of the histograms which reveal

the rotational invariance property of the LBP histograms. Note that while the histogram binning looks different for the

rotated images, the FFT spectrums look almost identical. (Image # Springer-Verlag London Limited from Computer

Vision Using Local Binary Patterns)

Dynamic Textures

Dynamic textures are a concept used to describe and track textured regions as they change and morph

dynamically from frame to frame [12, 13]. For example, dynamic textures may be textures in motion,

like sea waves, smoke, foliage blowing in the wind, fire, facial expressions, gestures, and poses. The

changes are typically tracked in spatiotemporal sets of image frames, where the consecutive frames are

stacked into volumes for analysis as a group. The three dimensions are the XY frame sizes, and the

Z dimension is derived from the stack of consecutive frames n - 2, n - 1, n.

A close cousin to dynamic texture research is the field of activity recognition (discussed in Chap. 6),

where features are parts of moving objects that compose an activity—for example, features on arms

and legs that are tracked frame to frame to determine the type of motion or activity, such as walking or

running. One similarity between activity recognition and dynamic textures is that the features or

textures change from frame to frame over time, so for both activity recognition and dynamic texture

analysis, tracking features and textures often requires a spatiotemporal approach involving a data

structure with a history buffer of past and current frames, which provides a volumetric representation to

the data.

For example, VLBP and LBP-TOP (discussed in Chap. 6) provide methods for dynamic texture

analysis by using the LBP constructed to operate over three dimensions in a volumetric structure,

where the volume contains image frames n - 2, n - 1, and n stacked into the volume.

Statistical Region Metrics 121

Statistical Region Metrics

Describing texture in terms of statistical metrics of the pixels is a common and intuitive method. Often

a simple histogram of a region will be sufficient to describe the texture well enough for many

applications. There are also many variations of the histogram, which lend themselves to a wide

range of texture analysis. So this is a good point at which to examine histogram methods. Since

statistical mathematics is a vast field, we can only introduce the topic here, dividing the discussion into

image moment features and point metric features.

Image Moment Features

Image moments [4, 444] are scalar quantities, analogous to the familiar statistical measures such as

mean, variance, skew, and kurtosis. Moments are well suited to describe polygon shape features and

general feature metric information such as gradient distributions. Image moments can be based on

either scalar point values or basis functions such as Fourier or Zernike methods discussed later in the

section on basis space.

Moments can describe the projection of a function onto a basis space—for example, the Fourier

transform projects a function onto a basis of harmonic functions. Note that there is a conceptual

relationship between 1D and 2D moments in the context of shape description. For example, the 1D

mean corresponds to the 2D centroid, and the 1D minimum and maximum correspond to the 2D major

and minor axis. The 1D minimum and maximum also correspond to the 2D bounding box around the

2D polygon shape (also see Fig. 6.29).

In this work, we classify image moments under the term polygon shape descriptors in the taxonomy

(see Chap. 5). Details on several image moments used for 2D shape description are covered in Chap. 6,

under “Object Shape Metrics for Blobs and Objects.”

Common properties of moments in the context of 1D distributions and 2D images include

• Zeroth-order moment is the mean or 2D centroid.

• Central moments describe variation around the mean or 2D centroid.

• First-order central moments contain information about 2D area, centroid, and size.

• Second-order central moments are related to variance and measure 2D elliptical shape.

• Third-order central moments provide symmetry information about the 2D shape, or skewness.

• Fourth-order central moments measure 2D distribution as tall, short, thin, short, or fat.

• Higher-level moments may be devised and composed of moment ratios, such as covariance.

Moments can be used to create feature descriptors that are invariant to several robustness criteria,

such as scale, rotation, and affine variations. The taxonomy of robustness and invariance criteria is

provided in Chap. 5. For 2D shape description, in 1961, Hu developed a theoretical set of seven 2D

planar moments for character recognition work, derived using invariant algebra, that are invariant

under scale, translation, and rotation [7]. Several researchers have extended Hu’s work. An excellent

resource for this topic is Moments and Moment Invariants in Pattern Recognition, by Jan Flusser

et al. [444].

Point Metric Features

Point metrics can be used for the following: (1) feature description, (2) analysis and visualization,

(3) thresholding and segmentation, and (4) image processing via programmable LUT functions

Here is a summary of statistical point metrics

(discussed in Chap. 2). Point metrics are often overlooked. Using point metrics to understand the

structure of the image data is one of the first necessary steps toward devising the image preprocessing

pipeline to prepare images for feature analysis. Again, the place to start is by analysis of the histogram,

as shown in Figs. 3.1 and 3.11. The basic point metrics can be determined visually, such as minima,

maxima, peaks, and valleys. False coloring of the histogram regions for data visualization is simple

using color lookup tables to color the histogram regions in the images.

122 3 Global and Regional Feature Descriptors

Guitar Roads

250

200

150

100

50

1500 1000 500 0 150010005000

Fig. 3.11 Two image histograms side by side, for analysis

• Quantiles, median, rescale: By sorting the pixel values into an ordered list, as during the histogram

process, the various quartiles can be found, including the median value. Also, the pixels can be

rescaled from the list and used for pixel remap functions (as described in Chap. 2).

• Mix, max, mode: The minimum and maximum values, together with histogram analysis, can be

used to guide image preprocessing to devise a threshold method to remove outliers from the data.

The mode is the most common pixel value in the sorted list of pixels.

• Mean, harmonic mean, and geometric mean: Various formulations of the mean are useful to

learn the predominant illumination levels, dark or light, to guide image preprocessing to enhance

the image for further analysis.

Statistical Region Metrics 123

• Standard deviation, skewness, and kurtosis: These moments can be visualized by looking at the

SDM plots.

• Correlation: Topic was covered earlier in this chapter under cross-correlation and autocorrelation.

• Variance, covariance: The variance metric provides information on pixel distribution, and covari-

ance can be used to compare variance between two images. Variance can be visualized to a degree

in the SDM, also as shown in this chapter.

• Ratios and multivariate metrics: Point metrics by themselves may be useful, but multivariate

combinations or ratios using simple point metrics can be very useful as well. Depending on the

application, the ratios themselves form key attributes of feature descriptors (as described in

Chap. 6). For example, mean:min, mean:max, median: mean, area: perimeter.

Global Histograms

Global histograms treat the entire image. In many cases, image matching via global histograms is

simple and effective, using a distance function such as SSD. As shown in Fig. 3.12, histograms reveal

quantitative information on pixel intensity, but not structural information. All the pixels in the region

contribute to the histogram, with no respect to the distance from any specific point or feature. As

discussed in Chap. 2, the histogram itself is the basis of histogram modification methods, allowing the

shape of the histogram to be stretched, compressed, or clipped as needed, and then used as an inverse

lookup table to rearrange the image pixel intensity levels.

Fig. 3.12 2D histogram shapes for different images

124 3 Global and Regional Feature Descriptors

Local Region Histograms

Histograms can also be computed over local regions of pixels, such as rectangles or polygons, as well

as over sets of feature attributes, such as gradient direction and magnitude or other spectra. To create a

polygon region histogram feature descriptor, first a region may be segmented using morphology to

create a mask shape around a region of interest, and then only the masked pixels are used for the

histogram.

Local histograms of pixel intensity values can be used as attributes of a feature descriptor, and also

used as the basis for remapping pixel values from one histogram shape to another, as discussed in

Chap. 2, by reshaping the histogram and reprocessing the image accordingly. Chapter 6 discusses a

range of feature descriptors such as SIFT, SURF, and LBP, which make use of feature histograms to

bin attributes such as gradient magnitude and direction.

Scatter Diagrams, 3D Histograms

The scatter diagram can be used to visualize the relationship or similarity between two image datasets

for image analysis, pattern recognition, and feature description. Pixel intensity from two images or

image regions can be compared in the scatter plot to visualize how well the values correspond. Scatter

diagrams can be used for feature and pattern matching under limited translation invariance, but they are

less useful for affine, scale, or rotation invariance. Figure 3.13 shows an example using a scatter

diagram to look for a pattern in an image; the target pattern is compared at different offsets; the smaller

the offset, the better the correspondence. In general, tighter sets of peak features indicate a strong

structural or pattern correspondence; more spreading of the data indicates weaker correspondence. The

farther away the pattern offset moves, the lower the correspondence.

Statistical Region Metrics 125

Fig. 3.13 Scatter diagrams, rendered as 3D histograms, of an image and a target pattern at various displacements. Top

row: (left) image, (center) target pattern from image, (right) SDM of pattern with itself. Center row: (left) target and

image offset 1,1, (right) target and image offset 8,8. Bottom row: (left) target and image offset 16,16, (right) target and

image offset 32,32

Note that by analyzing the peak features compared to the low-frequency features, correspondence

can be visualized. Figure 3.14 shows scatter diagrams from two separate images. The lack of peaks

along the axis and the presence of spreading in the data show low structural or pattern correspondence.

126 3 Global and Regional Feature Descriptors

Fig. 3.14 Scatter diagram from two different images showing low correspondence along diagonal

The scatter plot can be made, pixel by pixel, from two images, where pixel pairs form the Cartesian

coordinate for scatter plotting using the pixel intensity of image 1 which is used as the x coordinate, and

the pixel intensities of image 2 as the y coordinate, then the count of pixel pair correspondence is

binned in the scatter plot. The bin count for each coordinate can be false-colored for visualization.

Figure 3.15 provides some code for illustration purposes.

Statistical Region Metrics 127

r1.x = sarea.x;
r1.y = sarea.y;
r1.z = sarea.z;
r1.dx = dx;
r1.dy = 1;
r1.dz = 1;

r2.x = darea.x;
r2.y = darea.y;
r2.z = darea.z;
r2.dx = dx;
r2.dy = 1;
r2.dz = 1;

/* INITIALIZE DATA */
for (x=0; x < 0x10000; mbin[x] = (int)0, x++);

gf = c->grain;
if (gf <= 0) gf = 1;
if (gf > dx) gf = dx;

z=0;
while (z < dz) {

r1.y = sarea.y;
r2.y = darea.y;
y=0;
while (y < dy) {

pix_read(c->soid, &r1, data1);
pix_read(c->doid, &r2, data2);
for (x=0; x < dx; mbin[((data2[x] << 8)&0xff00) + (data1[x] & 0xff)]++, x += gf);

y += gf;
r1.y += gf;
r2.y += gf;

}
z += gf;
r1.z += gf;
r2.z += gf;

}

Fig. 3.15 Code to illustrate binning 8-bit data for a scatter diagram comparing two images pixel by pixel and binning the

results for plotting

For feature detection, as shown in Fig. 3.12, the scatter plot may reveal enough correspondence at

coarse translation steps to reduce the need for image pyramids in some feature detection and pattern

matching applications. For example, the step size of the pattern search and compare could be optimized

by striding or skipping pixels, searching the image at 8 or 16 pixel intervals, rather than at every pixel,

reducing feature detection time. In addition, the scatter plot data could first be thresholded to a binary

image, masked to show just the peak values, converted into a bit vector, and measured for correspon-

dence using HAMMING distance for increased performance.

Multi-resolution, Multi-scale Histograms

Multi-resolution histograms have been used for texture analysis [123] and also for feature recognition

[123]. The PHOG descriptor described in Chap. 6 makes use of multi-scale histograms of feature

spectra—in this case, gradient information. Note that the multi-resolution histogram provides scale

invariance for feature description. For texture analysis [123], multi-resolution histograms are

constructed using an image pyramid, and then a histogram is created for each pyramid level and

concatenated together [10], which is referred to as a multi-resolution histogram. This histogram has the

Steps involved in creating and using multi-resolution histograms are as follows

desirable properties of algorithm simplicity, fast computation, low memory requirements, noise

tolerance, and high reliability across spatial and rotational variations. See Fig. 3.16. A variation on

the pyramid is used in the method of Zhao and Pietikainen [12], employing a multidimensional

pyramid image set from a volume.

128 3 Global and Regional Feature Descriptors

Fig. 3.16 Multi-resolution histogram image sequence. Note that the multiple histograms are taken at various Gaussian

blur levels in an attempt to create more invariant feature descriptors

1. Apply Gaussian filter to image.

2. Create an image pyramid.

3. Create histograms at each level.

4. Normalize the histograms using L1 norm.

5. Create cumulative histograms.

6. Create difference histograms or DOG images (differences between pyramid levels).

7. Renormalize histograms using the difference histograms.

8. Create a feature vector from the set of difference histograms.

9. Use L1 norm as distance function for comparisons between histograms.

Radial Histograms

For some applications, computing the histogram using radial samples originating at the shape centroid

can be valuable [107, 108]. To do this, a line is cast from the centroid to the perimeter of the shape, and

pixel values are recorded along each line and then binned into histograms. See Fig. 3.17.

Basis Space Metrics 129

Fig. 3.17 Radial histogram illustrations [107, 108]

Contour or Edge Histograms

The perimeter or shape of an object can be the basis of a shape histogram, which includes the pixel

values of each point on the perimeter of the object binned into the histogram. Besides recording the

actual pixel values along the perimeter, the chain code histogram (CCH) that is discussed in Chap. 6

shows the direction of the perimeter at connected edge point coordinates. Taken together, the CCH and

contour histograms provide useful shape information.

Basis Space Metrics

Features can be described in a basis space, which involves transforming pixels into an alternative basis

and describing features in the chosen basis, such as the frequency domain. What is a basis space and

what is a transform? Consider the decimal system, which is base 10, and the binary system which is

base 2. We can change numbers between the two number systems by using a transform. A Fourier

transform uses sine and cosine as basis functions in frequency space, so that the Fourier transform can

move pixels between the time-domain pixel space and the frequency space. Basis space moments

describe the projection of a function onto a basis space [444]—for example, the Fourier transform

projects a function onto a basis of harmonic functions.

Basis spaces and transforms are useful for a wide range of applications, including image coding and

reconstruction, image processing, feature description, and feature matching. As shown in Fig. 3.18,

image representation and image coding are closely related to feature description. Images can be

described using coding methods or feature descriptors, and images also can be reconstructed from

the encodings or from the feature descriptors. Many methods exist to reconstruct images from

alternative basis space encodings, ranging from lossless RLE methods to lossy JPEG methods; in

Chap. 4, we provide illustrations of images that have been reconstructed from only local feature

descriptors (see Figs. 4.12, 4.13, and 4.14).

130 3 Global and Regional Feature Descriptors

Infinity

L
e
v
e
l
o

f
R

e
c
o

n
s
tr

u
c
ti
o

n
 D

e
ta

il

Basis Feature Set Size

Continuous

scene

Discreet

pixels
JPEG

pixels

Basis

Features

Local

Feature

Descriptors

Infinity

Fig. 3.18 An oversimplified spectrum of basis space options, showing feature set size and complexity of description and

reconstruction

As illustrated in Fig. 3.18, a spectrum of basis spaces can be imagined, ranging from a continuous

real function or live scene with infinite complexity, to a complete raster image, a JPEG compressed

image, a frequency domain, or other basis representations, down to local feature descriptor sets. Note

that the more detail that is provided and used from the basis space representation, the better the real

scene can be recognized or reconstructed. So the trade-off is to find the best representation or

description, in the optimal basis space, to reach the invariance and accuracy goals using the least

amount of compute and memory.

Transforms and basis spaces are a vast field within mathematics and signal processing, which are

covered quite well in other works, so here we only introduce common transforms useful for image

coding and feature description. We describe their key advantages and applications and refer the reader

to the literature as we go. See Fig. 3.19.

Basis Space Metrics 131

Transform

Rectangular Basis

Walsh-Hadamard

1969

Slant

1973

Haar

1909

Statistical Basis

Karhunen-Louve,

Hotelling, PCA

1933

SVD

Directional Basis

Hough

1962

Radon

1917

Zernike

1934

Steerable Filters

1991

Sinusoidal Basis

Fourier

1807

FFT

1965

Sine/Cosine

DCT

1974, 1977

Hartley

1925

Wavelets

1909, 1974

Gabor

1948

Fig. 3.19 Various basis transforms used in image processing and computer vision

Since we are dealing with discrete pixels in computer vision, we are primarily interested in discrete

transforms, especially those which can be accelerated with optimized software or fixed-function

hardware. However, we also cover a few integral transform methods that may be slower to compute

and less used. Here is an overview:

• Global or local feature description. It is possible to use transforms and basis space representations

of images as a global feature descriptor, allowing scenes and larger objects to be recognized and

compared. The 2D FFT spectrum is only one example, and it is simple to compare FFT spectrum

features using SAD or SSD distance measures.

• Image coding and compression. Many of the transforms have proved valuable for image coding

and image compression. The basic method involves transforming the image, or block regions of the

132 3 Global and Regional Feature Descriptors

image, into another basis space. For example, transforming blocks of an image into the Fourier

domain allows the image regions to be represented as sine and cosine waves. Then, based on the

amount of energy in the region, a reduced amount of frequency space components can be stored or

coded to represent the image. The energy is mostly contained in the lower-frequency components,

which can be observed in the Fourier power spectrum such as shown in Fig. 2.16; the high-

frequency components can be discarded and the significant lower-frequency components can be

encoded, thus some image compression is achieved with a small loss of detail. Many novel image

coding methods exist, such as that using a basis of scaled Laplacian features over an image

pyramid [270].

Fourier Description

The Fourier family of transforms was covered in detail in Chap. 2, in the context of image

preprocessing and filtering. However, the Fourier frequency components can also be used for feature

description. Using the forward Fourier transform, an image is transformed into frequency components,

which can be selectively used to describe the transformed pixel region, commonly done for image

coding and compression, and for feature description.

The Fourier descriptor provides several invariance attributes, such as rotation and scale. Any array

of values can be fed to an FFT to generate a descriptor—for example, a histogram. A common

application is illustrated in Fig. 3.20, describing the circularity of a shape and finding the major and

minor axis as the extrema frequency deviation from the sine wave. A related application is finding the

endpoints of a flat line segment on the perimeter by fitting FFT magnitudes of the harmonic series as

polar coordinates against a straight line in Cartesian space.

Fig. 3.20 Fourier descriptor of the odd-shaped polygon surrounding the circle on the left

Basis Space Metrics 133

In Fig. 3.20, a complex wave is plotted as a dark gray circle unrolled around a sine wave function or

a perfect circle. Note that the Fourier transform of the lengths of each point around the complex

function yields an approximation of a periodic wave, and the Fourier descriptor of the shape of the

complex wave is visible. Another example illustrating Fourier descriptors is shown in Fig. 6.29.

Walsh–Hadamard Transform

The Hadamard transform [4, 9] uses a series of square waves with the value of +1 or-1, which is ideal

for digital signal processing. It is amenable to optimizations, since only signed addition is needed to

sum the basis vectors, making this transform much faster than sinusoidal basis transforms. The basis

vectors for the harmonic Hadamard series and corresponding transform can be generated by sampling

Walsh functions, which make up an orthonormal basis set; thus, the combined method is commonly

referred to as the Walsh–Hadamard transform; see Fig. 3.21.

Fig. 3.21 (Left) Walsh–Hadamard basis set. (Center) HAAR basis set. (Right) Slant basis set

HAAR Transform

The HAAR transform [4, 9] is similar to the Fourier transform, except that the basis vectors are HAAR

features resembling square waves, and similar to wavelets. HAAR features, owing to their orthogonal

rectangular shapes, are suitable for detecting vertical and horizontal image features that have near-

constant gray level. Any structural discontinuities in the data, such as edges and local texture, cannot

be resolved very well by the HAAR features; see Figs. 3.21 and 6.21.

134 3 Global and Regional Feature Descriptors

Slant Transform

The Slant transform [242], as illustrated in Fig. 3.21, was originally developed for television signal

encoding and was later applied to general image coding [4, 241]. The Slant transform is analogous to

the Fourier transform, except that the basis functions are a series of slant, sawtooth, or triangle waves.

The slant basis vector is suitable for applications where image brightness changes linearly over the

length of the function. The slant transform is amenable to discrete optimizations in digital systems.

Although the primary applications have been image coding and image compression, the slant trans-

form is amenable to feature description. It is closely related to the Karhunen–Loeve transform and the

Slant–Hadamard transform [439].

Zernike Polynomials

Fritz Zernike, 1953 Nobel Prize winner, devised Zernike polynomials during his quest to develop the

phase contrast microscope, while studying the optical properties and spectra of diffraction gratings.

The Zernike polynomials [230–232] have been widely used for optical analysis and modeling of the

human visual system and for assistance in medical procedures such as laser surgery. They provide an

accurate model of optical wave aberrations expressed as a set of basis polynomials, illustrated in

Fig. 3.22.

Fig. 3.22 The first 18 Zernike modes. Note various aberrations from a perfect filter; top left image is the perfect filter.

(Images # Dr. Thomas Salmon at Northeastern State University and used by permission)

Zernike polynomials are analogous to steerable filters [319], which also contain oriented basis sets

of filter shapes used to identify oriented features and take moments to create descriptors. The Zernike

model uses radial coordinates and circular regions, rather than rectangular patches as used in many

other feature description methods.

Zernike methods are widely used in optometry to model human eye aberrations. Zernike moments

are also used for image watermarking [236] and image coding and reconstruction [237, 239]. The

Zernike features provide scale and rotational invariance, in part due to the radial coordinate symmetry

and increasing level of detail possible within the higher-order polynomials. Zernike moments are used

in computer vision applications by comparing the Zernike basis features against circular patches in

target images [234, 235].

Fast methods to compute the Zernike polynomials and moments exist [233, 238, 240], which

exploit the symmetry of the basis functions around the x and y axes to reduce computations and also to

exploit recursion.

Basis Space Metrics 135

Steerable Filters

Steerable filters are loosely considered as basis functions here and can be used for both filtering or

feature description. Conceptually similar to Zernike polynomials, steerable filters [319, 331] are

composed by synthesizing steered or oriented linearly combinations of chosen basis functions, such

as quadrature pairs of Gaussian filters and oriented versions of each function, in a simple transform.

Many types of filter functions can be used as the basis for steerable filters [320, 322]. The filter

transform is created by combining together the basis functions in a filter bank, as shown in Fig. 3.23.

Gain is selected for each function, and all filters in the bank are summed, then adaptively applied to the

image. Pyramid sets of basis functions can be created to operate over scale. Applications include

convolving oriented steerable filters with target image regions to determine filter response strength,

orientation, and phase. Other applications include filtering images based on orientation of features,

contour detection, and feature description.

Gain

Factors

Input

Image

Basis

Filter

Bank

E.f(x)

Filter

Summing

Filtered

Image

Fig. 3.23 (Left) Steerable filters basis set showing eight orientations of the first-order Gaussian filter. (Right) How

steerable filters can be combined for directional filtering. Filter images generated using ImageJ Fiji SteerableJ plugin

from Design of Steerable Filters for Feature Detection Using Canny-Like Criteria, M. Jacob, M. Unser, PAMI 2004

For feature description, there are several methods that could work—for example, convolving each

steerable basis function with an image patch. The highest one or two filter responses or moments from

all the steerable filters can then be chosen as the set-ordinal feature descriptor, or all the filter responses

can be used as a feature descriptor. As an optimization, an interest point can first be determined in the

patch, and the orientation of the interest point can be used to select the one or two steerable filters

closest to the orientation of the interest point; then the closest steerable filers are used as the basis to

compute the descriptor.

Karhunen–Loeve Transform and Hotelling Transform

The Karhunen–Loeve transform (KLT) [4, 9] was devised to describe a continuous random process as

a series expansion, as opposed to the Fourier method of describing periodic signals. Hotelling later

devised a discrete equivalent of the KLT using principal components. “KLT” is the most common

name referring to both methods.

The basis functions are dependent on the eigenvectors of the underlying image, and computing

eigenvectors is a compute-intensive process with no established fast transform known. The KLT is not

separable to optimize over image blocks, so the KLT is typically used for PCA on small datasets such

as feature vectors used in pattern classification, clustering, and matching.

136 3 Global and Regional Feature Descriptors

Wavelet Transform and Gabor Filters

Wavelets, as the name suggests, are short waves or wavelets [283]. Think of a wavelet as a short-

duration pulse such as a seismic tremor, starting and ending at zero, rather than a continuous or

resonating wave. Wavelets are convolved with a given signal, such as an image, to find similarity and

statistical moments. Wavelets can therefore be implemented like convolution kernels in the spatial

domain. See Fig. 3.24.

Fig. 3.24 Wavelet concepts using a “Mexican top hat” wavelet basis. (Top) A few scaled Mexican top hats derived from

the mother wavelet. (Bottom) A few translated wavelets

Wavelet analysis is a vast field [247, 248] with many applications and useful resources available,

including libraries of wavelet families and analysis software packages [245]. Fast wavelet transforms

(FWTs) exist in common signal and image processing libraries. Several variants of the wavelet

transform include:

• Discrete wavelet transform (DWT)

• Stationary wavelet transform (SWT)

• Continuous wavelet transform (CWT)

• Lifting wavelet transform (LWT)

• Stationary wavelet packet transform (SWPT)

• Discrete wavelet packet transform (DWPT)

• Fractional Fourier transform (FRFT)

• Fractional wavelet transform (FRWT)

Wavelets are designed to meet various goals and are crafted for specific applications; there is no

single wavelet function or basis. For example, a set of wavelets can be designed to represent the

musical scale, where each note (such as middle C) is defined as having a duration of an eighth note

wavelet pulse, and then each wavelet in the set is convolved across a signal to locate the corresponding

notes in the musical scale.

When designing wavelets, the mother wavelet is the basis of the wavelet family, and then daughter

wavelets are derived using translation, scaling, or compression of the mother wavelet. Ideally, a set of

wavelets are overlapping and complementary so as to decompose data with no gaps and be mathemat-

ically reversible.

Wavelets are used in transforms as a set of nonlinear basis functions, where each basis function can

be designed as needed to optimally match a desired feature in the input function. So, unlike transforms

which use a uniform set of basis functions—as the Fourier transform uses sine and cosine functions—

wavelets use a dynamic set of basis functions that are complex and nonuniform in nature. See Fig. 3.25.

Basis Space Metrics 137

Fig. 3.25 Various 2D wavelet shapes: (left to right) Top hat, Shannon, Dabechies, Smylet, Coiflett

Wavelets have been used as the basis for scale and rotation invariant feature description [208],

image segmentation [243, 244], shape description [209], and obviously image and signal filtering of all

the expected varieties, denoising, image compression, and image coding. A set of application-specific

wavelets could be devised for feature description.

Gabor Functions

Wavelets can be considered an extension of the earlier concept of Gabor functions [249, 282], which

can be derived for imaging applications as a set of 2D-oriented bandpass filters. Gabor’s work was

centered on the physical transmission of sound and problems with Fourier methods involving time-

varying signals like sirens that could not be perfectly represented as periodic frequency information.

Gabor proposed a more compact representation than Fourier analysis could provide, using a concept

called atoms that recorded coefficients of the sound that could be transmitted more compactly. See

Fig. 3.26.

(b) velocity-tuned (moving envelope)

(a) frequency-tuned (static envelope)

Fig. 3.26 This figure showing Gabor filters (top) frequency tuned, and (bottom) velocity tuned. Images # Springer-

Verlag, taken from CVPR 2010, “Facial expression recognition using Gabor motion energy filters, Tingfan Wu, Bartlett,

M.S. Movellan, Javier R”

Hough Transform and Radon Transform

The Hough transform [192–194] and the Radon transform [255] are related, and the results are

equivalent, in the opinion of many [251, 256]; see Fig. 3.27. The Radon transform is an integral

transform, while the Hough transform is a discrete method, therefore much faster. The Hough method

is widely used in image processing and can be accelerated using a GPU [254] with data parallel

methods. The Radon algorithm is slightly more accurate and perhaps more mathematically sound and

is often associated with X-ray tomography applied to reconstruction from X-ray projections. We focus

primarily on the Hough transform, since it is widely available in image processing libraries.

138 3 Global and Regional Feature Descriptors

y

x ⊖ ⊖

d d

Fig. 3.27 Line detection: (Left) Original image. (Center) Radon Transform. (Right) Hough Transform. The brightness

of the transform images reveals the relative strength of the accumulators, and the sinusoidal line intersections indicate the

angular orientation of features

Key applications for the Hough and Radon transforms are shape detection and shape description of

lines, circles, and parametric curves. The main advantages include:

• Robust to noise and partial occlusion

• Fill gaps in apparent lines, edges, and curves

• Can be parameterized to handle various edge and curve shapes

The disadvantages include

• Look for one type or parameterization of a feature at a time, such as a line

• Colinear segments are not distinguished and lumped together

• May incorrectly fill in gaps and link edges that are not connected

• Length and position of lines are not determined, but this can be done in image space

The Hough transform is primarily a global or regional descriptor and operates over larger areas. It

was originally devised to detect lines and has been subsequently generalized to detect parametric

shapes [257], such as curves and circles. However, adding more parameterization to the feature

requires more memory and compute. Hough features can be used to mark region boundaries described

by regular parametric curves and lines. The Hough transform is attractive for some applications, since

it can tolerate gaps in the lines or curves and is not strongly affected by noise or some occlusion, but

morphology and edge detection via other methods is often sufficient, so the Hough transform has

limited applications.

The input to the Hough transform is a gradient magnitude image, which has been thresholded,

leaving the dominant gradient information. The gradient magnitude is used to build a map revealing all

the parameterized features in the image—for example, lines at a given orientation or circles with a

given diameter. For example, to detect lines, we map each gradient point in the pixel space into the

Hough parameter space, parameterized as a single point (d, θ) corresponding to all lines with

orientation angle θ at distance d from the origin. Curve and circle parameterization uses different

variables [257]. The parameter space is quantized into cells or accumulator bins, and each accumulator

is updated by summing the number of gradient lines passing through the same Hough points. The

accumulator method is modified for detecting parametric curves and circles. Thresholding the accu-

mulator space and reprojecting only the highest accumulator values as overlays back onto the image

are useful to highlight features.

Learning Assignments 139

Summary

This chapter provides a selected history of global and regional metrics, with the treatment of local

feature metrics deferred until Chaps. 4 and 6. Some historical context is provided on the development

of structural and statistical texture metrics, as well as basis spaces useful for feature description, and

several common regional and global metrics. A wide range of topics in texture analysis and statistical

analysis are surveyed with applications to computer vision.

Since it is difficult to cleanly partition all the related topics in image processing and computer

vision, there is some overlap of topics here and in Chaps. 2, 4, 5, and 6.

Learning Assignments

1. Discuss when to use a global image processing operation vs. a local or regional image processing

operation.

2. Discuss in general how global image statistics can guide image preprocessing for computer vision

applications, and specifically name one global image metric and discuss how it can be applied.

3. Compare global image feature metrics and local feature descriptors in general, and discuss a

specific example global feature metric and compare it to a specific local feature descriptor.

4. Describe global image texture in general terms.

5. Discuss how a 2d histogram of an image can be used to understand image texture.

6. Discuss how the 2d Fourier Series of an image is used to understand image texture.

7. Discuss how the Haralick texture metrics based on the co-occurrence matrix are used to understand

image texture.

8. Discuss how Spatial Dependency Matrix (SDM) plots are used to understand image texture.

9. Discuss statistical moments of an image histogram, including at least the mean value and variance,

and how these features are useful as global image descriptors.

10. Describe a multi-resolution histogram built from an image pyramid, and how to interpret the

results of the histogram.

11. Describe how a Fourier description of the shape of a circle is created from the Fourier Series, and

how it is useful as a shape descriptor.

12. Describe basis features for the HAAR transform, Slant Transform, and Walsh–Hadamard

Transform.

13. Compare Wavelet features to Fourier Series features.

14. Describe the Hough Transform and the Radon Transform algorithms, and how they are used as a

global image metric for shape detection.

Science, my boy, is made up of mistakes, but they are mistakes which it is useful to make,

because they lead little by little to the truth.

—Jules Verne, Journey to the Center of the Earth

to both detector and descriptor methods. Note that the opportunity always exists to modify as well as

mix and match detectors and descriptors to achieve the best results.

Local Feature Descriptors 4

In this chapter, we examine several concepts related to local feature descriptor design—namely local

patterns, shapes, spectra, distance functions, classification, matching, and object recognition. The main

focus is local feature metrics, as shown in Fig. 4.1. This discussion follows the general vision

taxonomy that is presented in Chap. 5 and includes key fundamentals for understanding interest

point detectors and feature descriptors, as surveyed in Chap. 6, including selected concepts common

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Classification, Learning

Augment, Render, Control

Vision Pipeline Stages

Fig. 4.1 Various stages in the vision pipeline; this chapter focuses on local feature metrics and classification and

learning

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_4

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_4&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_4#DOI

142 4 Local Feature Descriptors

Local Features

We focus on the design of local feature descriptors and how they are used in training, classification,

and machine learning. The discussion follows the feature taxonomy as is presented in Chap. 5 and as is

illustrated in Fig. 5.1. The main elements are: (1) shape (for example, rectangle or circle); (2) pattern

(either dense sampling or sparse sampling); and (3) spectra (binary values, scalars, sparse codes, or

other values). A dense patterned feature will use each pixel in the local region, such as each pixel in a

rectangle, while a sparse feature will use only selected pixels from the region.

In addition to the many approaches to shape and pattern, there are numerous approaches taken for

the spectra, ranging from gradient-based patch methods to sparse local binary pattern methods. The

main topics covered here include:

• Detectors, used to locate interesting features in the image.

• Descriptors, used to describe the regions surrounding interesting features.

• Descriptor attributes, such as feature robustness and invariance.

• Classification, used to create databases of features and optimal feature matching.

• Recognition, used to match detected features in target images against trained features.

• Feature learning, or machine learning methods.

Based on the concepts presented this chapter, the vision taxonomy offered in Chap. 5 provides a

way to summarize and analyze the feature descriptors and their attributes, thereby enabling limited

comparison between the different approaches.

Detectors, Interest Points, Keypoints, Anchor Points, Landmarks

A detector finds interesting features in the image. The terminology in the literature for discussing an

“interesting feature” includes several interchangeable terms, such as keypoint, landmark, interest point,

or anchor point, all of which refer to features such as corners, edges, or patterns that can be found

repeatedly with high likelihood. In Chap. 6, we survey many detector methods, along with various

design approaches. In some cases, the keypoint detector is used to determine the orientation vector of

the surrounding feature descriptor—for example, by computing the overall gradient orientation of the

corner. The uncertain or low-quality keypoints are commonly filtered out prior to feature description.

Note that many keypoint methods operate on smaller pixel regions, such as 3 × 3 for the LBP and 7 × 7

for FAST.

The keypoint location itself may not be enough for feature matching; however, some methods

discussed here rely on keypoints only, without a feature descriptor. Feature description provides more

information around each keypoint and may be computed over larger regions and multiple scales, such

as SIFT and ORB.

Descriptors, Feature Description, Feature Extraction

A feature descriptor can be computed at each key point to provide more information about the pixel

region surrounding the keypoint. However, in methods that compute features across a fixed-size pixel

grid such as the Viola–Jones method [117], no interest point is necessary, since the grid defines the

descriptor region. Feature description typically uses some combination of color or gray scale intensity

channels, as well as local information such as gradients and colors. Feature description takes place over

a shape, such as a square or circle. In some cases, pixel point-pair sample patterns are used to compute

or compare selected pixel values to yield a descriptor vector—for example, as shown later, in Fig. 4.8.

Local Feature Attributes 143

Typically, an interest point provides some amount of invariance and robustness—for example, in

scale and rotation. In many cases, the orientation of the descriptor is determined from the interest point,

and the descriptor provides other invariance attributes. Combining the interest point with the descriptor

provides a larger set of invariance attributes. And if several descriptors are associated together from the

same object, object recognition is possible.

For example, a descriptor may contain multivariate, multidimensional, and multigeometric

quantities calculated over several intensity channels, multiple geometric scales, and multiple

perspectives (see Varma [699] and Vedaldi [698] for more on multivariate descriptors). A multivariate

descriptor may contain RGBD data (red, green, blue, and Z depth data); a multidimensional descriptor

may contain feature descriptions at various levels of zoom across an image pyramid; and a

multigeometry descriptor may contain a set of feature descriptions computed across affine transforms

of the local image patch or region.

There is no right or wrong method for designing features; many approaches are taken. For example,

a set of metrics including region shape, region texture, and region color of an object may be helpful in

an application to locate fruit, while another application may not need color or shape and can rely

instead on sets of interest points, feature descriptors, and their spatial relationships. In fact, combining

several weaker descriptor methods into a multivariate descriptor is often the best approach.

Computing feature descriptors from an image is commonly referred to as feature extraction.

Sparse Local Pattern Methods

While some methods describe features densely within regular sampling grids across an image, such as

the PHOG [157] method discussed in Chap. 6, other methods such as FREAK [102] use sparse local

patterns to sample pixels anchored at interest points to create the descriptor. Depending on the method,

the shapes may be trained, learned, or chosen by design, and many topologies of shapes and patterns

are in current use.

To frame the discussion on sparse local pattern and descriptor methods, notice that there is a

contrast with global and regional descriptor methods, which typically do not rely on sparse local

patterns. Instead, global and regional methods typically use dense sampling of larger shapes such as

rectangles or other polygons. For example, polygon shape descriptors, as discussed in Chap. 6, may

delineate or segment the feature region using dense methods such as mathematical morphology and

region segmentation. Global and regional descriptor metrics, such as texture metrics, histograms, or

SDMs discussed in Chap. 3, are typically computed across cohesive, dense regions rather than sparse

regions.

Local Feature Attributes

This section discusses how features are chosen to provide the desired attributes of feature goodness,

such as invariance and robustness.

Choosing Feature Descriptors and Interest Points

Both the interest point detector and the feature description method must be chosen to work well

together and to work well for the type of images being processed. Robustness attributes such as

contrast, scale, and rotation must be considered for both the detector and the descriptor pair. As shown

in Appendix A, each interest point detector is best designed to find specific types of features, and

therefore no single method is good for all types of images.

144 4 Local Feature Descriptors

For example, FAST and Harris methods typically find many small mono-scale interest points, while

other methods, such as that used in SIFT, find fewer, larger and finely tuned multi-scale interest points.

Some tuning of the interest point detector parameters is expected, so as to make them work at all, or

else some preprocessing of the images maybe needed to help the detector find the interest points in the

first place. (Chapter 6 provides a survey of interest point methods and background mathematical

concepts.)

Feature Descriptors and Feature Matching

Feature description is foundational to feature matching, leading to image understanding, scene

analysis, and object tracking. The central problems in feature matching include how to determine if

a feature is differentiated from other similar features, and if the feature is part of a larger object.

The method of determining a feature match is critical, for many reasons; these reasons include

compute cost, memory size, repeatability, accuracy, and robustness. While a perfect match is ideal, in

practice a relative match is determined by a distance function, where the incoming set of feature

descriptors is compared with known feature descriptors. But we’ll discuss several distance functions

later in this chapter.

Table 4.1 Some attributes for good feature descriptors and interest points. (See also Fig. 5.2 for the general robustness

criteria)

Good Feature Metric

Attributes Details

Scale invariance Should be able to find the feature at different scales

Perspective invariance Should be able to find the feature from different perspectives in the field of view

Rotational invariance The feature should be recognized in various rotations within the image plane

Translation invariance The feature should be recognized in various positions in the FOV

Reflection invariance The feature should be recognized as a mirror image of itself

Affine invariance The feature should be recognized under affine transforms

Noise invariance The feature should be detectable in the presence of noise

Illumination invariance The feature should be recognizable in various lighting conditions including changes in

brightness and contrast

Compute efficiency The feature descriptor should be efficient to compute and match

Distinctiveness The feature should be distinct and detectable, with a low probability of mis-match,

amenable to matching from a database of features

Compact to describe The feature should not require large amounts of memory to hold details

Occlusion robustness The feature or set of features can be described and detected when parts of the feature or

feature set are occluded

Focus or blur robustness The feature or set of features can be detected at varying degrees of focus (i.e., image

pyramids can provide some of this capability)

Clutter and outlier

robustness

The feature or set of features can be detected in the presence of outlier features and clutter

Local Feature Attributes 145

Criteria for Goodness

Measuring the goodness of features can be done one attribute at a time. A general list of goodness

attributes for feature landmarks is provided in Table 4.1. Note that this list is primarily about invariance

and robustness: these are the key concepts, since performance can be tuned using various optimization

methods, as discussed in Chap. 8. Of course, in a given application, some attributes of goodness are

more important than others; this is discussed in Chap. 7, in connection with ground truth data.

How do we know a feature is good for an application? We may divide the discussion between the

interest point methods and the descriptor method and the combined robustness and invariance

attributes provided by both as shown in Table 4.1. The interest point at which the feature is anchored

is critical, since if the anchor is not good and cannot be easily and repeatedly found, the resulting

descriptor is calculated at a suboptimal location.

Note that in many cases, image preprocessing is key to creating a good feature as shown in Fig. 4.2.

If the image data have problems that can be corrected or improved, the feature description should be

done after the image preprocessing. Note that many feature description methods rely on local image

enhancements during descriptor creation, such as Gaussian blur of regions around keypoints for noise

removal, so image preprocessing should complement the descriptor method. Each preprocessing

method has drawbacks and advantages; see Table 2.1 and Chap. 2 for information on image

preprocessing.

Fig. 4.2 (Left) SURF feature descriptors calculated over original image. (Right) Image has been preprocessed using

histogram equalization prior to feature extraction and therefore a different but overlapping set of features is found

146 4 Local Feature Descriptors

Repeatability, Easy vs. Hard to Find

Ideally, the feature will be easy to find in an image, meaning that the feature description contains

sufficient information to be robust under various conditions as shown in Table 4.1, such as contrast and

brightness variations, scale, and rotation. Repeatability applies particularly to interest point detection,

so the choice of interest point detector method is critical. (Appendix A contains example images

showing interesting nonrepeatability anomalies for several common interest point detectors.)

Some descriptors, such as SIFT [132, 146], are known to be robust under many imaging conditions.

This is not too surprising, since SIFT is designed to be discriminating over multiple dimensions, such

as scale and rotation, using carefully composed sets of local region gradients with a weighting factor

applied to increase the importance of gradients closer to the center of the feature. But the robustness

and repeatability come at a compute cost. SIFT [132, 146] is one of the most computationally

expensive methods; however, Chap. 6 surveys various SIFT optimizations and variations.

Distinctive vs. Indistinctive

A descriptor is distinctive if:

• The feature can be differentiated from other, similar feature regions of the image.

• Different feature vectors are unique in the feature set.

• The feature can be matched effectively using a suitable distance function.

A feature is indistinct if similar features cannot be distinguished; this may be caused by a lack of

suitable image preprocessing, insufficient information in the descriptor, or an unsuitable distance

function chosen for the matching stage. Of course, adding information into a simpler descriptor to

make the descriptor a hybrid multivariate or multi-scale descriptor may be all that is needed to improve

distinctiveness. For example, color information can be added to distinguish between skin tones.

Relative and Absolute Position

Positional information, such as coordinates, can be critical for feature goodness. For example, to

associate features together using constraints on the corner position of human eyes, interest point

coordinates are needed. These enable more accurate identification and location of the eyes by using, as

part of an intelligent matching process, the distance and angles between the eye corner locations.

With the increasing use of depth sensors, simply providing the Z or depth location of the feature in

the descriptor itself may be enough to easily distinguish a feature from the background. Position in the

depth field is a powerful bit of information, and since computer vision is often concerned with finding

3D information in a 2D image field, the Z depth information can be an invaluable attribute for feature

goodness.

Matching Cost and Correspondence

Feature matching is a measurement of the correspondence between two or more features using a

distance function (discussed next in this section). Note here that feature matching has a cost in terms of

memory and compute time. For example, if a feature descriptor is composed of an array of 8-bit bytes,

such as an 18 × 18 pixel correlation template, then the feature matching cost is the compute time and

memory required to compare two 18 × 18 (324) pixel regions against each other, where the matching

method or distance function used may be SAD, SSD, or similar difference metric. Another example

involves local binary descriptors such as the LBP (linear binary patterns), which are stored as bit

vectors, where the matching cost is the time to perform the Hamming distance function, which operates

by comparing two binary vectors via Boolean XOR followed by a bit count to provide the match

metric.

Distance Functions 147

In general, distance functions are well-known mathematical functions that are applied to computer

vision; however, some are better suited than others in terms of computability and application to a

specific vision task. For example, SSD, SAD, cosine distance, and Hamming distance metrics have

been implemented in silicon as computer machine language instructions in some architectures, owing

to their wide applicability. So choosing a distance function that is accelerated in silicon can be an

advantage.

The feature database is another component of the matching cost, so the organization of the database

and feature search contribute to the cost. We briefly touch on this topic later in this chapter.

Distance Functions

This section provides a general discussion of distance functions used for clustering, classification, and

feature matching. Often the appropriate distance function for an application is unknown, therefore

several distance functions should be tried to find the best one, or a new one should be devised. For

example, a distance function can be augmented to selectively compare distance only for nonzero

datums (intersection), or where one datum is zero and the other is not (outliers), or only for datums

which exceed a threshold. Be creative. Note that distance functions can be taken over several

dimensions—for example, 2D image arrays for feature descriptor matching, 3D voxel volumes for

point cloud matching, and multidimensional spaces for multivariate descriptors. Since this is a brief

overview, a deeper treatment is available by Pele [472], Varma [699], Vedaldi [698], Cha [809], Duda

[750], and Deza [810].

Note that kernel machines [305, 535], discussed later in this chapter, and in more detail in Chap. 10

in the section “Kernel Functions, Kernel Machines, SVM,” provide an automated framework to

classify a feature space and substitute chosen distance function kernels.

Early Work on Distance Functions

In 1968, Rosenfeld and Pfaltz [95] developed novel methods for determining the distance between

image features, which they referred to as “a given subset of the picture,” where the feature shapes used

in their work included diamonds, squares, and triangles. The distance metrics they studied include

some methods that are no longer in common use today:

• Hexagonal distance from a single point (Cartesian array)

• Hexagonal distance from a single point (staggered array)

• Octagonal distance from a single point

• City block distance from blank areas

148 4 Local Feature Descriptors

• Square distances from blank areas

• Hexagonal distance from blank areas

• Octagonal distance from blank areas

• Nearest integer to Euclidean distance from a single point

This early work by Rosenfeld and Pfaltz is fascinating, since the output device used to render the

images was ASCII characters printed on a CRT terminal or line printer, as shown in Fig. 4.3.

Fig. 4.3 An early

Rosenfeld and Pfaltz

rendering that illustrates a

distance function (square

distance in this case) using

a line printer as the output

device. (Image # reprinted

from Rosenfeld and Pfaltz,

Pattern Recognition

(Oxford: Pergamon Press,

1968), 1:33–61. Used with

permission from Elsevier)

Euclidean or Cartesian Distance Metrics

The Euclidean distance metrics include basic Euclidean geometry identities in Cartesian coordinate

spaces; in general, these are simple and obvious to use.

Euclidean Distance

This is the simple distance between two points.

Euclidean Distance a, bf g, x, yf g½]= a- xð Þ2 þ b- yð Þ2

Distance Functions 149

Squared Euclidean Distance

This is faster to compute and omits the square root.

Squared Euclidean Distance a, bf g, x, yf g½]= a- xð Þ2 þ b- yð Þ2

Cosine Distance or Similarity

This is angular distance, or the normalized dot product between two vectors to yield similarity of vector

angle; also useful for 3D surface normal and viewpoint matching.

cos θð Þ ¼ A . B
Ak k Bk k

Cosine Distance a, bf g, x, yf g½] ¼ 1-
ax þ by

a2 þ b2 x2 þ y2

Sum of Absolute Differences (SAD) or L1 Norm

The difference between vector elements is summed and taken as the total distance between the vectors.

Note that SAD is equivalent to Manhattan distance.

SAD d1, d2ð Þ=

n1

i= 0

n2

j= 0

d1 i, j½]- d2 i, j½]ð Þ

Sum of Squared Differences (SSD) or L2 Norm

The difference between vector elements is summed and squared and taken as the total distance between

the vectors; commonly used in video decoding for motion estimation.

þ

150 4 Local Feature Descriptors

SSD d1, d2ð Þ=

n1

i= 0

n2

j= 0

d1 i, j½]- d2 i, j½]ð Þ 2

Correlation Distance

This is the correlation difference coefficient between two vectors, similar to cosine distance.

C u,v½]¼1 - u-Mean u½]ð Þ. v-Mean v½]ð Þ
u-Mean u½]k k v-Mean v½]k k

C a,bf g, x,yf g½]¼
aþ1

2
-a-bð Þ xþ1

2
-x-yð Þ þ 1

2
-a-bð Þþb

1

2
-x-yð Þþy

Abs aþ1
2
-a-bð Þ 2þAbs 1

2
-a-bð Þþb

2
Abs xþ1

2
-x-yð Þ 2

Abs 1
2
-x-yð Þ y

2

Hellinger Distance

An effective alternative to Euclidean distance, Hellinger distance sometimes yields better accuracy for

histogram-type distance metrics, as reported in the ROOTSIFT [143] optimization of SIFT. Hellinger

distance, which can be formulated in a few different forms, is defined for L1 normalized histogram

vectors as:

H x, yð Þ=

n

i= 1

xi
p

, - , yi
p 2

Grid Distance Metrics

These metrics calculate distance analogous to paths on grids. Therefore, the distance is measured as

grid steps.

Manhattan Distance

Also known as city block difference or rectilinear distance, this measures distance via the route along a

grid; there may be more than one path along a grid with equal distance.

Manhattan Distance a, bf g, x, yf g½]=Abs a- xð Þ þ Abs b- yð Þ

]

Distance Functions 151

Chebyshev Distance

Also known as chessboard difference, this measures the greatest difference along a grid between two

vectors. Note in the illustration below that each side of the triangle would have a Chebyshev distance,

or length of 5, but in Euclidean space, one of the lines, the hypotenuse, is longer than the others.

Chebyshev Distance a, bf g, x, yf g½]=Max Abs a- xð Þ, Abs b- yð Þ½

Statistical Difference Metrics

These metrics are based on statistical features of the vectors, and therefore the distance metrics need

not map into a Euclidean space.

Earth Movers Distance (EMD) or Wasserstein Metric

Earth movers distance measures the cost to transform a multidimensional vector, such as a histogram,

into another vector. The analogy is an earth mover (bulldozer) moving dirt between two groups of piles

to make the piles of dirt in each group the same size. The EMD assumes there is a ground distance

between the features in the vector—for example, the distance between bins in a histogram. The EMD is

computed to be the minimal cost for the transform, which integrates the distance moved d × the amount

moved f, subject to a few constraints.

COST P,Q,Fð Þ=

m

i= 1

n

j= 1

dijf ij

Once the cost is computed, the result is normalized.

EMD P,Qð Þ=

m

i= 1

n

j= 1

dijf ij

m

i= 1

n

j= 1

f ij

The EMD has a high compute cost and can be useful for image analysis, but EMD is not an efficient

metric for feature matching.

Mahalanobis Distance

Also known as quadratic distance, this computes distance using mean and covariance; it is scale

invariant.

152 4 Local Feature Descriptors

dij ¼ xi - xj
T
S- 1 xi - xj

1
2

SSD d1, d2ð Þ ¼
n1

i¼- n1

n2

j¼- n2

f xþ i, yþ jð Þ- g xþ i- d1, yj - d2
2

where xi = mean of feature vector 1, and xj = mean of feature vector 2.

Bray Curtis Distance

This is equivalent to a ratio of the sums of absolute differences and sums, such as a ratio of norms of

Manhattan distances. Bray Curtis dissimilarity is sometimes used for clustering data.

Bray Curtis Distance a, b, cf g, x, y, zf g½]=
Abs a- xð Þ þ Abs b- yð Þ þ Abs c- zð Þ
Abs a þ xð Þ þ Abs bþ yð Þ þ Abs cþ zð Þ

Canberra Distance

This measures the distance between two vectors of equal length:

Canberra Distance a, bf g, x, yf g½]=
Abs a- xð Þ

Abs að Þ þ Abs xð Þ þ Abs b- yð Þ
Abs bð Þ þ Abs yð Þ

Binary or Boolean Distance Metrics

These metrics rely on set comparisons and Boolean algebra concepts, which makes this family of

metrics attractive for optimization on digital computers.

L0 Norm

The L0 norm is a count of nonzero elements in a vector and is used in the Hamming Distance metric

and other binary or Boolean metrics.

x0k k= # ijxi ≠ 0 ð Þ

Hamming Distance

This measures the binary difference or agreement between vectors of equal length—for example, string

or binary vectors. Hamming distance for binary bit vectors can be efficiently implemented in digital

computers with either complete machine language instructions or as an XOR operation followed by a

bit count operation. Hamming distance is a favorite for matching local binary descriptors, such as LBP,

FREAK, CENSUS, BRISK, BRIEF, and ORB.

• String distance: 5 = 0001100111 = compare “HelloThere” and “HelpsThing”

• Binary distance: 3 = 10100010 = (01001110) XOR (11001100)

• Bit count of (u XOR v)

Descriptor Representation 153

Jaccard Similarity and Dissimilarity

The ratio of pairwise similarity of a binary set (0,1 or true, false) over the number of set elements. Set 1

below contains two bits with the same pairwise value as Set 2, so the similarity is 2/5 and the

dissimilarity is 3/5. Jaccard similarity can be combined with Hamming distance.

• Set 1: {1,0,1,1,0}

• Set 2: {1,1,0,1,1}

• Jaccard Similarity: 2/5 = 0.4

• Jaccard Dissimilarity: 3/5 = 0.6

Descriptor Representation

This section discusses how information is represented in the descriptors, including coordinates spaces

useful for feature description and matching, with some discussion of multimodal data and feature

pyramids. Here we provide an overview of shapes and styles, see Table 5.1 and Fig. 5.2 for details on

computer vision feature shape taxonomies and accepted invariance and robustness qualities for

features.

Coordinate Spaces, Complex Spaces

There are many coordinate systems used in computer vision, so being able to transform data between

coordinate systems is valuable. Coordinate spaces are analogous to basis spaces. Often, choosing the

right coordinate system provides advantages for feature representation, computation, or matching.

Complex spaces may include multivariate collections of scalar and vector variables, such as gradients,

color, binary patterns, and statistical moments of pixel regions (see Fig. 4.4).

c

p

t

g

r

F

q

Fig. 4.4 Coordinate spaces, Cartesian, polar, radial, and spherical

Cartesian Coordinates

Images are typically captured in the time domain in a Cartesian space, and for many applications,

translating to other coordinate spaces is needed. The human visual system views the world as a

complex 3D spherical coordinate space and humans can, through a small miracle, map the 3D space

into approximate or relative Cartesian coordinates. Computer imaging systems capture data and

convert it to Cartesian coordinates, but depth perception and geometric accuracy are lost in the

conversion. (Chapter 1 provided a discussion of depth-sensing methods and 3D imaging systems,

including geometric considerations.)

154 4 Local Feature Descriptors

Polar and Log Polar Coordinates

Many descriptors mentioned later in Chap. 6 use a circular descriptor region to match the human

visual system. Therefore, polar coordinates are logical candidates to bin the feature vectors. For

example, the GLOH [115] method uses polar coordinates for histogram gradient binning, rather than

Cartesian coordinates as used in the original SIFT [132] method. GLOH can be used as a retrofit for

SIFT and has proved to increase accuracy [115]. Since the circular sampling patterns tend to provide

better rotational invariance, polar coordinates and circular sampling are a good match for descriptor

desig n.

Radial Coordinates

The RIFF descriptor (described later in Chap. 6) uses a local radial coordinate system to describe

rotationally invariant gradient-based feature descriptors. The radial coordinate system is based on a

radial gradient transform (RGT) that normalizes vectors for invariant binning.

As shown in Figs. 4.4 and 6.27, the RGT creates a local coordinate system within a patch region

c and establishes two orthogonal basis vectors (r,t) relative to any point p in the patch, r for the radial

vector, and t for the tangential vector. The measured gradients g at all points p are projected onto the

radial coordinate system (r,t), so that the gradients are represented in a locally invariant fashion relative

to the interest point c at the center of the patch. When the patch is rotated about c, the gradients rotate

also, and the invariant representation holds.

Spherical Coordinates

Spherical coordinates, also referred to as 3D polar coordinates, can be applied to the field of 3D

imaging and depth sensing to increase the accuracy for description and analysis. For example, depth

cameras today typically only provide (x,y) an Z depth information for each sample. However, this is

woefully inadequate to describe the complex geometry of space, including warping, radial distortion,

and nonlinear distance between samples. Chapter 1 discussed the complexities of 3D space, depth

measurements, and coordinate systems.

Gauge Coordinates

The G-SURFmethods [155] use a differential geometry concept [156] of a local region Gauge coordinate

system to compute the features. Gauge coordinates are local to the image feature, and they carry

advantages for geometrical accuracy. Gauge derivatives are rotation and translation invariant.

Descriptor Representation 155

Multivariate Spaces, Multimodal Data

Multivariate spaces combine several quantities, such as Tensor spaces which combine scalar and

vector values, and are commonly used in computer vision. While raw image data may be scalar values

only, many feature descriptors compute local gradients at each pixel, so the combination of pixel scalar

value and gradient vector forms a tensor or multivariate space. For example, color spaces (see Chap. 2)

may represent color as a set of scalar and vector quantities, such as the hue, saturation, and value (HSV)

color space illustrated in Fig. 2.8, where the vectors include HS with H hue as the vector angle and S

saturation as the vector magnitude. V is another vector with two purposes, first as the axis origin for the

HS vector and second as the color intensity or gray scale vector V. It is often useful to convert raw RGB

data into such color spaces for ease of analysis—for example, to be able to uniformly change the color

intensity of all colors together so as to affect brightness or contrast.

In general, by increasing the dimensions of the feature space, more discrimination and robustness

can be added. For example, the LBP pattern as described later in Chap. 6 can be extended into multiple

variables by adding features such as a rotational invariant representation (RILBP); or by replicating the

LBP across RGB color cannels as demonstrated in the color LBP descriptor; or by extending the LBP

pattern into spatiotemporal 3-space, like the LBP-TOP to add geometric distortion invariance.

Multimodal sensor data are becoming widespread with the proliferation of mobile devices that have

built-in GPS, compass, temperature, altimeter, inertial, and other sensors. An example of a multimodal,

multivariate descriptor is the SIFT-GAFD [207] method, as illustrated in Fig. 4.5, which adds

accelerometer information in the form of a gravity vector to the SIFT descriptor. The gravity vector

is referred to as global orientation, and the SIFT local pixel region gradient is referred to as the local

orientation.

Gravity

vector

Pixel

gradient

vector

Fig. 4.5 Multimodal descriptor using accelerometer data in the form of a gravity vector, in a feature descriptor as used in

the SIFT-GAFD method [207]. The gravity vector of global orientation can be used for feature orientation with respect to

the environment

156 4 Local Feature Descriptors

Feature Pyramids

Many feature descriptors are computed in a mono-scale fashion using pixel values at a given scale

only, and then for feature detection and matching the feature is searched for in a scale space image

pyramid. However, by computing the descriptor at multiple scales and storing multiple scaled

descriptors together in a feature pyramid, the feature can be detected on mono-scale images with

scale variance without using a scale space pyramid.

For interest point and feature descriptor methods, scale invariance can be addressed either by:

(1) scaling the images prior to searching, as in the scale space pyramid methods discussed later in this

chapter; or (2) scaling and pyramiding multiple scales of the feature in the descriptor. Shape-based

methods are by nature more scale invariant than interest point and feature descriptor methods, since

shape-based methods depend on larger polygon structures and shape metrics.

Descriptor Density

Depending on the image data, there will be a different number of good interest points and features,

since some images have more pronounced texture. And depending on the detector method used,

images with high texture structure, or wider pixel intensity range differences, will likely generate more

interest points than images with low contrast and smooth texture.

A good rule of thumb is that between 0.1% and 1% of the pixels in an image can yield raw,

unfiltered interest points. The more sensitive detectors such as FAST and the Harris detector family are

at the upper end of this range (see Appendix A). Of course, detector parameters are tuned to reduce

unwanted detection for each application.

Interest Point and Descriptor Culling

In fact, even though the interest point looks good, the corresponding descriptor computed at the interest

point may not be worth using and will be discarded in some cases. Both interest points and descriptors

are culled. So tuning the detector and descriptor together are critical trial-and-error processes. Using

our base assumption of 0.1–1% of the pixels yielding valid raw interest points, we can estimate the

possible detected interest points based on video resolution, as shown in Table 4.2.

Depending on the approach, the detector may be run only at mono-scale or across a set of scaled

images in an image pyramid scale space. For scale space search methods, the interest point detector is

run at each pixel in each image in the pyramid. What methods can be used to cull interest points to

reduce the interest point density to a manageable number?

One method to select the best interest points is to use an adaptive detector tuning method

(as discussed in Chap. 6 under “Interest Point Tuning”). Other approaches include only choosing

interest points at a given threshold distance apart—for example, an interest point that cannot be

Table 4.2 Possible range of detected interest points per image

480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD

Resolution 640 × 480 1920 × 1080 3840 × 2160 7680 × 4320

Pixels 307,200 2,073,600 8,294,400 33,177,600

Interest points 300–3k 2k–21k 8k–83k 33k–331k

adjacent to another interest point within a five-pixel window, with the best candidate point selected

within the threshold.

Descriptor Shape Topologies 157

Another method is to vary the search strategy as discussed in this chapter—for example, search for

features at a lower resolution of the image pyramid, identify the best features, and record their

positions, and perhaps search at higher levels of the pyramid to confirm the feature location, then

compute the descriptors. This last method has the drawback of missing fine-grain features by default,

since features may only be present at full image resolution.

Yet another method is to look for interest points every other pixel or within grid-sized regions. All

of the above methods are used in practice, and other methods exist besides.

Dense vs. Sparse Feature Description

A dense descriptor makes use of all the pixels in the region or patch. By “dense” we mean that the

kernel sampling pattern includes all the pixels, since a sparse kernel may select specific pixels to use or

ignore. SIFT and SURF are classic examples of dense descriptors, since all pixels in rectangular

regions contribute to the descriptor computation.

Many feature description methods, especially local binary descriptor methods, are making use of

sparse patterns, where selected pixels are used from a region rather than all the pixels. The FREAK

descriptor demonstrates one of the most ingenious methods of sparse sampling by modeling the human

visual system, using a circular search region, and leveraging the finer resolution sampling closer to the

center of the region, as well as tuning a hierarchy of local sampling patterns of increasing resolution for

optimal results. Not only can sparse features potentially use less memory and reduce computations, but

the sparse descriptor can be spread over a wider area to compensate for feature anomalies that occur in

smaller regions.

Descriptor Shape Topologies

For this discussion, we view descriptor shape topology with an eye toward surveying the various

shapes of the pixel regions used for descriptor computations. Part of the topology is the shape or

boundary, and part of the topology is the choice of dense vs. sparse sampling patterns, discussed later

in this chapter. Sampling and pattering methods range from the simple rectangular regions up to the

more complex sparse local binary descriptor patterns. As discussed in Chap. 6, both 2D and 3D

descriptors are being designed to use a wide range of topologies. Let us look at a few topological

design considerations, such as patch shape, sub-patches, strips, and deformable patches.

Which shape is better? The answer is subjective and we do not attempt to provide absolute answers,

just offer a survey.

Correlation Templates

An obvious shape is the simple rectangular regions commonly used by correlation template matching

methods. The descriptor is thus the mugshot, or actual image in the template region. To select

subspaces within the rectangle, a mask can be used—for example, it could be a circular mask inside

the bounding rectangle to mask off peripheral pixels from consideration.

158 4 Local Feature Descriptors

Note

Rectangles are the last invariant feature shape, yet recent AI methods for transformers and CNNs

surveyed in Chaps. 9–12 use rectangular areas of interest for feature learning. Many other feature

shapes and attributes will eventually be used in AI for feature learning, since AI is currently at a very

primitive stage. See Table 5.1 and Fig. 5.2 for details on computer vision feature shape taxonomies and

accepted invariance and robustness qualities for features.

Patches and Shapes

The literature commonly refers to the feature shape as a patch, and usually a rectangular shape is

assumed. Patch shapes are commonly rectangular owing to the ease of coding 2D array memory

access. Circular patches are widely used in the local binary descriptor methods.

However, many descriptors also compute features over multiple patches or regions, not just a single

patch. Here are some common variations on patch topology.

Single Patches, Subpatches

Many descriptors limit the patch count to a single 2D patch. This is true of most common descriptors

that are surveyed in Chap. 6. However, some of the local binary descriptors use a set of integral image

subpatches at specific points within the larger patch—for example, BRIEF uses a 5 × 5 integral image

subpatch at each sample point in the local binary pattern, within the larger 31 × 31 pixel patch region,

so the value of each subpatch becomes the value used for the point-pair comparison. The goal is to filter

the values at each point to remove noise.

Deformable Patches

Rather than using a rigid shape, such as a fixed-size rectangle or a circle, feature descriptors can be

designed with deformation in mind, such as scale deformations [293, 294], and affine or homographic

deformation [186], to enable more robust matching. Examples include the DeepFlow [283, 325] deep

matching method, and RFM2.3, as discussed in Chap. 6. Also, the D-NETS [106] method, using the

fully connected or sparse connected topology, can be considered to be deformable in terms of

invariance of the placement of the strip patterns; see Fig. 4.7 and the discussion of D-nets in

Chap. 6. Many feature learning methods discussed later in this chapter also use deformed features

for training.

Fixed descriptor shapes, such as rigid rectangles and circles, can detect motion under a rigid motion

hypothesis, where the entire descriptor is expected to move with some amount of variance, such as in

scale or affine transformation. However, for activity recognition and motion, a more deformable

descriptor model is needed, and DeepFlow [292, 325] bridges the gap between descriptor matching

methods and optical flow matching methods, using deformable patches and deep matching along the

lines of deep learning networks.

Multi-patch Sets

The SIFT descriptor uses multi-patch sets of three patches from adjacent DoG images taken from the

scale space pyramid structure, as shown in Fig. 6.15. Several other methods, such as the LBP-TOP and

VLBP shown in Fig. 6.12, use sets of patches spread across a volume structure. LBP-TOP uses patches

from adjacent planes, and the VLBP uses intersecting patches in 3-space. Dynamic texture methods

use sets of three adjacent patches from spatiotemporal image frame sets, as frame n - 2, frame n - 1,

and frame - 0 (current frame).

Descriptor Shape Topologies 159

TPLBP, FPLBP

The three-patch LBP TPLBP and four-patch LBP FPLBP [206] utilize novel multi-patch sampling

patterns to add sparse local structure into a composite LBP descriptor. As shown in Fig. 4.6, the three-

patch LBP uses a radial set of LBP patterns composed using alternating sets of three patches, and the

four-patch LBP uses a more distributed pairing of patches over a wider range.

Fig. 4.6 Novel multi-patch sets developed by Wolf et al. [206]. (Left) The TPLBP compares the values from three-patch

sets around the ring to compute the LBP code, eight sets total, so there is one set for each LBP bit. (Right) The four-patch

LBP uses four patches to computed bits using two symmetrically distributed patches from each ring, to produce each bit

in the LBP code. The radius of each ring is a variable, the patch pairing is a variable, and the number of patches per ring is

a variable; here, there are eight patches per ring

Strip and Radial Fan Shapes

Radial fans or spokes originating at the feature interest point location or shape centroid can be used as

the descriptor sampling topology—for example, with Fourier shape descriptors (as discussed in

Chap. 6; see especially Fig. 6.29).

D-NETS Strip Patterns

The D-NETS method developed by Hundelshausen and Sukthankar [106] uses a connected graph-

shaped descriptor pattern with variations in the sampling pattern possible. The authors suggest that the

method is effective using three different patterns, as shown in Fig. 4.7:

1. Fully connected graph at interest points

2. Sparse or iterative connected graph at interest points

3. Densely sampled graph over a chosen grid

160 4 Local Feature Descriptors

Fig. 4.7 Reduced resolution examples of the D-NETS [106] sampling patterns. (Left) Full dense connectivity at interest

points. (Center) Sparse connectivity at interest points. (Right) Dense connectivity over a regular sampling grid. The

D-NETS authors note that a dense sampling grid with 10 pixel spacing is preferred over sampling at interest points

The descriptor itself is composed of a set of d-tokens, which are strips of raw pixel values rather than

a value from a patch region: the strip is the region, and various orientations of lines are the pattern. The

sampling along the strip is between 80% and 20% of the strip length rather than the entire length,

omitting the endpoints, which is claimed to reduce the contribution of noisy interest points. The

sampled points are combined into a set s of uniform chunks of pixels and normalized and stored into a

discrete d-token descriptor.

Object Polygon Shapes

The object and polygon shape methods scan globally and regionally to find the shapes in the entire

image frame or region. The goal is to find an object or region that is cohesive. A discussion of the

fundamental methods for segmentation polygon shapes for feature descriptors is provided here,

including:

• Morphological object boundary methods

• Texture or regional structural methods

• Superpixel or pixel similarity methods

• Depth map segmentation

Chapter 6 provides details on a range of object shape factors and metrics used to statistically

describe the features of polygon shape. Note that this topic is often discussed in the literature as “image

moments”; a good source of information is Flusser et al. [444].

Morphological Boundary Shapes

One method for defining polygon shapes is to use morphology. Morphological segmentation is a

common method for region delineation, either as a binary object or as a gray scale object. Morpholog-

ical shapes are sometimes referred to as blobs. In both binary and gray scale cases, thresholding is often

used as a first step toward defining the object boundary, and morphological reshaping operations such

as ERODE and DILATE are used to grow, shrink, and clean up the shape boundary. Morphological

segmentation is threshold- and edge-feature driven. (Chapter 3 provided a discussion of the methods

used for morphology and thresholding.)

Local Binary Descriptor Point-Pair Patterns 161

Texture Structure Shapes

Region texture is also used to segment polygon shapes. Texture segmentation is a familiar image-

processing method for image analysis and classification and is an ideal method for segmentation in a

nonbinary fashion. Texture reveals structure that simple thresholding ignores. As shown in Fig. 6.6, the

LBP operator can detect local texture, and the texture can be used to segment regions such as sky,

water, and land. Texture segmentation is based on local image pixel relationships. (Several texture

segmentation methods were surveyed in Chap. 3.)

Super-Pixel Similarity Shapes

Segmenting a region using super-pixel methods is based on the idea of collapsing similar pixels

together—for example, collapsing pixels together with similar colors into a larger shape. The goal is to

segment the entire image region into super-pixels. Super-pixel methods are based on similarity.

(Several super-pixel processing methods were discussed in Chap. 3.)

Local Binary Descriptor Point-Pair Patterns

Local binary descriptor shapes and sampling patterns, such as those employed in FREAK, BRISK,

ORB, and BRIEF, are good examples to study in order to understand the various trade-offs and design

approaches. We examine local binary shape and pattern concepts here. (Chapter 6 provides a more

detailed survey of each descriptor.)

Local binary descriptors use a point-pair sampling method, where pairs of pixels are assigned to

each other for a binary comparison. Note that a drawback of local binary descriptors and point-pair

comparisons is that small changes in the image pixel values in the local region may manifest as binary

artifacts. Seemingly insignificant changes in a set of pixel values may cause problems during matching

that are pronounced for: (1) noisy images, and (2) images with constant gray level. However, each

local binary descriptor method attempts to mitigate the binary artifact problems. For example, BRISK

(see Fig. 4.10) and ORB (see Fig. 4.11) compute a filtered region surrounding each interest point to

reduce the noise component prior to the binary comparison.

Another method to mitigate the binary artifact problem of constant gray level is used in a

modification of the LBP method called the local trinary pattern operator, or LTP [448] (see also

reference [142], Sect. 2.9.3), which uses trinary values of {-1, 0, 1} to describe regions. A threshold

band is established for the LTP to describe near-constant gray values as 0, values above the threshold

band as 1, and values below the threshold band as -1. The LTP can be used to describe both smooth

regions of constant gray level and contrasted regions in the standard LBP. In addition, the compared

threshold for point-pairs can be tuned to compensate for noise, illumination, and contrast, as employed

in nearly all local binary descriptor methods.

Figure 4.8 (left image) illustrates a hypothetical descriptor pattern to include selected pixels as the

black values, while the center left image shows a strip-oriented shape and pattern where the descriptor

calculates the descriptor over pixels along a set of line segments with no particular symmetry like the

DNETS [106] method.

162 4 Local Feature Descriptors

0 01 0 1 101

0
0

1

0

1
1

0
1

0 -4 0

1 0 1

1 0 1

Fig. 4.8 Various descriptor patterns and shapes. (Left) Sparse. (Center left) Nets or strips. (Center right) Kernels. (Right)

Radial spokes

In Fig. 4.8 also, the center right image illustrates a convolution kernel where the filter shape and

filter goal are specified, while the right image is a blob shape using radial pixel sampling lines

originating at the shape centroid and terminating on the blob perimeter. Note that a 1D Fourier

descriptor can be computed from an array containing the length of each radial line segment from the

centroid to the perimeter to describe shape, or just an array of raw pixel values can be kept, or else

D-nets can be computed.

A feature descriptor may be designed by using one or more shapes and patterns together. For

example, the hypothetical descriptor pattern in Fig. 4.8 (left image) uses one pattern for pixels close to

the interest point, another pattern uses pixels farther away from the center to capture circular pattern

information, and another pattern covers a few extrema points. An excellent example of tuned sampling

patterns is the FREAK descriptor, discussed next.

FREAK Retinal Patterns

The FREAK [102] descriptor shape, also discussed in some detail in Chap. 6, uses local binary patterns

based on the human retinal system, as shown in Fig. 4.9, where the density of the receptor cells in the

human visual system is greater in the center and decreases with distance from center. FREAK follows a

similar pattern when building the local binary descriptors, referred to as a coarse-to-fine descriptor

pattern, with fine detail in the center of the patch and coarse detail moving outward. The coarse-to-fine

method also allows for the descriptor to be matched in coarse-to-fine segments. The coarse part is

matched first, and if the match is good enough, the fine feature components are matched as well.

Fig. 4.9 (Left) The human visual system concentration of receptors in the center Fovea region with less receptor density

moving outward to periphery vision regions of Para and Peri. (Center) FREAK [102] local binary pattern sampling

regions, six regions in each of six overlapping distance rings from the center, size of ring denotes compare point

averaging area. (Right) Hypothetical example of a FREAK-style point-pair pattern

Local Binary Descriptor Point-Pair Patterns 163

FREAK descriptors can be built with several patterns within this framework. For FREAK, the

actual pattern shape and point-pairing are designed during a training phase where the best point-pair

patterns are learned using a method similar to ORB [94] to find point-pairs with high variance. The

pattern is only constrained by the training data; only 45 point-pairs are used from the 32 × 31 image

patch region.

As illustrated in Fig. 4.9, the pairs of points at the end of each line segment are compared, the set of

compare values is composed into a binary descriptor vector using 16 bytes, and a cascade of four

separate 16-byte coarse-to-fine patterns is included in the descriptor set. Typically, the coarse pattern

alone effectively rejects bad matches, and the finer patterns are used to qualify only the closest

matches.

Brisk Patterns

The BRISK descriptor [103] point-pair sampling shape is symmetric and circular, composed of 60 total

points arranged in four concentric rings, as shown in Fig. 4.10. Surrounding each of the 60 points is a

circular sampling region; the sampling regions increase in size with distance from the center, and also

proportional to the distance between sample points. Within the sampling regions, Gaussian smoothing

is applied to the pixels and a local gradient is calculated over the smoothed region.

Fig. 4.10 (Left) BRISK concentric sampling grid pattern. (Center) Short segment pairs. (Right) Long distance pairs.

Note that the size of the region (left image) for each selected point increases in diameter with distance from the center, and

the binary comparison is computed from the center point of each Gaussian-sampled circular region, rather than from each

solitary center point. (Center and right images used by permission # Josh Gleason [114])

Like other local binary descriptors, BRISK compares pairs of points to form the descriptor. The

point-pairs are specified in two groups: (1) long segments, which are used together with the region

gradients to determine angle and direction of the descriptor, the angle is used to rotate the descriptor

area, and then the pair–wise sampling pattern is applied; (2) short segments, which can be pair-wise

compared and composed into the 512-bit binary descriptor vector.

ORB and BRIEF Patterns

ORB [94] is based in part on the BRIEF descriptor [104, 105], thus the name Oriented Brief, since

ORB adds orientation to the BRIEF method and provides other improvements as well. For example,

ORB also improves the interest point method by qualifying FAST corners using Harris corner methods

and improves corner orientation using Rosin’s method [38] in order to steer the BRIEF descriptor to

improve rotational invariance (BRIEF is known to be sensitive to rotation).

164 4 Local Feature Descriptors

ORB also provides a very good point-pair training method, which is an improvement over BRIEF.

In BRIEF, as shown in Fig. 4.11, the sample points are specified in a random distribution pattern based

on a Gaussian distribution about the center point within the 31 × 31 patch region; the chosen number of

sample points is 256. Selected sample point-pairs are compared to each other to form the binary

descriptor vector. The value of each point is calculated via an integral image method to smooth a 5 × 5

region into the point value.

Fig. 4.11 (Left) An ORB style pattern at greatly reduced point pair count resolution, using <32 points instead of the full

256 points. (Right) A BRIEF style pattern using randomized point-pairs

To learn the descriptor point-pair sample and compare pattern, ORB uses a training algorithm to

find uncorrelated points in the training set with high variance and selects the best 256 points to define

the pairwise sampling patterns used to create the binary feature vector. So the shape and pattern are

nonsymmetric, as shown in Fig. 4.11, similar to some DNETS patterns. The ORB point-pair patterns

are dependent on the training data.

Note in Fig. 4.11 that a BRIEF style pattern (right image) uses random point-pairs. Several methods

for randomizing point-pairs are suggested by the developers [104]. The ORB pattern shown in

Fig. 4.11 is based on choosing point-pairs that have high statistical variance within a bounding

31 × 31 image patch, where the smaller 5 × 5 gray image patch regions are centered at the chosen

interest points. Then each 5 × 5 region is smoothed using an integral image method to yield a single

value for the point.

Descriptor Discrimination

How discriminating is a descriptor? By discrimination we mean how well the descriptor can uniquely

describe and differentiate between other features. Depending on the application, more or less discrimi-

nation is needed, thus it is possible to over-describe a feature by providing more information and

invariance than is useful, or to under-describe the feature by limiting the robustness and invariance

attributes. Feature descriptor discrimination for a given set of robustness criteria may be important and

interesting, but discrimination is not always the right problem to solve in some cases.

The need for increased discrimination in the descriptor can be balanced in favor of using a cascade

of simple descriptors like correlation templates under the following assumptions.

Descriptor Discrimination 165

1. Assuming cheap massively parallel compute, deformable descriptors such as Taylor and Rosin’s

RFM2.3 [186] become a more attractive option, allowing simple weakly discriminating correlation

templates or pixel patches to be used and deformed in real-time in silicon using the GPU texture

sampler for scale, affine, and homographic transforms. Matching and correspondence under various

pose variations and lighting variations can be easily achieved using parallel GPU SIMT/SIMD

compute and convolution kernels. So the GPU can effectively allow a simple correlation patch to be

warped and contrast-enhanced to be used as a deformable descriptor and compared against target

features.

2. Assuming lots of fast and cheap memory, such as large memory cache systems, many

nondiscriminating descriptors or training patterns can be stored in the database in the memory

cache. Various weighting schemes such as those used in neural networks and convolutional

networks can be effectively employed to achieve desired correspondence and quality. Also, other

boosting schemes can be employed in the classifier, such as the Adaboost method, to develop strong

classifiers from weakly discriminating data.

In summary, both highly discriminating feature descriptors and cascades of simple weakly discrim-

inating feature descriptors may be the right choice for a given application, depending on the target

system.

Spectra Discrimination

One dimension of feature discrimination is the chosen descriptor spectra or values used to represent the

feature. We refer to spectra simply as values within a spectrum or over a continuum. A feature

descriptor that only uses a single spectra, such as a histogram of intensity values, will have discrimi-

nation to intensity distributions, with no discrimination for other attributes such as shape or affine

transforms. For example, a feature descriptor may increase the level of discrimination by combining a

multivariate set of spectra such as RGB color, depth, and local area gradients of color intensity (see

Varma [699] and Vedaldi [698] for more on multivariate descriptors).

It is well known [210] that the human visual system discriminates and responds to gradient

information in a scale and rotationally invariant manner across the retina, as demonstrated in SIFT

and many other feature description methods. Thus, the use of gradients is common and preferred

spectra for computer vision.

Spectra may be taken over a range of variables, where simple scalar ranges of values are only one

type of spectra:

1. Gray scale intensity

2. Color channel intensity

3. Basis function domains (frequency domain, HAAR, etc.)

4. 2D or 3D gradients

5. 3D surface normals

6. Shape factors and morphological measures

7. Texture metrics

8. Area integrals

9. Statistical moments of regions

10. Hamming codes from local binary patterns

Each of the above spectra types, along with many others that could be enumerated, can be included

in a multivariate feature descriptor to increase discrimination. Of course, discrimination requirements

for a chosen application will guide the design of the descriptor. For example, an application that

identifies fruit will be more effective using color channel spectra for fruit color, shape factors to

identify fruit shapes, and texture metrics for skin texture.

166 4 Local Feature Descriptors

One way to answer the question of discrimination is to look at the information contained in the

descriptor. Does the descriptor contain multivariate collections of spectra, and how many invariance

attributes are covered, such as orientation or scale?

Region, Shapes, and Pattern Discrimination

Shape and pattern of the feature descriptor are important dimensions affecting discrimination. Each

feature shape has advantages and disadvantages depending on the application. Surprisingly, even a

single pixel can be used as a feature descriptor shape (see Fig. 1.7). Let us look at other dimensions of

discrimination.

Shapes and patterns may be classified as follows:

1. A single pixel (discussion of single pixel description methods to follow)

2. A line of pixels

3. A rectangular region of pixels

4. A polygon shape or region of pixels

5. A pattern or set of unconnected pixels, such as foveal patterns

The shape of the descriptor determines attributes of discrimination. For example, a rectangular

descriptor will be limited in the rotational invariance attribute compared to a circular-shaped descrip-

tor. Also, a smaller shape for the descriptor limits the range to a smaller area and also limits scale

invariance. A larger size descriptor area carries more pixels which can increase discrimination.

Descriptor shape, pixel sampling pattern, sampling region size, and pixel metrics have been

surveyed by several other researchers [100–102]. In this section, we dig deeper and wider into specific

methods used for feature descriptor tuning, paying special attention to local binary feature descriptors,

which hold promise for low power and high performance.

Geometric Discrimination Factors

The shape largely determines the amount of rotational invariance possible. For example, a rectangular

shape typically begins to fall off in rotational discrimination at around 15°, while a circular pattern

typically performs much better under rotational variations. Note that any poorly discriminating shape

or pattern descriptor can be enhanced and made more discriminating by incorporating more than one

shape or pattern into the descriptor vector.

A shape and pattern such as a HAAR wavelet, as used in the Viola–Jones method, integrates all

pixels in a rectangular region, yielding the composite value of all the pixels in the region. Thus, there is

no local fine-detail pattern information contained in the descriptor, leading to very limited local area

discrimination and poor rotational invariance or discrimination.

Another example of poor rotational discrimination is the rectangular correlation template method,

which compares two rectangular regions pixel by pixel. However, several effective descriptor methods

use a rectangular-shaped region.

In general, rectangles are a limitation to rotational invariance. However, SURF uses a method of

determining the dominant orientation of the rectangular HAAR wavelet features within a circular

neighborhood to achieve better rotational invariance. And SIFT uses a method to improve rotational

invariance and accuracy by applying a circular weighting function to the rectangular regions during the

binning stage.

Descriptor Discrimination 167

It should also be noted that descriptors with low discrimination are being used very effectively in

targeted applications, such as correlation methods for motion estimation in video encoding. In this

case, the rectangle shape is a great match to the encoding problem and lends itself to highly optimized

fixed function hardware implementations, since frame-to-frame motion can be captured very well in

rectangular regions, and there is typically little rotation or scale change from frame to frame for at

30 Hz frame rates, just translation.

With this discussion in mind, descriptor discrimination should be fitted appropriately to the

application, since adding discrimination comes at a cost of compute and memory.

Feature Visualization to Evaluate Discrimination

Another way to understand discrimination is to use the feature descriptor itself to reconstruct images

from the descriptor information alone, where we may consider the collection of descriptors to be a

compressed or encoded version of the actual image. Image compression, encoding, and feature

description are related; see Fig. 3.18. Next, we examine a few examples of image reconstruction

from the descriptor information alone.

Discrimination via Image Reconstruction from HOG

Figure 4.12 visualizes a reconstruction using the HOG descriptor [80]. The level of detail is coarse and

follows line and edge structure that matches the intended use of HOG. One key aspect of the

discrimination provided by HOG is that no image smoothing is used on the image prior to calculating

the descriptor. The HOG research shows that smoothing the image results in a loss of discrimination.

Dalal and Triggs [80] highlight their deliberate intention to avoid image smoothing to preserve image

detail.

Fig. 4.12 Discrimination via a visualization of the HOG description (left image), original image on right. ((Image

Carl Vodrick, used by permission.) See also “HOGgles: Visualizing Object Detection Features, Carl Vondrick, Aditya

Khosla, Tomasz Malisiewicz, Antonio Torralba, Massachusetts Institute of Technology, Oral presentation at ICCV

2013”)

168 4 Local Feature Descriptors

However, some researchers argue that noise causes problems when calculating values such as local

area gradients and edges and further recommend that noise be eliminated from the image by smoothing

prior to descriptor calculations; this is the conventional wisdom in many circles. Note that there are

many methods to filter noise without resorting to extreme Gaussian-style smoothing, convolution blur,

and integral images, which distort the image field.

Some of the better noise-filtering methods include speckle removal filters, rank filtering, bilateral

filters, and many other methods that were discussed in Chap. 2. If the input image is left as is, or at least

the best noise-filtering methods are used, the feature descriptor will likely retain more discrimination

power for fine-grained features.

Discrimination via Image Reconstruction from Local Binary Patterns

As shown in Fig. 4.13, d’Angelo and Alahi [99] provide visualizations of images reconstructed from

the FREAK and BRIEF local binary descriptors. The reconstruction is rendered entirely from the

descriptor information alone, across the entire image. BRIEF uses a more random pattern to compare

points across a region, while FREAK uses a trained and more foveal and symmetrical pattern with

increased detail closer to the center of the region. And d’Angelo and Alahi [99] note that the

reconstruction results are similar to Laplacian filtered versions of the original image, which helps us

understand that the discrimination of these features appears to be structurally related to detailed edge

and gradient information.

Descriptor Discrimination 169

Fig. 4.13 Images reconstructed using local binary descriptors using 512 point-pairs. (Top row) BRIEF. (Middle row)

Randomized FREAK (more similar to BRIEF). (Bottom row) Binary FREAK using the foveal pattern. (Images

Alexandre Alahi, used by permission)

The d’Angelo and Alahi reconstruction method [99] creates an image from a set of overlapping

descriptor patches calculated across the original image. To reconstruct the image, the descriptors are

first reconstructed using a novel method to render patches, and then the patches are merged by

averaging the overlapping regions to form an image, where the patch merge size may vary as desired.

For example, note that Fig. 4.13 uses 32 × 32 patches for the Barbara images in the left column, and a

64 × 64 patch size for the cameraman in the center column. Also note that Barbara is not reconstructed

with the same discrimination as the cameraman, whose image contains finer details. Other fascinating

feature visualization work is provided by Vondrick et al. [813].

170 4 Local Feature Descriptors

Discrimination via Image Reconstruction from SIFT Features

Another method of approximate image reconstruction [79] proves the discrimination capabilities of

SIFT descriptors; see Fig. 4.14. The reconstruction method for this research starts by taking an

unknown image containing a scene such as a famous building, finding the set of Hessian-affine region

detectors in the image, extracting associated SIFT feature descriptors, and then saving a set of elliptical

image patch regions around the SIFT descriptors.

Fig. 4.14 Image reconstruction of common scenes using combined SIFT descriptors taken from several views of the

same object. (Images # Herve Jegou, used by permission)

Next, an image database containing similar and, it is hoped, matching images of the same scene is

searched to find the closest matching SIFT descriptors at Hessian-affine interest points. Then a set of

elliptical patch regions around each SIFT descriptor is taken. The elliptical patches found in the

database are warped into a synthesized image based on a priori interest region geometric parameters of

the scenes.

The patches are stitched together via stacking and blending overlapping patches and also via smooth

interpolation. Any remaining holes are filled by smooth interpolation. One remarkable result of this

method is the demonstration that an image can be reconstructed from a set of patches from different

images at different orientations, since the feature descriptors are similar; and in this case, the

discrimination of the SIFT descriptor is demonstrated well.

Accuracy, Trackability

Accuracy can be measured in terms of specific feature attributes or robustness criteria; see Tables 4.1

and 7.4. A given descriptor may outperform another descriptor in one area and in not another. In the

research literature, the accuracy and performance of each new feature descriptor is usually

benchmarked against the standby methods SIFT and SURF. The feature descriptor accuracy is

measured using commonly accepted ground truth datasets designed to measure robustness and

invariance attributes. (See Appendix B for a survey of standard ground truth datasets, and Chap. 7

for a discussion about ground truth dataset design.)

A few useful accuracy studies are highlighted here, illustrating some of the ways descriptor and

interest point accuracy can be measured. For instance, one of the most comprehensive surveys of

earlier feature detector and descriptor accuracy and invariance is provided by Mikolajczyk and Schmid

[115], covering a range of descriptors including GLOH, SIFT, PCA-SIFT, Shape Context, spin

images, Hessian Laplacian GLOH, cross-correlation, gradient moments, complex filters, differential

invariants, and steerable filters.

Descriptor Discrimination 171

In Gauglitz et al. [116], there are invariance metrics for zoom, pan, rotation, perspective distortion,

motion blur, static lighting, and dynamic lighting for several feature metrics, including Harris, Shi–

Tomasi, DoG, Fast Hessian, FAST, and CenSurE, which are discussed in Chap. 6. There are also

metrics for a few classifiers, including randomized trees and FERNS, which are discussed later in this

chapter. Figure 4.15 provides some visual comparisons of feature detector and interest point accuracy

from Gauglitz et al. [116].

Fig. 4.15 Accuracy of feature descriptors over various invariance criteria. (From Gauglitz et al. [116], images

Springer Science + Business Media, LLC, used by permission)

172 4 Local Feature Descriptors

Turning to the more recent local binary descriptors, Alahi et al. [102] provide a set of comparisons

where FREAK is shown to be superior in accuracy to BRISK, SURF, and SIFT on a particular dataset

and set of criteria developed by Mikolajczyk and Schmid [115] for feature accuracy over attributes

such as viewpoint, blur, JPEG compression, brightness, rotation, and scale. In Rublee et al. [94], ORB

is shown to have better rotational invariance than SIFT, SURF, and BRIEF. In summary, local binary

descriptors are proving to be attractive in terms of robustness, accuracy, and compute efficiency.

Accuracy Optimizations, Subregion Overlap, Gaussian Weighting, and Pooling

Various methods are employed to optimize feature descriptor accuracy, and a few methods are

discussed here. For example, descriptors often use overlapping sampling pattern subregions, as

shown in the FREAK descriptor pattern in Fig. 4.9. By overlapping sampling regions and treating

boundaries carefully, accuracy seems to be better in most all cases [132, 146]. Overlapping regions

makes sense intuitively, since each point in a region is related to surrounding points. The value of

pattern subregion overlapping in feature description seems obvious for local binary pattern type

descriptors and spectra descriptor variants such as SURF and others [115, 149]. When the sampling

regions used in the descriptor do not overlap, recognition rates are not as accurate [122].

Gaussian weighting is another effective method for increasing accuracy to reduce noise and

uncertainty in measurements. For example, the SIFT [132, 146] descriptor applies a Gaussian-based

weighting factor to each local area gradient in the descriptor region to favor gradients nearer the center

and reduce the weighting of gradients farther away. In addition, the SIFT weighting is applied in a

circularly symmetric pattern, which adds some rotational invariance; see Fig. 6.17.

Note that Gaussian weighting is different from Gaussian filtering; a Gaussian filter both reduces

noise and eliminates critical fine details in the image, but such filtering has been found to be

counterproductive in the HOG method [80]. A Gaussian weighting factor, such as used by SIFT on

the gradient bins, can simply be used to qualify data rather than change the data. In general, a weighting

factor can be used to scale the results and fine-tune the detector or descriptor. The subregion overlaps in

the sampling pattern and Gaussian weighting schemes are complementary.

Accuracy can be improved by relying on groups of nearby features together rather than just a single

feature. For example, in convolutional networks, several nearby features may be pooled for a joint

decision to increase accuracy via chosen robustness or invariance criteria [295]. The pooling concept

may also be referred to as neighborhood consensus or semi-local constraints in the literature, and it can

involve joint constraints, such as the angle and distance among a combined set of local features [296,

297, 311].

Sub-pixel Accuracy

Some descriptor and recognition methods can provide sub-pixel accuracy in matching the feature

location [118–121]. Common methods to compute sub-pixel accuracy include cross-correlation,

sum-absolute difference, Gaussian fitting, Fourier methods, and rigid body transforms and ICP. In

general, sub-pixel accuracy is not a common feature in popular, commercial applications and is needed

only in high-end applications like industrial inspection, aerospace, and military systems.

For example, SIFT provides sub-pixel accuracy for the location of keypoints. Digital correlation

methods and template matching are well known and used in industrial applications for object tracking

and can be extended to compute correlations over a range of one-pixel offset areas to yield a set of

correlations that can be fit into a curve and interpolated to find the highest match to yield sub-pixel

accuracy.

Search Strategies and Optimizations 173

Sub-pixel accuracy is typically limited to translation. Rotation and scale are much more difficult to

quantify in terms of sub-pixel accuracy. Typical sub-pixel accuracy results for translation only achieve

better than ¼ pixel resolution, but resolution accuracy can be finer grained, and in some methods

translation accuracy is claimed to be as high as 1/20th of a pixel using FFT registration methods [122].

Also, stereo disparity methods benefit from improved sub-pixel accuracy, especially at long ranges,

since the granularity of Z distance measurements increases exponentially with distance. Thus, the

calculated depth field contains coarser information as the depth field increases, and the computed depth

field is actually nonlinear in Z. Therefore, sub-pixel accuracy in stereo and multi-view stereo disparity

calculations is quite desirable and necessary for best accuracy.

Search Strategies and Optimizations

As shown in Fig. 5.1, a feature may be sparse, covering a local area, or it may cover a regional or global

area. The search strategy used to isolate each of these feature types is different. For a global feature,

there is no search strategy: the entire frame is used as the feature. For a regional descriptor, a region

needs to be chosen or segmented (discussed in Chap. 2). For sparse local features, the search strategy

becomes important. Search strategies for sparse local regions fall into a few major categories, as

discussed in the following (also included in the taxonomy in Chap. 5).

Dense Search

In a dense search, each pixel in the image is checked. For example, an interest point is calculated at

each pixel, the interest points are then qualified and sorted into a candidate list, and a feature descriptor

is calculated for each candidate. Dense search is used by local binary descriptors and common

descriptors such as SIFT.

In stereo matching and depth sensing, each pixel is searched in a dense manner for calculating

disparity and closest points. For example, stereo algorithms use a dense search for correspondence to

compute disparity, line by line and pixel by pixel; monocular depth-sensing methods such as PTAM

[278] use a dense search for interest points, followed by a sparse search for known features at predicted

locations.

Dense methods may also be applied across an image pyramid, where the lower resolution pyramids

are usually searched first and finer-grain pyramids are searched later. Dense methods in general are

preferred for accuracy and robustness when feature locations are not known and cannot be predicted.

Grid Search

In grid search methods, the image is divided into a regular grid or tiles, and features are located based

on the tiles. A novel grid search method is provided in the OpenCV library, using a grid search adapter

(discussed in Chap. 6 and Appendix A). This allows for repeated trial searches within a grid region for

the best features and has the capability of adjusting detector parameters before each trial run. One

possible disadvantage of a grid search from the perspective of accuracy is that features do not line up

into grids, so features can be missed or truncated along the grid boundary, decreasing accuracy and

robustness overall.

174 4 Local Feature Descriptors

Grid search can be used in many ways. For example, a regular grid is used as anchor points with the

grid topology of D-NETS, as illustrated in Fig. 4.7. Or, a grid is used to form image tile patches and a

descriptor is computed for each tile, such as in the HOG method, as shown in Fig. 4.12. Also, the

Viola–Jones method [117] computes HAAR features on a grid.

Multi-scale Pyramid Search

The idea behind the multi-scale image pyramid search is either to accelerate searching by starting at a

lower resolution or to truly provide multi-scale images to allow for features to be found at appropriate

scale. Methods to reduce image scale include pixel decimation, bilinear interpolation, and other multi-

sampling methods. Scale space is a popular method for creating image pyramids, and many variations

are discussed in the next section; see Fig. 4.16.

Fig. 4.16 A five-octave scale pyramid. (The image is from Albrecht Durer’s Apocalypse woodcuts, 1498. Note that

many methods use non-octave pyramid scales [94])

However, the number of detected features falls off rapidly as the pyramid levels increase, especially

for scale space pyramids, which have been Gaussian-filtered, since Gaussian filters reduce image

texture detail. Also, fewer pixels are present to begin with at higher pyramid levels, so a pyramid scale

interval smaller than octaves is sometimes used. See Ref. [131] for a good discussion of image

pyramids.

Scale Space and Image Pyramids

Often, instead of using simple pixel decimation and pixel interpolation to reduce image scale, a scale

space [449, 450] pyramid representation, originally proposed by Lindberg [471], is built up using

Gaussian filtering methods to decrease the scaling artifacts and preserve blob-like features. Scale space

is a more formal method of defining a multi-scale set of images, typically using a Gaussian kernel g()

convolved with the image f(x,y), as follows:

Search Strategies and Optimizations 175

g x, y : tð Þ ¼ 1

2πt
e- x2þy2ð Þ=2t

L :, :; tð Þ ¼ g :, : : tð Þ× f :, :ð Þ,

or by an equivalent method:

∂tL ¼ 1
2
∇

2
L,

with the initial state L x, y; 0ð Þ ¼ f x, y ð Þ:

A good example of Gaussian filter design for scale space is described in the SURF method

[131]. Gaussian filters implemented as kernels with increasing size are applied to the original image

at octave-spaced subsampling intervals to create the scale space images—for example, starting with a

9 × 9 Gaussian filter and increasing to 15 × 15, 21 × 21, 27 × 27, 33 × 33, and 39 × 39; see Fig. 4.17.

One drawback of scale space is the loss of localization and lack of accuracy in higher levels of the

image pyramid. In fact, some features are simply missing from higher levels of the image pyramid,

owing to a lack of resolution and to the Gaussian filtering. The best example of effective scale space

feature matching may be SIFT, which provides for the first pyramid image in the scale to be double the

original resolution to mitigate scale space problems and also provides a good multi-scale descriptor

framework (see also Fig. 4.18).

Fig. 4.17 Scale space Gaussian images at scales of 0, 2, 4, 16, 32, 64. (Image is from Albrecht Durer’s Apocalypse

woodcuts, 1498)

176 4 Local Feature Descriptors

Fig. 4.18 Scale and space

Image pyramids are analogous to texture mip-maps used in computer graphics. Variations on the

image pyramid are common. Octave and non-octave pyramid spacings are used, with variations on the

filtering method also. For example, the SIFT method [132, 146] uses a five-level octave scale n/2

image pyramid with Gaussians-filtered images in a scale space. Then, the Difference of Gaussians

(DoG) method is used to capture the interest point extrema maxima and minima in the adjacent images

in the pyramid. SIFT uses a double-scale first pyramid level with linear interpolated pixels at 2×

original magnification to help preserve fine details. This technique increases the number of stable

keypoints by about four times, which is quite significant. In the ORB [94] method, a non-octave scale

space is built around a 2
p

scale over a five-level pyramid, which has closer resolution gradations

between pyramid levels than an octave scale of two times.

Feature Pyramids

An alternative to scale space pyramids and pyramid searching is to use feature-space pyramiding and

build a set of multi-scale feature descriptors stored together in the database. In this approach, the

descriptor itself contains the pyramid, and no scale space or image pyramid is needed. Instead, feature

searching occurs directly from the mono-scale target image to the multi-scale features. The RFM method

[186] discussed in Chap. 6 goes even further and includes multi-perspective transformed versions of each

patch for each descriptor. In Table 4.3, note that the multi-scale features can be used to match directly on

the target images, while the mono-scale features are better to use on an image pyramid.

Table 4.3 Some trade-offs in using a mono-scale feature and a multi-scale feature

Feature scale Feature size

Feature description

compute time

Image pyramid used for

matching

Mono-scale images used

for matching

Mono-scale

feature

Smaller memory

footprint

Faster to compute Yes No

Multi-scale

feature

Larger memory

footprint

Slower to compute No Yes

Search Strategies and Optimizations 177

Figure 3.16 shows the related concept of a multi-resolution histogram [123], created from image

regions from a scale space pyramid and with the histograms concatenated in the descriptor that is used

to determine texture metrics for feature matching. So in the multi-scale histogram method, no pyramid

image set is required at run time; rather, the pyramid search uses histogram features from the descriptor

itself to find correspondence with the mono-scale target image.

A wide range of scalar and other metrics can be composed into a multi-scale feature pyramid, such

as image intensity patches, color channel intensity patches, gradient magnitude, and gradient

orientations. Histograms of textural features have been found useful as affine-invariant metrics as a

part of a wider feature descriptor [144].

Sparse Predictive Search and Tracking

In a sparse predictive search pipeline, specific features at known locations, found in previous frames,

are searched for in the next frame at the expected positions. For example, in the PTAM [278] algorithm

for monocular depth sensing, a sparse 3D point cloud and camera pose are created from sequential

video frames from a single camera by locating a set of interest points and feature descriptors. For each

new frame, a prediction is made of the coordinates where the same interest points and feature detectors

might be in the new image, using the prior camera pose matrix. Then, for the new frame, a search or

tracking loop is started to locate a small number of the predicted interest points using a pyramid coarse

to fine search strategy. The predicted interest points and features are searched for within a range around

where each is predicted to be, and the camera pose matrix is updated based on the new coordinates

where the features are found. Then, a larger number of points are predicted using the updated camera

pose and a search and tracking loop is entered over a finer scale pyramid image in the set. This process

iterates to find points and refine the pose matrix.

Tracking Region-Limited Search

One example of a region-limited search is a video conferencing system that tracks the location of the

speaker using stereo microphones to calculate the coarse location via triangulation. Once the coarse

speaker position is known, the camera is moved to view the speaker, and only the face region is of

interest for further fine positional location adjustments, auto-zoom, autofocus, and auto-contrast

enhancements. In this application, the entire image does not need to be searched or processed for

face features. Instead, the center of the FOV is the region where the search is limited to locate the face.

For example, if the image is taken from an HD camera with 1920 × 1080 resolution, only a limited

region in the center of the image, perhaps 512 × 512 pixels, needs to be processed to locate the face

features.

Segmentation-Limited Search

A segmented region can define the search area, such as a region with specific texture, or pixels of a

specific color intensity. In a morphological vision pipeline, regions may be segmented in a variety of

ways, such as thresholding and binary erosion + dilation to create binary shapes. Then the binary

shapes can be used as masks to segment the corresponding gray scale image regions under the masks

for feature searching. Image segmentation methods were covered in Chap. 2.

178 4 Local Feature Descriptors

Depth or Z-Limited Search

With the advent of low-cost commercial depth sensors appearing on mobile consumer devices, the

Z dimension is available for limiting search ranges (see Fig. 4.19). For example, by segmenting out the

background of an image using depth, the foreground features are more easily segmented and identified,

and search can be limited by depth segments. Considering how much time is spent in computer vision

to extract 3D image information from 2D images, we can expect depth cameras to be used in novel

ways to simplify computer vision algorithms.

Fig. 4.19 Segmentation of image regions based on a depth map. Depth image from Middlebury Data set. (Source:

D. Scharstein and C. Pal “Learning conditional random fields for stereo” CVPR Conference, 2007. Courtesy of authors)

Computer Vision, Models, Organization

This section contains a high-level overview of selected examples to illustrate how feature metrics are

used within computer vision systems. Here, we explore how features are selected, learned, associated

together to describe real objects, classified for efficient searching and matching, and used in computer

vision pipelines. This section introduces machine learning, but only at a high level using selected

examples. A good reference on machine learning is found in [470] by Prince. A good reference for

computer vision models, organization, applications, and algorithms is found in Szelinski [275].

Several terms are chosen and defined in this section for the discussion of computer vision models,

namely feature space, object models, and constraints. The main topics for this section include:

• Feature spaces and selection of optimal features

• Object recognition via object models containing features and constraints

• Classification and clustering methods to optimize pattern matching

• Training and learning

Computer Vision, Models, Organization 179

Note

Many of the methods discussed in computer vision research journals and courses are borrowed from

other tangent fields and applied, for example, machine learning and statistical analysis. In some cases

computer vision is driving the research in such tangent fields. Since these fields are well established

and considered beyond the scope of this work, we provide only a brief topical introduction here, with

references for completeness [275, 470].

Feature Space

The collection and organization of all features, attributes, and other information necessary to describe

objects may be called the feature space. Features are typically organized and classified into a feature

space during a training or learning phase using ground truth data as a training set. The selected features

are organized and structured in a database or a set of data structures, such as trees and lists, to allow for

rapid search and feature matching at run time.

The feature space may contain one or more types of descriptors using spectra such as histograms,

binary pattern vectors, as multivariate composite descriptors (see Varma [699] and Vedaldi [698] for

more on multivariate descriptors). In addition, the feature space contains constraints used to associate

sets of features together to identify objects and classes of objects. A feature space is unique to any

given application and is built according to the types of features used and the requirements of the

application; there is no standard method.

The feature space may contain several parameters for describing objects; for example:

• Several types of feature descriptors, such as SIFT and simple color histograms.

• Cartesian coordinates for each descriptor relative to training images.

• Orientations of each descriptor.

• Name of training image associated with each descriptor.

• Multimodal information, such as GPS, temperatures, elevation, acceleration.

• Feature sets or lists of associated descriptors.

• Constraints between the descriptors in a set, such as the relative distance from each other, relative

distance thresholds, angular relationships between descriptors, or relative to a reference point.

• Object models to collect and associate parameters for each object.

• Classes or associations of objects of the same type, such as automobiles.

• Labels for objects or constraints.

Object Models

The task of machine learning is creating models from data. As stated by Wittrock, “The brain is a

model builder” (see Wittrock, M.C., Generative learning processes of the brain. Educational Psychol-

ogist, 27(4), 531–541). The human brain is an excellent learner, using input from the five senses of

touch, smell, sight, taste, smell, as well as inputs from internal nerves and internal thoughts. All of

these inputs feed into models we create to make decisions on actions and further thoughts. The models

are believed to be true by our minds.

Rather than building models via machine learning, many successful vision systems are designed

specifically by experts to solve a problem in hard-coded program logic, and the systems are tuned by

experts until the desired goals are achieved. Therefore, machine learning is only one method used to

create complete models (see Chaps. 9 and 10 for more details on machine learning).

180 4 Local Feature Descriptors

Object model describes real objects or classes of objects using parameters from the feature space.

For example, an object may contain all parameters required to describe a specific automobile, such as

feature descriptor sets, labels, and constraints. A class of objects may associate and label all objects of

the same class, such as an automobile of any type. There is no standard or canonical object model to

follow, so in this section we describe the overall attributes of computer vision objects and how to

model them. A Generative model generates model data within a class of objects; a Discriminative

model differentiates between object classes.

Object models may be composed of sets of individual features; constraints on the related features,

such as position or orientation of features within an object model; and perhaps other multimodal

information for the objects or descriptors, such as GPS information or time stamps, as shown in

Fig. 4.20. The object model can be created using a combination of supervised and unsupervised

learning methods [334]; we survey several methods later in this chapter.

Labeled Object Model

Labeled Object Model

Labeled Object Model

Feature Descriptor
(Angular Orientation,

Position Coordinates)

Feature Space

Feature Descriptor
(Angular Orientation,

Position Coordinates)

Feature Descriptor
(Angular Orientation,

Position Coordinates)

Feature Descriptor
(Angular Orientation,

Position Coordinates)

Feature Descriptor
(Angular Orientation,

Position Coordinates)

Feature Descriptor
(Angular Orientation,

Position Coordinates)

Constraint
(Relative Distance,

Orientation, Thresholds)

Multimodal Data
(GPS, Temperature, Time)

Constraint
(Relative Distance,

Orientation, Thresholds)

Constraint
(Relative Distance,

Orientation, Thresholds)

Feature Descriptor
(Angular Orientation,

Position Coordinates)
Multimodal Data
(Accelerometer, Elevation)

Fig. 4.20 Simplified hypothetical feature space showing organization and association of features, constraints, and

objects

One early attempt to formulate object models is known as parts-based models, suggested in 1973 by

Fischler and Elschlager [455]. These describe and recognize larger objects by first recognizing their

parts—for example, a face being composed of parts such as eyes, nose, and mouth. There are several

variations on parts-based models; see Refs. [456–458], for example. Machine learning methods are

also used to create the object models [470] and are discussed later in this section.

A simple object model may be composed of only image histograms of whole images, the name or

label of each associated image, and possibly a few classification parameters such as the subject matter

of the image, GPS location, and date. To identify unknown target images, a histogram of the target

image is taken and compared against image histograms from the database. Correspondence is

measured using a suitable distance metric such as SAD. In this simple example, brute-force searching

or a hash table index may be used to check each histogram in the database against target image

histograms, and perhaps other parameters from the object model may be matched along with the

histograms, such as the GPS coordinates. No complex machine learning classification, clustering, data

reductions, or organization of the database need to be done, since the search method is brute-force.

However, finding correspondence will become progressively slower as more images are added to the

database. And the histogram all by itself is not very discriminative and offers little invariance.

Computer Vision, Models, Organization 181

Constraints

Key to object recognition, constraints are used to associate and qualify features and related attributes as

objects. Features alone are probably insufficient to recognize an object without additional qualification,

including neighborhood consensus or semi-local constraints involving joint constraints, such as the

angle and distance among a combined set of local features [296, 297, 311]. Constraints associate object

model elements together to describe and recognize a larger object [308, 309, 312], such as by minimum

feature count thresholds required to ensure that a proper subset of object features is found together, or

by using multimodal data constraints such as GPS position, or by voting.

Since there are many approaches for creating constraints, we can only illustrate the concept. For

example, Lowe [132] shows recognition examples illustrating how SIFT features can be used to

recognize objects containing many tens of distinct features, in some cases using as few as two or three

good features. This allows for perspective and occlusion invariance if some of the features describing

the object cannot be found, taking into consideration feature orientation and scale as constraints.

Another example is wide baseline stereo matching, which requires position and distance constraints on

feature pairs in L/R image assuming that the scale and orientation of L/R feature pairs are about equal;

in this case, translation would be constrained to be within a range based on depth.

Selection of Detectors and Features

Feature detectors are selected based on a combination of variables, such as the feature detector design

method and the types of invariance and performance desired. Several approaches or design methods

are discussed next.

Manually Designed Feature Detectors

Some feature detectors, such as polygon shape descriptors and sparse local features like SURF, are

manually designed and chosen using the intuition, experience, and test results of the practitioner to

address the desired invariance attributes for an application. This involves selecting the right spectra to

describe the features, determining the shape and pattern of the feature, and choosing the types of

regions to search. However, some detectors are statistically and empirically designed, which we

cover next.

Statistically Designed Feature Detectors

Statistical methods are used to design and create feature detectors. For example, the binary sampling

patterns used in methods such as ORB and FREAK are created from the training dataset based on the

statistical characteristics of the possible interest point comparison pairs. Typically, ORB ranks each

detected interest point feature pair combination to find terms that are uncorrelated with high variance.

This is a statistical sorting or training process to design the feature patterns and tune them for a specific

ground truth dataset. See Fig. 4.11 for more details on ORB, and see the discussions of FREAK and

ORB earlier in this chapter as well.

182 4 Local Feature Descriptors

SIFT also uses statistical methods to determine, from a training set, the best interest points,

dominant orientation of each interest point, and scale of each interest point.

Learned Features

Many systems learn a unique codebook of features, using sparse coding methods to identify a unique

set of basis features during a training phase against selected ground truth data. The learned basis

features are specific to the application domain or training data, and the chosen detectors and descriptors

may simply be pixel regions used as correlation templates. However, any descriptor may be used, such

as SIFT. Neural network and convolutional network approaches are popularly used for feature

learning, as well as sparse coding methods, which are introduced later in this chapter, and surveyed

in detail in Chaps. 9 and 10.

Overview of Training

This is a very basic overview of training, since the topic is so large and we do not address the topic in

detail it deserves. See Chaps. 9–12 for more about deep learning style training protocols, which

involve huge training sets and complex training hyperparameters. See also Chap. 8. Here we cover

introductory concepts only.

A machine vision system is trained to recognize desired features, objects, and activities. Training

may be supervised and assisted by an expert, or unsupervised as in the deep learning methods

discussed later in this section. Here, we provide an overview of common steps and provide references

for more detail. One of the simplest examples of training would be to take image histograms associated

with each type of image—for example, a set of histograms that describe a face, animal, or automobile

taken from different images.

Training involves collecting a training set of images appropriate for the application domain and then

determining which detectors and descriptors can be tuned to yield the best results. In some cases, the

feature descriptor itself may be trainable and designed to match the training data, such as the local

binary pattern descriptors ORB, BRIEF, and FREAK, which can use variable pixel sampling patterns

optimized and learned from the training data.

In feature learning systems, the entire feature set is learned from the training set. Feature learning

methods employ a range of descriptor methods such as simple correlation temples containing pixel

regions, or SIFT descriptors. The learned feature set is reduced by keeping only the features that are

significantly different from features already in the set. Feature learning methods are covered later in

this chapter and in the Chap. 10 discussion on Feature Learning Architectures.

To form larger objects during training, sets of features may be associated together using constraints,

such as geometric relationships like angles or distances between features, or the count of features of a

given value within a specific region, or via a softmax classifier for puzzle-piece-style feature probabil-

ity match counting. Objects are determined during training, which involves running detectors and

descriptors against chosen ground truth data to find the features, and then determining the constraints to

represent objects as a composite set of features. Activities can be recognized by tracking features and

their positions within adjacent frames.

In any case, the features obtained through the training phase are classified into a searchable feature

space using a wide range of statistical and machine learning methods.

Computer Vision, Models, Organization 183

Classification of Features and Objects

This is a conceptual discussion of classification, or the sorting and evaluating features, similar to the

way gold is classified in mesh layers to find progressively smaller rocks to examine for gold (i.e.,

analogous to feature evaluation for computer vision). Classification is a term sometimes used to

describe the feature recognition, pattern recognition, or inference stage of the vision pipeline. Classifi-

cation compares unknown incoming target features against the trained feature space.

Several approaches are taken for automatically building classifiers, including support vector

machines (SVMs), kernel machines, and neural networks. See Krig [476] for details on intelligent

classifiers, complex multivariate classifiers, hierarchical classifiers, and agent classifier learning

methods. See also Chap. 10. See also Chaps. 9–12 for more about deep learning style classification

methods.

In general, the size of the training set or ground truth dataset is key to classifier accuracy [285–

287]. During system training, first a training set with ground truth data is used to build up the classifier,

see Chap. 7 for a discussion on ground truth data. The machine learning community provides a wealth

of guidance on training, so we defer to established sources. Key journals to dig deeper into machine

learning and testing against ground truth data include NIPS and IEEE PAMI, the latter of which goes

back to 1979. Machine learning and statistical methods are used to guide the selection, classification,

and organization of features during training. If no classification of the feature space is made, the feature

match process follows a slow brute-force linear search of new features against known features.

Key classification problems discussed in this section include:

• Group Distance and Clustering of similar features using a range of nearest–neighbor methods to

assist in organization, fitting, error minimization, searching and matching, and enabling similarity

constraints such as geometric proximity, angular relationships, and multimodal cues.

• Dimensionality Reductions to avoid over-fitting, cleaning the data to remove outliers and spurious

data, and reducing the size of the database.

• Boosting and Weighting to increase the accuracy of feature matching.

• Constraints describing relationships between descriptors composing an object, such as pose

estimators and threshold accept/reject filters.

• Softmax style statistical or probabilistic methods (not discussed here in detail) to sort uncorrelated

sets of features (i.e., puzzle pieces), for example, from a DNN or transformer model, to find the

strongest matches between target and trained features sets, the highest scoring matches and the

number of highest scoring matches determine correspondence. See Chaps. 9 and 10.

• Structuring the Database for rapid matching vs. brute-force methods.

Group Distance: Clustering, Training, and Statistical Learning

We refer to group distance and clustering in this discussion, sometimes interchangeably, as methods to

describe similarities and differences between groups of data atoms, such as feature descriptors.

Applications of group distance and clustering include error minimization, regression, outlier removal,

classification, training, and feature matching.

According to Estivill-Castro [298], clustering is impossible to define in a mathematical sense, since

there are so many diverse methods and approaches to describe a cluster. See Table 4.4 for a summary

of related methods. However, we discuss clustering here in the context of computer vision to address

data organization, pattern matching, and describing object model constraints (while attempting to not

ruffle the feathers of mathematical purists who use different terminology).

To identify similar features in a group, a wide range of clustering algorithms or group distance

algorithms are used [82], which may also be referred to as error minimization and regression methods

http://dx.doi.org/10.1007/978-3-319-33762-3_10

in some literature. Features are clustered together for computer vision to help solve fundamental

problems, including object modeling, finding similar patterns during matching, organizing and

classifying similar data, and dimensionality reductions.

184 4 Local Feature Descriptors

One way to describe a cluster is by similarity—for example, describing a cluster of related features

under some distance metric or regression method. In this sense, clustering overlaps with distance

functions: Euclidean distance for position, cosine distance for orientation, and Hamming distance for

binary feature vector comparisons are examples. However, distance functions between two points are

differentiated in this discussion from group distance functions, clusters, and group distributions.

Efficiently organizing similar data in feature space for searching and classification is a form of

clustering. It can be based on similarity or distance measures of feature vectors or on object constraint

similarity, and it is required to speed up feature searching and matching. However, commercial

databases and brute-force search may be used as-is for feature descriptors, with no attempt made to

optimize. Custom data structures can be built for optimizations via trees, pyramids, lists, and hash

tables. (We refer the reader to standard references in computer science covering data organization and

searching; see the classic texts The Art of Computer Programming by Donald Knuth or Data Structure

and Algorithms by Aho, Ullman, and Hopcroft.)

Another aspect of clustering is the feature space dimension and topology. Since some feature spaces

are multivariate and multidimensional, containing scalars and tensors, any strict definition of cluster-

ing, error minimization, regression, or distance is difficult; it really depends on the space in which

similarity is to be measured.

Group Distance: Clustering Methods Survey, KNN, RANSAC, K-Means, GMM, SVM,

Others

A spectrum of alternatives may be chosen for clustering and learning similarities between groups of

data atoms, starting at the low end with basic C library searching and sorting functions and reaching the

high end with statistical and machine learning methods such as kernel machines and support vector

machines (SVMs) to build complete classifiers; kernel machines are introduced in Chap. 10 in the

section “Kernel Functions, Kernel Machines, SVM”. Kernel machines allow various similarity

functions to be substituted into a common framework to enable simplified comparison of similarity

methods and classification.

Table 4.4 is a summary of selected clustering methods, with a few key references for the interested

reader.

Computer Vision, Models, Organization 185

Table 4.4 Clustering, classification, and machine learning methods

Group distance

criteria Methods and references Description

Distance K-Nearest Neighbor [307] Uses a chosen distance function, cluster based on simple

distance to k-nearest neighbors in the training set

Consensus

Models

RANSAC [83]

PROSAC [306]

Levenberg-Marquardt [332]

Use random sample consensus to estimate model parameters

from contaminated data sets

Centroid Models K-Means [85], Voroni Tesselation,

Delauney Triangulation

Hierarchical K-Means, Nister trees

[318]

Use a centroid of distribution as the base of the cluster,

which can be very slow for large datsasets; can be

formulated in a hierarchical tree structure using vocabulary

words (Nister method) for much better performance

Connectivity of

Clusters

Hierarchical Clustering [300] Builds connectivity between other clusters.

Density Models DBSCAN [299, 326]

OPTICS [327]

Locate distributions with maxima and minima density

compared to surrounding data

Distribution

Models

Gaussian Mixture Models [301] Iterative methods of finding maximum likelihood of model

parameters

Neural Methods Neural Networks [304] Neural methods defy a single definition, but typically use

one or more inputs; adaptive weight factors for each input

that can be learned and trained, a neural function to act on

the inputs and weights, a bias factor for the neural function;

produce one or more outputs

Bayesian Naïve Bayesian [314]

Randomize Trees [315]

FERNS [263]

Learning model recording probabilistic relationships

between variables

Probabilistic,

Semantic

[196]

Latent Semantic Analysis (pLSA)

Latent Dirichlet Allocation (LDA)

Hidden Markov Models, HMM

[316, 317]

Learning model based on probabilistic relationships

between variables

Kernel Methods,

Kernel Machines

Kernel Machines [535]a

Various Kernels [305]

PCA [302, 303]

*SVM is a well-known instance of

a kernel machine

Reduce a distribution to a set of uncorrelated, ranked

principal components in a Euclidean space for ease of

matching and clustering

Support Vector

Machines

SVM [290] An SVM may produce structured or multivariate output to

classify input
a http://www.kernel-machines.org/

Classification Frameworks, Supervision, REIN, MOPED

Training and classification fall into the following general categories in the literature (although these

terms are outdated and convey little value, they are still in wide use).

• Supervised: A human will assist during the training process to make sure the results are correct.

• Unsupervised: The classifier can be trained automatically from feature data and parameters [334].

• Various other terms: Semi-supervised, . . .

Putting all the pieces together, we see that training the classifiers may be manual or automated,

simple or complex, depending on the complexity of the objects and the range of feature metrics used.

http://www.kernel-machines.org/

186 4 Local Feature Descriptors

An SVM or kernel machine may be the ideal solution, or the problem may be simpler. For example,

a machine vision system to identify fruit may contain a classifier for each type of fruit, with features

including simple color histograms, shape factors such as area and perimeter and Fourier descriptors,

and surface texture metrics, with constraints to associate and quantify all the features for each type of

fruit. The training process would involve imaging several pieces of fruit of each type; developing

canonical descriptors for color, shape, and surface texture; and devising a top-level classifier perhaps

discriminating first on color, next surface texture, and finally shape. A simpler fruit classifier may

contain just a set of image histograms of accurate color measurements for each fruit object and may

work well enough if each piece of fruit is imaged with a high-precision color camera against a black

conveyor belt background in a factory.

While most published research is based on a wide range of nonstandard classification methods

designed for specific applications or to demonstrate research results, some work is being done toward

more standardized classification frameworks.

One noteworthy example of a potentially standard classifier framework developed for robot

navigation and object recognition is the REIN method [328], which allows the mixing and matching

of detectors, descriptors, and classifiers for determining constraints. REIN provides a plug-in architec-

ture and interfaces to allow for any algorithms, such as OpenCV detectors and descriptors, to be

combined in parallel or serial pipelines. Two classification methods are available in REIN as plug-in

modules for concurrent use: Binarized Gradient Grid Pyramids are introduced as a new method [328],

and View Point Feature Histograms [329] are also used.

The REIN pipeline provides interfaces for (1) attention operators to identify interesting 3D points

and reduce the search space; (2) detectors for creating feature descriptors; and (3) pose estimators to

determine geometric constraints for applications like robot motion such as grasping. REIN is available

for research as open source; see Ref. [328].

Another research project, MOPED [330], provides a regular architecture for robotic navigation,

including object and pose recognition. MOPED includes optimizations to use all available CPU and

GPU compute resources in parallel. Moped provides optimized versions of SIFT and SURF for

GPGPU and makes heavy use of SSE instructions for pose estimation.

Kernel Machines

In machine learning, a kernel machine [305] is a framework allowing a set of methods for statistically

clustering, ranking, correlating, and classifying patterns or features to be automated. One common

example of a kernel machine is the support vector machine (SVM) [533].

The framework for a kernel machine maps descriptor data into a feature space, where each

coordinate in the feature space corresponds to a descriptor. Within the feature space, feature matching

and feature space reductions can be efficiently carried out using kernel functions. Various kernel

functions are used within the kernel machine framework, including RBF kernels, Fisher kernels,

various polynomial kernels, and graph kernels.

Once the feature descriptors are transformed into the feature space, comparisons, reductions, and

clustering may be employed. The key advantage of a kernel machine is that the kernel methods are

interchangeable, allowing for many different kernels to be evaluated against the same feature data.

There is an active kernel machine community (see kernel-machines.org). See also Chap. 10 for more

on SVMs and kernel descriptors.

Boosting, Weighting

Boosting [313] is a machine learning concept that allows a set of classifiers to be used together,

organized into combinatorial networks, pipelines, or cascades, and with learned weights applied to

each classifier. This results in a higher, synergistic prediction and recognition capability using the

combined weighted classifiers. Boosting is analogous to the weighting factors used for neural network

inputs; however, boosting methods go further to combine networks of classifiers to create a single,

strong classifier.

Computer Vision, Models, Organization 187

We illustrate boosting from the Viola–Jones method [117, 153], also discussed in Chap. 6, which uses

the ADA-BOOST training method to create a cascaded pattern matching and classification network by

generating strong classifiers from many weak learners. This is done through dynamic weighting factors

determined in a training phase, and the method of using weighting factors is called boosting.

The idea of boosting is to first start out by equally weighting the detected features—in this case,

HAAR wavelets—and then matching the detected features against the set of expected features; for

example, those features detected for a specific face. Each set of weighted features is a classifier.

Classifiers that fail to match correctly are called weak learners. For each weak learner during the

training phase, new weighting factors are applied to each feature to make the classifier match correctly.

Finally, all weak learners are combined linearly into a cascaded classifier, which is like a pipeline or

funnel of weak classifiers designed to reject bad features early in the pipeline.

The training can takemany hours, days, or weeks and requires some supervision.While ADA-BOOST

solved binary classification problems, the method can be extended into multiclass classification [113].

Selected Examples of Classification

We call out a few noteworthy and popular classification approaches here, which are also listed in

Table 4.5. See Chap. 10 for more information on feature learning architectures, including classification

methods such as visual vocabularies.

Table 4.5 Comparison of various interest point, descriptor, and classifier concepts

Technique FERNS SIFT FREAK Convolutional Network Polygon Shape Factors

Sparse Keypoints x x x x

Feature Descriptor x x x x

Multi-Scale Representation x x x

Coarse to Fine Descriptor x

Deep Learning Network x

Sparse Codebook x

Note: The FERNS method does not rely on a local feature descriptor, and instead relies on a classifier using constraints

between interest points

Randomized trees is a method using hierarchical patch classifiers [315] based on Bayesian proba-

bility methods, taking a set of simple patch features deformed by random homography parameters.

Ozuysal et al. [263] further develop the randomized tree method with optimizations using nonhierar-

chical organization in the form of FERNS, using binary probability tests for patch classifier member-

ship. Matches are evaluated using a naïve Bayesian approach.

FERNS training [263] involves combining training data from multiple viewpoints of each patch to

add scale and perspective invariance, using trees with 11 levels and 11 versions of each patch, warped

using randomized affine deformation parameters; some Gaussian noise and smoothing are also applied

to the deformed patches. Keypoints are then located in each deformed patch, and the keypoints found

in the most deformed patches are selected for the training set. The FERNS keypoints use maxima of

Laplacian filters at three scales and retain only the strongest 400 keypoints. The Laplacian keypoints do

not include orientation or fine-scale estimation. FERNS does not use descriptors, just the strongest

Laplacian keypoints computed over the 11 deformed images in each set.

While K-means [85] methods can be very slow, an optimization using hierarchical Nister Trees

[318] is a highly scalable alternative for indexing massive numbers of quantized or clustered local

descriptors in a hierarchical vocabulary tree. The method is reported to be very discriminative and has

been tested on large datasets.

188 4 Local Feature Descriptors

Binary Histogram Intersection Minimization (BHIM) [273] uses pairs of multi-scale local binary

patterns (MSLBP) [273] to form pairwise-coupled classifiers based on strong divergence between pairs

of MSLBP features. Histogram intersection on pairs of MSLBP features uses a distance function such

as SAD to find the largest divergence of histogram distance. The BHIM classifier is then composed of a

list of “pairs” of MSLBP histograms with large divergence, and MSLBPs are matched into the

classifier. BHIM uses features created across multiple scales of training data. It is reported by the

authors to be at least as accurate as ADA-BOOST, and the MSLBP features are reported to be more

discriminant than LBPs.

Alahi et al. [322] develop a method for classification and matching using a cascaded set of coarse to

fine grids of region descriptors called object descriptors (ODs). The target application is tracking

objects across a set of cameras, such as traffic cameras in a metropolitan area. Each OD is a collection

of multi-scale descriptors computed in equal-size regions over multi-scale grids; the grids range over

six scales with a 25% scaling factor difference. Any existing descriptor method can be used in the OD

method, such as SIFT, SURF, or correlation templates. The authors [322] claim improved performance

by cascading descriptors in an OD compared with using existing descriptors.

Feature Learning, Sparse Coding, Convolutional Networks

Feature learning methods create a set of basis features (we use the term basis features loosely here)

derived from the ground truth data during a training phase. The basis features are collected into a set.

There are several related approaches taken to create the set, discussed in this section.

The topics introduced in this section are covered in much more detail in Chap. 10 under Feature

Learning Architectures.

Terminology: Codebooks, Visual Vocabulary, Bag of Words, Bag of Features

Several related approaches and terminologies are used in the feature learning literature, including

variations such as sparse coding, codebooks, bag of words, and visual vocabularies. However, for the

novice, there is some conceptual overlap in the various approaches and the terminology is subtle,

describing minor variations in methods used to learn the features and build the classification networks;

see references [88–93]. The sparse codes are analogous to basis features. Many researchers in the areas

of activity recognition [45] are using sparse codebooks and extending the field of research.

We describe some of the terminology and concepts, including:

• Dictionaries, codebooks, visual vocabularies, bags of words, bags of features, and feature alphabet,

containing sets of features.

• Sparse codes, sparse coding, and minimal sets of features or codes.

• Multilayered sparse coding and deep belief networks, containing multilayered classification

networks for hierarchical matching; these are composed of small, medium, and large scale

features—perhaps ten or more layers of scale.

• Single-layer sparse coding, with no hierarchy of features, which may be built on top of a multi-scale

descriptor such as SIFT.

• Unsupervised feature learning, including various methods of learning the best features for a given

application from the ground truth dataset; feature learning has received much attention recently in

the Neural Information Processing Systems (NIPS) community, especially as applied to

convolutional networks.

Computer Vision, Models, Organization 189

Sparse Coding

Some early work in the area of sparse coding for natural images can be found in the work of Olshausen

and Field [725], which forms the conceptual basis. To create a sparse codebook, first an image feature

domain is chosen, such as face recognition or automobile recognition. Then a set of basis items

(patches, vectors, or functions) is selected and put into a codebook based on a chosen uniqueness

function. The sparse coding goal is to contain the smallest set of unique basis items required to achieve

the accuracy and performance goals for the system.

When adding a new feature to the codebook during the training stage, candidate features are

compared against the features already in the codebook to determine feature uniqueness, using a

suitable distance function and empirical threshold. If the feature is sufficiently unique, as measured

by the distance function and a threshold, the new feature is added to the codebook.

In work by Bo et al. [91], the training phase for learning features involves using objects such as a

cup, which is positioned on a small rotating table. Multiple images are taken of the object from a

number of viewpoints and distances to achieve perspective invariance, which then yields a set of

patches taken from a variety of poses, from which the unique sparse codewords are created and added

to the codebook (see also Refs. [91, 189, 190, 725]). Related work includes a histogram of sparse codes

descriptor or HSC [98], as described in Chap. 7, used to retrofit a HOG descriptor. See Chap. 10 for

more details on sparse coding architectures.

Visual Vocabularies

Visual vocabularies are analogous to word vocabularies and they share common research [195]. See

Chap. 10 for more details on vocabulary architectures. In the area of document analysis, content is

analyzed and described based on the histogram of unique word counts in the document. Of course, the

histogram can be trimmed and remapped to reduce the quantization and binning. Visual vocabularies

follow the same method as word vocabulary methods, representing images globally by the frequency of

visual words, as illustrated in Fig. 4.21, where visual word methods use feature descriptors of many types.

Fig. 4.21 Hypothetical, simplified illustration representing a set of visual words, and a histogram showing frequency of

use of each visual word in a given image

190 4 Local Feature Descriptors

To build the visual vocabularies, unique feature descriptors are extracted and collected from ground

truth images. To be included in the vocabulary, the new feature must have significant statistical

differences from the existing features in the vocabulary, so features are added to the vocabulary only

if they exceed a difference threshold function.

To quantize the visual vocabulary features for determining their uniqueness, clustering and classifi-

cation methods are performed on the feature set, and candidate features are selected that are unique so

as to reduce the feature space and assist in matching speed. Various statistical methods may be

employed to reduce the feature space, such as K-means, KNN, SVM, Bayes, and others.

To collect the visual features, practitioners are using all possible methods of feature description and

image search, including sampling the image at regular grids and at interest points, as well as scale space

searches. The features used in the vocabularies range from simple rectangular pixel regions, to SIFT

features, and everything in between. Applications for the visual vocabularies range from analyzing

spatiotemporal images for activity recognition [196, 199] to image classification [90, 92, 197–199].

Learned Detectors via Convolutional Filter Masks

As illustrated in Fig. 4.22, Richardson and Olson [96] developed a method of learning optimal

convolutional filters as an interest point detector with applications to stereo visual odometry. This

method uses combinations of DCT and HAAR basis features composed together, using random

weights to form a set of candidate 8 × 8 pixel basis functions, each of which is tested against a target

feature set resembling 2D barcodes known as AprilTags [452]. Each 8 × 8 pixel candidate is measured

against the AprilTags to find the best convolution masks for each tag to form the basis set. Of course,

other target features such as corners could be used for ground truth data instead of AprilTags.

Fig. 4.22 (Left) The optimal learned convolution filters for an image of an Office, a conference room, cubicle, and

lobby; gray scale values represent filter coefficient magnitudes. (Right) Comparable corner detectors in the top row,

difference of Gaussian in the bottom left, and a custom filter which is preferred by the author. (Images # Andrew

Richardson and Edwin Olson, used by permission)

Using the learned convolution masks, the steps in feature detection are as follows: (1) convolve

each masks at chosen pixels to get a response; (2) compare convolution response against a threshold;

(3) suppress non-extrema response values using a 3 × 3 spatial filter window. The authors report good

accuracy and high performance on the order of a FAST detector, but with the benefit of higher

performance for the combined detection and non-maximal suppression stage as feature counts

increase.

Computer Vision, Models, Organization 191

Convolutional Neural Networks, Neural Networks

Convolutional neural networks which are discussed at length in Chaps. 9 and 10, pioneered by LeCun

[288] and others, are one method of implementing machine learning algorithms based on neural

network theory [304]. Convolutional networks are showing great success in academia and industry

[289] for image classification and feature matching.

Convolutional neural networks are one method of modeling a neural network. The main compute

elements in the convolutional network are many optimized convolutions in parallel, as well as fast

local memory between the compute units. The run-time classification performance can be quite fast,

especially for hardware-optimized implementations [453].

As shown in Fig. 4.23 at a high level, one method of modeling each neuron and a network of

neurons includes a set of inputs, a set of weighting factors applied to each input, a combinatorial

function, and an output. Many neural models exist that map into convolutional networks; we refer the

reader to the experts, see LeCun [288]. Neural networks have been devised using several models, but

this topic is outside the scope of this work [304]; see the NIPS community research for more.

Fig. 4.23 (Left) Neurons from a human brain. (Right) One of many possible models of an artificial neural network

[304]. Note that each neuron may have several inputs, several outputs, a bias factor, and input/output weight factors (not

shown). (Human neuron image on left # Gerry Shaw, used by permission)

Neural networks are multilevel, containing several layers and interconnections. As shown in the

hypothetical neural network in Fig. 4.23, a bias input is provided to each neural function as a weighting

factor. Some neural network configurations use individual weights applied to each individual input, so

the weighting factors act as convolution kernel coefficients. In terms of convolutional networks, the

neural network paradigm can be mapped into localized patches of raw pixels as feature inputs at the

lowest level. For example, the patch size may be 1 pixel or a 5 × 5 patch of pixels, each input having a

convolutional weighting factor.

See Chap. 9 for details on neural networks, including historical background and neuroscience

concepts. See Chap. 10 for feature learning architectures employing neural networks.

192 4 Local Feature Descriptors

Summary

In this chapter, we survey background concepts and ideas used to create local feature descriptors and

interest point detectors. The key concepts and ideas are also developed into the vision taxonomy

suggested in Chap. 5. Distance functions are covered here, as well as useful coordinate systems. We

examine the shape and pattern of local descriptors, with an emphasis on local binary descriptors such

as ORB, FREAK, and BRISK to illustrate the concepts.

Feature descriptor discrimination is illustrated using image reconstructions from feature descriptor

data alone. Search strategies are discussed, such as scale space pyramids and multilevel search, as well

as other methods such as grid-limited search. Computer vision system models are covered, including

concepts such as feature space, object models, feature constraints, statistically designed features, and

feature learning. Classification and training are illustrated using several methods, including kernel

machines, convolutional networks, and deep learning. Several references to the literature are provided

for the interested reader to dig deeper. Practical observations and considerations for designing vision

systems are also provided.

In summary, this chapter provides useful background concepts to keep in mind when reading the

local feature descriptor survey in Chap. 6, since the concepts discussed here are taken mainly from the

current localå descriptor methods in use; however, some additional observations and directions for

future research are suggested in this chapter as well.

Learning Assignments

1. Discuss how a local feature descriptor is different than a global image descriptor or global

statistical metric, and provide an example comparison between a local feature descriptor and a

global feature descriptor.

2. A feature detector is equivalently called a local interest point, anchor point, and landmark. Discuss

what a feature detector is used for, and describe in general how they work.

3. Discuss how to cull down the set of local interest points (feature detectors), and why culling is

critical for effective feature description.

4. Discuss and compare alternatives to using feature detectors to find sparse local interest points, such

as using dense feature descriptors computed at each pixel, or grid-aligned feature descriptors.

5. Discuss why it is critical to pair the right combination of feature detector and feature descriptor

together.

6. Discuss the difference between feature description and feature extraction.

7. Discuss feature invariance criteria such as scale and rotational invariance, and name at least five

(5) other invariance criteria.

8. Discuss why determining the invariance criteria in advance is critical for selecting the interest

point and feature descriptor methods for a given application, and describe an example application

and describe the relevant invariance criteria.

9. Discuss why interest points, or feature detectors, should be distinct and easy to find with high

repeatability.

10. Describe as many distance functions as you can remember, at least Euclidean distance, cosine

distance, and SSD difference.

11. Describe how a distance function is used to measure correspondence between feature descriptors

to feature matching.

12.

Learning Assignments 193

Describe how Hamming distance works, and why it is ideal for measuring correspondence

between local binary descriptors.

13. Discuss scale space, image pyramids, and feature descriptor pyramids, and provide example

applications for each.

14. Discuss feature descriptor shapes, otherwise referred to as patches, and the advantages and

disadvantages of each shape.

15. Discuss the motivations and goals behind the design of local binary descriptors.

16. Compare local binary descriptors with other feature descriptor methods using other spectra such as

pixel values or gradient values.

17. Discuss several examples of spectra used to create feature descriptors, such as gradients, pixel

values, and color information.

18. Describe how saccadic dithering is used by the human visual system.

19. Describe the shape of the variable levels of detail detected by the retina, and describe applications’

variable level of detail to feature descriptor design.

20. Discuss the approach to determining the pixel sampling patterns used in local binary descriptors,

including dense sample patterns used in the LBP, and sparse point-pair pixel patterns used by

FREAK and ORB, and discuss the motivations and goals for each approach.

21. Discuss applications for sub-pixel accuracy in feature descriptors, and name specific feature

descriptor methods which have been demonstrated to be sub-pixel accurate.

22. Describe feature search approaches including multi-scale image pyramid search, dense pixel

search, grid tile search, and sparse local interest point search.

23. Describe image classification and labeled classes.

24. Describe how clustering of features is used during training to select representative features.

25. Describe how K-MEANS and K-NN (K-nearest neighbor) clustering methods work at a high

level, and how they are different.

26. Describe the general operation and goals of the ADA-BOOST method used by the Viola–Jones

Method.

27. Describe sparse coding goals as applied to feature classification.

28. Describe visual vocabularies and bag-of-words methods as applied to feature classification.

for the Entwives desired order, and plenty, and peace (by which they meant that things

should remain where they had set them).

—J. R. R. Tolkien, The Lord of the Rings

Feature Descriptor Attribute Taxonomy 5

This chapter develops a general Vision Metrics Taxonomy for feature description, so as to collect

summary descriptor attributes for high-level analysis. The taxonomy includes a set of general robust-

ness criteria for feature description and ground truth datasets. The material presented and discussed in

this book follows and reflects this taxonomy. By developing a standard vocabulary in the taxonomy,

terms and techniques are intended to be consistently communicated and better understood. The

taxonomy is used in the survey of feature descriptor methods in Chap. 6 to record “what” practitioners

are doing.

As shown in Fig. 5.1, the Vision Metrics Taxonomy is based on feature descriptor dimensions using

three axes—shape and pattern, spectra, and density—intended to create a simple framework for

analysis and discussion. A few new terms and concepts have been introduced where there had been

no standard, such as for the term feature descriptor families. These have been broken down into

categories of local binary descriptors, spectra descriptors, basis space descriptors, and polygon shape

descriptors; these descriptor families are also discussed in detail in Chap. 4. Additionally, the

taxonomy borrows some useful terminology from the literature when it exists there, including several

terms for the robustness and invariance attributes.

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_5

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_5&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_5#DOI

nded to be used for comparing descriptors in terms of their goodness, performance, or accuracy.

The three axes of the Vision Metrics Taxonomy in Fig. are:

1.

3. Spectra: The scalar and vector quantities used for the metrics, and a summary breakdown of the

algorithms and computations.

scussed in detail in Chap. 6; these include the use of gradients and local binary patterns.

•

5.1

Why create a taxonomy that is guaranteed to be fuzzy, includes several variables, and will not

perfectly express the attributes of any feature descriptor? The intent is to provide a framework to

196 5 Feature Descriptor Attribute Taxonomy

sparse global
Density

Spectra

Shape & pattern

regional
block

polygon

pattern

intensity scalar

color scalar

gradient scalar

multivariate space

basis or set

Fig. 5.1 Taxonomy for feature descriptor dimensions, including (1) feature density as global, regional, and sparse local;

(2) shape and pattern of pixels used to compute the descriptor, which includes rectangles, circles, and sparse sampling

patterns; (3) spectra, which includes the spectrum of information contained in the feature itself

describe various design approaches used for feature description. However, the taxonomy is not

inte

Shape and pattern: How the pixels are taken from the target image.

2. Density: The extent of the image required for the descriptor, differentiating among local, regional,

and global descriptors.

Feature Descriptor Families

Feature descriptors and metrics have developed along several lines of thinking into separate families.

In many cases, the research communities for the various families are working on different problems,

and there is little cross-pollination or mutual interest. For example, cell biology and medical

applications are typically interested in polygon shape descriptors, also referred to in the literature as

image moments. Those involved with trendy augmented reality applications for mobile phones, as

discussed in the computer vision literature, may be more interested in local binary descriptors. In some

cases, there are common concepts shared by feature detectors and feature descriptors, as will be

di

Based on the taxonomy shown in Fig. 5.1, we divide features into the following families:

Local binary descriptors. These sample point-pairs in a local region and create a binary coded bit

vector, 1 bit per compare, amenable to Hamming distance feature matching. Examples include LBP,

FREAK, ORB, BRISK, and Census.

•

•

detectors and feature descriptors (as will be discussed in Chap. 8). Image moments [444] is a term

often used in the literature to describe shape features.

nference publishers. Here are a few noteworthy works that survey and organize the eld of feature

m

•

•

•

•

of literature on local features, performance and accuracy evaluations of several methods, types of

methods (corner detectors, blob detectors, and feature detectors), and implementation details.

Prior Work on Computer Vision Taxonomies 197

• Spectra descriptors. These use a wide range of spectra values, such as gradients and region

averages. There is no practical limit to the spectra that could be used with these features. One of

the most common spectra used in detectors is the local region gradient, such as in SIFT. Gradients

are also used in several interest point and edge detectors, such as Harris and Sobel.

Basis space descriptors. These methods encode the feature vector into a set of basis functions, such

as the familiar Fourier series of sine and cosine magnitude and phase. In addition, existing and novel

basis features are being devised in the form of sparse codebooks and visual vocabularies (we use the

term basis space loosely).

Polygon shape descriptors. These take the shape of objects as measured by statistical metrics, such

as area, perimeter, and centroid. Typically, the shapes are extracted using a morphological vision

pipeline and regional algorithms, which can be more complex than localized algorithms for feature

Prior Work on Computer Vision Taxonomies

Several research papers compare and contrast various aspects of sparse local features, and the field is

rich with examples of comparisons of keypoint detectors [67, 262] and feature descriptors

[81, 116]. New feature descriptor methods and improvements are usually compared to existing

methods, utilizing several robustness and invariance criteria. However, there is a lack of formal

taxonomy work to highlight the subtle details affecting design and comparison. For a good survey

covering state-of-the-art computer vision methods, see Szelinski [275].

It should be noted that computer vision is a huge field. Several thousand research papers are

published every year, and several thousand equally interesting research papers are rejected by

co fi

etrics and computer vision.

Affine covariant interest point detectors. A good taxonomy is provided by Mikolajczyk et al.

[124] for affine covariant interest point detectors. Also, Lindeberg [471] has studied the area of

scale-independent interest point methods extensively. We seek a much richer taxonomy, however,

to cover design principles for feature descriptors, and we have developed our taxonomy around

families of descriptor methods with common design characteristics.

Annotated computer vision bibliography. From USC and maintained by Keith Price, this

resource provides a detailed breakdown of computer vision into several branches, as well as links

to some key research in the field and computer vision resources.1

CVonline: the evolving, distributed, nonproprietary, online compendium of computer vision.

This provides a comprehensive and detailed list of topics in computer vision. The website is

maintained by Robert Fisher, and indexes the key Wikipedia articles. This may be one of the best

online resources currently available.2

Local invariant feature detectors: a survey. Prepared by Tuytelaars and Mikolajczyk [81], this

reference provides a good overview of several feature description methods, as well as a discussion

1 http://iris.usc.edu/Vision-Notes/bibliography/contents.html.
2 http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm.

http://iris.usc.edu/Vision-Notes/bibliography/contents.html%20
http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm%20

well-known detectors and descriptors, combined with various classifiers, to yield the desired robust-

ness and accuracy.

198 5 Feature Descriptor Attribute Taxonomy

Robustness and Accuracy

A key goal for computer vision is robustness, or the ability of a feature to be recognized under various

conditions. Robustness can be broken down into several attributes. For example, detecting a feature

should be robust over various criteria that are critical to a given application, such as scale, rotation, or

illumination. We might also use the terms invariant or invariance to describe robustness. The end goal

is accurate localization, correspondence, and robustness under invariance criteria.

However, some robustness attributes are dependent on the feature descriptor combined with other

variables. For example, many local feature descriptor methods compute position and orientation based

on a chosen interest point method, so the descriptor accuracy is interrelated with the interest point

method. The distance function and classification method are interrelated as well, to determine final

accuracy.

Note

Since it is not possible to define robustness or accuracy of a feature descriptor in isolation from the

interest point method, the classifier, and the distance function, the opportunity exists to mix and match

Robustness and accuracy are a combination of the following factors:

1. Interest point accuracy, since many descriptors depend on the keypoint location and orientation.

2. Descriptor accuracy, as each descriptor method varies, and can be tuned.

3. Classifier and distance function accuracy, as a poor classifier and matching stage can lead to the

wrong results.

Part of the challenge for an application, thus, is to define the robustness criteria, attribute by

attribute, and then to define the limits and bounds of invariance sought. For example, scale invariance

from 1× to 100 magnification may not be needed and hardly possible, but scale invariance from 1× to

4× may be all that is needed and much simpler to reach.

Several attributes of robustness are developed here into a robustness taxonomy. To determine actual

robustness, ground truth data is needed as a basis to check the algorithms and measure results.

Chapter 7 provides a background in ground truth data selection and design.

General Robustness Taxonomy

Robustness criteria can be expressed in terms of attributes and measured as invariance or robustness to

those attributes. (See Chap. 7, Table 7.1, for more information on each of the robustness criteria

attributes, with considerations for creating ground truth datasets.) Robustness criteria and attributes are

grouped under the following group headings:

• Illumination

• Color

• Incompleteness

• Resolution and distance

• Geometric distortion

• Discrimination and uniqueness

Each robustness criterion group contains several finer-grain attributes, as illustrated in Fig. 5.2.

General Robustness Taxonomy 199

Illumination

• Uneven illumination

• Brightness

• Contrast

• Vignette

Color

• Color Space Accuracy

• Color Channels

• Color Bit Depth

Incompleteness

• Clutter

• Occlusion

• Outliers, proximity

• Noise

• Motion blur

• Jitter, Judder

Resolution,

accuracy

• Location accuracy or

position

• Shape & thickness

distortion

• Focal plane or depth

• Pixel Depth

Resolution

Geometric

• Scale

• Rotattion

• Geometric warp

• Reflection

• Radial distortion

• Polar distortion

Discrimination,

uniqueness

• Quality

Fig. 5.2 General robustness criteria and their attributes

Let us take a look at these robustness attributes, along with some practical considerations for design

and implementation of feature descriptors and the corresponding ground truth data to address the

attributes.

Illumination

Light is the source of all imaging, and it should be the no. 1 priority area for analysis and consideration

when setting requirements for a given application. Illumination has several facets and is considered

separately from color and color spaces. In some cases, the illumination can be corrected by changing

the light source, or by adding or relocating light sources. In other cases, image preprocessing is needed

to correct the illumination to prepare the image for further analysis and feature extraction.

Attention to illumination cannot be stressed enough; for example, see Fig. 4.2 showing the effects of

preprocessing to change the illumination in terms of increasing the contrast for feature extraction. Key

illumination attributes are:

• Uneven illumination: Image contains dark and bright regions, sometimes obscuring a feature that

is dependent on a certain range of pixel intensities.

• Brightness: There is too much or too little total light, affecting feature detection and matching.

• Contrast: Intensity bands are too narrow, too wide, or contained in several bands.

• Vignette: Light is distributed unevenly, such as dark around the edges.

Color Criteria

When color is used, accuracy of color is critical. Color management and color spaces are discussed in

Chap. 2, but some major considerations are:

• Color space accuracy: Which color space should be used—RGB, YIQ, HSV, or a perceptually

accurate color space such as CIECAM02 Jch or Jab? Each color space has accuracy and utility

considerations, such as the ease of transforming colors to and from color spaces.

• Color channels: Since cameras typically provide RGB data, extracting the gray scale intensity from

the RGB data is often important. There are many methods for converting RGB color to gray scale

intensity, and many color spaces to choose from.

• Color bit depth: Color information, when used, must be accurate enough for the application. For

example, 8-bit color may be suitable for most applications, unless color discrimination is necessary,

so higher precision color using 10, 12, 14, or 16 bits per channel may be needed.

Also, depending on the camera sensor used, there will be signal characteristics, such as color

sensitivity and dynamic range, which differ for each color channel. For demanding color-critical

applications, the camera sensor should be well understood and have a known method of calibration.

Individual colors may need to be compensated during image preprocessing. (See Chap. 1 for a

discussion of camera sensors.)

200 5 Feature Descriptor Attribute Taxonomy

Incompleteness

Features are not always presented in the image from frame to frame the way they are expected, or in the

way they were learned. The features may appear to be incomplete. Key attributes of incompleteness

include:

• Clutter: The feature is obscured by surrounding image features, and the feature aliases and blends

into the surrounding pixels.

• Occlusion: The feature is partially hidden; in many cases, the application will encounter occluded

features or sets of features.

• Outliers, proximity: Sometimes only features in certain regions are used, and outlying features

must be detected and ignored.

• Noise: Can come from rain, bad image sensors, and many other sources. A constant problem, noise

can be compensated for, if it is understood, using a wide range of filter methods during

preprocessing.

• Motion blur: If it is measured and understood, motion blur can be compensated for using filtering

during preprocessing.

• Jitter, judder: A motion artifact, jitter or judder can be corrected, but not always; this can be a

difficult robustness criterion to meet.

Resolution and Accuracy

Robustness regarding resolution, scale, and distance is often a challenge for computer vision. This is

especially true when using feature metrics that rely on discrete pixel sizes over which the pixel area

varies with distance. For example, feature metrics that rely on pixel neighborhood structure alone do

not scale well or easily, such as correlation templates and most local region kernel methods. Other

descriptors, such as those based on shape factors, may provide robustness that pixel region structures

cannot achieve. Depending on the application, more than one descriptor method may be required to

handle resolution and scale.

To meet the challenge of resolution and distance robustness, various methods are employed in

practice, such as scale-space image pyramid collections and feature-space pyramids, which contain

multi-scale representations of the feature. Key criteria for resolution and distance robustness include:

• Location accuracy or position: How close does the metric need to provide coordinate location

under scale, rotation, noise, and other criteria? Is pixel accuracy or sub-pixel accuracy needed?

Regional accuracy methods of feature description cannot determine positional accuracy as well; for

example, methods that use HAAR-like features and integral images can suffer the most, since in

computing the HAAR rectangle, all pixels in the rectangle are summed together, throwing away

discrimination of individual pixel locations. Pixel-accurate feature accuracy can also be challeng-

ing, since as features move and rotate they distort, and the pixel sampling artifacts create

uncertainty.

General Robustness Taxonomy 201

• Shape and thickness distortion: Distance, resolution, and rotation combine to distort the pixel

sample shapes, so a feature may appear to be thicker than it really is or thinner. Distortion is a type

of sampling artifact.

• Focal plane or depth: Depending on distance, the pixel area covered by each pixel changes size. In

this case, depth sensors can provide some help when used along with RGB or other sensors.

• Pixel depth resolution: For example, processing color channels to preserve the bit accuracy using

float or unsigned short int as a minimum can be required.

Geometric Distortion

Perhaps the most common distortion of image features is geometric, since geometric distortions take

many forms as the camera moves and as objects move. Geometric attributes for robustness include the

following:

• Scale: Distance from viewpoint, a commonly addressed robustness criteria.

• Rotation: Important in many applications, such as industrial inspection.

• Geometric warp: Key area of research in the fields of activity recognition and dynamic texture

analysis, as discussed in Chaps. 4 and 6.

• Reflection: Flipping the image by 180°.

• Radial distortion: A key problem in depth sensing and also for 2D camera geometry in general,

since depth fields are not uniform or simple; see Chap. 1.

• Polar distortion: A key problem in depth sensing geometry; see Chap. 1.

Efficiency Variables, Costs, and Benefits

We consider efficiency to be related to compute, memory, and total invariance attributes provided.

How efficient is a feature descriptor or feature metric? How much compute is needed to create the

metric? How much memory is needed to store the metric? How accurate is the metric? How much

robustness and invariance are provided vs. the cost of compute and memory? To answer the above

questions is very difficult and depends on how the entire vision pipeline is implemented for an

application, as well as the compute resources available. The Vision Metrics Taxonomy provides

information to pursue such questions, but as always pursuing the wrong questions may lead to the

wrong answers.

Discrimination and Uniqueness

The selection of optimal, discriminating features is achieved using a variety of methods. For example,

local feature detector methods filter out only the most discriminating or unique candidates based on

criteria such as corner strength; then descriptors are computed at the selected interest points as patches

or other shapes; and finally the resulting descriptor is either accepted or rejected based on uniqueness

criteria. Uniqueness is also the key criterion for creating sparse codebooks discussed in Chap. 4.

Discrimination can be measured by the ability to recreate an image from only the descriptor

information, as discussed in Chap. 4. A descriptor with too little information to adequately recreate

an image may be considered weak or nondiscriminating.

202 5 Feature Descriptor Attribute Taxonomy

General Vision Metrics Taxonomy

To understand feature metrics, we develop a Vision Metrics Taxonomy composed of summary criteria.

Each criterion is selected with a practical, engineering perspective in mind to provide information for

evaluation and implementation in specific terms, such as algorithm, spectra, memory size, and other

attributes. The basic categories of the Vision Metrics Taxonomy are shown in Table 5.1, and also

summarized here as a list, and each list item is discussed in separate sections in this chapter:

• Feature Descriptor Family

• Spectra Dimension

• Spectra Value

• Interest Point

• Storage Format

• Data Types

• Descriptor Memory

• Feature Shape

• Feature Pattern

• Feature Density

• Feature Search Method

• Pattern Pair Sampling

• Pattern Region Size

• Distance Function

• Run-Time Compute

Many of the background concepts used in the taxonomy are discussed in Chap. 4, where attributes

about the internal structure and goals of common features are analyzed. In addition, this taxonomy is

illustrated in the Feature Metric Evaluation (FME) information tables later in this chapter. A small

subset of the taxonomy is used in the Chap. 6 survey of feature descriptors to record summary

information. The taxonomy in Table 5.1 is a guideline for collecting and summarizing information.

No judgment on goodness or performance is recorded or implied.

General Vision Metrics Taxonomy 203

Table 5.1 Vision metrics taxonomy

Feature descriptor family Interest point Pattern pair sampling

Local binary descriptor Point, edge, or corner Center—boundary pair

Spectra descriptor Contour-based, perimeter Random pair points

Basis space descriptor Other Foveal centered trained pairs

Polygon-shape descriptor No interest point Trained pairs

Spectra dimensions Storage format Symmetric pairs

Single variate Spectra vector Pattern region size

Multivariate Bit vector Bounding box (x size, y size)

Spectra value Multivariate collection Distance function

Orientation vector Data types Euclidean distance

Sensor, accelerometer data Float Squared Euclidean distance

Multigeometry Integer Cosine similarity

Multi-scale Fixed point Correlation distance

Fourier magnitude Descriptor memory Manhattan distance

Fourier phase Fixed length or variable length Chessboard or Chebychev distance

Other basis function Byte count range Earth movers distance

Morphological shape metrics Feature shape SAD L1 Norm

Learned binary descriptors Rectangle block patch SSD L2 Norm

Dictionary, codebook, vocabulary Symmetric polygon region Mahalanobis distance

Region histogram 2D Irregular segmented region Bray Curtis difference

3D histogram Volumetric region Canberra distance

Log polar bins Deformable L0 Norm

Cartesian bins Feature search method Hamming distance

Region sum Coarse to fine image pyramid Jaccard similarity

Region average Scale space pyramid Run-time compute

Region statistical Pyramid scale Compute complexity % of SIFT

Binary pattern Dense sliding window Feature density

DoG (1-bit) Dense grid block search Global

DoG (multi-bit) Window search Regional

Bit vector of values Grid block search Sparse

Gradient magnitude Sparse at interest points Feature pattern

Gradient direction Sparse at predicted points Rectangular kernel

3D surface normals Sparse in segmented regions Binary compare pattern

Line segment metric Depth segmented regions (Z) DNET line sample strip set

Gray scale info Super-pixel search Radial line sampling pattern

Color space info Sub-pixel search Perimeter or contour edge

Double-scale first pyramid level Sample weighting pattern

Feature Descriptor Family

As described at the beginning of this chapter, feature descriptors are classified in this taxonomy as

follows:

• Local Binary Descriptors

• Spectra Descriptors

• Basis Space Descriptors

• Polygon Shape Descriptors

204 5 Feature Descriptor Attribute Taxonomy

Spectra Dimensions

The spectra or values recorded in the feature descriptor vary, and may include one or more types of

information or spectra. We divide the categories as follows:

• Single variate: Stores a single value such as an integral image or region average, or just a simple set

of pixel gradients.

• Multivariate: Multiple spectra are stored; for example, a combination of spectra such as color

information, gradient magnitude and direction, and other values.

Spectra Type

The spectral type of feature descriptor is a major axis in this taxonomy, as shown in Fig. 5.1. Here are

common spectra, which have been discussed in Chap. 3 and will be discussed in Chap. 6 as well.

• Gradient magnitude: A measure of local region texture or difference, used by a wide range of

patch-based feature descriptor methods. It is well known [210] that the human visual system

responds to gradient information in a scale and rotationally invariant manner across the retina, as

demonstrated in SIFT and many other feature description methods; thus, the use of gradients is a

preferred method for computer vision.

• Gradient direction: Some descriptor methods compute a gradient direction and others do not. A

simple region gradient direction method is used by several feature descriptors and edge detection

methods, including Sobel and SIFT, to provide rotational invariance.

• Orientation vector: Some descriptors are oriented and others are not. Orientation can be computed

by methods other than a simple gradient—for example, SURF uses a method of sampling many

gradient directions to compute the dominant gradient orientation of the entire patch region as the

orientation vector. In the RIFF method, a radial relative orientation is computed. In the SIFT

method, any orientations detected within 80% of the dominant orientation will result in an

additional interest point being generated, so the same descriptor may allow multiple interest points

differing only in orientation.

• Sensor data: Data such as accelerometer or GPS information is added to the descriptor. In the

GAFD method, a gravity vector computed from an accelerometer is used for orientation.

• Multigeometry: Multiple geometric transforms of the descriptor data that are stored together in the

descriptor, such as several different perspective transforms of the same data as used in the RFM2.3

descriptor; the latter contains the same patch computed over various geometric transforms to

increase the scale, rotation, and geometric robustness.

• Multiscale: Instead of relying on a scale-space pyramid, the descriptor stores a copy of several scaled

representations. The multi-resolution histogram method described in Chap. 4 is one such method of

approximating feature description over a range of scales, where scale is approximated using a range of

Gaussian blur functions, and their resulting histograms are stored as the multi-scale descriptor.

• Fourier magnitude: Both the sine and cosine basis functions from the Fourier series can be used in

the descriptor—for example, in the polygon shape family of descriptors as illustrated in Fig. 6.29.

The magnitude of the sine or cosine alone is a revealing shape factor, without the phase, as

illustrated in Fig. 6.6, which shows the histogram of LBPs run through a Fourier series to produce

the power spectrum. This illustrates how the LBP histogram power spectrum provides rotational

invariance. Other methods related to Fourier series may use alternative arrangements of the

computation, such as the discrete cosine transform (DCT), which uses only the cosine component

and is amenable to integer computations and hardware acceleration as commonly done for media

applications.

General Vision Metrics Taxonomy 205

• Fourier phase: Phase information has been shown to be valuable for creating a blur-invariant

feature descriptor, as demonstrated in the LPQ method discussed in Chap. 6.

• Other basis functions: Can be used for feature description. Wavelets are commonly used in place

of Fourier methods owing to greater control over the function window and tuning of the basis

functions derived from the mother wavelet into the family of related wavelets. See Chap. 2 for a

discussion of wavelets compared to other basis functions.

• Morphological shape metrics: Predominantly used in the polygon shape descriptor family, com-

posed of shape factors, and referred to as image moments in some literature. They are computed over

the gross features of a polygon image region such as area, perimeter, centroid, and many others. The

vision pipeline and image preprocessing used for polygon shape description may include morpholog-

ical and texture operators, rather than local interest point and descriptor computations.

• Learned binary descriptors: Created by running ground truth data through a training step, such as

developed in ORB and FREAK, to create a set of statistically optimized binary sampling point-pair

patterns.

• Dictionary, codebook, vocabulary from feature learning methods: Build up a visual vocabulary,

dictionary, or sparse codebook as a sparse set of unique features using a wide range of descriptor

methods, such as simple images correlation patches or SIFT descriptors. When combined as a

sparse set, these are representative of the features found in a set of ground truth data for an

application domain, such as automobile recognition or face recognition.

• Region histogram 2D: Used for several types of information, such as binning gradient direction, as

in CARD, RFM2.3, and SURF; or for binning linear binary patterns, such as the LBP. The SIFT

method of histogramming gradient information uses a fairly large histogram bin region, which

provides for some translation invariance, similar to the human visual system treatment of the 3D

position of gradients across the retina [210].

• 3D histogram: Used in methods such as used in SIFT, which represents gradient magnitude and

orientation together as a 3D histogram.

• Cartesian bins: A common method of binning local region information into the descriptor simply

based on the Cartesian position of pixels in a patch—for example, histogramming the pixel intensity

magnitude of each point in the region.

• Log polar bins: Instead of binning local region feature information in Cartesian rectangular

arrangements, some descriptors such as GLOH use a log polar coordinate system to prepare values

for histogram binning, with the goal of adding better rotational invariance to the descriptor.

• Region sum: Such as an integral image, a method used to quickly sum the local region pixel values,

or HAAR feature. The region sum is stored into the feature representing the total value of all the

pixels in the region. Note that region summation may be good for coarse-feature description of an

area, but the summation process eliminates fine local texture detail.

• Region average: Average value of the pixels in a region area, also referred to as a box filter, which

may be computed from a convolution operation, scaled integral image, or by simply adding up the

pixel values in the array.

• Region statistical: Such as region moments, like standard deviation, variance, or max or min

values.

• Binary pattern: Such as a vector of binary values, or bits—for example, stored as a result of local

pixel pair compare computations of local neighborhood pixel values as used in the local binary

descriptor family, such as LBP, Census, and ORB.

• DoG (1-bit quantized): As used in the FREAK descriptor, a set of DoG or bandpass filter features

of different sizes, taken over a local binary region in a retinal sampling pattern similar to the human

visual system, compared in pairs, and quantized to a single bit in a histogram vector.

206 5 Feature Descriptor Attribute Taxonomy

• DoG (multi-bit): A type of bandpass filter that is implemented using many variations, where a

Gaussian blur filter is applied to the image, then the image is subtracted from (a) a shifted copy of

itself, (b) a copy of itself at another Gaussian blur level, or (c) a copy of itself at another image scale

as in the SIFT descriptor method.

• Bit vector of values: A bit string containing a sequence of values quantized to a single bit, such as a

threshold.

• 3D surface normals: The analog to 2D gradients except in 3D, used in the HON4D method [164] to

describe the surface of a 3D object location in the feature descriptor.

• Line segment metric: As in the CCH method, used to describe the line segments composing an

object perimeter. Or, as used as a shape factor for objects where the length of a set of radial line

segments originating at the centroid and extending to the perimeter are recorded in the descriptor,

which can be fed into a Fourier transform to yield a power spectrum signature, as shown in

Fig. 6.29.

• Color space info: Some descriptors do not take advantage of color information, which in many

cases can provide added discrimination and accuracy. Both the use of simple RGB channels, such as

in the RGB-D methods [45, 92], or using color space conversions into more accurate spaces are

invaluable. For example, face recognition has problems distinguishing faces from different cultures,

and since the skin tone varies across regions, the color value can be measured and added to the

descriptor. However, several descriptors make use of color information, such as S-LBP, which

operates in a colorimetric, accurate color space such as CIE-Lab, or the F-LBP, which computes a

Fourier spectrum of color distance from the center pixel to adjacent pixels, as well as color variants

of SIFT and many others.

• Gray scale info: The gray scale or color intensity value is the default spectra in almost all

descriptors. However, the method used to create the gray scale from color and the image

preprocessing used to prepare intensity for analysis and measurement are critical for the vision

pipeline and were discussed in Chap. 2.

Interest Point

The use of interest points is optional with feature description. Some methods do not use interest points,

and sample the image on a fixed grid rather than at every pixel, such as the Viola–Jones method using

HAAR-like features. It is also possible to simply create a feature descriptor for every pixel rather than

just at interest points, but since the performance impact is considerable, interest points are typically

used to find the best location for a feature first.

Several methods for finding interest points are surveyed and discussed in Chap. 6. Categories of

interest points for the taxonomy include:

• Point, edge, or corner: These methods typically start with locating the local region maxima and

minima; methods used include gradients, local curvature, Harris methods, blob detectors, and edge

detectors.

• Contour-based, perimeter: Some methods do not start feature description at maxima and minima,

and instead look for structure in the image, such as a contour or perimeter, and this is true mainly for

the morphological shape-based methods.

• Other: There are other possibilities for determining interest point location, such as prediction of

likely interest point or feature positions, or using grid or tile regions.

• No interest point: Some methods do not use any interest points at all.

General Vision Metrics Taxonomy 207

Storage Formats

Storage formats are a practical matter for memory efficiency and engineering real systems and

designing data structures. Knowing the storage format can guide efforts during engineering and

optimization toward various programming constructs, instruction sets, and memory architecture.

For example, both CPU and GPGPU graphics processors often provide dedicated silicon to support

various storage format organizations, such as scatter and gather operations, and sparse and dense data

structure support. Understanding the GPGPU capabilities can provide guidelines for designing the

storage format, as discussed in Chap. 8. Storage format summary

• Spectra vector: May be a set of histograms, a set of color values, a set of basis vectors.

• Bit vector: Local binary patterns use bit vector data types, some programming languages include bit

vector constructs, and some instruction sets include bit vector handling instructions.

• Multivariate collection: A set of values such as statistical moments or shape factors.

Data Types

The data types used for feature description are critical for accuracy, memory use, and compute.

However, it is worth noting that data types can be changed as a trade-off for accuracy in some

cases. For example, converting floating point to fixed point or integer computations may be more

memory efficient, as well as power efficient, since a floating point silicon ALU complex occupies

almost four times more die space, thus consuming more power than an integer ALU. The data type

summary includes:

• Float: Many applications require floating point for accuracy. For example, a Fourier transform of

images requires at least 64 bits double precision (larger images require more precision); other

applications like target tracking may require 32-bit floating point for precision trajectory

computations.

• Integer: Pixel values are commonly represented with 8 bit values, with 16 bits per pixel common as

image sensors provide better data. At least 32-bit integers are needed for many data structures and

numerical results, such as integral images.

• Fixed point: This is an alternative representation to floating point, which saves data space and can

be implemented more efficiently in silicon. Most modern GPUs support several fixed-point formats,

and some CPUs as well. Fixed-point formats include 8-, 16-, and 24-bit representations. Accuracy

may be close enough using fixed point, depending on the application. In addition to fixed-point data

types, GPUs and some processors also provide various normalized data types (see manufacturer

information).

Descriptor Memory

The total descriptor memory size is part of the efficiency of the descriptor, and compute performance is

another component. A descriptor with a large memory footprint, few invariance attributes, and heavy

compute is inefficient. We are interested in memory size as a practical matter. Key memory-related

attributes include:

• Fixed length or variable length: Some descriptors allows for alternative representations.

• Byte count: The length of all data in the descriptor.

•

208 5 Feature Descriptor Attribute Taxonomy

Feature Shapes

A range of shapes are used for the pixel sampling pattern; shapes are surveyed in Chap. 4 including the

following methods:

• Rectangle block patch: Simple x, y, dx, dy range.

• Symmetric polygon region: May be an octagon, as in the CenSurE method, or a circular region,

like FREAK or DAISY.

• Irregular segmented region: Such as computed using morphological methods following seg-

mented regions or thresholded perimeter.

• Volumetric region: Some features make use of stacks of images resembling a volume structure. As

shown in Fig. 6.12, the VLBP or Volume LBP and the LBP-TOP make use of volumetric data

structures. The dynamic texture methods and activity recognition methods often use sets of three

adjacent patches from the current frame plus two past frames, organized in a spatiotemporal image

frame history, similar to a volume.

• Deformable: Most features use a rigid shape, such as a fixed-size rectangle or a circle; however,

some descriptors are designed with deformation in mind, such as scale deformations [293, 294], and

affine or homographic deformation [186], to enable more robust matching.

Feature Pattern

Feature pattern is a major axis in this taxonomy, as shown in Fig. 5.1, since it affects memory

architecture and compute efficiency.

Feature shape and pattern are related. Shape refers to the boundary, and pattern refers to the

sampling method. Patterns include:

• Rectangular kernel: Some methods use a kernel to define which elements in the region are

included in the sample; see Fig. 5.3 (left image) showing a kernel that does not use the corner

pixels in the region; see also Fig. 4.8.

1 –4

10

1

0

0 1 0

Fig. 5.3 Feature shapes. (Left to right) Rectangular patch, symmetric polygon region, irregular segmented region, and

volumetric region

Binary compare pattern: Such as FREAK, ORB, and BRISK, where specific pixels in a region are

paired to form a complex sampling pattern.

• DNET line sample strip set: Where points along a line segment are sampled densely; see Fig. 4.8.

• Radial line sampling pattern: Where points on radial line segments originating at a center point

are sampled densely; for example, used to compute Fourier descriptors for polygon region shape;

see Fig. 6.29.

• Perimeter or contour edge: Where points around the edge of a shape or region are sampled

densely.

General Vision Metrics Taxonomy 209

• Sample weighting pattern: As shown in Fig. 6.17, SIFT uses a circular weighting pattern in the

histogram bins to decrease the contribution of points farther away from the center of the patch. The

D-NETS method uses binary weighting of samples along the line strips, favoring points away from

the endpoints and ignoring points close to the end points. Weighting patterns can provide invariance

to noise and occlusion.

See Chap. 4 for more illustrations in the section on “Patches and Shapes”.

Feature Density

As shown in Fig. 5.1, feature density is a major axis in this taxonomy. The amount of the image used

for the descriptor is referred to in this taxonomy as feature density. For example, some descriptors are

intended to use smaller regions of local pixels, anchored at interest points, and to ignore the larger

image. Other methods use larger regions. Density categories include:

• Global: Covers the entire image, each pixel in the image.

• Regional: Covers fairly large regions of the image, typically on a grid, or around a segmented

structure or region, not anchored at interest points.

• Sparse: May be taken at interest points, or in small regions at selected points such as random points

in the BRIEF descriptor, trained points such as FREAK and ORB, or a sparse sampling grid as in

the RFM2.3 descriptor.

Feature Search Methods

The method used for searching for features in the image is a significant for feature descriptor design.

The search method determines a lot about the design of the descriptor, and the compute time required

in the vision pipeline. We list several search variations here, and more detailed descriptions and

illustrations are provided in Chap. 4. Note that a feature descriptor can make use of multiple search

criteria. Feature search-related information is summarized as follows:

• Coarse-to-fine image pyramid: Or multi-scale search, using a pyramid of coarser resolution copies

of the original.

• Scale space pyramid: The scale space pyramid is a variation of the regular coarse-to-fine image

pyramid, where a Gaussian blur function is computed over each pyramid scale image [471] to create

a more uniform search space; see Fig. 4.17.

• Pyramid scale factor: Captures pyramid scale intervals, such as octaves or other scales—for

example, ORB uses a ~1.41× scale.

• Dense sliding window: Where the search is made over each pixel in the image, often within a

sliding rectangular region centered at each pixel.

• Grid block search: Where the image is divided into a fixed grid or tiles, so the search can be faster

but does not discriminate as well as dense methods. For example, see Fig. 6.17 describing the

PHOG method, which computes descriptors at different grid resolutions across the entire image.

• Window search: Limited dense search to particular regions, such as in stereo matching between

two L/R frames where the correspondence search range is limited to expected locations.

• Sparse at interest points: Where a corner detector or other detector is used to determine where

valid features may be found.

210 5 Feature Descriptor Attribute Taxonomy

• Sparse at predicted points: Such as in tracking and mapping algorithms like PTAM, where the

location of interest points is predicted based on motion or trajectory, and then a feature search

begins at the predicted points.

• Sparse in segmented regions: For example, when morphological shape segmentation methods or

thresholding segmentation methods define a region, and a second pass is made through the region

looking for features.

• Depth segmented regions (Z): When depth camera information is used to threshold the image into

foreground and background, and only the foreground regions are searched for features.

• Super-pixel search: Similar to the image pyramid method, but a multi-scale representation of the

image is created by combining pixel values together using super-pixel integration methods, as

discussed in Chap. 2.

• Sub-pixel search: Where sub-pixel accuracy is needed—for example, with region correlation, so

several searches are made around a single pixel, with sub-pixel offsets computed for each compare,

and in some cases geometric transforms of the pattern are made prior to feature matching.

• Double-scale first pyramid level: In the SIFT scale-space pyramid method, the lowest level of the

pyramid is computed from a doubled 2× linear interpolated version of the full-scale image, which

has the effect of preserving high-frequency information in the lowest level of the image pyramid,

and increasing the number of stable keypoints by about four times, which is quite significant.

Otherwise, computing the Gaussian blur across the original image would have the effect of

throwing away most of the high-frequency details.

Pattern Pair Sampling

For local binary patterns, pattern pair sampling design is one of the key areas of innovation. Pairs of

points are compared using a function such as (center pixel < kernel pixel) using a compare region

threshold, and then the result of the comparison forms the binary descriptor vector. Note that many

local binary descriptor methods are discussed and illustrated in Chap. 4, to illustrate variations in point-

pair sampling configuration and compare functions. The vision taxonomy for point-pair sampling

includes:

• Center—boundary pair: Such as in the LBP family and Census transform.

• Random pair points: Such as in BRIEF, and semi-random in ORB.

• Foveal centered trained pairs: Such as in FREAK and Daisy.

• Trained pairs: Many methods train the point-pairs using ground truth data to meet objective

criteria, such as FREAK and ORB.

• Symmetric pairs: Such as BRISK, which provides short and long line segments spaced symmetri-

cally for point-pair comparisons.

Pattern Region Size

The size of the local pattern region is a critical performance factor, even though memory access is

likely from fast-register files and cache. For example, if we are performing a convolution of a 3 × 3

pattern region, there are nine multiplies per kernel, and possibly one summary multiply to scale the

results, for a total of ten multiplies per pixel. For each multiply we have two memory reads, one for the

pixel and one for the kernel value; and we have ten memory writes, one for each multiply. A 640 × 480

image has 307,200 pixels, and assuming 8 bits per pixel gray scale only, per frame we end up with

3,072,000 multiplies, 60,720,000 memory reads, and 307,200 writes for the result. Larger kernel sizes

and larger image sizes of course add more compute.

General Vision Metrics Taxonomy 211

There are many ways to optimize the performance, which we cover in Chap. 8 on vision pipeline

engineering. For this attribute, we are interested in the following:

• Bounding box (x size, y size): For example, the bounding box around a rectangular region, circular

region, or polygon shape region.

Distance Function

Computing the pattern matching or correspondence is one of the key performance criteria for a good

descriptor. Feature matching is a trade-off between accuracy and performance, with the key variables

being the numeric type and size of the feature descriptor vectors, the distance function, and the number

of patterns and search optimizations in the feature database. Choosing a feature descriptor amenable to

fast matching is a good goal.

In general, the fastest distance functions are the binary family and Hamming distance, which is used

in the local binary descriptor family. Some common distance functions are enumerated here; see

Chap. 4 for details.

Euclidean or Cartesian Distance Family

• Euclidean distance

• Squared Euclidean distance

• Cosine similarity

• SAD L1 Norm

• SSD L2 Norm

• Correlation distance

• Hellinger distance

Grid Distance Family

• Manhattan distance

• Chessboard or Chebychev distance

Statistical Distance Family

• Earth movers distance

• Mahalanobis distance

• Bray Curtis difference

• Canberra distance

Binary or Boolean Distance Family

• L0 Norm

• Hamming distance

• Jaccard similarity

212 5 Feature Descriptor Attribute Taxonomy

Feature Metric Evaluation

This section addresses the question of how to summarize feature descriptor information at a high level

from the Vision Metrics Taxonomy into a practical Feature Metric Evaluation Framework (FME) and

Feature metric evaluation (FME) from an engineering and design perspective.

Note

The FME is intended as a template to capture high-level information for basic analysis.

Efficiency Variables, Costs, and Benefits

Efficiency can be measured for a feature descriptor in simple terms, such as the benefit of the compute

cost and memory used vs. what is provided in the way of accuracy, discrimination, robustness, and

invariance. How much value does the method provide for the time, space, and power cost? Efficiency

metrics include:

• Costs: Compute, memory, time, power.

• Benefits: Accuracy, robustness, and invariance attributes provided.

• Efficiency: Benefits vs. costs.

The effectiveness of the data contained in the descriptor varies—for example, a large memory

footprint to contain a descriptor with little invariance is not efficient, and a high compute cost for small

amounts of invariance and accuracy also reveals low efficiency. We could say that an efficient feature

representation contains the least number of bytes and lowest compute cost providing the greatest

amount of discrimination, robustness, and accuracy. Local binary descriptors have demonstrated the

best efficiency for many robustness attributes.

Image Reconstruction Efficiency Metric

For a visual comparison of feature descriptor efficiency, we can also reconstruct an image from the

feature descriptors, and then visually and statistically analyze the quality of the reconstruction vs. the

compute and memory cost. Detailed feature descriptors can provide good visualization and recon-

struction of the original image from the descriptor data only. For example, Fig. 4.12 shows how the

HOG descriptor captures oriented gradients using 32,780 bytes per 64 × 128 region, Fig. 4.13 shows

image reconstruction illustrating how BRIEF and FREAK capture edge information similar to

Laplacian or other edge filters using 64 bytes per descriptor, and Fig. 4.14 shows SIFT image

reconstruction using 128 bytes per descriptor.

Although we do not include image reconstruction efficiency in the FME, this topic was covered in

Chap. 4, under the discussion of discrimination.

Example Feature Metric Evaluations

Here are a few examples showing how the Vision Metrics Taxonomy and the FME can be used to

collect summary descriptor information.

Feature Metric Evaluation 213

SIFT Example of the FME Taxonomy

We use SIFT as an example baseline, since SIFT is widely recognized and carefully designed.

Vision metric taxonomy FME

Name SIFT

Feature family Spectra

Spectra dimensions Multivariate

Spectra Gradient magnitude and direction, DoG scale space maxima

Storage format Orientation and position, gradient orientation histograms

Data type Float, integer

Descriptor memory 128 bytes for descriptor histogram

Feature shape Rectangular region

Search method Dense sliding window in 2D and 3D 3 × 3 × 3 image pyramid

Feature density Local

Feature pattern Rectangular and pyramid-cubic

Pattern pair sampling –

Pattern region size 16 × 16

Distance function Euclidean distance

General robustness attributes

Total 5 (scale, illumination, rotation, affine transforms, noise)

LBP Example of the FME Taxonomy

The LBP is a very simple feature detector with many variations, used for texture analysis and feature

description. We use the most basic form of 3 × 3 LBP here as an example.

Vision metric taxonomy FME

Name LBP

Feature family Local binary

Spectra dimensions Single-variate

Spectra Pixel pair compares with center pixel

Storage format Binary bit vector

Data type Integer

Descriptor memory 1 byte

Feature shape Square centered at center pixel

Search method Dense sliding window

Feature density Local

Feature pattern Rectangular kernel

Pattern pair sampling Center—Boundary pairs

Pattern region size 3 × 3 or more

Distance function Hamming distance

General robustness attributes

Total 3 (brightness, contrast, rotation using RILBP)

Shape Factors Example of the FME Taxonomy

This example uses binary thresholded polygon regions. For this hypothetical example, the

preprocessing steps begin with adaptive binary thresholding and morphological shape definition

operations, and the measurement steps begin with pixel neighborhood-based perimeter following to

defined the perimeter edge, followed by centroid computation from perimeter points, followed by

determination of 36 radial line segments originating at the centroid reaching to the perimeter. Then

each line segment is analyzed to find the shape factors including major/minor axis as the Fourier

descriptor. The measurements assume a single binary object is being measured, and real-world images

may contain at many objects.

214 5 Feature Descriptor Attribute Taxonomy

We also assume the memory footprint as follows: angular samples taken around 360°, starting at

centroid, at 10° increments for 36 angular samples, 36 floats for FFT spectrum magnitude, 36 integers

for line segment length array, four integers for major/minor axis orientation and length, four integers

for bounding box (x, y, dx, dy), one integer for perimeter length, two integers for centroid coordinates,

TOTAL 36 × 4 + 36 × 2 + 4 × 2 + 4 × 2 + 1 × 2 × 2 × 2 = 238, assuming 2 byte short integers and

4-byte floats are used.

Vision metric taxonomy FME

Name Shape factors

Feature family Polygon shape

Spectra dimensions Multivariate

Spectra Perimeter following, area, perimeter, centroid, other image moments

Storage format Complex data structure

Data type Float, integer

Descriptor memory Variable, several hundred bytes possible

Feature shape Polygon shapes, rectangular bounding box region

Search method Dense, recursive

Feature density Regional

Feature pattern Perimeter contour or edge

Pattern pair sampling –

Pattern region size Entire image

Distance function Multiple methods, multiple comparisons

General robustness attributes

Total 8 or more (scale, rotation, occlusion, shape, affine, reflection, noise, and illumination)

Summary

In this chapter, a taxonomy is proposed as shown in Fig. 5.1 to describe feature description dimensions

as shape, pattern, and spectra. This taxonomy is used to divide the families of feature description

methods into polygon shape descriptors, local binary descriptors, and basis space descriptors. The

taxonomy is used throughout the book. Also, a general vision metrics taxonomy is proposed for the

purpose of summarizing high-level feature descriptor design attributes, such as type of spectra,

descriptor pixel region size, distance function, and search method. In addition, a general robustness

taxonomy is developed to quantify feature descriptor goodness, one attribute at a time, based on

invariance and robustness criteria attributes, including illumination, scale, rotation, and perspective.

