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Preface 

Visual Computing and Visual AI is at an inflexion point where historical 

visual computing sciences are being superseded, piece by piece, by newer 

Visual AI methods. Seemingly mature visual computing applications are 

being improved using AI methods, such as computer graphics algorithms, 

image processing, scene analysis, feature representation, object detection, to 

name a few. The GPU is being recast to incorporate Visual AI methods, 

combining computer vision with computer graphics. 

This update to Computer Vision Metrics adds a survey of more recent and 

noteworthy visual computing methods and applications, with an updated 

taxonomy of architectures and research concepts, including the latest 

advances in transformers, attention mechanisms, innovative learning models, 

view synthesis using caption classifiers with zero-shot learning, and hybrid 

DNNs using a variety of basic features besides convolutional filters. Discus-

sion and analysis are provided to uncover intuition and delve into the essence 

of key advancements, with an eye towards the future of third-generation 

Visual AI.

v
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Fig. 1 (Top) Deep Learning—It’s Paradise! Image (C) “Wheel of Fortune,” (Middle) 

Image (C) Alex Krizhesky, Scott Krig commentary: DNN features resemble unique puzzle 

pieces, recursive complex averages of similar features from training data (Bottom) On 

building an AI system: Well, it’s remarkably simple... they are connected to a gigantic 

complex of computers ... programmed into a tape memory bank..., (C) “Dr. Strangelove” 

This is not a how-to book. Rather, this is a comprehensive and coherent 

survey of historical and the state-of-the-art methods, with key insights and 

intuitions towards future innovations. 

Open-source code is the new University and the new academic text-

book. Open-source code resources have now replaced the need for outdated 

hands-on classroom learning of specific algorithms for specific applications, 

making how-to textbooks obsolete. 

The field of computer vision is moving too fast for the academic 

coursework to keep up; open-source code is the place to be for algorithm 

learning. In fact, most anyone can develop commercial computer vision 

products by simple cut and paste and modification of free open-source code 

from GitHub or OpenCV (see Midjourney.com, for example). Most academic 

research papers provide free source code for the latest research methods, and 

this book cites well over 1200 key research papers to dig deeper. The online



repository GitHub provides a vast library of the latest algorithms from the 

latest research papers as open-source code. Also, the OpenCV library also 

provides a huge wealth of computer vision and deep learning source code and 

good code documentation containing algorithm details and background 

including citations of key reference papers for each algorithm—well suited 

to classroom use or self-guided learning. 
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However, this book is well suited for academic coursework or 

continuing education for any science discipline that makes use of images 

and video data, providing a comprehensive survey and analysis of computer 

vision with over 1200 references to the literature enabling deeper research into 

any topic, including deep learning and visual neuroscience, suitable for 

graduate level coursework to orient students to computer vision thinking of 

past, present, and future methods. The chapters are divided in such a way that 

various courses can be devised to incorporate a subset of chapters to accom-

modate course requirements. For example, typical course titles include 

“Image Sensors and Image Processing,” “Computer Vision and Image 

Processing,” “Applied Computer Vision and Imaging Optimizations,” “Fea-

ture Learning, Deep Learning, and Neural Network Architectures,” “Com-

puter Vision Architectures,” “Computer Vision Survey.” Chapters 8 and 12 

can be used for Applied Computer Vision course materials. Questions are 

available for coursework at the end of each chapter. 

This revised edition takes a forward-looking view at Visual AI and 

provides an analysis of key trends in research that point the way to third-

generation Visual AI systems, primarily using Associative Multimodal 

Learning (AML) using multimodal data discussed in Chap. 12 to provide 

classifiers for continuous learning, similar to the human mind, which hold 

extreme promise going forward. 

Rather than finding a generic or fundamental Artificial General Intelli-

gence (AGI) model, third-generation AI will move in the direction towards 

Multiple Intelligences for specific learning domains, rather than a generic 

AGI. Multiple Intelligences (MI) theory as pioneered by cognitive psycholo-

gist Dr. Howard Gardner of Harvard will lead the way to learn fundamentally 

separate models for multiple modes of human intelligence to address the 

different human learning modes such as musical–rhythmic, visual–spatial, 

verbal–linguistic, logical–mathematical, bodily–kinesthetic, interpersonal, 

intrapersonal, naturalistic, and existential intelligence. See Howard Gardner’s 

seminal work Gardner, H. (1983). Frames of mind: The theory of multiple 

intelligences. New York: Basic Books. 

The classifier becomes the crown jewel! Everyone can have their own 

classifier (i.e., a personal learning assistant) to follow them for a lifetime of 

continuous learning. 

What does the future hold for Computer Vision, Visual Computing, and 

Visual AI (~5 years)?

• Over 10 EXAFLOPS + 4 PETABYTES of memory, enabling models with 

over 500 TRILLION parameters (i.e., Graphcore Corp. has more than this 

today). And of course, NVIDIA will offer 15 Exaflops in 2027.
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• ImageNet will become less important, as new multimodal data models 

come to the forefront; gradient descent training will become less important; 

tuning and small-batch training to polish up golden classifiers acting as 

personal assistants will occur constantly (hourly, daily) following our 

multimodal perceptions and actions; other golden exemplar and metric-

based training will become more common to incorporate multimodal data; 

training in small batches will become normal; huge training processes 

using billions of training samples will be less important, and handled by 

larger corporations with huge compute resources; training will occur more 

frequently using smaller training sets in smaller steps to integrate models 

into larger libraries of models working together in concert, some private, 

some public.

• AML classifiers will increase as the next step in third-generation AI. The 

classifier becomes the crown jewel for continuous learning and become the 

property of the individual owner as it learns their personality, unlike the 

large pre-trained foundation data models that are more like the AI 

operating system which is updated periodically for everyone.

• Ubiquitous Visual AI will be built into portable devices and into the 

physical infrastructure of buildings, roadways, communications channels, 

utilities, manufacturing, and appliances of the world creating a virtual AI 

infrastructure. 

Governments Become Major Stakeholders 

The world-wide AI race is on, and Visual AI is a key pillar along with Natural 

Language Processing (NLP) and various modal AI embedded into automated 

systems for commercial, government, and military use. The world will 

become highly regulated in terms of Visual AI and all forms of AI; the 

world will never be the same going forward, becoming AI autonomous and 

AI controlled in many spheres. 

Russia on AI 

“Artificial intelligence is the future, not only for Russia, but for all humankind. 

It comes with colossal opportunities, but also threats that are difficult to predict. 

Whoever becomes the leader in this sphere will become the ruler of the world.” 

Vladimir Putin, President of Russia, 2017 

China Top-Down AI Goals 

Notice of the State Council 

Issuing the New Generation of Artificial Intelligence Development Plan 1 

State Council Document [2017] No. 35 

To all people’s governments of provinces, autonomous regions, and municipalities 

directly under the central government, all State Council ministries, and all directly 

controlled institutions:
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The “next generation of artificial intelligence development plan” is hereby issued to 

you, 

please carefully implement. 

State Council 

July 8, 2017 

USA AI Policy: Scattered Across USG Agencies 

. . .to foster public trust and confidence in the use of AI, protect our Nation’s values, and 

ensure that the use of AI remains consistent with all applicable laws, including those 

related to privacy, civil rights, and civil liberties ....Watch Trump in 2025. 

EU Artificial Intelligence Act 

EN ENEUROPEAN COMMISSION Brussels, 21.4.2021 

Proposal for a 

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL 

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE 

(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION 

LEGISLATIVE ACTS 
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The changing of bodies into light, and light into bodies, is very conformable to the course of 

Nature, which seems delighted with transmutations. 

—Isaac Newton 

2D/3D Image Capture 
and Representation 1 

Computer vision starts with images. This chapter surveys a range of topics dealing with capturing, 

processing, and representing images, including computational imaging, 2D imaging, and 3D depth 

imaging methods, sensor processing, depth-field processing for stereo and monocular multi-view 

stereo, and surface reconstruction. A high-level overview of selected topics is provided, with 

references for the interested reader to dig deeper. Readers with a strong background in the area of 

2D and 3D imaging may benefit from a light reading of this chapter. 

Image Sensor Technology 

This section provides a basic overview of image sensor technology as a basis for understanding how 

images are formed and for developing effective strategies for image sensor processing to optimize the 

image quality for computer vision. 