Since feature descriptor methods are designed to address only some of the invariance and robustness

attributes, each attribute should be considered separately when evaluating a feature descriptor for a

given application. In addition, the robustness attributes can be applied to the design of ground truth

datasets, as discussed in Chap. 7. Finally, the vision metrics taxonomy and the robustness taxonomy

are combined to form a feature metric evaluation (FME) table to record feature descriptor attributes in

summary form. A simple subset of the FME is used to review the attributes of several feature descriptor

methods surveyed in Chap. 6.

Learning Assignments 215

Learning Assignments

1. Describe the difference between the following feature descriptor families:

• Local Binary Descriptors

• Spectra descriptors using gradients and other scalar values

• Basis Space Descriptors

• Polygon Shape Descriptors

2. Describe at a high level the types of problems that would be exhibited in images under each of the

robustness and invariance categories below:

• Illumination variance

• Color variance

• Incompleteness of features

• Resolution and distance variance

• Geometric distortion

• Discrimination and uniqueness

3. Describe a few example feature descriptor region shapes, and discuss the trade-offs involved when

designing the shape.

4. Describe illumination problems, and the sources of the problems.

5. Describe geometric distortion, and the sources of the distortion.

6. Describe different spectra, such as gradients and color, that can be used in a feature descriptor, and

describe applications for each spectra.

7. Describe pyramid search compared to sliding window search.

Who makes all these?

—Jack Sparrow, Pirates of the Caribbean

Feature Detector and Feature Descriptor
Survey 6

Many algorithms for computer vision rely on locating interest points, or keypoints in each image, and

calculating a feature description from the pixel region surrounding the interest point. This is in contrast

to methods such as correlation, where a larger rectangular pattern is stepped over the image at pixel

intervals and the correlation is measured at each location. The interest point is the anchor point and

often provides the scale, rotational, and illumination invariance attributes for the descriptor; the

descriptor adds more detail and more invariance attributes. Groups of interest points and descriptors

together describe the actual objects.

However, there are many methods and variations in feature description. Some methods use features

that are not anchored at interest points, such as polygon shape descriptors, computed over larger

segmented polygon-shaped structures or regions in an image. Other methods use interest points only,

without using feature descriptors at all. Some methods use feature descriptors only, computed across a

regular grid on the image, with no interest points at all.

Terminology varies across the literature. In some discussions, interest points may be referred to as

keypoints. The algorithms used to find the interest points may be referred to as detectors, and the

algorithms used to describe the features may be called descriptors. We use the terminology

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_6

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_6&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_6#DOI

chapter surveys the various methods for designing local interest point detectors and feature descriptors.

interchangeably in this work. Keypoints may be considered a set composed of (1) interest points,

(2) corners, (3) edges or contours, and (4) larger features or regions such as blobs; see Fig. 6.1. This

218 6 Feature Detector and Feature Descriptor Survey

Fig. 6.1 Types of keypoints, including corners and interest points. (Left to right) Step, roof, corner, line or edge, ridge or

contour, maxima region

Interest Point Tuning

What is a good keypoint for a given application? Which ones are most useful? Which ones should be

ignored? Tuning the detectors is not simple. Each detector has different parameters to tune for best

results on a given image, and each image presents different challenges regarding lighting, contrast, and

image preprocessing. Additionally, each detector is designed to be useful for a different class of

interest points and must be tuned accordingly to filter the results down to a useful set of good

candidates for a specific feature descriptor. Each feature detector will work best with certain

descriptors; see Appendix A.

So, the keypoints are further filtered to be useful for the chosen feature descriptor. In some cases, a

keypoint is not suitable for producing a useful feature descriptor, even if the keypoint has a high score

and high response. If the feature descriptor computed at the keypoint produces a descriptor score that is

too weak, for example, the keypoint and corresponding descriptor should both be rejected. OpenCV

provides several novel methods for working with detectors, enabling the user to try different detectors

and descriptors in a common framework, and automatically adjust the parameters for tuning and

culling as follows:

• DynamicAdaptedFeatureDetector. This class will tune supported detectors using an

adjusterAdapter() to only keep a limited number of features and iterate the detector parameters

several times and redetect features in an attempt to find the best parameters, keeping only the

requested number of best features. Several OpenCV detectors have an adjusterAdapter() provided,

and some do not; the API allows for adjusters to be created.

• AdjusterAdapter. This class implements the criteria for culling and keeping interest points.

Criteria may include KNN nearest-neighbor matching, detector response or strength, radius distance

to nearest other detected points, number of keypoints within a local region, and other measures that

can be included for culling keypoints for which a good descriptor cannot be computed.

• PyramidAdaptedFeatureDetector. This class can be used to adapt detectors that do not use a

scale-space pyramid, and the adapter will create a Gaussian pyramid and detect features over the

pyramid.

• GridAdaptedFeatureDetector. This class divides an image into grids and adapts the detector to

find the best features within each grid cell.

Interest Point Concepts (Keypoints, Detectors) 219

Interest Point Concepts (Keypoints, Detectors)

An interest point (i.e., keypoint, detector, . . .) may be composed of various types of corner, edge, and

maxima shapes, as shown in Fig. 6.1. In general, a good interest point must be easy to find and ideally

fast to compute; it is hoped that the interest point is at a good location to compute a feature descriptor.

The interest point is thus the qualifier or keypoint around which a feature may be described.

Note

Various keypoint and feature detectors based on feature learning models from deep learning CNN’s

and Transformers are covered in Chaps. 9–11.

There are various concepts behind the interest point methods currently in use, as this is an active

area of research. One of the best analyses of interest point detectors is found in Mikolajczyk et al.

[124], with a comparison framework and taxonomy for affine covariant interest point detectors, where

covariant refers to the elliptical shape of the interest region, which is an affine deformable representa-

tion. Scale-invariant detectors are represented well in a circular region. Maxima region and blob

detectors can take irregular shapes. See the response of several detectors against synthetic interest point

and corner alphabets in Appendix A.

Commonly, detectors use maxima and minima points, such as gradient peaks and corners; however,

edges, ridges, and contours are also used as keypoints, as shown in Fig. 6.2. There is no superior

method for interest point detection for all applications. A simple taxonomy provided by Tuytelaars and

Van Gool [454] lists edge-based region (EBR) methods, maxima or intensity-based region (IBR)

methods, and segmentation methods to find shape-based regions (SBR) that may be blobs or features

with high entropy.

Fig. 6.2 Candidate edge interest point filters. (Left to right) Laplacian, derivative filter, and gradient filter

Corners are often preferred over edges or isolated maxima points, since the corner is a structure and

can be used to compute an angular orientation for the feature. Interest points are computed over color

components and grayscale luminance. Many of the interest point methods will first apply some sort of

Gaussian filter across the image and then perform a gradient operator. The idea of using the Gaussian

filter first is to reduce noise in the image, which is otherwise amplified by gradient operators.

Each detector locates features with different degrees of invariance to attributes such as rotation,

scale, perspective, occlusion, and illumination. For evaluations of the quality and performance of

interest point detection methods measured against various robustness and invariance criteria on

standardized datasets, see Mikolajczyk and Schmidt [115] and Gauglitz et al. [116]. One of the key

challenges for interest point detection is scale invariance, since interest points change dramatically in

some cases over scale. Lindeberg [178] has extensively studied the area of scale-independent interest

point methods.

220 6 Feature Detector and Feature Descriptor Survey

Affine-invariant interest points have been studied in detail by Mikolajcyk and Schmid [29, 81, 112,

115, 124, 262]. In addition, Mikolajcyk and Schmid [445] developed an affine-invariant version of the

Harris detector. As shown in [466], it is often useful to combine several interest point detection

methods to form a hybrid, for example, using the Harris or Hessian to locate suitable maxima regions

and then using the Laplacian to select the best scale attributes. Variations are common, and Harris-

based and Hessian-based detectors may use scale-space methods, while local binary detector methods

do not use scale space.

A few fundamental concepts behind many interest point methods come from the field of linear

algebra, where the local region of pixels is treated as a matrix. (Refer to a good linear algebra textbook

as background for this section.) Additional concepts come from other areas of mathematical analysis.

Some of the key math useful for locating interest points are illustrated below; however, note that in

practice various forms of equations and algorithms are used, which deviate from those shown here; see

the references for more details.

• A Matrix. We start with a 2D rectangular pixel region, or matrix, of some dimension x,y:

Mx,y ¼
0, 0 . . . x, 0

.

0, y . . . x, y

• Gradient Magnitude. This is the first derivative of the pixels in the local interest region and

assumes a direction. This is an unsigned positive number and is also a Laplacian operator.

∂Mx,y

∂x

2

þ ∂Mx,y

∂y

2

• Gradient Direction. This is the angle or direction of the largest gradient angle from pixels in the

local region in the range +π to -π.

tan - 1 ∂Mx,y

∂x

2

=
∂Mx,y

∂y

2

• Laplacian. This is the second derivative and can be computed selectively using any of three terms:

∂
2
fMx,y

∂x2

∂
2
Mx,y

∂y2

∂
2
Mx,y

∂x∂x

However, the Laplacian operator does not use the third form above and computes a signed value of

average orientation with respect to x and y partials only; see the gradient magnitude operator above.

• Hessian Matrix or Hessian. A square matrix contains second-order partial derivatives of each

pixel within the matrix region, describing surface curvature at each pixel. The Hessian has several

interesting properties useful for interest point detection methods discussed in this section, which we

can express in L notation as follows:

Interest Point Method Survey 221

H x, σð Þ ¼
Lxx x, σð Þ Lxy x, σð Þ
Lxy x, σð Þ Lyy x, σð Þ

• Largest Hessian. This is based on the second derivative, as is the Laplacian, but the Hessian uses

all three terms of the second derivative to compute the direction along which the second derivative

is maximum as a signed value.

• Smallest Hessian. This is based on the second derivative, is computed as a signed number, and may

be a useful metric as a ratio between largest and smallest Hessian.

• Hessian Orientation and Largest and Smallest Values. This is the orientation of the largest

second derivative in the range +π to-π, which is a signed value, and it corresponds to an orientation

without direction. The smallest orientation can be computed by adding or subtracting π/2 from the

largest value.

• Determinant of Hessian, Trace of Hessian, and Laplacian of Gaussian. All three names are used

to describe the trace characteristic of a matrix, which can reveal geometric-scale information by the

absolute value and orientation by the sign of the value. See SURF [143] for an application, which

we can express in L notation as follows.

trace ℋnormL ¼ tγ∇2 L ¼ tγ Lxx þ Lyy

det ℋnormL ¼ t2γ Lxx Lyy -L2
xy

• Eigenvalues, Eigenvectors, and Eigenspaces. Eigen properties are important to understanding

vector direction in local pixel region matrices. When a matrix acts on a vector, and the vector

orientation is preserved, and when the sign or direction is simply reversed, the vector is considered

to be an eigenvector, and the matrix factor is considered to be the eigenvalue. An eigenspace is

therefore all eigenvectors within the space with the same eigenvalue. Eigen properties are valuable

for interest point detection, orientation, and feature detection. For example, Turk and Pentland [129]

use eigenvectors reduced into a smaller set of vectors via PCA for face recognition, in a method they

call eigenfaces.

Interest Point Method Survey

We will now look briefly at algorithms and computational methods for some common interest point

detector methods including:

• Laplacian of Gaussian (LOG)

• Moravac corner detector

• Harris and Stephens corner detection

• Shi and Tomasi corner detector (improvement on Harris method)

• Difference of Gaussians (DoG; an approximation of LOG)

• Harris methods, Harris–/Hessian–Laplace, Harris/Hessian Affine

• Determinant of Hessian (DoH)

• Salient regions

• SUSAN

• FAST, FASTER, AGAST

• Local curvature

• Morphological interest points

• MSER (discussed in the section on “Polygon Shape Descriptors”)

222 6 Feature Detector and Feature Descriptor Survey

• *NOTE: Many feature descriptors, such as SIFT, SURF, BRISK, and others, provide their own

detector method along with the descriptor method see Appendix A

Laplacian and Laplacian of Gaussian

The Laplacian operator, as used in image processing, is a method of finding the derivative or maximum

rate of change in a pixel area. Commonly, the Laplacian is approximated using standard convolution

kernels that add up to zero, such as the following:

L1 ¼
- 1 - 1 - 1

- 1 8 - 1

- 1 - 1 - 1

L2 ¼
- 1 0 - 1

0 4 0

- 1 0 - 1

The Laplacian of Gaussian (LOG) is simply the Laplacian performed over a region that has been

processed using a Gaussian smoothing kernel to focus edge energy; see Gunn [126].

Moravac Corner Detector

The Moravac corner detection algorithm is an early method of corner detection whereby each pixel in

the image is tested by correlating overlapping patches surrounding each neighboring pixel. The

strength of the correlation in any direction reveals information about the point: A corner is found

when there is change in all directions, and an edge is found when there is no change along the edge

direction. A flat region yields no change in any direction. The correlation difference is calculated using

the SSD between the two overlapping patches. Similarity is measured by the near-zero difference in the

SSD. This method is compute-intensive; see Moravec [446].

Harris Methods, Harris–Stephens, Shi–Tomasi, and Hessian Type Detectors

The Harris or Harris–Stephens corner detector family [127, 308] provides improvements over the

Moravac method. The goal of the Harris method is to find the direction of fastest and lowest change for

feature orientation, using a covariance matrix of local directional derivatives. The directional deriva-

tive values are compared with a scoring factor to identify which features are corners, which are edges,

and which are likely noise. Depending on the formulation of the algorithm, the Harris method can

provide high rotational invariance and limited intensity invariance, and in some of the formulations of

the algorithm, scale invariance is provided such as the Harris–Laplace method using scale space

[178, 445]. Many Harris family algorithms can be implemented in a compute-efficient manner.

Note that corners have an ill-defined gradient, since two edges converge at the corner, but near the

corner the gradient can be detected with two different values with respect to x and y—this is a basic

idea behind the Harris corner detector.

Interest Point Method Survey 223

Variations on the Harris method include the following:

• The Shi, Tomasi, and Kanade corner detector [128] is an optimization on the Harris method, using

only the minimum eigenvalues for discrimination, thus streamlining the computation considerably.

• The Hessian (Hessian affine) corner detector [124] is designed to be affine-invariant, and it uses the

basic Harris corner detection method but combines interest points from several scales in a pyramid,

with some iterative selection criteria and a Hessian matrix.

• Many other variations on the basic Harris operator exist, such as the Harris–Hessian–Laplace [280],

which provides improved scale invariance using a scale selection method, and the Harris/Hessian

affine method [124, 262].

Hessian Matrix Detector and Hessian–Laplace

The Hessian Matrix method, also referred to as determinant of Hessian (DoH) method, is used in the

popular SURF algorithm [131]. It detects interest objects from a multiscale image set where the

determinant of the Hessian matrix is at a maxima and the Hessian matrix operator is calculated using

the convolution of the second-order partial derivative of the Gaussian to yield a gradient maxima.

The DoH method uses integral images to calculate the Gaussian partial derivatives very quickly.

Performance for calculating the Hessian matrix is therefore very good, and accuracy is better than

many methods. The related Hessian–Laplace method [262, 280] also operates on local extrema, using

the determinant of the Hessian at multiple scales for spatial localization, and the Laplacian at multiple

scales for scale localization.

Difference of Gaussians

The difference of Gaussians (DoG) is an approximation of the Laplacian of Gaussians, but computed in

a simpler and faster manner using the difference in two smoothed or Gaussian-filtered images to detect

local extrema features. The idea with Gaussian smoothing is to remove noise artifacts that are not

relevant at the given scale, which would otherwise be amplified and result in false DoG features. The

DoG features are used in the popular SIFT method [132], and as shown in Fig. 6.15, the simple

difference of Gaussian-filtered images is taken to identify maxima regions.

Salient Regions

Salient regions [133, 134] are based on the notion that interest points over a range of scales should

exhibit local attributes or entropy that are “unpredictable” or “surprising” compared to the surrounding

region. The method proceeds as follows:

1. The Shannon entropy E of pixel attributes such as intensity or color are computed over a scale

space, where Shannon entropy is used as the measure of unpredictability.

2. The entropy values are located over the scale space with maxima or peak values M. At this stage, the

optimal scales are determined as well.

3. The probability density function (PDF) is computed for magnitude deltas at each peak within each

scale, where the PDF is computed using a histogram of pixel values taken from a circular window of

desired radius from the peak.

224 6 Feature Detector and Feature Descriptor Survey

4. Saliency is the product of E and M at each peak and is also related to scale. So, the final detector is

salient and robust to scale.

SUSAN, and Trajkovic and Hedly

The SUSAN method [135, 136] is dependent on segmenting image features based on local areas of

similar brightness, which yields a bimodal valued feature. No noise filtering and no gradients are used.

As shown in Fig. 6.3, the method works by using a center nucleus pixel value as a comparison

reference against which neighbor pixels within a given radius region are compared, yielding a set of

pixels with similar brightness, called a univalue segment assimilating nucleus (USAN).

Fig. 6.3 SUSAN method

of computing interest

points. The dark region of

the image is a rectangle

intersecting USANs A, B,

and C. USAN A will be

labeled as an edge, USAN

B will be labeled as a

corner, and USAN C will

be labeled as neither an

edge nor a corner

A B

C

Each USAN contains structural information about the image in the local region, and the size,

centroid, and second-order moments of each USAN can be computed. The SUSAN method can be

used for both edge and corner detection. Corners are determined by the ratio of pixels similar to the

center pixel in the circular region: A low ratio around 25% indicates a corner, and a higher ratio around

50% indicates an edge. SUSAN is very robust to noise.

The Trajkovic and Hedly method [180] is similar to SUSAN and discriminates among points in

USAN regions, edge points, and corner points.

SUSAN is also useful for noise suppression, and the bilateral filter [258], discussed in Chap. 2, is

closely related to SUSAN. SUSAN uses fairly large circular windows; several implementations use

37-pixel radius windows. The FAST [109] detector is also similar to SUSAN, but uses a smaller 7 × 7

or 9 × 9 window and only some of the pixels in the region instead of all of them; FAST yields a local

binary descriptor .

Fast, Faster, and AGHAST

The FAST methods [109] are derived from SUSAN with respect to a bimodal segmentation goal.

However, FAST relies on a connected set of pixels in a circular pattern to determine a corner. The

connected region size is commonly 9 or 10 out of a possible 16; either number may be chosen, referred

to as FAST9 and FAST10. FAST is known to be efficient to compute and fast to match; accuracy is

also quite good. FAST can be considered a relative of the local binary pattern LBP.

Interest Point Method Survey 225

FAST is not a scale-space detector, and therefore, it may produce many more edge detections at the

given scale than a scale-space method such as that used in SIFT.

As shown in Fig. 6.4, FAST uses binary comparison with each pixel in a circular pattern against the

center pixel using a threshold to determine if a pixel is less than or greater than the center pixel. The

resulting descriptor is stored as a contiguous bit vector in order from 0 to 15. Also, due to the circular

nature of the pixel compare pattern, it is possible to retrofit FAST and store the bit vector in a

rotational-invariant representation, as demonstrated by the RILBP descriptor discussed later in this

chapter; see Fig. 6.11.

Fig. 6.4 FAST detector with a 16-element circular sampling pattern grid. Note that each pixel in the grid is compared

against the center pixel to yield a binary value, and each binary value is stored in a bit vector

Local Curvature Methods

Local curvature methods [174–178] are among the early means of detecting corners, and some local

curvature methods are the first known to be reliable and accurate in tracking corners over scale

variations [176]. Local curvature detects points where the gradient magnitude and the local surface

curvature are both high. One approach taken is a differential method, computing the product of the

gradient magnitude and the level curve curvature together over scale space, and then selecting the

maxima and minima absolute values in scale and space. One formulation of the method is shown here.

α x, y; tð g ¼ L2 xLyy þ L2 yLxx - 2LxLyLxy

Various formulations of the basic algorithm can be taken depending on the curvature equation used.

To improve scale invariance and noise sensitivity, the method can be modified using a normalized

formulation of the equation over scale space, as follows:

226 6 Feature Detector and Feature Descriptor Survey

αnorm x, y; tð g ¼ t2γ L2 xLyy þ L2 yLxx - 2LxLyLxy

where

γ ¼ 0:875

At larger scales, corners can be detected with less sharp and more rounded features, while at lower

scales or at unity scale sharper corners over smaller areas are detected. The Wang and Brady method

[179] also computes interest points using local curvature on the 2D surface, looking for inflection

points where the surface curvature changes rapidly.

Morphological Interest Regions

Interest points can be determined from a pipeline of morphological operations, such as thresholding

followed by combinations or erosion and dilation to smooth, thin, grown, and shrink pixel groups. If

done correctly for a given application, such morphological features can be scale and rotation-invariant.

Note that the simple morphological operations alone are not enough; for example, eroding left

unconstrained will shrink regions until they disappear. So, intelligence must be added to the morphol-

ogy pipeline to control the final region size and shape. For polygon shape descriptors, morphological

interest points define the feature, and various image moments are computed over the feature, as

described in Chap. 3, and also in the section on “Polygon Shape Descriptors” later in this chapter.

Morphological operations can be used to create interest regions on binary, grayscale, or color

channel images. To prepare grayscale or color channel images for morphology, typically some sort of

preprocessing is used, such as pixel remapping, LUT transforms, or histogram equalization. (These

methods were discussed in Chap. 2.) For binary images and binary morphology approaches, binary

thresholding is a key preprocessing step. Many binary thresholding methods have been devised,

ranging from simple global thresholds to statistical and structural kernel-based local methods.

Note that the morphological interest region approach is similar to the maximally stable extrema

region (MSER) feature descriptor method discussed later in the section on “Polygon Shape

Descriptors,” since both methods look for connected groups of pixels at maxima or minima. However,

MSER does not use morphology operators.

A few examples of morphological and related operation sequences for interest region detection are

shown in Fig. 6.5, and many more can be devised.

Fig. 6.5 Morphological methods to find interest regions. (Left to right) Original image, binary thresholded, and

segmented image using Chan-Vese method, skeleton transform, pruned skeleton transform, and distance transform

image. Note that binary thresholding requires quite a bit of work to set parameters correctly for a given application

Feature Descriptor Survey 227

Feature Descriptor Survey

This section provides a survey and observations about a few representative feature descriptor methods,

with no intention to directly compare descriptors to each other. For more detailed information on

analytical methods for comparing feature descriptors, see also Chatfield [770] and Huang [814]. In

practice, the feature descriptor methods are often modified and customized, and often, several

descriptors are used together as a multivariate descriptor to increase confidence; see Varma [699],

Vedaldi [812], and Gehler [719] for more details about multivariate descriptors and applying boosting

to weight the descriptors in the classifier (i.e., a multi-stage classifier). The goal of this survey is to

examine a range of feature descriptor approaches from each feature descriptor family from the

taxonomy that was presented in Chap. 5:

• Local binary descriptors

• Spectra descriptors

• Basis space descriptors

• Polygon shape descriptors

• 3D, 4D, and volumetric descriptors

For key feature descriptor methods, we provide here a summary analysis:

• General Vision Taxonomy and FME: covering feature attributes including spectra, shape, and

pattern, single or multivariate, compute complexity criteria, data types, memory criteria, matching

method, robustness attributes, and accuracy.

• General Robustness Attributes: covering invariance attributes such as illumination, scale, and

perspective.

No direct comparisons are made between feature descriptors here, but ample references are

provided to the literature for detailed comparisons and performance information on each method.

See Table 8.2 for a comparison of the memory footprints for various feature descriptor methods in this

survey, which is useful for performance analysis.

Local Binary Descriptors

This family of descriptors represents features as binary bit vectors. To compute the features, image

pixel point pairs are compared and the results are stored as binary values in a vector. Local binary

descriptors are efficient to compute, efficient to store, and efficient to match using Hamming distance.

In general, local binary pattern methods achieve very good accuracy and robustness compared to other

methods.

A variety of local sampling patterns are used with local binary descriptors to set the pairwise point

comparisons; see the section in Chap. 4 on local binary descriptor point-pair patterns for a discussion

on local binary sampling patterns. We start this section on local binary descriptors by analyzing the

local binary pattern (LBP) and some LBP variants, since the LBP is a powerful metric all by itself and

is well known.

Local Binary Patterns

Local binary patterns (LBP) were developed in 1994 by Ojala et al. [17] as a novel method of encoding

both pattern and contrast to define texture [17, 18, 140–142]. LBPs can be used as an image processing

operator. The LBP creates a descriptor or texture model using a set of histograms of the local texture

neighborhood surrounding each pixel. In this case, local texture is the feature descriptor.

228 6 Feature Detector and Feature Descriptor Survey

The LBP metric is simple yet powerful; see Fig. 6.6. We cover some level of detail on LBPs, since

there are so many applications for this powerful texture metric as a feature descriptor as well. Also,

hundreds of researchers have added to the LBP literature [142] in the areas of theoretical foundations,

generalizations into 2D and 3D, applied as a descriptor for face detection, and also applied to

spatiotemporal applications such as motion analysis. LBP research remains quite active at this time.

In addition, the LBP is used as an image processing operator and has been used as a feature descriptor

retrofit in SIFT with excellent results, described in this chapter.

Fig. 6.6 (Above) A local binary pattern representation of an image where the LBP is used as an image processing

operator, and the corresponding histogram of cumulative LBP features. (Bottom) Segmentation results using LBP texture

metrics. (Images courtesy and # Springer Press, from Computer Vision Using Local Binary Patterns, by Matti

Pietikäinen and Janne Heikkilä [140])

In its simplest embodiment, LBP has the goal of creating a binary-coded neighborhood descriptor

for a pixel. It does this by comparing each pixel against its neighbors using the >operator and encoding

the compare results (1, 0) into a binary number, as shown in Fig. 6.8. LPB histograms from larger

image regions can even be used as signals and passed into a 1D FFT to create a feature descriptor. The

Fourier spectrum of the LBP histogram is rotational-invariant; see Fig. 6.6. The FFT spectrum can then

be concatenated onto the LBP histogram to form a multivariate descriptor; see Varma [699], Vedaldi

[812], and Gehler [719] for more details about multivariate descriptors and applying boosting to

weight the features.

Feature Descriptor Survey 229

As shown in Fig. 6.6, the LBP is used as an image processing operator, region segmentation

method, and histogram feature descriptor. The LBP has many applications. An LBP may be calculated

over various sizes and shapes using various sizes of forming kernels. A simple 3 × 3 neighborhood

provides basic coverage for local features, while wider areas and kernel shapes are used as well.

Assuming a 3 × 3 LBP kernel pattern is chosen, this means that there will be 8 pixels compared and

up to 28 combinations of results for a 256-bin histogram possible. However, it has been shown [16] that

reducing the 8-bit 256-bin histogram to use only 58 LBP bins based on uniform patterns is the optimal

number. The 58 bins or uniform patterns are chosen to represent only two contiguous LBP patterns

around the circle, which consists of two connected contiguous segments rather than all 256 possible

pattern combinations [12, 142]. The same uniform pattern logic applies to LBPs of dimension larger

than 8 bits. So, uniform patterns provide both histogram space savings and feature compare-space

optimization, since fewer features need to be matched (58 instead of all 256).

LPB feature recognition may follow the steps shown in Fig. 6.7.

Fig. 6.7 LBP feature flow for feature detection. (Image used by permission, # Intel Press, from Building Intelligent

Systems)

The LBP is calculated by assigning a binary weighting value to each pixel in the local neighborhood

and summing up the pixel compare results as binary values to create a composite LBP value. The LBP

contains region information encoded in a compact binary pattern, as shown in Fig. 6.8, so the LBP is

thus a binary-coded neighborhood texture descriptor.

230 6 Feature Detector and Feature Descriptor Survey

Fig. 6.8 Assigned LBP weighting values. (Image used by permission, # Intel Press, from Building Intelligent Systems)

Assuming a 3 × 3 neighborhood is used to describe the LBP patterns, one may compare the 3 × 3

rectangular region to a circular region, suggesting 360° directionality at 45° increments, as shown in

Fig. 6.9.

Fig. 6.9 Concept of LBP directionality. (Image used by permission, # Intel Press, from Building Intelligent Systems)

The steps involved in calculating a 3 × 3 LBP are illustrated in Fig. 6.10.

7 9 9

5 6 7

5 4 7

1 1 1

0 – 1

0 0 1

Pixel .= 6 ? 1 : 0

Pixel[0,0](7) >= 6 ? 1 : 0 = 00000001

Pixel[1,0](9) >= 6 ? 1 : 0 = 00000010

Pixel[2,0](9) >= 6 ? 1 : 0 = 00000100

Pixel[2,1](7) >= 6 ? 1 : 0 = 00001000

Pixel[2,2](7) >= 6 ? 1 : 0 = 00010000

Pixel[1,2](4) >= 6 ? 1 : 0 = 00000000

Pixel[0,2](5) >= 6 ? 1 : 0 = 00000000

Pixel[0,1](5) >= 6 ? 1 : 0 = 00000000

LBP 00011111

Fig. 6.10 LBP neighborhood comparison

Feature Descriptor Survey 231

Neighborhood Comparison

Each pixel in the 3 × 3 region is compared to the center pixel. If the pixel ≥ the center pixel, then the

LBP records a bit value of 1 for that position and a bit value of 0 otherwise. See Fig. 6.10.

Histogram Composition

Each LBP descriptor over an image region is recorded in a histogram to describe the cumulative

texture feature. Uniform LBP histograms would have 56 bins, since only single-connected regions

are histogrammed.

Optionally Normalization

The final histogram can be reduced to a smaller number of bins using binary decimation for powers

of two or some similar algorithm, such as 256 → 32. In addition, the histograms can be reduced in

size by thresholding the range of contiguous bins used for the histogram—for example, by ignoring

bins 1–64 if little or no information is binned in them.

Descriptor Concatenation

Multiple LBPs taken over overlapping regions may be concatenated together into a larger histogram

feature descriptor to provide better discrimination.

LBP Summary Taxonomy

Spectra: Local binary

Feature shape: Square

Feature pattern: Pixel region compares with center pixel

Feature density: Local 3 × 3 at each pixel

Search method: Sliding window

Distance function: Hamming distance

Robustness: 3 (brightness, contrast, *rotation for RILBP)

Rotation-Invariant LBP (RILBP)

To achieve rotational invariance, the rotation-invariant LBP (RILBP) [142] is calculated by circular

bitwise rotation of the local LBP to find the minimum binary value. The minimum value LBP is used as

a rotation-invariant signature and is recorded in the histogram bins. The RILBP is computationally

very efficient.

Fig. 6.11 Method of calculating the minimum LBP by using circular bit shifting of the binary value to find the minimum

value. The LBP descriptor is then rotation-invariant

To illustrate the method, Fig. 6.11 shows a pattern of three consecutive LBP bits; in order to make

this descriptor rotation-invariant, the value is left-shifted until a minimum value is reached.

Note that many researchers [140, 141] are extending the methods used for LBP calculation to use

refinements such as local derivatives, local median or mean values, ternary or quinary compare functions,

and many other methods, rather than the simple binary compare function, as originally proposed.

Dynamic Texture Metric Using 3D LBPs

Dynamic textures are visual features that morph and change as they move from frame to frame;

examples include waves, clouds, wind, smoke, foliage, and ripples. Two extensions of the basic LBP

used for tracking such dynamic textures are discussed here: VLBP and LBP-TOP.

232 6 Feature Detector and Feature Descriptor Survey

Volume LBP (VLBP)

To create the VLBP [12] descriptor, first an image volume is created by stacking together at least three

consecutive video frames into a volume 3D dataset. Next, three LBPs are taken centered on the

selected interest point, one LBP from each parallel plane in the volume, into a summary volume LBP

or VLBP, and the histogram of each orthogonal LBP is concatenated into a single dynamic descriptor

vector, the VLBP. The VLPB can then be tracked from frame to frame and recalculated to account for

dynamic changes in the texture from frame to frame. See Fig. 6.12.

LBP-TOP

The LBP-TOP [144] is created like the VLBP, except that instead of calculating the three individual

LBPs from parallel planes, they are calculated from orthogonal planes in the volume (x,y,z) intersecting

the interest point, as shown in Fig. 6.12. The 3D composite descriptor is the same size as the VLBP and

contains three planes’ worth of data. The histograms for each LBP plane are also concatenated for the

LBP-TOP like the VLBP.

Fig. 6.12 (Top) VLBP

method [12] of calculating

LBPs from parallel planes.

(Bottom) LBP-TOP method

[144] of calculating LBPs

from orthogonal planes.

(Image used by permission,

Intel Press, from

Building Intelligent

Systems)

Other LBP Variants

As shown in Table 6.1, there are many variants of the LBP [142]. Note that the LBP has been

successfully used as a replacement for SIFT, SURF, and also as a texture metric.

Table 6.1 LBP variants (from Ref. [142])

Feature Descriptor Survey 233

ULBP (Uniform LBP)—Uses only 56 uniform bins instead of the full 256 bins possible with 8-bit pixels to create the

histogram. The uniform patterns consist of contiguous segments of connected TRUE values.

RLBP (ROBUST LBP)—Adds + scale factor to eliminate transitions due to noise (p1 - p2 + SCALE)

CS-LBP—Circle-symmetric, half as many vectors an LBP, comparison of opposite pixel pairs vs. w/center pixel, useful

to reduce LBP bin counts

LBP-HF—Fourier spectrum descriptor + LBP

MLBP—Median LBP uses area median value instead of center pixel value for comparison

M-LBP—Multiscale LBP combining multiple radii LBPs concatenated

MB-LBP—Multiscale block LBP; compare average pixel values in small blocks

SEMB-LBP—Statistically effective MB-LBP (SEMB-LBP) uses the percentage in distributions, instead of the number

of 0–1 and 1–0 transitions in the LBP and redefines the uniform patterns in the standard LBP. Used effectively in face

recognition using GENTLE ADA-BOOSTing [473]

VLBP—Volume LBP over adjacent video frames OR within a volume—concatenate histograms together to form a

longer vector

LGBP—Local Gabor binary pattern—40 or so Gabor filters are computed over a feature, and LBPs are extracted and

concatenated to form a long feature vector that is invariant over more scales and orientations

LEP—Local edge patterns—Edge enhancement (Sobel) prior to standard LBP

EBP—Elliptic binary pattern—Standard LBP but over elliptical area instead of circular

EQP—Elliptical quinary patterns—LBP extended from binary (2)-level resolution to quinary (5)-level resolution (-2,

-1, 0, -1, 2)

LTP—LBP extended over ternary range to deal with near-constant areas (-1, 0, 1)

LLBP—Local line binary pattern calculates LBP over line patterns (cross shape) and then calculates magnitude metrics

using SQRT of SQUARES of each X/Y dimension

TPLBP—[x5]three LBPs are calculated together: the basic LBP for the center pixel, plus two others around adjacent

pixels so the total descriptor is a set of overlapping LBPs

FPLBP—[x5]four LBPs are calculated together: the basic LBP for the center pixel, plus two others around adjacent

pixels so the total descriptor is a set of overlapping LBPs, XPLBP

*NOTE: The TPLBP and FPLBP method can be extended to 3, 4, n dimensions in feature space. LARGE VECTORS.

TBP—Ternary (3) binary pattern, like LBP, but uses three levels of encoding (1, 0,-1) to effectively deal with areas of

equal or near equal intensity, uses two binary patterns (one for + and one for -) concatenated together

ETLP—Elongated ternary local patterns (elliptical + ternary[3] levels)

FLBP—Fuzzy LBP where each pixel contributes to more than one bin

PLBP—Probabilistic LBP computes magnitude of difference between each pixel and center pixel (more compute, more

storage)

SILTP—Scale-invariant LBP using a three-part piece-wise comparison function to compensate and support intensity-

scale invariance to deal with image noise

tLBP—Transition-coded LBP, where the encoding is clockwise between adjacent pixels in the LBP

dLBP—Direction-coded LBP—similar to CS-LBP, but stores both maxima and comparison info (is this pixel greater,

less than, or maxima)

CBP—Centralized binary pattern—center pixel compared to average of all nine kernel neighbors

S-LBP—Semantic LBP done in a colorimetric-accurate space (such as CIE LAB.) over uniform connected LBP

circular patterns to find principal direction + arc length used to form a 2D histogram as the descriptor.

F-LBP—Fourier spectrum of color distance from center pixel to adjacent pixels

LDP—Local derivate patterns (higher order derivatives)—basic

LBP is the first-order directional derivative, which is combined with additional nth-order directional derivatives

concatenated into a histogram, more sensitive to noise of course

BLBP—Bayesian LBP—combination of LBP and LTP together using Bayesian methods to optimize toward a more

robust pattern

FLS—Filtering, labeling, and statistical framework for LBP comparison, translates LBPs or any type of histogram

descriptor into vector space allowing efficient comparison “A Bayesian Local Binary Pattern Texture Descriptor”

MB-LBP—Multiscale block LBP—compare average pixel values in small blocks instead of individual pixels; thus, a

3 × 3 pixel PBL will become a 9 × 9 block LBP where each block is a 3 × 3 region. The histogram is calculated by

(continued)

LATCH—LATCH: Learned Arrangements of Three Patch Codes [797]

234 6 Feature Detector and Feature Descriptor Survey

Table 6.1 (continued)

scaling the image and creating a rendering at each scale and creating a histogram of each scaled image and

concatenating the histograms together.

PM-LBP—Pyramid-based multistructured LBP—used five templates to extract different structural info at varying

levels 1 Gaussian filters and four anisotropic filters to detect gradient directions

MSLBF—Multiscale selected local binary features

RILBP—Rotation invariant LBP rotates the bins (binary LBP value) until minimum value is achieved, and the max

value is considered rotational-invariant. This is the most widely used method for LBP rotational invariance.

ALBP—Adaptive LBP for rotational invariance, instead of shifting to a maximal value as in the standard LBP method,

find the dominant vector orientation, and shift the vector to the dominant vector orientation

LBPV—Local binary pattern variance—uses local area variance to weight pixel contribution to the LBP, align features

to principal orientations, determine non-dominant patterns, and reduce their contribution.

OCLBP—Opponent color LBP—describes color and texture together—each color channel LBP is converted, then

opposing color channel LBPs are converted by using one color as the center pixel and another color as the

neighborhood, so a total of 9 RGB combination LBP patterns are considered.

SDMCLBP—SDM (co-LBP images for each color are used as the basis for generating occurrence matrices, and then,

Haralick features are extracted from the images to form a multi-dimensional feature space.

MSCLBP—Multi-Scale Color Local Binary Patterns (concatenate six histograms together)—uses color space

components

HUE-LBP OPPONENT-LBP (all three channels) nOPPONENT-LBP (computed over two channels), light intensity

change, intensity shift, intensity change + shift, color-change color shift, define six new operators: transformed color

LBP (RGB) [subtract mean, divide by STD DEV], opponent-LBP, nOpponent-LBP, Hue-LBP, RGB-LBP, nRGB-

LBP [x8] “Multi-scale Color Local Binary Patterns for Visual Object Classes Recognition,” Chao ZHU, Charles-

Edmond BICHOT, Liming CHEN

3D histograms—3DRGBLBP [best performance, high memory footprint]—3D histogram computed over RGB-LBP

color image space using uniform pattern minimization to yield 10 levels or patterns per color yielding a large descriptor:

10 × 10 × 10 = 1000 descriptors.

Census

The Census transform [145] is basically an LBP, and like a population census, it uses simple greater-

than and less-than queries to count and compare results. Census records pixel comparison results made

between the center pixel in the kernel and the other pixels in the kernel region. It employs comparisons

and possibly a threshold and stores the results in a binary vector. The Census transform also uses a

feature called the rank value scalar, which is the number of pixel values less than the center pixel. The

Census descriptor thus uses both a bit vector and a rank scalar.

Census Summary Vision Taxonomy

Spectra: Local binary + scalar ranking

Feature shape: Square

Feature pattern: Pixel region compares with center pixel

Feature density: Local 3 × 3 at each pixel

Search method: Sliding window

Distance function: Hamming distance

Robustness: 2 (brightness, contrast)

Modified Census Transform

The modified Census transform (MCT) [171] seeks to improve the local binary pattern robustness of

the original Census transform. The method uses an ordered comparison of each pixel in the 3 × 3

neighborhood against the mean intensity of all the pixels of the 3 × 3 neighborhood, generating a

binary descriptor bit vector with bit values set to an intensity lower than the mean intensity of all the

pixels. The bit vector can be used to create an MCT image using the MCT value for each pixel. See

Fig. 6.13.

Feature Descriptor Survey 235

Fig. 6.13 Abbreviated set of 15 out of a possible 511 possible binary patterns for a 3 × 3 MCT. The structure kernels in

the pattern set are the basis set of the MCT feature space comparison. The structure kernels form a pattern basis set, which

can represent lines, edges, corners, saddle points, semicircles, and other patterns

As shown in Fig. 6.13, the MCT relies on the full set of possible 3 × 3 binary patterns (29 - 1 or

511 variations) and uses these as a kernel index into the binary patterns as the MCT output, since each

binary pattern is a unique signature by itself and highly discriminative. The end result of the MCT is

analogous to a nonlinear filter that assigns the output to any of the 29 - 1 patterns in the kernel index.

Results show that the MCT results are better than the basic CT for some types of object

recognition [171].

BRIEF

As described in Chap. 4, in the section on “Local Binary Descriptor Point-Pair Patterns,” and

illustrated in Fig. 4.11, the BRIEF [104, 105] descriptor uses a random distribution pattern of

256 point pairs in a local 31 × 31 region for the binary comparison to create the descriptor. One key

idea with BRIEF is to select random pairs of points within the local region for comparison.

BRIEF is a local binary descriptor and has achieved very good accuracy and performance in

robotics applications [169]. BRIEF and ORB are closely related; ORB is an oriented version of

BRIEF, and the ORB descriptor point-pair pattern is also built differently than BRIEF. BRIEF is

known to be not very tolerant of rotation.

BRIEF Summary Taxonomy

Spectra: Local binary

Feature shape: Square centered at interest point

Feature pattern: Random local pixel point-pair compares

Feature density: Local 31 × 31 at interest points

Search method: Sliding window

Distance function: Hamming distance

Robustness: 2 (brightness, contrast)

ORB

ORB [94] is an acronym for oriented BRIEF, and as the name suggests, ORB is based on BRIEF and

adds rotational invariance to BRIEF by determining corner orientation using FAST9, followed by a

Harris corner metric to sort the keypoints; the corner orientation is refined by intensity centroids using

Rosin’s method [38]. The FAST, Harris, and Rosin processing are done at each level of an image

pyramid scaled with a factor of 1.4, rather than the common octave pyramid scale methods. ORB is

discussed in some detail in Chap. 4, in the section on “Local Binary Descriptor Point-Pair Patterns,”

and is illustrated in Fig. 4.11.

236 6 Feature Detector and Feature Descriptor Survey

It should be noted that ORB is a highly optimized and very well-engineered descriptor, since the

ORB authors were keenly interested in compute speed, memory footprint, and accuracy. Many of the

descriptors surveyed in this section are primarily research projects, with less priority given to practical

issues, but ORB focuses on optimizing and practical issues.

Compared to BRIEF, ORB provides an improved training method for creating the local binary

patterns for pairwise pixel point sampling. While BRIEF uses random point pairs in a 31 × 31 window,

ORB goes through a training step to find uncorrelated point pairs in the window with high variance and

means 0.5, which is demonstrated to work better. For details on visualizing the ORB patterns, see

Fig. 4.11.

ORBa SURF SIFT

15.3 ms 217.3 ms 5228.7 ms
a Results reported as measured in Ref. [94]

For correspondence search, ORB uses multi-probe locally sensitive hashing (MP-LSH), which

searches for matches in neighboring buckets when a match fails, rather than renavigating the hash tree.

The authors report that MP-LSH requires fewer hash tables, resulting in a lower memory footprint.

MP-LSH also produces more uniform hash bucket sizes than BRIEF. Since ORB is a binary descriptor

based on point-pair comparisons, Hamming distance is used for correspondence.

ORB is reported to be an order of magnitude faster than SURF, and two orders of magnitude faster

than SIFT, with comparable accuracy. The authors provide impressive performance results in a test of

over 24 NTSC resolution images on the Pascal dataset [94].

ORB Summary Taxonomy

Spectra: Local binary + orientation vector

Feature shape: Square

Feature pattern: Trained local pixel point-pair compares

Feature density: Local 31 × 31 at interest points

Search method: Sliding window

Distance function: Hamming distance

Robustness: 3 (brightness, contrast, rotation, limited scale)

BRISK

BRISK [103, 114] is a local binary method using a circular symmetric pattern region shape and a total

of 60 point pairs as line segments arranged in four concentric rings, as shown in Fig. 4.10 and

described in detail in Chap. 4. The method uses point pairs of both short segments and long segments,

and this provides a measure of scale invariance, since short segments may map better for fine resolution

and long segments may map better at coarse resolution.

The brisk algorithm is unique, using a novel FAST detector adapted to use scale space, reportedly

achieving an order of magnitude performance increase over SURF with comparable accuracy. Here are

the main computational steps in the algorithm:

• Detects keypoints using FAST or AGHAST-based selection in scale space.

• Performs Gaussian smoothing at each pixel sample point to get the point value.

• Makes three sets of pairs: long pairs, short pairs, and unused pairs (the unused pairs are not in the

long pair or the short pair set; see Fig. 4.10).

• Computes gradient between long pairs and sums gradients to determine orientation.

• Uses gradient orientation to adjust and rotate short pairs.

• Creates binary descriptor from short pair point-wise comparisons.

BRISK Summary Taxonomy

Feature Descriptor Survey 237

Spectra: Local binary + orientation vector

Feature shape: Square

Feature pattern: Trained local pixel point-pair compares

Feature density: Local 31 × 31 at FAST interest points

Search method: Sliding window

Distance function: Hamming distance

Robustness: 4 (brightness, contrast, rotation, scale)

FREAK

FREAK [102] uses a novel foveal-inspired multiresolution pixel-pair sampling shape with trained

pixel pairs to mimic the design of the human eye as a coarse-to-fine descriptor, with resolution highest

in the center and decreasing further into the periphery, as shown in Fig. 4.9. In the opinion of this

author, FREAK demonstrates many of the better design approaches to feature description; it combines

performance, accuracy, and robustness. Note that FREAK is fast to compute, has good discrimination

compared to other local binary descriptors such as LBP, Census, BRISK, BRIEF, and ORB, and

compares favorably with SIFT.

The FREAK feature training process involves determining the point pairs for the binary

comparisons based on the training data, as shown in Fig. 4.9. The training method allows for a

range of descriptor sampling patterns and shapes to be built by weighting and choosing sample points

with high variance and low correlation. Each sampling point is taken from the overlapping circular

regions, where the value of each sampling point is the Gaussian average of the values in each region.

The circular regions are designed in concentric circles of six regions in each circle, with small regions

in the center, and larger regions toward the edge, similar to the biological retinal distribution of

receptor cells with some overlap to adjacent regions, which improves accuracy.

The feature descriptor is thus designed in a coarse-to-fine cascade of four groups of 16-byte coarse-

to-fine descriptors containing pixel-pair binary comparisons stored in a vector. The first 16 bytes, the

coarse resolution set in the cascade, is normally sufficient to find 90% of the matching features and to

discard nonmatching features. FREAK uses 45 point pairs for the descriptor from a 31 × 31 pixel patch

sampling region.

By storing the point-pair comparisons in four cascades of decreasing resolution pattern vectors, the

matching process proceeds from coarse to fine, mimicking the human visual system’s saccadic search

mechanism, allowing for accelerated matching performance when there is early success or rejection in

the matching phase. In summary, the FREAK approach works very well.

FREAK Summary Taxonomy

Spectra: Local binary coarse-to-fine + orientation vector

Feature shape: Square

Feature pattern: 31 × 31 region pixel point-pair compares

Feature density: Sparse local at AGAST interest points

Search method: Sliding window over scale space

Distance function: Hamming distance

Robustness: 6 (brightness, contrast, rotation, scale, viewpoint, blur)

238 6 Feature Detector and Feature Descriptor Survey

Spectra Descriptors

Compared to the local binary descriptor group, the spectra group of descriptors typically involves more

intense computations and algorithms, often requiring floating point calculations, and may consume

considerable memory. In this taxonomy and discussion, spectra is simply a quantity that can be

measured or computed, such as light intensity, color, local area gradients, local area statistical features

and moments, surface normals, and sorted data such as 2D or 3D histograms of any spectral type, such

as histograms of local gradient direction. Many of the methods discussed in this section use local

gradient information.

Local binary descriptors, as discussed in the previous section, are an attempt to move away from

more costly spectral methods to reduce power and increase performance. Local binary descriptors in

many cases offer similar accuracy and robustness to the more compute-intensive spectra methods.

SIFT

The scale-invariant feature transform (SIFT) developed by Lowe [132, 146] is the most well-known

method for finding interest points and feature descriptors, providing invariance to scale, rotation,

illumination, affine distortion, perspective and similarity transforms, and noise. Lowe demonstrates

that by using several SIFT descriptors together to describe an object, there is additional invariance to

occlusion and clutter, since if a few descriptors are occluded, others will be found [132]. We provide

some detail here on SIFT since it is well-designed and well-known.

SIFT is commonly used as a benchmark against which other vision methods are compared. The

original SIFT research paper by author David Lowe was initially rejected several times for publication

by the major computer vision journals, and as a result, Lowe filed for a patent and took a different

direction. According to Lowe, “By then I had decided the computer vision community was not

interested, so I applied for a patent and intended to promote it just for industrial applications.” 1

Eventually, the SIFT paper was published and went on to become the most widely cited article in

computer vision history!

SIFT is a complete algorithm and processing pipeline, including both an interest point and a feature

descriptor method. SIFT includes stages for selecting center-surrounding circular weighted difference

of Gaussian (DoG) maxima interest points in scale space to create scale-invariant keypoints (a major

innovation), as illustrated in Fig. 6.14. Feature descriptors are computed surrounding the scale-

invariant keypoints. The feature extraction step involves calculating a binned histogram of gradients

(HOG) structure from local gradient magnitudes into Cartesian rectangular bins, or into log-polar bins

using the GLOH variation, at selected locations centered around the maximal response interest points

derived over several scales.

1 http://yann.lecun.com/ex/pamphlets/publishing-models.html.

http://yann.lecun.com/ex/pamphlets/publishing-models.html

Feature Descriptor Survey 239

Fig. 6.14 (Top) Set of Gaussian images obtained by convolution with a Gaussian kernel and the corresponding set of

DoG images. (Bottom) In octave sets. The DOG function approximates a LOG gradient, or tunable bypass filter.

Matching features against the various images in the scaled octave sets yields scale-invariant features

The descriptors are fed into a matching pipeline to find the nearest distance ratio metric between

closest match and second closest match, which considers a primary match and a secondary match

together and rejects both matches if they are too similar, assuming that one or the other may be a false

match. The local gradient magnitudes are weighted by a strength value proportional to the pyramid

scale level and then binned into the local histograms. In summary, SIFT is a very well thought out and

carefully designed multiscale localized feature descriptor.

A variation of SIFT for color images is known as CSIFT [147].

Here is the basic SIFT descriptor processing flow (note: the matching stage is omitted since this

chapter is concerned with feature descriptors and related metrics):

1. Create a Scale-Space Pyramid

An octave scale n/2 image pyramid is used with Gaussian-filtered images in a scale space. The

amount of Gaussian blur is proportional to the scale, and then, the difference of Gaussian (DoG)

method is used to capture the interest point extrema maxima and minima in adjacent images in the

pyramid. The image pyramid contains five levels. SIFT also uses a double-scale first pyramid level

using pixels at two times the original magnification to help preserve fine details. This technique

increases the number of stable keypoints by about four times, which is quite significant. Otherwise,

computing the Gaussian blur across the original image would have the effect of throwing away the

high-frequency details. See Figs. 6.15 and 6.16.

240 6 Feature Detector and Feature Descriptor Survey

Fig. 6.15 SIFT DoG as the simple arithmetic difference between the Gaussian-filtered images in the pyramid scale

Fig. 6.16 SIFT interest point or keypoint detection using scale-invariant extrema detection, where the dark pixel in the

middle octave is compared within a 3 × 3 × 3 area against its 26 neighbors in adjacent DOG octaves, which includes the

eight neighbors at the local scale plus the nine neighbors at adjacent octave scales (up or down)

Þ
Þ

Feature Descriptor Survey 241

2. Identify Scale-Invariant Interest Points

As shown in Fig. 6.16, the candidate interest points are chosen from local maxima or minima as

compared between the 26 adjacent pixels in the DOG images from the three adjacent octaves in the

pyramid. In other words, the interest points are scale-invariant.

The selected interest points are further qualified to achieve invariance by analyzing local contrast,

local noise, and local edge presence within the local 26-pixel neighborhood. Various methods may

be used beyond those in the original method, and several techniques are used together to select the

best interest points, including local curvature interpolation over small regions and balancing edge

responses to include primary and secondary edges. The keypoints are localized to subpixel

precision over scale and space. The complete interest points are thus invariant to scale.

3. Create Feature Descriptors

A local region or patch of size 16 × 16 pixels surrounding the chosen interest points is the basis of

the feature vector. The magnitude of the local gradients in the 16 × 16 patch and the gradient

orientations are calculated and stored in a HOG (histogram of gradients) feature vector, which is

weighted in a circularly symmetric fashion to downweight points farther away from the center

interest point around which the HOG is calculated using a Gaussian weighting function.

As shown in Fig. 6.17, the 4 × 4 gradient binning method allows for gradients to move around in the

descriptor and be combined together, thus contributing invariance to various geometric distortions

that may change the position of local gradients, similar to the human visual system treatment of the

3D position of gradients across the retina [210]. The SIFT-HOG is reasonably invariant to scale,

contrast, and rotation. The histogram bins are populated with gradient information using trilinear

interpolation and normalized to provide illumination and contrast invariance.

Fig. 6.17 (Left and center) Gradient magnitude and direction binned into histograms for the SIFT-HOG, note the circle

over the bin region on the left image suggests how SIFT weights bins farther from center less than bins closer to the

center. (Right) GLOH descriptors

SIFT can also be performed using a variant of the HOG descriptor called the gradient location and

orientation histogram (GLOH), which uses a log-polar histogram format instead of the Cartesian

HOG format; see Fig. 6.17. The calculations for the GLOH log-polar histogram are straightforward,

as shown below from the Cartesian coordinates used for the Cartesian HOG histogram, where the

vector magnitude is the hypotenuse and the angle is the arctangent.

m x, yð Þ ¼ L xþ 1, yð Þ- L x- 1, yð Þð Þ2 þ L x, yþ 1ð Þ- x, y- 1ð Þð 2

θ x, yð Þ ¼ TAN- 1 L x, y þ 1ð Þ- L x, y- 1ð Þð Þ= L xþ 1, yð Þ- x- 1, yð Þð

s 4N

242 6 Feature Detector and Feature Descriptor Survey

As shown in Fig. 6.17, SIFT-HOG and GLOH are essentially 3D histograms, and in this case, the

histogram bin values are gradient magnitude and direction. The descriptor vector size is thus

4 × 4 × 8 = 128 bytes. The 4 × 4 descriptor (center image) is a set of histograms of the combined

eight-way gradient direction and magnitude of each 4 × 4 group in the left image, in Cartesian

coordinates, while the GLOH gradient magnitude and direction are binned in polar coordinate

spaced into 17 bins over a greater binning region. SIFT-HOG (left image) also uses a weighting

factor to smoothly reduce the contribution of gradient information in a circularly symmetric fashion

with increasing distance from the center.

Overall compute complexity for SIFT is high [148], as shown in Table 6.2. Note that feature

description is most compute-intensive owing to all the local area gradient calculations for orienta-

tion assignment and descriptor generation including histogram binning with trilinear interpolation.

The gradient orientation histogram developed in SIFT is a key innovation that provides substantial

robustness.

Table 6.2 SIFT compute complexity (from Vinukonda [148])

SIFT pipeline step Complexity Number of operations

Gaussian blurring pyramid ⊖ N
2
U
2 2

W
2
s

Difference of Gaussian pyramid ⊖ sN2 4N2 s

Scale-space extrema detection ⊖ sN2 104sN2

Keypoint detection ⊖ αsN2 100sαN2

Orientation assignment ⊖ sN2 (1 – αβ) 48sN2

Descriptor generation ⊖ (x2 N2
(αβ + γ)) ⊖ 1520x2 N2

(αβ + γ)N
2

The resulting feature vector for SIFT is 128 bytes. However, methods exist to reduce the

dimensionality and vary the descriptor, which are discussed next.

SIFT Summary Taxonomy

Spectra: Local gradient magnitude + orientation

Feature shape: Square, with circular weighting

Feature pattern: Square with circular symmetric weighting

Feature density: Sparse at local 16 × 16 DoG interest points

Search method: Sliding window over scale space

Distance function: Euclidean distance (*or Hellinger distance with RootSIFT retrofit)

Robustness: 6 (brightness, contrast, rotation, scale, affine transforms, noise)

SIFT-PCA

The SIFT-PCA method developed by Ke and Suthankar [151] uses an alternative feature vector

derived using principal component analysis (PCA), based on the normalized gradient patches rather

than the weighted and smoothed histograms of gradients, as used in SIFT. In addition, SIFT-PCA

reduces the dimensionality of the SIFT descriptor to a smaller set of elements. SIFT originally was

reported using 128 vectors, but using SIFT-PCA the vector is reduced to a smaller number such as

20 or 36.

The basic steps for SIFT-PCA are as follows:

Feature Descriptor Survey 243

1. Construct an eigenspace based on the gradients from the local 41 × 41 image patches resulting in a

3042 element vector; this vector is the result of the normal SIFT pipeline.

2. Compute local image gradients for the patches.

3. Create the reduced-size feature vector from the eigenspace using PCA on the covariance matrix of

each feature vector.

SIFT-PCA is shown to provide some improvements over SIFT in the area of robustness to image

warping, and the smaller size of the feature vector results in faster matching speed. The authors note

that while PCA in general is not optimal as applied to image patch features, the method works well for

the SIFT-style gradient patches that are oriented and localized in scale space [151].

SIFT-GLOH

The gradient location and orientation histogram (GLOH) [115] method uses polar coordinates and

radially distributed bins rather than the Cartesian coordinate style histogram binning method used by

SIFT. It is reported to provide greater accuracy and robustness over SIFT and other descriptors for

some ground truth datasets [115]. As shown in Fig. 6.17, GLOH uses a set of 17 radially distributed

bins to sum the gradient information in polar coordinates, yielding a 272-bin histogram. The center bin

is not direction oriented. The size of the descriptor is reduced using PCA. GLOH has been used to

retrofit SIFT.

SIFT-SIFER Retrofit

The Scale-Invariant Feature Detector with Error Resilience (SIFER) [188] method provides

alternatives to the standard SIFT pipeline, yielding measurable accuracy improvements reported to

be as high as 20% for some criteria. However, the accuracy comes at a cost, since the performance is

about twice as slow as SIFT. The major contributions of SIFER include improved scale-space

treatment using a higher granularity image pyramid representation and better scale-tuned filtering

using a cosine-modulated Gaussian filter.

The major steps in the method are shown in Table 6.3. The scale-space pyramid is blurred using a

cosine-modulated Gaussian (CMG) filter, which allows each scale of the octave to be subdivided into

six scales, so the result is better scale accuracy.

Table 6.3 Comparison of SIFT, SURF, and SIFER pipelines (adapted from [188])

SIFT SURF SIFER

Scale-space filtering Gaussian second

derivative

Gaussian second derivative Cosine-modulated

Gaussian

Detector LoG Hessian Wavelet modulus maxima

Filter approximation

level

OK accuracy OK accuracy Good accuracy

Optimizations DoG for gradient Integral images, constant

time

Convolution, constant time

Image up-sampling 2× 2× Not used

Subsampling Yes Yes Not used

Since the performance of the CMG is not good, SIFER provides a fast approximation method that

provides reasonable accuracy. Special care is given to the image scale and the filter scale to increase

accuracy of detection; thus, the cosine is used as a band-pass filter for the Gaussian filter to match the

scale as well as possible, tuning the filter in a filter bank over scale space with well-matched filters for

each of the six scales per octave. The CMG provides more error resilience than the SIFT Gaussian

second derivative method.

244 6 Feature Detector and Feature Descriptor Survey

SIFT CS-LBP Retrofit

The SIFT-CS-LBP retrofit method [142, 168] combines the best attributes of SIFT and the center

symmetric LBP (CS-LBP) by replacing the SIFT gradient calculations with much more compute-

efficient LBP operators and by creating similar histogram-binned orientation feature vectors. LBP is

computationally simpler both to create and to match than the SIFT descriptor.

The CS-LBP descriptor begins by applying an adaptive noise removal filter (a Weiner filter is the

variety used in this work) to the local patch for adaptive noise removal, which preserves local contrast.

Rather than computing all 256 possible 8-bit local binary patterns, the CS-LBP only computes

16 center symmetric patterns for reduced dimensionality, as shown in Fig. 6.18.

p8 c

p2p1

p4

p3

p7 p6 p5

LPB=

s(p1 - c)0 +

s(p2 – c)1 +

s(p3 – c)2 +

s(p4 – c)3 +

s(p5 – c)4 +

s(p6 – c)5 +

s(p7 – c)6 +

s(p8 – c)7

CS-LPB=

s(p1 – p5)0 +

s(p2 – p6)1 +

s(p3 – p7)2 +

s(p4 – p8)3

Fig. 6.18 CS-LBP sampling pattern for reduced dimensionality

Instead of weighting the histogram bins using the SIFT circular weighting function, no weighting is

used, which reduces compute. Like SIFT, the CS-LBP binning method uses a 3 × 3 region Cartesian

grid; simpler bilinear interpolation for binning is used, rather than trilinear, as in SIFT. Overall, the

CS-LCP retrofit method simplifies the SIFT compute pipeline and increases performance with

comparable accuracy; greater accuracy is reported for some datasets. See Table 6.4.

Table 6.4 SIFT and CS-LBP retrofit performance (as per Ref. [168])

Feature extraction Descriptor construction Descriptor normalization Total (ms time)

CS-LBP 256 0.1609 0.0961 0.007 0.264

CS-LBP 128 0.1148 0.0749 0.0022 0.1919

SIFT 128 0.4387 0.1654 0.0025 0.6066

RootSIFT Retrofit

The RootSIFT method [143] provides a set of simple, key enhancements to the SIFT pipeline, resulting

in better compute performance and slight improvements in accuracy, as follows:

• Hellinger Distance: RootSIFT uses a simple performance optimization of the SIFT object retrieval

pipeline using Hellinger distance instead of Euclidean distance for correspondence. All other

portions of the SIFT pipeline remain the same; K-means is still employed to build the feature

vector set, and other approximate nearest-neighbor methods may still be used as well for larger

feature vector sets. The authors claim a simple modification to SIFT code to perform the Hellinger

distance optimization instead of Euclidean distance can be a simple set of one-line changes to the

code. Other enhancements in RootSIFT are optional, discussed next.

• Feature Augmentation: This method increases total recall. Developed by Turcot and Lowe [281],

it is applied to the features. Feature vectors or visual words from similar views of the same object in

The major innovations of CenSurE over SIFT and SURF are as follows:

Fig. 6.19 CenSurE bilevel center-surround filter shape approximations to the Laplacian using binary kernel values of

1 and -1, which can be efficiently implemented using signed addition rather than multiplication. Note that the circular

shape is the desired shape, but the other shapes are easier to compute using integral images, especially the rectangular

method

Feature Descriptor Survey 245

the database are associated with a graph used for finding correspondence among similar features,

instead of just relying on a single feature.

• Discriminative Query Expansion (DQE): This method increases query expansion during training.

Feature vectors within a region of proximity are associated by averaging into a new feature vector

useful for requirements in the database, using both positive and negative training data in a linear

SVM; better correspondence is reported in Ref. [143].

By combining the three innovations described above into the SIFT pipeline, performance, accuracy,

and robustness are shown to be significantly improved.

CenSurE and STAR

The Center Surround Extrema or CenSurE [152] method provides a true multiscale descriptor, creating

a feature vector using full spatial resolution at all scales in the pyramid, in contrast to SIFT and SURF,

which find extrema at subsampled pixels that compromise accuracy at larger scales. CenSurE is similar

to SIFT and SURF, but some key differences are summarized in Table 6.5. Modifications have been

made to the original CenSurE algorithm in OpenCV, which goes by the name of STAR descriptor.

Table 6.5 Major differences between CenSurE and SIFT and SURF (adapted from Ref. [152])

CenSurE SIFT SURF

Resolution Every pixel Pyramid subsampled Pyramid subsampled

Edge filter method Harris Hessian Hessian

Scale-space extrema method Laplace, center-surround Laplace, DOG Hessian, DOB

Rotational invariance Approximate Yes No

Spatial resolution in scale Full Subsampled Subsampled

The authors have paid careful attention to creating methods, which are computationally efficient,

memory efficient, with high performance and accuracy [152]. CenSurE defines an optimized approach

to find extrema by first using the Laplacian at all scales, followed by a filtering step using the Harris

method to discard corners with weak responses.

1. Use of bilevel center-surround filters, as shown in Fig. 6.19, including difference of boxes (DoB),

difference of octagons (DoO), and difference of hexagons (DoH) filters, and octagons and hexagons

are more rotationally invariant than boxes. DoB is computationally simple and may be computed

with integral images vs. the Gaussian scale-space method of SIFT. The DoO and DoH filters are

also computed quickly using a modified integral image method. Circle is the desired shape, but

more computationally expensive.

246 6 Feature Detector and Feature Descriptor Survey

2. To find the extrema, the DoB filter is computed using a seven-level scale space of filters at each

pixel, using a 3 × 3 × 3 neighborhood. The scale-space search is composed using center-surround

Haar-like features on non-octave boundaries with filter block sizes [1, 2, 3, 4, 5, 6, 7] covering 2.5

octaves between [1 and 7] yielding five filters. This scale arrangement provides more discrimination

than an octave scale. A threshold is applied to eliminate weak filter responses at each level, since the

weak responses are likely not to be repeated at other scales.

3. Nonrectangular filter shapes, such as octagons and hexagons, are computed quickly using

combinations of overlapping integral image regions; note that octagons and hexagons avoid

artifacts caused by rectangular regions and increase rotational invariance; see Fig. 6.19.

4. CenSurE filters are applied using a fast, modified version of the SURF method called modified

upright SURF (MU-SURF) [152, 155], discussed later with other SURF variants, which pays

special attention to boundary effects of boxes in the descriptor by using an expanded set of

overlapping subregions for the HAAR responses.

CenSurE Summary Taxonomy

Spectra: Center-surround shaped bilevel filters

Feature shape: Octagons, circles, boxes, hexagons

Feature pattern: Filter shape masks, 24 × 24 largest region

Feature density: Sparse at local interest points

Search method: Dense sliding window over scale space

Distance function: Euclidean distance

Robustness: 5 (brightness, contrast, rotation, scale, affine transforms)

Correlation Templates

One of the most well-known and obvious methods for feature description and detection, as used as the

primary feature in basic deep learning architectures discussed in Chaps. 9 and 10, takes an image of the

complete feature and searches for it by direct pixel comparison—this is known as correlation.

Correlation involves stepping a sliding window containing a first-pixel region template across a second

image region template and performing a simple pixel-by-pixel region comparison using a method such

as sum of differences (SAD); the resulting score is the correlation.

Since image illumination may vary, typically the correlation template and the target image are first

intensity normalized, typically by subtracting the mean and dividing by the standard deviation;

however, contrast leveling and LUT transform may also be used. Correlation is commonly

implemented in the spatial domain on rectangular windows, but can be used with frequency domain

methods as well [4, 9].

Correlation is used in video-based target tracking applications where translation as orthogonal

motion from frame to frame over small adjacent regions predominates. For example, video motion

encoders find the displacement of regions or blocks within the image using correlation, since usually

small block motion in video is orthogonal to the Cartesian axis and maps well to simple displacements

found using correlation. Correlation can provide subpixel accuracy between 1/4 and 1/20 of a pixel,

depending on the images and methods used; see Ref. [122]. For video encoding applications, correla-

tion allows for the motion vector displacements of corresponding blocks to be efficiently encoded and

accurately computed. Correlation is amenable to fixed-function hardware acceleration.

Variations on correlation include cross-correlation (sliding dot product), normalized cross-

correlation (NCC), zero-mean normalized cross-correlation (ZNCC), and texture auto-correlation

(TAC).

In general, correlation is a good detector for orthogonal motion of a constant-sized mono-space

pattern region. It provides subpixel accuracy and has limited robustness and accuracy over

Correlation Summary Taxonomy

illumination, but little to no robustness over rotation or scale. However, to overcome these robustness

problems, it is possible to accelerate correlation over a scale space, as well as various geometric

translations, using multiple texture samplers in a graphics processor in parallel to rapidly scale and

rotate the correlation templates. Then, the correlation matching can be done either via SIMD SAD

instructions or else using the fast fixed-function correlators in the video encoding engines.

Feature Descriptor Survey 247

Correlation is illustrated in Fig. 6.20.

Fig. 6.20 Simplified model of digital correlation using a triangular template region swept past a rectangular region. The

best correlation is shown at the location of the highest point

Spectra: Correlation

Feature shape: Square, rectangle

Feature pattern: Dense

Feature density: Variable-sized kernels

Search method: Dense sliding window

Distance function: SSD typical, others possible

Robustness: 1 (illumination, subpixel accuracy)

HAAR Features

HAAR-like features [4, 9] were popularized in the field of computer vision by the Viola–Jones [153]

algorithm. HAAR features are based on specific sets of rectangle patterns, as shown in Fig. 6.21, which

approximate the basic HAAR wavelets, where each HAAR feature is composed of the average pixel

value of pixels within the rectangle. This is efficiently computed using integral images.

248 6 Feature Detector and Feature Descriptor Survey

Fig. 6.21 Example of HAAR-like features

By using the average pixel value in the rectangular feature, the intent is to find a set of small patterns

in adjacent areas where brighter or darker region adjacency may reveal a feature—for example, a bright

cheek next to a darker eye socket. However, HAAR features have drawbacks, since rectangles by

nature are not rotation-invariant much beyond 15°. Also, the integration of pixel values within the

rectangle destroys fine detail.

Depending on the type of feature to be detected, such as eyes, a specific set of HAAR features is

chosen to reveal eye/cheek details and eye/nose details. For example, HAAR patterns with two

rectangles are useful for detecting edges, while patterns with three rectangles can be used for lines,

and patterns with an inset rectangle or four rectangles can be used for single-object features. Note that

HAAR features may be a rotated set.

Of course, the scale of the HAAR patterns is an issue, since a given HAAR feature only works with

an image of appropriate scale. Image pyramids are used for HAAR feature detection, along with other

techniques for stepping the search window across the image in optimal grid sizes for a given

application. Another method to address feature scale is to use a wider set of scaled HAAR features

to perform the pyramiding in the feature space rather than the image space. One method to address

HAAR feature granularity and rectangular shape is to use overlapping HAAR features to approximate

octagons and hexagons; see the CenSurE and STAR methods in Fig. 6.19.

HAAR features are closely related to wavelets [191, 283]. Wavelets can be considered an extension

of the earlier concept of Gabor functions [154, 282]. We provide only a short discussion of wavelets

and Gabor functions here; more discussion was provided in Chap. 2. Wavelets are an orthonormal set

of small-duration functions. Each set of wavelets is designed to meet various goals to locate short-term

signal phenomenon. There is no single wavelet function; rather, when designing wavelets, a mother

wavelet is first designed as the basis of the wavelet family, and then, daughter wavelets are derived

using translation and compression of the mother wavelet into a basis set. Wavelets are used as a set of

nonlinear basis functions, where each basis function can be designed as needed to optimally match a

desired feature in the input function. So, unlike transforms which use a uniform set of basis functions

like the Fourier transform, composed of SIN and COS functions, wavelets use a dynamic set of basis

functions that are complex and nonuniform in nature. Wavelets can be used to describe very complex

short-term features, and this may be an advantage in some feature detection applications.

However, compared to integral images and HAAR features, wavelets are computationally expen-

sive, since they represent complex functions in a complex domain. HAAR 2D basis functions are

commonly used owing to the simple rectangular shape and computational simplicity, especially when

HAAR features are derived from integral images.

HAAR Summary Taxonomy

Spectra: Integral box filter

Feature shape: Square, rectangle

Feature Descriptor Survey 249

Feature pattern: Dense

Feature density: Variable-sized kernels

Search method: Grid search typical

Distance function: Simple difference

Robustness: 1 (illumination)

Viola–Jones with HAAR-Like Features

The Viola–Jones method [153] is a feature detection pipeline framework based on HAAR-like features

using a perceptron learning algorithm to train a detector matching network that consists of three major

parts:

1. Integral images used to rapidly compute HAAR-like features.

2. The ADA-BOOST learning algorithm to create a strong pattern matching and classifier network by

combining strong classifiers with good matching performance with weak classifiers that have been

“boosted” by adjusting weighting factors during the training process.

3. Combining classifiers into a detector cascade or funnel to quickly discard unwanted features at early

stages in the cascade.

Since thousands of HAAR pattern matches may be found in a single image, the feature calculations

must be done quickly. To make the HAAR pattern match calculation rapidly, the entire image is first

processed into an integral image. Each region of the image is searched for known HAAR features using

a sliding window method stepped at some chosen interval, such as every n pixels, and the detected

features are fed into a classification funnel known as a HAAR cascade classifier. The top of the funnel

consists of feature sets, which yield low false positives and false negatives, so the first-order results of

the cascade contain high-probability regions of the image for further analysis. The HAAR features

become more complex progressing deeper into the funnel of the cascade. With this arrangement, image

regions are rejected as soon as possible if the desired HAAR features are not found, minimizing

processing overhead.

A complete HAAR feature detector may combine hundreds or thousands of HAAR features

together into a final classifier, where not only the feature itself may be important but also the spatial

arrangements of features—for example, the distance and angular relationships between features could

be used in the classifier.

SURF

The speeded-up robust features method (SURF) [131] operates in a scale space and uses a fast Hessian

detector based on the determinant maxima points of the Hessian matrix. SURF uses a scale space over

a 3 × 3 × 3 neighborhood to localize blob-like interest point features. To find feature orientation, a set

of HAAR-like feature responses are computed in the local region surrounding each interest point

within a circular radius, computed at the matching pyramid scale for the interest point.

The dominant orientation assignment for the local set of HAAR features is found, as shown in

Fig. 6.22, using a sliding sector window of size π
3
. This sliding sector window is rotated around the

interest point at intervals. Within the sliding sector region, all HAAR features are summed. This

includes both the horizontal and vertical responses, which yield a set of orientation vectors; the largest

vector is chosen to represent dominant feature orientation. By way of comparison, SURF integrates

gradients to find the dominant direction, while SIFT uses a histogram of gradient directions to record

orientation.

250 6 Feature Detector and Feature Descriptor Survey

dx dy

Fig. 6.22 (Left) Sliding sector window used in SURF to compute the dominant orientation of the HAAR features to add

rotational invariance to the SURF features. (Right) The feature vector construction process, showing a grid containing a

4 × 4 region subdivided into 4 × 4 subregions and 2 × 2 subdivisions

To create the SURF descriptor vector, a rectangular grid of 4 × 4 regions is established surrounding

the interest point, similar to SIFT, and each region of this grid is split into 4 × 4 subregions. Within

each subregion, the HAAR wavelet response is computed over 5 × 5 sample points. Each HAAR

response is weighted using a circularly symmetric Gaussian weighting factor, where the weighting

factor decreases with distance from the center interest point, which is similar to SIFT. Each feature

vector contains four parts:

v ¼ dx, dy, dxj j, d y

The wavelet responses dx and dy for each subregion are summed, and the absolute value of the

responses |dx| and |dy| provides polarity of the change in intensity. The final descriptor vector is

4 × 4 × 4:4 × 4 regions with four parts per region, for a total vector length of 64. Of course, other

vector lengths can be devised by modifying the basic method.

As shown in Fig. 6.22, the SURF gradient grid is rotated according to the dominant orientation and

computed during the sliding sector window process, and then, the wavelet response is computed in

each square region relative to orientation for binning into the feature vector. Each of the wavelet

directional sums dx, dy, |dx|, |dy| is recorded in the feature vector .

The SURF and SIFT pipeline methods are generally comparable in implementation steps and final

accuracy, but SURF is one order of magnitude faster to compute than SIFT, as compared in an ORB

benchmarking test [94]. However, the local binary descriptors, such as ORB, are another order of

magnitude faster than SURF, with comparable accuracy for many applications [94]. For more

information, see the section earlier in this chapter on “Local Binary Descriptors”.

SURF Summary Taxonomy

Spectra: Integral box filter + orientation vector

Feature shape: HAAR rectangles

Feature pattern: Dense

Feature density: Sparse at Hessian interest points

Search method: Dense sliding window over scale space

Distance function: Mahalanobis or Euclidean

Robustness: 4 (scale, rotation, illumination, noise)

Feature Descriptor Survey 251

Variations on SURF

A few variations on the SURF descriptor [152, 155] are worth discussing, as shown in Table 6.6. Of

particular interest are the G-SURF methods [155], which use a differential geometry concept [156] of a

local region gauge coordinate system to compute the features. Since gauge coordinates are not global

but, rather, local to the image feature, gauge space features carry advantages for geometrical accuracy .

Table 6.6 SURF variants (as discussed in Alcantarilla et al. [155])

SURF Circular symmetric Gaussian weighting scheme, 20 × 20 grid

U-SURF [152] Faster version of SURF, only upright features are used; no orientation. Like M-SURF except

calculated upright “U” with no rotation of the grid, uses a 20 × 20 grid, no overlapping HAAR

features, modified Gaussian weighting scheme, bilinear interpolation between histogram bins

M-SURF, MU-SURF

[152]

Circular symmetric Gaussian weighting scheme computed in two steps instead of one as for

normal SURF, 24 × 24 grid using overlapping HAAR features, rotation orientation left out in

MU-SURF version

G-SURF, GU-SURF

[155]

Instead of HAAR features, substitutes second-order gauge derivatives in Gauge coordinate

space, no Gaussian weighting, 20 × 20 grid. Gauge derivatives are rotation and translation-

invariant, while the HAAR features are simple rectangles, and rectangles have poor rotational

invariance, maybe ±15° at best

MG-SURF [155] Same as M-SURF, but uses gauge derivatives

NG-SURF [155] N = No Gaussian weighting as in SURF; same as SURF but no Gaussian weighting applied,

allows for comparison between gauge derivate features and HAAR features

Histogram of Gradients (HOG) and Variants

The histogram of gradients (HOG) method [80] is intended for image classification and relies on

computing local region gradients over a dense grid of overlapping blocks, rather than at interest points.

HOG is appropriate for some applications, such as person detection, where the feature in the image is

quite large.

HOG operates on raw data; while many methods rely on Gaussian smoothing and other filtering

methods to prepare the data, HOG is designed specifically to use all the raw data without introducing

filtering artifacts that remove fine details. The authors show clear benefits using this approach. It is a

trade-off: filtering artifacts such as smoothing vs. image artifacts such as fine details. The HOG

method shows preferential results for the raw data. See Fig. 4.12, showing a visualization of a HOG

descriptor.

Major aspects in the HOG method are as follows:

• Raw RGB image is used with no color correction or noise filtering, using other color spaces and

color gamma adjustment provided little advantage for the added cost.

• Prefers a 64 × 128 sliding detector window; 56 × 120 and 48 × 112 sized windows were also tested.

Within this detector window, a total of 8 × 16 8 × 8 pixel block regions are defined for computation

of gradients. Block sizes are tunable.

• For each 8 × 8 pixel block, a total of 64 local gradient magnitudes are computed. The preferred

method is simple line and column derivatives [-1, 0, 1] in x/y; other gradient filter methods are

tried, but larger filters with or without Gaussian filtering degrade accuracy and performance.

Separate gradients are calculated for each color channel.

• Local gradient magnitudes are binned into a 9-bin histogram of edge orientations, quantizing

dimensionality from 64 to 9, using bilinear interpolation; <9 bins produce poorer accuracy, and

>9 bins does not seem to matter. Note that either rectangular R-HOG or circular log-polar CHOG

binning regions can be used.

• Normalization of gradient magnitude histogram values to unit length to provide illumination

invariance. Normalization is performed in groups, rather than on single histograms. Overlapping

252 6 Feature Detector and Feature Descriptor Survey

2 × 2 blocks of histograms is used within the detector window; the block overlapping method

reduces sharp artifacts, and the 2 × 2 region size seems to work best.

• For the 64 × 128 pixel detector window method, a total of 128 8 × 8 pixel blocks are defined. Each

8 × 8 block has four cells for computing separate 9-bin histograms. The total descriptor size is then

8 × 16 × 4 × 9 = 4608.

Note that various formulations of the sliding window and block sizes are used for dealing with

specific application domains. See Fig. 4.12, showing a visualization of HOG descriptor computed

using 7 × 15 8 × 8 pixel cells. Key findings from the HOG [80] design approach include the following:

• The abrupt edges at fine scales in the raw data are required for accuracy in the gradient calculations,

and post-processing and normalizing the gradient bins later work well.

• L2-style block normalization of local contrast is preferred and provides better accuracy over global

normalization; note that the local region blocks are overlapped to assist in the normalization.

• Dropping the L2 block normalization stage during histogram binning reduces accuracy by 27%.

• HOG features perform much better than HAAR-style detectors, and this makes sense when we

consider that a HAAR wavelet is an integrated directionless value, while gradient magnitude and

direction over the local HOG region provide a richer spectra.

HOG Summary Taxonomy

Spectra: Local region gradient histograms

Feature shape: Rectangle or circle

Feature pattern: Dense 64 × 128 typical rectangle

Feature density: Dense overlapping blocks

Search method: Grid over scale space

Distance function: Euclidean

Robustness: 4 (illumination, viewpoint, scale, noise)

PHOG and Related Methods

The Pyramid Histogram of Oriented Gradients (PHOG) [157] method is designed for global or

regional image classification, rather than local feature detection. PHOG combines regional HOG

features with whole image area features using spatial relationships between features spread across

the entire image in an octave grid region subdivision; see Fig. 6.23.

Fig. 6.23 Set of PHOG descriptors computed over the whole image, using octave grid cells to bound the edge

information. (Center left) A single histogram. (Center right) Four histograms shown concatenated together. (Right)

Sixteen histograms shown concatenated

Feature Descriptor Survey 253

PHOG is similar to related work using a coarse-to-fine grid of region histograms called Spatial

Pyramid Matching by Lazebni, Schmid, and Ponce [459], using histograms of oriented edges and SIFT

features to provide multi-class classification. It is also similar to earlier work on pyramids of

concatenated histogram features taken over a progressively finer grid, called Pyramid Match Kernel

and developed by Grauman and Darrell [460], which computes correspondence using weighted,

multiresolution histogram intersection. Other related earlier works using multiresolution histograms

for texture classification are described in Ref. [123].

The PHOG descriptor captures several feature variables, including the following:

• Shape features, derived from local distribution of edges based on gradient features inspired by the

HOG method [80].

• Spatial relationships, across the entire image by computing histogram features over a set of octave

grid cells with blocks of increasingly finer size over the image.

• Appearance features, using a dense set of SIFT descriptors calculated across a regularly spaced

dense grid. PHOG is demonstrated to compute SIFT vectors for color images; results are provided

in [157] for the HSV color space.

A set of training images is used to generate a set of PHOG descriptor variables for a class of images,

such as cars or people. This training set of PHOG features is reduced using K-means clustering to a set

of several hundred visual words to use for feature matching and image classification.

Some key concepts of the PHOG are illustrated in Fig. 6.23. For the feature shape, the edges are

computed using the Canny edge detector, and the gradient orientation is computed using the Sobel

operator. The gradient orientation binning is linearly interpolated across adjacent histogram bins by

gradient orientation (HOG), and each bin represents the angle of the edge. A HOG vector is computed

for each size of grid cell across the entire image. The final PHOG descriptor is composed of a weighted

concatenation of all the individual HOG histograms from each grid level. There is no scale-space

smoothing between the octave grid cell regions to reduce fine detail.

As shown in Fig. 6.23, the final PHOG contains all the HOGs concatenated. Note that for the center

left image, the full grid size cell produces 1 HOG, for the center right, the half octave grid produces

four HOGs, and for the right image, the fine grid produces 16 HOG vectors. The final PHOG is

normalized to unity to reduce biasing due to concentration of edges or texture.

PHOG Summary Taxonomy

Spectra: Global and regional gradient orientation histograms

Feature shape: Rectangle

Feature pattern: Dense grid of tiles

Feature density: Dense tiles

Search method: Grid regions, no searching

Distance function: l2 norm

Robustness: 3 (image classification under some invariance to illumination, viewpoint, noise)

Daisy and O-Daisy

The Daisy Descriptor [180, 268] is inspired by SIFT and GLOH-like descriptors and is devised for

dense-matching applications such as stereo mapping and tracking, reported to be about 40% faster than

SIFT. See Fig. 6.24. Daisy relies on a set of radially distributed and increasing size Gaussian

convolution kernels that overlap and resemble a flower-like shape (Daisy).

254 6 Feature Detector and Feature Descriptor Survey

Fig. 6.24 (Left) Daisy pattern region, which is composed of four sets of eight overlapping concentric circles, with

increasing Gaussian blur in the outer circles, where the radius of each circle is proportional to the Gaussian kernel region

standard deviation. The overlapping circular regions provide a degree of filtering against adjacent region transition

artifacts. (Right) A hypothetical binary occlusion mask; darker regions indicate points that may be occluded and “turned

off” in the descriptor during matching

Daisy does not need local interest points and instead computes a descriptor densely at each pixel,

since the intended application is stereo mapping and tracking. Rather than using gradient magnitude

and direction calculations like SIFT and GLOH, Daisy computes a set of convolved orientation maps

based on a set of oriented derivatives of Gaussian filters to create eight orientation maps spaced at equal

angles.

As shown in Fig. 6.24, the size of each filter region and the amount of blur in each Gaussian filter

increase with distance away from the center, mimicking the human visual system by maintaining a

sharpness and focus in the center of the field of view and decreasing focus and resolution farther away

from the center. Like SIFT, Daisy also uses histogram binning of the local orientation to form the

descriptor.

Daisy is designed with optimizations in mind. The convolution orientation map approach consumes

fewer compute cycles than the gradient magnitude and direction approach of SIFT and GLOH, yet

yields similar results. The Daisy method also includes optimizations for computing larger Gaussian

kernels by using a sequential set of smaller kernels and also by computing certain convolution kernels

recursively. Another optimization is gained using a circular grid pattern instead of the rectangular grid

used in SIFT, which allows Daisy to vary the rotation by rotating the sampling grid rather than

recomputing the convolution maps.

As shown in Fig. 6.24 (right image), Daisy also uses binary occlusion masks to identify portions of

the descriptor pattern to use or ignore in the feature-matching distance functions. This is a novel feature

and provides for invariance to occlusion.

An FPGA-optimized version of Daisy, called O-Daisy [183], provides enhancements for increased

rotational invariance.

Daisy Summary Taxonomy

Spectra: Gaussian convolution values

Feature shape: Circular

Feature pattern: Overlapping concentric circular

Feature Descriptor Survey 255

Feature density: Dense at each pixel

Search method: Dense sliding window

Distance function: Euclidean

Robustness: 3 (illumination, occlusion, noise)

CARD

The Compact and Real-Time Descriptor (CARD) method [184] is designed with performance

optimizations in mind, using learning-based sparse hashing to convert descriptors into binary codes

supporting fast Hamming distance matching. A novel concept from CARD is the lookup-table

descriptor extraction of histograms of oriented gradients from local pixel patches, as well as the

lookup-table binning into Cartesian or log-polar bins. CARD is reported to achieve significantly better

rotation and scale robustness compared to SIFT and SURF, with performance at least ten times better

than SIFT and slightly better than SURF.

CARD follows the method of RIFF [185] for feature detection, using FAST features located over

octave levels in the image pyramid. The complete CARD pyramid includes intermediate levels

between octaves for increased resolution. The pyramid levels are computed at intervals of 1= 2
p

,

with level 0 being the full image. Keypoints are found using a Shi–Tomasi [128] optimized Harris

corner detector.

Like SIFT, CARD computes the gradient at each pixel and can use either Cartesian coordinate

binning, or log-polar coordinate binning like GLOH; see Fig. 6.17. To avoid the costly bilinear

interpolation of gradient information into the histogram bins, CARD instead optimizes this step by

rotating the binning pattern before binning, as shown in Fig. 6.25. Note that the binning is further

optimized using lookup tables, which contain function values based on principal orientations of the

gradients in the patch.

v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

v

u

1

23

4

5

6 7

8

9

1011

12

13

14 15

16

0 u

Fig. 6.25 CARD patch pattern containing 17 log-polar coordinate bins, with image on left rotated to optimize binning

256 6 Feature Detector and Feature Descriptor Survey

As shown in Fig. 6.25, to speed up binning, instead of rotating the patch based on the estimated

gradient direction to extract and bin a rotationally invariant descriptor, as done in SIFT and other

methods, CARD rotates the binning pattern over the patch based on the gradient direction and then

performs binning, which is much faster. Figure 6.25 shows the binning pattern unrotated on the right

and rotated by π/8 on the left. All binned values are concatenated and normalized to form the

descriptor, which is 128 bits long in the most accurate form reported [184].

CARD Summary Taxonomy

Spectra: Gradient magnitude and direction

Feature shape: Circular, variable-sized based on pyramid scale and principal orientation

Feature pattern: Dense

Feature density: Sparse at FAST interest points over image pyramid

Search method: Sliding window

Distance function: Hamming

Robustness: 3 (illumination, scale, rotation)

Robust Fast Feature Matching

Robust feature matching in 2.3us developed by Taylor, Rosten, and Drummond [186] (RFM2.3) (this

acronym is coined here by the author) is a novel, fast method of feature description and matching,

optimized for both compute speed and memory footprint. RFM2.3 stands alone among the feature

descriptors surveyed here with regard to the combination of methods and optimizations employed,

including sparse region histograms and binary feature codes. One of the key ideas developed in

RFM2.3 is to compute a descriptor for multiple views of the same patch by creating a set of scaled,

rotated, and affine warped views of the original feature, which provides invariance under affine

transforms such as rotation and scaling, as well as perspective.

In addition to warping, some noise and blurring are added to the warped patch set to provide

robustness to the descriptor. RFM2.3 is one of few methods in the class of deformable descriptors

[292–294]. FAST keypoints in a scale-space pyramid are used to locate candidate features, and the

warped patch set is computed for each keypoint. After the warped patch set has been computed, FAST

corners are again generated over each new patch in the set to determine which patches are most distinct

and detectable, and the best patches are selected and quantized into binary feature descriptors and

saved in the pattern database.

As shown in Fig. 6.26, RFM2.3 uses a sparse 8 × 8 sampling pattern within a 16 × 16 region to

capture the patch. A sparse set of 13 pixels in the 8 × 8 sampling pattern is chosen to form the index

into the pattern database for the sparse pattern. The index is formed as a 13-bit integer, where each bit is

set to 1 if the pixel value is greater than the patch mean value, limiting the index to 213 or 8192 entries,

so several features in the database may share the same index. However, feature differences can be

computed very quickly using Hamming distance, so the index serves mostly as a database key for

organizing like patches. A training phase determines the optimal set of index values to include in the

feature database, and the optimal patterns to save, since some patterns are more distinct than others.

Initially, features are captured at full resolution, but if few good features are found at full resolution,

additional features are extracted at the next level of the image pyramid.

Feature Descriptor Survey 257

Fig. 6.26 RFM2.3 (Left) Descriptor sparse sampling pattern. (Right) Sparse descriptor using 13 samples used to build

the feature index into the database

The descriptor is modeled during training as a 64-value normalized intensity distribution function,

which is reduced in size to compute the final descriptor vector in two passes: First, the 64 values are

reduced to a five-bin histogram of pixel intensity distribution; second, when training is complete, each

histogram bin is binary encoded with a 1 bit if the bin is used, and a 0 bit if the bin is rarely used. The

resulting descriptor is a compressed, binary encoded bit vector suitable for Hamming distance.

RFM2.3 Summary Taxonomy

Spectra: Normalized histogram patch intensity encoded into binary patch index code

Feature shape: Rectangular, multiple viewpoints

Feature pattern: Sparse patterns in 15 × 15 pixel patch

Feature density: Sparse at FAST9 interest points

Search method: Sliding window over image pyramid

Distance function:Hamming

Robustness: 4 (illumination, scale, rotation, viewpoint)

RIFF, CHOG

The rotation-invariant fast features (RIFF) [185] method is motivated by tracking and mapping

applications in mobile augmented reality. The basis of the RIFF method includes the development

of a radial gradient transform (RGT), which expresses gradient orientation and magnitude in a

compute-efficient and rotationally invariant fashion. Another contribution of RIFF is a tracking

method, which is reported to be more accurate than KLT with 26× better performance. RIFF is

reported to be 15× faster than SURF.

RIFF uses a HOG descriptor computed at FAST interest points located in scale space and generally

follows the method of the author’s previous work in CHOG [171] (compressed HOG) for reduced

dimensionality, low bitrate binning. Prior to binning the HOG gradients, a radial gradient transform

(RGT) is used to create a rotationally invariant gradient format. As shown in Fig. 6.27 (left image), the

RGT uses two orthogonal basis vectors (r, t) to form the radial coordinate system that surrounds the

patch center point c, and the HOG gradient g is projected onto (r, t) to express as the rotationally

invariant vector (gT r, gT t). A vector quantizer and a scalar quantizer are both suggested and used for

binning, illustrated in Fig. 6.27.

258 6 Feature Detector and Feature Descriptor Survey

c

p

t

g

r

p

t’

g’

r’

�

SQ-25 quantizer VQ-17 quantizer ARGTAnnuliRadial gradients

Fig. 6.27 Concepts behind the RIFF descriptor [185], based partially on CHOG [187]

As shown in Fig. 6.27 (right image), the basis vectors can be optimized by using gradient direction

approximations in the approximated radial gradient transform (ARGT), which is optimized to be easily

computed using simple differences between adjacent, normalized pixels along the same gradient line,

and simple 45° quantization. Also note in Fig. 6.27 (center left image) that the histogramming is

optimized by sampling every other pixel within the annuli regions, and four annuli regions are used for

practical reasons as a trade-off between discrimination and performance. To meet real-time system

performance goals for quantizing the gradient histogram bins, RIFF uses a 5 × 5 scalar quantizer rather

than a vector quantizer.

In Fig. 6.27 (left image), the gradient projection of g at point c onto a radial coordinate system (r, t)

is used for a rotationally invariant gradient expression, and the descriptor patch is centered at c. The

center left image (Annuli) illustrates the method of binning, using four annuli rings, which reduces

dimensionality, and sampling only the gray pixels provides a 2× speedup. The center and center right

images illustrate the bin centering mechanism for histogram quantization: (1) the more flexible scalar

quantizer SQ-25 and (2) the faster vector quantizer VQ-17. The right image illustrates the radial

coordinate system basis vectors for gradient orientation radiating from the center outwards, showing

the more compute efficient ARGT, or approximated radial gradient transform (RGT), which does not

use floating point math (RGT not shown, see [185]).

RIFF Summary Taxonomy

Spectra: Local region histogram of approximated radial gradients

Feature shape: Circular

Feature pattern: Sparse every other pixel

Feature density: Sparse at FAST interest points over image pyramid

Search method: Sliding window

Distance function: Symmetric KL-divergence

Robustness: 4 (illumination, scale, rotation, viewpoint)

Chain Code Histograms

A chain code histogram (CCH) [172] descriptor records the shape of the perimeter as a histogram by

binning the direction of the connected components—connected perimeter pixels in this case. As the

perimeter is traversed pixel by pixel, the direction of the traversal is recorded as a number, as shown in

Fig. 6.28, and recorded in a histogram feature. To match the CCH features, SSD or SAD distance

metrics can be used.

Feature Descriptor Survey 259

Fig. 6.28 Chain code process for making a histogram. (Left to right) (1) The eight possible directions that the connected

perimeter may change. (2) Chain code values for each connected perimeter direction change; direction for determining

the chain code value is starting from the center pixel. (3) An object with a connected perimeter highlighted by black

pixels. (4) Chain code for the object following the connected perimeter starting at the top pixel. 5. Histogram of all the

chain code values

Chain code histograms are covered by U.S. Patent US4783828. CCH was invented in 1961 [172]

and is also known as the Freeman chain code. A variant of the CCH is the vertex chain code [173],

which allows for descriptor size reduction and is reported to have better accuracy.

D-NETS

The D-NETS (Descriptor-NETS) [106] approach developed by Hundelshausen and Sukthankar

abandons patch or rectangular descriptor regions in favor of a set of strips connected at endpoints.

D-NETS allows for a family of strip patterns composed of directed graphs between a set of endpoints;

it does not specifically limit the types of endpoints or strip patterns that may be used. The D-NETS

paper provides a discussion of results from three types of patterns:

• Clique D-NETS: A fully connected network of strips linking all the interest points. While the type

of interest point used may vary within the method, the initial work reports results using SIFT

keypoints.

• Iterative D-NETS: Dynamically creates the network using a subset of the interest points, increas-

ing the connectivity using a stopping criterion to optimize the connection density for obtaining

desired matching performance and accuracy.

• Densely Sampled D-NETS: This variant does not use interest points, and instead densely samples

the nets over a regularly spaced grid, a 10-pixel grid being empirically chosen and preferred, with

some hysteresis or noise added to the grid positions to reduce pathological sampling artifacts. The

dense method is suitable for highly parallel implementations for increased performance.

For an illustration of the three D-NETS patterns and some discussion, see Fig. 4.8.

Each strip is an array of raw pixel values sampled between two points. The descriptor itself is

referred to as a d-token, and various methods for computing the d-token are suggested, such as binary

comparisons among pixel values in the strip similar to FERNS or ORB, as well as comparing the 1D

Fourier transforms of strip arrays, or using wavelets. The best results reported are a type of empirically

engineered d-token, created as follows:

• Strip vector sampling, where each pixel strip vector is sampled at equally spaced locations

between 10% and 80% of the length of the pixel strip vector; this sampling arrangement was

determined empirically to ignore pixels near the endpoints.

• Quantize the pixel strip vector by integrating the values into a set of uniform chunks, s, to reduce

noise.

• Normalize the strip vector for scaling and translation.

260 6 Feature Detector and Feature Descriptor Survey

• Discretize the vector values into a limited bit range, b.

• Concatenate all uniform chunks into the d-token, which is a bit string of length s × b.

Descriptor matching makes use of an efficient and novel hashing and hypothesis correspondence

voting method. D-NETS results are reported to be higher in precision and recall than ORB or SIFT.

D-NETS Summary Taxonomy

Spectra: Normalized, averaged linear pixel intensity chunks

Feature shape: Line segment connected networks

Feature pattern: Sparse line segments between chosen points

Feature density: Sparse along lines

Search method: Sliding window

Distance function: Hashing and voting

Robustness: 5 (illumination, scale, rotation, viewpoint, occlusion)

Local Gradient Pattern

A variation of the LBP approach, the local gradient pattern (LGP) [170], uses local region gradients

instead of local image intensity pair comparison to form the binary descriptor. The 3 × 3 gradient of

each pixel in the local region is computed, then each gradient magnitude is compared to the mean value

of all the local region gradients, and the binary bit value of 1 is assigned if the value is greater, and

0 otherwise. The authors claim accuracy and discrimination improvements over the basic LBP in face

recognition algorithms, including a reduction in false positives. However, the compute requirements

are greatly increased due to the local region gradient computations.

LGP Summary Taxonomy

Spectra: Local region gradient comparisons between center pixel and local region gradients

Feature shape: Square

Feature pattern: Every pixel 3 × 3 kernel region

Feature density: Dense in 3 × 3 region

Search method: Sliding window

Distance function: Hamming

Robustness: 3 (illumination, scale, rotation)

Local Phase Quantization

The local phase quantization (LPQ) descriptor [137–139] was designed to be robust to image blur, and

it leverages the blur-insensitive property of Fourier phase information. Since the Fourier transform is

required to compute phase, there is some compute overhead; however, integer DFT methods can be

used for acceleration. LPQ is reported to provide robustness for uniform blur, as well as uniform

illumination changes. LPQ is reported to provide equal or slightly better accuracy on nonblurred

images than LBP and Gabor filter bank methods. While mainly used for texture description, LPQ can

also be used for local feature description to add blur invariance by combining LPQ with another

descriptor method such as SIFT.

To compute, first a DFT is computed at each pixel over small regions of the image, such as 8 × 8

blocks. The low four frequency components from the phase spectrum are used in the descriptor. The

authors note that the kernel size affects the blur invariance, so a larger kernel block may provide more

invariance at the price of increased compute overhead.

Feature Descriptor Survey 261

Before quantization, the coefficients are de-correlated using a whitening transform, resulting in a

uniform phase shift and 8° rotation, which preserves blur invariance. De-correlating the coefficients

helps to create samples that are statistically independent for better quantization.

For each pixel, the resulting vectors are quantized into an 8-dimensional space, using an 8-bit binary

encoded bit vector like the LBP and a simple scalar quantizer to yield 1 and 0 values. Binning into the

feature vector is performed using 256 hypercubes derived from the 8-dimensional space. The resulting

feature vector is a 256-dimensional 8-bit code.

LPQ Summary Taxonomy

Spectra: Local region whitened phase using DFT → an 8-bit binary code

Feature shape: Square

Feature pattern: 8 × 8 kernel region

Feature density: Dense every pixel

Search method: Sliding window

Distance function: Hamming

Robustness: 3 (contrast, brightness, blur)

Basis Space Descriptors

This section covers the use of basis spaces to describe image features for computer vision applications.

A basis space is composed of a set of functions, the basis functions, which are composed together as a

set, such as a series like the Fourier series (discussed in Chap. 3). A complex signal can be decomposed

into a chosen basis space as a descriptor.

Basis functions can be designed and used to describe, reconstruct, or synthesize a signal. They

require a forward transform to project values into the basis set and an inverse transform to move data

back to the original values. A simple example is transforming numbers between the base 2 number

system and the base 10 number system; each basis had advantages.

Sometimes, it is useful to transform a dataset from one basis space to another to gain insight into the

data, or to process and filter the data. For example, images captured in the time domain as sets of pixels

in a Cartesian coordinate system can be transformed into other basis spaces, such as the Fourier basis

space in the frequency domain, for processing and statistical analysis. A good basis space for computer

vision applications will provide forward and inverse transforms. Again, the Fourier transform meets

these criteria, as well as several other basis spaces.

Basis spaces are similar to coordinate systems, since both have invertible transforms to related

spaces. In some cases, simply transforming a feature spectra into another coordinate system makes

analysis and representation simpler and more efficient. (Chapter 4 discusses coordinate systems used

for feature representation.) Several of the descriptors surveyed in this chapter use non-Cartesian

coordinate systems, including GLOH, which uses polar coordinate binning, and RIFF, which uses

radial coordinate descriptors.

Fourier Descriptors

Fourier descriptors [191] represent feature data as sine and cosine terms, which can be observed in a

Fourier power spectrum. The Fourier series, Fourier transform, and fast Fourier transform are used for

a wide range of signal analysis, including 1D, 2D, and 3D problems. No discussion of image

processing or computer vision is complete without Fourier methods, so we will explore Fourier

methods here with applications to feature description.

262 6 Feature Detector and Feature Descriptor Survey

Instead of developing the mathematics and theory behind the Fourier series and Fourier transform,

which has been done very well in the standard text by Bracewell [191], we discuss applications of the

Fourier power spectrum to feature description and provide minimal treatment of the fundamentals here

to frame the discussion; see also Chap. 3. The basic idea behind the Fourier series is to define a series of

sine and cosine basis functions in terms of magnitude and phase, which can be summed to approximate

any complex periodic signal. Conversely, the Fourier transform is used to decompose a complex

periodic signal into the Fourier series set of sine and cosine basis terms. The Fourier series components

of a signal, such as a line or 2D image area, are used as a Fourier descriptor of the region.

For this discussion, a Fourier descriptor is the selected components from a Fourier power

spectrum—typically, we select the lower-frequency components, which carry most of the power.

Here are a few examples using Fourier descriptors; note that either or both the Fourier magnitude and

phase may be used.

• Fourier Spectrum of LBP Histograms. As shown in Fig. 3.10, an LBP histogram set can be

represented as a Fourier spectrum magnitude, which makes the histogram descriptor invariant to

rotation.

• Fourier Descriptor of Shape Perimeter. As shown in Fig. 6.29, the shape of a polygon object can

be described by Fourier methods using an array of perimeter to centroid line segments taken at

intervals, such as 10°. The array is fed into an FFT to produce a shape descriptor, which is scale and

rotation-invariant.

• Fourier Descriptor of Gradient Histograms. Many descriptors use gradients to represent features

and use gradient magnitude or direction histograms to bin the results. Fourier spectrum magnitudes

may be used to create a descriptor from gradient information to add invariance.

• Fourier Spectrum of Radial Line Samples. As used in the RFAN descriptor [107], radial line

samples of pixel values from local regions can be represented as a Fourier descriptor of Fourier

magnitudes.

• Fourier Spectrum Phase. The LPQ descriptor, described in this chapter, makes use of the Fourier

spectrum phase information in the descriptor, and the LPQ is reported to be insensitive to blur

owing to the phase information.

Fig. 6.29 (Left) Polygon shape major and minor axis and bounding box. (Center) Object with radial sample length taken

from the centroid to the perimeter, each sample length saved in an array, normalized. (Right) Image fed into the Fourier

spectrum to yield a Fourier descriptor

Feature Descriptor Survey 263

Other Basis Functions for Descriptor Building

Besides the Fourier basis series, other function series and basis sets are used for descriptor building,

pattern recognition,, and image coding. However, such methods are usually applied over a global or

regional area. See Chap. 3 for details on several other methods.

Sparse Coding Methods

Any of the local feature descriptor methods discussed in this chapter may be used as the basis for a

sparse codebook, which is a collection of descriptors boiled down to a representative set. Sparse coding

and related methods are discussed in more detail in Chap. 10. Interesting examples are found in the

work by Aharon, Elad, and Bruckstein [461] as well as Fei-Fei, Fergus, and Torralba [462]. See

Fig. 6.30.

Fig. 6.30 One method of feature learning using sparse coding, showing how histograms of sparse codes (HSC) are

constructed from a set of learned sparse codes. The HSC method [98] is reported to outperform HOG in many cases

Polygon Shape Descriptors

Polygon shape descriptors compute a set of shape features for an arbitrary polygon or blob, and the

shape is described using statistical moments or image moments (as discussed in Chap. 3). These shape

features are based on the perimeter of the polygon shape. The methods used to delineate image

perimeters to highlight shapes prior to measurement and description are often complex, empirically

tuned pipelines of image preprocessing operations, like thresholding, segmentation, and morphology

(as discussed in Chap. 2). Once the polygon shapes are delineated, the shape descriptors are computed;

see Fig. 6.31. Typically, polygon shape methods are applicable to larger region size features. In the

literature, this topic may also be discussed as image moments. For a deep dive into the topic of image

moments, see Flusser et al. [444].

264 6 Feature Detector and Feature Descriptor Survey

Fig. 6.31 Polygon shape descriptors. (Left) Malachite pieces. (Right) Polygon shapes defined and labeled after binary

thresholding, perimeter tracing, and feature labeling. (Image processing and particle analysis performed using ImageJ

Fiji)

Polygon shape methods are commonly used in medical and industrial applications, such as

automated microscopy for cell biology, and also for industrial inspection; see Fig. 6.31. Commercial

software libraries are available for polygon shape description, commonly referred to as particle

analysis or blob analysis. See Appendix C.

MSER Method

The Maximally Stable Extremal Regions (MSER) method [160] is usually discussed in the literature as

an interest region detector and in fact it is. However, we include MSER in the shape descriptor section

because MSER regions can be much larger than other interest point methods, such as HARRIS

or FAST.

The MSER detector was developed for solving disparity correspondence in a wide baseline stereo

system. Stereo systems create a warped and complex geometric depth field, and depending on the

baseline between cameras and the distance of the subject to the camera, various geometric effects must

be compensated for. In a wide baseline stereo system, features nearer the camera are more distorted

under affine transforms, making it harder to find exact matches between the left/right image pair. The

MSER approach attempts to overcome this problem by matching on blob-like features. MSER regions

are similar to morphological blobs and are fairly robust to skewing and lighting. MSER is essentially

an efficient variant of the watershed algorithm, except that the goal of MSER is to find a range of

thresholds that leave the watershed basin unchanged in size.

The MSER method involves sorting pixels into a set of regions based on binary intensity

thresholding; regions with similar pixel value over a range of threshold values in a connected

component pattern are considered maximally stable. To compute a MSER, pixels are sorted in a

binary intensity thresholding loop, which sweeps the intensity value from min to max. First, the binary

threshold is set to a low value such as zero on a single image channel—luminance, for example. Pixels

< the threshold value are black, and pixels ≥ are white. At each threshold level, a list of connected

components or pixels is kept. The intensity threshold value is incremented from 0 to the max pixel

value. Regions that do not grow or shrink or change as the intensity varies are considered maximally

stable, and the MSER descriptor records the position of the maximal regions and the corresponding

thresholds.

Feature Descriptor Survey 265

In stereo applications, smaller MSER regions are preferred and correlation is used for the final

correspondence, and similarity is measured inside a set of circular MSER regions at chosen rotation

intervals. Some interesting advantages of the MSER include the following:

• Multiscale features and multiscale detection. Since the MSER features do not require any image

smoothing or scale space, both coarse features and fine-edge features can be detected.

• Variable-size features computed globally across an entire region, not limited to patch size or search

window size.

• Affine transform invariance, which is a specific goal.

• General invariance to shape change, and stability of detection, since the extremal regions tend to be

detected across a wide range of image transformations.

The MSER can also be considered the basis for a shape descriptor and as an alternative to

morphological methods of segmentation. Each MSER region can be analyzed and described using

shape metrics, as discussed later in this chapter.

Object Shape Metrics for Blobs and Polygons

Object shape metrics are powerful and yield many degrees of freedom with respect to invariance and

robustness. Object shape metrics are not like local feature metrics, since object shape metrics can

describe much larger features. This is advantageous for tracking from frame to frame. For example, a

large object described by just a few simple object shape metrics such as area, perimeter, and centroid

can be tracked from frame to frame under a wide range of conditions and invariance. For more

information, see Refs. [100, 101] for a survey of 2D shape description methods.

Shape can be described by several methods, including the following:

• Object Shape Moments and Metrics: the focus of this section.

• Image Moments: see Chap. 3 under “Image Moments.”

• Fourier Descriptors: discussed in this chapter and Chap. 3.

• Shape Context Feature Descriptor: discussed in this section.

• Chain Code Descriptor for Perimeter Description: discussed in this section.

Object shape is closely related to the field of morphology, and computer methods for morphological

processing are discussed in detail in Chap. 2. Also, see the discussion about morphological interest

points earlier in this chapter.

In many areas of computer vision research, local features seem to be favored over object shape-

based features. The lack of popularity of shape analysis methods may be a reaction to the effort

involved in creating preprocessing pipelines of filtering, morphology, and segmentation to prepare the

image for shape analysis. If the image is not preprocessed and prepared correctly, shape analysis is not

possible. (See Chap. 8 for a discussion of a hypothetical shape analysis preprocessing pipeline.)

Polygon shape metrics can be used for virtually any scene analysis application to find common

objects and take accurate measurements of their size and shape; typical applications include biology

and manufacturing. In general, most of the polygon shape metrics are rotational and scale-invariant.

Table 6.7 provides a sampling of some of the common metrics that can be derived from region shapes,

both binary shapes and grayscale shapes.

Shape is considered to be binary; however, shape can be computed around intensity channel objects

as well, using grayscale morphology. Perimeter is considered a set of connected components. The

shape is defined by a single pixel wide perimeter at a binary threshold or within an intensity band, and

pixels are either on, inside, or outside of the perimeter. The perimeter edge may be computed by

scanning the image, pixel by pixel, and examining the adjacent touching pixel neighbors for connec-

tivity. Or, the perimeter may be computed from the shape matrix [284] or chain code discussed earlier

in this chapter. Perimeter length is computed for each segment (pixel), where segment length = 1 for

horizontal and vertical neighbors and 2
p

otherwise for diagonal neighbors.

266 6 Feature Detector and Feature Descriptor Survey

Table 6.7 Various common object shape and blob object metrics

Description

Object binary shape metrics

Perimeter Length of all points around the edge of the object, including the sum of diagonal

lengths ≃1.4 and adjacent lengths = 1

Area Total area of object in pixels

Convex hull Polygon shape or set of line segments enclosing all perimeter points

Centroid Center of object mass, average value of all pixel coordinates or average value of all

perimeter coordinates

Fourier descriptor Fourier spectrum results from an array containing the length of a set of radial line

segments passing from centroid to perimeter at regular angles used to model a 1D

signal function, the 1D signal function is fed into a 1D FFT, and the set of FFT

magnitude data is used as a metric for a chosen set of octave frequencies

Major/minor axis Longest and shortest line segments passing through centroid contained within and

touching the perimeter

Feret Largest caliper diameter of object

Breadth Shortest caliper diameter

Aspect ratio Feret/breadth

Circularity 4 × Pi × Area/Perimeter2

Roundness 4 × Area/(Pi × Feret2)

(Can also be calculated from the Fourier descriptors)

Area equivalent diameter sqrt((4/Pi) × Area)

Perimeter equivalent diameter Area/Pi

Equivalent ellipse (Pi × Feret × Breadth)/4

Compactness sqrt((4/Pi) × Area)/Feret

Solidity Area/Convex_Area

Concavity Convex_Area-Area

Convexity Convex_Hull/Perimeter

Shape Perimeter2 /Area

Modification ratio (2 × MinR)/Feret

Shape matrix A 2D matrix representation or plot of a polygon shape (may use Cartesian or polar

coordinates; see Fig. 6.32)

Grayscale object shape metrics

SDM plots a See Chap. 3, “Texture Metrics” section

Scatter plots a See Chap. 3, “Texture Metrics” section

Statistical moments of grayscale

pixel values

MinimumMaximumMedianAverageAverage deviationStandard

deviationVarianceSkewnessKurtosisEntropy
a Note: Some of binary object metrics also apply to grayscale objects

The perimeter may be used as a mask, and grayscale or color channel statistical metrics may be

computed within the region. The object area is the count of all the pixels inside the perimeter. The

centroid may be computed either from the average of all (x, y) coordinates of all points contained

within the perimeter area, or from the average of all perimeter (x, y) coordinates.

Shape metrics are powerful. For example, shape metrics may be used to remove or excluding

objects from a scene prior to measurement. For example, objects can be removed from the scene when

the area is smaller than a given size, or if the centroid coordinates are outside a given range.

Feature Descriptor Survey 267

As shown in Fig. 6.29 and Table 6.2, the Fourier descriptor provides a rotation and scale-invariant

shape metric, with some occlusion invariance also. The method for determining the Fourier descriptor

is to take a set of equally angular-spaced radius measurements, such as every 10°, from the centroid out

to points on the perimeter, and then to assemble the radius measurements into a 1D array that is run

through a 1D FFT to yield the Fourier moments of the object. Or radial pixel spokes can be used as a

descriptor.

Other examples of useful shape metrics, shown in Fig. 6.29, include the bounding box with major

and minor axis, which has longest and shortest diameter segments passing through the centroid to the

perimeter; this can be used to determine rotational orientation of an object.

The SNAKES method [465] uses a spline model to fit a collection of interest points, such as selected

perimeter points, into a region contour. The interest points are the spline points. The SNAKE can be

used to track contoured features from frame to frame, deforming around the interest point locations.

In general, the 2D object shape methods can be extended to 3D data; however, we do not explore 3D

object shape metrics here, see Refs. [166, 167] for a survey of 3D shape descriptors.

Shape Context

The shape context method developed by Belongie, Malik, and Puzicha [201–203] describes local

feature shape using a reference point on the perimeter as the Cartesian axis origin, and binning selected

perimeter point coordinates relative to the reference point origin. The relative coordinates of each point

are binned into a log-polar histogram. Shape context is related to the earlier shape matrix descriptor

[284] developed in 1985 as shown in Fig. 6.32, which describes the perimeter of an object using

log-polar coordinates also. The shape context method provides for variations, described in several

papers by the authors [201–203]. Here, we look at a few key concepts.

Fig. 6.32 A shape matrix descriptor [284] for the perimeter of an object. (Left two images) Cartesian coordinate shape

matrix. (Right two images) polar coordinate shape matrix using three rows of eight numbered bin regions, and gray boxes

represent pixels to be binned. Note that multiple shape matrices can be used together. Values in matrix are set if the pixel

fills at least half of the bin region, and no interpolation is used

To begin, the perimeter edge of the object is sparsely sampled at uniform intervals, typically

keeping about 100 edge sample points for coarse binning. Sparse perimeter edge points are typically

distinct from interest points and found using perimeter tracing. Next, a reference point is chosen on the

perimeter of the object as the origin of a Cartesian space, and the vector angle and magnitude (r, θ)

from the origin point to each other perimeter point are computed. The magnitude or distance is

normalized to fit the histogram. Each sparse perimeter edge point is used to compute a tangent with

the origin. Finally, each normalized vector is binned using (r, θ) into a log-polar histogram, which is

called the shape context.

268 6 Feature Detector and Feature Descriptor Survey

An alignment transform is generated between descriptor pairs during matching, which yields the

difference between targets and chosen patterns, and could be used for reconstruction. The alignment

transform can be chosen as desired from affine, Euclidean, spline-based, and other methods. Corre-

spondence uses the Hungarian method, which includes histogram similarity, and is weighted by the

alignment transform strength using the tangent angle dissimilarity. Matching may also employ a local

appearance similarity measure, such as normalized correlation between patches or color histograms.

The shape context method provides a measure of invariance over scale, translation, rotation,

occlusion, and noise. See Fig. 6.33.

Fig. 6.33 Shape context method. (Left) Perimeter points are measured as a shape vector, both angle and distance, with

respect to a chosen perimeter point as the reference Cartesian origin. (Right) Shape vectors are binned into a log-polar

histogram feature descriptor

3D, 4D, Volumetric, and Multimodal Descriptors

With the advent of more and more 3D sensors, such as stereo cameras and other depth-sensing

methods, as well as the ubiquitous accelerometers and other sensors built into inexpensive mobile

devices, the realm of 3D feature description and multimodal feature description is beginning to

blossom.

Many 3D descriptors are associated with robotics research and 3D localization. Since the field of 3D

feature description is early in the development cycle, it is not yet clear which methods will be widely

adopted, so we present only a small sampling of 3D descriptor methods here. These include 3D HOG

[162], 3D SIFT [161], and HON 4D [164], which are based on familiar 2D methods. We refer the

interested reader to Refs. [166, 167, 182] for a survey of 3D shape descriptors. Several interesting 3D

descriptor metrics are available as open source in the Point Cloud Library,2 including Radius-Based

2 http://pointclouds.org.

http://pointclouds.org

Surface Descriptors (RSD) [464], Principal Curvature Descriptors (PCD), Signatures of Histogram

Orientations (SHOT) [466], Viewpoint Feature Histogram (VFH) [330], and Spin Images [463].

Feature Descriptor Survey 269

Some noteworthy 3D descriptors we do not survey include 3D ShapeNets by Wu [789], 3D voxel

patterns [790], triangular surface patches [791], 3D surface patch features [791], and Refs. [792–

796]. Applications driving the research into 3D descriptors include robotics and activity recognition,

where features are tracked frame to frame as they morph and deform. The goals are to localize position

and recognize human actions, such as walking, waving a hand, turning around, or jumping. See also

the LBP variants for 3D: V-LBP and LBP-TOP, which are surveyed earlier in this chapter as illustrated

in Fig. 6.12, which are also used for activity recognition. Since the 2D features are moving during

activity recognition, time is the third dimension incorporated into the descriptors. We survey some

notable 3D activity recognition research here.

One of the key concepts in the action recognition work is to extend familiar 2D features into a 3D

space that is spatiotemporal, where the 3D space is composed of 2D x, y video image sequences over

time t into a volumetric representation with the form v(x, y, t). In addition, the 3D surface normal, 3D

gradient magnitude, and 3D gradient direction are used in many of the action recognition descriptor

methods.

The development of 3D descriptors is continuing, which is beyond the scope of this brief introduc-

tion. However, for the interested reader, we mention recent work in the areas of volumetric shape

descriptors, depth image surface shape descriptors, and 3D reconstruction using depth-based landmark

detectors, which can be found in Refs. [789–796].

3D HOG

The 3D HOG [162] is partially based on some earlier work in volumetric features [165]. The general

idea is to employ the familiar HOG descriptor [80] in a 3D HOG descriptor formulation, using a stack

of sequential 2D video frames or slices as a 3D volume, and to compute spatiotemporal gradient

orientation on adjacent frames within the volume. For efficiency, a novel integral video approach is

developed as an alternative to image pyramids based on the same line of thinking as the integral image

approach used in the Viola–Jones method.

A similar approach using the integral video concept was also developed in [165] using a

subsampled space of 64 × 64 over 4–40 video frames in the volume, using pixel intensity instead of

the gradient direction. The integral video method, which can also be considered an integral volume

method, allows for arbitrary cuboid regions from stacked sequential video frames to be integrated

together to compute the local gradient orientation over arbitrary scales. This is space-efficient and time-

efficient compared to using precomputed image pyramids. In fact, this integral video integration

method is a novel contribution of the work and may be applied to other spectra such as intensity,

color, and gradient magnitude in either 2D or 3D to eliminate the need for image pyramids—providing

more choices in terms of image scale besides just octaves.

The 3D HOG descriptor computations are illustrated in Fig. 6.34. To find feature keypoints to

anchor the descriptors, a space-time extension of the Harris operator [163] is used, and then, a

histogram descriptor is computed from the mean of the oriented gradients in a cubic region at the

keypoint. Since gradient magnitude is sensitive to illumination changes, gradient orientation is used

instead to provide invariance to illumination, and it is computed over 3D cuboid regions using simple

x, y, z derivatives. The mean gradient orientation of any 3D cuboid is computed quickly using the

integral video method. Gradient orientations are quantized into histogram bins via projection of each

vector onto the faces of a regular icosahedron 20-sided shape to combine all vectors, as shown in

Fig. 6.34. The 20 icosahedron faces act as the histogram bins. The sparse set of spatiotemporal features

is combined into a bag of features or bag of words in a visual vocabulary.

270 6 Feature Detector and Feature Descriptor Survey

Fig. 6.34 HOG 3D descriptor computation. (Left) 2 × 2 × 2 descriptor cell block. (Left center) Gradient orientation

histogram computed over 2 × 2 × 2 cell sub-blocks. (Right center) Gradient orientations quantized by projecting the

vector intersection to the faces of a 20-faceted icosahedron. (Right) Mean gradient orientation computed over integral

video blocks (volume vector integral)

HON 4D

A similar approach to the 3D HOG is called HON 4D [164], which computes descriptors as Histogram

of Oriented 4D Normals, where the 3D surface normal + time add up to four dimensions (4D). HON

4D uses sequences of depth images or 3D depth maps as the basis for computing the descriptor, rather

than 2D image frames, as in the 3D HOG method. So, a depth camera is needed. In this respect, HON

4D is similar to some volume rendering methods, which compute 3D surface normals, and may be

accelerated using similar methods [382–384].

In the HON 4D method, the surface normals capture the surface shape cues of each object, and

changes in normal orientation over time can be used to determine motion and pose. Only the

orientation of the surface normal is significant in this method, so the normal lengths are all normalized

to unity length. As a result, the binning into histograms acts differently from the HOG style binning, so

that the fourth dimension of time encodes differences in the gradient from frame to frame. The HON

4D descriptor is binned and quantized using 4D projector functions, which quantize local surface

normal orientation into a 600-cell polychron, which is a geometric extension of a 2D polygon into four-

space.

Consider the discrimination of the HON 4D method using gradient orientation vs. the HOG method

using gradient magnitude. If two surfaces are the same or similar with respect to gradient magnitude,

the HOG style descriptor cannot differentiate; however, the HON 4D style descriptor can differentiate

owing to the orientation of the surface normal used in the descriptor. Of course, computing 3D normals

is compute-intensive without special optimizations considering the noncontiguous memory access

patterns required to access each component of the volume.

3D SIFT

The 3D SIFT method [161] starts with the 2D SIFT feature method and reformulates the feature

binning to use a volumetric spatiotemporal area v(x,y,t), as shown in Fig. 6.35.

Feature Descriptor Survey 271

�

�

Fig. 6.35 Computation of the 3D SIFT [161] vector histogram bins as a combination of the combined gradient

orientation of the sub-volumes in a volume space or 3D spatiotemporal region of three consecutive 2D image frames

The 3D orientation of the gradient pair orientation is computed as follows:

m3D x, y, tð Þ ¼ L2 x þ L2 y þ L2 t

θ x, y, tð Þ ¼ tan - 1 Ly

Lx

ϕ x, y, tð Þ ¼ tan - 1 Lyt

L2 x þ L2y

This method provides a unique two-valued (ϕ, θ) representation for each angle of the gradient

orientation in three-space at each keypoint. The binning stage is handled differently from SIFT and

instead uses orthogonal bins defined by meridians and parallels in a spherical coordinate space. This is

simpler to compute, but requires normalization of each value to account for the spherical difference in

the apparent size ranging from the poles to the equator.

To compute the SIFT descriptor, the 3D gradient orientation of each sub-histogram is used to guide

rotation of the 3D region at the descriptor keypoint to point to 0, which provides a measure of rotational

invariance to the descriptor. Each point will be represented as a single gradient magnitude and two

orientation vectors (ϕ, θ) instead of one, as in 2D SIFT. The descriptor binning is computed over three

dimensions into adjacent cubes instead of over two dimensions in the 2D SIFT descriptor.

Once the feature vectors are binned, the feature vector set is clustered into groups of like features, or

words, using hierarchical K-means clustering into a spatiotemporal word vocabulary. Another step

beyond the clustering could be to reduce the feature set using sparse coding methods [89–91], but the

sparse coding step is not attempted.

272 6 Feature Detector and Feature Descriptor Survey

Results using 3D SIFT for action recognition are reported to be quite good compared to other

similar methods; see Ref. [161].

Summary

In this chapter, we survey a wide range of local interest point detectors and feature descriptor methods

to learn “what” practitioners are doing, including both 2D and 3D methods. The vision taxonomy from

Chap. 5 is used to divide the feature descriptor survey along the lines of descriptor families, such as

local binary methods, spectra methods, and polygon shape methods. There is some overlap between

local and regional descriptors; however, this chapter tries to focus on local descriptor methods, leaving

regional methods to Chap. 3. Local interest point detectors are discussed in a simple taxonomy

including intensity-based regions methods, edge-based region methods, and shape-based region

methods, including background on key concepts and mathematics used by many interest point detector

methods. Some of the difficulties in choosing an appropriate interest point detector are discussed, and

several detector methods are surveyed.

This chapter also highlights retrofits to common descriptor methods. For example, many descriptors

are retrofitted by changing the descriptor spectra used, such as LBP vs. gradient methods, or by

swapping out the interest point detector for a different method. Summary information is provided for

feature descriptors following the taxonomy attributes developed in Chap. 5 to enable limited

comparisons, using concepts from the analysis of local feature description design concepts presented

in Chap. 4.

Learning Assignments

1. Interest points, or keypoints, are located in images at locations such as maxima and minima.

Describe the types of maxima and minima features found in images.

2. Interest point detectors must be selected and parametrically tuned to give best results. Describe

various approaches to select and tune interest point detectors for a range of different types of

images.

3. Describe your favorite interest point detector, discuss the advantages compared to other detectors,

and describe the basic algorithm.

4. Describe and summarize the names of as many interest point detectors as you can remember, and

describe the basic concepts and goals of each algorithm.

5. An interest point adapter function can be devised to help tune interest point parameters to

automatically find better interest points. Select an interest point detector of your choice, describe

how the interest point detector algorithm works using pseudo-code, describe each parameter to the

interest point function, describe the image search pattern the adapter could use, and describe

parameters to control region size and iterations. (See also assignment 6 below.)

6. Write an interest point adapter function using your favorite interest point detector in your favorite

programming language, and provide test results.

7. Describe how the local binary pattern (LBP) algorithm works using pseudo-code.

8. List a few applications for the local binary pattern.

9. Describe how the local binary pattern can be stored in a rotationally invariant format.

10. Compare local binary pattern algorithms including Brief, Brisk, Orb, and Freak, and highlight the

differences in the pixel region sampling patterns.

11. List the distance function most applicable to local binary descriptors, and how it can be optimized.

12.

Learning Assignments 273

Describe the basic SIFT algorithm, highlighting the scales over which the pixel regions are

sampled, the algorithm for detecting interest points, the algorithm for computing the feature

descriptor, and the summary information stored in the descriptor.

13. Describe at least one enhancement to the basic SIFT algorithm, such as SIFT-PCA and SIFT-

GLOH, SIFT-SIFER, or RootSIFT, and highlight the major improvements provided by the

enhancement.

14. Describe the pixel patch region shape and sizes used in the SIFT algorithm, and describe how the

pixel samples are weighted within the region.

15. Discuss the SURF feature descriptor algorithm.

16. Compare the local binary feature descriptors ORB, FREAK, and BRISK.

17. Describe how HAAR-like features are used in feature description, draw or describe a few example

HAAR-like features, and discuss how HAAR features are related to wavelets.

18. Describe integral images, how they are built, and discuss why integral images can be used to

optimize working with HAAR filters.

19. Describe the Viola–Jones feature classification funnel and pipeline.

20. Design an algorithm to compute gradient histograms from a local region, describe how to create a

useful feature descriptor from the gradient histograms, and select a specific distance function that

could be applied to measure correspondence between gradient histograms, and discuss the

strengths and weaknesses of your algorithm.

21. Describe the algorithm for your favorite feature descriptor, discuss the advantages, and provide

simple comparisons to a few other feature descriptors.

22. Describe how a chain code histogram is computed.

23. Describe how a polygon feature shape can be refined (e.g., using morphology operations and

thresholding operations), and then describe the types of feature metrics that can be computed over

polygon shapes.

24. List at least five polygon shape feature metrics and describe how they are computed, including

perimeter and centroid.

Buy the truth and do not sell it.

—Proverbs 23:23

Key topics include:

•

synthetic ground truth dataset

open questions.

What Is Ground Truth Data?

points, corners, feature descriptors, shapes, and histograms, forms a model.

Ground Truth Data Topics, Benchmarks,
Analysis 7

This chapter discusses several topics pertaining to ground truth data, the basis for computer vision

metric analysis. We look at examples to illustrate the importance of ground truth data design and use,

including manual and automated methods. We then illustrate ground truth data by developing a

method and corresponding ground truth dataset for measuring interest point detector response as

compared to human visual system response and human expectations. Also included here are example

applications of the general robustness criteria and the general vision taxonomy developed in Chap. 5 as

applied to the preparation of hypothetical ground truth data. Lastly, we look at the current state of the

art, its best practices, and a survey of available ground truth datasets.

• Creating and collecting ground truth data: manual vs. synthetic methods

• Labeling and describing ground truth data: automated vs. human annotated

• Selected ground truth datasets

• Metrics paired with ground truth data

• Overfitting, underfitting, and measuring quality

• Publically available datasets

An example scenario that compares the human visual system to machine vision detectors, using a

Ground truth data may not be a cutting-edge research area; however, it is as important as the

algorithms for machine vision. Let us explore some of the best-known methods and consider some

In the context of computer vision, ground truth data includes a set of images, and a set of labels on the

images, and defining a model for object recognition as discussed in Chap. 4, including the count,

location, and relationships of key features. The labels are added either by a human or automatically by

image analysis, depending on the complexity of the problem. The collection of labels, such as interest

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_7

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_7&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_7#DOI

•

276 7 Ground Truth Data Topics, Benchmarks, Analysis

For deep learning systems (surveyed in Chap. 10), the training protocols often involve expanding

the training set by including geometric transformations and contrast enhancements to each original

image to create more variations to the training set.

A model may be trained using a variety of machine learning methods. At run-time, the detected

features are fed into a classifier to measure the correspondence between detected features and modeled

features. Modeling, classification, and training are covered elsewhere in this book. Instead, we are

concerned here with the content and design of the ground truth images.

Creating a ground truth dataset, then, may include consideration of the following major tasks:

• Model design. The model defines the composition of the objects—for example, the count, strength,

and location relationship of a set of SIFT features. The model should be correctly fitted to the

problem and image data so as to yield meaningful results.

• Training set. This set is collected and labeled to work with the model, and it contains both positive

and negative images and features. Negatives contain images and features intended to generate false

matches; see Fig. 7.1.

Positive

Images

Negative

Images

All Images

Fig. 7.1 Set of all ground truth data, composed of both positive and negative training examples

Test set. A set of images is collected for testing against the training set to verify the accuracy of the

model to predict the correct matches.

• Classifier design. This is constructed to meet the application goals for speed and accuracy,

including data organization and searching optimizations for the model.

• Training and testing. This work is done using several sets of images to check against ground truth.

Unless the ground truth data contains carefully selected and prepared image content, the algorithms

cannot be measured effectively. Thus, ground-truthing is closely related to root-causing: there is no

way to improve what we cannot measure and do not understand. Being able to root-cause algorithm

problems and understand performance and accuracy are primary purposes for establishing ground truth

data. Better ground truth data will enable better analysis.

Ground truth data varies by task. For example, in 3D image reconstruction or face recognition,

different attributes of the ground truth data must be recognized for each task. Some tasks, such as face

recognition, require segmentation and labeling to define the known objects, such as face locations,

position and orientation of faces, size of faces, and attributes of the face, such as emotion, gender, and

age. Other tasks, such as 3D reconstruction, need the raw pixels in the images and a reference 3D mesh

or point cloud as their ground truth.

General Measures of Quality Performance 277

Ground truth datasets fall into several categories:

• Synthetic produced: Images are generated from computer models or renderings.

• Real produced: A video or image sequence is designed and produced.

• Real selected: Real images are selected from existing sources.

• Machine-automated annotation: Feature analysis and learning method are used to extract features

from the data.

• Human annotated: An expert defines the location of features and objects.

• Combined: Any mixture of the above.

Many practitioners are firmly against using synthetic datasets and insist on using real datasets.

However, deep-learning systems often permute the original data by rotating, scaling, adding noise, and

changing contrast to hopefully add more robustness to the training process. See Chap. 10 for details on

the training protocols for various DNNs and CNNs. In some cases, random ground truth images are

required; in other cases, carefully scripted and designed ground truth images need to be produced,

similar to creating a movie with scenes and actors.

Random and natural ground truth data with unpredictable artifacts, such as poor lighting, motion

blur, and geometric transformation, is often preferred. Many computer problems demand real images

for ground truth, and random variations in the images are important. Real images are often easy to

obtain and/or easy to generate using a video camera or even a cell phone camera. But creating synthetic

datasets is not as clear; it requires knowledge of appropriate computer graphics rendering systems and

tools, so the time investment to learn and use those tools may outweigh their benefits.

However, synthetic computer-generated datasets can be a way to avoid legal and privacy issues

concerning the use of real images.

Previous Work on Ground Truth Data: Art vs. Science

In this section, we survey some literature on ground truth data. We also highlight several examples of

automatic ground truth data labeling, as well as other research on metrics for establishing if, in fact, the

ground truth data is effective. Other research surveyed here includes how closely ground truth features

agree with human perception and expectations, for example, whether or not the edges that humans

detect in the ground truth data are, in fact, found by the chosen detector algorithms.

General Measures of Quality Performance

Compared to other topics in computer vision, little formal or analytic work has been published to guide

the creation of ground truth data. However, the machine learning community provides a wealth of

guidance for measuring the quality of visual recognition between ground truth data used for training

and test datasets. In general, the size of the training set or ground truth data is key to its accuracy [286–

288] and the larger the better, assuming the right data is used.

Key journals to dig deeper into machine learning and testing against ground truth data include the

journal IEEE PAMI for Pattern Analysis and Machine Intelligence, whose articles on the subject go

back to 1979. While the majority of ground truth datasets contain real images and video sequences,

some practitioners have chosen to create synthetic ground truth datasets for various application

domains, such as the standard Middlebury dataset with synthetic 3D images. See Appendix B for

available real ground truth datasets, along with a few synthetic datasets.

278 7 Ground Truth Data Topics, Benchmarks, Analysis

One noteworthy example framework for ground truth data, detector, and descriptor evaluation is the

Mikolajczyk and Schmidt methodology (M&S), discussed later in this chapter. Many computer vision

research projects follow the M&S methodology using a variety of datasets.

Measures of Algorithm Performance

Ericsson and Karlsson [76] developed a ground truth correspondence measure (GCM) for

benchmarking and ranking algorithm performance across seven real datasets and one synthetic dataset.

Their work focused on statistical shape models and boundaries, referred to as polygon shape

descriptors in the vision taxonomy in Chap. 5. The goal was to automate the correspondence between

shape models in the database and detected shapes from the ground truth data using their GCM. Since

shape models can be fairly complex, the goal of automating model comparisons and generating quality

metrics specific to shape description is novel.

Dutagaci et al. [65] developed a framework and method, including ground truth data, to measure the

perceptual agreement between humans and 3D interest point detectors—in other words, do the 3D

interest point detectors find the same interest points as the humans expect? The ground truth data

includes a known set of human-labeled interest points within a set of images, which were collected

automatically by an Internet scraper application. The human-labeled interest points were sorted toward

a consensus set, and outliers were rejected. The consensus criterion was a radius region counting the

number of humans who labeled interest points within the radius. A set of 3D interest point detectors

was ran against the data and compared using simple metrics such as false positives, false negatives, and

a weighted miss error. The ground truth data was used to test the agreement between humans and

machine vision algorithms for 3D interest point detectors. The conclusions included observations that

humans are indecisive and widely divergent about choosing interest points, and also that interest point

detection algorithms are a fuzzy problem in computer vision.

Hamarneh et al. [62] develop a method of automatically generating ground truth data for medical

applications from a reference dataset with known landmarks, such as segmentation boundaries and

interest points. The lack of experts trained to annotate the medical images and generate the ground truth

data motivated the research. In this work, the data was created by generating synthetic images

simulating object motion, vibrations, and other considerations, such as noise. Prastawa et al. [63]

developed a similar approach for medical ground truth generation. Haltakov et al. [437] developed

synthetic ground truth data from an automobile-driving simulator for testing driver assistance

algorithms, which provided situation awareness using computer vision methods.

Vedaldi et al. [64] devised a framework for characterizing affine covariant detectors, using

synthetically generated ground truth as 3D scenes employing ray tracing, including simulated natural

and man-made environments; a depth map was provided with each scene. The goal was to characterize

covariant detector performance under affine deformations, and to design better covariant detectors as a

result. A set of parameterized features were defined for modeling the detectors, including points, disks

and oriented disks, and various ellipses and oriented ellipses. A large number of 3D scenes were

generated, with up to 1000 perspective views, including depth maps and camera calibration informa-

tion. In this work, the metrics and ground truth data were designed together to focus on the analysis of

geometric variations. Feature region shapes were analyzed with emphasis on disks and warped

elliptical disks to discover any correspondence and robustness over different orientations, occlusion,

folding, translation, and scaling. (The source code developed for this work is available.1)

1 See the “VLFeat” open-source project online (http://www.vlfeat.org).

http://www.vlfeat.org

Rosin’s Work on Corners 279

Rosin’s Work on Corners

Research by Rosin [38, 66] involved the development of an analytical taxonomy for ground truth data

pertaining to gray scale corner properties, as illustrated in Fig. 7.2. Rosin developed a methodology

and case study to generate both the ground truth dataset and the metric basis for evaluating the

performance and accuracy of a few well-known corner detectors. The metric is based on the receiver

operating characteristic (ROC) to measure the accuracy of detectors to assess corners vs. noncorners.

The work was carried out over 13,000 synthetic corner images with variations on the synthetic corners

to span different orientations, subtended angles, noise, and scale. The synthetic ground truth dataset

was specifically designed to enable the detection and analysis of a set of chosen corner properties,

including bluntness or shape of apex, boundary shape of cusps, contrast, orientation, and subtended

angle of the corner.

Fig. 7.2 Images

illustrating the Rosin corner

metrics: (Top left) Corner

orientation and subtended

angle. (Top right)

Bluntness. (Bottom left)

Contrast. (Bottom right)

Black/white corner color.

(Images # Paul Rosin and

used by permission [38])

A novel aspect of Rosin’s work was the generation of explicit types of synthetic interest points such

as corners, nonobvious corners, and noncorners into the dataset, with the goal of creating a statistically

interesting set of features for evaluation that diverged from idealized features. The synthetic corners

were created and generated in a simulated optical system for realistic rendering to produce corners with

parameterized variations including affine transformations, diffraction, subsampling, and in some cases,

adding noise. Rosin’s ground truth dataset is available for research use, and has been used for corner

detector evaluation of methods from Kitchen and Rosenfeld, Paler, Foglein, and Illingworth, as well as

the Kittler Detector and the Harris and Stephens Detector.

Similar to Rosin, a set of synthetic interest point alphabets are developed later in this chapter and

tested in Appendix A, including edge and corner alphabets, with the goal of comparing human

perception of interest points against machine vision methods. The synthetic interest points and corners

are designed to test pixel thickness, edge intersections, shape, and complexity. The set diverges

significantly from those of Rosin and others, and attempts to fill a void in the analysis of interest point

detectors. The alphabets are placed on a regular grid, allowing for determining position detection

count.

280 7 Ground Truth Data Topics, Benchmarks, Analysis

Key Questions for Constructing Ground Truth Data

In this section, we identify some key questions to answer for creating ground truth data, rather than

providing much specific guidance or answers. The type of work undertaken will dictate the type of

guidance, for example, published research usually requires widely accepted ground truth data to allow

for peer review and duplication of results. In medical or automobile industries, there may be

government regulations, and also legal issues if competitors publish measurement or performance

data. For example, if a company publishes any type of benchmark results against a ground truth dataset

comparing the results with those of competitor systems, all such data and claims should be reviewed by

an attorney to avoid the complexities and penalties of commerce regulations, which can be daunting

and severe.

For real products and real systems, perhaps the best guidance comes from the requirements,

expectations, and goals for performance and accuracy. Once a clear set of requirements are in place,

then the ground truth selection process can begin.

Content: Adopt, Modify, or Create

It is useful to become familiar with existing ground truth datasets prior to creating a new one. The

choices are obvious:

• Adopt an existing dataset.

• Adopt-and-Modify an existing dataset.

• Create a new dataset.

Survey of Available Ground Truth Data

Appendix B has information on several existing ground truth datasets. Take some time to get to know

what is already available, and study the research papers coming out of SIGGRAPH, CVPR, IJCV,

NIPS in Appendix C, and other research conferences to learn more about new datasets and how they

are being used. The available datasets come from a variety of sources, including:

• Academic research organizations, usually available free of charge for academic research.

• Government datasets, sometimes with restricted use.

• Industry datasets, available from major corporations like Microsoft, sometimes can be licensed for

commercial use.

Fitting Ground Truth Data to Algorithms

Perhaps the biggest challenge is to determine whether a dataset is a correct fit for the problem at hand.

Is the detail in the ground truth data sufficient to find the boundaries and limits of the chosen algorithms

and systems? “Fitting” applies to key variables such as the ground truth data, the algorithms used, the

object models, classifier, and the intended use-cases. See Fig. 7.3, which illustrates how ground truth

data, image preprocessing, detector and descriptor algorithms, and model metrics should be fitted.

Fitting Ground Truth Data to Algorithms 281

Fig. 7.3 (Top left) Image

preprocessing for edges

shown using Shen-Castan

edge detection against

ground truth data. (Top

right) Overfitting detection

parameters yield too many

small edges. (Bottom left)

Underfitting parameters

yield too few edges.

(Bottom right) Relaxed

parameters yield reasonable

edges

Ground truth data should be carefully selected to fit and measure the accuracy of the statistical

model of the classifier and machine vision algorithms. Overfitting happens when the model captures

the noise in the training data, or in other words, the model fits the training data too well and does not

generalize to related data. Overfitting may be caused by a complex model. Underfitting happens when

the model fails to capture the underlying data trend. Underfitting may be caused by a simplistic mode.

The sweet spot between overfitting and underfiting can be found with the right ground truth data.

Usually, ground truth data is divided into a larger training set and one or more smaller test sets as

needed.

The training results can be evaluated against the following criteria: overfitting captures noise,

underfitting misses the trend, and good fitting captures the trend. Both training data and the training

algorithms are related.

Here are a few examples to illustrate the variables.

• Training Data fitting: If the dataset does not provide enough pixel resolution or bit depth, or there

are insufficient unique samples in the training set, the model will be incomplete, the matching may

suffer, and the data is under-fitted to the problem. Or, if the ground truth contains too many different

types of features that will never be encountered in the test set or in real applications. If the model

resolution is 16 bits per RGB channel when only 8 bits per color channel are provided in real data,

the data and model are over-fitted to the problem.

282 7 Ground Truth Data Topics, Benchmarks, Analysis

• Training Algorithm fitting: If scale invariance is included in the ground truth data, and the LBP

operator being tested is not claimed to be scale invariant, then the algorithm is under-fitted to the

data. If the SIFT method is used on data with no scale or rotation variations, then the SIFT algorithm

is over-fitted to the data.

• Use-case fitting: If the use-cases are not represented in the data and model, the data and model are

under-fitted to the problem.

Scene Composition and Labeling

Ground truth data is composed of labeled features such as foreground, background, and objects or

features to recognize. The labels define exactly what features are present in the images, and these labels

may be a combination of on-screen labels, associated label files, or databases. Sometimes a randomly

composed scene from the wild is preferred as ground truth data, and then only the required items in the

scene are labeled. Other times, ground truth data is scripted and composed the way a scene for a movie

would be.

In any case, the appropriate objects and actors in the scene must be labeled, and perhaps the

positions of each must be known and recorded as well. A database or file containing the labels must

therefore be created and associated with each ground truth image to allow for testing. See Fig. 7.4,

which shows annotated or labeled ground truth dataset images for a scene analysis of cuboids [39]. See

also the Labelme database described in Appendix B, which allows contributors to provide labeled

databases.

Fig. 7.4 Annotated or labeled ground truth dataset images for scene analysis of cuboids (left and center). The labels are

annotated manually into the ground truth dataset, in yellow (light gray in B&W version) marking the cuboid edges and

corners. (Right) Ground truth data contains precomputed 3D corner HOG descriptor sets, which are matched against live

detected cuboid HOG feature sets. Successful matches shown in green (dark gray in B&W version). (Images used by

permission # Bryan Russel, Jianxiong Xiao, and Antonio Torralba)

Labeling 283

Composition

Establishing the right set of ground truth data is like assembling a composition; several variables are

involved, including:

• Scene Content: Designing the visual content, including fixed objects (those that do not move),

dynamic objects (those that enter and leave the scene), and dynamic variables (such as position and

movement of objects in the scene).

• Lighting: Casting appropriate lighting onto the scene.

• Distance: Setting and labeling the correct distance for each object to get the pixel resolution

needed—too far away means not enough pixels.

• Motion Scripting: Determining the appropriate motion of objects in the scene for each frame; for

example, how many people are in the scene, what are their positions and distances, number of

frames where each person appears, and where each person enters and exits. Also, scripting scenes to

enable invariance testing for changes in perspective, scale, affine geometry, and occlusion.

• Labeling: Creating a formatted file, database, or spreadsheet to describe each labeled ground truth

object in the scene for each frame.

• Intended Algorithms: Deciding which algorithms for interest point and feature detection will be

used, what metrics are to be produced, and which invariance attributes are expected from each

algorithm; for example, an LBP by itself does not provide scale invariance, but SIFT does.

• Intended Use-Cases: Determining the problem domain or application. Does the ground truth data

represent enough real use-cases?

• Image Channel Bit Depth, Resolution: Setting these to match requirements.

• Metrics: Defining the group of metrics to measure—for example, false positives and false

negatives. Creating a test fixture to run the algorithms against the dataset, measuring and recording

all necessary results.

• Analysis: Interpreting the metrics by understanding the limitations of both the ground truth data and

the algorithms, defining the success criteria.

• Open Rating Systems: Exploring whether there is an open rating system that can be used to report

the results. For example, the Middlebury Dataset provides an open rating system for 3D stereo

algorithms, and is described in Appendix B; other rating systems are published as a part of grand

challenge contests held by computer vision organizations and governments, and some are reviewed

in Appendix B. Open rating systems allow existing and new algorithms to be compared on a

uniform scale.

Labeling

Ground truth data may simply be images returned from a search engine, and the label may just be the

search engine word or phrase. Figure 7.5 shows a graph of photo connectivity for photo tourism [40–

42] that is created from pseudo-random images of a well-known location, the Trevi Fountain in Rome.

It is likely that in 5–10 years, photo tourism applications will provide high-quality image reconstruc-

tion including textures, 3D surfaces, and rerenderings of the same location, rivaling real photographs.

284 7 Ground Truth Data Topics, Benchmarks, Analysis

Fig. 7.5 Graph of photo connectivity (center) created from analyzing multiple public images from a search engine of the

Trevi Fountain (a). Edges show photos matched and connected to features in the 3D scene, including daytime and

nighttime lighting (b–d). (Images # Noah Snavely [41] and used by permission)

For some applications, labels and markers are inserted into the ground truth datasets to enable

analysis of results, as shown in the 3D scene understanding database for cuboids in Fig. 7.4. Another

example later in this chapter composes scenes using synthetic alphabets of interest points and corners

that are superimposed on the images of a regularly spaced grid to enable position verification (see also

Appendix A). In some visual tracking applications, markers are attached to physical objects (a wrist

band, for example) to establish ground truth features.

Another example is ground truth data composed to measure gaze detection, using a video sequence

containing labels for two human male subjects entering and leaving the scene at a known location and

time, walking from left to right at a known speed and depth in the scene. The object they are gazing at

would be at a known location and be labeled as well.

Defining the Goals and Expectations

To establish goals for the ground truth data, questions must be asked. For instance, what is the intended

use of the application requiring the ground truth data? What decisions must be made from the ground

truth data in terms of accuracy and performance? How is quality and success measured? The goals of

academic research and commercial systems are quite different.

Mikolajczyk and Schmid Methodology

A set of well-regarded papers by Mikolajczyk, Schmid, and others [29, 54, 57, 65, 262] provides a

good methodology to start with for measuring local interest points and feature detector quality. Of

particular interest is the methodology used to measure scale and affine invariant interest point detectors

[262] which uses natural images to start, then applies a set of known affine transformations to those

images, such as homography, rotation, and scale. Interest point detectors are run against the images,

followed by feature extractors, and then the matching recall and precision are measured across the

transformed images to yield quality metrics.

Interest Points and Features 285

Open Rating Systems

The computer vision community is, little by little, developing various open rating systems, which

encourage algorithm comparisons and improvements to increase quality. In areas where such open

databases exist, there is rapid growth in quality for specific algorithms. Appendix B lists open rating

systems such as the Pascal VOC Challenge for object detection. Pascal VOC uses an open ground truth

database with associated grand challenge competition problems for measuring the accuracy of the

latest algorithms against the dataset.

Another example is the Middlebury Dataset, which provides ground truth datasets covering the 3D

stereo algorithm domain, allowing for open comparison of key metrics between new and old

algorithms, with the results published online.

Corner Cases and Limits

Finding out where the algorithms fail is valuable. Academic research is often not interested in the rigor

required by industry in defining failure modes. One way to find the corner cases and limits is to run the

same tests on a wide range of ground truth data, perhaps even data that is outside the scope of the

problem at hand. Given the availability of publicly available ground truth databases, using several

databases is realistic.

However, once the key ground truth data is gathered, it can also be useful to devise a range of corner

cases—for example, by providing noisy data, intensity filtered data, or blurry data to test the limits of

performance and accuracy.

Interest Points and Features

Interest points and features are not always detected as expected or predicted. Machine vision

algorithms detect a different set of interest points than those humans expect. For example, Fig. 7.6

shows obvious interest points missed by the SURF algorithm with a given set of parameters, which

uses a method based on determinant of Hessian blob detection. Note that some interest points obvious

to humans are not detected at all, some false positives occur, and some identical interest points are not

detected consistently.

286 7 Ground Truth Data Topics, Benchmarks, Analysis

Fig. 7.6 Interest points detected on the same image using different methods: (Left) Shi–Tomasi corners marked with

crosses. (Right) SURF interest points marked with circles. Results are not consistent or deterministic

Also, real interest points change over time—for example, as objects move and rotate—which is a

strong argument for using real ground truth data vs. synthetic data to test a wide range of potential

interest points for false positives and false negatives.

Robustness Criteria for Ground Truth Data

In Chap. 5, a robustness criteria was developed listing various invariance attributes, such as rotation

and scale. Here, we apply the robustness criteria to the development of ground truth data.

Illustrated Robustness Criteria

Table 7.1 discusses various robustness criteria attributes, not all attributes are needed for a given

application. For example, if radial distortion might be present in an optical system, then the best

algorithms and corresponding metrics will be devised that are robust to radial distortion, or as

mitigation, the vision pipeline must be designed with a preprocessing section to remove or compensate

for the radial distortion prior to determining the metrics.

Robustness Criteria for Ground Truth Data 287

Table 7.1 Robustness criteria for ground truth data

Attribute Discussion

Uneven illumination Define range of acceptable illumination for the application; uneven illumination may

degrade certain algorithms, some algorithms are more tolerant

Brightness Define expected brightness range of key features, and prepare ground truth data accordingly

Contrast Define range of acceptable contrast for the application; some algorithms are more tolerant

Vignette Optical systems may degrade light and manifest as dim illumination at the edges. Smaller the

features are localized better and may be able to overcome this situation; large features that

span areas of uneven light are affected more

Color accuracy Inaccurate color space treatment may result in poor color performance. Colorimetry is

important; consider choosing the right color space (RGB, YIQ, Lab, Jab, etc.) and use the

right level of bit precision for each color, whether 8/16 bits is best

Clutter Some algorithms are not tolerant of clutter in images and rely on the scene to be constructed

with a minimal number of subjects. Descriptor pixel size may be an issue for block search

methods—too much extraneous detail in a region may be a problem for the algorithm

Occlusion and clipping Objects may be occluded or hidden or clipped. Algorithms may or may not tolerate such

occlusion. Some occlusion artifacts can be eliminated or compensated for using image

preprocessing and segmentation methods

Outliers and proximity Sometimes groups of objects within a region are the subject, and outliers are to be ignored.

Also, proximity of objects or features may guide classification, so varying the arrangement

of features or objects in the scene may be critical

Noise Noise may take on regular or random patterns, such as snow, rain, single-pixel spot nose, line

noise, random electrical noise affecting pixel bit resolution, etc.

Motion blur Motion blur is an important problem for almost all real-time applications. This can be

overcome by using faster frame rates and employing image preprocessing to remove the

motion blur, if possible

Jitter and judder Common problem in video images taken from moving cameras, where each scan line may be

offset from the regular 2D grid

Focal plane or depth If the application or use-case for the algorithm assumes all depths of the image to be in focus,

then using ground truth data with out-of-focus depth planes may be a good way to test the

limits

Pixel depth resolution If features are matched based on the value of pixels, such as gray scale intensity or color

intensity, pixel resolution is an issue. For example, if a feature descriptor uses 16 bits of

effective gray scale intensity but the actual use-case and ground truth data provide only 8 bits

of resolution, the descriptor may be over-fitted to the data, or the data may be unrealistic for

the application

Geometric distortion Complex warping may occur due to combinations of geometric errors from optics or distance

to subject. On deformable surfaces such as the human face, surface and feature shape may

change in ways difficult to geometrically describe

Scale, projection Near and far objects will be represented by more or less pixels, thus a multi-scale dataset may

be required for a given application, as well as multi-scale feature descriptors. Algorithm

sensitivity to feature scale and intended use-case also dictate ground truth data scale

Affine transforms and

rotation

In some applications like panoramic image stitching, very little rotation is expected between

adjacent frames—perhaps up to 15° may be tolerated. However, in other applications like

object analysis and tracking of parts on an industrial conveyor belt, rotation between 0 and

360° is expected

Feature mirroring,

translation

In stereo correspondence, L/R pair matching is done using the assumption that features can

be matched within a limited range of translation difference between L/R pairs. If the

translation is extreme between points, the stereo algorithm may fail, resulting in holes in the

depth map, which must be filled

Reflection Some applications, like recognizing automobiles in traffic, require a feature model, which

incorporates a reflective representation and a corresponding ground truth dataset.

Automobiles may come and go from different directions, and have a reflected right/left

feature pair

Radial distortion Optics may introduce radial distortion around the fringes; usually this is corrected by a

camera system using digital signal processors or fixed-function hardware prior to delivering

the image

– –

– – –

– –

– –

288 7 Ground Truth Data Topics, Benchmarks, Analysis

Using Robustness Criteria for Real Applications

Each application requires a different set of robustness criteria to be developed into the ground truth

data. Table 7.2 illustrates how the robustness criteria may be applied to a few real and diverse

applications.

Table 7.2 Robustness criteria applied to sample applications (each application with different requirements for

robustness)

General

objective

criteria

attributes

Industrial inspection of apples on a

conveyor belt, fixed distance, fixed speed,

fixed illumination

Automobile identification on

roadway, day and night, all

road conditions

Multi-view stereo

reconstruction

bundle adjustment

Uneven

illumination

– Important Useful

Brightness Useful Important Useful

Contrast Useful Important Useful

Vignette Important Useful Useful

Color accuracy Important Important Useful

Clutter – Important Important

Occlusion – Important Important

Outliers – Important Important

Noise – Important Useful

Motion blur Useful Important Useful

Focal plane or

depth

– Important Useful

Pixel depth

resolution

Useful Important Important

Subpixel

resolution

Important

Geometric

distortion

(warp)

– Useful Important

Affine

transforms

– Important Important

Scale – Important Important

Skew

Rotation Important Useful Useful

Translation Important Useful Useful

Projective

transformations

Important Important –

Reflection Important Important –

Radial

distortion

Important

Polar distortion Important

Discrimination

or uniqueness

– Useful –

Location

accuracy

– Useful –

Shape and

thickness

distortion

– Useful –

Pairing and Tuning Interest Points, Features, and Ground Truth 289

As illustrated in Table 7.2, a multi-view stereo (MVS) application will hold certain geometric

criteria as very important, since accurate depth maps require accurate geometry assumptions as a basis

for disparity calculations. For algorithm accuracy tuning, corresponding ground truth data should be

created using a well-calibrated camera system for positional accuracy of the 3D scene to allow for

effective comparisons.

Another example in Table 7.2 with many variables in an uncontrolled environment is that of

automobile identification on roadways—which may be concerned with distance, shape, color, and

noise. For example, identifying automobiles may require ground truth images of several vehicles from

a wide range of natural conditions, such as dawn, dusk, cloudy day, and full sun, and including

conditions such as rainfall and snowfall, motion blur, occlusion, and perspective views. An example

automobile recognition pipeline is developed in Chap. 8.

Also shown Table 7.2 is an example with a controlled environment: industrial inspection. In

industrial settings, the environment can be carefully controlled using known lighting, controlling the

speed of a conveyor belt, and limiting the set of objects in the scenes. Accurate models and metrics for

each object can be devised, perhaps taking color samples and so forth—all of which can be done a

priori. Ground truth data could be easily created from the actual factory location.

Pairing Metrics with Ground Truth

Metrics and ground truth data should go together. Each application will have design goals for

robustness and accuracy, and each algorithm will also have different intended uses and capabilities.

For example, the SUSAN detector discussed in Chap. 6 is often applied to wide baseline stereo

applications, and stereo applications typically are not concerned much with rotational invariance

because the image features are computed on corresponding stereo pair frames that have been affine

rectified to align line by line. Feature correspondence between image pairs is expected within a small

window, with some minor translation on the x axis.

Pairing and Tuning Interest Points, Features, and Ground Truth

Pairing the right interest point detectors and feature descriptors can enhance results, and many interest

point methods are available and were discussed in Chap. 6. When preparing ground truth data, the

method used for interest point detection should be considered for guidance.

For example, interest point methods using derivatives, such as the Laplace and Hessian style

detectors, will not do very well without sufficient contrast in the local pixel regions of the images,

since contrast accentuates maxima, minima, and local region changes. However, a method such as

FAST9 is much more suited to low-contrast images, uses local binary patterns, and is simple to tune the

compare threshold and region size to detect corners and edges; but the trade-off in using FAST9 is that

scale invariance is sacrificed.

A method using edge gradients and direction, such as eigen methods, would require ground truth

containing sufficient oriented edges at the right contrast levels. A method using morphological interest

points would likewise require image data that can be properly thresholded and processed to yield the

desired shapes.

Interest point methods also must be tuned for various parameters like strength of thresholds for

accepting and rejecting candidate interest points, as well as and region size. Choosing the right interest

point detector, tuning, and pairing with appropriate ground truth data are critical. The effect of tuning

interest point detector parameters is illustrated in Fig. 7.6.

290 7 Ground Truth Data Topics, Benchmarks, Analysis

Examples Using the General Vision Taxonomy

As a guideline for pairing metrics and ground truth data, we use the vision taxonomy developed in

Chap. 5 to illustrate how feature metrics and ground truth data can be considered together.

Table 7.3 presents a sample taxonomy and classification for SIFT and FREAK descriptors, which

can be used to guide selection of ground truth data and also show several similarities in algorithm

capabilities. In this example, the invariance attributes built into the data can be about the same—

namely scale and rotation invariance. Note that the compute performance claimed by FREAK is orders

of magnitude faster than SIFT, so perhaps the ground truth data should contain a sufficient minimum

and maximum number of features per frame for good performance measurements.

Table 7.3 General vision taxonomy for describing FREAK and SIFT

Visual metric taxonomy comparison

Attribute SIFT FREAK

Feature category family Spectra descriptor Local binary

descriptor

Spectra dimensions Multivariate Single variate

Spectra value Orientation vector

Gradient magnitude

Gradient direction

HOG, Cartesian bins

Orientation vector

Bit vector of values

Cascade of 4 saccadic

descriptors

Interest point SIFT DOG over 3D scale

pyramid

Multi-scale AGAST

Storage format Spectra vector Bit vector

Orientation vector

Data types Float Integer

Descriptor memory 512 bytes, 128 floats 64 bytes, 4 16-byte

cascades

Feature shape Rectangle Circular

Feature search method Coarse to fine image pyramid

Scale space image pyramid

Double-scale first pyramid level

Sparse at interest points

Sparse at interest

points

Pattern pair sampling n.a. Foveal centered

trained pairs

Pattern region size 41 × 41 bounding box 31 × 31 bounding box

(may vary)

Distance function Euclidean distance Hamming distance

Run-time compute 100% (SIFT is the baseline) 0.1% of SIFT

Feature density Sparse Sparse

Feature pattern Rectangular kernel

Sample weighting pattern

Binary compare

pattern

Claimed robustness

*Final robustness is a combination of interest point

method, descriptor method, and classifier

Scale

Rotation

Noise

Affine distortion

Illumination

Scale

Rotation

Noise

Goals for the Synthetic Dataset 291

Synthetic Feature Alphabets

In this section, we create synthetic ground truth datasets for interest point algorithm analysis. We create

alphabets of synthetic interest points and synthetic corner points. The alphabets are synthetic, meaning

that each element is designed to perfectly represent chosen binary patterns, including points, lines,

contours, and edges.

Various pixel widths or thicknesses are used for the alphabet characters to measure fine and coarse

feature detection. Each pattern is registered at known pixel coordinates on a grid in the images to allow

for detection accuracy to be measured. The datasets are designed to enable comparison between human

interest point perception and machine vision interest point detectors.

Here is a high-level description of each synthetic alphabet dataset:

• Synthetic Interest Point Alphabet. Contains points such as boxes, triangles, circle, half boxes, half

triangles, half circles, edges, and contours.

• Synthetic Corner Point Alphabet. Contains several types of corners and multi-corners at different

pixel thickness.

• Natural Images Overlaid with Synthetic Alphabets. Contains both black and white versions of

the interest points and corners overlaid on natural images.

Note

The complete set of ground truth data is available in Appendix A.

Analysis is provided in Appendix A, which includes running ten detectors against the datasets. The

detectors are implemented in OpenCV, including SIFT, SURF, ORB, BRISK, HARRIS, GFFT,

FAST9, SIMPLE BLOB, MSER, and STAR. Note that the methods such as SIFT, SURF, and ORB

provide both an interest point detector and a feature descriptor implementation. We are only concerned

with the interest point detector portion of each method for the analysis, not the feature descriptor.

The idea of using synthetic image alphabets is not new. As shown in Fig. 7.2, Rosin [38] devised a

synthetic set of gray corner points and corresponding measurement methods for the purpose of

quantifying corner properties via attributes such as bluntness or shape of apex, boundary shape of

cusps, contrast, orientation, and subtended angle of the corner. However, the synthetic interest point

and corner alphabets in this work are developed to address a different set of goals, discussed next.

Goals for the Synthetic Dataset

The goals and expectations for this synthetic dataset are listed in Table 7.4. They center on enabling

analysis to determine which synthetic interest points and corners are found, so the exact count and

position of each interest point is a key requirement.

292 7 Ground Truth Data Topics, Benchmarks, Analysis

Table 7.4 Goals and expectations for the ground truth data examples: comparison of human expectations with machine

vision results

Goals Approach

Interest point and corner detectors,

stress testing

Provide synthetic features easily recognized by a human; measure how well

various detectors perform

Human recognizable synthetic

interest point sets

Synthetic features recognized by humans are developed spanning shapes and

sizes of edges and line segments, contours and curved lines, and corners and

multi-corners

Grid positioning of interest points Each interest point will be placed on a regular grid at a known position for

detection accuracy checking

Scale invariance Synthetic interest points to be created with the same general shape but using

different pixel thickness for scale

Rotation invariance Interest points will be created, then rotated in subsequent frames

Noise invariance Noise will be added to some interest point sets

Duplicate interest points, known

count

Interest points will be created and duplicated in each frame for determining

detection and performance

Hybrid synthetic interest points

overlaid on real images

Synthetic interest points on a grid are overlaid onto real images to allow for

hybrid testing

Interest point detectors, determinism

and repeatability

Detectors will include SIFT, SURF, ORB, BRISK, HARRIS, GFFT, FAST9,

SIMPLE BLOB, MSER, and STAR. By locating synthetic interest points on a

grid, we can compute detection counts

The human visual system does not work like an interest point detector, since detectors can accept

features which humans may not recognize. The human visual system discriminates and responds to

gradient information [210] in a scale and rotationally invariant manner across the retina, and tends to

look for learned features relationships among gradients and color.

Humans learn about features by observations and experience, so learned expectations play a key

role interpreting visual features. People see what they believe and what they are looking for, and may

not believe what they see if they are not looking for it. For example, Fig. 7.7 shows examples of

machine corner detection; a human would likely not choose all the same corner features. Note that the

results are not what a human might expect, and also the algorithm parameters must be tuned to the

ground truth data to get the best results.

Fig. 7.7 Machine corner detection using the Shi–Tomasi method marked with crosses; results are shown using different

parameter settings and thresholds for the strength and pixel size of the corners

Accuracy of Feature Detection via Location Grid 293

Accuracy of Feature Detection via Location Grid

The goal of detector accuracy for this synthetic ground truth is addressed by placing synthetic features at

a known position on a regular spaced grid, then after detection, the count and position are analyzed. Some

of the detectors will find multiple features for a single synthetic interest point or corner. The feature grid

size chosen is 14 × 14 pixels, and the grid extends across the entire image. See Figs. 7.8 and 7.9.

Fig. 7.8 Portion of the synthetic interest point alphabet: points, edges, edges, and contours. (Top to bottom) White on

black, black on white, light gray on dark gray, added salt and pepper noise, added Gaussian noise

Fig. 7.9 Scaled and rotated examples of the synthetic interest point alphabet. Notice the artifacts introduced by the affine

rotation, which distorts the synthetic binary patterns via anti-aliasing and subsampling artifacts

294 7 Ground Truth Data Topics, Benchmarks, Analysis

Rotational Invariance via Rotated Image Set

For each ground truth set, rotated versions of each image are created in the range 0–90° at 10°

increments. Since the synthetic features are placed on a regularly spaced grid at known positions, the

new positions under rotation are easily computed. The detected synthetic features can be counted and

analyzed. See Appendix A for results.

Scale Invariance via Thickness and Bounding Box Size

The synthetic corner point features are rendered into the ground truth data with feature edge thickness

ranging from 1 to 3 pixels for simulated scale variation. Some of the interest point features, such as

boxes, triangles, and circles, are scaled in a bounding box ranging from 1 × 1 pixels to 10 × 10 pixels to

allow for scale invariance testing.

Noise and Blur Invariance

A set of synthetic alphabets is rendered using Gaussian noise, and another set using salt-and-pepper

noise to add distortion and uncertainty to the images. In addition, by rotating the interest point alphabet

at varying angles between 0 and 90°, digital blur is introduced to the synthetic patterns as they are

rendered, owing to the anti-aliasing interpolations introduced in the affine transform algorithms.

Repeatability

Each ground truth set contains a known count of synthetic features to enable detection rates to be

analyzed. To enable measurement of the repeatability of each detector, there are multiple duplicate

copies of each interest point feature in each image. A human would expect identical features to be

detected in an identical manner; however, results in Appendix A show that some interest point

detectors do not behave in a predictable manner, and some are more predictable than others.

As shown in Fig. 7.6, detectors do not always find the same identical features. For example, the

synthetic alphabets are provided in three versions—black on white, white on black, and light gray on

dark gray—for the purpose of testing each detector on the same pattern with different gray levels and

polarity. See Appendix A showing the how the detectors provide different results based on the polarity

and gray level factors.

Real Image Overlays of Synthetic Features

A set of images composed of synthetic interest points and corners overlayed on top of real images is

provided, sort of like markers. Why overlay interest point markers, since the state of the art has moved

beyond markers to markerless tracking? The goal is to understand the limitations and behavior of the

detectors themselves, so that analyzing their performance in the presence of natural and synthetic

features will provide some insight.

Synthetic Interest Point Alphabet

As shown in Figs. 7.7 and 7.8, an alphabet of synthetic interest points is defined across a range of pixel

resolutions or thicknesses to include the following features:

Real Image Overlays of Synthetic Features 295

• POINT/SQUARE, 1–10 PIXELS SIZE

• POINT/TRIANGLE HALF-SQUARE, 3–1 PIXELS SIZE

• CIRCLE, 3–10 PIXELS SIZE

• CIRCLE/HALF-CIRCLE, 3–10 PIXELS SIZE

• CONTOUR, 3–10 PIXELS SIZE

• CONTOUR/HALF-CONTOUR, 3–10 PIXELS SIZE

• CONNECTED EDGES

• DOUBLE CORNER, 3–10 PIXELS SIZE

• CORNER, 3–10 PIXELS SIZE

• EDGE, 3–10 PIXELS SIZE

The synthetic interest point alphabet contains 83 unique elements composed on a 14 × 14 grid, as

shown in Fig. 7.8. A total of seven rows and seven columns of the complete alphabet can fit inside a

1024 × 1024 image, yielding a total of 7 × 7 × 83 = 4067 total interest points.

Synthetic Corner Alphabet

The synthetic corner alphabet is shown in Fig. 7.9. The alphabet contains the following types of

corners and attributes:

• 2-SEGMENT CORNERS, 1,2,3 PIXELS WIDE.

• 3-SEGMENT CORNERS, 1,2,3 PIXELS WIDE.

• 4-SEGMENT CORNERS, 1,2,3 PIXELS WIDE

As shown in Fig. 7.10, the corner alphabet contains patterns with multiple types of corners composed

of two-line segments, three-line segments, and four-line segments, with pixel widths of 1, 2, and 3. The

synthetic corner alphabet contains 54 unique elements composed on a 14 × 14 pixel grid.

Fig. 7.10 Portion of the synthetic corner alphabet, features include 2-, 3-, and 4-segment corners. (Top to bottom) White

on black, black on white, light gray on dark gray, added salt and pepper noise, added Gaussian noise

296 7 Ground Truth Data Topics, Benchmarks, Analysis

Each 1024 × 1024 pixel image contains 8 × 12 complete alphabets composed of 6 × 9 unique

elements each, yielding 6 × 9 × 12 × 8 = 5184 total corner points per image. The full dataset includes

rotated versions of each image from 0 to 90° at 10° intervals.

Hybrid Synthetic Overlays on Real Images

We combine the synthetic interest points and corners as overlays with real images to develop a hybrid

ground truth dataset as a more complex case.

The merging of synthetic interest points over real data will provide new challenges for the interest

point algorithms and corner detectors, as well as illustrate how each detector works. Using hybrid

synthetic feature overlays on real images is a new approach for ground truth data (as far as the author is

aware), and the benefits are not obvious outside of curiosity. One reason the synthetic overlay approach

was chosen here is to fill the gap in the literature and research, since synthetic features overlays are not

normally used. See Figs. 7.11 and 7.12.

Fig. 7.11 Synthetic corner points image portions

Fig. 7.12 Synthetic interest points combined with real images, used for stress testing interest point and corner detectors

with unusual pixel patterns

Summary 297

The hybrid synthetic and real ground truth datasets are designed with the following goals:

• Separate ground truth sets for interest points and corners, using the full synthetic alphabets overlaid

on real images, to provide a range of pixel detail surrounding each interest point and corner.

• Display known positions and counts of interest points on a 14 × 14 grid.

• Provide color and gray scale images of the same data.

• Provide rotated versions of the same data 0–90° at 10° intervals.

Method for Creating the Overlays

The alphabet can be used as a binary mask of 8-bit pixel values of black 0 × 00 and white 0 × ff for

composing the image overlays. The following Boolean masking example is performed using

Mathematica code ImageMultiply and ImageAdd operators.

ImageMultiply is used to get the negatives, and then followed by ImageAdd to get the positives.

Note that in other image processing tool systems, a Boolean ImageAND, ImageOR, and ImageNOT

may be provided as alternatives.

Summary

We survey manual and automated approaches to creating ground truth data, identify some best

practices and guidelines, apply the robustness criteria and vision taxonomy developed in Chap. 5,

and work through examples to create a ground truth dataset for evaluation of human perceptions

compared to machine vision methods for keypoint detectors.

298 7 Ground Truth Data Topics, Benchmarks, Analysis

Here are some final thoughts and key questions for preparing ground truth data:

• Appropriateness: How appropriate is the ground truth dataset for the analysis and intended

application? Are the use-cases and application goals built into the ground truth data and model?

Is the dataset under-fitted or over-fitted to the algorithms and use-cases?

• Public vs. proprietary: Proprietary ground truth data is a barrier to independent evaluation of

metrics and algorithms. It must be possible for interested parties to duplicate the metrics produced

by various types of algorithms so they can be compared against the ground truth data. Open rating

systems may be preferred, if they exist for the problem domain. But there are credibility and legal

hurdles for open-sourcing any proprietary ground truth data.

• Privacy and legal concerns: There are privacy concerns for individuals in any images chosen to be

used; images of people should not be used without their permission, and prohibitions against the

taking of pictures at restricted locations should be observed. Legal concerns are very real.

• Real data vs. synthetic data: In some cases, it is possible to use computer graphics and animations

to create synthetic ground datasets. Synthetic datasets should be considered especially when privacy

and legal concerns are involved, as well as be viewed as a way of gaining more control over the data

itself.

Learning Assignments

1. Describe specific goals for ground truth data with respect to robustness and invariance attributes for

a face emotion recognition application.

2. Discuss the classes of image emotions required for collecting a ground truth dataset. Derive a

statistical method to determine how many images are needed for each class, and how the images

should be processed.

3. Provide a high-level design or write some script code (php, ruby, etc.) to automatically collect and

evaluate the ground truth data against the selected goals. Include statistical metrics and other image

analysis methods in the code for automatically evaluating the images, and describe what is possible

to automate in the code, and what must be done by humans.

4. Name a few publically available ground truth datasets, and where they can be obtained.

5. Discuss positive and negative training samples.

6. Discuss when synthetic ground truth images might be useful, and how synthetic images might be

designed, and prepare a plan including the names of software tools needed.

7. Discuss when a ground truth dataset should be adopted vs. created from scratch.

8. Discuss when a labeled ground truth dataset is appropriate vs. an unlabeled ground truth dataset.

9. Discuss how to select interest point detectors that work well with specific ground truth data,

describe the process you would follow to find the best interest point detectors, and devise some

pseudo-code to evaluate and cull interest point detectors.

More speed, less haste . . .

—Treebeard, Lord of the Rings

This chapter addresses the following major topics, in this order:

3.

Vision Pipelines and HW/SW
Optimizations 8

This chapter explores some hypothetical computer vision pipeline designs to understand HW/SW

design alternatives and optimizations. Instead of looking at isolated computer vision algorithms, this

chapter ties together many concepts into complete vision pipelines. Vision pipelines are sketched out

for a few example applications to illustrate the use of different methods. Example applications include

object recognition using shape and color for automobiles, face detection and emotion detection using

local features, image classification using global features, and augmented reality. The examples have

been chosen to illustrate the use of different families of feature description metrics within the Vision

Metrics Taxonomy presented in Chap. 5. Alternative optimizations at each stage of the vision pipeline

are explored. For example, we consider which vision algorithms run better on a CPU versus a GPU and

discuss how data transfer time between compute units and memory affects performance.

Note

This chapter does not address optimizations for the training stage or the classification stage. Instead, we

focus here on the vision pipeline stages prior to classification. Hypothetical examples in this chapter

are sometimes sketchy, not intended to be complete. Rather, the intention is to explore design

alternatives. Design choices are made in the examples for illustration only; other, equally valid or

even better design choices could be made to build working systems. The reader is encouraged to

analyze the examples to find weaknesses and alternatives. If the reader can improve the examples, we

have succeeded.

1. General design concepts for optimization across the SOC (CPU, GPU, memory).

2. Four hypothetical vision pipeline designs using different descriptor methods.

Overview of SW optimization resources and specific optimization techniques.*NOTE: we do not

discuss DNN-specific optimizations here (see Chaps. 9 and 10), and we do not discuss special-

purpose vision processors here. For more information on the latest vision processors, contact the

Embedded Vision Alliance.

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_8

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_8&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_8#DOI

300 8 Vision Pipelines and HW/SW Optimizations

Stages, Operations, and Resources

A computer vision solution can be implemented into a pipeline of stages, as shown in Fig. 8.1. In a

pipeline, both parallel and sequential operations take place simultaneously. By using all available

compute resources in the optimal manner, performance can be maximized for speed, power, and

memory efficiency.

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Classification, Learning

Augment, Render, Control

Vision Pipeline Stages Operations

Point

Line

Area

Algorithmic

Data conversion

DSP Sensor

GPU SIMT/SIMD

CPU Threads

CPU SIMD

CPU General

Memory System

Resources

Math

Fig. 8.1 Hypothetical assignment of vision pipeline stages to operations and to compute resources. Depending on the

actual resource capabilities and optimization targets for power and performance, the assignments will vary

Optimization approaches vary by system. For example, a low-power system for a mobile phone

may not have a rich CPU SIMD instruction set, and the GPU may have a very limited thread count and

low memory bandwidth, unsuitable to generic GPGPU processing for vision pipelines. However, a

larger compute device, such as a rack-mounted compute server, may have several CPUs and GPUs,

and each CPU and GPU will have powerful SIMD instructions and high memory bandwidth.

Table 8.1 provides more details on possible assignment of operations to resources based on data

types and processor capabilities. For example, in the sensor processing stage, point line and area

operations dominate the workload, as sensor data are assembled into pixels and corrections are applied.

Most sensor processors are based on a digital signal processor (DSP) with wide SIMD instruction

words, and the DSP may also contain a fixed-function geometric correction unit or warp unit for

correcting optics problems like lens distortion. The sensor DSP and the GPU listed in Table 8.1

typically contain a dedicated texture sampler unit, which is capable of rapid pixel interpolation,

geometric warps, and affine and perspective transforms. If code is straight line with lots of branching

and not much parallel operations, the CPU is the best choice.

× ×

× ×

× ×

Compute Resource Budgets 301

Table 8.1 Hypothetical assignment of basic operations to compute resources guided by data type and parallelism (see

also Zinner [422])

Operations Hypothetical resources and data types

DSP

uint16

int16

WarpUnit

GPU

SIMT/

SIMD

uint16/32

int16/32

float/double

TextureUnit

CPU

Threads

uint16/32

int16/32

float/

double

CPU

SIMD

uint16/32

int16/32

float/

double

CPU

General

uint16/32

int16/32

float/

double

Memory system

DMA

Point ×

Line ×

Area × (tiles) ×

Algorithmic branching ×

General math ×

Data copy and

conversions

× (DMA

preferred)

As illustrated in Table 8.1, the data type and data layout normally guide the selection of the best

compute resource for a given task, along with the type of parallelism in the algorithm and data. Also,

the programing language is chosen based on parallelism, such as using OpenCL vs. C++. For example,

a CPU may support float and double data types, but if the underlying code is SIMT and SIMD parallel

oriented, calling for many concurrent thread-parallel kernel operations, then a GPU with a high thread

count may be a better choice than a single CPU. However, running a language like OpenCL on

multiple CPUs may provide performance as good as a smaller GPU; for performance information, see

reference [468] and vendor information on OpenCL compilers. See also the section later in this

chapter, “SIMD, SIMT, and SPMD Fundamentals.”

For an excellent discussion of how to optimize fundamental image processing operations across

different compute units and memory, see the PfeLib work by Zinner et al. [422], which provides a deep

dive into the types of optimizations that can be made based on data types and intelligent memory

usage.

To make the assignments from vision processing stages to operations and compute resources

concrete, we look at specific vision pipelines examples later in this chapter.

Compute Resource Budgets

Prior to implementing a vision pipeline, a reasonable attempt should be made to count the cost in terms

of the compute platform resources available, and determine whether the application is matched to the

resources. For example, a system intended for a military battlefield may place a priority on compute

speed and accuracy, while an application for a mobile device will prioritize power in terms of battery

life and make trade-offs with performance and accuracy.

Since most computer vision research is concerned with breaking ground in handling relatively

narrow and well-defined problems, there is limited research available to guide a general engineering

discussion on vision pipeline analysis and optimizations. Instead, we follow a line of thinking that

starts with the hardware resources themselves, and we discuss performance, power, memory, and I/O

requirements, with some references to the literature for parallel programming and other code-

optimization methods. Future research into automated tools to measure algorithm intensity, such as

the number of integer and float operations, the bit precision of data types, and the number of memory

transfers for each algorithm in terms of read/write, would be welcomed by engineers for vision pipeline

analysis and optimizations.

302 8 Vision Pipelines and HW/SW Optimizations

As shown in Fig. 8.2, the main elements of a computer system are composed of I/O, compute, and

memory.

DSP memory

GPU memory

System memory

L1 L2

L1 L2

L1 L2

L1 L2

L1 L2
CPU 1
controller

CPU 2
SIM D

CPU 3
SIM D

CPU 4
SIM D

GPU 1
256 SIM T

4 tex ture

samplers

DSP 2

DSP 1

Camera 1
1080p depth

Camera 2
1080p RGB | depth

MIPI

MIPI

L1 L2

DMA

RF

RF

RF

RF

RF

RF

RF

Fig. 8.2 Hypothetical computer system, highlighting compute elements in the form of a DSP, GPU, 4 CPU cores,

DMA, and memory architecture using L1 and L2 cache and register files RF within each compute unit

We assume suitable high bandwidth I/O buses and cache lines interconnecting the various compute

units to memory; in this case, we call out the MIPI camera interface in particular, which connects

directly to the DSP in our hypothetical SOC. In the case of a simple computer vision system of the near

future, we assume that the price, performance, and power curves continue in the right direction to

enable a system-on-a-chip (SOC) sufficient for most computer vision applications to be built at a low

price point, approaching throw-away computing cost—similar in price to any small portable electronic

gadget. This would thereby enable low-power and high-performance ubiquitous vision applications

without resorting to special-purpose hardware accelerators built for any specific computer vision

algorithms.

Here is a summary description of the SOC components shown in Fig. 8.2:

• Two 1080p cameras, one for RGB and the other for a self-contained depth camera, such as a TOF

sensor (as discussed in Chap. 1).

• One small low-power controller CPU with a reduced instruction set and no floating point, used for

handling simple things like the keyboard, accelerometer updates, servicing interrupts from the DSP,

and other periodic tasks, such as network interrupt handlers.

• Three full SIMD capable CPUs with floating point, used for heavy compute, typically thread-

parallel algorithms such as tiling, but also for SIMD parallel algorithms.

Compute Units, ALUs, and Accelerators 303

• A GPU capable of running >256 threads with full integer and floating point, and four texture

samplers. A wide range of area algorithms map well to the GPU, but the programming model is

SIMT kernels such as compute shaders for DirectX and OpenGL, or OpenCL.

• A DSP with a limited instruction set and VLIW processing capabilities well suited to pixel

processing and sensor processing in general.

• A DMA unit for fast memory transfers; although obvious, DMA is a simple and effective method

to increase memory bandwidth and reduce power.

Compute Units, ALUs, and Accelerators

There are several types of compute units in a typical system, including CPUs, GPUs, DSPs, and

special-purpose hardware accelerators such as cryptography units, texture samplers, and DMA

engines. Each ALU has a different instruction set tuned to the intended use, so understanding each

compute unit’s ALU instruction set is very helpful.

Generally speaking, computer architecture has not advanced to the point of providing any standard

vision pipeline methods or hardware accelerators. That is because there are so many algorithm

refinements for computer vision emerging; choosing to implement any vision accelerators in silicon

is an obsolescence risk. Also, creating computer vision hardware accelerators is difficult, since

applications must be portable. So developers typically choose high-level language implementations

that are good enough and portable, with minimal dependencies on special-purpose hardware or APIs.