Typical image sensors are created from either CCD cells (charge-coupled device) or standard CMOS 

cells (complementary metal-oxide semiconductor). The CCD and CMOS sensors share similar 

characteristics and both are widely used in commercial cameras. The majority of sensors today use 

CMOS cells, though,mostly due tomanufacturing considerations. Sensors and optics are often integrated 

to create wafer-scale cameras for applications like biology or microscopy, as shown in Fig. 1.1. 

Micro-lenses 

RGB Color Filters 

CMOS imager 

Fig. 1.1 Common integrated image sensor arrangement with optics and color filters 

Image sensors are designed to reach specific design goals with different applications in mind, 

providing varying levels of sensitivity and quality. Consult the manufacturer’s information to get 

familiar with each sensor. For example, the size and material composition of each photodiode sensor 

cell element is optimized for a given semiconductor manufacturing process so as to achieve the best 

trade-off between silicon die area and dynamic response for light intensity and color detection. 

For computer vision, the effects of sampling theory are relevant—for example, the Nyquist 

frequency applied to pixel coverage of the target scene. The sensor resolution and optics together
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must provide adequate resolution for each pixel to image the features of interest, so it follows that a 

feature of interest should be imaged or sampled at least two times greater than the minimum size of the 

smallest pixels of importance to the feature. Of course, 2 × oversampling is just a minimum target for 

accuracy; in practice, single pixel wide features are not easily resolved.

2 1 2D/3D Image Capture and Representation

For best results, the camera system should be calibrated for a given application to determine the 

sensor noise and dynamic range for pixel bit depth under different lighting and distance situations. 

Appropriate sensor processing methods should be developed to deal with the noise and nonlinear 

response of the sensor for any color channel, to detect and correct dead pixels, and to handle modeling 

of geometric distortion. If you devise a simple calibration method using a test pattern with fine and 

coarse gradations of gray scale, color, and different scales of pixel features, appropriate sensor 

processing methods can be devised. In Chap. 2, we survey a range of image processing methods 

applicable to sensor processing. But let us begin by surveying the sensor materials. 

Sensor Materials 

Silicon-based image sensors are most common, although other materials such as gallium (Ga) are used 

in industrial and military applications to cover longer IR wavelengths than silicon can reach. Image 

sensors range in resolution, depending upon the camera used, from a single pixel phototransistor 

camera, through 1D line scan arrays for industrial applications, to 2D rectangular arrays for common 

cameras, all the way to spherical arrays for high-resolution imaging. (Sensor configurations and 

camera configurations are covered later in this chapter.) 

Common imaging sensors are made using silicon as CCD, CMOS, BSI, and Foveon methods, as 

discussed a bit later in this chapter. Silicon image sensors have a nonlinear spectral response curve; the 

near infrared part of the spectrum is sensed well, while blue, violet, and near UV are sensed less well, 

as shown in Fig. 1.2. Note that the silicon spectral response must be accounted for when reading the 

raw sensor data and quantizing the data into a digital pixel. Sensor manufacturers make design 

compensations in this area; however, sensor color response should also be considered when calibrating 

your camera system and devising the sensor processing methods for your application. 

Fig. 1.2 Typical spectral response of a few types of silicon photodiodes. Note the highest sensitivity in the near-infrared 
range around 900 nm and nonlinear sensitivity across the visible spectrum of 400–700 nm. Removing the IR filter from a 

camera increases the near-infrared sensitivity due to the normal silicon response. (Spectral data image # OSI Optoelec-

tronics Inc. and used by permission)
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Sensor Photodiode Cells 

One key consideration for image sensors is the photodiode size or cell size. A sensor cell using small 

photodiodes will not be able to capture as many photons as a large photodiode. If the cell size is near 

the wavelength of the visible light to be captured, such as blue light at 400 nm, then additional 

problems must be overcome in the sensor design to correct the image color. Sensor manufacturers take 

great care to design cells at the optimal size to image all colors equally well (Fig. 1.3). In the extreme, 

small sensors may be more sensitive to noise, owing to a lack of accumulated photons and sensor 

readout noise. If the photodiode sensor cells are too large, there is no benefit either, and the die size and 

cost for silicon go up, providing no advantage. Common commercial sensor devices may have sensor 

cell sizes of around 1 square micron and larger; each manufacturer is different, however, and trade-offs 

are made to reach specific requirements. 

Fig. 1.3 Primary color assignment to wavelengths. Note that the primary color regions overlap, with green being a good 

monochrome proxy for all colors 

Sensor Configurations: Mosaic, Foveon, BSI 

There are various on-chip configurations for multispectral sensor design, including mosaics and 

stacked methods, as shown in Fig. 1.4.  In  a  mosaic method, the color filters are arranged in a mosaic 

pattern above each cell. The Foveon1 sensor stacking method relies on the physics of depth penetration 

of the color wavelengths into the semiconductor material, where each color penetrates the silicon to a 

different depth, thereby imaging the separate colors. The overall cell size accommodates all colors, and 

so separate cells are not needed for each color. 

1 Foveon is a registered trademark of Foveon Inc.
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Stacked 

Photo-diodes 

R 

B 

G 

R filterB filter G filter 

Photo-diode Photo-diode Photo-diode 

Fig. 1.4 (Left) The Foveon method of stacking RGB cells to absorb different wavelengths at different depths, with all 

RGB colors at each cell location. (Right) A standard mosaic cell placement with RGB filters above each photodiode, with 

filters only allowing the specific wavelengths to pass into each photodiode 

Back-side-illuminated (BSI) sensor configurations rearrange the sensor wiring on the die to allow 

for a larger cell area and more photons to be accumulated in each cell. See the Aptina [340] white paper 

for a comparison of front-side and back-side die circuit arrangement. 

The arrangement of sensor cells also affects the color response. For example, Fig. 1.5 shows various 

arrangements of primary color (R, G, B) sensors as well as white (W) sensors together, where W 

sensors have a clear or neutral color filter. The sensor cell arrangements allow for a range of pixel 

processing options—for example, combining selected pixels in various configurations of neighboring 

cells during sensor processing for a pixel formation that optimizes color response or spatial color 

resolution. In fact, some applications just use the raw sensor data and perform custom processing to 

increase the resolution or develop alternative color mixes. 

Fig. 1.5 Several different mosaic configurations of cell colors, including white, primary RGB colors, and secondary 

CYM cells. Each configuration provides different options for sensor processing to optimize for color or spatial resolution. 

(Image used by permission, # Intel Press, from Building Intelligent Systems)
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The overall sensor size and format determines the lens’ size as well. In general, a larger lens lets in 

more light, so larger sensors are typically better suited to digital cameras for photography applications. 

In addition, the cell placement aspect ratio on the die determines pixel geometry—for example, a 4:3 

aspect ratio is common for digital cameras while 3:2 is standard for 35 mm film. The sensor 

configuration details are worth understanding in order to devise the best sensor processing and 

image preprocessing pipelines. 

Dynamic Range, Noise, and Super Resolution 

Current state-of-the-art sensors provide at least 8 bits per color cell and usually are 12–14 bits. Sensor 

cells require area and time to accumulate photons, so smaller cells must be designed carefully to avoid 

problems. Noise may come from optics, color filters, sensor cells, gain and A/D converters, 

postprocessing, or the compression methods, if used. Sensor readout noise also affects effective 

resolution, as each pixel cell is read out of the sensor, sent to an A/D converter, and formed into 

digital lines and columns for conversion into pixels. Better sensors will provide less noise and higher 

effective bit resolution; however, effective resolution can be increased using super resolution methods, 

by taking several images in rapid succession averaged together to reduce noise [811], or alternatively, 

the sensor position can be micro-MEMS-dithered to create image sequences to average together to 

increase resolution. A good survey of de-noising is found in the work by Ibenthal [339]. 

In addition, sensor photon absorption is different for each color and may be problematic for blue, 

which can be the hardest color for smaller sensors to image. In some cases, the manufacturer may 

attempt to provide a simple gamma-curve correction method built into the sensor for each color, which 

is not recommended. For demanding color applications, consider colorimetric device models and color 

management (as will be discussed in Chap. 2), or even by characterizing the nonlinearity for each color 

channel of the sensor and developing a set of simple corrective LUT transforms. (Noise-filtering 

methods applicable to depth sensing are also covered in Chap. 2.) 

Sensor Processing 

Sensor processing is required to de-mosaic and assemble the pixels from the sensor array, and also to 

correct sensing defects. We discuss the basics of sensor processing in this section. 