Instead, reliance on general-purpose languages like C++ and optimizing the software is a good path

to follow to start, as is leveraging existing pixel processing acceleration methods in a GPU as needed,

such as pixel shaders and texture samplers. The standard C++ language path offers flexibility to change

and portability across platforms, without relying on any vendor-specific hardware acceleration

features.

In the example vision pipelines developed in this section, we make two basic assumptions. First, the

DSP is dedicated to sensor processing and light image preprocessing to load-balance the system.

Second, the CPUs and the GPUs are used downstream for subsequent sections of the vision pipeline, so

the choice of CPU vs. GPU depends on the algorithm used.

Since the compute units with programmable ALUs are typically where all the tools and attention for

developers are focused, we dedicate some attention to programming acceleration alternatives later in

this chapter in the “Vision Algorithm Optimizations and Tuning” section; there is also a survey of

selected optimization resources and software building blocks.

In the hypothetical system shown in Fig. 8.2, the compute units include general-purpose CPUs, a

GPU intended primarily for graphics and media acceleration and some GPGPU acceleration, and a

DSP for sensor processing. Each compute unit is programmable and contains a general-purpose ALU

with a tuned instruction set. For example, a CPU contains all necessary instructions for general

programming and may also contain SIMD instructions discussed later in this chapter. A GPU contains

transcendental instructions such as square root, arctangent, and related instructions to accelerate

graphics processing. The DSP likewise has an instruction set tuned for sensor processing, likely a

VLIW instruction set.

Hardware accelerators are usually built for operations that are common, such as a geometric

correction unit for sensor processing in the DSP and texture samplers for warping surface patches in

the GPU. There are no standards yet for computer vision, and new algorithm refinements are being

developed constantly, so there is little incentive to add any dedicated silicon for computer vision

accelerators, except for embedded and special-purpose systems. Instead, finding creative methods of

using existing accelerators may prove beneficial.

Later in this chapter, we discuss methods for optimizing software on various compute units, taking

advantage of the strengths and intended use of each ALU and instruction set.

304 8 Vision Pipelines and HW/SW Optimizations

Power Use

It is difficult to quantify the amount of power used for a particular algorithm on an SOC or a single

compute device without very detailed power analysis; likely simulation is the best method. Typically,

systems engineers developing vision pipelines for an SOC do not have accurate methods of measuring

power, except crude means such as running the actual finished application and measuring wall power

or battery drain.

The question of power is sometimes related to which compute device is used, such as CPU vs. GPU,

since each device has a different gate count and clock rate, therefore is burning power at a different

rate. Since silicon architects for both GPU and CPU designs are striving to deliver the most perfor-

mance per watt per square millimeter (and we assume that each set of silicon architects is equally

efficient), there is no clear winner in the CPU vs. GPU power/performance race. The search to save

power by using the GPU vs. the CPU might not even be worth the effort compared to other places to

look, such as data organization and memory architecture.

One approach for making the power and performance trade-off in the case of SIMD and SIMT

parallel code is to use a language such as OpenCL, which supports running the same code on either a

CPU or a GPU. The performance and power would then need to be measured on each compute device

to quantify actual power and performance; there is more discussion on this topic later, in the “Vision

Algorithm Optimizations and Tuning” section.

For detailed performance analysis using the same OpenCL code running on a specific CPU vs. a

GPU, as well as clusters, see the excellent research by the National Center for Super Computing

Applications [468]. Also, see the technical computing resources provided by major OpenCL vendors,

such as INTEL, NVIDIA, and AMD, for details on their OpenCL compilers running the same code

across the CPU vs. GPU. Sometimes the results are surprising, especially for multi-core CPU

systems vs. smaller GPUs.

In general, the compute portion of the vision pipeline is not where the power is burned anyway;

most power is burned in the memory subsystem and the I/O fabric, where high data bandwidth is

required to keep the compute pipeline elements full and moving along. In fact, all the register files,

caches, I/O busses, and main memory consume the lion’s share of power and lots of silicon real estate.

So memory use and bandwidth are high-value targets to attack in any attempt to reduce power. The

fewer the memory copies, the higher the cache hit rates; the more reuse of the same data in local

register files, the better.

Memory Use

Memory is the most important resource to manage as far as power and performance are concerned.

Most of the attention on developing a vision pipeline is with the algorithms and processing flow, which

is challenging enough. However, vision applications are highly demanding of the memory system. The

size of the images alone is not so great, but when we consider the frame rates and number of times a

pixel is read or written for kernel operations through the vision pipeline, the memory transfer

bandwidth activity becomes clearer. The memory system is complex, consisting of local register

files next to each compute unit, caches, I/O fabric interconnects, and system memory. We look at

several memory issues in this section, including:

• Pixel resolution, bit precision, and total image size

• Memory transfer bandwidth in the vision pipeline

• Image formats, including grayscale and color spaces

Memory Use 305

• Feature descriptor size and type

• Accuracy required for matching and localization

• Feature descriptor database size

To explore memory usage, we go into some detail on a local interest point and feature extraction

scenario, assuming that we locate interest points first, filter the interest points against some criteria to

select a smaller set, calculate descriptors around the chosen interest points, and then match features

against a database.

A reasonable first estimate is that between a lower bound and upper bound of 0.05–1% of the pixels

in an image can generate decent interest points. Of course, this depends entirely on: (1) the complexity

of the image texture, and (2) the interest point method used. For example, an image with rich texture

and high contrast will generate more interest points than an image of a faraway mountain surrounded

by clouds with little texture and contrast. Also, interest point detector methods yield different results—

for example, the FAST corner method may detect more corners than a SIFT scale invariant DoG

feature, see Appendix A.

Descriptor size may be an important variable, see Table 8.2. A 640 × 480 image will contain

307,200 pixels. We estimate that the upper bound of 1%, or 3072 pixels, may have decent interest

points; and we assume that the lower bound of 0.05% is 153. We provide a second estimate that interest

points may be further filtered to sort out the best ones for a given application. So if we assume perhaps

only as few as 33% of the interest points are actually kept, then we can say that between 153 × 0.33 and

3072 × 0.33 interest points are good candidates for feature description. This estimate varies widely out

of bounds, depending of course on the image texture, interest point method used, and interest point

filtering criteria. Assuming a feature descriptor size is 256 bytes, the total descriptor size per frame is

3072 × 256 × 0.33 = 259,523 bytes maximum—that is not extreme. However, when we consider the

feature match stage, the feature descriptor count and memory size will be an issue, since each extracted

feature must be matched against each trained feature set in the database.

Table 8.2 Descriptor bytes per frame (1% interest points) (adapted from [112])

Descriptor Size in bytes 480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD

Resolution 640 × 480 1920 × 1080 3840 × 2160 7680 × 4320

Pixels 307,200 2,073,600 8,294,400 33,177,600

BRIEF 32 98,304 663,552 2,654,208 10,616,832

ORB 32 98,304 663,552 2,654,208 10,616,832

BRISK 64 196,608 1,327,104 5,308,416 21,233,664

FREAK (4 cascades) 64 196,608 1,327,104 5,308,416 21,233,664

SURF 64 196,608 1,327,104 5,308,416 21,233,664

SIFT 128 393,216 2,654,208 10,616,832 42,467,328

LIOP 144 442,368 2,985,984 11,943,936 47,775,744

MROGH 192 589,824 3,981,312 15,925,248 63,700,992

MRRID 256 786,432 5,308,416 21,233,664 84,934,656

HOG (64 × 128 block) 3780 n.a. n.a. n.a. n.a.

In general, local binary descriptors offer the advantage of a low memory footprint. For example,

Table 8.2 provides the byte count of several descriptors for comparison, as described in Miksik and

Mikolajczyk [112]. The data are annotated here to add the descriptor working memory size in bytes per

frame for various resolutions.

In Table 8.2, image frame resolutions are in row 1, pixel count per frame is in row 2, and typical

descriptor sizes in bytes are in subsequent rows. Total bytes for selected descriptors are in column

1, and the remaining columns show total descriptor size per frame assuming an estimated 1% of the

pixels in each frame are used to calculate an interest point and descriptor. In practice, we estimate that

1% is an upper-bound estimate for a descriptor count per frame and 0.05% is a lower-bound estimate.

Note that descriptor sizes in bytes do vary from those in the table, based on design optimizations.

306 8 Vision Pipelines and HW/SW Optimizations

Memory bandwidth is often a hidden cost, and often ignored until the very end of the optimization

cycle, since developing the algorithms is usually challenging enough without also worrying about the

memory access patterns and memory traffic. Table 8.2 includes a summary of several memory

variables for various image frame sizes and feature descriptor sizes. For example, using the 1080p

image pixel count in row 2 as a base, we see that an RGB image with 16 bits per color channel will

consume:

2, 073, 600pixels × 3channels=RGB × 2bytes=pixel ¼ 12, 441, 600bytes=frame

And if we include the need to keep a grayscale channel I around, computed from the RGB, the total

size for RGBI increases to:

2, 073, 600pixels × 4channels=RGBI × 2bytes=pixel ¼ 16, 588, 800 bytes=frame

If we then assume 30 frames per second and two RGB cameras for depth processing + the I channel,

the memory bandwidth required to move the complete 4-channel RGBI image pair out of the DSP is

nearly 1 GB/s:

16, 588, 800pixels × 30fps × 2stereo ¼ 995, 328, 000 mb=s

So we assume in this example a baseline memory bandwidth of about ~1 GB/s just to move the

image pair downstream from the ISP. We are ignoring the ISP memory read/write requirements for

sensor processing for now, assuming that clever DSP memory caching, register file design, and loop-

unrolling methods in assembler can reduce the memory bandwidth.

Typically, memory coming from a register file in a compute unit transfers in a single clock cycle;

memory coming from various cache layers can take maybe tens of clock cycles; and memory coming

from system memory can take hundreds of clock cycles. During memory transfers, the ALU in the

CPU or GPU may be sitting idle, waiting on memory.

Memory bandwidth is spread across the fast-register files next to the ALU processors, and through

the memory caches and even system memory, so actual memory bandwidth is quite complex to

analyze. Even though some memory bandwidth numbers are provided here, it is only to illustrate the

activity.

And the memory bandwidth only increases downstream from the DSP, since each image frame will

be read, and possibly rewritten, several times during image preprocessing, then also read again during

interest point generation and feature extraction. For example, if we assume only one image

preprocessing operation using 5 × 5 kernels on the I channel, each I pixel is read another 25 times,

hopefully from memory cache lines and fast registers.

This memory traffic is not all coming from slow-system memory, and it is mostly occurring inside

the faster-memory cache system and faster register files until there is a cache miss or reload of the fast-

register files. Then, performance drops by an order of magnitude waiting for the buffer fetch and

register reloading. If we add a FAST9 interest point detector on the I channel, each pixel is read another

81 times (9 × 9), maybe from memory cache lines or registers. And if we add a FREAK feature

descriptor over maybe 0.05% of the detected interest points, we add 41 × 41 pixel reads per descriptor

to get the region (plus 45 × 2 reads for point-pair comparisons within the 41 × 41 region), hopefully

from memory cache lines or registers.

I/O Performance 307

Often the image will be processed in a variety of formats, such as image preprocessing the RGB

colors to enhance the image, and conversion to grayscale intensity I for computing interest points and

feature descriptors. The color conversions to and from RGB are a hidden memory cost that requires

data copy operations and temporary storage for the color conversion, which is often done in floating

point for best accuracy. So several more GB/s of memory bandwidth can be consumed for color

conversions. With all the memory activity, there may be cache evictions of all or part of the required

images into a slower system memory, degrading into nonlinear performance.

Memory size of the descriptor, therefore, is a consideration throughout the vision pipeline. First, we

consider when the features are extracted; and second, we look at when the features are matched and

retrieved from the feature database. In many cases, the size of the feature database is by far the critical

issue in the area of memory, since the total size of all the descriptors to match against affects the static

memory storage size, memory bandwidth, and pattern match rate. Reducing the feature space into a

quickly searchable format during classification and training is often of paramount importance. Besides

the optimized classification methods discussed in Chap. 4, the data organization problems may be

primarily in the areas of standard computer science searching, sorting, and data structures; some

discussion and references were provided in Chap. 4.

When we look at the feature database or training set, memory size can be the dominant issue to

contend with. Should the entire feature database be kept on a cloud server for matching? Or should the

entire feature database be kept on the local device? Should a method of caching portions of the feature

database on the local device from the server be used? All of the above methods are currently employed

in real systems.

In summary, memory, caches, and register files exceed the silicon area of the ALU processors in the

compute units by a large margin. Memory bandwidth across the SOC fabric through the vision pipeline

is key to power and performance, demanding fast memory architecture and memory cache arrange-

ment, and careful software design. Memory storage size alone is not the entire picture, though, since

each byte needs to be moved around between compute units. So careful consideration of memory

footprint and memory bandwidth is critical for anything but small applications.

Often, performance and power can be dramatically improved by careful attention to memory issues

alone. Later in the chapter, we cover several design methods to help reduce memory bandwidth and

increase memory performance, such as locking pages in memory, pipelining code, loop unrolling, and

SIMD methods. Future research into minimizing memory traffic in a vision pipeline is a worthwhile

field.

I/O Performance

We lump I/O topics together here as a general performance issue, including data bandwidth on the

SOC I/O fabric between compute units, image input from the camera, and feature descriptor matching

database traffic to a storage device. We touched on I/O issues above the discussion on memory, since

pixel data are moved between various compute devices along the vision pipeline on I/O busses. One of

the major I/O considerations is feature descriptor data moving out of the database at feature match time,

so using smaller descriptors and optimizing the feature space using effective machine learning and

classification methods is valuable.

Another type of I/O to consider is the camera input itself, which is typically accomplished via the

standard MIPI interface. However, any bus or I/O fabric can be used, such as USB. If the vision

pipeline design includes a complete HW/SW system design rather than software only on a standard

SOC, special attention to HW I/O subsystem design for the camera and possibly special fast busses for

image memory transfers to and from a HW-assisted database may be worthwhile. When considering

power, I/O fabric silicon area and power exceed the area and power for the ALU processors by a large

margin.

308 8 Vision Pipelines and HW/SW Optimizations

The Vision Pipeline Examples

In this section, we look at four hypothetical examples of vision pipelines. Each is chosen to illustrate

separate descriptor families from the Vision Metrics Taxonomy presented in Chap. 5, including global

methods such as histograms and color matching, local feature methods such as FAST interest points

combined with FREAK descriptors, basis space methods such as Fourier descriptors, and shape-based

methods using morphology and whole object shape metrics. The examples are broken down into

stages, operations, and resources, as shown in Fig. 8.1, for the following applications:

• Automobile recognition, using shape and color

• Face recognition, using sparse local features

• Image classification, using global features

• Augmented reality, using depth information and tracking

None of these examples includes classification, training, and machine learning details, which are

outside the scope of this book (machine learning references are provided in Chap. 4). A simple

database storing the feature descriptors is assumed to be adequate for this discussion, since the focus

here is on the image preprocessing and feature description stages. After working through the examples

and exploring alternative types of compute resource assignments, such as GPU vs. CPU, this chapter

finishes with a discussion on optimization resources and techniques for each type of compute resource.

Automobile Recognition

Here, we devised a vision pipeline to recognize objects such as automobiles or machine parts by using

polygon shape descriptors and accurate color matching. For example, polygon shape metrics can be

used to measure the length and width of a car, while color matching can be used to measure paint color.

In some cases, such as custom car paint jobs, color alone is not sufficient for identification.

For this automobile example, the main design challenges include segmentation of automobiles from

the roadway, matching of paint color, and measurement of automobile size and shape. The overall

system includes an RGB-D camera system, accurate color and illumination models, and several feature

descriptors used in concert. See Fig. 8.3. We work through this example in some detail as a way of

exploring the challenges and possible solutions for a complete vision pipeline design of this type.

Automobile Recognition 309

Fig. 8.3 Setting for an automobile identification application using a shape-based and color-based vision pipeline. The

RGB and D cameras are mounted above the road surface, looking directly down

We define the system with the following requirements:

• 1080p RGB color video (1920 × 1080 pixels) at 120 fps, horizontally mounted to provide highest

resolution in length, 12 bits per color, 65° FOV.

• 1080p stereo depth camera with 8 bits Z resolution at 120 fps, 65° FOV.

• Image FOV covering 44 ft. in width and 60 ft. in length over four traffic lanes of oncoming traffic,

enough for about three normal car lengths in each lane when traffic is stopped.

• Speed limit of 25 mph, which equals ~37 ft./s.

• Camera mounted next to overhead stoplight, with a street lamp for night illumination.

• Embedded PC with 4 CPU cores having SIMD instruction sets, 1 GPU, 8 GB memory, 80 GB disk;

assumes high-end PC equivalent performance (not specified for brevity).

• Identification of automobiles in real time to determine make and model; also count of occurrences

of each, with time stamp and confidence score.

• Automobile ground truth training dataset provided by major manufacturers to include geometry,

and accurate color samples of all body colors used for stock models; custom colors and after-market

colors not possible to identify.

• Average car sizes ranging from 5 to 6 ft. wide and 12–16 ft. long.

• Accuracy of 99% or better.

• Simplified robustness criteria to include noise, illumination, and motion blur.

Segmenting the Automobiles

To segment the automobiles from the roadway surface, a stereo depth camera operating at 1080p

120 fps (frames per second) is used, which makes isolating each automobile from the roadway simple

using depth. To make this work, a method for calibrating the depth camera to the baseline road surface

is developed, allowing automobiles to be identified as being higher than the roadway surface. We

sketch out the depth calibration method here for illustration.

310 8 Vision Pipelines and HW/SW Optimizations

Spherical depth differences are observed across the depth map, mostly affecting the edges of the

FOV. To correct for the spherical field distortion, each image is rectified using a suitable calibrated

depth function (to be determined on-site and analytically), then each horizontal line is processed,

taking into consideration the curvilinear true depth distance, which is greater at the edges, to set the

depth equal across each line.

Since the speed limit is 25 mph, or 37 ft./s, imaging at 120 FPS yields maximum motion blur of

about 0.3 ft., or 4 in. per frame. Since the length of a pixel is determined to be 0.37 inches, as developed

in a subsequent section below “Measuring the Automobile Size and Shape,” the ability to compute car

length from pixels is accurate within about 4 in./0.37 in. = 11 pixels, or about 3% of a 12-ft-long car at

25 mph including motion blur. However, motion blur compensation can be applied during image

preprocessing to each RGB and depth image to effectively reduce the motion blur further; several

methods exist based on using convolution or compensating over multiple sequential images

[261, 419].

Matching the Paint Color

We assume that it is possible to identify a vehicle using paint color alone in many cases, since each

manufacturer uses proprietary colors; therefore, accurate colorimetry can be employed. For matching

paint color, 12 bits per color channel should provide adequate resolution, which is determined in the

color match stage using the CIECAM02 model and the Jch color space [215]. This requires develop-

ment of several calibrated device models of the camera with the scene under different illumination

conditions, such as full sunlight at different times of day, cloud cover, low-light conditions in early

morning and at dusk, and nighttime using the illuminator lamp mounted above traffic along with the

camera and stop light.

The key to colorimetric accuracy is the device models’ accounting for various lighting conditions. A

light sensor to measure color temperature, along with the knowledge of time of day and season of the

year, is used to select the correct device models for proper illumination for times of day and seasons of

the year. However, dirty cars present problems for color matching; for now, we ignore this detail (also

custom paint jobs are a problem). In some cases, the color descriptor may not be useful or reliable; in

other cases, color alone may be sufficient to identify the automobile. See the discussion of color

management in Chap. 2.

Measuring the Automobile Size and Shape

For automobile size and shape, the best measurements are taken looking directly down on the car to

reduce perspective distortion. As shown in Fig. 8.4, the car is segmented into C (cargo), T (top), and H

(hood) regions using depth information from the stereo camera, in combination with a polygon shape

segmentation of the auto shape. To compute shape, some weighted combination of RGB and D images

into a single image will be used, based on best results during testing. We assume the camera is mounted

in the best possible location centered above all lanes, but that some perspective distortion will exist at

the far ends of the FOV. We also assume that a geometric correction is applied to rectify the images

into Cartesian alignment. Assuming errors introduced by the geometric corrections to rectify the FOV

is negligible, the following approximate dimensional precision is expected for length and width, using

the minimum car size of 5′ × 12′ as an example:

FOV Pixel Width: 1080 /(44′ × 12″) = each pixel is ~0.49 in. wide

Automobile Recognition 311

Mirror

Length

Width

Fig. 8.4 Features used for automobile identification

pixels inches

FOV Pixel Length: 1920pixels/(60′ × 12″)inches = each pixel is ~0.37 in. long

Automobile Width: (5′ × 12″)/0.49 = ~122 pixels

Automobile Length: (12′ × 12″)/0.37 = ~389 pixels

This example uses the following shape features:

• Bounding box containing all features; width and length are used

• Centroid computed in the middle of the automobile region

• Separate width computed from the shortest diameter passing through the centroid to the perimeter

• Mirror feature measured as the distance from the front of the car; mirror locations are the smallest

and largest perimeter width points within the bounding box

• Shape segmented into three regions using depth; color is measured in each region: cargo compart-

ment (C), top (T), and hood (H)

• Fourier descriptor of the perimeter shape computed by measuring the line segments from centroid to

perimeter points at intervals of 5°

Feature Descriptors

Several feature descriptors are used together for identification, and the confidence of the automobile

identification is based on a combined score from all descriptors. The key feature descriptors to be

extracted are as follows:

• Automobile shape factors: Depth-based segmentation of each automobile above the roadway is

used for the coarse shape outline. Some morphological processing follows to clean up the edges and

remove noise. For each segmented automobile, object shape factors are computed for area,

perimeter, centroid, bounding box, and Fourier descriptors of perimeter shape. The bounding box

measures overall width and height, the Fourier descriptor measures the roundness and shape factors;

some automobiles are more boxy, some are more curvy. (See Chap. 6 for more information on

shape descriptors. See Chap. 1 for more information on depth sensors.) In addition, the distance of

the mirrors from the front of the automobile is computed; mirrors are located at width extrema

around the object perimeter, corresponding to the width of the bounding box.

312 8 Vision Pipelines and HW/SW Optimizations

• Automobile region segmentation: Further segmentation uses a few individual regions of the

automobile based on depth, namely the hood, roof, and trunk. A simple histogram is created to

gather the depth statistical moments, a clustering algorithm such as K-means is performed to form

three major clusters of depth: the roof will be highest, hood and trunk will be next highest, windows

will be in between (top region is missing for convertibles, not covered here). The pixel areas of the

hood, top, trunk, and windows are used as a descriptor.

• Automobile color: The predominant colors of the segmented hood, roof, and trunk regions are used

as a color descriptor. The colors are processed in the Jch color space, which is part of the CIECAM

system yielding high accuracy. The dominant color information is extracted from the color samples

and normalized against the illumination model. In the event of multiple paint colors, separate color

normalization occurs for each. (See Chap. 3 for more information on colorimetry.)

Calibration, Setup, and Ground Truth Data

Several key assumptions are made regarding scene setup, camera calibration, and other corrections; we

summarize them here:

• Roadway depth surface: Depth camera is calibrated to the road surface as a reference to segment

autos above the road surface; a baseline depth map with only the road is calibrated as a reference

and used for real-time segmentation.

• Device models: Models for each car are created from manufacturer’s information, with accurate

body shape geometry and color for each make and model. Cars with custom paint confuse this

approach; however, the shape descriptor and the car region depth segmentation provide a failsafe

option that may be enough to give a good match—only testing will tell for sure.

• Illumination models: Models are created for various conditions, such as morning light, daylight,

and evening light, for sunny and cloudy days; illumination models are selected based on time of day

and year and weather conditions for best matching.

• Geometric model for correction: Models of the entire FOV for both the RGB and depth camera

are devised, to be applied at each new frame to rectify the image.

Pipeline Stages and Operations

Assuming the system is fully calibrated in advance, the basic real-time processing flow for the

complete pipeline is shown in Fig. 8.5, divided into three primary stages of operations. Note that the

complete pipeline includes an image preprocessing stage to align the image in the FOV and segment

features, a feature description stage to compute shape and color descriptors, and a correspondence

stage for feature matching to develop the final automobile label composed of a weighted combination

of shape and color features. We assume that a separate database table for each feature in some standard

database is fine.

Automobile Recognition 313

Capture RGB and D

images

Rectify FOV using 4-point

warp, merge RGB and D

Remove motion blur via

spatio-temporal merging

Segment shape regions

(T,H,C) w/depth+color

M orphological processing

to clean up shape

Segment roadway from

automobile using depth

Compute perimeter, area,

centroid, bounding box

Compute radius lines,

centroid to perimeter

Compute radius length

histogram, normalized

Compute Fourier

Descriptor from radial

Compute mirror distance

from front of automobile

Compute dominant color

of each automobile shape

Classify features

Bounding

Box

Dominant

Color

M irror

Distance

Radius

Histogram

Fourier

Descriptor

Object classification

score + tracking

Image Pre-processing Feature Description Correspondence

Fig. 8.5 Operations in hypothetical vision pipeline for automobile identification using polygon shape features and color

No attempt is made to create an optimized classifier or matching stage here; instead, we assume,

without proving or testing, that a brute-force search using a standard database through a few thousand

makes and models of automobile objects works fine for the ALPHA version.

Note in Fig. 8.5 (bottom right) that each auto is tracked from frame to frame, we do not define the

tracking method here.

Operations and Compute Resources

For each operation in the pipeline stages, we now explore possible mappings to the available compute

resources. First, we review the major resources available in our example system, which contains 8 GB

of fast memory, we assume sufficient free space to map and lock the entire database in memory to

avoid paging. Our system contains four CPU cores, each with SIMD instruction sets, and a GPU

capable of running 128 SIMT threads simultaneously with 128 GB/s memory bandwidth to shared

memory for the GPU and CPU, considered powerful enough. Let us assume that, overall, the compute

and memory resources are fine for our application and no special memory optimizations need to be

considered. Next, we look at the coarse-grain optimizations to assign operations to compute resources.

Table 8.3 provides an evaluation of possible resource assignments.

× ×

314 8 Vision Pipelines and HW/SW Optimizations

Table 8.3 Assignment of operations to compute resources

Operations

Resources and predominant data types

DSP sensor

VLIW

uint16

int16

WarpUnit

GPU SIMT/SIMD

uint16/32

int16/32

float/double

TextureUnit

CPU

Threads

uint16/32

int16/32

float/double

CPU

SIMD

uint16/32

int16/32

float/double

CPU

General

uint16/32

int16/32

float/double

1. Capture RGB-D images ×

2. 4-point warp image rectify

3. Remove motion blur ×

4. Segment auto, roadway ×

5. Segment autoshape regions ×

6. Morphology to clean up shapes ×

7. Area, perimeter, centroid ×

8. Radius line segments ×

9. Radius histograms ×

10. Fourier descriptors ×

11. Mirror distance ×

12. Dominant region colors ×

13. Classify features ×

14. Object classification score ×

Criteria for Resource Assignments

In our simple example, as shown in Table 8.3, the main criteria for assigning algorithms to compute

units are processor suitability and load balancing among the processors; power is not an issue for this

application. The operation to resource assignments provided in Table 8.3 is a starting point in this

hypothetical design exercise; actual optimizations would be different, adjusted based on performance

profiling. However, assuming what is obvious about the memory access patterns used for each

algorithm, we can make a good guess at resource assignments based on memory access patterns. In

a second-order analysis, we could also look at load balancing across the pipeline to maximize parallel

uses of compute units; however, this requires actual performance measurements.

Here, we will tentatively assign the tasks from Table 8.3 to resources. If we look at memory access

patterns, using the GPU for the sequential tasks 2 and 3 makes sense, since we can map the images into

GPU memory space first and then follow with the three sequential operations using the GPU. The GPU

has a texture sampler to which we assign task 2, the geometric corrections using the four-point warp.

Some DSPs or camera sensor processors also have a texture sampler capable of geometric corrections,

but not in our example. In addition to geometric corrections, motion blur is a good candidate for the

GPU as well, which can be implemented as an area operation efficiently in a shader. For higher-end

GPUs, there may even be hardware acceleration for motion blur compensation in the media section.

Later in the pipeline, after the image has been segmented in tasks 4 and 5, the morphology stage in

task 6 can be performed rapidly using a GPU shader; however, the cost of moving the image to and

from the GPU for the morphology may actually be slower than performing the morphology on the

CPU, so performance analysis is required for making the final design decision regarding CPU vs. GPU

implementation.

In the case of stages 7–11, shown in Table 8.3, the algorithm for area, perimeter, centroid, and other

measurements spans a nonlocalized data access pattern. For example, perimeter tracing follows the

edge of the car. So we will make one pass using a single CPU through the image to track the perimeter

and compute the area, centroid, and bounding box for each automobile. Then, we assign each bounding

box as an image tile to a separate CPU thread for computation of the remaining measurements: radial

line segment length, Fourier descriptor, and mirror distance. Each bounding box is then assigned to a

separate CPU thread for computation of the colorimetry of each region, including cargo, roof, and

hood, as shown in Table 8.3. Each CPU thread uses C++ for the color conversions and attempts to use

compiler flags to force SIMD instruction optimizations.

Object Models for Human Body, Generic Objects, Pose Point Detectors 315

Tracking the automobile from frame to frame is possible using shape and color features; however,

we do not develop the tracking algorithm here. For correspondence and matching, we rely on a generic

database from a third party, running in a separate thread on a CPU that is executing in parallel with the

earlier stages of the pipeline. We assume that the database can split its own work into parallel threads.

However, an optimization phase could rewrite and create a better database and classifier, using parallel

threads to match feature descriptors.

Fig. 8.6 Pose points for human body joints created using the Openpose method analyzing synthetic diffusion model

images using view synthesis, images courtesy of openposes.com—images available for public use—# Openposes.com.

There are many methods avaiable for pose points, including 3D and 6DOF

Object Models for Human Body, Generic Objects, Pose Point Detectors

Pre-trained pose-point object models are available from both open-source and major companies such

as Google, Microsoft, Apple, and Meta for applications such as human body analysis (20 or more body

joints for activity analysis), facial expression points (30 or more points for emotion and age recogni-

tion), and hand models (includes 20 or more points for hand/finger joint detection), self-driving car

applications (detect cars, signs, people, . . .), animal detection, and more. Such commercial products

could be used to develop a more comprehensive solution than our next simple exercise using the

custom methods below. Some human pose point methods even detect the 6D pose x, y, z position

including roll, putch, and yaw of the bone structures (see poseai.com). See Fig. 8.6 for an example of

human body pose points.

Pose point detection methods for 2D/3D are available for monocular, stereo, and multi-view

reconstruction from several images, using a CPU only, but mostly requiring a GPU, and perhaps

special-purpose hardware accelerators. Face, hands, and body pose points can be detected, as well as

http://poseai.com
http://openposes.com
http://openposes.com

other objects. Many methods exist, such as using neural networks trained to model and detect each

separate body joint, and other methods use CV algorithmic methods similar to those developed in this

chapter using feature descriptors and other metrics, where some methods are closely related to image

stitching (see Chap. 12). Object and human pose point detection can be accelerated in real time in

hardware at speeds above 30fps. The company poseAI.com provides 6DOF pose joints (a major

innovation) incurring bone rotation descriptors in 3D.

316 8 Vision Pipelines and HW/SW Optimizations

To dig deeper into object detectors and human pose point methods (which is a very active area of

research). For a good overview of the field see [1016]. For more details on the underlying methods

and algorithms for object detection, see Object Detectors and Object Descriptors in Chap. 2

(especially YOLO).

The Sapiens family of 3D human models by Khirodkar et. al [1027] as the authors state: “Sapiens…

supports four fundamental human-centric vision tasks: 2D pose estimation, body-part segmentation,

depth estimation, and surface normal prediction.” These models train on 2D images, can be fine-tuned

for specific images, available on Hugging Face, as provided by Meta.

Face, Emotion, and Age Recognition

In this example, we design a face, emotion, and age recognition pipeline that uses local feature

descriptors and interest points. Face recognition is concerned with identifying the unique face of a

unique person, while face detection is concerned with determining only where a face is located and

interesting characteristics such as emotion, age, and gender. Our example is for face detection, and

finding the emotions and age of the subject, using discreet algorithms we develop here. These

algorithms are not optimal, and are for developing intuition only.

Note

This exercise is developed by creating novel low-level facial features, however facial feature pose

points could be used instead as discussed in the prior section, see Fig. 8.6.

For simplicity, this example uses mugshots of single faces taken with a stationary camera for

biometric identification to access a secure area. Using mugshots simplifies the example considerably,

since there is no requirement to pick out faces in a crowd from many angles and distances. Key design

challenges include finding a reliable interest point and feature descriptor method to identify the key

facial landmarks, determining emotion and age, and modeling the landmarks in a normalized, relative

coordinate system to allow for distance ratios and angles to be computed.

Excellent facial recognition systems for biometric identification have been deployed for several

decades that use a wide range of methods, achieving accuracies of close to 100%. In this exercise, no

attempt is made to prove performance or accuracy.We define the systemwith the following requirements:

• 1080p RGB color video (1920 × 1080 pixels) at 30 fps, horizontally mounted to provide the highest

resolution in length, 12 bits per color, 65° FOV, 30 FPS

• Image FOV covers 2 ft. in height and 1.5 ft. in width, enough for a complete head and top of the

shoulder

• Background is a white drop screen for ease of segmentation

• Illumination is positioned in front of and slightly above the subject, to cast faint shadows across the

entire face that highlight corners around eyes, lips, and nose

• For each face, the system identifies the following landmarks:

– Eyes: two eye corners and one center of eye

– Dominant eye color: in CIECAM02 JCH color coordinates

– Dominant face color: in CIECAM02 JCH color coordinates

Object Models for Human Body, Generic Objects, Pose Point Detectors 317

– Eyebrows: two eyebrow endpoints and one center of eyebrow arc, used for determining

emotions

– Nose: one point on nose tip and two widest points by nostrils, used for determining emotions and

gender

– Lips: two endpoints of lips, two center ridges on upper lip

– Cheeks: one point for each cheek center

– Chin: one point, bottom point of chin, may be unreliable due to facial hair

– Top of head: one point; may be unreliable due to hairstyle

– Unique facial markings: these could include birthmarks, moles, or scars, and must fall within a

bounding box computed around the face region

• A FREAK feature is computed at each detected landmark on the original image

• Accuracy is 99% or better

• Simplified robustness criteria to include scale only

Note that emotion, age, and gender can all be estimated from selected relative distances and

proportional ratios of facial features, and we assume that an expert in human face anatomy provides

the correct positions and ratios to use for a real system. See Fig. 8.7.

Fig. 8.7 (Left) Proportional ratios based on a bounding box of the head and face regions as guidelines to predict the

location of facial landmarks. (Right) Annotated image with detected facial landmark positions and relative angles and

distances measured between landmarks. The relative measurements are used to determine emotion, age, and gender

The set of features computed for this example system includes:

1. Relative positions of facial landmarks such as eyes, eyebrows, nose, and mouth

2. Relative proportions and ratios between landmarks to determine age, sex, and emotion

3. FREAK descriptor at each landmark

4. Eye color

318 8 Vision Pipelines and HW/SW Optimizations

Calibration and Ground Truth Data

The calibration is simple: a white backdrop is used in back of the subject, who stands about 4 ft. away

from the camera, enabling a shot of the head and upper shoulders. (We discuss the operations used to

segment the head from the background region later in this section.) Given that we have a 1080p image,

we allocate the 1920 pixels to the vertical direction and the 1080 pixels to the horizontal.

Assuming the cameraman is good enough to center the head in the image so that the head occupies

about 50% of the horizontal pixels, and about 50% of the vertical pixels, we have pixel resolution for

the head of ~540 pixels horizontal and ~960 pixels vertical, which is good enough for our application

and corresponds to the ratio of head height to width. Since we assume that average head height is about

9 in. and width as 6 in. across for male and female adults, using our assumptions for a four-foot

distance from the camera, we have plenty of pixel accuracy and resolution:

9″/(1920pixels × 0.5) = 0.009″ vertical pixel size

6″/(1080pixels × 0.5) = 0.01″ horizontal pixel size

The ground truth data consists of: (1) mugshots of known people, and (2) a set of canonical eye

landmark features in the form of correlation templates used to assist in locating face landmarks

(a sparse codebook of correlation templates). There are two sets of correlation templates: one for

fine features based on a position found using a Hessian detector, and one for coarse features based on a

position found using a steerable filter-based detector (the fine and coarse detectors are described in

more detail later in this example).

Since facial features like eyes and lips are very similar among people, the canonical landmark

feature correlation templates provide only rough identification of landmarks and their location. Several

templates are provided covering a range of ages and genders for all landmarks, such as eye corners,

eyebrow corners, eyebrow peaks, nose corners, nose bottom, lip corners, and lip center region shapes.

For sake of brevity, we do not develop the ground truth dataset for correlation templates here, but we

assume the process is accomplished using synthetic features created by warping or changing real

features and testing them against several real human faces to arrive at the best canonical feature set.

The correlation templates are used in the face landmark identification stage, discussed later.

Interest Point Position Prediction

To find the facial landmarks, such as eyes, nose, and mouth, this example application is simplified by

using mugshots, making the position of facial features predictable and enabling intelligent search for

each feature at the predicted locations. Rather than resort to scientific studies of head sizes and shapes,

for this example we use basic proportional assumptions from human anatomy (used for centuries by

artists) to predict facial feature locations and enable search for facial features at predicted locations.

Facial feature ratios differ primarily by age, gender, and race; for example, typical adult male ratios are

shown in Table 8.4.

Object Models for Human Body, Generic Objects, Pose Point Detectors 319

Table 8.4 Basic approximate face and head feature proportions

Head height Head width × 1.25

Head width Head height × 0.75

Face height Head height × 0.75

Face width Head height × 0.75

Eye position Eye center located 30% in from edges, 50% from top of head

Eye length Head width × 0.25

Eye spacing Head width × 0.5 (center to center)

Nose length Head height × 0.25

Lip corners About eye center x, about 15% higher than chin y

Note

The information in Table 8.4 is synthesized for illustration purposes from elementary artists’ materials

and is not guaranteed to be accurate.

The most basic coordinates to establish are the bounding box for the head. From the bounding box,

other landmark facial feature positions can be predicted.

Segmenting the Head and Face Using the Bounding Box

As stated earlier, the mugshots are taken from a distance of about 4 ft. against a white drop background,

allowing simple segmentation of the head. We use thresholding on simple color intensity as RGBI-I,

where I = (R + G + B)/3 and the white drop background is identified as the highest intensity.

The segmented head and shoulder region are used to create a bounding box of the head and face,

discussed next. (Note: wild hairstyles will require another method, perhaps based on relative sizes and

positions of facial features compared to head shape and proportions.) After segmenting the bounding

box for the head, we proceed to segment the facial region and then find each landmark. The rough size

of the bounding box for head is computed in two steps:

1. Find the top and left, right sides of the head—Topxy, Leftxy, Rightxy—which we assume can be

directly found by making a pass through the image line by line and recording the rows and columns

where the background is segmented to meet the foreground of head, to establish the coordinates. All

leftmost and rightmost coordinates for each line can be saved in a vector, and sorted to find the

median values to use as Rightx/Leftx coordinates. We compute head width as:

Hw ¼ Rightx -Leftx

2. Find the chin to assist in computing the head height Hh. The chin is found by first predicting the

location of the chin, then performing edge detection and some filtering around the predicted location

to establish the chin feature, which we assume is simple to find based on gradient magnitude of the

chin perimeter. The chin location prediction is made by using the head top coordinates Topxy and

the normal anatomical ratio of the head height Hh to head width Hw, which is known to be about

0.75. Since we know both Topxy and Hw from step 1, We Can predict the x and y coordinates of the

chin as follows:

Chiny ¼ 0:25×Hwð Þ þ Topy

Chinx ¼ Topx

Actually, hairstyle makes the segmentation of the head difficult in some cases, since the hair may be

piled high on top or extend widely on the sides and cover the ears. However, we can either iterate the

chin detection method a few times to find the best chin, or else assume that our segmentation method

will solve this problem somehow via a hair filter module, so we move on with this example for the sake

of brevity.

320 8 Vision Pipelines and HW/SW Optimizations

To locate the chin position, a horizontal edge detection mask is used around the predicted location,

since the chin is predominantly a horizontal edge. The coordinates of the connected horizontal edge

maxima are filtered to find the lowest y coordinates of the horizontal edge set, and the median of the

lowest x/y coordinates is used as the initial guess at the chin center location. Later, when the eye

positions are known, the chin x position can be sanity-checked with the position of the midpoint

between the eyes and recomputed, if needed. See Fig. 8.8.

Fig. 8.8 Location of facial landmarks. (Left) Facial landmarks enhanced using largest eigenvalues of Hessian tensor

[420] in FeatureJ; note the fine edges that provide extra detail. (Center) Template-based feature detector using steerable

filters with additional filtering along the lines of the Canny detector [331] to provide coarse detail. (Right) Steerable filter

pattern used to compute center image. Both images are enhanced using contrast window remapping to highlight the

edges. FeatureJ plug-in for ImageJ used to generate eigenvalues of Hessian (FeatureJ developed by Erik Meijering)

The head bounding box, containing the face, is assumed to be:

BoundingBoxTopLeftx = Leftx
BoundingBoxTopLefty = Topy
BoundingBoxBottomRightx = Rightx
BoundingBoxBottomRighty = Chiny

Face Landmark Identification and Compute Features

Now that the head bounding box is computed, the locations of the face landmark feature set can be

predicted using the basic proportional estimates from Table 8.4. A search is made around each

predicted location to find the features; see Fig. 8.7. For example, the eye center locations are ~30%

in from the sides and about 50% down from the top of the head.

In our system, we use an image pyramid with two levels for feature searching, a coarse-level search

down-sampled by four times, and a fine-level search at full resolution to relocate the interest points,

compute the feature descriptors, and take the measurements. The coarse-to-fine approach allows for

wide variation in the relative size of the head to account for mild scale invariance owing to distance

from the camera and/or differences in head size owing to age.

We do not add a step here to rotate the head orthogonal to the Cartesian coordinates in case the head

is tilted; however, this could be done easily. For example, an iterative procedure can be used to

minimize the width of the orthogonal bounding box, using several rotations of the image taken every

2° from -10 to +10°. The bounding box is computed for each rotation, and the smallest bounding box

width is taken to find the angle used to correct the image for head tilt.

Object Models for Human Body, Generic Objects, Pose Point Detectors 321

In addition, we do not add a step here to compute the surface texture of the skin, useful for age

detection to find wrinkles, which is easily accomplished by segmenting several skin regions, such as

forehead, eye corners, and the region around mouth, and computing the surface texture (wrinkles)

using an edge or texture metric.

The landmark detection steps include feature detection, feature description, and computing relative

measurements of the positions and angles between landmarks, as follows:

1. Compute interest points: Prior to searching for the facial features, interest point detectors are used to

compute likely candidate positions around predicted locations. Here, we use a combination of two

detectors: (1) the largest eigenvalue of the Hessian tensor [420], and (2) steerable filters [319]

processed with an edge detection filter criteria similar to the Canny method [331], as illustrated in

Fig. 8.8. Both the Hessian and the Canny-like edge detectors images are followed by contrast

windowing to enhance the edge detail. The Hessian style and Canny-style images are used together

to vote on the actual location of best interest points during the correlation stage next.

2. Compute landmark positions using correlation: The final position of each facial landmark feature is

determined using a canonical set of correlation templates, described earlier, including eye corners,

eyebrow corners, eyebrow peaks, nose corners, nose bottom, lip corners, and lip center region

shapes. The predicted location to start the correlation search is the average position of both detectors

from step 1: (1) The Hessian approach provides fine-feature details, (2) while the steerable filter

approach provides coarse-feature details. Testing will determine if correlation alone is sufficient

without needing interest points from step 1.

3. Describe landmarks using FREAK descriptors: For each landmark location found in step 2, we

compute a FREAK descriptor. SIFT may work just as well.

4. Measure dominant eye color using CIECAM02 JCH: We use a super-pixel method [219, 220] to

segment out the regions of color around the center of the eye, and make a histogram of the colors of

the super-pixel cells. The black pupil and the white of the eye should cluster as peaks in the

histogram, and the dominant color of the eye should cluster in the histogram also. Even multicol-

ored eyes will be recognized using our approach using histogram correspondence.

5. Compute relative positions and angles between landmarks: In step 2 above, correlation was used to

find the location of each feature (to sub-pixel accuracy if desired [398]). As illustrated in Fig. 8.7,

we use the landmark positions as the basis for measuring the relative distances of several features,

such as:

(a) Eye distance, center to center, useful for age and gender

(b) Eye size, corner to corner

(c) Eyebrow angle, end to center, useful for emotion

(d) Eyebrow to eye angle, ends to center positions, useful for emotion

(e) Eyebrow distance to eye center, useful for emotion

(f) Lip or mouth width

(g) Center lip ridges angle with lip corners, useful for emotion

Pipeline Stages and Operations

The pipeline stages and operations are shown in Fig. 8.9. For correspondence, we assume a separate

database table for each feature. We are not interested in creating an optimized classifier to speed up

pattern matching; brute-force searching is fine.

322 8 Vision Pipelines and HW/SW Optimizations

Capture RGB and D

images

Segment out background

from head

Bounding box:

Compute head width, head

Predict face landmark

positions relative to

Compute Hessian and

Canny detector image set

Bounding box:

Predict chin position

Correlation templates at

each feature landmark to

Compute relative angles

and distances between

Compute super-pixel

segmentation of eye

Create histogram of

super-pixel region JCH

Compute SIFT descriptor

at each landmark location

Classify features

Head

width/height

Eye Color

Face

landmarks

SIFT features

Object classification score

Image Pre-processing Feature Description Correspondence

Fig. 8.9 Operations in hypothetical vision pipeline for face, emotion, and age detection using local features

Operations and Compute Resources

For this example, there is mostly straight-line code best suited for the CPU. Following the data access

patterns as a guide, the bounding box, relative distances and ratios, FREAK descriptors and corre-

spondence are good candidates for the CPU. In some cases, separate CPU threads can be used, such as

computing the FREAK descriptors at each landmark in separate threads (threads are likely overkill for

this simple application). We assume feature matching using a standard database. Our application is

assumed to have plenty of time to wait for correspondence.

Some operations are suited for a GPU; for example, the area operations, including the Hessian and

Canny-like interest point detectors. These methods could be combined and optimized into a single

shader program using a single common data read loop and combined processing loop, which produce

output into two images, one for each detector. In addition, we assume that the GPU provides an API to

a fast, HW accelerated correlation block matcher in the media section, so we take advantage of the HW

accelerated correlation.

Criteria for Resource Assignments

In this example, performance is not a problem, so the criteria for using computer resources are relaxed.

In fact, all the code could be written to run in a single thread on a single CPU, and the performance

would likely be fast enough with our target system assumptions. However, the resource assignments

shown in Table 8.5 are intended to illustrate reasonable use of the resources for each operation to

spread the workload around the SOC.

Image Classification 323

Table 8.5 Assignments of operations to compute resources

Operations

Resources and predominant data types

DSP sensor

VLIW

uint16

int16

WarpUnit

GPU SIMT/SIMD

uint16/32

int16/32

float/double

TextureUnit

CPU

Threads

uint16/32

int16/32

float/

double

CPU

SIMD

uint16/32

int16/32

float/

double

CPU

General

uint16/32

int16/32

float/

double

1. Capture RGB-D images ×

2. Segment background from head ×

3. Bounding box ×

4. Compute Hessian and Canny ×

5. Correlation ×

6. Compute relative angles, distance ×

7. Super-pixel eye segmentation ×

8. Eye segment color histogram ×

9. FREAK descriptors ×

10. Correspondence ×

11. Object classification score ×

Image Classification

For our next example, we design a simple image classification system intended for mobile phone use,

with the goal of identifying the main objects in the camera’s field of view, such as buildings,

automobiles, and people. For image classification applications, the entire image is of interest, rather

than specific local features. The user will have a simple app which allows them to point the camera at

an object, and wave the camera from side to side to establish the stereo baseline for MVS depth

sensing, discussed later. A wide range of global metrics can be applied (as discussed in Chap. 3),

computed over the entire image, such as texture, histograms of color or intensity, and methods for

connected component labeling. Also, local features (as discussed in Chap. 6) can be applied to describe

key parts of the images. This hypothetical application uses both global and local features.

We define the system with the following requirements:

• 1080p RGB color video (1920 × 1080 pixels) at 30 fps, 12 bits per color, 65° FOV, 30 FPS

• Image FOV covers infinite focus view from a mobile phone camera

• Unlimited lighting conditions (bad and good)

• Accuracy of 90% or better

• Simplified robustness criteria, including scale, perspective, occlusion

• For each image, the system computes the following features:

– Global RGBI histogram, in RGBI color space

– GPS coordinates, since the phone has a GPS

– Camera pose via MVS depth sensing, using the accelerometer data for geometric rectification to

an orthogonal FOV plane (the user is asked to wave the camera while pointed at the subject, the

camera pose vector is computed from the accelerometer data and relative to the main objects in

the FOV using ICP)

324 8 Vision Pipelines and HW/SW Optimizations

– SIFT features, ideally between 20 and 30 features stored for each image

– Depth map via monocular dense depth sensing, used to segment out objects in the FOV, depth

range target 0.3–30 m, accuracy within 1% at 1 m, and within 10% at 30 m

– Scene labeling and pixel labeling, based on attributes of segmented regions, including RGBI

color and LBP texture

Scene recognition is a well-researched field, and several grand challenge competitions are held

annually to find methods for increased accuracy using established ground truth datasets, as shown in

Appendix B. The best accuracy achieved for various categories of images in the challenges ranges

from 50 to over 90%. In this exercise, no attempt is made to prove performance or accuracy.

Segmenting Images and Feature Descriptors

For this hypothetical vision pipeline, several methods for segmenting the scene into objects will be

used together, instead of relying on a single method, as follows:

1. Dense segmentation, scene parsing, and object labeling: A depth map generated using monocu-

lar MVS is used to segment common items in the scene, including the ground or floor, sky or

ceiling, left and right walls, background, and subjects in the scene. To compute monocular depth

from the mobile phone device, the user is prompted by the application to move the camera from left

to right over a range of arm’s length covering 3 ft. or so, to create a series of wide baseline stereo

images for computing depth using MVS methods (as discussed in Chap. 1). MVS provides a dense

depth map. Even though MVS computation is compute-intensive, this is not a problem, since our

application does not require continuous real-time depth map generation—just a single depth map;

3–4 s to acquire the baseline images and generate the depth map is assumed possible for our

hypothetical mobile device.

2. Color segmentation and component labeling using super-pixels: The color segmentation using

super-pixels should correspond roughly with portions of the depth segmentation.

3. LBP region segmentation: This method is fairly fast to compute and compact to represent, as

discussed in Chap. 6.

4. Fused segmentation: The depth, color, and LBP segmentation regions are combined using Boolean

masks and morphology and some logic into a fused segmentation. The method uses an iterative loop

to minimize the differences between color, depth, and LBP segmentation methods into a new fused

segmentation map. The fused segmentation map is one of the global image descriptors.

5. Shape features for each segmented region: basic shape features, such as area and centroid, are

computed for each fused segmentation region. Relative distance and angle between region centroids

are also computed into a composite descriptor.

In this hypothetical example, we use several feature descriptor methods together for additional

robustness and invariance, and some preprocessing, summarized as follows:

1. SIFT interest points across the entire image are used as additional clues. We follow the SIFT

method exactly, since SIFT is known to recognize larger objects using as few as three or four SIFT

features [132]. However, we expect to limit the SIFT feature count to 20 or 30 strong candidate

features per scene, based on training results.

2. In addition, since we have an accelerometer and GPS sensor data on the mobile phone, we can use

sensor data as hints for identifying objects based on location and camera pose alone, for example

assuming a server exists to look up the GPS coordinates of landmarks in an area.

Image Classification 325

3. Since illumination invariance is required, we perform RGBI contrast remapping in an attempt to

normalize contrast and color prior to the SIFT feature computations, color histograms, and LBP

computations. We assume a statistical method for computing the best intensity remapping limits is

used to spread out the total range of color to mitigate dark and oversaturated images, based on

ground truth data testing, but we do not take time to develop the algorithm here; however, some

discussion on candidate algorithms is provided in Chap. 2. For example, computing SIFT

descriptors on dark images may not provide sufficient edge gradient information to compute a

good SIFT descriptor, since SIFT requires gradients. Oversaturated images will have washed-out

color, preventing good color histograms.

4. The fused segmentation combines the best of all the color, LBP, and depth segmentation methods,

minimizing the segmentation differences by fusing all segmentations into a fused segmentation

map. LBP is used also, which is less sensitive to both low-light and oversaturated conditions,

providing some balance.

Again, in the spirit of a hypothetical exercise, we do not take time here to develop the algorithm

beyond the basic descriptions given above.

Pipeline Stages and Operations

The pipeline stages are shown in Fig. 8.10. They include an image preprocessing stage primarily to

correct image contrast, compute depth maps and segmentation maps. The feature description stage

computes the RGBI color histograms, SIFT features, a fused segmentation map combining the best of

depth, color, and LBP methods, and then labels the pixels as connected components. For correspon-

dence, we assume a separate database table for each feature, using brute-force search; no optimization

attempted.

Capture wide baseline

images

RGBI contrast remapping

Compute M VS depth map

Color segmentation map

LBP tex ture segmentation

map

Compute RGBI color

histograms

Compute SIFT features

Compute

fused-segmentation

Labeling segmented

objects

Classify features

Histograms

GPS,camera

pose

Segmented

Objects

SIFT features

Object classification score

Image Pre-processing Feature Description Correspondence

Fig. 8.10 Operations in hypothetical image classification pipeline using global features

326 8 Vision Pipelines and HW/SW Optimizations

Mapping Operations to Resources

We assume that the DSP provides an API for contrast remapping, and since the DSP is already

processing all the pixels from the sensor anyway and the pixel data are already there, contrast

remapping is a good match for the DSP.

The MVS depth map computations follow a data pattern of line and area operations. We use the

GPU for the heavy-lifting portions of the MVS algorithm, like left/right image pair pattern matching.

Our algorithm follows the basic stereo algorithms, as discussed in Chap. 1. The stereo baseline is

estimated initially from the accelerometer, then some bundle adjustment iterations over the baseline

image set are used to improve the baseline estimates. We assume that the MVS stereo workload is the

heaviest in this pipeline and consumes most of the GPU for a second or two. A dense depth map is

produced in the end to use for depth segmentation.

The color segmentation is performed on RGBI components using a super-pixel method

[219, 220]. A histogram of the color components is also computed in RGBI for each super-pixel

cell. The LBP texture computation is a good match for the GPU since it is an area operation amenable

to shader programming style. So it is possible to combine the color segmentation and the LBP texture

segmentation into the same shader to leverage data sharing in register files and avoid data swapping

and data copies.

The SIFT feature description can be assigned to CPU threads, and the data can be tiled and divided

among the CPU threads for parallel feature description. Likewise, the fused segmentation can be

assigned to CPU threads and the data tiled also. Note that tiled data can include overlapping boundary

regions or buffers, see Fig. 8.13 for an illustration of overlapped data tiling. Labeling can also be

assigned to parallel CPU threads in a similar manner, using tiled data regions. Finally, we assume a

brute-force matching stage using database tables for each descriptor to develop the final score, and we

weigh some features more than others in the final scoring, based on training against ground truth data.

Criteria for Resource Assignments

The basic criterion for the resource assignments is to perform the early point processing on the DSP,

since the data are already resident, and then to use the GPU SIMT SIMD model to compute the area

operations as shaders to create the depth maps, color segmentation maps, and LBP texture maps. The

last stages of the pipeline map nicely to thread-parallel methods and data tiling. Given the chosen

operation to resource assignments shown in Table 8.6, this application seems cleanly amenable to

workload balancing and parallelization across the CPU cores in threads and the GPU.

Image Classification 327

Table 8.6 Assignments of operations to compute resources

Operations

Resources and predominant data types

DSP

sensor

VLIW

uint16

int16

WarpUnit

GPU SIMT/

SIMD

uint16/32

int16/32

float/double

TextureUnit

CPU

Threads

uint16/32

int16/32

float/

double

CPU

SIMD

uint16/32

int16/32

float/

double

CPU

General

uint16/32

int16/32

float/

double

1. Capture RGB wide baseline

images

×

2. RGBI contrast remapping ×

3. MVS depth map ×

4. LBP texture segmentation map ×

5. Color segmentation map ×

6. RGBI color histograms ×

7. SIFT features ×

8. Fused segmentation ×

9. Labeling segmented objects ×

10. Correspondence ×

11. Object classification score ×

Augmented Reality

In this fourth example, we design an augmented reality application for equipment maintenance using a

wearable display device such as glasses or goggles and wearable cameras. The complete system

consists of a portable, wearable device with camera and display connected to a server via wireless.

Processing is distributed between the wearable device and the server. (Note: this example is especially

high level and leaves out a lot of detail, since the actual system would be complex to design, train, and

test.)

The server system contains all the CAD models of the machine and provides on-demand graphics

models or renderings of any machine part from any viewpoint. The wearable cameras track the eye

gaze and the position of the machine. The wearable display allows a service technician to look at a

machine and view augmented reality overlays on the display, illustrating how to service the machine.

As the user looks at a given machine, the augmented reality features identify the machine parts and

provide overlays and animations for assisting in troubleshooting and repair. The system uses a

combination of RGB images as textures on 3D depth surfaces and a database of 3D CAD models of

the machine and all the component machine parts.

The system will have the following requirements:

• 1080p RGB color video camera (1920 × 1080 pixels) at 30 fps, 12 bits per color, 65° FOV, 30 FPS

• 1080p stereo depth camera with 8 bits Z resolution at 60 fps, 65° FOV; all stereo processing

performed in silicon in the camera ASIC with a depth map as output

• 480p near infra-red camera pointed at eyes of technician, used for gaze detection; the near-infrared

camera images better in the low-light environment around the head-mounted display

• 1080p wearable RGB display

• A wearable PC to drive the cameras and display, descriptor generation, and wireless communications

with the server; the system is battery-powered for mobile use with an 8-h battery life

328 8 Vision Pipelines and HW/SW Optimizations

• A server to contain the CAD models of the machines and parts; each part will have associated

descriptors precomputed into the database; the server can provide either graphics models or

complete renderings to the wearable device via wireless

• Server to contain ground truth data consisting of feature descriptors computed on CAD model

renderings of each part + normalized 3D coordinates for each descriptor for machine parts

• Simplified robustness criteria include perspective, scale, and rotation

Calibration and Ground Truth Data

We assume that the RGB camera and the stereo camera system are calibrated with correct optics to

precisely image the same FOV, since the RGB camera and 3D depth map must correspond at each

pixel location to enable 2D features to be accurately associated with the corresponding 3D depth

location. However, the eye gaze camera will require some independent calibration, and we assume a

simple calibration application is developed to learn the technician’s eye positions by using the stereo

and RGB cameras to locate a feature in the FOV and then overlay an eye gaze vector on a monitor to

confirm the eye gaze vector accuracy. We do not develop the calibration process here.

However, the ground truth data take some time to develop and train and require experts in repair and

design of the machine to work together during training. The ground truth data include feature sets for

each part, consisting of 2D SIFT features along corners, edges, and other locations such as knobs. To

create the SIFT features, first a set of graphics renderings of each CAD part model is made from

representative viewpoints the technician is likely to see, and then, the 2D SIFT features are computed

on the graphics renderings, and the geometry of the model is used to create relative 3D coordinates for

each SIFT feature for correspondence.

The 2D SIFT feature locations are recorded in the database along with relative 3D coordinates and

associated into objects using suitable constraints such as angles and relative distances, see Fig. 8.11.

An expert selects a minimum set of features for each part during training—primarily strongest features

from corners and edges of surfaces. The relative angles and distances in three dimensions between the

2D SIFT features are recorded in the database to provide for perspective, scale, and rotation invariance.

The 3D coordinates for all the parts are normalized to the size of the machine. In addition, the dominant

color and texture of each part surface are computed from the renderings and stored as texture and color

features. This system would require considerable training and testing.

Image Classification 329

M ultivariate Descriptor Layout

SIFT vertex descriptor

*3D coordinate

*2D SIFT

*LBP tex ture

*RGB color

Part object

*Name of part

*SIFT vertex list

*Angles between SIFT vertex list items

*Distance between SIFT vertex list items

*Service & technical information

Fig. 8.11 SIFT vertex descriptor is similar to a computer graphics vertex using 3D location, color, and texture. The

SIFT vertex descriptor contains the 2D SIFT descriptor from the RGB camera, the 3D coordinate of the 2D SIFT

descriptor generated from the depth camera, the RGB color at the SIFT vertex, and the LBP texture at the SIFT vertex.

The Part object contains a list of SIFT vertex descriptors, along with relative angles and distances between each 3D

coordinate in the SIFT vertex list

Feature and Object Description

In actual use in the field, the RGB camera is used to find the 2D SIFT, LBP, and color features, and the

stereo camera is used to create the depth map. Since the RGB image and depth map are pixel-aligned,

each feature has 3D coordinates taken from the depth map, which means that a 3D coordinate can be

assigned to a 2D SIFT feature location. The 3D angles and 3D distances between 2D SIFT feature

locations are computed as constraints, and the combined LBP, color, and 2D SIFT features with 3D

location constraints are stored as SIFT vertex features and sent to the server for correspondence. See

Fig. 8.11 for an illustration of the layout of the SIFT vertex descriptors and parts objects. Note that the

3D coordinate is associated with several descriptors, including SIFT, LBP texture, and RGB color,

similar to the way a 3D vertex is represented in computer graphics by 3D location, color, and texture.

During training, several SIFT vertex descriptors are created from various views of the parts, each view

associated by 3D coordinates in the database, allowing for simplified searching and matching based on

3D coordinates along with the features.

Overlays and Tracking

In the server, SIFT vertex descriptors in the scene are compared against the database to find parts object.

The 3D coordinates, angles, and distances of each feature are normalized relative to the size of the

machine prior to searching. As shown in Fig. 8.11, the SIFT features are composed at a 3D coordinate

into a SIFT vertex descriptor, with an associated 2D SIFT feature, LBP texture, and color. The SIFT

vertex descriptors are associated into part objects, which contain the list of vertex coordinates describing

each part, along with the relative angles and distances between SIFT vertex features.

330 8 Vision Pipelines and HW/SW Optimizations

Assuming that the machine part objects can be defined using a small set of SIFT vertex features,

sizes and distance can be determined in real time, and the relative 3D information such as size and

position of each part and the whole machine can be continually computed. Using 3D coordinates of

recognized parts and features, augmented reality renderings can be displayed in the head-mounted

display, highlighting part locations and using overlaying animations illustrating the parts to remove, as

well as the path for the hand to follow in the repair process.

The near-infrared camera tracks the eyes of the technician to create a 3D gaze vector onto the scene.

The gaze vector can be used for augmented reality “help” overlays in the head-mounted display,

allowing for gaze-directed zoom or information, with more detailed renderings and overlay informa-

tion displayed for the parts the technician is looking at.

Pipeline Stages and Operations

The pipeline stages are shown in Fig. 8.12. Note that the processing is divided between the wearable

device (primarily for image capture, feature description, and display), and a server for heavy

workloads, such as correspondence and augmented reality renderings. In this example, the wearable

device is used in combination with the server, relying on a wireless network to transfer images and

data. We assume that data bandwidth and data compression methods are adequate on the wireless

network for all necessary data communications.

Align RGB + stereo images

Compute 2D SIFT

descriptors

3D info: Add 3D coordinate

to 2D SIFT

Compute LBP tex ture + RGB

color

Send 2DSIFT, 3D info,

tex ture & color to server

3D info: Compute 3D angles

& distances

Convert 3D info to relative

coordinates

M atch 2D SIFT descriptors

M atch 3D info with SIFT 3D

coordinates

M atch RGB-I tex ture + RGB

color

Classify features

Object classification score

Feature Description
(device)

Correspondence
(server)

Augment & Track
(server)

Update gaze pose vector

Determine augmented

rendering coordinates

Render overlay & animation

images

Send graphics geometry to

device

Render augmentation to

head-mounted display

Fig. 8.12 Operations in hypothetical augmented reality pipeline

Image Classification 331

Mapping Operations to Resources

We make minimal use of the GPU for GPGPU processing and assume the server has many CPUs

available, and we use the GPU for graphics rendering at the end of the pipeline. Most of the operations

map well into separate CPU threads using data tiling. Note that a server commonly has many high-

power and fast CPUs, so using CPU threads is a good match. See Table 8.7.

Table 8.7 Assignments of operations to compute resources

Operations

Resources and predominant data types

DSP

sensor

VLIW

uint16

int16

WarpUnit

GPU SIMT/

SIMD

uint16/32

int16/32

float/double

TextureUnit

CPU

Threads

uint16/32

int16/32

float/

double

CPU

SIMD

uint16/32

int16/32

float/

double

CPU

General

uint16/32

int16/32

float/

double

1. Capture RGB & stereo images Device

2. Align RGB and stereo images Device

3. Compute 2D SIFT Device

4. Compute LBP texture Device

5. Compute color Device

6. Compute 2D SIFT Device

7. Compute 3D angles/distances Device

8. Normalize 3D coordinates Server

9. Match 2D SIFT descriptors Server

10. Match SIFT vertex coordinates Server

11. Match SIFT vertex color & LBP Server

12. Object classification score Server

13. Update gaze pose vector Server

14. Render overlay & animation

images

Server

15. Display overlays & animations Device *GFX

pipe

Criteria for Resource Assignments

On the mobile device, the depth map is computed in silicon on the depth camera. We use the GPU to

perform the RGB and depth map alignment using the texture sampler, then perform SIFT computations

on the CPU, since the SIFT computations must be done first to have the vertex to anchor and compute

the multivariate descriptor information. We continue and follow data locality and perform the LBP and

color computations for each 2D SIFT point in separate CPU threads using data tiling and overlapped

regions. See Fig. 8.13 for an illustration of overlapped data tiling.

332 8 Vision Pipelines and HW/SW Optimizations

Tile 1

Tile 2

Tile 3

Tile 4

16

16

16 16

Fig. 8.13 Data tiling into four overlapping tiles. The tiles overlap a specific amount, 16 pixels in this case, allowing for

area operations such as convolutions to read, not write, into the overlapped region for assembling convolution kernel data

from adjacent regions. However, each thread only writes into the nonoverlapped region within its tile. Each tile can be

assigned to a separate thread or CPU core for processing

On the server, we have assigned the CAD database and most of the heavy portions of the workload,

including feature matching and database access, since the server is expected to have large storage and

memory capacity and many CPUs available. In addition, we wish to preserve battery life and minimize

heat on the mobile device, so the server is preferred for the majority of this workload.

Acceleration Alternatives

There are a variety of common acceleration methods, acceleration methods that can be applied to the

vision pipeline, including attention to memory management, coarse-grained parallelism using threads,

data-level parallelism using SIMD and SIMT methods, multi-core parallelism, advanced CPU and

GPU assembler language instructions, and hardware accelerators.

There are two fundamental approaches for acceleration:

1. Follow the data

2. Follow the algorithm

Optimizing algorithms for compute devices, such as SIMD instruction sets or SIMT GPGPU

methods, also referred to as stream processing, is oftentimes the obvious choice designers consider.

However, optimizing for data flow and data residency can yield better results. For example, bouncing

data back and forth between compute resources and data formats is not a good idea; it eats up time and

power consumed by the copy and format conversion operations. Data copying in slow-system memory

is much slower than data access in fast-register files within the compute units. Considering the memory

architecture hierarchy of memory speeds, as was illustrated in Fig. 8.2, and considering the image-

intensive character of computer vision, it is better to find ways to follow the data and keep the data

resident in fast registers and cache memory as long as possible, local to the compute unit.

Acceleration Alternatives 333

Memory Optimizations

Attention to memory footprint and memory transfer bandwidth are the most often overlooked areas when

optimizing an imaging or vision application, yet memory issues are the most critical in terms of power,

bandwidth, silicon area, and overall performance. As shown in Table 8.2 and the memory discussion

following, a very basic vision pipeline moves several GB/s of descriptor through the system between

compute units and system memory, and DNNs may be an order of magnitude more data intensive. In

addition, area processes like interest point detection and image preprocessing move even more data in

complex routes through the register files of each compute unit, caches, and system memory.

Why optimize for memory? By optimizing memory use, data transfers are reduced, performance is

improved, power costs are reduced, and battery life is increased. Power is costly; in fact, a large

Internet search company has built server farms very close to the Columbia River’s hydroelectric

systems to guarantee clean power and reduce power transmission costs.

For mobile devices, battery life is a top concern. Governments are also beginning to issue carbon

taxes and credits to encourage power reductions. Memory use, thus, is a cost that is often overlooked.

Memory optimization APIs and approaches will be different for each compute platform and operating

system. A good discussion on memory optimization methods for Linux is found in reference [421].

Minimizing Memory Transfers Between Compute Units

Data transfers between compute units should be avoided, if possible. Workload consolidation should

be considered during the optimization and tuning stage in order to perform as much processing as

possible on the same data while it is resident in register files and the local cache of a given compute

unit. That is, follow the data.

For example, using a GPGPU shader for a single-area operation, then processing the same data on

the CPU will likely be slower than performing all the processing on the CPU. That is because GPGPU

kernels require device driver intervention to set up the memory for each kernel and launch each kernel,

while a CPU program accesses code and data directly, with no driver setup required other than initial

program loading. One method to reduce the back and forth between compute units is to use loop

coalescing and task chaining, discussed later in this section.

Memory Tiling

When dividing workloads for coarse-grained parallelism into several threads, the image can be broken

into tiled regions and each tile assigned to a thread. Tiling works well for point, line, and area processing,

where each thread performs the same operation on the tiled region. By allowing for an overlapped read

region between tiles, the hard boundaries are eliminated and area operations like convolution can read

into adjacent tiles for kernel processing, as well as write finished results into their tile. See Fig. 8.13.

334 8 Vision Pipelines and HW/SW Optimizations

DMA, Data Copy, and Conversions

Often, multiple copies of an image are needed in the vision pipeline, and in some cases, the data must

be converted from one type to another. Converting 12-bit unsigned color channel data stored in a 16-bit

integer to a 32-bit integer allowing for more accurate numerical precision downstream in computations

is one example. Also, the color channels might be converted into a chosen color space, such as RGBI,

for color processing in the I component space (R × G × B)/3 = I; then, the new I value is mixed and

copied back into the RGB components. Careful attention to data layout and data residency will allow

more efficient forward and backward color conversions.

When copying data, it is good to try using the direct memory access (DMA) unit for the fastest

possible data copies. The DMA unit is implemented in hardware to directly optimize and control the

I/O interconnect traffic in and out of memory. Operating systems provide APIs to access the DMA unit

[421]. There are variations for optimizing the DMA methods, and some interesting reading comparing

cache performance against DMA in vision applications is found in references [422, 424].

Register Files, Memory Caching, and Pinning

The memory system is a hierarchy of virtual and physical memories for each processor, composed of

slow fixed storage such as file systems, page files, and swap files for managing virtual memory, system

memory, caches, and fast-register files inside compute units, and with memory interconnects in

between. If the data to process is resident in the register files, it is processed by the ALU at processor

clock rates. Best-case memory access is via the register files close to each ALU, so keeping the data in

registers and performing all possible processing before copying the data is optimal, but this may

require some code changes (discussed later in this section).

If the cache must be accessed to get the data, more clock cycles are burned (power is burned,

performance is lost) compared to accessing the register files. And if there is a cache miss and much

slower system memory must be accessed, typically many hundreds of clock cycles are required to

move the memory to register files through the caches for ALU processing.

Operating systems provide APIs to lock or pin the data in memory, which usually increases the

amount of data in cache, decreasing paging and swapping. (Swapping is a hidden copy operation

carried out by the operating system automatically to make more room in system memory.) When data

are accessed often, the data will be resident in the faster cache memories, as illustrated in Fig. 8.2.

Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization

The data structures used contribute to memory traffic. Data organization should allow serial access in

contiguous blocks as much as possible to provide best performance. From the programming perspec-

tive, data structures are often designed with convenience in mind, and no attention is given to how the

compiler will arrange the data or the resulting performance.

For example, consider a data structure with several fields composed of bytes, integers, and floating

point data items; compilers may attempt to rearrange the positions of data items in the data structures

and even pack the data in a different order for various optimizations. Compilers usually provide a set of

compiler directives, such as in-line pragmas and compiler switches, to control the data packing

behavior; these are worth looking into.

For point processing, vectors of data are the natural structure, and the memory system will operate at

peak performance in accessing and processing contiguous vectors. For area operations, rectangles

spanning several lines are used, and the rectangles cause memory access patterns that can generate cache

misses. Using scatter-gather operations for gathering convolution kernel data allows a large data structure

to be split apart into vectors of data, increasing performance. Often, CPU and GPU memory architectures

pay special attention to data access patterns and provide hidden methods for optimizations.

Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization 335

Scatter-gather operations, also referred to as vectored I/O or strided memory access, can be

implemented in the GPU or CPU silicon to allow for rapid read/write access to noncontiguous data

structure patterns. Typically, a scatter operation writes multiple input buffers into a contiguous pattern

in a single output buffer, and a gather operation analogously reads multiple input buffers into a

contiguous pattern in the output buffer.

Operating systems and computer languages provide APIs for scatter-gather operations. For Linux-

style operating systems, see the readv and writev function specified in the POSIX 1003.1-2001 specifi-

cation. The async_work_group_strided_copy function is provided by OpenCL for scatter-gather.

Coarse-Grain Parallelism

A vision pipeline can be implemented using coarse-grain parallelism by breaking up the work into

threads and also by assigning work to multiple processor cores. Coarse-grained parallelism can be

achieved by breaking up the compute workload into pipelines of threads or by breaking up the memory

into tiles assigned to multiple threads.

Compute-Centric vs. Data-Centric

Coarse-grain parallelism can be employed via compute-centric and data-centric approaches. For

example, in a compute-centric approach, vision pipeline stages can be split among independent

execution threads and compute units along the lines of pipeline stages, and data are fed into the next

stage a little at a time via queues and FIFOs. In a data-centric approach, an image can be split into tiles,

as shown in Fig. 8.13, and each thread processes an independent tile region.

Threads and Multiple Cores

Several methods exist to spread threads across multiple CPU cores, including reliance on the operating

system scheduler to make optimum use of each CPU core and perform load balancing. Another is by

assigning specific tasks to specific CPU cores. Each operating system has different controls available to

tune the process scheduler for each thread and also may provide the capability to assign specific threads

to specific processors. (We discuss programming resources, languages, and tools for coarse-grained

threading later in this chapter.) Each operating system will provide an API for threading, such as

pthreads. See Fig. 8.14.

336 8 Vision Pipelines and HW/SW Optimizations

Fig. 8.14 (Left) Typical SIFT descriptor pipeline compute allocation [148]. (Right) Reported compute times [94] for

ORB, SURF, and SIFT, averaged over 24 640 × 480 images containing about 1000 features per image. Retrofitting ORB

for SIFT may be a good choice in some applications

Fine-Grain Data Parallelism

Fine-grain parallelism refers to the data organization and the corresponding processor architectures

exploiting parallelism, traditionally referred to as array processors or vector processors. Not all

applications are data parallel. Deploying non-data-parallel code to run on a data-parallel machine is

counterproductive; it is better to use the CPU and straight-line code to start.

A data-parallel operation should exhibit common memory patterns, such as large arrays of regular

data like lines of pixels or tiles of pixels, which are processed in the same way. Referring back to

Fig. 8.1, note that some algorithms operate on vectors of points, lines, and pixel regions. These data

patterns and corresponding processing operations are inherently data parallel. Examples of point

operations are color corrections and data type conversions, and examples of area operations are

convolution and morphology. Some algorithms are straight-line code, with lots of branching and little

parallelism. Fine-grained data parallelism is supported directly via SIMD and SIMT methods.

SIMD, SIMT, and SPMD Fundamentals

The supercomputers of yesterday are now equivalent to the GPUs and multi-core CPUs of today. The

performance of SIMD, SIMT, and SPMD machines, and their parallel programming languages, is of

great interest to the scientific community. It has been developed over decades, and many good

resources are available that can be applied to inexpensive SOCs today; see the National Center for

Supercomputing Applications [468] for a starting point.

SIMD instructions and multiple threads can be applied when fine-grained parallelism exists in the

data layout in memory and the algorithm itself, such as with point, line, and area operations on vectors.

Single instruction multiple data (SIMD) instructions process several data items in a vector simulta-

neously. To exploit fine-grained parallelism at the SIMD level, both the computer language and the

corresponding ALUs should provide direct support for a rich set of vector data types and vector

instructions. Vector-oriented programming languages are required to exploit data parallelism, as

shown in Table 8.8; however, sometimes compiler switches are available to exploit SIMD. Note that

languages like C++ do not directly support vector data types and vector instructions, while data-

parallel languages do, as shown in Table 8.8.

Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization 337

Table 8.8 Common data-parallel language choices

Language name Standard or proprietary OS platform support

Pixel Shader GLSL Standard OpenGL Several OS platforms

Pixel Shader HLSL Direct3D Microsoft OS

Compute Shader Direct3D Microsoft OS

Compute Shader Standard OpenGL Several OS platforms

RenderScript Android Google OS

OpenCL Standard Several OS platforms

C++ AMP Microsoft Microsoft OS platforms

CUDA Only for NVIDIA GPUs Several OS platforms

OpenMP

*NOTE: many languages are adding native

SIMT/SIMD parallel features

Standard Several OS platforms

In some cases, the cost of SIMT outweighs its benefit, especially considering run-time overhead for

data setup and tear-down, thread management, code portability problems, and scalability across large

and small CPUs and GPUs.

In addition to SIMD instructions, a method for launching and managing large groups of threads

running the same identical code must be provided to exploit data parallelism, referred to as single

instruction multiple threading (SIMT), also known as single program multiple data (SPMD). The

SIMT programs are referred to as shaders, since historically the pixel shaders and vertex shaders used

in computer graphics were the first programs widely used to exploit fine-grained data parallelism.

Shaders are also referred to as kernels.

Both CPUs and GPUs support SIMD instructions and SIMT methods—for example, using

languages like OpenCL. The CPU uses the operating system scheduler for managing threads; however,

GPUs use hardware schedulers, dispatchers, and scoreboarding logic to track thread execution and

blocking status, allowing several threads running an identical kernel on different data to share the same

ALU. For the GPU, each shader runs on the ALU until it is blocked on a memory transfer, a function

call, or is swapped out by the GPU shader scheduler when its time slice expires.

Note that both C++ AMP and CUDA seem to provide language environments closest to C++. The

programming model and language for SIMT programming contain a run-time execution component to

marshal data for each thread, launch threads, and manage communications and completion status for

groups of threads. Common SIMT languages are shown in Table 8.8.

Note that CPU and GPU execution environments differ significantly at the hardware and software

level. The GPU relies on device drivers for setup and tear-down, and fixed-function hardware

scheduling, while CPUs rely on the operating system scheduler and perhaps micro-schedulers. A

CPU is typically programmed in C or C++, and the program executes directly from memory and is

scheduled by the operating system, while a GPU requires a shader or kernel program to be written in a

SIMT SIMD-friendly language such as a compute shader or pixel shader in DirectX or OpenGL, or a

GPGPU language such as CUDA or OpenCL.

Furthermore, a shader kernel must be launched via a run-time system through a device driver to the

GPU, and an execution context is created within the GPU prior to execution. A GPU may also use a

dedicated system memory partition where the data must reside, and in some cases, the GPU will also

provide a dedicated fast memory unit.

GPGPU programming has both memory data setup and program setup overhead through the

run-time system, and unless several kernels are executed sequentially in the GPU to hide the overhead,

the setup and tear-down overhead for a single kernel can exceed any benefit gained via the GPU SIMD/

SIMT processing.

338 8 Vision Pipelines and HW/SW Optimizations

The decision to use a data parallelism SIMT programming model affects program design and

portability. The use of SIMT is not necessary, and in any case, a standard programming language like

C++ must be used to control the SIMT run-time environment, as well as the entire vision pipeline.

However, the performance advantages of a data-parallel SIMT model are in some cases dramatically

compelling and the best choice. Note, however, that GPGPU SIMT programming may actually be

slower than using multiple CPU cores with SIMD instructions, coarse-grained threading, and data

tiling, especially in cases where the GPU does not support enough parallel threads in hardware, which

is the case for smaller GPUs.

Shader Kernel Languages and GPGPU

As shown in Table 8.8, there are several alternatives for creating SIMD SIMT data-parallel code,

sometimes referred to as GPGPU or stream processing. As mentioned above, the actual GPGPU

programs are known as shaders or kernels. Historically, pixel shaders and vertex shaders were

developed as data-parallel languages for graphics standards like OpenGL and DirectX. However,

with the advent of CUDA built exclusively for NVIDIA GPUs, the idea of a standard, general-purpose

compute capability within the GPU emerged. The concept was received in the industry, although no

killer apps existed and pixel shaders could also be used to get equivalent results. In the end, each

GPGPU programming language translates into machine language anyway, so the choice of high-level

GPGPU language may not be significant in many cases.

However, the choice of GPGPU language is sometimes limited for a vendor operating system. For

example, major vendors such as Google, Microsoft, and Apple do not agree on the same approach for

GPGPU and they provide different languages, which means that industry-wide standardization is still a

work in progress and portability of shader code is elusive. Perhaps the closest to a portable standard

solution is OpenCL, but compute shaders for DirectX and OpenGL are viable alternatives.

Advanced Instruction Sets and Accelerators

Each processor has a set of advanced instructions for accelerating specific operations. The vendor

processor and compiler documentation should be consulted for the latest information. A summary of

advanced instructions is shown in Table 8.9.

APIs provided by operating system vendors may or may not use the special instructions. Compilers

from each processor vendor will optimize all code to take best advantage of the advanced instructions;

other compilers may or may not provide optimizations. However, each compiler will provide different

flags to control optimizations, so code tuning and profiling are required. Using assembler language is

the best way to get all the performance available from the advanced instruction sets.

Advanced Instruction Sets and Accelerators 339

Table 8.9 Advanced instruction sets and HW acceleration processors

Instruction type Description

Transcendentals GPUs have special assembler instructions to compute common transcendental math functions for

graphics rendering math operations, such as dot product, square root, cosine, and logarithms. In

some cases, CPUs also have transcendental functions

Fused

instructions

Common operations such as multiply and add are often implemented in single fused MADD

instruction, where both multiply and add are performed in a single clock cycle; the instruction may

have three or more operands

SIMD

instructions

CPUs have SIMD instruction sets, such as the IntelSSE and Intel AVX instructions, similar SIMD

for AMD processors, and NEON for ARM processors

Advanced data

types

Some instruction sets, such as for GPUs, provide odd data types not supported by common language

compilers, such as half-byte integers, 8-bit floating point numbers, and fixed-point numbers. Special

data types may be supported by portions of the instruction set, but not all

Memory

access modifiers

Some processors provide strided memory access capability to support scatter-gather operations,

bit-swizzling operations to allow for register contents to be moved and copied in programmable bit

patterns, and permuted memory access patterns to support cross-lane patterns. Intel processors also

provide MPX memory protection instructions for pointer checking

Security

Scalar[0],

Vector[1],

Matrix[2],

Tensor[≥3]

Cryptographic accelerators and special instructions may be provided for common ciphers such as

SHA or AES ciphers; for example, INTEL AES-NI. In addition, Intel offers the INTEL SGX

extensions to provide curtained memory regions to execute secure software; the curtained regions

cannot be accessed by malware

For accelerating tensor mathematics which are common to deep learning training and inferencing,

some GPUs and SOCs incorporate tensor HW units for accelerated memory access and parallel

computation of tensor arrays. A tensor of rank = 0 a scalar, rank 1 = a vector, rank 2 = a 2d matrix,

and rank 3 or greater is a tensor. Tensor data structures are arrays, which are straightforward to

organize in memory and accelerate in terms of memory access and parallel instructions for the math

operations on the arrays. Matrix math accelerators, array processors and DPS units, matrix math

accelerators in the GPU, and tensor processing units are available separately from various HW

vendors usually in the GPU; however, Google was the first to deploy a tensor HW core separate

from the GPU

Hardware

accelerators

Common accelerators include GPU texture samplers for image warping and sub-sampling, and

DMA units for fast memory copies. Operating systems provide APIs to access the DMA unit

[437]. Graphics programming languages such as OpenGL and DirectX provide access to the texture

sampler, and GPGPU languages such as OpenCL and CUDA also provide texture sampler APIs.

Many vendors offer computer vision accelerators for basic tasks such as object recognition and

tracking with and without neural network methods, especially Intel Corp, which offers a range of

products that can be deployed as small embedded devices with built in camera and SW on a small

SOC. Sometimes, OpenCV code is provided using acceleration alternatives specific to a given

processor

Vision Algorithm Optimizations and Tuning

Optimizations can be based on intuition or on performance profiling, usually a combination of both.

Assuming that the hotspots are identified, a variety of optimization methods can be applied as discussed

in this section. Performance hotspots can be addressed from the data perspective, the algorithm perspec-

tive, or both. Most of the time memory access is a hidden cost and not understood by the developer (the

algorithms are hard enough). However, memory optimizations alone can be the key to increasing

performance. Table 8.11 summarizes various approaches for optimizations, which are discussed next.

Data access patterns for each algorithm can be described using the Zinner, Kubinger, and Isaac

taxonomy [422] shown in Table 8.10. Note that usually the preferred data access pattern is in-place

(IP) computations, which involve reading the data once into fast registers, processing and storing the

results in the registers, and writing the final results back on top of the original image. This approach

takes maximal advantage of the cache lines and the registers, avoiding slower memory until the data

are processed.

340 8 Vision Pipelines and HW/SW Optimizations

Table 8.10 Image processing data access pattern taxonomy (from Zinner et al. [422])

Type Description Source images Destination images READ WRITE

(1S) 1 source, 0 destination 1 0 Source image No

(2S) 2 source, 0 destination 2 0 Source images No

(IP) In-placea 1 0 Source image Source image

(1S1D) 1 source, 1 destination 1 1 Source image Destination image

(2S1D) 2 source, 1 destination 2 1 Source images Destination image
a IP processing is usually the simplest way to reduce memory read/write bandwidth and memory footprint

Compiler and Manual Optimizations

Usually, a good compiler can automatically perform many of the optimizations listed in Table 8.11;

however, check the compiler flags to understand the options. The goal of the optimizations is to keep

the CPU instruction execution pipelines full, or to reduce memory traffic. However, many of the

optimizations in Table 8.11 require hand coding to boil down the algorithm into tighter loops with

more data sharing in fast registers and less data copying.

Table 8.11 Common optimization techniques, manual and compiler methods

Name Description

Sub-function

inlining

Eliminating function calls by copying the function code in-line

Task chaining Feeding the output of a function into a waiting function piece by piece

Branch

elimination

Re-coding to eliminate conditional branches, or reduce branches by combining multiple branch

conditions together

Loop coalescing Combining inner and outer loops into fewer loops using more straight-line code

Packing data Rearranging data alignment within structures and adding padding to certain data items for better

data alignment to larger data word or page boundaries to allow for more efficient memory read and

write

Loop unrolling Reducing the loop iteration count by replicating code inside the loop; may be accomplished using

straight-line code replication or by packing multiple iterations into a VLIW

Function

coalescinga
Rewriting serial functions into a single function, with a single outer loop to read and write data to

system memory; passing small data items in fast registers between coalesced functions instead of

passing large images buffers

ROS-DMAa Double-buffering DMA overlapped with processing; DMA and processing occur in parallel, DMA

the new data in during processing, DMA the results out

Note: See references [425, 426] for more information on compiler optimizations, and see each vendor’s compiler

documentation for information on available optimization controls
a Function coalescing and ROS-DMA are not compiler methods and may be performed at the source code level

Tuning

After optimizing, tuning a working vision pipeline can be accomplished from several perspectives. The

goal is to provide run-time controls. Table 8.12 provides some examples of tuning controls that may be

implemented to allow for run-time or compile-time tuning.

Advanced Instruction Sets and Accelerators 341

Table 8.12 Run-time tuning controls for a vision pipeline

Image resolution Allowing variable resolution over an octave scale or other scale to reduce workload

Frames per second Skipping frames to reduce the workload

Feature database size and

accuracy

Finding ways to reduce the size of the database, for example have one database with

higher accuracy, and another database with lower accuracy, each built using a different

classier

Feature database

organization and speed

Improving performance through better organization and searching, perhaps have more

than one database, each using a different organization strategy and classifier

Feature Descriptor Retrofit, Detectors, Distance Functions

As discussed in Chap. 6, many feature descriptor methods such as SIFT can be retrofitted to use other

representations and feature descriptions. For example, the LBP-SIFT retrofit discussed in Chap. 6 uses

a local binary pattern in place of the gradient methods used by SIFT for impressive speedup, while

preserving the other aspects of the SIFT pipeline. The ROOT-SIFT method is another SIFT accelera-

tion alternative discussed in Chap. 6. Detectors and descriptors can be mixed and matched to achieve

different combinations of invariance and performance, see the REIN framework [328].

In addition to the descriptor extractor itself, the distance functions often consume considerable time

in the feature-matching stage. For example, local binary descriptors such as FREAK and ORB use fast

Hamming distance, while SIFT uses the Euclidean distance, which is slower. Retrofitting the vision

pipeline to use a local binary descriptor is an example of how the distance function can have a

significant performance impact.

It should be pointed out that the descriptors reviewed in Chap. 6 are often based on academic

research, not on extensive engineering field trials and optimizations. Each method is just a starting

point for further development and customization. We can be sure that military weapon systems have

been using similar, but far more optimal feature description methods for decades within vision

pipelines in deployed systems.

Boxlets and Convolution Acceleration

Convolution is one of the most common operations in feature description and image preprocessing, so

convolution is a key target for optimizations and hardware acceleration. The boxlet method [323]

approximates convolution and provides a speed vs. accuracy trade-off. Boxlets can be used to optimize

any system that relies heavily on convolutions, such as the convolutional network approach used by

LeCun and others [60, 285, 288]. The basic approach is to approximate a pair of 2D signals, the kernel

and the image, as low-degree polynomials, which quantizes each signal and reduces the data size and

then differentiating the two signals to obtain the impulse functions and convolution approximation.

The full convolution can be recovered by integrating the result of the differentiation.

Another convolution and general area processing acceleration method is to reuse as much

overlapping data as possible while it exists in fast registers, instead of reading the entire region of

data items for each operation. When performing area operations, it is possible to program to use sliding

windows and pointers in an attempt to reuse data items from adjacent rectangles that are already in the

register files, rather than copying complete new rectangles into registers for each area operation. This is

another area suited for silicon acceleration.

342 8 Vision Pipelines and HW/SW Optimizations

Also, scatter-gather instructions can be used to gather the convolution data into memory for

accelerated processing in some cases, and GPUs often optimize the memory architecture for fast

area operations.

Data Type Optimizations, Integer vs. Float

Software engineers usually use integers as the default data type, with little thought about memory and

performance. Often, there is low-hanging fruit in most code in the area of data types. For example,

conversion of data from int32 to int16, and conversion from double to float, are obvious space-saving

items to consider when the extra bit precision is not needed.

In some cases, floating point data types are used when an integer will do equally well. Floating point

computations in general require nearly four times more silicon area, which consumes correspondingly

more power. The data types consume more memory and may require more clock cycles to compute. As

an alternative to floating point, some processors provide fixed-point data types and instructions, which

can be very efficient.

Optimization Resources

Several resources in the form of software libraries and tools are available for computer vision and

image processing optimizations. Some are listed in Table 8.13.

Table 8.13 Vision optimization resources

Method Acceleration strategy Examples

Threading

libraries

Coarse-grained parallelism Intel TBB, pthreads

Pipeline

building tools

Connect functions into pipelines PfeLib Vision Pipeline Library [422]

Halide [467]a

Primitive

acceleration

libraries

Functions are pre-optimized Intel IPP, NVIDIA NPP, Qualcomm FastCV

GPGPU

languages

Develop SPMT SIMD code using data parallelism CUDA, OpenCL, C++ AMP, INTEL CILK++,

GLSL, HLSL, Compute Shaders for OpenGL

and Direct3D, RenderScript

Compiler flags Compiler optimizes for each processor; see

Table 8.11

Vendor-specific

SIMD

instructions

Directly code in assembler, or use compiler flags

for standard languages, or use GPGPU languages.

Vendor-specific

Hardware

accelerators

See Table 8.9 above See Table 8.9 above

Advanced

instruction sets

Accelerate complex low-level operations, or fuse

multiple instructions; see Table 8.9

INTEL AVX, ARM NEON, GPU instruction

sets
a Open source available

Learning Assignments 343

Summary

This chapter ties together the discussions from previous chapters into complete vision systems by

developing four purely hypothetical high-level application designs. Design details such as compute

resource assignments and optimization alternatives are discussed for each pipeline, intended to

generate a discussion about how to design efficient systems (the examples are sketchy at times). The

applications explored include automobile recognition using shape and color features, face and emotion

detection using sparse local features, whole image classification using global features, and augmented

reality. Each example illustrates the use of different feature descriptor families from the Vision Metrics

Taxonomy presented in Chap. 5, such as polygon shape methods, color descriptors, sparse local

features, global features, and depth information. A wide range of feature description methods are used

in the examples to illustrate the challenges in the preprocessing stage.

In addition, a general discussion of design concepts for optimizations and load balancing across the

compute resources in the SOC fabric (CPU, GPU, and memory) is provided to explore HW/SW system

challenges, such as power reductions. Finally, an overview of SW optimization resources and specific

optimization techniques is presented.

Learning Assignments

1. Estimate the memory space and memory bandwidth required to process stereo RGB images of

resolution 1920 × 1080 at 60 frames per second, and show how the estimates are derived.

2. A virtual memory system allows each running program to operate in a large virtual memory space,

sharing physical memory with all other programs. Describe how a virtual memory system operates

at a high level, including all layers and speeds of memory used between the fast registers, main

memory, and the slowest page/swap file. Discuss the relative speeds of each memory layer in the

memory architecture (HINT: registers operate at one processor clock cycle per read/write access).

3. Describe memory swapping and paging in a virtual memory system, and discuss the performance

implications for computer vision applications.

4. Describe how DMA operates, and how memory regions can be locked into memory.

5. Discuss how data structure organization can influence memory performance in a computer vision

application, and provide an example worst-case memory organization for a specific algorithm.

6. Compare the power use of a CPU and a GPU and compare the silicon die area of each

compute unit.

7. Name a few compiler flags that can be used to optimize code in a C++ compiler.

8. Describe sub-function in-lining and function coalescing.

9. Describe loop coalescing and loop unrolling.

10. Discuss the trade-off between using integer and floating point data types, and when each data type

is appropriate.

11. List several methods to optimize memory access in computer vision applications by illustrating

how a specific algorithm works, and how to optimize memory access for the specific

algorithm. HINT: memory access can be optimized by the structure of memory items, and the

speed of the memory used.

12. Describe at least three types of image processing and computer vision algorithms that can be

optimized to use a multi-core CPU, and describe the algorithm optimization.

13. Name at least two types of assembler instructions available in high-end CPUs to accelerate

computer vision and imaging applications.

14.

344 8 Vision Pipelines and HW/SW Optimizations

Discuss multi-threading and how it can be applied to computer vision, and describe an algorithm

that has been optimized for multi-threading.

15. Discuss SIMD instructions and how SIMD can be applied to computer vision.

16. Describe the major features of a GPU and describe how the GPU features can be applied to

computer vision, and describe an algorithm that has been optimized for a GPU.

17. Name at least two programming languages that can be used to program a GPU.

18. Discuss SIMT processing and describe how SIMT can be applied to computer vision, and describe

an algorithm that has been optimized for SIMT.

19. Discuss VLIW and instruction level parallelism, and how VLIW can be applied to computer

vision, and describe an algorithm that has been optimized for VLIW.

20. Choose a computer vision application, then describe at a high level how to partition the compute

workload to operate in parallel across a multi-core CPU and a GPU.

21. Name several image processing operations and describe specific optimization methods for each

image processing operation.

22. List and describe the facial landmark features, such as eye corners, that should be detected to

classify emotions, and describe the pixel characteristics of each facial landmark.

23. Define and code a face recognition algorithm and describe each pipeline stage. Provide an

architecture document with requirements and a high-level design, suitable for someone else to

implement the system from the architecture document. Example pipeline stages may include

(1) sensor processing, (2) global image metrics used to guide image preprocessing, (3) search

strategies and feature detectors used to locate the face region in the image to know where to search

for individual facial landmark features, (4) which feature detectors to use to locate the face

landmark features, (5) how to design culling criteria for ignoring bad features (HINT: relative

position of features is one possibility), how to measure correspondence between detected features

and expected features, (6) define a visual vocabulary builder for the final classifier, using

K-MEANS to cluster similar feature descriptors into the reduced vocabulary set, and a select

distance function of your choice to measure correspondence between incoming detected features

and learned vocabulary features in the dictionary. Select or create a face image database of your

choice for ground truth data (some examples are in Appendix A, such as Faces In The Wild and

CMU Multi-Pie Face). Create code to implement a training protocol to build the vocabulary

dictionary. The code may run on the computer of your choice.

. . . they have sought out many inventions.

—Solomon, 848–796 BC

Feature Learning Taxonomy
and Neuroscience Background 9

The next wave of AI innovation will be in the area of classifier learning, rather than feature learning,

based on commodity foundation models using muti-modal and multiclass feature models and classifi-

cation methods, used together in huge ensembles together with associative multimodal classifiers

(AML), which can learn and grow without retraining—continuously learning as they are used, as

discussed in Chap. 12. And the big data statisticians continue to move heavily into computer vision

applications and data analysis as well, treating video content as another form of big data, borrowing

feature description, and learning tools from computer vision systems to build huge visual learning

systems to classify and correlate visual information together with other forms of electronic information

on a massive scale (Fig. 9.1).

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_9

345

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_9&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_9#DOI

346 9 Feature Learning Taxonomy and Neuroscience Background

Fig. 9.1 Connectome

images, which are maps or

wiring diagrams of

connectivity pathways,

captured in vivo using

multiple neuroimaging

modalities, “Courtesy of

the Laboratory of Neuro

Imaging and Martinos

Center for Biomedical

Imaging, Consortium of

the Human Connectome

Project—www.

humanconnectomeproject.

org”

Computer vision is becoming a commodity.

Here, we provide a taxonomy of feature learning architecture concepts, a list of terminology, and a

brief introduction to basic neuroscience concepts which have inspired many of the feature learning

architectures surveyed in Chap. 10. We identify the basic architecture types, components, and

structural elements here.

Key topics covered in this chapter include:

• Neuroscience inspiration

• Historical developments in machine learning for feature learning

• Terminology

• Feature learning architecture and component taxonomy

This chapter is recommended to understand key terminology and background concepts for the

Feature Learning Architecture and Deep Learning Survey in Chap. 10. Expert computer vision

practitioners may also benefit from a quick perusal.

Neuroscience Inspirations for Computer Vision

Neural networks can mimic portions of the visual pathway in the brain, resulting in a deep learning

approach to computer vision consisting of a hierarchy of features that represent visual intelligence,

such as low-level textures, object parts, entire objects, and scenes. While many computer vision and

local feature descriptor methods, such as SIFT and FREAK, are heavily inspired by the anatomy of the

human vision system closer to the retina, advances in compute power have made neurological models

of the entire visual pathway in the brain attractive and practical for computer vision and feature

learning systems. For example, we will survey various types of artificial neural networks and models of

the entire visual pathway such as HMAX and HMO in Chap. 10.

http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org

Neuroscience Inspirations for Computer Vision 347

Given the value of neuroscience, computer vision practitioners will benefit by following neurobiol-

ogy and neuroscience journals as well as computer vision journals. Computer vision methods are

feeding into neurobiological research. This chapter and Chap. 10 cover deep learning and feature

learning architectures, complementing the other computer vision approaches using local feature

descriptors covered in Chaps. 4 and 5.

Neural network architectures can implement complete, but primitive, computer vision systems.

Even the recognition and classification logic can be entirely described and trained in the artificial

neural architecture models, rather than relying on mathematical and statistical classification methods as

discussed in Chap. 4. And hybrid methods combine neural networks with other methods.

The race is on to develop artificial brains [584–586] that provide a common framework architecture

for vision and other forms of learning and reasoning. Up to the present time, we have seen the

foundations for computer vision laid in basic understanding of color science, image processing science,

and systems inspired by the human visual system at the retina. Now, with neuroscience investigations

providing more insight into neurobiology, and sufficient compute power to implement artificial neural

networks that mimic the human brain, we are witnessing the success of early synthetic vision systems,

modeled after the combined principles of imaging science, biological visual science, and neuroscience.

In addition to neural networks, we introduce related machine-learning topics which are applied

across a wide range of application domains, such as data analytics for marketing and investment and

government intelligence, speech recognition, and computer vision analytics of images and videos to

understand scenes and find objects. We cannot provide a comprehensive treatment of machine

learning, but only highlight a small subset of machine learning as applied to feature learning, and

refer the interested reader to better references into machine-learning topics outside our scope as we go

along. An excellent introductory reference text to neural network design and training is provided by

Hagan et al. [601], and another by Bishop [573]. See the machine-learning text by Mitchel [735]. Good

references on classification and learning include Duda and Hart [733], Alpaydin [734], Deng et al.

[493], and LeCun [736]. To dig deeper into the field or ANNs in general, see Bengio et al. [494] and

Schmidhuber [492]. A good survey text of statistical methods applied to machine learning is found in

Hastie [300] (Fig. 9.2).

Fig. 9.2 (Top) A hierarchy of learned features, left low-level, center mid-level, and right high-level. Feature

visualizations from Zeiler and Fergus [576], # M.D. Zeiler [576].

348 9 Feature Learning Taxonomy and Neuroscience Background

Feature Generation vs. Feature Learning

What is termed feature learning in deep learning networks could also be termed feature generation.

Deep learning networks typically use a backpropagation method analogous to a tedious averaging

procedure to generate features generically over all training samples, but not specifically for any. The

generated features are similar to the features in the images, but not exactly the same. In fact, by slightly

changing the training data or weight initializations for a given deep learning architecture, different

features are generated, so therefore nothing is really learned at all but rather different features are

generated. It could be argued that features are latent within the image data and that a good learning

system would learn the features regardless of the weight initializations or slight variations in the

training data, but this does not happen as one might expect in DNNs today. Thus, the deep learning

systems following artificial neural models and deep learning training mechanisms are still very

primitive systems.

The deep learning training process, discussed in detail in Chap. 10, starts by taking training samples

for input, and tuning a set of feature weights until each feature weight best represents the average of the

features attracted by a similarity measure to the feature weights from the training set. In other words,

the generated features are a compressed representation, not an exact representation, of a group of

features. This is not how humans learn. Neuroscience suggests that the brain creates new impressions

of important items, rather than averaging impressions together, under the view-based theories surveyed

in the HMAX section in Chap. 10.

However, we discuss a dense memory-based approach to feature representation based on stored

hierarchical feature memory impressions, called Volume Learning and Visual DNA in [476]. The basic

idea is that features are unprocessed hierarchical memory impressions along the visual pathway and

that feature memory is virtually unlimited following view-based assumptions.

In summary, what is called feature learning in deep learning today is still a very primitive art form

and may be termed as feature generation instead.

Terminology of Neuroscience Applied to Computer Vision

Here, we introduce some high-level terms for feature learning concepts, especially useful for under-

standing the artificial intelligence and deep learning approaches to feature learning. Reviewing this

terminology section is encouraged, since there is some obscurity in the literature where practitioners

(this author included) use many equivalent terms for the same concepts.

There are several independent research communities that have contributed to terminology in

computer vision discussions on feature learning:

1. Neuroscience, Neurobiology

2. Artificial Neural Networks (ANNs)

3. Artificial Intelligence and machine learning

4. Computer Vision and Image Processing

As a result, the terminology used in computer vision literature ends up being a mixture of several

dialects, often hard to understand, and sometimes confusing. In fact, the deep learning community has

a dialect, which we elucidate and clarify as we can.

The neuroscientist takes a different approach than the computer vision practitioner, since neurosci-

ence is concerned with understanding and modeling the biological structures and functions of the brain

as neuroscientific information. The computer vision ANN researcher is mostly concerned with

mimicking the neurobiology to create synthetic, or artificial models and architectures suitable for

implementation in software and hardware, perhaps to solve real problems. The use of ANNs for

computer vision has been mostly driven from outside the computer vision community, and introduced

to computer vision as the ANN practitioners looked for new applications. ANN practitioners usually

know less about existing methods for computer vision and image processing, and computer vision

practitioners are usually well versed in image processing, signal processing, pattern recognition, and

statistical methods for data classification, and know little or nothing of neuroscience or ANNs, which

makes it challenging for computer vision practitioners to learn and apply ANN methods without a huge

learning curve.

Terminology of Neuroscience Applied to Computer Vision 349

This section lists many common vocabulary terms intended to bridge the gap between computer

vision and neuroscience research. The ANN community would benefit from more understanding of

computer vision science, particularly local feature description methods surveyed in Chaps. 4, 5, and 6,

to enable ANNs to be more effectively enhanced to incorporate the best thinking from computer vision.

Some of the terms used in deep learning discussions are overloaded, meaning one thing in normal

conversation, and quite another thing in deep learning research parlance. For example, ambiguous

terms include deep learning (what is deep?), greedy learning (greedy in what way?), pooling (is water

involved?), and stating that convolution is trice (1) a filter, (2) a feature, and (3) weights, depending on

the context. Sometimes, practitioners introduce entirely new terminology to describe their own work,

in spite of perfectly suitable words and existing terminology that would work equally well, if not better.

So the author apologizes in advance for terminology confusion found herein, since terminology

problems likely infect this author’s work and chosen terminology as well.

Brief list of terms and definitions (not in any particular order):

• Machine Learning (ML): Systems that can be trained from input data to learn features or patterns,

in order to make decisions and take actions.

• Feature Learning (FL): A method for generating, learning, and tuning sets of features or patterns

from specific ground truth data (images in the computer vision case).

• Hierarchical Learning (HL): A model, like a pipeline of layers, that learns a hierarchy of feature

sets for each level of the hierarchy, for example, the lowest level features may be oriented edges,

contours, or blobs, the next higher level may be larger micro-textures and shapes, and higher levels

may resemble motifs or parts of objects, or complete objects.

• Artificial Neural Network (ANN): One of many methods for implementing a NN, including FNN,

RCN, and any method which is neurobiologically inspired.

• Neural Computing (NC): methods for machine learning and ANNs.

• Neuron, Neural Function, Artificial Neuron, Synthetic Neuron, Neural Model: Neurons are the

processing units in the NN, taking inputs and producing outputs to feed to other layers. Many neural

models are possible such as polynomial or correlational, or convolutional models. A convolutional

neural function may model a neuron as follows: first, features are computed using a function such as

f() = (inputs × weights) + bias, second, an activation function is used to condition the result using a

nonlinear function such as sigmoid to squash or spread the results (see Activation Function).

• Activation Function, Transfer Function, Activation Function, Biological neurons act as

switches, and fire or activate in a binary all-or-nothing fashion when input values are sufficient.

In this sense, a biological neuron activation function determines simply when to fire based on inputs

and electrochemical bias. However, some artificial neural networks do not fire in a binary fashion,

but rather as an analog numerical strength. The activation is the result of the neuron model (see

Neuron) and may be a convolutional, or a polynomial, or some other function. See Nonlinearity,

and Transfer Function. The output of the transfer function may be further conditioned (see Pooling

and Rectification) and finally fed directly into the next layer of the network as inputs. Various

350 9 Feature Learning Taxonomy and Neuroscience Background

transfer functions are used such as sigmoid, see Fig. 9.18. Transfer functions are chosen to be

differentiable to support backpropagation using gradient descent methods. Transfer functions are

chosen to operate for example by centering the results around zero, which implies that the input data

should also be centered around zero. Also, the transfer function is intended to reduce saturation

effects at the extrema of the data range. One goal of nonlinearity is to project the purely linear

convolution operation into a nonlinear solution space, which is believed to improve results. In

addition, the nonlinearity may result in faster convergence during backpropagation training to move

the gradient more quickly out of flat spots toward the local minima. Also, the nonlinearity is used to

ensure that the value is differentiable for backpropagation.

• Nonlinearity, in convolutional-style neural networks (CNNs), the Transfer Function (activation

function) for each neuron may use a nonlinear function, such as a sigmoid, which distributes, or

spreads, the actual output result from the feature match stage within a range of values (squashing) in

a nonlinear fashion, which is believed to improve performance of ANNs in general, since neurobi-

ology suggests that the neuron is a nonlinear function. In addition, the nonlinearity can move the

data into a higher dimensional space, where features that were not separable become separable.

However, nothing concrete is known about the algorithms used inside biological neural activation

functions, so practitioners guess. For example, using sigmoid nonlinearity is believed to help solve

problems of data saturation, perhaps caused by numeric overflow, poor lighting, or very strong

lighting. For example, if the correlation output is saturated at 1 in range -1 . . . +1, a nonlinearity

function may be chosen to ideally redistribute the value +1 value somewhere within the range, say

-0.99 to +0.99, to overcome saturation.

• Pooling and Subsampling, grouping features in a local region such as a 2 × 2 or 5 × 5 region,

which may overlap adjacent pool regions, and then selecting a new feature to represent the entire

pool to reduce the spatial resolution. See Fig. 9.3. Various methods are used to subsample the pool

such as taking the average value or MAX value. Pooling also provides for some translational and

deformation invariance. Pooling can help to produce more stable features from a related group of

more unstable features.

2×2 pooling regions, stride 1, 9:4 subsampling,

s1

s2

s0

s3

MAX (s0, s1, s2, s3)

Fig. 9.3 Pooling, with input as 4 × 4 regions from a 3 × 3 image, yielding an output of 4 × 4 pixels, which is then

subsampled down to a single pixel using the MAX value of the pool

a

Terminology of Neuroscience Applied to Computer Vision 351

• Multilayer Pooling, Cross-Channel Pooling, Cross-Channel Parametric Pooling, CCCP,

pooling method that includes pixels from the current layer feature map and prior layer feature maps

together (x, y, z regions), rather than limiting the pooling to spatial x,y regions only.

• Rectification, a method of dealing with poor feature matches by rectifying the value to account for

feature polarity (positives and negatives of the feature). Rectification solves problems where, for

example, negative matches occur where the feature is inverted. Various methods are used for

rectification including ABSVAL().

• Threshold, Bias, in convolutional networks, various thresholds are used to scale the transfer

functions or the convolutional filter in each neuron. In most neural networks we survey, the bias

is ignored and used only as a convenience for matrix math operations in the neural model. In

neurobiology, the bias may be a chemically or hormonally induced factor.

• Feature, Filter, Weights: all these terms may be used to refer to a single feature. For convolutional

features, an input region is processed using a filter weight matrix as the dot product of the input and

the matrix. The output is a filtered version of the input, and the output is placed in a feature map or

output image. For a convolutional-style network, weights are the features. Positive weights excite;

negative weights inhibit. Stronger weights have more influence. Typically, floating point numbers

are used for weights. In convolutional-style networks, the feature is used three ways: (1) as a filter on

the input image to produce an output image for the next layer in the network, (2) as a feature

descriptor, or correlation template, for pattern matching in the input, and (3) as a tunable feature, by

tuning and adjusting the weights in the matrix during backpropagation to better match the input. The

word filter is a misnomer here, since normally we refer to a filter as an operation that changes the

image. However, mathematically it can be shown that convolution is equivalent to correlation under

certain assumptions, but still this may be confusing since the filters are used for both filtering, and as

features themselves. The correlation template weights resemble shapes in the hierarchy of features,

such as edges in the low-level features, and higher-level concepts such as motifs or object parts in

the higher-level features.

• Feature Map, This term is used in convolutional-style networks to describe the output of applying

the weight filter to the input image, which produces a filtered image called a feature map, which is

passed to the next layer of the network as the input image. A series of feature maps are produced in

each layer, one feature map per filter or feature weight matrix.

• Subsampling, a method to reduce the size of the image for the next layer, see Pooling.

• Feature Set: For a convolutional network, a feature set is a collection of weight matrices, one set for

each layer in the hierarchy. A feature set may contain several hundred features per layer. Some

networks use basis functions as feature descriptors for the lower-level features, such as Gabor

functions. See Basis Functions.

• Basis Functions, Basis Features, Basis Set: a function used to create and define a feature, rather

than learning and tuning the features from scratch. Examples include Gabor Functions and Fourier

Series. ANN models render the basis features into a weight matrix to use as convolutional features.

• Codebook, Dictionary, Bag of Visual Words: terms used to describe sets of learned features,

perhaps local feature descriptors or ANN style features, for use in visual vocabulary analysis,

similar to textual word analysis to determine the subject of an email. For example, a set of SIFT

descriptors learned from a training set can be considered a codebook, and the codebook is useful to

classify images.

• Encoding, Sparse Coding: various methods used to create, learn, and represent condensed basis

sets of features, rather than exhaustive sets, allowing for feature classification and reconstruction

from linear combinations of basis features.

352 9 Feature Learning Taxonomy and Neuroscience Background

• Layers: levels or stages in a hierarchical network, which include numerical conditioning,

convolutional filtering layers, fully connected classification layers, and post-process functions

such as pooling and nonlinear activation functions.

• Input Unit: input the network, such as pixel input.

• Output Unit: output of the network, may be from a classifier or multi-stage classifier.

• Hidden Layers: In DNN parlance, hidden means any layer of neurons in between the sensory

inputs such as pixels, and the classification outputs of the network.

• Hidden Unit: In DNN parlance, this is an artificial neuron in a hidden layer.

• Deep Learning (DL): In DNN parlance, a DL model is a hierarchical learning model containing

hidden units in hidden layers, typically three or more hidden layers.

• Neural Network (NN): a network architecture and learning model inspired by neurobiology.

Abbreviated as NN or ANN (artificial neural network). Several variants exist such as CNNs and

RNNs. Typically, ANNs use the convolutional filtering neural model with a nonlinear output

conditioning function.

• Convolutional Neural Network (CNN), Convnet: the most common style of ANN used in

computer vision presently, implemented using a feed-forward network with several hidden layers

of convolutional neural models. The major innovation in convnets is the use of a uniform-sized

local receptive field containing an n × n kernel of pixels from the input, which feeds into a single

convolutional neural function. In this way, a single convolutional neuron can be sequentially fed

with all the local receptive fields from the input image, rather than implementing a system with one

neuron per receptive field.

• Deep Neural Network (DNN): another term for NNs or HLs or CNNs, specifically networks where

several layers of neural processing are used to produce hierarchical, or deeper sets of features,

usually deep means several levels of features.

• Feed-Forward Neural Network (FNN): an NN which does not have feedback loops, the hierarchy

is a straight pipeline feed forward from input through the hierarchy of features to classifiers and

outputs.

• Recurrent Neural Network (RNN): an NN with some recurrent feedback loops, implementing a

basic form of memory. Typically, RNNs are applied to spatiotemporal problems, or sequence

learning.

• Latent Variables, Features: another term for features, or inferred variables in the statistical sense,

features being latent in the image pixels until they are learned.

• Hyperparameters, DNN parameters tuned during learning and training to control learning rates,

learning momentum, regularization terms to control weight decay, and other such variables.

• Error Minimization, Cost Function, an algorithm used during training to quantify the error

between the trained pattern and the computed pattern. The error is computed using a suitable

distance function.

• Early Stopping, stopping the training process before the local minima are reached, in order to

speed up training, especially when the convergence is very slow and proceeds in small steps.

• Autoencoder (AE): a type of FNN that learns a sparse, compressed set of basis features to

reconstruct its own input. One main difference between an AE and other ANNs is that the AE

has the same number of outputs as inputs. Autoencoders can be useful for layer-wise training

of DNNs.

• Restricted Boltzmann Machine (RBM): a type of FNN with the restriction that all input units are

connected directly to a hidden layer containing hidden units, rather than connecting inputs to output

units. The input of an RBM may be pixels, or else the output of an RBM. The RBM architecture

enables training protocols such as back propagation using gradient descent to tune feature weights.

Terminology of Neuroscience Applied to Computer Vision 353

• Deep Belief Network (DBN): a type of FFN, such as a CNN, that is typically implemented using

autoencoders or RBMs for the hidden layers.

• Labeled Data, Unlabeled Data: training data, such as training images, which have been annotated

to define the contents of the training image. In this way, the system can be trained according to the

known labels, as opposed to trying to learn image features and contents without labels.

• Supervised Learning: learning which takes place using labeled data, and other preconditions

which are set up to define a learning model.

• Reinforcement Learning: A close relative of supervised learning, which adds a reinforcement

function for feedback, similar to a reward, to encourage the network to train itself according to the

reinforcement feedback.

• Unsupervised Learning: a learning method that attempts to create and tune features or patterns

using unlabeled data and no learning preconditions.

• Classifier: an algorithm modeling a mapping between feature inputs and class outputs. Examples

include SVMs, FC layers in CNNs, and regression models. Some classifiers (linear regression

models, for example) rely on data groupings that can be separated by a line in 2D (linearly

separable), or by hyperplanes in higher dimensions, to find the largest margin between data

groupings to delimit the classes. Other classifiers may use binary feature vectors representing

parts models, where each bit in the vector represents the presence or absence of a part, and matching

is performed using Hamming distance to compute matches. There is no limit to the clustering and

group distance methods used for classification, see Chap. 4 for more details.

• Fully Connected Layer (FC Layer): describes a connection topology where all outputs of a layer

are each connected to all inputs of the next layer. Fully connected layers may implement the

classifier of a CNN, modeled as a 1D vector of artificial neurons with a 1D vector of weights and

bias factors.

• Kernel-Connected Layer: instead of connecting all inputs to each convolutional processing layer

node in the FC sense, kernel-connected layers gather n × n kernels of local regions using a sliding

window over the input. This topology provides for parallelization of the convolutions by providing

one n × n input kernel to each virtual artificial neuron to perform the convolutions. A single artificial

neuron may be fed sequentially from all the kernels, or the kernels may be queued up for a group of

artificial neurons to service in parallel.

• Sparse Connected Layers allow for random or sparse connection patterns from the input to

subsequent layers. Sparse connections may be defined using variants of dropout methods to

regularize the model, see Dropout.

• Softmax: a logistic or exponential function, typically used as the last classification layer, to squash

and normalize class predictions into a range of probabilities 0.0.1, like a probability expressed as a

percentage. For example, each node in the softmax layer will produce a result in the range 0.0.1 to

rank the classification for the given sample.

• Back Propagation: A family of methods used during ANN training for tuning the accuracy of

feature weights in NNs. Back propagation works by taking the results of the forward pass through

the NN, finding the error between the current predicted result and the correct result, and distributing

the error proportionally backward through the network, to minimize the error at each layer by

adjusting the feature weights. Backpropagation methods resemble a huge feature averaging process.

Many methods are used, and some contain optimizations for various goals such as more rapid

convergence. Examples include gradient descent and contrastive divergence.

• Gradient Descent: a backpropagation method based on modeling the classification error as a total

gradient, and then working backward through the network layer by layer, proportionally finding the

354 9 Feature Learning Taxonomy and Neuroscience Background

contributing gradients for each feature weight, which can be understood from the chain rule from

calculus. The gradients become smaller and smaller as they are propagated backward.

• Transformer: a feature learning architecture that is used widely in natural language processing

(NLP) and increasingly in computer vision, which models the input as a stream of tokens or

encodings, where each token is represented by an embedding vector of attributes. The tokens are

passed through an encoder section and output through a decoder section to generate final output.

See Chap. 11 for details.

• Self-Attention, Attention: a method of representing features contextually by comparing local

regions of tokens (words, pixels) token by token to each other, and recording the contextual

relationships for comparison and analysis. Self-attention is the comparison of all tokens in a local

contextual region; general attention is the comparison of local regions to other regions. For

computer vision, RGBI pixels may be the tokens. There are many variations of attention, equally

as complex and engineered as any feature descriptors such as SIFT, SURF.

Classes of Feature Learning

We take a wide view of feature learning in this work and consider many approaches including artificial

neural networks, deep learning, sparse coding, dictionary learning, and local feature descriptor

learning. As described in Chaps. 4, 5, and 6, many local feature descriptor methods like SIFT, ORB,

and FREAK contain attributes that are learned, such as shape, pixel sampling pattern, and various

weights. Some practitioners primarily refer to feature learning methods in the context of deep learning

methods like CNNs and then go on to claim that local feature descriptors, such as SIFT, ORB, and

FREAK, are not learned, but rather handcrafted. However, this distinction does not hold since many

attributes of the better local features are learned and tuned. In fact, the best local features are inspired by

the human vision system, and descriptors such as SIFT, ORB, and FREAK actually incorporate several

features of the human visual system in their design. Actually, DNNs are heavily handcrafted, requiring

extensive empirical work to get the architecture and parameters correct for training. In addition, DNNs

typically use the most primitive and least invariant feature of all: correlation templates, limiting

invariance.

Given this wide view of feature learning, we survey and discuss several classes of feature learning.

Our criteria for dividing the various approaches are based on the feature descriptor used in each

approach, so we find three primary categories of feature learning: (1) convolution feature weight

learning, (2) local feature descriptor learning, and (3) basis feature composition and learning.

Convolutional Feature Weight Learning

For computer vision, a convolutional neural network (CNN) learns hierarchical sets of features

represented as weights in a kernel or matrix shape, such as 3 × 3. Features are created in a feature

hierarchy, with low-level features representing micro-textures, and higher-level features representing

part of objects. Some or all of the features in the hierarchy are fed to a classifier for matching larger

objects composed from the features. Each weight is tuned during training, as discussed in Chap. 10.

Some practitioners view CNN methods as a variant of parts models [489].

Basis Feature Composition and Dictionary Learning 355

Local Feature Descriptor Learning

Many of the local feature descriptor methods discussed in Chap. 6, such as ORB, SIFT, FREAK, and

D-NETS, actually learn their shape, pixel sampling pattern, and weight thresholds during a training

process. For example, FREAK and ORB are trained against ground truth data to learn how to build the

feature sampling pattern, see Chap. 4. However, some of the more primitive local feature descriptor

methods do not learn or tune themselves to the ground truth data, such as shape detectors like Gabor

Functions, and other hard-coded descriptors.

In Chap. 11, we discuss self-attention and general attentional features, which are created as

embedding vectors representing the relationships between tokens in a local region, such as words in

a sentence for natural language processing, or pixels within a patch region for computer vision. There

are many variations of attention representations and algorithms, similar to all the feature descriptor

variations covered in Chap. 4. Attentional features are very handcrafted, but they can be learned in a

transformer or DNN architecture and represented as weights. Sometimes both attentional and

convolutional n × n kernels are combined in the same backbone, see Chap. 11.

Sparse coding is often employed with local feature descriptors to boil down the size of the

descriptor set into a visual vocabulary, rather than an exhaustive vocabulary. The visual vocabulary

of features is used to classify the image, similar to a word vocabulary to classify textual information.

Sparse coding is analogous to JPEG image compression, which uses the selected level of frequency

detail from local DCT transforms of image pixel blocks to create, or encode, a compressed representa-

tion of the image. Sparse coding is an encoding and compression method. Sparse coding can also be

considered as a performance optimization method, since compute performance increases with fewer

features to manage, but sparse coding in the extreme may affect accuracy if too much detail is

compressed away.

The K-SVD method developed by Aharon et al. [707] is one example of a sparse feature encoding

method, Aharon provides a good survey of various sparse coding methods. The Histogram of Sparse

Codes (HSC) method [98] discussed in Chap. 6 learns a single-level representation of features in an

unsupervised manner by using a sliding window edge detector and then generates a histogram of

gradients feature descriptor from the edges within the features. The K-SVD method is used for

reducing the feature set to a sparse code set. Feng et al. [724] and Bo et al. [111] developed

optimizations on the K-SVD method to shrink the codebook and more uniformly distribute the values

within the reconstruction space.

See Chap. 10 for a deeper dive into sparse coding and vocabulary methods.

Basis Feature Composition and Dictionary Learning

Basis features created from basis functions like Gabor functions can be used as primitive base level

features, and then, higher-level features can be composed from the basis features and further tuned into

new higher-level features and collected into a dictionary, alternatively referred to as a visual vocabu-

lary. The basis features may also be collected in a feature hierarchy. In this context, the higher-level

vocabulary is learned and is based on the lower-level basis features. Similar to textual analysis using

histograms of word counts from the vocabulary dictionary, visual vocabularies can be used to discover

the content of an image, for example by using a histogram format containing the weighted visual words

detected in an image, fed into a classifier for matching, see Fig. 10.70. With parts models, for example

the parts of a bicycle, either as patches or as local feature descriptors such as SIFT, may be learned and

composed into a dictionary, and then at classification time, if enough parts of the bicycle are detected in

an image, then the classifier can predict and match on a bicycle.

356 9 Feature Learning Taxonomy and Neuroscience Background

Summary Perspective on Feature Learning Methods

We can conclude that deep learning methods create a hierarchical set of averaged, compressed, or a

sparse set of features, which correspond to the dominant features in the training set. Local features

such as SIFT and FREAK are trained to represent complex and more invariant features, which are

individually more powerful than the single correlation template features used in deep learning. It seems

that the power of deep learning style features arises from (1) the sheer number of features, and (2) the

hierarchical nature of the features to represent low-, mid-, and higher-level concepts. This perspective

suggests that sets of local features, such as SIFT and FREAK, can be created likewise in a hierarchical

manner, to rival or exceed the performance of simple correlation template features as used in

convolutional-style deep learning methods.

Machine-Learning Models for Computer Vision

Here, we outline a very broad-brush picture of machine learning to set the stage for digging into feature

learning architectures.

As Juergen Schmiduber has noted, machine learning is about compression. The learned features are

a compressed set of parameters, which represent a wide range of objects. In a convolutional neuron

model such as a CNN or RNN, each filter is a compressed representation of many similar features.

Perhaps deep learning methods compress millions of parameters, or features, into a few hundred.

In the early days of machine learning, the field of Artificial Intelligence (AI) was popularized as the

field of study encompassing all methods for computerized learning and machine understanding.

Initially, primitive compute and memory capabilities hampered development of practical AI systems,

so many considered the field of AI to be over-hyped, and AI was relegated to obscure academic

research programs for many years. Interest in AI methods has gradually renewed, keeping pace with

technological advances in electronics, inexpensive compute power, and more memory, allowing AI

methods to be applied to commercially viable systems such as databases. Over time, machine learning

and AI have branched off into several research segments to address different approaches to machine

learning, which are summarized in Fig. 9.4.

Machine-Learning Models for Computer Vision 357

Expert Systems (Oldest)

Encoded

Logic
Input

DATA

Output

Labels

Decisions

Actions

Deep Learning (Newest)

Classifiern m feature n m feature n m feature

(micro part) (part) (object)

Input

DATA

Output

Labels

Decisions

Actions

Representation Learning, Feature Learning (Newer)

Input

DATA

Sparse

Feature

Codes

Classifier Output

Labels

Decisions

Actions

Local Feature Descriptors (Recent)

Feature

Descriptor
Classifier Output

Labels

Decisions

Actions

Input

DATA

y

c

c

c

Fig. 9.4 A simplified taxonomy of AI approaches, highlighting similarities and differences, after Bengio et al. [494]

As shown in Fig. 9.4, the machine-learning pipeline has been expressed several ways:

1. Feature extraction, could be local feature descriptors or learned DNN features

2. Encoding features, perhaps keep all or only a sparse set of all features

3. Classifier design and training

The power of the DNN approach is that all three steps in the pipeline can be collapsed into a single

feature learning architecture, applicable to a range of applications, which can be trained to generate

(or learn) features from the training set. In essence, the goal is that the DNN network architecture is

fixed; the features become the program code, the learning parameters and training protocol are the

programmer, and the DNN is the computer.

See the resources in Appendix C, which lists some open-source projects, commercial products, and

links to follow several key researchers including Schmidhuber, Ng, LeCun, and others.

358 9 Feature Learning Taxonomy and Neuroscience Background

Expert Systems

At one time, Expert Systems were hot topics in AI research. Expert systems [496] are the equivalent of

a system encoding the knowledge of an expert and have been referred to as Rule-Based Expert Systems,

and Decision Support Systems. The rule-based method allowed for recursive process models [543],

similar to the RNN. The main expert systems architecture components include (1) a knowledge base of

rules and facts, and (2) an inference engine to make decisions from inputs using the knowledge base.

To populate the knowledge base, experts are interviewed by programmers who code the expert’s

knowledge as logical decisions and rules. At one time, attempts were made to generalize and structure

the concept of expert systems into software products, which were programmable and trainable for a

range of applications. AI researchers developed several variants of commercial expert systems in the

1970s and 1980s, and then, research interest tapered off. After some time, the ideas and key learnings

from expert system have been integrated into business logic software and database software, and expert

systems are hardly discussed in academic circles today. However, in many cases, expert systems have

been embodied as ad hoc systems, often composed of expert-level logic hard-coded into software.

Using a loose definition of expert systems as hard-coded expert logic, a great many software programs

are, informally, expert systems. No attention is given in this chapter to expert system methods, but a

few ad hoc expert system approaches are already covered in the Chap. 8 examples.

Statistical and Mathematical Analysis Methods

Perhaps the largest portion of AI is based on standard numerical analysis methods developed over the

past few hundred years, using a huge range of regression, group distance, clustering, and error

minimization methods to classify feature descriptors. There is no limit to the numerical methods

applied to machine learning and computer vision tasks. We cover several statistical methods used for

distance and clustering in Chap. 4, and some statistical methods as applied to deep learning and feature

learning in this chapter, and briefly touch on SVMs in Chap. 10. See also Hastie et al. [629] for an

overview of statistical learning.

Neural Science-Inspired Methods

Inspired by the brain’s neural networks as studied in neuroscience, Neural Network Methods (NNs)

and deep learning represent intelligence using multilevel networks of primitive, artificial neurons. As

shown in Fig. 4.23, the human brain composes quite complex neural networks, which apparently grow

and change over time. Since the brain’s neural networks are so complex and impossible to model in a

real system, researchers have developed primitive models to mimic the brain’s architecture, as

illustrated in Fig. 9.10.

Neurobiology is at the forefront of artificial neural network research in the computer science

community, and neurobiologists routinely modify ANN architectural models, such as CNNs, and

also create new models such as HMAX and HMO. Artificial neural networks are part of the future:

This author predicts that neural network research and the resulting architectures inspired by biological

mechanisms will ultimately drive computer science to produce real products and commercial

breakthroughs in the near future, based on a common neural programming language and architecture

accelerated in silicon.

Table 9.1 provides a comparison of artificial neural methods to human neural biology.

Deep Learning 359

Table 9.1 A simple comparison of an artificial neural network to the human brain

Deep Learning

The term deep learning was popularized in the early 2000s by Hinton and others [481, 557] to describe

hierarchical feed-forward neural networks with several layers. In DNN parlance, deep means a neural

network with more than one hidden layer between the input and output. A hidden layer contains hidden

units or artificial neurons, which represent learned features from the input data, see Fig. 9.2. In DNNs,

layers may be replicated, and each layer learns and produces features. See Fig. 9.5. In CNN-DNN

systems, the features are generated by the convolutional neurons at each layer as feature weights or

correlation templates and stored in a hierarchy of feature sets.

Input (pixels)

Image

Classifier Layers

1d

weight

vector

1d

weight

vector

Output

Soft-

max

Convolutional Layers

(feature hierarchy, weights)

Low-

level

Mid-

level

Hi-

level

Fig. 9.5 A typical deep learning architecture with input, Convolutional Layers, Classifier Layers, and the output as
labeled objects. There are many variations covered in the surveys in Chap. 10

360 9 Feature Learning Taxonomy and Neuroscience Background

Earlier work starting in the late 1980s and early 1990s by LeCun and others [514, 516, 517],

popularized as Convnets and CNNs at that time, can also be considered as deep learning. Deep learning

was demonstrated to be effective by Schmidhuber in 1991 [522] using deep RNNs. Several feature

learning concepts besides CNNs fall into the deep learning category. At this time, most DNN systems

follow the work of LeCun and Hinton and are implemented as CNNs, or convolutional-style networks,

using correlation templates for the feature descriptor. Also, the HMAX model [738] was developed by

Riesenhuber and Poggio in the late 1990s to model the entire visual cortex in a primitive manner, rather

than just mimic parts of the neurobiology as CNNs do.

Transformers are more recent deep learning architectures. Transformers have fewer layers, perhaps

ten or twenty layers, contrasted to convolution-style FFNs which can be a hundred or more layers deep

as discussed in Chap. 10. The transformer is a feature learning architecture invented for natural

language processing (NLP) tasks and effectively replaces an RNN in NLP. The Transformer can be

parallelized (unlike RNNs and LSTM that are serial and recursive), which is a good match for NLP

sequential & recursive processing of words. Transformers have been applied to computer vision also.

Transformers operate on an input as a stream of tokens or encodings (i.e., pixels or words), where each

token is represented by an embedding vector of attributes. The tokens are passed through an encoder

section and output through a decoder section to generate final output. See Chap. 11 for details.

Deep Learning Neural Networks (DNNs) implemented as CNNs have become more common for

solving computer vision problems, due mainly to advances in commodity compute power. DNNs have

done well in computer vision challenge events and real-world applications since around 2010, resulting

in many new computer vision researchers who have adopted DNN methods, as surveyed in Chap. 10.

In a typical convolutional-style DNN (CNN), each feature set in the hierarchy contains perhaps

hundreds of individual features in each hidden layer in DNN parlance. Each feature is simply a

correlation template. Each correlation template is represented as a matrix containing trained weights.

Each feature captures a different type of detail so that low-level features capture finer details, and

higher-level features capture higher-level concepts like parts or objects. DNN features are a hierarchy

of objects and parts of objects. Indeed, some have called deep learning a variant of the well-known

method of parts models [489]. While this is conceptually true, the nuances of deep learning methods go

farther than parts models since the architectures allow for a uniform training protocol, and the

architecture of deep learning alone is a field in and of itself, since it relies heavily on neuroscience

and machine learning, and is applicable to a wide range of problems besides computer vision.

Deep architectures, or hierarchical architectures, are not a new concept per se, but the nuances made

possible by deep learning networks, such as feature learning, transfer learning (discussed later in this

chapter and Chap. 10), and the common DNN architecture are novel and effective. The power of the

DNN lies in the quantity of features in each level of the feature map hierarchy, and the quality of the

features resulting from tuning each feature during training. In Chap. 10, we survey the limits and

capabilities of selected DNNs, as well as fundamental innovations at various stages of the DNN

architecture.

DNN Hacking and Misclassification

It should be pointed out that deep learning methods, particularly convolutional networks, are vulnera-

ble to adversarial misclassification. For example, when an image is modified with just minor changes

to some of the pixel values, the DNN may misclassify. This is a serious problem for trusted

applications of DNNs. In the future, alternative methods for training and classification will be needed

to overcome such problems, yet even so we are likely to see hacking threats to computer vision

systems, and perhaps hacking challenge events for computer vision systems.

Historical Survey, 1940s–2010s 361

Deep learning methods have been shown to fail to recognize features that are obviously correct and

succeed in recognizing features that are obviously incorrect [482]. See Goodfellow et al. [530] for

details on DNN misclassification of adversarial data with high confidence, based on intentionally

corrupted data (i.e., DNN hacking). See also Sutskever et al. 2014 regarding intriguing anomalies

of DNNs.

History of Machine Learning (ML) and Feature Learning

The history of machine learning is fascinating, so we present this brief introduction which is well worth

reading, especially for the novice. Perhaps the most detailed and complete historical information and

references can be found in Schmidhuber [492], who is one of the pioneers in this field. In addition, the

comprehensive survey by Anderson [495] provides references to many of the seminal research papers

for machine learning and artificial intelligence. See also Haykin [304] for a comprehensive introduc-

tion to neural networks.

A review of history can never be comprehensive, since certain details may be left out. However,

here we survey several historical developments in machine learning relevant to computer vision feature

learning, specifically hierarchical or deep learning methods. We highlight the early foundations of ML,

especially the inspiration from neuroscience. We also touch upon some related statistical and numeri-

cal methods. Machine learning has historically been discussed using several related terms and

concepts, such as neurodynamics, cybernetics, autonomics, synnoetics, intelectronics, artificial intelli-

gence, neurocomputing, pattern recognition, expert systems, analytics, and deep learning. See Fig. 9.6.

Historical Survey, 1940s–2010s

Much of the foundation for machine learning was laid in the 1940s, 1950s, and 1960s, without the

computing power and computing languages available today. And as usual for technology fields,

practitioners unfamiliar with historical research and concepts often reinvent the same concepts over

again, giving them a new name and a new spin. Later in this chapter we will dig deeper into many of

the key historical concepts, which have remained influential in feature learning.

362 9 Feature Learning Taxonomy and Neuroscience Background

Fig. 9.6 Prevailing theories of the nature of neuroscience around the early 1960s, image # Springer-Verlag, from Brain

Theory, Palm, Gunther, Aertsen, Ad, Frank Roseblatt: Principles of Neurodynamics: Perceptrons and the Theory of

Brain Mechanisms, Springer Berlin Heidelberg, 1986

1940s and 1950s

During the 1940s and 1950s, with the dawn of the first analog computers, we begin to see progress in

the area of concrete, working artificial intelligence models. The first model of the brain was

implemented as a Boolean circuit by McCulloch and Pitts in 1943 [501], using a hardwired neural

model of their Logical Calculus for Nervous Activity in Boolean logic, using vacuum tubes. Rudimen-

tary learning concepts soon followed, in the area of unsupervised learning by Hebb in 1949 [502] and

supervised learning in the simple Perceptron model in 1958 by Rosenblatt [497, 503] and also in 1961

by Joseph [498]. The Perceptron is a major milestone, using adjustable weights for learning like CNNs,

even though learning was limited to tasks with linearly separable training data. We will dig deeper into

the Perceptron concepts later in Chap. 10. Wiesel and Hubel in 1959 [499] and 1962 [500] developed

an influential hierarchical or deep model of the brain, where some neurons closer to sensory input

detected simple (S) or low-level features, and other neurons detected complex (C) or higher-level

features, to enable high-level reasoning. This Hubel and Wiesel work on the concepts of Simple Cells

(S) and Complex Cells (C) has inspired the development of most deep learning architectures to date,

especially the notion that features exist in a hierarchy of detail, low, mid, and high detail. So we will

dig deeper into the Hubel and Wiesel model later in this chapter (Fig. 9.11).

The Pandemonium model introduced in 1959 by Selfridge [741] is perhaps the earliest model for

pattern recognition and unsupervised feature learning using a set of local feature detectors. The

application was 1D signal Morse Code detection. The detectors are referred to as computational

sub-daemons. The classifier is the cognitive daemon, which computes a score via a weighted sum of

the detected features. The Pandemonium system also addresses the problem of finding the highest

score using a hill climber method in the score space where gradient descent methods may find several

solutions. In Pandemonium, each feature detector is scanned across the image in sliding windows to

look for low-level and mid-level features. Then, a decision demon is used to classify the signal based

on the presence of a specific set of the strongest feature activations using tuned feature weights.

Pandemonium defines two methods for feature learning, called mutated fission and conjugation, to

determine if a new feature should be added to the feature set to increase the representational power, or

removed from the feature set if little used and not needed.

1970s 363

1960s

In the 1960s, slightly larger computers and memory systems enabled more detailed neuroscience-

inspired models to be implemented. Some of the first single-level feed-forward neural networks were

implemented by Joseph [498] in 1961. Also, Rosenblatt developed multilayer Perceptron models with

up to four layers, which are described using the terms “forward coupling, cross-coupling, and back-

coupling” between layers (RNN style). Another one of the earliest multilayer or deep network is called

the Group Method for Data Handling (GMDH), modeled as a multilayer Perceptron, demonstrated by

Ivakhneko and Lapa starting in 1965 [504–506]. Note that Ivakhneko work is very much worth reading

today, containing advanced concepts that are no longer in common use. Ivakhenko’s work appeared

frequently in Avtomatika, the journal of Soviet Automatic Control, and other Soviet publications,

which were not available to Western researchers. In addition during the 1960s, several researchers

explored gradient descent and maximum descent methods applicable to back propagation algorithms,

see Dreyfus in 1962 [512], Kelley in 1960 [518], and Bryson in 1961 [520].

In 1963, Vapnik and Lerner [532] introduced the generalized portrait method algorithm for

statistical classification, which is the basis for the support vector machine (SVM) still widely used in

classification for machine learning. Later work on SVMs by Vapnik [534] and others [287, 535] has

expanded the basic SVM model [525], and SVMs remain one of the most widely used statistical tools

for machine-learning classification.

Neural networks and AI in general went through a lull stage as the 1960s progressed, when many

researchers became disillusioned due to limitations with the simple Perceptron model introduced in

1958 by Rosenblatt [497, 503] and also in 1961 by Joseph [498]. In 1964, Powell [536] developed a

method for computing gradient descent without using derivatives.

1970s

In 1971, Ivakhneko [507] refined the GMDH model as the first deep NN-inspired model, which was

fairly deep using eight layers, also known as a Polynomial Neural Network (PNN), which learned the

number of layers, neural units per layer, and pruned units as needed. The methods in GMDH are quite

advanced for their time, and some of the concepts have been rediscovered in recent years and renamed,

and others still remain quite advanced and worth further research. An active GMDH research

community continues today, see the GMDH survey in Chap. 10 for more details.

Also in the 1970s, the first back propagation algorithms were implemented for tuning the weight

factors in CNNs. Although back propagation and gradient descent were applied to NNs the 1960s, only

a few people actually implemented the algorithms. For example, Dreyfus [513] developed back prop

methods for error minimization using weight control parameters in 1972 and 1973. Also, in 1974

Werbos demonstrated a method for multilayer threshold adjustments in DNNs using backprop in his

Ph.D. thesis.

364 9 Feature Learning Taxonomy and Neuroscience Background

1980s

The decade of the 1980s saw the introduction of the Neocognitron by Fukishima [510, 511] in 1979,

based on his earlier work on the Cognitron [610], which was the first deep style of neural network,

similar to the CNN/FNN architectures of today. The Neocognitron used convolutional-style features,

where the features were modeled as rectangular correlation templates, biologically inspired by the 2D

visual field spanning some small, local receptor distance. Each correlation template filter coefficient

was given a weight factor, which was adjusted. The output of each filter stage was fed as input to the

next convolutional layer of similar filters. Weight parameters were shared or replicated in each layer.

The Neocognitron included subsampling units to look for the strongest filter activations in small local

regions, to provide some translation invariance for feature detection. Instead of max pooling to find the

best filter responses in the subsampling units, spatial averaging was used instead. The Neocognitron

weights were tuned using unsupervised hard-coded learning rules, and Neocognitron did not use back

propagation.

The 1980s also saw more back propagation innovations in deep learning. In 1981, Werbos [521]

demonstrated a method for back propagation using gradient descent specifically for tuning weights in

an NN, which is an early forerunner of current systems. Also, LeCun [514, 515] developed early

success with back propagation. LeCun is one of the early pioneers in deployed neural network systems

and led the effort to create several, commercially successful NN systems [288], including handwritten

postal code recognition, and bank check handwriting recognition, which were commercial successes.

LeCun-style FNNs are often referred to as Convnets, and Convolutional Neural Networks (CNNs).

In 1989, LeCun et al. [516] introduced the basic convolutional neural network CNN architecture

still used today often referred to as LeNet, including max-pooling, weight sharing via kernel-connected

layers, and advances in back propagation [515]. LeCun’s work also introduced the MNIST ground

truth dataset for handwritten digits, one of the most widely known benchmarks in machine learning.

Also in the 1980s, early hierarchical, or deep networks of autoencoders were developed by Ballard

and Hinton to learn feature hierarchies one layer at a time using unsupervised learning. Boltzmann

Machines [527, 528] were introduced by Ackley, Hinton, Sejnowski as a type of RNN, related to the

Hopfield Network [650] RNN. Both Boltzmann Machines and Hopfield Networks were difficult to

train, but even so they were important theoretical advances. Smolensky introduced the Harmonium

[529], a variant of the basic Boltzmann Machine, which had restrictions on the connectivity making it a

FNN instead of an RNN. The Harmonium was later reintroduced as a Restricted Boltzmann Machine

by Hinton and others after 2000, with a much-improved training protocol for faster learning.

1990s

According to Schmidhuber (lecture in NYC on Deep Learning RNNaissance), Neural Network

research went through a dark age from the early 1990s to the early 2000s, for about a decade, where

nobody would fund it, and nobody outside the academic community was interested. According to

LeCun (comments made during CVPR private Intel meeting in Portland), during this dark period, a lot

of NN research applied to computer vision was ignored by the computer vision community. But major

advances in compute technology, coupled with advances in key algorithms, profoundly advanced the

science during this time, and propelled CNNs to the forefront of computer vision.

In the 1990s, several improvements were made to NNs. In 1991, Hochreiter’s diploma thesis

explored back propagation training using gradient descent and identified the key problems:

(1) vanishing gradients where the errors become too small as the errors are propagated backward to

previous layers, (2) exploding gradients, and (3) oscillating gradients which prevented the algorithms

from converging to tune the weights. For exploding and oscillating gradients, the gradient problems

manifested themselves early in the training cycle vs. later, since the gradients are expected to get

smaller and smaller as the error minimization functions converge at a solution. Hochreiter’s insight,

together with collaborations with Schmidhuber, led to several innovations in back propagation to

overcome problems with gradients.

2000s–2010s 365

In 1992, Schmidhuber [522] proposed a method to overcome the gradient descent problems

identified by Hochreiter using a hierarchical, or multilayer network, which could be pretrained layer

by layer using unsupervised learning to yield a sparse, compressed set of reasonable and useful starting

feature weights, that were subsequently fine-tuned using back propagation under supervised learning.

In 1992, the Cresceptron [552] was demonstrated by Wang et al., providing a hierarchical

framework for learning multiscale feature hierarchies over an image scale pyramid, similar to earlier

work by LeCun [516, 517]. The Creseptron defined a neural plane for recognizing low-level features

anywhere in the image, and a concept module for classifying higher-level features. In addition, the

Creseptron could identify the coordinates of each feature found in the image by back-tracking the

response paths through the network (good idea).

Then in 1997, the LSTM (Long Term Short Term Memory) RNN architecture was developed by

Hochreiter and Schmidhuber [524] that includes memory units which can feed back prior information

into the RNN at a later time to assist in learning time-related sequences. LSTM uses long-term and

short-term memory cells as carousels, gating the introduction of backpropagated gradients in a

controlled manner into a time-aware gradient descent algorithm. The original LSTM paper [524]

also provides a very complete survey of gradient descent algorithm variants. LSTM is a major

advancement in NN architecture, so we will study LSTM architecture in more detail later in

Chap. 10. LSTM is not affected by gradient descent problems such as vanishing and exploding

gradients, since the LSTM gradient descent algorithm is gated and controlled to condition the

gradients. The LSTM makes the layer-wise training protocol using unsupervised pretraining followed

by supervised training unnecessary, therefore dramatically speeding up the training process.

SVMs were enhanced to almost their current form in 1992 by Boser et al. [533] based on the

original 1963 algorithm by Vapnik. Other SVM enhancement was made in 1993 by Cortes and Vapnik

[290]. For introductory material, see Ng [525].

A hierarchical model of the visual cortex dubbed HMAX was first introduced by Riesnhuber and

Poggio in 1999 [738] taking inspiration from the known facts about the visual ventral pathway, largely

based on experimental data from Logothetis et al. [739] who measured responses to shapes across the

visual pathway in monkeys. Logothetis found that some groups of neurons along the hierarchy respond

to specific shapes similar to Gabor-like basis functions at the low levels, and object-level concepts such

as faces in higher levels. We survey HMAX in some detail in Chap. 10. This author contends that

neuroscience is now the driving force in computer vision research and will lead to synthetic vision

systems with a biological interface.

2000s–2010s

Inexpensive computing power brought rapid advances in CNN-style networks. Personal computers

containing relatively powerful GPUs, multi-core CPUs, large memories, and SIMD instruction sets,

could be exploited via GPGPU, SIMD, and SIMT programming methods, providing massive parallel-

ism ideal for backpropagation training using very large datasets, the key to effective CNN training.

Many of the concepts developed prior to 2000 resurfaced as NN research accelerated. In some cases,

older concepts were refined further. The rapid innovation spawned several new architectural and

algorithmic variations to NNs and feature learning, which we survey throughout Chap. 10, such as

pooling, subsampling, numeric conditioning, dropout, and mini-batch training to name a few.

366 9 Feature Learning Taxonomy and Neuroscience Background

The terms Deep Learning and Deep Neural Networks (DNNs) were popularized around 2006 when

a think-tank was formed by Hinton, LeCun, Bengio, and others, who were funded by the Canadian

Government’s CIFAR program to promote research into neural networks; their work paid off. Key

research breakthroughs and success followed. Beginning in the mid-late 2000s, DNNs began to excel

in computer vision applications, and a new, larger group of academics and industrialists took notice.

With the renewed attention to NN research and real-world applications, including thousands of new

researchers and SW development engineers in industry, the science advanced rapidly.

In 2006, Hinton et al. [481, 557] demonstrated FNNs which were trained effectively using

unsupervised pretraining and promoted a style of NNs called deep belief networks (DBNs) built as a

deep hierarchy of restricted Boltzmann machine layers, trained layer by layer using contrastive

divergence [537]. In the early 2010s, LeCun and Hinton led research groups who demonstrated

success with FNNs, winning the top positions in several CVPR IMAGENET challenge events,1 and

influencing most of the other researchers to follow their architectures.

Research teams worldwide are continuing to create DNN innovations. For example in 2012,

Ciresan et al. [538] demonstrated a DNN setting the record for the German traffic sign benchmark,

beating human experts, and also winning several other international machine-learning competitions,

including the ICDAR 2009 handwriting recognition challenge to learn three languages. Schmidhuber’s

NN lab is one of the most diversified, has won several competitions, and extends into many areas

besides computer vision.2

Based on CNNs styled after LeCun’s earlier LeNet, plus the work of many others mentioned in this

brief history, the new millennium has seen rapid architectural and algorithmic innovations to ANNs. In

fact, recent work on local feature descriptor and interest point methods has slowed dramatically in the

research community, as research has shifted attention to NNs, and eventually the research topics will

settle down and become more balanced. While the newer DNN methods are effective, the best local

feature descriptor methods, such as SIFT and FREAK, still provide superior invariance and robustness

across a wider range of criteria. However, by introducing variations into the training set for the DNN,

much of the desired invariance can be learned and represented in correlation templates, at a great cost

of feature set size increase, and training time increase.

2020s–

The Transformer Architecture has been developed for NLP and migrated to computer vision, see

Chap. 11. Transformers can replace the serial RNN and LSTM architectures for language processing,

with the benefit or workload parallelization since the transformer model of self-attention can be

computed in parallel across the entire input token stream. Transformers perform equally as well as

LSTM depending on the benchmarks, see Chap. 10 for more on LSTM.

Self-attention and attention are the new handcrafted feature descriptor, both for NLP and computer

vision; self-attention operates over larger pixel patches or regions such as 16 × 16 which provides more

discrimination to high-frequency detail compared to smaller 3 × 3 or 5 × 5 convolution feature kernels

used in CNNs. The current research work on DNNs and CNN’ is mostly in the area of creating tools

and models for practitioners, such as pytorch, keras, tensorflow, and other libraries, as well as

1 http://www.image-net.org —see “Challenges” for 2013-2015 and onwards.
2 http://people.idsia.ch/~juergen/ Schmidhuber’s home page.

http://www.image-net.org
http://people.idsia.ch/~juergen/

foundation models pretrained for NLP or computer vision such as ONYX, Hugging Faces, BERT,

GPT, and more as discussed in Chaps. 10–12. We see fewer research fundamental innovations to the

CNN architecture since the performance is well enough for many applications. The feature learning

backbone of CNNs and Transformers has been hybridized, so we see cross-pollination of architectures;

we see n × n convolutional kernels in the lower layers of CNNs, combined with 16 × 16 or larger self-

attention features in the higher layers.

Artificial Neural Network (ANN) Taxonomy Overview 367

In summary, the CNN, LSTM, and Transformer neural network architectures are mature enough for

widespread use, accompanied by a set of open-sourced and commercially available resources for

engineers and researchers, including python language-based software tools and libraries, with a

growing and foundation model infrastructure upon which to build AI applications with little effort.

The groundwork was laid before 2000 for the progress in neural networks that we see today. Increased

computing power and large sets of labeled training data images make real-world computer vision

applications using NNs possible and very effective. In Chaps. 10 and 11, we will dig further into the

architecture and design innovations that have occurred in NNs, comparing and contrasting the various

approaches.

Artificial Neural Network (ANN) Taxonomy Overview

As shown in Fig. 10.1, we break down ANN architectures into three types:

– FNN—Feed-Forward Neural Networks, where all the inputs move in the same direction toward the

classifiers at the output stage. CNNs are equivalent to FNNs.

– RNN—Recurrent Neural Networks, which allow for feedback paths in the network. In other words,

an arbitrarily connected network (ACN).

– BFN—Basis Function Networks, which do not always follow neural network principles as defined

in the CNN, FNN, and RNN models, and instead use alternate architecture configurations and basis

functions such as Gabor features or SIFT features, rather than correlation templates as used in

FNN-CNNs and most RNNs.

– Transformers are considered as hybrids in the taxonomy; relatives of LSTM/RNNs except for

conceptual parallelization, and relatives of FFNs since a hierarchical feature map is created.

Transformers and CNNs are hybridized together into a single system by some practitioners; we

survey transformers and hybrids in the deep descriptor networks (DDNs) section in Chap. 11.

Note that BFNs are broken out here into a separate category, and the term BFN is introduced in this

work for the sake of developing a taxonomy. However, several deep learning models, which we refer

to here as BFNs, do not use correlation templates or filters, and instead use alternate basis functions

such as Gabor, SIFT, and others, or else the BFNs deviate in some other fashion from a more

neuroscience-inspired network model as embodied in typical CNNs. So BFN is the catch-all category.

Further, since the general variants of the ANN architecture are applicable to a wide range of

problems, we can expect to see more and more commercial and open-source software resources to

accelerate application development, increasing special purposes ANN accelerators, some

standardization of ANN variants, and more classes offered in academia to train the engineering

workforce. Selected resources are provided in Appendix C.

368 9 Feature Learning Taxonomy and Neuroscience Background

Feature Learning Overview

The idea of feature learning is to create features from a set of ground truth data and also to tune the

features to be optimal for all similar features in the data. For example, a feature learning problem may

include learning the optimal feature sets to represent a wide range of human faces, as the faces are

presented in the ground truth data. A typical feature learning goal is to collect only the optimal

features, limiting the feature set size to only maintain the strongest and most common features, rather

than an exhaustive set of all the features possible.

Learned Feature Descriptor Types

A range of feature description methods are used to learn features, and we take a broad view of feature

learning to include:

– Local feature descriptors—Some are learned; for example, SIFT, SURF, FREAK, ORB are

trained to encode several dimensions of information to identify unique pixel patterns. Learned

feature descriptor dimensions include gradient information, scale information, and pixel sampling

pattern information.

– Transformers and hierarchical self-attention and general attention mechanisms—For com-

puter vision, attentional features, such as self-attention, use pixel patches as input to encode the

pixels into tokens, represented as RGBI color attributes, combined with positional information and

class labels. Attentional features are learned as weights and organized in feature hierarchies, and

details are covered in Chap. 11.

– Regional feature sets—For example, Spatial Pyramid Matching by Lazebnik et al. [694] described

in Chap. 6, trains a descriptor by dividing an image into regions, and each region is described

separately to make up the final descriptor.

– Basis feature sets—may include selected sets of Gabor features, selected Fourier frequency

components, or HMP-style [706] learned features composed by sparse coding alone. CNNs learn

a hierarchical set of basis features.

– CNN-style hierarchical feature sets—CNNs are composed of n × n correlation templates, or

filters, learned at each level of the network, represented as tunable weight matrices as covered in

Chap. 10.

By definition, a neural network style feature learning approach does not mandate any particular

style of feature, as long as the features can be learned and trained by the neural network. However,

most neural networks for computer vision are using convolution-style features, or correlation

templates, rather than other feature descriptor methods.

With local feature descriptors such as SIFT, a feature at an interest point in a local region is learned

in a scale-invariant manner from an image pyramid by finding local maxima points present at adjacent

scales in the image pyramid, and then, local region gradients around the interest point are pooled and

encoded into a gradient orientation histogram. A set of SIFT features are collected together for

identifying an object. With SIFT-style features, it is often possible to recognize objects with very

small numbers of features, such as 10–20 features total, since so much local information is encoded in

each descriptor. In some applications, hundreds of CNN features are equivalent to 10–20 SIFT feature

descriptors.

How Many Features to Learn? 369

Hierarchical Feature Learning

Typically, deep networks have 2, 3, or more layers of features. The feature set size is usually limited to

a few hundred or so features per level, see Fig. 9.2. The first layer features in the neural network may be

derived directly from pixels, and the subsequent layers of the neural network take the input from the

pixel correlations at each layer in the form of a feature map with filtered output values (i.e., a processed

image), so the values are no longer strictly pixels, but a nonlinear mapping from pixels to intermediate

values. This nonlinearity is typically a feature of CNNs and viewed as desirable.

How Many Features to Learn?

In the extreme, if a complete memory image of all objects, at all angles, under all invariance criteria

was stored, and the computer had enough memory and processing power to sample, match, and

classify all inputs to the stored features in a practical amount of time, then computer vision would be

much simpler. If a method existed to automatically capture the ground truth data for subjects complete

with all the desired invariance attributes, such as scale, geometric, and lighting variations, then training

would be much simpler. In the extreme, as many features as possible could be useful.

There is a large body of research into smaller neural network models, see Chaps. 10–12. For many

applications, small models are fine; for example, see the U-Net model developed for medical

applications in Chap. 2 section U-Nets for Segmentation, W-Nets. And some methods are specifically

designed to avoid large neural network models all together; for example, see Chap. 11 on the Indextron

Inverse Index Feature Learning Mikhailov et al. [992], and Volume Learning And Visual DNA

Krig [476].

Currently, Transformer architectures are being developed which allow for trillions of model

parameters including features, see Fedua et al. [954]. CNN and Transformer models containing

hundreds of gigabytes of features are common already, see Chaps. 10–12.

However, practical problems, such as limited ground truth data with bad labels and lack of

invariance attributes built-in, limit training efficiency. In addition, memory and compute practicalities

limit the number of features that can be stored and searched. So the bulk of the time being spent in

feature learning research seems to be toward creating compromises, or optimizations, devising more

efficient and discriminating features and classifiers, working within the limits of practical feature

compression into a sufficient number of features, and looking for optimal performance within the

memory and compute limitations of the day. See Varma and Ray [699] for a discussion of optimal

descriptor characterization as a trade-off between invariance and discriminat ion.

The type of feature descriptor used does not seem to be nearly as critical as the sheer number of

features. In this survey, we will see a wide range of feature descriptors used successfully in various

architectures. Simply using a large number of features, especially deep sets of features, seems to be a

consistent ingredient for success, and the type of feature does not seem to matter. For example, large

numbers of simple image pixel regions have been demonstrated by Gu et al. [637] to be very capable

image descriptors for segmentation, detection, and classification. Gu organizes the architecture as a

robust bag of overlapped features, using Hough voting to identify hypothesis object locations,

followed by a classifier, to achieve state-of-the-art accuracy on several tests.

In general, more features are better, but not too many to manage, as discussed in the architecture

survey later in this chapter.

370 9 Feature Learning Taxonomy and Neuroscience Background

The Power of DNNs

By themselves, individual features learned by a neural network are not very useful. However, the

power of deep neural networks is a combination of several factors:

1. The hierarchical nature of the features to represent multilevel concepts. Spreading the features out

across layers actually reduces the number of features a CNN would require, since eliminating layers

result in the need to add more features to other layers to compensate.

2. The quantity of individual features in each layer. A CNN generates many features at each level,

which actually increases the accuracy, since the features allow for an overcomplete set of features,

rather than a sparse set.

3. Generic feature tuning. A CNN tunes each feature to learn generic features, which represent a

group of similar features. Each feature is typical trained on thousands of similar images, and tuned

via gradient minimization methods to best represent the average feature within a range of similarity.

Essentially, the CNN-style filters are well-tuned blob patterns and contour pattern detectors

represent low-, mid-, and high-level concepts. The DNN features are ideally contrast invariant,

which is accomplished by nonlinear transforms to the input, such as whitening, normalization, and

local histeq. We know that the human visual system (as discussed in the SIFT survey in Chap. 6) is

sensitive to gradients, and due to the local receptor pooling in the LGN, the gradients are allowed to

slide around the retina and still be recognized. This provides limited deformation invariance for

low-level features and extends to higher-level features which pool local receptive fields.

Transformers use self-attention based on pixel encodings and pixel embeddings, covered in

Cha p. 11.

The concepts used in deep learning and NN systems, such as hierarchical learning, algorithm

pipelines, replicated compute stages (neurons), tuning features via training, and computing via graph

methods, are nothing new or novel. Rather, the power of deep learning methods lies mostly in the

synergy of the architecture and the sum of its parts.

Encoding Efficiency

It should be noted that the most effective local feature descriptors, such as ORB, SIFT SURF, or

FREAK, individually encode much more information than any single CNN feature. In fact, many local

feature descriptors are quite powerful, and entire images can be reconstructed fairly well from the local

features alone, see Figs. 4.12, 4.13, and 4.14. However, single CNN features do not contain enough

information to reconstruct an image very well. We could conclude that powerful local feature

descriptors individually encode more information than individual CNN features.

Handcrafted Features vs. Handcrafted Deep Learning

There is some debate about the value of DNNs compared to other computer vision methods. Many

DNN practitioners have developed a preference for deep learning methods, stating that learning

features are better than designing features, thus taking a biased view against what they call handcrafted

features, such as SIFT, FREAK, and other local feature descriptors. However, DNN architectures and

training methods are very handcrafted and rely on several ad hoc design assumptions, such as the DNN

architecture, the DNN training protocol, and the learning parameters. A DNN is much more difficult to

develop and use compared to local feature descriptors. Local feature descriptors are handcrafted as

much as DNNs are handcrafted, both involve empirical engineering processes, and trial and error are

expected.

Handcrafted Features vs. Handcrafted Deep Learning 371

The CNN resembles a system composed of square puzzle pieces (i.e., features), where the content of

each puzzle piece is learned similar to the average value of several similar square pieces from the

training images, and the final classification is a best guess based on the puzzle pieces presented. The

puzzle pieces are not designed to fit together, since no spatial relationships or coherence are encoded in

each piece. One could argue that this is not feature learning at all and more like serendipity.

While neural networks are inspired by a few neuroscience concepts, the best local feature

descriptors, such as SIFT and FREAK, are inspired by the best visual science. So this author envisions

a merger of the both the neurobiology inspired approaches, and the vision-science-inspired

approaches, combining the best feature representations with the best learning and training architectures

into a common system.

This discussion and comparison of CNNs and local feature descriptors revolve around the conun-

drum of top-down vs. bottom-up design. One perspective is that local feature descriptors such as SIFT

or FREAK are designed top-down, using high-level concepts based on the human visual system and

intuition to guide the descriptor design, while CNN features are designed bottom-up, using large sets of

very primitive simple correlation templates, simply relying on local receptive fields to guide the

formation of the hierarchy of features.

And Transformers use self-attention in many variations, and in fact, attention mechanisms are very

hand-crafted! See the sections on attention in Chap. 11 for a deep dive and survey.

Here are some of the comments this author has seen: “handcrafted features are fragile, inferior,

over-specified, or incomplete,” “DNNs are the only method worth using today,” and “we must move

beyond handcrafted features and simple machine learning.” Practitioners state that “they do not

understand local features, like SIFT,” and surprisingly also state that “they do not really understand

neural networks and back propagation . . . but they work.” And perhaps the most intriguing comment

may be “handcrafted features are time consuming to create,” since training DNNs can be so time-

intensive, data-intensive, and it is difficult to set up all the learning parameters, transfer functions,

numeric conditioning, and other parts of the pipeline. Until recently, when multi-core CPUs and GPUs

with lots of memory were available, DNN training was often not practical or even possible except

within academia for small problems. Local features are simple by comparison. Today, only very skilled

practitioners, typically dedicated academic researchers, are presently capable of understanding enough

to successfully design and deploy DNNs, although DNN toolkits and commercial products are making

DNN applications simpler to develop by nonexperts. Soon DNNs will be commoditized, see the

resource products in Appendix C.

No method is clearly better in all cases. Depending on the objective criteria chosen, any feature

learning or feature descriptor method may be optimized to score better than another. Invariance

criterion is often critical. If training speed is important, perhaps DNNs are not the right choice. If

scale and geometric distortion invariance is important, perhaps some combination of local feature

descriptors with a focused training protocol to present all the scale and geometric views is best.

Deep learning practitioners develop ad hoc methods to make DNNs work at all, and to steer the

feature learning in the right direction. For this reason, practitioners often copy existing DNNs that

work (i.e., like cut and paste coding) and make architectural adjustments looking for incremental

improvements. The best-performing DNNs are typically designed and maintained by teams of

dedicated developers at major companies or universities, since the complexities are daunting for a

single person to grasp. DNNs are handcrafted.

372 9 Feature Learning Taxonomy and Neuroscience Background

Invariance and Robustness Attributes for Feature Learning

Invariance and robustness attributes are a measure of quality for any feature descriptor method (See

Figs. 5.1 and 5.2). DNN/CNN learned features are individually inferior with respect to invariance

attributers compared to the better local feature descriptors, but collectively as a hierarchical group

DNN/CNN feature can be as good or better. The square kernel matrices used in typical CNNs are

perhaps the least invariant feature descriptor type. However, by introducing variations into the training

set for the DNN, including training samples with the desired variations such as rotations, deformations,

contrast, scale, and other variations, the desired invariance can be learned and represented in CNN

feature set. We survey training protocols and training sample variations in Chap. 10.

What Are the Best Features and Learning Architectures?

Researchers and practitioners are constantly trying to disentangle the components and architecture

attributes of DNNs and other feature learning methods, to find the most critical variables and the best

solutions. As the scope of the vision problems grow, the solutions are harder and harder to evaluate and

compare. Many researchers are trying to design the ultimate solution: recreate human intelligence as

artificial brains (see Table 9.2 on various initiatives).

Major areas for architecture optimization include:

1. Training protocol, ordering and dropping samples, sample batch sizing, and adding modified

copies of each sample to the training set to add invariance, such as geometrically transformed

images, and numerically conditioned images to affect contrast, noise, and other techniques surveyed

later in this chapter

2. Features, the type of feature used (correlation templates vs. SIFT or basis features), the depth of the

feature hierarchy or number of convolutional layers, number of color channels per feature, features

per layer, and the size of each feature, such as 3 × 3 vs. 11 × 11.

3. Classifiers, varying the number of convolutional classifier layers, or using other classifiers such

as SVMs.

4. Numeric Conditioning, breaking apart the data via numeric conditioning to enhance the spectra,

such as local equalizations, normalizations, and whitening methods, as well as the choice of

activation functions.

5. Pooling and subsampling methods to reduce the feature size and add some invariance by varying

the pool size, and pooling criteria, such as MAX pooling and CCCP pooling.

Various practitioners have offered research findings to point toward the best places for DNN

optimizations, and findings vary.

Bergstra et al. [579] recommend random experiments to find the best architectures. One study by

Russakovsky et al. [578] analyzed the types of errors found in the Imagenet challenge, where mostly

CNN methods are performing best. However, only a small handful of comparative conclusions are

provided. Many DNN architectures and other non-DNN approaches are used and compete favorably.

Usually, from year to year, the best methods from the prior year are taken as a starting point by many

practitioners, and enhancements are made to compete for the next year. Currently, ensemble methods

using several networks voting together are popular, as well as variations in the training protocol,

covered later in the surveys in Chap. 10.

Coates and Ng argue [554] that trying to choose the best features, or basis functions, is not as critical

as choosing the right architecture and encoding scheme. For example, Jarrett et al. [555] found that

using random features (untrained weights) for the feature set could perform quite well compared to

templates with trained weights, which demonstrates that the power of the CNN architecture is to

leverage many features together, rather than the choice of the optimal basis features. Using random

weights for correlation templates is equivalent to a random set of edge detectors.

What Are the Best Features and Learning Architectures? 373

However, Parikh and Zitnick [572] found that features are the most critical part of the architecture,

by comparing (1) feature descriptors, (2) learning algorithms, and (3) the training data. Parickh and

Zitnik created a baseline by using human experts to take the place of algorithms, to compare what a

human can do to increase performance in any area compared to various DNN algorithms.

Other research by Eigen et al. [574] evaluated several parameters of deep CNNs to find the most

critical elements. Parameters considered were number of layers, feature map dimensions, spatial kernel

extents, number of parameters, pooling size, and pooling placements. Eigen’s work focused on (1) the

number of layers, (2) features per layer, and (3) the number of parameters, and their work demonstrates

that, within the CNN architecture, increasing convolutional layers alone provides the most significant

accuracy increase, compared to increasing the number of features in each feature layer in the hierarchy.

Also, Eigen found that convolutional layers are fairly insensitive to the number of features, and more

sensitive to the dimension (size) of each correlation template, i.e., the number of weights in each

correlation template.

Other research by Fergus and his team at Microsoft Research involved removing layers from a

CNN-DNN and found that deeper networks performed better. Fergus started by taking the Krizhevsky

[289] CNN architecture (two classifier layers, five convolutional layers), and removed layers from the

architecture, a few layers at a time, to check the effect on accuracy. In general, multiple convolutional

layers and multiple classification layers all add to the effectiveness of the DNN. In addition, the Fergus

slides [575] provide information on invariance attributes, confirming the general lack of robustness

provided by static correlation templates to occlusion, scale, and rotation, except for orthogonal

rotations, which correspond to mirroring. Of course, these results are expected because the correlation

template features used are known to provide this level invariance, and nothing more.

Zeiler and Fergus [576, 577] explored methods to visualize the quality of the features in the

hierarchy by using an instrumented CNN they call a deconvolutional network architecture, to enable

visualization of strong feature activations in the input space. In other words, the image regions which

strongly activate each feature can be displayed to visually check the quality of the features. However,

no actual deconvolutions are performed. Rather, the method uses instrumentation built into the CNN to

choose only the best or strongest activating functions in the forward pass by following gradient descent

backward, and setting to zero the lowest gradients to sparsify the features of interest. Also, during the

forward pooling pass, a record is kept of the strongest features chosen, along with their Cartesian

coordinates in the input space, allowing the region in the input space to be visualized as an image,

which is useful to make sure the features are unique and discriminative.

In the view of several practitioners, DNNs are not as novel or different as claimed. See the

Deformable Part Models are Convolutional Neural Networks [489] Tech report, by Ross Girshick,

Forrest Iandola, Trevor Darrell, Jitendra Malik. In this work, a deformable parts model is shown to be

equivalent to a DNN, and a deformable parts model is refactored to use a basic DNN architecture.

Paradoxically, deep learning methods have been shown to fail to recognize features that are

obviously correct, and succeed in recognizing features that are obviously incorrect [482, 530]. Just

changing a small number of pixel values is all that is needed in some cases to fool the DNN. Of course,

this is to be expected during the training of any computer vision system and is correctable via retraining

and redesign. Perhaps we will see deep learning hacking contests [530] where coders try to

spoof DNNs.

Finally, several novel architectures and findings from the latest research are covered in the

architecture survey later in this chapter, to illustrate some of the better approaches.

374 9 Feature Learning Taxonomy and Neuroscience Background

Merger of Big Data, Analytics, and Computer Vision

A trend is becoming visible: neural network architectures are applicable to a wide range of analytic

applications, such as speech recognition, computer vision, and general data analytics. The underlying neural

network architectures for all the applications are remarkably similar, leading to the possibility of a common

architecture for learning and artificial intelligence, such as a neural computer or NC. This means that a single

NC architecture may become a common building block for analytics, similar to the idea of a common CPU

architecture used for general computing problems. Neural computing will become a commodity item.

Neural computing and similar hierarchical and multivariate methods will be used together as hybrids.

In the near future, we should commonly see mobile and hand-held devices with neural computers

connected to a remote server used by business, commercial, governmental, military, law enforcement,

and legal organizations to perform a complete audio, visual, historical, and textual evaluations of

people for employment interviews, banking, commerce, law enforcement, or housing applications. The

neural computers will evaluate facial expression, body language, and clothing style for emotions and

intentions, as well as audio evaluation of the tone and rhythm of spoken words for latent intentions and

assumptions, with complete NC textual analysis of the words they have written in email, texts and

blogs, and other documents, including historical records from local governments, academic

institutions, purchasing records, and other financial transactions, to develop a composite character

profile—all using the same neural computing architecture. The result will be complete online, virtual

personal profiles stored on the Internet somewhere, which can be queried by voice commands or

textual commands to learn about a person with or without their knowledge, and perform what-if

analysis and prediction of their future behavior within a set of circumstances, for example allowing a

commercial enterprise to design situations or opportunities to suit their preferences and influence

purchasing behavior, or by allowing governments to develop policies and propaganda to test the

reactions of a population, their preferences, intentions, and personal beliefs.

How much such information will be relied upon is another matter; however, the technology is in

place today to be assembled and developed into a commodity appliance, available for a fee, depending

upon the analysis desired, the databases you wish to access, and the turnaround time desired. NC-based

personal behavior prediction services and NC-based personal profiling services are very near, and in

the early stages now, with huge investments being made into early-stage analytics startups now.

Computer vision will be a central component of the future of analytics. Imagine government policy and

business plans being designed around the predictions generated by an NC to form future programs,

and evaluation of each program by another NC to form recommendations, and the recommendations

being made by another NC to the final decision authority—a human . . . or?

Neural network innovations have disrupted and refocused academic research and industry

investments to apply neural network methods to more areas. Today, commercial NC products from

major corporations enable rapid development of commercial neural network solutions. We are seeing

commoditization and standardization of neural network methods, APIs, and software libraries, see

Appendix C. Fundamental research has laid the foundations to spawn the first generation of commod-

ity neural computing architectures in silicon, leading to widespread and pervasive solutions.

The race is on, and will play out similar to the space race and the weapons race, since artificial

intelligence is a business and national security priority, garnering billions of dollars of government and

industry investment today, and spawning commercial products and services. The stakes are huge,

given the potential of creating machines that learn, reason, make decisions, and perform actions, and in

some cases, the machines will be preferable to humans. Major initiatives are being funded as shown

below in Table 9.2. In the near future, robotics, automation, and analytics will become as pervasive as

kitchen appliances and power tools, changing the nature of society worldwide, and changing the face

of government, military, industry, and commerce.

Merger of Big Data, Analytics, and Computer Vision 375

Table 9.2 Major initiatives in neural computing, including research, products, and services

Investor Initiative Description

USG/Exascale Project

USG/DARPA

Goal to create EXASCALE computing systems (exaflops/

exabytes)

Brain Machine Initiative [584]

$3 BIL USD over 10 years, similar to NASA-level funding

http://www.artificialbrains.com/darpa-synapse-program

European Union

China

Russia

Human Brain Project, includes 24 countries

Basic research into neurobiology, genomics, and

neuroanatomy. [585]

Very large supercomputers and huge AI investments by

government

National priority and major government investments across

science, military, and industry

https://www.humanbrainproject.eu

Institute For Brain Science, (Paul Allen Foundation in

Seattle)

Basic research into neurobiology, genomics, and

neuroanatomy.

http://en.wikipedia.org/wiki/Allen_Brain_Atlas

NCAP Neural Computation & Adaptive Perception

Canadian Institute For Advanced Research CIFAR

Canadian govt. funded basic research into neuroscience and

artificial neural networks, [586]

http://www.cifar.ca/neural-computation-and-adaptive-

perception-research-progress

Baidu Largest Asian search engine worldwide

• Investing in large Deep Learning (DL) SW/Servers/HW

worldwide

• Institute of Deep Learning Silicon Valley 2013

• Investing heavily in large data centers

• Marrying cloud + device DL together

• Hiring key AI researchers

• Licensing their DL technology to with mobile device

companies

http://technews.co/2014/08/01/mediatek-baidu-developing-

super-smartphones/

Apple Largest computer company in the world, making major

investments.

• Apple currently offers the SIri voice recognition service

using deep learning methods,

• Working on visual recognition products as well.

• Working on analytics products for their product lines to

understand their customers better

Google Brain Largest search engine company

– Invests hundreds of millions of dollars annually in

AI-related research

– Visual search, user analytics, and speech recognition,

more

– Related areas, robotic cars, Google Glass, more

Facebook Major artificial intelligence laboratory, huge investment

($ amount unknown)

Microsoft Several projects including voice recognition, visual search,

and various SW APIs and libraries to enable developers use

NC for general analytics, computer vision, speech recognition

Startups and VC funding Several robotics, analytics and computer vision startups are

being funded to apply deep learning to practical (and

sometimes faddish) applications

http://www.artificialbrains.com/darpa-synapse-program
https://www.humanbrainproject.eu
http://en.wikipedia.org/wiki/Allen_Brain_Atlas
http://www.cifar.ca/neural-computation-and-adaptive-perception-research-progress
http://www.cifar.ca/neural-computation-and-adaptive-perception-research-progress
http://technews.co/2014/08/01/mediatek-baidu-developing-super-smartphones/
http://technews.co/2014/08/01/mediatek-baidu-developing-super-smartphones/

376 9 Feature Learning Taxonomy and Neuroscience Background

Key Technology Enablers

Certainly, AI and machine-learning methods have benefited and come into widespread use due to the

technology available today, which has enabled a vast army of researchers to explore new concepts and

improve methods. With the rise in compute horsepower, deep learning and neural network research

have proliferated.

Some of the main technology enablers propelling advances in machine learning are:

1. Compute power increase: Commodity graphics processors (GPUs) available on laptops and

desktops, as well as multi-core CPUs, provide huge SIMD and SIMT compute power that is well

matched to large parts of the machine learning and vision pipeline. Note that in some cases, multi-

core CPUs perform equivalently to a GPU, depending on the exact specifications of each compute

unit. See Chap. 8.

2. Programming language advances: GPGPU programming languages such as CUDA and OpenCL

have opened up direct methods for algorithm acceleration utilizing the SIMT methods and the

SIMD instruction sets of CPUs and GPUs. See Chap. 8.

3. Memory size increase: with much larger main memory and cache memories, the large training data

sets used in machine learning are, in many cases, easy to fit into fast memory.

4. Training data size increase: The Internet has made it possible to find and collect large labeled

datasets on most any topic, such as pictures labeled as dogs or cats for example hosted on picture-

sharing sites. Scraper scripts can scour Internet websites to collect images with the desired labels, or

by using search engines to find the images. Large labeled data sets are usually required for effective

machine learning.

Neuroscience Concepts

Since much of computer vision is inspired by neuroscience studies regarding learning mechanisms and

the human visual system, we provide a high-level overview here of selected neuroscience topics, with a

focus on the visual pathway from the eye through the visual cortex. It is believed that each neuron

performs pattern matching, internal processing, control of neural network connections, and memory

storage management. The brain contains perhaps 100 billion neurons (estimates vary), each of which

may vary in diameter from 4 to 100 μm (0.00015–0.004 in.), typically 25 μm for the nucleus alone

(~0.001 in., or the diameter of a human hair). The volume of the neuron contains enough room for a

substantial amount of processing, networking, and memory apparatus. By comparison with sub-5 nm

silicon technology, a typical neuron contains enough room in the 3D volume for millions of gates to

implement a small computer at least as powerful as an ARM/68000 class processor (~25,000

transistors) with perhaps 1 Mbyte of memory, and another ~25,000 transistors for interconnects,

assuming 3D stacked transistors and interconnect methods, since a neuron is a 3D volumetric shape

and several silicon stacks could fit inside as shown in Figs. 9.7 and 9.8.

Neuroscience Concepts 377

Typical neuron nucleus diameter:

25 micrometers, *same as human hair

5 nanometer technology:

>1 million gates using

3D stacked transistors and

stacked interconnects

CPU

1MB

Memory

Interconnects

~

Fig. 9.7 The figure illustrates how the 3D volumetric space inside a neuron nucleus can easily contain the equivalent of

a small 25,000 transistor CPU and 1 MB memory using sub-5 nm silicon technology, stacked transistors, and stacked

interconnects

Fig. 9.8 Neurons and dendrites. Image # Springer-Verlag, from Hierarchical Neural Networks for Image Interpreta-

tion, Sven Behnke [488], Draft submitted to Springer-Verlag Published as volume 2766 of Lecture Notes in Computer

Science ISBN: 3-540-40722-7

Each neuron is connected to 10,000 other neurons on average, making over 100 trillion connections

to control all memories and learned behaviors [784], compared to the estimated 200–400 million stars

in the Milky Way galaxy. By comparison, state-of-the-art artificial neural networks may contain over

ten billion parameters and require more than a week to train for a single dataset using thousands of

CPUs and GPUs. If we consider that each neuron may perform a mere 1 MOPS (ops per second) and

has 1 MB storage, then the neurocortex contains perhaps 100× more MOPS per second and memory

cells than the number of stars in the milky way.

Neurons represent both memories and behaviors. Biological neural networks are dynamic and

adaptive: the neurons grow and shrink as they learn or forget, and new dendrites are formed to connect

the neurons to each other in seemingly unlimited topologies, and the dendrite connections grow or

shrink over time as well. The fragile nature of biological neural networks seems to corroborate the

wisdom of Solomon “lean not on your own understanding.” We know that neural processing

functions, memories, and connections grow like a plant, based on environment, circumstances, and

experience, so even DNA clones of a biological organism will develop biologically different neural

topologies and traits if grown in a different environment.

378 9 Feature Learning Taxonomy and Neuroscience Background

Biology and Blueprint

There are basically two forces at work in the visual pathway of the human mind which inspire artificial

neural networks: biology and blueprint.

The biological structure of neural networks is becoming more understood, being a complex

electrochemical machine of connected neurons, the central processors of our nervous system.

Researchers can measure the electrical activity in the brain to map out the various neural regions

where processing occurs for sensory tasks, such as visual learning tasks, and where the optical nerves

are connected. See the Human Connectome Project [618] for the latest images and simulations of

neural pathways and Fig. 9.1. The Human Connectome Project uses various imaging modalities,

similar to very fast MRIs, to image the neuron states and measure the electrical impulses when the

neurons fire across dendrites to understand neural activity [567]. In some cases, neural imaging can

reveal if a subject recognizes the object they are viewing, and whether or not they are telling the truth

[778, 779].

From neuroscience, we know that neurons process inputs using a trained activation function which

fires as needed, taking inputs as well as bias from electric-chemical stimulus. Apparently, the activa-

tion function for each neuron is developed over time via learning and experience. We know that

neurons fire, or activate, in a binary or all-or-nothing fashion. We know that the neurons have some

sort of memory for the input patterns they recognize, and memory for the concepts and perceptions

formed in the higher-level reasoning sections of the brain. But how does the memory work biologi-

cally? How much information can be stored? When is memory forgotten? What activates memories

that have apparently been forgotten? How can neurobiological memory models guide the construction

of artificial neural memories?

Nobody really knows the blueprint for the brain, except that it is encoded in DNA. As with the DNA

programming code that genetic engineers are only beginning to understand, deliberate intelligence is

evident in the design of the human visual system also. DNA is a programming language and that

creates a learning machine—the brain. Two identical humans, twins or clones, can share the same

DNA, yet their learning experiences determine how the biological neural network will grow in

each one: the neural biology will turn out to be different; therefore, each one develops in a different

direction. There is some debate about how much neurology is learned vs. innate. Is a baby born with

neurobiology pretrained to recognize its mother? Research suggests that DNA can be imprinted by our

ancestors, genetically encoding predispositions toward disease, as well neurological predispositions—

perhaps visual memories and learnings are passed to us at birth. Basic aspects of vision seem to be

innate or else humans are predisposed to learn them, such as depth perception, size, texture, color,

gradient detection, and shape.

Humans can discover the basic meaning of a scene in about 100 ms, and find specific targets in

150 ms as shown by Metin and Frost [562]. The visual system operates using very high dynamic range

optimizations for color, grayscale, and various lighting conditions, taking input from rods and cones in

the retina, able to evaluate a scene using a number of hypotheses to check assumptions and locate

specific visual information under several robustness and invariance criteria (see Fig. 5.2).

And nobody really knows exactly how a neuron works, how neurons process inputs, why neurons

fire, and how neurons learn. Nobody really knows how the connection topology between neurons is

directed to form and grow as learning occurs, what causes neurons to grow and shrink, and what causes

new dendrites to grow and connect to other neurons. And nobody really understands the center of the

conscious spirit that directs the entire system.

The Elusive Unified Learning Theory 379

Neuroscience has inspired researchers to develop artificial neural networks (ANNs), using simple

models and simple assumptions, to mimic the biology of the human brain, while simultaneously

guessing about the actual blueprint of how it really works. Thus, we say that the structure, or

architecture, of ANNs is biologically inspired.

The Elusive Unified Learning Theory

According to neuroscience, the human brain is composed of several different interacting regions,

where each region is dedicated to different tasks. For example, the five senses (visual, hearing, taste,

touch, and smell) are processed across separate and sometimes overlapping pathways across the brain,

see Fig. 9.10. Emotional and rational thought are processed in separate regions of the brain as well; for

example, speech and vision have dedicated neural processing centers and unique neurobiology.