Typically, a dedicated sensor processor is provided in each imaging system, including a fast HW 

sensor interface, optimized VLIW and SIMD instructions, and dedicated fixed-function hardware 

blocks to deal with the massively parallel pixel-processing workloads for sensor processing. Usually, 

sensor processing is transparent, automatic, and set up by the manufacturer of the imaging system, and 

all images from the sensor are processed the same way. A bypass may exist to provide the raw data that 

can allow custom sensor processing for applications like digital photography. 

De-mosaicking 

Depending on the sensor cell configuration, as shown in Fig. 1.5, various de-mosaicking algorithms are 

employed to create a final RGB pixel from the raw sensor data. A good survey by Losson et al. [336] 

and another by Xin et al. [337] provide some background on the challenges involved and the various 

methods employed.
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One of the central challenges of de-mosaicking is pixel interpolation to combine the color channels 

from nearby cells into a single pixel. Given the geometry of sensor cell placement and the aspect ratio 

of the cell layout, this is not a trivial problem. A related issue is color cell weighting—for example, 

how much of each color should be integrated into each RGB pixel. Since the spatial cell resolution in a 

mosaicked sensor is greater than the final combined RGB pixel resolution, some applications require 

the raw sensor data to take advantage of all the accuracy and resolution possible, or to perform special 

processing to either increase the effective pixel resolution or do a better job of spatially accurate color 

processing and de-mosaicking. 

Dead Pixel Correction 

A sensor, like an LCD display, may have dead pixels. A vendor may calibrate the sensor at the factory 

and provide a sensor defect map for the known defects, providing coordinates of those dead pixels for 

use in corrections in the camera module or driver software. In some cases, adaptive defect correction 

methods [338] are used on the sensor to monitor the adjacent pixels to actively look for defects and 

then to correct a range of defect types, such as single pixel defects, column or line defects, and defects 

such as 2 × 2  or  3  × 3 clusters. A camera driver can also provide adaptive defect analysis to look for 

flaws in real time and perhaps provide special compensation controls in a camera setup menu.

Color and Lighting Corrections 

Color corrections are required to balance the overall color accuracy as well as the white balance. As 

shown in Fig. 1.2, color sensitivity is usually very good in silicon sensors for red and green, but less 

good for blue, so the opportunity for providing the most accurate color starts with understanding and 

calibrating the sensor. 

Most image sensor processors contain a geometric processor for vignette correction, which 

manifests as darker illumination at the edges of the image, as discussed in Chap. 7 (Table 7.1)  on  

robustness criteria. The corrections are based on a geometric warp function, which is calibrated at the 

factory to match the optics vignette pattern, allowing for a programmable illumination function to 

increase illumination toward the edges. For a discussion of image warping methods applicable to 

vignetting, see Ref. [417].

Geometric Corrections 

A lens may have geometric aberrations or may warp toward the edges, producing images with radial 

distortion, a problem that is related to the vignetting discussed above and shown in Chap. 7 (Fig. 7.6). 

To deal with lens distortion, most imaging systems have a dedicated sensor processor with a hardware-

accelerated digital warp unit similar to the texture sampler in a GPU. The geometric corrections are 

calibrated and programmed in the factory for the optics. See Ref. [417] for a discussion of image 

warping methods. 

Cameras and Computational Imaging 

Many novel camera configurations are making their way into commercial applications using compu-

tational imaging methods to synthesize new images from raw sensor data—for example, depth



cameras and high dynamic range cameras. As shown in Fig. 1.6, a conventional camera system uses a 

single sensor, lens, and illuminator to create 2D images. However, a computational imaging camera 

may provide multiple optics, multiple programmable illumination patterns, and multiple sensors, 

enabling novel applications such as 3D depth sensing and image relighting, taking advantage of the 

depth information, mapping the image as a texture onto the depth map, and introducing new light 

sources and then re-rendering the image in a graphics pipeline. Since computational cameras are 

beginning to emerge in consumer devices and will become the front end of computer vision pipelines, 

we survey some of the methods used. 
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Fig. 1.6 Comparison of computational imaging systems with conventional cameras. (Top) Simple camera model with 

flash, lens, and imaging device followed by image enhancements like sharpening and color corrections. (Bottom) 

Computational imaging using programmable flash, optics arrays, and sensor arrays, followed by computational imaging 

applications. NOT SHOWN: super resolution [811] discussed earlier 

Overview of Computational Imaging 

Computational imaging [344, 347] provides options for synthesizing new images from the raw image 

data. A computational camera may control a programmable flash pattern projector, a lens array, and 

multiple image sensors, as well as synthesize new images from the raw data, as illustrated in Fig. 1.6. 