However, since the underlying neuron biology looks generally the same in all regions, many

researchers have speculated that the neurons are simply waiting to be trained according to a universal

learning mechanism.

Metin and Frost [562] tested this universal learning hypothesis by rewiring the cortex of test

animals, for example to swap the visual nerves into the audio cortex, and found that the rodents did

in fact still learn to see using their audio cortex region instead of the visual cortex region, although the

visual abilities were slightly impaired. Other similar experiments have corroborated such results. This

universal learning hypothesis has inspired researchers to develop artificial learning models that can

learn all types of information. As a result, ANNs are often applied, with little additional work, to

different types of learning domains such as text, speech, and vision. Roe et al. [563] also rewired the

visual receptive fields into the auditory pathway of ferrets and found that visual learning was

accomplished.

In the 1960s, noted neuroscientist Bach-y-Rita postulated that we see with our brain, not our eyes,

and his later research [564, 565] proved the concept by demonstrating a sensor for the tongue

connected to a video camera, that allowed a blind person to be trained to see with their tongue, see

Fig. 9.9. Subsequently, several commercial products have been developed along this line.

Fig. 9.9 A set of electrodes representing pixels originating from a camera, which can be placed on the tongue, used to

train blind people to see. Image # University of Wisconsin-Madison, used by permission

380 9 Feature Learning Taxonomy and Neuroscience Background

Human Visual System Architecture

It is useful to explore the human visual system from a neurobiology viewpoint, to enhance the

discussion of artificial neural networks. So we provide a quick overview highlighting some of the

concepts that inspire the computer vision-related neural networks. ANNs mimic a few key of the

biological structures and programmable behaviors of the brain that are observed by neuroscience. We

will highlight key neurobiological structures and programmable behaviors of the brain in this brief

overview. Additional background and references on the human visual system, particularly the spectral

response of the eye from a pure illumination perspective, is provided in Chap. 1 on imaging. An

excellent reference text for the human visual system is Kandel et al. [559].

A standard research model of the visual pathway has been developed by neuroscientists called

HMAX, and many researchers have extended the basic HMAX model which we survey in Chap. 10.

From the computer vision community point of view, local feature descriptors and more recently CNNs

have been popular, and HMAX has been popular in the neuroscience community.

A simple model of the visual system is shown in Fig. 9.10, where the retina sends images to into the

visual cortex. A good overview and reference on the history of visual cortex mapping is provided by

Yeo et al. [567]. The knowledge of the neurobiological activity of the visual pathway is being filled in

little by little, for example shift and size invariance in the visual pathway have been explored by

Wiskott et al. [566]. Many more examples can be cited.

Fig. 9.10 “Courtesy of the Laboratory of Neuro Imaging and Martinos Center for Biomedical Imaging, Consortium of

the Human Connectome Project—www.humanconnectomeproject.org.” This Connectome Image has been overlayed

with the visual pathway regions including approximate cumulative travel time between regions. Connectome images are

maps or wiring diagrams of connectivity pathways, captured in vivo using multiple neuroimaging modalities

http://www.humanconnectomeproject.org

Human Visual System Architecture 381

As shown in Fig. 9.10, the human visual pathway uses about six levels in the hierarchy (LGN, V1,

V2, V4, PIY, AIT) and shares the higher-level reasoning centers (PFC, PMC, MC). Various machine-

learning practitioners have also found good results using close to six layers as well. According to Yann

LeCun, there are between 5 and 10 separate layers in the visual cortex pathway, depending on what is

counted. As a first approximation, the visual pathway resembles a feed-forward network, or FNN.

However, the actual processing architecture, including feedback mechanisms and electrochemical

stimulus algorithms, is unknown. There is some feedback in the visual cortex, and the processing is not

all feed-forward, see Rao et al. [560].

As shown in Fig. 9.11, Hubel and Wiesel [499, 500] developed influential models for the lower

levels of the visual pathway and introduced several concepts which have guided the development of

hierarchical artificial neural networks. The basic concepts include (1) simple cells, which collect

inputs from a local receptive region, and tune themselves to recognize oriented local features like

gradient patterns or edges, and (2) complex cells, which pool and select the best activations from local

receptive fields of simple cells.

Fig. 9.11 The Hubel and Wiesel model of simple cells and complex cells. Image # Springer-Verlag, from Hierarchical

Neural Networks for Image Interpretation, Sven Behnke [488], Draft submitted to Springer-Verlag Published as volume

2766 of Lecture Notes in Computer Science ISBN: 3-540-40722-7

As we summarize neurobiological architecture of the visual pathway below, please refer to

Figs. 9.10 and 9.12 as we go along.

382 9 Feature Learning Taxonomy and Neuroscience Background

Fig. 9.12 An illustration of the visual processing pathway (“standard model”), including the types of features

represented in the visual neural region hierarchy. Image # Springer-Verlag, from Hierarchical Neural Networks for

Image Interpretation, Sven Behnke [488], Draft submitted to Springer-Verlag Published as volume 2766 of Lecture

Notes in Computer Science ISBN: 3-540-40722-7

• LGN, Lateral Geniculate Nucleus, studied by Hubel and Wiesel [499, 500], who proposed that

the LGN is a critical part of the visual cortex, and as shown in Fig. 9.12 composes the smallest

aligned features from small, overlapping concentric regions in local retinotopic fields, and is the

beginning of a serial, hierarchical visual processing pathway.

• Localized Neural Field Interactions, several neuroscience researchers [568–571] have observed

that the local neural fields (neurons close together dealing with adjacent stimulus) interact with each

other, similar to lateral controls between themselves. For example, the V1, V2, V2, and higher-level

components in the visual pathway combine local region inputs, and even scatter inhibitory and

excitatory signals laterally across the local regions to change the perception parameters in the local

region.

• V1, S1, receives inputs from the overlapping LGN local retinotopic cell regions, and forms simple

cells (S1 cells) or low-level features, which have some amount of invariance to translation and

rotational orientation. The outputs of the simple cells are therefore aligned with respect to rotational

orientation. The V1 also receives backpropagated signals from the V2 area, apparently to provide

guidance for constructing the local receptive fields into features. As postulated by Hubel and

Wiesel, simple cells contain local features like edges and micro-textures, which are sent up the

visual processing hierarchy as inputs to the complex cells or C1 cells.

• V2, C1, composes the low-level S1 features from the V1 into mid-level features or C1 complex

cells. V2 also pools local features from a retinotopic region, as shown in Fig. 9.12. The C1 cells

combine the outputs of aligned, overlapping retinotopic regions from V1 by local retinotopic region

pooling, similar to overlapping feature kernels used in convolutional networks, where each feature

Human Visual System Architecture 383

map is independently sensitive to phase, translation and rotational orientation. The C1 complex

cells combine the simple S1 cell features in a phase invariant manner, responding to edges and bars.

The C1 receptive field is perhaps 2× larger than S1. Note that this concept of many simple cells, or

low-level features such as edges, and local retinotopic pooling of features feeding into higher-level

cells such as mid-level features like motifs and object parts, is one of the key inspirations for CNNs.

• V3, some researchers have defined an additional low-level oriented edge feature layer as V3, which

is similar to but higher level than V1 and V2.

• V4, here, mid-level concepts are assembled, such as motifs and object parts. The C1 cell outputs

from the V2 are combined in V4 into higher-level concepts, using the same types of feature map

response pooling, as done in V1 and V2. So we see a common architecture among V1, V2, and V4

levels of the hierarchy, that is also another significant inspiration to CNN design and is usually

implemented as multiple replicated hidden layers composed of filtering, pooling, and a nonlinear

neuron activation function. The nonlinearity of the data, and the nonlinearity of the neural transfer

function of the ANNs is another method inspired from biology, since at each layer in the V1, V2,

V4, and higher levels, we are moving farther and farther away from pixels, and more and more

toward abstract concepts which are not pixels at all.

• PIT, CIT, contains mid-level concepts, such as directionality, motifs, hidden-layer architecture.

• AIT, STPa, contains higher-level concepts, such as object parts, hidden-layer architecture.

• PFC, MFC, contains classifier layers used to reach conclusions, make judgments, and make

decisions. May also generate new hypothesis and corresponding neural programming and classifier

programming, and direct multiple-hypothesis evaluations.

• Hypothesis: Each additional hypothesis, as directed by the higher-level consciousness of the brain

in MFC and similar regions, requires a round trip through the visual pathway to evaluate. The

electrical signals in the visual pathway have been measured [562] to take about 100–150 ms per

hypothesis.

Now that we have briefly surveyed the neurobiological architecture of the visual pathway, we will

next summarize how ANN implementations typically translate neurobiology research into actual

implementations.

• Receptive Field Size, the LGN sets the initial visual receptive field size, which is partially

determined by the optic nerve architecture which arranges the impulses from the retina for

transmission to the visual pathway. ANNs often represent the receptive field as the correlation

template window size, or kernel size. It is not clear what the size for a receptive field actually is;

however, CNNs typically use various sizes, ranging from 15 × 15 down to 3 × 3, at different layers

of the network, using empirical guidance based on the expertise of the practitioner. The shape of the

receptive field is also unknown; however, the best local feature descriptors, such as FREAK and

SIFT, use a notion of circularity to shape the receptive field, FREAK actually uses a circular region,

and SIFT circularly weights the rectangular field.

• Local Receptive Field Overlap, the use of local overlapping receptive fields that are pooled

together is inspired by the LGN cortex layer and the V1, V2, and V3 layers. The receptive field, or

kernel, is scanned across the input field at some stride, such as at each pixel or striding every

n pixels. Each hidden layer may have a different receptive field size.

• Pooling, Subsampling, the LGN, V1, V2, and V3 layers apparently pool features in a local

receptive field to find the best feature for the current hypothesis under evaluation, to find the best

one in the pooled local region, for example using max pooling or the strongest feature matched in

the pool. Pooling can reduce noise effects. Feature subsampling resolution in ANNs, which

involves striding the kernel window across the image, and the region size of the local pool, becomes

384 9 Feature Learning Taxonomy and Neuroscience Background

lower resolution as the visual processing hierarchy moves upward to higher-level concepts. As

reported by several neuroscience researchers [568–571], biological neurons exhibit interesting

programmable behaviors across local regions emulated in ANNs, such as winner-take-all or max

pooling, subsampling, automatic contrast gain control and other nonlinear numeric conditioning,

hierarchical concepts, and noise suppression.

• Weight Sharing, in CNNs this is simply sharing the same filter weights to use with each sliding

window input kernel (i.e., kernel-connected layers) as an implementation convenience. Actual

neurons apparently contain their own unique memory cells, so weight sharing is a purely computer

vision concept. Compared to fully connected layers, kernel-connected layers are far more efficient

in terms of compute and memory. This allows each artificial neuron to share the same parameters,

which can be said to mimic the evident sharing of memories among neurons. Weight sharing also

reduces the number of parameters in the network, enabling a simpler design using a replicated

convolutional neuron design pattern.

• Hidden Layers, the visual pathway sections are implemented in CNNs using replicated function-

ality in V1, V2, V4 hidden layers, arranged in a feed-forward concept hierarchy, from low, through

mid, and up to high-level features or concepts.

• Feature maps are used as intermediate memories in the CNNs to record the response of each

feature to the input. One feature map records the response to each filter.

• Learning, the mechanisms of neural learning and training are harder to understand, and less is

known about how neurobiological learning really works. As discussed earlier, some amount of

preprogrammed learning may be encoded genetically into the DNA (see Appendix F on Visual

Genomes). CNNs typically use a variant of back propagation learning via gradient descent and

similar methods, discussed in Chap. 10.

However, the DNN approaches are working well in terms of accuracy and performance in

comparison with humans in limited circumstances. Many examples can be cited, such as the German

traffic sign recognition benchmark competition won Ciresan et al. [538] that actually surpassed the

accuracy of a human expert. In other work by Cadieu [553], as shown in Fig. 9.13 DNNs rival primates

for visual recognition tasks, and the DNNs tested were actually faster and more accurate than primates

as shown in Fig. 9.13. In Cadieu’s work, humans and monkeys were tested for image recognition, and

only given 100 ms to make a first guess and identify an image (no training or prior knowledge). The

100 ms time limit is in keeping with the visual pathway hypothesis turnaround time in humans [553]

from LGN through AIT, see Fig. 9.12.

Taxonomy of Feature Learning Architectures 385

Fig. 9.13 DNNs compared to actual primate visual response accuracy (V4 Cortex and IT Cortex Split-Half), from

Cadieu et al. [553]. Note that DNNs rival primates according to the metrics used in the tests. The paper reports that DNNs

rival the representational accuracy of primate IT cortex. Image used by permission, published under the Creative

Commons Attribution (CC BY) license

In summary, neurobiology has revealed architectural concepts that have inspired machine learning,

and it is remarkable that ANNs inspired by neurobiology seem to perform very well, even though the

exact methods used seem to defy mathematical modeling and rational explanation in some cases.

Indeed, much of the progress in ANN research seems to be due to perseverance of the practitioners, and

tricks of the trade [588]. Few of the key elements of ANN design and architecture are mathematically

modeled satisfactorily and require a combination of trial and error, expertise, and good fortune to

apply.

Taxonomy of Feature Learning Architectures

The taxonomy is intended to sketch out the overall architecture and components which have been used

in DNNs, to provide a basis for comparison between DNNs. The taxonomy summarizes connections,

layers, components, and algorithms. The taxonomy consists of:

– Architecture Topologies, connections and graph structure

– Components, algorithms and layers

For example, architecture topology defines the connections, data flow, depth of the network, and

overall organization, while the components comprise the algorithms and methods used in each layer of

the architecture. Table 9.3 contains the Taxonomy Summary, followed by a quick introduction to each

of the taxonomy component elements.

Table 9.3 Summary feature learning architecture and component taxonomy

386 9 Feature Learning Taxonomy and Neuroscience Background

Feature Learning Architecture & Component Taxonomy Summary

ANN type Training protocols

FNN (no loops) Randomizing training samples

RNN (loops) Jittering/translating data

BFN (hybrids) Warping samples

Memory Model Reflection of samples

Simple Fixed Memory Region proposals via segmentation

Spatiotemporal Memory Bagging

Associative Memory, CAM Batch

Mini-Batch

Input Sampling Subcategory Mining & Fusion

Region nonoverlapping, tiled Adversarial perturbations

Region overlap, n-stride, or each pixel Layer totals

Region normalization (segment likely regions) Total layers

Shape rectangle Feature hierarchy layers (n×m)

Shape circular Classification layers (1×1)

Shape polygon Other layers

Pattern every pixel dense Features, Filters

Pattern trained sparse Correlation Template/Convolutional Filter

Spectra float MLP

Self-attention, Attentional Variations

Spectra int CCCP feature map reduction

Dropout, reconfiguration, regularization RCL feature

Input sample dropout Basis Function or Local Feature

Bagging Composite (inception)

Input weight to zero Activation, Transfer Function

Drop connection (random, sparsification) Binary Step Function

Drop output to zero Linear Ramp

Noise Injection Saturating Linear Ramp

Preprocessing, numeric conditioning Log-Sigmoid

Mean-zero normalization Hyperbolic Tangent Sigmoid

Local EQ Normalization Competitive

Global EQ normalization Softmax

Whitening Rectification (ReLu)

PCA Parameterized Rectification (PrReLu)

Other ABSVAL Rectification

Feature Set Dimensions Radial Basis Functions

Feature patch size per layer Maxout

Features count per layer NiN. MLP

Feature initialization Post-processing, numeric conditioning

Transfer learning Response Normalization (local, cross-channel)

Unsupervised pretraining Divisive normalization

Random feature initialization Local EQ normalization

Fixed basis set Other

Layer Connection Topology Pooling, subsampling, upsampling

Kernel Connected Tiled pooling

Fully Connected Overlapped pooling

Sparse Connected Stochastic Pooling

Gaussian Connected LWTA pooling

Other MAX pooling

(continued)

axonomy Summary

Multiscale MAX pooling (HMAX)

Architecture Topologies 387

Table 9.3 (continued)

Feature Learning Architecture & Component T

AVE pooling

Overlapped pooling

GPU pixel shaders for rescaling

Upsampling

Global Average Pooling

Multi-way local pooling

Spatial Pyramid Max Pooling (HMP)

Affine pooling (SYMNETS)

The taxonomy also shows that image processing, computer graphics, and media processing

methods are being applied to ANN design; however, most DNN practitioners have little knowledge

of image processing, computer graphics, media processing, and how GPUs implement and accelerate

fundamental operations in silicon. As a result, DNN practitioners commonly reimplement common

operations with new names or use slow algorithms, such as rank filtering which they call max pooling,

and the implementation of average pooling in software instead of using image processing accelerators

in DSPs connected the cameras, as well as silicon in the GPU for rescaling and anti-aliasing, other

examples are pointed out as we go along.

Note

The architecture taxonomy and component taxonomy are introduced here first in summary format,

followed by more details on each element. The terminology and explanatory information are useful to

understand the architecture surveys in Chap. 10.

Architecture Topologies

The architecture topology deals with the connection structure, otherwise known as a network or graph,

between the components or algorithm sections. The architecture topology defines the graph of

connections between inputs, outputs, and components. Topology is the top-level characteristic in

this architecture taxonomy, providing the structure to incorporate the additional details for each

component. The basic ANN architecture topologies are shown in Fig. 9.14 and discussed below.

See Bengio [451] for a good review of neural network connection topologies. A foundational text is

provided by Rojas [714].

388 9 Feature Learning Taxonomy and Neuroscience Background

Fig. 9.14 ANN

architecture topologies, (top

left) a Feed-Forward Neural

Network or FNN, (top

right) a Recurrent Neural

Network or RNN, showing

recursive, lateral, forward,

and backward connection

topology, and (bottom) a

hypothetical Basis Function

Network or BFN, using

tiled input, basis functions

such as Gabor functions,

feeding into a fully

connected 1D

convolutional neural output

layer, followed by an SVM

classifier

Input

layer

Filter

layer

Classifier

layer

FNN

Input

layer

Filter

layer

Classifier

layer

RNN

Input Output

layer

T 0

T 1

T 2

Basis

layer

SVM

Classifier

BFN

ANNs (Artificial Neural Networks)

There is no clear pattern for ANNs to follow. Therefore, practitioners have defined a few common

types of artificial neural networks that are practical to implement, being only a tiny subset of the

unlimited variety of biologically plausible biological neural networks. Therefore, this taxonomy

identifies three basic types of ANNs: (1) feed-forward neural networks (FNNs), (2) recurrent neural

networks (RNNs), and (3) basis function networks (BFNs).

FNN (Feed-Forward Neural Network)

Inspired by the visual pathway, FNNs provide an architecture analogous to a pipeline of replicated

operations or stages. FNNs typically use a simple memory model which only stores the hierarchical

feature set (weights) and some parameters. For our discussion, FNNs are also a type of CNN, and use

convolutional weight matrices as features and filters. Deep Descriptor Networks are also FFNs,

including Transformers and Hybrids CNN/Attention mechanisms.

Architecture Components and Layers 389

RNN (Recurrent Neural Network)

Recurrent means loops exist in the network. In other words, the network may be arbitrarily connected.

However, many recurrent styles of architecture exist, such as FFNs with a few feedback loops, and

Network in Network styles (NiN) with smaller ANNs inside the larger network. RNNs may also

incorporate a memory model using temporal storage units for learning spatiotemporal sequences and

related parameters. RNNs are related to CNNs and typically use the same type of convolutional weight

matrices as features and filters.

BFN (Basis Function Network)

For this survey, BFNs are the catch-all category, incorporating all types of features and architectures.

One of the most interesting architectures in the BFN category is the HMAX model, which is perhaps

the most detailed model of the visual cortex, using basis function neuron models instead of the purely

convolutional neuron feature model used in CNNs and RNNs. Often inspired by high-level reasoning

approaches rather than the bottom-up neurobiology approaches, BFNs use a range of topologies and

feature descriptors, a wide range of classifiers, and a wide range of architectures. For the BFN category,

we consider basis functions to include functional features such as Gabor functions, Zernike Functions,

Fourier features, plus all types local feature descriptors such as SIFT or FREAK.

Ensembles, Hybrids

Analogous to a room full of experts, ensemble methods combine several networks together, and

perhaps use a master classification stage at the end to combine and vote on the results from each

network. Hybrids may combine ANNs with other methods. We will survey a few examples of hybrids

and ensemble networks in Chap. 10. See also Deep Descriptor Networks in Chap. 11.

Architecture Components and Layers

The components are connected within the architecture as nodes in the graph or network, resembling a

pipeline. See Fig. 9.15. Another way to describe a component is a layer. In some cases, a layer is a

single function such as a convolutional filter layer or pooling layer, in other cases practitioners

combined several components together into a layer. In DNNs, patterns of layers are often replicated,

such as convolution layers followed by pooling layers, see Fig. 9.16.

390 9 Feature Learning Taxonomy and Neuroscience Background

Gradient

Descent

Random

Permute

P

Batch

Learning

B

Dropout

Learning

D

Quick Prop

Q
RProp

R
Contrastive

Divergence

C

Numeric

Conditioner

Output

Label

Pooling Dropout Rectification

ABS, ReLu

Classifier

. . .

. . .

. .

.

n m input

. .

.

Bias,

Inhibition

Numeric

Nonlinearity

Tiled Input

T
0

T
1

T
2

T
3

Overlapped

Input

T
0

T
1

T
2

T
3

Pixels

. .

.

n:1 Reduce

i
0

i
n

o

Output Labels

90% Cat

60% Rat

30% Mouse

Input

DATA

n x m feature

(micro part). . .

. . .

. .

.

n x m weights

. .

.

n x m feature

(part)

n x m feature

(object)

. .

. . .

.

Convolve

*

i
0

i1

i
n

w

w

w

Feature

Descriptor

Sparse

Feature

Codes

Softmax

Local EQ

Normalization

Global EQ

Normalization

Divisive

Normalization

Response

Normalization

Whitening Mean

Normalization

. .

.

Fully

Connected

i

0

i
n

o
0

. .

.

o
n

Kernel

Connected

k
n

Convolve

Layer

Linear

Connected

Output

LABEL

DECISION

ACTION

a

⊖

|| P

S

E

X

o

b

x

⊖

yK

0

c %

Fig. 9.15 The figure illustrates selected components used in feature learning architectures; however, see Table 9.3 for

the complete taxonomy

Fig. 9.16 Typical CNN layers with replicated convolutional and pooling layers

Layer Totals 391

Note that Fig. 9.16 shows the classifier and convolutional layers, which are referred to as hidden

layers in DNN parlance (note: the layers are not hidden, but any layer between the input and output is

considered a hidden layer in DNN parlance). The convolutional layers implement a hierarchy of

low-level and high-level features.

In CNN parlance, there is some ambiguity in terminology (we point out terminology clarifications

as we go along, apologies for repetition). Here are some equivalences:

• filters = weights = convolution_kernels = correlation_templates = features

• feature_map = image = 2D array = output (filter × input)

• hidden layer = any layer between the input layer and output layer

• layer = algorithm = set_of_algorithms = pipeline_stage

This ambiguity and equivalence of terms is unfortunate; however, we also follow this terminology

in our discussions, since many terms are in wide use. For example, when discussing processing the

input, we may refer to features as convolution_kernels acting as filters over the input to produce an

output image or feature_map, and correlation_templates to measure the strength of the feature match

for each feature over the input. When discussing back propagation to tune the features, we will refer to

features as weights.

Next, we introduce and summarize the components in the taxonomy.

Layer Totals

Besides the input and output layers, the main types of layers are kernel-connected convolutional

filtering layers, and fully connected classification layers.

CNNs use several replicated layers connected in pipeline fashion as shown in Fig. 9.16, where each

layer contains a pipeline of processing elements, such as numeric conditioning followed by

convolutions then MAX pooling. A regular architecture at each layer also supports sharing of

parameters within each layer, such as feature weights, greatly simplifying implementation. Other

ANN architectures are asymmetric, containing feedback loops or recurrence as in the RNN style,

and are often more difficult to implement.

392 9 Feature Learning Taxonomy and Neuroscience Background

Layer Connection Topology

Each layer in a typical CNN is connected to other layers in a potentially different input/output

topology. For example, the input layers in convolutional networks are typically assembled into n × n

kernel patterns containing 2D templates or patterns, and each kernel is kernel connected to a (virtual)

separate artificial neuron for convolutional processing. Fully connected layers are typically used in the

last 1D classification layers, although in typical DNNs the full connectedness is always forward and

not a fully connected mesh, for example connecting each feature into all neurons (see the FC layer

discussion in Chap. 10). Sparse connected layers are found in RNNs supporting feedback, and also,

feature descriptors may use sparse statistical sampling patterns to group inputs, similar to the patterns

used in ORB, FREAK, BRISK, and other local binary descriptors discussed in Chap. 4. Sparse

connections are also created using various dropout methods discussed in this taxonomy. Actually,

from neurobiology we see that the entire neural network seems to be sparse connected with amazing

variation. See Fig. 9.17.

Kernel

Connected

n
n

Linear

Connected

. .

.

Fully

Connected

i
0

i
n

o
0

. .

.

o
n

Fig. 9.17 Fully connected vs. kernel-connected vs. linear-connected patterns. (Left) shows a 3 × 3 kernel with nine

inputs connected to a single neuron, (center) showing a sparse linear-connected 3 × 3 spreading pattern, and (right) a fully

connected arrangement where each output is connected to each forward input

Memory Model

Several types of memory models are used in ANNs.

• Simple, fixed memory: Typical CNNs use a simple model of fixed memory, storing a fixed number

of features at each layer, and using dynamic parameters at run-time.

• Spatiotemporal memory: RNNs, such as the LSTM style networks [LSTM], have a spatiotempo-

ral function to learn sequences of features or events and therefore use a memory model which

includes time-based memory management functions and gating mechanisms to control memory

content, memory R/W access, and store a history of events.

• Associative memory, CAM, some ANNs, particularly RNNs, make use of dedicated memory

units, known as content-addressable memories (CAM), or associative memories, so instead of using

a memory address to access memory contents, the contents are accessed via a key which references

the memory content.

Input Sampling Methods 393

• Inverse Indexes; similar to a CAM, or a search engine using query tokens and corresponding lists

of related content, which has been implemented for computer vision in the Indextron Inverse Index

Feature Learning method, and the Instant Learning method by Mikhailov et al. [992, 999], see

Chap. 11.

Training Protocols

Training protocols are concerned with methods of data preparation and presentation, such as creating

rotated or cropped copies of the training data, and presentation of data in batches. The goal of the

training protocol design is to ensure that sufficient samples and randomization of the training samples

is provided to train the system, and many variations are in common use.

Input Sampling Methods

Input to each neural layer is sampled using a wide range of methods:

394 9 Feature Learning Taxonomy and Neuroscience Background

• Regions, includes tiled nonoverlapping regions, or strided, overlapping regions, such as at each

pixel or every n pixels.

• Shape, typically rectangular patches are sampled, such as 3 × 3 kernels, but could be rectangular or

circular.

• Pattern, in CNNs the pattern is typically a dense pattern, using all values in a 3 × 3 kernel region for

example. However, some local features, such as FREAK, use a dithering or saccadic style sampling

pattern to provide more resolution and detail, modeled after the human retina as it examines a

particular area closely.

• Spectra, for pixel input, the values are scalars, perhaps floating point, fixed point, or integers. For

higher levels of input in a CNN-style network, the values are no longer strictly pixels, since each

value has been nonlinearly transformed by the filter, as well as the nonlinearity of the activation

function, plus perhaps other numeric conditioning.

Dropout, Reconfiguration, Regularization

Various methods, known collectively as dropout, are used for many reasons during training, and

appear as layers in the architecture. Reasons for using drop include:

• Ignoring data samples, to prevent overfitting.

• Dynamically reconfigure the network input/output topology, to ignore samples for regulariza-

tion, and randomize the connection topology to regularize training.

• Dynamically setting weights to zero, for model regularization.

It has been shown by several practitioners that dropout methods can improve training convergence

speed, reduce overfitting, and perhaps training accuracy.

Dropout is used to prevent overfitting by ignoring (dropping), or setting inputs or outputs to zero.

Dropout effectively alters the neural network model, randomly setting some of the data samples to zero

for each forward pass through the network, which results in a set of semi-random network variations

which are averaged together during training. Dropout yields modest improvements when applied to

most any neural network model [508, 594]. Dropout is most effective during early stages of training,

where the tuning parameter step sizes are larger and still converging, rather than at later training stages

where the tuning steps are smaller. Note that dropout appears to be mathematically motivated, rather

than neurobiologically inspired.

Dropout, Reconfiguration, Regularization 395

Random sample drops have the effect of randomizing the architecture as well, creating sparsely

connected layers at run-time with different connection topologies. The number of neural inputs

dropped is chosen empirically, and many practitioners choose to drop >50% for only inputs, and

other practitioners perhaps drop <50% for only outputs. Other methods to drop random neural inputs

or outputs, or even individual filter weights, in convolutional layers have been tried as well [547, 557,

594, 595]. Also, l2 regularization and adding input noise have also been applied.

Dropout is intended to make DNN training possible by addressing overfitting and failure to

converge. Overfitting during training can be caused by data samples that vary quite a bit, which causes

the classifier to fit a model to bad values, causing anomalies like overshoot and undershoot. In addition,

neural network models using back propagation weight tuning algorithms will easily overfit to the data

variations rather than the data trend, manifested as oscillations and failure to converge, which can

complicate and increase training time. Also, using too few data samples can also cause overfitting,

since sampling artifacts due to undersampling are well known, such as Nyquist effects. Some

practitioners also add noise, such as Gaussian noise, during training to regularize the data, but not

during testing. The noise is be mostly filtered out during training as all the samples are averaged

together.

Part of the problem with any sampling operation is noise; the data samples by definition may not be

a smooth, regular continuum of values, and instead may contain bad training samples and a

non-uniform distribution of values, with some strong outliers that will skew the results. Dropout is

the inverse of adding noise to the data and is analogous to adding Gaussian filtering to the data to

remove noise. Dropout is intended to deal with noise or overfitting artifacts by subtracting the noise

out. Of course, dropout is currently implemented using a random dropout mechanism, so in fact the

dropout effect is simply analogous to thinning out the data samples, which seems to work fine in

practice.

In 1971, Ivakhneko’s GMDH neural network model [504–506, 509] was the first deep NN-inspired

model to use a parameterized data sample conditioning method to ignore certain data samples (an early

dropout variant), which prevented model overfitting.

More recently, around 2012, Hinton et al. [557, 594] popularized a dropout method variant called

random dropout, to drop random training samples to prevent overfitting. One variant includes setting a

dropout mask that is symmetrically applied to each round trip through the network: the same mask is

used for both the forward pass from input to classifier, and the backpropagation tuning pass. The mask,

of course, is random, and changes for each round trip. By using a value of zero for neuron output, back

propagation correspondingly finds several zero-valued gradients during gradient descent, speeding up

back propagation, and hopefully preventing overfitting.

Regularization is an attempt to force the models to train correctly by altering the training variables

(making them more regular), sort of like Gaussian filtering or blurring, to try and eliminate artifacts

manifested as “overfitting.” Data regularization methods may be considered as nonlinear data

reductions, which either regularize data on the input side or the output side of each neural processor.

Dropout regularization methods implement crude forms of lateral inhibition and lateral

communications between neurons at the same layer of the hierarchy in the visual pathway of the

brain [568–571].

396 9 Feature Learning Taxonomy and Neuroscience Background

Preprocessing, Numeric Conditioning

Preprocessing of the data for purposes of numeric conditioning is common, for example to remove

noise, squash or compress the data into a zero-centered range, or present only the most common data

elements as in PCA. Several methods are applied from standard signal and image processing, see also

Chaps. 2 and 3. However, it is worth noting that no numeric conditioning functions have been

discovered from neuroscience research, so numeric conditioning, image preprocessing, and

nonlinearities are used as ad hoc methods of compensating for other problems in the network.

Features, Filters 397

Feature Set Dimensions

The feature set dimensions include the number of feature sets in the hierarchy, and the number of

features per set. Each architecture typically fixes the number of features per layer, perhaps increasing

the number of features in higher layers.

Feature Initialization

The method of initializing the features for a CNN will affect the final training results. Running the same

training data over features initialized slightly differently will lead to a different feature set, likely due to

the different local minima in each set. Many practitioners have used random initializations, and in

some cases, it is beneficial to use transfer learning and start learning from a set of preexisting trained

features. In other cases, an unsupervised pretraining session is run to build up a feature base, and then,

supervised training is used to refine the features.

Features, Filters

Typical DNNs follow the CNN model and use correlation templates such as n × n weight kernels as the

features. The weight kernels also double as convolutional filters, used to transform the input in a

nonlinear fashion producing a subsampled reduction known as a feature map in CNN parlance, for

input to the next layer.

However, some ANN methods (BFNs) may use basis features, or local feature descriptors such as

SIFT, instead of simple convolutional filters.

398 9 Feature Learning Taxonomy and Neuroscience Background

Activation, Transfer Functions

The basic artificial neural processor model used in most DNNs consists of two parts: (1) a convolution

function: s = f(inputs × weights), and (2) a nonlinear activation function: a = n(s) to spread or squash

the data, which produces a scalar value. Several types of activation functions are used; see Hagan et al.

[601] for details and Fig. 9.18.

Linear RampBinary Step Symmetric
Binary Step

Softmax
%

Rectifier
ABSVAL

*

Saturating
Linear Ramp

Rectifier,
Parameterized

PReLu

Rectifier
ReLu

Log-Sigmoid HTAN
Sigmoid

Radial Basis
Functions

Fig. 9.18 Various activation functions, which act as threshold functions, numeric range compressors, companders, or

remappers. NOTE: GELU, SILU, ELU, and SWISH activation function not shown, to dig deeper into more activation

functions see Gaussian error linear units (GELUs) Dan Hendrycks et al. 2020 and Murilo Gustineli, Activation Functions

in Deep Learning: A Comprehensive Survey and Benchmark Shiv Ram Dubey, Satish Kumar Singh, Bidyut Baran

Chaudhuri, 2022

Activation functions, or transfer functions, are used to (1) introduce nonlinearity into the neural

function, (2) prevent saturation of values, and (3) ensure that the neural output is differentiable to

support back propagation methods using gradient descent. One key goal of nonlinear activation

functions is to project the purely linear convolution operation into a nonlinear solution space, which

is believed by many to improve results. In addition, the nonlinearity may result in faster convergence

during backpropagation training to move the gradient more quickly out of flat spots toward the local

minima.

Post-processing, Numeric Conditioning 399

However, the actual nonlinearity function for neurobiological activations is still an unknown function,

if it exists at all. Artificial neural networks, such as CNNs, do not fire in a binary all-or-nothing manner as

real neurons, but rather produce an analog outputwhich is then numerically conditioned by the activation

function and other functions such as pooling. The simple Perceptron model according to McCulloch and

Pitts [501] does not use activation functions, instead using only weights on the inputs.

Maxout networks, or deep maxout networks (DMNs), as proposed by Goodfellow et al. [546], are

an interesting variation on CNNs using a new type of activation function, called maxout, which pools

across spatial regions and across feature map channels from prior layers, able to approximate any

convex function. The basic idea is to pool a small group of nonoverlapping neural outputs, and select

only the MAX activation from the group to pass forward to the next layer, and zero out the others as in

dropout. This is similar also to MAX pooling, but replaces the activation function and can take input

from prior layer feature maps. The maxout function can implement various activation functions, such

as absolute value rectification, and quadratic functions. The end result is a reduction of parameters for

the model, amenable to smaller computers.

Post-processing, Numeric Conditioning

Some practitioners further post-process the results from the activation function or the pooling function,

for example using normalization, compression, and expansion. Post-processing adds further nonline-

arity and also may correct numeric range problems. There seems to be no limit to the other post-

processing methods in use.

400 9 Feature Learning Taxonomy and Neuroscience Background

Pooling, Subsampling, Downsampling, Upsampling

Pooling is a method of combining several neural outputs consisting of the scalars from the activation or

transfer function into a pool, or group, and creating a new output from the pool. Several methods are

used to select the value from the pool. Actually, computer graphics methods for scaling and anti-

aliasing using pixel shaders may be a preferred approach, and GPUs even provide hardware accelera-

tion for this fundamental operation, but the author is not aware of any practitioners using GPU anti-

aliasing. Upsampling is a method to regularize features for some classification schemes, see Fig. 9.19.

Pixel 0 Pixel 1 Pixel 2

Pixel 3 Result Pixel 5

Pixel 6 Pixel 7 Pixel 8

Pixel 0 Pixel 1 Pixel 2

Pixel 3 Result Pixel 5

Pixel 6 Pixel 7 Pixel 8

Pixel 0 Pixel 1 Pixel 2

Pixel 3 Result Pixel 5

Pixel 6 Pixel 7 Pixel 8

Pixel 0 Pixel 1 Pixel 2

Pixel 3 Result Pixel 5

Pixel 6 Pixel 7 Pixel 8 Pixel 0 Pixel 1

Pixel 3Pixel 2

3 3 pooling regions, stride 3, 36:4 subsampling,

4 : 1 subsampling

MAX

Fig. 9.19 Pooling from 3 × 3 convolutions taken across nonoverlapping tiles, yielding a 4 × 1 pooling set from which

the MAX value is selected. Total subsampling for the MAX pooling is 36:1

Pooling, Subsampling, Downsampling, Upsampling 401

As demonstrated in the compete-to-compute (CTC) approach taken by Srivastava et al. [549], the

LWTA pooling and dynamic connections method is a form of Local Winner Take All dropout, which

generates dynamic neural connections based on the competition between local neurons, essentially

turning neural outputs temporarily off when they lose the local competition. LWTA is a form of local

activation inhibition. Note that LWTA does not downsample the output like other pooling methods,

but rather changes the network topology or sparsifies the topology temporarily. As shown in Fig. 9.20,

LWTA methods first groups neurons into blocks at each layer. The blocks within each layer compete.

Each block contains logic to turn off the output connections from the losing neurons and turn on the

output connection output from the winning neuron. LWTA is also shown to add a form of memory to

the network, preventing what the authors call catastrophic forgetting. Neurobiology shows [200] that

there is local pooling, or competition, among neurons, as leveraged in the SIFT approach which pools

local gradient magnitudes in a histogram feature.

402 9 Feature Learning Taxonomy and Neuroscience Background

Fig. 9.20 LWTA pooling and dynamic connections [549], where local groups of neurons, groups of 2 in this case,

compete within their group to forward their output up to the next layer. Winning neurons (dark) forward output to the

next layer, losing neurons (white) do not. Winning neurons form a dynamic network topology, which changes with

input data

Classifiers

While classification methods are not the focus of this work, we include some notation in this taxonomy

for classifiers and provide some background discussions in Chaps. 4 and 10. Classification is typically

the last stage of the computer vision system, where the presence and absence of features are used to

make decisions (NOTE: the Google Inception Architecture uses multiple classifiers at various layers,

surveyed in Chap. 10). The classifier matches detected patterns against learned patterns to identify the

class of the input and make a score to show confidence.

The latest innovation in classifiers includes the zero-shot learning methods and the AML classifiers

(see Chap. 12). The basic idea is a multimodal classifier that can resolve several classes in one model,

for example associating text descriptions (i.e., captions) and visual object concepts bidirectionally or

associatively, allowing for classification of unseen exemplars by interpolating a match using features

of related class objects. See Chap. 11 section Learning Model Innovations, and Chap. 12 section

Captioned Multiclass Classification, Classifier-Free Guidance, N-Shot Learning.

An ensemble of classifiers may also be used, working in tandem. First, a hypothesis is determined,

such as am I looking at a dog or a cat? The hypothesis determines which parameters and features are

used to set up the classifier, using the same architecture which has been trained for several recognition

tasks using several classifiers.

According to Cadiue et al. [553], the human brain sequentially processes multiple hypothesis. The

brain may take about 100 MS to make a forward pass through its neural network for a first evaluation of

a hypothesis against a new scene. After that, other passes may be made to compare other hypothesis

against each other for the new scene, generating additional hypothesis in response to a question,

uncertainty, or need for further analysis, and so on. Thus, the brain acts as an ensemble classifier,

checking a hypothesis against the scene, and then perhaps changing the hypothesis and making further

evaluations, and then choosing the best hypothesis.

Summary 403

Summary

This chapter lays the groundwork for the feature learning architecture survey in Chap. 10 and should be

read prior to reading Chap. 10. The neuroscience inspiration behind deep learning networks and the

visual pathway is explored here, including key ideas from the history of neuroscience and artificial

neural networks. The idea of synthetic vision was introduced, where complete systems are being

designed to mimic the entire human visual system along the lines of other prosthetic sciences such as

robotics. A brief history of the various approaches to machine learning is discussed which includes

expert systems, local feature description, representational learning, and deep learning. The notion of

deep learning systems is introduced where multiple levels of features or concepts are learned at

different scales in a hierarchy, similar to the hierarchy in the visual pathway. Key terminology is

summarized, and a taxonomy of deep learning architectures is developed. The taxonomy includes three

architecture families: feed-forward neural networks (FNNs), recurrent neural networks (RNNs), and

basis function networks (BFNs) to capture all other feature learning methods which do not necessarily

use ANN methods to learn all the features. The taxonomy also includes a breakdown of the various

design elements and algorithms used in the feature learning network layers.

Chapter 9: Learning Assignments

1. Describe several goals of feature learning.

2. Describe an artificial neuron model typically used in deep learning networks for computer vision,

and describe each model component.

3. Describe, at a high level, hierarchical learning (deep learning).

4. Compare hierarchical learning to dictionary learning.

5. Describe a visual vocabulary and discuss they types of features that can be used.

6. Describe several goals of sparse coding.

7.

404 9 Feature Learning Taxonomy and Neuroscience Background

Describe basis features and how they are used in deep learning for computer vision, and give at

least two examples of basis features.

8. Describe an expert system and how it is designed.

9. Describe the design of a local feature descriptor of your choice.

10. Compare and contrast CNN feature learning against local descriptor feature training using the

ORB descriptor.

11. Compare a feed-forward neural network (FFN) with a recurrent neural network (RNN) and a basis

function network (BFN).

12. Provide an estimate of the number of neurons in the human brain, the number of neural

connections in the human brain, and the recognition speed the human brain.

13. Describe the architecture of a convolutional neural network (CNN), including a description of

typical layers.

14. Describe what is known about the architecture of a biological neuron, including the component

parts of the neuron.

15. Describe the layers in the visual pathway including all layers between V1 . . . AIT.

16. Describe the higher-level classification layers of the visual pathway PFC, MFC.

17. Provide a theory about how the human brain develops conceptual visual understanding and high-

level visual reasoning.

18. Provide a theory about the neurological mechanism for introducing a hypothesis to the visual

pathway for evaluating the visual field.

19. Provide a hypothetical model of a neuron that includes local neural memory, shared neural

memory with other neurons, and enumerate the neural processing operations and parameters.

20. Discuss the local receptive field in visual cortex, and the local receptive field as implemented

in CNNs.

21. Describe at least two goals for an activation function (i.e., transfer function), and provide

algorithm descriptions of at least two types of activation functions.

22. Describe at least two goals of pooling and subsampling in CNNs, and compare at least two pooling

methods.

23. Describe how a fully connected neural layer is organized, and how it can be used in a CNN.

24. Discuss the Hubel and Weiss model of S-cells and C-cells.

25. Discuss the concept of a hierarchy of features (deep learning), and how deep learning is inspired by

neurobiology.

26. Discuss CNN training protocols including batch and mini-batch training.

27. Discuss training considerations such as number of training samples, and modifications to the

training samples.

28. Describe hidden units and hidden layers.

29. Describe how a convolutional neuron model works, including the inputs, feature weights, and at

least four (4) other possible functions in the model including the activation function and the

pooling function.

30. Discuss the goals of a classifier.

31. Name at least two types of classifiers, and discuss the design and operation of each classifier.

. . . the code is more like . . . guidelines.

—Captain Barbossa, Pirates of the Caribbean

Feature learning architectures in the survey cover two broad categories:

1.

2.

of local receptive fields into artificial neurons, and wide and deep feature hierarchies.

It’s not who has the best algorithm that wins, it’s who has the most data—Bank and Brill

It’s all about compression—Juergen Schmidhuber

Feature Learning and Deep Learning
Architecture Survey 10

In this chapter, we survey a wide range of feature learning architectures and deep learning

architectures, which incorporate a range of feature models and classification models. This chapter

digs deeper into the background concepts of feature learning and artificial neural networks summarized

in the taxonomy of Chap. 9, and complements the local and regional feature descriptor surveys in

Chaps. 3, 4, 5, and 6. The architectures in the survey represent significant variations across neural-

network approaches, local feature descriptor and classification-based approaches, and ensemble

approaches. The architecture taken together as the sum of its parts is apparently more important than

individual parts or components of the design, such as the choice of feature descriptor, number of levels

in the feature hierarchy, number of features per layer, or the choice of classifier. Good results are being

reported across a wide range of architectures.

Statistical learning methods using a wide range of feature descriptors, learning methods, sparse

coding, and statistical classifiers.

Neural network methods inspired by a few simple neurobiology concepts, such as concentration

This chapter surveys both historical and recent examples of deep learning architectures, especially

the area of feature learning, where the features composing objects and the relationships among features

are learned in common architectures. We examine the components used in each architecture, and

discuss some of the motivation and intuition behind the designs.

Several detailed background sections are provided to explain key concepts for each type of

architecture, such as artificial neuron models, backpropagation methods such as gradient descent,

sparse coding, and visual vocabularies.

Deep learning architectures are used to generate features from training data under the control of a

skilled practitioner—there is a learning curve. And the sheer amount of training data available and its

preparation is usually the most important factor for successful feature learning. Here are some insights

from skilled practitioners.

The weights are the program code

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_10

405

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_10&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_10#DOI

–

406 10 Feature Learning and Deep Learning Architecture Survey

Architecture Survey

The survey includes selected representative architectures following the taxonomy from Chap. 9. The

goal is to explore the boundaries of innovation across the architecture families. Most of the

architectures surveyed can be considered deep learning methods, but we also survey a few hybrids

and exceptional cases. The survey focuses on architecture variations, rather than which architecture is

the leader in a single benchmark. Unfortunately, we cannot survey every significant development in

this field. However, we refer the reader to Schmidhuber’s excellent historical survey [492]. A good

introduction to basic neural network designs, including descriptions of several influential FNN

architectures, is provided by Hagan et al. [601]. In addition, we provide a list of key journals and

conferences in Appendix C for the interested reader to follow the latest research.

As shown in Fig. 10.1, the survey is taxonomized into three architecture families:

Statistical

Methods

ANN

Artificial Neural

Network

RNN

Recurrent

Neural Network

Feedback

Loops

FNN

Feed Forward

Neural Network

No Feedback

Loops

BFN

Basis Function

Networks

Not Strict ANN’s

Fig. 10.1 This figure shows a simple taxonomy of feature learning architecture topologies used for the survey. Note that

neural network methods and statistical methods overlap

FNNs: Feed-forward convolutional style networks.

– RNNs: Recurrent networks, primarily convolutional style.

– BFNs: Typically basis functions as the features, such as Gabor or Fourier.

Artificial neural networks (ANNs, NNs) are closely related to statistics methods, and in fact can

solve many of the same problems. Note that we show FNNs and RNNs as subsets of the ANN

category, and BFNs as hybrids, since some BFNs incorporate a few neural network concepts, as well as

statistical and heuristic methods.

Neural networks are function approximation engines: they learn features in a compressed, sparse

manner to reconstruct their input functions, which are images or image sequences in computer vision

applications. The architecture of the NN determines the ease of training and the effectiveness of the

function approximation.

P—Perceptron 407

ANN design may be inspired by neurobiology, but the architecture and design of real systems is an

art form. Actually, the leading practitioners advocate experimenting with different architectures,

components, and training protocols, and comparing results to tune the architecture incrementally.

Often, researchers start with an existing architecture, and then make small changes, measure the

results, and publish.

FNN Architecture Survey

We start the architecture survey with feed-forward neural networks or FNNs as shown in Fig. 10.2,

since many of the first successful neural network applications used feed-forward models. In particular,

we spend considerable time on a survey of Convnets, or convolutional neural networks (CNNs), which

are implemented as FNNs. Convnets have been influential, forming the basis for substantial research,

as pioneered by LeCun and others. The Perceptron, surveyed later, is often cited as the basis of

convolutional models, where weight factors acting as the features are applied to the inputs to measure

correspondence. FNNs have been demonstrated to work in various application domains, providing a

fairly regular architecture that has been extended and refined by several practitioners.

FNN
Feed-Forward Neural Networks

P
PerceptronMLP

Multilayer
Perceptron

SYMNET

CNN
Convnet

R-CNN
Region CNN

SP-CNN
Spatial Pooling

CNN

NiN
Network-In-

Network

Cognitron

NeoCognitron

LeNet

AlexNetZFNet VGG

MSRA-22
Baidu

DeepImage

Half-CNN

Maxout

GoogeLenet
Inception

Fig. 10.2 This figure shows the FNN architectures in the survey

P—Perceptron

The Perceptron model developed by Roselblatt in 1958 [497, 503] was part of a classified artificial

intelligence project, studying what Rosenblatt termed Neurodynamics for the US Navy, that took place

during the 1950s, later declassified [540] in 1961. Reaction of the public to news about artificial

intelligence may best be summarized as wild expectations, as stated by The New Yorker December

19, 1959 [540] “That’s a simplification. Perception is standing on the sidewalk, watching all the girls

go by.” The original Perceptron was implemented in hardware, and used 400 photosensors to compose

a raster image, where each photosensor was connected to an electrical potentiometer which could be

adjusted to control the weight factors, implementing a primitive single-layer neural model. There was

no hierarchy of features, and no concept of a fixed-sized local receptive field, since all the

400 photoreceptors represented the receptive field, and the 400 weights were tuned together as a

single feature. The Perceptron was not purely feed-forward, but allowed for some feedback laterally

and backwards to provide positive and negative reinforcement. However, the Perceptron is the basis

for most feed-forward neural networks, therefore included here in the FNN architecture survey. As

shown in Fig. 10.3, the Perceptron was housed in a cabinet, with a cable patch bay for manually

connecting photosensors to weight potentiometers to form receptive fields. Weight tuning could be

done using motors connected to each potentiometer under software control, or manually via knob

adjustments.

408 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.3 This figure shows the original perceptron machine [497, 503], implementing a primitive artificial neural

network model. Note all the individual wires used to connect phototransistor pixel inputs to potentiometers storing the

filter weights, and define the filter shape. Image # Cornell University, used by permission, Cornell University News

Service records, #4-3-15. Division of Rare and Manuscript Collections, Cornell University Library

Perceptron Architecture 409

Retina Projection

Area
Association

Area

(Localized

connections)

(Random

connections)

R1

R2

Rn

(Random

connections)

Fig. 10.4 This figure shows the basic perceptron architecture [497, 503] composed of retinal stimulus (pixels), a

projection area to form localized receptive fields, an association area to multiply pixels by weights, and a response area

(Rx) for multiple classifiers. Note the semi-random connection patterns and the feedback loops, following RNN models

The Perceptron is the basis for many artificial neural network concepts; in particular convnets are

based on the Perceptron neural model of weight adjustment to learn features (Fig. 10.4). The single-

layer Perceptron architecture limited learning and accuracy to simple problems, and initially led many

researchers to abandon artificial neural network research for many years. However, many of the

limitations of the single hidden layer Perceptron were overcome by the Multilayer Perceptron

(MLP) model developed later and refined in the 1980s, using backpropagation and learning methods.

We survey various MLP architectures in the next section. Some researchers have developed parallel

perceptron models, and corresponding training algorithms, see for example Auer et al. [606].

Here is a summary of interesting features of the Perceptron, including the architecture, weight

tuning, and learning.

Perceptron Architecture

• The Perceptron architecture is three layers: pixel stimulus (S-units), associated pixels (A-units), and

responses (R-units), as shown in Fig. 10.6.

• S-points, or input stimuli, impinged upon a retina, or image.

• The S-points are clustered as a local receptive field about a point, but not densely, rather semi-

randomly.

• The density or number of S-points in the cluster decreases exponentially with distance from the

central point, which is based on biological evidence of the radially decreasing retinal nerve

distribution revealed in more modern research [604], and seems to support contour detection. See

a similar local response field distribution model used by FREAK in Chap. 4. In other words, high-

density S-points are desired concentrated in the center of the receptive field, and sparser S-points are

desired as distance from the center increases.

• A-units, or associated cells, receive groups of S-points. A-unit connections define a receptive field.

The associated cells are referred to as the projection area.

• The pattern of associated cells in the local receptive field is assumed to be random, not structured as

an n × n or circular kernel, but shaped similar to a blob to allow for contour detection (see Fig. 10.5).

410 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.5 This figure shows a hypothetical, nonsymmetric, sparse feature sampling pattern allowed in the perceptron

architecture, which would be manually created by connecting cables in a patch bay between photoreceptors for the raster

image to weight potentiometers. Note that the patterns allowed in the perceptron are similar to modern local binary

descriptors such as FREAK, BRISK, and ORB as discussed in Chap. 4. Modern DNNs typically use fixed n × n matrix

patterns

• The S-points may be excitatory, or inhibitive, as represented by their weights. The weights either

excite (positive values) or inhibit (negative values).

• The algebraic sum of the chosen S-points for an A-unit causes the A-unit to fire all-or-nothing

(however, perceptrons allow an analog value or scalar firing event).

• The Responses, or R-units R1 . . . R n (or labeling mechanisms, classifiers) receive input from a set of

A-units with assumed semi-random input. The best output is a binary all-or-nothing firing event,

inspired by neurobiology. Using several R-unit responses combined together to determine object

recognition is better than fewer R-units. However, the binary nature of firing events means that the

Perceptron can model the AND function well, but not the XOR function, which was viewed as a

severe limitation to the capability for classification, which discouraged many researchers from

Perceptron-related research (see Minsky and Papert, 1969).

• Responses are mutually exclusive, and only one response to input is expected, and any strong

responses tend to inhibit other responses.

• The Perceptron memory was described as associative and distributed, allowing for some memory

units to be removed via the weight settings with only slight decreases in overall accuracy.

Perceptron Weight Tuning 411

As shown in Figs. 10.4 and 10.5, the Perceptron allowed for a variable connection topology, including

localized connections between the retina stimulus (S-points, photoreceptors, pixels), and random

connections between the neuron (A-units) and R-units (classifiers).

Perceptron Weight Tuning

Learning rules used in the Perceptron are novel, and included several techniques. Feedback in the

system, laterally and backwards, was implemented similar to the RNN concept, to adjust or bias the

weights collectively in different layers, in the form of inhibitory signals from R-units (classifiers) to

A-units (receptive field concentrator neurons), and even signals between A-units, to effectively

increase the strength of the best responding R-unit, decreasing the strength of weaker responding

R-units, implementing a form of reinforcement learning (see Fig. 10.6).

One of the novel learning concepts explored by Rosenblatt includes bivalent weight reinforcement

to implement reinforcement learning, which is worth reconsidering today for incorporation into DNNs.

Bivalent adjustments allow for inhibitory (negative) and excitatory (positive) weight tuning, as well as

recursive, lateral, and backwards bias adjustments between A-units and R-units in an RNN style.

The Perceptron was very sensitive to initial values for the weight setting, and different initial values

would lead to different solutions. Best results were achieved by setting the initial weights close to zero.

The overall Perceptron weight tuning approach, and learning in general, was termed trial and error

learning by Rosenblatt. (In the opinion of this author, DNNs today have not overcome the trial and

error paradigm.) Several types of feedback systems and weight training protocols were investigated in

the Perceptron research:

• Time-unit gain, where the active A-units were amplified or their weight increased for one unit of

time when activated.

• Permanent gain of weight values which when activated, causing weights to keep growing

unreasonably.

• Bivalent reinforcement, decreases weights for inactive A-units, increases weights for active units.

• Magnitude-proportional weight decay, so that inactive A-units receive weight decay proportional

to the magnitude of the weight, rather than a more localized distribution of weight adjustments in a

receptive field.

Inhibitory

S

R1

R2

A1

A2

Excitory

Fig. 10.6 This figure shows how the perceptron used RNN-style feedback laterally and backwards for reinforcement

learning adjustments to the weight parameters, similar to a reinforcement bias, see Rosenblatt [497]

412 10 Feature Learning and Deep Learning Architecture Survey

Perceptron Learning, Training, Classification

The Perceptron is considered a type of linear classifier. Perceptron learning and training presents

several problems such as (1) separable data can lead to several solutions depending on the initial

weight values, (2) the training iterations required to converge can be very large, similar to modern

Convnets using the same style of incremental adjustments analogous to averaging the weights for the

best fit over all training examples, and (3) if the data are not separable, convergence does not occur, and

oscillations develop, which can be long duration cycles, difficult to detect.

Rosenblatt investigated several training and learning protocols [605]. Since the local receptive fields

were intended to be semi-random sparse patterns surrounding the center position, and the connection

patterns were allowed to decrease in density with distance from the center, designing good feature

extractors was truly, as Rosenblatt remarked, “. . . a trial and error learning system” and required

considerable expertise to get anything to work—encore vu in DNNs today. Since a cable patch bay was

used to design the sparse feature sampling patterns by manually connecting photoreceptors to

potentiometers, Perceptron feature extractors were truly handcrafted.

For a given Perceptron, six parameters define the system in terms of training, learning, discrimina-

tion, and generalization:

• x: the number of excitatory inputs to each A-unit,

• y: the number of inhibitory inputs per each A-unit,

• z: the threshold value of the A-unit,

• w: the ration of A-units connected to R-unit,

• Ta: total number of A-units,

• Tr: the total number of R units in the system.

Rosenblatt reported that increasing the number of A-units, or receptive fields, generally increased

accuracy to a point, and increasing the number of R-units (classification categories) generally

decreased accuracy. Also, as the size of the retinal area increased, the number of S-points needed

ceases to be as significant.

The training method involved setting all 400 potentiometers independently to best match the target

raster pattern. During training, the potentiometers could be set with electric motors. The Perceptron is a

simple linear classifier, and requires linearly separable data in order to be trained. Although the

Perceptron was criticized for limited function representations which hampered learning nonlinear

problems, the basic concept of convolution introduced in the Perceptron, inputs * weights, is still

the predominate basis for convolutional style neural networks today. However, the modern Convnets

use enhancements such as local receptive fields, several convolutional layers with sets of hierarchical

features instead of just one, and other techniques such as pooling.

The Perceptron learning rule for linear classification has been highly influential, and inspired the

Support Vector Machine and Kernel Machine classifiers, as discussed elsewhere in this work. The

basic Perceptron learning rule algorithm can be expressed as follows:

• Define feature sampling pattern in cable patch bay.

• Define target_pattern rasters, for example digits 0...9.

• Initialize weights to random values, such as small random values close to 0.

• Compute difference test_input: target_pattern for each weight.

• If target_pattern weights! = test_input weights, adjust weights:

Cognitron 413

wj t þ 1ð Þ=wj tð Þ þ n d- yð Þx

where:

y = (target_pattern - test_input)

d = desired output

t = iteration number (0 . . . 400)

n = the learning rate constant, 0 . . . 1

wj = weights

Else leave weights alone, do not adjust.

Repeat until error minimum reached, or iteration count limit reached.

As shown in the algorithm above, if the weight settings = the test inputs, no weight adjustments are

made. Thus, the Perceptron implements a sort of repulsive learning rule, only changing weights when

the weights are incorrect. The goal of the weight adjustments was to classify unique patterns and

separate the patterns in weight space. Note also that the inputs are not normalized, and neither is the

pattern normalized, which made parameter adjustments hard to manage, so subsequent researchers

addressed this weakness by adding various forms of normalization and numeric conditioning to the

network, surveyed later.

See Hagan [601] for a detailed introduction to Perceptron design and learning, with worked out

examples, mathematical proofs, sample algorithms, and coding guidelines.

Multilayer Perceptron (MLP), Cognitron, Neocognitron

The Multilayer Perceptron, or MLP, is a deeper model based on the Perceptron model, where the MLP

contains more hidden layers and other refinements. Several types of MLP architectures have been

developed, which are essentially the forerunners of the Convnet-style architectures, such as LeCun’s

LeNet architecture surveyed later, which provides the basis for most of the current generation of DNNs.

As shown by Hornik et al. [815], an MLP can be devised as a general function approximator, taking

scalar inputs, convolving them with weights, and adding bias factors to provide a scalar output. The

MLP function approximation idea is analogous to the Fourier Series concept, where frequency inputs

can be combined to produce arbitrary functions in the frequency domain. However, the

backpropagation training used in MLPs is not in any way analogous to the inverse Fourier transform.

The Cognitron and Neocognitron are early and influential examples of the MLP architecture, which

we survey next.

Cognitron

Fukushima’s Cognitron [610] was demonstrated in 1975 as one of the first multilayer Perceptrons,

enhancing the basic Perceptron model into a deep architecture. The Cognitron is an FNN. However,

the Cognitron is primitive given the engineering capabilities of the time, and did not support much

invariance for low-level features such as translation or scale invariance over smaller receptive fields in

low-level features, but for higher-level features more invariance was demonstrated, in part due to the

fact that higher-level features cover a larger receptive field due in part to convolutional subsampling.

The Cognitron is inspired by the neurobiology of the time, and Fukushima provides several interesting

observations about neurobiology, for example that the hierarchical Hubel and Wiesel model does not

hold for all types of visual reasoning, but may represent a major part of the neurological visual

pathway. Fukushima also notes that the Hubel and Wiesel model does not specify higher-level cells

above complex or hypercomplex cells, yet higher-level cells are known to exist which respond very

well to larger features under all sorts of invariance, such as scale and deformation, referred to as

Grandmother cells.

414 10 Feature Learning and Deep Learning Architecture Survey

The Cognitron, as shown in Fig. 10.7, is the first-generation model proposed by Fukushima,

followed a few years later by improvements to add translational invariance and some distortion

invariance known as the Neocognitron, which we discuss after the Cognitron.

Fig. 10.7 This figure shows the basic cognitron concept of excitatory weights Un and inhibitory weights Vn. Image

Springer-Verlag, used by permission, from “Cognitron: A self-organizing multilayered neural network,”

K. Fukushima, used by permission, Biol. Cybernetics 20, 121–136 (1975) Springer-Verlag

The Cognitron learning rule embodied a concept Fukushima called Dynamic Equilibrium, which

increased weights for the strongest feature matches to make the matches stronger, and decreased other

weights for inhibition to balance the excitatory and inhibitory weights. However, the Cognitron weight

settings were difficult to manage to balance excitatory and inhibitory factors. The excitatory and

inhibitory weight adjustment rules allowed the excitatory weights to keep growing unchecked, so

Fukushima introduced a weight limiter function. If the weights were set correctly then better recogni-

tion of overlapped patterns was possible than the Perceptron. Also, better discrimination between

binary and gray-scale patterns was also possible with the Cognitron, provided the weights were set

correctly.

The Cognitron weight adjustment rules are summarized in Fig. 10.8.

Neocognitron 415

Excitory weight adjustment rule*

where

e = excitory increment

e =
P * v

n
i =

G * s

t

P = proportionality constant

v = line value (input value)

n = # inputs in pattern subcircuit (i.e. kernel)

Inhibitory weight adjustment rule*

where

i = inhibitory increment

G = generality constant

s = sum of input values in subcircuit (i.e. kernel)

t = sum of weight values in pattern kernel

*Excitory weight limiter function

l =
e – i

1 + i

Fig. 10.8 This figure shows the cognitron weight adjustment rules

Neocognitron

The Neocognitron [511, 612] is an extension of Fukushima’s Cognitron [610]. One major enhance-

ment in the Neocognitron over the Cognitron is translational invariance, enabled by OR’ing a local

region of subcircuit comparator outputs together (i.e., convolutional filters pooled together) at the

output of each layer, so that the same feature could be detected in multiple locations, limited only by

feature overlap range.

The Neocognitron is the forerunner of the Convnet style DNNs. The Neocognitron was first

demonstrated by Fukushima in 1980 [510, 511] capable of self-organization in the words of

Fukushima, referred today as unsupervised learning. The learning method produces features that

capture the Gestalt or geometric gist of each feature, providing for pattern matching based on

geometric similarity with translational invariance. The Neocognitron is an FNN, composed of the

input layer, followed by regular two-part layers mimicking the Hubel and Wiesel model [499, 500] as

simple cells containing input patterns, followed by complex cells containing higher-level concepts

derived from the simple cells. Each input (or synapse as Fukushima notes) is afferent, plastic, and

modifiable (i.e., via the weights). After training, the last layer of C-cells become a set of trained

classifiers, responsive to only a single type of high-level concept or feature, with some deformation and

translation invariance.

Fukushima notes that the division between excitatory cells and inhibitory cells is a form of lateral

inhibition, a neurobiologically inspired concept, since the inhibitory weight factors will tend to allow

the feature pattern to shift in position, yet still be recognized from location to location since the

excitatory weights will yield a strong response at various positions. The Neocognitron uses Simple

Cells to act as convolutional features (S-cells), Complex Cells to pool S-cells (C-cells), and V-cells to

sum C-cell activity, which is used to provide a gain control for S-cell convolutions.

Figure 10.9 (top) shows the basic types of cells represented in the Neocognitron based on current

neuroscience, starting with the retina on the left, proceeding through simple and complex cells grouped

together into receptive fields as per the Hubel and Wiesel model, finally leading to hyper-complex cells

representing high-level concepts, and Grandmother cells which represent the highest-level concepts.

Figure 10.9 (middle) shows the cell features actually cover more pixels as they are represented in

higher levels of the network, illustrated by the large letter A in the input image at the left, which is

eventually represented as a condensed, subsampled letter A feature at the top of the feature hierarchy

on the right. The condensation of the feature is the result of convolutions and subsampling, resulting in

a representation of a set of unique top-level features. Also note that each feature is represented as a

hierarchy of feature parts, or deep representation. The bottom image in Fig. 10.9 shows excitatory cell

outputs as dark lines between layers that best match the input pixels representing the letter T; however,

the inhibitory cells are also present in the system, but not shown with synaptic connection lines.

416 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.9 This figure illustrates neocognitron architecture concepts. (Top) The correspondence between Hubel and

Wiesel simple and complex cells and the neocognitron layers. (Middle) Illustration of the hierarchical, cascaded feed-

forward nature of the layers, and corresponding features. (Bottom) An illustration of a regular hierarchy of convnet style

filtering, note the pattern “T” in the inputs. Note the excitatory weights Un and the inhibitory weights Vn. Image

Springer-Verlag, used by permission, from “Cognitron: A self-organizing multilayered neural network,”

K. Fukushima, used by permission, Biol. Cybernetics 20, 121–136 (1975) Springer-Verlag

The Neocognitron inputs were not normalized around zero, but were floats mostly in the range 0–1

(sometimes >1), also the neuron outputs or C-cells were not normalized either. Note that in subsequent

generations of CNNs, we see greater attention given to data normalization to pair the data with various

activation functions that operate in a mean-zero normalized range.

S-columns represented the Hyper column concept introduced by Hubel and Wiesel in 1977,

illustrated in the Neocognitron layers as shown in Fig. 10.10, and note that a single cell may overlap

and contribute to several S-columns. The S-column concept describes a focused formation of the

features up through the hierarchy, and tends to suppress feature overlap.

Concepts for CNNs, Convnets, Deep MLPs 417

Fig. 10.10 This figure shows S-columns which focus, combine, and condense features in the S-layer hierarchy. Image

Springer-Verlag, used by permission, from “Cognitron: A self-organizing multilayered neural network,”

K. Fukushima, used by permission, Biol. Cybernetics 20, 121–136 (1975) Springer-Verlag

Fukushima had several more experiments in mind to test and refine the Neocognitron, but only went

as far as possible given the computing power available. The entire Neocognitron was simulated on

early digital computers typically containing less than 64,000 bytes of memory, probably hand-wound

core memory. The major innovations of the Neocognitron architecture that inspired the later Convnet-

style developed by LeCun and other DNNs are summarized here:

• Regular, feed-forward layers composed of replicated functions.

• Input windowing using striding to assemble n × n input kernels for filters.

• Convolutional layers, composed of filters (features) in hierarchical sets.

• Weight replication and sharing in each layer, for parallel convolutions, which reduced the number

of parameters.

• Subsampling layers fed by convolutional layers, to provide translation invariance. Subsampling

used local spatial feature averaging of entire features.

• Learning via interesting weight tuning methods, although backpropagation methods were not used,

the inspiration and foundation for tuning algorithms were laid, see [611, 612].

• LWTA weight tuning and training. Instead of backprop, weights were tuned either using (1) local

winner-take all (LWTA) unsupervised learning, or (2) by prewiring the electrical circuit (transfer

learning).

Concepts for CNNs, Convnets, Deep MLPs

Convolutional Neural Networks, abbreviated as Convnets or CNNs, are a good starting point for

learning about DNNs in general. A CNN is a type of Multilayer Perceptron (MLP). A summary of

CNN motivations is provided by LeCun [589], who is considered one of the pioneers in this field. In

this section, we will survey the basic architecture and components of a CNN, including features, types

of layers, convolutional neuron models, and backpropagation and training parameters, to lay the

foundation for surveying several innovations on the basic CNN architecture.

Convolutional neural networks leverage the historical concepts developed in the Perceptron,

Cognitron, Neocognitron, and other systems described in the history section earlier. See Table 10.1

for a summary comparison of the progression in CNN developments.

y y y

y y y

y y y

– – –

– – –

– – –

– – y y

– – –

– – –

y y

– – –

B B

418 10 Feature Learning and Deep Learning Architecture Survey

Table 10.1 Summarizing convnets compared to historical P and MLP models

CNN architecture feature Perceptron Cognitron Neocognitron LeNet

Raster pixel input grid y y y y

Convolutional filters/features/weights y y y y

Hierarchical deep network –

Sliding window n × m input kernels –

Weight sharing in layers –

Non-rectangular feature shapes y

Pre-processing, global normalization y

Non-linear activation functions y

Pooling and subsampling

Post-processing, local normalization y

1d classification layers y

LWTA or hard-wired training – –

Backpropagation training y

Convolution is the basic operation used to model an artificial neuron to both learn and detect the

features, using a weight matrix convolved against an input window of pixels. Convolutions are used

like a correlation template or feature detector. The output of each convolutional filter is assembled into

an output image referred to as a feature map, which is sent along as input to the next layer. One output

image is created for each filter, and there are usually hundreds of filters per layer. Each convolutional

filter acts as both a feature detector and a filter. The convolutional filters are composed together into

feature sets at each level of the hierarchy, and each filter is tuned during training as discussed in the

backpropagation section later.

As shown in Fig. 10.11, Convnet feature layers can be conceptually represented as a volume or stack

of separate input images and output images. For example, the input volume may contain a stack of

three images, one for each RGB color channel, and if the convolutional layer contains 128 filters

(features), then the output of the layer is a volume or stack of 128 feature maps. So, for an RGB input

containing three channels, the output is 3 × 128 feature maps.

R Feature Maps 1..128RGB Input

Features, filters 1..128

R G B R G GR

G Feature Maps 1..128 B Feature Maps 1..128

Fig. 10.11 This figure illustrates convolutional layers taking an RGB input volume (stack of 2D images) and producing

a volume or stack of 2D output images or feature maps, one per feature per input image

Forward and Backward Pass Through the CNN 419

Note that convolution is only one way to model the neuron in DNNs. We survey a range of models

in this chapter. For example, in the NiN model by Li [572], convolution as a generalized linear model is

replaced by an MLP model, acting as a fully connected microclassifier inside each neuron to achieve

equivalent, of not better, results than convolution. Polynomials are used to model the neurons in the

PNN model surveyed later. Also, using basis features in place of convolutions to model the neuron is

demonstrated in the HMAX model [738] surveyed later. Raw memory impressions are used to model

the neuron in the Visual Genomes model [476], see Appendix E.

CNNs are used for many applications including (1) classification of families of objects, (2) recog-

nition of specific objects within a class such as the specific face of a known person, (3) localization of

objects to find coordinates, (4) segmentation of region of pixels into classes such as water, grass, or

roadway, and (5) general regression analysis. We will survey the architectures and design

considerations used for these tasks in this chapter.

The foundational architecture used by many CNNs today, LeNet-5, is described by LeCun [288],

and surveyed later in this section. LeCun notes [589] that Convnets are a fundamental type of

multistage Hubel and Wiesel model, using a design pattern of convolutional filter banks as simple

cells, and pooling layers as complex cells.

The Convnet is a feed-forward network, with data moving from input through processing to output

classification. However, the training phase for feature learning operates backwards, computing the

error between expected results and computed results, and distributing the errors back to their source to

correct the filter weights (features) in a method referred to as backpropagation, discuss in some detail

later.

While current generation Convnets are all based on discreet convolution of scalar data in square

n × n kernels, future research is pointing toward alternative basis spaces for the data, such as Fourier

space [613], allowing other dimensions to be mapped into the Convnet framework.

Forward and Backward Pass Through the CNN

Next, we describe the basic CNN operations in both directions as the starting point for the survey of the

myriad CNN variations used in practice.

Forward Pass Overview (Feature Detection Pass, Training Pass Covered Later)

• Each training sample, one at a time, is moved forward through the network to compute the error

between the sample and the closest matching target feature.

• Inputs, pixels in the case of the first layer and feature maps for subsequent layers, are fed forward

into convolutional layers in local pixel groups of say 3 × 3 taken from a sliding window over the

image.

• Some numerical conditioning may be applied to the input data, for example mean-zero normaliza-

tion to condition the data for a mean-zero activation function.

• Correlation/Convolution: The data is then convolved with an n × m filter (i.e., weights) to compute

the filter correlation or result value.

• Stored results are kept in the output feature map (the filtered image) from the convolution, and also a

derivative is stored by taking the difference between the current convolution results f′ and the

previous results f″. The derivative is computed and stored for each training sample for each feature.

Initially, each stored feature weight matrix may be substantially different than the closest matching

training sample, until corrected by backpropagation tuning to reduce the difference.

• Some postprocessing is typically applied to the filter result using an activation function, such as a

zero-centered sigmoid, which introduces nonlinearity into the result. One goal of nonlinearity is to

420 10 Feature Learning and Deep Learning Architecture Survey

project the purely linear convolution operation into a nonlinear solution space, which is believed to

improve results. In addition, the nonlinearity may result in faster convergence during

backpropagation training to move the gradient more quickly out of flat spots toward the local

minima. Also, the nonlinearity is used to ensure that the value is differentiable for backpropagation.

• Pooling and subsampling is typically applied to the output feature map in a pooling layer, where

local regions are combined into a single value, such as 2 × 2 regions, via averaging values together

or choosing the max value. The result is a smaller output image or feature map, see Fig. 9.19.

• At the end of the CNN, the FC layers reduce and classify the features by performing 1D vector

convolutions, see Fig. 9.5. The last layer of the FC classifier produces a best-guess label or

identification of the input data (Fig. 10.12).

Feature Maps Processed

Feature Maps

2×2 Max Pooling,

Tiled,
2× Sub-sampling

Filter Bank

(Features,

Weights)

160 160 Input Image,
Feature Map

Convolution
filter: k * f

Gather input kernel k
using sliding window

Filter

outputs

Non-linearity
applied

80 80 Output Image,

Feature map

Fig. 10.12 This figure illustrates the basic operations that occur in a convolutional layer. Note that the output image is

reduced in resolution (we assume that a 1-pixel padding is used around all images in this example, so no border pixel

resolution is lost to convolutional window border effects), based on the reduction from the 3 × 3 kernel (3 × 3 region → 1

pixel) and the final pooling and subsampling layer (2 × 2 region → 1 pixel)

Fully Connected (FC) Layers, Flatten, Reduction, Reshape 421

• The output classification guess is measured as an error term (expected vs. computed result) to be

used for backpropagation tuning, discussed next.

Backward Pass Overview (Weight Tuning, or Learning)

• The total error term computed during the forward pass at the classifier output is the basis for

backpropagation. See the section on backpropagation below for details. The output value is a

classification result, which has an error term (computed vs. expected result). The total error term at

the classifier output is a combination of errors from all the previous convolutional layers, including

contributions from the feature weights, processing steps such as pooling and normalization, and

learning parameters.

• Backpropagation traces the error backwards through each feature layer to the contributing weight

sources, and decomposes the error term into smaller and smaller parts (partial derivatives or

gradients) at each layer, one feature weight at a time, in order to adjust each weight to reduce the

error. Backpropagation is discussed in detail later in the section “Backpropagation, Feature

Learning, Feature Tuning,” see also Figs. 10.22 and 10.23.

• Each feature weight is tuned independently by scaling the gradient against the derivative error f′- f″

stored at each neuron. The derivative corresponds to the response change between current weights

and previous weights, useful for scaling weight adjustments with the gradient to adjust each weight,

see Fig. 10.23.

Fully Connected (FC) Layers, Flatten, Reduction, Reshape

Feed-forward networks typically make use of special network connection arrangements for particular

goals such as (1) fully connecting feature weights to a 1D vector for linear classification, and

(2) reduction of large fully connected layers into smaller layers to reduce the parameter count, see

Fig. 10.13. In some architectures in this survey, layer connections may be designed to reshape, split, or

to go between 1D and 2D shapes. A fully connected network is sometimes referred to as a Perceptron

(P), and serially connecting several Perceptrons together is known as a Multilayer Perceptron (MLP).

An FC layer can be considered an array of neurons, and is trainable via backpropagation.

422 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.13 This figure

illustrates flattening of

256 3 × 3 features into a

2304 × 1D vector, fully

connected to a 2304 FC

layer of neurons with 2304

weights per neuron, finally

reduced 3:1 into an FN

neuron layer of 768

2304×1×Z

weights

256 features,

3×3 weights

256 flattened 3×3 features into:

3×3×256=2304×1

Z is the number of classes
Two 1d weight vectors

are trained for each class Z:

[w
1
, w

2
, . . . w

2304
][Z]

[w
1
, w

2
, . . . w

768
][Z]

Fully

Connected

Reduce,

Reshape
Flatten

768×1×Z

3:1 weight reduction

In DNNs, the FC layers act as a bridge between the filtering layers and a classifier. FC models are

seamlessly trainable in CNN architectures, since the same convolutional neural weight model is used.

Since fully connected layers can be prone to overfitting for high parameter counts, various mitigation

strategies are used during training to reduce and regularize the parameters, such as randomly dropping

data (see dropout, Chap. 9).

The first FC layer usually contains the largest number of parameters in the entire system, specifi-

cally the most connections and weights. Subsequent FC layers are typically reduced in size for

practical reasons. For example, the 2304 element FC layer in Fig. 10.13 must compute a 1 × 1

convolution over each of the 2304 connections for each FC neuron (2304 × 2304 = 5,308,416 MADD

instructions + some sort of activation function). Also, each FC layer maintains a set of 1D weight

vectors and bias vectors, one for each class, to be trained via backpropagation. For example, the FC

feature vector for a 2304-wide FC layer may be an array of [5308416][number_of_classes] 1D feature

weight vectors and bias vectors, compared to a kernel-connected layer with only [256][3 × 3] feature

weights and a bias for each feature. A kernel-connected layer preserves local spatial relationships in the

receptive field, while a 1D vector in an FC classification layer does not necessarily do so.

An FC layer is a typical building block in a DNN, typically used in the last layers for classification.

Alternative methods of employing or ignoring the FC layers are surveyed later, including purely

kernel-connected convolutional filter layers as used in the Half-CNN, and the Inception architectures

with multiple FC classifiers at different layers in the network. An FC network can be described in

several different ways depending on the intended use:

• As a simple Perceptron P, or as an MLP when several FCs are stacked.

• As a dimensionality reduction layer to reduce the input features to the desired number of output

classes, like a final pooling layer.

• As a normalization layer to feed into a softmax classifier.

• As a linear regression network over the FC inputs.

• As a logistic regression network for binary classification.

• As a general function approximator.

Fully Connected (FC) Layers, Flatten, Reduction, Reshape 423

A fully connected layer is a general function approximator, capable of implementing a linear

classifier, or a logistic regression function for binary classification, perhaps using Hamming distance

for matching. By weighting each input to each neuron in the FC layer, the combination of inputs and

weights forms a linear classifier. Usually, one or two FC layers stacked together are sufficient to

approximate the desired function. Even a single-layer or shallow FC network has been shown to be

able to approximate any function to arbitrary precision as shown by Hornik et al. [815]. The final FC

layer vector length will typically be reduced in a reduction layer to provide the correct number of class

outputs for an application. The FC layer uses one 1D weight vector for each label or class, so an array

of 1024 1D weight vectors is needed to classify 1024 objects, and each of the weight vectors must be

trained and evaluated to find the best match. Sometimes, FCs are replaced after training with an SVM

or other classifier to increase accuracy.

Sparse Gaussian-connected layers, instead of fully connected layers, have also been used to reduce

the connection count, and other sparse topologies are possible. A circular matrix projection connection

topology proposed by Cheng et al. [627], and other methods are discussed in the component’s

taxonomy in Chap. 9. For example, a Global Average Pooling (GAP) layer as introduced in the NiN

[487] architecture has been used to replace the FC layers and vastly reduce parameter counts.

When the author implemented his first FC neural network to recognize audio guitar chords from a

microphone on a PC in 1999 using Fourier spectrum features, it was difficult to believe that this simple

FC neural model was little more than hype, since it seemed so simple from a programming perspective,

but it worked (Fig. 10.14).

Fig. 10.14 Images

describing the ALVIN

driving system developed

by Jochem and Pomerleau

in 1996 [628], which used

fully connected layers to

learn to steer a car on a

roadway

32×32 Sensor Input

4 Hidden Units

3D Steering

Output Units

16×16 Encoder Output Array

Sharp

Left

Straight

Ahead

Sharp

Right

The FC model provides a framework to think about classification, forcing the system to be designed

around vectors of features to support the FC layers. A small network of FCs can regularize the input to

the correct dimension and label the results, for example reducing a larger number of features into a

classification vector of the desired number of classes. An FC can be designed to filter out inputs,

similar to dropout, by setting the 1D vector to contain zero-valued mask weights for pixel inputs not of

interest, and nonzero values to include those of interest. For normalization and other processing, the FC

weights may be set to excite (i > 0) certain inputs, inhibit (i < 0) certain inputs, and ignore (i = 0)

certain inputs. For binary classification and logistic regressions, the weight values of 1 and 0 can be

sufficient.

424 10 Feature Learning and Deep Learning Architecture Survey

A fully connected mesh topology may be used for example to connect each pixel in the image

together for a segmentation application (a huge number of connections!). To illustrate the capabilities

of a fully connected mesh, Fig. 10.15 provides a few feature weight visualizations created by Andrej

Karpathy1 using the Caffe open-source neural network library. The FC mesh was trained on Imagenet

data to create very primitive features. The architecture is just a single FC mesh connecting all the pixels

in the image, simply intended for visualizing and studying linear classifier failure modes, and is not

intended to be competitive or accurate, since this architecture is reported to be <3% accurate at best.

The training protocol involves resizing each image in the 1.2 million Imagenet image training set to

64 × 64 pixels to reduce training time, then train using backprop. All input pixels in each image are

fully connected into a linear classifier of size 64 × 64 = 4096. The resulting features are visualized as a

blob-like color feature showing the dominant color distribution across all the training set images for

each of the 1000 images per class.

Fig. 10.15 This figure shows a single-layer FC classification and visualization of all the pixels from a few of the 1000

classes in the Imagenet data. Image # Andrej Karpathy, used by permission

We can illustrate a very simple FC as shown in Fig. 10.16, using three ASCII characters as input,

with an objective to classify a set of three-letter character strings into three classes: CAR, MOT, and

PED. The FC layer contains three artificial neurons, each with a weight and bias. As the input values

are propagated through the FC layer, each input letter is multiplied by the corresponding weight factor

and summed in the neuron, and the weights are designed so that matches will sum to 3 (based on ASCII

character values). In this simple example, the bias is a scaling factor, not an additive bias. The FC

output is passed directly to the final single-connected classifier layer, and a correct match for each class

will yield a value of 3 when all three characters match the expected values. A nonlinear activation

function is not needed for this simple example, since we are seeking a linear classification.

1 See http://karpathy.github.io/2015/03/30/breaking-Convnets/ for the training parameters and goals.

http://karpathy.github.io/2015/03/30/breaking-Convnets/

Layers and Depth 425

A-

Z

A-

Z

A-

Z

Car

Mot

Ped

COMBINATORIAL_PARAMETERS[3] =
{

“CAR”, Weights[1/‘C’, ‘1/A’, 1/‘R’], Bias[1,1,1],
“MOT”, Weights[1/‘M’, 1/‘O’, 1/‘T’], Bias[1,1,1],
“PED”, Weights[1/‘P’, 1/‘E’, 1/‘D’], Bias[1,1,1]

}

LABEL_PARAMETERS[3] =
{

“CAR”, Weights[3,0,0], Bias[1,0,0],
“MOT”, Weights[0,3,0], Bias[0,1,0],
“PED”, Weights[0,0,3], Bias[0,0,1]

}

Fig. 10.16 This figure illustrates a simple FC network used to classify three-letter character strings. Note: in this

example, we use the bias as a multiplicative scaling factor for the convolution result, not as an additive bias. Typically,

CNNs ignore the bias and set it to 1

Layers and Depth

CNN architectures are typically described a layer at a time. For simplicity, we distinguish between the

following major layers:

1. Input Layer.

2. Convolutional Feature Layers (a hidden layer in DNN parlance).

3. Convolutional Classification Layers (a hidden layer in DNN parlance).

4. Output Layer.

Note

We taxonomize convolutional layers to be an aggregate layer, containing multiple operations such as

numeric conditioning, convolution, activation functions, and pooling. We do not call out separate

layers for all of the various operations, since there are too many possibilities. See Fig. 10.19 and the

taxonomy in Chap. 9.

One key CNN concept is the use of replicated convolutional layers in the architecture. As shown in

Fig. 10.17, a few basic types of layers are used. The input layer is the simplest, consisting of pixels for a

2D imaging application, feeding into convolutional layers. The output of convolutional layers

consists of: (1) Feature, or filters as n × n weight kernels, and (2) filtered images (one image per

feature), referred to as feature maps in CNN parlance, which are fed as input to the next convolutional

layers.

426 10 Feature Learning and Deep Learning Architecture Survey

Classifier

Layer

1d vector

weights

Classifier

Layer

1d vector

weights

Convolve

Layer

n n

weights

Convolve

Layer

weights

Convolve

Layer

weights

OutputInput

n n n n

Fig. 10.17 This figure shows the layered architecture of convnets. Note that there are five layers in this network, three
convolutional filter layers, and two convolutional classification layers

Typically the convolutional layers are replicated, or else changed slightly from layer to layer. For

example, a convolutional layer may optionally include numeric conditioning of the input data,

convolutional filtering, followed by a nonlinear transform of the convolutional result, pooling and

subsampling, and local region postprocessing of the data (see Fig. 10.18 and Table 10.2).

Input

Images or

feature

maps

Pre-

processing

Non-

linearity

Pooling/

Sub-sample

Output

Feature
Maps

.

Convolve

*

i

i

i

w

w

w

Post-

processing

Convolutional Layer

Feature Maps (filtered)

images)

Features (filters, weights)

Fig. 10.18 This figure shows the basic components in a convolutional layer, described in Table 10.2

Classification layers in a CNN may also be implemented using statistical methods such as an SVM,

rather than as convolutional layers (see FC layers discussed above). FC classification layers are similar

to pooling layers, but used for regularization. The classifier layers flatten out the 2D weight kernels

from the feature layer(s) into a 1D vector to allow for (1) a 1D linear classifier to be modeled and tuned,

and (2) to support training via backpropagation.

The depth of the entire network is an architecture variable, and typically the final depth is arrived at

after trial and error. In Fig. 10.17, we see a network with a depth of five convolutional layers total: three

filtering convolutional layers and two 1D convolves for classification. In practice, up to 20 or more

convolutional layers are used, as discussed in the architecture survey later in this chapter and

Table 10.3.

Table 10.2 Summary description of typical components in a CNN

Convolution layer component Description and rationale

Input Pixel images for input layer, processed images for subsequent layers

Pre-processing Numeric conditioning, dropout

Filter bank, features, weights Correlation, projection on overcomplete basis, dimension expansion

Nonlinearity, activation Lateral inhibition, sparsification, squashing, spreading

Pooling and subsampling Subsampling over tiles, translational invariance

Post-processing Numeric conditioning, dropout

Output A feature map, or Image, to feed to the next convolutional layer

2

2

Modeling an Artificial Neuron 427

Table 10.3 This table showing a comparison of convolutional features is several CNNs

CNN name

Typical

configuration

shown
a Year

Total

layers

Filtering

layers

Convolve

n × n

Filter sizes

Used in various

layers

Pooling

layers

Classification

layers

Convolve 1D

vector

Other layers (not

counted in totals)a

LeNet5 1998 7 2 (3 × 3), (5 × 5) 2 3 –

Ale × Net 2012 10 5 (11 × 11), (5 × 5),

(3 × 3)

3 –

NiNb 2014 6 4 MLP’s (11 × 11), (5 × 5),

(3 × 3), (3 × 3)

0 1 Global

Ave. Pool

1000

–

Inceptiona 2014 41 22 (1 × 1), (3 × 3),

(5 × 5)

14 5 11

VGG-19 2015 24 16 (3 × 3) 10 3 19

MSRA-22 2015 29 19 (3 × 3) 6 3 –

HMA× 1999 5 2 (3 × 3),

. . .

(29 × 29)

1 –

DRLc [798] 2015 100–

1000

Variable Variable Variable Variable Skip connections

a Inception note: Inception’s architecture is not a straightforward CNN, therefore difficult to compare, since at several

layers there are parallel convolutions, pooling operations, and classification operations. So, the author is not sure if the

inception layer counts above are comparable to other CNNs
b
DRL note: We discuss DRL in more detail later in this chapter in the deep neural network futures section at the end of

this chapter
c NiN note: Based on the ILSVRC slides for NiN classification [531]

Several practitioners have demonstrated that depth of the feature hierarchy is more important than

the features and the classifier, including Coates, Lee, and Ng [539], Simonyan et al. [590], Ren Wu

(comments at the Embedded Vision Summit Oct. 2014), and Szegedy in the Inception architecture

[544]. Using more and deeper features is an intuitive advantage.

Convnets have been implemented using a strided window method to gather pixels from spaced tiles

in the input image for faster compute, or to introduce subsampling to the input to condition the data, or

to introduce translational invariance. However, more recent Convnets set the stride to 1 to gather input

over each possible window and generally see better results.

Modeling an Artificial Neuron

As shown in Fig. 10.19, an artificial neuron is modeled using a pipeline of operations. We will discuss

methods to optimize the pipeline later in this section, for example, see Mamalet et al. [597]. Here is a

discussion of the components in typical convolutional neuron models.

428 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.19 This figure shows common which may be combined in various fashions combined to model an artificial

neuron in a convolutional feature layer

Convolutional Features, Filters

Convolutional feature layers represent the neural function as a convolution, or a template match via

correlation, and the features are weight matrices, which are tuned to the training set using various

training protocols and backpropagation methods. There is some variation in terminology among

practitioners, and subtle nuances in intent, which we cover in this section. For 2D images, the weights

are modeled as 2D kernel arrays or weights. For fully connected classification layers (also discussed in

this chapter), the weights are flattened into a 1D vector to feed a 1D array of neurons.

The main operation of each artificial neuron is convolution of inputs and weights. The term

convolution is used very imprecisely in CNN discussions, and what is meant is the dot product of

the input vector I and the weight vector W:

I .W =

n

i= 0

I iW i = I0W0 þ I1W2 þ ⋯þ InWn

Convolutional Features, Filters 429

Actually, the mathematical definition of convolution assumes that one of the input vectors has been

reversed and shifted prior to the dot product (i.e., the filter has been flipped horizontally and vertically);

however, correlation by definition takes straight data. In typical image processing packages, there is

usually a scaling factor s applied to the convolution result, and possibly an added bias b:

convolve I,Wð Þ= s

n

i= 0

I iW iÞ þ b

Convolution and correlation are mathematically equivalent given some setup assumptions. Tem-

plate matching is another term commonly used to describe correlation. Also, filtering is a term

typically used in CNN discussions for convolution, which produces a filtered feature map (output

image), since the dot product results can be interpreted as a filter. See the section on Convolution vs.

Correlation later in this chapter for more details on convolution and correlation.

Besides the more complex neural model pipelines for 2D feature filtering layers, the FC layers

contain a simpler neuron pipeline usually consisting of only convolution and an activation function for

the 1D feature vectors, see the discussion on FC layers.

For the feature layers, a set of unique filters are kept at each layer in the hierarchy, and the number of

features are typically limited to a few hundred features per layer. Convolutional filters are symmetric,

rectangular, such as 3 × 3, 7 × 7, 11 × 11. A hierarchy of feature concepts are kept in higher layers of

abstraction, consisting of edge and texture filters at low layers and higher-level concepts at higher

layers, such as motifs, object parts, complete objects, and scenes. Each filter is run against the input

feature map exactly like any other spatial filter, typically as a sliding window across the image at each

pixel or strided, producing a new feature map. So Convnet filters are dual purpose: (1) the filters are

features (correlation templates), and (2) the filters are in fact filters. For the FC layers, a set of 1D

vectors are kept, one vector for each output class, for example if the output classes are dog, cat, and

bird, the FC layer keeps a separate 1D vector to train for each class.

As shown in Fig. 10.20, the convolution (i.e., dot product) is typically followed by an activation

function, or transfer function, to provide nonlinearity to the response, discussed in the next section. The

nonlinearity ensures that the value is differentiable for backpropagation using gradient descent and

similar methods to tune the feature weights, as discussed in the backpropagation section (Fig. 10.21).

Fig. 10.20 This figure illustrates the basic convolutional artificial neuron model composed of a dot product filter

followed by an activation function, or transfer function, to provide nonlinearity to the response

430 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.21 This figure illustrates convolutional filter response, (left) input image, (center) results of applying two filters

highlighted by strength of filter response, filter #66 and #118, and (right) examples of filter response, top right showing

V-like features which responded to filter #66, and bottom right showing a corner-like features which respond to filter

#118. Image # Springer, from He et al. [483], used by permission

Transfer Function (Activation Function)

Activation functions may be linear, such as simple thresholds or ramp functions, or nonlinear, such as

sigmoids, see the discussion on activation function in Chap. 9, and see also Fig. 9.18. In a CNN, the

convolution result is sent to the activation function to perform a nonlinear thresholding mechanism.

One goal of nonlinearity is to project the purely linear convolution operation into a nonlinear solution

space, which is believed to improve results. In addition, the nonlinearity may result in faster conver-

gence during backpropagation training to move out of flat spots toward the local minima. Also, the

nonlinearity is used to ensure that the value is differentiable for backpropagation. A Threshold Bias can

be provided to the activation function; however, it is rarely used in most CNN models except for

mathematical convenience in matrix operations and set to 1, see Fig. 4.23.

Nonlinearity is believed to help solve problems of data saturation, perhaps caused by numeric

overflow perhaps due to poor lighting or very strong lighting. For example, if the correlation output is

255 in range 0–255, a well-designed nonlinearity function will redistribute the limit value 255 some-

where within the range, say to 180, to overcome saturation and avoid the limit. The nonlinear

distribution produced by the activation function is affected by any numeric conditioning functions

used on the input data, such as normalization or whitening, also referred to as local response

normalization or LRN. Some researchers report that local response normalization does not work

well enough to justify the increased compute time.

LeCun2 has stated that a fundamental goal of the activation function is to break apart the data and

project to other spaces in a nonlinear fashion, since each space may provide a better way to represent

and match features. Scaling and image pyramids do not meet the break and project criteria. A bias

factor is used for the nonlinear projection, either by scaling or in an additive manner. The bias can also

be used as a mask to influence which features are important.

2 Private presentation to Intel during CVPR 2013.

Receptive Field Compression via Input Striding or Output Pooling 431

Feature Weights and Initialization

The feature weight matrices are the features, typically 2D matrices or kernels for computer vision

applications. Each layer of the network contains a set of feature weights, perhaps a different number of

features for each layer. Typically, floating point values are used for the feature weights, and the size of

the features ranges from 3 × 3 up to perhaps 29 × 29 or larger, as we point out in the surveys of real

CNNs in this chapter.

The method of feature weight initialization determines the final outcome of the feature learning. For

example, starting from biased feature weights will lead to biased feature learning. Random weight

initialization has been used in many systems. The feature weight initializations are critical, since the

initial values lead in the direction the weight tuning will follow. Transfer learning is a method to use

pretrained features as starting points. Layer-wise pretraining is another method, starting at the bottom

layer and working upward, training the features at each layer until they seem to converge. For more

information, see the discussion on Feature Initialization in Chap. 9.

Local Receptive Field

As shown in Fig. 10.26, each convolutional neuron is fed by a local receptive field from the input

image or feature map from a small window The concept of a local receptive field is influenced by work

in neurobiology. Local competition among the local regions processed by neurons at each layer is

observed in neurobiology [591, 592], and there is speculation that the neural firing activation function

includes a nonlinearity similar to a local histogram equalization among spatially adjacent pixels, which

is often implemented in artificial neural models to mimic competition. In addition, competition is

mimicked by local receptive field overlap at the input side, or pooling at the output side.

The input is modeled as a receptive field of view, foveal region, or attention field. This attention

field moves across the image as directed; for example, scanning across the image or directed to stare at

a location, or perhaps using saccadic movements to dither for greater resolution. Convnets implement

the neurological concept of local receptive fields, using n × m sliding windows across the 2D image to

mimic the local receptive fields in the human visual system. Convolutional windows may overlap

adjacent windows according to a stride factor of 1 or more, although convnets may use nonoverlapping

tiled windows.

Note that the local receptive fields are typically processed and stored as independent, spatially

disconnected, and unordered, with no association with other windows or features. The Convnets

simply learn and record the features, and the classifier discriminates based on the strength, presence

and absence of features. Rosenfeld [561] provides some early work on preserving spatial relationships

between features used in scene labeling applications.

Receptive Field Compression via Input Striding or Output Pooling

Subsampling or compression is achieved equivalently at each neuron by either (1) striding the input

window, or (2) pooling windows in the output. To gain some invariance to local feature deformations,

Convnets may use strided input windows to reduce input resolution, or pooled output windows to

reduce output resolution. Strided input windows are run against the filters to effectively downsample,

or reduce the resolution up front, for example sliding the filter window across the image at a stride of

2 pixels. The pooled output window consists of grouping the filter results in small local regions such as

2 × 2 regions, and choosing the max or average value in the local region, and using this pooled value as

the filter result for the pooled region, effectively downsampling or reducing the resolution at the output.

However, Schmidhuber [492] notes that the Cresceptron [552] added blurring layers to add a measure

of translational invariance, yielding similar results to pooling.

432 10 Feature Learning and Deep Learning Architecture Survey

Trainable Bias

Each feature may have a trainable bias, which is applied to the results of the convolution operation,

implemented as a scale factor or additive bias, before the nonlinearity and subsequent processing. Bias

factors are biologically inspired, although nobody really knows how they operate, or how many bias

factors biological neurons may have.

Memory for Current Neuron State

For purposes of backpropagation and learning, each convolutional layer maintains several state

variables in local memory, such as the current output and previous output of the neuron after the

activation function, and the derivative of the neural state (current output - previous output). See the

next section on backpropagation.

Backpropagation, Feature Learning, Feature Tuning

The feature learning in a CNN takes place during backpropagation, where features are tuned by

distributing the classification errors back through the network, layer by layer, to adjust the feature

weights to minimize the errors.

We provide only a brief introduction to backpropagation fundamentals here, since this is an area of

active research, suitable to an entire book all by itself. Likely several months time will be required to

master the concepts and gain practical experience.

For an introduction to backpropagation and a survey of methods, see Hagan [601], and other good

discussions are found in Werbos [521]. See Rojas [714] for a readable step-by-step explanation. For a

history of backpropagation with details and references on key innovations, see Schmidhuber

[492]. Some of the earliest work to establish a backpropagation algorithm using gradient descent

was developed in 1986 by Plaut et al. [781], which is still the basis for many methods today. Perhaps

the best place to start to learn how backpropagation really works is to use open-source code packages

and DNN software libraries such as Caffe, some of which are listed in the Appendix C resources.

Backpropagation is multidirectional and follows many separate gradient descent paths back down

the network through all contributing feature weights. Gradients are found using (1) numeric methods

such as Newton’s iterative method which are simpler to implement, provide close approximations, but

slower convergence, and (2) closed-form analytic methods which can be more accurate, faster to

compute, but usually harder to parameterize. In practice, both numerical and analytic methods can be

used together as parallel baselines to cross-check each other.

Some fundamental problems for a backpropagation algorithm to solve include:

• Adjusting the backpropagation learning parameters.

• Setting convergence criteria and stopping criteria.

• Choosing the error minimization algorithm.

Backpropagation, Feature Learning, Feature Tuning 433

• Avoiding over fitting.

• Training time reductions.

• Folding error term corrections back into the weights.

The basic order of events for backpropagation includes the following:

1. Forward pass through the network.

(a) Compute responses f() at each neuron for each feature to feed-forward.

(b) Store response derivatives f′() at each neuron for each feature for backprop.

(c) Compute classification scores and errors.

2. Backward pass through the network.

(a) Distribute errors backwards to each contributing neuron.

(b) Adjust weights using errors and stored response derivatives.

(c) Compute residuals for current layer, distribute backwards, repeat.

3. Continue until stopping criteria reached (threshold, iterations, elapsed time).

Ideally, convex data are desired with well-defined local minima for use in gradient descent and other

backpropagation methods, so input data conditioning can be used to reduce noise, reduce outliers, and

hopefully eliminate spurious basins of attraction. Backpropagation methods using gradient descent

rely on the neural transfer function to provide a nonlinearity to their output response to ensure that the

value is differentiable for backpropagation. In addition, the nonlinearity may result in faster conver-

gence during backpropagation training to move the gradient more quickly out of flat spots toward the

local minima.

Several backpropagation approaches are used (see Schmidhuber [492, 524]):

• Gradient descent variations—uses the chain rule from Calculus.

• Conjugate Gradient—approximates the gradients for speed improvement.

• Levenberg–Marquardt—a damped least-squares method for pattern matching.

• Cascade Correlation—adds unique features instead of training old ones.

• Rprop Algorithm—optimized method using partial derivative errors.

• LSTM—optimization to gate the introduction of gradients over time.

• Quickprop Algorithm—iterative loss function following Newton’s method.

• SuperSAB Algorithm—adaptive backpropagation for faster convergence.

Next, we will conceptually describe backpropagation using gradient descent to develop some

intuition; however, see the references given above for actual algorithms since there is no need here

to duplicate the algorithms found in the references. The concepts discussed below do not follow a

specific backpropagation algorithm and are for purposes of illustration only.

As shown in Figs. 10.22 and 10.23 example, we have four classes to classify: Face, Cat, Plane, and

Bird. The class scores are a weighted sum of the trained features * the input. In our example, a Face

image candidate is presented to a hypothetical CNN, and the resulting Face score is 0.6 which is

smaller than the Cat score of 0.8, so there is a classification error. For each image candidate x, the

actual output score o for each class is measured against each desired target class score t. For example,

we expect a match to be close to 1.0, and a miss to be close to 0. The total error E is the sum of the

difference between the actual score and desired score for all classes. For example, SSD may be used to

sum the total error E:

434 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.22 An over-

simplified example

illustrating the final

classification error and

weight tuning. Face feature

score 0.6 is too low,

compared to the winning

Cat score 0.8 (classification

error). Adjust Face feature

weights up, but adjust Cat

and other feature

weights down

Bird

.2

Plane

.3

Cat

.8

Face

.6

Adjust

weights

down

Adjust

weights

up

Back propagate errors & adjust weights

Classification Scores

Cat

.8

Face

.6

+.08

+.04

-.2

-.3

-.8

+.4

…
Vanishing
Gradients

…

Fig. 10.23 This figure illustrates backpropagation of gradients

E=
1

2
i

oi - ti½]2

The total network error term E is broken apart and distributed proportionally to all the contributing

feature weights in a process called backpropagation. Each gradient portion is passed backwards

through the network through each contributing neuron as a signed gradient to allow for the weights

to be adjusted higher or lower. For example, from Fig. 10.23 we can visualize the class gradient as a

signed value for each feature class as follows:

Backpropagation, Feature Learning, Feature Tuning 435

∇Face / þ 1:0- :6ð Þ / þ
δE

δFace

∇Cat / - 0þ :8ð Þ / -
δE

δ Cat

During backpropagation, the class error gradients are fed backwards to their contributing neural

inputs, and then the class error gradient is scaled in proportion to the error contribution of each neuron.

Here are the key points to follow the backward pass:

1. Determine the derivative change at each neuron output (forward pass).

2. Determine the error contribution at each neuron output (backward pass).

3. Proportionally scale and distribute the error to contributing neurons (backward pass).

4. Adjust the weights for this neuron (backward pass).

The network output N is the functional composition of all n neural responses, composed of a set of

feature weights against which candidate images are classified. To find the source of the classification

errors, a functional decomposition of the entire network N is made using the chain rule from Calculus

to find the derivative function contributions N′ for each neuron output with respect to each input x:

N 0
1...n xð Þ= ∏

n

k = 0

N 0
k N kþ1...nð Þ x ð Þ

The weight adjustments are made proportional to the derivative of each neuron response N′. In other

words, whatever changes were made to the weights during the last forward pass through the network

have contributed to the current error term E, so each neuron’s derivative response N′ is used as the

baseline increment for weight adjustments. As shown in Fig. 10.24, during the forward pass, partial

derivatives at each neuron are stored to be used during backpropagation. The convolutional neural

response N is the input * weight dot product followed by the activation function.

Fig. 10.24 The partial derivatives for each neural input sn are computed and stored during the forward pass, and the

neuron output N and its derivative N′ are stored as well for use in backpropagation

436 10 Feature Learning and Deep Learning Architecture Survey

Figure 10.24 illustrates how the backpropagated gradient E is fed into neuron N and proportionally

scaled into EZ, and then the proportional gradient contribution for the neuron N inputs is computed to

backpropagate to the contributing neurons N1, and NZ, and the backpropagated gradient is computed as

E1, and EZ. One key to understanding gradient backpropagation is visualizing the proportional scaling

of the gradient as it is backpropagated as an incoming value. We will work through a simple example

below to illustrate the concept and show how the weights are updated.

To begin with, on the forward pass the derivative N′ of each neuron response N is stored. We can

visualize N′ as (Nprevious - Ncurrent) which is the difference between the current response and the

previous response. Likewise, the partial derivatives κ1 and κ2 are the contributions to neural response

N taken as a partial derivative with respect to the neural inputs x1 and x2 and stored for use during

backpropagation.

N 0 / Ncurrent -Nprevious

κ1 ¼
δN

δx1

κ2 ¼
δN

δx2

We will show how s1 and s2 and N′ are used to scale the incoming gradient contribution and

compute the outgoing backpropagated gradient contributions next.

Intuitively, the stored derivatives N′ and κ1 and κ2 represent the change in network response from

the last round of weight changes to the neuron compared to the current response, providing the basis

for weight adjustment relative to the last weight change. Usually, the first hundred or so weight

adjustments are larger and hopefully result in faster convergence toward the local minima, and

subsequently smaller weight adjustments are made as the partial derivatives become smaller and

smaller, and convergence may be slower. The vanishing gradient problem occurs especially in deeper

networks as the gradient error becomes infinitesimally small.

To determine the gradient error contribution EN of the neuron relative to the response derivative N′,

the derivative of the backpropagated gradient error Ez is taken with respect to the neuron’s response

derivative N′:

EN =
δ Ez

δN

Note that the feed-forward step computes the response of each weight w with each input x as wx, and

since w is the derivative of wx then the weight w is a derivative of the input function, and is therefore

used for both the forward and backward directions to proportionally adjust both the input x and the

backpropagated gradient error term EN.

Backpropagation, Feature Learning, Feature Tuning 437

The error contribution for the neuron EN is combined with each weight to scale the weights to

compensate for the neuron N gradient error EN:

Δw1 ¼
δEN

δw1

Δw2 ¼
δEN

δw2

The stored input partials s1 and s2 are combined with the gradient contribution of the current neuron

N′ to propagate backwards to the contributing neuron for each input x1 and x2 to produce gradient error

terms E1 and E2 feed into the input neurons N1 and N2:

N1 ←E1 ¼
δN 0

δs1

N2 ←E2 ¼
δN 0

δs2

Conceptually, a simple method for adjusting each weight is to change each weight proportionally

with respect to the accumulated error, in other words using the partial derivative of E with respect to

each weight:

Δwi = - β
δEN

δwi
for i= 1, . . . , n

where β is a learning constant to scale the weight update to limit oscillations.

However, there are many methods used in practice to proportionally distribute and combine the

error term with each weight. Typically, a weight tuning function is defined for weight adjustments,

incorporating various learning parameters. Typically, the gradient value is scaled smaller using a

learning rate parameter β to prevent too much oscillation due to noise and numerical artifacts. Also, a

momentum function can be devised to control the weight adjustment using a history buffer of recent

error activity, acting as a 1D convolution function across the history buffer to smooth out the trajectory

of the error curve to reduce noise, overshoot, and undershoot.

Note that in a typical CNN, the feature weight contributions are intertwined, since a single low-level

feature weight may contribute to several higher-level features. This makes backpropagation very

difficult to describe analytically, and typically very time-consuming to compute since the weight

adjustments may alternate over the course of training between better and worse for various classes and

training examples. Backpropagation is analogous to a tedious averaging procedure resulting in

features that are tuned generically over all training samples but not specifically for any.

438 10 Feature Learning and Deep Learning Architecture Survey

If the weights are immediately adjusted for each forward pass, the gradient descent may not follow a

direct path to the local gradient maxima and may oscillate significantly and prevent convergence, or in

the best case the oscillations may be beneficial to help avoid shallow local minima. If the weights are

updated in batches of training images, there is added storage needed in the CNN to save all the

intermediate values. Besides the uncertainty regarding the weight adjustments regarding oscillations

and false local minima, the error term shrinks in size and vanishes as it is propagated to each lower

layer. Hochrieter et al. [652] are credited with identifying and quantifying vanishing gradient

problems. When the gradients are too small, further training is useless. See “Neural Networks Tricks

of the Trade” [588] and especially the chapter on Stochastic Gradient Descent Tricks.

Backpropagation can take days and weeks even on the fastest computers. In fact, backpropagation

does not work at all if the learning parameters are not set up correctly, and the difficulties of training

with backpropagation, especially for deep networks, are well known in the machine learning commu-

nity. LaRochelle [626] names convergence at local minima and basins of attraction in the feature

space as two major challenges. It is well known that gradient descent can get stuck in certain local

minima before reaching the lowest minima, and that random weight initialization contributes to this

phenomenon. In fact, each layer has a different set of local minima, so reaching all the lowest minima

becomes cumulatively more difficult with deeper networks. In fact, weight initialization values usually

determine where the basins of attraction may be located.

Zeiler et al. [576, 577] developed methods for visualizing the convolutional feature weights to help

with devising better backpropagation methods, since actually viewing the weight matrices as images

can lead to better feature tuning, see Fig. 9.2. Zeiler found that if the visualized features look about the

same or indistinct, perhaps the learning parameters are wrong, and if the visualized features look

different and distinct, then perhaps the learning parameters are better.

Backpropagation learning is not inspired by neurobiology, and in fact the dendrites leaving neurons

are one-way firing mechanisms generally feeding forward into the visual pathway. Neurobiology does

not validate the neural model used by backpropagation learning. In fact, humans learn far faster than

backpropagation. It seems more likely that the view-based models of the visual pathway are more

realistic, adding new views of objects with corresponding the hierarchy of features as needed to build

up better models, see Tarr [740] and the discussion of HMAX later in this chapter, and also Appendix F

on Visual Genomes [476]. There are no neurobiological mechanisms or connection paths to support

backpropagation learning. Note that actual physical neurons use a binary step function for activation

and fire all-or-nothing across dendrite connections, while the CNN and related ANN models fire

through an activation function yielding a firing range or strength.

Alternatives to Backpropagation

Note that backpropagation is a blurry operation, since it is not entirely clear if all the feature weights

should be adjusted indiscriminately in the direction of the gradient, as backpropagation and gradient

descent methods typical operate, ignoring the more complex and difficult questions regarding individ-

ual feature weight balance and weight independence. Individual weights in each feature could be

treated more independently and adjusted up, down, or proportionally. This is a complex problem. Note

that we survey other learning methods later, including the NAP architecture which incorporates spatial

relationships in the learning process, and adjusts each weight separately using Hebbian learning

principles. Also, the dasNet architecture uses novel attentional learning and boosting methods to

tune weak and misclassified features, one at a time. See Schmidhuber [492] for more on learning

methods.

3 9

5 25 5

Compute Cost of Convolutional Features and Layers 439

Note that early CNNs did not use backpropagation, see the description of the Perceptron in the

previous section.

Features per Layer

A sufficient number of features at each layer are required to create a robust hierarchical feature model.

Too many features and too many parameters are counter-productive, too few features may lead to over

fitting and difficulty in training. The feature counts per layer are ad hoc numbers. In some architectures,

the CNN feature count increases with higher levels of the network. Later, we survey specific CNN

examples to explore feature count as a component of the overall architecture. In Table 10.3, w e

summarize the number of layers and feature sizes are variety of CNN s.

Compute Cost of Convolutional Features and Layers

Each feature carries a compute cost, and each layer carries a compute cost. For features, the larger the

kernel size, the larger the compute cost. The current state of the art training methods can take days and

weeks given the propensity for deeper networks.

Usually, the minimum feature considered for convolutional layers is 3 × 3, since this allows for a

center pixel and a 1-pixel neighborhood to be represented, including nine orientations of rotation (0°,

45°, 90°, 135°, 180°, 225°, 270°, 315°). In fact, one of the CNNs in this survey, VGG [590],

exclusively uses stacked 3 × 3 convolutions, see Fig. 10.33. However, many CNN architectures in

the survey below use a range of different filter sizes together in the same network, ranging from

perhaps 1 × 1 up to 11 × 11. See Table 10.4 and Fig. 10.25 for a summary of the hidden compute costs

of an unoptimized convolution, assuming all data loaded in registers for single clock-cycle instruction

operation, prefetched with no cache misses. Convolutions can be heavily optimized using SIMD

instructions, SIMT, memory tiling and pipelining, and dedicated silicon. See Chap. 8 for details on

optimization strategies. Convolutions are also optimized using separable kernels, discussed later.

Table 10.4 This table itemizing convolution compute costs

Convolve size

n × n

Operations per convolve

(Rp + Rk + I + W)

Rp

Input reads

Rk

Weight reads

M

Multiply/add instructions

Rc

Convolve

Result write

3 × 28 9 9 1

5 × 76 2 25 1

7 × 7 148 49 49 49 1

9 × 9 244 81 81 81 1

11 × 11 364 121 121 121 1

13 × 13 508 169 169 169 1

15 × 15 675 225 225 225 1

440 10 Feature Learning and Deep Learning Architecture Survey

0

100

200

300

400

500

600

700

800

3×3 5×5 7×7 9×9 11×11 13×13 15×15

MOPS/Convolve

Fig. 10.25 This figure shows the compute cost of various sizes of convolution kernels using the data from Table 10.4

across a 1024 × 1024 image, with a simplistic breakdown of unoptimized microoperations per convolution kernel size,

including memory read/write and machine instructions

See also the section on Parameters and Hyperparameters below for more information on compute

cost. For more discussion on convolutional acceleration, see the discussion on Boxlets and Convolu-

tion Acceleration in Chap. 8.

Filter Shape and Size

Convolutional networks typically use square kernel shapes for the filters, such as 3 × 3 or 5 × 5.

However, square features are the least invariant shape with respect to rotational invariance, see

Chap. 4. To compensate for the rotational invariance of the single rectangular features, the training

data can be augmented to include rotated copies of the data, and additional features can be trained, so in

the end many more features are generated, along with the associated compute and memory cost.

As shown in Fig. 10.26, the filter shape also contributes to image boundary effects. To mitigate the

boundary effects of square filters, the input image can be made larger by padding one or more pixels

around the edges to preserve the true image boundary, which would otherwise be clipped off due to the

convolution. Padding can be implemented using a replicated copy of the boundary pixels, the mean

value of the entire image, and other methods.

Stacked Convolutions 441

6×6 image input,

4×4 image output (gray area)

after 3×3 filter applied.

1-pixels border is clipped off,

because no edge padding was

used.

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

6×6 image input,

6×6 output (gray area)

after 3×3 filters applied,

enabled by edge-padding 1 pixel

Sliding

Window

FilterSliding

Window

Filter

Fig. 10.26 This figure illustrates image padding to preserve the input image size

In practice, the filter size at each layer is empirically determined to find the optimal size and set size

granularity for a given data set. According to LeCun [288], for the MINST data set composed of rather

small 28 × 28 pixel images, each containing handwritten characters and numbers, a 5 × 5 convolution

kernel for the first layer proved to be beneficial. For other datasets using larger image sizes such as

256 × 256 and up, larger filter shapes have been used at the first layer and higher layers, such as 11 × 11

or 15 × 15 for the first layer. However, stacked convolutions using a pipeline of smaller kernels such as

size 3 × 3 as shown in the VGG architecture surveyed later, can be a good alternative to large kernels,

with the added benefit of reducing compute cost. Stacked kernels are discussed next.

Stacked Convolutions

It is possible to stack several smaller convolutions together to approximate a larger convolutional

kernel. As shown in Fig. 10.27, a stack of three 3 × 3 kernels can be used to approximate a 7 × 7 kernel,

since the first convolution reduces the 7 × 7 image to 5 × 5, and the second convolution reduces the

image to 3 × 3, and the final convolution produces 1 pixel output. Simonyan and Zisserman [590]

demonstrate a very deep convolutional network called VGG, using up to 19 layers of exclusively 3 × 3

convolutional features, noting that stacked 3 × 3 convolutions are a viable alternative to larger kernels,

and offer equivalent accuracy. For example, by looking at the total receptive field, it is apparent that

two 3 × 3 kernels stacked together are equivalent to a 5 × 5 kernel. The key advantage of smaller

kernels is computational efficiency.

442 10 Feature Learning and Deep Learning Architecture Survey

7x7 -> 5x5

3x3

convolve

3x3

convolve

3x3

convolve

5x5 -> 3x3

3x3 -> 1

Fig. 10.27 This figure illustrates stack convolutional equivalence, showing three stacked 3 × 3 convolutions applied to

the 7 × 7 input image yield a 5 × 5, followed by a 3 × 3 convolution to the 5 × 5 image yields a 3 × 3 image, followed by a

3 × 3 convolution on the 3 × 3 yielding a single pixel output, yielding the same effective receptive field coverage as a

single 7 × 7 kernel

Several practitioners have attempted to reduce the computational burden of larger convolutional

kernels by using a striding factor to skip pixels during input kernel assembly. For example,

Khrishevsky et al. [289] developed an architecture called AlexNet, as shown in Fig. 10.30, using

several kernel sizes, including 11 × 11, 5 × 5, and 3 × 3, and to mitigate the performance for the 11 × 11

kernels, a stride of 2 is used. Stacked convolutions have limited usefulness, since a larger kernel such

as 11 × 11 may be the right choice depending upon the input data and the application, since larger

kernels capture more local region information to describe higher-level object features.

Stacking convolutional kernels are also claimed [590] to add some regularization by adding

rectification or nonlinearity after each three kernels, forcing a decomposition through the 3 × 3 filters

in the chain, claimed to add increased discrimination to the final result. And of course, the number of

parameters are greatly reduced for smaller convolutions, perhaps increasing performance depending on

the overall architecture. For example, assuming the inputs and outputs to a stack of convolutions are

the same C, a three-channel RGB input to the stack of 3 × 3 convolutions uses 3(32 C2) = 27C2 weight

parameters (excluding the bias parameters) to cover a 7 × 7 region, while a single 7 × 7 convolution

uses (72 C2) = 49C2 weight parameters (excluding the bias parameters).

In summary, stacked smaller convolutions rather than single larger kernels are a viable alternative in

some applications to reduce the number of weight parameters.

Separable and Fused Convolutions

Another approach for reducing convolution overhead is to use separable filters. Many 2D filters, such

as convolutions, are separable filters, which can be broken down into row and column operations. For

example, the Discreet Fourier Transform is a separable filter and can be broken down into overlapping

1D FFTs across a 2D or 3D field. Convolutions can also be implemented as separable filters. This

means that rows and columns can be processed independently as 1D vectors, and vectors can be

processed using fast SIMD instructions to accelerate processing.

For example, a 2D Gaussian blur kernel can be separated into two 1D kernels as follows:

Convolution vs. Correlation 443

1

4

1

2

1

*
1

4
1 2 1½]=

1

16

1 2 1

2 4 2

1 2 1

Another approach is to fuse several convolutional filters together, collapsing into a single filter.

Since convolution is associative and implemented as multiplication in the frequency domain and

multiplication in the spatial (pixel) domain, a set of convolutional filters can be convolved together, or

preconvolved, yielding a single filter representing a set of filters. For example, Mamalet et al. [597]

developed a method to apply fused convolutions to combine the filter, activation function, and pooling

function and approximate the same results within <1% of the same accuracy. Although the fusion is

not perfectly equivalent to the separate steps, the performance is increased by 2–6×, depending on the

configuration, and whether the network is in the training phase or the operational matching stage. In

addition, Mamalet developed backpropagation methods for fused and separable filters.

Convolution vs. Correlation

The terms convolution and correlation are often used interchangeably, although the actual mathemat-

ics and intended use are often different. We will discuss some of the possible points of confusion here.

The term convolution is used very imprecisely in CNN discussions, and what is meant is the dot

product of the input vector I and the feature weight vector W:

I .W =

n

i= 0

I iW i = I0W0 þ I1W2 þ ⋯þ InWn

In fact, mathematically convolution and correlation are closely related, since convolution is

equivalent to correlation by simply rotating the convolution template by 180°, or in other words

reflecting the rows and columns of the matrix. A variant of correlation, normalized correlation, is

computed to allow for invariance to scale using a scale factor x :

i I ið ÞW xþ ið Þð Þ

iI xþ ið Þ 2
i W ið Þ2

In fact, the term convolutional neural network is somewhat confusing, since both correlation and

convolution are implied. And coming from the image processing perspective, some confusion arises also,

sine the term convolutional filter is an image processing operator, and the term correlation is either a

statistical metric or a template matching feature detector. However, both methods are mathematically

about the same. Convolution is typically used to change the image, and correlation is used as a hit-or-

miss pattern matching operation, which can alternatively be implemented with morphology operations,

see Chap. 2. Typically, correlation kernels represent patterns, shapes, and structure used for template

matching. Correlation matching occurs pixel-by-pixel within the image region, and correlation strength is

measured using a similarity metric (several methods are used such as SSD, see Chap. 4 for a discussion

on distance metrics) to find the difference between corresponding pixels in the template, and sum a final

score. See Ref. [615] for a comparison between correlation and convolution.

444 10 Feature Learning and Deep Learning Architecture Survey

In image filtering operations, convolution kernels most often are designed using a scaling factor to

condition the results as needed. The convolutional scaling factor is analogous to the bias factor

parameter in CNNs, which is tuned along with each feature during CNN training. So, each

convolutional feature consists of a kernel with individual weight parameters and a bias factor parame-

ter, for example a 3 × 3 feature kernel consists of 9 + 1 tunable parameters:

bias

w1 w2 w3

w4 w5 w6

w7 w8 w9

or alternatively bias þ

w1 w2 w3

w4 w5 w6

w7 w8 w9

The bias factor may also be implemented as an additive scaling factor, instead of a multiplicative

scaling factor, with the convolution kernel.

Convnets use convolutional filters for two purposes: as feature weight matrices analogous to

correlation templates, and as filters to change the input image to produce output for the next

convolutional layer. In CNN parlance, filters produce feature maps containing latent features.

For symmetric features built around a central origin, such as Gaussian blur kernels, convolution and

correlation are essentially the same. However, the learned features in Convnets are not constrained to

be symmetric, and rarely are.

For example, a nonsymmetric edge detector as used in a convolution:

- 1 0 1

- 1 0 1

- 1 0 1

is equivalent to correlation using the same kernel rotated 180°:

1 0 - 1

1 0 - 1

1 0 - 1

For more information on convolution and correlation, see Chap. 2. For more information on

correlation used as a template matching feature detector, see Chap. 6.

Pooling, Subsampling

Pooling is another name for subsampling in CNN parlance (i.e., image rescaling in image processing

parlance), and several methods are discussed in Chap. 9. Pooling is typically used as the last step, or

one of the last steps, in each convolutional layer. The Neocognitron [511, 612] was the first CNN to use

pooling in 1980. The stated goal for pooling is typically to add some translational invariance, or to

simply subsample the image smaller to reduce compute and parameters. However, the subsampling

methods used in ANNs are different than standard computer graphics sampling methods such as linear

interpolation and other antialiasing methods. We discuss several variants here.

Parameters and Hyperparameters 445

For CNNs, simple approaches such as taking the average value of the pool have been used.

However, the most popular method seems to be the RANK filter method (see Chap. 2) to selecting

the MAX value of the local region. Choosing the MAX value seems intuitive and obvious, since the

MAX activation in a local region is analogous to the strongest feature, while using the average value

implies uncertainty.

Is the pooling layer needed at all? Dosovitskiy et al. [616] argue that replacing the max pooling

layer by a convolutional layer with a stride of at least 2 is equivalent in terms of accuracy. Graham

proposes to create variable sized max pooling regions [617]. In practice, many of the CNNs we survey

do not always use a pooling layer. However, pooling operations to subsample or upsample the images

are often required to size the outputs to match the inputs for a fully connected classification layer.

Convolutional neural layers also subsample the image, and larger kernels, such as 11 × 11, may be

used to produce more subsampling than smaller kernels. In addition, a stride factor for the sliding

window larger than 1 also subsamples the image. So, the combined subsampling effect of the

convolution kernel, stride, and the pooling region size is an important consideration for understanding

the level of detail represented by the features (Fig. 10.28).

Pixel 0 Pixel 1

Pixel 3Pixel 2

2 2 pooled region, MAX value chosen,

similar to a RANK filter (see Chapter 2)

MAX

Fig. 10.28 This figure illustrates MAX pooling, where a RANK filter is run over a local region and the MAX value is

selected to assemble the final output image

Parameters and Hyperparameters

Several practitioners separately summarize (1) the architecture parameters, and (2) the learning

hyperparameters for a CNN. Architecture parameters are useful to summarize the moving parts in

the CNN, which corresponds to training difficulty and overall performance. CNN parameter counts

typically ranging from millions to billions of parameters for the entire network. The hyperparameters

used for learning, such as momentum and learning rate, are discussed in the Backpropagation

discussion in this chapter.

CNNs contain a dizzying number of parameters comparable in magnitude to the neurons in the

human brain, which contains billions of neurons and connections, see Table 9.1. Fortunately, CNNs

have a much more regular architecture, which simplifies the architecture. We encourage the reader to

develop a mental visualization of CNN architecture parameters in order to better understanding the

fundamentals.

446 10 Feature Learning and Deep Learning Architecture Survey

Architecture Parameters

Parameters are the program code for the CNN. The architecture is put in place to program itself via

tuning the learning parameters and the training data, resulting in feature learning. The parameters are

analogous to the neural DNA code in the brain. When analyzing architectural complexity, we may be

interested in analyzing parameters to compare design alternatives. For example, we may want to

explore the cost of using larger images as input, more image channels, larger features, or deeper

networks. Since each parameter implies corresponding memory and compute operations, parameter

analysis is useful for estimating training time and run-time performance.

Key architecture parameters types include:

• General Parameters: typically computed, for a convolutional layer, as the total of

(input_feature_maps × output_feature_maps * weights_per_kernel) + bias factors for each kernel

at current layer. The parameters are the neural DNA code.

• Neurons: the number of artificial neurons simulated in the network. The actual number of neurons

may not be simultaneously in operation, since artificial neurons are typically shared serially to

process for one feature at a time, rather than running simultaneously in parallel for all features.

However, parallel implementations are used as well to increase performance at the cost of

system size.

• Connections: the total number of connections between artificial neurons. This is a simple measure

of artificial dendrites and axons simulated in the network.

Here we provide a few methods to compute architecture parameters, which may be different than

the methods used by other practitioners to compute parameters, operations, and connection complex-

ity, where:

Subscripts denote:

• t = totals

• l = layer

• l - 1 = previous layer

• n = single neuron

Parameters:

• nt = total neurons for network

• ct = total connections for network

• pt = total parameters for network

• sl = total parameters in a single convolutional layer

• il = inputs to convolutional layer, from prior layer

– either n × n sliding windows from each feature map for kernel filtering

– or fully connected weights from each feature map for 1D convolve

• dl = depth, number of channels for this feature map

• fl = number of features for this layer

• ml = number of feature maps output for this layer (ml = fl)

• fl - 1 = number of features for previous layer

• ml - 1 = number of feature maps output from previous layer (ml - 1 = fl - 1)

• kl = number of feature weights in each n × n kernel, for example 3 × 3 = 9

• bl = bias factor, 1 per feature (= total features per layer)

• xn = operations per neuron, such as normalization, max pooling, etc.

Architecture Parameters 447

(1) Neurons: For 2D convolutional filtering layers, each neuron receives a single n × n kernel input

window (kernel-connected), counted as 1 input, from each feature map in the prior layer. For each 1D

convolutional 1D classifier layer, each neuron receives fully connected inputs from each weight in each

feature from the prior layer.

total neurons for networkð Þ nt =

total layers

l= 1

il- 1ml- 1f l

(2) Parameters: Simple parameter total for convolutional neurons, including the weights and biases.

networkð Þ pt =

total layers

t = 1

ml- 1klml þ bl

(3) Operations: The activation function and convolution are implied as default parts of the neuron,

and are not counted as separate operations here. Instead, operations are extra functions in the neural

pipeline, including preprocessing (dropout, numeric conditioning, . . .), and postprocessing (response

normalization, pooling, . . .). We consider operations here as a serial part of the artificial neuron

pipeline (part of the hidden unit), rather than a separate layer. Operations as a metric are a simple

measure of neuron complexity, though some operations are more complex than others. Operation

functions can independently be assigned an error term during backpropagation, which some

practitioners refer to as loss weights, to allow each operation function to be tuned to reduce their

error contribution, for example by adjusting the parameters of the operation.

networkð Þ xt =

total layers

l= 1

xnnlpt

(4) Connections: We count connections as inputs from each feature map at the previous layer to

each weight in each filter at the current layer. An input may be either a kernel-connected window, or

fully connected weights as per the 1D convolve layers.

total connections for networkð Þ ct =

total layers

l= 1

il- 1ml- 1kl

Note that the first fully connected 1D classification layer may have more parameters than other

layers, since it is the first fully connected layer, taking input as each feature weight from the last

convolutional layer fully connected to each neuron in the classification layer (Table 10.5).

–

448 10 Feature Learning and Deep Learning Architecture Survey

Table 10.5 This table illustrating hypothetical network parameters

Convolutional layers Parameters Neurons Connections

Layer 0—INPUT

640 × 480 image

Monochrome, 1 chan.

Fully padded output

640 × 480 × 1*

*Fully padded

i.e., 642 × 472 for 7 × 7 kernels

P = 307,200

Layer 1—FILTER

256 bias factors

256 7 × 7 features

(op*1) mean-zero norm

(op*2) ReLu activation

Fully padded output

(1 * 7 × 7 * 256) + 256

P = 12,800

640 × 480 * 256

N = 78,643,200

640 × 480 * 256 * 7 × 7

c = 3,853,516,800

Layer 2—FILTER

512 bias factors

512 5 × 5 features

(op*1) ReLu activation

Fully padded output

(1)(256 * 5 × 5 * 512) + 512

P = 3,277,312

640 × 480 * 512

N = 15,7286,400

640 × 480 * 512 * 5 × 5

c = 3,932,160,000

Layer 3—FILTER

1024 bias factors

1024 3 × 3 features

(op*1) ReLu activation

Fully padded output

(1)(512 * 3 × 3 * 1024) + 1024

P = 4,719,616

640 × 480 * 1024

N = 314,572,800

640 × 480 * 1024 * 3 × 3

c = 2,831,155,200

Layer 4—CLASSIFY

8192 1d vector weights

1024 * 3 × 3 * 8192

P = 75,497,472

1024 * 8192

N = 8,388,608

1024 * 8192 * 3 × 3

N = 75,497,472

Layer 5—CLASSIFY

4096 1d vector weights

8192 × 4096

P = 33,554,432

8192 × 4096

P = 33,554,432

8192 × 4096 * 1

P = 33,554,432

Layer 6—CLASSIFY

1024 1d vector weights

4096 × 1024

P = 4,194,304

4096 × 1024

P = 4,194,304

4096 × 1024 * 1

P = 4,194,304

Layer 7—OUTPUT

Labeling

1024 Softmax –

TOTALS 121,563,136 596,639,745 10,730,385,408

Learning Hyperparameters

Learning Hyperparameters include a range of variables and constants used in the DNN training

process, such as initial feature weights, bias, momentum, learning rate, and several other parameters.

We do not delve deeply into learning parameters here, and instead refer the interested reader to better

references provided in the backpropagation section and elsewhere in this work. Hyperparameters are

known to be difficult to choose, understand, and control, see for example LeCun et al. [588] “Neural

Networks, Tricks of the Trade.”

From statistical analysis, the term hyperparameter is determined from a prior, and therefore must be

initialized intelligently, and optimized from there. However, many DNN practitioners argue that there

are no known methods to initialize DNN training hyperparameters, and advocate empiricism [579]. In

this respect, we may say that DNN practitioners often use a best guess, rather than statistically

generated hyperparameters. However, for feature weight initialization, transfer learning is effective,

and follows the statistical analysis pattern of using priors, since existing trained feature weights are

reused to initialize weights, usually at the lower levels of the CNN. Besides transfer learning, there

seems to be little formal guidance to follow to initialize and tune hyperparameters. See the discussions

in Chap. 9, and LeCun [619].

Next, we will move past the convnet fundamentals discussed above, and begin a survey of several

illustrative examples of CNN architectures.

LeNet 449

LeNet

LeNet is the canonical CNN architecture developed by Yann LeCun [514, 515] in the late 1980s, and is

a good starting point for understanding CNNs. Probably Yann is most associated with the research,

development, and successful deployment of practical Convnets to solve real-world problems [288],

such as commercially deployed handwriting recognition systems for zip code recognition for postal

sorting, and handwriting recognition systems for bank check processing. Given that fundamental

Convnet research was completed in the mid-1980s, and sufficient compute power was available,

LeCun was able to synthesize and improve the Convnet architecture in the LeNet architecture

[514, 515] which has progressed up to and beyond the LeNet5 version, forming the basis for most

of the DNNs used in academic research and industry today.

Here we survey an early LeNet architecture [516], which was deployed by the US Postal Service for

mail sorting. The LeNet architecture was one of the first to successfully apply backpropagation to a

real-world problem [517].

The training data consisted of 9298 individually digitized handwritten numerals or digits, taken

from handwritten zip codes from actual mail, written in many sizes and styles. The training data also

contained a sampling of unrecognizable, ambiguous, and misclassified digits. For training data

preparation, each digitized numeral was rendered into a 16 × 16 pixel template using linear interpola-

tion to preserve the aspect ratio of each digit. Random, erroneous markings surrounding each digit

were manually removed via pixel editing.

Each 16 × 16 input image was processed as a gray-scale image, preprocessing using mean-zero

normalization in the range -1 . . . +1. The input images were fully padded around the edges using a

value of -1. So, including padding, the input features are treated as 24 × 24 pixel images to allow for

complete 5 × 5 input window sampling of each pixel in the 16 × 16 template by padding four pixels on

each side (16 + 4 + 4 = 24). Subsequent layers included padding for the input feature map images as

well. Weights were initialized with random values, which is a form of primitive edge detector.

One goal for LeNet was to reduce computational overhead, so careful attention was paid to reducing

parameters. Weight sharing was used to allow for one feature at a time to be searched for. The filter

weights and bias were shared for all neurons simultaneously in the same layer, so virtual neurons are

implemented to share weights instead exhaustively implementing all neurons with their own copy of

the weights—shared weights and virtual neurons are an innovation successfully demonstrated In

LeNet. While this seems natural, LeCun et al. were among the first to employ this technique in the

context of a regular convolutional network. Note that LeCun used the terminology feature map to

represent the result of convolving weights with the input, which is often confusing, since the result of

convolution is just another image and not a feature at all, since the weights are features. However, the

term latent features is used in CNN parlance to describe the features lurking in the feature maps,

waiting to be discovered at the next layer.

The architecture is illustrated in Fig. 10.29. There are three hidden layers (convolutional layers),

labeled H1, H2, and H3. Note that all images at each layer are fully padded. The input (bottom) is a

16 × 16 mean zero normalized gray-scale template. The input kernel window size is 5 × 5 strided at

each pixel. The layer H1 output feature map size is 8 × 8, a 2× reduction from the 16 × 16 input, due to

the 2-pixel stride resulting in an undersampled input image. The rationale for the reduction was to

provide some translational invariance. Likewise, the 2D input undersampling was used for layer H3

resulting in a reduction from 8 × 8 to 4 × 4 feature maps. No pooling layers were used in the first

version, but subsequent LeNet architectures added pooling and subsampling layers [288] equivalent to

undersampling the input at a stride of 2 or more.

450 10 Feature Learning and Deep Learning Architecture Survey

5×5 kernels

layer H1

12 × 64 = 768

hidden units

256 input units

layer H2

12 × 16 = 192

hidden units

layer H3

30 hidden units

10 output units

6000 fully connected links

300 fully connected links

Fig. 10.29 The basic LeNet architecture, after LeCun from 1986 [516], used for digit recognition

Today, some practitioners refer to a hidden layer as a complete convolutional layer, and a hidden

unit as a single convolutional neural processor in a hidden layer. However, note that LeCun used the

term hidden unit for a single pixel in a feature map, which is equivalently the output of a neural

processor. Each LeNet hidden unit is computed using convolution weights, whether they be kernels in

filter layers, or 1D vectors in fully connected layers. H1 contained 12 feature maps of size 8 × 8, for a

total of 12 × 8 × 8 = 768 hidden units. H2 contained 12 × 4 × 4 = 192 hidden units. H3 is a fully

connected layer with the largest hidden unit count at 30 × 192 = 5750 hidden units + 30 biases = 5790.

The input contained 16 × 16 pixels, or 256 hidden units. The output was a decimal classifier with ten

outputs, one per digit. In summary, layer H1 contained 12.5 × 5 features, H2 contained 12.5 × 5

features, and H3 contained a 1D vector with 30 weights, fully connected to the 192 weights from H3.

LeCun is also a pioneer in hardware-accelerated CNNs. For example, the initial LeNet was

implemented using a DSP for acceleration, which is a departure from most academic research which

is usually only concerned with exploring new concepts, and leaving the optimizations to applied

researchers and engineers. In addition, Farabet, LeCun, and others [621, 622] developed a hardware-

accelerated CNN using an FPGA and later an ASIC, which was the basis for a start-up company.

Name LeNet

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window stride = 2

Dropout, reconfiguration –

Pre-processing, numeric conditioning Mean zero input normalization

Feature set dimensions 5 × 5 × 12, 5 × 5 × 12, 30 × 192, 1 × 30

Feature initialization Random

Layer totals 2 filter, 1 classify

Features, filters Convolutional

Activation, transfer function Sigmoid

Post processing, numeric conditioning –

Pooling, subsampling Later versions used 2 × 2 × 2 ave. pooling

•

AlexNet, ZFNet 451

AlexNet, ZFNet

The LeNet architecture is the basis for several modern CNNs including the AlexNet CNN variation

developed by Krizhevsky et al. [289], which was the first CNN to realize the potential of Convnets on

large natural image data sets.3 AlexNet has likewise become the basis for subsequent CNNs used for

image recognition.4 In fact, Zeiler and Fergus [576, 577] improved the AlexNet architecture, referred

to as ZFNet, which was subsequently commercialized in a start-up called Clarifai. Part of the success of

ZFNet is due to Zeiler’s method to visualize learned features corresponding to the pixel regions they

match in the input image, referred to as deconvolutional networks, to develop intuition about how to

enhance the learning hyperparameters to improve weak features. In addition, ZFNet reduced the

number of hyperparameters, and expanded the convolutional filtering layer depth, improving the

accuracy by several percentage points.

The basic AlexNet architecture is shown in Fig. 10.30. Several major innovations were introduced

to provide optimizations for engineering efficiency (unusual for academic work), which we will

survey here:

Fig. 10.30 This figure shows the AlexNet CNN architecture, with two parallel paths for implementation on two GPUs.

Image used by permission, # Alex Krizhevsky from [289]

Optimized to run across two GPUs in parallel.

• Overfitting mitigation techniques.

• Training time algorithm optimizations.

As shown in Fig. 10.30, AlexNet contains five convolutional filtering layers, and three 1D

classification layers. Fewer layers were tried, but accuracy decreased. As discussed in Chap. 9,

Rectified Linear Units (ReLu) were used for the activation function, a departure from sigmoid-

shaped functions commonly used at the time. Training time is reduced using ReLu since it uses a

simpler, ramp style function. Also, ReLus can operate on unnormalized data without saturation,

eliminating the compute cost of normalization during preprocessing. The GPU parallelization was

designed to run half of the feature kernels on each GPU, with minimal communication between GPUs.

In fact, the memory limitations of the GPUs were one of the primary reasons that the parallelization

was followed.

3 Imagenet competition 2012, “Supervision”, http://image-net.org/challenges/LSVRC/2012/results.html.
4 A version of AlexNet is implemented in the Caffe open source package, and accelerated by NVIDIA, see http://caffe.

berkeleyvision.org.

http://image-net.org/challenges/LSVRC/2012/results.html
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org

452 10 Feature Learning and Deep Learning Architecture Survey

One interesting side effect of the dual-GPU partitioning in AlexNet is that each GPU focused on

learning an independent feature set. As shown in Fig. 10.31, one GPU generated the top features,

which are mostly gradient-style monochrome features, while the other GPU generated the bottom

features which are mostly color blob-style features. Figure 10.31 also serves to illustrate the point that

CNNs will generate different features based on the convergence of the gradient descent algorithm for

the given data, the method in which each weight is actually updated and tuned, and on the initial values

of the weights, all of which affect convergence. Gradient descent and backpropagation are difficult to

visualize, predict or control. The parallel GPU results for AlexNet are similar to cloned humans with

identical DNA: both individuals are formed by their conditions and experiences, leading to different

outcomes.

Fig. 10.31 This figure from Krizhevsky et al. [289] showing the partitioning of features learned on separate GPUs, (top)

gradients learned on GPU A, and (bottom) color blobs learned on GPU B. Note: same training data split between GPU A

and B. Image used by permission, # Alex Krizhevsky

AlexNet uses response normalization over a local region in the convolutional output feature map

using a fairly compute intensive function:

xt = aj x,y = kþ /

min N- 1, iþn
2ð Þ

j= max 0, i- n
2ð Þ

aj x,y

2

β

The local response normalization includes contributions from overlapping local regions in the

output feature map. Hyperparameters are determined from the training set, including k, a, α, and β. The

normalization objective was a brightness adjustment, similar to other methods like local histogram

equalization or a LUT ramp, see Chap. 2. Note that some recent practitioners do not use response

normalization and find no benefit to justify the compute cost [590]; however, Krizhevsky reported that

response normalization was advantageous to decrease the error rates.

AlexNet used a method of pooling via overlapped regions, rather than nonoverlapping regions used

in other CNNs of the day, and reported <1% accuracy improvements compared to nonoverlapped

pooling.

VGGNet and Variants MSRA-22, Baidu Deep Image, Deep Residual Learning 453

Memory and training time are the key bottlenecks that limit the architecture, so Krizhevsky’s

architecture can be adjusted to fit within the available memory and training time budget. The training

data set (ILSVRC) included over 1.2 million images with 256 × 256 RGB resolution, mean-

normalized. New training samples are introduced using mirrored and translated version of each

sample, to incorporate multiple views into the scoring. Also, the RGB channels for each image are

preprocessed using a PCA-based algorithm to select dominant components and add variance to the

intensity and color of the images, which reduces the error rate < 1%. During training, dropout is used

to randomly set the output of half of the neurons to zero on fully connected layers. During test time, the

output of each neuron is multiplied by 0.5 to approximate the geometric mean of the cumulative

dropout effects. Weights are initialized from a zero-mean Gaussian distribution, and biases are

initialized to 1.

In summary, the AlexNet architecture was the first to demonstrate the potential of CNNs for natural

image datasets, enabled by GPUs for compute acceleration and large labeled datasets.

Name AlexNet

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window stride = 4 1st layer, 1 otherwise

Dropout, reconfiguration Dropout 50% on fully-connected layers

Pre-processing, numeric

conditioning

Mean-zero normalization

Feature set dimensions 11 × 11 × 96 RGB, 3 × 3 × 256 RGB, 3 × 3 × 384 RGB, 3 × 3 × 384 RGB,

3 × 3 × 256 RGB, 1 × 4096 RGB, 1 × 4096 RGB

Feature initialization Gaussian distribution

Layer totals 5 filter, 2 classify

Features, filters Convolutional

Activation, transfer function ReLu

Post processing, numeric

conditioning

Local Brightness EQ

Pooling, subsampling Max pooling 2 × 2 × 2

VGGNet and Variants MSRA-22, Baidu Deep Image, Deep Residual Learning

The VGGnet architecture developed by Simonyan and Zisserman [590] has been highly influential,

spawning variants from Microsoft MSRA [603] and Baidu [631], so we briefly discuss VGGNet and

variants here, with a more detailed survey on each variant later in this section. At the time of this

writing, the VGGNet variants from MSRA and Baidu, along with Google Inception, are achieving

almost identical state-of-the-art results within a few tenths of a percentage point difference, which won

several Imagenet competitions. Based in part on VGGNet, the current leader in most Imagenet

competition categories as of 2015 is the Deep Residual Learning (DRL) method of He et al. [798],

discussed in more detail in the Deep Neural Network Futures section at the end of this chapter, which

supports very deep networks—over 1000 layers have been tried—the deepest DNNs to date

(Fig. 10.32).

454 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.32 This figure shows (left) the VGGNet-19 variant used by Baidu, (center) the Microsoft MSRAA 22-layer

VGGNet variant, compared with (right) the 33-layer Google InceptionNet V2 architecture. Together, these architectures

currently (2015) represent the state-of-the-art in accuracy. Image # Karen Simonyan, used by permission, see also [632]

Simonyan and Zisserman [590] developed the first versions of VGGNet using up to 19 layers of

3 × 3 convolutional kernels rather than an assortment of larger kernels, with minimal other operations,

namely pooling and ReLu, with excellent results. The central concept was to use stacked convolutions

to reduce the parameter count and increase performance. As explained in the Stacked Convolutions

section above (worth reviewing prior to reading this section), a stack of three 3 × 3 convolutions

covers the same receptive field and approximates a 7 × 7 convolution; however, using stacked

convolutions uses far fewer parameters, resulting in significant performance advantage at training

time and run time. However, it may be argued that larger features such as 11 × 11 or 15 × 15 are

invaluable for some applications requiring more detail to describe features, where 3 × 3 stacked

reductions may not work due to the limited receptive field.

VGGNet has inspired some notable CNNs. Note that Microsoft MSRA [603], surveyed later, also

used a modified VGGNet architecture with 22 convolutional layers, with other modifications such as

spatial pyramid pooling [483], parametric ReLu (PreLu) [603], improvements to weight initialization

methods, some larger convolution kernels, and more aggressive downsampling. Baidu Deep image

[631], surveyed later, also used a 19 layer VGGNet with a huge investment in the training protocol

incorporating vastly more training samples than anyone else to date, assisted by a custom Baidu-

designed DNN supercomputer and other customer hardware achieving 1.9PFlops.

For the first-generation VGGNet, the input images are 224 × 224 RGB, which are preprocessed by

subtracting the RGB mean from each pixel. The training process involves random color shifting,

cropping, horizontal mirroring, and scale jittering by randomly rescaling the training samples to add

scale invariance in the range [256 × 256–512 × 512]. Scale jittering increased accuracy by ~1%,

however, at a compute cost. In addition, horizontal mirroring of test images is applied, and at the

softmax layer the average score of the original and mirrored version is used for scoring. Random RGB

color shifting is also used on training samples; however, this seems to be more of a guess than a rifle

shot, yielding less than 1% improvement, since shifting color in RGB space is quite ambiguous and

unnatural, see Chap. 1 for more information on color spaces. Multiple crops of each image were

evaluated but proved to be insignificant, equivalent to fully padded dense evaluation using overlapping

kernels.

VGGNet and Variants MSRA-22, Baidu Deep Image, Deep Residual Learning 455

The basic VGGNet architecture is based on AlexNet.5 Several network depths were tried as shown

in Fig. 10.33, including various sizes of convolution stacks followed by MAX pooling at stride 2. To

preserve spatial resolution, the stride is fixed at 1 to incorporate each pixel, and full edge padding is

used. Each convolution uses the ReLu nonlinearity. The authors note that local response normalization

at the output was tried, and proved to be costly and did not improve performance. The best results were

obtained by exclusively using deeper stacks of 3 × 3 convolutions. Three fully connected classification

layers are followed by a soft-max classifier.

Fig. 10.33 This figure

shows six different deep

architectures using

exclusively 3 × 3

convolutions. Image from

Simonyan and Zisserman

[590] in CVPR,

Springer-Verlag used by

permission

Weight initialization was done in two steps. First, random weights were zero-mean normalized and

trained on network A shown in Fig. 10.33. Then the weights were transferred to the other layers and

training continued. The authors also recommend the training procedure proposed by Glorot and

Bengio [636] for better random weight initialization. Training follows a mini-batch protocol.

For classification testing, all input images were scaled to a uniform minimum size for a test scale,

which could be different than the training scale. In addition, the first FC layer was converted to a 7 × 7

convolutional layer, and the last two FC layers used as 1 × 1 convolutional layers for feature map

5 VGGNet and AlexNet can be fully implemented in the open source Caffe neural net package, and the best performing

VGGNet models are available as Caffe configuration files, see http://www.robots.ox.ac.uk/~vgg/research/very_deep/.

http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/

reductions, see the NiN survey below regarding 1 × 1 convolutions. The network is applied densely

over the entire image, so no cropping or region proposals were used. The test set is also sent as a

mirrored image pair through the network, so the final soft-max classifier averages the image pair to

obtain the final score. The authors evaluated using multiple crops from each test image as input, but did

not find that the cost justified the results (Fig. 10.34).

456 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.34 This figure
shows (top) the architecture

parameters for VGGNet,

and (bottom) the test results

for a single-scale set of test

images, from [590] in

CVPR, # Springer-Verlag

used by permission

VGGNet is a preferred choice for many research tasks, especially for creating initial features for

transfer learning, and several working models are available in the Caffe open-source neural network

library.

Name VGG

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window stride = 1

Dropout, reconfiguration Dropout 50% on 1st two fully-connected layers

Pre-processing, numeric conditioning RGB Mean-zero normalization

Feature set dimensions 3 × 3 RGB, 1 × 4096 RGB, 1 × 4096 RGB, 1 × 1024 RGB

Feature initialization Random mean-zero distribution

Layer totals 16 filter, 3 classify, 5 maxpool, 1 softmax

Features, filters Convolutional

Activation, transfer function ReLu

Post processing, numeric conditioning Local Brightness EQ

Pooling, subsampling Max pooling 2 × 2 × 2

Half-CNN

The Half-CNN [625] was proposed by Yuan et al. as a whole-image regression model or locally

correlated classifier. The half-CNN is a viable alternative to an SVM or other regression model. The

Half-CNN method entirely removes fully connected layers, which eliminates the need for classifier

design. Instead, the output is a feature map showing the correlation between the input and the features

learned in the trained network, which has applications in detection and segmentation. As shown in

Fig. 10.35, note the use of the novel upsampling layer which follows the pooling layer to normalize

feature sizes to support a linear combination of detected features, followed by a sigmoid activation

function, into a uniform sized image. The goal of the system is local correlation of input to features,

leveraging the local nature of n × n convolutions over sliding windows. Note that the MSRA-22 [603]

system surveyed in this section also makes use of a strategy similar to upscaling to normalize feature

sizes, with a different intent, called SPP [483] discussed later.

Half-CNN 457

Fig. 10.35 This figure shows the Half-CNN architecture. Note the novel upsampling layer to support variable sized

input images. Images from [625] in CVPR, # Springer-Verlag, used by permission

Since the Half-CNN is a full-image generic regression classifier, it does not depend on region

proposals, and is designed to support unequally sized input images. The ground truth data consists of

prepared images using a Gaussian weight mask generated inside of a marked region (detector region),

and the Gaussian weight mask is centered in the marked region, for example the center of the facial

landmarks as shown in Fig. 10.36. Each image is padded to 256 × 256. This allows for the input image

to be segmented in a smooth, Gaussian manner. The output in Fig. 10.36 is a linear combination of the

convolutional features learned from the input images, which can be used as a mask to merge with the

input image for segmentation output.

Fig. 10.36 This figure shows the output of the Half-CNN, showing simultaneous detection and segmentation. The left

image is the input image, center left is the ground truth feature map Gaussian mask fitted to the facial landmarks, center

right is the output shown as a linear combination of the learned features, and the right image is a merge of the input image

with the output segmentation region mask. Images from [625] in CVPR, # Springer-Verlag, used by permission

The elements of the architecture are composed of strictly kernel-connected convolutional kernel

filtering layers, ReLu activation, and max pooling, along with a final filtering layer using a novel

upsampling function to force all output images to the same size, eliminating the need for input images

to be the same dimensions. No fully connected layers are used. The filter dimensions for each layer are

11 × 11 × 5, 7 × 7 × 5, and 5 × 5 × 5. The last layer features are upsampled to allow for a linear

combination of features into a final feature map, which can be applied as an overlay mask to the input

image to visualize correspondence.

458 10 Feature Learning and Deep Learning Architecture Survey

As shown in Fig. 10.35, instead of regularizing the feature sizes in a first fully connected layer, the

upsampling layer takes care of regularizing the dimensions by rescaling all the features to the same

size. However, due to the amount of downsampling in the maxpooling layers, there is a limit to the

amount of upsampling that is possible, particularly for smaller images. Yuan reports that larger training

sets (i.e., Imagenet sized) are required for good results.

Name Half-CNN

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window stride = 1

Dropout, reconfiguration –

Pre-processing, numeric conditioning RGB Mean-zero normalization

Feature set dimensions 11 × 11 RGB, 7 × 7 RGB, 5 × 5 RGB + upsampling

Feature initialization –

Layer totals 3 filter, 3 maxpooling, 1 upsample, 1 linear combine

Features, filters Convolutional

Activation, transfer function ReLu

Post processing, numeric conditioning Local Normalization

Pooling, subsampling Max pooling 2 × 2 × 2

NiN, Maxout

The Network in Network (NiN) model developed by Lin et al. [487] is perhaps the most novel and

significant architecture in the DNN survey, and has introduced fundamental changes to the approach

taken to create an artificial neural model. Besides the original paper [487], the NiN slides [531] and the

poster from ILSVRC 2014 provide a good overview. The NiN authors were inspired to improve upon

the Maxout network [546] developed by Goodfellow et al. by adding the MLP (multilayer perceptron)

instead of simple convolution kernels as the activation function. Maxout networks use stacks of

convolutional layers followed by Maxout layers, followed by a classification layer. Both NiN and

Maxout use multilayer, or cross-channel methods, to create input from columns of pixels across all

input feature maps, which we refer to as Z-columns. So, we survey both NiN and Maxout methods

together here, focusing on NiN and briefly discussing the relevant features from Maxout networks.

NiN innovations include:

1. MLP feature model, using a MLP (Multilayer Perceptron) supporting a nonlinear learning model

instead of the general linear model of convolutional features. The MLP is implemented as a three-

layer MLP micronetwork in place after the convolution operation, which gives rise to the name

network-in-network (NiN) (see Fig. 10.37)

NiN, Maxout 459

Input patch

(c1 x h x w)

Representation

Cascaded Cross Channel Parametric Pooling (CCCP)

Convolutional Filter

(c2 x c1 x h x w)

Output feature Vector

(c2 x 1 x 1)

Convolutional layer

Efficient implementation of CCCP

CCCP layer

(Universal Approximator)

of the input patch

Convolutional Filter

(c3 x c2 x 1 x 1)

Output feature Vector

(c3 x 1 x 1)

Fig. 10.37 This figure shows (top) illustration a convolution pair 5 × 5 → 1 × 1 as used in the MLP layer, by pairing the

1 × 1 MLP convolution immediately after the 5 × 5 convolution layer, and (bottom) showing another view of the CCCP

layer following the convolutional layer. Images from [531] in CVPR, # Springer-Verlag, used by permission

2. Z-Columns for 1 × 1 convolutions are used as a method of reducing the number of feature maps, as

shown in Fig. 10.38. Z-columns are taken from all input feature maps at once, which the authors

refer to as cascaded cross-channel parametric pooling (CCCP) to perform 1 × 1 × n convolutions

(n = number of input feature maps) to reduce the volume of input feature maps. The 1 × 1 × n

vectors are fed into the MLP. The Maxout [546] authors refer to the Z-column concept as cross-

channel pooling (CCP), used for taking the max across n feature maps. Z-column convolutions and

Z-max-pooling have huge implications, raising questions about the precise reasons why feature

maps are needed, what functions should be used to create feature maps, and how feature maps

contribute to accuracy, since the Z-columns and 1 × 1 convolutions recombine the feature maps

generated from the carefully crafted and tuned feature weights.

460 10 Feature Learning and Deep Learning Architecture Survey

Feature Maps

1..64
1 × 1 × 64
Convolution

Feature Maps

1..16

16

16 16

16 M
L

P
 1

 .. 6
4

4 -> 1

reduction

Z-column input from all feature maps

gathered into a 1×1×64 vector

MLP takes one 1×1×64 vector at a time,

convolves, sends to 16×1 MLP

for 4:1 reduction, or Z pooling

Reduction:

16 feature maps

M
L

P
 1

 .. 1
6

Fig. 10.38 This figure shows an example method for reducing the number of feature maps (input = 64, output = 16),

implementing Z-column pixel input for Z-pooling or 1 × 1 convolution, combining pixels from the complete set of input

feature maps (i.e., the feature map volume) into a 1D input vectors, which the NiN method uses for input to the MLP, and

the Maxout network uses in the max pooling operation, and InceptionNet users for dimensionality reductions. The total

number of feature maps are reduced

3. Convolution Pairs n × n → 1 × 1, the NiN MLP layers use a pairing of a normal 2D convolution

immediately followed by a 1 × 1 convolution of a Z-column, to add richer representational power to

the convolutional features. This is different from stacked convolutions, discussed earlier, since the

goal is different.

4. Use of Global Average Pooling (GAP) to replace fully connected layers for classification, by

taking the spatial average of features in the last layer for scoring. This reduces the training load and

bypasses overfitting issues as well, see Fig. 10.39. GAP is in some ways analogous to the Maxout

Z-pooling.

Fig. 10.39 This figure

illustrates the global

average pooling

classification concept

compared to the FC layer

classification concept.

Images generated by Lin

et al. [487] from CVPR

poster talk, # Springer-

Verlag and used by

permission

NiN, Maxout 461

Maxout innovations include:

1. Z-columns, Z-pooling, a method of reducing the number of feature maps by taking the max value

of several feature maps and combining into a single map, reducing the feature map count, which the

Maxout authors refer to as cross-channel pooling (CCP), combining single-pixel columns from

input feature maps, along with spatial x, y max pooling at current layer, which adds a more robust

convex function approximation. Note that Z-pooling reduces the number of feature maps.

2. Dropout optimized, Maxout is designed to be complementary to dropout, and uses the same

dropout mask for cross-channel pooling, and incorporates dropout results into the maxout function.

Terminology Note: the terms cross-channel pooling (CCP) and cross-channel parametric pooling

(CCCP) are used in the NiN and Maxout literature to describe collecting z columns of pixels from a set

of input feature maps, rather than collecting x, y kernels as tiles from one feature 2D map at a time. We

use the term Z-columns here instead, to describe the multilayer input pattern, since the term channel

may be confused with RGB or other channels.

As shown in Fig. 10.38, the Z-columns directly support the concept of 1 × 1 convolutions, which is

also referred to as CCCP and CCP. As shown in Fig. 10.37, the MLP operation immediately follows a

2D convolution operation as a convolutional pipeline. The 1 × 1 convolutions are performed as part of

the MLP feature detector in a sliding window across all the input feature maps along with the 2D

convolutions. 1 × 1 convolutions have several interesting properties compared to 2D x, y input patterns.

First, 1 × 1 convolutions can be used for dimensionality reduction in the z direction, to reduce the

number of output feature maps. Z dimensionality reduction is invaluable for reducing system

parameters. For example, if there are 256 input feature maps of dimension 640 × 480 × 256 (x, y, z),

the 256 feature maps can be reduced to 64 feature maps (z reduction) by performing a set of

64.1 × 1 × 256 convolutions on the input set, yielding a smaller or reduced set of feature maps as

desired. In addition, 1 × 1 convolutions are novel and produce rich features, and have proven to yield

excellent results in Maxout networks, NiN, and GoogLeNet (Inception), complementary to x, y input

patterns, and may be used together.

The implications of the success of using 1 × 1 convolutions across Z-columns for feature map space

reduction are profound, touching the basic assumptions of CNN design. The same can be said for

global average pooling, see Fig. 10.39. Consider that CNN practitioners often, without questioning

why, use each convolutional feature at each layer as a filter to transform the input images into output

feature maps, assuming that the filters are all needed and effective. CCCP reduces the feature maps into

a smaller set which reduces the specific contribution of each filter, raising questions about the intrinsic

value of each feature and feature map, and suggesting serendipity. The effectiveness of CNNs seems to

result from the sheer number of features learned in the hierarchy (averaged and generated features),

rather than the methodology of the CNN itself. CNN-style 2D filtering involves an empirically selected

pipeline of numeric conditioning, convolution, a nonlinear activation function, and pooling to create

each 2D feature map. In the end, the resulting feature map is declared effective if it works good enough

or better than another approach. However, since the 1 × 1 convolutions reduce the entire feature map

space into a new space, whatever supposed benefit is gained from the choice of filters and the

processing pipeline is moot, since the 1 × 1 convolutions produce an entirely different view of the

feature maps from the originals. Therefore, representing neurons as convolutional filters to produce

feature maps is apparently a serendipitous design choice. The NiN and Maxout results also call into

question the very notion of generating the convolutional filter weights via backpropagation in the first

place, even though it seems to work. Perhaps preexisting features, such as basis functions or visual

genomes ([476] see Appendix F) are more logical starting points. Future research into the area of

feature map Z transformations is certainly a fruitful area.

462 10 Feature Learning and Deep Learning Architecture Survey

Maxout uses a close variant of ReLu, but Maxout does not produce a zero value. NiN MLP uses

ReLu as the activation function. Convolutions are linear functions, and often a nonlinear activation

function is applied to add nonlinearity. Note that since the MLP is a nonlinear function itself, there is

no strict need to apply a nonlinear activation function to the MLP result.

Maxout adds generality to the activation function, providing for the definition of arbitrary convex

functions such as ReLu, ABS, and quadratic functions, and is motivated by and intended to operate

well with dropout. However, compared to the convex functions of Maxout, MLP as used in NiN is not

limited to convex functions, which motivated the NiN authors to provide a better MLP-based feature to

limit feature explosion and complexity in the higher layers of the network.

The NiN approach is guided by the observation that higher-level features are composed from lower-

level features, therefore better abstractions via the MLP model for lower-level features will contribute

to better and fewer higher-level features. The NiN approach addresses the fundamental limitation of

convolutional features as linear functions, or a simple linear sum of scalar values * weights.

To maximize the effectiveness of convolutional features in a CNN, an overcomplete set of features

is needed in each layer of the DNN feature hierarchy to separately capture nonlinear variations among

very similar features, which adds more parameters to the system. The MLP is capable of approximating

richer features with fewer parameters, compared to convolutional features. By using the MLP instead

of convolution, the feature count is reduced from over-complete to sufficient. Since an MLP has

weights, MLP is compatible with the general CNN architecture and supports backpropagation training.

NiN systems using the MLP model and global average pooling (GAP) shown in Fig. 10.39 greatly

reduce the parameter count, mostly due to the reduced parameter count of GAP compared to a set of FC

layers (see the discussion on fully connected layers in this chapter). Note that an NiN system with four

MLP layers and a final global average pooling layer was demonstrated by the authors using only 7.5

million parameters and 29 MB of memory space, compared to the Khrishevsky architecture using

60 million parameters and 230 MB, with NiN achieving equivalent performance and half the training

time [531].

In Maxout pooling, Z-column input (which the Maxout authors refer to as cross-channel pooling)

and x, y pooling regions from the current layer are combined into a novel three dimensional x, y, z pool

from which the max value is selected, prior to an activation function being applied. Typical max

pooling alone only uses x, y region features from the current layer, pooled after applying an activation

function to add nonlinearity. Maxout pooling apparently works well without rectification, and should

be used separately for best results.

As shown in Fig. 10.39, Global Average Pooling (GAP) is a novel operation, which reduces the

number of parameters and eliminates the FC layers often used for classification in CNNs. FC layers are

typically the most parameter and connection intensive layers, and GAP provides a much lower-cost

approach to achieve similar results. The main idea of GAP is to generate the average value from each

last layer feature map as the confidence factor for scoring, feeding directly into the softmax layer.

Global average pooling makes sense, since stronger features in the last layer are expected to have a

higher average value, see Fig. 10.40. So GAP can simply be used as a proxy for the classification score.

As the NiN authors state, the feature maps under GAP are interpreted as confidence maps, and force

correspondence between the feature maps and the categories. GAP may be particularly effective if the

last layer features are at a sufficient abstraction for direct classification; however, GAP alone is not

enough if multilevel features should be combined into groups like parts models, which is best

performed by adding a simple FC layer or other classifier after the GAP.

NiN, Maxout 463

Fig. 10.40 This figure shows the average strength of features in the diagonal as used in the global average pooling

method. Left and right images are different classification sets. # Min Lin and used by permission, image taken from Lin

et al. [487]

Also with GAP, training becomes simpler with fewer parameters, and overfitting is not a problem as

it would be in FC layers, since the parameters are so greatly reduced. Again, the NiN authors expect

that the MLP-generated features are higher quality to begin with, and can therefore be relied upon

individually for supporting the global average pooling method. This author expects other trainable

classification methods to emerge along the lines of global average pooling, rather than FC layers.

Global average pooling is an intuitive and sensible alternative to FC layers. FC layers are not

optimal solutions, since FC layers increase the number of connections and weight parameters quite a

bit, and are prone to overfitting, requiring regularization methods such as dropout to prevent

overfitting.

In summary, NiN is a profound architecture, and should significantly influence the path of CNN

research going forward.

Next we will survey the GoogLeNet Inception architectures, which are influenced by NiN.

Name NiN

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window stride = 1

Dropout, reconfiguration Using 70% dropout rate

Pre-processing, numeric conditioning RGB Mean zero norm

Feature set dimensions –

Feature initialization –

Layer totals 22 convolutional, 5 pooling

Features, filters MLP

Activation, transfer function ReLu

Post processing, numeric conditioning –

Pooling, subsampling 4 Max pooling, 1 Ave. pooling 5 × 5-stride = 3

464 10 Feature Learning and Deep Learning Architecture Survey

GoogLeNet, InceptionNet

The InceptionNet architecture introduced by Szegedy et al. [544], otherwise known as GoogLeNet,

demonstrates several novel architecture concepts for creating complex CNNs, leveraging a few

concepts from the NiN architecture [487] and Maxout architecture [546] surveyed previously. Perhaps

the major innovation in GoogLeNet is the Inception module as shown in Fig. 10.41, which defines an

aggregation of different sized convolution filters at the same layer, providing (1) multiscale

convolutions, and (2) feature space dimension reduction using the 1 × 1 convolution model introduced

by NiN. The InceptionNet architecture provides a ~10× parameter count reduction over the Krizhevsky

architecture, and ~ 25% less compute. InceptionNet is currently one of the three top CNNs for various

Imagenet benchmarks. Since the system is proprietary to Google, some details are not known.

Fig. 10.41 This figure shows (top) a single inception module, combining 1 × 1, 3 × 3, and 5 × 5 convolutions into

convolution pairs, and (bottom) the InceptionNet V1 architecture, other more recent variants exist. Note the inception

modules, and the three branches for separate classifiers (yellow boxes). # Springer-Verlag, used by permission, taken

from CVPR [544]

InceptionNet is perhaps the most baroque CNN developed to date. An excellent overview of

InceptionNet V2 is provided by Simonyan [632], and see also some overview slides by Jonathon

Shlens [633]. Details on recent InceptionNet variants are provided by Ioffe et al. [634], and further

developments incorporating Resnets and DRL concepts covered in Szegedy [818].

As shown in Fig. 10.41, the basic Inception module is similar to the NiN module with respect to the

use of n × n → 1 × 1 convolution pairs, i.e., 1 × 1 convolutions and n × n convolutions together.

However, Inception uses several pairs of 1 × 1 → n × n convolutions, using several parallel 2D spatial

convolutions to increase the representation of multisize features together, such as 3 × 3, 5 × 5, and also

uses maxpooling. So, the output of Inception modules is multiscale due to the convolutional

reductions, even if the input is not.

GoogLeNet, InceptionNet 465

Here we highlight a few novel features of the InceptionNet architecture. Note that this summary

covers information from several variants of the basic architecture, since exact details are difficult to

obtain.

• CNN in early layers: A typical CNN architecture is used in the layers closer to the input, preferring

medium-sized features, such as 5 × 5 and 7 × 7 for more aggressive downsampling to reduce

parameters and reduce the compute load.

• Z-column 1D MLP convolutions: Like the NiN architecture, 1 × 1 convolutions are used for both

(1) adding representational power and (2) allowing for aggressive reduction of feature map count,

which would otherwise explode exponentially in higher layers. See Fig. 10.38 in the NiN survey

above.

• Inception modules: Each module aggregates a series of convolutions of differing sizes, and may

include a pooling layer and a branch off at intermediate levels for a softmax classifier, supporting

multiscale classification. One stated Inception module goal is to support parallel multiscale feature

extraction and classification at multiple layers.

• Multisized feature aggregation and concatenation: Multiple sizes of convolutions, such as 1 × 1,

3 × 3, and 5 × 5 are performed in each Inception module, and concatenated together as a single

feature vector for output to the next layer, which reduces the parameter count. Inception features

provide a type of multiscale feature representation at each level, since the convolutional output scale

is reduced at each layer. The feature vector contains 1 × 1, 3 × 3, 5 × 5, and 3 × 3 maxpooling → 1

features. Feature aggregation adds representational power inspired by the NiN method, surveyed

earlier. The authors state that the major reason for the 1 × 1 convolutions is to reduce dimensions of

the input feature maps prior to the 3 × 3 and 5 × 5 convolutions.

• Max, Ave, striding, and convolutional pooling: Max pooling is used during feature

downsampling between layers, and average pooling is used prior to softmax classification. Use of

stride > 1 and convolutional downsampling is also used instead of strict pooling for some layers.

• Branched classifiers, reduced FC layers: InceptionNet allows for branching off from the lower

levels of the network to classify features, so the network includes (1) lower-level classifiers using

FC layers and a softmax layer, and (2) a final softmax classifier with a single FC layer.

InceptionNet’s classification is multiscale. Splitting the classification into several parts also reduces

the total FC network parameters in the system.

• Preference for smaller convolutions: Similar to the VGGNet concept using 3 × 3 stacked

convolutions, smaller kernels are preferred to reduce parameters and compute overhead.

• Aggressive spatial downsampling in lower network layers to reduce parameters.

The InceptionNet training protocol involved independently training seven slightly different

InceptionNet architectures to arrive at an ensemble score. The training for each of the seven

architectures only differed in the training protocol selection of images and the order of presentation.

The final softmax score is averaged over multiple images from each scale and crop. A final FC layer

using average pooling is used to arrive at the softmax score, and the authors note that average pooling

worked best among several alternatives evaluated.

Image augmentation during training included an aggressive set of operations, which the authors

note keeps changing over time, and is hard to summarize here, such as four scales of images

(256 × 256, 288 × 288, 320 × 320, 352 × 352) with crops taken from each scale image, and mirrored

versions of each crop. Other scaling of patch candidate images was from 8% to 100%. Aspect ratio

changes were chosen randomly in the range 3/4 to 4/3. Also, some geometric distortions were applied

for some images, and also different methods for computing scale changes and other geometric

distortions were tried including bicubic interpolation and other standard computer graphics methods.

However, due to the huge number of training image variations and changes to the hyperparameters

during training, no conclusions were made regarding the best training protocols.

466 10 Feature Learning and Deep Learning Architecture Survey

InceptionNet is quite complex, and defies simple mathematical analysis. In fact, the authors are very

cautious about making claims for the architecture, since they are not sure if the success is attributable to

the guiding principles, or just informed serendipity and hard work. But it works. See Table 10.3 for a

parameter comparison of the top performing DNNs including InceptionNet, which is available in the

Caffe open-source library, and more pretrained network models may be released in the future.

Name InceptionNet Vn

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window stride = 1 or 2 for pooling layers

Dropout, reconfiguration 40% dropout

Pre-processing, numeric

conditioning

–

Feature set dimensions 7 × 7 at first layer otherwise 3 × 3 kernels, features/layer include 64, 192, 256, 320,

576, 1024

Feature initialization –

Layer totals 33 (not comparable to non-inception architectures)

Features, filters 2d convolutional, 1 × 1 MLP

Activation, transfer function ReLu

Post processing, numeric

conditioning

–

Pooling, subsampling Max, Ave, striding, convolutional reductions

*Note: parameters are guesses based on published info of different versions

MSRA-22, SPP-Net, R-CNN, MSSNN, Fast-R-CNN

The MSRA-22 architecture developed at Microsoft by He et al. [603] is based on the VGGNet

architecture, with enhancements in the area of weight initialization optimized for the Parametric

Rectified Linear Unit (PReLu) introduced by He et al. [603], and also using Spatial Pyramid Pooling

(SPP) introduced by He et al. [483] to reduce the fixed-size input image limitation of the CNN to speed

up training and improve scale invariance. We will summarize the major MSRA-22 innovations over

VGGnet here. Since the system is proprietary to Microsoft, some details are not known.

The SPP approach reduces the need for fixed-sized region input, similar to other region proposal

selection methods, so we provide a brief survey and discussion here of similar methods. The Fast-R-

CNN system (Region-CNN) developed by Girshick [638] is a simplified and optimized version of the

SPP approach. Note: the SPP method was proposed to speed up the R-CNN approach, then Fast-R-

CNN was proposed to speed up the SPP approach. R-CNN is based on Girshick et al.’s earlier work

[635] on segmented region proposals as input to the CNN to separately learn features and classify each

region. A related method using a saliency score to group similar region proposals is found in [123] by

Erhan et al. The Fast-R-CNN method applies a training protocol using mini-batches of images, and a

sparse set of region proposals. Girchick provides interesting research on the major bottleneck of the

method: how to determine the optimal number of region proposals. Apparently, comparing the results

of dense versus sparse region proposals demonstrates that somewhere over 1000 sparse region

proposals are optimum. Sparse regions proposals seem to reduce false positives. Another method of

creating region proposal candidates is via segmentation using super-pixels as proposed by Farabet

et al. [776]. Super-pixels can be among the best segmentation techniques, see Chap. 2 for more on

super-pixel segmentation and related methods. Uijlings et al. [600] present another method of

generating region proposals using segmentation based on image partitions.

MSRA-22, SPP-Net, R-CNN, MSSNN, Fast-R-CNN 467

One problem addressed by MSRA-22 is scale invariance, which is often addressed by training

multiple networks with different scales, and averaging the results. Another problem addressed by

MSRA-22 is weight initialization and the activation function, which are correlated together and affect

training and convergence toward best features.

SPP is also inspired by the HMP method of spatial pooling [91, 111] surveyed later in this chapter,

and the Spatial Pyramid Matching (SPM) method [459], surveyed in Chap. 6, which divides the image

into nested regions, and computes features for each region. The SPP authors leverage the spatial

pooling concept, and simply assemble all the extracted CNN features into a spatial pool from the last

feature maps. The feature maps act like a scale pyramid of feature maps. Spatial pooling regularizes the

input to a single size, since the number and proportion of the spatial pooling regions are the same,

regardless of the image or feature map size. Note that the Half-CNN system [625], surveyed in this

section, also makes use of a strategy similar to SPP, called upsampling, to normalize feature sizes.

Spatial Pyramid Pooling [483] is used to reduce input size restrictions on the images, since most

CNNs are designed to support a fixed-size image. CNN training protocols often incorporate cropping,

rescaling, and warping regions into fixed-sized windows, which can distort and cut off image

information. The authors note that SPP addresses the fixed-size limitations of CNNs that come from

the FC classification layers which must be sized to the correct number of classification slots, while the

convolutional feature extraction layers can accept any sized image. This observation inspired the SPP

authors to move the scale normalization after the feature extraction, using a spatial pooling pyramid,

just before the classification stage, to ensure class alignment, as shown in Fig. 10.42. However, the

authors note that image scale is critical no matter what, and SPP can partially overcome scale issues. If

pixel resolution is critical to capture local texture, then missing local texture information (i.e., pixels

and scale) cannot be reconstructed.

Input Classifier OutputConvolutional LayersTraining

Protocol

Size

normalization

via rescales,
warps,

…

SPP Layer

Size normalization

via feature pooling

SPP normalizes feature sizes after the feature layers prior to classification.

Fig. 10.42 This figure illustrates how the SPP layer replaces the cropping and geometric transformations in the training

protocol layer at the input by using the SPP layer prior to classification. The training protocol layer cropping and

geometric transformations are not needed under SPP

468 10 Feature Learning and Deep Learning Architecture Survey

First as shown in Fig. 10.42, the SPP layer shifts the scale invariance steps into the SPP pooling

layer following the last convolutional feature layer, prior to classification. SPP eliminates the repeated

convolutional feature extractions required using different scales of images, so only one pass over the

training image is needed, rather than multiple crops and geometric transforms. The SPP layer pools and

scale normalizes the features prior to feeding into the classification layers, in this case an FC layer. SPP

simplifies and accelerates the training protocol significantly. Performance is claimed to be significantly

faster than other methods, between 24× and 170×, depending on the comparison. Speedup can be

partially attributed to the feature pooling used by SPP, since SPP pools the final features from a

relatively small set of feature maps, rather than from large sets of cropped or geometrically transformed

region proposals from the input images, so the SPP pooling space is far smaller.

Second, the feature weight initialization is optimized to work with the PReLu activation function

introduced by He et al. [603]. The PReLu method is motivated, in part, to eliminate zero gradients,

which stall backpropagation training. PReLu is an activation function with a learnable parameter that

can be tuned during training to define the zero threshold. PReLu is inspired by the method of Gloriot

and Bengio [636], which chooses a scaled uniform weight initialization to work well with a linear

activation function. So, the PReLu authors created a weight initialization method designed to work

well with the PReLu activation function, which turns out to be based on a mean-zero Gaussian

distribution with standard deviation 2=ni, which works well with rectifier nonlinearities. The authors

claim that the PReLu weight initialization method allows deeper networks to converge better, while the

Gloriot method does not. More discussion on activation functions is found in Chap. 9.

The MSRA-22 training protocol includes mean-zero pixel normalization, random cropping, scale

jittering, horizontal mirroring, random color shifting, and mini-batches. Separate scores are developed

for mirrored and unmirrored images. In addition to training on a single network, the MSRA-22 team

tried a modified training protocol using two networks trained in parallel on separate sized images,

sharing all weights between the networks. One network accepted 180 × 180 images, and the other

accepted 224 × 224 images. This choice was motivated by the Imagenet competition, which provides

224 × 224 images. The model scores were averaged together.

As shown in Fig. 10.43, MSRA-22 architectures use up to 22 convolutional layers, including a few

examples using some layers with larger convolution kernels and larger strides for more aggressive

downsampling. Note that InceptionNet, along with VGG-net variants MSRA-22, Baidu Deep Image,

are the first DNNs to surpass human accuracy on some Imagenet benchmarks.

MSRA-22, SPP-Net, R-CNN, MSSNN, Fast-R-CNN 469

Fig. 10.43 This figure shows various MSRA-22 architecture variants, based on VGGnet, image # Springer-Verlag

used by permission, taken from CVPR [603]

Name MSRA-22

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window stride = 1

Dropout, reconfiguration –

Pre-processing, numeric conditioning RGB Mean-zero normalization

Feature set dimensions 7 × 7 at first layer otherwise 3 × 3

Feature initialization –

Layer totals 19 filter, 3 max pool, 1 SPP

Features, filters Convolutional

Activation, transfer function PReLu

Post processing, numeric conditioning –

Pooling, sub-sampling Max pooling 3 × 3, 2 × 2, 1 × 1

470 10 Feature Learning and Deep Learning Architecture Survey

Baidu, Deep Image, MINWA

Funded by search engine giant Baidu, the Deep Image system [631] introduced by Wu et al. employs a

custom supercomputer hardware architecture called MINWA, and the most complex DNN training

software architecture to date, achieving results that virtually equal the best systems in the world from

Microsoft and Google. Deep Image is based on the VGGnet style model surveyed earlier in this

chapter, and uses a 19-layer model with 3 × 3 convolutions at all levels, further underscoring the value

of smaller convolutions and deeply stacked convolutions.

Deep Image and MINWA are in a class by themselves, and employ far more compute power, huge

groups of labeled training samples, and more extensive training sample augmentations than any

system known to the author. The compute resources employed are staggering.

The MINWA hardware is used to accelerate the Deep Image DNN, providing 6.9 TB of host

memory, 1.7 TB local GPU device memory, and 0.6PFlops of total single-precision performance. The

total compute power employed by Baidu in MINWA is in a class by itself compared to the other

systems in this survey. MINWA is fundamentally a GPU cluster with high-speed Infiniband

interconnects for direct GPU-to-GPU RDMA memory access, huge local memory for each GPU,

and very large global system memory, similar to Cray supercomputer architectures from the 1990s, but

at a fraction of the cost due to commodity GPUs.

In addition to the huge compute power, the software is extensively optimized for parallel operation

to fully take advantage of MINWA, far beyond any other DNN optimization reported to date (NSA has

not reported in yet . . .), obviously intended for heavy commercial use. One technique mentioned

regarding the optimizations is called model-data parallelism, where fully connected layers are split up

to run in segments across several GPUs. FC layers are the major bottleneck in most DNNs, so model-

data parallelism is apparently a key to optimized performance. Convolutional layers express a kernel-

connected workload, and can be accelerated reasonably well in GPUs as-is using the SIMD and SIMT

capabilities of GPUs, and perhaps silicon accelerators in the GPUs for convolution, if available.

Deep Image implements the most extensive training data augmentation regime of any known DNN,

made possible by MINWA. For training data augmentation, the authors reference the phrase “the more

you see, the more you know” [631] to guide the preparation of training data—lots of data.

The goals for MINWA are far higher than any academic DNN published in research journals to

date. The authors claim to have 10,000 times more training data than other systems. Various batch

sizes are used for training different classes, tuned to work best across MINWA. The training samples

are broken down 75% for training, and 25% for testing. Multiple resolutions of data are used, including

higher resolutions than smaller systems can handle, up to 512 × 512. Scale normalization combines

multiple image scale results at the softmax layer. Note that use of higher-resolution images is made

practical via MINWA. Use of higher-resolution images preserves detail, especially in image crops.

Other augmentations include color castings to alter the RGB components independently in abnormal

ways, vignetting, lens distortion, rotation, flipping, and cropping. In summary, no other DNN to date

has been able to support so many augmentations and large datasets due to the huge compute

requirements.

The training protocol uses several known labeled image databases for pretraining to generate a base

set of features for various classes of images. To date, no other system has apparently been trained on so

many labeled databases. Apparently, the pretrained features are used at all layers to start additional

training sessions, and all layers are fine-tuned during ongoing training.

In summary, Deep Image and MINWA are in a class by themselves, leveraging massive data sets

and a huge compute infrastructure to accelerate learning and analysis, pointing toward a future with

massive, dedicated deep learning systems, employed by various state and commercial enterprises.

SYMNETS—Deep Symmetry Networks 471

Name Deep image

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window stride = 1

Dropout, reconfiguration Dropout 50% on 1st two fully-connected layers (like VGG)

Pre-processing, numeric conditioning –

Feature set dimensions 3 × 3 RGB, 1 × 4096 RGB, 1 × 4096 RGB, 1 × 1024 RGB

Feature initialization Massive pre-training

Layer totals 16 filter, 3 classify, 5 maxpooling, 1 softmax

Features, filters Convolutional

Activation, transfer function ReLu

Post processing, numeric conditioning –

Pooling, subsampling Max pooling 2 × 2 × 2

SYMNETS—Deep Symmetry Networks

Gens and Domingos introduced Deep Symmetry Networks or Symnets [598] to address the fundamen-

tal invariance limitations of static weight templates normally used as features in CNNs. SYMNETS

provide invariance to the feature space, which is missing from convnets, by projecting input patches

into a six-dimensional affine feature space yielding affine-invariant features. A SYMNET is like a

CNN, except that the feature generation layer operates in a six-dimensional affine space, using a set of

affine transforms applied to each feature weight matrix prior to filtering. While the affine transform

space is chosen to demonstrate the SYMNET concept, other symmetry spaces could be implemented.

The features learned in SYMNETS are powerful, and more similar to deformable parts models [489]

rather than typical convolutional style sparse features. SYMNETS incorporate several novel features

not found in other CNNs. Note that a related concept for using invariant features is used in HMAX for

lower-level features for composition into higher-level features, surveyed later in the BFN section.

Gens and Domingos take inspiration from symmetry group theory to develop an affine class of

invariant features. A symmetry transform preserves the class or identity of the feature, and is invertible.

SYMNETS support the affine symmetry group including rotation, scaling, shear, reflection, and

translation, as illustrated in Fig. 10.44. So, there is one set of identity feature weight matrices learned

in the CNN for each level, and the affine feature variations are derived from the identity feature for

filtering with the input as shown in Fig. 10.45.

472 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.44 This figure shows (top) the affine transform S1, and (bottom) an exaggerated rendering of the six-element

generating set of affine transforms (six transforms including identity, rotation, scaling, shear, reflection, and translation)

applied to a square, representing a square feature weight matrix. Image from [598], # Robert Gens, used by permission

Fig. 10.45 This figure shows how SYMNET tracks feature under affine transforms. Each part A, B, C corresponds to a

different part of the cartoon object in a feature hierarchy, and horizontal lines represent the feature position within affine

feature space. Left shows unpooled affine feature positions in affine space for the single dark cartoon, light gray image

represents the cartoon at another pose in affine space, and right shows how affine pooling kernels track the same feature

under affine transformation, notice how B1 and C1 are affine transformed in light gray, and their position is located by

affine pooling, represented by the wide ovals for B1 and C1. Image from [598], # Robert Gens, used by permission

SYMNETS offer a feature representation that is consistent across pose variations and object part

deformations in affine space. CNN training protocols often augment the training data via geometric and

intensity transforms to add variation to the training set, which adds a degree of invariance to the feature

set, at the cost of increasing the size of the feature set and training time. Instead, SYMNETS use affine

invariant features, which reduce training protocol augmentation requirements, and are demonstrated to

speed up training convergence.

SYMNETS—Deep Symmetry Networks 473

x0

y0
=

a b

c d

x

y
þ

e

f
ð S1Þ

SYMNETS mutilevel feature representation allows for composition of higher-level affine-invariant

features from combinations of the low-level affine-invariant features. As shown in Fig. 10.45, the

identity of the high-level features is preserved as the low-level features move in affine space, since the

identity of the low-level features is also preserved as they move in affine space. This is a powerful

concept not found in other CNNs. Invariance is accomplished using a set of 100 affine variations of

each identity feature, allowing each feature to be tracked in affine space. Each affine variation is used

as a filter across the input image space, and all filter results are pooled (we discuss more details on the

pooling method later). Since the higher-level features are composed of lower-level identity features,

the lower-level identity features may be detected under affine transforms, preserving the higher-level

feature identity.

SYMNETS maintain an identity set of 20 × 20 pixel feature weights at each level in the hierarchy,

used as in other CNNs for gradient descent tuning during backpropagation. However, for filtering, a set

of novel sparse affine features, composed of 100 affine variations of each identity feature are computed

at semi-random uniformly spaced control points within the 6D affine space. A control point in affine

space is computed using Eq. (S1) in Fig. 10.44, by selecting appropriate affine transform coefficients

[a, b, c, d, e, f], and then rendering the identity feature using the affine transform into a 20 × 20 pixel

feature weight matrix. To prepare for filtering, a forward-compositional (FC) warp extension to the

Lucas-Kanade method is used to align the affine-transformed feature patch matrix at local maxima at

fractional resolution near grid points at a chosen stride, such as 5, and the exact grid point position is

adjusted during LK alignment with the feature. Using the local maxima surrounding grid locations is

similar to using an interest point, and is a novel approach for CNNs.

Next, the dot product of each 20 × 20 feature is taken aligned at each adjusted grid point. By

aligning the feature with the input window maxima, the dot product is maximized. Next, a sigmoid

nonlinearity is applied, and the output for each of the 100 features is stored in a vector, analogous to a

feature map per each of the 100 affine transforms, to allow for pooling of all the affine activations to

find the strongest activation among all the 100 affine transforms to reveal the location of the identity

feature in affine space.

The result of all the 100 affine filters is reduced to a summary feature map containing the strongest

activation of all 100 affine filters, using novel affine pooling kernels to reveal the position of the

strongest activation in the 6D affine space, or to locate a feature under a specific combination of affine

transformations. The summary feature map can be considered like an accumulator of all 100 affine

transforms, similar to the accumulator used in the Hough transform (see Chap. 3). If we visualize for a

moment that each of the 100 filters produces a separate feature map in a volume, then the affine pooling

kernels cross the Z dimension of the feature map volume (similar to Z-columns use in NiN and

Inception for 1 × 1 convolutions, surveyed earlier), so all affine feature activations at the current

position are part of the affine feature activation pool. SYMNETS allow for affine pooling kernels to be

designed to pool over combinations of transforms in the affine feature space to represent expected

affine transformations of real objects. For example, a pooling kernel can be devised to favor pooling

over a small range of scales and a wide range of rotations to represent realistic movement for specific

objects such as faces, or arm movements, as the features are transformed across the 6D affine space

(see Fig. 10.46).

474 10 Feature Learning and Deep Learning Architecture Survey

The combined results for all the filters act as a symmetry pool in the local region, supporting either

average pooling or max pooling, max pooling being preferred by the authors. As shown in Fig. 10.46,

symmetric kernel group pools can detect the same features under affine transforms.

Fig. 10.46 This figure illustrates the process of affine feature generation, affine filtering, and affine kernel pooling

Due to the affine nature of the features, the training protocol does not require extensive additions to

the training set to include affine transformed test images. SYMNETS are trained as Convnets in mini-

batches, using gradient descent and backpropagation. The authors demonstrate that a SYMNET can

achieve faster training convergence with fewer training samples than a typical Convnet.

SYMNETS are compute intensive with respect to the affine transformations, and the control point

alignments. However, CPU SIMD instructions, GPGPU kernels, image processing libraries, and

GPU hardware accelerators could be employed, but are not mentioned. So, without optimization to

compute affine features at control points, the affine transforms would be intractable for larger images.

Both one layer and two layer networks are evaluated, the two-layer network performs best.

The resulting features are fed into a fully connected layer with 500 connections, then a softmax

layer. Larger features perform best in SYMNETS, such as 20 × 20 feature patches, compared to the

trend in CNNs to use smaller features such as 3 × 3 or 5 × 5, thus SYMNET feature convolutions are

very compute intensive, and in fact a single 20 × 20 convolution is equivalent to a stack of nine

sequential 3 × 3 convolutions (see Stacked Convolution section in the Convnets discussion).

In summary, SYMNETS provide an elegant path forward toward adding invariant features into the

basic Convnet architecture. Related work regarding adding invariant features to Convnets includes the

work by Bruna et al. [708] using cascaded wavelets composed into feature descriptors similar to SIFT.

A scattering-based wavelet transform adds invariance to the basic wavelets by using a nonlinearity to

produce variant wavelets. The resulting nonlinear wavelet transforms are used in place of

convolutional features in a CNN, which Bruna refers to as a Scattering Convolutional Network, which

includes a novel affine space classification model.

RNN Architecture Survey 475

Name SYMNETS

ANN type CNN

Memory model Simple, fixed

Input sampling Sliding window at feature-aligned grid points, stride = n

Dropout, reconfiguration –

Pre-processing, numeric conditioning –

Feature set dimensions <100 features per layer, 20 × 20 size

Feature initialization 100 affine transform permutations per feature

Layer totals 1–2 feature layers, 1 FC layer, 1 softmax

Features, filters Convolutional, 100 affine permutations

Activation, transfer function Sigmoid

Post processing, numeric conditioning –

Pooling, sub-sampling Max pooling over 100 affine activations per feature, no subsampling

RNN Architecture Survey

RNNs are the most complex type of ANN to discuss, since there is no clear architecture pattern. Since

this survey focuses on feature metrics and computer vision, we only cover the basic concepts of RNNs.

The RNN architectures surveyed here, shown in Fig. 10.47, are selected to span a range of novel

applications to computer vision, which is an emerging area of research. We consider Spiking Neural

Networks (SNNs) to be related to RNNs, since SNNs use a complex neuron model allowing ad hoc

feedback paths between neuron groups to influence neuron group firing. However, we do not cover

SNNs and other complex neuron models in this brief survey. For more on complex neuron models,

consult a standard text such as “Theoretical Neuroscience,” Dayan and Abbot, MIT Press.

RNN
Recurrent Neural Networks

LSTM
Long-Term

Short-Term memory

GRU
NTM

RNN-NTM

RL-NTM

MD-RNN
Multidimensional RNN

MD-LSTM
DAG-RNN

BD-RNN

C-RNN

QD-RNN RCL-RNN

dasNET

NAP

Fig. 10.47 This figure illustrates the RNN variations covered in the survey

476 10 Feature Learning and Deep Learning Architecture Survey

Perhaps the most popular application for RNNs is sequence learning, such as text processing, since

RNNs provide primitive memory cells to store previous states and predicted states. However, today

RNNs are being combined with CNNs for computer vision applications, for example where the CNN

performs feature learning and classification, and the RNN is used for video frame sequence learning

and video captioning, and the CNN classification of the images can be used to influence the RNN

sequence learning via bias weights.

To dig deeper specifically into RNNs, the best resources include the work of Schmidhuber, Graves,

Hochrieter, and Bengio, whose publications are cited as we go along. However, we focus here on

selected research applicable to computer vision. To dig deeper into the field or RNNs, see Bengio et al.

[494], Schmidhuber [492], and the upcoming book on RNNs by Schmidhuber. To get how-to

information about designing and using RNNs, see the open-source resources in Appendix C, and

follow the source code. We deliberately steer clear of how-to materials and detailed math here, which is

already presented very well in the references provided.

Early success with recurrent networks for 1D sequence learning was demonstrated in 1986 by

Rumelhard and McClelland [670], and subsequently further developed in 1990 by Elman [671–673]

and many others. LSTM-RNNs, a more versatile variety, are being applied in computer vision to

spatiotemporal video sequences for applications such as activity recognition and video captioning,

often combining both a CNN and an RNN in the same system. For example, video captioning work by

Vinyals et al. [640] uses a combination of a deep CNN for analyzing the images, and an LSTM-RNN

[524] for generating the text captioning. A video question-and-answer system was demonstrated by

Ren et al. [641] utilizing a VGGnet style CNN for image feature learning, combined with an LSTM-

RNN and softmax classifier to generate answers, using the DAQUAR labeled video question and

answer dataset for ground truth. Venugopalan et al. [642] demonstrate matching image sequences to a

series of words which are formed into sentences, using a combined CNN and LSTM-RNN network.

Graves [643] demonstrates a novel method of applying an LSTM-RNN to the task of analyzing

handwriting styles, and generating plausible handwriting in a selected style. Socher et al. [660]

combine CNNs and RNNs together for RGB-D image classification, using a tree of RNNs for

hierarchical feature pooling. Gregor et al. [659] developed a novel RNN for image generation.

At this time, only a small percentage of computer vision literature is devoted to RNNs. RNNs were

originally designed to deal with sequence learning, which has been primarily researched as a one-

dimensional problem, therefore computer vision applications using 2D data are rare. However,

Multidimensional RNNs (MDRNNs) are emerging designed for 2D image data, which we survey

later in this section. In the future, this author envisions RNNs applications proliferating in computer

vision, for example applied to aggregating feature descriptors together for image classification, using

RNNs to define pattern adjacency associations among features in local regions, where ordered sets or

sequences of features in a region are fed into an RNN for feature adjacency signature encoding,

prediction, and matching. The classifier may then be realized using RNN signature encodings for

various classes and objects.

Notable methods which we do not survey include the Recurrent Attention Model (RAM) developed

by Mnih et al. [639], which uses an RNN to select regions of the image to track and process at high

resolution, incorporating a Glimpse Sensor and a Glimpse Network, which is trained using reinforce-

ment learning rather than BPTT (Backpropagation Through Time, used to train RNNs). Another

method using RNNs to process images selectively at high resolutions is proposed by Mnih et al.

[639]. Mnih et al. [639] proposed an RNN which can be selectively processing images only at high

resolution in regions of interest.

RNN Contrasted with CNN 477

Concepts for Recurrent Neural Networks

We will look into some basic concepts of RNNs here to set the stage for the survey, such as different

RNN architecture concepts, how to unfold an RNN into an FNN to understand the forward pass and

backward tuning pass, RNN weight sharing, and the types of memory implemented in RNNs.

A recurrent neural network is a class of dynamic, nonlinear systems for mapping sequences to

sequences using a concept of virtual time. The RNN uses an internal state space composed from a

trace of the inputs seen so far, see Boden [677]. RNNs also implement a form of memory via the

recurrent inputs, which is useful for modeling sequences composed of current and past states or events.

Compared to other finite state models such as HMMs, the RNN is trainable, and much more efficient

and compact for sequence representation and prediction, distributing the memory states across the

network in uniform memory cells, rather than forcing each state of the model to store all possible state

transitions. The RNN stores the state transitions in learned weights, like other artificial neural models.

The RNN is also trainable via backpropagation. See Pascanu [582] regarding the difficulty of training

recurrent neural networks. An RNN is like a finite state machine. Also, an RNN can emulate a finite

state machine. See Tino et al. [667] and Arai et al. [668] for a discussion on the differences between

finite state machines and RNNs. See also Pascanu [614] for some fundamental considerations on RNN

design.

The basic ideas embodied in RNNs include the following capabilities:

• Memory Cells: recurrent inputs are a form of memory, inputs persist.

• Serial Sequence Storage: sequences are learned and stored in RNN memory.

• Time-based and state-based shifting of input through network.

• Lateral Inhibitors/Excitators: recurrent inputs can be lateral inhibitors and excitators.

• Backwards Feedback and Controls: feedback and controls to same or other neurons.

• Weight replication over time: weights may be used and updated at each time step.

• Correlation between input data separated by long- and short-time intervals.

• Complex input pattern dependency representations to form sequences.

• Reuse of neurons in hidden layers to accumulate sequence state.

Depending on the goals of the RNN and the exact architecture, recursive inputs can be used along

with recurrent inputs for specific purposes including:

• Control signals from other parts of the network.

• Self-feedback for short-term memory to store state and sequence data.

• Resilience to noise.

• Excitatory signals (i.e., Hebbian learning) from associated cells.

• Inhibitory signals.

RNN Contrasted with CNN

A simple comparison between FNNs and RNNs is as follows:

• FNNs can approximate arbitrary functions.

• RNNs can approximate arbitrary programs6 and sequences.

6 In fact, Zaremba and Sutskever [669] design and train an RNN to evaluate short python programs, acting as a Python

language interpreter.

478 10 Feature Learning and Deep Learning Architecture Survey

Like the CNN, an RNN incorporates the basic convolutional artificial neural model, using weights

and bias factors multiplied against the inputs. However, RNNs contain recurrent connections, com-

bined with some feed-forward connections. The difference between a recursive network and a

recurrent network is that the recurrent network is organized with chained connection structures to

support sequences, while a recursive or arbitrarily connected network is not restricted by time or

sequences. Recursive NNs have been applied to natural language by Socher et al. [682, 683]; however,

we do not survey recursive NNs here. A recurrent network can be unfolded into virtual time into an

FNN, but a recursive network likely cannot be unfolded into virtual time (see Figs. 10.48 and 10.50).

Output y

Input x

Weights w

Hidden State

Weights v

FNN

Output y

Input x

Weights w

Hidden State

Weights v

RNN

Weights u

(delayed)

Fig. 10.48 This figure illustrates basic differences between an FNN and an RNN, after Boden [677]

Unfolding an RNN into an FNN 479

Unlike the FNN, the RNN’s time-based or state-based sequence analysis and prediction structure

allows the data to be repeatedly, sequentially, and serially shifted into the network as if the RNN was a

giant shift register or ring buffer. This fundamental notion of time and sequence underlies the RNN

concept, providing both advantages and limitations. In contrast, the CNN takes 2D input window

inputs from the current image frame, feeds the feature results forwards, then discards the entire frame

and starts on a new frame.

*It should be noted that FNNs are also bidirectional and recurrent during backpropagation

training. For example, gradient descent is feed-backwards, and tuning parameters such as momentum

may use recurrent feedback for self-adjustment. Also, an RNN can be converted into an FNN by

unfolding over time, as discussed later in this section.

Next we examine the method of transforming an RNN into an FNN via unfolding, which allows for

visualizing the network as it acts on the input sequence, and is also useful for backpropagation training.

Unfolding an RNN into an FNN

An RNN can be remapped as a flow graph over a sequence of inputs, and then the flow graph can be

unfolded into a feed-forward network (FNN), or chain of events. Unfolding allows the forward pass

and the backward pass through the RNN to be visualized, and also enables backpropagation through

time (BPTT [677]). See Figs. 10.49 and 10.50, which show equivalency between an FNN using a

tapped delay line, an RNN, and an unfolded RNN. A simple summary of unfolding in the context of

backpropagation is described by Boden [677], see also Bengio [494].

Tapped Delay Line FNN

Output

Hidden State h(t)

i(t – n) i(t – 1) i(t)

Weights W

Weights U Weights U Weights V

Fig. 10.49 This figure illustrates a set of delay line inputs implemented with an FNN. Note the weight sharing

480 10 Feature Learning and Deep Learning Architecture Survey

Output

h(t – 1) i(t)

Weights W

Weights U
Memory

(delayed)

Hidden State h(t)

Weights V

Output

Weights W

h(t – 1) i(t)

Hidden State h(t)

h(t – 2) i(t – 1)

Weights U

h(t – 3) i(t – 2)

Weights U

Weights V

Weights V

Weights U Weights VRNN

RNN unfolded into FNN

Fig. 10.50 This figure illustrates (left) a simple RNN, and (right) the simple RNN unfolded into an FNN. Note the

weight sharing. Unfolding an RNN into an FNN is useful for visualizing the input data sequence over time, and also

useful for backpropagation training over time (BPTT)

The size of the sequence determines the size of the unfolded graph, or FNN. An RNN is designed

with the sequence size in mind. Or, perhaps the RNN is designed with multiple sequence networks

operating in parallel, each of a different length. The state or output of the RNN is composed of all prior

inputs in the sequence:

ot = ht it, it- 1, it- 2, . . . , i2, i1,ð Þ

Note that the RNN state is not precise for every sequence that fits within the possible sequence size,

but suffers some loss as the contributions are summed together, since depending on the training

protocol, some contributions are weighted more precisely than others. The larger sequence sizes

especially allow for generalization to sequences not found in the training data. The best precision for

sequences will be found by designing the RNN with several parallel graphs containing different sized

sequences, supporting sequence lengths expected in the training data and test data. However, with

larger networks, of course more parameters and connections are introduced, increasing complexity.

RNN Cell and Network Taxonomy 481

As shown in Fig. 10.50, a simple RNN can be unfolded along its input sequence as time steps,

where the forward pass is used to compute the current state of each cell by combining the new input

with the previous state. Note that the weights in an RNN are shared across the cells at each layer, and

the current state is stored in the RNN cell, which we discuss later. The unfolded network appears as a

CNN, so during the backward pass, Backpropagation Through Time (BPTT) is used to tune the

weights; the error is computed as a partial derivative at the output of the network, and for propagating

the error backwards, the partial derivative is partitioned into contributions for distribution to each of

the contributing RNN cells at the nearest layer, and the process repeats backwards through the network

to the input. We refer the reader to Graves [656] regarding backpropagation methods used in RNNs,

including BPTT as described by Williams et al. [674] and Werbos [676], and Real-Time Recurrent

Learning (RTRL) as described by Robinson et al. [675]. See Also Bengio et al. [494].

RNN Weight Sharing and Probabilistic Matching

Weight sharing is an artifact of RNN unfolding into an FNN, as previously described. As shown in

Fig. 10.50, the same weights are shared at different time steps in the graph for the unfolded FNN. This

reduces parameters, but also reduces precision to a point. Weight sharing is apparent in the unfolded

graph, but in the recurrent graph the weights are implicitly shared at each time step, so the single RNN

cell does not share weights, but rather reuses the same weights for each time step.

In RNNs, the idea of weight sharing across time allows for the same weights to apply to a range of

sequences and subsequences such as “abcd” and “abcdefg,” and anomalously to different sequences of

the same length such as “abcd” and “abcz.” The idea of sharing weights allows for generalization to

new sequences similar to the learned sequences. But in this respect, weight sharing provides for a

statistical modeling capability allowing for generalization and approximation, rather than an exhaus-

tive, logical exact-match modeling capability requiring a larger memory system containing all known

sequences to match against (which may be preferable if obtaining the complete training set is possible,

and exact matches are required). Generalization and weight sharing for sequences and subsequences

implies variable precision.

The final effect of weight sharing is that the sequence matching is not precise, but rather

approximated, so an appropriate distance function must be used to predict the match probability.

Therefore, the final classification and matching is similar to polling each RNN cell in the sequence, and

then combining the strength of the activations of each cell into the final match probability for a given

sequence.

RNN Cell and Network Taxonomy

For the sake of this basic overview to illustrate the RNN concept, we taxonomize RNNs with the

following examples of cells and network topologies, knowing that this list is far from complete (see

Behnke [488] to dig deeper and find detailed references).

RNN Cell Type, as illustrated in Fig. 10.51, implements a form of memory, utilizing recurrent

inputs, input from other RNN cells, and programmable gate functions for variable combinations of

values. RNN cells have been developed and improved to provide more control over the memory, and in

particular the Long Short-Term Memory model (LSTM), introduced by Schmidhuber [524] in 1991, is

particularly attractive, which we survey later.

482 10 Feature Learning and Deep Learning Architecture Survey

State

R
N

N
 C

el
l

Recurrent
input
(memory)

Prediction

Input

Input LSTM Cell

Output

gate

Input gate

Output

Forget gate

Ignore gate

G
R

U
 C

el
l

Output

Input

Update

gate

Fig. 10.51 This figure illustrates a few possible RNN cell concepts. The RNN cell is a hidden unit, or artificial neuron.

The recurrent feedback is a form of memory. (Left) Example RNN cell, (center) example LSTM cell with input trainable

combinations of input, current state, and output, and (right) GRU cell combining weight combinations of input and

current state. Cell types discussed later in this section

For the RNN cell taxonomy, we recognize:

• RNN Simple Cells, using a simple recurrent input, each cell is an artificial neuron with inputs,

weights, bias, and output.

• LSTM Cells, GRU Cells, like the simple cells, with the addition of gating functions to allow the

memory to persist and be more controlled.

RNN Network Topology is composed of RNN cells and other artificial neuron cells, using various

connection topologies. RNN architecture topology may include recurrent portions, FNN portions, and

arbitrarily connected portions. There is no common RNN architecture.

Various RNN network topologies include:

• DAG-RNN, DirectedAcyclicGraphRNN,whichmay use recursive connections in a lattice, tree or other

graph structure topology. DAGs provide a basic topology used in multidimensional RNNs, see [658].

• ACRNN—Arbitrarily Connected Recurrent Neural Network, which is the model neurobiology

reveals; however, it is difficult to model.

• DTRNN—Discrete-Time RNNs, which are synchronous, and operate like a state machine driven

by a clock.

• CTRNN—Continuous-Time RNNs which are asynchronous, operate similar to a state machine,

and react dynamically.

• BRNN, BLSTM—Bidirectional RNN or LSTM, composed of two RNNs working in opposite

directions. The BRNN provides context in both directions by incorporating inputs into the RNN cell

from both the forward (next) and backwards (prior) direction, combined into a single output, also

known as a 1D DAG-RNN.

• RRNN—Reverse Direction RNN, where the input sequence is read in reverse, rather than forwards,

see Sutskever et al. [680].

• MDRNN, MDLSTM—Multidimensional RNN, capable of supporting 2D imaging and computer

vision problems, using an extension of the BRNN into two or more dimensions.

RNN topologies shown in Fig. 10.52 include (right) an MLP modified to accept recurrent inputs at

each layer, (center) skip connections used to distribute the input to all cells in the network, to reduce the

path for computing the gradients so the gradients do not vanish, and (left) a deeper RNN for modeling

longer-time sequences, where for example the network is divided into an encoder section to store

sequence tokens, and a predictor section that interprets the tokens.

RNN Sequencing and State 483

MLP

Output

MLP

Input

Recurrence

Recurrence

Input

Output

Input

Output

Fig. 10.52 This figure illustrates a variety of RNN architecture connection topologies

RNN Sequencing and State

RNNs implement a neural model that stores sequences in distributed memory. The memory may

persist over a variable length of time, and is distributed over several memory cells depending on the

depth of the RNN architecture. RNNs may be designed to operate more like a finite state machine,

rather than an FNN. The concept of time is central to RNN sequence learning, and may be synchronous

or asynchronous. For example, data flow through the RNN one input per time step, and past input is

stored in the network as desired. While FNNs are typically organized after the concept of layers, RNNs

are not easily decomposed into layers, and more often resemble a network of cells or cell groups.

A lucid overview of neural methods for sequence processing is provided by Cho et al. [665],

summarizing key research and concept development, and providing good intuition and working

knowledge. Cho also introduces the gated recurrent unit (GRU), surveyed later along with the

LSTM. As shown in Fig. 10.53, a sequence is first encoded from the input and stored in the RNN

memory cells until the sequence is determined to be complete, and subsequently the sequence can be

translated into another sequence or decoded, and then the sequence memory is released to process the

next input sequence. For example, an English sentence with ten words may first be encoded into a

vector representation, and subsequently decoded into a sequence of 14 French words, where each

word, word pair, or phrase may be a recoded as needed to a correct length sequence.

484 10 Feature Learning and Deep Learning Architecture Survey

T-4

x
t-4

“<START>”

T-3

x
t-3

“a”

T-2

x
t-2

“small”

T-1

x
t-1

“word”

T-0

x
t-0

“sequence”

h
t-4

= (x
t-4

w
i
+ h

t-5
w

h
) h

t-3
= (x

t-3
w

i
+ h

t-4
w

h
) h

t-2
= (x

t-2
w

i
+ h

t-3
w

h
) h

t-1
= (x

t-1
w

i
+ h

t-2
w

h
) H

t-0
= (x

t-0
w

i
+ h

t-1
w

h
)

y
t-4

= h
t-4

w
y

y
t-3

= h
t-3

w
y

y
t-2

= h
t-2

w
y

y
t-1

= h
t-1

w
y

y
t-0

= h
t-0

w
y

Fig. 10.53 This figure illustrates the processing of a simple sequence in an RNN. Note that for this illustration, each

input token “string” x is internally encoded as an integer acting as an index into a table of strings

The RNN cell state depends on the past state combined with the present inputs. RNNs are often used

to predict future states, since a series of past states which have been learned and stored in the network

are the basis for future sequential states added to the known past states. By combining RNN cells into

deep networks, deep sequences can be learned. In fact, RNNs are often very deep compared to CNNs.

We will survey a few examples later in this section.

Complex spatiotemporal patterns or rhythms can be learned and stored in RNNs. The RNN takes

input, records state in memory, and produces outputs. RNN state memory can change based upon input

and other gating factors, and produce state-related outputs. Other methods used to learn sequences such

as finite state machines, Hidden Markov Models (HMMs), and Gaussian Mixture Models (GMMs), are

not trainable using differentiation and backpropagation.

While an MLP or CNN is a general function approximator, and RNN is a general sequence

approximator, and have been used to create program code sequences [669]. However, the sequence

state is probabilistic due to the representation as a combination of weights and bias, since the RNN

does not contain a full dictionary of every possible word and phrase combination; instead, the RNN

goal is to generalize and learn via phrase encoding. In the RNN, the probabilistic notions are encoded

in the individual weights for each cell and combined into a summary probability, rather than comparing

complete phrase candidates to known phrases via probability. RNNs take advantage of temporal state

information in the RNN cells for dynamic learning and prediction of spatiotemporal sequences. While

FNNs learn classes in batches, the RNN can dynamically learn over time. RNNs are more versatile

than state-less models, such as HMMs and SVMs which are applicable to classification. However, an

RNN can be applied to both classification and sequences. An RNN can perform parallel and sequential

computing. In general, recurrent networks are designed with far fewer parameters than an FNN,

resulting in faster learning. In addition, RNNs can be designed with good generalization compared

to strict CNN features.

RNN Memory Models 485

RNN Memory Models

A central concept in the RNNs is memory models. Most RNN variations center around the memory

model used, summarize below. The RNN memory models are designed to be intelligent, smart

building blocks to implement spatiotemporal machine learning algorithms. So far, most of the work

applying smart memory systems to computer vision is very primitive, and is done within the RNN

architecture rather than the CNN architecture. However, we highlight the work of Weston et al. [645]

as one recent example of applying a more advanced memory model to machine learning for text

recognition. We expect that smart memories alone could provide impressive tools for developing

entirely new approaches to machine intelligence and computer vision, since biological intelligence

denotes associative memory categorization and recall. Smart memory is a trend to watch for the future.

See Appendix F for a discussion of Visual Genomes [476], which are a form of computer vision feature

memory impressions.

For example, it is possible to represent a CNN by an associative memory matrix (AMM) as

demonstrated by LaRue [646] under contract with DARPA. LaRue converts a CNN into a bidirectional

memory matrix of relatively small dimensions to replace an entire CNN, compressing all hidden layers

in a single association matrix, which is faster to train and faster to execute—a full order of magnitude

faster is claimed. Smart memories for computer vision and machine learning are a fruitful area for

future research, but outside the scope of this brief survey.

Here we briefly summarize a few types of smart memory, which have been incorporated into neural

networks, with some of the methods implemented using RNNs. References are provided to dig deeper.

• CEC LSTM, GRU—Constant Error Carousel (CEC) and Long Short-Term Memory (LSTM)—

Developed by Schmidhuber et al. [524]. CEC and LSTM allow memory to persist, and errors to

remain constant, rather than vanishing or exploding. See Fig. 10.54, LSTM is especially effective

over long-time lags. LSTM is a trainable artificial neural model using weights and bias factors,

where the memory cell is surrounded with a few gating functions, to control memory persistence,

updates, and reset. The constant error carousel is the mechanism of preserving the memory

unmodified at the current state. We survey LSTM along with the variant GRU later in this section.

486 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.54 This figure illustrates one embodiment of an LSTM memory cell, others are possible. Note that the Forget

Gate controls the error carousel (CEC), and the CEC value stays at 1 to preserve the memory until the Forget gate

changes. The Input Gate and Output Gate control their corresponding gate units. See Schmidhuber [651] and Graves

[643]

• Semi-infinite Tape Model (NTM)—The Neural Turing Machine RNN, developed by Graves et al.

[523], uses a semi-infinite tape memory model containing LSTM cells; the memory persists as long

as needed. NTM is novel, but difficult to optimize for random-access workloads. Instead of hard-

coding the number of LSTM cells, the semi-infinite tape of LSTM memory cells can grow and

shrink. NTM also allows forward-backward traversal of time (Virtual Time).

• CAM, AMM, Hopfield Networks, SOM—Content Addressable Memory was first implemented

as an RNN by Hopfield [650] in 1982, also known as a Hopfield Network. In a CAM, the memory

address corresponds by association to the contents of the cell, similar to a hashed-key of the cell

contents. CAM memories have been applied to a variety of problems in computing for several

decades, but are not popular in machine learning for computer vision. An Associative Memory

Matrix (AMM) is similar, but can be derived from a CNN, see LaRue [646], which can also be used

to implement a BAM (Bidirectional AMM) using SVD and PCA on the vectors to mitigate spurious

basins of attraction. See also Kohonen [649] for a discussion on a similar concept, the Self-

organizing Map (SOM).

• BAM—Bidirectional Associative Memory in an RNN was first demonstrated by Kosko [648] in

1988, similar to CAM memory, except that each memory cell contents is a key to other related

memory cells. The concept of associations is a vital notion within intelligence, so BAM memory

systems can be used similar to distance functions (see Chap. 4) to identify feature candidates for

classification and feature matching. LaRue [646] has developed a novel CNN using a BAM running

concurrently with a CNN, which apparently is much faster to train than a CNN alone. Much earlier

work has also been done in the area of BAM memories and variants, see for example Zhou and

Quek [647] for a discussion on DBAM and DCBAM. See also LaRue [646].

LSTM, GRU 487

LSTM, GRU

The LSTM is a type of RNN designed to implement a memory cell providing short-term memory

(STM), which can bridge long (L)-time lags (L + STM). LSTM was introduced by Schmidhuber [524]

in 1991 as an improvement on the RNN model to overcome gradient descent problems, and to

efficiently compress learned representations in a deep architecture using groups of interconnected

RNN-LSTMs. The LSTM model provides for constant error flow back in time, preserving the RNN

memory cell contents when needed, and preserving backpropagated gradient information over long-

time lags to avoid vanishing gradient problems. RNNs have been limited by backpropagation training

difficulties, and the lack of any standard RNN architecture. However, the LSTM-RNN innovations

have made RNNs much more trainable and have enabled deeper networks. See also Ders [678] for a

detailed analysis of LSTM strengths and weaknesses.

An LSTM is a linear integrator, like other artificial neural models, using weights and bias to

integrate over inputs. The LSTM contains training mechanisms (gates) to determine when and how

much the integrator listens to inputs to influence the current state. However, as shown in Fig. 10.54, the

LSTM is a more complex artificial neural model of a memory cell than a simple RNN, incorporating a

combination of gates as follows:

• Input gate (logistic unit, weights = [1:0]).

• Forget Gate, controls the current state (linear unit, weights = [0. . .1]).

• Output gate (logistic unit, weights = [1:0]).

The input gate and the forget gate together determine how much input is stored, and how much of

the current state is forgotten. This arrangement allows for long-term dependencies between sequence

elements to be represented and learned. For example, with the forget gate weight set to 1, the LSTM

will retain its current state value over time, and when set to 0 the current state is forgotten. Intermediate

weight values are possible also for partial forgetting. The input and output gates with the value of 1 or

0 produce simple derivatives during backpropagation, so since the derivative of a constant is zero, no

error is propagated.

The LSTM cell state in Fig. 10.54 can be computed as follows:

it ¼ σ ð Wxixt þ Whiht- 1 þ Wcict- 1 þ biÞ

f ¼ σ Wxf xt þWhf ht- 1 þ Wcf ct- 1 þ bf

ct ¼ f tct- 1 þ it tanh ð Þ Wxixt þWhiht- 1 þ bi

ot ¼ σ ð Wx0xt þ Whoht- 1 þ Wcoct- 1 þ boÞ

ht ¼ ot tanh ð ctÞ

*where σ is the sigmoid function.

A recent variation of the LSTM is the Gated Recurrent Unit (GRU) developed by Cho et al.

[665, 666], which uses only two control gates: the input gate and the dynamic gate, providing a simpler

model for backpropagation tuning. If we consider the current cell value and the new input value as two

inputs to the GRU neural function, then the GRU dynamic gate allows for weight combinations of

current value and input value. As shown in Fig. 10.54, when the input gate is closed, the contents of the

memory are overwritten with new input. When the dynamic gate is closed, past information from

previous cells is incorporated in the weighting computations at the desired strength proportional to the

dynamic gate value, which can be used to reduce vanishing gradient problems. Also, Cho developed a

gated recursive convolutional neural network (grConv) based on the GRU for text translation, see

[666]. Note that the LSTM concept was originally implemented with fewer gates also, like the GRU.

488 10 Feature Learning and Deep Learning Architecture Survey

A weakness of basic RNNs is that there is no way to control updates to each memory cell, which is

simply a recurrent feedback or input with no controls. The LSTM allows data in each cell to be

protected, and retains state as long as desired, using a combination of gates. The gates are analogous to

memory read/write, and reset operations. However, the gates may use a nonlinear sigmoid function

range 0–1. If the output gate = 0, the LSTM cell cannot be read. If the forget gate is zero, the data in the

cell are zero, or reset.

One fundamental problem solved by the LSTM is elimination of vanishing gradients, which are the

thorn in the side of gradient-based backpropagation methods. The solution: the Constant Error

Carousel (CEC), which provides a constant backpropagation error flow to one or more neural units,

since LSTM cells can be integrated together to share the CEC. The forget gate is used to control the

CEC on one or more cells. (NOTE: there is no fixed LSTM design, since the CEC can be shared among

LSTM cells.) The constant value of 1 is used multiplicatively as the CEC weight to preserve the current

state, rather than feeding an infinitesimal gradient in, which would scale the cell value toward zero.

When the forget gate is changed to a value other than 1, the neuron cell value will change. The CEC

also mitigates the problem of oscillating gradients. The work of Lyu et al. [679] on the gating functions

shows that steeper gating functions, such as a steeper sigmoid that forces values to 1 faster, are better

for accelerating learning and forcing convergence.

Within a connected network, the LSTM can learn when to forget memory, and when to update

memory. LSTMs typically use the basic convolutional neural learning model to support

backpropagation by gradient descent. However, other training approaches besides backpropagation

via gradient descent are possible using LSTMs, see Schmidhuber et al. [644], and there is no clear best

method for training RNNs since the topology varies widely. The LSTM concept can be implemented in

several ways, for example with or without the forget gates. One method is illustrated in Fig. 10.55.

Fig. 10.55 This figure illustrates LSTM cells interconnected with other cells, after Schmidhuber [651]

NTM, RNN-NTM, RL-NTM 489

LSTM is a time-aware learning method. Sequences such as algorithm steps, or larger processes can

be learned. LSTM can learn to reproduce sequences, organize, and recall data associatively. LSTM can

handle sequences, and disconnected sequence delimiters analogous to quotes or brackets. For example,

an LSTM cell could be set to recognize an open bracket “[,” and trained to reset itself on detection of

close bracket “].” LSTMs operate well when the training data, or input stream, contain sufficient

redundancy and predictability. Purely random data would not do well in an LSTM architecture, since

the purpose is sequence learning.

Another key concept of LSTMs is compression. For example, an LSTM cell may be set to monitor a

sequence of characters looking for delimiter sequences, such as “,.” By doing this, the intermediate

values are not stored, only the delimiters are stored. This is sequence compression. The sequence

compression idea can make the LSTM network more resilient to errors, since sequences which are

much larger than expected are required to break the paradigm. LSTMs are often organized into layers

to represent time steps, or sequence steps. The lower layers would learn initial sequences, and the

higher layers would learn the unknown sequences which lower layers did not learn, in more and more

compact form. In addition, LSTMs can be organized into larger memory blocks containing entire

sequences per block, with a common CEC to control the block.

Future directions for RNN-LSTM style approaches includes meta-learning or learning to learn, and

memory networks, see Schmidhuber [653]. A good introduction to meta-learning using LSTMs is

found in Hochreiter et al. [652], which is an ideal application for LSTMs since an LSTM can change its

own weights to improve its own algorithm. We discuss 2D LSTMs applied to computer vision in the

multidimensional RNN (MDRNN) section below.

NTM, RNN-NTM, RL-NTM

The Neural Turing Machine (NTM, or RNN-NTM) is an RNN developed by Graves et al. [523] to

implement an RNN as a trainable, probabilistic memory controller for a physical memory unit such as

a DRAM. The NTM is designed to automatically learn algorithms, particularly basic memory access

patterns (sequences) and the memory values (CAM) written to memory. The NTM can also generalize

the learned algorithms, which is much more demanding than learning simple sequences such as a word

phrases or sentences typically performed via RNNs. Currently the author knows of no computer vision

applications for the NTM; however, computer vision applications are expected as research continues.

The NTM memory model is demonstrated as an enhancement to the LSTM model [524]. However,

as the NTM model’s memory size and sequence size increase, compute complexity exponentially

increases also, since RNNs access each memory cell at each time step. The physical memory address is

actually represented by NTM as a probability distribution over the possible memory addresses, rather

than as an absolute memory address. Therefore, as the memory space size increases, the probability

computation increases exponentially, limiting NTMs to sequence sizes practical for computation on

the chosen platform. To address limitations of the NTM, the RL-NTM (Reinforcement Learning NTM)

was developed by Zaremba and Sutskever [686] to improve the NTM model, substituting reinforce-

ment learning rather than an RNN to learn memory access patterns. We only briefly survey the NTM

and RL-NTM here as extensions of the LSTM concept, illustrative of the capabilities of RNN style

memory, and refer the interested reader to the original papers cited.

Graves et al. [523] provide the analogy that the NTM-RNN is like a Turing Machine acting on an

external memory device, so following the Turing Machine model which uses a semi-infinite tape as

memory, the NTM model incorporates the archaic concept of read and write heads (a read/write head

is used on magnetic tape drives). Like the Turing Machine, the NTM incorporates a notion of

instruction sequences such as sequence position, read, erase, and add, as well as RNN constraint

concepts including time and clocking (Fig. 10.56).

490 10 Feature Learning and Deep Learning Architecture Survey

NTM Controller

Sequence InputSequence Output

Read Heads Write Heads

External Memory Device

Instructions

Fig. 10.56 This figure illustrates the basic NTM concept. Note that the NTM is a controller for an external memory

device, with an instruction set controlled by weights, trainable like other RNNs

As shown in Fig. 10.57, the NTM implements a probabilistic read and write address method which

provides an attentional focus window on variable sized groups or windows of concepts, which can be

one of:

• A CAM: a value or range of values spread across memory locations.

• A Sequence: an address (time step) or range of addresses.

The attentional focus window can be narrow or wide, depending on a blurriness weighting factor

and other weighting factors, which make the learning process differentiable and amenable to gradient

descent learning like other RNNs, but therefore probabilistic rather than absolute. Blurriness allows

memory concepts to be selectively ignored while others are in focus, as shown in Fig. 10.57. It is not

entirely clear how the blur parameter works from the NTM paper [523], since the NTM system is

proprietary.

Variable Focus by Content

(CAM)

dogcats a cat a dogcat

Variable Focus by Location

(Sequential)

t-2t-3 t-1 t-0t-3

blurriness of

focus window

• sharp

• blurry

• more blurry

narrow

wide (blurry)

wider (more blurry)

Fig. 10.57 This figure illustrates the variable-focus memory window concept in the NTM model, where the level of

focus can be increased to be more specific, or decreased to be more probabilistic. (Left) A variable-width of a time-based

sequence window, and (right) a variable-specificity content-based window

Multidimensional RNNs, MDRNN 491

The NTM CAM addressing mechanism is similar to content addressing in a Hopfield network

[650], using a blurry, approximate address, or sparse address, which uses part of the concept’s data,

which is then compared into the other concepts (chunks) to find the chunk containing the closest

match. Another way to describe the NTM memory is similar to a classifier, which finds the closest

memory concept given a sparse descriptor or key, and weights.

The NTM authors cite a range of neurobiological research as inspiration. For example, Baddeley

[541] and others have shown that human learning and reasoning process typically keeps several

concepts at attention simultaneously at the request of the central executive, which is directing the

reasoning task at hand. The central executive concept assumes that inputs may come in at different

times, thus several concepts need to be at attention at a given time for the best learning to take place.

Perhaps up to seven concepts can be held at attention by the human brain at once, thus Bell Labs

initially create phone numbers using seven digits. Selected concepts are kept at attention in a working

memory or short-term memory (i.e., attention memory, or concept-memory), as opposed to a long-term

memory from the past that is not relevant to the current task. As shown by Goldman-Rakic [542] for the

human brain, the attention-memory or concepts may be accessed at different rates, for example

checked constantly, or not at all, during delay periods while the central executive is pursuing the

task at hand and accessing other parts of memory. The short-term memory will respond to various cues,

or according to some logic or rules, and loosely resembles the familiar associative memory or content-

addressable memory (CAM) used for caching in some CPUs.

Graves et al. demonstrate that the NTM can be trained and optimized for sequential access copy

operations, chunked access, and sorting, further illustrating how the NTM can learn longer sequences

than an LSTM model. However, since the LSTM can be arranged in a variety of configurations, it is not

clear how the comparisons are made. In addition, the exact NTM architecture is not provided in the

paper [523], neither is the LSTM architecture provided which is used for the comparison.

The applications of the NTM seem well matched to searching and sorting operations performed by

search engines. If developed further, the NTM concepts could be made into a standardized type of

silicon device with wide applications to machine intelligence (NTM-RAM or SMART-RAM), storing

and organizing learned sequences and tuples such as n-grams, which could be a viable alternative to

most classification methods, and also support other general purpose computing applications for data

analysis.

Multidimensional RNNs, MDRNN

We introduce the Multidimensional RNN (MDRNN) and variants here as a group of related

architectures, to point out their similarities and applications to 2D images. The MDRNN is a special

case of the DAG-RNN model introduced by Baldi and Pollastri in 2003 [658], sometimes implemented

as a sequence model for 1D via the BRNN (Bidirectional RNN), which uses a directed acyclic graph

model and recursion within the RNNs to handle sequences. DAG-RNNs can also be implemented in

multiple dimensions such as for 2D images, for example supporting a 2D network with a separate RNN

for the forward and backward passes. The DAG-RNN concept is described by Baldi and Pollastri as

analogous to two wheels, containing weights, moving in opposite directions across the data sequence,

combining the current input and bidirectional wheel outputs to compute the prediction.

492 10 Feature Learning and Deep Learning Architecture Survey

2D RNNs and 2D LSTMs for Computer Vision

A few applications of RNNs and LSTMs to computer vision are appearing in the literature, we briefly

highlight a few here. Graves developed an MDRNN [656] for image segmentation, including the

related MD-LSTM variation [663]. Of all the RNN architectures, the MDRNN is most applicable to 2D

imaging and computer vision, since 2D and higher dimensions are directly supported. Donahue et al.

[654] developed an LSTM-based image captioning and activity recognition system using LSTMs and

CNNs together, see Fig. 10.58. Byeon et al. [709] developed a novel Quad-LSTM arrangement to

capture sequences in the four compass directions (n, s, e, w), process an image frame using four parallel

LSTMs, feeding the four sequences into a CNN to sum and squash the sequences using a nonlinearity,

and feed the result into a softmax layer, the goal is to model local and global pixel dependency

sequences for scene labeling. Yong et al. [710] apply RNNs to action recognition, using the RNN to

learn motion sequences.

Fig. 10.58 This figure illustrates (left) a hybrid CNN and LSTM architecture for sequence learning in activity

recognition and video captioning applications, (right) the concept of encoding and decoding sequences using LSTMs,

images from Donahue et al. [654] CVPR 2015, # Springer-Verlag, used by permission

In many cases, 2D RNNs and CNNs are combined so each can accomplish different complementary

tasks, usually relying on CNNs to learn features, and RNNs to learn sequences of features from frame

to frame, or spatial relationship sequences between local features. For example, CNNs for visual

recognition and LSTMs for sequence prediction are found in Venugopal et al. [642], Ren [655], and

Donahue et al. [654] who apply LSTMs for activity recognition and video captioning.

Later, we also survey the C-RNN [662] in more detail as an example of an MDRNN application to

computer vision.

1.

MDRNN, MDLSTM, DAG-RNN, BDRNN, RRNN 493

MDRNN, MDLSTM, DAG-RNN, BDRNN, RRNN

We will survey variations of the basic MD-RNN in this section. Variants include the multidimensional

LSTM (MDLSTM), and the directed acyclic graph RNN (DAG-RNN). Also, we discuss the related 1D

RNNs on which the 2D variants are based including the bidirectional RNN (BDRNN), and the reverse

RNN (RRNN). To understand the concept of the MDRNN for 2D images, we first look at the 1D case,

the BDRNN or bidirectional RNN (sometimes abbreviated BRNN) as shown in Fig. 10.59, which is

composed of three RNN networks:

I
t+1

I
t

F
t

O
t

B
t

I
t-1

N
O

N
F

N
B

Fig. 10.59 This figure illustrates a simplified BDRNN, or 1D case of the MDRNN. Note that the forward layer F and the

backward layer B are composed of a separate path of hidden units

Fi—forward network to predict the upstream sequence.

2. Bi—backward network to predict the downstream sequence.

3. NO—summary network to combine the output from (1) and (2).

*Note that Fi and Bi run in opposite directions on the data sequence.

For each position in the sequence, the forward and backward networks are combined by NO into a

final prediction, and errors are propagated in both directions along Fi and Bi. Imagine two overlapping

sequence predictions running in opposite directions, distributed about the current position: the

BDRNN output prediction at the current location is a combination of both directions.

According to Fig. 10.59, the 1D BRNN output Oi is composed from the NO, NB, and NF RNNs and

may be computed as follows:

Oi ¼ No I i,Fi,Bið Þ

Fi ¼ NF I i,Fi- 1ð Þ

Bi ¼ NB I i,Biþ1ð Þ

Note that the BRNN reads sequences in both directions: forward and reverse. However, Sutskever

et al. [680] developed an RNN for text-to-text translation which reads the input sequence in reverse,

which we refer to here as an RRNN (Reverse RNN). Sutskever found that by reversing the input strings

during training, the RNN-LSTMs used were able to deal with much larger sentences, and performed

measurably better. Sutskever believes that training similar RNN networks with reversed input

sequences will enable them to perform better as well.

494 10 Feature Learning and Deep Learning Architecture Survey

To extend the BRNN into the 2D case, we introduce a 2D network using four overlapping networks

following the compass directions NSEW as NN, NS, NE, and NW within the image raster, centered about

the pixel at the current time step, illustrated in Fig. 10.60.

N
E

N
W

I
t

E
t

W
t

S
t

N
t

O
t

N
S

N
N

Fig. 10.60 This figure illustrates the 2D MDRNN concept illustrating a 3 × 3 pixel 2D image as input to four RNN

sequences (N, S, E, W) combined into a fifth output RNN. Note: compare this illustration with the 1D BRNN example in

Fig. 10.59

According to Fig. 10.60, the 2D MDRNN output Oi can be composed from the NO, NN, NS, NE, and

NW RNNs as follows:

Oi,j ¼ No I i,j,Ei,j,W i,j, Si,j,N i,j

Ei,j ¼ NE I i,j,Ei- 1,j,Eiþ1,j

W i,j ¼ NW I i,j,W iþ1,j,W i- 1,j

Si,j ¼ NS I i,j, Si,j- 1, Si,jþ1

N i,j ¼ NN I i,j,N i,jþ1,N i,j- 1

As described by Graves et al. [656, 657, 663], the basic idea for the MDRNN or MDLSTM is to

extend the single recurrent input with as many recurrent inputs as there are dimensions. As illustrated

in Fig. 10.60 for the 2D case, the MDRNN is modeled as an ordered sequence of pixels on a series of

scan lines in Cartesian coordinate space. Note that the pixels from the image are scanned into the RNN

as a sequence, one line at a time, from left to right, from top to bottom. This sequence defines the RNN

adjacency connection patterns possible. The application of the MDRNN in this case [656, 657] is

image segmentation into regions of similar texture patterns, the textures are known and labeled in the

training data, so adjacent pixels from the current line and prior line are useful to detect and define the

segmentation. However, Graves et al. [664] also developed a method for RNN classification of

unlabeled data via the Connectionist Temporal Classification method (CTC).

C-RNN, QDRNN 495

As shown in Fig. 10.61, the image is scanned a frame and line at a time into the RNN, therefore the

RNN sequence state at any one time includes prior pixels only, including the adjacent pixel from the

prior scan line, and the previous pixel on the current line, so only two directions of connectedness are

known at once. So for this example, the RNN architecture should at least be large enough to hold two

lines of pixels, the current and previous lines, and perhaps the input buffer can be arranged as a circular

pixel buffer, or a line buffer pool for previous, current and next lines, with pointers to each which

change as the previous line becomes the current line, and so on.

y = 480 scan lines

x = 640 pixels / line

Image

(x,y)(x-1,y)

(x,y-1)

Fig. 10.61 This figure illustrates frame-based scanline input to an MDRNN

In summary, the MDRNN can be applied to 2D images or higher dimensional arrays, and has been

used effectively in image segmentation. However, the type of feature generated by the MDRNN is a

very primitive set of 1D weight templates, forming a 1D intersection kernel around the center pixel. It

is not clear if the MDRNN approach has enough foundation to be extended into more powerful

hierarchical feature sets, which have been demonstrated in the CNN approach to be very effective for

classification.

Next, we survey selected examples of MDRNNs.

C-RNN, QDRNN

The Convolutional-RNN (C-RNN), or Quad-Directional RNN (QDRNN), introduced by Zuo et al.

[662] learns spatial dependencies between convolutional features in local regions, which has been a

glaring weakness of the simple CNN feature model. (To be fair, we note that the CNN model was not

designed to handle the problem of spatial dependencies.) The C-RNN is one of the few examples of an

RNN being directly applied to computer vision feature representation. First, the C-RNN uses a CNN to

capture features across the image. Second, the 2D CNN features are fed into four RNNs operating in

parallel to capture feature sequence signatures in quad-directional compass directions, forming a

cross-shaped feature dependency pattern. The quad-directional sequences are collected in a global

hidden layer, as shown in Fig. 10.62. Note that the C-RNN is different from the MDRNN and

MDSLSTM developed by Graves [656, 663] for image segmentation, since the C-RNN operates on

CNN features rather than pixels. The relationship between the features themselves is sequenced.

However, both the MDRNN and QDRNN use the same bidirectional scanning pattern for each axis

(x, y). Note that an image labeling application of the C-RNN is discussed by Shuai et al. [661].

496 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.62 This figure illustrates the C-RNN method, where (left) CNN style correlation template features are collected,

(center) the image is scanned in four directions using an RNN to learn the directional connected sequences of features,

and (right) fully connected layers are used to learn the classification of the features and associated sequences. Image from

CVPR Zuo et al. [662], # Springer-Verlag, used by permission

The C-RNN uses five feature layers composed of convolution and pooling, a recurrent layer for

computing the four compass direction RNN sequences, and two fully connected layers for classifica-

tion, and a softmax layer. The five C-RNN CNN layers include 11 × 11–96, 5 × 5–256, 3 × 3–384,

3 × 3–384, and 3 × 3–256. Input window stride is four for the first layer, and one otherwise. 3 × 3 max

pooling is used, with a stride of 2, at the first, second, and fifth layers. The summary filter sizes fed into

the RNN are thus 6 × 6 × 256.

As shown in the center of Fig. 10.62, there are four RNNs computing sequences over all the 6 × 6

(36) features, and the RNN sequence length is 36 for each feature map (one of 256). The four

sequences weight vectors wx are concatenated into vector hs as input to the FC layers, similar to the

MDRNN formulation, as follows:

For notational convenience, we convert symbols from Fig. 10.62:

", # , → , ←½] ¼ n, s, e,w½]

∴

hs ¼ wn þ ws þ we þ wwð Þ

In summary, the C-RNN explores a novel feature learning architecture, combining a CNN to learn

the features with an RNN to learn the spatial relationships between the features. This author expects to

see a trend toward more research into heterogeneous CNN/RNN architectures for computer vision

applications.

RCL-RCNN 497

RCL-RCNN

The Recurrent Convolutional Layer (RCL) proposed by Liang and Hu [681] is one of the first promising

applications of RNNs to computer vision, and combines several novel features together. The novel RCL

(Recurrent Convolutional Layer) substitutes an RNN for the convolutional function normally used in

CNNs. The RCL is used in each convolutional layer to build an FNN, which the authors refer to as an

RCNN (Recurrent Convolutional Neural Network). It could be said that the RCL-RCNN is more like a

CNN than an RNN and should be covered in the CNN survey section earlier; however, we cover it here

instead since the RNN is incorporated. Additionally, the RCL-RCNN is quite novel in the direct use of

multiscale inputs to each RCL layer, as shown in Fig. 10.63, where the original image at full scale is fed

into each RCL layer to compute the features, along with the feature map image from the previous layer

which has been convolved and possibly pooled, reducing the image scale. This arrangement requires

some scaling and alignment to get the images to line up for feature computations, and the exact method

used by Liang and Hu is not specified in the paper [681].

Fig. 10.63 This figure illustrates the recurrent convolutional layer (RCL), which uses an RNN in place of the
convolution function. Compare to the NiN method, which uses an MLP in place of the convolutional function. Image

from CVPR Liang and Hu [681], # Springer-Verlag used by permission

498 10 Feature Learning and Deep Learning Architecture Survey

The RCL-RCNN creates novel CNN-style feature patches by combining input patches recurrently

from previous layers, for example using identically sized input windows from the current layer with

input windows from a previous layer (which is shown in Fig. 10.63 as the original input layer),

resulting in a deep recurrent feature representation. For example, a 3 × 3 feature for the current feature

map k (from the set of 96 feature maps) using both the current c layer and a previous p layer, is

computed as follows:

f k tð Þ=

3

i= 1

3

j= 1

wc
i,j ci,j þ wp

i,j pi,j þ b

where:

• (i, j) are coordinates in the image

• k is the index into the feature map images [1. . .96]

• w is the weight matrix (3 × 3 window) for a layer

• c is the current layer input window, t(k) (3 × 3 window)

• p is previous layer input, t - 1(k) (3 × 3 window)

• t is time, so t is the current layer, t - 1 previous layer

• b is the bias for the feature map k

As shown in Fig. 10.63, layer 1 is a CNN layer using 5 × 5 features, and layers 2–5 are RCL layers

using 3 × 3 features. The network is expressed as RCL-RCNN-n, where n is the number of features per

layer—all layers use the same number of features, in contrast to most other CNNs which vary the

number of features at each layer. The authors report good results using 96, 128, and 160 features per

layer, and report that the results only vary by about 0.5% depending on the number of features per

layer. Max pooling is used between some layers, with a region size of 3 × 3 and stride of 2 for some

overlap. Local response normalization (LRN) is also used, similar to the method used in AlexNet

surveyed above in the FNN section. A novel Global Max Pooling layer (GMP) combines the strongest

activations from feature maps at each layer, which feeds into a softmax classifier.

Note that what we see in the RCL-RCNN and the NiN surveyed earlier is both similar and novel:

both methods replace the convolutional layer used in standard CNNs with another function

(MLP + RCL), and both methods replace the fully connected classifier with global, inclusive models

(GAP + GMP).

dasNeT

The Deep Attention Selective Network (dasNet) developed by Stollenga et al. [548] uses a novel

recurrent feedback mechanism to adjust the sensitivity of convolutional feature weights in a CNN to

boost the feature weights to optimize for misclassified samples. The central idea includes a method to

evaluate multiple hypothesis in the form of slightly different feature weights, similar to the visual

reasoning process a human expert might use, to arrive at the best feature weights overall. Some of the

inspiration comes from the research of Branson et al. [684] and Cadieu et al. [553], showing how

human experts perform complex visual evaluations by testing multiple hypothesis sequentially, similar

to a 20-question game where the number of questions are intelligently minimized via multiclass

classification, using separate classifiers such as color, size, and shape to narrow down the scope of

the solution space. One benefit of dasNet is that each feature is automatically evaluated and optimized,

one at a time, by the built-in boosting process, reducing the need to visualize features as images for

visual quality inspection [576].

dasNeT 499

The dasNet combines a slightly modified Maxout architecture (see Goodfellow et al. [546]) with a

recurrent feedback mechanism to implement a variant of reinforcement learning [685] to optimize the

feature weights. The Maxout network modifications allow for the weights to be modified one at a time

as a single image is fed into the network multiple times in a tuning loop to compute the best weights

over a range of possible values. Note that the Maxout Z-pooling parameters are set to reduce every

n consecutive feature map images down to a single feature map image by taking the maximum value of

all the maps in the Z pool (see the NiN, Maxout survey above for more details).

The dasNet operates in two phases: training phase, followed by the boosting phase. First, the

Maxout network enters a normal training phase using labeled training samples in a supervised learning

manner. Next, a boosting phase is performed to learn a control policy to improve the trained network

by intelligently boosting the weights for misclassified samples or weakly classified samples. Note that

the control policy is embodied in learned weights, trained during the boosting phase. The control

policy uses a recurrent feedback mechanism, which iterates the network n times over a single image.

During the boosting iterations, feature weight parameters and softmax classification scores are

collected into an observation vector, see Fig. 10.64. The control policy takes input from the observa-

tion vector to implement a probabilistic optimization for the feature weights, reducing the error

gradients by inhibiting or exciting the feature weights, using multiple passes over the same image to

find the best weights. The output of the control policy is an Action Vector used to modulate the feature

weight parameters. The end result is a form of attentional learning, which selectively enhances and

inhibits features which were not effectively trained during normal supervised training. The boosted

feature weight changes are applied before the maxout feature map reductions.

Fig. 10.64 This figure illustrates the dasNet boosting phase, where the network parameters are composed into an

observation vector (vertical bar) which is analyzed to produce an action vector used to optimize the feature weight

parameters, implementing a form of reinforcement learning. Image from [488], # Marijn Stollenga used by permission

500 10 Feature Learning and Deep Learning Architecture Survey

In essence, the observation vector provides a way for all parameters to influence each other in a form

of coadaptation. The observation vector and action vector are the parameter space used to implement

the control policy for weight optimizations.

The boosting phase involves the following process:

• Select a random batch of images from the training set

• Run the random batch through the network n times:

Run each image through network m times:

Run image through network

Collect the observation vector

Compute error term (* misclassified images are highest)

Update control policy from error term and observation

vector

Produce action vector via control policy

Change weights according to action vector

In summary, dasNet is one of the most elegant combinations of RNNs and CNNs, leveraging the

strengths of both methods, and in addition incorporating reinforcement learning to select and boost

misclassified and weak features to optimize the feature weights. In addition, dasNet points the way

toward future research into more intelligent feature weight optimization and boosting methods,

including selective image feature focus (which may bring us back full circle to earlier research on

local feature descriptors and interest points to find candidate features to focus on within a CNN or

RNN).

NAP—Neural Abstraction Pyramid

The Neural Abstraction Pyramid (NAP) proposed by Behnke [488] is a novel hierarchical recurrent

network, combining lateral locally recurrent, feed-forward, and backward feedback connections into a

single network. The NAP takes a unique approach to neural network design, guided by iterative

refinement objectives to form the network and processing architecture, following neuroscience

research. The human visual system iterates, and saccades, at specific interesting locations, comparing

features and higher-level concepts together at the same level and across levels to verify key details.

Neither local features relationships nor multilevel feature relationships alone can model the human

visual system, so NAP supports a synergistic classification based on local lateral as well as hierarchical

feature relationships. NAP addresses a major gap in existing CNN architectures in which features are

independent, and the classification model is more like a probability distribution of features, with no

notion of local or hierarchical feature dependence.

The NAP classification process is iterative, focusing on one feature, then another, using separate

sets of excitatory features and inhibitive features to build confidence, inspired by neurons in the visual

cortex which excite and inhibit in the same local region and across spatial regions, described later.

Reliable and trusted features excite confidence and inhibit unreliable features. Short-distance

correlations, or lateral correlations, are most important in the saccadic iteration process, and long-

distance correlations between different scale feature layers are less important. The iterative approach

assumes that an FNN captures primitive features in the low layers, and then lateral and local spatial

feature relationships within layers can resolve most partial representations, and decisions that cannot

be made locally are deferred to higher layers. The highest layers contain abstract feature

representations.

NAP—Neural Abstraction Pyramid 501

As shown in Fig. 10.65, the basic architecture consists of a hierarchical pyramid of features, where

the lower-layer features are primitive concepts such as edges, and higher levels represent mid-level and

higher-level concepts. The features are referred to as Feature Cells, and the number of feature cells

increase with higher levels of abstraction. Like CNNs, NAP low-level features are taken at a higher

spatial resolution, and higher-level features are taken at reduced spatial resolution. The number of

features increase up the NAP layer hierarchy, and the higher-layer features represent more abstract

concepts. The features are motivated by the success of CNNs and weight sharing is used at each layer.

Fig. 10.65 This figure illustrates the neural abstraction pyramid, showing low-level feature layers, mid-level feature

layers, and higher-level concept layers. Image # Springer-Verlag, from hierarchical neural networks for image

interpretation, Sven Behnke [488], draft submitted to Springer-Verlag published as volume 2766 of lecture notes in

computer science

The NAP pyramid abstraction is novel, and allows all features in the hierarchy to be associated

laterally and across levels with regard to spatial x, y coordinates, so that a higher-level concept

spanning a large pixel window can be decomposed down the pyramid into mid-level or low-level

features within the same window. Spatial relationships are thus preserved and used to guide classifica-

tion. As shown in Fig. 10.65, NAP associates features using Hypercolumns and Hyperneighborhoods.

Each feature retains an x, y coordinate which locating each hypercolumn and hyperneighborhood. The

pyramid structure allows features to be correlated via projection across scale layers, for example

allowing for analysis of a high-level abstract feature and its contents of mid-level and low-level

features. The feature relationships in the hypercolumns and hyperneighborhoods are described in a

convolutional weight vector, representing associative excitation and inhibition. Weights represent

local, lateral contextual influences within the same layer, and bias influences from other layers via

forward or backward connections within the hierarchy. The NAP connection organization within and

across layers can be advantageous for various coding optimizations and caching mechanisms that

exploit locality, such as parallel processing, SIMT, and SIMD (Fig. 10.66).

502 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.66 This figure illustrates the concept of using feature coordinates to allow for location-based hierarchical
feature associations across layers in the NAP pyramid, Image # Springer-Verlag, from hierarchical neural networks for

image interpretation, Sven Behnke [488], draft submitted to Springer-Verlag published as volume 2766 of lecture notes

in computer science

Like a CNN, an NAP feature is computed as a weighted sum and bias. However, the feature inputs

are much more complex. Feature cells are composed over a lateral region + recurrent inputs + inputs

from other layers, followed by a transfer function such as a zero-centered sigmoid. For details, see

Behnke [488] section 4.2. NAP provides for both excitatory features and inhibitory features. The

inhibitory features are composed of the sum of features within a layer, following the neocognitron

model [510, 511, 612], where the feature sum is used like an inhibitory gain factor. Global inhibition

and excitation can be used to implement winner-take-all classification or boosting. Local inhibition or

excitation can be used similar to max pooling in a CNN. The NAP operates in a recurrent fashion,

recomputing features at discreet time steps. Depending on the specific NAP architecture, features can

be computed bottom-up, layer by layer, as in an FNN, and computed as groups within layers, for

example excitatory feature groups and inhibitory feature groups.

NAP implements a novel set of learning rules to optimize the response of each sparse feature,

ensuring each feature is unique and necessary. The learning rules follow Hebbian [502] principles for

weight updates and MAX pooling, rather than following gradient descent methods which uniformly

distribute gradients across all weights indiscriminately for weight updates. In NAP learning, each

feature is adjusted individually during training to respond more specifically, rather than more gener-

ally. Competition is used at each level to find features which should be inhibited or excited via weight

updates, with the goal that all features respond to specific rather than general features, so that no feature

wins too frequently. As the training image is sent through the network, the two most responsive

features are selected and the top responding feature is adjusted relative to the second most responsive,

which decorrelates the feature from all other features. Individual weights are adjusted differently

within the feature kernel neighborhood to optimize maxima and ridge detection.

BFN Architecture Survey 503

Behnke demonstrates, at a high level, how the NAP architecture may be adapted to a wide range of

applications including local contrast normalization, handwriting binarization (i.e., skeletonization

morphology), and translation invariant feature extraction using Gabor filters implemented using a

DFT over Gaussian localized windows (similar to Wavelets). In addition, Behnke develops novel NAP

architectures and performance analysis for more demanding applications including postage meter

stamp recognition, binarization of 1D barcodes and 2D barcodes, face localization, local iterative

image reconstruction on MNIST handwriting digits with injected occlusion defects and injected noise

defects. Figure 10.67 shows a NAP architecture for a six-layer sparse hierarchical feature learning

feature system using an unsupervised learning approach applied to handwritten digits.

Fig. 10.67 This figure illustrates the NAP architecture for an unsupervised, sparse learning approach to handwritten

digits, Image # Springer-Verlag, from hierarchical neural networks for image interpretation, Sven Behnke [488], draft

submitted to Springer-Verlag published as volume 2766 of lecture notes in computer science

BFN Architecture Survey

This BFN survey will cover a lot of ground, touching on most of the feature learning architectures used

in computer vision that are not considered in the ANN style deep-learning architectures as covered in

the FNN and RNN survey sections earlier. In other words, we consider BFNs as a catch-all category

to contain all other nonneural network DNN architectures, which is a large category indeed, so we can

only select representative architectures for this survey, and highlight common underlying concepts and

components (Fig. 10.68).

504 10 Feature Learning and Deep Learning Architecture Survey

BFN
Basis Function Networks

PNN, GMDH
Polynomial Neural

Networks

HKD
Hierarchical Kernel

Descriptors

HMP
Sparse Coding

HMAX
Neural Model

Visual Pathway

HMO
Neural Model

High Level Reasoning
BoW, Vocabularies

Kernel Descriptors
SVM’s

Fig. 10.68 This figure illustrates the Basis Function Networks covered in the survey

We distinguish basis functions from CNN-style weight features generated from training data. For

example, a Gabor function or a Fourier Series components are basis functions generating basis features

under this taxonomy. We define a BFN as a Basis Function Network, a network using basis features

rather than purely convolutional features and artificial neuron models common in CNNs and RNNs. In

a BFN, basis functions are used rather than convolutional neural layers. In many systems, hybrid

feature models are used, combining BFN, CNN, RNN, and several styles of features and classifiers,

which we refer to as ensemble methods or hybrid networks. Basis functions and CNN style functions

are used together in some networks in this survey.

First we will survey several key background concepts to lay the groundwork for the BFN architec-

ture surveys including:

• Feature Models, Classification models.

• Basis Sets.

• Vocabulary Learning.

• Kernel Descriptor Learning.

• Sparse Coding and Codebook Learning.

• Other classifiers, Trees, Boosting.

After exploring the background concepts, we survey representative BFN Architectures:

• Polynomial Features—PNN.

• Kernel Descriptor Features—HKD.

• Local Feature Descriptors—HMP.

• CNN + Basis Features—HMAX.

Concepts for Machine Learning and Basis Feature Networks

In this section, we discuss some key background concepts used in feature learning networks using

basis functions including vocabulary methods, codebooks and sparse coding, and statistical classifica-

tion models such as kernel machines and SVMs, which are distinct from ANN-style convolutional

filter features and ANN-style classification models such as FC layers. The goal of this section is to lay

the groundwork at a high level to appreciate the various BFN architecture examples in the survey.

Feature Models, Classification Models, Decision Models 505

Feature Models, Classification Models, Decision Models

As shown in Fig. 10.69, the basic models used to define BFNs and CNNs are illustrated at a high level

for comparison. Note that neural network models are a subset of statistical models, for example neural

classifiers such as FC layers and simple MLPs are equivalent to statistical methods such as regression

and SVMs. However, BFNs are typically not based on neural models, but rather on a different set of

feature models and classification models. As shown in Fig. 10.69, feature learning networks roughly

correspond to the following basic model parts:

Decision Model

Softmax

Classification Model

Statistical Classifier

SVM, Kernel

Machines

. .

.

FC layers

i

0

i

n

o
0

. .

.

o
n

ANN Classifier

KNN,
Clustering

Kernels (Meta

Descriptors)

Feature Model

CNN Hierarchical Features

Low-

level

Mid-

level

Hi-

level

Feature

Descriptors

Vocabulary,

Sparse Codes

Basis Function

Or Polynomial

Regression

Other,…

Trees,Forest,

Boosting

% ⊖

⊖ ⊖ K C

Fig. 10.69 This figure illustrates feature learning architecture concepts for basis function networks, compared to

CNNs. Note: Zernike polynomials (bottom left) are one of many mathematical basis feature alternatives. Depending

on the features chosen, the classifier stage may be different, for example requiring kernel methods to project features into

a linearly separable space for an SVM. CNNs commonly use SVMs in place of FCs

506 10 Feature Learning and Deep Learning Architecture Survey

• A Feature Model: any feature descriptor, such as pixel patches, local, regional, basis, or ANN style

features. The features may be organized into a fixed-size feature hierarchy as used in CNNs, and

encoded into a sparse codebook or a visual vocabulary (bag of words).

• A Classification Model: we divide classification models as follows:

– Convolutional Classifier Models (ANN, CNN, RNN).

FC classifiers (discussed earlier) are common in CNNs and ANNs, implementing layers of

simple linear classifiers using layered neural models of weights and bias trained using

backprop.

– Statistical Classifier Models (many methods exist, discussed later).

Statistical regression and clustering methods such as KNN (see Chap. 4).

SVM (Support Vector Machines), Kernel Machines, a framework for regression analysis and

classification, mapping linearly unseparable features into a linearly separable space using

kernel methods.

• A Decision Model: (sometimes the classifier performs this function): performing some decision

function on the classified data, for example a probabilistic softmax %.

The feature model in large part determines the feature learning architecture, and especially

influences the classifier model. Note that the items in shaded gray boxes on the left in Fig. 10.69 are

typically associated in the same style of architecture, such as statistical classifiers and

nonconvolutional style features, but many variations are used in practice. The style of features also

determines the training protocol, since convolutional features are tuned in fully convolutional

networks via gradient descent methods, while BFNs use a wide range of other classifiers and training

protocols. Neural style classification models were introduced earlier in this chapter under the Fully

Connected (FC) Layers, Flatten, Reduction, Reshape section. Statistical classifier models, SVMs, and

Kernel Methods were briefly introduced in Chap. 4, and are discussed in more detail later.

Function Basis vs. CNN Basis vs. Other Models

What is a basis function or basis feature? We take a wide and inclusive view of basis functions,

defining a basis as a base set of features generated by a function. A basis function is typically a

mathematical function or polynomial (see Chap. 3 and Fig. 3.19 for a summary of mathematical basis

functions), but by our wider definition may also be any of the local feature descriptor methods

discussed in Chaps. 4, 5, and 6, as well as global and regional feature descriptors discussed in

Chap. 3. For example, in frequency space, the Fourier Series components represent Sine and Cosine

basis functions. Gabor Basis Functions (see Chap. 3) describing oriented edge-like features have been

used in several DNNs for the lower-level features, since they resemble the types of low-level edge

features detected in the V1–V2 regions of the visual pathway as suggested by neuroscience research.

Using basis features as low-level features eliminates the need to learn low-level features from scratch.

Then, mid-level and higher-level features can be learned on top of the Gabor functions, and expressed

as convolutional filter masks for CNN style feature learning of mid-level and high-level features, for

example the HMAX model surveyed later is a good example. While most ANNs use the basic

convolutional dot product of inputs against weights + bias followed by a nonlinear function, it is

possible to create an ANN using purely basis functions such as the PNN or Polynomial Neural

Network surveyed later in this section. (Note: A CNN feature hierarchy of features could be considered

a CNN basis set under our loose definition; however, we separate CNN models from BFN models for

the sake of the taxonomy.)

While the CNN tunes the feature weights to represent a group of similar features, the statistical

methods tune feature groups to represent clusters of similar features. In other words, the CNN tunes

each feature weight, contrasted against the statistical methods that tune the feature space.

Visual Vocabularies, Bag of Words (BoW) Model, Alternative Encodings 507

We can compare the CNN feature models and architectures with other feature models and

architectures to gain some insight:

• The CNN Feature Model: CNN features are generated using a complex backpropagation process

analogous to averaging, tuning each feature weight in each feature to represent groups of similar

features. The CNN classification stage typically uses an FC layer (discussed earlier in this chapter)

composed of a single large 1D feature weight vector taking inputs from all the feature weights,

trained in a similar manner to the other lower-level feature weight matrices. A CNN can be designed

using purely convolutional features end-to-end by incorporating feature weight layers and FC

layers. Some CNNs use an SVM in place of the FC, or on top of the FC. The softmax layer can

be used as the last layer in a CNN as a probabilistic method for generating a confidence score for the

classification decision.

• Other Feature Models: Other feature models such as basis features, vocabulary features, sparse

codebooks, and local feature descriptor sets, require some amount of training to learn the feature set

or tune the feature descriptor parameters, for example tuning and selecting Gabor functions, boiling

down a vocabulary of features into a sparse set, and learning and tuning local feature descriptors

(local feature descriptor learning) as discussed in Chaps. 4, 5, and 6. Basis features other than CNN

features typically use some sort of statistical classification model, like an SVM, or a clustering

method such as KNN, and the final decision layer may be a softmax.

Visual Vocabularies, Bag of Words (BoW) Model, Alternative Encodings

Similar to a word vocabulary, a Visual Vocabulary [696] or Bag of Words (BoW) model allows for an

image or image region to be classified based on the visual words detected. A visual vocabulary may

also be referred to as a visual dictionary or a codebook of code words. Many types of feature

descriptors can be used as visual words. The vocabulary can be used to form a histogram descriptor,

as shown in Fig. 10.70, binning the total count of detected features against the closest feature in the

vocabulary. Depending on the descriptor format of the visual words, different types of distance

functions are used to perform the feature matching, and a variety of methods are used to reduce the

vocabulary set via clustering similar features together, analogous to sparse coding methods.

Visual Vocabulary

Object #1 histogram Object #n histogram

Feature

Match

?

Target Object

Fig. 10.70 This figure illustrates a visual vocabulary and simple histogram-based feature vector representation; each

object is a histogram vector counting the features detected in the object. Target features may be matched via

reconstructing weighted combinations of a few vocabulary features

508 10 Feature Learning and Deep Learning Architecture Survey

The vocabulary is the basis feature set. The features in the basis set may be encoded to change the

representation of the feature, typically to a smaller representation or alternative encoding, in order to

reach design goals such as reducing the memory footprint and increasing searching and matching

performance. We will survey several encoding methods later in this section.

Visual dictionaries typically contain a few thousand or a few tens of thousands of visual words.

Vocabulary methods are flexible and allow for (1) powerful local feature descriptors such as FREAK,

ORB, and SIFT, (2) vocabulary feature comparisons using a wide range of distance functions, (3) a

wide range of clustering methods to boil down the feature set into a lower dimensional set, and

(4) high-dimensional feature set topologies such as aggregated sets, and hierarchical sets. Search time

for feature distance measurements and memory usage for the feature set can be limiting factors.

The vocabulary is typically encoded in a sparse manner, boiling down the features to the appropriate

sized set using a range of clustering methods (see Chap. 4). In the literature, several related terms are

used to describe a visual vocabulary, such as a bag of words or bag of features model, also called a

dictionary or codebook (some practitioners make very fine distinctions within this terminology). One

of the first vocabulary methods based on texture patches was pioneered in 1981 by Julesz [692], using

selected textons or texture patches for the feature vocabulary, and other research has continued along

these lines [19, 32, 33, 55] including research to create a dataset of preexisting texture samples from

real images in the CUReT dataset, see Appendix B. Vocabulary methods are applicable to generating

image statistics and for scene recognition, see Jurie and Triggs [696]. Often, vocabulary methods are

applied to image recognition, image and scene classification, and visual search engines.

As shown in Fig. 10.71, any type of feature can be used as the vocabulary basis. The vocabulary

feature descriptor is typically a histogram of features from the codebook. Basic vocabulary models are

primitive, and rely on orderless presence or absence of features, ignoring sequences, spatial

associations, and feature invariance criteria such as rotation and scale. However, orderless vocabulary

methods have been enhanced several ways, for example by aggregating multiple descriptors such as

color, shape, and texture [701], or color, gradients, and LBP [702], incorporating feature descriptor

locality to cluster nearby descriptors into a metadescriptor group by Ionescu [704], or by incorporating

geometric scale (see the Pyramid Match Kernel [186] in Chap. 6).

Extract
Features

All FeaturesInput Images

Cluster or
Sparse
Code

Features

Reduced Vocabulary
(for histograms)

SimilarityDescriptors, Spectra

Fig. 10.71 This figure illustrates the process of developing a visual vocabulary. As shown on the right, the vocabulary is

a clustered or reduced codebook set of prototype features, which is used as a feature vector to contain a histogram binning

of the occurrence of each vocabulary feature in a given image

Vocabulary Encodings 509

The number of features in the vocabulary is a design choice. One might include all features detected

in the training set into an exhaustive vocabulary, but for efficiency it is common to boil down the

vocabulary into a smaller representative set of features using sparse coding methods, clustering

methods or soft quantization methods [768]. We note that both BoW methods and CNN methods

use hard-coded fixed numbers of features. How many features are needed? The feature count is

typically based on the experience and intuition of the practitioner, along with some experimentation

during training. Usually, CNNs use a different number of features at each layer, maybe a few hundred

features per layer, and the features are classified using one or more fully connected (FC) layers or

perhaps using an SVM. However, for basis features, descriptors, visual vocabularies, and the optimal

number of features can be learned from the training data, taking guidance by finding the minimal

reconstruction error, see Chap. 4 for some discussion on image reconstruction from local feature

descriptors.

Vocabulary Encodings

The vocabulary items may be encoded in a variety of ways for convenience. For example, a feature

descriptor like SIFT or spectra such as pixel intensity may be encoded or projected into another

representational format to enable more uniform treatment in a particular classification algorithm. The

encoding may be a kernel-based meta-descriptor, or simply a distance from a prototype feature in the

vocabulary. Early work by Jakkola and Haussler [767] on deriving kernel functions has been extended

by many researchers, which we cover in this section. Many encodings have been devised to optimize

feature encodings for searching and matching. One of the key ideas used to make visual vocabulary

representation and matching more efficient is to aggregate sets of feature descriptors into compact

encodings, and then the encoded visual words become smaller and faster to process for classification.

We highlight a few alternative visual word optimization methods here, and refer to the readers Jegou

[768], Chatfield et al. [770], Tolias [766], and van de Sande [490] to dig deeper.

• Histogram Encoding (Visual word dictionary basis, hard assignment to a single codeword, simple

SSD or SAD distance)—Simply creates a histogram counting the number of features matching each

closest descriptor in the dictionary. The histogram bin assignments are hard assignments to the

single nearest visual word to a single descriptor. The histograms may be normalized or weighted

[768]. Correspondence can be computed using Euclidean distance, SSD, SAD, and other simple

methods.

• Kernel Codebook Encoding (Visual word dictionary basis, soft assignment to multiple

codewords, simple distance to nearest matches)—Uses a soft assignment or distributed assignment

of a single feature descriptor to multiple nearest features in the vocabulary, such as the nearest five

features. See Gemert et al. [772].

Note

The Fisher Vectors, VLAD, and Super Vector encodings are similar and efficient since they encode

differences between basis shapes in feature centroid space rather than encoding entire descriptor

vectors for computing distance. As a result, distance is strongly affected by the clustering method used

and the cluster initialization process. For example, see Fig. 10.73 illustrating cluster center anomalies

using K-MEANS.

510 10 Feature Learning and Deep Learning Architecture Survey

• Fisher Vectors (HMM Gaussian basis, residual vector difference of feature descriptor from

nearest HMM Gaussian basis)—Fisher Vectors developed by Perronnin et al. [486, 764, 765] are

based on creating a vocabulary set of Gaussian basis features to encode features as a Gaussian

Mixture Model (GMM). The Gaussian basis features are created from a training set of feature

descriptors such as SIFT. The vocabulary is created by clustering all the feature descriptors from the

training set into several thousand clusters. Perronnin [774] optimized the vocabulary set by

reducing the cluster count to 256 by first pooling the SIFT descriptor set using PCA. The Gaussian

basis features are defined by each cluster shape’s centroid, mean, and variance. The Fisher Vector

encoding is a concatenation of all the distances between the GMM basis features. The distance from

target features to the GMM basis shapes is a scaled directional gradient, which reduces the size of

the descriptor to a small scalar value, rather than a large set of individual distances matching the

SIFT descriptor structure. Perronnin [773] developed a method to optimize Fisher Vectors for more

efficient large-scale searching, computing similarity using the dot product of Fisher Vectors, and

also a binarized method of representing Fisher Vectors with Hamming encoding.

• VLAD, MultiVLAD [766, 768] (Feature descriptor basis over visual word dictionary, Cosine

difference of residual angles)—VLAD (Vectors of Locally Aggregated Descriptors) encodings are

optimized to be compact and fast for feature matching. VLAD builds a vocabulary of local

descriptors such as SIFT, and clusters the descriptors using K-MEANS or a similar method.

VLAD is based on a coarse vocabulary set of perhaps 256 features. For each basis cluster center,

the residual distance between clusters is accumulated and concatenated into a vector matching the

size of the SIFT descriptor, typically 128 bytes. So each VLAD is a vector aggregation of residual

distances. VLAD encodes the distance of a descriptor to the basis cluster center using Cosine

distance residual angles. VLADs are designed to be very low-dimensional descriptors containing

16 bytes to describe an entire image, which is ideal for large-scale image classification tasks. For

classification, each new target descriptor is evaluated based on the distance to the cluster center.

Arandjelovi and Zisserman [769] provide a very readable summary of VLAD and make several

improvements to the original method, notably the Multi-VLAD method to use multiple VLAD

descriptors at multiple scales and multiple tilings across the image.

• Super Vectors (Centroid of codeword cluster basis, simple distance, residual distance)—Proposed

by Zhou et al. [771] are similar to Fisher encodings combined with a histogram encoding. One

variant is assignment to the closest codeword, and another variant uses soft assignment distributed

across a set of five nearest neighbors. Assignment is based on a novel distance criterion

incorporating a cluster normalization step, the first-order difference between individual features

and cluster centers, and factoring in the mass of the clusters.

• Hamming Encoding (Hamming Code Basis, fast Hamming Distance)—Proposed by Douze et al.

[775] extends the BoW model by a combined encoding for each visual word including (1) a binary

signature generation and encoding for use in quickly computing Hamming Distance between

descriptors, since Hamming distance is extremely fast and is often implemented in CPU and

GPU instruction sets, and (2) weak geometric consistency constraints providing matching penalties

for rotation and scale mismatches. A novel soft-assignment to a variable number of closest visual

words is also proposed.

• FLAIR (Visual word basis + integral images for each codeword, various distance functions)—

FLAIR (Fast Local Area-Independent Representation) developed by van de Sande [490] encodes

the image in a multidimensional integral image space containing codeword indexes for each pixel

into the dictionary. One integral image is encoded for each visual word. Integral images are

extremely efficient and fast to compute in constant time, so matching performance is very fast

and predictable. FLAIR can embed one or more encodings into the integral image framework, with

Sparse Coding and Codebook Learning Overview, K-MEANS, K-SVD 511

one integral image dimension per encoding. FLAIR is most effective on more complex encodings,

such as Fisher Vectors and Flair, compared to BoW representations. Van de Sande provides an

excellent survey of relevant search optimization approaches.

Next we discuss sparse coding methods, which are used to encode vocabulary features into an

overcomplete sparse set for classification.

Sparse Coding and Codebook Learning Overview, K-MEANS, K-SVD

Sparse coding methods are used in a wide range of applications such as noise removal, inpainting,

signal encoding, and general compression. For computer vision applications, a sparse codebook

contains a sparse overcomplete set of codewords (features), from which unknown features are matched

to the codebook by approximately reconstructing the unknown feature using linear weighted

combinations of a small set of codewords. An overcomplete set allows for more than one way to

approximate a feature from the basis set of codewords. For example, consider Fourier series-based

signal reconstruction.

Image reconstruction from a sparse codebook of image patches is illustrated in Fig. 10.72. The

sparse codebook becomes the basis feature set for a given feature domain, and may be chosen from

some preexisting basis set which can be further tuned to fit the training data, or an entirely new basis set

can be learned from a training set. Overcompleteness of the codebook is required for sufficient

reconstruction from combinations of codewords. We provide a fundamental introduction to sparse

codebook feature learning here, along with references to dig deeper.

Basis

Features

Random

Vectors

Transfer

Features

Random

Patches

Sparse CodebookInput Images

Feature Learning:

Clustering,

Reconstruction

Clustering, K-SVD, K-MEANS,
Codebook Reshaping,
Matching Pursuit,
Sparse Reconstruction,

Feature Matching:

Reconstruction

Matching Pursuit,
Sparse Reconstruction

Possible initialization values

Fig. 10.72 This figure illustrates the process of sparse codebook initialization, feature learning, and feature matching.

Note that the same types of reconstruction algorithms are used for learning the features, and reconstruction of feature

matches from the sparse codebook features

512 10 Feature Learning and Deep Learning Architecture Survey

Sparse coding can be divided into the following tasks:

1. Codebook Initialization from some basis set or random values.

2. Feature Learning to modify the codeword entries from the training data.

3. Feature Matching via reconstruction from small sets of codebook features.

A sparse codebook does not contain a complete vocabulary of all possible codes needed to perfectly

represent or reconstruct the training data, but rather sparse codes are a compressed set of features,

defined to the desired level of sparsity desired for signal reconstruction and pattern matching accuracy.

Sparse coding is a form of signal compression. One goal of signal compression can be to represent a

signal using a smaller number of signals than normally required by the Nyquist Frequency sampling

rate, which states that the signal must be oversampled by at least >2×. Sparse coding dramatically

reduces the reconstruction requirements. Sparse coding is analogous to coalescing scalar values in a 1D

feature space using some form of quantization criteria, such as varying bit resolution from 8 bits to

4 bits to collapse similar values into fewer values, reducing the level of detail. However, sparse coding

operates in a multidimensional feature space. For computer vision, sparse coding addresses the trade-

off between classifier discrimination versus classifier compute efficiency, since more features provide

more discrimination, at the cost of compute efficiency.

Several approaches are taken to learn a sparse codebook of features, for example single-layer SIFT

feature codebooks and pixel patch codebooks. Aharon et al. [707] provide a good survey of various

sparse coding methods, see also Feng et al. [724]. See Yu et al. [726] for a comparative survey of SIFT

versus pixel patch methods used for sparse coding, which are shown to be equally effective. See

Candes et al. [722] for more on theoretical sparse coding optimizations. See Olshausen [725] for

details on neurobiological theories about sparse coding. See Coates and Ng [554], who find that the

encoding scheme and architecture are more critical than any specific feature descriptor method used. In

addition, the preponderance of researchers note that many weak features in a feature hierarchy can be

as effective as powerful local feature descriptors for sparse coding. Mairal has developed several

methods for feature learning and sparse coding, see [729, 730], including novel hierarchical methods

[731, 732]. Bo et al. [111, 204] implement a novel hierarchical sparse codebook using a Hierarchical

Matching Pursuit (HMP) to learn features from raw pixel patch features, surveyed in detail later.

Ranzato et al. [491] developed a model of sparse coding convolutional features similar to an RBM

network called SESM (Sparse Encoding Symmetric machine).

We can illustrate sparse coding by following Fig. 10.72. First, the sparse codebook is initialized via

one of many methods such as (1) transfer learning using pretrained features from another sparse

codebook, (2) from a basis set such as DCT or Gabor feature, or (3) from randomly sampled image

patches or random-valued feature vectors, or (4) from a set of candidate local feature descriptors

computed at interest points which have first been clustered and reduced to a smaller set. For example,

Belongie [201] initializes the codebook to a set of overcomplete DCT basis features, and in another

case initializes a codebook to a random set of image patches taken from the training images. Since it is

impossible to know in advance precisely how to initialize the codebook, using an overcomplete set

with more than enough detail is common, rather than an undercomplete set. Both the range of feature

variation and the number of features in the set are interrelated in this respect.

Next, feature learning is accomplished tuning the initial sparse codebook features to fit the training

data. To illustrate the concepts of sparse codebook building, we focus on the K-SVD method

developed by Aharon et al. [707]. K-SVD iteratively recomputes the feature codebook during training.

K-SVD is a singular value decomposition method, implementing a parameterized generalization of

K-means, which iteratively recomputes the codebook to minimize the error between the new sample

and the closest codewords. K-SVD will recursively reshape the codebook as it learns, to balance the

uniformity of feature distribution within the feature space. K-SVD is one of many parameterized

generalizations of K-MEANS clustering [707].

Sparse Coding and Codebook Learning Overview, K-MEANS, K-SVD 513

K-MEANS learns a centroid cluster set from the training samples, and then test samples are

classified by matching to the nearest cluster in the centroid cluster set. The cluster set positions are

therefore the codebook entries for the feature vocabulary. K-MEANS iteratively clusters samples into a

chosen number of cells around a centroid. We refer the interested reader to more detailed references,

see the original paper by Lloyd [728], a good text by Hartigan [82], and a larger survey text by Hastie

[300]. As shown in Fig. 10.73, the K-MEANS cell boundaries are often illustrated via the Voronoi

Tessellation Diagram proposed in 1908 by Voronoi [86], which partitions the space into polygon cells

with polygon boundaries equidistant to each neighboring cell centroid. K-MEANS allows the number

of centroids and the coordinates of each centroid to be chosen in advance, and then the algorithm

assigns each sample to the nearest centroid. The centroid distance to each sample may be computed

simply in Euclidean space as the average of all x, y coordinates in a region. K-MEANS results vary

depending on the distance function used to determine the cluster centroids, for example Euclidean

distance versus Manhattan distance will produce different results. Also, K-MEANS clustering will

vary depending on the precise number of centroids chosen, and the coordinates of the centroid

positions, as shown in Fig. 10.73.

Fig. 10.73 This figure illustrates K-MEANS clustering into eight groups using Euclidean distance, with Vornoi

tessellation lines dividing each cluster. The left and right images contain the same data; however, the centroid starting

positions have been assigned to be at slightly different coordinates for each left and right image (see the crosshair

positions), illustrating how K-MEANS produces different clusters depending on the starting centroid positions selected

K-MEANS clustering can be summarized as follows:

Initialization:

• Choose the number of clusters.

• Assigning a centroid starting position for each cluster, perhaps by

choosing samples points from the dataset at random, or by some other

method [82, 300].

514 10 Feature Learning and Deep Learning Architecture Survey

Iteratively learn and refine clusters:

• Assign each sample to the nearest centroid using some distance function,

such as Euclidean Distance (see distance functions in Chap. 4).

• Recompute each centroid to refine fit to nearest samples.

• Repeat 1–3 until stopping condition reached: the difference between the

new centroid and previous centroids is computed and compared to a thresh-

old; when the values are lower than the threshold, K-MEANS stops.

The weakness of K-MEANS and similar methods is that clustering results vary depending on the

number of centroid points, the distance function used, and the coordinates of each centroid point.

Therefore, improvements and variations have been devised such as K-SVD to solve for other specific

objective functions, see Chap. 4 for a survey of clustering methods and clustering objectives.

K-SVD developed by Aharon et al. [707] is a combination of K-Means (K) and Singular Value

Decomposition (SVD)—thus the name K-SVD. The goal of K-SVD is to generalize and parameterize

K-MEANS in the context of SVD. SVD is equivalent to Principal Component Analysis (PCA), since

both methods decorrelate values to identify the principal component values with the highest variance,

which is conceptually similar to finding cluster centroids.

The K-SVD algorithm can be summarized as follows:

Initialization:

• Choose the number of basis set items.

• Initialize basis items from basis functions, randomly, PCA on training

samples, other.

Iteratively learn and refine sparse codebook:

• Recompute basis items (sparse coding):

– Add new sample using basis pursuit to approximate value.

– Recompute all basis items.

• Recompute dictionary (dictionary optimization):

– Prune basis items that are not used often.

– Remove basis items that are too similar (mutually coherent).

– Replace seldom used codewords with underrepresented codewords.

K-SVD reconstructs each new target feature as an approximation composed of a linear combination

of a few basis features from the codebook. K-SVD adds the new approximation to the dictionary,

updates each dictionary item, and finally updates the entire dictionary to prune and remove mutually

coherent (i.e., similar) items. For example, Fourier Series approximation is a similar method for

reconstructing a target feature from the basis features, see Fig. 2.15.

K-SVD can be used with any matching pursuit method to approximate new sample features from

the sparse codebook features. A matching pursuit method composes a linear combination of sparse

codes to approximately reconstruct a sample feature, similar to a series reconstruction from the

familiar Fourier Series sine and cosine basis waves (see Figs. 2.14 and 2.15). Depending on the

feature descriptor representation details, different matching pursuit algorithms are chosen. Matching

pursuit methods have been pioneered in signal processing by Pati et al. in 1993 [706] for wavelet signal

dictionary composition, which Pati calls Orthogonal Matching Pursuit, i.e., looking for the closest

features orthogonally across the basis set. Several matching pursuit approaches are surveyed by

Aharon [707], including the more common Orthogonal Matching Pursuit (OMP) and Basis Pursuit

(BP). More sophisticated matching pursuit methods are also used, which evaluate several possible

reconstructions using multiple-path codeword combinations [707, 727] and batch methods [737].

Sparse Coding and Codebook Learning Overview, K-MEANS, K-SVD 515

An oversimplified algorithm for a matching pursuit could be devised as follows:

// the sample feature to match

input: sampleFeature

// record the weighted sum of best matching codewords

output: reconstruction = 0

// keep a running total of the match residual range [0–1]

Residual = 1

// find the n closest matching codewords

Iterate n times:

closestCodeword = findClosestCodeword

(sampleFeature * residual)

//reconstruct the best fit of n weighted codewords

Reconstruction += residual * closestCodeword

// the difference between the sampleFeature and the best match

residual = residual – closestCodeword

As illustrated in the algorithm, and in Fig. 10.74, a basis pursuit approach can be used to

approximate a target feature d using a vector projection of the target against all basis codewords, to

find the match with the greatest magnitude. The magnitude is the strength of the match, and is saved as

the weighting coefficient. The residual is recorded by subtracting the weighting coefficient from the

sample feature. The basis pursuit repeats recursively n times to find the best n sparse codewords to

represent the remaining n residuals. The final approximation is reconstructed from the weighted sum of

the n best matching vectors. A stopping criterion can be devised, such as a reconstruction error

threshold, or a fixed number of iter ations.

w
3
=1.5

x = b *1.5

b

b

b

b

b

w
1
=.4

y = b *.4

Ω(d) = (b *.4) + (b *1.5)

d
residual

b *.4

b *1.5

1
st

approximation of d:

1

5

4

3

3

1

1

1

3

3

2

Fig. 10.74 This figure illustrates a simplified reconstruction of feature d by projection of vector d into the basis vector

space to determine the two best matching basis vectors. Note the weights w1 and w3 are determined by projecting vector d

onto closest matching basis vectors b1 and b3

Here are the simplified basis pursuit and reconstruction details from Fig. 10.74.

(Sparse Codebook basis vectors):

ℝc = b0, . . . , bnf g

(First approximation of feature d from weighted sum of codebook features):

516 10 Feature Learning and Deep Learning Architecture Survey

x dð Þ= 8ℝc :

n

i= 0

wibi dð Þ

(Residual to minimize):

r= d- x

(Second approximation of residual r from weighted sum of codebook features):

y rð Þ= 8ℝc :

n

i= 0

wibi rð Þ

(Reconstruction using two basis vectors *NOTE: more residuals may be computed and combined):

Ω dð Þ= xþ y

where:

• x—the signal to approximate.

• wi—weight determined via projection of feature [d,r] onto closest matching basis atom, see

Fig. 10.74.

The sparse coding feature space deserves special consideration, especially the distribution of

features in the space, and the distance between features. Measuring similarity between features in a

feature space is typically a multidimensional problem, and methods vary among matching pursuit

methods. For example, we discuss Kernel Methods in the next section, which are sometimes used to

project features into a higher-dimensional feature space in a matrix representation to enable efficient

similarity solutions, and could also be used within a basis pursuit algorithm. Some of the

considerations for creating a good sparse-coded feature space include ensuring a uniform distribution

of features in the feature space with no distance distortions around common features, which leads to

distance distortions around uncommon but necessary features which may be otherwise quantized out

via the encoding scheme. We discuss sparse code feature space uniformity compensations and

reshaping later in the HMP method survey.

To verify that the sparse codebook is sufficient, one method is to reconstruct images from the sparse

codebook by sampling the image patches, matching each sample image patch into the sparse codebook

to find the best matching sparse code combinations, and then reconstructing the image from the sparse

code combinations. A sufficient feature set should allow for decent image reconstruction to the

expected level of detail, as illustrated with several examples in Chap. 4 based on local feature

descriptors such as SIFT, HOG, and FREAK. See Fig. 10.75 illustrating how the original images

patches are reconstructed, one by one, from combinations of either two or five codebook feature

combinations in the HMP method. Thus, the codebook is trained to sparsely represent the feature

vocabulary for the application domain, and is used to reconstruct pattern matches from combinations of

sparse codebook entries.

Kernel Functions, Kernel Machines, SVM 517

Fig. 10.75 This figure illustrates image reconstruction from sparse codes, each codeword is a 5 × 5 image patch. (Left)

original, (center) reconstruction using two codewords and looking blocky, (right) reconstruction using five codewords

and working well. Image from Bo et al. [204] from ISER Springer Tracts in Advanced Robotics, # Springer used by

permission

For more details on sparse coding for feature learning, see Grimes [477], Grosse [478], and Bergstra

[479]. Signal processing literature and video compression literature are also good sources. See

Wang et al. [711] for an example of locality-based sparse encoding, as well as [554, 560]. See

Candes et al. [722] for more on sparse coding optimizations. See also Boureau et al. [630] for more

on preserving 2D locality or position, as well as preserving feature space locality to improve results on

smaller dictionaries.

Kernel Functions, Kernel Machines, SVM

A vocabulary or codebook of features may provide invariance, robustness, and the feature description

and extraction compute efficiency, yet be difficult to untangle in the feature space to perform

classification. To allow for optimal feature classification, kernel methods are often used to prepare

features for classification of vocabularies using a range of machine learning methods. The term kernel

has various meanings within mathematics. For example, in the literature regarding data mining

[629, 716], the term kernel is used in several different contexts, for example within the domain of

kernel regression methods, which treat the kernel function like a bump-map or windowing function

along the regression line, to weight the local data points within the window prior to distance

measurements. In statistical classification discussions on Kernel Machines and Support Vector

Machines (SVMs), kernel functions are used to map feature vectors into a kernel matrix (kernel) to

perform dot product similarity measures between kernels in a higher-dimensional space. Computing

similarity between kernel matrix pairs is much faster than first converting the features to a higher-

dimensional space prior to computing similarity, and also allows for feature aggregations for multi-

variate descriptors, as illustrated below.

The kernels operate in a Hilbert space, analogous to a multidimensional Euclidean space, where

familiar vector operations can be used to search for linear relationships, using dot products to compute

angles and distances. A kernel matrix is also referred to as a Gram matrix, which is symmetric and

positive semi definite, solved via the dot product between all points in the kernel matrix pairs to

completely define the coordinates in the multidimensional Hilbert space. Many application-specific

kernel functions have been devised to create kernel matrices, and methods exist to learn a kernel matrix

referred to as Multiple Kernel Learning (MKL), see Lanckriet et al. [720]. We provide a high-level

overview here, and refer the reader to better references in machine learning and statistical analysis texts

as we go (Fig. 10.76).

518 10 Feature Learning and Deep Learning Architecture Survey

Kernel methods are used to perform either or both:

• Aggregation of one or more features into a new meta-feature representation.

• Projection of features or spectra into another representational space for classification (Figs. 10.77

and 10.78).

Feature Vector(s)

(Descriptor, Spectra)

K(X,Z) K

Kernel Function

(Mapping)

Kernel Matrix

(Meta-Descriptor)

PA(K)

Pattern Analysis

(Dot-product)

Custer,

Correlate,

Match

Fig. 10.76 This figure illustrates how a kernel function is used to map feature vector data or raw pixel patch spectra into

a kernel matrix (i.e., meta-descriptor) in a different feature space for optimal pattern analysis and classification via simple

dot products between kernel matrices, see also Shawe-Taylor and Christiani [526, 713]

Z
2

Z
1

X
2

X
1

K
ern

el
M

a
p

p
in

g

Fig. 10.77 This figure illustrates how a kernel function maps linearly unseparable data in space X (left) into linearly

separable data in space Z (right), after Boswell [703]

The need for kernel methods arises from the nonlinear distribution of data in some applications,

which complicates analysis. As shown in Fig. 10.78, data that are not linearly separable become

separable using the right kernels. So, a kernel function is like a mapping function, or a projection

function, to move features into another feature space. Thus, the kernel matrix is a powerful method for

unifying, normalizing, and combining heterogeneous feature descriptor or spectra combinations into a

common feature space for pairwise similarity computations for classification. We will survey examples

in this section showing how features descriptors, such as SIFT features and RGB spectra pixel patches,

are converted into kernel matrices for classification.

Kernel Functions, Kernel Machines, SVM 519

2
d
 K

ern
el

M
a

p
p

in
g

3
d

 K
ern

el

M
a

p
p

in
g

Fig. 10.78 This figure illustrates how kernel mappings can yield linearly separable data in the VC-dimension (i.e., a

higher-dimensional space), (top) kernel mapping of 1D data into 2D space, and (bottom) kernel mapping of 2D data into

3D space, separable with a hyperplane

Kernel methods (see Hoffmann [305]) are used with Kernel Machines, such as Support Vector

Machines (SVMs). Kernel Machines allow for various kernels to be substituted and tried during

training to find the optimal kernels. When kernels are used with SVMs, the kernel projects the data

from a space of dimension n into a higher-dimensional space n + 1 (i.e., the VC-dimension, n + 1). As

shown in Fig. 10.78, in a 1D space, the maximum number of points that are guaranteed to be separable

are 2. In a 2D space, the maximum number of points guaranteed to be separable are 3 (unless the points

are colinear). In a 3D space, the nonseparable 2D points may become separable by hyperplanes. The

goal of kernel function design is to find the best kernel to map the data into some higher-dimensional

space for optimal analysis, which involves a combination of stretching and compressing the feature

space for optimal clustering and separation, so many kernels are used in practice.

Instead of using coordinates of features to compute distance for pattern matching, kernel methods

compute the distance between two kernel matrices via the dot product of kernel matrix pairs, which

projects one feature onto the other to reveal similarity. The kernel matrix acts as a meta-descriptor. The

kernel functions which create the kernel matrices are problem-specific, and details on the derivation of

specific kernel functions are beyond the scope of this work, and are covered in various texts, see

Vapnik [534] and also Shawe-Taylor and Nello Cristianini [526, 713]. Kernel solutions return a single

value, the dot product of one kernel matrix with another kernel matrix. A range of standard statistical

analysis methods are performed using kernel methods, such as pair-wise distance analysis, principal

component analysis, and cluster analysis. Complex and irregular data such as character strings and data

structures like trees must first be converted to a suitable matrix form in order for kernel methods to

apply. For example, structured-data can be run through a hash-like function to produce a matrix

Þ

Þ ¼

representation of the data for kernel methods, see also Hausler [705] for more references and details on

his method of generating kernels to represent abstract structures. Gaussian kernels, RBF kernels, and

simple polynomial kernels are commonly employed in most cases, although a wide range of kernels are

employed for different applications. Finding the right kernel for the data is also important to make

kernel methods work well, as covered in the references. The NIPS7 community contains a large body

of research papers and other information on the subject of kernel machines, SVMs, and kernel

functions.

520 10 Feature Learning and Deep Learning Architecture Survey

Kernel matrices can also make classification much faster, acting as a shortcut to avoid direct

computations in the higher-dimensional space to compute distance. As shown in the simplified

example below, the kernel function uses a simple dot product between two kernel matrices, rather

than taking a complete algebraic solution to first move the kernel matrix features into the higher

dimension prior to computing the distances (often referred to as the kernel trick < vulgar> in the

literature). Note that for large feature vectors and large feature sets, the algebraic solution is computa-

tionally prohibitive compared to the dot product.

A verbose example using a hypothetical kernel function K(x, y) = (hx, yi)2 is compared to the

equivalent algebraic solution below, illustrating the computational differences.

Slow Algebraic Method (full projection into higher-dimension space):

ϕ x, yð Þ ¼ f xð Þ, f yð Þh i

f nð Þ ¼ x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3ð

x ¼ 1, 3, 5ð Þ

y ¼ 2, 1, 3ð Þ

f xð Þ ¼ 1, 3, 5, 3, 9, 15, 5, 15, 25ð Þ

f yð Þ ¼ 4, 2, 6, 2, 1, 3, 6, 3, 9ð Þ

f xð Þ j f yð Þh i ¼ 4þ 6þ 30þ 6þ 9þ 45þ 30þ 45þ 225ð 400

Faster Kernel Method (no projection into higher-dimensional space, use dot product instead):

K x, yð Þ ¼ x, yh ið Þ2

K x, yð Þ ¼ x1, x2,x3½] . y1, y2,y3
2

K x, yð Þ ¼ 1, 3, 5½] . 2, 1, 3½]ð Þ2

K x, yð Þ ¼ 2þ 3þ 15ð Þ2 ¼ 202 ¼ 400

Kernel functions map the feature data or spectra into another feature space of higher dimension,

where the features can be disentangled into linearly separable clusters. Recall from Fig. 5.1 that we

define spectra as any representation of data derived from pixels, such as a basis set, pixel patch

intensity values, RGB colors, depth information, local region histograms, or LBPs. Kernel functions

create a new feature representation (i.e., Meta-Descriptor) from combinations of various data (i.e.,

spectra and features), by projecting the data into a kernel matrix representing the data in a vector space.

A range of problem-specific kernel functions have been designed. For a survey kernel method

application, see Müller et al. [700], Cho et al. [697], Lampert [695], Zhang et al. [693], and Vedaldi

et al. [698]. A good tutorial on SVMs is provided by Teknomo [715]. SVMs are also applied in DNNs.

In some CNNs, no FC layers are used, and an SVM is used instead for classification. In other CNN

7 http://www.nips.cc —Neural Information Processing Systems.

http://www.nips.cc

systems, the FC layers are replaced by an SVM after training, and fine-tuned from the learned CNN

features.

PNN—Polynomial Neural Network, GMDH 521

Vocabularies or codebooks may be represented as collections or hierarchies of kernel matrices (i.e.,

meta-descriptors) built from other feature descriptors and spectra. As demonstrated by Bo et al. in the

Hierarchical Kernel Descriptor (HKD) and Hierarchical Matching Pursuit (HMP) methods [90, 110,

201, 593, 616], RGB-D spectra and LBP feature descriptors are used as input into kernel functions

used to create the kernel matrices or meta-descriptors, which we survey later in this section. A novel

application of kernel methods using optimized match kernels is provided by Bo et al. [691], which we

survey later as well. Multiple descriptors may be aggregated and encoded together into a single kernel

matrix, for example see Tolias et al. [766] regarding their Selective Match Kernel (SMK) and

Aggregated SMK (ASMK), compared to similar methods such as Vector and Locally Applied

Descriptors (VLAD), and Hamming Encoding (HE). An algebraic method for aggregating set kernels

is also found in Shashua and Hazan [718]. See Gehler and Nowozin [719] for more details about

multivariate descriptors composed using kernel methods. For a good survey of kernel methods with

several references, see Lampert [695] and Zhang et al. [693].

Other Statistical Classification Methods, Decision Trees, Forests, Boosting

We have only briefly surveyed three classification methods: (1) CNN FC layers, (2) Kernel Methods

and SVMs, and (3) Vocabulary and Sparse Coding, and have ignored the vast majority of other

interesting classification models. The author believes that the topic of statistical classification is far

larger than the field of computer vision and feature learning, which is the primary reason why the focus

of this work is the pixel side of computer vision and especially feature descriptors, rather than the

mathematical and statistical classification methods that are borrowed and applied.

A few other notable classification approaches we do not survey include Tree and Forest-Based

classifiers such as FERNS [262], which organize the features into a hierarchy of feature similarity.

Also the Viola-Jones method [117, 153] for feature learning is noteworthy, combining multiple

features into a hierarchy or funnel of features, trained and optimized by boosting weak feature

[313], see also Chaps. 4 and 6 for more on Viola Jones.

For more information on classification methods applied in machine learning, see the standard texts

by Hartigan [82] and Hastie [300]. See also the NIPS community resources.

Next, we will begin a survey of representative BFNs to illustrate all the background concepts we

have covered including various feature models and classifier models.

PNN—Polynomial Neural Network, GMDH

We begin the BFN survey with perhaps the world’s first DNN, the Group Method Of Data Handling

(GMDH), otherwise known as a Polynomial Neural Network (PNN), developed by Ivakhenko and

Lapa in 1965 [504–506]. The PNN uses tunable polynomials as the basis features, rather than

convolutional filters as in the CNN architecture. A good overview of PNN, along with neural network

implementation details, is provided by Zjavka [690]. PNN departs from the McCulloch and Pitts work

(1943), so rather than defining neurons as binary two or three state equilibrium systems, GMDH

defines neurons as complex, nonlinear functions. Note that neuroscience has not yet discovered a

verifiable electrochemical model of a physical neural function; however, the PNN polynomials appear

to offer flexibility to model a wide range of possibilities compared to simple weight templates as used

in CNNs. Ivakhenko’s work appeared frequently in Avtomatika and other Soviet publications

unknown outside the USSR. The GMDH model is inductive and self-organizing, and has continued

to be popular [688] especially in Russia, and other parts of the world as well, with a significant

community of researchers. GMDH implementations are found in several commercial software

packages and systems worldwide. Most of the GMDH applications are statistical in nature including

general multidimensional mathematical modeling, data mining and forecasting, but some computer

vision and pattern recognition applications have been developed [688].

522 10 Feature Learning and Deep Learning Architecture Survey

GMDH is inspiring and unique. The basic ideas embodied in GMDH sound too good to be true

compared to ad hoc methods for designing CNNs and RNNs used by many practitioners. Here is a

summary of a few key GMDH concepts:

• Creates an optimal mathematical model of the data.

• Self-organizing network, learned inductively by sorting the data.

• Polynomials used to describe features, instead of CNN style templates.

• Number of neurons and layers determined automatically.

• Automatic structuring of network model.

• Automatic learning of interrelationships and patterns in data.

In 1971, Ivakhnenko [507] refined the GMDH using eight layers to learn the optimal number of

layers, optimal number of neural units per layer, and prune neural units as needed. For example, the

GMDH neural activation functions used second-order polynomials, and self-adjusting thresholds, and

could take advantage of Kolmogorov-Gabor polynomials, providing more control than other simple

activation functions used in later systems such as sigmoids. In fact, the original paper mentions over

20 algorithms (similar to neural activation functions in today’s parlance) that had been proposed

within GMDH. The Ivakhenko system could learn and train features from a validation set, much like

today, and each layer could be trained differently for the given data and application. In fact, the

validation set for the GMDH was conditioned using a variant of dropout which is parameterized to

eliminate unwanted data samples which can lead to overfitting during training.

The GMDH polynomials are modeled after Kolmogorov-Gabor polynomials, a type of Gabor

function. The PNN neural model takes two inputs, and produces a single output via a quadratic

function of inputs using a total of six weights, combining the polynomials as a multinomial to produce

the final output, as shown in Fig. 10.79. See Zjavka [690] for a good overview.

HKD—Kernel Descriptor Learning 523

Hidden

Layer 1

Input

Layer

Hidden

Layer 2

Hidden

Layer 3

Output

Layer y

X1

X2

X3

X4

Fig. 10.79 This figure illustrates a GMDH PNN, after Zjavka [690]. Note the computation of each PNN neuron takes

two inputs, uses a polynomial neural function with six weights, and produces a single output

Since Ivakhenko introduced dropout in 1971, several other researchers [509] have rediscovered

dropout variants. Recently, [508] another dropout method was introduced, random dropout, to drop

random training samples by setting them to zero to prevent overfitting. Apparently, nobody yet has

compared random dropout to Ivakhneko’s work, so perhaps Ivakhneko’s work will be revisited. More

work has continued on GMDH in Russia and the Ukraine, see the detailed website [688] summarizing

historical and continuing GMDH research [689, 690].

HKD—Kernel Descriptor Learning

Kernel descriptor methods learn features by converting feature vectors into kernel matrices, such as

simple pixel patches, local region gradients, color patches, LBPs, Z depth information, and other

feature descriptors. The kernel matrix is the kernel descriptor, or meta-feature, suitable for use in

kernel machines. Sometimes in the literature a kernel descriptor is referred to as a match kernel. Kernel

descriptors can represent vocabulary feature vector histograms, and turn such histograms into kernel

matrices for use in a kernel machine. Kernel methods may be considered to be more mathematically

sound and common in statistical analysis, compared to DNN methods that rely on ad hoc models of

neurons trained in artificial connection topologies .

For background on kernel methods mentioned in this HKD survey, review the section above on

Kernel Functions, Kernel Machines, SVMs.

In this section, we survey a few architectures using kernel-based feature learning to produce meta-

descriptors from spectra such as RGB-D patches and LBP features in a hierarchical architecture.

The Hierarchical Kernel Descriptor method (HKD) developed by Bo et al. [687] learns kernel

descriptors from various pixel patch spectra such as gradient color, depth, and LBPs. HKD is based on

the earlier work of Bo et al. on Kernel Descriptors [702] and extends the descriptors into a hierarchy by

computing kernel descriptors over kernel descriptors in a layered hierarchy. Thus, HKD extends the

basic kernel descriptor method to take input from the output of other kernel descriptors in a hierarchy,

combining features from local receptive fields into higher-level features, rather than taking input from

pixel patches or other features (see Fig. 10.80).

524 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.80 This figure illustrates the HKD method of computing kernel descriptors recursively over kernel descriptors

into a feature hierarchy. Image from Bo et al. [687] in CVPR, # Springer, used by permission

The goal of HKD is to provide a principled, uniform method for learning kernel descriptors from

pixel spectra or other feature descriptors, inspired by the earlier work on efficient match kernels (EMK)

developed by Bo et al. [691] which produces kernel descriptors from SIFT features and Fourier spectra.

However, HKD learns kernels from raw pixel patches and other spectra from rectangular patches

including:

• KDES-G: Gradient Match Kernel, composed of a normalized gradient histogram weighted using

gradient magnitudes, with contributions from the gradient orientations and a Gaussian pixel

position kernel within the patch. The KDES-G learns a kernel representation of a HOG or SIFT

style features.

• KDES-C: Color Match Kernel, composed of individual color channel components such as RGB,

combined with a Gaussian pixel position kernel within the patch.

• KDES-S: Shape Match Kernel, using the LBP to represent local patch shape information, with a

Gaussian pixel position kernel within the patch.

• KDES-D: Depth Match Kernel, composed of Z depth channel scalars, combined with a Gaussian

pixel position kernel within the patch.

The HKD gradient kernel descriptors learn a representational view of gradient orientation

histograms from a pixel patch, similar to SIFT and HOG descriptors, but HKD gradient descriptors

are claimed to be slightly more accurate. The HKD gradient kernel descriptor includes three

components: (1) a pixel-by-pixel attribute comparison for gradient magnitude, (2) orientation, and

(3) a Gaussian-weighted pixel position comparator.

HKDs address the computational problems associated with large feature matrices. If a kernel matrix

is large, and the feature set is large, the compute cost of kernel methods grows to be prohibitive. To

address the compute cost of larger kernel matrices, HKD first maps the features into a lower

dimensional space (reduction of feature set), and then shrinks the size of each feature (compaction

of each feature) via a convex quadratic approximation method.

HMP—Sparse Feature Learning 525

In HKD, the kernel descriptors are learned from the training data from pixel patches, for example

patches of size 16 × 16 taken across a dense 8 × 8 sampling grid. Next the patches are reduced into a

sparse set (lower dimensional set). For example, if 1,000,000 patches are collected across the sampling

grid, the vocabulary is reduced down to 1000 words using K-MEANS clustering. Next the final kernel

descriptors are computed from the reduced patch set into the dictionary vocabulary. The kernel

descriptors are individually compacted in size to reduce the compute workload, since larger feature

vectors require more compute, which is especially apparent as the feature set size grows. The

compaction is performed using a modified KPCA (Kernel-PCA) operating on joint basis vectors in

the feature set. The goal is to approximate the kernels over a finite dimension, to make the kernel

descriptors smaller, and reduce redundancy in the feature set. Bo finds that patch sizes of 16 × 16 are

sufficient to approximate the basis vectors.

Various patch sizes and spectra can be used together. For example, intensity channels represent

gradient information, RGB color channels to represent color appearance, depth information from a

depth camera for z spatial information, and LBPs to represent local x, y spatial relationships or local

intensity shape. The HKD research confirms some interesting findings noted by other researchers,

namely that using a variety of patch sizes together, rather than only a single patch size, increases

accuracy slightly. For example, patch sizes of 8 × 8, 16 × 16, 25 × 25, and 31 × 31 were tried to confirm

that multisize patches increase accuracy. Another finding is that accuracy is improved by using

multivariate feature descriptor kernels, concatenating different types of feature vectors such as

gradients and color together prior to mapping the descriptors into kernel matrices. See Gehler and

Nowozin [719] and Vedaldi et al. [812] for more details about multivariate descriptors.

Another interesting architecture using kernel descriptors is developed by Mairal et al. [721] as a

Convolutional Kernel Network (CKN), incorporating kernel descriptors in a CNN framework, instead

of using convolutions and associated functions to model the artificial neuron. CKN is claimed to be a

generalization of HKD methods, with additional kernel variations and optimizations. A useful over-

view and comparison of HMP and HKD are found in Reubold [712] who analyzes the details and

trade-offs between each method.

In summary, we note that HKD is yet another example illustrating the point that feature hierarchies

and the sheer number of features supported in an architecture seem to be the key to best results, rather

than attributing success to any specific feature descriptor, learned or otherwise crafted. And a corollary

observation is that strong local feature descriptors such as SIFT, FREAK, and ORB can be rivaled and

sometimes surpassed by large sets of individually weak features in a deep and wide hierarchy, such as

HKD and CNNs.

HMP—Sparse Feature Learning

In this section, we illustrate a sparse feature learning architecture via a survey of the Hierarchical

Matching Pursuit (HMP) method by Bo et al. [111]. HMP learns and encodes a multilevel feature

hierarchy as a sparse dictionary of pixel patch features in an unsupervised framework from unlabeled

data. HMP has been extended by Bo et al. [204] to incorporate data from RGB-D color channels, depth

maps (D), and surface normal vectors (N). More HMP enhancements were made in the multipath

extensions MP-HMP [91] to use three or more layers of features in the hierarchy with multiple sized

feature patches.

526 10 Feature Learning and Deep Learning Architecture Survey

For background on sparse coding, codebook learning, K-SVD, K-MEANS, and matching pursuit

methods mentioned in this HMP survey, review the Sparse Coding and Codebook Learning Overview

section above.

We provide observations in this survey on a few of the key innovations across HMP versions

including:

• PSC—Pyramid Sparse Code Features [204] encode sparse-coded features from pixel patches using

a novel method call Spatial Max Pooling.

• Multivariate RGB-D-N data [204] descriptors are introduced.

• MI-KSVD [111] uses a variation of K-SVD called MI-KSVD to learn a hierarchical sparse

codebook with optimized distance between features.

• M-HMP [91] uses multisized feature patches [91] encoded through multiple paths.

Note that Yu et al. [723] previously developed a method similar to HMP, using hierarchical sparse

coding (HSC) which jointly encodes low-level feature codes in a local region from layer 1 into higher-

level feature codes in layer 2, demonstrating that hierarchical sparse coding methods can provide

spatial encoding in the higher layers to spatially associate local features together into higher-level

sparse codes, which is lacking in single-layer sparse coding methods using orderless BoW feature

vocabularies. HMP follows the same approach as HSC to encode higher-level sparse code features

from lower-level features using local region spatial dependence.

HMP Pyramid Sparse Code (PSC) Feature Descriptor

HMP’s Pyramid Sparse Code feature descriptor is novel, encoding of a set of 21 sparse codes

concatenated together. In the M-HMP extensions to PSC, the positive and negative sparse codes are

split out into separate features to allow for separate weighting and responses. PSC is therefore one of

the most complex features in this survey.

As shown in Fig. 10.81, HMP encodes features-in-features using Spatial Pyramid Max Pooling to

select the MAX sparse code from each region of the spatial pyramid. Each sparse code is computed

from a 5 × 5 pixel region as shown in Fig. 10.81. Note that there are 21 regions defined in the spatial

pyramid of Fig. 10.81 (right), and the MAX sparse codes from each region are concatenated together

into the 21-element PSC descriptor. The resulting HMP PSC descriptor is similar to Pyramid Match

Kernel (PMK) developed by Grauman and Darrell [460] discussed in Chap. 6, except that the PMK

descriptor is computed over the entire image, using simple histogram features of each subdivided

image region, and the histograms for each region are concatenated together. However, the HMP

pyramid sparse code feature is composed over a 16 × 16 patch of sparse codes where the MAX values

are concatenated together to represent the scale pyramid in the 16 × 16 region.

HMP Dictionary Learning with MI-KSVD 527

Pyramid Sparse Code (PSC)
(21 concatenated sparse codes)Spatial

Max

Pool

16×16×1 - max

8×8×4 - max

4×4×16 - max

16×16 sparse code patch

8×8×4

4×4×16

16×16×1

Contrast Normalized

Input Image

Encode 5×5 pixel patches

into sparse codes (in-place)

Fig. 10.81 This figure illustrates the composition of pyramid sparse code features composed of 21 sparse codes taken

from the MAX sparse codes in a spatial pyramid of 21 regions of size 4 × 4 (16 codes), 8 × 8 (4 codes), and 16 × 16

(a code)

The M-HMP extension uses the same 5 × 5 sparse codes and 16 × 16 patches for the first level, but

extends the patch sizes and pooling region counts. Each layer in the feature hierarchy takes input from

the lower-level spatially max pooled and contrast normalized features. The second level uses 36 × 36

patches to learn mid-level features, and the third layer uses 36 × 36 patches to learn whole-image

features. Bo reports M-HMP, a range of results using one, two, and three layer networks, and variable

feature counts ranging from 300 to 1000.

HMP Dictionary Learning with MI-KSVD

The first version of HMP [153] uses the K-SVD dictionary learning method developed by Aharon et al.

[707] to encode features in the sparse codebook. K-SVD recursively optimizes and recomputes the

entire codebook as each new feature is added, as explained earlier. However, Bo [91] later made key

enhancements to K-SVD referred to as MI-KSVD (Mutually Incoherent-K-SVD) [204] to create a

balance between common and uncommon features by encoding basis features with a more uniform

relative distance to include common and uncommon features, rather than clustering the codebook

around the most common features. To illustrate the problem, imagine building the sparse codebook

from only the most commonly observed pixel patches—this would yield a codebook overfit to the most

commonly observed patches, not likely covering the entire feature space. M-HMP balances mutual

incoherence with reconstruction error to incorporate common and uncommonly observed patches to

optimize the codebook for a more uniform feature space distribution. The MI-KSVD method is

therefore novel.

528 10 Feature Learning and Deep Learning Architecture Survey

To add features or find features in the sparse codebook, MI-KSVD uses an orthogonal matching

pursuit (OMP) method, as discussed earlier, to compose a linear combination of sparse codes to

approximately reconstruct pixel patches from combinations of codebook features, similar to a series

reconstruction of a wave using the familiar Fourier Series (see Fig. 2.15). During codebook learning,

the basic idea is to ideally find the single closest feature in the sparse codebook matching the sample

feature, and if nothing close exists, add in a new feature. A matching pursuit will reconstruct a feature

from multiple basis codewords if needed. HMP uses an optimization method called Batch-Tree OMP

(BTOMP) which subdivides the basis set dictionary into smaller dictionaries (i.e., batches) using

K-means clustering, so that the matching pursuit is computed more quickly in parallel over each batch,

see Rubinstein [737].

We compare the K-SVD and MI-KSVD objectives here:

D,X
min Y -DXk k2 F ð KSVD objectiveÞ

ð MI-KSVD objectiveÞD,X
min Y -DXk k2 F þ λ

M

i= 1

M

j= 1, j≠ i

d⊺ i dj

where:

• D = [dk,,. . .] Codebook

• X = [xk,,. . .] Sparse codes

• Y = [yk,,. . .] Pixel patch matrix observations

• λ = mutual coherence trade-off parameter

As shown in the equations, for each new patch sample matrix Y, the sparse code matrix X is

computed from codebook D to approximately reconstruct Y using BT-OMP to find the set of closest

matching codebook items. Next each item in the codebook is recomputed using the MI-KSVD objective

function, parameterized by λ to balance reconstruction error against mutual incoherence (i.e., codebook

entry similarity avoidance) resulting in a reshaped codebook. The codebook D is recomputed repeat-

edly in the same manner for all new samples Y.

Figure 10.82 illustrates the basic method for building HMP layer 1 features.

HMP Dictionary Learning with MI-KSVD 529

Sparse
code
5×5

patches

Add to codebook
K-SVD, MI-KSVD

Input Image

Level 1 (~100 features)
Initialize to DCT basis

Replace
pixels

w/sparse
codes

Sparse Coded
Image

1

Spatial
Max
Pool

16×16

Pyramid Sparse Code (PSC)
(21 concatenated sparse codes)

Extract
16×16
patches

16×16×1 - max

8×8×4 - max

4×4×16 - max

2

Sparse Coded
Image

Pyramid Sparse Code
Contrast Normalize

Add to codebook
K-SVD, MI-KSVD

Level 1 PSC features

3

Fig. 10.82 This figure illustrates the sparse coding for the first layer (1) encoding pixels into sparse codes over 5 × 5

regions, (2) combining sparse codes into the 21-element pyramid sparse code feature vector using spatial pyramid max

pooling, (3) adding each feature into the sparse codebook

As shown in Fig. 10.82 (1), the first layer sparse codebook is initialized to an overcomplete DCT

basis set converted to sparse codes. The second level codebook is initialized from a reasonably random

set of perhaps 1,000,000 5 × 5 image patches mean-zero normalized and converted to sparse codes.

HMP builds sparse codes from randomly sampled 5 × 5 pixel patches, and then assembles the sparse

codes into a sparse code image.

As shown in 10.82 (2) HMP uses spatial pyramid pooling over a 16 × 16 patch of sparse codes,

using three levels of spatial resolution, rather than the simple subsampling pooling over a single spatial

resolution region typically used in CNNs. The three pooling levels used in HMP are 1 × 1 (the current

feature pixel patch), a 2 × 2 image division into four regions, and a 4 × 4 image division into 16 regions,

and one 16 × 16 region, for a total of 21 regions in the spatial max pool concatenated into the Pyramid

Sparse Code (PSC). The max feature from each region is selected and encoded. All features are

normalized in the range 0–1.

Next in 10.82 (3), MI-KSVD is used to add each feature into the codebook. HMP is trained in a

layer-wise fashion, starting from the lower layers. Steps (2) and (3) are repeated for each layer of the

codebook. However, Bo also tries a method for joint pooling over multiple layers [204] with the RGB-

D-N data, and reports improved results.

530 10 Feature Learning and Deep Learning Architecture Survey

The HMP training protocol is novel and involves training the first layer to record sparse codes

within 16 × 16 spatial pyramid pools, and then in intermediate layers (2 - n) refines the sparse codes

by using 16 × 16 patches across the whole image. To train, 16 × 16 pixel patches are taken at a stride of

4 across the input training images. The 16 × 16 pixel patch is first encoded into 16 × 16 sparse code

patch from the sparse codebook, using a 5 × 5 pixel local region around each pixel to compute the

sparse codes. Each sparse code is then composed from the codebook using B-OMP. Next for each

16 × 16 region of sparse codes, a spatial pyramid subdivision is built consisting of a 2 × 2 subdivision

and a 4 × 4 subdivision and the entire 16 × 16 region. The maximum sparse code from each region is

selected, and concatenated together into a regional sparse code.

In one test, Bo freezes the first layer DCT basis and does not perform feature learning at all on the

first layer. When the DCT basis is compared against the features learned via K-SVD, both the DCT

basis and the K-SVD sparse-coded basis perform within a few percentage points of accuracy, again

illustrating that the feature descriptor itself is not as important as the sheer number of features in the

feature hierarchy.

HMP Multivariate I-RGB-D-N Features

HMP is extended [204] to use features from a depth camera ([204] is one of the first methods of

encoding depth information into feature descriptors), as well as color information, with four channels

as input patches: (1) Intensity, (2) RGB, (3) Depth camera Z pixels, and (4) Surface Normal vectors.

The method follows basically the same sparse coding and K-SVD methods as employed in HMP.

However, the final set of four feature vectors can be associated together for a stronger feature via

concatenation of the features from each channel, which forms a 188,300 dimensional feature

descriptors. Bo concludes that this method of learning separate smaller features for each channel

works better than learning a single larger feature learned from all channels combined into a single

larger channel. See Fig. 10.83 for an illustration of the learned I-RGB-D-N features.

Fig. 10.83 This figure illustrates the different sparse codebooks learned by HMP methods, including (left to right)

RGB-I intensity, RGB, depth channel, and 3D surface normal encoded using RGB. Image from Bo et al. [204] from ISER

Springer Tracts in Advanced Robotics, # Springer used by permission

The Standard Model of the Visual Pathway 531

M-HMP Multiscale Features

The Multipath Hierarchical Matching Pursuit extends the basis HMP method across several patch sizes

(16 × 16 and 32 × 32) and a three-level feature hierarchy, resulting in a deep network with unusually

large features compared to many CNNs using 3 × 3 and 5 × 5 features. The Multipath matching pursuit

extends the single-path encoding each patch across multiple paths to extract a wider and deeper range

of features. The Multipath HMP method using several patch sizes creates a richer feature set,

increasing accuracy over mono-sized patches as in the original HMP method.

We note that many local feature descriptors such as FREAK (31 × 31 or other large size) and SIFT

(16 × 16) also use larger feature sizes as well, with good success.

In summary, HMP variants show that learning features from simple pixel patches can rival the

performance of SIFT feature sets. Bo et al. find that two-level feature hierarchies perform better than a

single-level, and two-level hierarchies perform about as well as three-layer hierarchies. Multivariate

I-RGB-D-N features used together are shown to be more effective than mono I-channel features.

Multipath coding using multiple feature patch sizes is demonstrated to increase effectiveness.

HMAX and Neurological Models

We will survey the original HMAX work here as introduced by Riesnhuber and Poggio in 1999 [738],

and also survey related neurovision models including a few subsequent variations from the basic

HMAX architecture. The interested reader should consult the collection of historical papers and

continuing research within the HMAX community at Riesenhuber’s MAXLab at Georgetown [763]

which includes online source code resources and references. To dig deeper into neuroscience research,

see the neuroscience journals listed in Appendix C.

To understand HMAX, we provide some brief background on the visual pathway here, which

influenced the HMAX model. HMAX is one of the first models of the entire visual pathway hierarchy

based on neuroscience. The neuroscience community is quite active in developing models of the visual

pathway, and their work does not often overlap with the computer vision community since the research

goals are different. So, this section serves as a brief introduction, via HMAX, to a neuroscience model

for vision and feature learning which is different and perhaps more complex than the CNNs and RNNs

surveyed earlier.

The Standard Model of the Visual Pathway

The foundations of HMAX lie in a so-called standard model of the visual pathway described by

Ungerleider in 1994 [760], Riesenhuber [759], and others. HMAX is based on a standard model of the

visual pathway as shown in Fig. 10.84. The standard model includes a hierarchy of receptive fields

following the general Hubel and Wiesel model discussed earlier in this chapter. (See also the

discussion on the visual pathway and Figs. 9.10 and 9.12.) Many of the HMAX concepts are

biologically inspired, some are not. HMAX is more widely used as a research tool in the neuroscience

community, compared to CNNs being increasingly used in commercial systems and within the

computer vision community. This author notes that neuroscience research is increasingly driving

computer vision toward synthetic vision models like HMAX, rather than ad hoc computer vision

models designed as trade-offs to solve real problems under primitive compute and memory constraints.

As computing power increases, synthetic vision models are becoming more complex and realistic,

often driven by the best neuroscience.

532 10 Feature Learning and Deep Learning Architecture Survey

V1

V2

V4

V4 - PIT

AIT

S1–simple cells

C1–complex cells
(MAX pooled translated, scaled)

S2–composite feature cells

C2–complex composite feature cells

VTU (view tuned units)

OTU (object tuned units)

TRU (task related units)
IT/PFC

HMAX

V1 V2 Vn

O1 O2 On

Category Identity

Standard Model

Fig. 10.84 This figure illustrates the standard visual pathway and the HMAX model after Riesenhuber [759]

HMAX [738] models the low-level features as a small set of oriented Gaussian Radial Basis

Functions (RBFs) which are similar in appearance to Gabor functions and oriented edge patterns. The

simple Gaussian RBFs can be composed together into complex features, where combinations of scaled

and translated features may overlap and compose together, see Fig. 10.85. HMAX is largely based on

the experimental data of Logothetis et al. [739] who measured responses to shapes across the visual

pathway in monkeys. Logothetis found that groups of neurons along the feed-forward hierarchy

respond to specific shapes like edges at the low levels, and higher-level concepts such as faces in

higher levels, which is to be expected since each neuron in the ventral stream V1 V2 takes some input

from lower-level local receptive fields, so lower-level neurons are taking input from small regions

where edge and blob features predominate. Neurobiology research by Logothetis and others indicates

that the visual pathway has a huge hierarchical feature memory containing billions of features,

processed via extremely massive amounts of parallel and simultaneous processing, where some

neurons are dedicated to a single low-level feature, and other neurons are dedicated to part of a larger

feature, and other neurons are dedicated to making high-level classification decisions to form and test

hypothesis. The implications are that future synthetic vision models may be designed with the

assumption that huge numbers of features are useful and advantageous, in contrast to models using

smaller number of features and statistical classifiers which tend to be better at generalization,

compressed, and suitable for implementation on modest computer systems.

Viewpoint Invariance Models 533

Fig. 10.85 This figure illustrates the apparent 3D rotational and scale appearance of a set of multiscale Gabor features.

By building the same Gabor features at multiple scales, the set appears to contain a 3D set of scaled and rotated Gabor

features, since scaled versions of a feature can be interpreted by the eye as a rotated version of the cell in 3D. Using

multiscale low-level features allows HMAX to compose higher-level view-tuned features using combinations of lower-

level apparently 3D invariant features

Viewpoint Invariance Models

HMAX provides a bridge model that partially reconciles theories on viewpoint invariance in human

vision. In other words, how does the human visual system identify the same object from different

viewpoints? According to Tarr [740], there are two fundamental visual representation theories to

account for viewpoint invariance:

1. Hierarchical Parts Models (mostly viewpoint-independent): Hierarchies of parts, each of which are

wholly or partially viewpoint invariant. Most viewpoint invariance is assumed to be recorded in the

features hierarchy, likely at the higher levels. It is theorized that some interpolation between view-

dependent features is performed in the visual pathway to reconcile viewpoints.

2. Appearance Models (mostly viewpoint-dependent): Each viewpoint is represented by separate

neural feature memories, perhaps with higher-level concepts sharing some features between

viewpoints. Viewpoint representations are theorized to record new neural memory impressions

from the original viewing, perhaps with new neural growth and interconnects forming based on the

novelty of the impressions, and the importance of the impressions.

*HMAX synthesizes both models (1) and (2): HMAX uses a hierarchy of parts for the lower-level

features, and viewpoint-dependent models (view-tuned units or VTUs) for higher-level concepts.

HMAX introduced the term view-tuned cells to represent higher-level concepts in the View -Tuned

Units (VTUs), as shown in Figs. 10.84 and 10.86. Each view-tuned cell is based on a hierarchy of

lower-level features. The higher-level viewpoint-dependent view-tuned cells are pattern recognizers

composed of lower-level viewpoint-independent features. HMAX has proven to model scale and

translation invariance well, with some mirroring invariance about the x or y axis also, leveraging the

view-tuned cells and low-level viewpoint-independent features.

534 10 Feature Learning and Deep Learning Architecture Survey

S1 –Template match 48 filters

C1 –Multiscale MAX pool into 4 bands

S2 –Compose complex features from C1

Input image

48 output feature maps

16 output feature maps

C2 –MAX-pooled feature dictionary from S2
1-level Dictionary

VTU –View Tuned UnitsV1 V2 Vn

16 output feature maps

Fig. 10.86 This figure illustrates the HMAX model of view-tuned features representing higher-level concepts, built on

top of a hierarchy of view-dependent lower-level features

HMAX Feature Hierarchy

HMAX composes an overcomplete set of lower-level features into a representation of higher-level

concepts, which mitigates feature invariance problems. As shown in Fig. 10.85, note that the lower-

level features are similar to Gabor functions, which can model an object such as an edge segment as a

collection of 3D rotations, equivalent to 3D rotation and scale invariance. We consider viewpoint

invariance to consist primarily of affine transformations. The higher-level features are thus built on 3D

invariant edge-like features, see also the SYMNETS survey earlier regarding the affine-invariant

symmetry group of features.

HMAX is based on neurobiology concepts and some hypothetical models as well. HMAX uses

hard-wired feature for the lower levels such as Gabor or Gaussian functions, which resemble the

oriented edge response of neurons observed in the early stages of the visual pathway as reported by

Tanaka [752], Logoethtis [753], and others. HMAX builds higher-level concepts on the lower-level

features, following research showing that higher levels of the visual pathway (such as IT) are receptive

to highly view-specific patterns such as faces, shapes, and complex objects, see Perrett [747, 748] and

Tanaka et al. [749]. In fact, clustered regions of the visual pathway IT region were shown by Tanaka

[752] to respond to similar clusters of objects, suggesting that neurons grow and connect to create

semantically associated view-specific feature representations as needed for increased discrimination.

And Connectome research is also providing evidence that related feature concepts are stored in

adjacent areas [778, 785]. HMAX provides a viewpoint-independent model that is invariant to scale

and translation, leveraging a MAX pooling operator over scale and translation for all inputs feeding the

higher-level S2, C2, and VTU units, resembling lateral inhibition which has been observed between

competing neurons, allowing the strongest activation to shut down competing lower strength

activations. HMAX also allows for sharing of low-level features and interpolations between them as

they are combined into higher-level viewpoint-specific features.

HMAX Layers 535

Under HMAX assumptions, each neuron is more like a very simple memory cell with a neural

correlator. Indeed, neurobiological research [742–744] provides ample evidence that specific groups

of neurons act as independent memory cells, each one containing different views of the same object,

rather than encoding viewpoint invariance in a single neuron. Under the view-dependent assumptions,

smaller number of neurons are needed to remember the higher-level viewpoint-dependent differences

between groups of neurons [745–747] as noted in research on monkeys, where specific neurons in the

anterior IT respond to view-specific features. Viewpoint dependence of specific neural structures

seems likely, for example where it is necessary for features learned in the top-level IT region of the

visual pathway to be very specific and even viewpoint-specific to recognize a human face such as

family member.

The original HMAX concept is illustrated in Fig. 10.86 as a way to visualize the architecture of a

real system. HMAX does not learn the bottom layer features in S1, C1, S2, and C2, but instead uses

basis functions [484]. The low-level features in HMAX are hard-coded or supplied using transfer

learning, based on the findings from see Serre et al. [761] who implemented real HMAX systems,

showing that learning features as are common in CNN models are no more effective than providing

basis features or features derived from transfer learning which can adapt to the training set. The high-

level View-Tuned Units (VTUs) are where the features are learned. The S1 and C1 units produce

feature maps, and the S2 and C2 units produce dictionaries of unordered features (BoW model). More

and more research shows that DNA may contain memory impressions or genetic memory such as

instincts and character traits, analogous to basis functions rather than learned functions (see [750],

many more references can be cited). Other research shows that DNA can be modified via memory

impressions and experiences [751] which can be passed on to subsequent generations via the DNA. So,

the HMAX model using preexisting features at the low levels is neurobiologically plausible, with

specialization and higher-level concept learning occurring at higher levels of the visual cortex.

The keys layers in the HMAX model are as follows:

• S1: Simple cells compute oriented multiscale filter responses via template matching.

• C1: Complex C cells perform a multiscale MAX pooling operation.

• S2: Compose combinations of scaled and translated features into prototype features.

• C2: A 1D feature dictionary of MAX pooled S2 cells.

• VTU: The view-independent units (VTUs) composed of high-level features.

HMAX Layers

Here we survey Reisenhuber’s original HMAX version [738] here following Reisenhuber’s MAXLab

open-source code [763], layer by layer, and point out more recent HMAX enhancements and

innovations by other researchers as we go.

S1 Layer

The S1 layer is for multiscale filtering of the input image into a set of multiscale output feature maps

containing filter responses across the entire input image which are subsampled according to the size of

the filter region.

Þ

536 10 Feature Learning and Deep Learning Architecture Survey

As shown in Fig. 10.87, S1 composes four oriented Gaussian edge-like functions computed across

12 scales (4 × 12 = 48) into weight template matrices for correlation. Each output feature map contains

the filter response for a different scale of each feature, using a retinal coordinate system to preserve the

spatial grid location of features after subsampling. The original HMAX versions use second derivative

Gaussian filters. Mutch and Lowe [484, 754], Serre [485], and later versions of HMAX [755, 757] use

Gabor Filters instead of Gaussians, and Hu et al. [756] uses PCA learning to create convolutional filters

from patches. Gabor filters are more commonly used in more recent versions of HMAX since the

Gabor filters can be tuned more precisely than the Gaussians. Sharpee et al. tried curved Gabor Filters

[587] and found that curved Gabor filters are still insufficient to describe the types of features detected.

Fig. 10.87 This figure
illustrates the S1 layer

features, containing four

oriented filter functions,

and the 12 scales for each

filter, yielding 48 filters.

Each filter is rendered as a

circular template weight

matrix

29x29
27x27

25x25
23x23
21x21

19x19
17x17
15x15
13x13
11x11
9x9
7x7

Original HMAX second derivative of Gaussian 2D filter shape:

Gx,y =
- x cos θ þ y sin θð Þ2

σ2 σ2 - 1ð Þ
exp

xcos θ þ y sin θð Þ2 þ - x cos θ þ y sin θð 2

2σ 2

where orientation = θ and width = σ

Gabor filter shape (Mutch & Lowe, and Serre):

G x, yð Þ= exp
X2 þ γ2Y2

2σ2
cos

2π

λ
X

where:

HMAX Layers 537

X ¼ x cos θ- y sin θ

y ¼ x sin θ þ y cos θ

x and y range - 5 . . . 5½]

θ range 0 . . . π½]

γ aspect ratioð Þ, σ effective widthð Þ, λ wavelengthð Þ

Pixel patch X response to Gabor filter:

R X,Gð Þ=
ΣXiGi

ΣX 2i

Each filter is replicated into four orientations of 0, 45, 90, and 135, and each orientation is replicated

into 12 scaled versions ranging from 7 × 7 to 29 × 29 pixels in scale increments of 2: [7 × 7, 9 × 9, . . .

29 × 29]. So, the total number of S1 features are 4 × 12 = 48. Later versions of HMAX use slightly

different arrangements of filter sizes [755–757]. The S1 features are contained in a circular region,

rather than a rectangular region, which increases rotational invariance and is more biologically

plausible than a sim ple rectangle.

S1 produces filter responses via template matching, so the filters are rendered into weight matrices

for template matching against pixel regions, similar to CNNs. Each filter is centered over each pixel in

the input image for filtering, and all filter responses are collected into 48 output feature maps to feed

into layer C1. Instead of creating scaled features ranging from 7 × 7 . . . 29 × 29, Mutch and Lowe

[484, 754] scale the input image instead and use a monoscale filter, see Fig. 10.88. Serre et al. [761]

extend the filter scale range from 7 × 7 to 37 × 37 at spacing of 2 leading to 16 scales at four

orientations for 64 feature types.

Input image

Output Feature mapsApply each filter centered at each pixel
Alternative:4 monoscale filters,
12 multiscale input images

Input images

Fig. 10.88 This figure illustrates the HMAX S1 layer. (Left, center) Each filter is applied centered at each pixel location

in the input image, and filter responses collected as output feature maps for input to the C1 units. (Right) an alternative

method using monoscale features applied to multiscale input images after Mutch and Lowe [484]

538 10 Feature Learning and Deep Learning Architecture Survey

C1 Layer

The C1 layer performs Multiscale MAX pooling of all filter responses at all orientations and scales to

create V2 complex cells which are scale invariant within a small scale band, and position invariant

within local regions. Each oriented filter set is pooled independently. As shown in Fig. 10.89, C1 pools

and subsamples the 48 input feature maps from S1 into 16 output feature maps corresponding to scale

bands. The scale bands contain filters of similar size, for example band 4: [7 × 7, 9 × 9], band 3:

[11 × 11, 13 × 13, 15 × 15], band 2: [17 × 17, 91 × 19 21 × 21], and band 1: [23 × 23, 25 × 25, 27 × 27,

29 × 29]. The idea of using bands is to increase scale invariance by pooling the response of similar

sized filter responses. The MAX pooling region sizes are 4 × 4, 6 × 6, 9 × 9, and 12 × 12 to be large

enough for the features in each band, which provides some invariance for feature position, and the

regions may overlap by a variable stride. Alternatively, features of each polarity may be generated and

used instead. As shown in Fig. 10.89, the MAX pooling region size is proportional to the size of the

features in each band, for example using smaller regions such as 4 × 4 for smaller features, and larger

regions such as 12 × 12 for larger features. MAX pooling region overlap can be adjusted, for example

using a stride factor for dense overlapped region sampling, or higher stride factors to reduce region

overlap. The absolute value of each filter response is used for MAX pooling to provide feature polarity

invariance in the case of contrast inversion.

noigernxnniloopXAMstupnipamerutaef1S

Band1: 12×12 pool region

Band2: 9×9 pool region

Band3: 6×6 pool region

Band4: 4×4 pool region

12 - > 4 feature map pooling

Band1: 29×29,27×27,25×25,23×23

Band2: 21×21,19×19,17×17

Band3: 15×15,13×13,11×11

Band4: 9×9,7×7

Band 1

Band2

Band3

Band4

Band 1

Band2

Band3

Band4

Band 1

Band2

Band3

Band4

Band 1

Band2

Band3

Band4

Multiscale max pooling

(*grid locations retained)

12× downsample

9× downsample

6× downsample

4× downsample

Fig. 10.89 This figure illustrates the HMAX C1 layer. The S1 filter responses are pooled into four bands, then MAX

pooled through n × n regions. The pooled features contain scale and position variations

HMAX Layers 539

S2 Layer

The S2 layer corresponds to the V4 or posterior IT layer in the standard model. The S2 units pool

afferent inputs from filter responses in C1 2 × 2 local regions for each scale band at each of four

orientations, then compose a complex combined filter response against a prototype n × n patch P taken

from a training image at the C1 layer. S2 cells respond to coactivation of C1 feature combinations of

orientations and scales over larger receptive field sizes. As shown in Fig. 10.91, each S2 unit pools and

combines input from a local 2 × 2 region at each orientation in the C1 feature maps to create the

complex filter. Mutch and Lowe [484] improve the feature composition by only using the dominant

orientation of each filter response as shown in Fig. 10.90.

Fig. 10.90 This figure illustrates the Mutch and Lowe [484] approach for sparse feature composition (tuning) using

only the MAX orientation from all filter band responses, instead of using all filter responses combined. Image from [484]

IJCV 2008, # Springer and used by permission

S2 units find the response of C1 patches X to prototype patches P from the training image. Each

patch region has a depth of 4 (one for each of the four C1 scale bands), and contains four possible

values. C1 feature maps contain four feature orientations × four pooled size bands, so the possible

number of scale and orientation invariant feature combinations are 44 = 256. All combinations are

considered at the S2 layer across the entire image in local 2 × 2 regions. Note that the feature count can

be increased by including a wider region than 2 × 2 and increasing the number of C1 feature

orientations included. Cadieu [757] extends the region size to 3 × 3, and includes features from all

orientations in the composition instead of just a single orientation. For information and visualizations

regarding S2 unit shape representation, see Cadieu [757].

The composition and tuning method varies across implementations, and the original HMAX

version [755] uses a response function with a weighted Gaussian summation {1,1,1,1} of four features

with standard deviation 1. In the HMAX-S derivative, Theriault et al. [758] use Cosine similarity

between C and C1 patches, and use a normalized dot product between P and X which is invariant to

illumination intensity, while the RBF is intensity sensitive. Other similarity functions are used as well

in HMAX variants [754, 762].

The complex features contain several scales and orientations of each filter combined together, so the

S2 output is a single 2D feature map dictionary of complex prototype features P, as shown in

Fig. 10.91.

k kP k kX

540 10 Feature Learning and Deep Learning Architecture Survey

Pool afferent C1 units over 2×2 local regions,
4×4×4×4 = 256 combinations of features

*Later versions use larger regions, more features

S2 complex composition

from grid-aware C1 features

Combining all scales

and all orientations

*Retinal Coordinate System for scale & position:

Each layer covers the entire retinal image,

with wider grid spacing to account for scale.

Combine

Fig. 10.91 This figure illustrates the S2 unit complex feature composition from C1 feature maps, which contains all

combinations (44 = 256) of multiscale and translated features

The S2 feature is taken by comparing the difference between the current image patch X from the

training image against the current C1 prototype feature X, and the difference corresponds to the

strength of the feature match. To compose each S2 prototype, random image patches X are taken for

each image at the C1 level, and a response function R(X,P) is used to compose a feature Y from the

current image patch X in C1 and the prototype Pi patch at all positions for all image patches across each

band and orientation as follows:

Y = R(X, P) = exp (- γ(kX - Pik
2) (RBF from Serre and Reisenhuber [485, 761])

*where γ is a sharpness tuning parameter, distance is Euclidean.

X-Pik k2
Y =R X,Pð Þ= exp -

2σ2σ
(RBF—Mutch and Lowe [484, 754])

*where α = (n/4)2 is a normalizing factor, n is the filter size dimension n × n, distance is Euclidean.

Y =R X,Pð Þ=
PjX

(Norm. Dot Product—Theriault et al. [758])

The S2 unit activation function is a tunable Gaussian function, and subsequent HMAX versions use

a Gabor function. The S2 units are used to hold the feature dictionary which is a combination of

bar-like features contained in the C2 cells at four orientations.

Note that Cadieu [757] also provides extensions to S2 and C2 to relax the method for combining

features by allowing some feature learning at S2 to tune features to better match target patterns, and the

C2 layer pooling parameters are also more flexible.

C2 Layer

C2 cells combine different sizes of S2 cells to respond to larger receptive field sizes. The C2 layer takes

the S2 units as input, and produces output as an unordered 1D dictionary. C2 units can be constructed

simultaneously while the S2 layer is constructed by taking the MAX response at all positions and scale

bands across the whole image. C2 units feed into the VTUs to compose higher-level concepts. The C2

dictionary contains composite oriented-bar features. The C2 units MAX pool across all the composite

features from the S2 units of a specific orientation from all four filter bands together across the whole

image, which provides a large amount of rotational and translation invariance. The S2 units compose

the composite features, and the C2 units essentially just choose the MAX values. There is no spatial

arrangement to the pooling, so at this point the features are simply collected as an unordered dictionary.

The patterns contained in the 256 C2 units can combine to encode arbitrary object shapes (Fig. 10.92).

VTU Classification 541

Fig. 10.92 This figure illustrates the C2 layer, which performs max pooling across the S2 feature maps over all positions

and scales into a 1D dictionary containing no scale or position information

Note that the HMAX C2 dictionary is entirely based on the training data prototypes; however, Serre

[761] also provides research regarding much larger feature counts in a Universal Feature Dictionary

incorporating other features besides the Gabor-like oriented edges, using larger feature counts ~5000

features, and larger numbers of training examples than earlier HMAX implementations.

VTU Classification

The VTU layer is the final classification layer where C2 features and perhaps C1 features are combined

to form higher-level objects. Finally, the actual feature learning in HMAX occurs at the VTU layer.

The VTU units (View-Tuned Units) take input from C2 units and mimic response to a 2D view of a 3D

object, which closely resemble VTUs observed in monkeys by Logothetis [739]. The VTUs may use a

Gaussian response function tuned to respond to a smaller width to focus the response, to achieve a

maximum response of unity for strongest matches, and zero for no match. C2 units may be filtered out

and ignored if the activation strength is too weak, or alternatively selected as afferents if strong enough.

Note that Serre and Riesenhuber [755] later extend the basic architecture to use more features

(17 instead of 12), as well as providing parameters for filter band grouping and pooling region size

tuning. Mutch and Lowe [484] introduce sparsity into the feature set using several methods including

(1) suppressing weak activations for a particular feature orientation if the activation is <50%,

(2) computing matches for only the strongest orientations of each feature at a given location (a form

of lateral inhibition), and (3) discarding weight templates with low values instead of passing them

forward to the VTUs. Hu et al. [756] also make enhancements to the HMAX feature basis by learning

S-layer features via sparse coding, transfer learning, and PCA/ICA PCA, instead of starting with the

hard-wired Gabor filters. Serre et al. [485] use an SVM classifier at the VTU layer taking inputs from

C1 and C2 features, and experimented with boosting [431].

542 10 Feature Learning and Deep Learning Architecture Survey

Training Protocols

HMAX training protocols vary, with early versions using smaller training sets of unmodified images,

compared to the massive scaled, rotated, and contrast-modified training sets often used for CNNs. The

HMAX training process involves extracting a set of size N randomly located pixel patches X from the

training images. Typically, several thousand patches are extracted all together. The pixel patch X sizes

match the region pooling sizes for C1 filters (i.e., 4 × 4, 6 × 6, 9 × 9, 12 × 12 for the original HMAX

version). Each of the patches is filtered to compute the response at the C1 level for all orientations and

scales, and then is considered a prototype P. The number of C1 filter responses vary with the region

pooling size, so for a 4 × 4 patch, there are 16 positions, and for each position there are four oriented

filter units, so a 4 × 4 patch contains 4 × 4 × 4 = 64 C1 unit responses. Each prototype is centered and

filtered against all the S2 unit features, and the response is measured using a distance function such as

Euclidean distance [761] or Cosine distance [758]. Lau et al. [777] and Theriault [758] use a dot

product to measure distance. The HMAX-S method [758] uses multiple local scales for deeper

prototype feature responses, resulting in much more detailed and sensitive prototypes. The prototypes

are then MAX pooled to create the C2 feature dictionary.

In summary, the HMAX model is one of the most detailed models of neurobiology, primitive

though it is, and is popular in the neuroscience research community. As compute power and memory

increase, models like HMAX will become more common and be extended.

HMO—Hierarchical Model Optimization

Another neurological model is the Hierarchical Model Optimization (HMO) developed by Yamins

et al. [581, 583] which models the high-level reasoning centers in the IT cortex. By comparison, CNN

models deal with the lower-level through higher-level features in the visual pathway, and local feature

descriptor methods focus mostly on modeling the retina and eye with some other processing, yet in

both CNNs and local descriptor models, the higher-level IT region and learning centers are not well

addressed, and instead are posed as a classification problem solved using FC layers and SVM

approaches. So, HMO fills a unique niche within computer vision models at the highest level.

HMO optimizes an ensemble of lower-level hierarchical models using boosting and other optimi-

zation methods to model higher-level reasoning, and achieves remarkable equivalence with the human

visual pathways under some tests, see Fig. 10.93. The HMO model development process involved

basic research connecting electrodes to 168 neurons in a subject, and measuring the neural electrode

response to a labeled training set. Then, thousands of possible response models such as CNNs and

HMAX were evaluated and tuned in a hierarchical model optimization process (HMO) to discover the

closest matching classifications from the candidate models (i.e., reverser engineering). The HMO

response model set is optimized starting with random combinations of tuning parameters, such as

feature counts, layers, and momentum, with training protocol variations on image rotations, scales, and

intensity. HMO discovers and combines the best performing models together to both predict and

achieve high-classification scores, using adaptive boosting and parameter optimizations.

Ensemble Methods 543

Fig. 10.93 This figure illustrates the impressive results of the hierarchical model optimization (HMO) model. Image

by Yamins et al. [581], used by permission

Ensemble Methods

Ensemble methods are combinations of networks working together, which may build features in

parallel, classify in parallel, and vote on the combined results. The ensemble of networks may be

heterogeneous or homogeneous, for example using multiple CNNs exclusively, or perhaps using

CNNs and vocabulary methods together, or using CNNs and RNNs together as surveyed earlier (see

C-RNN, QDRNN, RCL_RCNN, and dasNET). A simple ensemble network might include five CNNs

each using slightly different training protocols and learning parameters (see Inception), each yielding

labeled features for classification, with a final voting mechanism at the end incorporating all results.

Ensembles can provide some advantages such as:

• Reduce overfitting.

• Add more degrees of invariance to the feature set.

• Increase overall accuracy.

• Speed up training, as suggested in 1989 by Waibel [620].

One disadvantage of ensembles is the increased computational requirements; however, methods for

optimizing ensembles have been explored as explained next.

As noted by Bucila et al. [550], many of the best performing models are ensembles of hundreds or

thousands of models. This is intuitive since no single model can be optimized for all types of data, and

models are trained to specialize on a given training set. Bucilla developed a method for compressing a

set of models into a smaller set of models. The key concepts include identifying smaller faster models

to approximate the slower larger models, and their work focuses on identifying the best training

protocols and training data to enable the model comparisons. See also Hinton et al. [556] for more on

distilling ensembles on neural networks (Fig. 10.94).

544 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.94 This figure

illustrates an ensemble of

networks working together,

each with different training

protocol, tuning

parameters, and image tile

regions, feeding into a final

classifier

Input Images

Ensemble Classifier

(voting, softmax, average)

D
N

N

1

Image Tile 1

Tuning Parameters 1

Training Protocol 1

(rotate, scale, contrast)

D
N

N

n

Image Tile n

Tuning Parameters n

Training Protocol n

(rotate, scale, contrast)

The dasNet method [548] surveyed earlier uses an ensemble of CNNs in parallel to allow for

parallel testing of different hypothesis via modifying the weights in each network, similar to the way an

expert might test a set of hypothesis. DasNet incorporates an automatic feature optimization and

evaluation process.

The AlexNet method [289] surveyed earlier in the CNN section splits the feature learning into two

parallel networks: one network learning low-level features, and the other network learning the higher-

level features. Although the motivation for AlexNet’s dual feature learning network is performance, a

side effect is that the feature learning in each parallel network follows a slightly different route and

leads to slightly different results than if the features were learned in the same network.

The Multicolumn DNN (MCDNN) developed by Ciresan Meier and Shmidhuber [717] uses several

DNNs in parallel and provides different image input to each DNN, and then averages the results for the

final classification score. Each column of DNNs uses shared weights, and allows for parallel evaluation

of features. Each DNN is trained on overlapping columns of the input images in a winner-take-all

manner, and only the winning DNN features are trained. This preserves features that have already been

learned, and allows each network to potentially focus on a different level in the feature hierarchy, so

each DNN may be the winner for a different level of the hierarchy. The input image columns may be

processed in different ways.

The HMO method by Yamins et al. [583] surveyed earlier evaluates thousands of candidate models,

such as CNNs and HMAX models, and optimizes the final results across all the models via a boosting

and hyper parameter optimization and tuning process. HMO is another model driven from the

neuroscience community rather than the computer vision community.

Increasing Depth to the Max—Deep Residual Learning (DRL) 545

The downside of ensembles is the design by committee syndrome, where nobody is right, nobody is

wrong, everybody contributes, and nobody is 100% happy. Even if one of the committee members are

correct, the design by committee approach ensures that they will be muted. As evidenced by MAX

pooling (choosing the strongest activation), the highest confidence response has proven in many cases

to be better than average pooling response (i.e., the ensemble approach).

For more references and historical developments in the area of ensembles and committees, see

Schmidhuber [492].

Deep Neural Network Futures

The current state of the art of DNNs has been surveyed in this chapter, so here we will explore a few

areas for future research to expand the boundaries of DNNs. Future research into more complex neuron

models continues, such as Spiking Neural Networks which provide feedback paths between neuron

groups to influence neuron group firing. Other areas for future research include (1) how to increase

network depth to the maximum useful level in a compute efficient manner (network depth optimiza-

tion), (2) refactoring and compressing a single deep network or a complex ensemble network into a

smaller single network as an approximation (model compression), (3) decomposing complex

classifiers into a set of simpler classifiers (classifier decomposition and recombination), and (4) training

protocols will be a key future research area, we should expect additional breakthroughs incorporating

better preparation of the training set and better selection of images, combined with better segmentation

of the correct regions of interest from the training set images by the DNN, propelling classification

accuracy to higher levels. Finally, we should expect to see a proliferation of special-purpose

DNN-related processors, such as the Baidu data bandwidth accelerators for their cloud-based systems

surveyed earlier in the MINWA section, the Google TPU cloud accelerator for increased compute

performance, and special purpose accelerators for endpoint devices to perform inferencing on local

images and trained DNN models.

Increasing Depth to the Max—Deep Residual Learning (DRL)

Deep Residual Learning (DRL) was developed by He et al. [798] to explore methods of increasing

DNN network depth as far as possible to improve accuracy, and borrows from He’s earlier work on

SPP [483] and Fast-R-CNN [638] architectures discussed earlier in this chapter. He et al. report that

DRL networks are the deepest networks to date, and architectures using 100–1000 layers have been

implemented using a very efficient parameterization comparable to much smaller networks. The DRL

method is driven by the goal to solve a key problem observed in DNN research, namely that when the

depth of layers increase, a point is reached where accuracy stops converging, and then accuracy begins

to become worse, ending up inferior to DNNs with fewer layers. In addition, He et al. show another

benefit of DRL concepts, namely the mitigation of problems associated with improper initialization of

the weights and network parameters. See also earlier related work by Deng et al. [816], and more recent

developments of DRL as Resnet by Targ [817] and Szegedy [818].

One of the basic concepts used by DRL to increase the network depth is shortcut connections as

shown in Fig. 10.95, which feed the input forward to reuse later. (Note Inception Net surveyed earlier

in this chapter also uses shortcut connections. Many historical MLPs have also used shortcut

connections in an ad hoc manner, see Schmidhuber [492].) The DRL network reformulates the basic

FNN into layer groups separated by novel Residual Learning Building Blocks (RLBBs) as shown in

Fig. 10.95, which are inserted typically after each filter layer in He’s work. RLBBs take input from the

skip connection to compute a residual, or difference, between the input and a processed input, using

residual functions to combine the input x to a group of layers F(x) with the output of the group of

layers, yielding the residual difference. The key idea is that training on the numerically smaller

magnitude residuals makes true fluctuations in the gradients easier to spot during training, and enables

more accurate weight updates to be made. The residual function is defined on a group of layers as a

mapping function expressed as follows:

546 10 Feature Learning and Deep Learning Architecture Survey

0

Input

Image

x

ReLu Intermediate
Output

Feature Map,

Image

.
.

. . .

.

Convolve

*

i

i1

in

w

w

w

Residual

Learning

Building

Block

F(x) + x

Final

Output

Feature Map,

Image

H(x) F(x) + x

Shortcut Connection

Fig. 10.95 This figure illustrates the residual learning building block (RLBB) formulation using shortcut connections

H xð Þ : underlying mapping function

F xð Þ :¼ H xð Þ- x : stacked non‐linear mapping

F xð Þ þ x : recast mapping using residuals

He et al. demonstrate networks using RLBBs which can effectively eliminate the need for most of

the compute and parameter intensive fully connected classification layers, discussed earlier in this

chapter. Since large FC layers represent most of the parameters in a typical DNN, by eliminating FCs

the total network parameter count can be greatly reduced even with the increased layer count by

incorporating RLBBs. Thus, the RLBB formulation does not add complexity or additional parameters

to the network, is trainable using backpropagation, and shown to solve the accuracy divergence

anomalies of deeper networks.

To illustrate the anomalies observed in DNNs of varying layers, He et al. provide results showing a

22 layer CNN architecture that yields better accuracy than a similar 50 CNN layer architecture which

exhibits the training accuracy divergence anomalies. While the root cause of the accuracy divergence

and degradation is not explored in He’s work and is noted as an area for future research, a likely cause

of the divergence seems to be the method of gradient descent itself, which may create transient gradient

spikes across the network due to anomalous gradient error combinations, similar to transient spikes in

electrical circuits. Perhaps, when a given gradient is corrected, the correction may lead to related

oscillations in other gradients, which at specific training epoch intervals may align and sum together

into an objectionable gradient transient spike, which is then adjusted by corresponding anomalous

weight updates, subsequently contributing to increased gradient transients. The very method of

gradient descent itself is not well understood, and resembles a massive, serendipitous averaging and

dithering procedure, controlled using ad hoc learning rate and momentum parameters to smooth out the

gradient descent, as introduced earlier in this chapter.

Approximating Complex Models Using a Simpler MLP (Model Compression) 547

Approximating Complex Models Using a Simpler MLP (Model Compression)

One approach to increasing DNN accuracy is to employ an ensemble of DNNs together, each

architected and trained slightly differently, and the results of the ensemble are averaged to get a

synergistic design by committee style classification. However, since the ensemble is a large compute

workload, researchers have developed methods to approximate the ensemble using a single DNN to

reduce the compute workload, which seems intuitive since an MLP is a general function approximator.

The end result is a smaller and compact approximation of the much larger ensemble. In a similar

fashion, a single complex and deep DNN may be approximated by a simpler DNN to provide compute

benefits. One obvious application for model reductions is to first train a much larger cloud-based

ensemble or complex network, and then reduce the model to a single smaller and faster DNN for

deployment on a small embedded or portable device. We discuss some relevant research here.

One approach to approximating an ensemble via a single model is the two-stage approach taken by

Bucila et al. [801] which first trains an ensemble to label the training set, and second takes the labeled

output of the ensemble and the test set as the input to train a single DNN to approximate the ensemble.

Using a single DNN to approximate a large ensemble vastly decreases the compute workload, both at

training time and deployment time. In this respect, model compression is related to transfer learning in

DNNs as discussed earlier in this chapter, where a DNN is first trained, and then the weights are

transferred into another DNN which is further trained for a similar knowledge domain, gaining faster

training times, feature refinement and specialization, and perhaps better accuracy. The compressed

model thus approximates both the classification labels and the weights. Of course, instead of an

ensemble, a very deep network could also be approximated by a smaller and more efficient compressed

model in a similar fashion.

To generalize Bucila’s work, Hinton et al. [799] define a Knowledge Distillation model (KD) using

a teacher model and a student model. A parameterized softmax relaxation function is applied to the

teacher model outputs to allow the student model to generalize a new model within a general range of

accuracy. The student model is then further optimized using an objective function on the classifier that

compares the student and teacher model results.

A further refinement to the KD model is the FitNets architecture developed by Romero et al. [800],

which uses hints derived from the teacher model to guide the training of the student model. A hint is

taken from the hidden layers of the teacher network, and used to guide the approximation of a hidden

layer in the student network. Thus, the hint process guides and optimizes the student to reproduce the

weights of a certain layer of the teacher, which is intended to optimize the student network in the right

direction toward the correct classification output. FiNets are shown to increase approximation accuracy

over both KD and Bucila’s method. Hint-based training is considered to be a relative of Bengio’s

earlier work on Curriculum Learning [451], which trains the network using a simple to complex

training protocol, similar to transfer learning (i.e., we may term curriculum learning as a successive

refinement transfer learning protocol). First, simple training examples are used to train the network,

and then the network weights are progressively retrained by using more expressive and complex

training examples in series. Thus, curriculum learning successively refines the same network to

generalize from simple to complex training examples.

548 10 Feature Learning and Deep Learning Architecture Survey

Classifier Decomposition and Recombination

A related method for model compression is developed by Hinton et al. [799] to decompose the

classifier to produce one or more specialist models or fine-grained classifiers. Hinton models the

teacher classifier as a set of smaller fine-grained classifiers, since the larger teacher models may

confuse classification in some cases into a coarse grain classification. The idea of decomposing a

coarse-grained classifier into a set of fine-grained classifiers is novel, and is a promising area of future

research to increase classification accuracy.

Contrary wise, future work is expected to find optimal ways to recombine a set of fine-grained

classifiers together to produce a stronger hybrid classifier which is more generic or application-specific,

for example by training a set of smaller DNNs on smaller training sets, and then combining the smaller

DNNs together into a classification bank, similar to a filter bank. The classification bank may be

implemented as a very wide FC layer, parallel FC layers, or as an ensemble network for specific

applications.

Summary

We explore feature learning architectures and deep learning using both ad hoc and neuroscience-

inspired methods. In most feature learning systems, a hierarchy of features are learned, ranging from

low-level edge and texture features, through mid-level motif concepts, up to higher-level object parts

and whole objects. Some use an ensemble of classifiers to evaluate the features, while other approaches

use a hierarchy of classifiers together to reach a conclusion. In the future, we will see an increase in

better feature representations beside the simple correlation templates used today in most DNNs, taking

advantage of local, regional, and global features.

The neural network approaches used in feature learning point to a future merger of synthetic

intelligence and synthetic vision, using the same underlying neural network architecture standardized

into silicon, which can be tuned for a wide range of analytic problems including computer vision,

speech, investing, marketing, and surveillance.

Science and technology are like waves, forming power as they rise, carrying the best research minds

surfing on the crest, and as the waves rapidly approach the shoreline, applications become more

widespread and tower over older methods, then become commercialized or militarized, which changes

societies and nations. Then the waves crash on the sand as the technology is commoditized

approaching a zero-price point (i.e., free and expected), then the research is perhaps uninteresting to

many, and often the best minds and researchers who have spent the prime years of their life researching

the technology are stranded on the beach, with obsolete knowledge, several past successes, and not

enough of a lifetime left to switch to a new discipline and ride the next big wave. While the present

wave crashes, new waves of technology are approaching on the back of the previous waves, surfed by a

new crop of researchers and bright minds, imbued with all the excitement and power of the new tidal

wave, and so the cycle repeats. We are nearing the crest of the new wave of synthetic vision systems

based on visual neuroscience concepts: synthetic brains. We will soon see synthetic brains, synthetic

vision, intelligent prosthetics, and robotics change society forever. The current wave of AI and feature

learning has already left earlier waves of computer vision researchers washed up on the beach, since

they are not riding the surging wave of neurological vision research.

The early crest of the synthetic brain and synthetic vision wave is already here, pushing along new

innovations such as smart cars, visual surveillance, smart advertising, and smart analytics, but there is

much more to come. When the synthetic vision and synthetic brain waves onto the shore of commercial

markets in a big way, we will see a flood of inexpensive and ubiquitous smart devices that save time

and energy, similar to apps and inexpensive appliance-like devices. The products will be complete

physical appliances, which will likely use a common core architecture of ANNs, robotic motor

controllers, and synthetic vision, allowing an ecosystem of intelligent devices to be built and

customized for a wide range of commercial applications. This will change the nature of society.

However, the ANNs cannot create the human spirit and soul, so we will live on as before, but with

more synthetic assistance.

Learning Assignments 549

Learning Assignments

1. Discuss the Perceptron (P) architecture, and the Multilayer Perceptron (MLP), including the

learning rules and training protocols used.

2. Discuss the Neocognitron architecture.

3. Describe how to create a feature map.

4. Describe a hierarchical feature map volume (stack).

5. Describe the layers in the basic LeNet architecture.

6. Describe a forward pass through a CNN based on the basic LeNet architecture.

7. Describe a backward pass through a CNN based on the basic LeNet architecture.

8. What is stored in memory during the forward pass through the CNN?

9. Describe how a fully connected layer (FC layer) is used for classification in a CNN, discuss the FC

layer feature weights, and provide a hypothetical FC layer design.

10. Describe the common layers in a CNN.

11. Describe how a convolution kernel is applied across input images and feature maps.

12. Describe the difference between the dot product, convolution, correlation, and normalized corre-

lation, in the context of CNNs.

13. Compare at least two methods for initializing CNN feature weights.

14. Discuss sliding windows and how a stride factor is used, and compare the advantages and

disadvantages of small versus large windows.

15. Describe the bias input to the artificial neuron, and how it is used.

16. Describe the information collected during the forward pass of the CNN which is used in the

backpropagation step.

17. Describe backpropagation using gradient descent.

18. Describe how the total gradient error is computed at the classifier to begin the backpropagation

step, and describe how the total gradient error is proportionally split apart into partial derivatives

and distributed backwards through the network at each neuron.

19. Describe how the partial derivatives of the total gradient error passed backwards, and the neural

state derivative, are used together at each neuron to adjust the feature weights.

20. Describe learning rate and momentum parameters used during backpropagation to tune the feature

weights.

21. Discuss considerations for determining the number of layers in a CNN, and the number of features

per layer. Include considerations for compute performance and memory.

22. Describe the advantages and limitations of using stacked convolutions with small kernel windows

versus using convolutions over larger windows.

23. Discuss separable convolution, and provide an example algorithm.

24. Discuss fused convolution, and provide an example algorithm.

25. Discuss how to estimate architecture parameters to measure CNN complexity.

26. Describe the VGGnet architecture, including variations.

27.

550 10 Feature Learning and Deep Learning Architecture Survey

Describe the artificial neuron model in the NiN architecture, which computes the features.

28. Describe cross-channel parametric pooling (CCCP) in the NiN architecture.

29. Describe cross-channel pooling (CCP) in the Maxout architecture.

30. Describe advantages of using Z-columns for 1 × 1 convolutions across feature map volume.

31. Compare global average pooling (GAP) as used in the NiN architecture against FC layers used in

typical CNNs.

32. Describe the composition of a GoogLenet feature layer (i.e., the Inception module).

33. Describe the feature vector format of a GoogLenet inception module.

34. Describe the feature model of the SMYNETS architecture.

35. Discuss the Polynomial Neural Network (PNN) model, otherwise referred to as the Group Method

for Data Handling (GMDH).

36. Describe vanishing gradients and exploding gradients in the context of backpropagation.

37. Describe an RNN neuron model and discuss short-term memory in RNNs.

38. Discuss how to unroll an RNN into an FNN, and motivations for doing so.

39. Describe the Long Short-Term Memory (LSTM) enhancement to RNNs.

40. Discuss why an RNN is suited to sequence processing and spatiotemporal pattern matching.

41. Describe a bidirectional RNN, draw a diagram also.

42. Describe a 2D RNN, draw a diagram, and discuss applications of a 2D RNN to computer vision.

43. Describe the K-MEANS clustering algorithm at a high level, and discuss practical considerations

and pitfalls for using K-MEANS clustering to build a dictionary or visual vocabulary.

44. Name and describe at least two feature encoding methods.

45. Describe the K-SVD sparse coding algorithm, and compare it to the K-MEANS method.

46. Describe a kernel function, kernel projection, kernel encoding, and why kernels are used in

classification (HINT: the kernel trick).

47. Describe the general concept and advantages of kernel machines, such as the Support Vector

Machine.

48. Describe how a linear classifier works, and how a logistic classifier works.

49. Describe the basic HMAX architecture.

50. Discuss the types of features used in the lower layers of the HMAX architecture.

51. Discuss feature learning in the HMAX architecture.

52. Discuss view-tuned units in the HMAX architecture.

53. Discuss viewpoint-dependent versus viewpoint-independent models of vision, and explain the

difference in terms of the types of features stored in memory.

54. Discuss the concepts behind ensemble architectures.

55. Discuss the HMO architecture ensemble approach to higher-level reasoning.

You keep using that word. I do not think it means what you think it means.

—Montoya, Princess Bride

along with the feature models, for example, see the volume learning model [476] from Krig.

Attention, Transformers, Hybrids,
and DDNs 11

Fig. 11.1 Illustrating the categories for deep descriptor networks, which contain non-convolutional features such as

Fourier features, polynomial features, pixel-pair features resembling SDMs (Spatial Dependency Matrices), attentional

features, as well as hybrid networks similar to CNNs and transformers combine together, using multiple descriptor

methods together in the same backbone

Wewill look in this section at Attention, Transformers, and Deep Descriptor Networks (DDNs) as shown

in Fig. 11.1, which represent new directions and next-generation trainable hybrid architectures

incorporating a variety of innovations in feature representations using multiple types of features together,

organized into hybrid backbone networks combining more than one feature type, novel processing and

numerical conditioning, and complex classifiers. We also cover novel text-to-image synthesis classifiers,

which can learn to interpolate between features in the trained models to identify unseen features as a

combination of classes, thus referred to as multi-class classifiers. Classifier innovations are increasing

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_11

551

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_11&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_11#DOI

552 11 Attention, Transformers, Hybrids, and DDNs

Deep Descriptor Networks (DDNs) Overview

Deep Descriptor Networks (DDNs) are networks that use non-convolutional functions to build

features, different from CNNs discussed in Chaps. 9 and 10. Usually such networks are discussed

together in the literature with transformers and CNNs. Yet, the DDN architectures contain fundamental

differences and advantages over transformers and CNNs, primarily via richer feature descriptors such

as Fourier, binary, and NL-Means features, as well as self-attention: the newest hand-crafted trainable

feature descriptor. Transformers are included in the DDN category, since the transformer is a departure

from the CNN feature model, incorporating encoder and decoder concepts with token encodings and

word embeddings from their roots in NLP natural language processing.

The concept of self-attention is central to the transformer, which was developed for NLP processing

as an alternative to the LSTM-style RNNs for sequence processing in NLP applications covered in

Chap.10. In this chapter, we review the historical background and key concepts from Natural

Language Processing (NLP) which also inspire computer vision transformer architectures. We dig

into a few of the significant transformer architectures first from the perspective of NLP where it all

started, and next on to a review of a few key visual image transformers operating on pixels instead of

words and text.

Also, we highlight innovative DDN networks that use richer types of feature descriptors, primarily

non-convolutional features as used in CNNs like LeNet, ResNet, and other common neural networks.

CNN methods surveyed in Chap. 10 primarily use n × n convolutional features over several layers to

create feature maps, which are finally fed into an FC layer classifier stage or some other classifiers such

as an SVM. Transformer attention models are entirely different then n × n CNN-style kernels, instead

using larger blocks of pixels together to learn the contextual relationships of all pixels in the block.

DDN and CNN Contrasted

Deep descriptor networks are a class of neural networks that incorporate various types of richer and

more complex feature descriptors—such as attention, Fourier, or other basis functions for feature

description. Attention uses a non-convolutional feature descriptor, and attention methods are very

hand-crafted with many variations in the literature. Attentional features allow for neural network style

gradient descent feature learning. We discuss attention methods later in this chapter. Note: this author

expects to see additional and more neurologically accurate feature descriptor methods incorporated

into DNNs including BRISK, SIFT, SURF, FREAK, as discussed in Chaps. 4, 5, and 6.

CNNs by the original and historical definition use only convolutional n × n convolutional feature

kernels. But. . . CNNs are now becoming hybrid, borrowing concepts from transformers such as the

encoding, embeddings, and attentional features for some layers, usually the last layers in the deep

network. Some neural network researchers use CNNs and smaller 3 × 3 or 5 × 5 region features at the

low level of the backbone for low-frequency features, combined with the transformer-style attentional

pixel patches covering larger pixel regions such as 16 × 16 of more to capture higher frequency

features.

Yann LeCun has observed (*during a talk on his latest work on joint embeddings Feb. 2023) that

n × n convolutional features are translation invariant and track pixel-level translations well for

low-level feature concepts, while transformer-style larger patch features are permutation invariant,

tracking changes to the larger feature patches separated by position permutations to different image

locations representing higher level feature concepts, and that therefore combining both types of

features together in the same backbone architecture is complimentary and provides the advantages

of both approaches. Transformer features are trained similar to convnet features using gradient descent,

and the difference between convolutional and attentional features is visualized as shown in Fig. 11.2.

DDN and CNN Contrasted 553

Fig. 11.2 Illustrating the difference between convolutional nxn features and transformer attentional features of 16 × 16

pixel patches. Attentional features preserve higher frequency detail due to the larger pixel patch region. Image on the

right of transformer features (C) 2017 Alexey Dosovitskiy et al. [824]. Image on the left showing CNN features (C) Alex

Krizhesky

Hybrid networks are also increasing, containing non-convolutional DDN features, combined with

other features, into novel backbone architecture using a range of innovations such as skip-connections,

transformer-style encodings and embeddings, and reasonable combinations of feature attention,

convolutional features, and basis features, along with a wide range of other innovations we survey

in this section.

It seems safe to say that there is a consensus about one thing in AI parlance: if a network uses a

differentiable MLP-style linear function model for learning features in one or more layers, then it is a

neural network (NN); if more than one layer, it is a deep neural network (DNN); everything else is an

enhancement to the basic neural network concept and falls into our discussion of the hybrid DDN

category.

Novel DDN architectures are exploring non-convolutional n × n kernels and alternative feature

descriptors such as Fourier and NL-Means Attention, which provide richer representations of feature

data than the simple CNN or transformer pixel patches. However, note that the self-attention mecha-

nism is a powerful, projecting the pixels into an embedding space which may also include a positional

component added or otherwise combined within the embedding, which is a great step forward in the

science of feature description to incorporate spatial relationships between features.

Improved and standardized embedding spaces for pixel attention, as used in vision transformer

architectures, will lead to large and tunable foundation models for computer vision, similar to the

BERT [963] and GPT [983] foundation model approach for NLP, creating shareable dictionaries, and

word embeddings, since both methods first use unsupervised training using a transformer over vast

amounts of data such as all of Wikipedia, and then fine-tuning the model for specific tasks by

re-training using smaller, supervised datasets.

Here are some observations about hybrid features (Attentional, Convolutional, Others).

• CNNs focus on local features that fit the convolution kernel sizes (n × n) and miss larger features,

thus missing high-resolution relationships in larger pixel regions.

• Transformer attention in larger pixel patches such as 16 × 16 and above is capable of resolving

higher frequency feature details than smaller 3 × 3 CNN features.

• Combined backbones using CNN features for low-frequency details in the early layers, with

attentional features for higher resolution details in the higher layers are effective.

• Transformers compute short-range and long-range spatial attentional feature relationships.

554 11 Attention, Transformers, Hybrids, and DDNs

• Convolutions compute spatially unrelated features that fit into n × n kernels.

• CNN convolutional kernels have no spatial component—no positional awareness.

• CNN feature overlap: smaller kernels (3 × 3, 5 × 5) confuse/convolve overlapping features.

• Feature independence: Transformers model unique and separate features over larger regions.

The transformer uses various types of attentional features (discussed later in this chapter) that

provide spatial awareness between tokens and features as well as powerful feature embeddings to

allow for even more spatial relationships to be represented. For example, transformer self-attention can

encode intra-block spatial pixel relationships, useful for inter-block similarity associations.