To dig deeper into computational imaging and explore the current research, see the CAVE Computer 

Vision Laboratory at Columbia University and the Rochester Institute of Technology Imaging 

Research. Here are some of the methods and applications in use. 

Single-Pixel Computational Cameras 

Single-pixel computational cameras can reconstruct images from a sequence of single photo detector 

pixel images of the same scene. The field of single-pixel cameras [77, 78] falls into the domain of 

compressed sensing research, which also has applications outside image processing extending into 

areas such as analog-to-digital conversion. 

As shown in Fig. 1.7,  a  single-pixel camera may use a micro-mirror array or a digital mirror device 

(DMD), similar to a diffraction grating. The gratings are arranged in a rectangular micro-mirror grid 

array, allowing the grid regions to be switched on or off to produce binary grid patterns. The binary 

patterns are designed as a pseudorandom binary basis set. The resolution of the grid patterns is adjusted 

by combining patterns from adjacent regions—for example, a grid of 2 × 2  or  3  × 3 micro-mirror 

regions.
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Fig. 1.7 A single-pixel imaging system where incoming light is reflected through a DMD array of micro-mirrors onto a 

single photodiode. The grid locations within the micro-mirror array can be opened or closed to light, as shown here, to 

create binary patterns, where the white grid squares are reflective and open, and the black grid squares are closed. (Image 

used by permission, # R.G. Baraniuk, Compressive Sensing Lecture Notes) 

A sequence of single-pixel images is taken through a set of pseudorandom micro lens array patterns, 

then an image is reconstructed from the set. In fact, the number of pattern samples required to 

reconstruct the image is lower than the Nyquist frequency, since a sparse random sampling approach 

is used and the random sampling approach has been proven in the research to be mathematically 

sufficient [77, 78]. The grid basis-set sampling method is directly amenable to image compression, 

since only a relatively sparse set of patterns and samples are taken. Since the micro-mirror array uses 

rectangular shapes, the patterns are analogous to a set of HAAR basis functions. (For more informa-

tion, see Figs. 3.21, 6.21, and 6.22.) 

The DMD method is remarkable, in that an image can be reconstructed from a fairly small set of 

images taken from a single photo detector, rather than a 2D array of photo detectors as in a CMOS or 

CCD image sensor. Since only a single sensor is used, the method is promising for applications with 

wavelengths outside the near IR and visible spectrum imaged by CMOS and CCD sensors. The DMD 

method can be used, for example, to detect emissions from concealed weapons or substances at 

invisible wavelengths using non-silicon sensors sensitive to nonvisible wavelengths. 

2D Computational Cameras 

Novel configurations of programmable 2D sensor arrays, lenses, and illuminators are being developed 

into camera systems as computational cameras [354–356], with applications ranging from digital 

photography to military and industrial uses, employing computational imaging methods to enhance the 

images after the fact. Computational cameras borrow many computational imaging methods from 

confocal imaging [349] and confocal microscopy [350, 351]—for example, using multiple illumina-

tion patterns and multiple focal plane images. They also draw on research from synthetic aperture radar 

systems [352] developed after World War II to create high-resolution images and 3D depth maps using 

wide baseline data from a single moving-camera platform. Synthetic apertures using multiple image 

sensors and optics for overlapping fields of view using wafer-scale integration are also topics of 

research [349]. We survey here a few computational 2D sensor methods, including high resolution 

(HR), high dynamic range (HDR), and high frame rate (HF) cameras. 

The current wave of commercial digital megapixel cameras, ranging from around 10 megapixels on 

up, provides resolution matching or exceeding high-end film used in a 35 mm camera [342], so a pixel 

from an image sensor is comparable in size to a grain of silver on the best resolution film. On the



surface, there appears to be little incentive to go for higher resolution for commercial use, since current 

digital methods have replaced most film applications and film printers already exceed the resolution of 

the human eye. 
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However, very high resolution gigapixel imaging devices are being devised and constructed as an 

array of image sensors and lenses, providing advantages for computational imaging after the image is 

taken. One configuration is the 2D array camera, composed of an orthogonal 2D array of image 

sensors and corresponding optics; another configuration is the spherical camera as shown in Fig. 1.8 

[341, 345], developed as a DARPA research project at Columbia University CAVE. 