Transformers have roots in natural language processing (NLP), where embeddings encoding multiple

attributes per word, which can be visualized in 2D to aid in detecting language meaning via distance in

an embedding space (covered later in this chapter). Embedding spaces are useful for comparing

languages for translation purposes and also for language synthesis from caption-like concepts using

conversational BOTS. As we go along in this chapter, we point out how the transformer and attention

are influencing computer vision.

Learning Model Innovations

Many methods for learning acceleration are being developed all the time, too many to survey here,

such as recycling older ideas like expert models and data augmentation, model fine-tuning, novel SGD

optimizers, and model pre-training methods. Too many innovations to list here, but we survey some

methods as we go along in later sections.

Neural network architecture innovations are driving classifier innovations. Here are a few key

observations.

• Faster learning methods: Global Average Pooling (GAP) (see [487] Min et al.) is a concept to

reduce the feature space by removing fine details, as used in the NiN and inception networks

surveyed in Chap. 10. GAP has proven that feature learning may be achieved by using sort-cuts to

create a feature model which averages out feature detail instead of slowly producing features around

the basins of attraction and preserving the tedious details. GAP (i.e., feature averaging) opens the

door to reducing feature count by averaging features in groups up-front, instead of using averaging

after the feature learning: simply learning features one at a time, and then average them all together

after they are learned, rather than relying on the tedious batch training protocols, drop-out,

momentum filtering, and other empirical methods. In fact, similar sequence averaging methods

are used in self-attention for next-token-prediction by averaging together all tokens prior to the

token used for predicting the next token.

Classifier learning possible: Hard-coded (i.e., hand-crafted) classification blocks are a design

choice; very little research is available on the subject of classifier learning and allowing classifiers

to change and develop with use over time. Volume learning from Krig [476] allows for learning

agents to perform classification as trained by continuous learning in parallel or sequentially, and add

or modify classifiers into an intelligent network of classifiers—see Fig. 11.3. View synthesis from

text captions (as discussed in Chap. 12) also opens the door to caption classifiers and caption

learning, as well as zero-shot learning or AML feature interpolation to classify and recognize

features that are not in the training set and therefore not pre-trained in the trained model. See

Chap. 12: captioned multi-class classification, classifier-free guidance, zero-shot learning, AML.

• Golden models: Instead of collecting huge training sets, many practitioners would rather rely on

selected golden exemplar samples from experts—then either 1) interpolate targets between the

Learning Model Innovations 555

exemplars or 2) train the model and the classifier from the small set of exemplars, and perhaps

permute and augment the exemplars into a larger synthetic set for various affine or color contrast

conditions (see U-Nets [932] which are also surveyed in Chap. 2 for an example of golden

exemplar training set augmentations). A golden model is also an “Expert Systems” style model,

where an expert has confirmed that the golden model is good—and a good starting point for

deriving other models. A “golden model” may be created using no labeled training data, but directly

from the expert as an expert system, allowing experts to directly state their opinions into a model—

we have gone full circle back to the 1970s... see Chap. 9 and the Section on Expert Systems, Fig. 9.4.

As with all fields of knowledge, the distinctions among terminology continue to expand and splinter

into finer and finer grained points as new research goes forward, and older research is forgotten. The

perceptron and the PPN are still amazing—see Chap. 10.

Here is a snapshot of some of the discussion topics regarding training and learning models which we

touch upon in the surveys below, as we explore third-generation classifiers in Chap. 12. See Fig. 11.3.

• Expert system imitation learning—see imitation learning tutorial by Yisong Yue & Hoang M. Le,

ICML 2018.

• Continuous learning—see synthetic vision [476].

• One-shot, few shot, interpolation learning—see also Chap. 12, View Synthesis, Captioned Multi-

class Classification and Synthesis.

• Model-reuse, transfer learning, pre-training, pre-tuning.

• Recurrent learning one DNN with another—see generative adversarial networks.

• Hull learning, autolearning, classifier learning [476].

• Associative multimodal learning (AML), see Chap. 12.

556 11 Attention, Transformers, Hybrids, and DDNs

Fig. 11.3 Showing the generations of classifiers: first generation: single-class training, mono-class training sets, second

generation: multi-class caption learning (text:image pairs aka DALLE-2, third generation classifiers incorporating a large

visual DNA feature corpus combined with AML classifiers will become the basis for continuous learning

Classifier Innovations: Hand-Crafted vs. Learned

Classifier innovations are appearing alongside the standard CNN-style FC layer fed into a softmax—

this is totally hand-crafted and data dependent, and the classifier does not learn anything, but rather

emits a probabilistic inference score. Classifier innovation is occurring via the caption classifiers used

in text-to-image synthesis; these are a separate type of classifier which can learn and infer multiple

classes, as well as perform zero-shot learning to classify unknown exemplars.

Classifier Innovations: Hand-Crafted vs. Learned 557

Today in computer vision CNNs, the classifier is chosen and surrounded with hand-crafted numeric

conditioning for using a function to inference a probabilistic score from a 1D layer of puzzle-piece

features, all hard-coded to the end of neural network. The classifier architecture leaves little to learn

anything from the features or the target input images. The final FC layer connected to a softmax is often

chosen for the CNN classifier, or an SVM Support Vector Machine may be chosen, but there is no

tunable or learnable component in either the softmax or S–M—they are hard-coded algorithms—see

the Chap. 4, Overview of Training Section, particularly Table 4.4 Clustering, Classification, and

Machine Learning Methods.

Trainable classifiers and agents are a new direction for classification.

Third-generation classifiers will use associative multimodal learning (AML) and continuous

learning, as discussed below, and operate on library foundation models and visual genome models

and visual DNA. The classifier lives on outliving foundation models, performing continuous learning

over time (*see [476]).

The softmax classifier, most commonly used in CNNs, is a very simplistic classifier, a probabilistic

function operating in a manner similar to likes on social media (or academic research paper “likes”

expressed as references to determine research paper value), where the softmax measures quality or

probability by how many target features like (i.e., appear similar to) the trained model features via high

softmax correlation scores.

Innovation in classification methods and classifier learning is occurring. According to Fig. 11.3 in

the lower classifier diagram, three generations of classifiers can be identified:

• First-Generation Classifiers: Single-Class, Softmax and SVM: Imagenet style grained features,

untrained classifier: Simple single-class classifiers aka Imagenet class training data.

• Second-Generation Classifiers: Multi-Class Caption Classifiers, Zero-Shot Multimodal Feature

Interpolations: DALLE-2 and Visual N-gram style: multi-class classifiers allow captions to be

trained with corresponding images, enabling query on caption text to find images, or query on

images to find caption text, and interpolate queries that fall between image/caption boundaries (i.e.,

one-shot learning to allow detection of targets outside the training regime—target interpolation—

one-shot learning).

• Third-Generation Classifiers: AML Volume Learning, Multimodal Metric Feature Interpolation vs

Feature Training via gradient descent and backprop; Visual DNA Feature Corpus, Continuous

Learning And Classifier Learning, Volume learning, AML Associative multimodal Learning—A

large corpus of visual DNA is learned initially, and then continually refreshed over time via Agents

and with user feedback, adding features as they are encountered and inferred. The third-generation

classifiers allow for self-training via learning agents and complex classifiers that can be learners

over time, perhaps learning and retaining in the model new features with no labels at all if they are

unique and not in the feature model, and then label the features later, if at all, under human or agent

supervision. No need to be concerned with the notions of supervised, unsupervised, class names, or

crude distinctions between training data—the classifiers are learning continually after the fact of

initial feature learning—the features may be first recorded as they are encountered in an unnamed

and unknown class, and processed later for naming and associations—continual learning. New

objects are inserted into the models as they are learned over time. Training becomes only a starting

point, like humans continue to learn, so the classifier continues to learn as it interpolates among

known features and labels unknown features, but building models incrementally over time with

experience, incorporating inferred objects and associations between objects.

558 11 Attention, Transformers, Hybrids, and DDNs

Associative multimodal learning is a part of third-generation classifiers—it is not a single-modal

class-based classification model such as defined via the outdated hand-crafted Imagenet data sets and

corresponding trained models—Imagenet will be subsumed by multimodal models and datasets and

continuous learning. The classifier becomes the crown jewel; the data comes and goes. Autonomous

learning agents will create and update classifiers over time, see Fig. 11.4.

Fig 11.4 Illustrating how complex classifiers will be maintained by learning agents work together for continuous

learning, image (C) Scott Krig, Synthetic Vision [476]

A few questions arise: should features be interpolated AML style between chosen exemplar metric

clusters, or trained to represent artificial feature attributes representing a huge training set in gradient

descent backprop ImageNet style? See the discussion on AML in Chap. 12 for more.

Commodity Models—Foundation Models

AI is becoming a commodity, where the trained model can be developed, shared, sold, and re-used

after some fine-tuning. The discussions about AI have led to official discussions of how the best

learned AI models can be used as a starting point for common use and customization via transfer

learning, referred to by some practitioners as Foundation Models. Governments seek to regulate AI

models by forming policies for many areas such as privacy, equal opportunity, and any other

government-led social engineering tasks such as defining and legislating cultural and behavioral

norms, rather than allowing for AI models which are free from legislation. The discussion of approved

foundation models has reached the highest levels of the US government as a task force in the Biden

administration formed in 2021 to study and identify policy goals, which will ultimately be sent to

congress to continually develop legislation and statutes with all the accompanying costs and hurdles to

researchers and industry, where policy and statute interpretations will be litigated in the courts

continually. For more, see On the Opportunities and Risks of Foundation Models, Bomassine et al.

(i.e., 75+ authors for this paper).

Attention Mechanisms 559

Here are some technical directions contributing the foundation model discussion.

• Third-Generation Model Sizes: Hundreds of trillions of parameters in models will be possible, but

will they really be useful, considering how ensembles of smaller models can be used instead?

Graphcore today claims to provide support for 500 trillion parameter models on systems with

10 EXAFOPS with 4 PETABYTES of memory—Graphcore capabilities are larger than any

systems in the USG Exascale program at the time of this writing. Due to the financial cost of

large memory spaces and storage systems, large parameter models are not possible except to the

elite research teams such as Google, Baidu, and the US Government. Today, China’s WuDao 2.0

uses 1.75 trillion parameters. Google and OpenAI have used 1–2 trillion parameter models—see

Fedus et al. [954] Switch Transformers: scaling to trillions parameter models with simple and

efficient sparsity.

• Excellent pre-trained models are freely available—Google and OpenAI (and others to follow)

continue to release free and easily licensed foundation models for NLP and computer vision, which

can be used as-is, or fine-tuned for specific applications. Model repositories using common model

formats will proliferate to enable new applications and products across market segments. Example

model repositories include ONNX model format—makes CNN model sharing possible https://

github.com/onnx/models, Modelzoo.co—pre-trained models for DNNs https://modelzoo.co/,

HUGGING FACE—pre-trained Transformer models https://huggingface.co/transformers/pre-

trained_models.html.

Attention Mechanisms

Hand-Crafted Feature Descriptors have returned as Attention.

Attention is the latest complex feature descriptor,

trainable using gradient descent,

and the variations are very hand-crafted.

Scott Krig

The idea of attention is naturally simple: focus based on affinity; either presence or absence of an

attribute; focus on white or non-white. But for machine learning and AI, the concept of attention is not

simple at all. There are many methods and variations for building attentional models for application

specific problems, particularly 1D NLP, 2D imaging, and 3D models such as point clouds.

Self-attention learns how tokens are related sequentially, by computing self-attention over several

variable length sequential tokens derived as pieces or subtokens from the same local context, which

enables token relationships to be predicted and translated using global attention (i.e., cross-attention)

across separate local contexts. Self-attention is represented as weight vectors describing learned

attentional features.

Attention reveals multiple levels of focus and relationships among tokens, like deep concentric or

multiresolution levels of detail surrounding a token in a dimensional space. For NLP, the focus is

sequential relationship between sequential streams of characters, words, and grammatical marks. For

https://github.com/onnx/models
https://github.com/onnx/models
https://modelzoo.co/
https://huggingface.co/transformers/pre-trained_models.html
https://huggingface.co/transformers/pre-trained_models.html

computer vision, the focus is metrics surrounding a pixel, or metrics describing related groups of pixels

in a rectangular or segmented region, or in a metric manifold space.

560 11 Attention, Transformers, Hybrids, and DDNs

For example, in natural language processing (NLP), goals include reproducing character-by-

character or sub-word sequences that represent words and sentences, as well as language translation.

The NLP trained models learn the character and word sequences found in the training data as weights.

The concept of attention includes the context of word tokens, their sequential ordering, related words,

the frequency of word use, grammatical constructions, and more. For 2D computer vision and other

higher-dimensional domains, attention likewise converges to capture relevant visual concepts such as

geometry, visual cues, colors, and textures.

In later sections, we discuss low-level implementation details for attention mechanisms, but first we

survey the key concepts and background.

NOTE: rather than academic research papers and conferences, it seems that blogs, corporate

research, and commercial product details are now critical resources to follow the innovations in

attention and AI, since the volume of work and the scope of research and innovations are global and

exponential—impossible for any one person to track. Fine research work is very often misunderstood,

ignored, perhaps poorly written, and usually forgotten, but it waits to be recognized, and hopefully we

will find some gems here.

Attentional research history was journaled beginning in the 1950s and 1960s, as the research

community was increasingly interested in feature detection and feature description as patterns: the

IEEE Pattern Analysis and Machine Learning (PAMI) journal was the major research journal. As

computing power increased and imaging capabilities increased, the field advanced and splintered

beyond the concept of describing and detecting patterns to incorporate more and more topics such as

classification and more powerful machine learning methods. So, primitive attention was first conceived

as pattern recognition and machine learning, which was hard-coded mostly using small data sets or

expert systems.

Perhaps the earliest work to develop and name the attention mechanism in 2014 is is found in [1035]

Neural Machine Translation by Jointly Learning to Align and Translate, Dzmitry Bahdanau,

Kyunghyun Cho, Yoshua Bengio, ICLR 2015.

Attentional research has proceeded through several phases—here are some historical advancements

leading to self-attention.

• Pioneering combination of DNN with attention mechanisms—Mnih et al. [955], pioneering work

that combined deep neural networks with attention mechanisms. 2014.

• Neural turing machines—[523] Graves et al. 2014.

• Attention in caption generation and view synthesis, [956] Gregor et al. 2015.

• Self-attention in the Vaswani [819] text-transformer in 2017,

• Self-attention in the Dosovitskiy [824] vision transformer in 2021.

Here are a few notable quotes about attention.

J. R. Firth 1957 “You shall know a word by the company it keeps”

Alex Graves quotes from Deep Learning Lecture 7:

“There are lots of different kinds of attention... more will keep on appearing... “

“Attention is still a fertile area of research”

“Memory is Attention over time”

Ashish Vaswani:

“Attention is all you need”

“Self-attention, sometimes called intra-attention, is an attention mechanism relatingdifferent positions of a

single sequence in order to compute a representation of the sequence.”

Andrej Karpathy:

“Attention is a communication mechanism. . . for nodes [tokens] in a directed graph.”

Attention Mechanisms 561

“Attention. . . aggregates values from a weighted sum of all nodes connected to it. . .

“Nodes [tokens] have no idea where they are positioned in space. . .”—

“that’s why we need to encode them positionally. . . [i.e add a positional encoding NLP]”

“Attention is a set of vectors [embedding vectors] in space. . . that just communicate. . .”

“. . . convolutional filters never talk to each other [no spatial or contextual relationships]

Self-Attention

Perhaps self-attention is the fundamental term to explore when creating computer vision feature

descriptors of local regions of pixels. Here are some ways to describe and understand self-attention

in NLP and computer vision.

Computer vision self-attention is a local feature descriptor, the contextual-attentional-feature-

signature of a sequence of pixels from a local region. The signature, or pattern, is a numeric vector,

computed using the embedding vectors for each pixel token in a pixel patch context (we cover

embedding in detail in a later section). The local region of the descriptor is the patch area of self-

attention, and the combined relationships between all the pixels in the descriptor record a specific value

or weighting of self-attention learned during training. There are many types of self-attention for

computer vision in use, which we touch upon in this section. In fact, compared to richer feature

descriptors (i.e., SIFT, SURF, Fourier features, and other methods), the simple method of pixel patch

self-attention as used in ViT is a primitive type of feature descriptor in terms of robustness and

invariance as discussed in Chaps. 4, 5, and 6. However, we find in deep learning that the sheer number

of features in the model, and the amount of training data used, can often compensate for the individual

simplicity of each descriptor.

Self-attention is a signature-embedding vector representing the combined weighted embedding

vector attributes of each token or pixel in the local context. For text applications, the self-attention

vector is trained to be a weighted combination of embedding vector attributes (discussed later in this

chapter) in the context of a sentence, perhaps several hundred attributes in a one-hot vector combined

and weighted together into a signature-embedding vector. Attributes may include RGB colors for

pixels, grammatical tags for NLP, or graph node functions for other modalities using graph node

transformers (NOTE: we do not cover graph transformers, to dig deeper see [1021] A Generalization of

Transformer Networks to Graphs, Vijay Prakash Dwivedi, Xavier Bresson, 2020).

Attention is like a learned distance function, composed into a weight vector. The attention weight

vector set is trained from initialized embedding vectors over the training corpus. In NLP, embeddings

contain numerical encodings in an embedding space, which are computed from ASCII encoded word

token sequences into a vector of numeric values representing each token—many variations of token

sizes and encodings are used, some mentioned later in this section. For training, the training set is

divided into blocks of tokens for training—one block at a time. The block length varies for a given

application [30, 500, 1000, . . .]. Each block represents a sequence of text encoded into tokens. Feature

learning via self-attention occurs for each token in the sequence, one token at a time, to find self-

attention contextually between all prior tokens in the sequence block. For pixels, often the RGB pixel

channels are concatenated together as three channels of RGB pixels to represent tokens, ranging each

from [0.0.256], although other tokens can be used for the embeddings.

Attention is like a learned multi-classifier, with one classifier for each trained feature. The classifier

is composed of a set of attention weight vectors for each known feature (i.e., a key/value pair), so

attention provides one classifier per trained feature. Attention is therefore learned to determine how

much attention to place on a target feature, by comparing with the reference features.

Attention is a form of memory. RNN systems also use memory, such as LSTM models with long-

term and short-term memory with a limited size, while transformers use a memory length that is not

limited except by the architecture choice of the segment length, which can effectively be 10–50× larger

than an RNN or LSTM model. Attention has advantages over the RNN memory limitations for NLP,

since RNNs and LSTMs can effectively process sequences of words given that the sequence is fairly

short—longer sequences such as 20 or more items begin to degrade the performance of RNN methods.

Transformer attention has larger practical limits on sequence length, since all sequence items can be

processed, in chosen chunks, independently and in parallel.

562 11 Attention, Transformers, Hybrids, and DDNs

Attention in computer vision can be viewed as a relative of segmentation or a heat map—where

related image features can be isolated to a degree. Segmentation produces clear polygon shapes

containing related pixels. But attention can be used to produce fuzzy and ill-defined regions of pixels,

which are still useful for a variety of purposes, even though they are ill-defined and fuzzy. The

attentional segmentations can range in quality from light and suggestive, fuzzy ill-defined regions,

through much cleaner regions of segmentation. The segmentations using attention are more probabi-

listic than other methods such as super pixels (see Chap. 2). Both CNNs and transformers are capable

of image segmentation as discussed in the Chap. 2, Section CNN Segmentation, and transformers such

as the U-Net in particular using the encoder-decoder architectures are particularly noteworthy, see the

Chap. 2, Section U-Nets for Segmentation.

Pixels are the features in most image attention models. The author expects that the features used in

attention models and other deep nets will become richer and multivariate—new models will be

developed following the path of earlier computer vision feature descriptors and emerging neuroscience

models—pixels alone are primitive features, and must be associated with other pixels to form higher

level abstract features that carry higher levels of representational power. Representational power

comes from the inter-pixel relational attributes, as well multivariate expressions such as statistical

models of texture, color, pixel distances, etc. (see Chap. 5, Interest Points and Feature Descriptors for

example of rich feature descriptors based on neuroscience and visual science models).

Self-Attention patches are primitive, commonly, rectangular pixel patterns flattened into a 1D

vector, and then each pixel vector is converted into an embedding or encoding—this is a form of

serendipity: the selection of the pixel patch regions as descriptors is purely unrelated to the content of

the pixels themselves and may cut and clip desirable features into smaller pieces. Image attention using

pixel patches looks like a primitive guess, compared to carefully designed feature descriptors such as

Visual Genomes [476], SIFT, BRISK, and SURF, which are purely designed following neurological

principles of human vision to represent and describe invariant interest point locations in an image and

the surrounding pixels.

Attentional features are represented in embeddings, vectors of attributes describing semantics for

each token. Embeddings are typically learned by a DNN from a large corpus of tokens such as words

for NLP, and learned from the image pixels for computer vision. We survey embeddings in detail later.

Embedding Vectors may represent hundreds of individual attributes to describe a token, such as a

word token for NLP containing synonyms, linguistic relationships, grammar, and word context. The

number of attributes defines the embedding vector length. Embedding vectors are the basis of attention.

Neuroscience of Visual Attention

Here are some interesting observations from the literature from the neuroscience perspective on

attention and neural networks—many more items can be cited, see also Appendix E The Visual

Genomes Model (VGM), and Krig [476] for an overview of key research from visual neuroscience

with illustrated C++ code models. The time is ripe for richer neural models, including more time-aware

models for visual attention that incorporate visual sequences with associative time-aware memory

models. See Figs. 11.22 and 11.24.

Neuroscience of Visual Attention 563

On the Weakness of FFN Models for Attentional Learning

*Note from the author: FFN’s have changed the world! They work well for what they do.

Here is a quote from [957] G. Rousselet et al.—How parallel is visual processing in the

ventral path? 2004.

Despite its success in explaining some basic aspects of human perception such as object recognition, the

hierarchical feed-forward theory remains highly schematic. Many aspects of biological visual processing, from

anatomy to behavior, do not fit in this cartoon-like framing.

Transient Attention—Sustained Attention

Quotes from [958] Liu et al. Transient Attention Enhances Perceptual Performance and fMRI

Response in Human Visual Cortex

In behavioral studies, the two attentional systems can be differentiated by their distinct temporal dynamics.

Voluntary, goal-driven attention is slow and maintained over long periods of time, whereas involuntary, stimulus-

driven attention is fast and decays quickly (Jonides, 1980, Nakayama and Mackeben, 1989, Yantis, 2000). Here,

we refer to the two systems as sustained and transient attention, respectively.

[attention] enable us to selectively attend and process a subset of the vast amount of information that impinges on

our retina at any moment (Jonides, 1980, Nakayama and Mackeben, 1989, Yantis, 2000).

Saccading and Time-Aware Neurons

Notes on [959] Kirsch, Schmidhuber, meta learning back propagation and improving it.

A recent paper by Kirsch and Schmidhuber on Metalearning explores the complexity of the time-aware neuron

model direction further, proposing a neural model composed of a network of interconnected LSTM neurons. This

encapsulates various attentional models together: continuous memory in the range of short to long.

LSTM networks model attention in a time-aware fashion: the period of attention is gated, so there is both long-

term and short-term memory, which is another expression of Transient Attention vs. Sustained Attention The

LSTM concept is a memory-centric attentional approach to neural modeling, and will continue to pave a

significant path forward in neural models of the human visual system. (Scott Krig)

Local Features and Joint Attention

Quotes from [960] Bio-inspired computer vision: Towards a synergistic approach of artificial and

biological vision, Medathatia et al.

The processing of a local feature is always influenced by its immediate surrounding in the image.

564 11 Attention, Transformers, Hybrids, and DDNs

Such diversity would result from complex connectivity patterns where neurons tuned for different features (e.g.,

orientation, direction, spatial frequency) can be dynamically interconnected.

How information encoded in neural systems is still highly disputed and an active field of theoretical and empirical

research.

Attention Variations

The basic idea of attention is not concrete, and the term is used by neuroscientists as well as computer

vision and machine learning practitioners in many ways. The concept of attention was emphasized in

the seminal transformer paper natural language learning (NLP) paper from Vaswani et al. [819]

“Attention is all you need,” where they developed a method of computing local sentence context as

local self-attention within a sentence or local region, and a global association context called global

attention. The transformer is a major milestone in AI, with applications to different modalities

emerging.

Attention creates a symbolic picture of the context of related tokens like words or pixels.

Attention all by itself is an interesting concept for image recognition, since it acts as a hand-crafted

feature descriptor that has trainable weights via various training protocols and gradient descent back

propagation methods, like other CNNs and neural networks. There are nearly as many computer vision

visual attentional feature descriptor representations and relationships as there are transformers with

visual attention—each seems to be different or improved. Attentional features have been used to make

hybrid CNNs to augment the last layers of CNN backbone since they incorporate more high-frequency

details due to the larger pixel patch sizes used, such as 16 × 16 and higher.

Attention is a form of memory, an associative memory.

Attention concepts can be used to design new memory systems in hardware with attention support

for various sized tuples inside the memory cells—modeling associations in an attentional content-

addressable fashion, for example, as used inside computer CPUs for CAM memory caches (i.e.,

Content Addressable Memories) for caching variables inside the ALU and rapidly retrieving them.

Here are a few things people have said about attention.

J. R. Firth 1957 “You shall know a word by the company it keeps”

Ashish Vaswani [819]

“Attention is all you need”

“Self-attention, sometimes called intra-attention, is an attention mechanism relatingdifferent positions of a

single sequence in order to compute a representation of thesequence.”

Alex Graves quotes from Deep Learning Lecture 7:

“There are lots of different kinds of attention... more will keep on appearing...

”...attention is still a fertile area of research”

“Attention is ...attending to... “

“Memory is attention over time”

“With Neural Networks, more is more...”

“Associative memory can fill in the gaps of missing information”

”... turn static images into sequences... [associations]... reconstruction of the image...”

Alex Graves on the NTM memory access model, see The Neural Turing Machine RNN, developed by Graves

et al. [523] (*paraphrased below by this author)

– Provides fuzzy attention (loosely similar values, and focused attention.

– Also provides shifted local-attention (similar to a sparse convolution kernel in 2D).

– General rule for building things with neural networks;

Attention Element Overview: Encodings and Embeddings 565

– Whatever you want the network to do, you have a functional form for it, and get the network to supply [i.e.

learn] the parameters for that functional form [i.e. another way to conceptualize an MLP function

approximator].

According to the fine survey on attention methods from Meng-Hao et al. [961], separate categories

of attention are identified in various transformer architectures and compared. The authors have boiled

down the various methods of attention into common categories as follows:

• Channel attention—select important channels via channel mask generation.

• Spatial attention—select important image regions via region mask generation.

• Temporal attention—select key frames using generated masks.

• Branch attention—select important network branches via mask generation.

• Channel and spatial attention—joint prediction of various types of channels using variable criteria

to select feature regions of interest.

• Spatial and temporal attention—joint prediction of spatio-temporal regions via masks.

And here are other noteworthy visual attention methods from the literature:

• Strand attention—a method to compare strands of feature metrics [476].

• Self-attention—attention within a local region, such as a patch or word sentence.

• Multi-headed attention—parallel computation of attention features.

• Cross-attention—attention within a pixel patch, or between pixel patches [835].

• Hard attention—not differentiable, must be computed by direct hard number comparison.

• Soft attention—maybe computed probabilistically; differentiable values can be trained.

• Content attention—CAM memory based [476].

• Location attention—location based or cluster based [476].

• Geometric attention—(Csordas et al. ICLR 2022).

• Focal self-attention—Focal Self-attention [953].

• Visual word codebook attention—BEIT vision transformer from Bao et al. [985].

• Coordinate attention—[989] uses coordinate embeddings to locate target features.

• Transient attention vs. sustained attention, [959] Kirsch, Schmidhuber.

• SuperGlue attention: compares self-attention (within an image) and cross-attention (between two

images) to determine correspondence between any type of feature: classical feature descriptors, or

learned CNN or self-attention descriptors. See DeTone et al. [1015] SuperGlue.

Attention Element Overview: Encodings and Embeddings

Attention is computed from dictionary token encodings (i.e., numerical values) projected into embed-

ding vectors which are trained to containing a set of tokens representing a local sequence. The

embedding vectors contain the contextualized vector weights tuned via gradient descent, to be

compared between other model embeddings or target embeddings during training and inference to

find feature similarity. Features in an embedding vector are contextualized via training to learn to

represent weighted associations between embedded tokens in a context over the distribution of the

training set. Contextualization is the process of learning attentional feature weights that represent a

local context, similar to learning and comparing local co-occurrence matrixes, which is true for NLP

and computer vision, see Figs. 11.11 and 11.14. The embedding vector weights form the features.

Comparison takes place via a vector similarity function (SSD, SAD, Cosine Distance, . . .) between

trained model embedding vectors and a target token sequence (i.e., sentence for NLP or pixel patch for

computer vision), discussed in more detail later.

566 11 Attention, Transformers, Hybrids, and DDNs

“Encodings are only as good as the training data.

Embeddings are only as good as the encodings.”

—Scott Krig

Historical computer vision encodings for pixel feature descriptors, and NLP using LSTM and RNN

architectures, are covered in Chaps. 9 and 10 including “Vocabulary Encodings,” “Visual

Vocabularies, Bag of Words (BoW) Model, Alternative Encodings,” “Sparse Coding and Codebook

Learning Overview, K-MEANS, K-SV D.”

A dictionary contains unique encodings for a set of tokens from one or more training sets. A token

can be made from any object including pixels, words, basis functions, or other datum. In NLP, a text

corpus is parsed into separate tokens such as for each word, sub-word, or syntactical marking. The

dictionary then is built up or trained to contain unique encodings for each token (i.e., word). Word

embedding vectors are created containing a 1D vector of encodings, representing key semantic

attributes for chosen sets of encodings in a context. The word embedding is the context, such as a

sentence or sequential group of a chosen length such as 50, 100, 1000, or more, to enable NLP

translation and textual understanding at the word embedding vector level. Embedding vectors are

containers or features to learn contextualized sequences of tokens.

To find the unique tokens, the input must be parsed into tokens of some size, and various methods

exist for parsing word streams into tokens, such as whole word parsing, punctuation and sub-word

parsing, or perhaps multiword tokens. For computer vision, the dictionary may be composed from

pixel regions, using features (i.e., tokens) such as RGB pixel values, or image features from basis

functions over the pixel regions (for example, see the BEIT and VICE transformer surveys later in this

section).

Each token is assigned a unique value or numerical encoding in the token encoding lexicon, which

does not contain semantics of the token. The tokens in a sequential context are represented in an

embedding vector, which is trained to represent the learned semantics tuned as embedding weights, a

contextualized set of encodings trained to contain attribute weights.

Historical NLP embedding methods based on token encodings include Word2Vec, GLoVE, and

more methods are discussed in [963] and the bibliography references. NLP solutions may choose to

use multiple encoding methods together, such as encode character by character (i.e., ASCII codes or

similar), or as sub-words, i.e., Google has used Sentencepiece, OpenAI has used Tiktoken for

bi-character or byte-pair encodings which act like a 2-digit (bi-character) number system with digits

composed of the encoded value of the byte-pairs. For example, the ASCII char value encodings could

be used to represent digit encodings for AB = [0 × 41, 0 × 42] = 0 × 4142 = [65, 66] = 6566 decimal.

More details on encodings are also provided by McCormick [964]. See also the seminal NLP paper

from Bahdanau et al. [981].

Once encoded into tokens, the tokens can also be decoded back to the natural language domain as

characters, sub-words, or words in the decoder section of the transformer.

Next in the following sections, we provide a parallel discussion of dictionary learning and

embedding spaces, for both NLP text and computer vision image and pixel concepts together, since

the text concepts have greatly influenced the computer vision concepts. In fact, the first computer

vision transformer ViT used an NLP transformer almost as-is to process pixels encoded like word

tokens, which we survey later.

Input Tokenization for Text and Images 567

Input Tokenization for Text and Images

In NLP 1D sequence applications, tokenization is the process of parsing the corpus of text training data

into separate tokens using a variety of encoding methods, where tokens may be derived from words,

characters, sub-words, punctuation marks, along with variations such as prefixes, post-fixes, and

special characters. The training data is processed to produce a stream of numerical encodings for

each token with unique numerical ID values. The tokens are used in the embedding vectors. Many

tokenization methods exist for textual parsing, but none is perfectly suited to computer vision. See

Fig. 11.5.

In computer vision, the input image is commonly tokenized into polygon or patch-shaped regions

containing RGB pixels, and for some methods, the regions are intentionally overlapping, or taken over

a pyramid range of different scales and resolutions, sometimes including other geometric affine

transforms besides scale, such as rotation. We survey such methods later.

Text

I have 500,000 prerelease albums

My dog is, or was, hungry

I like cheesburgers with pickles

Tokens

I have 500 , 000 pre release albums

My dog is , or was , hungry

I like cheese burgers with pickles

Tokenizer

Fig. 11.5 Illustrating input tokenization into words. Each word token is assigned a unique value or numerical encoding

in the token encoding lexicon (i.e., dictionary) with no actual definition of the token. The tokens in a sequential context

are represented in an embedding vector which contains the learned meaning as embedding weights, a contextualized set

of encodings which represent contextualized meaning

Tokens are stored into a dictionary or lexical format. For NLP, the dictionary represents a set of

tokens taken from an input text corpus, such as the entire WIKIPEDIA collection, reduced to the set of

unique tokens with unique numerical values. The tokens are scrubbed to remove duplicates and

rendered into a canonical format for each dictionary. The encodings dictionary does not contain

meaning; the embedding vectors contain the meaning. Embedding vectors are sequential vectors of

encodings representing trainable token context weights, see Fig. 11.6.

For computer vision, tokens may be pixels, pixel patches, or alternative basis features such as

Fourier features. There is no standard embedding method or principled historical improvement path to

follow among computer vision dictionaries or pixel-oriented embeddings, since computer vision

approaches vary from research paper to research paper. The best way to understand pixel attention

and pixel embeddings is to read a variety of papers describing different approaches, which we

introduce as we go along.

In computer vision, dictionaries are not standardized like NLP dictionaries. However, it is possible

to create standardized vision dictionaries for various feature spaces. Currently, the majority of research

into vision does not mention visual token dictionaries. However, the visual genome model [476] does

in fact use a collection of dictionaries of modal visual feature metrics (several thousand metrics in the

current version) and proposes standardization as volume learning for visual DNA and visual genomes.

For insight into computer vision dictionary concepts, we will survey the ViT and SWiN methods in

the section Transformer Architectures for Vision below.

Pixel-oriented embeddings, as used in computer vision attention, are ad-hock methods created

separately by each practitioner, sometimes re-used and extended in later research. However, the

Volume Learning model as proposed by Krig [476] and surveyed later is an early proposal to create a

standard vision dictionary and multivariate embeddings within a volumetric metric space containing

visual DNA metrics representing features forming visual objects, which is organized as individual

collections of visual DNA for visual objects into visual genomes.

568 11 Attention, Transformers, Hybrids, and DDNs

Embeddings for Text and Images

Embedding vectors are used to describe a target feature, and after training used to find the closest

matching feature vectors in a trained model. Embedding vectors contain weights trained via self-

attention to describe sequential tokens in a local context, such as words, sentences, or pixel features.

Embeddings are vectors of tokens such as words or pixels represented as numbers, learned and trained

to represent context within an embedding space; the space associates similar concepts close together.

The embedding weights are thus contextualized during training to represent token associations over a

chosen context.

Embeddings are a major advancement in sequence learning particularly for NLP, and many good

methods exist for NLP text embeddings. In fact, standardized embedding vectors are available

pre-trained from Google, OpenAI, and other sources. NLP is much farther along in the science of

creating good embedding vectors compared to computer vision, where the embedding methods vary

widely. See Fig. 11.6 illustrating how token attributes are trained into embedding vectors, representing

learned local contextual values for each attribute.

Attributes >

Tokens

 \/

human animal food hungry

albums 0 0 0 0

dog 0 1 0 0

hungry 0 0 0 1

cheeseburgers 1 0 1 0

pickles 0 0 1 0

Token attribute encodings *examples only some tokens shown

Embedding Vec-

tors v[0..n]

v[0]

human

v[1]

animal

v[2]

food

v[3]

hungry

albums .1 0 .05 0

dog 0 .9 .1 .2

hungry .15 .05 .1 .8

cheeseburgers .05 .1 .09 .01

pickles .01 .3 .8 .2

Token embedding vectors (top), pre-trained by a DNN, are the default vectors to use re-

train into contextualized embeddings (bottom), which are weighted for a local context of

tokens such as sentences or pixels.

Fig. 11.6 Hypothetical illustrations of (top) lexical concepts of attributes for tokens and (bottom) embeddings created

for the token attributes

The length of embedding vectors varies; for example, in NLP, BERT [963] uses a range of

embedding vector sizes are used, sch as BERT-Base = 768, BERT-Tiny = 128, and BERT-Mini = 64.

The size of the word embeddings affects the performance of the BERT model on different tasks. In

general, larger word embeddings tend to perform better in terms of accuracy on tasks that require a

more nuanced understanding of the meaning of words. However, larger word embeddings also require

more memory and computational resources.

Embeddings for Text and Images 569

We introduce key concepts and topics in this section from NLP as background for the discussion on

computer vision feature encodings and embedding vector spaces, with some computer vision examples

of embedding methods for pixels and visual features in the next section.

For computer vision, embeddings are ad-hock, developed in a range of methods by various

practitioners. Specific computer embeddings are surveyed in the survey section later. Most of the

embedding science originates in NLP where transformers were first applied, as discussed in this section

for background. However, room for advancement in computer vision embeddings is identified as we

go along.

Pixel embedding learning is an emerging area of research, with growing popularity in image

segmentation applications, where each pixel must be assigned to a class using the embedding vector

class attributes in order to segment each pixel into classes. Pixel embedding learning is briefly

surveyed by Wu et al. [991] in the W-Net architecture comparison to U-Net and related work, see

the U-Net survey in Chap. 2 for more details on W-Net.

Embeddings, or embedding vectors, are the numerical representations of features from a given

domain, such as text tokens in NLP, or pixel feature patches from an image, or nearly any statistical

features from an image or text. Transformers rely on feature embeddings to determine context and

attentional relationships. Embeddings can be multidimensional. Any object can be represented by a

numerical vector in an embedding space, such as words, user profiles, images, audio recordings, or

weather patt erns.

Embeddings are learned representational features, created via AI methods, which support genera-

tive AI which can create output representations composed of combinations and permutations of

representational features. See also http://projector.tensorflow.org for visualizations of various word

embeddings.

For NLP, encodings learned by a transformer or DNN are the base model. Or, existing trained

models can be used as the base model via transfer learning as the starting point, and then fine-tuned as

foundation models [980] where embedding vectors are initialized and then trained. Both the dictionary

and the embedding vector formats can be pre-trained and ready use, speeding the process.

The embedding vectors are the center of the transformer model; good embeddings are required, and

embeddings are a science all to themselves, with roots in NLP. All transformer analysis is based on the

embedding vectors and their values. NLP embedding vectors are useful for textual context understand-

ing, analysis, prediction for generative models, and translation.

To query the trained NLP model, hand-crafted textual prompt vectors are created. The prompts are

like questions and statements acting as indexes into the model and are not learned via training. Rather,

the prompts are created separately by human experts, via trial and error, to represent the sense of the

knowledge domain contained in the model. Bad prompts yield bad model matches and bad results.

Currently, there is no automated learning method to create prompts. Using deep learning to find the

prompts is in a very primitive state of research, with no clear end in sight to automate the human

expertise required to generate intelligent prompts. Prompts are very hand-crafted—but the

corresponding attentional features representing attentional context in the model are learned.

Therefore, we do not present details here about creating NLP prompts (i.e., prompts

engineering). Why? Because prompt engineering is out of scope for computer vision, since there is

no clear analog process required for computer vision applications. Therefore, to dig deeper into hand-

crafting of embedding vectors for NLP and defining the prompt engineering embedding sets, see

[1020] OpenAI—GPT-4 Technical Report OpenAI—March 2023.

An embedding space contains a set of trained or contextualized embedding vectors, which can be

reprojected into a lower dimensional space such as 2D for similarity discovery using distance

functions, see Figs. 11.6, 11.7, and 11.8. Embeddings are multidimensional coordinates, which can

be stored in vectors of arbitrary length to represent chosen attributes, which act as coordinates to

represent similarity within the embedding space.

http://projector.tensorflow.org

570 11 Attention, Transformers, Hybrids, and DDNs

Each element in the trained embedding vector represents a weight for a certain attribute which is

semantically useful for textual context understanding, analysis, and translation. Embedding vectors are

created from a set of token encodings from a dictionary—the dictionary is created from a token corpus,

such as a text corpus, as discussed in the prior section. The embedding vectors are created by

projecting a token (such as a word in an NLP model, or a region of pixels in an image model), and

their attributes, into numerical embedding vectors, which can be viewed within the embedding space

to observe relationships between tokens, and measure similarity between tokens for analysis of

context, meaning, token understanding, token substitutions, and translation. Any token can be

represented by a numerical encoding and projected into a numerical vector in an embedding space.

Embedding vectors can be reprojected into and vector space to measure simple similarity as the 2D

distance between embeddings, revealing context and meaning, enabling token substitutions and

translation. Any token in any domain can be represented by a numerical vector of useful attributes

and represented in an embedding space.

Embedding vectors contain weights, which can be trained to push vectors in space to adjust

similarity depending on the context of the words; training for a medical word corpus will re-weight

the word vector weights to better represent the medical word contexts. This is referred to as contextu-

alized word embedding. For example, medical language is contextualized differently than sports

language.

See “Intuition Behind Self-Attention Mechanism in Transformer Networks” on YouTube for an

intuitive introduction. The vector dot product reveals similarities, where the cosine distance is smaller,

see Fig. 11.8. and see Table 11.1.

Good token embedding vectors encode domain meaning as separate attributes into each element of

the embedding vector, enabling similarity metrics to use token-to-token distance to find relationships

between any specific token attributes.

Good embeddings contain meaning, for example, allowing noun tense changes, associations of

attributes together such as persons, places, and things. Distance provides semantic information for the

language of the tokens. Embedding positions are fixed, so table vector position indexing can be used

for comparing embeddings and their attributes.

Increasingly, DNNs and transformers for computer vision may use embedding spaces based on

projections from alternative basis features such as CNN feature maps and Fourier features representing

a pixel patch, as well as pixels themselves.

NOTE: Most NLP systems use pre-trained embedding spaces and dictionaries of word tokens, so

the applications are built on pre-made dictionaries and embedding vectors.

BERT [963] is a major advancement in natural language processing (NLP) transformers using a

bi-directional encoder/decoder architecture, used to create one of the most comprehensive and vast

trained sets of word embeddings suitable as a foundation model, and in 2019 Google began using it for

processing search engine queries, which added the capability for conversational queries rather than

topical queries, since it captures complex nuances in language. BERT has over 200 variants. It can be

implemented using an encoder-only architecture for embeddings.

BERT combines several key features:

• A new emphasis on token-oriented contextual attention mechanisms.

• Along with other transformers, BERT can be interfaced with the established Relational Database

Systems and the SQL query language (E. F. Codd 1970 [1978], [965]). See [982] Guo et al. for

converting natural language queries into SQL queries for transformers.

• Uses the transformer architecture, allowing for training and feature learning like other neural

networks.

Embeddings for Text and Images 571

• Uses the WordPiece tokenizer and embeddings, which splits text input into full word forms, or else

splits whole words into pieces as multiple tokens. The tokens are organized into an intelligent

embedding model. Word pieces sometimes have advantages in NLP for language translation and

language understanding, enabling more accuracy. See also McCormick [964].

The NLP embedding vectors may contain many thousands of attribute dimensions or entries. For

pixel embeddings, there is no standard embedding space across the variations in pixel attention

methods; however, we will describe the ViT pixel embedding method briefly in a later section.

For computer vision, the BEIT method creates a visual vocabulary, or codebook, of visual features

to represent pixels, and also uses 2D pixel patches flattened into 1D vectors as the basis for generating

encodings for embedding vectors, we survey BEIT later in this section.

Besides visual vocabularies, Bag of Words and similar embedding models are used computer vision

to organize feature spaces, similar to dictionaries and embeddings, see Chap. 4, Section Terminology:

Codebooks, Visual Vocabulary, Bag of Words, Bag of Features.

Embeddings are also associative memory addresses, which locate similar objects together. Embed-

ding is a method to encode an associative memory, where the distance between memory objects is

small for similar concepts, and large for unrelated concepts. Embedding is also a clustering method,

where similar concepts are clustered together by similar encodings. The embedding space, or associa-

tive space, enables many forms of machine learning.

In fact, embeddings themselves must be learned, often using DNNs or numerical and statistical

methods. The embedding space is a similarity space, where similar concepts are near to each other

within the space, and unrelated concepts are far away from each other within the space, and unrelated

concepts are far away from each other.

As shown in Fig. 11.7, self-attention for NLP is the method of computing frequency of association

within a local region such as sentence, by measuring the frequency of word associations in a large

corpus of training data. For pixels, self-attention or intra-attention describes pixel context and

relationships within a pixel region, and inter-attention describes the relationships and similarity

between independent pixel regions. Transformers use an encoder to create the embeddings and encode

the similarity between words in a local context (such as a sentence or pixel patch), or in global context

comparing pixels within patches with pixels in other patches or across the entire image. The trans-

former decoder uses the embeddings to find NLP textual similarity and to understand the token

meanings for translation. For pixels, attention is used for object detection and scene understanding.

Tokens (words or pixels) that are more frequently found in the same sentence or pixel patch are

defined contextually as being more related and closer together in the embedding space—words or

pixels that are not often used together are defined as more unrelated and farther apart in the embedding

space. See Figs. 11.7 and 11.8 and Table 11.1.

572 11 Attention, Transformers, Hybrids, and DDNs

Fig 11.7 Illustrating how self-attention analysis over many training examples reveals contextual relationships between

words. Training with different word encoding sets produces different contextual relationships

bank

went

river

cash

I

get see

dog

Word embedding space showing word contextual associations,

word distance records contextual associativity

Fig. 11.8 Showing a rough hypothetical embedding space where word similarity and synonyms can be represented,

where smaller distances between tokens in the embedding space reveal similarity, and contextually unrelated words have

a larger distance between them

Training pulls the word vectors toward the direction of the training data—this is

contextualization—and is represented in the model embedding weights.

Note that Figs. 11.7 and 11.8 illustrate attention concepts within a hypothetical embedding space,

where similarity is shown using Cartesian distance. Note how the training example describing “the dog

going to the bank to get cash” is not common in the training set, therefore not likely to be encountered

in real examples, thus helping to train the feature embedding space to have low similarity in this case.

Therefore, training with different test data and different tokenization methods, and different

embedding length requirements produce different word encodings and dictionaries, resulting in

different embeddings for contextual relationships, thus different self-attention features can be

described, learned, and detected. In this way, the dictionary and the embeddings can be specialized

to a specific knowledge domain, such as legal, medical, software code engineering, etc. For example,

ChapGPT is trained over GitHub software source code and can therefore generate decent software

source code for simple cases. See OpenAI LangChain API for details on fine-tuning the ChatGPT word

model by using additional data for specific knowledge domains. Fine-tuning models in small chunks to

add knowledge is the future—combining model ensembles, re-training quickly and often for small

items, and managing model ensembles as a group, will providing continuous learning—see Associa-

tive Multimodal Learning in Chap. 12.

Rethinking Positional Encodings for Text Tokens and Pixel Patches 573

Rethinking Positional Encodings for Text Tokens and Pixel Patches

NLP transformer embeddings also use a positional encoding added to each token, which is like a

sequence number in LSTM/RNN networks, ensuring that each token is treated separately even if

several tokens are identical in value, for example, all the occurrences of the word “the” in the input will

be treated separately if they each have a unique positional encoding. But what are the justifications for

positional encodings in transformers, and are positional encodings needed for computer vision

embeddings for pixel patches?

Positional encodings in 1D sequences make sense and are useful for text processing to uniquely

identify each embedding vector in case words in the sequence are identical, since the number of

different word tokens encountered in NLP may only be a few thousand, so the positional encoding acts

like a sequenceID number to uniquely identify words that may occur multiple times in a sentence or

context, i.e., “I had desert in the desert.”

But for computer vision, positional encodings, or perhaps the types of positional encodings in use

for pixel patch embeddings, do not seem to matter very much, as reported by many practitioners (for

example see ViT [824]).

Positional encodings as used in pixel patches are, at best, simply a very weak method to add a

nonlinearity into the embedding vector. Adding some nonlinearity for feature learning is considered

desirable in CNNs to help avoid basins of attraction during back propagation gradient descent training,

sort of like a bit of accuracy drop-out, but more research is needed to find guidance for transformer-

style attention in computer vision.

To questions the need for positional encodings in computer vision patches, the intuition is that if a

16 × 16 = 256 image patch contains 3 RGB channels for each of the 256 pixels for 768 total pixels,

each pixel with a value in range 0.0.255, then under self-attention 768256 possible pixel value weights

per patch are compared (or attended-to as some practitioners prefer), and 768256 is NAN using today’s

computers. So, the odds of two 16 × 16 image patches being identical are 1/8.578177753 E+506,

therefore positional encodings will not help and are superfluous. But perhaps there is room for more

thinking and innovation on this topic.

768^256 = 44923369994357333539605999728098833291720240728307887603351260009855

9451565249175628595292456704022571997613515823515513734622292882657034689202487

77809904209756669524920069763251019391427003033355426110502374011032726720608817

93127801002571604252438928862521023311573660248150526723744935884467979627832374

34111094173094021628475414852157601215589958185345083521688434653935839194084011

6080209999012697775279346897020112614640965167345110489318253243757439616522765

88704909263190772109814500605835126009661678111432300079321437962252563776494923

60530908153234140351962848198859770503655514139478432681743081347248105121438465

12460847251379671209024085476167120375962051263679302110591447471221696471498770

360394719409288647937257715531776

574 11 Attention, Transformers, Hybrids, and DDNs

Most practitioners have noticed and reported that pixel positional encodings seem ineffective.

Perhaps, a random number for the positional embedding would get equivalent or the same results

that still do not help, or else using the coordinates of the pixel patch within the original image could be

tried, if a future need exists. But perhaps pixel patch positional encodings are not needed at all, which is

observed in the ViT method surveyed later. See Hou et al. [989] for using coordinate attention

encodings to add spatial awareness to CNNs.

Each pixel patch does have an (x,y) coordinate origin and centroid, which may be a better choice

than other positional encoding methods if in fact 2D positional information is wanted for visual token

embeddings, and can be proven to work. According to the research this author has seen, vision

transformers do not require 2D (x,y) pixel patch positional information, nor do transformers make

special use of multi-patch spatial feature relationships incorporating 2D (x,y) spatial representations

after Hou. However, the volume learning method from Krig [476] does in fact form multi-patch feature

relationships which requires 2D (x,y) positional information, see Fig. 11.23 for details.

Illustrated Encodings and Embedding Space

In NLP, the embeddings in a transformer model are represented as a table with a row for each prepared

input token, and columns for each attribute to be learned about each token during training. Self-

attention is used to learn define and learn the column attributes as weights within each token, and input

tokenization is used to define and enumerate the separate rows in the table—this is a lot like a relational

database table, which we delve into later. See Figs. 11.7 and 11.8 and Table 11.1.

The encodings and embeddings are usually learned in practice as discussed in previous sections.

However, domain experts can manually create embeddings, such as medical XRAY technicians,

containing ground truth embeddings to identify the golden attributes that must be learned, fine-

tuned, and detected for their work. Such embeddings contain unique embedding attributes such as

shapes, intensities, or other features they specify. This is a very expensive method to create

embeddings, but still used.

Association is only as good as your embeddings. ...—

Alex Graves quotes from Deep Learning Lecture 7

Some practitioners learn multiple embedding models, each separately optimized for specific

attributes and use cases—this is common for NLP methods, but not popular (yet) for computer vision.

Variations may include the embedding vector size or number of encodings in the embedding vector,

where each encoding may be required for one use case, but not another. A. class name and class

description token may be used for interpolating between related classes to find the best match (i.e.,

zero-shot learning).

However, embeddings are learned and tuned via transformers using various encoding schemes. A

common encoding method assigns each unique token (i.e., class) to be encoded as a unique value in the

embedding space, commonly used is often referred to as one-hot encoding in the literature, however

many methods exist. One-hot encodings contain one row for each token, and one column for each

possible token attribute with only one attribute column to be set as “hot” = 1, and all other columns set

=0. For pixels, typically the pixel RGB component values can be used for encodings, but embeddings

vary as each vision transformer may use a different method which is beyond the scope of this work. To

dig deeper into vision transformer embedding methods for compute vision, see the survey [961]

Attention mechanisms in computer vision: A survey, Guo et al.

Illustrated Encodings and Embedding Space 575

Since embeddings are crucial, high-quality embeddings are being developed and sold commercially

(see OpenAI) which is common for NLP, but not for computer vision. Not all embeddings are useful

for a given problem. NLP embedding vectors have different requirements than computer vision, which

we touch upon briefly as we go.

For pixels and computer vision, additional items may be added to the embedding such as a positional

encoding to represent some spatial information, or perhaps a pre-computed class token analogous to a

dictionary encoding. We survey the ViT transformer method as an example later in this section.

For embedding space learning and training, the first step is to tokenize the input into unique values:

for pixels this may be using the pixel value as the token in range [0.0.255] for each RGB color channel.

For NLP and textual values, tokenization can be done by parsing the input text and separating values

based on punctuation marks into words, and in some cases separating words into sub-words.

Encodings assign each unique token to a unique value—this is often referred to as one-hot encoding

in the literature.

Table 11.1 Illustrating hypothetical token blocks Z,X, tokens, token subsets, and token similarity scores for subTokens

Z1.0.6 and test block X: XZ1 .. XZ6. Note that the block length could be hundreds or thousands long, this example

Block Z: ground truth

shows a block length of 6 which is not practical or advised

Block X: test block/target block

Block Z The dog likes pickles for breakfast

tokenSubset Z1 The

tokenSubset Z2 The dog

tokenSubset Z3 The dog likes

tokenSubset Z4 The dog likes

tokenSubset Z5 The dog likes pickles for

tokenSubset Z6 The dog likes pickles for breakfast

Block X My cat wants sardines for snacks

Similarity XZ1 1.0

Similarity XZ2 1.0 0.4

Similarity XZ3 1.0 0.4 0.6

Similarity XZ4 1.0 0.4 0.6

Similarity XZ5 1.0 0.4 0.6 0.5 1.0

Similarity XZ6 1.0 0.4 0.6 0.5 1.0 0.7

576 11 Attention, Transformers, Hybrids, and DDNs

For NLP training, as shown in Table 11.1, tokenSubsets from the input block are separated as:

Tokens 0½], tokens 0, 1½], tokens 0,1,2½], tokens 0:1:2::blockSize½]

The transformer therefore sees each token in the block contained in subsets of the entire block as

tokenSubsets of size 1 .. blockSize. Each tokenSubset is separately compared to create separate self-

attention features to learn the local context. In this way, self-attention is computed at each tokenSubset

in the token sequence, with the goal of being able to predict the next token of each subset, for example,

to predict the next token in the set Z2 token[0,1] (the dog) we use Z3 (likes) from Block Z as shown in

Table 11.1. Training is performed by testing similarity between tokenSubsets and the block of tokens

from which they derive: Block Z in Fig. 11.1 is used as ground truth. Then, similarity between

tokenSubsets and test blocks contextualize the weights as additional test blocks are used to perform

self-attention and adjust the weights in batches as training proceeds.

To dig into actual code self-attention transformer training details, see the Andrej Karparthy

youtube.com training session: see the Andrej Karparthy youtube.com training session: “Let’s

build GPT: from scratch, in code, spelled out”

The tokenSubsets are trained into attentional feature weights using the QKV Query, Key, Value

mechanism to learn to perform token predictions, token-to-token language translations, and token

model searches as discussed in the next section in more detail.

NOTE: The key idea of using tokenSubsets is to train the model to be able to predict the next token

in a larger set of variable length token sequence blocks, using past sequential token values from known

positions according to the relative positional embeddings to predict future token values, contextual-

izing the weights for self-attention similarity over the training samples.

The tokenSubsets (which can be as small as one token) are used for QKV attention Q values (i.e.,what

to look for), the blocks are used as the source of the K values (i.e., what is contained) and used in the

QKV learning process to compute QK similarity (using dot product, cosine distance, . . .) into the V

value similarity weights, to contextualize all token relationships from the training data, where high

similarity is high sequential contextual relevance. Multiple QK similarity computations are enabled via

computer using multiple tokenSubsets as Q against multiple target blocks in K as QK vector similarity—

which can be computed in parallel—this is referred to as multi-headed attention—see Fig. 11.11 for an

illustration. The queries are performed against all Keys in all Blocks, and the highest QK similarity scores

V add the most context to the model feature weights. Note that only prior tokens in the sequence are used

as the context contributing to the similarity computation for self-attention for weight tuning.

Typically for NLP, the tokens and corresponding tokenSubsets are processed in batches containing

a subset of all the training data, where the batch processing includes both a forward self-attention pass

and a backward gradient descent tuning pass for each batch. The goal of the training is to compute

self-attention features for each tokenSubset to enable sequence prediction of subsequent tokens

following each tokenSubset.

The transformer is trained to produce a token embedding table of dimension nTokens, initialized

from the tokenized input only, to contain the first-order initial prediction of the tokens following each

token, not using any other local context. But these predictions must be further trained and fine-tuned

via self-attention of a large set of contextual tokens, to discover the most common local tokenSubset

context from the training set to produce weights—this is called learning in AI parlance.

The tokens and tokenSubsets are fed to the transformer to learn the relationships between each

token’s context within all the tokens in the training samples. The transformer learns by predicting

http://youtube.com
http://youtube.com

relationships and scoring the predictions. For NLP, predicting future or unknown states from past state

sequences is the method since future states are not known and therefore cannot be used to predict future

states. For attention, past states are sometimes represented as a single value containing the average of

n past states, enabling fuzzy predictions of future states by using both the fuzzy past state and the

current known state. However, for computer vision, the transformer can be used to predict the

surrounding tokens in 2D pixel blocks as surveyed later.

Attention Mechanism Illustrated: Tokens, Embeddings, QKV Self-Attention 577

Transformers learn by predicting sequentially using self-attention from the local context. The

embedding weight values are learned as self-attention features recorded in the weight layers of the

network after training. In the embedding space, the weights are analogous to the coordinates in the

embedding space, allowing similarity between tokens to be represented using simple distance metrics,

such as Cosine Distance or dot product within the embedding space.

Pixel-oriented embedding methods are discussed in the surveys of vision transformers later,

providing some details on various methods. See Fig. 11.9.

To dig deeper into computer vision embedding spaces and positional encodings for 2D pixel attention,

see the survey Attention mechanisms in computer vision: A survey Meng-Hao et al. [961], and also the

comprehensive survey Transformers in Vision: A Survey [962] Salman Khan et al.

Fig 11.9 Illustrating a simple pixel embedding alphabet representing binary visual word masks, as used for feature

detector analysis, see Appendix A: Synthetic Feature Analysis

Attention Mechanism Illustrated: Tokens, Embeddings, QKV Self-Attention

In this section, we provide hypothetical examples for self-attention in transformers for both text and

images to compare the concepts. The examples include tokenization, dictionary encodings, embedding

vectors, positional embeddings, and the vector mathematics of the self-attention mechanism, including

multi-headed attention (i.e., parallel attention). For the NLP examples, we will combine NLP details

taken from the Vaswani method with later improvements in NLP such as BERT, and for computer

vision we provide details from the Dosovitskiy ViT method for computer vision with some variations

from SWiN and others. Finally, we will compare both NLP and computer vision methods at key points.

We do not provide a how to approach here, no code or algorithms. This is introductory with

references to dig deeper; here we only can discuss fundamentals at a high level.

To dig into transformer code from a classroom perspective, with complete transformer code in

python and pytorch, see the Andrej Karparthy youtube.com training session: “Let’s

build GPT: from scratch, in code, spelled out.”

http://youtube.com

578 11 Attention, Transformers, Hybrids, and DDNs

See also the many other transformer code resources which are constantly appearing in GitHub,

mentioned in the various literature cited herein.

The QKV model is the transformer attention mechanism which performs embedding vector

comparisons of queries against keys to yield values, analogous to an SQL relational database query,

but much more intricate and powerful. The QKV attention mechanism uses query, key and value

vectors to implement self-attention, to compare a query vector and context-weighted key sequences

together to locate sequences of intertest and to predict sequentially. The Q vector represents the

sequence we are looking for; the K vectors are a set of sequential vectors compared to the Q vector

using a similarity metric to compute weights for each sequence at consecutive positions; and theV

vector is the aggregated QK dot product values from either a single QK self-attention value or multiple

multi-headed QK attention values.

NOTE: we mainly follow the Vaswani NLP transformer details compared to the ViT vision

transformer details as we go along, since ViT deliberately follows the Vaswani architecture as close

as possible. We highlight key similarities and differences between NLP and computer vision

transformers as we go along.

Self-attention transforms the set of local token encodings in an embedding vector, resulting in a new

contextualized re-weighted embedding vector, which falls somewhere in between all the existing

embedding vectors in the space. In other words, local self-attention produces a unique feature value

as an embedding vector within the embedding space, where self-attention is a learned embedding in

between existing embeddings, allowing for model growth and re-training, as well as detection and

similarity to be determined with the embedding space.

Multi-head attention is just a parallel attention mechanism as shown in Fig. 11.11 illustrating the

NLP BERT method of multi-headed attention, using multiple slightly different Q queries and QK

similarity highlighting specific embedding vector attributes. Figure 11.10 illustrates vision transformer

embeddings using specific attributes of the embedding vector to contribute to the self-attention (for

computer vision, focus on the RED pixels with a higher weighting, or for NLP focus on the nouns in

the word tokens). The QKV self-attention learns new features by weighting QKV vector embeddings

according to the Q attributes selected. Each multi-head projection set can focus on calculating different

types of relationships between the tokens, to identify or learn specific contextualized embeddings. In

multi-headed attention as per the BERT model, the contextualized embeddings from the different

attention heads are simply concatenated together for further processing.

Embedding vectors may contain an arbitrary number of attributes. However, for NLP commonly the

size is limited to between 100 and 300 attributes, and for pixels the embeddings typically contain just a

few attributes such as RGB pixel colors, gray scale colors, maybe a positional encoding, and perhaps a

class token—see Fig. 11.10. Often for NLP transformers, the total number of embedding vector

attributes is downsized during analysis for learning coarser or more general categories.

Attention Mechanism Illustrated: Tokens, Embeddings, QKV Self-Attention 579

Fig. 11.10 Illustrating hypothetical embedding vectors, (top) a generic embedding combining a class token and a

positional encoding, (bottom left): a generic word embedding combining grammar attributes and a positional encoding,

(bottom right): a pixel patch embedding with no class token or positional embedding

As shown in Fig. 11.10, a class token may be prepended to each embedding vector, and a positional

encoding may be concatenated. In some cases, the positional embedding is added into the embedding

vector instead of concatenated.

All pre-trained embedding vectors are unique to start, and new embedding vectors learned during

training are processed to be unique also. Self-attention analyzes all tokens in the local context—a

sentence or pixel region—then computes embedding vector token similarity (perhaps dot products) for

each combination of tokens in the context.

Vaswani tried both a sin/cos positional encoding method and a learned positional encoding method

and compared the results. The positional encoding acts as a unique sequence number to differentiate

tokens that have the same value, i.e., “the dog sees the cat.” The positional encoding is added as the

first step in the encoder and decoder blocks, ensuring sequential uniqueness of each token. Vaswani

reports that both the learned encodings and the sin/cos encodings produced nearly the same results—

neither was superior. The sin/cos positional encoding is defined as:

PE pos,2ið Þ = sin pos=10002i=d model

PE pos,2iþ1ð Þ = cos pos=10002i=dmodel

between [0.0.1], amplifying similarity and reduces dissimilarity.

Vaswani uses a scaled dot product to compute attention between vectors, where a scale factor

normalizes the values for better softmax distribution of values. The scale factor is the token encoding

attribute array length n which Vaswani calls dk: “. . . queries and keys of dimension dk, and values of

dimension dv . . .”.

The Vaswani attention function for scaled dot product is as follows:

Attnn =Attention Q,K,Vð Þ= softmax
QKT

dk
p V, where dk is the head size scale factor, n= head

580 11 Attention, Transformers, Hybrids, and DDNs

*Attention Q,K,Vð Þ= softmax QKT V * without scaling

Multiheaded Attention=Concat Attn0 . . .Attnnð Þ

Each embedding vector is used to create the QKV Query, key and value vectors. By selecting the

vector embedding attributes of interest, attentional focus is defined so that the QK vector similarity

represents the desired encoded attribute relationships as V. The QK scalar product in the attention

function measures the relationship between the embedding attributes of the Q vector and other applied

K vectors. The Q vector represents the current query token (i.e., what to look for), used in the self-

attention function to determine relevance within the local sequence context vector K.

The QKV mechanism is not only used to learn the self-attention feature weights, but is used

basically similar to other retrieval systems, such as YouTube and other search engines, and also

similar to SQL database queries, where a Query is typed as the search term, and the search engine maps

the Query to the set of existing video Keys (video title, subject, and other attributes) using dot product

similarity or other similarity such as SSD or SAD, then displays the list of values which are relevant

videos to the query. The attention process works like a retrieval system, but is implemented with

learned contextual nuances (Fig. 11.11).

Fig. 11.11 Illustrating (left) the Query, Key Value (QKV) dot product and matrix operations for self-attention, and

(right) parallel self-attention or multi-headed attention of the BERT model. Images # 2023 Dr. Romain Futrzynski, used

by permission

The softmax amplifies similarity and feature significance to highlight the extremes and can be

performed more than once, with different amplification, in various sequential functions through the

network to achieve complex transformations with the softmax nonlinearity; adding nonlinearity in the

network at certain locations is considered a necessary numerical conditioning component of deep

learning by many practitioners. The scalar products are typically normalized, or scaled down within the

range 0,1, for numerical stability prior to passing through the softmax function.

Attention Mechanism Illustrated: Tokens, Embeddings, QKV Self-Attention 581

New learned embeddings are contextualized via weight adjustments during training, in the propor-

tion of similarity between attributes; as shown in Figs. 11.7 and 11.8 if the query for the river token has

high similarity with the bank token, the bank token’s attribute weights are amplified in the learned

contextualized feature weights.

Attention functions transform a set of Q,K,V embedding vectors into a new vector, by using the

query Q embedding applied to a pair of K embedding to produce the V embedding. For Vaswani’s

method, the output is a vector of learned weights from the Attention(Q,K,V) function, where the

softmax function is used to ensure embedding vector weights add up to 1.0. Self-attention is perfect for

parallel processing to compute all embeddings in a sequence at once—a parallel computation for each

word in a context, or for each pixel token in a region.

Embedding

Vectors v[0..n]

v[0]

human

v[1]

animal

v[2]

food

v[3]

hungry

My .1 .3 .05 0.04

dog .02 .9 .35 .2

likes .15 .15 .1 .22

hamburgers .08 .02 .85 .5

and .08 .08 .25 .02

pickles .01 .3 .6 .3

Her .88 .02 .01 .03

cat .15 .95 .16 .34

smells .08 .35 .4 .56

hamburgers .08 .08 .76 .65

and .01 .3 .02 .3

fish .02 .78 .92 .86

Fig. 11.12 Illustrating hypothetical learned embedding attributes for words shown in table format like a relational

database table might appear. The attributes are stored in the embedding vectors for each word and used by attention

mechanisms to compute similarity when learning new embeddings during training for feature learning, also used for

inference when searching for feature similarity in the embedding vectors using QKV

Attention, as shown in Fig. 11.12, is the dot product similarity of two arbitrary local contexts

represented as weighted encoded embedding vectors of attributes, as described earlier in the basic

Vaswani QKV formulation as illustrated with a little detail in Fig. 11.12:

D= dog embedding vector row 2ð Þ

C= cat embedding vector row 9ð Þ

Weighted similarity= Dj j Cj j cos thetað Þ

DC = :1 x:88þ 02 x:15þ :9 x:95þ :35 x:16 þ :2 x:34= DCj j cos thetað Þ

Self-attention compares the embedding vector to itself, which is a comparison to weight the local

context. Each value is compared to all other values of itself in the embedding vector, using normaliza-

tion and distance functions (such as dot product) to produce the resulting embedding weights within

range [0.0.1]. Figure 11.13 illustrates aspects of the self-attention relationships between each item

against all other items in the embedding vector. Here are steps based on the Vaswani method:

582 11 Attention, Transformers, Hybrids, and DDNs

1. Dot product (or other) similarity between all embeddings in the vector.

2. Normalize each similarity result to get weights to [0.0.1].

3. Re-weight original embeddings using new weights (contextualize).

Fig. 11.13 Illustrating self-attention, using a selection of visualizations of hypothetical learned embeddings, shown

with embedding weights indicated by the strength of the colored lines. These diagrams are generated using the Google

Research BERTVIZ Colab Python interactive online demo. Darker lines show stronger attention and contextual

association; lighter lines show weak attention and rarer contextual association

Self-attention for computer vision can follow ViT, which deliberately follows the Vaswani archi-

tecture as much as possible also using scaled dot product attention and simply splits the image into

16 × 16 pixel patches, copies all the pixels into a 1D array of length 256 (16 × 16) containing the R,G,B

pixel values as encoding attributes, treated analogous to a 1D vector of word token encodings by the

transformer. However, ViT pre-pends a learned class token to the embedding attribute vector to act as a

key embedding attribute to identify patches, and also concatenates a novel learned positional encoding

to the end of the attribute vector, and finally feeds the embedding vectors to the input stage of the

Transformer. Note that Dosovitsky et al. claim the positional encoding does not seem to matter after

some testing of various methods. See Fig. 11.14.

We describe the internal details of ViT attention and embeddings in some detail later in this chapter

in the ViT survey. We skip the details here.

Attention Mechanism Illustrated: Tokens, Embeddings, QKV Self-Attention 583

Fig. 11.14 Illustrating hypothetical pixel self-attention and similarity using simple RGB color embeddings for each

pixel, with a class token and a positional embedding, similar to the ViT model. Darker lines show stronger attention and

contextual association; lighter lines show weak attention and rarer contextual association

Results of self-attention include:

• A contextualized or self-attention embedding of all tokens in the attended context.

• Contains a weighted sum of all token embedding vectors in the attended context.

• Proportional to softmax: related embeddings in context are amplified/squished.

Q,K,V Attention mechanisms have roots in Relational Database Systems, where rows and columns

in tables are processed using related but simpler Q,K,V concepts and definitions of Queries, Keys, and

Values vis the SQL language.

As shown in Fig. 11.13, any projections of selected attributes can be learned according to the task at

hand—some projections are difficult to understand or vague, and similarity might not have any

apparent meaning to the task at hand, so training is required task-by-task to balance the attributes

with complimentary functions. Interpretation of QKV attention and embedding vector attributes in an

embedding space is a learned art.

Q,K,V Queries, Keys, and Values can be visualized as organized in tables, each table composed of

rows and columns, with Q tables containing one target pattern embedding column per row, and KV

tables containing two column embeddings per row: a K column embedding and a V column, like an

EXCEL spreadsheet of matrices. Like relational databases, transformers incorporate attention

mechanisms that use tables or tensors organized as matrices of QKV embedding vectors.

Transformers can be interfaced directly to SQL for database abstraction of the model and treated

like a set of relational database tables. For more information on relational databases, see The SQL

Standard ISO/IEC 9075:2016 (ANSI X3.135). See [982] Guo et al. for converting natural language

queries into SQL queries for transformers, like BERT.

Embeddings are the features. As discussed above in this section, embeddings are used to represent

and compare the attentional key, value, relationships via queries.

Q: queries define the target value to search for in the embedding space.

K: keys define the attention weights representing features (pixel patches or words).

V: values are the contextualized embedding weights from the QK scalar product.

Key Value Pairs: each Key K is associated with a Value V as a KV pair of vectors: EachKey vector 1..n

is compared for similarity to a Query Q vector across all K embedding vectors in the embedding

space: the best matching QK score determines which V is referenced from the embedding space:

584 11 Attention, Transformers, Hybrids, and DDNs

QK is the scalar product, the score (i.e. attentional relationship between Q and K), which is an

unnormalized weighting or similarity computed in the MLP section of the Transformer, which is then

normalized and recorded in the softmax vector as the weighted sums revealing attentional weights. V

scalar computation happens in each attention head in parallel.

The attentional encode/decode process repeats at each layer using different weights, where each

weight is updated as the machine operates on new data feeding into the encoders and on to the

decoders. Layer norms for each layer are computed during computation to make training behaviour

better (i.e. avoid transients, basins, etc). Note that at each layer, the entire prior (not future) sequence of

data is available for conditioning each layer of the model weights using QKV attention as the machine

runs util the desired stopping criteria is reached. All data in the encoder space is visible for the

encoding, but the Decoder only sees data friom the last layer of the Encoder, see Vaswani et al. [819]

for the original encoder decoder block design, and The Vision Transformer ViT [824] from Dosovitsky

et al. adapted for visual learning.

In suumary, as Karpathi says in Stanford CS25 (*as paraphrased here by the author): “Multihead

attention is a copy/paste of the same attention mechanism in parallel on different parts of the input data

stream, and Encode / Decode layers are just copy/paste duplicates of encode/decode blocks in series”.

Further Karpathi says: “Self-attention uses QKV values only from encoder data block (i.e. self-

attention), while cross-attention uses the Q value from the Decoder block, together with KV values

from the Encoder block model (i.e. cross-time attention)”.

In practice, pretrained Transformers trained on huge data sets are commonly fine-tuned via transfer

learning, and re-training the entire model on a smaller specific dataset to modify and fine-tune the base

Transformer foundation model. Thus, Transformer accuracy has been demonstrated by Google and

others to increase when first trained on extremely huge data sets, and then re-trained on smaller data

sets for fine tuning. Therefore, Transformers require more training data than CNN’s to achieve similar

results, but Transformers slightly exceed CNN’s when trained first on huge data sets, followed by fine

tuning. But not many organizations have the compute capabilities to train extremely huge tranformer

models, so CNN’s still have preferred applications.

For good surveys on a wide range of attention mechanisms and transformer innovations, see [1033]

Attention mechanisms in computer vision: A survey, Meng-Hao Guo et. al.

In terms of pixels and vision transformers (following along with Fig. 11.11):

Query vector Q represents a target pixel patch embedding to locate in the target image, and Q is

compared to each pixel patch K embedding in the input image to find highest Q K scalar product

simil arity.

Value with the highest similarity between QK = highest V.

Key vector K: the K vector is the pixel patch embedding vector to compare with the Q embedding

vector: all 1..n K vectors across the image are tested for Q: K similarity.

Value vector V: the V vector represents the trained weights for a pixel patch embedding K: the weights

for all V patch embeddings are computed to update the hidden state of the model weights based on

the QK similarity score.

Transformer Architectures for Vision

In this section, we survey a few key transformer architectures including the seminal vision transformer

ViT. Also, we survey one of the most effective and widely used methods to come after ViT called the

SWiN transformer. We also survey the roots of transformer architecture in NLP, which has inspired

computer vision and other applications of transformers, including the fundamentals of the contextual

self-attention method of feature learning.

Transformer Architectures for Vision 585

Transformers are based on attention, which we survey earlier. Often, transformers use an encoder-

decoder architecture, such as the U-Net from Ronneberger et al. [932] surveyed in Chap. 2 used for

segmentation. However, a transformer may use a decoder-only block for feature learning and genera-

tive output, or add an encoder to the architecture allowing for cross-attention between the encoder and

the decoder stage to condition the decoder from the encoder input, for example, in language translation

applications where language 1 is encoded and then fed across to the decoder for translation into

language 2.

Thus, the transformer architecture is not fixed, but has many variations in practice. We do not cover

all the variations, but instead survey the basic historical developments of transformers for both NLP

and computer vision, and the papers we survey contain good historical summaries of innovations to the

basic architecture with references to dig deeper.

Transformers are a major innovation in feature learning and provide some advantages over CNNs.

A main advantage of vision transformers is that the input image resolution can be much larger

compared to most deep CNNs, since CNNs require down-sampling the input images to a smaller

uniform size such as 350 × 350 pixels or smaller—the input image down-sampling loses information

since pixels are thrown out or averaged together to shrink the input images to a smaller uniform size.

NOTE ALSO that using large images in a CNN (i.e., 4096 × 4096 for example) is virtually impossible

on today’s computers due to the number of feature layers + memory required for the feature hierarchy,

and the corresponding compute processing required is exponentially intractable, especially for larger

feature regions beyond 3 × 3 or 5 × 5. However, transformers typically can take larger images, use

much larger features such as 16 × 16, and transformers can have better performance, as well as

allowing optimizations using parallel processing of separate 16 × 16 feature blocks or input

embeddings at a given block size—each input block can be processed in parallel to compute self-

attention features.

The transformer was originally intended for NLP models, to replace the RNN and LSTM models

with a feed-forward contextual, attentional feature model which allows for parallel processing of all or

part of the input sequence, without the forward/backward sequential time management required for

RNNs and LSTMs. Transformers are not a purely sequential recursive architecture; rather the

transformer unfolds the entire sequence model into a parallel processing virtual-time memory space,

where sequences and context can be overlayed on the memory space, and independent sub-sequences

can be processed in parallel.

Transformers have gone on to become well established in NLP using models such as BERT [963]

from Google, and GPT [983] from OpenAI, which are now commodity items and widely used. The

applications for transformers are growing.

Transformers implement sequence-to-sequence translation method based in NLP research, using

the Encoder and Decoder architecture with separate input and output embedding spaces. Encoders

convert the input tokens (words, characters, pixels), . . .into a uniform differentiable input embedding

space for feature learning and sequence processing to compute the model containing feature weights

learned using the QKV process discussed in the previous section. After sequence processing and

feature learning, the embedding space of encoded feature weights is passed to the decoder which

converts the encodings back to the input format (characters, word, pixels, . . .). For pixels as input data

to transformers, typically the encoding uses the numeric pixel values, perhaps normalized into floating

point value range [0.0.1] for each RGBI value. Words and characters also use similar normalization

methods into a range [0.0.1], which we discuss later.

586 11 Attention, Transformers, Hybrids, and DDNs

In more detail, the transformer converts input data, block by block (for example, 6 × 16 blocks of

pixels, or strings of 1000 consecutive text tokens), into numeric encodings within the embedding space

of independent tensors or vectors representing blocks of input data. The vectors are numerically

processed independently or in parallel to learn features via training using backpropagation and gradient

descent. Independent features are learned using self-attention sequence learning within each encoded

block of tokens in the embedding space, where the features are contextually described by weighting

encoding relationships in sequential order, i.e., which encodings are found prior to a specific encoding,

or after, within the input block—this is referred to as self-attention, which uses weights to represent

contextual relationships between tokens within the block. Note that within the embedding space, there

are perhaps millions or billions of trained independent features, which can be used for global

attentional comparisons (i.e., cross-attention into other positions or models) to associate and learn

from each other by comparing similarity and training their corresponding weights and sequence

prediction and encoding comparisons to locate target features using a similarity function such as

vector cosine distance then passed downstream to the decoder, which translates embedded tokens for

output tokens nearly word for word, or creates translations that summarize and reduce the translation to

essential points. We discuss sequence to sequence transformers using encode and decoder blocks in the

ViT and SWiN transformer reviews below, and also in the Chap. 2, Section U-Nets for Segmentation.

Transformer attention methods, for both NLP and computer vision, rely on an Embedding Space to

represent tokens—words or pixel patches—in a manner where similarity can be determined easily

between tokens using a distance function, such as 2D Euclidean distance. Many methods exist for

creating embedding spaces, some include positional encodings for spatial relationships, others do not.

The positional encodings are powerful methods of incorporating spatial relationships into the atten-

tional features, an improvement over the generic CNN architecture using independent non-spatially

associated features in the feature maps. The methods for computing positional embeddings are varied

and outside the scope of this section, but we discuss a few methods later as used in the ViT and SWiN

transformers.

Transformers are a feature learning architecture, as well as a feature translation architecture.

Transformers enable language translation in NLP; for example, French to English, by first learning and

encoding English features and French features separately, which then enables English features to be

decoded into French using both the English and the French embedding spaces, as discussed in the

earlier section on embedding spaces.

Since which we do not have time to survey the many fine existing variations of the computer vision

transformer architectures and attention mechanisms, see the comprehensive survey Transformers in

Vision: A Survey [962] Salman Khan et al.

ViT the First Vision Transformer

The Vision Transformer ViT [824] from Dosovitsky et al. was a brilliant work, based on the first NLP

transformer from Vaswani et al. [819]. The original NLP transformer from Vaswani was minimally

extended by Dosovitsky et al. [824] to take input images instead of text, by taking a very simple

approach to explore a question: “what would happen if we used local pixel patches flattened into 1D

pixel vectors like word vectors, fed them directly into the transformer, and devised some pixel

positional embeddings to assist in creating a pixel embedding space?” Sounded so simple, yet this

approach worked very well, with little change required to the original word-oriented transformer

architecture. ViT has become the basis for subsequent research into pixel transformers.

Transformer Architectures for Vision 587

Fig 11.15 Illustrating the ViT architecture, showing the linear embedding layer for the flattened patches, connected to

the encoder layer, followed by the MLP head and the classifier. Image # Dosovitsky [824]

The conceptually simple and brilliant method ViT from [824] from Dosovitsky et al. compares well

to the best CNN networks on Imagenet and other benchmarks. We survey ViT and variants later in this

section.

Dosovitsky [824] stated: “In model design we follow the original Transformer (Vaswani et al.,

2017) as closely as possible. An advantage of this intentionally simple setup is that scalable NLP

Transformer architectures—and their efficient implementations—can be used almost out of the box

[for computer vision].”

ViT uses global self-attention, and like the Vaswani architecture, ViT computes the attentional

relationships between a token and all other tokens globally, which limits the applications to vision

applications which require large numbers of tokens for higher resolution prediction.

However, SWiN (surveyed next) computes self-attention locally in equal sized non-overlapping

window partitions.

As shown in Fig. 11.2, visual self-attention features preserve higher frequency feature details using

16 × 16 pixel patch regions (or larger), compared to convolutional features typically computed over

smaller 3 × 3 or 5 × 5 regions. The larger pixel patch provides incre ased detail.

The attentional features were represented in the QKV framework but slightly recast into a neural

network framework. In the transformer, values could be accessed by a query using a learned and

trained key to match against the stored attentional values. There are many variations within the

transformer family on the composition of keys and values, and queries some using geometric

positional encodings to incorporate into the embeddings, along with a wide range of alternative

embeddings which include none or some other type of positional encoding.

As shown in Fig. 11.15 (on the right side of the illustration), the transformer contains alternating

multi-head self-attention layers and MLP layers. Normalization is applied before each layer, and

residual connections pass unprocessed input values forward after each block.

The basic flow of the vision transformer architecture is as follows:

• Divide image into rectangular pixel patches, ViT uses 16 × 16 patches.

• Flatten each 16 × 16 patch into a 1D 256-element pixel vector. The embedding vector is simply a set

of RGB pixel values.

588 11 Attention, Transformers, Hybrids, and DDNs

• Add a positional embedding to each embedding vector to add relative spatial information to the

embedding vector. Positional embeddings are added (not concatenated) to the embedding vector, and

there is no specific positional encoding method which seems to provide all around improvements.

Some practitioners append the positional encoding embedding vector instead of adding it in, and

others omit the positional encoding entirely and do not seem to report much difference.

• Prepended a class token to the embedding vector, which is learned using a classification MLP

section, and fine-tuned by the MLP during training.

• Pass the sequence of embedding vectors, one at a time, into the transformer encoder layer, which

contains layer normalization, an MLP for linear functions, and a multi-headed self-attention layer

for computing a set of attention values to pass to the next encoder layer.

• Self-attention computes pixel relationships between all pixels in the patch, resulting in a self-

attention vector. Layer normalization precedes each block, and residual connections follow each

block. See Fig. 11.15.

• Multi-head self-attention computes multiple attention scores as weights for each patch embedding,

using slightly different parameters for each score, resulting in multiple features for each embedding.

See the section on QKV attention earlier in this section for details on multi-head attention.

• Embeddings are learnable features. Each embedding is multiplied by the embedding matrix during

training, and multiple attention heads each use a separate embedding matrices for feature learning

resulting in feature weights.

• ViT can use also take input as CNN feature maps instead of raw image patches.

ViT Pixel Patch Embeddings

ViT adapts the Vaswani transformer model to use pixels instead of word embeddings. Each 16 × 16 2D

image region is reshaped or flattened into a 1D pixel array. The pixel embedding process is described in

Eq. 11.1 below, where H,W is the resolution of the input image, C is the number of color channels

(3 for RGB images).

The patch embedding is computed as follows:

ximage 2 R HxWxCð Þ, xflattened patches 2 RN P2Cð Þ ð11: 1Þ

where

(H, W) image resolution.

C = Channels: RGB = 3.

P2
= patch resolution i.e. 16 × 16.

N = patch count (HW/P).

*N is the input sequence length to the transformer.

A learned class token is prepended to the sequence of pixel patch embeddings, see Fig. 11.14.

As an alternative to taking pixel patches as input, ViT can take an input sequence from CNN feature

maps by projecting them to the 16 × 16 attention region dimension and flattening them into a 1D vector

of length 256, and concatenating the positional encoding to the 1D vector and pre-pending the class

token.

E 2 R P2xCð ÞxD ,Epos 2 R Nþ1ð ÞxD

Transformer Architectures for Vision 589

The ViT method has spawned many variations and is comparable to state-of-the art visual CNNs

and transformer methods, see also the fine survey on follow-on innovations to ViT from Han et al.

[966] A survey on vision transformer.

UViT, the Universal Vision Transformer UViT transformer from Chen et al. [967], presents a

principled approach which studies how to simplify the ViT-style architecture as much as possible, not

to achieve optimal performance, but rather the goal is not to add sophisticated features following to the

latest CNN research enhancements. UViT strives to learn and preserve the strengths of the ViT

transformer architecture and attention mechanisms, rather than pursue hybrid approaches and

enhancements for the sake of enhancements.

The end result is that UViT provides a better understanding of ViT: how it works, why it works, and

where to add or subtract principled enhancements.

SWiN Transformer

The SWiN transformer (Shifted Window Transformer) from Liu et al. [827] has influenced a family of

follow-on transformers and introduces hierarchical features maps and attention across shifted, strided

windows forming shifted-window-attention. The feature map built by SWiN is hierarchical; as shown

in Fig. 11.18, the layers 1–4 each scale the feature map between 2×–6×.

The patch size is 4 × 4, but the Patch Merging Blocks concatenate local regions of 2 × 2 patches

together into a single feature, so by adding a dimension of 3 for each RGB channel into the patch size is

becomes a 4 × 4 × 3 tensor which forms the embedding.

SWiN does not compute attentional relationships between a token and all other tokens globally like

ViT, but instead computes self-attention locally in equal sized non-overlapping window partitions

(Figs. 11.16 and 11.17).

Fig. 11.16 Showing the SWiN architecture

As shown in Fig. 11.1, the SWiN processing flow is as follows:

Image 4× down-sample = > Layer1

Layer

1

Linear encoding, transformer block, 2× down-sample = > Layer2

Layer

2

Patch merging, transformer block, 2× down-sample = > layer 3

Layer

3

Patch merging, transformer block, 2× down-sample = > layer 4

Layer

4

The hierarchical layers allow SWiN to be sensitive to high-frequency detail, as well as medium- and

low-frequency details using the hierarchical pixel resolution of layers 1–4

590 11 Attention, Transformers, Hybrids, and DDNs

Fig. 11.17 Illustrating the SWiN concept of local patches and global self-attention. Each local patch has a self-attention

vector embedding, which can be compared globally to other patch self-attention embeddings

Fig. 11.18 Illustrating the multiple window and sub-window hierarchy

As shown in Fig. 11.18, the patches inside a local window are merged together, so that self-attention

is only performed on patches in the local window. The local window self-attention differs from the

global attention mechanism of ViT, adding more variability and expressiveness to the attention

mechanism, analogous to multi-head attention which also adds variability to the set of attentional

features.

SWiN also uses shifted window attention, as shown in Fig. 11.19, moving the local window across

the image in a strided fashion, similar to the striding of n × n convolutional kernels in CNNs. The

shifted window approach adds representational expressiveness to the feature set and eliminates feature

clipping and occlusion which would otherwise occur across windows. The cross-window shifting

pattern is strided 1 downward and 1 to the right, Fig. 11.19 illustrates the overlapping sliding window

operation where some windows are outside the image region during the slide and shift. Note that the

YOLO CNN [941] and the SSD CNN [942], surveyed in Chap. 2, also use overlapping shifted

windows within a grid of local regions for object detection; the shifted windows include a variable

aspect ratio to capture affine deformations.

SWiN is designed with several architecture variants to vary the parameters complexity and number

of layers between 96, 128192 for various performance targets, and results vary for each version on

various benchmarks.

DDN Hybrid Backbones: Multi-feature Networks 591

Fig. 11.19 Illustrating how the SWiN local windows can be shifted across the image, resulting in overlapping windows

that mitigate feature clipping between windows

See also the revised SWiN V2 architecture [984] from Hu et al. which scales the model to support

1536 × 1536 image input and up to three billion parameters, adds scaled cosine attention, and provides

relative positional encodings for supporting additional window resolutions. V2 improves results on

key benchmarks.

For an overview of SWiN with details on key concepts, see [968] from Loy et al.

A Comprehensive Guide to Microsoft’s Swin Transformer In-depth Explanation and Animations,

James Loy.

For a deep-dive into the advantages of SWiN, see Hu [969] Swin Transformer and 5 Reasons to Use

Transformer/Attention in Computer Vision.

DDN Hybrid Backbones: Multi-feature Networks

Since vision transformers were developed during recent history alongside CNN architectures, we are

seeing cross-pollination and hybridization between transformer networks and CNN networks, as well

as novel Deep Descriptor Networks (DDNs). The results are encouraging. We highlight a range of

DDN and hybrid network innovations in the survey below including:

• Transformers swapping self-attention for n × n convolutions in all or some layers.

• CNN’s swapping n × n convolutions for self-attention in all or some layers.

• Skip-connections all around.

• Novel features (Fourier, NL-Means, Binary) replacing self-attention and n × n convolutions.

• Hybrid architectures with all of the above and more.

Novel feature learning using a layer for pre-processesing the input data using adaptive IIR filters to

focus the pixel groups, has been shown to produce better feature learning model quality with reduced

parameter count, see [1034] Lutari et al Focus Your Attention (with Adaptive IIR Filters) Shahar

Lutati, Itamar Zimerman, Lior Wolf, Oct 2023. NOTE: the idea of pre-processing and post-processing

the pixels for the model inputs and classification is emphasized and discussed in Chap. 2, also see Krig

[534] for multi-modal variations.

For most of the DDN/Hybrid architectures surveyed below, we avoid highlighting larger and deeper

DNN networks, since we see many smaller feature learning backbones with fewer layers being

successfully deployed, using non-CNN-style alternative feature descriptors, with significant reductions

in model size and compute requirements, as compared to both transformers and CNNs, while

remaining very competitive as measured by various benchmarks.

592 11 Attention, Transformers, Hybrids, and DDNs

Here we survey a few hybrid neural networks using multiple features. Note that most neural

networks use a single type of convolutional feature as n × n templates, but increasingly other features

are being applied as surveyed below including attentional, convolutional, polynomial, and other

features:

• PPN—Polynomial Neural Network GMDH.

• Non-Local Means Network (NLM-Net).

• Stand-Alone Self-Attention Network (SASA).

• Attention + CNN: ViT Lite Variants CvT + CCT, BotNet.

• Fourier Features: FNET.

• Binary Features: XNOR-Net, Binary Net.

• Volume Learning for Visual Genomes and Visual DNA.

• Indextron Inverse Index Feature Learning.

Next, we survey a range of DDN and hybrid networks.

PPN—Polynomial Neural Network GMDH

The PPN is a historical milestone as the first deep neural network, created in 1965 by Ivakhenko and

Lapa [504–506], used widely in the USSR. Ivakhenko’s work appeared frequently in Avtomatika and

other Soviet publications unknown outside the USSR. PPN uses polynomials as features, not

convolutional filters like CNNs. A polynomial has much more flexibility than an MLP to represent a

complex function.

We survey the PPN in detail in Chap. 10 in the historical background section earlier, but briefly

reintroduce the PPN here in the context of DDNs. The PPN network goals sound too good to be true

and should be reviewed by today’s neural network practitioners for inspiration and insight.

Here is a summary of a few key GMDH concepts:

• Creates an optimal mathematical model of the data.

• Self-organizing network, learned inductively by sorting the data.

• Polynomials used to describe features, instead of CNN-style templates.

• Number of neurons and layers determined automatically.

• Automatic structuring of network model.

• Automatic learning of inter-relationships and patterns in data.

Please see the PNN survey in the history section of Chap. 10, Section PNN—Polynomial Neural

Network, GMDH

Non-local Means Network (NLM-Net)

Wang et al. [970] replace convolutional n × n filters with a non-local means operation (see Buades

et al. [438]) which records long-range dependencies and relationships between features via non-local

operations. Note that this approach addresses a fundamental flaw of convolutional features: spatial

awareness is missing CNN features—each feature is an independent texture that does not encode

spatial relationships between other features.

DDN Hybrid Backbones: Multi-feature Networks 593

While convolutional networks model local features as feature maps of separate n × n kernels,

NL-Means models a set of non-local features spread across the image. As a feature descriptor and noise

metric, non-local means (NL-Means) is used in image processing for noise removal (see Chap. 5 Noise

and Artifact Filtering, and also Buades et al. [438]). NL-Means uses non-local pixel value statistics in

addition to Euclidean distance metrics between similar weighted pixel values over spatially distant

image regions to identify and remove noise. However, in the case of the Non-local neural network by

Wang, the NL-Means distance metric is used as a feature descriptor.

FULL-CIRCLE: the non-local means function is a very simple feature descriptor. the feature is

described by comparing patches of pixels. Similarity can be measured using a variety of methods.

From the science of feature descriptors, we know that the better feature descriptors encode more visual

acuity than any single CNN feature, see Chaps. 4, 5, and 6. The NL-means descriptors compute a

feature descriptor from the weighted average of selected features at selected positions, or all features at

all positions as desired.

Wang lists the following main advantages of the method:

• NL-means features record long-range feature dependencies and can be used for static images or

spatio-temporal image sequences and video.

• Direct computation of feature vectors from two positional pixel value sets, rather than progressive

training of features, adds spatial dependencies to the model (missing from CNNs).

• Several distance metrics can be computed across the image for each pixel set.

• Only a few layers of features in the network yield best results, which yields comparable or superior

scores compared to very deep CNNs running the same benchmarks.

• Variable input sizes and distances are used to compute a feature response using a weighted sum of

features across the input feature maps.

• ML-means can be used as a retrofit into existing neural networks and can be combined with other

features such as CNN dot products.

The NL-means network is a new neural network architecture and should inspire other work in the

same direction whether or not the ML-means feature is used, or if some other feature is used. Next we

survey a method inspired by NL-means called stand-alone self-attention network.

Stand-Alone Self-Attention Network (SASA)

With inspiration form the NL-means network, the stand-alone self-attention network by

Ramachandran et al. [971] also addresses the fundamental CNN lack of spatial awareness among

features and long-range dependencies, by creating a stand-alone feature primitive layer using attention

mechanisms instead of convolutional n × n features, which is preferential to just using attention

mechanisms as an addition integrated into existing CNNs.

SASA starts by modifying ResNet, replacing the convolutional n × n features with a self-attention

feature. The results are excellent when measured by Imagenet benchmarks, showing SASA is

competitive using 12% less FLOPS with a 29% reduction in model parameters. And for the COCO

benchmarks, SASA matches the best results of other networks but with 34% less FLOPS and 34% less

model parameters. The ablation studies show that SASA is most effective in the final layers of the

network, with more pronounced improvement.

The SASA completely replaces convolutions with the novel self-attention features, going beyond

other practitioners who have used global self-attention to augment CNNs. SASA is a valuable method

of adding spatial relationships between CNN features into the model to increase spatial dependencies

into the final classification.

594 11 Attention, Transformers, Hybrids, and DDNs

Attention + CNN: ViT Lite Variants CvT + CCT, BotNet

Here we examine the ViT Lite network from Ali Hassani et al. [972], which is almost the same as the

original ViT network we surveyed earlier, except that the novel sequence pooling method is used

(SeqPool) to pool the complete sequence of all transformer tokens from the transformer encoder. The

ViT network is designed to allow for training with less data and lower compute power, yet still provide

competitive benchmark results using leaner training sets, compared to much larger compute-intensive

models using larger training sets.

For details on other approaches to hybrid convolutional and attentional features in the same

backbone, this paper provides some good background on prior and similar methods, which we do

not survey here.

ATT-CNN: Incorporating Attentional Guidance to CNN Classifiers

In the paper LEARN TO PAY ATTENTION [990] from Jetley et al., a method of adding trainable

attention to a CNN is explored, where the heat maps or attention maps visualizing attentional

relevancy are used to support image classification. The method works by adding a local descriptor

weight tag to each feature, where the tag indicates the proportional relevancy of the feature for final

classification, similar to adding a heat map score to each feature marking features with dominant

relevancy to the feature class category. Jetly et al. note that their method is a form of weakly supervised

classification. The method elevates intermediate layer features into the classification process via the

local descriptor weights, along with the last FC layer global features.

ATT-CNN is a hybrid CNN + Attentional architecture, see Fig. 11.20.

DDN Hybrid Backbones: Multi-feature Networks 595

Fig. 11.20 Showing hybrid ViT architecture modifications: (top) original ViT, (middle) ViT Lite CvT modification by

adding the Seq Pool backbone end layers to pool all encoder tokens, and (bottom) the hybrid convolutional and

attentional backbones for CcT. Image (C) 2022 by Ali Hassani et al. [972]

ViT Lite can be arranged into two different backbone configurations by combining SeqPooling,

convolutional layers, and transformer network features in two different ways: Compact Vision

Transformers (CVT) add a SeqPooling layer into the backbone in place of the class tokenization end

layers, and Compact Convolutional Transformers (CCT) add convolutional layers to the front end of

the backbone as used in CNNs in place of the patch-based tokens used in transformers. Thus, two

different backbones are enabled, and both are very effective.

The major idea of ViT Lite is to augment convolutions with self-attention mechanisms, by

concatenating together convolutional feature maps at the lower network layers, and concatenate self-

attention layers and SeqPool to the higher layers of the network. This arrangement combines the

locality of convolutional features at the lower levels with the longer-range spatial dependency of

attention to the higher layers.

For related work on attentional augmentations to CNNs, see [973] Bello et al. Analogous work on

BoTNet [974] by Srinivas et al. simply replaces the last 3 layers of a ResNet backbone with self-

attention blocks, with very good benchmark results.

FNet Transformer with Fourier Features

FNet from Lee-Thorp et al. [852] is an attention-free transformer architecture influenced by the

transformer model from Devlin et al. [963]. Each FNet layer uses a feed-forward Fourier feature

sub-layer which replaces the self-attention layer at each encoder block.

Although FNet is an NLP transformer for text processing, we survey it here since the novelty of this

work is in a promising area for vision transformers; like ViT converts a 1D transformer to a 2D image

transformer, FNet can be easily adapted to computer vision simply by taking 2D image patches and

flattening them to 1D vectors to feed into the encoder, and also adding a pixel embedding mechanism

like ViT. Research similar to ViT pixel embedding research is identified in the FNet paper, but mostly

using CNN network backbones. For example, one of the earliest works from 2007 by El-Barky et al.

[975] does in fact perform face detection using Fourier features with a non-transformer architecture, we

do not review this work here. The Perceiver architecture from Jaegle et al. [976] also uses Fourier

features that are scalable, by creating positional encodings from the Fourier features.

596 11 Attention, Transformers, Hybrids, and DDNs

Main take-aways from the research show that transformer architectures can be made more compute

efficient by replacing the more complex self-attention layers with simpler Fourier feature layers, while

retaining about the same accuracy.

The basic flow of the FNet architecture is as follows:

• Replace all self-attention block with a Fourier feature block.

• The linear encoder is modified to include two (2) trainable sub-layers, one for the hidden feature

dimension and one for the sequence tokens.

• A random encoder is added to replace the self-attention layer to include two (2) trainable sub-layers,

one for the hidden feature dimension and one for the sequence tokens.

• A feed-forward only model replaces the encoder to remove self-attention with no token mixing.

• Fourier features are computed using a combination of DFT and FFT for longer sequences.

• Real (magnitude) Fourier data is used, not imaginary (phase).

• A 2D FFT is used for the sequence length/hidden dimension embedding layer, and a 1D DFT is

used for the sequence dimension and the hidden dimension.

Of special importance is that the authors experimented with alternatives transforms, not just Fourier

transform, but also DCT, Hartley, and Hadamard, finding that the Hartley transform performed almost

as well as the Fourier transform for their purposes.

Also, FNet can achieve accuracy of 97–99% using only two Fourier layers blocks which replace

self-attention, and still run 40–70% faster, so the authors conclude that attention need not be used at

each layer.

Binary Networks: XNOR-Net, Binary Weight Networks (BWN)

Rastegari et al. [977] propose two methods of replacing convolutional n × n blocks in the CNN

architecture by using binary values to replace all the float weights in the features, yielding 32× memory

savings. NOTE: the binary feature approach is also used in a variety of feature descriptors such as

Local Binary Descriptors (LBP), as well as more robust methods such as FREAK, BRISK, and ORB

discussed in Chap. 4.

As shown in Fig. 11.21, Rastergari proposes two variations of binary weight networks:

1. XNOR networks that use the XNOR operation in place of convolution, when both the input values

and the weights use binary values.

2. Binary weight networks that use binary values in the filters in place of floats for real-valued input.

DDN Hybrid Backbones: Multi-feature Networks 597

Fig. 11.21 Illustrating the binary network variations (left columns), image (C) Mohammad Rastegari et al. [977],

Courtesy Springer ECCV 2016

Related follow-on work to XNOR-Net can be found in [979] XOR-Net: an efficient computation

pipeline for binary neural network inference on edge devices, Shien et al. 2020, which contains several

other binary feature variants.

See also Courbariaux et al. [978]. Training deep neural networks with weights and activations

constrained to +1 or -1 and also note that the binary networks compute gradient parameters using

binary values and activations, but accumulate weights as real numbers (floating point). Binarization is

similar to drop-out, as noted by Cournariax, since binary values are thresholded at 0.5 to resolve to

1 and 0 during binarization, and that both activations and weights are binarized using the same (n > =

0.5 = 1) and (n < 0.5 = 0) thresholds. Binary numbers save memory space and can be faster to

compute in parallel using Hamming distance and assembler language instructions for parallel bit vector

Boolean op erations.

BEIT Visual Vocabulary Features, VICE

BEIT is a vision transformer, inspired by BERT, from Bao et al. [985], following the BERT approach

for pre-training using auto-encoding and masked input. Each image is processed into two simultaneous

views as different visual feature types: (1) 16 × 16 image patches and (2) visual tokens learned by a

discrete variational autoencoder (dVAE). Pixels are mapped into tokens using a visual codebook, a

visual vocabulary. The token grid is 14 × 14 overlayed on the image. The number of tokens and patches

turns out the same for the 224 × 224 image size used. During training, some patches are randomly

masked out (i.e., like drop-out), fed into the transformer, with the objective to recover the visual tokens

in the codebook from the corrupt patches. The model is fine-tuned after training, similar to BERT.

Since the latent tokens are in a vocabulary set that is non-differentiable, gradient descent cannot be

used for training, so Gumbel-softmax relaxation is used for training feature weights, to effectively

estimate differentiable values at transient points. Gumbel-softmax relaxation can also replace gradient

descent methods in DNNs that rely on differentiable data, see Jang et al. [986] and Madison et al. [987].

The VICE method from Karlsson et al. [988] is similar to BEIT and also learns a set of more

expressive visual concept embeddings from groups of pixels, using a scale pyramid decomposition of

the image with associated scaled pixel patches to analyze various resolutions. Like the volume learning

method from Krig [476], VICE also uses superpixels [219–221, 224, 227] to segment semantic regions

of the image for learning visual features. Superpixels (see Chap. 2 Super-pixel Segmentation) are

polygonal segmented regions surrounding pixels of like value, instead of rectangular pixel patches.

Superpixels are like large pixels.

598 11 Attention, Transformers, Hybrids, and DDNs

FULL-CIRCLE: the visual vocabulary and visual concept embeddings (i.e., feature descriptors)

have been used in computer vision prior to the widespread use of CNNs, BEIT is another example of

the trend to incorporate earlier computer vision features descriptors into neural networks and feature

learning architectures. See Chap. 4, Section Terminology: Codebooks, Visual Vocabulary, Bag of

Words, Bag of Features.

Volume Learning for Visual Genomes and Visual DNA

The Volume Learning Architecture by Krig [476] was developed in 2015, to incorporate a large set of

multivariate features into a multidimensional feature space manifold, instead of using monovariate

n × n kernels in a linear feature space as CNNs do. Volume learning explores computer vision using a

corpus of image segmentations as local regions or polygonal pixel patches, each region described by a

multidimensional volume of uniform metrics (i.e., visual DNA), envisioned to provide a vast corpus of

multivariate local regional features organized as strands of visual DNA to form visual genomes, similar

to how the Human Genome Project isolates human DNA into sets of separate genomes. Volume

learning (i.e., learning a very large volume of unique features attributes expressed as encodings or

feature metrics) is similar to the idea of using a large natural language corpus as developed by both

BERT [963] and GPT [983] for creating foundation models, dictionaries, and word embeddings, since

both methods first use unsupervised training via a transformer on vast amounts of data such as all of

Wikipedia, and then fine-tuning the model by re-training using smaller, supervised datasets for specific

tasks. Volume learning is like this and provides a multimodal foundation model of visual attributes, but

much more.

The volume learning model is based on neuroscience models, which do not follow the training

methods of deep learning FFNs or RNNs or LSTMs. Instead, neuroscience suggests a view-based

visual cortex, which stores memory impressions as the features; the neuron has memory and coupled

processing locally; no invariant features are learned, and no fuzzy gradient descent styled probabilistic

features are learned; instead the visual memory of the feature is ground truth. Related features are

stored apparently locally and proximate in the visual cortex (see the Indextron survey later in this

chapter). Instead of using random locations for features, neuroscience has proof that related features

are stored near each other in the visual cortex memory. MRI imaging clearly reveals visual cortex

regions that are electrically active for specific visual stimulus. In fact, electrical activity of the brain is

like a fingerprint and allows a primitive form of mind reading using MRI imaging as specific visual

stimulus can cause corresponding specific visual cortex electric field neural activity and electrical/

magnetic field signatures, not based on gradient descent and mcdoodles of training samples. See Krig

[476] for a discussion of key neuroscience with references to dig deeper, and also Appendix E The

Visual Genome Model Neuroscience Inspiration for VGM.

Volume Learning for Visual Genomes and Visual DNAis a method to organize pre-trained visual object

representations.

The volume learning model [476] is inspired by the human visual cortex model expressed as

associative memory with dedicated neural processors coupled locally to the memory (see Fig. 11.24),

within a VDNA catalog of multidimensional attributes as metrics representing VDNA describing each

local segmented region or feature, analogous to a vector format of word embedding spaces, allowing

various styles of learning to be implemented separately by an ensemble of learning agents (i.e., similar

to multi-channel attention), where selected agents are grouped together enabling classifier learning via

agent recombination and continuous learning into multi-level classifiers.

A

DDN Hybrid Backbones: Multi-feature Networks 599

Visual DNA is modeled after human DNA, where human DNA is associated with strands

representing the genome of a living object as pairs of the four AGCT nucleobases as shown in

Fig. 11.22. Similarly, visual DNA strands can be collected into CSTG attribute group metrics

(Color, Shape, Texture, and Glyphs) to represent common metrics describing visual objects.

nucleobase is analogous to a VDNA attribute group metric. Classification follows by finding similar

visual DNA among visual objects by comparing strands (i.e., genome sequencing as per the Human

Genom Project), and looking for enough similar visual DNA matches. Early results show that very

strong visual DNA similarity of one or more metrics is often all that is required to confirm similarity

and a VDNA match (Fig. 11.22).

Fig 11.22 Illustrating the visual DNA catalog containing over 8000 metrics and learning agents which continually learn

to create complex classifiers, middle/bottom images (C) Scott Krig [476]. The human DNA spiral diagram (top) is in the

public domain (C) USG NIH

600 11 Attention, Transformers, Hybrids, and DDNs

A vast collection, or corpus, of visual genomes and visual DNA will enable computer vision

architectures with visual description and detection representations to proceed way beyond the discrim-

ination capabilities of primitive n × n learned CNN convolutional feature templates, and beyond the

expressiveness of transform style attention mechanisms based on monovariate pixel value

relationships. Visual DNA can be collected together by intelligent agents to build VDNA strands for

complex classifiers and delayed labeling of unknown but previously detected strands, expressed as

strand similarity metrics, see Fig. 11.23.

Fig 11.23 Illustrating how visual DNA metrics can be organized into strands expressing selected attributes, such as

spatial relationships as well as metric similarity, image (C) Scott Krig [476]

Early results show that collections of visual genomes map well into transformers or neural network

training regimes using differentiable data. Also, the visual DNA values can be expressed as int8, short

float and short integer values, amenable to reductions in numerical precision and memory space to

enable quick numerical comparisons in quantization space pyramids, in CAM feature spaces for

associative memory relationships, and quantized reduced color space representations, and other

arbitrary metric spaces.

Indextron Inverse Index Feature Learning 601

Fig 11.24 Illustrating the synthetic neurobiological machinery used for visual genomes and VDNA, incorporating a

feature memory model, metric functions, distance functions, and an autolearning hull boundary to direct activation and

firing for correspondence. The VDNA neuron is more detailed than the simple neuron models of CNN and transformers,

which use simple activation functions and pooling methods to model neurons, image (C) Scott Krig [476]

In the visual genome model, the memory is the feature—neural memory is assumed to be virtually

unlimited. As shown in the synthetic biological machinery model in Fig. 11.24, the metrics and

classifiers forming intelligence and learning methods are associated closely with the memory in

each neuron and act on it (i.e., memory and compute are bound together locally in each neuron).

Neurons can query other neurons for their memory as well as form associations between neurons via

dendrite connections, very similar to concepts we observe from biological neurons where neural

connections via dendrites form, and later strengthen with use, or become stale over time. Obliviously

the synthetic microbiological machinery is not exactly the same as a real neuron: but who really knows

what a neuron is or how it works? The visual genome model assumes a smart memory inside each

neuron, which is capable of present, short-term, or long-term attention, as well as attentional forgetting

and attentional revitalization of each neuron following what is observed in neurobiology.

Indextron Inverse Index Feature Learning

Several papers from—Mikhailov et al. [992, 999] describe a method for hierarchical feature learning

and object detection using inverse indexes, similar to a search engine approach, which has been called

the Indextron [996] and index-based pattern recognition [896], and more recently instant learning

[998]. The instant learning method has been demonstrated in many scientific applications using

numerical feature models from various sources, including aircraft component failure prediction, data

mining, DNA sequence pattern discovery, image segmentation, and pattern recognition for computer

vision. The research has built upon itself and progressed toward several related goals, and here we are

interested in the computer vision applications and underlying concepts.

Representing a pattern as a vector of inclusive sets in an inverse index

602 11 Attention, Transformers, Hybrids, and DDNs

As discussed in Chap. 10, a related concept—BAM, Bi-directional Associative Memory—was used

in an RNN first demonstrate by Kosko [648] in 1988, similar to CAM memory used inside CPUs,

except that each memory cell contents is a key to other related memory cells. See the BAM discussion

in Chap. 10 to learn about other related CAM/BAM as used in RNNs and CNNs.

Inverse Indexing: The Indextron is analogous to search engines, which organize search terms into

an inverse index to directly access corresponding URLs containing the words. For example, in search

engines the search query word hamburger has an entry in an inverse index, which lists URLs with

content relevant to the word, such as text pages, PDFs, images, music, and videos. However, the

Indextron acts like a search engine using pixel-encodings as inverse index offsets to find sets of related

pixel features, images, and classes.

is a key contribution of this work.

Pattern vectors Pn contained in sets Sx are the learned features.

Patterns and sets are associated via inverse indexing Pn $ Sx.

Note on Inverse Identities: Pixel features {P1 . . . Pn} and sets of image classes containing pixel

features Sx = {P1 . . . Pn} can be defined as inverse identities or inverse sets, leading to useful

properties. Mikhailov describes the set-theoretical derivation of the inverse indexes and inverse sets

for feature learning and classification in [997] which we do not repeat here. For example, if a set of

pixel features {P1 . . . Pn} are represented together in an image class set Sx, then the inverse of a pixel

feature P is the sets Sx containing image classes features P. The bi-directional association between

features and class sets is illustrated below.

For sets {z,y, u, x, v} containing features {a, b, c, d} we have:

z= a, cf g, y= b, c, df g, u= a, bf g, x= a, df g, v= df g

Then, the collection of inverse sets is:

a= z, u, xf g, b= y, uf g c= y, zf g, d= y, x , vf g

Illustration of feature set z = {a,c} and inverse set associations of features a,c.

Indextron Inverse Index Feature Learning 603

Using revised notation from Mikhailov in [998] to deal more succinctly with set operations

we have:

sets : a, cf gz, b, c, df gy, a, bf gu, a, df gx , df gv

inverse sets : z, u, xf ga, y, uf gb, y, zf gc, y, x, vf gd

One could compare sets and inverse sets to other methods: patterns = features = descriptors, since

they serve the same purpose. However, inverse sets contain representational advantages for machine

learning and classification due to the vector of features and inverse vector of sets approach.

Instant Learning: The goal of instant learning [995, 998] is to quickly organize features, images,

and the sets of images that contain the features into a model that does not require a distance function to

learn or determine pattern matches and feature class associations. Instead, feature learning takes place

quickly, allowing for new features to be added to the model one at a time, and target patterns are

located using inverse indexes in constant linear time.

Continuous learning model: The Indextron inverse indexes contain multiple classes of features

learned over time, and new exemplar classes and features can be added into the model to support

continuous learning [476].

Constant linear time model access: Bi-directional model access between class image sets and

features is performed in constant linear time O(1), via the inverse indexes of features and classes, rather

than using distance functions (+1) for similarity and a list search in linear time O(N + 1).

Hierarchical neurological class associations: The model stores class-related features together

similar to columns in the visual cortex IT, allowing a local hierarchy of related features to be recovered

by association, see Fig. 11.25.

Inverse indexes form a hierarchical method for pattern learning and recognition, grouping related

features together in the sets forming indexes, which also avoids the standard probabilistic classification

problem of pattern space search using distance functions to find similarity.

The hierarchical inverse indexing reflects the observed hierarchical mechanism in the visual cortex

for visual object feature associations, which is revealed biologically via IR imaging under the skull of a

Macaque money as shown in Fig. 11.25. Infrared heat maps (left) reveal increased blood flow defining

circular regions of increased neural activity in the IT while the monkey looks at images of a cartoon cat,

cat head, cat ear, and head outline. The IR heat maps (left) clearly reveal a hierarchy of related features

associated together in colored circular columns for classes of features. For the Indextron (right), class

associations are shown from the inverse index feature model for real cat image patterns learned by the

Indextron, showing the same hierarchical pattern associations as the macaque money reflecting the

inverse index model. Note: some slight offsets are made to the circles to prevent occlusion of

overlapping circles of feature overlap.

604 11 Attention, Transformers, Hybrids, and DDNs

Fig. 11.25 Showing (left) the actual inferotemporal (IT) cortex region of a Macaque monkey imaged using IR imaging

under the skull revealing blood flow (i.e., heat maps) under visual stimulation looking cartoon cat features, and (right) the

Indextron model display of cat features. Both the monkey and the Indextron show a feature hierarchy or related columns.

Image # Alexei Mikhailov [996] used by permission

The Indextron method implements is a bi-directional index of pattern feature tokens (K key vectors)

and contextual class sets (V value vectors) which is an alternative to the QKV query, key, values in

visual transformer attention models as discussed earlier.

For images and pixel pattern features, a list of patterns is learned from the images, projected into

numerical encodings used as inverse index offsets, to organize the inverse index referring to all sets of

images and classes containing the features. In the Indextron, the pattern space is composed of Inverse

Sets and Inverse Patterns (see [999] for details on inverse patterns) for bi-directional linear-time

access.

The pixel patterns are analogous to algorithmic basis feature descriptors projected as inverse index

addresses encodings; they are not hand designed feature descriptors, nor are they CNN-style weights,

nor are they transformer-style attentional patch encodings. More details are provided below on the

exact methods used in the research.

In Mikhailov [996], the Indextron creates pixel features and index address encodings for each

feature, derived during training from groups of 20 local points in clusters in the training images. The

method is explained in detail mostly in the Indextron paper—see Sect. 4.1 Feature Extraction [996],

with additional details to be gleaned in the related papers [992–995, 997–999] for the index address

encodings. No source code is provided. We briefly discuss the feature extraction algorithm at a high

level here.

First, each color image is converted to a gray scale image, then a series of edge detections is

performed across the entire image, followed by morphological edge-thinning operations to remove

outliers, to form intermediate pixel points. The point-to-point distance between each remaining

intermediate pixel point is measured via Euclidean distance to compose clusters of the 20 nearest

points within a radius parameter R. Then, the set of 20-point distances in the cluster are summed to a

total length for the feature cluster distances, forming the feature cluster encoding.

Figure 11.26 displays a Class Histogram revealing each object class as clusters of features, where

the color of each bin is the class (rose or cat), and the vertical size of each bin is the total length of the

20-pixels within the cluster defined by radius R. Each feature cluster encoding is projected and used as

a class index into the inverse index, see [996] for details.

Indextron Inverse Index Feature Learning 605

The Indextron feature method is biologically plausible as a representation of neural activity,

using edge detection and morphological thinning to produce feature point clusters representing

neurons using Euclidean distance outlines.

The Indextron point cluster features seem to model the Infrared heat maps revealed under IR

imaging as biological neural cluster activity in columns of the IT, as shown in Fig. 11.25. Future work

could include enhancing the feature model beyond the current point thinning pipeline involving edge

detection and morphology, and perhaps incorporate alternative feature descriptors to model clusters,

see FREAK and BRISK in Chap. 4 for example.

Fig. 11.26 Class feature cluster diagram illustrating the object classes Rose 1 and Cat 1, represented as a plot of clusters

of learned features. The horizontal axis are the class indexes, limited to 1000 in this particular case, and the vertical

columns represent the feature point lusters. Image # Alexei Mikhailov [996] used by permission. The vertical axis

shows the feature detection threshold level with a red dot where the feature is above the threshold, and the vertical size

(length) of each bin in the histogram is the strength of the 20-point feature clusters

For classification, the maximum value bin in the class histogram clusters is the feature class used to

classify the object, not the centroid or average of all bins for the feature. The classification mechanism

uses the inverse patterns and inverse sets.

In another example from [998], invariance attributes for rotation and scale using binary images are

modeled as features, using 360 rotations and 128 different scales; the algorithm uses a histogram of

features for each invariance attribute (360 bins for rotations and 128 bins for scale) and scores using a

quasi-intersection method (see [998] for details). See Fig. 11.27. Accuracy is reported to be 100% most

of the time, with accuracy as low as 92%. Training time is about 3 s on a 1,6GHZ Pentium PC and the

code is purely for proving the concept and not optimized. The rotational and scale invariance iterations

do slow down the model inference step, however the method is simple to parallelize using a GPU and

CUDA or OpenCL.

606 11 Attention, Transformers, Hybrids, and DDNs

Fig. 11.27 Showing (top) test images and (bottom) augmented test images with rotation and scaling variations. Image

Alexei Mikhailov [998] used by permission. Detection accuracy is reported between 100% and 92%

Feature and image class associations are learned quickly from one training sample at a time, little by

little, so the learning is continuous. Features are not averaged together in the Indextron inverse indexes.

No gradient descent and hyper-parameter settings are required as in time consuming neural network

training protocols. Accuracy is addressed little by little by learning specific new training samples as

model improvements or model tuning, to add precision or additional classes into the model, without

entirely re-training the model. The paper [996] provides a comparison between a simple 4-layer MLP

and the Indextron for a small number of training samples, showing similar accuracy of 85% for the

MLP and 83% for the Indextron, with training times of 900 s for the MLP using an AMD Ryzen 53600

and NVIDIA GeoForce GT, and 16 s for the Indextron only using an AMD RyZen 53600 on a

PC. However, the training information is intended only to prove the reduced compute requirements

and low power consumption of the Indextron to achieve comparable results with deep learning neural

networks.

Summary

In this chapter, we explored attention, transformers, and several examples of Deep Descriptor

Networks (DDNs), which represent new directions and next-generation trainable hybrid architectures

incorporating a variety of innovations in feature representations using multiple types of features

together, organized into hybrid backbone networks combining more than one feature type, with

some incorporating encoder-decoder architectures (also covered in Chap. 2 under U-Nets and

W-Nets). We also cover novel text-to-image synthesis classifiers, which can learn to interpolate

between features in the trained models to identify untrained and never before seen features as a

combination of features from unrelated class features. Classifier innovations are increasing along

with the feature models, such as AML associative multimodal learning, for example, see the volume

learning model [476] from Krig. We explored applications of attention concepts in CNNs. Key

historical milestones in transformer architectures are examined, starting in natural language processing

in the Vaswani method through the BERT method, which inspired attention and transformers to be

applied in computer vision specifically the visual image transformer ViT method, and other visual

transformers such as SWiN. We survey feature learning approaches in transformers such as self-

attention, Fourier features, NL-Means features, and binary features which do not use convolutional

CNN-style n × n feature weight learning.

Learning Assignments 607

Learning Assignments

1. Describe the Vaswani transformer architecture for NLP.

2. Contrast the ViT, Vision Transformer by Dosovitsky with the Vaswani transformer, in particular

discuss architecture differences for using pixels in a transformer.

3. Explain word embeddings for NLP, how they are made, and how they are used.

4. Explain pixel embeddings as used in the ViT Transformer by Dosovitsky, and discuss the

justification for the class embedding and the positional embedding in the Dosovitsky ViT pixel

embeddings.

5. Compare and contrast at least three different attention mechanisms including self-attention, and

how each is optimized for a particular type of attention.

6. Compare and contrast CNN-style n × n features and transformer-style pixel patches, and explain

which is better suited to find high-frequency pixel details, and why so.

7. Discuss the advantages of YOLO.

8. Describe Visual DNA and volume learning by Krig [476].

9. Describe the non-local means operation, and how it is used to replace convolutional features in the

NLM-network by Wang et al. [970].

10. Discuss pixel patch window scales and overlapping windows used in the SWiN Vision Trans-

former Liu et al. [827], and identify at least one problem which is solved by using overlapping

windows to gather pixel patches.

11. Discuss the Q,K,V self-attention model introduced by Vaswani, and provide a description of the

query, key, and value algorithm and how it learns features, and how it finds a target feature match

from the model.

12. Discuss multi-headed attention, why it works, and what it does.

13. Explain how a feature dictionary works, how it is made, and how it is used.

14. Compare the bag-of-words model to a dictionary.

15. Discuss token encodings for text and computer vision, and how computer vision encodings could

be hypothetically created to include multimodal information.

16. Discuss positional encodings in transformer embedding vectors for NLP, and how they are similar

to a sequence number in an RNN NLP app.

17. Discuss positional encoding methods that could be hypothetically devised to be effective for

vision transformers, if they are needed, and why.

18. Discuss class encodings for embedding vectors, and if adding class encodings to embedding

vectors is useful, and why.

19. Describe bi-directional indexing for features and classes and images as described in the Indextron,

and compare and contrast the Indextron to a CAM memory.

Where did you get that from?! That’s my machine! I’ve got patent pending on that!

—Wallace and Gromit

various feature modalities, time sequences, language association, GPS, and sensor data.

Applied and Future Visual Computing
Topics 12

Since the advent of practical deep learning methods, we are seeing visual sciences accelerate, enabled

by higher performance computing systems which are portable and pervasive. Computer vision is now

an expected and familiar commodity, with common computer vision apps on any smartphone such as

face recognition, selfie-images turned into 3D avatars, interactive scenic tours overlaying virtual

objects onto the video scene in a mixed-reality fashion, view synthesis to create novel renderings of

multiple objects in 3D, text-to-image synthesis to describe a visual scene and then render it, and much

more. The GPU is becoming a visual computing processor, assisted by special-purpose computer

vision and machine learning processors, as all the pixels are processed and combined for display inside

the GPU. We cover a selected range of applied computer vision technologies in this chapter to illustrate

the progress, pointing to a future of mixed synthetic objects and real objects through the merger of

computer vision, computer graphics, and imaging, in a sea of increasing compute horsepower enabling

even more.

Neural Radiance Field Code Books are surveyed, pointing to a future of reusable view synthesis

components. View synthesis methods that use mixed voxel-polygon models are also surveyed, this will

lead to changes in the very nature of the GPU to allow voxel models and polygon models to coexist

interchangeable. View synthesis representations will move the graphics pipeline to directly support

and accelerate more representational methods and standards for graphics objects beside polygons, such

as voxel models and 5D/6D light fields moving into the graphics API’s like OpenGL and DirectX to

program the GPU to be used for acceleration.

The next wave of AI will include third-generation classifiers using Associative Multimodal

Learning (AML) are discussed here. AML will emerge as the next wave of AI, and finally AML

will be the commodity classifier for continuous learning as a dominant theme of AI going forward, and

producing lifetime models representing the growth and development of key fields of knowledge; large

AML-generated foundation models will be commodity items and the intellectual property of the

trainers, far surpassing the capabilities of the first wave of simple SoftMax style ImageNet-style

classifiers, surpassing chatbot systems with zero-shot learning such as GPT. In the third wave, AML

classifiers act as custom AI experts that have continuously learned models tuned from actual use. AML

classifiers will be freely available to be used in groups like a panel of experts. Computer vision using

third-generation AI will yield breakthroughs in multimodal classification to identify visual concepts

using cues and associations with multimodal data, such as visual objects verified by association with

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_12

609

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_12&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_12#DOI

610 12 Applied and Future Visual Computing Topics

Image Sensor Enhancements

CMOS image sensors are in a rapid innovation stage, where specific features and algorithms are being

added directly into the CMOS silicon. CMOS imaging sensor silicon area is being increased to host

features on-chip.

NOTE: to follow the state of the art in image sensors and cameras, see the research and conferences

published by the SPIE—The International Society For Optics And Photonics Also, see also the latest

product announcements and specs from each major image sensor OEM for innovation details.

Application Specific Image Sensor Features for HDR and More

Application-specific features are being added into the CMOS image sensor, for example, self-driving

car system features. Sensors now include progressive on-chip CV-, AI-, and DNN-based features. Each

image sensor may include specific features on-chip for specific applications, such as sophisticated

super-resolution consumer photography, or LED lighted traffic sign flicker mitigation self-driving cars.

Camera Sensor Hardware Innovations

Here is a short-list of imaging sensor innovations on-chip.

• Higher Resolution Sensors—At the time of this writing, high-end commercial digital camera use

CMOS sensors up to 120MP which translates into 13,272 horizontal x 9176 vertical pixel

resolution.

• On-chip HDR (High Dynamic Range)—Implemented in silicon by adding additional sensors to the

CMOS sensor, a large sensor for quick exposures, and a smaller sensor for long exposures; both

large/small exposures are combined together to capture an extended high dynamic range. We

discuss HDR in more detail in this section.

• On-chip LED Flicker Mitigation—since LEDS and fluorescent lighting are refreshed at a given

frequency, flicker can result if the imager frequency and the light frequency are different—thus

creating an optical spectrum beat frequency, where the imager cannot capture the light at a matched

frequency. To overcome flicker for self-driving cars (which are required to read LED traffic signs),

the CMOS image sensor can be engineered to sample, hold, and integrate light together from

various exposures and frequencies to smooth out the frequency flicker anomalies at a perceived

constant sensor integration rate.

• Improved Photodiode Cell Isolation—The best camera sensors are increasing image quality by

isolating each photodiode sensor well from cross-cell photon bleeding for crisper colors and

contrast.

• Super-Resolution—on consumer devices, digital zoom is often implemented using a variation of

super-resolution, where the sensor resolution is increased by a wide range of methods including

noise removal, deblurring, and other methods surveyed below, see also Chan et al. [857]. Various

methods are used for digital-zoom on lower resolution images, to give the impression of higher

resolution. Many image sensor vendors provide these features in the silicon and associated driver

software.

GPU Incorporation of Neural Networks and Computer Vision into the GPU

The GPU hardware itself is moving beyond basic features of traditional graphics pipelines, and this

trend will continue as path tracing, ray tracing, and view synthesis are accelerated and become

dominant GPU workloads, going beyond basic 20-year old graphics pipeline architectures which

support vector graphics and raster rendering. For example, neural networks are being used in the GPU

for super-resolution, super sampling, and motion vectors for features such as generating additional

frames between existing frames in the display stream, simulating faster frame rates with less compute

up front. The intermediate frames are generated at higher resolution providing more image detail. We

mention below some other examples accelerated in the GPU hardware pipeline.

Image Sensor Enhancements 611

• DLSS (Deep Learning Super Sampling) and DLAA (Deep Learning Anti-Aliasing)—The goal is to

add anti-aliased pixel details to increase image resolution and add interpolated frames to increase

frame rate using deep learning, which improves viewing perception quality. To implement, deep

learning has been applied to the GPU pipeline via shaders and in the sampler section for optimized

variants of super sampling similar to MSAA and other sampling methods. Training requires a game

at a fairly low resolution and low frame rate, then the training process builds an enhanced video

containing all the increased resolution pixels and frame rate details, which is bound to the original

game binary image designed to run on specific hardware. For training, the neural network compares

the low-resolution image to a 16 K reference image, using optical flow accelerators to track motion,

increase pixel resolution, and generate additional intermediate frames. Nvidia DLAA is a related

product, a subset of DLSS for pixel anti-aliasing only. Hardware acceleration is required for both

DLAA and DLSS via tensor cores.

• Optical Flow with GPU HW acceleration—Optical Flow methods track pixels or pixel groups from

frame to frame, used for object tracking, video encoding, super-sampling, and anti-aliasing.

Historical methods related to optical flow are surveyed in the Chap. 1, Section “Optical Flow,

SLAM, and SFM” using non neural network methods. Deep learning has been applied more

recently to optical flow methods, and accelerated in hardware, which we only touch on here.

Optical flow methods compute gradient motion vectors (i.e., flow vectors) either densely for each

pixel, or sparsely for groups of pixels, similar to standard motion vectors in video encoding for

DCT-style pattern tracking of 8 × 8 and 4 × 4 pixel blocks from frame to frame for video

compression. However, optical flow methods have been implemented using deep learning methods

using optical flow accelerators in hardware. We do not survey these methods here. However, to dig

deeper, refer Nvidia optical flow acceleration literature, and the paper FlowAcc by Ling et al.

[1017], which provides comparisons of several optical flow methods, as well as some historical

background. Path tracing and ray tracing are accelerated in GPU hardware using optical flow

acceleration, for adding realism to the scene lighting and shadow generation.

• Neural Rendering Caches are accelerated in GPU HW to support and accelerate view synthesis of

NeRF and other models such as diffusion models and GAN’s, useful for synthesizing and rendering

new images from a collection of image object parts, as described later in this chapter in the View

Synthesis section. Also, refer [1018] Müller et al. for more details.

• Tiny accelerated real-time neural networks are accelerated in GPU HW, which learn light transport

models at real-time at frame rates to support global illumination for advanced graphics rendering via

path tracing and ray tracing to model light transport reflected off of all objects in a scene, adding

tremendous realism to the renderings. Also, refer [1018] Müller et al. for details.

• Real-time object classification, segmentation, and replacement—Qualcomm has added support to

the Snapdragon™ SOC and GPU and ISP, partially inside the camera sensor, GPU, and partially

into the Image Signal processor, for real-time object segmentation using computer vision methods,

including real-time multi-frame noise reduction HDR, which are surveyed in Chap. 2.

• Human Pose Point Detection and Object Tracking—although details are obscure the Apple Mx

Neural Processors contain HW acceleration for advanced computer vision use cases inside the GPU

612 12 Applied and Future Visual Computing Topics

and dedicated neural network processor, which works together to support object tracking using

YOLO [941] from Redmon et al. discussed in Chap. 2, and human pose point detection for locating

joints and body parts, see [1016] from Chen et al. to dig deeper.

Imaging Sensor Functions: HDR and Super Resolution (SR)

Next, we survey key methods for HDR and SR, which may be implemented in the CMOS image

sensor, or on the SOC in the CPU (Central Processor Unit), GPU (Graphics Processor Unit),

IPU/DSP (Image Processing Unit), or NNU (Neural Network Unit). Some of the functions we survey

are entirely implemented in CMOS processors build in deeper layers and edge layers of the CMOS

imager, other features we discuss are implanted in application software on the CPU and GPU or

IPU/DSP or NNU and use more compute intensive deep learning methods.

HDR on a Single CMOS Imager Chip

The basic idea of High Definition Imagers (HDR) is to combine low-light details and high-light details

into the same image, while removing light saturation. When the light exposure is too long for the given

light and image sensor, the pixels are imaged at a numerical value that overflows the peak limit; for

example, with 8-bit pixels in range [0 . . . 255], an over-exposed image will have many pixels with a

value clamped at 255, with all details in the high-frequencies truncated. An entire HDR process using

multiple exposures (only two exposures of more) can be implemented on an HDR CMOS image

sensor, where a small photodiode cell is used to capture fast high-res high light details in one

photodiode cell, and a larger photodiode cell is used to capture a longer exposure for capturing

low-light details, and then both the fast and slow photodiode cell data are combined on the imager

into an HDR image. Note that low-light details require a longer exposure, and thus a larger silicon

photodiode to capture and integrate the low-light details. A smaller photodiode can be used to capture

faster, high frequency details at higher brightness where more photons are accumulated quicker

(Fig. 12.1).

or

er

ho

ig

im

Super Resolution (SR) Methods: On-Chip and in SOC Software 613

 Image Sensor with HDR on the chip

S = small photodiode cell = fast exposure (PARVO)

 L = large photodiode cell = long exposure (MAGNO)

Combine exposures into single HDR value on-chip:

HDR = {S + L}

S + L Blue

S + L Red

S + L Green

S + L Gray

Fig. 12.1 Showing a hypothetical image sensor design f

capture high-frequency in intense lighting details togeth

low-light, where both the small and large photon-well p

which spreads out the frequency distribution, eliminating h

light regions, and adding increased sensitivity to low-light

combining quick-exposure time small-cell photodiodes to

with longer exposure large-cell photodiodes to capture

todiode data are combined together into an HDR image

h-frequency numerical overflow in the pixel data for high-

age regions

Super Resolution (SR) Methods: On-Chip and in SOC Software

Super Resolution (SR) is a method of digital zoom which can be performed using input from (1) a

single image or (2) a burst of images taken rapidly to create a sequence of images.

The basic problem for SR is how to extract invisible higher frequency image details from a

low-resolution image to project into a plausible higher-resolution rendering. In the methods we

surveyed below, the invisible high-frequency image detail can be produced using purely statistical

methods, semi-random estimates, or else using deep-learning methods to find the scaling kernels or

functions to add detail by analyzing one or more training images or pairs of training images (i.e., one

lower resolution and one higher resolution).

Single-image methods for computing super-resolution (SISR) have resorted to various approaches

to add detail to images, such as algorithms using image priors and algorithms for enhancing high-

frequency details (Super resolution + HDR: HDR-DSP multi-resolution learning above).

However, multi-frame image super resolution (MFSR) methods take input from a burst-mode

sequence of images taken in rapid succession, to extract high frequency details from images in the

burst sequence, then combine all frequency details into a final super-resolution image. Multi-image

methods may apply various methods, such as shifting or dithering several images around a center point

origin, to reveal high frequency details using x/y translational homography analysis, which is analo-

gous to saccadic dithering performed by the human eye as it is apparently staring fixed at a point. The

high frequency details revealed in the processed multi-image set are then combined into super-

resolution images.

614 12 Applied and Future Visual Computing Topics

It is possible to semi-randomly generate image details using a fractal expansion to create details.

Fractal or Mandelbrot set methods have also been used in image encoding and image compression.

However, alternative machine learning methods are increasingly employed using DNN’s or GAN’s to

learn perceptually plausible models of functions and kernels to add high frequency details. SR DNN’s

are trained using pairs of low-resolution and high-resolution images in the training set, and then the

corresponding image detail generation functions or kernels are learned by the model to match the

training set low/high resolution image pairs.

In addition, deep learning is being applied to produce HDR imaging algorithms, and other image

corrections such as in-painting to fill in details from depth sensing holes. SR and HDR and other

application specific image processing are increasingly implemented on the CMOS image sensor as a

standard feature. Refer Chap. 1 for an overview of image sensing.

Super-resolution is used to implement digital zoom on consumer camera systems to replace

expensive optics. Also, a related family of super-sampling methods are used in computer graphics

systems to remove jagged coarse artifacts from rendered images in the anti-aliasing pipeline when the

polygon detail is very low, for example, to scale low-resolution video games up into hi-resolution

displays.

However, here we will focus on super-resolution for computer vision applications including single

image methods (SISR) and multi-image methods (MISR). We look at DNN networks and GANs used

for super resolution, which train using pairs of low- and high-resolution images in order to learn the

underlying relationships and noise models between the image detail of low and high resolutions, and

the blur functions and kernels between low- and high-resolution images.

Many methods exist for performing super-resolution. Figure 12.5 shows the Deep Burst method

discussed later, comparing super-resolution from a single image vs. using a burst of multiple images. In

this section, we will review a few approaches using DNN’s and machine learning methods for super-

resolution and HDR.

Super Resolution for Multi-image Mixed Reality (MR)

Super resolution for mixed reality (MR) image frames is especially challenging, since MR images

contain a composite of several real images and computer-generated images, each of which do not

precisely match in all attributes such as color gamut, lighting and shading, resolution, or viewpoint. So,

the best possible super-resolution process for MR images must be preceded by various image

corrections and joint normalization of the separate composite images, in order to handle joint color

balance, image sharpness, image scale, resolution, and warping for viewpoint perspective. After all the

corrections and normalizations are made to the separate images, then the composited image can be fed

to the SR process. Single-image super resolution and multi-image super resolution methods are

surveyed later.

Using machine learning, it is possible to learn the right functions to add detail to a low-resolution

image to generate a corresponding high-resolution image.

Figure 12.2 compares four methods of super-resolution revealing how each method is appropriate to

a different problem—refer the image for details—particularly the result image section on the right of an

MR super-resolution method developed by Cornillère et al. [861] which is ideal for MR SR. Notice

that the composition background image of the star-filled sky is combined with the computer graphics

image of the spacecraft. Each image has different attributes that make the optimal SR generation jointly

impossible in raw image form, unless joint normalizations on image attributes are performed prior to

the composition and SR stage. Each image was down-sampled with a different kernel, so no single

kernel is known in advance to perform SR on the composite. Cornillère’s method learns a single kernel

optimal for the SR.

h

I

n

Blind Super-Resolution 615

Fig. 12.2 Showing a composite MR image, where eac

separately for super-resolution and 10 composted together.

from Spaceship by Francois Grassard (CC-BY Public Lice

of the foreground and background images are adjusted

mage (C) Cornillère et al. [861]. Photo Credits: Derivative

se)

As shown in Fig. 12.2, both images in the composition (the spacecraft and the starry background)

exhibit spatially varying artifacts, so both images must be re-sampled first to a uniform scale prior to

compositing and SR, and the down-scaling method in this case involves applying a different kernel to

each image, so the composite image has no single kernel to apply for effective SR generation without

artifacts. Therefore, Cornillère et al. perform an automated method to learn local corrections for the

degradation, as well as learning the appropriate SR kernel function to add detail to extrapolate the

low-res image into a high-res image, where the extra detail function is modeled as a degradation kernel

function. The degradation kernel discovery process is performed using a CNN-based Kernel Discrimi-

nator Network trained using a set of plausible base kernels (including Impulse, Bi-cubic, Lanczos)

each convolved with a 2D anisotropic Gaussian. The end result is a learned kernel for SR re sampling.

*Note that this method ignores color gamut re-sampling and color corrections. In fact, most if not all

SR methods ignore color gamut space artifacts. For details on colorimetry, refer Chap. 2, Section

Illuminants, White Point, Black Point, and Neutral Axis.

Blind Super-Resolution

Cornillère et al. [861] use a blind SR method which has no prior knowledge of the relation between the

low- and the high-resolution image pairs used to train DNN models to learn the SR functions—there

are no training parameters for scale, resolution, color info, or viewpoints of each training image.

However, blind methods can infer the optimal SR image generation parameters for a composite MR

image using analytical means. Cornillère et al. develop a blind method using a neural network to

generate a degradation model to synthesis the SR view given a first image and a blur kernel. The

network trains a kernel discriminator to find the loss function from the blur kernel used for SR image

generation, by analyzing the SR generated high res image details such as edges and color extremes,

making sure the best kernel was used for SR, since incorrect kernels generate detectable artifacts in the

high res SR image. The discriminator recovers the original degradation ratio by error minimization and

an optimization process, to arrive at the best blur kernels.

616 12 Applied and Future Visual Computing Topics

For another related blind super-resolution method, refer Zheng et al. [859]. For a historical survey of

earlier blind methods, refer Liu et al. [858]. For related work on blind single-image SR methods, refer

Wang et al. [860] A fully progressive approach to single-image super-resolution, and also

Djelouah [861].

Super Resolution from a Single Image: SR-GAN DNN

Using a deep-learning approach, Ledig et al. [862] develop a super-resolution method with a GAN to

recover finer-texture details that are lost with many other super-resolution methods. The approach

relies on a Generative Adversarial Network (GAN) they call SR-GAN, which generates candidate

super-resolution images and chooses the best candidates based on a novel set of loss functions,

including perceptual loss, contextual loss, and adversarial loss. Specifically using the adversarial

loss metric, the super-resolution artifacts are detected, allowing natural photo-realistic and synthetic

super-resolution images to be compared and differentiated. SR-GANN is able to extract natural

textures from extremely down-sampled test sample images in the benchmark training and test sets.

Quality of results are shown in Fig. 12.3 compared to similar methods.

SR-GAN achieves leading benchmark scores against 4× image zoom samples with structural

similarity scored using PSNR with a ResNet with 16 blocks. Results are evaluated using a range of

widely used benchmarks such as BSD100, BSD300, Set5, and Set14, as shown in the paper. The

super-resolution magnification test scale uses image scale factors of 4× between low and high

resolution, representing a 16× pixel reduction between lo-hi res.

Refer also Wang et al. [860] describing a super resolution method which progressively up-samples

the image in scaled steps and uses a GAN to provide progressive super-resolution details.

Fig. 12.3 Showing SR-GAN super resolution from a single image using various methods, image (C) 2017 Ledig et al.

[862], used by permission from Springer Verlag

et

re

Blind Super-Resolution 617

Super Resolution + HDR: HDR-DSP Multi-resolution Super Resolution

Here, we review an HDR + super-resolution approach using an encoder/decoder DNN developed by

Ngoc et al. [863], who implement a trainable network for generating super resolution renderings from

multi-image exposure sequences, which they call High Dynamic Range Deep Shift-and-Pool

(HDR-DSP), which uses self-supervised learning to denoise and increase resolution of satellite

image multi-exposure sets. Compared to CMOS camera sensor HDR (as discussed above) which

use a sequence of two images with different exposure times to create an HDR image, HDR-DSP is a

much more complex approach that includes denoising for both HDR and super-resolution.

The method extends on other approaches using a shift-and-combine strategy to create a composite

rendering of all the exposure levels in a single image, using a trainable encoder-decoder style DNN

network. First, all images in the multi-exposure sequence are normalized to a unit exposure time by

adjusting all pixel levels. The image set includes a high-resolution (HR) and a low-resolution

(LR) paired set of corresponding images. Next, the base frequencies are extracted and aligned, and

used in a function to reduce low-frequency details in the normalization function. The normalized

images are re-sampled using bi-linear zoom to create the high-resolution base frequency component

images. All normalized LR paired images are fed into an encoder to generate low-resolution

(LR) features. The LR features are then converted using an MLP into the high-resolution

(HR) features. The LR and HR images are then fed to the decoder to enhanced LR features (ELR)

incorporating HR details. Finally, the ELR and HR features are combined into the super-resolution

image, refer Fig. 12.4 for comparative results against other methods.

Fig. 12.4 Comparing five methods of super-resolution tog

Bottom reconstruction from five different methods compa

Springer Verlag

her. Top images used are taken at different exposure levels.

d. Image (C) Ngoc et al. [863], used by permission from

od

ma

618 12 Applied and Future Visual Computing Topics

Deep Burst Super-Resolution: Multi-image vs. Single Image Methods

The Deep Burst super-resolution method proposed by Goutam et al. [864] uses a DNN trained on

multi-image sequences, which they call a BurstSR dataset, consisting of several hundred raw burst

image sets from a mobile phone camera. The test set intentionally includes noise and positional

aberrations from slight camera motion. In addition, a high quality high-resolution natural ground

truth dataset is included for reference as a baseline for comparison, pointing the way towards more

regular benchmarking and algorithm competitions.

Example Deep Burst super-resolution images are shown in Fig. 12.5.

The network directly operates on noisy RAW bursts captured from a hand-held camera and

generates a denoised image from an arbitrary sized frame set. A pixel-wise optical flow method is

also used to operate on the deep feature encodings of each image to align them. The images are merged

using an element-wise combination (a fusion) of the DNN weights in the embedding space. The fusion

of attentional features increases the quality of the final super-resolution, and by discarding mis-aligned

features Deep Burst denoises and demosaics the cumulative burst image set details into a final output.

Fig. 12.5 Showing the Deep Burst super-resolution meth

multiple image frames into a composite higher-resolution i

from Springer Verlag

by Goutam et al. [864], which combines information from

ge. Image (C) 2021 Goutam et al. [864], used by permission

Panoramics and Image Stitching

Image Stitching covers a range of methods which automatically stitch images together to make a

composite image which is perceptually acceptable, by connecting images together semantically—

correctly joining multiple images together at common interests points with no overlap or pixel scale

errors—into an image mosaic. Such methods are routinely employed in satellite and space imagery to

create image surfaces composed from a series of sequentially scanned images: a panorama of images

stitched together to incorporate swaths of territory from the planet Pluto, swaths taken from the NASA

New Horizons spacecraft is shown in Fig. 12.6.

hi

e

2

Panoramics and Image Stitching 619

Fig. 12.6 NASA image of Pluto, using 2D image stitc

positions of satellite image scans, each of which is a tripl

spacecraft Ralph/Multi-spectral Visual Imaging Camera in

ng to render a set of surface patches from several image

of three RGB color filter images from the New Horizons

015. Image (C) NASA public domain image

Another example, as shown in Figs. 12.8 and 12.9, illustrates stitching together several images of a

roadway and cars. The common interest points (stitch points) between images are first located—these

are the stitching points common to both images. Next the images must be matched and rectified to the

stitch points, which involves scaling and warping so they fit together; there are many methods used for

locating the interest points, scaling, and warping, and we survey a few methods below. In addition, the

images can be color matched including contrast, brightness and color gamut.

Historical methods for image stitching going back to the first NASA space programs are frequently

used in computer vision, and the key details of historical and as well as modern methods for image

stitching are well summarized by Szelinski [865] in the classic text Computer Vision: Algorithms and

Applications. Image stitching methods incorporate higher-order enhancements to make the image

characteristics blend into a better quality mosaic, using techniques such as accurate image warping for

perspective corrections, smoothing the image at the stitching joints to blend the images, corrections for

color, white balance, sharpness, view perspective, and scale. Various image Stitching examples and

corrective functions to accomplish these goals are discussed by Szelinski [865].

3D 360-Degree Panoramic Image Stitching

While there is much research into 3D panoramic image mapping, we only cover a brief introduction

here. The company Matterport has created perhaps the best commercial solutions possible, supporting

large-scale capability to compose thousands of separate images stitched together into a VR environ-

ment, which allows fully immersive exploration and walk-throughs with arbitrary camera views!

Matterport also offers a dedicated 3D panoramic camera for space mapping, to collect all required

ut

in

ng

images for generating a 3D panoramic spaces, which can be interactively viewed in a VR space.

Matterport products are available for a wide range of commercial and industrial applications.

620 12 Applied and Future Visual Computing Topics

In order to perform 3D image stitching from multiple camera pose images, various consecutive

sequential image capture methods are used, refer Fig. 12.7 for an example schematic showing image

set capture methods for various walk throughs to obtain a complete 3D immersive image set. The goal

is then to stitch the images together in 3D, allowing for VR viewing inside and outside the space where

the images are captured—almost like being there with your own camera.

By extracting an entire 3D volumetric representation of an object from a 2D multi-image set, and

then stitching the images together as a 360° image set, a multi-attribute 3D perspective view is created,

commonly used in mixed reality experiences, were for example the interior of a house can be imaged in

a random order, and then stitched and composed and rectified into a 3D walk-through model of the

home for real estate purposes.

Note that the perspective generation methods use 2D sets of images captured in a spatially-aware

fashion, for example 2D images are captured as a camera rotates from a fixed position to capture

surroundings in 360° from the inside or the outside, or 2D images are captured as the camera travels in

a random path (Fig. 12.7).

3D capture sequences:

1) 360 rotating around subject

2) 360 rotating inside subject

3) Random Path

300°

330°

270°

240°

210°

180°

150°

120°

90°

60°

30°

0

Fig. 12.7 Panoramic image sequence capture methods: O

sequence, or an inside camera can rotate at a fixed position

randomly takes a path to create the 3D sequence, requiri

random image locations in a rectified stitched field

side camera rotates around subject to capture a 360 ° image

side subject to capture a 360 ° image sequence, or a camera

additional image coordinate rectification to represent the

Adaptive (APAP) 2D Image Stitching

Here, we discuss a method by Chung-Ching et al. [866] called Adaptive As Natural As Possible

(APAP), which uses a novel method of smoothing the stitch region across the stitched images,

implemented using a novel global similarity function combined with a local homography function.

The method reduces perspective distortion in the non-overlapping regions by algorithmically combin-

ing the variations in the local homography and global similarity using a linear function.

To make the final multi-image panoramas look more natural, Chung-Ching carefully creates a

continuous stitching field region across all images by linearizing and smoothing the separate

th

01

b)

at

u

homography of each image slowly across the field, to eliminate blending artifacts between the images,

paying careful attention to perspective matching in the non-overlapping regions to estimate the optimal

final stitching alignment.

Adaptive (APAP) 2D Image Stitching 621

Figures 12.8 and 12.9 illustrate the process.

Fig. 12.8 Results of the Adaptive 2D Image Stitching me

final stitched image, images published at CVPR 2015 (C) 2

Verlag

od, showing (top) original unstitched images and (bottom)

5 Ching Lin et al. [866], used by permission from Springer

Fig. 12.9 Illustrating the algorithm: (a) original images, (

warp across the local image fields, (c) homography estim

similarity transform, and (e) final stitched image, images p

used by permission from Springer Verlag

warped images using direct linear transform to smooth the

ion of non-overlapping areas, (d) final warps using global

blished at CVPR 2015 (C) 2015 Chung-Ching et al. [866],

622 12 Applied and Future Visual Computing Topics

Stereo Pair Estimation from 2D Images—Deep3D

The goal of Deep3D is to generate one pair of a stereo image, given the other pair. Deep3D by Junyuan

et al. [867] creates a stereo pair image, suitable for viewing on 3D glasses or 3D displays, or head

mounted VR devices, from a single 2D stereo image set. Deep3D is trained on prepared sets of stereo

pairs of images from existing 3D format movie content. The method works by estimating a right stereo

pair generated as a probabilistic disparity map when given the left stereo pair. Disparity is the

difference between the left and right stereo pair images, pixel by pixel. A DNN trained with both

left and right stereo pairs is used to estimate a new stereo pair to match a single stereo pair set, thus

Deep3D does not require a 3D depth map for supervising the left/right disparity map estimation

(Fig. 12.10).

Fig. 12.10 Illustrating the Deep3D estimation or the right store pair from a left stereo pair using a DNN trained from a

library of 3D movies. Images presented at ECCV 2016, (C) Xie et al. [867]

The Deep3D method leverages the empirical knowledge that lower-level pixel scale features are

very effective for generating the model. However, higher pixel-level accuracy is preferred for other

pixel-level estimations including disparity estimation, optical flow, and segmentation. So, the model

generates features that are about the same scale as the input image, closer to the raw pixel resolution.

Pixel scale features are commonly observed in the early layers of DNN’s. The Deep3D network sums

the pooling layers at each branch via a learned up-sampling filter into a feature map, and all the feature

maps at the branch are summed together for a unified feature map at raw pixel scale.

Deep3D compares slightly better against similar methods, as shown in the benchmarks in the paper.

View Synthesis

View Synthesis covers a wide field of methods used to create novel image renderings by first learning

how to represent a set of 2D images inside a virtual 3D volumetric field of voxels, to enable novel 2D

novel perspectives via volume rendering which is discussed in a subsequent section below.

In this section, we hope to boil down the many fine methods for view synthesis and focus on a

selected few examples: the scope of research is astounding and increasing exponentially it seems,

according to Dan. 12:4: “. . . many shall run to and fro, and knowledge shall be increased”. Here we

examine how views can be synthesized by taking the input from a set of one or more 2D images from

various perspectives, and mathematically and procedurally modeled, allowing view synthesis as 2D

and 3D re-projections of the models—the results are often remarkable as well as photo-realistic.

View Synthesis 623

Historically, view synthesis has been a research topic under the terms Plenoptic modeling, and

Image-Based Rendering (IBR) since the early 1990’s, along with related research on 3D light field

rendering and 3D and 4D light fields represented as voxels, and early volume rendering methods to

directly render discreet voxel fields as 2D images. See Chap. 1 Plenoptics: Light Field Cameras and

subsequent topics in Chap. 1 for more history. Voxels and point-cloud representation are covered in

Chap. 1. However, we revisit some of these topics in this section including recent innovations and

refinements to the image representations.

Major topics for view synthesis and IBR are as follows:

• Sampling 3D and 3D representations

• Modeling 3D voxel samples using plenoptic functions and/or voxels

• Reconstructing or synthesizing new 2D views from the 3D model

• Re-sampling the model for high-quality renderings

One of the key problems to solve is how to extract 3D depth information from 2D images alone, and

another key problem is how to represent the 3D light field, so we discuss various recent developments

to these topics in this section. View Synthesis also incorporates panoramic imaging concepts, where

multiple images are stitched into a synthesized image, and we survey Panoramic imaging in this

chapter also. View Synthesis also incorporates super-resolution to add detail to the synthesized 2D

image views, and we cover super-resolution in this chapter also.

View synthesis methods (such as NeRF surveyed later) take many 2D input images with known 3D

orientation of the view direction, in order to create an overfitted 3D voxel model or light field

accurately; however, many recent methods can also work with just 1 or a few images, which we

survey later.

Historical references include the following:

• McMillan and Bishop, “PlenopticPlenoptic Modeling: An Image-Based Rendering Modeling: An

Image-Based Rendering System,” 1995.

• Chen and Williams, “View Interpolation for Image Synthesis,” Proceedings of SIGGRAPH 93of

SIGGRAPH 93, pages 286–287.

• Chen, “Quick-Time VR: An Image-Based Approach to Virtual Environment Navigation, Environ-

ment Navigation,” Proceedings of SIGGRAPH 95 Proceedings of SIGGRAPH 95.

Introduction

View synthesis includes learning 3D voxel models from 2D images, how to render scaled and rotated

re-projections from 3D voxel models to 2D images, as well as text-to-image synthesis to create entirely

new synthetic visual scenes or mixed-reality models combining synthetic, real, or edited visual

objects. Wow.

In this future world of view synthesis, everything changes: everything is virtual: nothing is real.

View Synthesis can be compared to a virtual synthetic camera that can alter reality (mixed reality. . .).

The applications and methods for view synthesis are ever increasing, and will change the notion of

computer graphics and computer generated imagery forever. The author expects all of computer

graphics to change going forward, to allow view synthesis to drive mixed polygon and voxel

representations to coexist and become melded inside the GPU. For examples of the voxel/polygon

mesh interoperability trend, see Khalid et al. [868] and also the Point-E system from Nichol et al. [869],

which we touch on in our survey section below.

624 12 Applied and Future Visual Computing Topics

View synthesis often covers the following basic steps:

1. Given 2D image(s) with known position (x,y,z roll, pitch, yaw), 2D size (x,y), R,G,B.

2. Project 2D image(s) with known position into a sparse volumetric model *refer NeRF below.

3. Optimize the volumetric model to rectify views of multiple objects of known position.

4. Render unique views of the volumetric model using volume rendering.

5. The volumetric model is differentiable and can be trained as a Neural Radiance Field.

As shown in Fig. 12.11, the Neural Radiance Field method NeRF (reviewed later in this chapter)

for view synthesis involves modeling a wevolumetric field generated from a set of one or more 2D

images, which is differentiable and trainable, and then generate synthetic 3D discreet volume

renderings from arbitrary view perspectives.

Fig. 12.11 Illustrating the Neural Radiance Field (NeRF) method of modeling 2D image sets as 3D projected into a 3D

volume, allowing for arbitrary 2D image projections, Image (C) Mildenhall et al. [870]

As illustrated in Fig. 12.11, the input 2D views are first converted into a synthetic 3D volume model

which is differentiable, allowing for novel 3D viewpoints and 2D generative renderings from the 3D

volume model. Three-dimensional view synthesis uses a range of techniques, including radiance field

methods, light field methods, diffusion models, volume rendering methods, and machine learning

methods. The basic results are remarkable—producing a 3D model from a single image or a set of

images viewing the same object from different viewpoints, and then rendering different perspective

views. Figure 12.11 illustrates how a set of input images of a subject are optimized together into a 3D

model using neural network methods, allowing for new realistic 2D views to be rendered with

remarkable quality.

NOTE: Various view synthesis background concepts are discussed in upcoming sections, such as

volumetric modeling, volume rendering, diffusion, and light fields, which may be helpful as back-

ground for those new to the field to understand view synthesis methods in the subsequent implementa-

tion examples.

View Synthesis has many possible use-cases, such as of creating 3D avatars from 2D images from a

basic camera: take a picture of yourself, and suddenly a 3D avatar of yourself can be animated and

displayed in a MR environment in a multiverse or omniverse, with complete avatar animation for body

pose and activities—as if your avatar represents you in a virtual world. However, view synthesis

renderings have all the usual industrial, security, gaming and military applications as well.

View Synthesis, as expressed in NeRF and other view synthesis models, share some similar

concepts with corresponding depth point capture and rendering methods discussed in Chap. 1 under

Surface Reconstruction and Fusion. For example, DTAM (Dense Tracking and Mapping), and also the

older Kinect-Fusion method, both of which project depth points into a volume for re-rendering into 2D

image projections from various angles and distances. Both DTAM Kinect-Fusion integrate depth

images from successive frames into the 3D volumetric structure, which is suitable for both refining the

volumetric data and making it more accurate, and also for rendering the 2D views from the volume.

Details on DTAM and Kinect-Fusion are discussed earlier in Chap. 1—refer Figs. 1.21 and 1.22 and

the Dense Methods. Also, refer the PTAM model in Chap. 1, which is a sparse model, and shares some

concepts with the various view synthesis models such as NeRF. NOTE: sparse models do not require a

voxel at each x,y,z coordinate in the volume, thus reducing memory space requirements, and perhaps

allowing volume rendering optimizations, more details are covered in the NeRF survey later.

View Synthesis 625

Historically, view synthesis is nothing new and has increased in realism little by little for several

decades. Hollywood movie special effects and synthetic images are well known, as well as the

improvements to realism in video games. Compute power increases have made it all possible,

paralleling the deep learning explosion around the same time.

However, around 2018, the idea of view synthesis was given prime time media narratives using the

buzzword “Deep Fakes,” and the technology was roundly viewed as malicious AI, with obvious

potential for criminal and political purposes. For example, in 2018, a video circulated in the media

containing a fake picture of the US President created with view synthesis methods, using Deep Fakes

as a new narrative requiring immediate government action, which was a rallying point for politicians,

governments, and privacy advocates to raise various alarms, suggest policy, and pass legislation.

Policy research and planning for AI scenarios by the USG is a very active topic, affecting academic

research and commercial products.

For a good review of the scope of free software available on GitHub to perform view synthesis to

create or modify faces, objects, and scenes in photo-realistic ways, refer the excellent survey by

Nguyen et al. [871]: Deep Learning for Deepfakes Creation and Detection: A Survey.

Next, we provide some common background models and thinking used or for the various view

synthesis methods. Then, we survey representative methods of view synthesis in more detail.

Background Concepts

Several key concepts and approaches are taken to create the 3D models for view synthesis, including

light fields, radiance fields, volume rendering, diffusion models, curiosity models, text-to-image

synthesis, and text captions as image classifiers, so we provide background sections here, followed

by a survey of representative models and methods.

Light Fields and Radiance Fields

In this section, we discuss field-based models for light and radiance, which are learned and generated

for view synthesis. Typicality, one or more images are projected into the fields which are basically 3D

volumetric fields of individual voxels, and then images can be synthesized from taking various 3D

perspective views through the volume using volume rendering to synthesize a new image view. Voxel

model details and volume rendering are covered in the next section.

Michael Faraday, a British scientist (1791–1867), explored and described electromagnetic fields

and light fields (which he called light vibrations), and he proposed that light fields and electromagnetic

fields could be modeled in a similar fashion. From the particle physics point of view, photons and

electrons are similar in many respects, and some physicists believe that electricity and light are

interchangeable, as demonstrated by photovoltaic cells (i.e., solar energy cells) which absorb photons

and turn them into electrons; so to many scientists, electrons and photons are the same particle with a

different frequency attribute or particle spin in the spectrum. Both electromagnetic fields and light

fields emit a radiance, according to the part of the electro-magnetic spectrum each occupies, and thus

occupy a radiance field.

626 12 Applied and Future Visual Computing Topics

Light field radiation is subject to various wave propagation phenomenon, including absorption,

reflection, refraction, diffraction scattering, birefringence or double-refraction, and polarization. Light

polarization has unique properties which we cover in the Scientific Imaging Systems section later in this

chapter under the Polarimetric Imaging section for directional light sensing, and also in the

Microscopy Applications section illustrating how microscopy takes advantage of field radiation

phenomenon to enhance images.

A light field can be considered a radiance field, which represents all light in a space, as each light ray

is emitted and radiated in every direction from all non-empty points in the space, and reflected and

refracted by co-linear non-empty points in the space in every ray direction. A light field is an

omnidirectional radiance field. Practically speaking, light fields are modeled several different ways

in terms of the application, in terms of optics, sensors, imaging devices, computer vision, computer

graphics rendering, and display devices. Here we are most concerned with the computer vision and

computer graphics rendering models. For a good overview of light fields pertaining to general sciences,

and particularly applicable to computer vision, plenoptics and holograms, refer Zhou et al. [872].

A ray of light is modeled as a radiance function, containing the constant measure of photons

traveling in the linear ray of light from point to point, including points unobscured by any other

particles, and points beyond a transparent particle. As the ray reaches an occupied particle in space, the

ray is re-represented as a new radiance accumulation as the ray is modified for reflectance, refraction

and combined RGB color of all transparent lighted particles along the ray, and continues to travel until

occlusion or opacity stops the ray accumulation, since the ray may encounter transparent voxels as

objects along its path that allow the ray to continue to propagate until full occlusion and maximum

opacity. We cover volume rendering methods later, which describe models for RGB ray propagation

through multivariate voxel volumes.

As shown in Fig. 12.12, the rays of light can be parameterized directionally in several ways that

include the following:

Ray passing through two planes

4D L u, v, s, tð Þ : u, vð Þ= intersection at plane 1, s, tð Þ= intersection at plane 2

Ray origin on spherical surface and plane intersection

4D L θ,ω, s, tð Þ : θ,ωð Þ

¼ spherical surface; s, tð Þ

¼ plane surface where light is projected

Ray origin in 3-space and 3D directional vector

5D L x, y, z θ,ωð Þ : x, y, zð Þ ray origin, θ,ωð Þ= ray 3D directional vector

n

o

View Synthesis 627

Fig. 12.12 Showing a few 4D and 5D ray parameterizatio

details of voxel modeling such as (1) light sources (positi

opacity, transmittance, or surface orientations(s)

options. NOTE: the parameterization does not include other

ns, colors) or (2) voxel light modeling parameters such as

Volume Rendering for 3D Light Fields

Using variations of several volume rendering methods, 3D Radiance fields can be rendered into a 2D

image. Simple volume rendering models are composed of an equidistant 3D grid of voxels (i.e., 3D

pixels) each occupying an addressable x,y,z coordinate point in 3-space. Thus, the volume becomes a

discreet particle model of a field, with applications to particle physics, probabilistic models, weather

modeling, and graphics modeling of fields such as smoke or haze particles.

Voxels are modeled in some systems as tri-planes, which are simply a set of 2D planar structures

overlayed on a 3D voxel grid, useful for training 2D diffusion models of each plane as an image for

view synthesis using diffusion models, which we cover later. See 3D Neural Field Generation using

Triplane Diffusion, J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, Gordon

Wetzstein, 2022.

Note that future visual computing architectures will increasingly accelerate visual information in

multiple formats, and allow conversions between formats. Today, we see rasterization of polygons

meshes, triangles, and quads in the standard OpenGL and DirectX pipeline, with ray tracing also

operating on the same vertex-style 3D polygons. However, in the future we will see direct voxel

rendering inside the GPU from point clouds, voxel models, and 5D plenoptic models, as well as direct

rendering from view synthesis diffusion models neural radiance fields such as their NeRF 5D plenoptic

function models. To dig deeper, See 3D Neural Field Generation using Triplane Diffusion J. Ryan

Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, Gordon Wetzstein, 2022 for an example

of conversions between computer graphics 3D polygon representational models.

Each voxel has attributes for rendering and analysis, such as an x,y,z coordinate, a surface normal

vector, an RGB color, and a set of surface parameters such as transparency/opacity, lighting and surface

reflection strength, refraction vector strength—all of which can be used for accumulating the cumula-

tive light traced along the ray through each particle/voxel until it reaches full occlusion and final color

(Figs. 12.13 and 12.14).

er

pa

su

fi

el

no

ci

628 12 Applied and Future Visual Computing Topics

3D Volume Rendering (basic)

Cast rays through each voxel in volume

- Voxel {R, G, B, O} where O = opacity [0.0 .. 1.0]

- Light and shade each voxel from light source

- Ray-accumulate voxel RGB and opacity along ray until opacity >= 1.0

- Ray-accumulated opacity >= 1.0 : ray finished accumulating

- Render accumulated voxels as 2D pixels in image

Fig. 12.13 Illustrating simple volume rendering: ray ent

path are accumulated as RGB color, intensity, and trans

accumulation is stopped when a stopping criteria is met,

additional light passes through the ray and accumulation is

the volume are projected to the 2D image output

s the volume, contributions from each voxel along the ray

rency combined with one or more light sources, the ray

ch as saturation of opacity along the ray, meaning that no

nished. The final ray accumulations for each view through

Normal

View

Reflection

Light

Surface Voxel attributes *hypothetical model

- RGB color

- Opacity/transparency

- Surface normal vector

- Reflection strength

- Transparency refraction vector

Fig. 12.14 Illustrating a basic model of how a single vox

view vector (i.e., the half-way vector), with the surface

direction, RGB color are accumulated based on voxel opa

is rendered: light source vector reflects of the surface to the

rmal being used to determine reflected light strength and

ty strength, allowing for transparency

View Synthesis 629

Of course, for physics simulations a voxel may have multidimensional attributes such as speed,

acceleration, temperature, 3D vector direction, mass, directional motion vector, etc. Normally, each

voxel is assigned an RGB color that can represent an actual 2D pixel color in the case of view

synthesis, or else for other visualization applications the voxel can be assigned pseudo-colors to

represent materials properties such as R for surface temperature, G for metal, and B for plastic.

Light sources in RGB are also modeled to illuminate each voxel from a given 3D lighting angle, 3D

viewpoint, and 3D voxel surface normal; the strongest reflection is when the viewpoint and reflection

vectors coincide. The incident ray is the light source; the reflected ray is computed against the surface

normal and other surface properties such as color and texture properties for specular and diffuse

reflection and refraction. Cosine distance is used to compute the strength of the reflected vector.

Transparency and opacity at each voxel are also included in the model to moderate the reflection value

for surface absorption. References are provided at the end of this section to dig deeper into graphics

rendering.

Voxel surface normal N may be computed as a discreet approximation based on adjacent voxel

values using an interpolation of the gray-scale color brightness value of the voxel (R + G + B)/3)—see

[383] Drebin, Carpenter and Hanrahan for a simple model.

Nx =∇xD=Dxþ1 -Dx

Ny =∇yD=Dyþ1 -Dy

Nz =∇zD=Dzþ1 - zx

The combined RGB lighting model, directional surface normal, RGB voxel color model, opacity,

combined within the user viewport yield the light field rendering. Advanced ray tracing effects can be

added to model for reflectance and refractance along the ray projections into other voxels in the volume

to generate more realism similar to ray tracing surface models in computer graphics.

Note that there are many variations of volume rendering, some of which include variable sized

voxels, sparse voxel grids, multiple light sources, ray tracing features, and alternatives for shadows and

reflections at the voxel level.

To dig deeper into volume rendering, follow the advances in volume rendering methods in the

SIGGRAPH conference papers and sessions. For an excellent overview and survey of more recent

light field methods, including volume rendering, see Zhou et al. [872] and Lombardi et al. [873] and

look into the bibliography references contained in each paper, as well as the comparative method

descriptions and prior work on historical progress in each paper.

For a good overview of recent volume rendering methods (there are several), refer the YouTube

video “Interactive Graphics 25—Volume Rendering,” by Cem Yuksel, and refer also Cem Yuksel’s

research papers.

For historical information on volume rendering, refer classic works such as:

[381] Levoy, M., Hanrahan, P.

[382] Curless, B., Levoy, M.

[383] Drebin, R.A., Loren Carpenter, and Pat Hanrahan

[384] Levoy, M.

[382] Surface Reconstruction And Fusion, and Curless and Levoy [382].

Refer Computer Graphics: Principles and Practice, James D. Foley Addison-Wesley, 1995 for

details on computer graphics rendering, surface properties, lighting, shading, and more.

630 12 Applied and Future Visual Computing Topics

Generative Adversarial Networks (GAN’s) and Curiosity Models

Here, we discuss two methods for predicting future states that are applied to view synthesis to generate

image and scene states: (1) Generative Adversarial Networks (GAN’s) and (2) Curiosity Models. Both

methods are similar to Diffusion models, discussed in the next section, in that the common goal is to

model, train, and predict a future state, which is what view synthesis is all about: learning, training,

and predicting a desired image.

We discuss GAN’s and Curiosity Models together here, since they are historically inter-related.

Since their introduction, GAN research has continued into many applications, such as view

synthesis, where GAN’s are used to generate an image from partial observations or text captions of

multiple image classes trained with the model. GAN’s, as applied to view synthesis, often use radiance

or light field models, rather than diffusion models (there are always exceptions:). Some practitioners

complain that GAN models require specific expertise in training methods, dual-model supervision

controls, and complex hyper parameter tuning.

More recently, Curiosity Models following more after the concepts of Schmidhuber [874] were

developed by Bucher et al. [876], which are equally applicable to generating images via a refinement

model until the right image is generated, in the GAN style trial and error model (Fig. 12.15). Notice

that Bucher’s curiosity model step to generate predictions is similar to the Diffusion Model steps

(or predictions) using Markov models to predict next states given a current state and vice versa. We

discuss Diffusion Models in the next section.

Evaluate Model For
Possible Action Sequences

Generate Predictions

[1..n]

Select Prediction p
via Curisity Objective

Execute Action

Update Model State

Model

Fig. 12.15 Illustrating the curiosity model of Bucher et al. [876], where the model state is updated based on a curiosity

objective, and can be used to produce an image or other object

For a good overview of curiosity models in AI (which we cannot hope to find better), including a

summary of the literature describing historical developments, refer Artificial Curiosity & Creativity

Since 1990–91 J. Schmidhuber, 2021. Refer Schmidhuber [874, 875] and also Bucher [876] for more

on curiosity.

The operation and goals of Generative Adversarial Networks GAN’s were originally conceived by

Schmidhuber under his work on Curiosity Models over a span of a few years in 1990–1992 [877, 878]

and later refinements continued [879] with the combined objective of “Artificial Curiosity and

Dynamic Reinforcement Learning and Planning”—in other words, predictive neural networks that

could learn to refine their predictions using curiosity-based objectives to guide the learning. More

specifically Schmidhuber developed “. . .a general algorithm for a reinforcement learning neural

network with internal and external feedback in a non-stationary reactive environment . . .”—there was

no adversarial intention for the use of such curiosity-based networks.

View Synthesis 631

Later in 2014, Goodfellow [880] followed a similar line of predictive research with a new objective:

not curiosity, but as Generative Adversarial Networks (GAN’s). The GAN model is a dual-DNN

model, where two separate DNN’s are trained together, where one network acting as a “counterfeiter”

learns how to fool another network “the police” by producing fake goods, where the counterfeiter

keeps making false goods until the police network cannot detect the counterfeits, then the “police

network” tries to strengthen and re-train the real model so that it cannot be counterfeited—ad nauseam

or ad contenti.

The dual-DNN model nature of GAN’s includes specific heuristic supervision code to guide the

adversarial training process between the dual DNN’s. Also, a specific training protocol is required

coupling the two DNN’s together to manage the feedback from the second GAN to the first GAN. The

overall complexity of GAN’s has made the model inaccessible to many practitioners, who turn instead

to other models such as Diffusion Models, which we discuss in a subsequent section. However, there

are many excellent success stories using GAN models, and we survey a few here and provide

references to the literature to dig deeper.

The Goodfellow GAN’s were quite sensational at the time and drew many researchers (i.e., DNN’s

teaching DNN’s—wow!), and recently GAN’s have been applied to view synthesis. Following the

Goodfellow et al. context involving a method for one DNN to learn from another DNN by heuristic

guidance and learned model generation, using trial and error, for the counterfeiter to mimic the

authentic DNN. GAN’s were considered to be “adversarial” networks, with the malicious motive of

generating security problems across the DNN application domain, for example generating fake traffic

signs, fake portraits of people, etc. The Goodfellow model does not use a Markov chain model, but

rather a CNN model with additional heuristic guidance code to control the two models, where the

heuristic code guides the production fake models and images in a first DNN, and predicting fake

images in the second DNN.

For a hypothetical GAN architecture to implement the GAN malicious exploit, a first DNN would

be primed to generate an image, and sent the image to a second DNN which was already trained on a

target class. The trained second DNN would send back the classification match score and model details

to the first DNN, which would use the score and model details from the second DNN as guidance to

generate another “adversarial” image in order to raise the score to fool the second DNN, and so on.

By changing the original GAN objective from adversarial to a generative objective only, the

adversarial connotation is changed to be applicable to a variety of generative applications such as view

synthesis. Also, many variations of GAN architectures have been developed diverging from the

original GAN suitable to generative objectives.

Figure 12.16 is a simple pseudo-code analogy for a hypothetical GAN architecture training process,

illustrating how a second GAN teaches a first DNN its trained model, which is learned in training steps

by trial and error (i.e., this is not the actual GAN training process—just for fun!):

632 12 Applied and Future Visual Computing Topics

Loop {

 1st DNN creates a spoof_image,
 sends it the the 2nd trained DNN

 2nd DNN inferences the spoof_image,
 sends back the FC classification layer vector (spoof_score) to 1st DNN

 1st DNN uses FC layer (spoof_score) from 2nd DNN for back-prop retraining
 1st DNN creates spoof_image,
 sends it the the 2nd trained DNN

 2nd DNN inferences the spoof_image,
 sends back the FC classification layer vector (spoof_score) to 1st DNN

} until spoof_score == good_enough

Two DNN’s are created with identical architecture, #layers, width, etc.

2st DNN (teacher) is initialized to X (initial_spoof_image)
2nd DNN (teacher) is trained on some training set
1st DNN (learner) is initialized to X like 2ndDNN, but not trained

Fig. 12.16 Illustrating how a GAN can be architected at a high level

Diffusion Models

Diffusion models can be applied to a wide range of discreet fields, including 1D signals, 2D images,

and 3D volumes. Alternatively, the goal of the diffusion modeling can be expressed in terms of

imaging, learning the structure of an image model using structured noise in order to apply the model as

super-resolution structure to synthesize and generate another image. See Fig. 12.17. In other words,

diffusion models can generate or expand the model size by removing noise from a target image, which

is equivalent to expanding or generating structure. GAN’s and variational auto-encoders are other

methods that can likewise be used, which we survey later. Image Diffusion models are also trained for

use in image inpainting applications to add detail to image regions.

Diffusion models are conditioned using text prompts implementing guidance for image synthesis,

combining one or more diffusion models to synthesize and generate multi-object images of several

image concepts together, such as adding purple eyes to a face, or a dog head to a car. The text prompts

are represented in word embeddings, designed, trained and fine-tuned to trigger the desired image style

characteristics for each keyword, and work well with each of the supported image class diffusion

models. The noise prediction step consumes the text prompts in a cross-attention stage multiple times

(i.e., for each token) to condition the image noise.

More technical details are provided in the survey section below DALLE-2 Text-to-Image View

Synthesis, Stable Diffusion, Imagen.

Diffusion models are also used for 3D scene synthesis from several image classes represented as

voxel entities composed together into 3D image re-projections (Lee et al. [881]). 2D diffusion models

are commonly used for image super-resolution, to model the super-resolution process as a resolution

increase following a step-sequential diffusion noise removal process (Li et al. [882]).

View Synthesis 633

Forward diffusion process: add noise, reduce structure at each state

Reverse diffusion process: generatively reduce noise, recover structure at each state

State 1 State n+1 State n+2 State n+3 State n

Fig. 12.17 Illustrating the process of image diffusion models for generative image rendering in view synthesis; forward

process diffuses noise into the data to reduce structure; reverse process removes noise to reveal original structure

For example, Intel Corp. provides commercial grade, processor-optimized diffusion methods and

pretrained models for sound synthesis, image synthesis, data visualizations, and various application-

specific structures such as molecular models and more.

In summary, Fig. 12.17 illustrates how the duffusion model is trained to contain set of features

representing the incremental noise models at each noise step for an image class, which is used to

reconstruct and synthesize an image class by feature subtraction, step by step, to remove the learned

noise features, step by step, from a random noise image. It is a remarkable concept, which we

summarize here.

Diffusion involves a forward diffusion to create the model, and inverse diffusion to reconstruct the

underlying image. The forward diffusion process turns an image into noise to remove all structure. As

shown in Fig. 12.17, the diffusion model is created by adding increments of noise to an image class,

step by step, to learn the set of noise/image difference steps as a noise predictor model for each step,

which is encoded into model weights, which describe the forward diffusion results at each step/

increment. Perhaps 20 or more steps may be used. The inverse diffusion process subtracts the learned

noise predictor features from the noised image, step by step, to remove the noise. For image synthesis,

multiple diffusion models are often used together to reconstruct and synthesize several models

together, for example combining a cat with a dog with an ocean beach.

A transformer or CNN may be used to learn the noise steps. Variational autoencoders are also often

used, learning noise features stepwise in the encoder stage, and removing noise in the decoder stage.

Autoencoders encode the image features in a lower dimensional space, perhaps reduced by 50×

resolution from the full resolution image space. Some diffusion methods first compress the images

prior to training to which reduces feature details and saves space. Then during synthesis and

reconstruction from the compressed noise model, various methods are used by practitioners to preserve

and amplify fine details which would be lost without careful attention to high-frequency detail, see

each paper cited below for various methods. Diffusion-based image synthesis uses structured, learned

noise removal in fine-grained steps, subtracting the noise step features one at a time to reveal an image

from the noise, often using a momentum hyper parameter to limit the noise reductions per step until the

noise is removed. More details are provided in the survey section below DALLE-2 Text-to-Image View

Synthesis, Stable Diffusion, Imagen.

Note that diffusion models are highly correlated to scale, so training separate models from separate

sets of image scales must be used for best results. Noised training images at various scale intervals must

be created for maximum sampling accuracy and model accuracy. At each timestep, the training images

have various amount of noise added, perhaps over a range of 1000 steps in some methods. Inferencing

could be done in parallel using n shaders to compare images to the model(s) at a set of diffusion time

steps [n, . . .].

634 12 Applied and Future Visual Computing Topics

The concept of diffusion (i.e., to distribute) is a common discreet mathematical method, often

expressed in Markov Chain concepts, used for simulating or estimating complex stochastic probability

distributions, which is applicable to many discreet fields such as generic topology, thermodynamics,

weather prediction, and physics simulation: diffusion models provide inspiration to computer vision

methods, using models expressed as volumetric fields, amenable to volume rendering for the view

synthesis. Refer Jascha et al. [883] for more background on diffusion models in sciences.

Generically speaking, a diffusion model is a stochastic, probabilistic state-based network model,

where future states are predicted, limited to alternatives which are based only on the current state. In

view synthesis, the future model states (i.e., Markov stochastic image permutations) are the basis for

generating future renderings based off the model—the model allows for view synthesis to be carried

out in a step by step fashion. The future state predictions for a state sequence position are at various

time or step intervals starting from a current state. For diffusion models, all future state transitions are

learned and trained for a current 2D or 3D state. In other words, given a current state, all future states

can be probabilistically predicted.

Diffusion models use a forward pass and a reverse pass: the forward pass of the model predicts a set

of probabilistic future states by adding noise to a current state to reverse the structure to predict future

states, and the reverse pass process learns the previous state transitions by adding structural features

back into to the data, working backwards to cancel out the noise to find the original data (Fig. 12.17). In

theory, the reverse pass also models a Gaussian process, similar to a denoising process. This noise

addition and removal process maps well to a simple neural network formulation for weight training

using gradient descent, being differentiable. Of course, there are many variations off of the basic

diffusion models applied to view synthesis, some of which we survey below.

Diffusion models can be learned with fewer images (i.e., few-shot learning) compared to radiance

field methods such as NeRF which require dozens of images. Diffusion models can be simpler to train

compared to GAN methods which require sophisticated and sensitive hyper-parameters tuning.

However, recent some NeRF methods can use single monocular images as well, which we survey

later with the NeRF method.

Diffusion models have been successfully applied to many problems in machine learning and

computer vision, including text-to-image generation, super-resolution, image in-painting, colorization,

and image artifact removal. Refer Yang et al. [884] which we survey later in this section.

Given that diffusion models usually require lots of memory and compute, we are seeing research

emerge to mitigate the compute and memory workloads. Yang et al. [884] provide research on

slimming down the diffusion models memory and compute workloads, as well as increasing the

image generation accuracy. Yang shows that diffusion probabilistic models (DPM’s) are biased against

high-frequency components that are required to provide edge details and image clarity, and instead

introduces a Spectral Diffusion (SD) model using wavelets, which slims down the model to make

computation faster, and enables gated spectrum-aware and frequency-based feature introduction of

selected higher frequency components at each noise diffusion reduction step in image synthesis to

promote higher resolution image features.

In a later section, we briefly review one of the most promising methods of view synthesis using

diffusion models called Stable Diffusion as outlined by Rombach et al. [885].

Text-to-Image Synthesis Models

Presently, many DNN systems learn classes of images from huge labeled training sets; for example,

millions of pictures of cats are classified as generic ‘cats’. So, each image is classified using a single

concept. But View Synthesis using text captions has changed the possibilities—complex classifiers

and multiclass (multimodal) classifier interpolations (i.e., referred to as one-shot learning by some

practitioners) has created a new path forward. Systems such as DALLE-2 allow a text caption to

generate a synthetic new image, using systems trained with associated text captions and corresponding

image components, which can be combined to attempt to match the text caption. Unknown classes can

even be inferred from trained models even if the unknown class has not been seen or trained for, by

using existing features in the model which together closely model the unknown class. This interpola-

tive class learning approach is similar to Volume Learning [476]. We will discuss several such

representative text-caption to image synthesis systems below.

View Synthesis 635

Text to image view synthesis allows multiple image class models to be combined to generate a

composite multi-object image, fine-tuned using text captions, to allow for style goals for image

synthesis such as adding purple eyes to a face, or a dog head to a car. See Fig. 12.20. Text caption

generation by itself is an art; it involves learning and creating simultaneous textual models

corresponding to image models, and also involves trial and error use, to carefully design text captions

to yield the desired image vies synthesis; we provided a few references on text prompt generation

methods to dig deeper as we go along.

Innovation in view synthesis is moving into richer 3D visual models towards photo realism, as well

as richer representational models including point clouds and polygon meshes.

A key trend is as follows: we are seeing, for the first time, view synthesis research with the goals of

generation of polygons meshes AND voxel point clouds together—pointing to a future of rendering

voxels and polygons together, and perhaps interchangeably, allowing for bidirectional translation

between point clouds and polygon meshes for image rendering. Although current point cloud learning

resolution used in view synthesis is very low, eventually the methods will increase in density and allow

for the generation and rendering of photo-realistic fields. Thus, in the near future, we end up with a

diffusion field surrounding a point field intersecting with a field of polygon meshes in future discreet

rendering systems, producing high-quality renderings. We will survey a few representative methods

below.

To dig deeper into image synthesis from text prompts, see [1024] Narek et al. Plug-and-Play

Diffusion Features for Text-Driven Image-to-Image Translation, which uses an image as semantic

guidance, and a text prompt to guide translation and retain semantics of the guidance image, which is

based on analysis of preserving the semantics from feature maps to obtain the image structure as

encoded in the feature maps to guide image translation. Semantic similarity is expressed via the feature

encodings. Guidance features and self-attention maps are injected into the target image synthesis

process to fulfill the text prompt. Narek et. al compare their method to other similar methods, worth

reaing.

Captioned Multiclass Classification, Classifier-Free Guidance, N-Shot Learning

Simple classifiers are trained to recognize a single class of images—for example training on millions of

cat images to produce a feature model and classifier for prediction matches to the class CAT. But, view

synthesis from textual captions changes all this. The caption not only is used to create the image scene

as in DALLE-2, but the caption can also be the classifier for scene analysis. The caption is also the

basis for Multiclass Classification, as we shall discover as we survey various emerging text-to-image

synthesis approaches.

636 12 Applied and Future Visual Computing Topics

N-shot learning is a collection of similar methods from AI, NLP and computer vision, including

zero-shot, few-shot, and one-shot learning; these are all related methods of inference and feature

recognition for objects of unknown classes which are not part of the training set and therefore not part

of a given model. Instead, the unknown classes are inferred using a variety of methods, but without

retraining the base model. So, n-shot terminology and methods vary widely among practitioners to

accentuate subtle variations. We introduce the term AML in this work to go beyond the basic n-shot

learning concepts, which we discuss in the next section on AML.

In zero-shot learning, the model is trained on a set of known classes but is also provided with

additional information about each class, such as textual descriptions or semantic attributes. These

attributes capture high-level characteristics such as style attributes of the classes, such as color, shape,

or behavior. During inference and synthesis, the model can then generalize its knowledge to recognize

and classify unseen classes by associating them with their corresponding descriptive attributes. A key

idea behind zero-shot learning is to learn a mapping between the visual features extracted from the data

and the semantic attributes or text descriptions associated with each class. This allows the model to

make predictions for classes it has never seen before by relying on the shared information between seen

and unseen classes. The models are trained to learn the mapping between the visual features and the

encoded auxiliary semantic information.

For a comprehensive survey of n-shot variations taken from nearly 200 papers covering a wide

range of historical approaches, refer [1019] A Comprehensive Survey of Few-shot Learning: Evolution,

Applications, Challenges, and Opportunities, from Song et al. 2023.

View Synthesis from text captions has opened up the way for generating complex multi-class

images from textual descriptions—and perhaps by serendipity—also opened up the way for complex

classification, where images are classified based on how they are synthesized from complex text

captions, and classified by similarity to textual class labels. See Fig. 12.20 showing an example

DALLE-2 rendering a synthetic image from a multiclass text description: “3d render salmon and

cabbage on moon”.

Are complex classifiers using [caption: image] models and other multi-model associations, multi-

modal guidance, continuous learning with rapid model training updates for fine-tuning the wave of the

future? The author thinks so.

Classifier-free guidance (Ho et al. [886]) is a concept describing how similarity interpolations can

be made by combining “. . . the score estimate of a diffusion model with the gradient of an image

classifier. . .” which points to interpolations between trained model feature class granularity. Ho

suggests that classifier-free guidance can be used to replace a classifier. This notion can change the

way the model is trained, perhaps requiring fewer training examples. Classifier-free guidance is related

to the term zero-shot learning (as coined in the DALLE-2 model surveyed later) to interpolate

classification results between the feature granularity of the trained model. All of this points to a future

where model training changes, and classifiers change, and text caption classifiers will be viable in

many cases.

For an example of a hybrid classifier system capable of recognizing untrained classes, imagine if a

classifier is trained to recognize animals (horse, dog, . . .) and another classifier is trained to recognize

textual descriptions (i.e., striped, spots, . . .), both classifiers can be used together to classify an animal

that is outside the training data (i.e., zebra) by associating the zebra to the trained class ‘horse’ and the

trained texture classes ‘striped’. This is an example of zero-shot learning or interpolative learning.

For a discussion of the future of classification, refer the next section TEXT—IMAGE Associative

Multimodal Learning (AML). Also, refer Fig. 12.18 to evaluate the concepts of AML, classifier-free

guidance, and zero-shot learning.

View Synthesis 637

According to Ho [886], the scoring guidance can be created by jointly training a conditional and

unconditional diffusion model and using both model scores together to balance sample quality and

model completeness (i.e., compensating for incomplete training samples). A similar classification

concept enables the zero-shot learning [887, 889] approach to multi-class similarity interpolations.

Classifier-free guidance and Zero-Shot Learning (Ramesh et al. [887]) show how similarity

classification can be performed against models which are not completely trained with all the desired

training samples, interpolating the correct classification score in between the training samples from the

model features using various algorithms. So, traditional single-class FC-layer classifier style guidance

is not needed to get perfectly acceptable results in all cases for text-to-view synthesis for a multiclass

scene, as reported in some of the papers we survey in this section which query for a score within a

multiclass classification space.

Powerful caption classification and view synthesis is an emerging trend. Imagine large classes of

image objects collected together and described in some visual object format, such as renderable NeRF

models (or similar models), which are captioned and parameterized for both scene analysis and multi-

class classification, as well as multiclass view synthesis. Such a system is envisioned by several

researchers, which we discuss later in the section Neural Radiance Field Code Books, ObSuRf 3D

Scene Segmentation.

The AI Third Wave: Continuous Learning and Multi-modal Models

Everything changes. Future AI systems will incorporate continuous learning, so that models are built

up and refined over time as they are used, and also refined by autonomous Learning Agents who refine

the models over time (Krig [476]). Future systems will mushroom in the direction of AML classifiers.

View synthesis has scratched the surface steps in this direction via caption-based view synthesis using

[image: caption] pairs, as we survey later in this chapter. Figure 12.18 illustrates complex classification

and views synthesis concepts together.

AML represents a shift towards interpolative learning and prediction from computed feature metrics

over a set of chosen examplars, rather than forcing learning to follow the SGD backprop path using

huge training sets to learn independent, uncorrelated features like puzzle pieces, which are complex

averages of the training data, but not precise features for any real item. AML represents a more

deterministic feature representation which can be classified metrically based on specific metrics, rather

than using softmax-style probabalistic classification. AML is more related to zero-shot and one-shot

learning approaches.

AML is related to, but goes well beyond, the basic notions of zero-shot and one shot learning as

discussed blow and in [476]. For a comprehensive survey of nearly 200 papers and a wide range of

historical approaches to n-shot learning, refer [1019] from Song et al. 2023.

Artificial General Intelligence as a research goal will give way to research goals based on human

psychology science. Rather than finding a single generic or fundamental Artificial General Intelligence

(AGI) model, third-generation AI will incorporate Multiple Intelligence Theory (MI) to model multiple

modes of human intelligence using distinct and fundamentally different models and concepts to

address the different modes of human intelligence such as “musical–rhythmic,” “visual–spatial,”

“verbal–linguistic,” “logical–mathematical,” “bodily–kinesthetic,” “interpersonal,” “intrapersonal,”

“naturalistic,” and “existential intelligence”. Refer Howard Gardner’s seminal work Gardner,

H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.

ag

e

-c

638 12 Applied and Future Visual Computing Topics

Fig. 12.18 Describing the method of associating [text, im

word/pattern N-grams, and an image feature encoder. The

pairs with each other. So the system could be used for multi

synthesis

e] pairs into a model which is jointly trained on using text/

ncoded text features and image features correspond in 1:1

lass classification, and multi-class scene generation or view

In view synthesis as described in Fig. 12.18, each caption and each image has a separate embedding

value (not shown in the diagram), so the embedding values (i.e., features or text captions) can be used

for queries or similarity interpolations between captions and images that are not in the trained model,

since the images or captions were not in the training set, allowing similarity interpolations to find the

closest matching queries regardless (*this may be called one-shot, zero shot, or few shot learning to

some practitioners, although nothing is learned, rather close matches between a query and a set of

embeddings can be obtained using a similarity metric, and then the final match can be interpolated

between the best candidates).

Therefore, a complex classifier can allow image retrieval using captions, which is also the inverse of

image creation using captions, especially if we consider the pair [caption: image] as used in DALLE-

2 and similar systems. So, the caption becomes the class describing an image, a complex image label.

Also, captions as retrieval classes opens up the notion of creating text strings to query existing

synthesized views—Associative Multimodal Learning (AML) classifiers, discussed in the next section.

Instead of a classifier being a decision mechanism, the AML classifiers act as learning mechanisms

themselves, by modifying the classifier using continuous learning mechanisms [476], so AML

classification agents will become experts over time by encountering specific use-case experiences,

implementing continuous learning like the human brain, to provide opinions and probabilistic

viewpoints, as well as acting as independent learning agents themselves as human expert do, creating

their own models as they are used. Model concepts may be labeled, and other model concepts learned

as unlabeled which is expected and encouraged, awaiting later review by a panel of AML expert

CLIP also builds on the zero-shot learning methods [887, 889] developed in the GPT-2 and GPT-3

natural language processing methods, which is a significant development in that we discuss in detail

models, autonomous learning Agents, or actual human experts who may label the concepts and add

them to the AML models, which may be interactively reviewed and updated via chosen use-cases and

exemplars, perhaps using a combination of interactive and batch mini-training sessions to refine the

concepts, then update the model with labels and class associations [476].

View Synthesis 639

AML classifiers will learn to identify unknown concepts as unlabeled or unidentified, which is

expected and fine. Assigning labels and identities and classes to learned features is a separate problem,

not always required. It’s a bird, it’s a plane, . . . oh well let’s work on that later. . . looks like. . . sound

like. . . feels like. . . is it labeled. . . was it supervised. . . is it rogue or fake?

A recent innovation in zero-shot methods which is along the directions of AML, uses zero-shot

(i.e., interpolative) inference to approximate of infer unknown untrained classes via interpreting the

nearest matches from the trained model, see [1025] Recognize Anything: A Strong Image Tagging

Model Youcai Zhang et al.

Besides view synthesis [text: caption] multimodal neural networks, we are seeing multimodal

datasets and transformer networks using [text: video] models for NLP applications such as lip reading

from Shi et al. [1008], and Audio-Visual Speech Recognition (AVSR) for speech-to-text [1007] from

Anwar et al. More multimodal NLP systems could be mentioned here, but the trend is well in place.

Computer vision use of multimodal data and modeling will increase also. And AML styled classifiers

will become prevalent as learning mechanisms in their own right in the third wave of AI.

For more on multimodal object detectors and view synthesis models using cross-modality fusion,

see [1029] Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object

Detection, Liu et al. For a forward-looking example of multimodal data types and concepts for

multimodal models using shared model space tokens from various modalities for synthesized feature

analysis, see [1030] Meta-Transformer: A Unified Framework for Multimodal Learning Yiyuan Zhang

et al.

Currently, the author sees a huge paradigm shift in computer vision away from training single-class

classifiers (i.e., a DNN trained to inference on the class cats) and instead, we see a new path emerging

via multiclass caption view synthesis in the early stages along the path of Volume Learning [476].

Text captions will become central for a range of computer vision tasks:

• View Synthesis

• Scene Description, Learning, Analysis

• Scene segmentation into object classes

• Image Retrieval

• Image Classification

• Visual Object Databases containing several categories

– Captioned visual objects

– Visual object codes (for example, NeRF object codes, NRC’s)

– Computer vision object attribute data (texture, RGB, shape factors, . . .)

– Golden Exemplars

In the following sections, first we will survey the details of a few backbone model view synthesis

methods, including CLIP method [868] Khalid et al. and the GLIDE method [890] from Nichol, which

provide the associative [caption: image] model from which view synthesis methods are based using

various approaches such as GAN and models diffusion models to synthesize images and classify

images and captions. CLIP and GLIDE are used in many variant view synthesis such as DALLE-2 and

others surveyed later.

later sections (Wu et al. [891]). We do not survey all the GPT natural language processing methods

here. However, NLP concept influence on computer vision is present, zero-shot learning is just one

example. NLP models were early pioneers of attention concepts and transformer architectures, which

have also been migrated over to computer vision, we discuss transformers and attention in Chap. 11.

640 12 Applied and Future Visual Computing Topics

Associative Multi-modal (Multiclass) Learning (AML)—Third-Generation Classifiers

The text-to-image models, such as CLIP, are early Multiclass learning models, and hold extreme

promise going forward for Associative Multimodal (Multiclass) Learning classification with continu-

ous learning to infer the caption of an image, or render the image for a caption. In other words, infer a

caption from the closest matching images in the foundation model, or generate an image from the

closest matching caption. This is a form of bi-directional multi-modal learning.

In the future third generation of AI, the classifier will grow and learn as it is used, via continuous

learning, similar to the human mind. Classifiers will be the expert models; they will exist indefinitely

and use available foundation models and actual use to continually learn and record their knowledge.

This is the future—using multimodal data from groups of modal models together, adding small

models to large models by fine-tuning and ensemble model combination, retraining quickly and often

for small items, managing model ensembles as a group, personal interaction with each model for

personalized fine-tuning, and providing continuous learning—this is Associative Multimodal

Learning, and will result in expert models, like experts in specific fields who are continualy learning,

with AML models rivaling the best human experts and trained personally by their masters, as well as

other select AI models. Human expertise encoded by humans into AML.

ImageNet and singe-class trained models will be superceded by Multi-modal datasets and expert

models for AML classifiers, refer Chap. 11 Classifier Innovations: Hand-Crafted vs. Learned. Asso-

ciative Multimodal Learning is a part of third generation classifiers. For example, we discussed the

Ego4D multimodal dataset from Grauman [1012] below as indicative of the multimodal trend.

And in the big picture, AML will use an ensemble of multimodal foundation models together to feed

into an AML classifier. Multimodal means images, word captions, sensor data, GPS, history, sequences,

or anything else that can be learned and stored in models, so the AML classifier performs continuous

learning to create specialized models based on the models it knows. The AML classifier grows an

associative expert model depending on how the AML classifier it is used, to infer new concepts from

what is already in the model libraries, and record them in the AML models. Inferred concepts are added

to the AML classifier expert model as it is used to implement continuous learning (Krig [476]). The

classifier learns over time as it is used for a range of applications, developing expertise and knowledge,

and taking advise and being corrected by AI agents or experts at any time, just like humans learn from

experts and experience—the AML will learn by itself, or learn from others, and improve indefinitely.

We can call this concept Associative Multimodal Learning (AML).

AML enables Associative Multimodal Classifiers (AMC).

AML enables Associative Multimodal Supervision (AMS).

AML enables Associative Multimodal Relationships—1-1, 1-n, n-n—(AMR).

AML is like a forward and inverse transform; for example, [caption <- > Image]. Any concept

within the multimodal data space can be associated in a multidirectional associative memory.

AML will support multi-directional multi-modal class associations and indexing, possible via

various methods such as hash tables, multi-linked lists, and other data structures to codify the multi-

modal associations. For example, Chap. 4, Fig. 4.5 illustrates an early Multimodal Feature Descriptor

from 2011, associating accelerometer data in the form of a gravity vector in the SIFT-GAFD method

Kurz et al. [207]. The gravity vector can be used for feature orientation with respect to the environment

(i.e., upright or tilted); GPS position info could be added.

View Synthesis 641

AML is Multiclass = multimodal: text, images, geometrical viewpoint info, Visual DNA [476],

attributes from sensors,. . .

What are modes? Modes are representations of concepts such as text and images. In music theory, a

mode is simply one of seven basic scales composed of the notes in the set [CDEFGAB] starting at a

different position: Ionian [C.B], Dorian [D.C], . . . Locrian [B.C]. In the Visual DNA model [476], the

modes are Color (C), Shape (S), Texture (T), and Glyph (G), analogous to human DNA bases adenine

(A), guanine (G), cytosine (C), and thymine (T) (Figs. 12.11–12.23). In view synthesis, the modes are

text captions and visual image concepts. In view synthesis, the modes used today are commonly text

captions and visual image concepts, but many more modes can be used besides text and image

concepts discussed below.

For example, bi-directional multiclass inference (a primitive form of AML) is demonstrated in the

CLIP system, which trains a text model and an image model jointly, so text and image class learning and

class prediction are coupled together and associative for both text and image modalities. But with AML,

many models can be trained or retrained and used together, enabling an AML classifier to learn and grow

over time—continuous learning. New learnings are kept in a separate expert model, with dependency

information recorded in the model revealing learnings and associations with the corresponding founda-

tion models, supporting new releases of foundation models with more and better data.

Another key example of the trend in large multimodal data is represented by Grauman et al. [1012]

Ego4D: Around the World in 3000 h of Egocentric Video, Kristen Graumann et al. 2023. The work is

purely multi-modal and collects many synchronized multimodal data classes such as Portions of the

video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized

videos from multiple egocentric cameras at the same event. The model include narrations of video

segments, episodic memory for locating events or object classes in time such as past or present, social

interactions to associate audio and visual cues together (look at person, talk to person, . . .), forecasting of

future intentions, action and object taxonomies, visual queries, audio queries, time (moment) queries, and

example scenario query is “making coffee” and more. An example moment-class query is “taste food

while cooking:”. Overall, this is a massive step towards the future of multi-modal datasets.

Another key AML and zero-shot learning trend example is the Segment Anything Model (SAM)

project from Kirillov et al. [1011]. SAM is like a foundation model of segmentations, similar but less

detailed than the earlier concepts of volume learning and visual genomes from Krig [476]. The goal of

SAM is to we built the largest segmentation data base for image segmentation masks using AML (zero-

shot learning) to continuously grow the model, which at the time of this writing contains over 1 billion

segmentation masks generated from over 11 million images. The SAM project is a representative

example for future AML style concepts of continuous learning and feature interpolation against classes

not explicitly trained into the model. The goal of SAM is to create a very large foundation model,

similar to the BERT and GPT systems, which can be extended by model interpolations or zero-shot

learning. Multi-modal interpolations and classification are not specifically implemented, but the

foundation is there.

A major inflexion point step towards multi-modal learning and classification is the Meta-Trans-

former: A Unified Framework for Multimodal Learning from Zhang et al. [1026], which has been used

for multimodal perception from a set of 12 different unassociated and unpaired multimodal models

learned from many training sets (see the paper). Tasks supported include Multi-Classification, Seg-

mentation, and Prediction.

Meta-transformer style Unified Multimodal Learning is described in this quote from the paper [1026]:

“Meta-Transformer utilizes the same backbone to encode natural language, image, point cloud, audio,

video, infrared, hyperspectral, X-ray, time-series, tabular, Inertial Measurement Unit (IMU), and graph

data. It reveals the potential of transformer architectures for unified multi-modal intelligence.”

Modalities implemented in the Meta-Transformer include:

642 12 Applied and Future Visual Computing Topics

• Text understanding.

• Image understanding

• Infrared, X-Ray, and Hyperspectral data understanding.

• Point cloud understanding.

• Audio recognition.

• Video recognition.

• Time-series forecasting.

• Graph understanding.

• Tabular analysis.

• IMU recognition.

As illustrated in some aspects of the Meta-Transformer, AML is the trend or the future. But over

time imagine that all models contained in a multimodal model ecosystem work together as a public

ecosystem of multi-modal compatible models, with new models added and upgraded over time. This is

AML—multimodal models working together, with model interoperability contained in the open-

sourced models. This direction will develop exponentially over time in future AML systems, providing

unprecedented machine learning and understanding.

Emerging systems surveyed in this chapter like DALLE, CLIP, and GLIDE are multimodal

(captions: images), and point the direction to the future of multi-modal bi-directional associations

for classification and inference, and will openly become more so incorporating additional modal

attributers as applications emerge for learning multiclass, multimodal associations [476]. Also,

[1009] Flamingo: a Visual Language Model for Few-Shot Learning, Jean-Baptiste Alayrac et al. is

another example of the trend in AML and multimodal learning and inference.

Associative Multimodal (Multiclass) Learning (AML)

Learn the caption for an image,

or generate the image for a caption.

Infer a caption from the closest matching image,

or interpolate an image from the closest matching caption.

AML models a forward and inverse bidirectional transform

between multiple modal metrics

Instead of zero-shot learning [887, 889], we use the term class interpolation in this discussion to

describe how unknown samples are classified by determining the best similarity between items within

classes of features in the trained model. The zero-shot operation occurs at inference time or synthesis

time, not during learning time, so no zero-shot learning is actually taking place: rather inferencing and

interpolation are taking place.

Class interpolation steers a path between training on a limited number of “golden” training samples

and training on huge numbers of training samples—the class interpolation is equivalent or better than

relying on large training datasets in some cases, if not better. Also, relying on SoftMax classifiers and

huge training sets is not as flexible for multiple classes, and does not allow for the zero-shot class

interpolation approach. It is well known that DNN models using SoftMax are brittle, acting like a

puzzle-piece probability counter, and often mis-classify and fail in catastrophic manners, see Chap. 9,

DNN Hacking and Misclassification section.

AML also points towards a new type of learning supervision: Associative Multimodal Supervision

(AMS) to learn associative relationships between multi-modal features, for example to learn captions

for target images, and learn to synthesize images from captions. Radford [892] refers to CLIP captions

as Natural Language Supervision—the captions guide the view synthesis, and also label the image.

However, the inverse is also true: Image Feature Supervision—the image guides the derivation of the

corresponding caption. AML supports many-to-one and one-to-many, and many-to-many associations

in a multi-modal space, unlike CLIP which only supports bi-directional association between captions

and images. Of course, the goals are simply different, but the concepts are linked.

View Synthesis 643

AML supports a topological n-space of associations in a multimodal manifold into modal feature

DNA strands like human DNA strands, with corresponding metrics within a unity metric range for

learning and correspondence, like the auto-learning hull space ranges used in Volume Learning and

Visual DNA—Modal Feature DNA are included in each strand (Krig [476]).

AML using hull learning and unity metric range spaces will compliment some of the current DNN

models trained just for single-class learning using gradient descent and large ImageNet-style training

sets—SGD and variants will be not required in some cases; this will save time and compute resources

and provide a much richer landscape of multi-class and multi-modal model learning for the masses in

certain problem domains. Current DNN models often require gazillions and bizillions of images for

training, and huge compute resources that are unavailable to the masses. Instead, a new path forward

uses AML ensembles and smaller training exemplar requirements for continuous learning of smaller

models to compliment larger models.

Models can be generated in small chunks, using less training resources, and provide inference

matches and class interpolations of unknown modalities using inference between ensembles of AML

models, which will over time, continuously learn better models. AML becomes the crown jewel using

continuous learning.

The AML equation:

C ¼ L FImageClass 1::n½],FText 1::n½], FGPS,Ftemp,

FVisualDNA 1::n½]FVDNAStrand 1::n½], . . .

Where:

C = continuously learned model

L = AML function(): learning via interpolation and metrics from a library of foundation models

F = foundation models of some variety

AML is developed separately under the terms Visual DNA, Volume Learning (volumes of classes

or modes), and Agent-Based continuous learning (Krig [476]). The basic idea of AML in Volume

Learning is to learn multimodal features first; associate and classify later. Classification includes

muti-modal associations between metrics. Classifier learning is ongoing—continuous learning—using

agents or actual users. Agent learning is used to continually scrub existing multi-modal metrics to

generate new associations, weights, and classifiers. An expert person or agent can follow behind later

to add labels or textual descriptions (i.e., captions). The Segment Anything model [1011] from Kirillov

et al., discussed in Chap. 2, is also a preliminary step in the AML direction.

Ferret [1031] develops a Multimodal Large Language Model (MLLM), modeling nested images

inside image regions, incorporating sub-image coordiantes (i.e. Grounding relationships). Ferret uses

mutiple annotataed modalities in joint training, using image regions of any shape, for describing and

highlighting sub-regions of an image. For example, text queries to find sub-regions of a motorcycle are

possible, such as the gas tank. NOTE: similar multi-modal visual region relationships were pioneered

in the Visual Genomes model (see Krig [476]).

A related concept for bi-directional association of image features to image classes is developed by

Mikhailov et al. [996] as the Indextron surveyed in Chap. 11.

In the next sections, we survey multiple systems in the text-to-image view synthesis area,

illustrating the emergence of key concepts and trends in captioned classification and of AML.

e color image, the avatars are capable of full animation using

e the facial features with the words, blinking, and emotional

z3D.com

644 12 Applied and Future Visual Computing Topics

View Synthesis Applications

Here, we survey various examples of view synthesis systems, apologies to the many researchers with

fine research which we have overlooked, or do not have time to cover, since we are only looking for an

introduction to a range of methods here. View synthesis has become a free commodity in the past few

years, and will only get better—it will become nearly impossible to tell the difference between your

own avatar and yourself in time.

View synthesis applications are increasing daily, the research is in several areas. One of the most

popular areas is avatar generation, including generation of 3D avatar polygon meshes and textures from

single monochrome and color images (Fig. 12.19). We will look into a few avatar methods below.

Fig. 12.19 Generating a complete 3D avatar from a singl

pose points, as well as voice synthesis and talking to mov

facial expression. Avatars generated by Avatar SDK, Itsee

Topics addressed in the various applications we survey below include text-to-image synthesis,

locating image scenes by caption query to search for (i.e., “images with pizza and small dogs in

New York City”), image editing to insert or erase video objects, image relighting and shadow removal,

plus creating full 3D avatars that are fully programmable for life-like animation from single images

(Fig. 12.20).

CLIP Text-to-Image Synthesis

The Contrastive Language Image Pre-training Encoders method CLIP developed by Radford et al.

[892] provides complete view synthesis from text captions, and is the basis for several follow-on

systems in the subsequent surveys in this section, such as DALLE-2 and Point-E. CLIP is the basis for

a variety of research into text-to-image view synthesis. Radford refers to CLIP captions as Natural

Language Supervision rather than Supervised, Unsupervised or Self-supervised—the captions guide

the view synthesis, and also label the image.

The CLIP model is trained to understand the semantic similarity between captions and images, so is

a candidate for creating a repository of foundation models for caption-image association.

http://itseez3d.com

View Synthesis 645

CLIP can be used to predict other images and captions not in the trained model by classification

using the similarity of features to find the nearest matching score, referred to in the paper as zero-shot

learning, which we refer to as class interpolation. Unknown classes can be inferred from trained

models even if the unknown class has not been seen in the training set, interpolating from sets of

existing features in the model which together closely model the unknown class.

CLIP can be used as a classifier with variable length text labels (i.e., captions). Send the caption into

CLIP, and either generate a view synthesis for the caption, or find the closest matching image to the

caption. The key is to train on a sufficiently large set of [caption: image] variations to enable the view

synthesis to be class-interpolated close enough to model, yet still realistic.

CLIP learns to associate together (1) specific image parts as separate objects (i.e. classes) found in

larger scenes and (2) text captions describing scenes. as pairs: [image object parts: text captions], and

was trained on over 400 million pairs of [image: caption] pairs, to act as a rewards network, so when

query pairs are matched correctly the similarity score is good.

Clip uses embeddings to describe the captions and the image parts within an embedding to space to

facilitate similarity scoring. The embeddings enable associative learning, and are generated using two

separate encoders such as:

• A text encoder to generate embedding codes for the text

• An image part encoder to generate embedding codes for single image classes

Embeddings are commonly used in natural language processing for text translation, queries and

similar tasks, to provide a representational space for determining embedding attribute similarity—

similar captions and similar images will have similar embeddings that are near to each other in the

embedding space.

CLIP allows for various queries such as:

• Query by caption text

• Query by image

• Query by embedding *NOTE the CLIP model produces embeddings for each caption text and

embeddings for each image, so if the embeddings are known, of course CLIP can be queried using

embeddings

According to Radford et al. [892], CLIP models match the ImageNet performance of ResNet-50

without using the ancillary 1.28 million crowd-labeled training examples. The CLIP NLP image

description model is a huge step forward towards NLP classifiers, rather than single-class classifiers

using SoftMax, and also resets the expectation for what a classifier should be, and what an inference

engine should be.

CLIP allows associative learning of multimodal representations. Although the current CLIP model

associates only two modalities (text and images), similar multimodal models are easily envisioned

along the same lines (i.e., multimodal items such as GPS coordinates, temperature, weight, caption,

image part, voice signature,. . .), where each modality is learned and encoded into an embedding

space, and then multiple embeddings spaces may be associated together as an N-dimensional Associa-

tive Multimodal Model with n-dimensional forward and inverse transforms.

We refer to the CLIP approach as Associative Multimodal Learning (AML) according to the taxonomy

of the author; see Fig. 12.18 and the Associative Multimodal Learning (AML) section above for details of

a multiclass learning representation. CLIP only associates two modes together: the text caption and the

image scene, and allows associative learning representations that are bidirectional:

646 12 Applied and Future Visual Computing Topics

image scenes as text< - > text captions as images]½

In other words, CLIP is a forward and inverse transform between text captions and image scenes

with multiple classes of visual objects.

Depending on how the various CLIP models are implemented to represent images, each image

object can be represented as a captioned individual NeRF objects for single and multiclass image

objects. In fact, the ObSuRF method developed by Stelzner et al. [905] in fact uses separate NeRF

representations for each captioned image object part, we briefly survey ObSuRF later in the NeRF

survey sections. The NeRF representation is suitable for image composition of multiple image objects

using captioning to define the view synthesis goals, and of course other image representations are used

for view synthesis as well.

CLIP trains a pair of models that are tightly coupled together: pair 1: a caption mode, and pair 2: an

image model. The pair association is trained to have a high dot product similarity between an image

(i) and a caption (c) when they are associated, and a low dot product when a caption an image are not

associated. C LIP is trained on noisy images to extract the right gradients for the reverse diffusion

process. Therefore, CLIP models are noise conscious.

CLIP takes inspiration from the Visual N-gram model developed by Li et al. [893] in a manner

inspired by natural language processing tasks, using the analogy of learning word pattern sequences in

order to predict derivative word pattern sequences, unlike N-grams that learn patterns of words or

syllables—n-words or n-syllables. The N-grams can be learned by considering the words that follow

each word as consecutive sets, so the N-gram pattern is similar to Marcov Chain models that learn a

probabilistic model of subsequent values from a current value, as used in Diffusion models. For N-gram

prediction, the model incorporates likelihood density learning to fit unforeseen words and phrases.

GLIDE Model for Image Modeling and Editing

GLIDE was developed by Nichol et al. [890] for image synthesis in a diffusion-model context,

producing some of the most photo-realistic images among similar methods, while also allowing for

specific tuning of parameters for image in-painting and image editing using a guide text to control the

in-painting and editing objectives, similar to captioning text string as objectives. For example, GUIDE

allows for interactive image editing to a region (the hair on the head for example) and then allows a

specific guide text to direct the alteration of the masked region, for example, “add a flower”.

GUIDE demonstrates how diffusion models using classifier-free guidance usually generate the most

photo-realistic view synthesis, especially compared to CLIP and GAN methods. The GLIDE photo-

realism is recognized and preferred by human judges as well as automated benchmark scores, as we shall

briefly survey below. For more on diffusion models compared to GAN’s see Dhariwal et al. [894].

GUIDE research shows that guidance parameters are the key to creating the most realistic image

synthesis, and considered two methods for similarity guidance of the diffusion model such as:

• Classifier-free guidance (Ho et al. [886]), does not require a separate model to be trained to estimate

and interpolate correspondence (i.e. zero-shot class interpolation) between captions and images,

which is shown to produce photo-realistic images. Rather Nichols states “classifier-free guidance, a

form of guidance that interpolates between predictions from a diffusion model with and without

labels.” Classifier-free guidance interpolates between a range of model predictions to arrive at the

solution, without using labels, and without requiring extensive trained sets.

View Synthesis 647

• CLIP-style [caption:image pair] guidance which requires an extensive [caption:image] model to be

trained from a wider range of exemplars, and this can be difficult since the training sets are laborious

to create and maintain, and no interpolation is included in the model, so the synthesis results are

sort-of hard-coded and therefore closely match the training data. For example, Dhariwal & Nichol

(2021) use classifier guidance by training the model with noisy image exemplars, which are used to

converge the sample images towards the corresponding labels.

• * See also Dhariwal and Nichol’s prior work [890] which provides even more background on how

improvements to the basic architecture of diffusion models using classifier guidance improved the

state of the art scores over GAN’s and generative models.

With photo-realism as the goal, GLIDE trains a 3.5 billion sample diffusion model, and like CLIP

uses a dual text encoder and an image encoder. Nichol found that the diffusion model must be

explicitly trained to be “noise aware,” which they refer to as a “noised CLIP model”. The training

noise was found to be essential to obtain the correct gradients (i.e., differences) during the reverse

process of recovering the image structure from the noise, in order to synthesize optimal photo-realistic

images, compared to non-noised models.

DALLE-2 Text-to-Image View Synthesis, Stable Diffusion, Imagen

DALLE-2 is an API to a text-to-image synthesis system developed by OpenAI, which is a product

based on earlier work by Ramesh et al. on the original DALLE system, see Zero shot text-to-image

generation Ramesh et al. [887, 889]. The idea of DALLE is to train a model using a paired text encoder

for captions describing an image, and a corresponding image encoder describing corresponding image

captions. DALLE-2 leverages the CLIP method of Radford et al. [892] for learning 2D image

embeddings from internet images which are classified into categories such as used in the ImageNet

datasets.

Captions are an art, not a science. There is considerable room for improvement, since image captions often do

not generate the image one has in mind.

It is reported by many users of DALLE-2 and CLIP that the caption must often be edited to steer the

image generation in the desired direction: this is a fruitful area to apply ML and AI to assist in caption

analysis, caption generation, caption interpretation, and multiple image generation from a single

caption, to suggest alternative captions via caption analysis to correct and steer the caption to make

the desired images. DALLE captions often unexpectedly synthesize disparate objects together during

image synthesis, resulting in unreal fantasy images that cannot be found in the real world, similar to

morphing a man and a tree together. DALLE-2 provides some caption text control flags for steering the

style of rendering, and other similar features.

Still, for all the caption-based image synthesis models, choosing the right caption is an art, not a

science. Minor changes to the text captions yield major changes to the image rendering.

More research is needed to arrive at captioning alternatives to produce desired output, using

ensembles of images generated from a single caption, or attentional-analysis of the captions to see

which individual word-elements of caption sequences actually influence the image generation the most

(i.e., heat-maps showing heat on each word in the caption according to the level of influence on the

image generation).

DALLE uses an idea called Zero-Shot learning [887, 889], which means inferring or detecting

object classes at inference time from the caption alone. Zero-shot learning can infer new classes using

existing features of other classes trained in the model, so classes that are not explicitly part of the

training set and seem to fall outside or in between captions that were in the training set are learned by

inference and interpolation around the existing classes of features defined in the model. Instead of zero-

shot learning, we use the term class interpolation in this discussion (Fig. 12.18).

648 12 Applied and Future Visual Computing Topics

DALLE-2 starts from text descriptions of common objects represented as seeds of random points in

space, and then alters the seed points by adding detail using diffusion models to represent images of the

common objects, then composes desired objects into novel 2D images. DALLE-2 can also expand the

image canvas in size to add novel objects to the scene. DALLAE-2 uses diffusion models to add,

modify, or remove objects from images. Diffusion models (DM’s) are generative: they can produce or

generate more detailed and structured outputs and are increasingly used to generate novel 2D images.

DALLE-2 follows similar point cloud image class and image feature generation methods to the

Point-e system from Nichol et al. [869], which we survey below, which also generates a 3D diffusion

model and 3D point cloud from conversational text descriptions. The point clouds are the basis for the

compositional image renderings.

Diffusion as shown in Fig. 12.20 works by adding together multiple diffusion models to reconstruct

a combined synthesis in image space. Note that interactive tools are a current area of research, being

developed to manually alter the diffusion image results, allowing interactive dragging and dropping of

image areas to warp the results, see Chong et al. [1022]. In addition, other tools are in research for

guiding the additive diffusion of models to compensate for scale, rotation, colors, and more.

The basic research for DALLE-2 is covered by Ramesh et al. [887, 889], with details showing how

DALLE-2 includes the CLIP method of learning 2D image embeddings from internet images which

are classified into categories such as used in the ImageNet datasets. The images are classified and then

represented as textual class descriptions, and then assigned numerical tokens in an embedding space,

allowing image associations with similar images, as well as associations with correct textual descrip-

tive strings (i.e., class names or multiclass text captions). The words occupy an embedding space, and

the images occupy a separate embedding space, for providing pre-computed association between

words and images.

DALLE-2 renders realistic shadows and reflections generated from hard surfaces and high quality

textured surfaces. In addition, various style parameters are used in the caption text to guide the

renderings towards a particular artist or artistic style, or towards general styles like pixel art.

CLIP image class embeddings encode similar image classes nearby in an embedding space, and

DALLE-2 follows the CLIP model to understand the image classes in a scene within the CLIP

embedding space, and also modify, add or delete image classes from a scene. DALLE-2 creates and

associates word embeddings and image embeddings, so that text words and images are associated

together and can be textually described, and follows CLIP to implement a method of learning image

embeddings for classes of images. DALLE-2 can then use combinations of text embeddings and

associated image class embeddings to compose a novel image, using various other stylistic rendering

instructional keywords such as “create a house with legs and wings,” refer the examples described in

Fig. 12.20.

DALLE-2 uses the CLIP embeddings as the basis for a diffusion model based generative system for

composing object class embeddings from text descriptions into composite images. So, the images are

generated using diffusion from base image models, which leaves some fuzzy residue in the renderings

in some cases due to the noise-based diffusion model (see the discussion on Diffusion Models above).

The DALLE-2/CLIP embeddings are linked to object class images. We cover background research on

word embeddings in Chap. 11.

More recent diffusion view synthesis approaches use more refined diffusion models, and are worth a

deep dive which we do not have time for in this brief topical introduction. See also the refinements

proposed in the Stable Diffusion model from Rombach et al. [885] which uses a latent diffusion model

based on the CLIP ViT-L/14 text encoding, similar to the Imagen model from Saharia et al. [895].

in

is

B

la

View Synthesis 649

Fig. 12.20 Showing (top) an example DALLE-2 render

cabbage on moon,” top right image: text=“3d render real

above are created using the DALLE-2 online test software.

caption “dad sitting at his desk with little 2-year-old on his

of DALLE-2 diffusion model method

g from text top left image: text=“3d render salmon and

tic salmon and lemon on mount rainier”. The top Images

ottom showing four view synthesis variations from the same

p,” images created by Midjourney view synthesis variation

650 12 Applied and Future Visual Computing Topics

Neural Radiance Fields (NeRF)

Of the many possible methods for generating the view synthesis, the NeRF method from Mildenhall

et al. [870] is noteworthy, and the name has become synonymous with the field of 3D view synthesis in

some circles. NeRF involves generating a 3D radiance field of voxels computed for each input 2D

input image pixel, by computing the 5D radiance field (x,y,z + roll, pitch—but not yaw) at each pixel,

and projecting the 5D radiance field into a 3D volumetric model or neural radiance field, i.e., a

trainable differentiable 3D field of voxels, and then rendering unique 3D views of the volumetric

model using discreet volume rendering methods into a 2D target image, as discussed earlier in this

chapter in the Volume Rendering section.

The NeRF paper discusses the tradeoff’s considered in designing the method, the details on prior

work, considerations from related work, and how NeRF is optimized—the NeRF paper [870] is

recommended reading. Here we provide a summary of the basic model.

To convert the 2D image into a 3D coordinate system to project into the volume, the 3D position of

each pixel in the input 2D images is computed in 3D space. NOTE that NeRF requires parameters to

learn the model: the 2D image position and viewing direction must be provided and known (x,y,z), and

also the roll, pitch, and yaw must be known to project the 2D input image pixels into the 5D radiance

field.

NeRF requires tens or hundreds of images for some implementations to compute the 5D light field,

but recent methods can use only one image to estimate a 3D field for view synthesis. The NeRF

radiance field contains a projection of a set of one or more images, usually many images are required,

which is fine when the images are near the camera, but present sampling and blur problems for images

far away from the camera. For single-image NeRF methods, refer [1013] Gu et al. and [1014] Xu et al.

To train their neural radiance field, optimization is performed using an MLP to minimize the 5D

difference between (1) the known multiple input image views and (2) the reprojected 5D view from the

volume for each input image; therefore, training minimizes the difference between the input and the

reprojection images, and maximizes the model accuracy.

NeRF uses a continuous (not discreet) positional encoding scheme (not like the Transformer

positional encoding scheme) for each 5D input coordinate to allow a higher-dimensional space for

optimizing the neural radiance fields for high frequency details. Encoding the input pixels into the 5D

radiance fields enables increased photo-realism in the 2D re-projections from the volumetric model.

Standard volume rendering methods use a 3D discreet volume of voxels, and the renderings are

accumulated from rays traced through the discreet 3D volume. However, NeRF uses the 5D positional

encoding as the basis for the volume rendering—5D coordinates are sparse, continuous in space, and

do not fill a discreet dense volume.

The NeRF method does not require a dense sampling or 3D volumetric model which increases

memory and compute requirements for the volume operations; instead NeRF encodes a continuous 5D

field, rather than a discreet volume, within the parameters of the MLP network, and since the field is

continuous, there are no jagged artifacts in the voxel sampling and accumulation from discretization in

the model, thus yielding higher quality renderings approaching continuous gradations, rather than

jagged discreet points.

For rendering, the 5D coordinates along a ray projected through the volume and sampled in 3-space

as voxels V; the V values along the ray are fed into the MLP to accumulate into the final RGB opacity

voxel. Since the 5D voxels and the voxel accumulation is differentiable, their final values can be

optimized using the residual between the accumulation and the ground truth input images. In summary,

the rendering is directly taken from the 5D coordinates from points along the ray in the 2D input image

space (i.e., the neural radiance field), not from a discreet continuous voxel volume.

View Synthesis 651

Please see the NeRF paper from Mildenhall [870] for other specialized features we do not survey

here in detail including (1) a composition of two functions for training and learning the rendering

values: one function learned by the MLP, and one function hard-coded, in an attempt to avoid well-

known bias of MLP and CNN learning towards low frequency details, and (2) a hierarchical volume

sampling method with a coarse and fine network for rendering optimizations: the coarse network is

used to identify parts of the volume which should be finely rendered (similar to surface culling

pre-processing in computer graphics, but rather the inverse: to identify features for high-resolution

treatment).

There is much related research into the NeRF family of models. To dig deeper, we mention a few

papers, including a good survey of many NeRF papers here: A comprehensive review of NerF research

[896], the DreamFusion method [897], Neural Fields method [898], PlenOctree real-time NeRF

renderings [899], and finally Nerfies (little quick nerfs from your cell phone) [900].

A particularly noteworthy NeRF method is [1006] HumanNeRF: Free-viewpoint Rendering of

Moving People from Monocular Video from Weng et al. The goal of free-viewpoint NeRF is to

generate a 3D volumetric model from a monocular image, for example from a frame in a YouTube

video. Unlike the original NeRF approach discussed above which computes a 5D field from a known

3D viewpoint for the view synthesis, the challenges of free-viewpoint rendering are different, include

synthesis of arbitrary cameras views when the viewpoint must be learned and inferred from the image

itself, treatment of cloth deformations, hair motion, and arbitrary body poses. Another recent NeRF.

variation using only a single monocular image is NerfDiff [1013] from Gu et al.

Future topics in the research for NeRF and volumetric models for view synthesis have been

explored by Rudnev et al. [903] and includes; Light field estimation—identify the light source(s) in

the 2D images for incorporation into the model; Light field relighting of the 3D model—if needed, the

light sources of a 3D model can be discovered, so then each light source can be subtracted from the

model, or new light source(s) can be added to relight the 3D model enabling variable lighting

enhancements to suite a particular MR view, or to remove bad lighting, etc. see “Apparatus for

enhancement of 3D images using depth mapping and light source synthesis,” US Patent—Scott Krig

[901]).

Also, look for more research into view synthesis methods using novel voxel computing models with

Fourier features or other basis space features, for example, refer Wang et al. [902]. Also, refer Chap. 3

and Basis Space Metrics.

NeRF and NeRF-OSR

NeRF-OSR from Rudnev et al. [903] provides improvements and additional features to the common

NeRF architecture, for example extended features include editing of the camera viewpoint, illumina-

tion viewpoint, and editing the scene illumination.

Especially interesting is the addition of a scene illumination method which includes a second order

spherical harmonics model with an enhanced light re-rendering equation for relighting the view from a

chosen perspective (Fig. 12.21). The paper provides a good background on related scene relighting

research. Also, NeRF-OSR uses a novel dedicated shadow model in a shadow generation network with

an MLP, carefully designed to learn only local shadows rather than global shadows from scene lighting

effects—the MLP uses a shadow prediction method of accumulating shadow values along a ray using a

modified volume rendering equation.

fie

str

652 12 Applied and Future Visual Computing Topics

Fig. 12.21 NeRF-OSR re-lighting examples for radiance

position and direction vector, with parameters to recolor &

(C) Rudnev et al. [903] ECCV 2022 Springer Link

lds, including relighting applied to alter the light source 3D

engthen the light, as well as to add/remove shadows. Image

Neural Radiance Field Code Books, ObSuRf 3D Scene Segmentation

Codebooks for image synthesis are a future trend, similar to reusable visual objects and captions in a

large foundation model, available to many applications and perhaps standardized. As view synthesis

becomes ubiquitous, many types of image object and caption codebooks will be available and expected

for general use (i.e. like dictionaries or public repositories), and each codebook will have specific sets

of associated visual object repositories and captions for intended applications. The NLP research has

already led to language foundation models in a similar fashion, as surveyed in Chap. 11.

The Neural Radiance Field Codebooks (NRC) method [904] developed by Wallingford et al. is used

to create a codebook and repository of common scene objects to be used as building blocks, from

which view synthesis can be performed to create synthetic scenes from the building blocks, or enhance

existing scenes. Highlights of the NRC model include the following:

• Unsupervised discovery and segmentation of visual objects

• Scene decomposition

• Z ordering of objects for depth

• Cataloging objects for detection or synthesis

NRC Codebooks represents a future direction of research, enabling visual synthesis to be

normalized and standardized with a basis of common libraries containing scene objects, allowing

both synthesis rendering as well as scene analysis via conceptual visual object segmentation—this is a

predicted emerging field in the opinion of this author.

Imagine large classes of image objects collected together and described as NeRF models (or similar

models), which are captioned and parameterized for both scene analysis and multi-class classification,

as well as multiclass view synthesis; such as system is envisioned in the Neural Radiance Field

Codebooks research from Wallingford et al. [904] as well as similar research on the Marionette system

from Smirinov et al. [888] which decomposes scenes into 2D sprites discussed later.

The NRC system learns an unlimited number of object codes from the basic building blocks of

scenes (ideally common scene building blocks common to many different scenes). NRC stores the

codes in a code book. The NRC codebook entries contain common attributes of scene building blocks

that (ideally) are reusable across many different types of scenes and occur regularly.

In NRC, the codes are used to generate synthetic scenes containing real-world objects, which the

authors refer to under the umbrella of object-centric learning.

View Synthesis 653

NRC is a key pioneer in the emerging field of scene segmentation or scene analysis into a dictionary

of common visual objects. The NRC model enables segmentation at the object level (i.e., conceptual

visual object segmentation, which is different from panoptic, instance and semantic segmentation

which are purely pixel based, not object concept based).

Objects are learned by unsupervised discovery, from multiple views of a scene in an input image

group—so that 3D perspective is included in all the learned objects, which can be fed into a volumetric

view synthesis model for composition and rendering. Learned objects are cataloged into semantically

related groups of objects which includes the learned geometry and visual appearance attributes (i.e.,

RGB, texture, and geometry) for each object in the input image group. The objects from the image

input group thus allow the variations between objects in the scene to be modeled together, thus the

entire scene is modeled as a total composite scene of objects including geometry, 3D position,

viewpoint orientation, color, and other attributes.

NRC is designed to work with existing datasets for scene analysis benchmarking and 3D

segmentation—dataset used for testing include the following:

• ProcTHOR and RoboTHOR (Kolve et al., 2017) contains models and interactive scenes of home

interiors, used in Unity game engines.

• CLEVR-3D (Johnson et al., 2017) collects together synthetic data representing multiple geometric

views of multiple geometric primitives designed for 3D segmentation.

• NYU Depth The NYU Depth Dataset (Silberman et al., 2012) contains a collection of real-world

images from indoor scenes, with depth maps and segmentation maps for the scene objects.

One of the main inspirations for NRF Codebooks is from the earlier methods of Dictionary and

Codebook learning, in particular Wallingford mentions the Marionette system from Smirinov et al.

[888] which decomposes scenes into 2D sprites.

A similar model, ObSuRF developed by Stelzner et al. [905] pursues related 3D scene modeling

research in the area of 3D Scene Segmentation, which we do not survey here, where separate objects in

an image scene are represented by separate NeRF’s for 3D volume object segmentation and view

synthesis from the 3D segmentations—the paper includes a survey of related work on 3D Object Shape

Learning, and information on additional 3D object segmentation methods.

For some historical context and discussion on codebook learning, refer Chap. 9 on Learning

Methods and refer Table 5.1 Vision Metrics Taxonomy. Refer also prior work using feature

descriptors, showing how a rough 2D scene reconstruction has been performed using learned feature

descriptors such as SIFT, LBP’s, and HOG in Chap. 4, Fig. 4.14, Image reconstruction of common

scenes using combined SIFT descriptors, Fig. 4.12 Discrimination via a visualization of the HOG

description, and Fig. 4.13 Discrimination via Image Reconstruction from Local Binary Patterns.

POINT-E Text-to-Image View Synthesis

The Point-e system from Nichol et al. [869] generates a 3D diffusion model and 3D point cloud from

conversational text descriptions, and is particularly noteworthy for the refinement and use of the point

cloud models for view synthesis. The idea of using point clouds is powerful, and offers a path forward

by-passing polygon mesh models, to more photo-realistic volume rendering revealing transparency,

and ray tracing.

Point-E converts point clouds into polygon meshes by learning a model of signed distance function

SDF. For background on SDF’s, see also Chap. 1 Surface Reconstruction and Fusion, and Curless and

Levoy [382]). Volume rendering is applied to render the synthesized views.

654 12 Applied and Future Visual Computing Topics

One motivation for the Point-E work is to find faster ways to produce view synthesis from text

captions, and they reduce the scene complexity to reach this goal, generating a single synthetic image

using one diffusion model, and then use a second diffusion model to generate voxels within a 3D point

cloud, which is simple to render—refer Fig. 12.22. Even though the point cloud rendering detail is

cartoon-like, still this approach points the way to the future with highly detailed voxel and point cloud

models that will surpass polygon models in accuracy and flexibility.

Fig. 12.22 Showing the basic Point-e architecture and point cloud output images, (top) system processing stages,

(bottom) output image samples. Illustrations (C) Nichol et al. [869] (2022)

The Point-E pipeline includes a caption text prompt sent to a variation of the GLIDE model [890]

trained using three billion parameters and fine-tuned via transfer learning with their specialized 3D

dataset. The low-resolution point clouds generated are from the base diffusion model, and a separate

diffusion model is trained to be used for up-sampling the low-resolution point clouds for higher

resolution rendering.

3D View Synthesis from Two Images + Pose: 3DiM

In the 3DiM view synthesis model proposed by Watson et al. [906], is a pose-conditioned diffusion

model designed to generate consistent high-quality 3D views by learning pose-conditioned 3D view

model parameters, taking two views of the same scene from different 3D pose (x,y,x) positions as the

starting point to find the common noise diffusion models, and then using a stochastic conditioning

method to sample the model for clarity during image rendering. The model is trained using two images

as pairs of the same scene, where each image of the pair includes the pose viewpoint in 3D space, so the

final model can predict and generate one view of the model given another view of the model and its

pose. 3DiM compares well to similar methods, refer Fig. 12.23.

View Synthesis 655

Fig. 12.23 Showing the 3DiM view synthesis 3D rendering results compared to similar systems, image (C) Watson

et al. [906]

Some of the novel architecture and modeling contributions of 3DiM include the following:

• X-UNet architecture with special features for view synthesis.

• Stochastic conditioning of 3D sampling points from multiple image views, rather than a single

view, for increased accuracy and realism.

• An evaluation method is proposed for scoring geometry-free models.

• The models use classifier-free guidance from Ho et al. [886].

3DiM uses a novel X-UNet architecture incorporating improvements from the earlier U-Net

architecture introduced by (Ronneberger et al. [932] for image segmentation (discussed further in

Chap. 2 for image segmentation). 3DiM’s X-UNet changes the base U-Net architecture to be

discriminative for high fidelity results by using self-attention combined with residual layers. 3DiM

uses novel pose conditioning to add increasing amounts of noise to the image data model using the

learned noise distribution from image view pairs of the same scene, and stochastic conditioning to

autoregressively denoise the data as frames are generated, using 256 denoising steps to increase sample

quality and improve 3D accuracy.

In more detail, the pose-conditioned image-to-image training takes a pair of two frames with

different viewpoints from the same scene + the pose of each frame, and attempts to undo the noise

difference between frames. The X-UNet uses the poses (R,t) of both training images, and predicts the

amount of Gaussian noise injected to corrupt one of the pair of training image set, so the predicted view

(synthesis view) is a linear combination of the predicted noise e from the training images with the

target image noise. The X-Unet shares weights across the pair of input images for the conditioning

clean view, and the target denoising view. Also, cross-attention using self-attention blocks is employed

to mix information from the input and output view.

See also EG3D by Chan et al. [907] (Efficient Geometry-Aware 3D Generative Adversarial

Networks) which uses GAN’s for view synthesis of 3D images using volume rendering followed by

super-resolution for adding detail to the renderings. The basis for the EG3D GAN work is taken from

StyleGAN (Karras et al., 2019).

Avatars and Animation—SMPL and AvatarSDK

Generation of avatars from single images has been commercialized, based on years of earlier research.

Early avatar generation systems for video gaming provide some of the best examples of what can be

done using standard OpenGL and DirectX graphics API features to skin a polygon mesh with

appropriate textures, and feed the model into a graphics pipeline to integrate with a game scene.

Also, movie studios like Pixar and Dreamworks have been creating avatars for decades, and also using

image morphing to combine visual objects together—such as combining a human face with the face of

a lion. All this work is coming together for commodity use.

656 12 Applied and Future Visual Computing Topics

Today, avatars can be generated free on the internet (or from a phone) from a selfie photo of only the

face, and the body shape is inferred using deep learning and a few parameters from the user, and

animations can be applied to avatars from pose points to move the whole body, using human kinematic

sequences.

Generating realistic looking human avatars has a rich history, which can be tracked mostly through

the SIGGRAPH computer graphics research papers going back several decades. We cannot hope to

review all the work in this area, but instead focus on more recent research work in machine learning

methods, and associated commercial products. At the high-end of the avatar models, we will review

perhaps one of the most seminal approaches: SMPL, a Skinned Multi-Person Linear Model (Loper

et al. [908]).

Pose points are now a commodity item, able to locate a set of human joints and body features such

as elbows, shoulders, ears, nose, eyes, hands, finger joints, etc. Some methods even detect the 6D pose

x,y,z position including roll, pitch and yaw of the bone structures (pose AI). Apple provides pose point

detection in real-time in hardware. Of course, avatar and human body animation can be done using

pose points in commercial packages.

A survey of 3d pose point generation from 2d pose points using monocular 2D images is found in

Tian [1032].

Avatars can be generated from a selfie photo, for example, the AvatarSDK approach is covered later

in this survey, sophisticated yet very accessible on mobile devices, and animations can be applied to

the avatar from pose points to move the whole body in real-time. At the high end, avatars can also be

generated from sophisticated methods which 3D scan the entire body from many viewpoints, and then

use machine learning and statistical methods to develop complete avatar models that are accurate and

capable of assuming many pose positions and shapes such as the SMPL method we survey here.

While there are many avatar generators and animators available today, and many excellent concepts

and improvements to learn from research, we only touch on this topic here by way of introduction to

the field, by reviewing some of the seminal research, and reviewing a commercial example.

1. SMPL, seminal research from Lopez et al. [908] “A Skinned Multi-Person Linear Model,” which

contains a complete system for accurate and extensible avatar learning with refinements, used by

many movie studios and computer graphics solutions.

2. AvatarSDK from Itseesz3d, a Commercial Product for Avatar Generation and Animation.

SMPL

The Skinned Multi-Person Linear—Avatar Learning Fundamental Research. In summary, SMPL

builds on the history of the field, which is summarized by Dr. Michael Black, one of the key

researchers leading the effort. The SMPL work is a true milestone. For historical details and guiding

principle for the SMPL family of research into avatar support for human body, face, hand, and animals,

see the YouTube video “SMPL made Simple Tutorial at CVPR 2021: Michael Black”. Also, we

mention key research papers below to dig deeper.

The goals of avatar research include (1) accuracy body models which are suitable for realistic

animation, and (2) accurate methods for animation of whole body models. These goals have directed

the research for decades, which we summarize below.

Historically, pose analysis has focused on pose point analysis of the major body joints which are

invisible to the eye (perhaps 18 or more or less joints total for the body, plus 10 or so for the face, and

10 or so for the hands), rather than modeling all the parts of the body (skin, hair) that are visible under

motion. In other words, we should also understand and model the outer surface of the body for

completeness, and we cover this in some details later. Skin touching skin is a problem for modeling, as

well as occlusion of body joints and skin, body shape analysis, etc.

View Synthesis 657

Early methods to model both the entire body skin surface as a polygon mesh, and the joints as pose

points, was enabled by a US Army project called CAESAR which captured a set of human body poses

as 3D objects from male and female subjects aged 18–65, each wearing tight cotton clothing and latex

caps and 74 white markers for 3D registration of key body parts. 3D point data was then extracted from

the body scans to create the body shape space. Early analysis of the data was performed by Allen et al.

[909] “The space of human body shapes: reconstruction and parameterization from range scans”.

Allen was able to wrap the body shape into a mesh, but found it hard to interpolate between

incorrect or morphed portions of the scanned points in the mesh, so the mesh was not optimal. The

basic goal of the body space model is to model the shape of virtual humans.

The body mesh and associated 3D points is a differentiable numerical field, which enables many

machine learning algorithms particularly those using many training samples and various training

protocols using gradient descent (i.e., neural networks). The data thus enables the fitting of the

model to target images to find the differences between points in the mesh, as well as optimizations

to improve the pose and shape fit between target and mesh model. The intended fit would be carried out

in a lower resolution space to make the computations simpler. The end result should be a realistic mesh

that is deformable under animation.

SMPL devised a standard mesh template, using 12,000 mesh coordinate points <x,y,z>. The fitting

from the standard mesh template model to a target subject was performed in a special function using

PCA space. The pose representation was controlled by weights, intended to preserve and modify point

to point relationships under various types of motions and poses, primarily to control the pose points,

but not intended to control the body volume distortions and body shape distortion under certain poses

and motions. For example, the weights could model how the elbow influenced the wrist, and other joint

motion relationships. Basic poses were learned and the associations between joints were recorded for

various poses, such as a standing rest position, etc.

Skinning was a challenge, especially dealing with volumetric changes to parts of the body shape

under motion, and skin patch morphing under stretching and motion poses, so SMPL developed model

parameters to correct distortions for selected poses under motion and body shape changes.

The SMPL model for each part is represented by a 9D rotation matrix (9 × 23 Joints = 207 blend

shapes). Quaternions are also used as they are equivalent to 9D matrices, but more convenient for

computation. For motion deformation corrections, a set of Eigenvectors at each joint are used to blend

shapes under motion, performing a linear combination from a subset of the 207 Eigenvectors relevant

for all joints. SMPL collected some novel data in the AMAS dataset.

The total joint model is as a linear combination of 207 Eigenvectors from the 207 blend shapes.

Pose coordinates, and identity body segment lengths and articulated motion capabilities of a unique

person are modeled using an Eigenvector sum, including the total shape or morph of the body pose

defining the unique shape of each subject at pose.

For model development and training, a deep learning front-end can be used to get the model trained

in the ball park (the DNN generates the rough pose), and then classical optimization methods are used

to clean things up and fine-tune—nothing beats optimization using an accurate numerical optimiza-

tion technique. DNN’s are function approximators.

For understanding and modeling the body shape in a simple and effective manner, the first 30 points

from PCA analysis were used. The 30 points capture 98.5% of the shape variance between all subjects.

Also, PCA can represent linear Gaussian models very well. But, PCA does not model the subject age or

related shape variations very well—separate models are needed for sex, weight, age, and other physical

conditioning variables. Each body is represented as 21-dimensional vector to compress into a low

dimensional space using Eigenvalues and vectors for a PCA body shape signature. Body shape is

represented by the total dataset MEAN + subject as a composition with Eigenvectors, which can

approximate any body shape in the shape space.

658 12 Applied and Future Visual Computing Topics

However, SMPL research found that some body poses are:

• Impossible, the body cannot contort in some ways.

• Possible but unlikely, and very difficult without special training (i.e. gymnast training).

• Some poses are common.

• Pose priors were developed to give probability distribution of pose over the whole population in the

dataset, using the Vposer method, see Pavlakos et al. [910].

Allen and Back’s other associates found that SMPL was not enough, so they invented:

• SMPL-X model [910] expressive body, hands and face).

• MPL-H [911] hands models [910].

• SMAL model [912] to represent animal avatars.

The basic model steps for SMPL and the related models is summarized as follows:

• Learn shape space.

• Factor out pose in the same way by differentiation.

• Learn pose-dependent deformations using 9D or quaternions.

• Factor out expressions towards normal expression and poses.

• Learn linear subspace for expression variation.

• Registration alignment, solve for PCA, solve for blend shapes (207 currently).

Note that the GHUM model re-implements the key algorithms in SMPL with a different non-linear

functions model instead of linear functions, see GHUM Generative 3D Human Shape and Articulated

Pose Models Xu et al. [913]. Refer also [914] PIFuHD: Multi-Level Pixel-Aligned Implicit Function

for High-Resolution 3D Human Digitization.

For related work see also Photo-realistic Monocular 3D Reconstruction of Humans Wearing

Clothing by Alldieck et al. [915].

AvatarSDK

AvatarSDK, provided by from Itseez3D.com, is a commercial product for generating avatars from a

single face selfie, and uses concepts from the SMPL model reviewed above, for a high-end modeling

approach for generating realistic full body models with a human mesh, face, upper body, skeleton and

pose [908]. AvatarSDK also uses standard assets from meshcapade to generate life-like avatars https://

meshcapade.com/about-us, specifically photo-realistic 3D human body models composed from skin-

ning and blending base shape models based on thousands of 3D body scans. The avatars are virtual

human models that can deform in shape and size for various body parameter. The body models have a

low but adequate polygon count, which makes them effective to use with low compute power compute

devices, and the models include pose-dependent weighting to model pose deformations, soft tissue

morphing, and are very compatible with gaming engines such as Unity, 3D graphics API’s, and

GPU’s.

Avatak SDK also interfaces with the Itseez.com 3D mobile scanning products, allowing 3D models

and avatars to be created using a mobile device.

Unity avatar animation capabilities are supported by AvatarSDK with a Unity plugin—suitable for

video games and custom video productions. In addition, an animated face avatar that includes eye

http://itseez3d.com
https://meshcapade.com/about-us
https://meshcapade.com/about-us
http://itseez.com

pp

e,

be

me

blinks and realistic talking using the mouth and lips, can be created using the Itseez Remoteface app

from a selfie, which acts as a virtual camera to use in place of the built-in camera on the computer or

phone, useful for video conference calls using Zoom, etc.—avatar can represent your face and upper

body and talk for you on the video call. See Fig. 12.24.

Scientific Imaging Systems 659

Fig. 12.24 Illustrating AvatarSDK and the RemoteFace a

model. TOP: examples of creating an avatar from a selfi

inferred from the selfie by default, but shape and size can

3D facial mesh is extracted and the face is morphed to the

Itseez3D.com

from Itseez, and also showcases capabilities of the SMPL

with selectable parameters; BOTTOM: the body shape is

modified via settings. The face is extracted from a selfie, a

sh, ready to join the 3D body mesh shape. Images (C) 2023

The body animation model provides 50 body joints (i.e. pose points or keypoints) to provide very

realistic animation of the avatars, and includes customization options for various attributes such as

haircuts, skin color, eye color, and more.

Scientific Imaging Systems

Since there are many types image sensors for various scientific applications, combined with many

illumination techniques, there are many types of specialized scientific camera systems. In this section,

we survey scientific imaging at an introductory level, providing fundamental background concepts,

and suggesting other resources to dig deeper. In general, we are seeing deep learning methods applied

to scientific imaging to solve familiar problems in new ways.

In the following sections, we survey key system concepts and applications for various light

spectrums and modalities used in scientific imaging including:

http://itseez3d.com

660 12 Applied and Future Visual Computing Topics

• Polarimetric Imaging is intended for directional light sensing, to identify Ines and linear textures

and structures for analysis. Directional oriented filters are often used to structure the photons in a

linear grid.

• Multi spectral Imaging concepts pertain to industrial radar inspection, medical applications, and

satellite and ground-based Radar Imaging, LIDAR, SAR, as well as IR and UV. Typically, satellite

images are taken as a line-oriented or swath-oriented pattern, and stitched together to form larger

images.

• Tomography, Confocal Microscopy, Florescence Imaging: Tomography is a method of slicing a

volume into 2D images, and reconstructing the 2D images back into a volume, MRI scans and

Confocal Microscopy are medical system examples. Fluorescence imaging is used to detect specific

features that have been dyed a specific color with florescent die, and imaged using controllable light

sources.

Note that for computer vision applications, the type of imaging system used and the intended

application determines the computer vision methods required in order to process and analyze the

images, so as we survey various scientific imaging systems, we will also highlight pertinent computer

vision methods useful for each applications such as:

• Edge Enhancements (Chap. 2).

• Super Resolution (Chap. 1).

• Object Detection (Chaps. 4, 5, 9, and 10).

• View Synthesis and Volume Rendering (Chap. 1).

To dig deeper into scientific imaging systems, consult the SPIE—The International Society for

Photonics And Optics—http://spie.org. The SPIE is an excellent source of scientific resources for

practitioners, including conferences and research papers across most all disciplines including optics,

algorithms and methods, and applications including materials science, biology, satellite imagery, and

medical imaging.

Polarimetric Imaging and Polarized Light Cameras

Polarized light sensing systems detect directional light, and edge-oriented features. Directional

polarimetric sensing is used for a variety of image analysis applications, for example man-made

objects typically contain directional edges as surface features and polygon shapes, while natural

images are typically of a non-uniform texture and shape orientation similar to fractals rather than

oriented edges. Polarized light can also reveal cell component structure inside living organisms and

tissues.

Microscopy applications in the areas of biology and materials science are enhanced by using a

combination of columnar polarized illumination to lighten an object, or polarized filters to capture

reflected light from an object. In fact, some aspects of the composition of a biological specimen are

only revealed using polarized light, refer Fig. 12.25. Optical characteristics such as refractive index,

birefringence, transmittance, diattenuation, and dichroism respond in various ways to polarized light.

http://spie.org

f

sim

m

w

n

ag

Scientific Imaging Systems 661

Fig. 12.25 Images showing a primary spermatocyte o

enhancements. Polarized light illumination is directional,

illuminated with normal polarized light and (right) same i

Note that polarization reveals structures that do not appear

Mehta et al. [916], a polarized light microscope is used to a

as refraction and absorption (i.e., surface texture also). Im

a crane fly, Nephrotoma suturalis, using polarized light

ilar to a directional edge enhancement (Chap. 2). (LEFT)

age enhanced c (double refraction) of the polarized light.

ith other lighting methods. Images from NIH research by

alyze the anisotropy of a specimen’s optical properties such

e # Mehta et al. [916] Courtesy Springer Nature

Polarized light imaging reveals shape and texture information reflected from surfaces, and captures

the orientation of light source phase on an object. Some objects and surfaces respond quite differently

to various polarized light effects. Optical light phase filters can be used to polarize the light prior to

imaging, resulting in polarized light imagery. Common applications of light phase filtering include

polarized sun glasses, and polarized camera lenses for consumer devices, advanced military imaging

devices, and scientific imagers on microscopes. NASA and the military make great use Synthetic

Aperture Radar (SAR) imaging, to combine signal strength of a reflection with the phase of the

returned radar signal.

Interferometry is concerned with the differences in phase between images of the same object taken

over a range of time and perhaps different spectrums, which is processed to produce a difference signal

which forms a Multi Spectral Signature of the objects (i.e., treating spectrums like consecutive frames

in a video).

Polarized light reveals molecular order in biological objects which affects optical reflectance,

specifically as the order is revealed in the characteristics of the reflective surface of an object.

For example, Synthetic Aperture Radar systems (SAR) operate in multiple polarizations or

orientations via the synthetic aperture polarimetric shapes used. Various applications using SAR

imagery take advantage of the directional edge features to classify images according to the orientation

of edges in grasslands, forests, and developed areas containing man-made structures. Early work on

texture analysis is found in Haralick [5, 6, 272], Krig [21], and Appendix D: Extended SDM Metrics.

Military objects that are hidden in the visible RGB spectrum can often be easily identified using

polarimetric features, inducing underground structures, landmines, and archeological structures by

using the right SAR bands and polar orientation.

For example, polarimetric imaging was explored in 2001 by Sadjadi [917], providing an early

example of target detection published from unclassified military research. The research uses Infrared

SAR data, mainly using the characteristics of polarimetric imaging (oriented light phase) alone, with

little to no advanced image processing or machine vision, using only raw polarized light images.

662 12 Applied and Future Visual Computing Topics

Basic features of the Sadjadi algorithm include the following:

• Using Stokes Vectors to detect connected regions of pixels (i.e., man-made structure shape) as

distinguished from background clutter, measured using Bayesian error probabilities.

• Uses physics models to generate synthetic polarimetric JR test imagery of satellite scenes, including

target man-made objects and natural looking background scene clutter.

The results shown provide relatively good indications of where the background clutter is found,

with minimal false detections of where the target objects are found, even when the target objects are

only 4 pixels in area. The algorithm also responds well to increases in distance from imager to target, in

the range 1 to 12 km for this particular satellite images.

This unclassified military research paper describes detection of man-made objects in a clutter of

natural objects. Note that polarized light is directionally oriented, therefore can detect oriented light

reflections, corresponding to uniformly aligned surfaces or structures that are typically man-made

compared to natural structures that are often more fractal-like. Polarimetric imaging is ideal for military

applications and similar object detection applications such as aerial archaeology to find ancient

structures. Note that using the optics of the imaging device is a short-cut for many applications to

pre-segment and pre-filter images for a particular application, in this case the optical directional filters

for polarimetry are used to segment features from clutter.

Finally, there are many types of image processing operations that can be used to process

non-polarized imagery to locate and enhance edges (edge polarization) under normal optical and

lighting conditions, which may be equally useful instead of requiring polarized light imaging, see

Chap. 2.

To dig deeper into polarized light systems, refer [918] Polarized Light and Optical Systems (CRC

Press, 2018) by Russell Chipman, Wai Sze Tiffany Lam, and Garam Young. See also Temple et al.

[919] regarding sensitivity of the human eye to polarization.

Multi-spectral Imaging

We introduce a few multi-spectral imaging topics at an introductory level in this chapter. To dig

deeper, probably the best source of scientific and practical resources for practitioners across all image

spectrums is the SPIE—The International Society for Photonics And Optics—http://spie.org.

Multi-spectral imaging has specific challenges for each spectral component used, see Fig. 12.26.

For example IR imaging challenges are different than UV imaging challenges. Multi spectral camera

systems are design to deal with visible light field radiation and invisible spectral fields. Each spectral

field is subject to frequency-dependent wave propagation phenomenon, including absorption, reflec-

tion, refraction, diffraction scattering, birefringence or double-refraction, and polarization. We will

only touch on some of these phenomenon in this section.

http://spie.org

Scientific Imaging Systems 663

Fig. 12.26 The radiation spectrum. Note that the Optical Spectrum area extends from Infrared through visible to UV,

XRAYS, GAMMA rays, and COSMIC rays. Image # NASA USG Public Domain Image

Light is measured using brightness/contrast intensity (gray levels) and spectral information (RGB,

Infrared, and Ultraviolet). Each component of the light spectrum contains different useful information.

The Phase of the light (orientation) also contains useful information, which is the basis for Polarimetric

Imaging, useful to detect light which rays which are column-oriented and traveling parallel in the same

direction, useful for indicating man-made objects in a clutter of natural objects and clutter.

Imaging is all about illumination and the detectors: the type of illumination used, and the type of

imager used. It is critical in any computer vision application to find out the first principles about the

origin of the images of interest and the lighting and perhaps atmospherics: particularly the spectrum

(s) used, the angles of the illumination and the angles of the detectors used. Even the lens and optical

system should be critically characterized: camera vendors typically perform geometric factory

corrections in FFHW/SW on each camera to compensate for lens defects to correct geometric

aberrations at the edges of images. For example, the first Hubble Telescope lens was ground wrong

and had bad spots distorting the images, and was so defective that Fourier Spectrum Filtering was used

to characterize the image defects and correct them using various algorithms before a replacement lens

could be retrofitted. All these details, and more, combine to form images, and provide opportunities for

specific processing and enhancements for each application.

Light is a form of radiation of particles in the emission spectrum, and various types of radiation can

be captured across a range of spectrums and used singly or in combinations such as RGB color

combinations, SAR interferometric SAR radar systems which combine two or more SAR images from

different frequencies together to reveal 3D surface topography and motion. Radiation spectrums

overlap slightly, including invisible Infrared (IR) and near-IR, Red, Green, Blue, Ultraviolet, and

various higher frequency radar spectrums. Multispectral imaging applications include satellite imag-

ing, biological microscopy systems, materials analysis, planetary science, and medical imaging such as

dental radar images (XRAYS) and magnetic resonance imaging (MRI). Note that MRI images are

composed of layers, or cross-sections of a 3D object, which can be reassembled into a 3D volume. And

Confocal Microscopy is a related technology, allowing the image focal plane in the microscope to be

moved up and down, in order to collect a set of layers that are all in focus, which can later be

reassembled into a volume for unified analysis and rendering.

An example of target detection research involving Multi spectral imaging to detect muzzle flashes is

found in [920] from Montoya et al. who provide the following details on their research. The target

detection system uses a dual-band imaging system, capturing 340 images per second, where the light

source follows two separate paths to the image plane, and then on to a processing pipeline. First, the

<x,y> coordinate location of each pixel, which represents muzzle flash energy, is mapped to the plane

from each band via a spatial registration function. The size of the pixel field determines the energy of

ar

e

C

io

the possible muzzle flash, and is used to determine if there is sufficient energy to possibly be a muzzle

flash. The determination includes accounting for atmospheric attenuation and optical range. Also,

spectral shift in the optical range is determined, to be sure that the signals are within the operational

range of the imaging system. All these considerations are considered in order to determine if a valid

muzzle flash is detected. NOTE: IR and NEAR-IR images are a good spectrum for detecting heat

energy.

664 12 Applied and Future Visual Computing Topics

Multi-spectral imaging is also used for segmenting earth ground images according to elevation, type

of crops or ground cover, temperature, and other variables to perform remote analysis (Fig. 12.27).

Note that multiple images from multiple spectrums can be combined together for visualization of

specific surface attributes, to detect to the light response variations of various subjects in a single

image, such as the RGB and a Z range map (*i.e., elevation) shown together in Fig. 12.27.

Fig. 12.27 Showing (left) a SAR (Synthetic Aperture Rad
earth, and receives the signal reflection in swaths which ar

(drone) based SAR radar elevation of a region of the El

portion sinking ~28 inches) due to ground water extract

courtesy JPL [921]

) satellite, which transmits radar signals to the surface of the

processed and combined for imaging, (right) L-band UAV

entro valley in California, showing elevation change (red

n during the 2015–2016 drought. Public domain images

Tomography for Confocal Microscopy and MRI

Tomography is the acquisition of 2D image slices from 3D volumes. The 2D slices (Fig. 12.28 top left)

are ideally all taken in focus, which requires precision mechanical optical focus adjustments and

distance data from the system to proceed, slice by slice, to take each 2D image in focus. Such systems

are motorized and accurately controlled via software and scripting API’s and GUI interfaces. 3D

Tomography for MRI and X-Ray imaging are familiar in medical applications, where slices of a

specimen are imaged, and later assembled into a volume for image rendering. Industrial applications of

tomography include X-Ray scans of aircraft parts to locate defects and surface cracks. Confocal

an

im

BO

e,

microscopy and MRI medical imaging produce stacks of 2D image scans, which can be combined into

a 3D voxel volume for visualization and analysis, and can take advantage of 3D Fourier transform

methods for data visualization and processing.

Scientific Imaging Systems 665

Fig. 12.28 Fourier slice projection theorem shown for #D

space where the quadrants are shifted, extracting any 2D

Fourier transforming the plane into a discrete 2D image.

quadrant shifted 2D Fourier Series space from a 2D imag

signal

d 2D image sources. TOP: showing a 3d volume in Fourier

age plane passing through the center origin, then inverse

TTOM: extracting a line passing through the center from

and then inverse transforming the extracted line into a 1D

The Fourier transform allows for a forward and inverse transform of 1D, 2D, 3D, and even nD data.

The forward transform generates a frequency spectrum of the sin and cos waves composing the input

source, and the spectrum can be filtered and then inverse transformed to enhance the image, by

removing or enhancing specific frequencies.

Refer Fig. 12.28 for a graphic representation of the algorithm for the Fourier Projection Slice

Theorem, which is one method of 3D light field processing. The 3D Fourier space is used to represent

3D data, for example, data from confocal microscopy stacks as shown in Fig. 12.28 (top left) or MRI

slice scans. To convert the 3D Fourier magnitude & phase results into a space for visualization, 2D

views and renderings are created by slicing out arbitrary 2D plane orientations passing through the

origin of the octant-shifted re-assembled 3D volume—the extracted planes are then inverse

transformed using the 2D FFT resulting in 2D images, see details in Krig [108] and Curless [382, 385].

666 12 Applied and Future Visual Computing Topics

For further information on the 3D FFT analysis, and the Fourier slice method of extracting 2D

images from a 3D volume, refer [922] “DRR Generation using Fourier Slice Theorem on the GPU,”

Marwan Abdellah, Ayman Eldeib, Mohamed I. Owis, 2015. For details on Fourier Signatures for

volumetric 3D data see Skibbe et al. [923] “Fast computation of 3D spherical Fourier harmonic

descriptors—a complete orthonormal basis for a rotational invariant representation of three-

dimensional objects”. For tomography applications see also Three-Dimensional Computer Tomogra-

phy Volume Rendering [924], and Real-time 3D analysis during electron tomography using

tomviz [925].

Confocal Microscopy and Florescence Imaging

Confocal Microscopy methods allow the depth of field to be focused at a specified focal plane in deeper

specimens, and use planar light to illuminate and capture 2D image slices, which can be composed into

a 3D volume, allowing volume rendering and volumetric enhancements, as well as measurement in 3D

(Fig. 12.29). The depth of field controls are implemented by a Z axis travel motor controller, which

moves the specimen on the stage to travel up/down in relation to the lens for imaging different planes in

focus, and later the focused planes are reconstructed into an all-in-focus volume.

Fluorescence Imaging methods introduce colored and fluorescent dyes into the prepared sample,

which allows a precise spectral light source to enhance the desired features in the desired wavelengths

of the dyes, such as cells or intern structures of cells. Note that the light source used may be a laser

illuminating a plane rather than a bulb illuminating a 3D field. The planar light source is selected to

enhance the fluorescence of the prepared and dyed sample in the image plane for optimal visualization.

s.

c

3D

k

Scientific Imaging Systems 667

Fig. 12.29 Comparison of various microscopy technique

slice set reconstruction and volume rendering, bottom left:

probe (red) of nuclear proteins in (green), bottom right:

various densities as lighted shaded polygons. Image (C) Jon

Top left: single-slice widefield image, top right: confocal

onfocal slice image rendering with fluorescence membrane

visualization of nuclear protein regions, color coded for

man et al. [927], used courtesy of Springer Nature Protocols

To dig deeper into microscopy applications and equipment, see the product literature of high-end

microscope vendors, and see also various textbooks:

• Confocal Microscopy Springer Protocol Handbooks [926]

• Tutorial: guidance for quantitative Confocal microscopy [927]

• Springer Handbook of Microscopy [928]

• Confocal Microscopy: Principles and Modern Practices [929]

668 12 Applied and Future Visual Computing Topics

Summary

This chapter provides a discussion of a wide range of applied and future visual computing topics. We

highlight specific background concepts and provide an introduction to the fundamentals of view

synthesis models and computer graphics volume rendering methods. Neural network methods

discussed in Chaps. 9 and 10 and the DDN hybrid networks as discussed in Chap. 11 are being

increasingly applied across visual sciences and research projects. In the commercial realm, we

highlight areas where computer vision is now an expected and familiar commodity, with mostly free

default apps on any smartphone such as face recognition, selfie-images turned into 3D avatars, full 3D

body reconstruction including skin and clothing models, interactive scenic tours overlaying objects

onto the video scene in a mixed-reality fashion, view synthesis, text-to-image synthesis, and much

more. The GPU is becoming a visual computing processor, assisted by special-purpose computer

vision and machine learning processors, as all the pixels are processed and combined for display inside

the GPU. We cover a selected range of applied computer vision technologies in this chapter which

seem to a broad impact, pointing to a future of mixed synthetic objects and real objects through the

merger of computer vision, computer graphics, and imaging.

Learning Assignments

1. Describe view synthesis at a high-level, and discuss a specific view synthesis method of your

choice to add detail to the description as a case in point.

2. Discuss how text-to-image synthesis as used in view synthesis leads to innovations in classifier

design beyond the single-class FC to SoftMax style commonly used in DNN’s.

3. Describe three innovations to image sensors which solve problems with lighting, contrast, and

pixel resolution.

4. Describe super-resolution, what it does, and how it works.

5. Explain how super-resolution can be applied to correct blind spots and occlusion.

6. Describe super-sampling in video, and discuss a few applications.

7. Explain the difference between single-image and multi-image super resolution.

8. List the major technical challenges for image stitching of multiple images together, and describe an

algorithmic-level solution for at least one of the challenges in the stitching process.

9. Describe a light field in terms of various representations including 3D, 5D, and 6D.

10. Create a flow chart showing how Volume Rendering works.

11. Describe a voxel, and create a model of a voxel incorporating color and multi-modal attributes for

GPS coordinates and particle/voxel motion.

12. Discuss applications where 2D image slices are collected and combined into a 3D volume, and

how to eliminate problems that may be unique in each axis, such as low resolution in the z or stack

axis compared to higher resolution in the x,y 2D image axis.

13. Discuss voxel surface lighting and shading, given two light sources, and provide a pseudo-code

implementation.

14. Describe diffusion models and Markov Chain Models.

15. Contrast and compare Curiosity models and GAN’s.

16. Describe the DALLE-@ text-to-image synthesis architecture.

17. Describe Zero-Shot learning, and provide an example.

18. Describe AML classification and feature learning, and contrast with zero-shot learning.

19. Describe how an avatar can be animated using pose points.

20.

Learning Assignments 669

Discuss why Neural Radiance Field Code Books are useful, how a codebook would be used in a

view synthesis application, and what items should be contained in the codebooks such as visual

model info, and catalog indexing info.

21. Describe the 3D Fourier Slice projection method (volume to 2D slices), and describe how the 3D

Fourier Transform works compared to the 2D Fourier Transform.

22. Discuss polarimetric imaging and applications.

23. Discuss fluorescence imaging systems and applications.

24. Describe how avatars created from real images for the cases of simgle image and multiple image

source.

25. Describe how human pose point detection works, and how pose points can be used for biometric

analysis and animation.

Appendix A: Synthetic Feature Analysis

This appendix provides analysis of several common detectors against the synthetic feature alphabets
described in Chap. 7. The complete source code, shell scripts, and the alphabet image sets are available
from Springer Apress at: http://www.apress.com/source-code/ComputerVisionMetrics (Fig. A.1).

Fig. A.1 Example analysis results from Test #4 below, (left) annotated image showing detector locations, (center) count
of each alphabet feature detected, shown as a 2D shaded histogram, (right) set of 2D shaded histograms for rotated image
sets showing all ten detectors

This appendix contains the following:

• Background on the analysis, methodology, goals, and expectations.
• Synthetic alphabet ground truth image summary.
• List of detector parameters used for standard OpenCV methods: SIFT, SURF, BRISK, FAST,

HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB. Note: No feature descriptors are computed
or used, only the detector portions of BRISK, SURF, SIFT, ORB, and STAR are used in the
analysis.

• Test 1: Interest point alphabets.
• Test 2: Corner point alphabets.

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8

671

http://www.apress.com/source-code/ComputerVisionMetrics
https://doi.org/10.1007/978-981-99-3393-8#DOI

672 Appendix A: Synthetic Feature Analysis

• Test 3: Synthetic alphabet overlays onto real images.
• Test 4: Rotational invariance of detectors against synthetic alphabets.

Background Goals and Expectations

The main goals for the analysis are as follows:

• To develop some simple intuition about human vs. machine detection of interest point and corner
detectors, to observe detector behavior on the synthetic alphabets, and to develop some understand-
ing of the problems involved in designing and tuning feature detectors.

• To measure detector anomalies among white, black, and gray versions of the alphabets. A human
would recognize the same pattern easily whether or not the background and foreground are
changed; however, detector design and parameter settings influence detector invariance to back-
ground and foreground polarity.

• To measure detector sensitivity to slight pixel interpolation artifacts under rotation.

Note

Experienced practitioners with well-developed intuition regarding capabilities of interest point and
corner detector methods may not find any surprises in this analysis.

The analysis uses several well-known detector methods as implemented in the OpenCV library
(Table A.1). The analysis provides detector information only, with no intention to compare detector
goodness against any criteria. Details on which features from the synthetic alphabets are recognized by
the various detectors are shown in summary tables, counting the number of times a feature is detected
with each grid cell. For some applications, the synthetic interest point alphabet approach could be
useful, assuming that an application-specific alphabet is designed, and detectors are designed and
tuned for the application, such as a factory inspection application to identify manufactured objects or
parts.

Test Methodology and Results

The images in the ground truth data set are used as input for a few modified OpenCV tests:

• opencv_test_features2d
(BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB)

• opencv_test_nonfree
(SURF, SIFT)

The tuning parameters used for each detector are shown in Table A.1; refer the OpenCV documen-
tation for more information. Note that no attempt is made to tune the detector parameters for the
synthetic alphabets. Parameter settings are reasonable defaults; however, the maximum keypoint
feature count is bumped up in some cases to allow all the detected features to be recorded.

Each test produces a variety of results, including the following results:

Test Methodology and Results 673

Table A.1 Tuning parameters for detectors

Detector Tuning parameters

BRISK octaves = 3
threshold = 30

FAST threshold = 10
nonMaximalSuppression = TRUE

HARRIS maxCorners = 60000 (to capture all detections)
qualityLevel = 1.0
minDistance = 1
blockSize = 3
useHarrisDetecror = TRUE
k = .04

GFFT maxCorners = 60,000 (to capture all detections)
qualityLevel = .01
minDistance = 1.0
blockSize = 3
useHarrisDetector = FALSE
k = .04

MSER Delta = 5
minArea = 60
maxArea = 14400
maxvariation = .25
minDiversity = .2
maxEvolution = 200
areaThreshold = 1.01
minMargin = .003
edgeBlurSize = 5

ORB WTA_K = 2
edgeThreshold = 31
firstLevel = 0 nFeatures = 60,000 (to capture all detections) nLevels = 8 patchSize = 31
scaleFactor = 1.2 scoreType = 0

SIFT contrastThreshold = 4.0 edgeThreshhold = 10.0 nFeatures = 0 nOctaveLayers = 3 sigma = 1.0

STAR maxSize = 45 responseThreshold = 30 lineThresholdProjected = 10 lineThresholdBinarized = 8

SURF Extended = 0 hessianThreshold = 100.0 nOctaveLayers = 3 nOctaves = 4 upright = 0

SIMPLEBLOB thresholdStep = 10
minThreshold = 50
maxThreshold = 220
minRepeatability = 2
minDistBetweenBlobs = 10
filterByColor = true

blobColor = 0
filterByArea = true

minArea = 25
maxArea = 5000
filterByCircularity = false

minCircularity = 0.8f
maxCircularity = std::numeric_limits< float >:: max ()
filterByInertia = true

minInertiaRatio = 0.1f
maxInertiaRatio = std::numeric_limits< float >:: max ()
filterByConvexity = true

minConvexity = 0.95f
maxConvexity = std::numeric_limits< float >:: max ()

674 Appendix A: Synthetic Feature Analysis

1. Annotated images showing location and orientation (if provided) for detected features.
2. Summary count of each detected synthetic feature across the grid in text files, including interest

point coordinates, detector response strength, orientation if provided by the detector, and the
number of total detected synthetic features found.

3. Two-dimensional histograms showing bin count for each feature in the alphabet.

Detector Parameters Are Not Tuned for the Synthetic Alphabets

No feature detector tuning is attempted here. Why? In summary, feature detector tuning has very
limited value in the absence of (1) a specific feature descriptor to use the keypoints and (2) an intended
application and use-cases. Some objections may be raised to this approach, since detectors are
designed to be tuned and must be tuned to get best results for real applications. However, the test
results herein are only a starting point, intended to allow for simple observations of detector behavior
compared to human expectations.

In some cases, a keypoint is not suitable for producing a useful feature descriptor, even if the
keypoint has a high score and high response. If the feature descriptor computed at the keypoint
produces a descriptor that is too weak, the keypoint and corresponding descriptor should both be
rejected. Each detector is designed to be useful for a different class of interest points, and tuned
accordingly to filter the results down to a useful set of good candidates for a specific feature extractor.

Since we are not dealing with any specific feature descriptor methods here, tuning the keypoint
detectors has limited value, since detector parameter tuning in the absence of a specific feature
description is ambiguous. Furthermore, detector tuning will be different for each detector–descriptor
pair, different for each application, and potentially different for each image.

Tuning detectors is not simple. Each detector has different parameters to tune for best results on a
given image, and each image presents different challenges for lighting, contrast, and image
preprocessing. For typical applications, detected keypoints are culled and discarded based on some
filtering criteria. OpenCV provides several novel methods for tuning detectors; however, none are used
here. The OpenCV tuning methods include the following:

• DynamicAdaptedFeatureDetector class will tune supported detectors using an adjusterAdapter()
to only keep a limited number of features, and to iterate the detector parameters several times and
redetect features in order to try and find the best parameters, keeping only the requested number of
best features. Several OpenCV detectors have an adjusterAdapter() provided while some do not,
and the API allows for adjusters to be created.

• AdjusterAdapter class implements the criteria for culling and keeping interest points. Criteria may
include KNN nearest matching, detector response or strength, radius distance to nearest other
detected points, removing keypoints for which a descriptor cannot be computed, or other.

• PyramidAdaptedFeatureDetector class is can be used to adapt detectors that do not use a scale-
space pyramid, and this adapter will create a Gaussian pyramid and detect features over the
pyramid.

• GridAdaptedFeatureDetector class divides an image into grids, and adapts the detector to find the
best features within each grid cell.

Summary of Synthetic Alphabet Ground Truth Images 675

Expectations for Test Results

The reader should treat these tests as information only to develop intuition about feature detection. The
test results do not prove the merits of any detector. Interpretation of the test results should be done with
the following information in mind:

1. One set of detector tuning parameters is used for all images, and detector results will vary widely
based on tuning parameters. In fact, the parameters are deliberately set to over-sensitive values for
ORB, SURF, and other detectors to generate the maximum number of possible keypoints that can
be found.

2. Sometimes an alphabet feature generates multiple detections; for example, a single corner alphabet
feature may actually contain several corner features.

3. The detection results may not be repeatable over the distribution of replicated features in the image
feature grid. In other words, identical patterns, which look about the same to a human, are
sometimes not recognized at different locations. Without looking in detail at each algorithm, it is
hard to say what is happening.

4. Detectors that use an image pyramid such as SIFT, SURF, ORB, STAR, and BRISK may identify
keypoints in a scale space that are offset or in between the actual alphabet features. This is expected,
since the detector is using features from multiple scales.

Summary of Synthetic Alphabet Ground Truth Images

The ground truth dataset is summarized here. Note that rotated versions of each image file in the set are
provided from 0 to 90° at 10° intervals. The 0° image in each set is 1024 × 1024 pixels, and the rotated
images in each set are slightly larger to contain the entire rotated 1024 × 1024 pixel grid.

Synthetic Interest Point Alphabet

The synthetic interest point alphabet contains multiples of the 83 unique patterns, as shown in Fig. A.2.
A total of 7 × 7 sets of the 83 features fit within the 1024 × 1024 image. Total unique feature count for
the image is 7 × 7 × 83 = 4116, with 7 × 7 = 49 instances of each feature. The features are laid out on a
14 × 14 pixel grid composed of 10 rows and 10 columns, including several empty grid locations. Gray
image pixel values are 0 × 40 and 0 × c0, black and white pixel values are 0 × 0 and 0 × ff, respectively.

Fig. A.2 Synthetic interest points

676 Appendix A: Synthetic Feature Analysis

Synthetic Corner Point Alphabet

The synthetic corner point alphabet contains multiples of the 63 unique patterns, as shown in Fig. A.3.
A total of 8 × 12 sets of the 63 features fit within the 1024 × 1024 image. Total unique feature count is
8 × 12 × 63 = 6048, with 8 × 12 = 96 instances of each feature. Each feature is arranged on a grid of
14 × 14 pixel rectangles, including nine rows and six columns of features. Gray image pixel values are
0 × 40 and 0 × c0, black and white pixel values are 0 × 0 and 0 × ff.

Fig. A.3 Synthetic corner point

Synthetic Alphabet Overlays

A set of images with the synthetic alphabets overlaid is provided, including rotated versions of each
image, as shown in Fig. A.4.

Fig. A.4 Synthetic alphabets overlaid on real images

Test 1: Synthetic Interest Point Alphabet Detection

Table A.2 provides the total detected synthetic interest points. Note that total detector counts include
features computed at each scale of an image pyramid. For detectors, which report feature detections at
each level of an image pyramid, individual pyramid-level detections are shown in Table A.3.

Test 1: Synthetic Interest Point Alphabet Detection 677

Table A.2 Summary count of detected features found in the synthetic interest point alphabet, 0° rotation

Detector
Interest points
White on black

Interest points
Black on white

Interest points
White on black
Salt/pepper noise

Interest points
White on black
Gaussian filtered

Interest points
Lt. Gray on Dk. Gray

SURF 18178 19290 33419 22951 13526

SIFT 11672 15208 18323 19054 8519

BRISK 823 4634 25070 9075 550

FAST 343 4971 41265 50711 2112

HARRIS 14833 14217 47025 23473 14854

GFFT 16296 14069 52415 58804 15876

MSER 0 1 2758 2289 0

ORB 32414 42675 56653 55044 27996

STAR 3486 5847 3692 4336 2277

SIMPLEBLOB 441 1201 68 385 441

Table A.3 Octave count of detected features found in the synthetic interest point alphabet, 0° rotation

Detector

Interest points
White on
black

Interest points
Black on
white

Interest points
White on black
Salt/pepper
noise

Interest points
White on black
Gaussian
filtered

Interest points
Lt. Gray on
Dk. Gray

SURF total: Octave
0
Octave 1
Octave 2
Octave 3

18178
9044
4392
4623
119

19290
9807
4505
4862
116

33419
24820
5199
3270
130

22951
15667
3936
3226
122

13526
8176
2801
2435
114

BRISK total
Octave 0
Octave 1
Octave 2
Octave 3

823
258
21

402
136

4634
3482
170
851
101

25070
24686

2
315
54

9075
8256
226
555
31

326
143
0

179
4

ORB total
Octave 0
Octave 1
Octave 2
Octave 3
Octave 4
Octave 5
Octave 6
Octave 7

32414
330
5507
7437
6114
4575
3390
2988
2073

42675
4924
9467
8519
6333
4625
3495
3150
2162

56653
13030
10859
9049
7541
6284
4744
3173
1973

55044
13030
10859
9049
7541
6284
3869
2793
1619

27996
330
5126
7003
5704
3922
2787
2061
1063

The total number of features detected in each alphabet cell is provided in summary tables from the
annotated images. Note that several features may be detected within each 14 × 14 cell, and the
detectors often provide non-repeatable results, which are discussed at the end of this appendix. The
counts show the total number of alphabet features detected across the entire image, as shown in
Fig. A.5.

678 Appendix A: Synthetic Feature Analysis

Fig. A.5 Annotated BRISK detector results. NOTE: there are several non-repeatability anomalies

Test 1: Synthetic Interest Point Alphabet Detection 679

Annotated Synthetic Interest Point Detector Results

For ORB and SURF detectors, the annotated renderings using the drawkeypoints() function are too
dense to be useful for visualization, but are included in the online test results.

The diameter of the circle drawn at each detected keypoint corresponds to the “diameter of the
meaningful keypoint neighborhood,” according to the OpenCV KeyPoint class definition, which
varies in size according to the image pyramid level where the feature was detected. Some detectors
do not use a pyramid, so the diameter is always the same. The position of the detected features is
normalized to the full resolution image, and all detected keypoints are drawn.

Entire Images Available Online

To better understand the detector results for each test, the entire image should be viewed to see the
anomalies, such as where detectors fail to recognize identical patterns. Figure A.5 is an entire image
showing BRISK detector results, while others are available online. Test results shown in Figs. A.6,
A.7, A.8, A.9, A.10, A.11, A.12, A.13, A.14, and A.15 only show a portion of the images.

680 Appendix A: Synthetic Feature Analysis

Fig. A.6 SIMPLEBLOB detector , with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white and gray images, color-coded
tables

Test 1: Synthetic Interest Point Alphabet Detection 681

Fig. A.7 STAR detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper response.
(Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature detections
across all the alphabets in the grid across each 1024 × 1024 image, black, white and gray images, color-coded tables

682 Appendix A: Synthetic Feature Analysis

Fig. A.8 GFFT detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper response.
(Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature detections
across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded tables

Test 1: Synthetic Interest Point Alphabet Detection 683

Fig. A.9 MSER detector (black on white, white on black, and light gray on dark gray have no detected features)

Fig. A.10 ORB detector (annotations using default parameters not useful, images provided online), with results showing
summary count of individual alphabet feature detections across all the alphabets in the grid, across each 1024 × 1024
image, black, white, and gray images, color-coded tables

684 Appendix A: Synthetic Feature Analysis

Fig. A.11 BRISK detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded
tables

Test 1: Synthetic Interest Point Alphabet Detection 685

Fig. A.12 FAST detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded
tables

686 Appendix A: Synthetic Feature Analysis

Fig. A.13 HARRIS detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded
tables

Test 1: Synthetic Interest Point Alphabet Detection 687

Fig. A.14 SIFT detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper response.
(Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature detections
across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded tables

688 Appendix A: Synthetic Feature Analysis

Fig. A.15 SURF detector (annotations using default parameters not useful, images provided online), with results
showing summary count of individual alphabet feature detections across all the alphabets in the grid, across each
1024 × 1024 image, black, white, and gray images, color-coded tables

Test 2: Synthetic Corner Point Alphabet Detection

Table A.4 provides the total detected synthetic corner points at all pyramid levels; some detectors do
not use pyramids. Note that for detectors that report features separately over image pyramid levels,
individual pyramid-level detections are shown in Table A.5.

Each feature exists within a 14 × 14 pixel region, and the total number of features detected in each
cell is provided in summary tables with the annotated images. Note that several features may be
detected within each 14 × 14 cell, and the detectors often provide non-repeatable results, which are
discussed at the end of this appendix.

Table A.4 Summary count of detected features found in the synthetic interest point alphabet, 0° rotation

Detector
Corner points
White on black

Corner points
Black on white

Corner points
White on black
Salt/pepper noise

Corner points
White on black
Gaussian filtered

Corner points
Lt. Gray on Dk. Gray

SURF 28579 28821 32637 26806 26406

SIFT 17996 17515 22377 28624 16122

BRISK 1852 2286 22472 12522 550

FAST 2112 2304 37283 51266 2112

HARRIS 28616 29210 45615 30868 29760

GFFT 32720 31578 51969 55069 32597

MSER 0 0 3751 2446 0

ORB 40162 40373 59549 58693 37665

STAR 5932 6178 5589 7473 4251

SIMPLEBLOB 0 96 1 1 0

Test 2: Synthetic Corner Point Alphabet Detection 689

Table A.5 Octave count of detected features found in the synthetic corner point alphabet, 0° rotation

Detector

Interest points
White on
black

Interest points
Black on
white

Interest points
White on black
Salt pepper
noise

Interest points
White on black
Gaussian
filtered

Interest points
Lt. Gray on
Dk. Gray

SURF total: Octave
0
Octave 1
Octave 2
Octave 3

28579
16122
2327
9989
141

28821
16217
2315

10141
148

32637
20494
2925
9062
156

26806
15402
2008
9297
99

26406
16120
1692
8582
12

BRISK total
Octave 0
Octave 1
Octave 2
Octave 3

1852
1356
172
324

0

2286
1223
278
727
57

22472
21913

2
535
22

12522
11686

183
644
8

550
426
0

124
0

ORB total
Octave 0
Octave 1
Octave 2
Octave 3
Octave 4
Octave 5
Octave 6
Octave 7

40162
1932
6752
9049
6870
4334
4072
3909
3244

40373
2105
6653
9049
6920
4343
4181
3919
3203

59549
13030
10859
9049
7541
6284
5237
4364
3185

58693
13030
10859
9049
7541
6284
5010
4080
2840

37665
1932
6594
9049
6664
4140
3751
3316
2219

Annotated Synthetic Corner Point Detector Results

Test 2 is exactly like the interest point detector results in Test 1. As such, for ORB and SURF detectors,
the annotated renderings using the drawkeypoints() function are too dense to be useful, but are
included in the online test results.

The diameter of the circle drawn at each detected keypoint corresponds to the “diameter of the
meaningful keypoint neighborhood,” according to the OpenCV KeyPoint class definition, which
varies in size according to the image pyramid level where the feature was detected. Some detectors
do not use a pyramid, so the diameter is always the same. The position of the detected features is
normalized to the full resolution image, and all detected keypoints are drawn.

Entire Images Available Online

To better understand the detector results for each test, the entire image should be viewed to see the
anomalies, such as where detectors fail to recognize identical patterns. Test results shown in
Figs. A.16, A.17, A.18, A.19, A.20, A.21, A.22, A.23, A.24, and A.25 only show a portion of the
images.

690 Appendix A: Synthetic Feature Analysis

Fig. A.16 SIMPLE BLOB detector (black on white is the only image with detected features), with results showing
summary count of individual alphabet feature detections across all the alphabets in the grid, across each 1024 × 1024
image, black, white, and gray images, color-coded tables

Test 2: Synthetic Corner Point Alphabet Detection 691

Fig. A.17 STAR detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded
tables

692 Appendix A: Synthetic Feature Analysis

Fig. A.18 GFFT detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded
tables

Test 2: Synthetic Corner Point Alphabet Detection 693

Fig. A.19 BRISK detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded
tables

694 Appendix A: Synthetic Feature Analysis

Fig. A.20 FAST detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded
tables

Test 2: Synthetic Corner Point Alphabet Detection 695

Fig. A.21 HARRIS detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded
tables

696 Appendix A: Synthetic Feature Analysis

Fig. A.22 SIFT detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper response.
(Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature detections
across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded tables

Test 2: Synthetic Corner Point Alphabet Detection 697

Fig. A.23 SURF detector (annotations using default parameters not useful, images provided online), with results
showing summary count of individual alphabet feature detections across all the alphabets in the grid, across each
1024 × 1024 image, black, white, and gray images, color-coded tables

Fig. A.24 ORB detector (annotations using default parameters not useful, images provided online), with results showing
summary count of individual alphabet feature detections across all the alphabets in the grid, across each 1024 × 1024
image, black, white, and gray images, color-coded tables

698 Appendix A: Synthetic Feature Analysis

Fig. A.25 MSER detector (black on white, white on black, and light gray on dark gray have no detected features)

Table A.6 Summary count of detected features found in the synthetic overlay images of little girls

Detector
Normal
Image, no overlays

Black corners
Overlay

White
Corners
Overlay

Black interest
Points overlay

White interest points
Overlay

SURF 3945 16458 20809 10134 14196

SIFT 1672 12417 15347 8017 11551

BRISK 600 7919 10351 5914 8741

FAST 9026 25463 24952 17770 17995

HARRIS 475 9393 22201 4408 11097

GFFT 4474 23009 25120 11632 13872

MSER 1722 174 163 309 209

ORB 7325 53080 57016 41300 50946

STAR 477 3135 5558 2728 4756

SIMPLEBLOB 19 45 10 551 405

Test 3: Synthetic Alphabets Overlaid on Real Images

Table A.6 provides the total detected synthetic features found in the test images of little girls, shown in
Fig. A.3. Note that only the 0° version is used (no rotations), and both the black versions and the white
versions of each alphabet are overlaid. In general, the white feature overlays produce more interest
points and corner-point detections.

Annotated Detector Results on Overlay Images

Annotated images are available online.

Test 4: Rotational Invariance for Each Alphabet

This section provides results showing detector response as rotational invariance across the full 0–90°
rotated image sets of black, white, and gray alphabets. Key observations:

Test 4: Rotational Invariance for Each Alphabet 699

• Black on white, white on black: Rotational invariance is generally less using black and white
images with the current set of detectors and parameters, mainly owing to (1) the maxima and
minima values of 0 × 0 and 0 × ff used for pixel values and (2) un-optimized detector tuning
parameters. The detectors each seem to operate in a similar manner on images at orientations of 0°
and 90° that contain no rotational anti-aliasing artifacts on each alphabet pattern; however, for the
other rotations of 10–80°, pixel artifacts combine to reduce rotational invariance for these alphabet
patterns—each detector behaves differently.

• Light gray on dark gray: Rotational invariance is generally better for the detectors using the
reduced-range gray scale image alphabet sets using pixel values of 0 × 40 and 0 × c0, rather than the
full maxima and minima range used in the black and white image sets. The gray alphabet detector
results generally show the most well-recognized alphabet characters under rotation. This may be
due to the less pronounced local curvature of closer range gray values in the local region at the
interest point or corner.

Methodology for Determining Rotational Invariance

The methodology for determining rotational invariance is illustrated in Figs. A.26, A.27, and A.28, and
illustrated via pseudo-code as follows:

Fig. A.26 Method of computing and binning detected alphabet features across rotated image sets, mocked-up SIFT data
for illustration. (Left) original image. (Center left) Rotated image annotated with detected points. (Center) count of all
detected points across entire image superimposed on alphabet cell regions. (Center right) Summary bin counts of detected
alphabet features in grid cells. (Right) 2D histogram rendering of bin counts as an image; each pixel value is the bin count.
Brighter pixels in the image have a higher bin count, meaning that the alphabet cell has a higher detection count

Fig. A.27 Group of 10 SIFT gray scale corner alphabet feature detection results displayed as a 2D histogram image,
sephia LUT applied, with pixel values set to the histogram bin values. The histogram for each rotated image is
shown here: left image = 0° rotation; left-to-right sequence: 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90° rotations. Note
that the histogram bin counts are computed across the entire image, summing all detections of each alphabet feature

700 Appendix A: Synthetic Feature Analysis

Fig. A.28 (Left) Gray corner points 2D histogram bin images. Left to right: 0–90° rotations, gray scale LUT applied,
and light gray on dark gray interest points alphabet 2D histogram binning image, contrast enhanced, sephia LUT applied

For (degree = 0; degree < 100; degree += 10)
Rotate image (degree)
For each detector (SURF, SIFT, BRISK, . . .):
Compute interest point locations
Annotate rotated image showing interest point locations
Compute bin count (# of times) each alphabet feature is detected
Create bin count image: pixel value = bin count for each alphabet character

Test 4: Rotational Invariance for Each Alphabet 701

Figures A.29 and A.30 show the summary bin counts of synthetic corner point detections across 0–
90° rotations. The 10 columns in each image show, left to right, the 0–90° rotated image final bin
counts displayed as images.

Fig. A.29 Summary bin counts of detected corner alphabet features displayed as a set of 6 × 9 pixel images, where each
pixel value is the bin count. (Left 10 × 10 image group) Black on white corners. (Center 10 × 10 image group) Light gray
on dark gray corners. (Right 10 × 10 image group) White on black corners. Note that the gray alphabets are detected with
the best rotational invariance. The columns are left to right 0–90° rotations, and rows are top to bottom, SURF, SIFT,
BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB. Sephia LUT applied

Fig. A.30 Summary bin counts of detected interest point alphabet features displayed as a set of 10 × 10 pixel images,
where each pixel value is the bin count. (Left 10 × 10 image group) Black on white corners. (Center 10 × 10 image group)
Light gray on dark gray corners. (Right 10 × 10 image group) White on black corners. Note that the gray alphabets are
detected with the best rotational invariance. The columns are left to right 0–90° rotations, and rows are top to bottom,
SURF, SIFT, BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB. Sephia LUT applied

702 Appendix A: Synthetic Feature Analysis

Analysis of Results and Non-repeatability Anomalies

Complete analysis results are online, including annotated images showing detected keypoint locations
and text files containing summary information on each detected keypoint.

Caveats

There are deliberate reasons why each interest point detector is designed differently; no detector may
be considered superior in all cases by any absolute measure. A few arguments against loosely
interpreting these tests results are as follows:

1. Unpredictability: Interest point detectors find features that are often unpredictable from the human
visual system standpoint, and they are not restricted by design into the narrow boundaries of
synthetic interest points and corners points shown here. Often, the interest point detectors find
features that a human would not choose.

2. Pixel aliasing artifacts: The aliasing artifacts affect detection and are most pronounced for the
rotated images using maxima and minima alphabets, such as black on white or white on black, and
are less pronounced for light gray on dark gray alphabets.

3. Scale space: Not all the detectors use scale space, and this is a critical point. For example, SIFT,
SURF, and ORB use a scale-space pyramid in the detection process. The scale-space approach
filters out synthetic alphabet features that are not visible in some levels of a scale-space pyramid.

4. Binary vs. scalar values: FAST uses a binary value comparison to build up the descriptor, while
other methods use scalar values such as gradients. Binary value methods, such as FAST, will detect
the same feature regardless of polarity or gray value range; however, scalar detectors based on
gradients are more sensitive to pixel value polarity and pixel value ranges.

5. Pixel region size: FAST uses a 7 × 7 patch to look for connected circle perimeter regions, while
other features like SIFT, SURF, and ORB use larger pixel regions that bleed across alphabet grid
cells, resulting in interest points being centered between alphabet features, rather than on them.

6. Region shape: Features such as MSER and SIMPLEBLOB are designed to detect larger connected
regions with no specific shape, rather than smaller local features such as the interest point alphabets.
An affine-invariant detector, such as SIFT, may detect features in an oval or oblong region
corresponding to affine scale and rotation transformations, while a non-affine detector, such as
FAST, may only detect the same feature as a template in a circular or square region with some
rotational invariance at scale.

7. Offset regions from image boundary: Some detectors, such as ORB, SURF, and SIFT, begin
detector computations at an offset from the image boundaries, so features are not computed across
the entire image.

8. Proven value: Each detector method used here has proved useful and valuable for real applications.

With these caveats in mind, the test results can be allowed to speak for themselves.

Non-repeatability in Tests 1 and 2

One interesting anomaly visible in Tests 1 and 2 appears in the annotated images, illustrating that
detector results are not repeatable on the synthetic interest point and corner alphabets. In some cases,

the nonlinearity is striking; see the annotated images for Tests 1 and 2. The expectation of a human is
that identical interest points should be equally well recognized. Here are some observations:

Analysis of Results and Non-repeatability Anomalies 703

1. A human would recognize the same pattern easily whether or not the background and foreground
are changed; however, some detectors do not have much invariance to extreme background and
foreground polarity. The anomalies between detector behavior across white, black, and gray
versions of the alphabets are less expected and harder to explain without looking deeper into
each algorithm.

2. Some detectors compute over larger region boundaries than the 14 × 14 alphabet grid, so detectors
virtually ignore the alphabet feature grid and use adjacent pieces of alphabet features.

3. Some detectors use scale space, so individual alphabet features are missed in some cases at higher
scale levels, and detectors such as SIFT DoG use multiple scales together.

In summary, interest point detection and parameter tuning are analogous to image processing
operators and their parameters: there are endless variations available to achieve the same goals. It is
hoped that, by studying the test results here, intuition will be increased and new approaches can be
devised.

Other Non-repeatability in Test 3

We note non-repeatability anomalies with Test 3 using little girl images with synthetic overlays, but
there is less expectation of repeatability in this test. Some analysis of the differences between the
positive (white) and negative (black) feature overlays can be observed in the annotated synthetic
overlay images online.

Test Summary

Take-away analysis for all tests includes the following:

1. Non-repeatability: Some non-repeatability anomalies detecting nearly identical features, differing
only under rotation by local pixel interpolation artifacts. Some detectors also detect the black, white
and gray alphabets differently.

2. Gray level alphabets (lt.gray on dk.gray) are detected generally most similar to human
expectations. The results show that detectors, with the current tuning parameters, respond more
uniformly across rotation with gray level patterns, rather than maxima black and white patterns.

3. Real images overlaid with synthetic images tests provide interesting information to develop
intuition about detector behavior—for illustration purposes only.

Future Work

Additional analysis should include devising and using alternative alphabets suited for a given type of
application, including a larger range of pixel sizes and scales, especially alphabets with closer gray
level value polarity, rather than extreme maxima and minima pixel values. Detector tuning should also
be explored across the alphabets.

Appendix B: Survey of Ground Truth
Datasets

Table B.1 is a brief survey of public domain datasets public domain datasets in various categories, in
no particular order. Note that many of the public domain datasets are freely available from universities
and government agencies.

Table B.1 Public domain datasets

Name Labelme

Description Annotated scenes and objects

Categories Over 30,000 images; comprehensive; hundreds of categories, including car, person, building, road,
sidewalk, sky, tree

Contributions Open to contributions

Tools and
apps

Labelme app for iPhone to contribute to database

Key papers [44, 159]

Owner MIT CSAIL

Link http://new-labelme.csail.mit.edu/Release3.0/

Name COCO challenge

Description Deals with various types of segmentation using a few standard curated sets of images, over 500,000
images total in over 80 categories
Superpixels Instance/Semantic/Panoptic
Scene recognition

Link https://cocodataset.org/#home

Name DIV8K

Description DIVerse 8K Resolution Image Database SuperResolution challenge

Link https://people.ee.ethz.ch/~timofter/publications/Gu-ICCVW-2019b.pdf

Name Waymo Open datasets

Description DIVerse 8K Resolution Image Database SuperResolution challenge

Link https://arxiv.org/pdf/2008.10112v1.pdf

Name SUN

Description Annotated scenes and objects

Categories 908 scene categories, 3,819 object categories,13,1072 objects, and growing

Contributions Open to contributions

Tools and
apps

Image classifier source code + API, iOS app, Android app

Key papers [46]

Owner MIT CSAIL

(continued)

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8

705

http://new-labelme.csail.mit.edu/Release3.0/
https://cocodataset.org/#home
https://people.ee.ethz.ch/~timofter/publications/Gu-ICCVW-2019b.pdf
https://arxiv.org/pdf/2008.10112v1.pdf
https://doi.org/10.1007/978-981-99-3393-8#DOI

706 Appendix B: Survey of Ground Truth Datasets

Table B.1 (continued)

Name SUN

Link http://groups.csail.mit.edu/vision/SUN/

Name UC Irvine Machine Learning Repository

Description Very useful; huge repository of many categories of images

Categories Too many to list; very wide range of categories, many attributes of the data are specifically searchable
and designed into the ground truth datasets

Contributions Ongoing

Tools and
apps

Online assistant to search for specific ground truth datasets

Key papers [474]

Link http://archive.ics.uci.edu/ml/datasets.html

Name Stanford 3D Scanning Repository

Description High-resolution 3D scanned images with sub-millimeter accuracy, including XYZ and RGB datasets

Categories Several scanned 3D objects with 3D point clouds, resolution ranging from 3,400,000 scanned point to
750,000 triangles and upwards

Link http://graphics.stanford.edu/data/3Dscanrep/

Name KITTI Benchmark Suite , Karlsruhe Institute of Technology

Description Stereo datasets for various city driving scenes

Categories KITTI benchmark suite covers optical flow, odometry, object detection, object orientation estimation;
Karlsruhe sequences cover grayscale stereo sequences taken from a moving platform driving through a
city; Karlsruhe objects cover grayscale stereo sequences taken from a moving platform driving through
a city

Link http://www.cvlibs.net/datasets/index.html

Name Caltech Object Recognition Datasets

Description Old but still useful; objects in hundreds of categories, some annotated with outlines

Categories Over 256 categories, animals, plants, people, common objects, common food items, tools, furniture,
and many more

Key papers [47]

Link http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://authors.library.caltech.edu/7694/ (latest versions of 101 and 256)

Name ImageNet + Wordnet

Description Labeled, annotated, bounding-boxed, and feature-descriptor marked images; over 14,197,122 images
indexed into 21,841 sets of similar images, or synsets, created using sister app Wordnet

Categories Categories include almost anything

Contributions Images taken from Internet searches

Tools and
apps

Online controls: http://www.image-net.org/download-API
Source Code: ImageNet Large Scale Visual Recognition Challenge (ILSVRC2010) http://www.
image-net.org/challenges/LSVRC/2010/index

Key papers [48]; several see http://www.image-net.org/about-publication

Owner Images have individual owners; website is # Stanford and Princeton

Link http://www.image-net.org/
http://www.image-net.org/challenges/LSVRC/2012/

Name Middlebury Computer Vision Datasets

Description Scholarly and comprehensive datasets, and algorithm comparisons over most of the datasets

Categories Stereo vision (excellent), multi-view stereo (excellent), MRF, Optical Flow (excellent), Color
processing

Contributions Algorithm benchmarks over the datasets can be submitted

Key papers Several; see website

Owner Middlebury College

Link http://vision.middlebury.edu/

http://groups.csail.mit.edu/vision/SUN/
http://archive.ics.uci.edu/ml/datasets.html
http://graphics.stanford.edu/data/3Dscanrep/
http://www.cvlibs.net/datasets/index.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://authors.library.caltech.edu/7694/
http://www.image-net.org/download-API
http://www.image-net.org/challenges/LSVRC/2010/index
http://www.image-net.org/challenges/LSVRC/2010/index
http://www.image-net.org/about-publication
http://www.image-net.org/
http://www.image-net.org/challenges/LSVRC/2012/
http://vision.middlebury.edu/

Analysis of Results and Non-repeatability Anomalies 707

Name ADL Activity Recognition Dataset

Description Annotated scenes for activity recognition of common living scenes

Categories Daily life

Tools and
apps

Activity recognition code available (see link below)

Key papers [49]

Link http://deepthought.ics.uci.edu/ADLdataset/adl.html

Name MIT Indoor Scenes 67, Scene Classification

Description Annotated dataset specifically containing diverse indoor scenes

Categories 15,620 images organized into 67 indoor categories, some annotations in Labelme format

Key papers [37]

Link http://web.mit.edu/torralba/www/indoor.html

Name RGB-D Object Recognition Dataset, U of W

Description Dataset contains RGB and corresponding depth images

Categories 300 common household objects, 51 categories using Wordnet similar to ImageNet style (ImageNet
dataset reviewed above), each object recorded in RGB and Kinect depth at various rotational angles
and viewpoints

Key papers [45]

Link http://www.cs.washington.edu/rgbd-dataset/

Name NYU Depth Datasets

Description Annotated dataset of indoor scenes using RGB-D datasets + accelerometer data

Categories Over 500,000 frames, many different indoor scenes and scene types, thousands of classes,
accelerometer data, inpainted and raw depth information

Tools and
apps

MATLAB toolbox + g++ code

Key papers [51]

Link http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

Name Intel Labs Seattle —Egocentric Recognition of Handled Objects

Description Annotated dataset for egocentric handled objects using a wearable camera

Categories Over 42 everyday objects under varied lighting, occlusion, perspectives; over 6GB total video
sequence data

Key papers [52, 53]

Link http://seattle.intel-research.net/~xren/egovision09/

Name Georgia Tech GTEA Egocentric Activities—Gaze(+)

Description Annotated dataset for egocentric handled objects using a wearable camera

Categories Many everyday objects under varied lighting, occlusion, perspectives

Tools and
apps

Code library of vision functions and mathematical functions

Key papers [54]

Link http://www.cc.gatech.edu/~afathi3/GTEA_Gaze_Website/

Name CUReT: Columbia-Utrecht Reflectance and Texture Database

Description Extensive texture sample and illumination datasets directions

Categories Over 60 different samples with over 200 viewing and illumination combinations, BRDF measurement
database, more

Key papers

Link

[55]

http://www.cs.columbia.edu/CAVE/software/curet/

Name MIT Flickr Material Surface Category Dataset

Description Dataset for identifying material categories including fabric, glass, metal, plastic, water, foliage, leather,
paper, stone, and wood

Categories Contains images of materials for surface property analysis, in contrast to object or texture analysis;
10 categories of materials + 100 images in each category

Key papers [56]

(continued)

http://deepthought.ics.uci.edu/ADLdataset/adl.html
http://web.mit.edu/torralba/www/indoor.html
http://www.cs.washington.edu/rgbd-dataset/
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://seattle.intel-research.net/~xren/egovision09/
http://www.cc.gatech.edu/~afathi3/GTEA_Gaze_Website/
http://www.cs.columbia.edu/CAVE/software/curet/

708 Appendix B: Survey of Ground Truth Datasets

Table B.1 (continued)

Name MIT Flickr Material Surface Category Dataset

Link http://people.csail.mit.edu/celiu/CVPR2010/index.html

Name Faces in the Wilds

Description Collection of over 13,000 images of faces annotated with names of people

Categories Faces

Key papers [57]

Link http://vis-www.cs.umass.edu/lfw/

Name The CMU Multi-PIE Face Database

Description Annotated face and emotion database with multiple pose angles

Categories 750,000 face images are taken over a period of several months for each of 337 subjects over
15 viewpoints and 19 illuminations, annotated facial expressions

Key papers [58]

Link http://www.multipie.org/

Name Stanford 40 Actions

Description People actions image database

Categories People performing 40 actions, bounding-box annotations, 9,532 images, 180-300 images per action
class

Key papers [59]

Link http://vision.stanford.edu/Datasets/40actions.html

Name NORB 3D Object Recognition from Shape

Description NYU object recognition benchmark

Categories Stereo image pairs; 194,400 total images of 50 toys under 36 azimuths, 9 elevations, and 6 lighting
conditions

Tools and
apps

EBLEARN C++ learning and vision library, LUSH programming language, VisionGRader object
detection tool
http://www.cs.nyu.edu/~yann/software/index.html

Key papers [60]

Link http://www.cs.nyu.edu/~yann/research/norb/

Name Optical Flow Algorithm Evaluation

Description Tools and data for optical flow evaluation purposes

Categories Many optical flow sequence ground truth datasets

Tools and
apps

Tool for generating optical flow data, some optical flow code algorithms

Key papers [61]

Link http://of-eval.sourceforge.net/

Name PETS Crowd Sensing Dataset Challenge

Description Multi-sensor camera views composed into a dataset containing sequences of crowd activities

Categories Challenge goals include crowd estimation, density, tracking of specific people, flow of crowd

Key papers [68]

Link http://www.cvg.rdg.ac.uk/PETS2009/a.html

Nam I-LIDS

Description Security-oriented challenge ground truth dataset to enable competitive benchmarking including scenes
for locating parked vehicles, abandoned baggage, secure perimeters, and doorway surveillance

Categories Various categories in the security domain

Contributions No, funded by UK government

Tools and
apps

n.a.

Key papers n.a.

Link http://computervision.wikia.com/wiki/I-LIDS

Name TRECVID, NIST, US Government

(continued)

http://people.csail.mit.edu/celiu/CVPR2010/index.html
http://vis-www.cs.umass.edu/lfw/
http://www.multipie.org/
http://vision.stanford.edu/Datasets/40actions.html
http://www.cs.nyu.edu/~yann/software/index.html
http://www.cs.nyu.edu/~yann/research/norb/
http://of-eval.sourceforge.net/
http://www.cvg.rdg.ac.uk/PETS2009/a.html
http://computervision.wikia.com/wiki/I-LIDS

Analysis of Results and Non-repeatability Anomalies 709

Table B.1 (continued)

Name TRECVID, NIST, US Government

Description NIST-sponsored public project spanning 2001-2013 for research in automatic segmentation, indexing,
and content-based video retrieval

Categories (1) Semantic indexing (SIN), (2) known-item search (KIS), (3) instance search (INS), (4) multimedia
event detection (MED), (5) multimedia event recounting (MER), and (6) surveillance event detection
(SER), natural scenes, humans, vegetation, pets, office objects, and many more

Contributions Annually by the U.S. Government

Tools and
apps

The Framework For Detection Evaluations (F4DE) tool, story evaluation tool, and others

Key papers [69]

Link http://www-nlpir.nist.gov/projects/trecvid/

Name Microsoft Research Cambridge

Description Pixel-wise labeled or segmented objects

Categories Several hundred objects

Link http://research.microsoft.com/en-us/projects/objectclassrecognition/

Name Optical Flow Algorithm Evaluation

Description Volume-rendered video scenes for optical flow algorithm benchmarking

Categories Various scenes for optical flow; mainly synthetic sequences generated via ray tracing

Contributions n.a.

Tools and
apps

Yes, Tcl/Tk

Key papers [70]

Link http://of-eval.sourceforge.net/

Name Pascal Object Recognition VOC Challenge Dataset

Description Standardized ground truth data for a research challenge spanning 2005-2013 in the area of object
recognition; competitions include classification, detection, segmentation, and actions over each of
20 classes of data

Categories Consists of over 20 classes of objects in scenes including persons, animals, vehicles, and indoor
objects

Contributions Via the Pascal conference

Tools and
apps

Includes a developer kit and other useful software for labeling data and database access, and tools for
reporting benchmarks results

Key papers [71]

Link http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Name CRCV

Description Very extensive; University of Central Florida’s Center for Research in Computer Vision hosts a large
collection of research data covering several domains

Categories Comprehensive set of categories (aerial views, ground views) including dynamic textures, multi-modal
iPhone sensor ground truth data (video, accelerometer, gyro), several categories of human actions,
crowd segmentation, parking lots, human actions, and much more

Contributions n.a.

Tools and
apps

n.a.

Key papers [72]

Link http://vision.eecs.ucf.edu/datasetsActions.html

Name UCB Contour Detection and Image Segmentation

Description U.C. Berkeley Computer Vision group provides a complete set of ground truth data, algorithms, and
performance evaluations for contour detection, image segmentation, and some interest point methods

Categories 500 ground truth images on natural scenes containing a wide range of subjects and labeled ground truth
data

Contributions n.a.

(continued)

http://www-nlpir.nist.gov/projects/trecvid/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://of-eval.sourceforge.net/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://vision.eecs.ucf.edu/datasetsActions.html

710 Appendix B: Survey of Ground Truth Datasets

Table B.1 (continued)

Name UCB Contour Detection and Image Segmentation

Tools and
apps

Benchmarking code (globalPB for CPU and GPU)

Key papers [73]

Link http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bench

Name

Description

CAVIAR Ground Truth Videos for Context-Aware Vision

Project site containing labeled and annotated ground truth data of humans in cities and shopping
centers, including 52 videos with 90K frames total including people in indoor office scenes and
shopping centers

Categories Both scripted and real-life activities in shopping centers and offices, including walking, browsing,
meeting, fighting, window shopping, and entering/exiting stores

Contributions n.a.

Tools and
apps

n.a.

Key papers [74]

Link http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm

Name Boston University Computer Science Department

Description Image and video database covering a wide range of subject categories

Categories Video sequences for head tracking and sign language; some datasets are labeled; still images for hand
tracking, multi-face tracking, vehicle tracking, and many more

Contributions Anonymous FTP

Tools and
apps

n.a.

Key papers [75]

Link http://www.cs.bu.edu/groups/ivc/data.php

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bench
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
http://www.cs.bu.edu/groups/ivc/data.php

Appendix C: Imaging and Computer Vision
Resources

This appendix contains a list of some resources for computer vision and imaging, including commer-
cial products, open-source projects, organizations, and standards bodies.

Commercial Products

Name MATLAB

Description Industry standard math package with many scientific package options for various fields including
imaging and computer vision. Includes a decent software development environment, providing add-on
libraries for computer vision, image processing, visualization, and many more. Suited well for code
development.

Library
API

Extensive API libraries Internal to the SDE.

SDE Includes software development environment for coding.

Open
Source

Not for the product, but possibly for some code developed by users.

Link http://www.mathworks.com/products/matlab/

Name Mathematica

Description Industry standard math package with many scientific package options for various fields, including image
processing and computer vision. Excellent for creation of publication-ready visualizations and math
notebooks. Add-on libraries for computer vision, image processing, visualization, and many more.

Library
API

Extensive API libraries Internal to the SDE.

SDE Includes a default function-based script development environment, and some code development add-ons.

Open
Source

Not for the product, but possibly for code developed by users.

Link http://www.wolfram.com/mathematica/

Name Intel TBB, Intel IPP, Intel CILK++

Description Intel provides libraries, languages, and compilers optimized for the IA instruction set. Intel TBB is a
multi-threading library for single and multi-core processors, Intel IPP provides imaging and computer
vision performance primitives optimized for IA and SIMD instructions and in some cases GPGPU, and
Intel CILK++ is a language for writing SIMD/SIMT parallel code.

Library
API

Extensive API libraries.

SDE No, but Intel CILK++ is a programming language.

tinued)(co

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8

n

711

http://www.mathworks.com/products/matlab/
http://www.wolfram.com/mathematica/
https://doi.org/10.1007/978-981-99-3393-8#DOI

712 Appendix C: Imaging and Computer Vision Resources

Name Intel TBB, Intel IPP, Intel CILK++

Open
Source

No.

Link http://software.intel.com/en-us/intel-tbb, http://software.intel.com/en-us/intel-ipp

Open Source

Name OpenCV

Description Industry standard computer vision and image processing library, used worldwide by major
corporations and others.

Library API Extensive API library.

SDE No.

Open Source BSD license.

Link http://opencv.org/

Name ImageJ—FIJI

Description Application for image processing, visualization, and computer vision. Developed by the USG National
Institutes of Health [429], available for public use. Extensive. FIJI is a distribution of ImageJ with
many plug-ins submitted by the user community.

Library API No.

SDE No.

Open Source Public domain use.

Link http://rsbweb.nih.gov/ij/index.html
http://rsb.info.nih.gov/ij/plugins/
http://fiji.sc/Fiji

Name VLFEAT

Description C library containing a range of common computer vision algorithms for feature description, pattern
matching, and image processing.

Library API Extensive API library.

SDE No.

Open Source BSD license.

Link http://vlfeat.org

Name VTK

Description C++ library containing a range of common image processing, graphics, and data visualization
functions. Includes GUI widgets. VTL also provides consulting.

Library API Extensive API library.

SDE No.

Open Source BSD license.

Link http://vtk.org/

Name MeshLab

Description Application for visualizing, rendering, annotating, and converting 3D data meshes such as point clouds
and CAD designs. Extensive. Uses the VCG library from ISTI—CNR.

Library API No.

SDE No.

(continued)

http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-ipp
http://opencv.org/
http://rsbweb.nih.gov/ij/index.html
http://rsb.info.nih.gov/ij/plugins/
http://fiji.sc/Fiji
http://vlfeat.org
http://vtk.org/

Open Source 713

Name MeshLab

Open Source BSD license.

Link http://meshlab.sourceforge.net/

Name PfeLIb

Description Library for image processing and computer vision acceleration.

Library API Yes.

SDE No.

Open Source No.

Link See reference [422].

Name Point Cloud Library (PCL)

Description Extensive open-source library for dealing primarily with 3D point clouds, including implementations
of many cutting-edge 3D descriptors from the latest academic research and visualization methods.

Library API Yes.

SDE No.

Open Source Yes.

Link http://pointclouds.org/downloads/
http://pointclouds.org/documentation/
http://docs.pointclouds.org/trunk/a02944.html

Name Shogun Machine Learning Toolbox

Description Library for machine learning and pattern matching. Extensive.

Library API Yes.

SDE No.

Open Source GPL.

Link http://shogun-toolbox.org/page/features/

Name Halide High-Performance Image Processing Language

Description C++ language classes optimized for SIMD, SIMT, and GPGPU.

Library API Yes.

SDE No.

Open Source Open-source MIT license.

Link http://halide-lang.org/

Name REIN (Recognition Infrastructure) Vision Algorithm Framework

Description Framework for computer vision in robotics; uses ROS operating system.
See references [328, 430].

Library API Yes.

SDE No.

Open Source Open-source MIT license.

Link http://wiki.ros.org/rein

Name ECTO—Graph Network Construction for Computer Vision

Description Library for creating directed acyclic graphs of functions for computer vision pipelines, supports
threading. Written in a C++/Python framework. Can integrate with OpenCV, PCL and ROS.

Library API Yes.

SDE No.

Open Source Apparently.

Link http://plasmodic.github.io/ecto/

http://meshlab.sourceforge.net/
http://pointclouds.org/downloads/
http://pointclouds.org/documentation/
http://docs.pointclouds.org/trunk/a02944.html
http://shogun-toolbox.org/page/features/
http://halide-lang.org/
http://wiki.ros.org/rein
http://plasmodic.github.io/ecto/

714 Appendix C: Imaging and Computer Vision Resources

Organizations, Institutions, and Standards

Microsoft Research
http://academic.research.microsoft.

com/
Google Research, Deep Mind #1

FAIR—Facebook Research
(META

Microsoft Research has one of the largest staff of computer vision experts in the
world, and actively promotes conferences and research. Provides several good
resources online.
Google Research combined with Deep Mind publishes over half of all research
papers in major conferences such as CVPR, NIPS, and others.
META has collected a large group of researchers in the areas of AI and machine
learning.

CIE
http://www.cie.co.at/

International Commission on Illumination, abbreviated CIE after the French
name, provides standard illuminant data for a range of light sources as it pertains
to color science, as well as standards for the well-known color spaces CIE XYZ,
CIE Lab and CIE Luv.

ICC
http://www.color.org/index.xalter

International Color Consortium provides the ICC standard color profiles for
imaging devices, as well as many other industry standards, including the sRGB
color space for color displays.

CAVE Computer Vision
Laboratory
http://www.cs.columbia.edu/
CAVE/

Computer Vision Laboratory at Columbia University, directed by Dr. Shree
Nayar, provides world-class imaging and vision research.

RIT Munsell Color Science
Laboratory
http://www.rit.edu/cos/
colorscience/

Rochester Institute of Technology Munsell Color Science Laboratory is among
the leading research institutions in the area or color science and imaging,
provides a wide range of resources, and has with strong ties to industry imaging
giants such as Kodak, Xerox, and others.

OPENVX KHRONOS
http://www.khronos.org/openvx

OPENVX is a proposed standard for low-level vision primitive acceleration,
operated with the KHRONOS standards group.

SPIE
Society for Optics and Photonics
Journal of Medical Imaging

Journal of Electronic Imaging

Journal of Applied Remote Sensing

http://spie.org/

Interdisciplinary approach to the science of light, including photonics, sensors,
and imaging; promotes conferences and publishes journals.

IEEE
CVPR, Computer Vision and
Pattern Recognition
PAMI, Pattern Analysis and
Machine Intelligence
ICCV, International Conference on
Computer Vision
IP, Trans. Image Processing
http://ieee.org

Society for publication of journals and conferences, including various computer
vision and imaging topics.

CVF
Computer Vision Foundation
http://www.cv-foundation.org/

Promotes computer vision, provides dissemination of papers.

NIST—Image Group (USG)
National Institute Of Standards
http://www.nist.gov/itl/iad/ig/

Promotes computer vision and imaging grand challenges; covers biometrics
standards, fingerprint testing, face, iris, multimodal testing, nextgeneration test
bed.

I20—Darpa information innovation
office (USG)

http://www.darpa.mil/Our_Work/
I2O/Programs/

http://www.darpa.mil/
OpenCatalog/index.html

Extensive array of computer vision and related program research for military
applications.
Some work is released to the public via the OpenCatalog

http://academic.research.microsoft.com/
http://academic.research.microsoft.com/
http://www.cie.co.at/
http://www.color.org/index.xalter
http://www.cs.columbia.edu/CAVE/
http://www.cs.columbia.edu/CAVE/
http://www.rit.edu/cos/colorscience/
http://www.rit.edu/cos/colorscience/
http://www.khronos.org/openvx
http://spie.org/
http://ieee.org
http://www.cv-foundation.org/
http://www.nist.gov/itl/iad/ig/
http://www.darpa.mil/Our_Work/I2O/Programs/
http://www.darpa.mil/Our_Work/I2O/Programs/
http://www.darpa.mil/OpenCatalog/index.html
http://www.darpa.mil/OpenCatalog/index.html

Conferences and Their Abbreviations 715

Journals and Their Abbreviations

• CVGIP Graphical Models/graphical Models and Image Processing/computer Vision, Graphics,

and Image Processing

• CVIU Computer Vision and Image Understanding
• IJCV International Journal of Computer Vision
• IVC Image and Vision Computing
• JMIV Journal of Mathematical Imaging and Vision

• MVA Machine Vision and Applications

• TMI—IEEE Transactions on Medical Imaging

Conferences and Their Abbreviations

• 3DIM International Conference on 3D Imaging and Modeling
• 3DPVT 3D Data Processing Visualization and Transmission
• ACCV Asian Conference on Computer Vision
• AMFG Analysis and Modeling of Faces and Gestures
• BMCV Biologically Motivated Computer Vision
• BMVC British Machine Vision Conference
• CRV Canadian Conference on Computer and Robot Vision
• CVPR Computer Vision and Pattern Recognition
• CVRMed Computer Vision, Virtual Reality and Robotics in Medicine
• DGCI Discrete Geometry for Computer Imagery
• ECCV European Conference on Computer Vision
• EMMCVPR Energy Minimization Methods in Computer Vision and Pattern Recognition
• FGR IEEE International Conference on Automatic Face and Gesture Recognition
• ICARCV International Conference on Control, Automation, Robotics and Vision
• ICCV International Conference on Computer Vision
• ICCV Workshops
• ICVS International Conference on Computer Vision Systems
• ICWSM International Conference on Weblogs and Social Media
• ISVC International Symposium on Visual Computing
• NIPS Neural Information Processing Systems
• Scale-Space Theories in Computer Vision
• VLSM Variational, Geometric, and Level Set Methods in Computer Vision
• WACV Workshop on Applications of Computer Vision

716 Appendix C: Imaging and Computer Vision Resources

Online Resources

Name CVONLINE

Description Huge list of computer vision software and projects, indexed to Wikipedia

Link http://homepages.inf.ed.ac.uk/rbf/CVonline/environ.htm

Name Annotated Computer Vision Bibliography

Description Huge index of links to computer vision topics, references, software, and many more

Link http://www.visionbib.com/bibliography/contents.html

Name NIST Online Engineering Statistics Handbook(USG)

Description Handbook for statistics, includes examples and software

Link http://www.itl.nist.gov/div898/handbook/

Name The Computer Industry (David Lowe)

Description Includes links to major computer vision and imaging product companies

Link http://www.cs.ubc.ca/~lowe/vision.html

Artificial Intelligence and Computer Vision-Key Research

• Dalle Molle Institute for Artificial Intelligence Research, Juergen Schmidhuber
• The Courant Institute of Mathematical Sciences, Center for Neural Science, Yann LeCun
• Department of Computer Science and Operations Research Canada Research Chair in Statistical

Learning Algorithms, Yoshua Bengio and Geoffrey E. Hinton
• Stanford Computer Science Department, Andrew Ng

Neuroscience Journals and Research

• Nature—International weekly journal of science
• Nature Reviews Neuroscience
• Nature Neuroscience Journal
• Brain (A journal of Neurology Oxford University)
• Annals of Neurology
• Behavioral and Brain Sciences
• NeuroImage (Elsevier)
• NeuroComputing (Elsevier)
• Neuroscience (Elsevier)
• Neuron (Elsevier)
• The Journal of Neuroscience
• European Journal of Neuroscience
• PLOS Computational Biology
• Neural Information Processing Systems (NIPS)
• Vision Research (Elsevier)

http://homepages.inf.ed.ac.uk/rbf/CVonline/environ.htm
http://www.visionbib.com/bibliography/contents.html
http://www.itl.nist.gov/div898/handbook/
http://www.cs.ubc.ca/~lowe/vision.html

Selected Deep Learning Resources 717

• Brain Research (Elsevier)
• International Conference on Machine Learning
• Journal of Cognitive Neuroscience
• The Journal of Machine Learning Research

Selected Deep Learning Resources

• PyTorch—Python open source code for machine learning
https://pytorch.org/

• TensorFlow—more deep learning libraries HW/SW optimized by Google
https://www.tensorflow.org/

• Keras—AI api’s
https://keras.io/

• ONEAPI (Intel, NVIDIA, AMD, and others) Opensource acceleration code for AI, more
https://www.oneapi.io/spec/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#gs.rl3pie

• ONYX open source foundation models
https://onnx.ai/

• Modelzoo.co—pretrained models for DNN’s
https://modelzoo.co/

• HUGGING FACE open source foundation models
https://huggingface.co/models

• TORCH open source code for machine learning
http://torch.ch

• FANN Fast Artificial Neural Network Library
http://leenissen.dk/fann/wp/

• Minerva: deep learning toolkit for multi-GPU acceleration
https://github.com/dmlc/minerva

• Caffe—CNN deep learning open source
http://caffe.berkeleyvision.org

• Caffe 2 (from Facebook)—faster and distributed options
https://developer.nvidia.com/blog/caffe2-deep-learning-framework-facebook/

• cuDNN—Optimized NVIDIA deep learning library, works with caffe
https://developer.nvidia.com/cudnn

• DeepLearnToolbox—MATLAB deep learning tools
https://github.com/rasmusbergpalm/DeepLearnToolbox

• Neon—Python-based deep learning library
http://neon.nervanasys.com/docs/latest/index.html

• GraphLab Create—Machine learning toolkit
https://dato.com/products/create/

https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/
https://www.oneapi.io/spec/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#gs.rl3pie
https://onnx.ai/
https://modelzoo.co/
https://huggingface.co/models
http://torch.ch
http://leenissen.dk/fann/wp/
https://github.com/dmlc/minerva
http://caffe.berkeleyvision.org
https://developer.nvidia.com/blog/caffe2-deep-learning-framework-facebook/
https://developer.nvidia.com/cudnn
https://github.com/rasmusbergpalm/DeepLearnToolbox
http://neon.nervanasys.com/docs/latest/index.html
https://dato.com/products/create/

Appendix D: Extended SDM Metrics

Listing Fig. D.1 illustrates the extended SDM metrics from Chap. 3. The code is available online
at http://www.apress.com/source-code/ComputerVisionMetrics

Fig. D.1 SDM extended metrics

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8

719

http://www.apress.com/source-code/ComputerVisionMetrics
https://doi.org/10.1007/978-981-99-3393-8#DOI

720 Appendix D: Extended SDM Metrics

Listing D.1 Extended SDM metrics from Chap. 3.

/*
** CREATED 1991 (C) KRIG RESEARCH, SCOTT KRIG - UNPUBLISHED SOFTWARE
** PORTED TO MAC 2014
**
** ALL RIGHTS RESERVED
**
** THIS SOFTWARE MAY BE USED FREELY FOR ACADEMIC AND RESEARCH PURPOSES.
** REFERENCE THIS BOOK AND PROVIDE THIS NOTICE WHEN USING THE SOFTWARE.
*/
using namespace std;
#include <math.h>
#include <stdio.h>
#include <opencv2/opencv.hpp>
#include "/usr/local/include/opencv/cv.h"
#include "/usr/local/include/opencv2/core/core.hpp"
#include "/usr/local/include/opencv2/highgui/highgui.hpp"
#include <iostream>
using namespace cv;
#define TINY 0.0000000001
#define F6U "%6f.3"
#define F6F "%.6f"
#define F3F "%.3f"
#define FXF "%.0f"
#define FALSE 0
#define TRUE 1
typedef struct area {

int x;
int y;
int dx;
int dy;

} area_t;
typedef struct {

double t0;
double t90;
double t135;
double t45;
double tave;
} ctab;

typedef struct {
double median;
double ave;
double adev;
double sdev;
double svar;
double skew;
double curt;
int min;
int max;
ctab xcentroid;
ctab ycentroid;
ctab _asm;
ctab low_frequency_coverage;
ctab total_coverage;
ctab corrected_coverage;
ctab total_power;
ctab relative_power;
ctab locus_length;

ctab locus_mean_density;
ctab bin_mean_density;
ctab containment;
ctab linearity;
ctab linearity_strength;
ctab autocorrelation;
ctab covariance;

ctab inertia; /* haralick contrast */
ctab absolute_value;

ctab inverse_difference; /* haralick */

ctab entropy; /* haralick */

ctab correlation; /* haralick */
} glob_t;

glob_t gt;
/* FUNCTIONS */
int i_sort(
int *x,
int n,
int parm)
{

int k,i,ii;
int y,found;
int xi;
int n2, n2p;
x--;
for (k=1; k<n+1; k++) {

y = x[k];
for (i=k-1, found = FALSE; i>=0 && !found;) {

xi = x[i];
ii = i+1;
if (y < xi) {

x[ii] = xi;
i--;

} else {
found = TRUE;

}
}
x[ii] = y;

}
if (parm == 0) return 0;
n2p = (n2=(n>>1))+1;
return (n % 2 ? x[n2p] : (x[n2] + x[n2p]) >> 1);

}
int lmoment(
int *data,
int n,
double *median,
double *ave,
double *adev,
double *sdev,
double *svar,
double *skew,
double *curt)
{

int j;
double s,p,ep=0.0;
if (n <= 1) return 0;
s=0.0;
for (j=1; j<=n;j++) s += (double)data[j];

Selected Deep Learning Resources 721

*ave=s/n;
*adev=(*svar)=(*skew)=(*curt)=0.0;
for (j=1;j<=n;j++) {

*adev += abs(s=(double)data[j]-(*ave));
*svar += (p=s*s);
*skew += (p *= s);
*curt += (p *= s);

}
*adev /= n;
*svar = (*svar - ep*ep / n) / (n-1);
*sdev=sqrt(*svar);
if (*svar) {

s = (n*(*svar)*(*sdev));
if (s != 0) *skew /= s;
else *skew = 0;
s = (n*(*svar)*(*svar))-3.0;
if (s != 0) *curt = (*curt) / s;
else *curt = 0;

} else {
*skew = *curt = 0.0;

}
*median = 0;
if (n > 20000) return 0;
*median = (double)i_sort(data, n, 1);
return 0;

}
int mean_sdev(
int xp,
int yp,
int *xdata,
double *xmean,
double *xsdev,
double *ymean,
double *ysdev)
{

double u_x1, a_x1;
int mx, my,v,t,x,y,z, offset;
int dif[256];
/* first calculate mean */
offset = 256 * yp;
x = y = 0;
for (z=0; z < 256; x += xdata[offset+z], z++);
for (z=0; z < 256; y += xdata[xp + (z*256)], z++);
mx = x / 256.;
*xmean = (double)mx;
my = y / 256.;
*ymean = (double)my;
/* now calculate standard deviation */
x = y = 0;
z=0;
while (z < 256) {

v = mx - xdata[offset+z];
x += v*v;
v = my - xdata[xp + (z*256)];
y += v*v;
z++;

}
*xsdev = x / 256;
*ysdev = y / 256;

722 Appendix D: Extended SDM Metrics

return 0;
}
int lohi(
int n,
int *cv,
int *lo,
int *hi)
{

int x;
int lv, hv;
lv = 0x1fffff;
hv =0;
x=0;
while (x < n) {

if (cv[x] < lv) lv = cv[x];
if (cv[x] > hv) hv = cv[x];
x++;

}
*lo = lv;
*hi = hv;
return 0;

}
int savegt(
ctab *ctp,
double dv1,
double dv2,
double dv3,
double dv4)
{

ctp->t0 = dv1;
ctp->t90 = dv2;
ctp->t135 = dv3;
ctp->t45 = dv4;
ctp->tave = (dv1 + dv2 + dv3 + dv4) / 4;
return 0;

}
int gtput(
char *prompt,
char *fs,
ctab *ctp,
FILE *fstream)
{

char str[256];
char form[256];
fputs(prompt, fstream);
sprintf(form, "%s %s %s %s %s \n", fs, fs, fs, fs, fs);
sprintf(str, form, ctp->t0, ctp->t90, ctp->t135, ctp->t45, ctp->tave);
fputs(str, fstream);
return 0;

}
int put_txfile(
FILE *fstream)
{

char str[256];

sprintf(str, "gray value moments: min :%u max:%u mean:%u\n",gt.min,gt.max,
(int)gt.ave);

fputs(str, fstream);

sprintf(str, "moments: adev :%.4f sdev :%.4f svar :%.4f skew:%.6f curt:%.6f \n",
gt.adev, gt.sdev, gt.svar, gt.skew, gt.curt);

Selected Deep Learning Resources 723

fputs(str, fstream);
fputs("\n", fstream);
fputs(" ------------------------------------–\n", fstream);

fputs(" 0deg 90deg 135deg 45deg ave \n", fstream);
fputs(" ------------------------------------–\n", fstream);

gtput(" xcentroid ", FXF, >.xcentroid, fstream);

gtput(" ycentroid ", FXF, >.ycentroid, fstream);
gtput("low_frequency_coverage ", F3F, >.low_frequency_coverage, fstream);
gtput("total_coverage ", F3F, >.total_coverage, fstream);
gtput("corrected_coverage ", F3F, >.corrected_coverage, fstream);
gtput("total_power ", F3F, >.total_power, fstream);
gtput("relative_power ", F3F, >.relative_power, fstream);
gtput("locus_length ", FXF, >.locus_length, fstream);
gtput("locus_mean_density ", FXF, >.locus_mean_density, fstream);
gtput("bin_mean_density ", FXF, >.bin_mean_density, fstream);
gtput("containment ", F3F, >.containment, fstream);
gtput("linearity ", F3F, >.linearity, fstream);
gtput("linearity_strength ", F3F, >.linearity_strength, fstream);
return 0;

}
int texture(
char *filename)
{

char str[256];
int pmx[256], pmy[256];
int x,y,z,dx,dy,dz,sz,bpp;
int accum, tmin, tmax;
int tmin2, tmax2, yc;
int *data;
int mval0, mval90, mval135, mval45;
double median, ave, adev, sdev, svar, skew, curt;
double median2, ave2, adev2, sdev2, svar2, skew2, curt2;
int *dm0, *dm90, *dm135, *dm45;
FILE *fstream;
int i0, i90, i135, i45, iave, n;
int c0, c90, c135, c45, cave;
int p0, p90, p135, p45, pave;
double d0, d90, d135, d45, dave;
double f0, f90, f135, f45;
/***/
/* READ THE INPUT IMAGE, EXPECT IT TO BE 8-bit UNSIGNED INT */
/* Mat type conversion is simple in openCV, try it later */
Mat imageIn = cv::imread(filename);
dx = imageIn.rows;
dy = imageIn.cols;
unsigned char *pixels = imageIn.data;

cout << " dx " << dx << " dy " << dy << " elemSize() " << imageIn.elemSize() << endl;
data = (int *)malloc(dx * dy * 4);
if (data == 0)
{

cout << " malloc error in texture()" << endl;
}
for (y=0; y < dy; y++) {

for (x=0; x < dx; x++) {
int pixel = (int)*(imageIn.ptr(x,y));
if (pixel > 255) {pixel = 255;}
data[(y * dx) + x] = pixel;

}
}

724 Appendix D: Extended SDM Metrics

/***/
/* PART 1 - get normal types of statistics from pixel data */
lmoment(data, sz, &median, &ave, &adev, &sdev, &svar, &skew, &curt);
lohi(sz, data, &tmin, &tmax);
gt.median = median;
gt.ave = ave;
gt.adev = adev;
gt.sdev = sdev;
gt.svar = svar;
gt.skew = skew;
gt.curt = curt;
gt.min = tmin;
gt.max = tmax;
fstream = fopen("SDMExtended.txt", "w");
if (fstream <= 0) {

cout << "#cannot create file" << endl;
return 0;

}
sprintf(str, "texture for object: %s\n", filename);
fputs(str, fstream);
sprintf(str, "area: %u, %u \n", dx, dy);
fputs(str, fstream);
/***/

/* PART 2 - calculate the 4 spatial dependency matricies */
dm0 = (int *)malloc(256*256*4);
dm90 = (int *)malloc(256*256*4);
dm135 = (int *)malloc(256*256*4);
dm45 = (int *)malloc(256*256*4);
if ((dm0==0) || (dm90==0) || (dm135==0) || (dm45==0)) {

cout << " malloc error in texture2" << endl;
return 0;

}
x=0;
while (x < 256*256) {

dm0[x] = dm90[x] = dm135[x] = dm45[x] = 0;
x++;

}
y=0;

while (y < dy-1) {
yc = dx * y;
x=0;
while (x < dx-1) {
dm0[(data[yc + x]&0xff) + (((data[yc + x + 1])<< 8)&0xff00)]++;
dm0[(data[yc + x + 1]&0xff) + (((data[yc + x])<< 8)&0xff00)]++;
dm90[(data[yc + x]&0xff) + (((data[yc + x + dx])<< 8)&0xff00)]++;
dm90[(data[yc + x + dx]&0xff) + (((data[yc + x])<< 8)&0xff00)]++;
dm135[(data[yc + x]&0xff) + (((data[yc + x + dx + 1])<< 8)&0xff00)]++;
dm135[(data[yc + x + dx + 1]&0xff) + (((data[yc + x])<< 8)&0xff00)]++;
dm45[(data[yc + x + 1]&0xff) + (((data[yc + x + dx])<< 8)&0xff00)]++;
dm45[(data[yc + x + dx]&0xff) + (((data[yc + x + 1])<< 8)&0xff00)]++;

x++;
}
y++;
}

/************************* CALCULATE TEXTURE METRICS *************************/

/* centroid */
pmx[0] = pmx[1] = pmx[2] = pmx[3] = 0;
pmy[0] = pmy[1] = pmy[2] = pmy[3] = 0;
i0 = i90 = i135 = i45 = 0;

Selected Deep Learning Resources 725

y=0;
while (y < 256) {

x=0;
while (x < 256) {

z = x + (256 * y);
pmx[0] += (x * dm0[z]);
pmy[0] += (y * dm0[z]); i0 += dm0[z];
pmx[1] += (x * dm90[z]);
pmy[1] += (y * dm90[z]); i90 += dm90[z];
pmx[2] += (x * dm135[z]);
pmy[2] += (y * dm135[z]); i135 += dm135[z];
pmx[3] += (x * dm45[z]);
pmy[3] += (y * dm45[z]); i45 += dm45[z];
x++;

}
y++;

}
pmx[0] = pmx[0] / i0;
pmy[0] = pmy[0] / i0;
pmx[1] = pmx[1] / i90;
pmy[1] = pmy[1] / i90;
pmx[2] = pmx[2] / i135;
pmy[2] = pmy[2] / i135;
pmx[3] = pmx[3] / i45;
pmy[3] = pmy[3] / i45;
x = (pmx[0] + pmx[1] + pmx[2] + pmx[3]) / 4;
y = (pmy[0] + pmy[1] + pmy[2] + pmy[3]) / 4;
gt.xcentroid.t0 = pmx[0];
gt.ycentroid.t0 = pmy[0];
gt.xcentroid.t90 = pmx[1];
gt.ycentroid.t90 = pmy[1];
gt.xcentroid.t135 = pmx[2];
gt.ycentroid.t135 = pmy[2];
gt.xcentroid.t45 = pmx[3];
gt.ycentroid.t45 = pmy[3];
gt.xcentroid.tave = x;
gt.ycentroid.tave = y;
/* low frequency coverage */
i0 = i90 = i135 = i45 = 0;
c0 = c90 = c135 = c45 = 0;
x=0;
while (x < 256*256) {
if ((dm0[x] != 0) && (dm0[x] < 3)) i0++;
if ((dm90[x] != 0) && (dm90[x] < 3)) i90++;
if ((dm135[x] != 0) && (dm135[x] < 3)) i135++;
if ((dm45[x] != 0) && (dm45[x] < 3)) i45++;
if (!dm0[x]) c0++;
if (!dm90[x]) c90++;
if (!dm135[x]) c135++;
if (!dm45[x]) c45++;
x++;
}
d0 = (double)i0 / 0x10000;
d90 = (double)i90 / 0x10000;
d135 = (double)i135 / 0x10000;
d45 = (double)i45 / 0x10000;
savegt(>.low_frequency_coverage, d0, d90, d135, d45);
d0 = (double)c0 / 0x10000;
d90 = (double)c90 / 0x10000;

726 Appendix D: Extended SDM Metrics

d135 = (double)c135 / 0x10000;
d45 = (double)c45 / 0x10000;
savegt(>.total_coverage, d0, d90, d135, d45);
d0 = (c0-i0) / (double)0x10000;
d90 = (c90-i90) / (double)0x10000;
d135 = (c135-i135) / (double)0x10000;
d45 = (c45-i45) / (double)0x10000;
savegt(>.corrected_coverage, d0, d90, d135, d45);
/* power */
i0 = i90 = i135 = i45 = 0;
c0 = c90 = c135 = c45 = 0;
p0 = p90 = p135 = p45 = 0;
y=0;
while (y < 256) {
z = y * 256;
x=0;
while (x < 256) {
n = x-y;
if (n < 0) n = -n;
if (dm0[x+z] != 0) {i0 += n; c0++;}
if (dm90[x+z] != 0) {i90 += n; c90++;}
if (dm135[x+z] != 0) {i135 += n; c135++;}
if (dm45[x+z] != 0) {i45 += n; c45++;}
x++;
}
y++;
}
d0 = (i0 / 0x10000);
d90 = (i90 / 0x10000);
d135 = (i135 / 0x10000);
d45 = (i45 / 0x10000);
savegt(>.total_power, d0, d90, d135, d45);
d0 = (i0 / c0);
d90 = (i90 / c90);
d135 = (i135 / c135);
d45 = (i45 / c45);
savegt(>.relative_power, d0, d90, d135, d45);
/* locus density */
d0 = d90 = d135 = d45 = 0.0;
c0 = c90 = c135 = c45 = 0;
p0 = p90 = p135 = p45 = 0;
y=0;
while (y < 256) {
z = y * 256;
i0 = i90 = i135 = i45 = 0;
x=0;
while (x < 256) {
n = x-y;
if (n < 0) n = -n;
if ((dm0[x+z] != 0) && (n < 7)) {c0++; p0 += dm0[x+z];}
if ((dm90[x+z] != 0) && (n < 7)) {c90++; p90 += dm90[x+z];}
if ((dm135[x+z] != 0) && (n < 7)) {c135++; p135 += dm135[x+z];}
if ((dm45[x+z] != 0) && (n < 7)) {c45++; p45 += dm45[x+z];}
if ((dm0[x+z] == 0) && (n < 7)) {i0++;}
if ((dm90[x+z] == 0) && (n < 7)) {i90++;}
if ((dm135[x+z] == 0) && (n < 7)) {i135++;}
if ((dm45[x+z] == 0) && (n < 7)) {i45++;}
x++;
}

Selected Deep Learning Resources 727

if (!i0) d0 += 1;
if (!i90) d90 += 1;
if (!i135) d135 += 1;
if (!i45) d45 += 1;
y++;
}
savegt(>.locus_length, d0, d90, d135, d45);
d0 = (p0/c0);
d90 = (p90/c90);
d135 = (p135/c135);
d45 = (p45/c45);
savegt(>.locus_mean_density, d0, d90, d135, d45);
/* density */
c0 = c90 = c135 = c45 = 0;
p0 = p90 = p135 = p45 = 0;
x=0;
while (x < 256*256) {
if (dm0[x] != 0) {c0 += dm0[x]; p0++;}
if (dm90[x] != 0) {c90 += dm90[x]; p90++;}
if (dm135[x] != 0) {c135 += dm135[x]; p135++;}
if (dm45[x] != 0) {c45 += dm45[x]; p45++;}
x++;
}
d0 = c0 / p0;
d90 = c90 / p90;
d135 = c135 / p135;
d45 = c45 / p45;
savegt(>.bin_mean_density, d0, d90, d135, d45);
/* containment */
i0 = i90 = i135 = i45 = 0;
x=0;
while (x < 256) {
if (dm0[x]) i0++; if (dm0[256*256 - x - 1]) i0++;
if (dm90[x]) i90++; if (dm90[256*256 - x - 1]) i90++;
if (dm135[x]) i135++; if (dm135[256*256 - x - 1]) i135++;
if (dm45[x]) i45++; if (dm45[256*256 - x - 1]) i45++;
if (dm0[x*256]) i0++; if (dm0[(x*256)+255]) i0++;
if (dm90[x*256]) i90++; if (dm90[(x*256)+255]) i90++;
if (dm135[x*256]) i135++; if (dm135[(x*256)+255]) i135++;
if (dm45[x*256]) i45++; if (dm45[(x*256)+255]) i45++;
x++;
}
d0 = 1.0 - ((double)i0 / 1024.0);
d90 = 1.0 - ((double)i90 / 1024.0);
d135 = 1.0 - ((double)i135 / 1024.0);
d45 = 1.0 - ((double)i45 / 1024.0);
savegt(>.containment, d0, d90, d135, d45);
/* linearity */
i0 = i90 = i135 = i45 = 0;
c0 = c90 = c135 = c45 = 0;
y=0;
while (y < 256) {
z = y * 256;
if (dm0[z + y] > 1) {i0++; c0 += dm0[z+y];}
if (dm90[z + y] > 1) {i90++; c90 += dm90[z+y];}
if (dm135[z + y] > 1) {i135++; c135 += dm135[z+y];}
if (dm45[z + y] > 1) {i45++; c45 += dm45[z+y];}
y++;
}

728 Appendix D: Extended SDM Metrics

d0 = (double)i0 / 256.;
d90 = (double)i90 / 256.;
d135 = (double)i135 / 256.;
d45 = (double)i45 / 256.;
savegt(>.linearity, d0, d90, d135, d45);
/* linearity strength */
d0 = (c0/(i0+.00001)) / 256.;
d90 = (c90/(i90+.00001)) / 256.;
d135 = (c135/(i135+.00001)) / 256.;
d45 = (c45/(i45+.00001)) / 256.;
savegt(>.linearity_strength, d0, d90, d135, d45);

/* WRITE ALL STATISTICS IN gt . STRUCTURE TO OUTPUT FILE */
put_txfile(fstream);
/* clip to max value 255 */
mval0 = mval90 = mval135 = mval45 = 0;
x=0;
while (x < 256*256) {
if (dm0[x] > 255) dm0[x] = 255;
if (dm90[x] > 255) dm90[x] = 255;
if (dm135[x] > 255) dm135[x] = 255;
if (dm45[x] > 255) dm45[x] = 255;
x++;
}
/**/

/* Convert data to unsigned char to write into png */
unsigned char *dm0b = (unsigned char *)malloc(256*256);
unsigned char *dm90b = (unsigned char *)malloc(256*256);
unsigned char *dm135b = (unsigned char *)malloc(256*256);
unsigned char *dm45b = (unsigned char *)malloc(256*256);
if ((dm0b==0) || (dm90b==0) || (dm135b==0) || (dm45b==0)) {

cout << " malloc error in texture3" << endl;
return 0;
}
x=0;
while (x < 256*256) {
dm0b[x] = (unsigned char) (dm0[x] & 0xff);
dm90b[x] = (unsigned char) (dm90[x] & 0xff);
dm135b[x] = (unsigned char) (dm135[x] & 0xff);
dm45b[x] = (unsigned char) (dm45[x] & 0xff);
x++;
}
/*
* write output to 4 quadrants: 0=0, 1=90, 2=135, 3=145
*/
char outfile[256];

sprintf(outfile, "%s_SDMQUadrant_0deg_8UC1. png ", filename);
Mat SDMQuadrant0(256, 256, CV_8UC1, dm0b);
imwrite(outfile, SDMQuadrant0);

sprintf(outfile, "%s_SDMQUadrant_90deg_8UC1. png ", filename);
Mat SDMQuadrant90(256, 256, CV_8UC1, dm90b);
imwrite(outfile, SDMQuadrant90);

sprintf(outfile, "%s_SDMQUadrant_135deg_8UC1. png ", filename);
Mat SDMQuadrant135(256, 256, CV_8UC1, dm135b);
imwrite(outfile, SDMQuadrant135);

sprintf(outfile, "%s_SDMQUadrant_45deg_8UC1. png ", filename);
Mat SDMQuadrant45(256, 256, CV_8UC1, dm45b);
imwrite(outfile, SDMQuadrant45);
free(dm0);

Selected Deep Learning Resources 729

free(dm90);
free(dm135);
free(dm45);
free(data);
free(dm0b);
free(dm90b);
free(dm135b);
free(dm45b);
fclose(fstream);
return 0;
}
int main (int argc, char **argv)
{
cout << "8-bit unsigned image expected as input" << endl;
texture (argv[1]);
return 0;
}

730 Appendix D: Extended SDM Metrics

Appendix E: The Visual Genome Model
(VGM)

The memory impression is the feature.

—Scott Krig

Volume renderings of synthetic neural clusters represented as visual genome features

In this appendix, we discuss the Visual Genome Model VGM), a view-based vision model, assuming
virtually unlimited feature memory space to store features and concepts, rather than constraining and
compressing the feature representation to a sparse or more computable set as is typical in common
neural models such as CNNs. Visual Genomes record all the features detected in separate virtual
neurons modeled as simple memory cells to record each feature, and a comparator to test input
impressions presented to the neuron against the memory cell. Visual Genomes are composed together
into sequences or visual genomes, similar to a DNA chain, to represent higher-level concepts in strands
and bundles. The Visual Genome Model is inspired by the basic low-level structures of the visual
pathway including the retina through, LGN, and V1-V4 layers. The higher-level reasoning centers of
the visual pathway are not included in the VGM, and instead, high level reasoning centers are assumed
to be a consciousness level which can be modeled as a special-purpose proxy agent process
implemented in software, managing a suitable training protocol, classifier, and hypothesis testing
mechanism. In this respect, the VGM may be considered as a visual memory machine suitable for use
under the control of a proxy agent within a larger visual processing machine. We present an overview
of the VGM in this appendix, and additional details with more comprehensive results for classification
and object recognition are provided in Krig [476] and http://krigresearch.com.

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8

731

http://krigresearch.com
https://doi.org/10.1007/978-981-99-3393-8#DOI

732 Appendix E: The Visual Genome Model (VGM)

The VGM follows the neurobiological concepts of local receptive fields and a hierarchy of features,
similar to the Hubel and Wiesel model [499, 500]. As shown in Fig. E.1, the hierarchy consists of
parvo, magno, strand, and bundle features as discussed below. Each feature is simply a memory record
of the visual inputs stored in groups of neuron memory. This is in contrast to the notion of designing a
feature descriptor (Figs. E.2, E.3, E.4, E.5, an d E.6).

Fig. E.1 This figure illustrates the visual genome architecture and feature memory concepts

Temporal Pathway (“what”)

Parvo Feature Channel

Parietal Pathway (“Where”)

Magno Feature Channel

Parvo

Gangli

Magno Ganglion Cell LGN

Magno

LGN

Parvo

V1 V2 V3

V4

Color

MT

Movement

IT FormV1 V2

Parietal
“Where”

Temporal
“What”

Fig. E.2 This figure illustrates the partetal and temporal visual pathways composed of larger magno cells with lower
resolution, and smaller parvo cells with higher resolution. Parvo cells are 10–20 % as large as magno cells

Selected Deep Learning Resources 733

Parvo Feature Channels
(100% scale RGB)

raw sharpened blurred local contrast
enhanced

global contrast
enhanced

Fig. E.3 This figure illustrates the five Parvo feature channels

Magno Feature Channel
(20% scale luminance)

raw sharpened blurred local contrast
enhanced

global contrast
enhanced

Fig. E.4 This figure illustrates the magno feature channels

734 Appendix E: The Visual Genome Model (VGM)

Magno

20% scale

Parvo

100% scale

Fig. E.5 This figure illustrates the relative scale of parvo and magno image input. The scale difference corresponds to the
magno cell area vs. parvo cell area, where parvo cells are 10–20% as large as magno cells. The parvo cells are full
resolution retinal images, and the magno cells are 5:1 down-sampled images

VGM stores low-level Parvo and Magno features as raw memory records or impressions, and
groups the low-level memory records within contiguous segmented primal regions as strands, and
groups of strands are associated together as bundles describing higher-level concepts. The raw input
pixel values of local receptive fields are used to compose a feature address vector referencing a huge
virtual multi-dimensional address space, refer Fig. E.7. The address is the feature. The intent of using
the raw pixel values concatenated into an address is to enable storage of the raw visual impressions
directly in a virtually unlimited feature memory with no intervening processing, following the view
based model of neurobiology. The bit precision of the address determines the size of the memory
space. The bit precision and coarseness of the address is controlled by a quantization parameter,
discussed later along with the VGM neural model. So the VGM operates in a quantization space,
revealing more or less detail about the features as per the quantization level.

VGM
[CAM Memory]

Input

(3x3 | 9x1)

k’k Output 1x1
(Correlation Distance)

Motivation F (FIRE)

[TRUE | FALSE]

Quantization q (bits [1..8])

d

Fig. E.6 This figure illustrates the VGM model for magno and parvo neurons

Neuroscience Inspiration for VGM 735

Why such as simple feature model? The VGM model assumes that the sheer number of features is
more critical than the type of feature chosen, as evidenced by the feature learning architecture survey
in Chap. 10, providing several examples of systems that all achieve similar accuracy, using a wide
range of feature types and hierarchy levels. It is not clear from CNN research that the scale hierarchy
itself is the major key to success, or if a large set of mono-scale multi-model features, rather than a scale
hierarchy, would be equally effective. For example, large numbers of simple image pixel regions have
been demonstrated by Chunhui et al. [637] to be very capable image descriptors for segmentation,
detection and classification. Gu organizes the architecture as a robust bag of overlapped features, using
Hough voting to identify hypothesis object locations, followed by a classifier, to achieve state of the art
accuracy on several tests.

Neuroscience Inspiration for VGM

Here, we summarize the specific neuroscience research which informs and inspires the VGM, followed
by the corresponding architecture and design details. We cover the basics of the visual pathway,
memory mechanisms, neural models, and the retinal processing model.

Feature and Conceptual Memory Locality

Neuroscience research shows that the visual pathway stores related concepts in contiguous memory
regions [778, 779], suggesting a view-based model [740] for vision. Under the view-based model, new
memory records, rather than invariant features, are created to store variations of similar items for a
concept. Related concepts are stored in a local region of memory proximate to similar objects. The
mechanism for creating new memory features is likely based on an unknown learning motivation or
bias, as directed by higher layers of reasoning in the visual pathway. Conversely, the stored memories
do not appear to be individually invariant, but rather the invariance is built up conceptually by
collecting multiple scene views together with geometric or lighting variations. Brain mapping research
supports the view-based model hypothesis. Research using functional MRI scans (fMRI) shows that
brain mapping can be applied to forensics, by mapping the brain regions that are activated while
viewing or remembering visual concepts, as reported by Lengleben et al. [785]. In fact, nature has
reported that limited mind reading is possible [778, 779, 786] using brain mapping, revealing in
MRI-type imaging modalities specific regions of the cerebral cortex that are electrically activated while
viewing a certain subject, evaluating a certain conceptual hypothesis, or responding to verbal questions
(of related interest, according to some researchers brain mapping reveals cognitive patterns that can
be interpreted to reveal raw intelligence levels, and also brain mapping has been used to record

cognitive fingerprints which are currently fashionable within military and government security

circles).
New memory impressions will remain in short-term memory for evaluation of a given hypothesis,

and may be subsequently forgotten unless classified and committed to long-term memory by the
higher-level reasoning portions of the visual pathway. The higher level portions of the visual pathway
consciously direct classification using a set of hypothesis against either incoming data in short term
memory, or to reclassify long term memory. The higher-level portions of the visual pathway are
controlled perhaps independently of the biology by higher-level consciousness of the soul. The eye and
retina may be directed by the higher level reasoning centers to adjust the contrast and focus of the
incoming regions.

736 Appendix E: The Visual Genome Model (VGM)

Attentional Neural Memory Research

Baddeley [541] and others have shown that the human learning and reasoning process typically keeps
several concepts at attention simultaneously at the request of the central executive, which is directing
the reasoning task at hand. (VGM models the central executive as a proxy agent, discussed below.) The
central executive concept assumes that inputs may come in at different times, thus several concepts
need to be at attention at a given time. Perhaps up to seven concepts can be held at attention by the
human brain at once, thus Bell Labs initially create phone numbers using seven digits. Selected
concepts are kept at attention in a working memory or short-term memory (i.e., attention memory or
concept-memory), as opposed to a long-term memory from the past that is not relevant to the current
task. As shown by Goldman-Rakic [542], the attention-memory or concepts may be accessed at
different rates, for example checked constantly, or not at all, during delay periods while the central
executive is pursuing the task at hand and accessing other parts of memory. The short-term memory
will respond to various cues, and loosely resembles the familiar associative memory or content-
addressable memory (CAM) used for caching in some CPUs. The VGM address feature model is
similar to a CAM model, and allows the central executive to determine feature detection on-demand,
and VGM does not distinguish short/long term memory or limit short term memory.

HMAX Model and Visual Cortex Models of the Visual Pathway

The HMAX model is designed after the visual pathway regions, which clearly shows a hierarchy of
concepts. HMAX uses hardwired feature for the lower levels such as Gabor or Gaussian functions,
which resemble the oriented edge response of neurons observed in the early stages of the visual
pathway as reported by Tanaka [752], Logothetis [753], and others. Logothetis found that some groups
of neurons along the hierarchy respond to specific shapes similar to Gabor-like basis functions at the
low levels, and object-level concepts such as faces in higher levels. HMAX builds higher level
concepts on the lower level features, following research showing that higher levels of the visual
pathway (IT) are receptive to highly view-specific patterns such as faces, shapes and complex objects,
see Perrett [747, 748] and Tanaka et al. [749]. In fact, clustered regions of the visual pathway IT region
are reported by Tanaka [752] to respond to similar clusters of objects, suggesting that neurons grow
and connect to create semantically associated view-specific feature representations as needed for view-
based discrimination. HMAX provides a viewpoint-independent model that is invariant to scale and
translation, leveraging a MAX pooling operator over scale and translation for all inputs feeding the
higher-level S2, C2, and VTU units, resembling lateral inhibition which has been observed between
competing neurons, allowing the strongest activation to shut down competing lower strength
activations. HMAX also allows for sharing of low-level features and interpolations between them as
they are combined into higher-level viewpoint-specific features.

Virtually Unlimited Feature Memory

The brain contains perhaps 100 billion neurons or 100 giga-neurons (GN), (estimates vary), and each
neuron is connected to perhaps 10,000 other neurons on average (estimates vary), yielding over
100 trillion connections [784] compared to the estimated 200–400 billion stars in the Milky Way
galaxy. Apparently, there are plenty of neurons to store information in the human brain, so the VGM
takes the assumption that there is no need to reduce the size of the feature set, and supports virtually

unlimited feature memory. Incidentally for unknown reasons, the brain apparently only uses a portion
of the available neurons, estimates range from 10 to 25% (10GN–25GN). Perhaps with longer life
spans of perhaps 1000 years, all the neurons could be activated into use.

Neuroscience Inspiration for VGM 737

VGM feature memory is represented in a quantization space where the bit resolution of the features
is adjusted to expand or reduce precision, which is useful for practical implementations. In effect, the
size of the virtual memory for all neurons is controlled by the numeric precision of the pixels. Visual
genomes represent features at variable resolution to produce either coarse of fine results in a
quantization space, discussed in subsequent sections on the VGM neural model and memory structure
below.

Genetic Preexisting Memory

More and more research shows that DNA may contain memory impressions or genetic memory such as
instincts and character traits (see [750], many more references can be cited). Other research shows that
DNA can be modified via memory impressions [751] that are passed on to subsequent generations via
the DNA.

Neuroscience suggests that some features are preexisting in the neurocortex at birth, for example
memories and other learnings from ancestors may be imprinted into the DNA, while other behaviors
are pre-wired in the basic human genome, designed into the DNA, and not learned at all. It is well
known that DNA can be modified by experiences, for better or worse, and passed to descendants by
inheritance. So the DNN training notion of feature learning by initializing weights to random values
and averaging the response over training samples is primitive best, and a rabbit trail following the
evolutionary assumptions of time + chance = improvement. In other words, we observe that visible
features are both recorded and created by genetic design, not generated by random processes.

The VGM model allows for preexisting memory to be emulated using transfer learning to initialize
the VGM memory space, which can be subsequently improved by recording new impressions from a
training set or visual observation on top of the transferred features. Specifically, some of the higher
level magno, strand, and bundle features can be initialized to primal basis sets, for example shapes or
patterns, to simulate inherited genetic primal shape features, or to provide experience-based learning.

Neurogenesis, Neuron Size, and Connectivity

As reported by Bergami et al. [787, 788] as well as many other researchers, the process of neurogenesis
(i.e., neural growth) is regulated by experience. Changes to existing neural size and connectivity, as
well as entirely new neuron growth, take place in reaction to real or perceived experiences. As a result,
there is no fixed neural architecture for low-level features, rather the architecture grows. Even identical
twins (i.e., DNA clones) develop different neurobiological structures based on experience, leading to
different behavior and outlook.

Various high level structures have been identified within the visual pathway, as revealed by brain
mapping [778, 779], such as conceptual reasoning centers and high-level communications pathways
[618], see also Fig. 9.10. Neurogenesis occurs in a controlled manner within each structural region.
Neurogenesis includes both growth and shrinkage, and both neurons and dendrites have been observed
to grow significantly in size in short bursts, as well as shrink over time. Neural size and connectivity
seem to represent memory freshness, and forgetting, so perhaps forgetting may be biologically
expressed as neuronal shrinkage accompanied by disappearing dendrite connections. Neurogenesis

is reported by Lee et al. [788] to occur throughout the lifetime of adults, and especially during the early
formative years.

738 Appendix E: The Visual Genome Model (VGM)

To represent neurogenesis, VGM represents neural size and connectivity by the number of times a
feature impression is detected, which can be interpreted as (a) a new neuron for each single impression,
or (b) a larger neuron for multiple impression counts (it is not clear from neuroscience if either a OR b,
or both a AND b are true). Therefore, neurogenesis is reflected in terms of the size and connectivity of
each neuron in VGM.

Bias and Motivation for Learning New Memory Impressions

Neuroscience suggests that the brain creates new memory impressions of important items under the
view-based theories surveyed in the HMAX section in Chap. 10, rather than dithering visual
impressions together as in DNN backprop training. Many computer vision models are based on the
notion that features should be designed to be invariant to specific robustness criteria, such as scale,
rotation, occlusion, and other factors discuss in Chap. 5, which may be an artificial notion only
partially expressed in the neurobiology of vision. Although bias is assumed during learning, VGM
does not model a bias factor in the VGM neuron. Most artificial neural models include a bias factor for
matrix method convenience, but usually the bias is ignored or fixed. Bias can account for the
observation that people often see what they believe, rather than believing what they see, and therefore
bias seems problematic to model.

Depth Processing

Depth processing in the human visual system is accomplished in at least two ways: (1) using stereo
depth processing within a L/R stereo processing pathway in the visual cortex, and (2) using other 2D
visual cues associated together at higher level reasoning centers in the visual pathway. As discussed in
Chap. 1 and summarized in Table 1.1, the human visual system relies on stereo processing to determine
close range depth out to perhaps 5–10 m, and then relies on other 2D visual cues like shadows and
spatial relationships to determine long range depth, since stereo information from the human eye is not
available at increasing distances due to the short baseline distance between the eyes (see Fig. 1.20). In
addition, stereo depth processing is affected by a number of key problems including occlusion and
holes in the depth map due to the position of objects in the field of view, and also within the Horopter
region where several points in space may appear to be fused together at the same location, requiring
complex approximations in the visual system. The VGM model does not attempt to model depth or the
stereo pathway.

However, future work may include providing a depth map channel and surface normal vector
images as input channels for magno and parvo features, but perhaps the better approach is to provide
depth maps and surface normal images to the higher-level proxy agent for incorporation into strands,
bundles, and a classifier.

Dual Retinal Processing Pathways: Magno and Parvo

As shown in Fig. E.2, there are two types of cells in the retina which provide ganglion cell inputs to the
optic nerve: magno cells and parvo cells. Of the approximately one million ganglion cells leaving the
retina, about 80–90% are smaller parvo cells with smaller receptive fields, and about 10–20% are larger

magno cells with a larger receptive field. The magno cells track gross movement in 3D and are
sensitive to contrast, luminance and coarse details (i.e., the receptive field is large). The parvo cells are
slower to respond and represent color and fine details (i.e., the receptive field is small). Magno cells are
spread out across the retina and provide the gross low-resolution outlines, and parvo cells are
concentrated in the center of the retina and respond most to the saccadic dithering to increase effective
resolution.

Neuroscience Inspiration for VGM 739

The magno and parvo cell resolution differences suggest a two-level spatial pyramid arrangement
built into the retina for magno-subsampled low resolution, and parvo high resolution. In addition, the
visual pathway contains two separate parallel processing pathways—a fast magno shape tracking
monochrome pathway, and a slow parvo color and texture pathway. Following the magno and parvo
concepts, Visual Genomes provides two classes of genomes: low-resolution luminance genomes for
coarse shapes and segmentations (magno features), and higher resolution color and texture genomes
(parvo features).

Following the dual parvo and magno pathways in the human visual system, Visual Genomes
models parvo features as micro-level RGB color and texture tiles at higher resolution, and magno
features as low-level luminance channels at lower resolution, such as primitive shapes with connec-
tivity and spatial relationships. The magno features correspond mostly to the rods in the retina which
are sensitive to luminance and fast-moving shapes, and the parvo features correspond mostly to the
cones in the retina which are color sensitive to RGB, and capture low-level details with spatial acuity.
The central foveal region of the retina is exclusively RGB cones, optimized to capture finer detail, and
contains the highest density of cells in the retina, with retinal cell density becoming sparser towards the
edge of the field of view.

Retinal Processing Model

The retina can perform a wide range of processing, including dynamic range adjustments at each cell.
The retina performs a saccadic dithering process to get more detail from a specific area by dithering the
focal point around the area. The iris can open and close to control lighting, and the receptive rod, cone
and ganglion cells together perform local contrast enhancement. In addition, the lense can be used to
change the depth of field and focal plane (depth of field is a stereo process, and the visual pathway
provides a separate L/R processing pathway for depth processing). Notice that the retinal model does
not include geometric position or scale changes.

VGM provides a retinal input processing model consisting of a set of separate input images, which
reflect the capabilities of actual vision biology at the eye:

– Luminance images
– RGB color images and separate color channel images
– High dynamic range contrast enhanced images using the biologically inspired Retinex method (see

Scientific American, May 1959 and December 1977)
– Local contrast normalization
– Sharpened and blurred images

Visual Genomes assume a retinal model for input processing, combined with simple neurons that
do not perform any processing. The retina provides depth of field and focus controls, contrast controls,
dynamic range controls for compression and expansion. However, other variations such as rotation and
scale are controlled by moving the body and eye position, rather than neural image processing. In this

respect, the training protocol can be optimized by including prepared images of different views and
perspectives for optimal learning.

740 Appendix E: The Visual Genome Model (VGM)

Visual Genomes Model Concepts

Here we describe more details on each component of the VGM model.

Magno and Parvo Features

Following the biological region subsampling that occurs in magno cells, VGM defines two types of
features and two types of images in a two-level feature hierarchy:

1. Parvo features: Parvo features are modeled as RGB features with high detail, following the design
of parvo cells, take input images at full resolution (100%), use RGB color, and represent color and
texture features.

2. Magno features: Magno features are modeled as lower resolution luminance features, following
the magno cell biology, chosen to be 20% of full resolution (as a default approximation to retinal
biology), following the assumption that the larger magno cells integrate and subsample a larger
retinal area, therefore yielding a lower resolution image suited for the rapid tracking of shapes,
contours and edges for masks and cues. Since actual magno cells use predominantly monochrome
rod cells, VGM defines magno features to use a monochrome space and a Retinex processing
algorithm (see Scientific American, May 1959 and December 1977) to model the low light-level rod
response which provides local contrast enhancement, and also a global contrast normalization
method similar to histogram equalization.

The parvo and magno features are collected in four genome shapes A, B, C, D within overlapped
input windows, simulating the Hubel and Weiss [499, 500] primitive edges found in local receptive
fields, see Figs. E.7, E.8, and E.9. The genome shapes are discussed in more detail later.