Fig. 1.8 (Top) Components of a very high resolution gigapixel camera, using a novel spherical lens and sensor 

arrangement. (Bottom) The resulting high-resolution images shown at 82,000 × 22,000 = 1.7 gigapixels. (All figures 

and images used by permission # Shree Nayar Columbia University CAVE research projects)
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High dynamic range (HDR) cameras [346–348] can produce deeper pixels with higher bit resolu-

tion and better color channel resolution by taking multiple images of the scene bracketed with different 

exposure settings and then combining the images. This combination uses a suitable weighting scheme 

to produce a new image with deeper pixels of a higher bit depth, such as 32 pixels per color channel, 

providing images that go beyond the capabilities of common commercial CMOS and CCD sensors. 

HDR methods allow faint light and strong light to be imaged equally well, and can combine faint light 

and bright light using adaptive local methods to eliminate glare and create more uniform and pleasing 

image contrast. 

High frame rate (HF) cameras [355] are capable of capturing a rapid succession of images of the 

scene into a set and combining the set of images using bracketing techniques to change the exposure, 

flash, focus, white balance, and depth of field. 

3D Depth Camera Systems 

Using a 3D depth field for computer vision provides an understated advantage for many applications, 

since computer vision has been concerned in large part with extracting 3D information from 2D 

images, resulting in a wide range of accuracy and invariance problems. Novel 3D descriptors are being 

devised for 3D depth field computer vision and are discussed in Chap. 6. 

With depth maps, the scene can easily be segmented into foreground and background to identify 

and track simple objects. Digital photography applications are incorporating various computer vision 

methods in 3-space and thereby becoming richer. Using selected regions of a 3D depth map as a mask 

enables localized image enhancements such as depth-based contrast, sharpening, or other 

preprocessing methods.
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Table 1.1 Selected methods for capturing depth information 

Depth sensing 

technique of sensor 

Illumination 

method Characteristics 

Parallax and hybrid 

Parallax 

2/1/ 

array 

Passive— 

normal lighting 

Positional shift measurement in FOV between two camera positions, 

such as stereo, mult-view stereo, or array cameras 

Size mapping 1 Passive— 

normal lighting 

Utilizes color tags of specific size to determine range and position 

Depth of focus 1 Passive— 

normal lighting 

Multi-frame with scanned focus 

Differential 

magnification 

1 Passive— 

normal lighting 

Two-frame image capture at different magnifications, creating a 

distance-based offset 

Structured light 1 Active— 

projected 

lighting 

Multi-frame pattern projection 

Time of flight 1 Active—pulsed 

lighting 

High-speed light pulse with special pixels measuring return time of 

reflected light 

Shading shift 1 Active— 

alternating 

lighting 

Two-frame shadow differential measurement between two light 

sources as different positions 

Pattern spreading 1 Active—multi-

beam lighting 

Projected 2D spot pattern expanding at different rate from camera 

lens field spread 

Beam tracking 1 Active— 

lighting on 

object(s) 

Two-point light sources mounted on objects in FOV to be tracked 

Spectral focal 

sweep 

1 Passive— 

normal lighting 

Focal length varies for each color wavelength, with focal sweep to 

focus on each color and compute depth [366] 

Diffraction gratings 1 Passive— 

normal lighting 

Light passing through sets of gratings or light guides provides depth 

information [368] 

Conical radial 

mirror 

1 Passive— 

normal lighting 

Light from a conical mirror is imaged at different depths as a toroid 

shape, depth is extracted from the toroid [361] 

Source: Courtesy of Ken Salsmann Aptina [357], with a few other methods added by the author 

As shown in Table 1.1, there are many ways to extract depth from images. In some cases, only a 

single camera lens and sensor are required, and software does the rest. Note that the illumination 

method is a key component of many depth-sensing methods, such as structured light methods. 

Combinations of sensors, lenses, and illumination are used for depth imaging and computational 

imaging, as shown in Fig. 1.9. We survey a few selected depth-sensing methods in this section. 