Visual Genomes Model Concepts 741

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

9 bytes = 2
72

= 4 zeta bytes
*too huge

Genome_A

3 bytes = 224 = 16M

Genome_A + Genome_B + Genome_C + Genoe_D = 64M feature items

Each feature item is 32 bits

64M * 32 bits/feature = 256MB of total memory space

24 16 8 0
[--------] [--------] [--------]

2
4

1
6

8
0

[--------] [--------] [--------]

Example
Address concatenation
for pixels 3,4,5.
Bit positions
24 16 8 0
[--------] [--------] [--------]
Pixel 3 = 0×3f
Pixel4 = 0×2f
Pixel5 = 0×10
24-bit Address = 0×3f2f10

Genome_B

3 bytes = 224 = 16M

Genome_C

3 bytes = 224 = 16M

Genome_D

3 bytes = 224 = 16M

Fig. E.7 This figure illustrates the method of defining four genomes from the 3 × 3 matrix, each genome is a set of three
bytes forming a 24-bit address, which is the feature descriptor

742 Appendix E: The Visual Genome Model (VGM)

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

raw sharpened blurred local contrast

enhanced

RGB

image

sets

Parvo Features
(RGB genomes)

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

global

contrast

enhanced

Fig. E.8 This figure shows (upper image) parvo input processing of a total of 15 image inputs combined into separate
RGB genomes

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

Magno Features
(Luminance genomes)

luminance

raw sharpened blurred local contrast
enhanced

global
contrast
enhanced

Fig. E.9 This figure illustrates the luminance-channel magno image recorded into four genomes A, B, C, and D

Visual Genomes Model Concepts 743

It is also observed that the visual pathway operates in two main phases:

• Scanning phase (magno features): Apparently the visual system first identifies regions of interest
via the magno features, such as shapes and patterns, during a scanning phase, where the eye is
looking around the scene and not focused on a particular area. During the scanning phase, the retinal
model is not optimized for a particular object or feature, except perhaps for controlling gross
lighting and focus via the iris and lense. The Magno features are later brought into better focus and
dynamic range is optimized when the eye focuses on a specific region for closer evaluation.

• Saccadic phase (parvo features): For closer evaluation, the visual system inspects interesting
magno shapes and patterns to identify parvo features, and then attempts to identify larger concepts.
The retinal processing optimizations may change several times during the parvo feature scanning in
the saccadic dithering stage according to the current hypothesis under attention by the high-level
proxy agent, for example focus and depth of field may be changed at a particular point to test a
hypothesis.

Parvo Retinal Processing

Parvo cells are designed to capture color and texture with high detail, and operate at a higher resolution
than the magno cells, and slower to respond to changes. To emulate the parvo cells in the VGM retinal
model, four types of input processing are used to create full-resolution images for parvo features,
corresponding to the biological capabilities of the eye:

1. Unprocessed raw first-pass RGB images.
2. Local contrast enhanced RGB images emulating saccadic dithering.
3. Global contrast enhanced RGB images to mitigate shadow and saturation effects and support high

dynamic range contrast enhancements.
4. Sharpened RGB images supporting focus increase.
5. Blurred RGB images emulating depth of field effects.

The input images are all processed and combined by the VGM neuron into the same genome
features (A, B, C, D as shown in Fig. E.7), so there is not a separate feature genome for blur, sharpen,
raw and contrast enhanced images. Instead, the goal is to integrate the range of retinal features into
each memory cell, making the assumption that there is short term memory in biological neurons,
allowing the neuron to form and commit the feature memory as controlled by the proxy agent. Also,
using separate genomes for each retinal processing function would explode the feature memory count
and processing load without clear justification at this stage of the VGM prototype development.

Magno Retinal Processing

For the magno features, we assume a much simpler model than the parvo cells, since the magno cells
are lower resolution and are attuned to fast moving objects, which implies that the retinal model does
not change the magno features as much from impression to impression, rather the retinal model for
magno scanning is perhaps changed three times: (1) global scene scan at constant settings, (2) pause
scan at specific location and focus, and (3) contrast enhance at paused position, and then hand off
processing to the parvo stage. Therefore, we propose to model the magno features as raw luminance
input subsampled to 20% of full resolution, with prepared luminance images reflecting the eye
processing biology. Since magno cell regions contain several cells within the magno region, and are

predominantly attuned to faster-moving luminance changes, subsampling luminance 5:1 (i.e., 20%
scale) is a reasonable emulation of magno cell biology. Perhaps, the larger size of the magno region is
both (1) faster to accumulate a low light response over all the cells in the magno region and (2) the
magno cell output is lower resolution due to the subsampling of all the cells within the magno region.

744 Appendix E: The Visual Genome Model (VGM)

Note that scale and other geometric changes are not controlled by the eye, but rather by the body
containing the eye, or the position of the subject. Therefore, geometric variations such as scale,
rotation, and warping can be accomplished best by using a range of carefully selected labeled training
samples from various viewpoints, angles and distances, or else emulated by applying geometric
transforms to the labeled training images (not as desirable under the viewpoint model).

Magno Primal Feature Segmentation

And it also seems necessary to carefully mask out extraneous information from the labeled training
samples, for example masking out only the apple in a labeled image of apples, for recording the
optimal genome impressions for the apple. To emulate selective region masking and attentional focus,
the magno scanning phase incorporates an image segmentation pipeline to identify interesting regions,
discussed later in the Visual Genome Sequences, Tiles, Strands, Bundles, Primal Features section.

VGM Neuron Model

Each magno and parvo neuron models a separate feature; however, features may be shared
corresponding to neurons being connected to multiple other neurons. In the VGM, neural size and
connection density are modeled as corresponding to the number of times the neuron is shared. The
feature sharing is recorded as feature detection counts for each stored neural memory impression.
(Note: strand and bundle neurons and features are discussed in more detail in [476].) As shown in
Fig. E.6, neurons representing tiled magno and parvo features are composed of a CAM memory cell
and a comparator δ, which operates at a bit precision quantization level θ input to the neuron. The
neural input k is either considered as a 3 × 3 matrix representing tile features, or as a 9 × 1 vector.
Likewise, the CAM memory corresponds to a 3 × 3 tile or 9 × 1 vector. (See Krig [476] for information
on other sizes besides 3 × 3.) The contents of the CAM memory and the input k are taken by the
comparator δ to produce two items: (1) the Correlation Distance output k ‘, and (2) the Motivation or
Firing output Φ which is a TRUE or FALSE output, corresponding to a dendrite firing all or nothing.
The correlation distance k ‘ can be used for implementing inhibition (a biologically plausible neural
mechanism), when the distance is small. The Motivation firing activity and Output Distance of each
neuron can be used by a higher level proxy agent for forgetting memory (discussed in [476]) or
determining feature distance. To generate Φ, a quantization factor input θ is used with k ‘ to implement
a quantization space for determining the firing threshold. The quantization space is based on binary
quantization, so eliminating a bit of precision quantizes the space by a power of 2, for example
11111111 = 256 space quantization, 11111110 = 128 space quantization. The bit-level quantization
simulates a form of attentional level of detail, which is biologically plausible.

Visual Genomes Model Concepts 745

K ~ K0,K1,K2,K3,K4,K5,K6,K7,K8½] ~

K0 K1 K2

K3 K4 K5

K6 K7 K8

K 0 ¼ f

9

n¼0

CAMn -Knj j, θ

ϕ ¼ f K 0, θ ð Þ

In raw Impression mode (similar to a learning mode), all memory impressions are captured in CAM
memory cells as detection counts. Common impressions have larger impression counts since they are
detected more often. As shown in the Genome Renderings at the end of this appendix, commonly
detected features are typically recorded in regular patterns follow the address format structure. The
Quantization input θ bits can be used to shape the memory address by masking each pixel to coalesce
similar memory addresses which focuses and groups similar features together, as explained in the
VGM Memory Structures section and Fig. E.10. Essentially, the Quantization input θ is used to mask
off the lower bits of each pixel in an address to (1) reduce the level of detail and number of different
features detected, and correspondingly and (2) increase the detection count by coalescing similar
features. We also refer to θ as Quantization Distance or Quantization Space. Quantization allows
variable precision feature interpretation, or recording, allowing the same feature to be represented with
a variable amount of detail depending on the task, for example lower detail for high-level passes to find
candidate matches, and high detail for final classification passes.

for(int y=0; y < ysize-2; y++)
{

for(int x=0; x < xsize-2; x++)
{

getRegion3x3_u8((U8_PTR)filedata_8u_g, x, y, xsize, ysize, (U8_PTR)w3x3);
//

// [x x x] [x B x] [C x x] [x x D]

// [A A A] [x B x] [X C x] [x D x]

// [x x x] [x B x] [X X C] [D x x]

//

U32 genome_A_address = ((w3x3[1][1]) & 0xff) | ((w3x3[0][1]<<8) & 0xff00) | ((w3x3[2][1]<<16) & 0xff0000);
U32 genome_B_address = ((w3x3[1][1]) & 0xff) | ((w3x3[1][0]<<8) & 0xff00) | ((w3x3[1][2]<<16) & 0xff0000);
U32 genome_C_address = ((w3x3[1][1]) & 0xff) | ((w3x3[0][0]<<8) & 0xff00) | ((w3x3[2][2]<<16) & 0xff0000);
U32 genome_D_address = ((w3x3[1][1]) & 0xff) | ((w3x3[2][0]<<8) & 0xff00) | ((w3x3[0][2]<<16) & 0xff0000);

quantization_mask = 0xF8F8F8;
magno_luminance_g[GENOME_A_0_DEGREES][genome_A_address & quantization_mask]++;
magno_luminance_g[GENOME_B_90_DEGREES][genome_B_address & quantization_mask]++;
magno_luminance_g[GENOME_C_135_DEGREES][genome_B_address & quantization_mask]++;
magno_luminance_g[GENOME_D_45_DEGREES][genome_C_address & quantization_mask]++;

}
}

Fig. E.10 This figure illustrates the method of creating 24-bit addresses from 8-bit pixel values into the four genomes,
using a quantization mask to coalesce and focus the features

746 Appendix E: The Visual Genome Model (VGM)

To illustrate Quantization Space, consider two different feature addresses that become equal after
coalescing using a quantization θ mask:

• Feature 1 = 0x81A89D
• Feature 2 = 0x83A19e

– Quantization input θ mask = 0xFCFCFC
– 0x81A89D & 0xFCFCFC = 0x80A89C
– 0x83A19e & 0xFCFCFC = 0x80A89C

Each neuron represents a complete Magno or Parvo feature at some level of the feature hierarchy in
the visual pathway.

VGM Feature Memory Structures

The VGM feature is a memory address composed from a 3 × 3 region of pixel values—the pixel values
comprise the address. The idea is to represent each visual impression as a memory feature. Of course,
this leads to a very large memory space, so several models were evaluated to come up with a
reasonable memory address format to limit the size. The simplest format is to concatenate the pixels
together into a memory address. For example using the nine 8-bit pixel values from the 3 × 3 pixel
region concatenated into a 72-bit address yields an space of 9 × 8 = 72 = 272 (4 zetabytes) which is
impractical for desktop computers. Note that while it is possible to reduce the pixel resolution to less
than 8-bits, the trade-off of bit precision does not seem worthwhile, for example 4-bit pixel precision
yields 9*4 = 236 = 68 GB which is outside the per-process address space limitation of typical desktop-
class systems, and the level of detail of the pixels is greatly reduced which may not be desirable. The
current implementation uses a trade-off to segment the address space into four regions, as shown in
Fig. E.7. Most desktop computers using 32-bit and 64-bit memory addressing with commercial
operating systems support at least 2GB of address space per process (note: for practical reasons,
desktop computers and operating systems do not use all 64 bits of the CPU address lines to map

against a contiguous 64-bit addressed memory space).
As shown in Fig. E.7, the address space is reduced by segmenting the address into four 16M feature

segments for genomes A, B, C, and D. Each input 3 × 3 matrix of pixels is broken into the four
genomes A, B, C, and D by combining three pixels from oriented line segments. Each genome memory
unit contains a 32-bit unsigned int (four bytes) to record feature detection counts, so 16M 32-bit
features consumes 64MB of memory. Using 5-bit pixels instead of 8-bit pixels yields genomes
containing only 32k 32-bit features, and since 5-bit color images are realistic, 5-bit pixel values for
the genome computations saves space.

In addition, the features can be coalesced together by using the Quantization input θ bits as shown
in the code example in Fig. E.10 (note the quantization mask used to adjust each address).

As shown in Fig. E.8, parvo features are computed from five types of input images: raw, sharpened,
blurred, local contrast enhanced, and global contrast enhanced, broken into 3 RGB channels, for a total
of 15 input images combined into the four genomes A, B, C, D for each RGB color. The input images
are combined together into the same genome, so each genome represents combined variations of raw,
sharpened, blurred, and contrast enhanced impressions. Figure E.9 shows magno luminance channel
input to compute the four magno genomes A, B, C, D, so for magno level segmentation into primal
regions, any or all 5 types of retinal images may be used.

For the parvo features as shown in Fig. E.8, for 8-bit pixels the total memory space occupied by
each genome is 4 genomes * 3 RGB colors * 16M features * 4 bytes = 1.2 GB. For the magno features

Visual Genomes Model Concepts 747

as shown in Fig. E.9, the total memory space occupied by each genome is 4 genomes *
1luminance_channel * 16 M features * 4 bytes = 268 MB.

The parvo and magno feature genomes together comprise sixteen groups. As shown in the feature
count details below, if all the tile feature genomes shown in Figs. E.8 and E.9 are concatenated into a
contiguous address (for illustration purposes only), then the total virtual feature count for all magno
and parvo genomes at 8-bit pixel resolution is 2384 .

Feature Count Details (8-Bit Pixels for Each RGBL Channel)

• 224 = 16M possible features for each genome
• 4=3+1:3 color genomes (R,G,B) for each parvo feature* + 1 magno luminance
• 4 (A, B, C, D) genomes
• 2384 = total possible features (2(24 * 4 * 4))

Feature Count Details (5-Bit Pixels for Each RGBL Channel)

• 215 = 32k possible features for each genome
• 4=3+1: 3 color genomes (R,G,B) for each parvo feature* + 1 magno luminance
• 4 (A, B, C, D) genomes
• 2240 = total possible features (2(15 * 4 * 4))
• *Note: the five parvo inputs (raw, sharp, blur, retinex, global contrast) are combined into the shape

genomes (A, B, C, D) rather than separately recorded

It should be noted that the 2384 possible feature addresses for 8-bit pixels will not occur for real
images, and therefore the entire address space will never be populated, and will be clustered around the
center of the volume space like a 3D SDM, as illustrated in the Genome Renderings at the end of this
appendix, due to the fact that maximally or widely diverging adjacent pixel values do not often occur in
natural images, and instead, the adjacent pixels are usually closer together in value. Widely diverging
adjacent pixel values are more characteristic of noise and saturation effects, while reasonable diver-
gence corresponds to texture, and no divergence corresponds to no texture or a flat surface. So, the
extremes of the address space will likely never be populated for visual genome features, which will
resemble sparse volumetric shapes.

Each time a given feature address is detected in the image, the count for the address is incremented,
corresponding to feature commonality. The method for computing the feature addresses and counts is
simple as illustrated in Fig. E.7, and relies on the quantization input to the VGM neuron as introduced
in the VGM Neuron Model section above, see Fig. E.6. As a practical example using 8-bit pixel values
for each RGB-L channel, the address can be quantized and focused by using a quantization space
represented as an 8-bit hexadecimal mask value of 0xF8 (binary 1111 1000), and then each pixel value
in the address is bit-masked into the desired quantization space to ignore the bottom 3 bits. This is
illustrated in the following code snippet.

Visual Genome Sequences, Tiles, Strands, Bundles, Primal Features

VGM allows for a hierarchy of feature types, more details are provided in Krig [476]. Since DNA can
apparently encode visual features into the visual neurons which then become biological defaults for
subsequent learning, VGM allows for a set of primal features to be loaded into the model. The primal
features correspond to region shape masks, corresponding to one of: (1) a segmentation mask derived
from the actual Magno images (see Fig. E.11), (2) primal feature template masks containing are some

preexisting shape (see Appendix A), or (3) segmentations from another image set, which correspond to
a form of transfer learning. The primal features are shape masks, and the masks comprise a region of
the image over which a complete set of parvo features are computed and summed into a visual genome
address space. Since the masks are computed at magno resolution, the masks are first scaled 5× prior to
applying the masks to the full resolution parvo images.

748 Appendix E: The Visual Genome Model (VGM)

Fig. E.11 (Left) One method of segmenting the magno image into mask regions, and (center) using each mask region as
a template under which to define RGB-L parvo feature segmentation masks, and (right) the 16 visual genome parvo
features, and RGB-L pixel histogram features for the mask region

The actual segmentation pipeline to create the shape masks is currently based on superpixel
segmentations [224] (see also Chap. 2 regarding Morphology and Segmentation). A range of
superpixel size settings are used to collect a large set of candidate segmentations, with some amount
of statistical criteria applied to select the optimal superpixel regions to use as shape masks, and which
ones to ignore. The present statistical selection criteria uses a combination of Haralick feature metrics
and the Krig Extended SDM metrics discussed in Chap. 3. The superpixels are the primal shape masks
for bounding the magno and parvo features. The current segmentation pipeline is based on heuristics
and testing; however, a promising area for future work is developing a more automated and adaptive
image segmentation pipeline, which is a central area of research for imaging.

If the shape masks are based on a segmentation of the current image being viewed, the registration
and alignment of the masks is correct, and corresponding visual genome features are computed as
intended. However, for primal features based on postulated primal shapes or transfer learning of
segmented shapes from another image, the alignment of the shape masks does not exist. To use such
primal features in the image pixel space would require the masks to be stepped across the entire image
for correlation, and then for strong correlations the visual genome would be computed in the shape
region. We reserve future work in this area to evaluate primal feature shape mask correlation as a part
of the VGM, but for now we ignore it. However, the visual genome features based on a true
segmentation of the current image will provide the desired results by allowing for correlation in the
visual genome space, rather than in the image pixel space.

Besides the 16 parvo features recorded under each mask, other features can be computed for each
mask shape, such as a color histogram of the pixels under the mask, and various shape factors such as
Fourier circularity descriptors or Freeman chain codes (see Chap. 6).

Visual Genomes Model Concepts 749

Note that Hubel and Weiss define primal shapes for the lowest level receptive fields as oriented
edge-like features which VGM models in a similar manner as Genomes A, B, C, and D, see Figs. E.8
and E.9. VGM also postulates higher level primal feature shapes at the Strand feature level as
segmented regions resembling corners, blobs, and circular regions as shown in Fig. E.12. For example,
a hierarchy of shapes can be defined in the strand feature model for segmentation of the image into
familiar parts based on the strand shapes, to collect the corresponding magno and parvo features in the
segmented features into a strand. The primal features are recorded over time by experiential learning,
see [476].

Fig. E.12 This figure illustrates example primal shapes for parvo, magno, strand, and bundle features. Note that the
parvo and magno features are primal shapes consisting of oriented edges, following Hubel and Weiss. Strands are also
primal shapes segmenting and collecting lists of the underlying magno and parvo tile textures from the RGB and Luma
regions. Bundles are high level concepts composed of the primal shape strands

The summary of the VGM feature types is as follows:

• Magno and Parvo Tiles—A 3 × 3 tile region is translated into four line segments representing
micro-features as a 24-bit address (for 8-bit pixels) representing genomes A, B, C, and D. The
address is the feature. The count of all detected tiles of each type is recorded at the address as a bin
count for analysis and classification. Tiles genomes are the default feature stored in memory, from
which strands of tiles are built up by the proxy agent to represent bundles of higher-level concepts.
Magno features are used to segment the primal shapes.

• Strands, Primal—A segmented primal shape is used as the basis region to assemble sequences of
3 × 3 tiles into a strand, analogous to a DNA chain sequence, stored in a strand memory space.
Strands are defined within a magno feature shape region as a set of parvo tile features contained in
the region, or perhaps defined within other preexisting primal segmented shaped regions. The strand
is a genome sequence type further defined in [476].

• Bundles—Groups of strands, typically representing a high-level concept defined by the proxy
agent, and stored in a bundle memory space. The bundle genome sequence types are defined
in [476].

750 Appendix E: The Visual Genome Model (VGM)

In simple terms, parvo features are like texture and color tile codes. Magno features are shapes.
Strands are shaped sets of magno and parvo tiles. The strand memory stores the variable length strands
which are collections of magno and parvo features. The strands can be created several ways, such as
using preexisting feature shape masks, or masks segmented from real images. Bundles are sets of
strands. The proxy agent associates and creates sets of strands into bundles.

VGM Proxy Agent

The proxy agent represents the intelligence of the system, and is not defined in the VGM model. The
VGM represents a memory space for storing and organizing visual features, and provides controls for
the proxy agent. A variety of proxy agents can be devised for an application, since the VGM does not
attempt to model the higher-level consciousness necessary. However, the following assumptions are
made to devise controls within the VGM to enable the proxy agent:

• Retinal Processing Controller—VGM uses a very simple retinal model to provide biologically
plausible image processing for the Parvo pathway (raw, sharp, blur, local contrast enhancement for
high dynamic range adjustments, and global contrast normalization) and Magno pathway. This
basic retinal model of processing is adequate to emulate the visual pathway, instead of resorting to a
range of ad hoc processing methods as typically applied in CNN architecture feature layers. For
example, the typical CNN neuron model uses a wide range of pre and post processing methods, see
the taxonomy in Chap. 9 and Table 9.3. Instead the VGM assumes a strictly memory and
comparator based neuron model, with no processing at the neuron except for the bit-level
quantization control for attentional level of detail, which is biologically plausible.

• Training Protocol Controller—We propose a detailed learning and training model in [476] which
provides for highly segmented labeled regions masked off to exclude extraneous details, rather than
simply providing labeled images with multiple labels per image, or ill-prepared images with
occlusions, geometric variations, lighting and color variations. Better prepared training sets should
yield better results when the system is applied over real-life variations.

• Hypothesis Controller—A method to examine and compare objects against a range of hypotheses
is part of an intelligent controller to direct domain-specific (1) creation of new memory records and
(2) to classify objects. The VGM neural model and memory hierarchy are flexible with no
restriction on the controllers, and provide a quantization space to carry out progressive refinement
of hypothesis evaluations.

• Multi-Memory-Region Controller—A proxy agent may control multiple VGM memory models
which are pretrained on a range of subjects, to simulate an entire visual cortex with separate feature
regions. We develop an architecture using multiple-memory regions in [476].

• Environmental Controls In Feature Space—It is also possible to provide some sort of environ-
mental processing to the pixel values within each feature, to allow for hypothesis testing at
classification time using colorimetric and environmentally accurate pixel processing to alter the
features to test a given hypothesis. For example, pixel color and luminance will change at different
times of the day, so the VGM model allows for what-if pixel processing of the feature space to
account for seasonal lighting, cloud cover, rain, snow, fog, noise, or haze. To perform environmen-
tal hypothesis testing, the dynamic range for each RGB-L color component can be altered, treating
color channels and luminance independently in each pixel in each feature, by adjusting pixel values
in a color-space accurate manner. Environment-specific genomes can be recomputed, and classifi-
cation can be repeated. Such environmental hypothesis testing is highly relevant for surveillance

Tile Genome Renderings 751

and military applications. Environmental processing of the feature sets as part of a detection and
recognition process is explored in [476].

Summary

In summary, the VGM architecture is based on view-based model assumptions, a simplified retinal
processing model, separate paths and purposes for magno and parvo features, and a hierarchy of primal
strand and bundle features based on memory impressions, rather than using local feature descriptors, or
a hierarchical feature scale pyramid created via pooling and subsampling as is typical for CNNs.

Tile Genome Renderings

For visualizing the tile genomes, each 16M feature genome is rendered into a 4096 × 4096 32-bit
integer image. Then, some false coloring is applied to visualize the hot-spots in the address space
where the most common features were detected. Image set 1 illustrates a representation of the magno A
genome for an indoor scene (Bandits image), and image set 2 represents the magno A genomes for an
outdoor scene (Sequoia image). Notice that the indoor scene contains many flat regions with similar
texture and color for doors and walls, while the outdoor scene contains a much wider range of textures
and almost no flat surfaces of similar texture or color. The magno luminance genomes clearly reflect
the color and texture.

Note that classification and matching results are provided in Krig [476] for a wider range of image
classes.

Image Set 1: Indoor Scene of Little Girls (Bandits), 24-Bit RGB 2448 × 3264 Image

752 Appendix E: The Visual Genome Model (VGM)

Zoom-in close on region of 4096 × 4096 visualized Genome A address space for indoor Bandits image, false colored to
show hot spots or commonly detected Genome A features

Tile Genome Renderings 753

Full 4096 × 4096 visualized Genome A address space for indoor Bandits image, highlighted to show commonly detected
features

754 Appendix E: The Visual Genome Model (VGM)

Image Set 2: Outdoor Scene of Giant Sequoia Trees 24-Bit RGB 2112 × 2816 Image

Tile Genome Renderings 755

Zoom-in close on region of 4096 × 4096 visualized Genome A address space for outdoor Sequoia image, false colored to
show hot spots or commonly detected Genome A features

756 Appendix E: The Visual Genome Model (VGM)

Full 4096 × 4096 visualized Genome A address space for outdoor Sequoia image, highlighted to show commonly
detected features

Tile Genome Renderings 757

Image Set 3: Comparative Volume Renderings of Entire Genome A Feature Space
for Sequoias Scene, Representing Each n-Bit Feature Component for the Volume
Coordinates x, y, and z

758 Appendix E: The Visual Genome Model (VGM)

(Top) 256 × 256 × 256 8-bit pixel value volume renderings of genome A features for the Sequoias image, (Bottom)
32 × 32 × 32 5-bit pixel value volume renderings, notice the dynamic range quantization space reduction in 5-bit pixel
images vs. 8-bit pixel images. 8-bit images have a larger quantization space

Image Set 4: Comparative Volume Renderings of Entire Genome A Feature Space
for Bandits Scene, Representing Each n-Bit Feature Component for the Volume
Coordinates x, y, and z

Tile Genome Renderings 759

(Top) 256 × 256 × 256 8-bit pixel value volume renderings of genome A features for the Bandits image, (Bottom)
32 × 32 × 32 5-bit pixel value volume renderings. Notice the dynamic range quantization space reduction in 5-bit pixel
images vs. 8-bit pixel images. 8-bit images have a larger quantization space

References

1.
2.

Bajcsy, R.: Computer description of textured surfaces. Int. Conf. Artif. Intell. Stat. (1973)

3.
Bajcsy, R., Lieberman, L.: Texture gradient as a depth cue. Comput. Graph. Image Process. 5(1) (1976)

4.
Cross, G.R., Jain, A.K.: Markov random field texture models. PAMI. 54(1) (1983)

5.
Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ (2007)

6.
Haralick, R.M.: Statistical and structural approaches to texture. Proc. Int. Joint Conf. Pattern Recogn. (1979)
Haralick, R.M., Shanmugan, R., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man
Cybern. 3(6) (1973)

7.
8.

Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theor. 8(2) (1962)

9.
Lu, H.E., Fu, K.S.: A syntactic approach to texture analysis. Comput. Graph. Image Process. 7(3) (1978)

10.
Pratt, W.K.: Digital Image Processing, 3rd edn. Wiley, Hoboken, NJ (2002)

11.
Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982)

12.
Wong, R.Y., Hall, E.L.: Scene matching with invariant moments. Comput. Graph. Image Process. 8 (1978)
Guoying, Z., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial
expressions. Trans. Pattern. Anal. Mach. Intell. 29(6), 915–928 (2007)

13.
14.

Kellokumpu, V., Guoying Z., Pietikäinen, M.: Human activity recognition using a dynamic texture based method
Eichmann, G., Kasparis, T.: Topologically invariant texture descriptors. Comput. Vis. Graph. Image Process.
41(3) (1988)

15. Lam, S.W.C., Ip, H.H.S.: Structural texture segmentation using irregular pyramid. Pattern Recogn. Lett.
15(7) (1994)

16. Pietikäinen, M., Guoying, Z., Hadid, A.: Computer Vision Using Local Binary Patterns. Springer, New York
(2011)

17. Ojala, T., Pietikäinen, M., Hardwood, D.: Performance evaluation of texture measures with classification based on
kullback discrimination of distributions. Proc. Int. Conf. Pattern. Recogn. (1994)

18. Ojala, T., Pietikäinen, M., Hardwood, D.: A comparative study of texture measures with classification based on
feature distributions. Pattern Recogn. 29 (1996)

19. van Ginneken, B., Koenderink, J.J.: Texture histograms as a function of irradiation and viewing direction.
Int. J. Comput. Vis. 31(2/3), 169–184 (1999)

20. Stelu, A., Arati, K., Dong-Hui, X.: Texture Analysis for Computed Tomography Studies. Visual Computing
Workshop. DePaul University (2004)

21.
22.

Krig, S.A.: Image Texture Analysis Using Spatial Dependency Matrices. Krig Research White Paper Series (1994)

23.
Laws, K.I.: Rapid Texture Identification. SPIE 238 (1980)

24.
Bajcsy, R.K.: Computer identification of visual surfaces. Comput. Graph. Image Process. 2(2), 118–130 (1973)

25.
Kaizer, H.: A quantification of textures on aerial photographs. MS Thesis, Boston University (1955)

26.
Laws, K.I.: Texture energy measures. Proceedings of the Image Understanding Workshop (1979)

27.
Laws, K.I.: Textured image segmentation. PhD Thesis, University of Southern California (1980)

28.
Ade, F.: Characterization of textures by “Eigenfilters.” Signal Process. 5 (1983)

29.
Davis, L.S.: Computing the spatial structures of cellular texture. Comput. Graph. Image Process. 11 (2) (1979)
Pun, C.M., Lee, M.C.: Log-polar wavelet energy signatures for rotation and scale invariant texture classification.
Trans. Pattern. Anal. Mach. Intell. 25(5) (2003)

30. Spence, A., Robb, M., Timmins, M., Chantler, M.: Real-time per-pixel rendering of textiles for virtual textile
catalogues. In: Proceedings of INTEDEC, Edinburgh (2003)

31. Lam, S.W.C., Horace, H.S.I.: Adaptive pyramid approach to texture segmentation. Comput. Anal. Images Patterns
Lect. Notes Comput. Sci. 719, 267–274 (1993)

The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8

761

https://doi.org/10.1007/978-981-99-3393-8#DOI

762 References

32. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and Texture of Real World Surfaces.
Technical Report CUCS-048-96, Columbia University (1996)

33. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. Conf.
Comput. Vis. Pattern Recogn. (1997)

34. Suzuki, M.T., Yaginuma, Y.: A solid texture analysis based on three dimensional convolution kernels. Proc. SPIE
6491 (2007)

35. Suzuki, M.T., Yaginuma, Y., Yamada, T., Shimizu, Y.: A shape feature extraction method based on 3D
convolution masks. In: Eighth IEEE International Symposium on Multimedia, ISM’06. (2006)

36. Lee, K.L., Chen, L.H.: A new method for coarse classification of textures and class weight estimation for texture
retrieval. Pattern Recogn. Image Anal. 12(4) (2002)

37. Shu, L., Chung, A.C.S.: Texture classification by using advanced local binary patterns and spatial distribution of
dominant patterns. In: ICASSP 2007. IEEE Int. Conf. Acoust. Speech Signal Process. (2007)

38.
39.

Rosin, P.L.: Measuring corner properties. Comput. Vis. Image Understand. 73(2)
Russel, B., Jianxiong, X., Torralba, A.: Localizing 3D cuboids in single-view images. Conf. Neural Inform.
Process. Syst. (2012)

40. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph.
(SIGGRAPH Proc.) (2006)

41. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis.
(TBP)

42. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. Conf. Comput. Vis.
Pattern Recogn. (2010)

43. Yunpeng, L., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3D point clouds. Eur. Conf.
Comput. Vis. (2012)

44. Russell, B., Torralba, A., Murphy, K., Freeman, W.T.: LabelMe: a database and web-based tool for image
annotation. Int. J. Comput. Vis. 77 (2007)

45. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. Int. Conf. Robot
Autom. (2011)

46. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to
zoo. Conf. Comput. Vis. Pattern Recogn. (2010)

47. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental
Bayesian approach tested on 101 object categories. Conf. Comput. Vis. Pattern Recogn. (2004)

48.
49.

Fei-Fei, L.: ImageNet: crowdsourcing, benchmarking & other cool things. CMU VASC Semin. (2010)
Pirsiavash, H., Ramanan, D.: Detecting activities of daily living in first-person camera views. Conf. Comput. Vis.
Pattern Recogn. (2012)

50.
51.

Quattoni, A., Torralba, A.: Recognizing indoor scenes. Conf. Comput. Vis. Pattern Recogn. (2009)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images.
Eur. Conf. Comput. Vis. (2012)

52. Xiaofeng R., Philipose, M.: Egocentric recognition of handled objects: benchmark and analysis. CVPR
Workshops (2009)

53. Xiaofeng, R., Gu, C.: Figure-ground segmentation improves handled object recognition in egocentric video. Conf.
Comput. Vis. Pattern Recogn. (2009)

54.
55.

Fathi, A., Li, Y., Rehg, J.M.: Learning to recognize daily actions using gaze. Eur. Conf. Comput. Vis. (2012)
Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. Trans.
Graph. 18(1) (1999)

56. Ce, L., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a Bayesian framework for material
recognition. Conf. Comput. Vis. Pattern Recogn. (2010)

57. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face
recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)

58. Gross, R., Matthews, I., Cohn, J.F., Kanade, T., Baker, S.: Multi-PIE. In: Proceedings of the Eighth IEEE
International Conference on Automatic Face and Gesture Recognition (2008)

59. Yao, B., Jiang, X., Khosla, A., Lin, A.L., Guibas, L.J., Fei-Fei, L.: Human action recognition by learning bases of
action attributes and parts. Int. Conf. Comput. Vis. (2011)

60. LeCun, Y., Huang, FJ., Bottou, L.: Learning methods for generic object recognition with invariance to pose and
lighting. Proc. Conf. Comput. Vis. Pattern Recogn. (2004)

61. McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow. Comput. Vis. Image
Understand. 84(1) (2001)

62. Hamarneh, G., Jassi, P., Tang, L.: Simulation of ground-truth validation data via physically- and statistically-based
warps. MICCAI 2008, the 11th International Conference on Medical Image Computing and Computer Assisted
Intervention

References 763

63. Prastawa, M., Bullitt, E., Gerig, G.: Synthetic ground truth for validation of brain tumor MRI segmentation.
MICCAI 2005, the 8th International Conference on Medical Image Computing and Computer Assisted
Intervention

64. Vedaldi, A., Ling, H., Soatto, S.: Knowing a good feature when you see it: ground truth and methodology to
evaluate local features for recognition. Comput. Vis. Stud. Comput. Intell. 285, 27–49 (2010)

65. Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3D interest point detection techniques via human-generated
ground truth. Visual Comp. 28 (2012)

66.
67.

Rosin, P.L.: Augmenting corner descriptors. Graph. Model. Image Process. 58(3) (1996)
Rockett, P.I.: Performance assessment of feature detection algorithms: a methodology and case study on corner
detectors. Trans. Image Process. 12(12) (2003)

68.
69.

Shahrokni, A., Ellis, A., Ferryman, J.: Overall evaluation of the PETS2009 results. IEEE PETS (2009)
Over, P., Awad, G., Sanders, G., Shaw, B., Martial, M., Fiscus, J., Kraaij, W., Smeaton, A.F.: TRECVID 2013: An
Overview of the Goals, Tasks, Data, Evaluation Mechanisms, and Metrics, NIST USA (2013)

70. Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. AI Memo 572, Massachusetts Institute of Technology
(1980)

71. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes
(VOC) challenge. Int. J. Comput. Vis. 88(2) (2010)

72. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos “in the Wild.” Conf. Comput. Vis. Pattern
Recogn. (2009)

73. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. Trans.
Pattern. Anal. Mach. Intell. 33(5) (2011)

74.
75.

Fisher, R.B.: PETS04 surveillance ground truth data set. Proc. IEEE PETS. (2004)
Quan, Y., Thangali, A., Ablavsky, V., Sclaroff, S.: Learning a family of detectors via multiplicative kernels.
Pattern. Anal. Mach. Intell. 33(3) (2011)

76. Ericsson, A., Karlsson, J.: Measures for benchmarking of automatic correspondence algorithms. J. Math. Imaging
Vis. (2007)

77. Takhar, D., et al.: A new compressive imaging camera architecture using optical-domain compression. In:
Proceedings of IS&T/SPIE Symposium on Electronic Imaging (2006)

78.
79.

Marco, F.D., Baraniuk, R.G.: Kronecker compressive sensing. IEEE Trans. Image Process. 21(2) (2012)
Weinzaepfel, P., Jegou, H., Perez, P.: Reconstructing an image from its local descriptors. Conf. Comput. Vis.
Pattern Recogn. (2011)

80. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Conf. Comput. Vis. Pattern Recogn.
(2005)

81. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis.
3(3), 177–280 (2007)

82.
83.

Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM. 24(6) (1981)

84.
85.

Sunglok, C., Kim, T., Yu, W.: Performance evaluation of RANSAC family. Br. Mach. Vis. Assoc. (2009)
Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-means clustering algorithm. J. Royal Stat. Soc. Ser. C Appl.
Stat. 28(1), 100–108 (1979)

86. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die
Reine und Angewandte Mathematik. 133, 97–178 (1908)

87. Capel, D.: Random forests and ferns. Penn. State University Computer Vision Laboratory, seminar lecture notes
online:. ForestsAndFernsTalk.pdf

88.
89.

Xiaofeng, R., Malik, J.: Learning a classification model for segmentation
Lai, K., Bo, L., Ren, X., Fox, D.: Sparse distance learning for object recognition combining RGB and depth
information

90. Xiaofeng, R., Ramanan, D.: Histograms of sparse codes for object detection. Conf. Comput. Vis. Pattern Recogn.
(2013)

91. Liefeng, B., Ren, X., Fox, D.: Multipath sparse coding using hierarchical matching pursuit. Conf. Comput. Vis.
Pattern Recogn. (2013)

92. Herbst, E., Ren, X., Fox, D.: RGB-D flow: dense 3-D motion estimation using color and depth. IEEE Int. Conf.
Robot Autom. (ICRA) (2013)

93. Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour detection. Conf. Neural Inform.
Process. Syst. (2012)

94. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV ’11
Proceedings of the 2011 International Conference on Computer Vision (2011)

95. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital images. Pattern Recog. 1, 33–61 (1968)

764 References

96. Richardson, A., Olson, E.: Learning convolutional filters for interest point detection. In: IEEE Int. Conf. Robot
Autom. ICRA’13 IEEE, pp. 631–637 (2013)

97. Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall,
Englewood Cliffs, NJ (1999)

98. Ren, X., Ramanan, D.: Histograms of sparse codes for object detection. Conf. Comput. Vis. Pattern Recogn.
(2013)

99. d’Angelo, E., Alahi, A., Vandergheynst, P.: Beyond bits: reconstructing images from local binary descriptors. In:
Swiss Federal Institute of Technology, 21st International Conference on Pattern Recognition (ICPR) (2012)

100. Dengsheng, Z., Lu, G.: Review of shape representation and description techniques. J. Pattern Recogn. Soc. 37,
1–19 (2004)

101.
102.

Yang, M., Kidiyo, K., Joseph, R.: A survey of shape feature extraction techniques. Pattern Recogn., 43–90 (2008)

103.
Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. Conf. Comput. Vis. Pattern Recogn. (2012)
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. Int. Conf. Comput.
Vis. (2011)

104. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In:
ECCV’10 Proceedings of the 11th European Conference Computer Vision: Part IV (2010)

105.
106.

Calonder, M., et al.: BRIEF: computing a local binary descriptor very fast. Pattern. Anal. Mach. Intell. 34 (2012)
von Hundelshausen, F., Sukthankar, R.: D-Nets: beyond patch-based image descriptors. Conf. Comput. Vis.
Pattern Recogn. (2012)

107. Krig, S.: RFAN radial fan descriptors. Picture Center Imaging and Visualization System, White Paper Series
(1992)

108.
109.

Krig, S.: Picture Center Imaging and Visualization System. Krig Research White Paper Series (1994)
Rosten, E., Drummond, T.: FAST machine learning for high-speed corner detection. Eur. Conf. Comput. Vis.
(2006)

110.
111.

Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. Int. Conf. Comput. Vis. (2005)
Liefeng, B., Ren, X., Fox, D.: Hierarchical matching pursuit for image classification: architecture and fast
algorithms. Conf. Neural Inform. Process. Syst. (2011)

112. Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast feature matching. Int. Conf.
Pattern. Recogn. (2012)

113. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

114.
115.

Gleason, J.: BRISK (Presentation by Josh Gleason) at International Conference on Computer Vision (2011)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Pattern. Anal. Mach. Intell. IEEE
Trans. 27(10) (2005)

116. Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual
tracking. Int. J. Comput. Vis. 94(3) (2011)

117.
118.

Viola, J.: Robust real time face detection. Int. J. Comput. Vis. 57(2) (2004)
Thevenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE
Trans. Image Process. 7(1) (1998)

119.
120.

Qi, T., Huhns, M.N.: Algorithms for subpixel registration. Comput. Vis. Graph. Image Process. 35 (1986)

121.
Zhu, J., Yang, L.: Subpixel eye gaze tracking. Autom. Face Gesture Recogn. Conf. (2002)
Cheezum, M.K., Walker, W.F., Guilford, W.H.: Quantitative comparison of algorithms for tracking single
fluorescent particles. Biophys. J. 81(4), 2378–2388 (2001)

122. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Opt. Lett.
33(2), 156–158 (2008)

123. Hadjidemetriou, E., Grossberg, M.D., Nayar, S.K.: Multiresolution histograms and their use for texture classifica-
tion. Int. Workshop Texture Anal. Synth. 26(7) (2003)

124.
125.

Mikolajczyk, K., et al.: A comparison of affine region detectors. Conf. Comput. Vis. Pattern Recogn. (2006)

126.
Canny, A.: Computational approach to edge detection. Trans. Pattern. Anal. Mach. Intell. 8(6) (1986)
Gunn, S.R.: Edge detection error in the discrete Laplacian of Gaussian. In: International Conference on Image
Processing, ICIP 98. Proceedings. vol 2 (1998)

127. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision
Conference (1988)

128.
129.

Shi, J., Tomasi, C.: Good features to track. Conf. Comput. Vis. Pattern Recogn. (1994)

130.
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 1991 # MIT Media Lab (1991)

131.
Haja, A., Jahne, B., Abraham, S.: Localization accuracy of region detectors. IEEE CVPR (2008)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image
Understand. 110(3), 346–359 (2008)

References 765

132. Lowe, D.G.: SIFT distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110
(2004)

133.
134.

Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. Eur. Conf. Comput. Vis. (2004)

135.
Kadir, T., Brady, J.M.: Scale, saliency and image description. Int. J. Comput. Vis. 45(2), 83–105 (2001)
Smith, S.M., Michael Brady, J.: SUSAN—a new approach to low level image processing. Technical Report
TR95SMS1c (patented), Crown Copyright (1995), Defence Research Agency, UK (1995)

136. Smith, S.M., Michael Brady, J.: SUSAN—a new approach to low level image processing. Int. J. Comput. Vis.
Arch. 23(1), 45–78 (1997)

137. Baohua, Y., Cao, H., Chu, J.: Combining local binary pattern and local phase quantization for face recognition. Int.
Symp. Biometr. Secur. Technol. (2012)

138. Ojansivu, V., Heikkil, J.: Blur insensitive texture classification using local phase quantization. Proc. Image Signal
Process. (2008)

139. Chan, C.H., Tahir, M.A., Kittler, J., Pietikäinen, M.: Multiscale local phase quantization for robust component-
based face recognition using kernel fusion of multiple descriptors. PAMI (2012)

140. Pietikäinen, M., Heikkilä, J.: Tutorial on image and video description with local binary pattern variants. Conf.
Comput. Vis. Pattern Recogn. (2011)

141. Shu, L., Albert, C.S.: Texture classification by using advanced local binary patterns and spatial distribution of
dominant patterns. IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP (2007)

142. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Binary Patterns. Computational
Imaging and Vision Series, vol. 40. Springer, New York (2011)

143. Arandjelovi, A., Zisserman, A.: Three things everyone should know to improve object retrieval. Conf. Comput.
Vis. Pattern Recogn. (2011)

144. Kellokumpu, V., Guoying Z., Pietikäinen, M.: Human activity recognition using a dynamic texture based method.
Br. Mach. Vis. Conf. (2008)

145. Zabih, R., Woodfill, J.: Nonparametric local transforms for computing visual correspondence. Eur. Conf. Comput.
Vis. (1994)

146. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE
International Conference on Computer Vision (1999)

147. Abdel-Hakim, A.E., Farag, A.A.: CSIFT: a SIFT descriptor with color invariant characteristics. Conf. Comput.
Vis. Pattern Recogn. (2006)

148.
149.

Vinukonda, P.: A study of the scale-invariant feature transform on a parallel pipeline. Thesis Project

150.
Alcantarilla, P.F., Bergasa, L.M., Davison, A.: Gauge-SURF Descriptors. Elsevier (2011)

151.
Christopher, E.: Notes on the OpenSURF Library. University of Bristol Technical Paper (2009)
Yan, K., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. Conf. Comput.
Vis. Pattern Recogn. (2004)

152. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and
matching. Eur. Conf. Comput. Vis. (2008)

153.
154.

Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154 (2002)
Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on Gabor filters. IEEE Trans.
Image Process. 11(10) (2002)

155. Alcantarilla, P., Bergasa, L.M., Davison, A.: Gauge-SURF descriptors. Image Vis. Comput. 31(1), 103–116
(2013) Elsevier via DOI 1302

156. Morse, B.S.: Lecture 11: Differential Geometry. Brigham Young University (1998/2000). http://morse.cs.byu.edu/
650/lectures/lect10/diffgeom.pdf

157. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. CIVR ’07 Proceedings of
the 6th ACM International Conference on Image and Video Retrieval

158. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput.
Vis. 40(2), 99–121 (2000)

159. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope.
Int. J. Comput. Vis. 42 (2001)

160. Matas, J., Chum, O., Urba, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions.
Proc. Br. Mach. Vis. Conf. (2002)

161. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to action recognition. ACM
Proceedings of the 15th International Conference on Multimedia, pp. 357–360 (2007)

162. Klaser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. Br. Mach. Vis. Conf.
(2008)

163.
164.

Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64 (2005)
Oreifej, O., Liu, Z.: HON4D: histogram of oriented 4D normals for activity recognition from depth sequences.
Conf. Comput. Vis. Pattern Recogn. (2013)

http://morse.cs.byu.edu/650/lectures/lect10/diffgeom.pdf
http://morse.cs.byu.edu/650/lectures/lect10/diffgeom.pdf

766 References

165.
166.

Ke, Y., et al.: Efficient visual event detection using volumetric features. Int. Conf. Comput. Vis. (2005)
Zhang, L., da Fonseca, M.J., Ferreira, A.: Survey on 3D shape descriptors. União Europeia—Fundos Estruturais
Governo da República Portuguesa Referência: POSC/EIA/59938/2004

167. Tangelder, J.W.H., Veltkamp, R.C.: A Survey of Contrent-Based 3D Shape Retrieval Methods. Springer,
New York (2007)

168. Heikkila, M., Pietikäinen, M., Schmid, C.: Description of interest regions with center-symmetric local binary
patterns. Comput. Vis. Graph. Image Process. Lect. Notes Comput. Sci. 4338, 58–69 (2006)

169. Schmidt, A., Kraft, M., Fularz, M., Domagała, Z.: The comparison of point feature detectors and descriptors in the
context of robot navigation. Workshop on Perception for Mobile Robots Autonomy (2012)

170. Jun, B., Kim, D.: Robust face detection using local gradient patterns and evidence accumulation. Pattern Recogn.
45(9), 3304–3316 (2012)

171. Froba, B., Ernst, A.: Face detection with the modified census transform. Int. Conf. Autom. Face Gesture Recogn.
(2004)

172.
173.

Freeman, H. On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. (1961)
Salem, A.B.M., Sewisy, A.A., Elyan, U.A.: A vertex chain code approach for image recognition. Int. J. Graph. Vis.
Image Process. ICGST-GVIP (2005)

174.
175.

Kitchen, L., Rosenfeld, A.: Gray-level corner detection. Pattern Recogn. Lett. 1 (1992)

176.
Koenderink, J., Richards, W.: Two-dimensional curvature operators. J. Opt. Soc. Am. 5(7), 1136–1141 (1988)
Bretzner, L., Lindeberg, T.: Feature tracking with automatic selection of spatial scales. Comput. Vis. Image
Understand. 71(3), 385–392 (1998)

177. Lindeberg, T.: Junction detection with automatic selection of detection scales and localization scales. In:
Proceedings of First International Conference on Image Processing (1994)

178.
179.

Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)
Wang, H., Brady, M.: Real-time corner detection algorithm for motion estimation. Image Vis. Comput. 13(9),
695–703 (1995)

180.
181.

Trajkovic, M., Hedley, M.: Fast corner detection. Image Vis. Comput. 16(2), 75–87 (1998)
Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide baseline stereo. PAMI.
32(5) (2010)

182. Arbeiter, G., et al.: Evaluation of 3D feature descriptors for classification of surface geometries in point clouds. Int.
Conf. Intell. Robots Syst. (2012) IEEE/RSJ

183. Rupell, A., Weisshardt, F., Verl, A.: A rotation invariant feature descriptor O-DAISY and its FPGA implementa-
tion. IROS (2011)

184.
185.

Ambai, M., Yoshida, Y.: CARD: compact and real-time descriptors. Int. Conf. Comput. Vis. (2011)
Takacs, G., et al.: Unified real-time tracking and recognition with rotation-invariant fast features. Conf. Comput.
Vis. Pattern Recogn. (2010)

186. Taylor, S., Rosten, E., Drummond, T.: Robust feature matching in 2.3 μs. Conf. Comput. Vis. Pattern Recogn.
(2009)

187. Chandrasekhar, V., et al.: CHoG: compressed histogram of gradients, a low bitrate descriptor. Conf. Comput. Vis.
Pattern Recogn. (2009)

188.
189.

Mainali, G.L., et al.: SIFER: scale-invariant feature detector with error resilience. Int. J. Comput. Vis. (2013)
Fowers, S.G., Lee, D.J., Ventura, D., Wilde, D.K.: A novel, efficient, tree-based descriptor and matching algorithm
(BASIS). Conf. Comput. Vis. Pattern Recogn. (2012)

190. Fowers, S.G., Lee, D.J., Ventura, D.A., Archibald, J. K.: Nature inspired BASIS feature descriptor and its
hardware implementation. IEEE Trans. Circ. Syst. Video Technol. (2012)

191. Bracewell, R.: The Fourier Transform & Its Applications, 3rd edn. McGraw-Hill Science/Engineering/Math
(1999)

192. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM.
(1972)

193.
194.

Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2) (1981)

195.
Illingsworth, J., Kitter, K.: A survey of the Hough transform. Comput. Vis Graph. Image Process. (1988)

196.
Slaton, G., MacGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)
Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal
words. Int. J. Comput. Vis. (2008)

197.
198.

Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. Eur. Conf. Comput. Vis. (2006)
Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of key-points. SLCV workshop, Eur.
Conf. Comput. Vis. (2004)

199. Dean, T., Washington, R., Corrado, G.: Sparse spatiotemporal coding for activity recognition. Brown Univ. Tech.
Rep. (2010)

References 767

200. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action
recognition with independent subspace analysis. Conf. Comput. Vis. Pattern Recogn. (2011)

201. Belongie, S., Malik, J., Puzicha, J.: Matching with shape context. CBAIVL ’00 Proceedings of the IEEE Workshop
on Content-based Access of Image and Video Libraries

202. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition.
Conf. Neural Inform. Process. Syst. (2000)

203. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI.
24(4) (2002)

204. Liefeng, B., Ren, X., Fox, D.: Unsupervised feature learning for RGB-D based object recognition. ISER, vol 88 of
Springer Tracts in Advanced Robotics. Springer, pp. 387–402 (2012)

205. Loy, G., Zelinsky, A.: A fast radial symmetry transform for detecting points of interest. Eur. Conf. Comput. Vis.
(2002)

206.
207.

Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. Eur. Conf. Comput. Vis. (2008)
Kurz, D., Ben Himane, S.: Inertial sensor-aligned visual feature descriptors. Conf. Comput. Vis. Pattern Recogn.
(2011)

208. Kingsbury, N.: Rotation-invariant local feature matching with complex wavelets. Proc. Eur. Conf. Signal Process.
(EUSIPCO) (2006)

209. Dinggang, S., Ip, H.H.S.: Discriminative wavelet shape descriptors for recognition of 2-D patterns. Pattern
Recogn. 32(2), 151–165 (1999)

210. Edelman, S., Intrator, N., Poggio, T.: Complex cells and object recognition. Conf. Neural Inform. Process. Syst.
(1997)

211.
212.

Hunt, R.W.G., Pointer, M.R.: Measuring Colour. Wiley, Hoboken, NJ (2011)

213.
Hunt, R.W.G.: The Reproduction of Color, 6th edn. Wiley (2004)

214.
Berns, R.S.: Billmeyer and Saltzman’s Principles of Color Technology. Wiley, Hoboken, NJ (2000)

215.
Morovic, J.: Color Gamut Mapping. Wiley, Hoboken, NJ (2008)

216.
Fairchild, M.: Color Appearance Models, 1st edn. Addison Wesley Longman (1998)
Ito, M., Tsubai, M., Nomura, A.: Morphological operations by locally variable structuring elements and their
applications to region extraction in ultrasound images. Syst. Comput. Jpn. 34(3), 33–43 (2003)

217. Tsubai, M., Ito, M.: Control of variable structure elements in adaptive mathematical morphology for boundary
enhancement of ultrasound images. Electron. Commun. Jpn. Part 3 Fund. Electron. Sci. 87(11), 20–33

218.
219.

Mazille, J.E.: Mathematical morphology and convolutions. J. Microsc. 156, 257 (1989)

220.
Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. PAMI. 34(11) (2012)

221.
Achanta, R., et al.: SLIC superpixels. EPFL Technical Report No. 149300 (2010)
Lucchi, A., et al.: A fully automated approach to segmentation of irregularly shaped cellular structures in EM
images. MICCAI (2010)

222.
223.

Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI (2000)

224.
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. Eur. Conf. Comput. Vis. (2008)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2),
167–181 (2004)

225.
226.

Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. PAMI. 24(5) (2002)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. PAMI.
13(6) (1991)

227.
228.

Levinshtein, A., et al.: Turbopixels: fast superpixels using geometric flows. PAMI. 31(12) (2009)

229.
Scharstein, D., Pal, C.: Learning conditional random fields for stereo. Conf. Comput. Vis. Pattern Recogn. (2007)
Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. Conf. Comput. Vis. Pattern
Recogn. (2007)

230.
231.

Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1968)

232.
Gaskill, J.D.: Linear Systems, Fourier Transforms, Optics. Wiley, Hoboken, NJ (1978)
Thibos, L., Applegate, R.A., Schweigerling, J.T., Webb, R.: Standards for reporting the optical aberrations of
eyes. In: Lakshminarayanan, V. (ed.) OSA Trends in Optics and Photonics, Vision Science and its Applications.
Optical Society of America, Washington, DC (2000)

233. Hwang, S.-K., Kim, W.-Y.: A novel approach to the fast computation of Zernike moments. Pattern Recogn. 39
(2006)

234.
235.

Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. PAMI. 12 (1990)
Chao Kan, M., Srinath, D.: Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments.
Pattern Recogn. 35 (2002)

236. Hyung, S.K., Lee, H.-K.: Invariant image watermark using Zernike moments. IEEE Trans. Circ. Syst. Video
Technol. 13(8) (2003)

768 References

237. Papakostas, G.A., Karras, D.A., Mertzios, B.G.: Image coding using a wavelet based Zernike moments compres-
sion technique. In: Proceeding of: Digital Signal Processing, vol 2, DSP (2002)

238. Mukundan, R., Ramakrishnan, K.R.: Fast computation of Legendre and Zernike moments. 28(9), 1433–1442
(1995)

239. Yongqing, X., Pawlak, M., Liao, S.: Image reconstruction with polar Zernike moments. ICAPR’05 Proceedings of
the Third International Conference on Pattern Recognition and Image Analysis—Volume Part II (2005)

240. Singh, C., Upneja, R.: Fast and accurate method for high order Zernike moments computation. Appl. Math.
Comput. 218(15), 7759–7773 (2012)

241.
242.

Pratt, W., Chen, W.-H., Welch, L.: Slant transform image coding. IEEE Trans. Commun. 22(8) (1974)
Enomoto, H., Shibata, K.: Orthogonal transform coding system for television signals. IEEE Trans. Electromagn.
Compatibil. 13(3) (1974)

243. Dutra da Silva, R., Robson, W., Pedrini Schwartz, H.: Image segmentation based on wavelet feature descriptor and
dimensionality reduction applied to remote sensing. Chilean. J. Stat. 2 (2011)

244. Arun, N., Kumar, M., Sathidevi, P.S.: Wavelet SIFT feature descriptors for robust face recognition. Springer Adv.
Intell. Syst. Comput. 177 (2013)

245.
246.

Wolfram Research Mathematica Wavelet Analysis Libraries

247.
Strang, G.: Wavelets. Am. Sci. 82(3) (1994)

248.
Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Elsevier (2008)
Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press,
Cambridge (2006)

249.
250.

Gabor, D.: Theory of communication. J. IEE. 93 (1946)
Minor, L.G., Sklansky, J.: Detection and segmentation of blobs in infrared images. IEEE Trans. Syst. Man
Cyberneteics. 11(3) (1981)

251. van Ginkel, M., Luengo Hendriks, C.K., van Vliet, L. J.: A short introduction to the Radon and Hough transforms
and how they relate to each other. Number QI-2004-01 in the Quantitative Imageing Group Technical Report
Series (2004)

252. Toft, P.A.: Using the generalized Radon transform for detection of curves in noisy images. 1996 I.E. International
Conference on Acoustics, Speech, and Signal Processing, ICASSP-96. Conference Proceedings, vol 4 (1996)

253. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten.
Berichte Sächsische Akademie der Wissenschaften, Leipzig, Mathematisch-Physikalische Klasse 69 (1917)

254.
255.

Fung, J., Mann, S., Aimone, C.: OpenVIDIA: parallel GPU computer vision. Proc. ACM Multimed. (2005)
Bazin, M.J., Benoit, J.W.: Off-line global approach to pattern recognition for bubble chamber pictures. Trans.
Nuclear Sci. 12 (1965)

256.
257.

Deans, S.R.: Hough transform from the Radon transform. Trans. Pattern. Anal. Mach. Intell. 3(2), 185–188 (1981)

258.
Rosenfeld, A.: Digial Picture Processing by Computer. Academic Press, New York (1982)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. ICCV ’98 Proceedings of the Sixth
International Conference on Computer Vision (1998)

259. See the documentation for the ImageJ, ImageJ2 or Fiji software package for complete references to each method,
[global] Auto Threshold command and Auto Local Threshold command. http://fiji.sc/ImageJ2

260. Garg, R., Mittal, B., Garg, S.: Histogram equalization techniques for image enhancement. Int. J. Electron.
Commun. Technol. 2 (2011)

261.
262.

Sung, A.P., Wang, C.: Spatial-temporal antialiasing. Trans. Visual. Comput. Graph. 8 (2002)

263.
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60 (2004)

264.
Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. PAMI. 32 (2010)
Schaffalitzky, F., Zisserman, A.: Automated scene matching in movies. CIVR 2004. In: Proceedings of the
Challenge of Image and Video Retrieval, London, LNCS 2383

265. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. Conf. Comput. Vis. Pattern Recogn.
(2008)

266. Yinpeng, J., Fayad, L., Laine, A.: Contrast enhancement by multi-scale adaptive histogram equalization. Proc.
SPIE. 4478 (2001)

267.
268.

Jianguo, Z., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recogn. 35 (2002)
Tomita, F., Shirai, Y., Tsuji, S.: Description of textures by a structural analysis. IEEE Trans. Pattern. Anal. Mach.
Intell. Arch. 4 (1982)

269.
270.

Tomita, F., Tsuji, S.: Computer Analysis of Visual Textures. Springer, New York (1990)

271.
Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. (1983)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66
(1979)

272. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29, 100–132
(1985)

http://fiji.sc/ImageJ2

References 769

273.
274.

Raja, Y., Gong, S.: Sparse multiscale local binary patterns. Br. Mach. Vis. Conf. (2006)

275.
Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5 (2004)

276.
Szelinski, R.: Computer Vision, Algorithms and Applications. Springer, New York (2011)

277.
Pratt, W.K.: Digital Image Processing: PIKS Scientific Inside, 4th edn. Wiley-Interscience (2007)

278.
Russ, J.C.: The Image Processing Handbook, 5th edn. CRC Press (2006)

279.
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. IMAR. (2007)
Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. ISMAR ’11 Proceedings of
the 2011 10th IEEE International Symposium on Mixed and Augmented Reality (2011)

280.
281.

Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. Int. Conf. Comput. Vis. (2001)
Turcot, P., Lowe, D.G.: Better matching with fewer features: the selection of useful features in large database
recognition problems. Int. Conf. Comput. Vis. (2009)

282.
283.

Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms, 1997th ed., Birkhäuser (1997)
Ricker, N.: Wavelet contraction, wavelet expansion, and the control of seismic resolution. Geophysics. 18,
769–792 (1953)

284.
285.

Goshtasby, A.: Description and discrimination of planar shapes using shape matrices. PAMI. 7(6) (1985)
Vapnik, V.N., Levin, E., LeCun, Y.: Measuring the dimension of a learning machine. Neural Comput. 6(5),
851–876 (1994)

286. Cowan, J.D., Tesauro, G., Alspector, J.: Learning curves: asymptotic values and rate of convergence. Adv. Neural
Inform. Process. 6 (1994)

287.
288.

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition:
intelligent signal processing. Proc. IEEE. 86(11), 2278–2324 (1998)

289. Krizhevsky, A., Sutskever, I., Hinton, E.: ImageNet classification with deep convolutional neural networks. Conf.
Neural Inform. Process. Syst. (2012)

290.
291.

Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Kluwer Data Mining Discov.
2 (1998)

292. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep
matching. Int. Conf. Comput. Vis. (2013)

293.
294.

Keysers, T.C., Gollan, D., Ney, H.: Deformation models for image recognition. Trans. PAMI. 20 (2007)
Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences.
Conf. Comput. Vis. Pattern Recogn. (2013)

295. Boureau, Y.-L., Ponce, J., LeCu, Y.: A theoretical analysis of feature pooling in visual recognition. Int. Conf.
Mach. Learn. (2010)

296. Schmid, C., Mohr, R.: Object recognition using local characterization and semi-local constraints. PAMI.
19(3) (1997)

297.
298.

Schaffalitzky, F., Zisserman, A.: Automated scene matching in movies. CIVR. (2002)
Estivill-Castro, V.: Why so many clustering algorithms—a position paper. ACM SIGKDD Explor. Newslett.
4(1) (2002)

299. Kriegel, H.-P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdisciplinary Rev. Data
Mining Knowl. Discov. 1(3), 231–240 (2011)

300. Hastie, T., Tibshirani, R., Friedman, J.: Hierarchical Clustering: The Elements of Statistical Learning, 2nd edn.
Springer, New York (2009)

301. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM
algorithm. J. Roy. Stat. Soc. Ser. B. 39(1), 1–38 (1977)

302.
303.

Pearson, K.: On lines and planes of closest fit to systems of points in space. Phil. Mag. (1901)

304.
Hotelling, H.: Relations between two sets of variates. Biometrika. 28(3–4), 321–377 (1936)

305.
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ (1999)

306.
Hofmann, T., Scholkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1031 (2008)
Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive
real-time random sample consensus. Eur. Conf. Comput. Vis. (2008)

307. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification.
Conf. Neural Inform. Process. Syst. (2004)

308.
309.

Schmid, C., Mohr, R.: Local gray value invariants for image retrieval. PAMI. 19(5) (1997)
Dork, G., Schmid, C.: Object class recognition using discriminative local features. Technical Report RR-5497,
INRIA—Rhone-Alpes (2005)

310. Schlkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, Cambridge, MA (2001)

770 References

311. Ferrari, V., Tuytelaars, T., Gool, L.V.: Simultaneous object recognition and segmentation from single or multiple
model views. Int. J. Comput. Vis. 67(2) (2006)

312. Cinbis, R.G., Verbeek, J., Schmid, C.: Segmentation driven object detection with fisher vectors. Int. Conf.
Comput. Vis. (2013)

313.
314.

Freund, Y., Schapire, R.E.: A short introduction to boosting. Jpn. Soc. Artif. Intell. 14(5) (1999)

315.
Heckerman, D.: A tutorial on learning with Bayesian networks. Microsoft Res. Tech. Rep. (1996)

316.
Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7) (1997)
Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE Acoust. Speech Signal Process. Mag.
(1986)

317. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting transmembrane protein topology with a
hidden Markov model: application to complete genomes. J. Mol. Biol. (2001)

318.
319.

Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. Conf. Comput. Vis. Pattern Recogn. (2006)

320.
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. PAMI. 13(9) (1991)
Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional
textons. Int. J. Comput. Vis. 43(1) (2001)

321.
322.

Schmid, C.: Constructing models for content-based image retrieval. Conf. Comput. Vis. Pattern Recogn. (2001)
Alahi, A., Vandergheynst, P., Bierlaire, M., Kunt, M.: Cascade of descriptors to detect and track objects across any
network of cameras. Comput. Vis. Image Understand. 114(6), 624–640 (2010)

323. Simard, P., Bottou, L., Haffner, P., LeCun, Y.: Boxlets: a fast convolution algorithm for signal processing and
neural networks. Conf. Neural Inform. Process. Syst. (1999)

324.
325.

Vedaldi, A., Zisseman, A.: Efficient additive kernels via explicit feature maps. PAMI. 34(3) (2012)
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. PAMI.
33(3) (2010)

326. Martin, E., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial
databases with noise. In: Second International Conference on Knowledge Discovery and Data Mining,
pp. 226–231 (1996)

327. Mihael, A., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: ordering points to identify the clustering
structure. In: SIGMOD ’99 Proceedings of the 1999 ACM SIGMOD International Conference on Management
of Data

328. Muja, M., Rusu, R.B., Bradski, G., Lowe, D.G.: REIN—a fast, robust, scalable recognition infrastructure. Int.
Conf. Robot Autom. (2011)

329. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram.
Intell. Robots Syst. (2010)

330. Alvaro, C., Martinez, M., Siddhartha S.: MOPED: a scalable and low latency object recognition and pose
estimation system. Int. Conf. Robot Autom. (2010)

331.
332.

Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. PAMI. 26(8) (2004)
Moré, J.J.: The Levenberg-Marquardt algorithm implementation and theory. Numer. Anal. Lect. Notes Math. 630,
105–116 (1978)

333.
334.

Lecun, Y.: Learning invariant feature hierarchies. Eur. Conf. Comput. Vis. (2012)
Ranzato, M.A., Huang, F.-J., Boreau, Y.-L., Cun, Y.L.: Unsupervised learning of invariant feature hierarchies with
applications to object recognition. Conf. Comput. Vis. Pattern Recogn. (2007)

335. Kingma, D., LeCun, Y.: Regularized estimation of image statistics by score matching. Conf. Neural Inform.
Process. Syst. (2010)

336. Losson, O., Macaire, L., Yang, Y.: Comparison of color demosaicing methods. Adv. Imaging Electron Phys. 162,
173–265 (2010)

337. Xin, L., Gunturk, B., Zhang, L.: Image demosaicing: a systematic survey. In: Proceedings of SPIE 6822, Visual
Communications and Image Processing, 68221J (2008)

338. Tanbakuchi, A.A., et al.: Adaptive pixel defect correction. Proceedings of SPIE 5017, Sensors and Camera
Systems for Scientific, Industrial, and Digital Photography Applications IV (2003)

339.
340.

Ibenthal, A.: Image sensor noise estimation and reduction. ITG Fachausschuss 3.2 Digitale Bildcodierung (2007)

341.
An Objective Look at FSI and BSI, Aptina White Paper

342.
Cossairt, O., Miau, D., Nayar, S.K.: Gigapixel computational imaging. IEEE Int. Conf. Comput. Photogr. (2011)

343.
Eastman Kodak Company, E-58 technical data/color negative film. Kodak 160NC Technical Data Manual (2000)
Kuthirummal, S., Nayar, S.K.: Multiview radial catadioptric imaging for scene capture. ACM Trans. Graph. (also
Proc. of ACM SIGGRAPH) (2006)

344. Zhou, C., Nayar, S.K.: Computational cameras: convergence of optics and processing. IEEE Trans. Image Process.
20(12) (2011)

345. Krishnan, G., Nayar, S.K.: Towards a true spherical camera. Proceedings of SPIE 7240, Human Vision and
Electronic Imaging XIV, 724002 (2009)

References 771

346. Reinhard, H., Debevec, P., Ward, M., Kaufmann, M.: High Dynamic Range Imaging, 2nd edition Acquisition,
Display, and Image-Based Lighting, 2nd edn. Morgan Kaufmann (2010)

347.
348.

Gallo, O., et al.: Artifact-free high dynamic range imaging. IEEE Int. Conf. Comput. Photogr. (2009)
Grossberg, M.D., Nayar, S.K.: High dynamic range from multiple images: which exposures to combine? Int. Conf.
Comput. Vis. (2003)

349. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a
scene using high frequency illumination. Proc. SIGGRAPH (2006)

350. Wilson, T., Juskaitis, R., Neil, M., Kozubek, M.: Confocal microscopy by aperture correlation. Opt. Lett. 21(23),
1879–1881 (1996)

351. Corle, T.R., Kino, G.S.: Confocal Scanning Optical Microscopy and Related Imaging Systems. Academic Press,
New York (1996)

352.
353.

Fitch, J.P.: Synthetic Aperture Radar. Springer, New York (1988)

354.
Ng, R., et al.: Light field photography with a hand-held plenoptic camera. Stanford Tech Report CTSR 2005-02
Ragan-Kelley, J., et al.: Decoupling algorithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31(4) (2012)

355.
356.

Levoy, M.: Experimental platforms for computational photography. Comput. Graph. Appl. 30 (2010)
Adams, A., et al.: The Frankencamera: an experimental platform for computational photography. Proc.
SIGGRAPH. (2010)

357.
358.

Salsman, K.: 3D vision for computer based applications. Technical Report, Aptina, Inc. (2010).
Cossairt, O., Nayar, S.: Spectral focal sweep: extended depth of field from chromatic aberrations. IEEE Int. Conf.
Comput. Photogr. (2010). (See also US Patent EP2664153A1)

359. Fife, K., El Gamal, A., Philip Wong, H.-S.: A 3D multi-aperture image sensor architecture. Proc. IEEE Custom
Integr. Circ. Conf., pp. 281–284 (2006)

360. Wang, A., Gill, P., Molnar, A.: Light field image sensors based on the Talbot effect. Appl. Optics. 48(31),
5897–5905 (2009)

361. Shankar, M., et al.: Thin infrared imaging systems through multichannel sampling. Appl. Optics. 47(10), B1–B10
(2008)

362.
363.

Flusser, B.Z.J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)
Hirschmûller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. Conf.
Comput. Vis. Pattern Recogn. (2005)

364. Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely invariant regions. Br. Mach.
Vis. Conf. (2000)

365.
366.

Faugeras, O.: Three Dimensional Computer Vision. MIT Press, Cambridge, MA (1993)

367.
Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8(2) (1992)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press,
Cambridge (2004)

368. Luong, Q.-T., Faugeras, O.D.: The fundamental matrix: theory, algorithms, and stability analysis. Int. J. Comput.
Vis. 17 (1995)

369.
370.

Hartley, R.I.: Theory and practice of projective rectification. Int. J. Comput. Vis. 35 (1999)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
Int. J. Comput. Vis. 47 (2002)

371. Lazaros, N., Sirakoulis, G.C., Gasteratos, A.: Review of stereo vision algorithms: from software to hardware.
Int. J. Optomechatroni. 2(4), 435–462 (2008)

372. Clark, D.E., Ivekovic, S.: The Cramer-Rao lower bound for 3-D state estimation from rectified stereo cameras.
IEEE Fusion (2010)

373.
374.

Nayar, S.K., Gupta, M.: Diffuse structured light. Int. Conf. Comput. Photogr. (2012)

375.
Cattermole, F.: Principles of Pulse Code Modulation, 1st edn. American Elsevier Pub. Co. (1969)
Pagès, J., Salvi, J.: Coded light projection techniques for 3D reconstruction. J3eA, Journal sur l’enseignement des
sciences et technologies de l’information et des systèmes. 4(1) (2005) (Hors-Série 3)

376. Gu, J., et al.: Compressive structured light for recovering inhomogeneous participating media. Eur. Conf. Comput.
Vis. (2008)

377. Nayar, S.K.: Computational cameras: approaches, benefits and limits. Technical Report, Computer Science
Department, Columbia University (2011)

378. Lehmann, M., et al.: CCD/CMOS lock-in pixel for range imaging: challenges, limitations and state-of-the-art.
CSEM, Swiss Center for Electronics and Microtechnology (2004)

379. Andersen, J.F., Busck, J., Heiselberg, H.: Submillimeter 3-D Laser Radar for Space Shuttle Tile Inspection.
Danisch Defense Research Establishment, Copenhagen, Denmark (2013)

380. Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.): Time-of-Flight and Depth Imaging. Sensors, Algorithms,
and Applications Lecture Notes in Computer Science, Springer (2013)

772 References

381. Levoy, M., Hanrahan, P.: Light field rendering. SIGGRAPH ’96 Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques (1996)

382. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. SIGGRAPH ’96
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996)

383.
384.

Drebin, R.A.: Loren Carpenter, and Pat Hanrahan, volume rendering. SIGGRAPH (1988)

385.
Levoy, M.: Display of surfaces from volume data. CG&A (1988)
Levoy, M.: Volume rendering using the Fourier projection slice theorem. Technical report CSL-TR-92-521,
Stanford University (1992)

386. Klein, G., Murray, D.: Parallel tracking and mapping on a camera phone. ISMAR ’09 Proceedings of the 2009 8th
IEEE International Symposium on Mixed and Augmented Reality (2009)

387. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of International
Symposium on Mixed and Augmented Reality (ISMAR’07, Nara)

388. Lucas, B.D., Kanade, T.: An image registration technique with an application to stereo vision. In: Proceedings of
Image Understanding Workshop (1981)

389.
390.

Beauchemin, S., Barron, J.D.: The computation of optical flow. ACM Comput. Surv. 27(3) (1995)
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77
(1994)

391.
392.

Baker, S., et al.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2009)
Quénot, G.M., Pakleza, J., Kowalewski, T.A.: Particle image velocimetry with optical flow. In: Experiments in
Fluids, vol 25(3), pp. 177–189 (1998)

393. Trulls, E., Sanfeliu, A., Moreno-Noguer, F.: Spatiotemporal descriptor for wide-baseline stereo reconstruction of
non-rigid and ambiguous scenes. Eur. Conf. Comput. Vis. (2012)

394. Steinman, S.B., Steinman, B.A., Garzia, R.P.: Foundations of Binocular Vision: A Clinical Perspective. McGraw-
Hill, New York (2000)

395. Roy, S., Meunier, J., Cox, I.J.: Cylindrical rectification to minimize epipolar distortion. Conf. Comput. Vis. Pattern
Recogn. (1997)

396.
397.

Oram, D.: Rectification for any epipolar geometry. Br. Mach. Vis. Conf. (2001)
Takita, K., et al.: High-accuracy subpixel image registration based on phase-only correlation. Institute of
Electronics, Information and Communication Engineers(IEICE) (2003)

398.
399.

Huhns, T.: Algorithms for subpixel registration. CGIP Comput. Graph. Image Process. (1986)
Foroosh (Shekarforoush).: Hassan, Josiane B. Zerubia, and Marc Berthod. Extension of phase correlation to
subpixel registration. IEEE Trans. Image Process. (2002)

400. Zitnick, L., Kanade, T.: A cooperative algorithm for stereo matching and occlusion detection. Carnegie Mellon
University, Technical report CMU-RI-TR-99-35

401. Jian, S., Li, Y., Kang, S.B., Shum, H.-Y.: Symmetric stereo matching for occlusion handling. CVPR ’05
Proceedings of the 2005 I.E. Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) 2

402. Kang, S.B., Szeliski, R., Chai, J.: Handling occlusions in dense multi-view stereo. Conf. Comput. Vis. Pattern
Recogn. (2001)

403. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera.
In: UIST ’11 Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology
(2011)

404. Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (SLAM): part I the essential algorithms.
IEEE Robotics Autom. Mag. (2006)

405. Bailey, T., Durrant-Whyte, H.: Simultaneous localisation and mapping (SLAM): part II state of the art. IEEE
Robotics Autom. Mag. (2006)

406. Seitz, S., et al.: A comparison and evaluation of multi-view stereo reconstruction algorithms. CVPR. 1, 519–526
(2006)

407.
408.

Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56 (2004)
Gallup, D., Pollefeys, M., Frahm, J.M.: 3D reconstruction using an n-layer heightmap. Pattern Recogn. Lect. Notes
Comput. Sci. 6376 (2010)

409. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. Int Conf
Comput Vis (ICCV) IEEE, pp. 2320–2327 (2011)

410. Hwangbo, M., Kim, J.-S., Kanade, T.: Inertial-aided KLT feature tracking for a moving camera. Intell. Robots
Syst. (IROS)—IEEE (2009)

411. Lovegrove, S.J., Davison, A.J.: Real-time spherical Mosaicing using whole image alignment. Eur. Conf. Comput.
Vis. (2010)

412. Malis, E.: Improving vision-based control using efficient second-order minimization techniques. Int. Conf. Robot
Autom. (2004)

References 773

413.
414.

Kaiming H., Sun, J., Tang, X.: Guided image filtering. Eur. Conf. Comput. Vis. (2010)
Rhemann, C., et al.: Fast cost-volume filtering for visual correspondence and beyond. CVPR, IEEE,
pp. 3017–3024 (2011)

415.
416.

Fattal, R.: Edge-avoiding wavelets and their applications. SIGGRAPH (2009)
Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM SIGGRAPH
2011 papers Article No. 69

417.
418.

Wolberg, G.: Digital Image Warping. Wiley, Hoboken, NJ (1990)

419.
Baxes, G.: Digital Image Processing: Principles and Applications. Wiley, Hoboken, NJ (1994)

420.
Fergus, R., et al.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3) (2006)
Rohr, K.: Landmark-Based Image Analysis Using Geometric and Intensity Models. Kluwer Academic Publishers,
Dordrecht (2001)

421.
422.

Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers, 3rd edn. O’Reilly Media (2005)
Zinner, C., Kubinger, W., Isaacs, R.: PfeLib—a performance primitives library for embedded vision. EURASIP
(2007)

423.
424.

Houston, M.: OpenCL overview. SIGGRAPH OpenCL BOF (2011), also on KHRONOS website
Zinner, C., Kubinger, W.: ROS-DMA: a DMA double buffering method for embedded image processing with
resource optimized slicing. In: IEEE RTAS 2006, Real-Time and Embedded Technology and Applications
Symposium (2006)

425. Kreahling, W.C., et al.: Branch elimination by condition merging. Euro-Par 2003 Parallel Process. Lect. Notes
Comput. Sci. 2790 (2003)

426.
427.

Ullman, J.D., Aho, A.V.: Principles of Compiler Design. Addison-Wesley (1977)
Ragan-Kelley, J., et al.: Decoupling algorithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. SIGGRAPH. 31(4) (2012)

428.
429.

Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. Eur. Conf. Comput. Vis. (2012)
Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to ImageJ: 25 years of image analysis. Nat. Meth.
9 (2012)

430. Muja, M.: Recognition pipeline and object detection scalability. In: 2010 Internship Presentation, University of
British Columbia

431. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. Conf. Comput. Vis.
Pattern Recogn. (2001)

432.
433.

Swain, M., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7 (1991)
Zhang, Z.: A flexible new technique for camera calibration. EEE Trans. Pattern. Anal. Mach. Intell. 22(11),
1330–1334 (2000)

434.
435.

Viola, P.A., Jones, M.J.: Robust real time object detection. Int. J. Comput. Vis. (2001)
Murase, H., Nayar, S.K.: Visual learning and recognition of 3-D objects from appearance. Int. J. Comput. Vis. 14
(1995)

436. Grosse, R., et al.: Ground-truth dataset and baseline evaluations for intrinsic image algorithms. Int. Conf. Comput.
Vis. (2009)

437. Haltakov, V., Unger, C., Ilic, S.: Framework for generation of synthetic ground truth data for driver assistance
applications. Pattern Recogn. Lect. Notes Comput. Sci. 8142 (2013)

438. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. Comput. Vis. Pattern Recogn.
2 (2005)

439.
440.

Agaian, S.S., Tourshan, K., Noonan, J.P.: Parametric Slant-Hadamard transforms. Proc. SPIE (2003)

441.
Sauvola, J., Pietaksinen, M.: Adaptive document image binarization. Pattern Recogn. 33, 2 (2000)
Yen, J.C., Chang, F.J., Chang, S.: A new criterion for automatic multilevel thresholding. Trans. Image Process.
4(3) (1995)

442. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. SPIE
J. Electron. Imaging. 13(1) (2004)

443.
444.

Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Upper Saddle River, NJ (2001)
Flusser, J., Suk, T., Zitova, B.: Moments and Moment Invariants in Pattern Recognition. Wiley, Hoboken, NJ
(2009)

445.
446.

Mikolajcyk, K., Schmid, C.: An affine invariant interest point detector. Int. Conf. Comput. Vis. (2002)
Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Tech. report CMU-RI-
TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University (1980)

447.
448.

Sivic, J.: Efficient Visual search of videos cast as text retrieval. PAMI. 31 (2009)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In:
AMFG’07 Proceedings of the 3rd International Conference on Analysis and Modeling of Faces and Gestures
(2010)

449. Scale-Space: Encyclopedia of Computer Science and Engineering. Wiley, Hoboken, NJ (2008)

774 References

450. Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2),
224–270 (1994)

451. Bengio, Y.: Learning Deep Architectures for AI, Foundations and Trends in Machine Learning. Now Publishers
Inc USA (2009)

452.
453.

Olson, E.: AprilTag: a robust and flexible visual fiducial system. Int. Conf. Robotics Autom. (2011)
Farabet, C., et al.: Hardware accelerated convolutional neural networks for synthetic vision systems. ISCAS IEEE,
pp. 257–260 (2010)

454. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput.
Vis. 59 (2004)

455. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEE Trans. Comput.
(1973)

456. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained
part-based models. PAMI. 32(9) (2010)

457. Yi Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. Conf. Comput. Vis. Pattern
Recogn. (2011)

458.
459.

Amit, Y., Trouve, A.: POP: patchwork of parts models for object recognition. Int. J. Comput. Vis. 75 (2007)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural
scene categories. Conf. Comput. Vis. Pattern Recogn. (2006)

460. Grauman, K., Darrell, T.: The pyramid Match Kernel: discriminative classification with sets of image features. Int.
Conf. Comput. Vis. (2005)

461. Michal, A., Elad, M., Bruckstein, A.: KSVD: an algorithm for designing overcomplete dictionaries for sparse
representation. IEEE Trans. Signal Process. 64 (2006)

462. Fei-Fei, L., Fergus, R., Torralba, A.: Recognizing and learning object categories. Conf. Comput. Vis. Pattern
Recogn. (2007)

463. Johnson, A.: Spin-images: a representation for 3-D surface matching. Ph.D. dissertation, technical report CMU-RI-
TR-97-47, Robotics Institute, Carnegie Mellon University (1997)

464. Zoltan-Csaba, M., Pangercic, D., Blodow, N., Beetz, M.: Combined 2D-3D categorization and classification for
multimodal perception systems. Int. J. Robotics Res. Arch. 30(11) (2011)

465.
466.

Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. (1988)
Tombari, F., Salti, S., Di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. Int.
Conf. Image Process. (2011)

467. Ragan-Kelley, J., et al.: Halide: a language and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. In: PLDI ’13 Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2013)

468. Kindratenko, V.V., et al.: GPU clusters for high-performance computing. In: Proceedings of Workshop on Parallel
Programming on Accelerator Clusters—PPAC’09 (2009)

469.
470.

Munshi, A., et al.: OpenCL Programming Guide, 1st edn. Addison-Wesley Professional (2011)

471.
Prince, S.: Computer Vision: Models, Learning, and Inference. Cambridge University Press, Cambridge (2012)

472.
Lindeberg, T.: Scale Space Theory in Computer Vision. Springer, New York (2010)

473.
Pele, O.: Distance functions: theory, algorithms and applications. Ph.D. Thesis, Hebrew University (2011)

474.
Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. (1999)
Bache, K., Lichman, M.: UCI Machine Learning Repository (http://archive.ics.uci.edu/ml), University of
California, School of Information and Computer Science, Irvine, CA (2013)

475. Zach, C.: Fast and high quality fusion of depth maps. In: 3DPVT Joint 3DIM/3DPVT Conference 3D Imaging,
Modeling, Processing, Visualization, Transmission (2008)

476. Krig, S.: Krig, Scott, Synthetic Vision Using Volume Learning and Visual DNA, 2013, Published by Walter de
Gruyter Inc

477.
478.

Grimes, D.B., Rao, R.P.N.: Bilinear sparse coding for invariant vision. Neural Comput. 17(1), 47–73 (2005)
Roger, G., Raina, R., Kwong, H., Ng, A.Y.: Shift-invariant sparse coding for audio classification. In: Proceedings
of the 23rd Conference in Uncertainty in Artificial Intelligence (UAI’07) (2007)

479. Bergstra, J., Courville, A., Bengio, Y.: The statistical inefficiency of sparse coding for images (or, one Gabor to
rule them all). Technical Report (2011)

480.
481.

Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable Object Detection using Deep Neural Networks
Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science. 313(5786),
504–507 (2006)

482. Anh, N., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for
unrecognizable images. CVPR (2015)

483. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition.
ECCV (2014)

http://archive.ics.uci.edu/ml

References 775

484. Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields.
IJCV (2008)

485.
486.

Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. CVPR (2005)
Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and
practice. IJCV (2013)

487.
488.

Min, L., Chen, Q., Yan, S.: Network in network. In: ICLR (2014)
Behnke, S.: Hierarchical Neural Networks for Image Interpretation. Draft submitted to Springer Published as
volume 2766 of Lecture Notes in Computer Science ISBN: 3-540-40722-7, Springer (2003)

489. Girshick, R., Iandola, F., Darrell, T., Malik, J.: Deformable part models are convolutional neural networks. CVPR
(2014)

490. van de Sande, E.A., Snoek, C.G.M., Smeulders, A.W.M.: Fisher and VLAD with FLAIR. In: IEEE Conference on
Computer Vision and Pattern Recognition (2014)

491. Ranzato, M., Boureau, Y., LeCun, Y.: Sparse feature learning for deep belief networks. In: Proceedings of Neural
Information Processing Systems (NIPS) (2007)

492. Schmidhuber, J.: Deep learning in neural networks: an overview, Technical Report IDSIA-03-14/
arXiv:1404.7828 v4

493.
494.

Li D., Yu, D.: Deep learning methods and applications, foundations and Trends® in signal processing 7

495.
Yoshua, B., Goodfellow, I.J., Courville, A.: Deep Learning. MIT Press (2016) (in preparation)
Anderson, J.A., Rosenfeld, E. (eds.).: Neurocomputing: foundations of research. MIT Press, Cambridge, MA
(1988). Also Neurocomputing vol. 2: directions for research. MIT Press, Cambridge MA (1991)

496.
497.

Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison Wesley (1998)
Rosenblatt, F.: The Perceptron: a probabilistic model for information storage and organization in the brain.
Psychol. Rev. (1958)

498.
499.

Joseph, R.D.: Contributions to Perceptron Theory. PhD thesis, Cornell Univ. (1961)

500.
Wiesel, D.H., Hubel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (1959)
Hubel, D.H., Wiesel, T.: Receptive fields, binocular interaction, and functional architecturein the cat’s visual
cortex. J. Physiol. 160, 106–154 (1962)

501. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.
(1943)

502.
503.

Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)
Rosenblatt, F.: The Perceptron—a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical
Laboratory (1957)

504. Ivakhnenko, A.G.: The group method of data handling—a rival of the method of stochastic approximation. Soviet
Autom. Contr. (1968)

505.
506.

Ivakhnenko, A.G., Lapa, V.G.: Cybernetic predicting devices. CCM Inform. Corp. (1965)
Ivakhnenko, A.G., Lapa, V.G., McDonough, R.N.: Cybernetics and Forecasting Techniques. American Elsevier,
New York (1967)

507.
508.

Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 4, 364–378 (1971)
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by
preventing co-adaptation of feature detectors. CoRR, abs/1207.0580 (2012)

509. Ikeda, S., Ochiai, M., Sawaragi, Y.: Sequential GMDH algorithm and its application to river flow prediction. IEEE
Trans. Syst. Man Cybern. 7, 473–479 (1976)

510. Fukushima, K.: Neural network model for a mechanism of pattern recognition unaffected by shift in position—

Neocognitron. Trans. IECE J. 62(10), 658–665 (1979)
511. Fukushima, K.: Neocognitron: a self-organizing neural network for a mechanism of pattern recognition unaffected

by shift in position. Biol. Cybern. 36(4), 193–202 (1980)
512.
513.

Dreyfus, S.E.: The numerical solution of variational problems. J. Math. Anal. Appl. 5(1), 30–45 (1962)

514.
Dreyfus, S.E.: The computational solution of optimal. (1973)
LeCun, Y.: Une proc’edure d’apprentissage pour r’eseau ‘a seuil asym’etrique. Proceedings of Cognitiva, vol
85, Paris, pp. 599–604 (1985)

515. LeCun, Y.: A theoretical framework for back-propagation. In: Touretzky, D., Hinton, G., Sejnowski, T. (eds.)
Proceedings of the 1988 Connectionist Models Summer School, CMU, pp. 21–28. Morgan Kaufmann, Pittsburgh,
PA (1988)

516. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Back-propagation
applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

517. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit
recognition with a back-propagation network. In: Touretzky, D.S. (ed.) Advances in Neural Information
Processing Systems, vol. 2, pp. 396–404. Morgan Kaufmann (1990a)

518. Kelley, H.J.: Gradient theory of optimal flight paths. ARS J. 30(10), 947–954 (1960)

776 References

519. Bryson, A.E.: A gradient method for optimizing multi-stage allocation processes. In: Proc. Harvard Univ.
Symposium on Digital Computers and Their Applications (1961)

520. Bryson, Jr., A.E., Denham, W.F.: A steepest-ascent method for solving optimum programming problems.
Technical Report BR-1303, Raytheon Company, Missle and Space Division (1961)

521. Werbos, P.J.: The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political
Forecasting. Wiley (1994)

522. Schmidhuber, J.: Learning complex, extended sequences using the principle of history compression. Neural
Comput. (1992)

523.
524.

Graves, A., Wayne, G., Danihelka, I.: Neural Turing Machines. (2014)

525.
Hochreiter, S., Jürgen, S.: Long Short-Term Memory, Neural Computation. (1997)

526.
Ng, A.: Stanford CS229 Lecture notes. Support Vector Mach.
Shawe-Taylor, J., Cristianini, N.: Support Vector Machines and Other Kernel-Based Learning Methods.
Cambridge University Press (2000)

527. Hinton, G.E., Sejnowski, T.J., Rumelhart, D.E., McClelland, J.L.: Learning and Relearning in Boltzmann
Machines. PDP Research Group (1986)

528.
529.

Ackley, D.H., Hinton, G.E., Sejnowski, TJ.: A learning algorithm for Boltzmann machines. Cogn. Sci. (1985)
Smolensky, P.: Chapter 6: Information processing in dynamical systems: foundations of harmony theory. In:
Rumelhart, D.E., McLelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, vol 1, Foundations. MIT Press (1986)

530.
531.

Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv (2014)
Also see NiN slides from ILSVRC. http://www.image-net.org/challenges/LSVRC/2014/slides/ILSVRC2014_
NUS_release.pdf (2014)

532.
533.

Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method. Autom. Remote Contr. (1963)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: ACM COLT ’92
(1992)

534. Vapnik, V.: Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow (1979). English
translation, Springer, New York (1982)

535.
536.

Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1998)
Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating
derivatives. Comput. J. (1964)

537. Carreira-Perpignan, M.A., Hinton, G.E.: On contrastive divergence learning. In: Artificial Intelligence and
Statistics (2005)

538. Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column Deep Neural Networks for Image Classification, cvpr
(2012)

539. Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised feature learning, AISTATS
(2011)

540. Rosenblatt, F.: Principles of Neurodynamics Unclassifie—Armed Services Technical Informatm Agency. Spartan,
Washington, DC (1961)

541.
542.

Baddeley, A., Eysenck, M., Anderson, M.: Memory. Psychology Press (2009)

543.
Goldman-Rakic, P.S.: Cellular basis of working memory. Neuron. 14(3), 477–485 (1995)

544.
Rumelhart, D.E., McClelland, J.L., Group, P.R., et al.: Parallel Distributed Processing, vol. 1. MIT Press (1986)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.:
Going deeper with convolutions. arXiv:1409.4842 (2014)

545.
546.

Von Neumann, J.: First draft of a report on the edvac. (1945)
Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: International
Conference on Machine Learning (ICML) (2013)

547.
548.

Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1994)
Stollenga, M., Masci, J., Gomez, F., Schmidhuber, J.: Deep networks with internal selective attention through
feedback connections. ICML (2014)

549.
550.

Rupesh Kumar, S., Masci, J., Kazerounian, S., Gomez, F., Schmidhuber, J.: Compete to compute. In: NIPS (2013)

551.
Cristian, B., Caruana, R., Niculescu-Mizil, A.: Model compression, ACM SIGKDD (2006)
Mansimov, E., Srivastava, N., Salakhutdinov, R.: Initialization Strategies of Spatio-Temporal Convolutional
Neural Networks, Technical Report (2014)

552. Weng, J., Ahuja, N., Huang, T.S.: Cresceptron: a self-organizing neural network which grows adaptively. In:
Proceedings of Int’l Joint Conference on Neural Networks, Baltimore, MD (1992)

553. Cadieu, C.F., Hong, H., Yamins, D.L.K., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J.: Deep
neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS. (2014).
https://doi.org/10.1371/journal.pcbi.1003963

http://www.image-net.org/challenges/LSVRC/2014/slides/ILSVRC2014_NUS_release.pdf
http://www.image-net.org/challenges/LSVRC/2014/slides/ILSVRC2014_NUS_release.pdf
https://doi.org/10.1371/journal.pcbi.1003963

References 777

554. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse coding and vector quantization.
ICML (2011)

555. Jarrett, K., Kavukcuoglu, K., Ranzato, M., Le-Cun, Y.: What is the best multi-stage architecture for object
recognition? ICCV (2009)

556.
557.

Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in a Neural Network. NIPS (2014)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7),
1527–1554 (2006)

558.
559.

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. NIPS (2007)

560.
Kandel, E.R., Schwartz, J.H., Jessel, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill (2000)
Rao, R.P.N., Ballard, D.H.: Predictive coding in the visual cortex: A functional interpretation of some extra-
classical receptive-field effects. Nat Neurosci. (1999)

561. Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. IEEE Trans. Syst. Man
Cybernetics (1976)

562. Métin, C., Frost, D.O.: Visual responses of neurons in somatosensory cortex of hamsters with experimentally
induced retinal projections to somatosensory thalamus. Proc. Natl. Acad. Sci. U. S. A. 86(1), 357–361 (1989)

563. Roe, A.W., Pallas, S.L., Kwon, Y.H., Sur, M.: Visual projections routed to the auditory pathway in ferrets:
receptive fields of visual neurons in primary auditory cortex. J. Neurosci. 12(9), 3651–3664 (1992)

564. Bach-y-Rita, P., Kaczmarek, K.A., Tyler, M.E., Garcia-LoraVenue, J.: Form perception with a 49-point
electrotactile stimulus array of the tongue: a technical note. J. Rehabil. Res. Dev. (1998)

565.
566.

Bach-y-Rita, P., Tyler, M.E., Kaczmarek, K.A.: Seeing with the brain. IJHCI (2003)
Laurenz, W.: How Does Our Visual System Achieve Shift and Size Invariance, Problems in Systems Neurosci-
ence. Oxford University Press (2002)

567. Thomas Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L.,
Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L.: The organization of the human cerebral
cortex estimated by intrinsic functional connectivity. J. Neurophysiol. (2011)

568. Gross, G.N., Lømo, T., Sveen, O.: Participation of inhibitory and excitatory interneurones in the control of
hippocampal cortical output, Per Anderson, The Interneuron, University of California Press, Los Angeles (1969)

569.
570.

John, C.E., Ito, M., Szentágothai, J.: The Cerebellum as a Neuronal Machine. Springer, New York (1967)
Costas, S.: Interneuronal mechanisms in the cortex. The Interneuron, University of California Press, Los Angeles
(1969)

571. Stephen, G.: Contour enhancement, short-term memory, and constancies in reverberating neural networks, Studies
in Applied Mathematics (1973)

572.
573.

Parikh, D., Zitnick, C.L.: The role of features, algorithms and data in visual recognition. CVPR (2010)

574.
Christopher, B.: Pattern Recognition and Machine Learning. Springer (2006)
Eigen, D., Rolfe, J., Fergus, R., LeCun, Y.: Understanding deep architectures using a recursive convolutional
network, arXiv:1312.1847 [cs.LG]

575.
576.

NIPS.: Tutorial—Deep Learning for Computer Vision (Rob Fergus) (2013)

577.
Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. ECCV (2014)
Zeiler, M., Taylor, G., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In:
ICCV (2011)

578. Olga, R., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A.C., Fei-Fei, L.: Large scale visual recognition challenge. ImageNet. http://arxiv.org/abs/1409.0575 (2015)

579. Random Search for Hyper-Parameter Optimization James Bergstra JAMES.BERGSTRA@UMONTREAL.CA
Yoshua Bengio, JMLR (2012)

580. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: A deep convolutional
activation feature for generic visual recognition. CVPR (2013)

581. Yamins, D.L., Hong, H., Cadieu, C., DiCarlo, J.J.: Hierarchical modular optimization of convolutional networks
achieves representations similar to macaque IT and human ventral stream. NIPS (2013)

582.
583.

Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. (2013)
Daniel L.K.Y., Honga, H., Cadieua, C.F., Solomona, E.A., Seiberta, D., DiCarloa, J.J.: Performance-optimized
hierarchical models predict neural responses in higher visual cortex. Natl. Acad. Sci. (2015)

584.
585.

US Government BRAIN Initiative.: http://www.artificialbrains.com/darpa-synapse-program

586.
European Union Human Brain Project.: https://www.humanbrainproject.eu
Canadian Government Computation & Adaptive Perception Canadian Institute For Advanced Research CIFAR.
http://www.cifar.ca/neural-computation-and-adaptive-perception-research-progress

587. Tatyana, V., Sharpee, O., Kouh M., Reynolds, J.H.: Trade-off between curvature tuning and position invariance in
visual area. PNAS. (2013)

588. Neural Networks: Tricks of the Trade, 2nd edn. Springer (2012)

http://arxiv.org/abs/1409.0575
http://www.artificialbrains.com/darpa-synapse-program
https://www.humanbrainproject.eu
http://www.cifar.ca/neural-computation-and-adaptive-perception-research-progress

778 References

589. LeCun, Y.: Convolutional Networks and Applications in Vision, Comput. Sci. Dept., New York Univ., New York,
NY, USA, Kavukcuoglu, K., Farabet, C., ISCAS. (2010)

590.
591.

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ICLR. (2015)

592.
Lyu, S., Simoncelli, E.P.: Nonlinear image representation using divisive normalization. CVPR. (2008)

593.
Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput Biol. (2008)

594.
Yang Y., Hospedales, T.M.: Deep neural networks for sketch recognition. (2015)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent
neural networks from overfitting, JMLR. (2014)

595. Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural network using drop connect. Int.
Conf. Mach. Learn. (2013)

596.
597.

Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional. Neural Netw.

598.
Mamalet, F., Garcia, C.: Simplifying convnets for fast learning. ICANN. (2012)
Gens, R., Domingos, P.: Deep symmetry networks. NIPS. See also slides at http://research.microsoft.com/apps/
video/default.aspx?id=219488 (2014)

599. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks?, NIPS
(2014)

600. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition.
IJCV (2013)

601.
602.

Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing (1996)
Dominik S., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object
recognition. ICANN (2010)

603. Kaiming, H., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on
ImageNet classification. CVPR (2015)

604. Field, G., Gauthier, J., Sher, A., Greschner, M., Machado, T., Jepson, L., Shlens, J., Gunning, D., Mathieson, K.,
Dabrowski, W., et al.: Functional connectivity in the retina at the resolution of photoreceptors. Nature. (2010)

605. Rosenblatt, F.: The Perceptron: A theory of statistical separability in cognitive systems. Cornell Aeronautical
Laboratory, Buffalo, Inc. Rep. No. VG-1196-G-1 (1958)

606. Auer, P., Burgsteiner, H., Maass, W.: A learning rule for very simple universal approximators consisting of a
single layer of perceptrons. Austr. Sci. Fund (2008)

607.
608.

Vapnik, V., Chervonenkis, A., Moskva, N.: Pattern Recognition Theory, Statistical Learning Problems. (1974)

609.
Hearst, M.A., Berkeley, U.C.: Support vector machines. IEEE Intell. Syst. (1998)

610.
John P.: How to implement SVM’s, Microsoft Research. IEEE Intelligent Systems. (1998)

611.
Fukushima, K.: Cognitron: a self-organizing multilayered neural network, Biological Cybernetics, Springer (1975)

612.
Fukushima, K.: Artificial vision by multi-layered neural networks: and its advances. Neural Netw. 37, 103–119

613.
Fukushima, K.: Training multi-layered neural network Neocognitron. Neural Netw. 40, 18– 31
Joan, B., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs.
arXiv:1312.6203 [cs.LG]. (2014)

614.
615.

Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to construct deep recurrent neural networks. ICLR. (2014)

616.
http://www.imagemagick.org/Usage/convolve/#convolve_vs_correlate
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net.
CVPR. (2015)

617.
618.

Fractional max-pooling Benjamin Graham. CVPR. (2014)
The Human Connectome Project is a consortium of leading neurological research labs which are mapping out the
pathways in the brain. See http://www.humanconnectomeproject.org/about/

619.
620.

Cun, Y.L., Denker, J.S., Solla, S.A.: Optimal brain damage. NIPS. (1990)
Waibel, A.: Consonant recognition by modular construction of large phonemic time-delay neural networks. IEEE
ASSP. (1989)

621. Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., Talay, S.: Large-scale FPGA-
based convolutional networks. (2011)

622. Clement, F., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., Talay, S.: Hardware
accelerated convolutional neural networks for synthetic vision systems. ISCAS. (2010)

623. Sermanet, P., Eigen, D., Zhang X., Mathieu M., Fergus R., LeCun, Y.: OverFeat: integrated recognition,
localization and detection using convolutional networks. CVPR. (2014)

624.
625.

Dong, J., Xia, W., Chen, Q., Feng, J., Huang, Z., Yan, S.: Subcategory-aware object classification. CVPR. (2013)

626.
Jun, Y., Ni, B., Kassim, A.A.: Half-CNN: a general framework for whole-image regression. CVPR. (2014)
Hugo, L., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. JMLR.
(2009)

627. Yu, C., Yu, F.X., Feris, R.S., Kumar, S., Choudhary, A., Chang, S.-F.: Fast neural networks with circulant
projections. (2015)

http://research.microsoft.com/apps/video/default.aspx?id=219488
http://research.microsoft.com/apps/video/default.aspx?id=219488
http://www.imagemagick.org/Usage/convolve/#convolve_vs_correlate
http://www.humanconnectomeproject.org/about/

References 779

628. Jochem, T., Dean Pomerleau, AI.: Life in the fast lane the evolution of an adaptive vehicle control system.
Magazine. (1996)

629.
630.

Hastie, T., Friedman: The Elements of Statistical Learning, 2nd edn. Springer (2009)
Boureau, Y.-L., Le Roux, N., Bach, F., Ponce, J., Lecun, Y.: Ask the locals: multi-way local pooling for image
recognition ICCV’11

631.
632.

Ren, W., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image recognition. CVPR. (2015)
Karen, S., Simonyan, K..: http://imagenet.org/tutorials/cvpr2015/recent.pdf, ILSVRC Submission Essentials in the
light of recent developments. ImageNet, Tutorial. (2015)

633. Jonathon Shlens Google Research: Directions in convolutional neural networks at Google. (2015), http://vision.
stanford.edu/teaching/cs231n/slides/jon_talk.pdf

634. Sergey, I., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate
shift. CVPR. (2015)

635. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic
segmentation. CVPR. (2014)

636. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. Int. Conf. Artif.
Intell. Stat. (2010)

637.
638.

Chunhui, G., Lim, J.J., Arbelaez, P., Malik, J.: Recognition using regions. CVPR. (2009)

639.
Ross G.: Fast R-CNN. CVPR. (2015)

640.
Volodymyr, M., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models of visual attention. NIPS. (2014)

641.
Oriol, V., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. (2015)

642.
Ren, M., Kiros, R., Zemel, R.: Exploring models and data for image question answering. ICML. (2015)
Subhashini, V., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence to sequence—video to
text. (2015)

643.
644.

Graves, A.: Generating sequences with recurrent neural networks. (2014)
Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent networks by evolino. Neural Comput.
(2007)

645.
646.

Weston, J., Chopra, S., Bordes, A.: Memory networks. ICLR. (2015)
LaRue, J.P.: A Bi-directional Neural Network Based on a Convolutional Neural Network and Associative Memory
Matrices That Meets the Universal Approximation Theorem, Jadco Signals, Charleston, SC, USA, 1 315 717 9009
james@jadcosignals.com

647. Zhou, R.W., Quek, C.: DCBAM: A discrete chainable bidirectional associative memory. Pattern Recogn. Lett.
(1991)

648.
649.

Kosko, B.: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 7, 49–60 (1988)

650.
Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. 353–359 (1972)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl.
Acad. Sci. U. S. A. 79(8), 2554–2558 (1982)

651. Schmidhuber, J.: Long Short-Term Memory: Tutorial on LSTM Recurrent Networks. http://people.idsia.ch/
~juergen/lstm/

652.
653.

Hochreiter, S., Steven, Y.A., Conwell, P.R.: Learning to learn using gradient descent. ICANN. (2001)
Schmidhuber, J.: Learning to control fast-weight memories: an alternative to recurrent nets. Neural Comput.
(1992)

654. Jeff, D., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term
recurrent convolutional networks for visual recognition and description. CVPR. (2015)

655.
656.

Mengye, R., Kiros, R., Zemel, R.: Exploring models and data for image question answering. ICML. (2015)

657.
Alex, G., Doktors der Naturwissenschaften.: Supervised Sequence Labelling with Recurrent Neural Networks

658.
Graves, A., Fernandez, S., Schmidhuber, J.: Multi-dimensional recurrent neural networks. ICANN. (2007)
Baldi, P., Pollastri, G.: The principled design of large-scale recursive neural network architectures—DAG-RNN’s
and the protein structure prediction problem. JMLR. (2003)

659. Karol, G., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: DRAW: a recurrent neural network for image
generation. ICML. (2015)

660. Richard, S., Huval, B., Bhat, B., Manning, C.D., Ng, A.Y.: Convolutional-recursive deep learning for 3D object
classification. NIPS. (2012)

661.
662.

Shuai, B., Zuo, Z., Gang, W.: Quaddirectional 2D-recurrent neural networks for image labeling. IEEE SPL. (2015)
Zuo, Z., Shuai, B., Wang, G., Liu, X., Wang, X., Wang, B., Chen, Y.: Convolutional recurrent neural networks:
learning spatial dependencies for image representation. CVPR. (2015)

663. Alex, G., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks.
NIPS. (2008)

664. Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks. ICML. (2012)

http://imagenet.org/tutorials/cvpr2015/recent.pdf
http://vision.stanford.edu/teaching/cs231n/slides/jon_talk.pdf
http://vision.stanford.edu/teaching/cs231n/slides/jon_talk.pdf
http://people.idsia.ch/~juergen/lstm/
http://people.idsia.ch/~juergen/lstm/

780 References

665. Kyunghyun, C., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP. (2014)

666. Kyunghyun, C., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation:
encoder-decoder approaches. SSST-8. (2014)

667. Peter, T., Horne, B.G., Giles, L., Collingwood, P.C.: Finite state machines and recurrent neural networks—

automata and dynamical systems approaches. Neural Networks Pattern Recogn. Chapter. 6 (1998)
668. Arai, K., Nakano, R.: Stable behavior in a recurrent neural network for a finite state machine. Neural Netw.

13(6) (2000)
669.
670.

Wojciech, Z., Sutskever, I.: Learning to execute
Rumelhart, D.E., McClelland, J.L.: Parallel Distributed processing: explorations in the microstructure of cognition.
(1986)

671.
672.

Elman, J.L.: Finding structure in time. Cogn. Sci. (1990)
Elman, J.L.: Distributed representations, simple recurrent networks, and grammatical structure. Mach. Learn.
(1991)

673.
674.

Elman, J.L.: Learning and development in neural networks: the importance of starting small. Cognition (1993)
Williams, R.J., Zipser, D.: Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational
Complexity. Back-propagation: Theory, Architectures and Applications, Lawrence Erlbaum Publishers (1995)

675. Robinson, A.J., Fallside, F.: The Utility Driven Dynamic Error Propagation Network. Technical Report CUED/F-
INFENG/TR.1, Cambridge (1987)

676.
677.

Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE (1990)

678.
Boden, M.: A guide to recurrent neural networks and backpropagation. (2014)

679.
Ders, F.: Long short-term memory in recurrent neural networks. PhD Dissertation (2001)

680.
Qi, L., Zhu, J.: Revisit long short-term memory: an optimization perspective. NIPS. (2015)

681.
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. NIPS. (2014)

682.
Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. CVPR. (2015)
Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural
networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML) (2011)

683. Socher, R., Manning, C.D., Ng, A.Y.: Learning continuous phrase representations and syntactic parsing with
recursive neural networks. In: Advances in Neural Information Processing Systems, NIPS. (2010)

684. Steve, B., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with
humans in the loop. In: Computer Vision–ECCV. Springer (2010)

685. Tom, S., Glasmachers, T., Schmidhuber, J.: High dimensions and heavy tails for natural evolution strategies.
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM. (2011)

686.
687.

Zaremba, W., Sutskever, I.: Reinforcement Learning Neural Turing Machines. (2015)

688.
Liefeng, B., Lai, K., Ren, X., Fox, D.: Object recognition with hierarchical kernel descriptors. CVPR. (2011)
Ivakhnenko, G.A., Cerda R.: Inductive Self-Organizing GMDH Algorithms for Complex Systems Modeling and
Forecasting, http://www.gmdh.net/articles/index.html, see the general GMDH website for several other resources,
http://www.gmdh.net

689. The review of problems solvable by algorithms of the group method of data handling. Pattern Recogn. Image Anal.
(1995), http://www.gmdh.net/articles/

690. Ladislav, Z.: Learning simple dependencies by polynomial neural network. J. Inform. Contr. Manag. Syst.
8(3) (2010)

691.
692.

Liefeng, B., Sminchisescu, C.: Efficient match kernel between sets of features for visual recognition. NIPS. (2009)

693.
Julesz, B.: Textons, the elements of texture perception and their interactions. Nature. 290, 91–97 (1981)
Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and
object categories: a comprehensive study. IJCV. (2007)

694. Lazebnik, S., Schmid, C., Ponce, J.: A maximum entropy framework for part-based texture and object recognition.
IEEE CV. (2005)

695.
696.

Lampert, C.H.: Kernel methods in computer vision. Found. Trends Comput. Graph. Vis. 4(3), 193–285 (2009)

697.
Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. ICCV. (2005)

698.
Youngmin, C., Saul, L.K.: Kernel methods for deep learning. NIPS. (2009)

699.
Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. (2009)

700.
Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. Int. Conf. Comput. Vis. (2007)
Klaus-Robert, M., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning
algorithms. IEEE TNN. (2001)

701.
702.

Nilsback, M.-E., Zisserman, A.: A visual vocabulary for flower classification. In: CVPR. (2006)

703.
Liefeng, B., Ren, X., Fox, D., Kernel descriptors for visual recognition. NIPS. (2010)
Boswell, D.: Introduction to Support Vector Machines. (2002)

http://www.gmdh.net/articles/index.html
http://www.gmdh.net
http://www.gmdh.net/articles/

References 781

704. Radu Tudor, I., Popescu, M., Grozea, C.: Local learning to improve bag of visual words model for facial
expression recognition. ICML. (2013)

705.
706.

Haussler. D.: Convolution kernels on discrete structures. Tech. Rep. (1999)
Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with
applications to wavelet decomposition. Asilomar Conf. Signals Syst. Comput. (1993)

707. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse
representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

708.
709.

Bruna, J., Mallat, S.: Invariant Scattering Convolution Networks. (2012)
Wonmin, B., Breuel, T.M., Raue, F., Liwicki, M.: Scene labeling with LSTM recurrent neural networks. CVPR.
(2015)

710. Du, Y., Wei, W., Liang, W.: Hierarchical recurrent neural network for skeleton based action recognition. CVPR.
(2015)

711. Jianchao, Y., Yu, K., Lv, F., Huang, Y., Gong, T.: Locality-constrained Linear Coding for image classification.
CVPR. Jinjun Wang Akiira Media Syst., Palo Alto, CA, USA (2001)

712. Reubold, J.: Kernel descriptors in comparison with hierarchical matching pursuit. Seminar Thesis, Proceedings of
the Robot Learning Seminar (2010)

713.
714.

John, S.-T., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)

715.
Rojas, R.: Neural Networks—A Systematic Introduction. Springer (1996)

716.
Teknomo, K.: Support Vector Machines Tutorial

717.
Vladimir, C., Mulier, F.M.: Learning from Data: Concepts, Theory, and Methods, 2nd edn., Wiley (2007)
Dan, C., Meier, U., Schmidhuber, J.: Multi-column Deep Neural Networks for Image Classification. CVPR.
(2012)

718.
719.

Amnon, S., Hazan, T.: Algebraic set kernels with application to inference over local image representations. (2005)

720.
Gehler, P, Nowozin, S.: On feature combination for multiclass object classification. CVPR. (2009)
Lanckriet, G.R.G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.I.: Learning the kernel matrix with
semidefinite programming. JMLR. (2004)

721.
722.

Mairal, J., Koniusz, P., Harchaoui, Z., Schmid, C.: Convolutional kernel networks. NIPS. (2009)

723.
Candes, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23, 969 (2007)
Kai, Y., Lin, Y., Lafferty, J.: Learning image representations from the pixel level via hierarchical sparse coding.
CVPR. (2011)

724. Jian, Z.F., Song, L., Yang X.K., Zhang, W.: Sub clustering K-SVD: size variable dictionary learning for sparse
representations. ICIP. (2009)

725. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural
images. Nature. 381(6583), 607–609 (1996)

726. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process.
3397–3415 (1993)

727.
728.

Kwon, S., Wang, J., Shim, B.: Multipath matching pursuit. IEEE Trans. Inform. Theor. (2014)
Lloyd, S.P.: Least square quantization in PCM. Bell Telephone Laboratories Paper. Published in journal much
later: Lloyd, S.P.: Least squares quantization in PCM, IEEE Trans. Inform. Theor. (1957/1982)

729. Mairal, J.: Sparse Coding for Machine Learning, Image Processing and Computer Vision. PhD thesis. Ecole
Normale Superieure de Cachan. (2010)

730. Mairal, J., Sapiro, G., Elad, M.: Multiscale sparse image representation with learned dictionaries. In: IEEE
International Conference on Image Processing, San Antonio, Texas, USA (2007), Oral Presentation

731. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM
Multiscale Model. Simul. 7(1), 214–241 (2008)

732. Mairal, J., Jenatton, R., Obozinski, G., Bach, F.: Learning hierarchical and topographic dictionaries with structured
sparsity. In: Proceeding of the SPIE Conference on Wavelets and Sparsity XIV. (2011)

733.
734.

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)

735.
Ethem, A.: Introduction to Machine Learning. MIT Press (2004)

736.
Tom, M.: Machine Learning. McGraw Hill (1997)
LeCun, Y., Chopra, S., Hadsell, R., Huang, F.-J., Ranzato, M.-A.: A Tutorial on Energy-Based Learning, in
Predicting Structured Outputs. MIT Press (2006)

737. Pursuit, R.R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal
matching. Technical Report, CS Technion (2008)

738.
739.

Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature. (1999)
Logothetis, N.K., Pauls, J., Poggio, T.: Shape representation in the inferior temporal cortex of monkeys. Curr. Biol.
5(5), 552–563 (1995)

740. Tarr, M.: News on views: pandemonium revisited. Nat. Neurosci. (1999)

782 References

741. Selfridge, O.G.: Pandemonium: a paradigm for learning. In: Proceedings of the Symposium on Mechanisation of
Thought Processes (1959)

742. Bülthoff, H., Edelman, S.: Psychophysical support for a two-dimensional view interpolation theory of object
recognition. Proc. Natl. Acad. Sci. U. S. A. 89, 60–64 (1992)

743. Logothetis, N., Pauls, J., Bülthoff, H., Poggio, T.: Shape representation in the inferior temporal cortex of monkeys.
Curr. Biol. 4, 401–414 (1994)

744. Tarr, M.: Rotating objects to recognize them: a case study on the role of viewpoint dependency in the recognition
of three-dimensional objects. Psychonom Bull. Rev. 2, 55–82 (1995)

745. Booth, M., Rolls, E.: View-invariant representations of familiar objects by neurons in the inferior temporal visual
cortex. Cereb. Cortex. 8, 510–523 (1998)

746. Kobatake, E., Wang, G., Tanaka, K.: Effects of shape-discrimination training on the selectivity of inferotemporal
cells in adult monkeys. J. Neurophysiol. 80, 324–330 (1998)

747. Perrett, D., et al.: Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Exp. Brain
Res. 86, 159–173 (1991)

748. Perrett, D.I., Rolls, E.T., Caan, W.: Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain
Res. 47, 329–342 (1982)

749. Tanaka, K., Saito, H.-A., Fukada, Y., & Moriya, M.: Coding visual images of objects in the inferotemporal cortex
of the macaque monkey. J. Neurophysiol. 66, 170–189

750. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci.
17, 89–96 (2014)

751. Gjoneska, E., Pfenning, A., Mathys, H., Quon, G., Kundage, A., Tsai, L.H., Kellis, M.: Conserved epigenomic
signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature. (2015). https://doi.org/10.1038/
nature14252

752.
753.

Tanaka, K.: Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996)

754.
Logothetis, N.K., Sheinberg, D.L.: Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996)

755.
Mutch, J., Lowe, D.: Multiclass object recognition with sparse, localized features. CVPR. (2006)
Serre, R.: Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for
invariant object recognition in cortex. CBL Memo. 239 (2004)

756. Hu, X.-L., Zhang, J.-W., Li, J.-M., Zhang, B.: Sparsity-regularized HMAX for visual recognition. PLOS One.
9(1) (2014)

757. Charles, C., Kouh, M., Riesenhuber, M., & Poggio, T.: Shape Representation in V4: Investigating Position-
Specific Tuning for Boundary Conformation with the Standard Model of Object Recognition. AI Memo 2004-024
(2004)

758. Christian, T., Thome, N., Cord, M.: HMAX-S: deep scale representation for biologically inspired image categori-
zation. ICIP. (2011)

759. Riesenhuber, M., Poggio, T.: Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12, 162–168
(2002)

760. Ungerleider, L.G., Haxby, J.V.: “What” and “Where” in the human brain. Curr. Opin. Neurobiol. 4, 157–165a
(1994)

761. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like
mechanisms. PAMI. (2007)

762.
763.

Mutch, J.: HMAX architecture models slide presentation. (2010)

764.
http://maxlab.neuro.georgetown.edu/hmax/
Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: Proceedings of CVPR
(2006)

765. Florent, P., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. ECCV.
(2010)

766. Giorgos, T., Avrithis, Y., Jégou, H.: To aggregate or not to aggregate: selective match kernels for image search.
ICCV. (2013)

767.
768.

Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: NIPS (1999)
Jegou, H., Douze, M., Schmid, C., Perez, P.: Aggregating local descriptors into a compact image representation.
INRIA Rennes, Rennes, France, CVPR. (2010)

769.
770.

Relja, A., Zisserman, A.: All about VLAD. CVPR. (2013)
Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature
encoding methods. Br. Mach. Vis. Conf. (2011)

771. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image
descriptors. In: Proceedings of ECCV (2010)

772. van Gemert, J.C., Geusebroek, J.M., Veenman, C.J., Smeulders, A.W.M.: Kernel codebooks for scene
categorization. In: Proceedings of ECCV (2008)

https://doi.org/10.1038/nature14252
https://doi.org/10.1038/nature14252
http://maxlab.neuro.georgetown.edu/hmax/

References 783

773. Perronnin, F., Liu, Y., S’anchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher vectors. CVPR
(2010)

774. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In:
Proceedings of ECCV (2010)

775. Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis.
87(3), 316–336 (2010)

776. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE PAMI
(2012)

777.
778.

Hong Lau, K., Tay, Y.H., Lo, F.L.: A HMAX with LLC for visual recognition. CVPR (2015)

779.
Smith, K.: Brain decoding: reading minds. Nature. 502(7472) (2013)

780.
Smith, K.: Mind-reading with a brain scan. Nature (2008)
Bartholomew-Biggs, M., Brown, S., Christianson, B., Dixon, L.: “Automatic differentiation of algorithms” (PDF).
J. Comput. Appl. Math. 124(1-2), 171–190 (2000)

781. Plaut, D., Nowlan, S., Hinton, G.: Experiments on Learning by Back Propagation. Carnegie Mellon University
(1986)

782.
783.

Cayley, A.: On the theory of groups, as depending on the symbolic equation θn = 1. Phil. Mag. 7 (1854)

784.
Cayley, A.: On the theory of groups. Am. J. Math. 11 (1889)

785.
Voytek, B.: Brain metrics. Nature (2013)
Langleben Daniel, D., Dattilio Frank, M.: Commentary: the future of forensic functional brain imaging. J. Am.
Acad. Psychiatry Law. 36(4), 502–504 (2008)

786. Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, X., Todd Constable,
R.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature
(2015)

787. Bergami, M., Masserdotti, G., Temprana, S.G., Motori, E., Eriksson, T.M., Göbel, J., Yang, S.M., Conzelmann,
K.-K., Schinder, A.F., Götz, M., Berninger, B.: A critical period for experience-dependent remodeling of adult-
born neuron connectivity. Neuron (2015)

788. Allen Lee, W.-C., Huang, H., Feng, G., Sanes, J.R., Brown, E.N., So, P.T., Nedivi, E.: Dynamic remodeling of
dendritic arbors in gabaergic interneurons of adult visual cortex. PLoS. 4(2), e29 (2006)

789. Wu, Z., Shuran, S., Aditya, K., Fisher, Y., Linguang, Z., Xiaoou, T., Jianxiong, X.: 3D ShapeNets: a deep
representation for volumetric shapes. CVPR. (2015)

790. Xiang, Y., Wongun, C., Yuanqing, L., Silvio, S.: Data-driven 3D voxel patterns for object category recognition.
CVPR. (2015)

791. Papazov, C., Marks, T.K., Jones, M.: Real-time 3D head pose and facial landmark estimation from depth images
using triangular surface patch features. CVPR. (2015)

792. Martinovic, A., Jan, K., Riemenschneider, H., Van Gool, L.: 3D All the way: semantic segmentation of urban
scenes from start to end in 3D. CVPR. (2015)

793. Rock, J., Tanmay, G., Justin, T., JunYoung, G., Daeyun, S., Derek, H.: Completing 3D object shape from one
depth image. CVPR. (2015)

794. Yub, J., Lee, H., Seok Heo, S., Dong Yun II, Y.: Random tree walk toward instantaneous 3D human pose
estimation. CVPR. (2015)

795.
796.

Mahabadi, R.K., Hane, C., Pollefeys, M.: Segment based 3D object shape priors. CVPR. (2015)
Xiaowei, Z., Spyridon, L., Xiaoyan, H., Kostas, D.: D shape estimation from 2D landmarks: a convex relaxation
approach. CVPR (2015)

797. Levi, G., Hassner, T.: LATCH: learned arrangements of three patch codes, arXiv preprint arXiv:1501.03719
(2015)

798.
799.

He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. (2015)
Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015)

800. Romero, A., Nicolas, B., Samira Ebrahimi, K., Antoine, C., Carlo, G., Yoshua, B.: FitNets: hints for thin deep nets.
arXiv:1412.6550 [cs] (2014)

801. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’06, ACM (2006)

802. Nikolaus, M., Eddy, I., Philip H., Philipp F., Daniel C., Alexey D., Thomas B.: A Large Dataset to Train
Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR (2016)

803. Horn, B.K.P.: Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One
View, MIT DARPA report (1970)

804.
805.

Mutto, C.D., Zanuttigh, P., Cortelazzo, G.M.: Microsoft Kinect™ Range Camera. Springer (2014)

806.
Mojsilovic, A.: A method for color naming and description of color composition in images, ICIP (2002)
van de Weijer, J., Schmid, C., Verbeek, J.: Learning color names from real world images. CVPR (2007)

784 References

807. Khan, R., Van de Weijer, J., Shahbaz Khan, F., Muselet, D., Ducottet, C., Barat, C.: Discriminative color
descriptors. CVPR (2013)

808.
809.

van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. ECCV (2006)
Sung-Hyauk Cha.: Comprehensive Survey on Distance/Similarity Measures between Probability Density
Functions, IJMMMAS (see also Duda [826])

810.
811.

Deza, E., Deza, M.M.: Dictionary of Distances. Elsevier (2006)

812.
Glasner, D., Bagon, S., Irani, M.: Super-Resolution From a Single Image. ICCV (2009)

813.
Vedaldi, V., Varma, G.M., Zisserman, A.: Multiple Kernels for Object Detection A. (2009)
Vondrick, C., Khosla, A., Malisiewicz, T., Torralba, A.: HOGgles: Visualizing Object Detection Features. ICCV
(2013)

814. Huang, Y., Nat. Lab. of Pattern Recognition (NLPR); Inst. of Autom.; Beijing, China; Wu, Z., Wang, L., Tan, T.,
PAMI.: Feature Coding in Image Classification: A Comprehensive Study (2014)

815. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural
Networks. 2(5), 359–366 (1989)

816. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Li, F.-F.: Imagenet: a large-scale hierarchical image database. In:
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–255. IEEE (2009)

817.
818.

Targ, S., Almeida, D., Lyman K.: Resnet in Resnet: generalizing residual architectures, arXiv: 1603.08029. (2016)
Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the impact of residual connections on
learning. arXiv: 1602.07261 (2016)

819. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is
all you need. NIPS, arXiv:1706.03762 (2017)

820.
821.

Krig, S.A.: Synthetic Vision Using Volume Learning and Visual Genomes. deGruyter Press (2018)

822.
Schlag, I., Irie, K., Schmidhuber, J.: Linear Transformers Are Secretly Fast Weight Programmers (2021)
von der Malsburg, C. The correlation theory of brain func-tion. Internal Report 81-2, G ottingen: Department of

Neu-robiology, Max Planck Intitute for Biophysical Chemistry (1981)

823. Schmidhuber, J. Learning to control fast-weight memories: An alternative to recurrent nets. Technical Report
FKI-147-91, Institut f ur Informatik, Technische UniversiẗatMünchen (1991)

824. [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, Alexey Dosovitskiy, Lucas
Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby, ICLR 2021

825. Wang, Y., Huang, R., Song, S., Huang, Z., Huang, G.: Not All Images are Worth 16 × 16 Words: Dynamic Vision
Transformers with Adaptive Sequence Length (2021)

826.
827.

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521(7553), 436–444 (2015)
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S.: Swin transformer: Hierarchical vision transformer
using shifted windows. ICCV (2021)

828.
829.

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video Swin Transformer—arxiv.org (2021)
Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End Object Detection with
Transformers Nicolas Carion? ECCV (2020)

830. Chen, X., Hsieh, C.-J., Gong, B.: When vision transformers outperform ResNets without pre-training or strong
data augmentations. arXiv. (2021)

831. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D.,
Uszkoreit, J., Lucic, M., Dosovitskiy, A.: MLP-mixer: an all-MLP architecture for vision. arXiv. (2021)

832.
833.

Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with sparse transformers, arVix (2019)
Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, X., Ma, S., Xu, C., Xu, C., Gao, W.: Pre-trained image
processing transformer. arxiv. (2021)

834.
835.

Yin, K., Read, J.: Better. Sign language translation with STMC-transformer. ICCL (2020)
Chen, C.-F., Fan, Q., Panda, R.: CrossViT: cross-attention multi-scale vision transformer for image classification.
arxiv. (2021)

836. Guo, J., Han, K., Wu, H., Xu, C., Tang, Y., Xu, C., Wang, Y.: CMT: convolutional neural networks meet vision
transformers

837.
838.

Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R.R., Hu, S.-M.: PCT: point cloud transformer, arvix (2021)
Perrett, T., Masullo, A., Burghardt, T., Mirmehdi, M., Damen, D.: Temporal-relational cross transformers for
few-shot action recognition (2021)

839. Irie, K., Schlag, I., Csordás, R., Schmidhuber, J.: Going beyond linear transformers with recurrent fast weight
programmers. arXiv. (2021)

840. Fan, A., Lavril, T., Grave, E., Joulin, A., Sukhbaatar, S.: Accessing higher-level representations in sequential
transformers with feedback memory. arXiv. (2020)

841. Fan, A., Lavril, T., Grave, E., Joulin, A., Sukhbaatar, S.: Addressing some limitations of transformers with
feedback memory. arXiv. (2021)

References 785

842. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by
contrasting cluster assignments. Proceedings of Advances in Neural Information ProcessingSystems (NeurIPS)
(2020)

843. Goyal, P., Caron, M., Lefaudeux, B., Xu, M., Wang, P., Pai, V., Singh, M., Liptchinsky, V., Misra, I., Joulin, A.,
Bojanowski, P.: Self-supervised pretraining of visual features in the wild arXiv:2103.01988 (2021)

844. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-
supervised vision transformers. arxiv. (2021)

845. Assran, M., Caron, M., Misra, I., Bojanowski, P., Joulin, A., Ballas, N., Rabbat, M: Semi-supervised learning of
visual features by non-parametrically predicting view assignments with support samples. arxiv. 2021

846. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., Bengio, Y.: Show, attend and tell:
neural image caption generation with visual attention. arXiv. (2016)

847.
848.

Woo, S., Park, J., Lee, J.-W., Kweon, I.S.: CBAM: convolutional block attention module. arXiv. (2018)
Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do vision transformers see like
convolutional neural networks. arXiv. (2021)

849. Liu, P.J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, Ł., Shazeer, N.: Generating Wikipedia by
summarizing long sequences. ICLR. (2018)

850.
851.

Shiv, V.L., Quirk, C.: Novel positional encodings to enabletree-based transformers. NIPS. (2019)
Maire, M., Narihira, T., Yu, S.X.: Affinity CNN: learning pixel-centric pairwise relations for figure/ground
embedding. arXiv. (2016)

852.
853.

Lee-Thorp, J., Ainslie, J., Eckstein, I., Ontanon, S.: FNet: mixing tokens with Fourier transforms. arXiv. (2021)
Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: CvT: introducing convolutions to vision
transformers. ICCV. (2021)

854. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring the
limits of transfer learning with a unified text-to-text transformer. arXiv. (2019)

855. Sennrich, R., Haddow, B., Birch, A.: Neural Machine Translation of Rare Words with Subword Units. School of
Informatics, University of Edinburgh (2016)

856.
857.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.: Image transformer. arXiv. (2018)
Chan, Kelvin, et al. BasicVSR: the search for essential components in video super-resolution and beyond. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

858.
859.

Liu, A., Liu, Y., Gu, J., Qiao, Y., Dong, C.: Blind image super-resolution: a survey and beyond
Hongyi Zheng, Hongwei Yong, Lei Zhang. Unfolded deep kernel estimation for blind image super-resolution
(2022)

860. Wang, Y., Perazzi, F., McWilliams, B., Sorkine-Hornung, A., Sorkine-Hornung, O., Schroers, C.: A fully
progressive approach to single-image super-resolution. CVPR. (2018)

861. Cornillère, V., Djelouah, A., Yifan, W., Sorkine-Hornung, O., Schroers, C. : Blind image super-resolution with
spatially variant degradations. ACM SIGGRAPH ASIA (2019)

862. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network. CVPR. (2017)

863. Nguyen, N.L., Anger, J., Davy, A., Arias, P., Facciolo, G.: Self-supervised super-resolution for multi-exposure
push-frame satellites. CVPR. (2022)

864. Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Deep Burst Super-Resolution. Computer Vision Lab, ETH,
Zurich, Switzerland (2021)

865.
866.

Computer Vision: Algorithms and Applications, 2nd edn. Springer (2022)
Lin, C.-C., Pankanti, S.U., Ramamurthy, K.N., Aravkin, A.Y.: Adaptive as-natural-as-possible image stitching.
CVPR. (2015)

867. Xie, J., Girshick, R., Farhadi, A.: Deep3D: fully automatic 2D-to-3D video conversion with deep convolutional
neural networks. In: 2016 Computer Vision—ECCV 2016 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV(C) Springer Link.

868. Khalid, N.M., Xie, T., Belilovsky, E., Popa, T.: CLIP-Mesh: Generating textured meshes from text using
pre-trained image-text models. SIGGRAPH ASIA (2022)

869. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-E: a system for generating 3D point clouds from
complex prompts. (2022)

870. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as
neural radiance fields for view synthesis (2020)

871. Nguyen, T.T., Nguyen, Q.V.H., Nguyen, D.T., Nguyen, D.T., Huynh-The, T., Nahavandi, S., Nguyen, T.T.,
Pham, Q.-V., Nguyen, C.M.: Deep learning for deepfakes creation and detection: a survey (2022)

872.
873.

Zhou, S., Zhu, T., Shi, K., et al.: Review of light field technologies. Vis. Comput. Ind. Biomed. Art. 4, 29 (2021)
Lombardi, S., Simon, T., Schwartz, G., Zollhoefer, M., Sheikh, Y., Saragih, J.: Mixture of volumetric primitives
for efficient neural rendering. SIGGRAPH (2021)

786 References

874.
875.

Artificial curiosity & creativity since 1990-91. J. Schmidhuber. (2021)
Schmidhuber, J., Schmidhuber, J.: Adaptive confidence and adaptive curiosity. Technical Report FKI-149-91,
Inst. f. Informatik, Tech. Univ. Munich (1991)

876.
877.

Bucher, B., Schmeckpeper, K., Matni, N., Daniilidis, K.: Adversarial Curiosity (2020)
Schmidhuber, J.: Making the world differentiable: On using self-supervised fully re-current neural networks for
dynamic reinforcement learning and planning in non-stationary. environments. Technical Report (1990)

878. Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Computation. 4(6), 863–879
(1992)

879. Schmidhuber, J.: Unsupervised minimax: Adversarial curiosity, generative adversarial networks, and predictabil-
ity minimization. CoRR, abs/1906.04493 (2019)

880. J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
Yoshua Bengio: Generative Adversarial Networks Ian (2014)

881. Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon. Diffusion. Probabilistic models for scene-scale 3D categorical
data (2023)

882. Haoying Li, Yifan Yang, Meng Chang, Huajun Feng, Zhihai Xu, Qi Li, Yueting Chen. SRDiff: single image
super-resolution with diffusion probabilistic models (2021)

883. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequi-
librium thermodynamics

884.
885.

Yang, X., Zhou, D., Feng, J., Wang, X.: Diffusion probabilistic model made slim
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-Resolution Image Synthesis with Latent
Diffusion Models (A.K.A. LDM & Stable Diffusion), CVPR (2022)

886. Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications (2021)

887. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., Sutskever, I.: Zero-Shot Text-to-
Image Generation (2021)

888. Smirnov, D., Gharbi, M., Fisher, M., Guizilini, V., Efros, A.A., Solomon, J.: MarioNette: self-supervised sprite
learning. In: Advances in Neural Information Processing Systems (2021)

889. Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen. Hierarchical text-conditional image
generation with CLIP latents, 2022

890. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever, I., Chen, M.: GLIDE:
towards photo-realistic image generation and editing with text-guided diffusion models. PMLR. 162,
16784–16804 (2022)

891.
892.

Wu, J., Jun, H., Luan, D., Sutskever, I.: Generative pre-training from Pixels ‘GPT-3’. ICML. (2020)
Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., Sutskever, I.: Learning transferable visual models from natural language supervision. CLIP. (2021)

893.
894.

Li, A., Jabri, A., Joulin, A., van der Maaten, L.: Learning visual N-grams from web data. ICCV. (2017)

895.
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. NeurIPS. (2021)
Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, Mohammad Norouzi. Photo-realistic text-to-image diffusion models with deep language
understanding 2022

896.
897.

Gao, K., Gao, Y., He, H., Lu, D., Xu, L., Li, J.: NeRF: neural radiance field in 3D vision, A comprehensive review

898.
Poole, B., Jain, A., Barron, J.D., Mildenhall, B.: Dreamfusion: text-to-3d using 2d diffusion (2022)
Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., Tombari, F., Tompkin, J., Sitzmann, V., Sridhar, S.:
Neural fields in visual computing and beyond (2022)

899.
900.

PlenOctrees for real-time rendering of neural radiance fields ICCV 2021 (Oral)
Park, K., Sinha, U., Barron, J.D., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-Brualla, R.: Nerfies: deformable
neural radiance fields

901. Krig, S.A.: Apparatus for enhancement of 3-d images using depth mapping and light source synthesis. PATENT
US-2014176535-A1

902. Wang, L., Zhang, J., Liu, X., Zhao, F., Zhang, Y., Zhang, Y., Wu, M., Xu, L., Yu, J.: Fourier PlenOctrees for
dynamic radiance field rendering in real-time (2022)

903. Rudnev, V., Elgharib, M., Smith, W., Liu, L., Golyanik, V., Theobalt, C.: NeRF for outdoor scene relighting,
ECCV 2022 Springer-Link.

904. Wallingford, M., Kusupati, A., Fang, A., Ramanujan, V., Kembhavi, A., Mottaghi, R., Farhadi, A.: Neural
radiance field codebooks (NRF Codebooks), preprint (2023)

905. Stelzner, K., Kersting, K., Kosiorek, A.R.: Decomposing 3D scenes into objects via unsupervised volume
segmentation (2021)

References 787

906. Watson, D., Chan, W., Martin-Brualla, R., Ho, J., Tagliasacchi, A., Norouzi, M.: Novel view synthesis with
diffusion models (2022)

907. Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., De Mello, S., Gallo, O., Guibas, L.J., Tremblay, J.,
Khamis, S., Karras, T., Wetzstein, G.: Efficient geometry-aware 3D generative adversarial networks. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

908. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model.
ACM Transactions on Graphics. (2015)

909. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from
range scans. SIGGRAPH. (2003)

910. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A., Tzionas, D., Black, M.J.: Expressive body
capture: 3D hands, face, and body from a single image. CVPR (2019)

911. Romero, J., Tzionas, D., Black, M.J.: SMPL-H embodied hands: modeling and capturing hands and bodies
together (2017)

912. Zuffi, S., Kanazawa, A., Jacobs, D., Black, M.J.: (SMAL) 3D menagerie: modeling the 3D shape and pose of
animals. 1IMATI-CNR, Milan, Italy, 2University of Maryland, College Park, MD 3Max Planck Institute for
Intelligent Systems, Tübingen, Germany, CVPR (2017)

913. Xu, H., Bazavan, E.G., Zanfir, A., Freeman, B., Sukthankar, R., Sminchisescu, C.: Generative 3D human shape
and articulated pose models. CVPR. (2020)

914. Saito, S., Simon, T., Saragih, J., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution
3D human digitization. CVPR. (2020) (Oral Presentation)

915. Alldieck, T., Zanfir, M., Sminchisescu, C.: Photo-realistic monocular 3D reconstruction of humans wearing
clothing. CVPR. (2022)

916. Mehta, S.B., Shribak, M., Oldenbourg, R.: Polarized light imaging of birefringence and diattenuation at high
resolution and high sensitivity. J. Opt. (2013)

917. Sadjadi, F.A., Chun, C.S.L.: UNCLASSIFIED MILITARY RESEARCH New experiments in the use of infrared
polarization in the detection of small targets. Sadjadi, F.A. (ed.), Proceedings of SPIE, Automatic Target
Recognition XI, vol. 4379 (2001)

918.
919.

Chipman, R., Lam, W.S.T., Young, G.: Polarized Light and Optical Systems. CRC Press (2018)
Temple, S.E., McGregor, J.E., Miles, C., Graham, L., Miller, J., Buck, J., Scott-Samuel, N.E., Roberts, N.W.: 2015
Perceiving polarization with the naked eye: characterization of human polarization sensitivity.
Proc. R. Soc. B. 282, 20150338 (2015)

920. Montoya, J., Taplin, L., McLean, L.: Detecting muzzle flashes with Multi spectral imaging may increase soldier
survivability. SPIE. (2013)

921. JPL Image use policy “Unless otherwise noted, images and video on JPL public web sites (public sites ending with
a jpl.nasa.gov address) may be used for any purpose without prior permission, subject to the special cases noted
below.”

922.
923.

Abdellah, M., Eldeib, A., Owis, M.I.: DRR generation using fourier slice theorem on the GPU (2015)
Skibbe, H., Wang, Q., Reisert, M.: Fast computation of 3D spherical Fourier harmonic descriptors—a complete
orthonormal basis for a rotational invariant representation of three-dimensional objects. ICCV Workshops (2009)

924. Three-dimensional computer tomography volume rendering. In: Schmidt-Erfurth, U., Kohnen, T. (eds.) Encyclo-
pedia of Ophthalmology. Springer, Berlin, Heidelberg (2018)

925. Schwartz, J., Harris, C., Pietryga, J., et al.: Real-time 3D analysis during electron tomography using tomviz. Nat
Commun 13, 4458

926. Cox, G.: Confocal microscopy. In: Walker, J.M., Rapley, R. (eds.) Molecular Biomethods Handbook. Springer
(2008)

927. Jonkman, J., Brown, C.M., Wright, G.D., et al.: Tutorial: guidance for quantitative Confocal microscopy. Nat
Protoc. 15, 1585–1611 (2020)

928.
929.

Hawkes, P.W., Spence, J.C.H. (eds.): Springer Handbook of Microscopy. Springer Nature (2019)
Elliott, A.D.: Confocal microscopy: principles and modern practices. Curr Protoc Cytom. 92(1), e68 (2020).
https://doi.org/10.1002/cpcy.68

930.
931.

Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. CVPR. (2019)
de Geus, D., Meletis, P., Dubbelman, G.: Panoptic segmentation with a joint semantic and instance segmentation
network (2018)

932. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In:
International Conference on Medical Image Computing and Computer-Assisted Intervention (2015)

933. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric
segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 424–432. Springer, Cham (2016)

https://doi.org/10.1002/cpcy.68

788 References

934. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in
biomedical image segmentation. DLMIA. (2016)

935. Azad, R., Aghdam, E.K., Rauland, A., Jia, Y., Avval, Y.H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J.P.,
Adeli, E., Merhof, D.: Medical image segmentation review: the success of U-net (2022)

936.
937.

Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation (2014)

938.
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN (2015)

939.
Girshick, R.: Fast R-CNN. ICCV (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal
networks (2016)

940. Girshick, R., Donahue, J., Darrell, T., Malik, J.: [RCNN] Rich feature hierarchies for accurate object detection and
semantic segmentation. Tech Report (v5) (2016)

941. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. CVPR.
(2015)

942. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: Single shot multibox
detector. ECCV. (2016)

943. Cheng, D., Kamel, A., Price, B., Cohen, S., Brown, M.S.: Two Illuminant Estimation and User Correction
Preference. National University of Singapore, CVPR (2021)

944. Lin, S.: Illumination estimation, illuminant estimation. In: Ikeuchi, K. (ed.) Computer Vision. Springer, Boston,
MA (2014). https://doi.org/10.1007/978-0-387-31439-6_516

945.
946.

Mertan, A., Duff, D.J., Unal, G.: Single image depth estimation. CVPR. (2021)
Laakom, F., Raitoharju, J., Nikkanen, J., Iosifidis, A., Gabbouj, M.: Robust channel-wise illumination estimation
(2021)

947.
948.

Heckbert, P.: Color image quantization for frame buffer display. In: SIGGRAPH ‘82, pp. 297–307 (1982)

949.
Bloomberg, D.: Color quantization using octrees. Leptonica.
Verevka, O.: Color image quantization in windows systems with local k-means algorithm. In: Proceedings of the
Western Computer Graphics Symposium ‘95.

950. Puzicha, J., Held, M., Ketterer, J., Buhmann, J.M., Fellner, D.: On spatial quantization of color images. Technical
Report IAI-TR-98-1, University of Bonn (1998)

951.
952.

Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. ICLR. (2016)

953.
Hou, Y., Zheng, L., Gould, S.: Learning to structure an image with few colors. CVPR. (2020)
Yang, J., Li, C., Zhang, P., Dai, X., Xiao, B., Yuan, L., Gao, J.: Focal self-attention for local-global interactions in
vision transformers (2021)

954. Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: Scaling to trillion parameter models with simple and
efficient sparsity (2022)

955. Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent Attention Model (RAM)—the Glimpse Model. In:
Recurrent models of visual attention (2014)

956. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: Draw: a recurrent neural network for image
generation. In: Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y. (eds.)
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, PMLR, pp. 2048–2057 (2015)

957. Rousselet, G.A., Thorpe, S.J., Fabre-Thorpe, M.: How parallel is visual processing in the ventral pathway? Trends
in Cognitive Sciences. 8(8), 363–370 (2004)

958. Liu, T., Pestilli, F., Carrasco, M.: Transient attention enhances perceptual performance and fMRI response in
human visual cortex. Neuron. 45(3), 469–477 (2005). https://doi.org/10.1016/j.neuron.2004.12.039

959.
960.

Kirsch, L., Schmidhuber, J.: Meta learning back-propagation and improving it (2022)
Medathatia, N.V.K., Neumannb, H., Massonc, G.S., Kornprobsta,P.: Bio-inspired computer vision: Towards a
synergistic approach of artificial and biological vision (2016)

961. Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R.R., Cheng, M.-M.,
Hu, S.-M.: Attention mechanisms in computer vision: a survey. Computational Visual Media. (2022)

962.
963.

Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey (2021)
Devlin, J., Chang, M.-V., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for
language understanding (2019)

964.
965.

McCormick, C., Ryan, N.: BERT Word Embeddings Tutorial (2019)

966.
The SQL Standard—ISO/IEC 9075:2016 (ANSI X3.135), American National Standards Institute (ANSI) (1986)
Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., Yang, Z., Zhang, Y.,
Tao, D.: A survey on vision transformer (2020)

967. Chen, W., Du, X., Yang, F., Beyer, L., Zhai, X., Lin, T.-Y., Chen, H., Li, J., Song, X., Wang, X., Zhou, D.: UViT:
a simple single-scale vision transformer for object detection and instance segmentation (2022)

968. Loy, J.: A comprehensive guide to Microsoft’s Swin transformer in-depth explanation and animations (2022)

https://doi.org/10.1007/978-0-387-31439-6_516
https://doi.org/10.1016/j.neuron.2004.12.039

References 789

969. Swin Transformer and 5 Reasons to Use Transformer/Attention in Computer Vision Han Hu Microsoft Research
Asia June 20th, 2021 CVPR21, The 3rd Tutorial on “Learning Representations via Graph-structured Networks”

970.
971.

Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks (2017)
Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision
models (2019)

972. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H.: Escaping the big data paradigm with compact
transformers (2022)

973. I. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le, Attention augmented convolutional networks. CoRR, vol.
abs/1904.09925 (2019)

974. Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual
recognition (2021)

975. El-Bakry, H., Zhao, Q.: Fast object face detection using neural networks, World Academy of Science, Engineering
and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering.
Also published earlier in other journals/2005/2004 (2007)

976. Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., Vinyals, O., Carreira, J.: Perceiver: general perception with
iterative attention (2021)

977. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary
convolutional neural networks. ECCV. (2016)

978. Courbariaux, M., Bengio, Y.: Binarynet: Training deep neural networks with weights and activations constrained
to +1 or -1. CoRR. (2016)

979. Zhu, S., Duong, L.H.K., Liu, W.: XOR Net: an efficient computation pipeline for binary neural network inference
on edge devices (2020)

980.
981.

On the Opportunities and Risks of Foundation Models Rishi Bommasani et al. (+ all 100 or so authors...) (2021)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. ICLR.
(2015)

982.
983.

Guo, T., Gao, H.: Content enhanced BERT-based text-to-SQL generation (2020)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: [GPT] Improving language understanding by generative
pre-training (2018)

984. Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L., Wei, F., Guo, B.: Swin
transformer V2: scaling up capacity and resolution (2022)

985.
986.

Bao, H., Dong, L., Piao, S., Wei, F.: BEIT: BERT pre-training of image transformers (2022)
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-SoftMax. In: 5th International Conference
on Learning Representations, ICLR (2017)

987. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous. Relaxation of Discrete Random
Variables. ICLR (2017)

988. Karlsson, R., Hayashi, T., Fujii, K., Carballo, A., Ohtani, K., Takeda, K.: ViCE: self-supervised visual concept
embeddings as contextual and pixel appearance invariant semantic representations (2021)

989. Hou, Q., Zhou, D., Feng, J.: DANet: Coordinate attention for efficient mobile network design. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13, 713, 722 (2021)

990.
991.

Jetley, S., Lord, N.A., Lee, N., Torr, P.H.S.: LEARN TO PAY ATTENTION (2018)
Wu, Y., Chen, L., Merhof, D.: [W-Net] Improving pixel embedding learning through intermediate distance
regression supervision for instance segmentation (2020)

992.
993.

Mikhailov, A., Karavay, M.: Pattern inversion as a pattern recognition method for machine learning (2021)

994.
Mikhailov, A., Karavay, M.: Pattern Recognition by Pattern Inversion. SPIE (2019)

995.
Mikhailov, A.: Indexing-based pattern recognition. Advanced Materials Research. 403–408, 5254–5259 (2011)
Mikhailov, A.M., Karavay, M.F., Sivtsov, V.A.: Instantaneous learning in pattern recognition. Automation and
Remote Control. 83(3), 417–425 (2022). https://doi.org/10.1134/S0005117922030092

996. Mikhailov, A., Karavay, M.: Indextron. In: Proceedings of the 10th International Conference on Pattern Recogni-
tion Application and Methods, 4-6 Feb 2021, Vienna, vol. 1-978-989-758-486-2, pp. 143–149. https://doi.org/10.
5220/0010180301430149

997. Mikhailov, A., Karavay, M., Farkhadov, M.: Inverse sets in big data processing. In: Proceedings of the 11th IEEE
International Conference on Application of Information and Communication Technologies (AICT 2017,
Moscow). M. IEEE, vol. 1, https://www.researchgate.net/publication/321309177_Inverse_Sets_in_Big_Data_
Processing

998. Mikhailov, A.,Karavay, M.: Random quasi intersections with applications to instant machine learning. In
Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods,
pp. 222-228 (2023)

999. Mikhailov, A., Karavay, M.: Pattern inversion as a pattern recognition method for machine learning. https://arxiv.
org/abs/2108.10242

https://doi.org/10.1134/S0005117922030092
https://doi.org/10.5220/0010180301430149
https://doi.org/10.5220/0010180301430149
https://www.researchgate.net/publication/321309177_Inverse_Sets_in_Big_Data_Processing
https://www.researchgate.net/publication/321309177_Inverse_Sets_in_Big_Data_Processing
https://arxiv.org/abs/2108.10242
https://arxiv.org/abs/2108.10242

790 References

1000.
1001.

Alex, G., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538 (2016)
You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel, J., Keutzer, K., Hsieh, C.-J.:
Large batch optimization for deep learning: training bert in 76 minutes. ICLR. (2020)

1002. Xie, Z., Yuan, L., Zhu, Z., Sugiyama, M.: Positive-negative momentum: manipulating stochastic gradient noise to
improve generalization (2021)

1003.
1004.

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

1005.
You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks (2017)

1006.
Codd, E.F.: Relational completeness of data base sublanguages. Database Systems: 65–98 (1970)
HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video Chung-Yi Weng, Brian
Curless, Pratul P. Srinivasan, Jonathan T. Barron, Ira Kemelmacher-Shlizerman, CVPR 2022

1007. Anwar, M., Shi, B., Goswami, V., Hsu, W.-N. Pino, J., Wang, C.: MuAViC: a multilingual audio-visual corpus for
robust speech recognition and robust speech-to-text translation (2023)

1008. Shi, B., Hsu, W.-N., Lakhotia, K., Mohamed, A.: Learning audio-visual speech representation by masked
multimodal cluster prediction

1009.
1010.

Alayrac, J.-B., et al.: Flamingo: a visual language model for few-shot learning (2022)
Luo, Z., Chen, D., Zhang, Y., Huang, Y., Wang, L., Shen, Y., Zhao, D., Zhou, J., Tan, T.: VideoFusion:
decomposed diffusion models for high-quality video generation (2023)

1011. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo,
W.-Y., Dollár, P., Girshick, R.: Segment Anything (SA) (2023)

1012.
1013.

Grauman, K., et al.: Ego4D: around the world in 3,000 hours of egocentric video (2023)

1014.
Gu, J., et al.: NerfDiff: single-image view synthesis with NeRF-guided distillation from 3D-aware diffusion (2023)
Xu, D., Jiang, Y., Wang, P., Fan, Z., Shi, H., Wang, Z.: SinNeRF: training neural radiance fields on complex
scenes from a single image

1015. Sarlin, P.-E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph
neural networks (2020)

1016.
1017.

Chen, H., Feng, R., Wu, S., Xu, H., Zhou, F., Liu, Z.: 2D human pose estimation: a survey (2022)
Ling; Y., Yan; Y., Huang; K., Chen, G.: FlowAcc: real-time high-accuracy DNN-based optical flow accelerator in
FPGA. In: 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2022)

1018. Müller, T., Rousselle, F., Novák, J., Alexander Keller, S.: Real-time neural radiance caching for path tracing
(2021)

1019. Song, Y., Wang, T., Mondal, S.K., Sahoo, J.P.: A comprehensive survey of few-shot learning: evolution,
applications, challenges, and opportunities. ACM. (2023)

1020.
1021.

GPT-4 Technical Report OpenAI. (2023)

1022.
Vijay Prakash Dwivedi, Xavier Bresson: A generalization of transformer networks to graphs (2020)
Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, Jian Zhang: DragonDiffusion: enabling drag-style
manipulation on diffusion models (2013)

1023. Zhu, W., Ma, X., Liu, Z., Liu, L., Wayne, W., Wang, Y.: MotionBERT: a unified perspective on learning human
motion representations. Shanghai AI Laboratory, Peking University (2023)

1024. Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features for text-driven image-to-image
translation. CVPR (2023)

1025. Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin, Tong Luo,
Yaqian Li, Shilong Liu, Yandong Guo, Lei Zhang: Recognize anything: a strong image tagging model (2023)

1026. Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng Li, Yu Qiao, Wanli Ouyang, Xiangyu Yue: Meta-
transformer: a unified framework for multimodal learning (2023)

1027.
1028.

Rawal Khirodkar et. al.: Sapiens: Foundation for human vision models, META Reality Labs August (2024)
Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, Vladlen
Koltun: Depth pro: Sharp monocular metric depth in less than a second, August (2024)

1029.
1030.

Liu et al.: Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection

1031.
Yiyuan Zhang et al.: Meta-transformer: A unified framework for multimodal learning

1032.
Haoxuan You et. al: Ferret: Refer and ground anything anywhere at any granularity, October (2023)
Yating Tian, Hongwen Zhang, Yebin Liu, Limin Wang, Jan: Recovering 3D human mesh from monocular images:
A survey (2024)

1033.
1034.

Meng-Hao Guo et. al.: Attention mechanisms in computer vision: A survey (2022)

1035.
Shahar Lutati, Itamar Zimerman, Lior Wolf: Focus your attention (with adaptive IIR filters) (2023)
Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio: Neural machine translation by jointly learning to align and
translate, ICLR (2015)

	Preface
	Governments Become Major Stakeholders
	Russia on AI
	China Top-Down AI Goals
	USA AI Policy: Scattered Across USG Agencies
	EU Artificial Intelligence Act

	Thanks

	Contents
	1: 2D/3D Image Capture and Representation
	Image Sensor Technology
	Sensor Materials
	Sensor Photodiode Cells
	Sensor Configurations: Mosaic, Foveon, BSI
	Dynamic Range, Noise, and Super Resolution
	Sensor Processing
	De-mosaicking
	Dead Pixel Correction
	Color and Lighting Corrections
	Geometric Corrections

	Cameras and Computational Imaging
	Overview of Computational Imaging
	Single-Pixel Computational Cameras
	2D Computational Cameras
	3D Depth Camera Systems
	Binocular Stereo
	Structured and Coded Light
	Optical Coding: Diffraction Gratings
	Time-of-Flight Sensors
	Array Cameras
	Radial Cameras
	Plenoptics: Light Field Cameras

	3D Depth Processing Method
	Overview of Methods
	Problems in Depth Sensing and Processing
	The Geometric Field and Distortions
	The Horopter Region, Panum´s Area, and Depth Fusion
	Cartesian vs. Polar Coordinates: Spherical Projective Geometry
	Depth Granularity
	Correspondence
	Holes and Occlusion
	Surface Reconstruction and Fusion
	Noise
	Monocular Depth Processing
	Multi-view Stereo
	Sparse Methods: PTAM
	Dense Methods: DTAM
	Optical Flow, SLAM, and SFM

	3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds
	Summary
	Learning Assignments

	2: Image Preprocessing, Morphology, Segmentation, Colorimetry
	Perspectives on Image Processing
	Problems to Solve During Image Preprocessing
	Vision Pipelines and Image Preprocessing
	Corrections
	Enhancements
	Preparing Images for Feature Extraction
	Local Binary Family Preprocessing
	Spectra Family Preprocessing
	Basis Space Family Preprocessing
	Polygon Shape Family Preprocessing

	The Taxonomy of Image Processing Methods
	Point
	Line
	Area
	Algorithmic
	Data Conversions

	Colorimetry
	Overview of Color Management Systems
	Illuminants, White Point, Black Point, and Neutral Axis
	Device Color Models
	Color Spaces and Color Perception
	Gamut Mapping and Rendering Intent
	Practical Considerations for Color Enhancements
	Color Accuracy and Precision

	Spatial Filtering
	Convolutional Filtering and Detection
	Kernel Filtering and Shape Selection
	Shape Selection or Forming Kernels

	Point Filtering
	Noise and Artifact Filtering
	Integral Images and Box Filters

	Edge Detectors
	Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei-Chen
	Canny Detector

	Transform Filtering, Fourier, and Others
	Fourier Transform Family
	Fundamentals

	Fourier Family of Transforms
	Other Transforms

	Morphology and Segmentation
	Binary Morphology
	Gray Scale and Color Morphology
	Morphology Optimizations and Refinements
	Euclidean Distance Maps
	Super-Pixel Segmentation
	Graph-Based Super-Pixel Methods
	Gradient-Ascent-Based Super-Pixel Methods

	Depth Segmentation
	Color Segmentation

	Thresholding
	Global Thresholding
	Histogram Peaks and Valleys, and Hysteresis Thresholds
	LUT Transforms, Contrast Remapping
	Histogram Equalization and Specification
	Global Auto Thresholding

	Local Thresholding
	Local Histogram Equalization
	Integral Image Contrast Filters
	Local Auto Threshold Methods

	DNN Segmentation
	Segmentation: Semantic, Instance, Panoptic
	U-Nets for Segmentation, W-Nets

	CNN Segmentation Methods
	CNN Segmentation History
	FCN Segmentation Method
	Mask RCNN Method
	Region Proposals, Rectangular, Segmented Polygon Regions
	Object Detectors and Object Descriptors

	Single Shot Object Detection: SDD and YOLO
	SSD
	YOLO

	Two-Shot Object Detection

	Segmented Region Descriptors: Color and Texture
	Illumination Estimation and Color Corrections for Segmentation
	Color Quantization
	Color Compression and Color Popularity
	Summary
	Learning Assignments

	3: Global and Regional Feature Descriptors
	Historical Survey of Features
	Key Ideas: Global, Regional, and Local Metrics
	1960s, 1970s, 1980s-Whole-Object Approaches
	Early 1990s-Partial-Object Approaches
	Mid-1990s-Local Feature Approaches
	Late 1990s-Classified Invariant Local Feature Approaches
	Early 2000s-Scene and Object Modeling Approaches
	Mid-2000s-Finer-Grain Feature and Metric Composition Approaches
	Post-2010-Multimodal Feature Metrics Fusion

	Textural Analysis
	1950s Through 1970s-Global Uniform Texture Metrics
	1980s-Structural and Model-Based Approaches for Texture Classification
	1990s-Optimizations and Refinements to Texture Metrics
	2000 to Today-More Robust Invariant Texture Metrics and 3D Texture

	Statistical Methods

	Texture Region Metrics
	Edge Metrics
	Edge Density
	Edge Contrast
	Edge Entropy
	Edge Directivity
	Edge Linearity
	Edge Periodicity
	Edge Size
	Edge Primitive Length Total

	Cross-Correlation and Autocorrelation
	Fourier Spectrum, Wavelets, and Basis Signatures
	Co-occurrence Matrix, Haralick Features
	Extended SDM Metrics (Krig SDM Metrics)
	Metric 1: Centroid
	Metric 2: Total Coverage
	Metric 3: Low-Frequency Coverage
	Metric 4: Corrected Coverage
	Metric 5: Total Power
	Metric 6: Relative Power
	Metric 7: Locus Mean Density
	Metric 8: Locus Length
	Metric 9: Bin Mean Density
	Metric 10: Containment
	Metric 11: Linearity
	Metric 12: Linearity Strength

	Laws Texture Metrics
	LBP Local Binary Patterns
	Dynamic Textures

	Statistical Region Metrics
	Image Moment Features
	Point Metric Features
	Global Histograms
	Local Region Histograms
	Scatter Diagrams, 3D Histograms
	Multi-resolution, Multi-scale Histograms
	Radial Histograms
	Contour or Edge Histograms

	Basis Space Metrics
	Fourier Description
	Walsh-Hadamard Transform
	HAAR Transform
	Slant Transform
	Zernike Polynomials
	Steerable Filters
	Karhunen-Loeve Transform and Hotelling Transform
	Wavelet Transform and Gabor Filters
	Gabor Functions

	Hough Transform and Radon Transform

	Summary
	Learning Assignments

	4: Local Feature Descriptors
	Local Features
	Detectors, Interest Points, Keypoints, Anchor Points, Landmarks
	Descriptors, Feature Description, Feature Extraction
	Sparse Local Pattern Methods

	Local Feature Attributes
	Choosing Feature Descriptors and Interest Points
	Feature Descriptors and Feature Matching
	Criteria for Goodness
	Repeatability, Easy vs. Hard to Find
	Distinctive vs. Indistinctive
	Relative and Absolute Position
	Matching Cost and Correspondence

	Distance Functions
	Early Work on Distance Functions
	Euclidean or Cartesian Distance Metrics
	Euclidean Distance
	Squared Euclidean Distance

	Cosine Distance or Similarity
	Sum of Absolute Differences (SAD) or L1 Norm
	Sum of Squared Differences (SSD) or L2 Norm

	Correlation Distance
	Hellinger Distance

	Grid Distance Metrics
	Manhattan Distance
	Chebyshev Distance

	Statistical Difference Metrics
	Earth Movers Distance (EMD) or Wasserstein Metric
	Mahalanobis Distance
	Bray Curtis Distance
	Canberra Distance

	Binary or Boolean Distance Metrics
	L0 Norm
	Hamming Distance
	Jaccard Similarity and Dissimilarity

	Descriptor Representation
	Coordinate Spaces, Complex Spaces
	Cartesian Coordinates
	Polar and Log Polar Coordinates
	Radial Coordinates
	Spherical Coordinates
	Gauge Coordinates
	Multivariate Spaces, Multimodal Data
	Feature Pyramids

	Descriptor Density
	Interest Point and Descriptor Culling
	Dense vs. Sparse Feature Description

	Descriptor Shape Topologies
	Correlation Templates
	Patches and Shapes
	Single Patches, Subpatches
	Deformable Patches
	Multi-patch Sets
	TPLBP, FPLBP

	Strip and Radial Fan Shapes
	D-NETS Strip Patterns

	Object Polygon Shapes
	Morphological Boundary Shapes
	Texture Structure Shapes
	Super-Pixel Similarity Shapes

	Local Binary Descriptor Point-Pair Patterns
	FREAK Retinal Patterns
	Brisk Patterns
	ORB and BRIEF Patterns

	Descriptor Discrimination
	Spectra Discrimination
	Region, Shapes, and Pattern Discrimination
	Geometric Discrimination Factors
	Feature Visualization to Evaluate Discrimination
	Discrimination via Image Reconstruction from HOG
	Discrimination via Image Reconstruction from Local Binary Patterns
	Discrimination via Image Reconstruction from SIFT Features

	Accuracy, Trackability
	Accuracy Optimizations, Subregion Overlap, Gaussian Weighting, and Pooling
	Sub-pixel Accuracy

	Search Strategies and Optimizations
	Dense Search
	Grid Search
	Multi-scale Pyramid Search
	Scale Space and Image Pyramids
	Feature Pyramids
	Sparse Predictive Search and Tracking
	Tracking Region-Limited Search
	Segmentation-Limited Search
	Depth or Z-Limited Search

	Computer Vision, Models, Organization
	Feature Space
	Object Models
	Constraints
	Selection of Detectors and Features
	Manually Designed Feature Detectors
	Statistically Designed Feature Detectors
	Learned Features

	Overview of Training
	Classification of Features and Objects
	Group Distance: Clustering, Training, and Statistical Learning
	Group Distance: Clustering Methods Survey, KNN, RANSAC, K-Means, GMM, SVM, Others

	Classification Frameworks, Supervision, REIN, MOPED
	Kernel Machines
	Boosting, Weighting
	Selected Examples of Classification

	Feature Learning, Sparse Coding, Convolutional Networks
	Terminology: Codebooks, Visual Vocabulary, Bag of Words, Bag of Features
	Sparse Coding
	Visual Vocabularies
	Learned Detectors via Convolutional Filter Masks

	Convolutional Neural Networks, Neural Networks

	Summary
	Learning Assignments

	5: Feature Descriptor Attribute Taxonomy
	Feature Descriptor Families
	Prior Work on Computer Vision Taxonomies
	Robustness and Accuracy
	General Robustness Taxonomy
	Illumination
	Color Criteria
	Incompleteness
	Resolution and Accuracy
	Geometric Distortion
	Efficiency Variables, Costs, and Benefits
	Discrimination and Uniqueness

	General Vision Metrics Taxonomy
	Feature Descriptor Family
	Spectra Dimensions
	Spectra Type
	Interest Point
	Storage Formats
	Data Types
	Descriptor Memory
	Feature Shapes
	Feature Pattern
	Feature Density
	Feature Search Methods
	Pattern Pair Sampling
	Pattern Region Size
	Distance Function

	Feature Metric Evaluation
	Efficiency Variables, Costs, and Benefits
	Image Reconstruction Efficiency Metric
	Example Feature Metric Evaluations
	SIFT Example of the FME Taxonomy
	LBP Example of the FME Taxonomy
	Shape Factors Example of the FME Taxonomy

	Summary
	Learning Assignments

	6: Feature Detector and Feature Descriptor Survey
	Interest Point Tuning
	Interest Point Concepts (Keypoints, Detectors)
	Interest Point Method Survey
	Laplacian and Laplacian of Gaussian
	Moravac Corner Detector
	Harris Methods, Harris-Stephens, Shi-Tomasi, and Hessian Type Detectors
	Hessian Matrix Detector and Hessian-Laplace
	Difference of Gaussians
	Salient Regions
	SUSAN, and Trajkovic and Hedly
	Fast, Faster, and AGHAST
	Local Curvature Methods
	Morphological Interest Regions

	Feature Descriptor Survey
	Local Binary Descriptors
	Local Binary Patterns
	Rotation-Invariant LBP (RILBP)
	Dynamic Texture Metric Using 3D LBPs
	Volume LBP (VLBP)
	LBP-TOP

	Other LBP Variants

	Census
	Modified Census Transform

	BRIEF
	ORB
	BRISK
	FREAK

	Spectra Descriptors
	SIFT
	SIFT-PCA
	SIFT-GLOH
	SIFT-SIFER Retrofit
	SIFT CS-LBP Retrofit
	RootSIFT Retrofit

	CenSurE and STAR
	Correlation Templates
	HAAR Features
	Viola-Jones with HAAR-Like Features

	SURF
	Variations on SURF

	Histogram of Gradients (HOG) and Variants
	PHOG and Related Methods
	Daisy and O-Daisy
	CARD
	Robust Fast Feature Matching
	RIFF, CHOG
	Chain Code Histograms

	D-NETS
	Local Gradient Pattern
	Local Phase Quantization

	Basis Space Descriptors
	Fourier Descriptors
	Other Basis Functions for Descriptor Building
	Sparse Coding Methods

	Polygon Shape Descriptors
	MSER Method
	Object Shape Metrics for Blobs and Polygons
	Shape Context

	3D, 4D, Volumetric, and Multimodal Descriptors
	3D HOG
	HON 4D
	3D SIFT

	Summary
	Learning Assignments

	7: Ground Truth Data Topics, Benchmarks, Analysis
	What Is Ground Truth Data?
	Previous Work on Ground Truth Data: Art vs. Science
	General Measures of Quality Performance
	Measures of Algorithm Performance
	Rosin´s Work on Corners
	Key Questions for Constructing Ground Truth Data
	Content: Adopt, Modify, or Create
	Survey of Available Ground Truth Data
	Fitting Ground Truth Data to Algorithms
	Scene Composition and Labeling
	Composition
	Labeling
	Defining the Goals and Expectations
	Mikolajczyk and Schmid Methodology
	Open Rating Systems
	Corner Cases and Limits
	Interest Points and Features
	Robustness Criteria for Ground Truth Data
	Illustrated Robustness Criteria
	Using Robustness Criteria for Real Applications

	Pairing Metrics with Ground Truth
	Pairing and Tuning Interest Points, Features, and Ground Truth
	Examples Using the General Vision Taxonomy
	Synthetic Feature Alphabets
	Goals for the Synthetic Dataset
	Accuracy of Feature Detection via Location Grid
	Rotational Invariance via Rotated Image Set
	Scale Invariance via Thickness and Bounding Box Size
	Noise and Blur Invariance
	Repeatability
	Real Image Overlays of Synthetic Features
	Synthetic Interest Point Alphabet
	Synthetic Corner Alphabet

	Hybrid Synthetic Overlays on Real Images
	Method for Creating the Overlays
	Summary
	Learning Assignments

	8: Vision Pipelines and HW/SW Optimizations
	Stages, Operations, and Resources
	Compute Resource Budgets
	Compute Units, ALUs, and Accelerators
	Power Use
	Memory Use
	I/O Performance
	The Vision Pipeline Examples
	Automobile Recognition
	Segmenting the Automobiles
	Matching the Paint Color
	Measuring the Automobile Size and Shape
	Feature Descriptors
	Calibration, Setup, and Ground Truth Data
	Pipeline Stages and Operations
	Operations and Compute Resources
	Criteria for Resource Assignments

	Object Models for Human Body, Generic Objects, Pose Point Detectors
	Face, Emotion, and Age Recognition
	Calibration and Ground Truth Data
	Interest Point Position Prediction
	Segmenting the Head and Face Using the Bounding Box
	Face Landmark Identification and Compute Features
	Pipeline Stages and Operations
	Operations and Compute Resources
	Criteria for Resource Assignments

	Image Classification
	Segmenting Images and Feature Descriptors
	Pipeline Stages and Operations
	Mapping Operations to Resources
	Criteria for Resource Assignments
	Augmented Reality
	Calibration and Ground Truth Data
	Feature and Object Description
	Overlays and Tracking
	Pipeline Stages and Operations
	Mapping Operations to Resources
	Criteria for Resource Assignments

	Acceleration Alternatives
	Memory Optimizations
	Minimizing Memory Transfers Between Compute Units
	Memory Tiling
	DMA, Data Copy, and Conversions
	Register Files, Memory Caching, and Pinning

	Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization
	Coarse-Grain Parallelism
	Compute-Centric vs. Data-Centric
	Threads and Multiple Cores
	Fine-Grain Data Parallelism
	SIMD, SIMT, and SPMD Fundamentals

	Shader Kernel Languages and GPGPU
	Advanced Instruction Sets and Accelerators
	Vision Algorithm Optimizations and Tuning
	Compiler and Manual Optimizations
	Tuning
	Feature Descriptor Retrofit, Detectors, Distance Functions
	Boxlets and Convolution Acceleration

	Data Type Optimizations, Integer vs. Float
	Optimization Resources

	Summary
	Learning Assignments

	9: Feature Learning Taxonomy and Neuroscience Background
	Neuroscience Inspirations for Computer Vision
	Feature Generation vs. Feature Learning
	Terminology of Neuroscience Applied to Computer Vision
	Classes of Feature Learning
	Convolutional Feature Weight Learning
	Local Feature Descriptor Learning
	Basis Feature Composition and Dictionary Learning
	Summary Perspective on Feature Learning Methods
	Machine-Learning Models for Computer Vision
	Expert Systems
	Statistical and Mathematical Analysis Methods
	Neural Science-Inspired Methods
	Deep Learning
	DNN Hacking and Misclassification
	History of Machine Learning (ML) and Feature Learning
	Historical Survey, 1940s-2010s
	1940s and 1950s
	1960s
	1970s
	1980s
	1990s
	2000s-2010s
	2020s-
	Artificial Neural Network (ANN) Taxonomy Overview
	Feature Learning Overview
	Learned Feature Descriptor Types
	Hierarchical Feature Learning
	How Many Features to Learn?
	The Power of DNNs
	Encoding Efficiency
	Handcrafted Features vs. Handcrafted Deep Learning
	Invariance and Robustness Attributes for Feature Learning
	What Are the Best Features and Learning Architectures?
	Merger of Big Data, Analytics, and Computer Vision
	Key Technology Enablers
	Neuroscience Concepts
	Biology and Blueprint
	The Elusive Unified Learning Theory
	Human Visual System Architecture
	Taxonomy of Feature Learning Architectures
	Note
	Architecture Topologies
	ANNs (Artificial Neural Networks)
	FNN (Feed-Forward Neural Network)
	RNN (Recurrent Neural Network)
	BFN (Basis Function Network)
	Ensembles, Hybrids
	Architecture Components and Layers
	Layer Totals
	Layer Connection Topology
	Memory Model
	Training Protocols
	Input Sampling Methods
	Dropout, Reconfiguration, Regularization
	Preprocessing, Numeric Conditioning
	Feature Set Dimensions
	Feature Initialization
	Features, Filters
	Activation, Transfer Functions
	Post-processing, Numeric Conditioning
	Pooling, Subsampling, Downsampling, Upsampling
	Classifiers
	Summary

	10: Feature Learning and Deep Learning Architecture Survey
	Architecture Survey
	FNN Architecture Survey
	P-Perceptron
	Perceptron Architecture
	Perceptron Weight Tuning
	Perceptron Learning, Training, Classification
	Multilayer Perceptron (MLP), Cognitron, Neocognitron
	Cognitron
	Neocognitron
	Concepts for CNNs, Convnets, Deep MLPs
	Forward and Backward Pass Through the CNN
	Fully Connected (FC) Layers, Flatten, Reduction, Reshape
	Layers and Depth
	Modeling an Artificial Neuron
	Convolutional Features, Filters
	Transfer Function (Activation Function)
	Feature Weights and Initialization
	Local Receptive Field
	Receptive Field Compression via Input Striding or Output Pooling
	Trainable Bias
	Memory for Current Neuron State
	Backpropagation, Feature Learning, Feature Tuning
	Alternatives to Backpropagation
	Features per Layer
	Compute Cost of Convolutional Features and Layers
	Filter Shape and Size
	Stacked Convolutions
	Separable and Fused Convolutions
	Convolution vs. Correlation
	Pooling, Subsampling
	Parameters and Hyperparameters
	Architecture Parameters
	Learning Hyperparameters
	LeNet
	AlexNet, ZFNet
	VGGNet and Variants MSRA-22, Baidu Deep Image, Deep Residual Learning
	Half-CNN
	NiN, Maxout
	GoogLeNet, InceptionNet
	MSRA-22, SPP-Net, R-CNN, MSSNN, Fast-R-CNN
	Baidu, Deep Image, MINWA
	SYMNETS-Deep Symmetry Networks
	RNN Architecture Survey
	Concepts for Recurrent Neural Networks
	RNN Contrasted with CNN
	Unfolding an RNN into an FNN
	RNN Weight Sharing and Probabilistic Matching
	RNN Cell and Network Taxonomy
	RNN Sequencing and State
	RNN Memory Models
	LSTM, GRU
	NTM, RNN-NTM, RL-NTM
	Multidimensional RNNs, MDRNN
	2D RNNs and 2D LSTMs for Computer Vision
	MDRNN, MDLSTM, DAG-RNN, BDRNN, RRNN
	C-RNN, QDRNN
	RCL-RCNN
	dasNeT
	NAP-Neural Abstraction Pyramid
	BFN Architecture Survey
	Concepts for Machine Learning and Basis Feature Networks
	Feature Models, Classification Models, Decision Models
	Function Basis vs. CNN Basis vs. Other Models
	Visual Vocabularies, Bag of Words (BoW) Model, Alternative Encodings
	Vocabulary Encodings
	Sparse Coding and Codebook Learning Overview, K-MEANS, K-SVD
	Kernel Functions, Kernel Machines, SVM
	Other Statistical Classification Methods, Decision Trees, Forests, Boosting
	PNN-Polynomial Neural Network, GMDH
	HKD-Kernel Descriptor Learning
	HMP-Sparse Feature Learning
	HMP Pyramid Sparse Code (PSC) Feature Descriptor
	HMP Dictionary Learning with MI-KSVD
	HMP Multivariate I-RGB-D-N Features
	M-HMP Multiscale Features
	HMAX and Neurological Models
	The Standard Model of the Visual Pathway
	Viewpoint Invariance Models
	HMAX Feature Hierarchy
	HMAX Layers
	S1 Layer
	C1 Layer
	S2 Layer
	C2 Layer

	VTU Classification
	Training Protocols
	HMO-Hierarchical Model Optimization
	Ensemble Methods
	Deep Neural Network Futures
	Increasing Depth to the Max-Deep Residual Learning (DRL)
	Approximating Complex Models Using a Simpler MLP (Model Compression)
	Classifier Decomposition and Recombination
	Summary
	Learning Assignments

	11: Attention, Transformers, Hybrids, and DDNs
	Deep Descriptor Networks (DDNs) Overview
	DDN and CNN Contrasted
	Learning Model Innovations
	Classifier Innovations: Hand-Crafted vs. Learned
	Commodity Models-Foundation Models
	Attention Mechanisms
	Self-Attention

	Neuroscience of Visual Attention
	On the Weakness of FFN Models for Attentional Learning
	Transient Attention-Sustained Attention
	Saccading and Time-Aware Neurons
	Local Features and Joint Attention

	Attention Variations
	Attention Element Overview: Encodings and Embeddings
	Input Tokenization for Text and Images
	Embeddings for Text and Images
	Rethinking Positional Encodings for Text Tokens and Pixel Patches
	Illustrated Encodings and Embedding Space
	Attention Mechanism Illustrated: Tokens, Embeddings, QKV Self-Attention
	Transformer Architectures for Vision
	ViT the First Vision Transformer
	ViT Pixel Patch Embeddings
	SWiN Transformer

	DDN Hybrid Backbones: Multi-feature Networks
	PPN-Polynomial Neural Network GMDH
	Non-local Means Network (NLM-Net)
	Stand-Alone Self-Attention Network (SASA)
	Attention + CNN: ViT Lite Variants CvT + CCT, BotNet
	ATT-CNN: Incorporating Attentional Guidance to CNN Classifiers
	FNet Transformer with Fourier Features
	Binary Networks: XNOR-Net, Binary Weight Networks (BWN)
	BEIT Visual Vocabulary Features, VICE
	Volume Learning for Visual Genomes and Visual DNA

	Indextron Inverse Index Feature Learning
	Summary
	Learning Assignments

	12: Applied and Future Visual Computing Topics
	Image Sensor Enhancements
	Application Specific Image Sensor Features for HDR and More
	GPU Incorporation of Neural Networks and Computer Vision into the GPU
	Imaging Sensor Functions: HDR and Super Resolution (SR)
	HDR on a Single CMOS Imager Chip

	Super Resolution (SR) Methods: On-Chip and in SOC Software
	Super Resolution for Multi-image Mixed Reality (MR)
	Blind Super-Resolution
	Super Resolution from a Single Image: SR-GAN DNN
	Super Resolution + HDR: HDR-DSP Multi-resolution Super Resolution
	Deep Burst Super-Resolution: Multi-image vs. Single Image Methods

	Panoramics and Image Stitching
	3D 360-Degree Panoramic Image Stitching

	Adaptive (APAP) 2D Image Stitching
	Stereo Pair Estimation from 2D Images-Deep3D

	View Synthesis
	Introduction
	Background Concepts
	Light Fields and Radiance Fields
	Volume Rendering for 3D Light Fields
	Generative Adversarial Networks (GAN´s) and Curiosity Models
	Diffusion Models
	Text-to-Image Synthesis Models
	Captioned Multiclass Classification, Classifier-Free Guidance, N-Shot Learning
	The AI Third Wave: Continuous Learning and Multi-modal Models
	Associative Multi-modal (Multiclass) Learning (AML)-Third-Generation Classifiers
	View Synthesis Applications
	CLIP Text-to-Image Synthesis
	GLIDE Model for Image Modeling and Editing
	DALLE-2 Text-to-Image View Synthesis, Stable Diffusion, Imagen
	Neural Radiance Fields (NeRF)
	NeRF and NeRF-OSR
	Neural Radiance Field Code Books, ObSuRf 3D Scene Segmentation
	POINT-E Text-to-Image View Synthesis
	3D View Synthesis from Two Images + Pose: 3DiM
	Avatars and Animation-SMPL and AvatarSDK
	SMPL
	AvatarSDK

	Scientific Imaging Systems
	Polarimetric Imaging and Polarized Light Cameras
	Multi-spectral Imaging
	Tomography for Confocal Microscopy and MRI
	Confocal Microscopy and Florescence Imaging

	Summary
	Learning Assignments

	Appendix A: Synthetic Feature Analysis
	Background Goals and Expectations
	Test Methodology and Results
	Detector Parameters Are Not Tuned for the Synthetic Alphabets
	Expectations for Test Results
	Summary of Synthetic Alphabet Ground Truth Images
	Synthetic Interest Point Alphabet
	Synthetic Corner Point Alphabet
	Synthetic Alphabet Overlays

	Test 1: Synthetic Interest Point Alphabet Detection
	Annotated Synthetic Interest Point Detector Results
	Entire Images Available Online

	Test 2: Synthetic Corner Point Alphabet Detection
	Annotated Synthetic Corner Point Detector Results
	Entire Images Available Online

	Test 3: Synthetic Alphabets Overlaid on Real Images
	Annotated Detector Results on Overlay Images

	Test 4: Rotational Invariance for Each Alphabet
	Methodology for Determining Rotational Invariance

	Analysis of Results and Non-repeatability Anomalies
	Caveats
	Non-repeatability in Tests 1 and 2
	Other Non-repeatability in Test 3
	Test Summary
	Future Work

	Appendix B: Survey of Ground Truth Datasets
	Appendix C: Imaging and Computer Vision Resources
	Commercial Products
	Open Source
	Organizations, Institutions, and Standards
	Journals and Their Abbreviations
	Conferences and Their Abbreviations
	Online Resources
	Artificial Intelligence and Computer Vision-Key Research
	Neuroscience Journals and Research
	Selected Deep Learning Resources

	Appendix D: Extended SDM Metrics
	Appendix E: The Visual Genome Model (VGM)
	Neuroscience Inspiration for VGM
	Feature and Conceptual Memory Locality
	Attentional Neural Memory Research
	HMAX Model and Visual Cortex Models of the Visual Pathway
	Virtually Unlimited Feature Memory
	Genetic Preexisting Memory
	Neurogenesis, Neuron Size, and Connectivity
	Bias and Motivation for Learning New Memory Impressions
	Depth Processing
	Dual Retinal Processing Pathways: Magno and Parvo
	Retinal Processing Model

	Visual Genomes Model Concepts
	Magno and Parvo Features
	Parvo Retinal Processing
	Magno Retinal Processing
	Magno Primal Feature Segmentation
	VGM Neuron Model
	VGM Feature Memory Structures
	Visual Genome Sequences, Tiles, Strands, Bundles, Primal Features
	VGM Proxy Agent

	Summary
	Tile Genome Renderings
	Image Set 1: Indoor Scene of Little Girls (Bandits), 24-Bit RGB 2448 x 3264 Image
	Image Set 2: Outdoor Scene of Giant Sequoia Trees 24-Bit RGB 2112 x 2816 Image
	Image Set 3: Comparative Volume Renderings of Entire Genome A Feature Space for Sequoias Scene, Representing Each n-Bit Featur...
	Image Set 4: Comparative Volume Renderings of Entire Genome A Feature Space for Bandits Scene, Representing Each n-Bit Feature...

	References