RGB TOF 1 2 3 

4 5 6 

7 8 9 

L 
RGB 

R 
RGB 

Ball Lens 

Lens Array 

Sensor Array 

RGB 

a. b. 

c. 

d. 

e. 

f. 

Fig. 1.9 A variety of lens and sensor configurations for common cameras: (a) conventional, (b) time-of-flight, (c) stereo, 

(d) array, (e) plenoptic, (f) spherical with ball lens
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Depth sensing is not a new field and is covered very well in several related disciplines with huge 

industrial applications and financial resources, such as satellite imaging, remote sensing, photogram-

metry, and medical imaging. However, the topics involving depth sensing are of growing interest in 

computer vision with the advent of commercial depth-sensing cameras such as Kinect, enabling 

graduate students on a budget to experiment with 3D depth maps and point clouds using a mobile 

phone or PC. 

Multi-view stereo (MVS) depth sensing has been used for decades to compute digital elevation 

maps or DEMs, and digital terrain maps or DTMs, from satellite images using RADAR and LIDAR 

imaging, and from regional aerial surveys using specially equipped airplanes with high-resolution 

cameras and stable camera platforms, including digital terrain maps overlaid with photos of adjacent 

regions stitched together. Photo mosaicking is a related topic in computer vision that is gaining 

attention. The literature on digital terrain mapping is rich with information on proper geometry models 

and disparity computation methods. In addition, 3D medical imaging via CAT and MRI modalities is 

backed by a rich research community, uses excellent depth-sensing methods, and offers depth-based 

rendering and visualization. However, it is always interesting to observe the “reinvention” in one field, 

such as computer vision, of well-known methods used in other fields. As Solomon said, “There is 

nothing new under the sun.” In this section we approach depth sensing in the context of computer 

vision, citing relevant research, and leave the interesting journey into other related disciplines to the 

interested reader. 

Binocular Stereo 

Stereo [362, 363, 367] may be the most basic and familiar approach for capturing 3D depth maps, as 

many methods and algorithms are in use, so we provide a high-level overview here with selected 

standard references. The first step in stereo algorithms is to parameterize the projective transformation 

from world coordinate points to their corresponding image coordinates by determining the stereo 

calibration parameters of the camera system. Open-source software is available for stereo calibration.2 

Note that the L/R image pair is rectified prior to searching for features for disparity computation. Stereo 

depth r is computed, as shown in Fig. 1.10. 

An excellent survey of stereo algorithms and methods is found in the work of Scharstein and 

Szeliski [370] and also Lazaros [371]. The stereo geometry is a combination of projective and 

Euclidean [367]; we discuss some of the geometric problems affecting their accuracy later in this 

section. The standard online resource for comparing stereo algorithms is provided by Middlebury 

College,3 where many new algorithms are benchmarked and comparative results provided, including 

the extensive ground truth datasets discussed in Appendix B. 

The fundamental geometric calibration information needed for stereo depth includes the following 

basics.

• Camera Calibration Parameters. Camera calibration is outside the scope of this work; however, 

the parameters are defined as 11 free parameters [362, 365]—three for rotation, three for translation, 

and five intrinsic—plus one or more lens distortion parameters to reconstruct 3D points in world 

coordinates from the pixels in 2D camera space. The camera calibration may be performed using 

several methods, including a known calibration image pattern or one of many self-calibration 

methods [366]. Extrinsic parameters define the location of the camera in world coordinates, and 

2 http://opencv.org, Camera Calibration and 3D Reconstruction. 
3 https://vision.middlebury.edu/~schar/stereo/web/results.php.

http://opencv.org
https://vision.middlebury.edu/~schar/stereo/web/results.php
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intrinsic parameters define the relationships between pixel coordinates in camera image 

coordinates. Key variables include the calibrated baseline distance between two cameras at the 

principal point or center point of the image under the optics; the focal length of the optics; their pixel 

size and aspect ratio, which is computed from the sensor size divided by pixel resolution in each 

axis; and the position and orientation of the cameras.

• Fundamental Matrix or Essential Matrix. These two matrices are related, defining the popular 

geometry of the stereo camera system for projective reconstruction [366–368]. Their derivation is 

beyond the scope of this work. Either matrix may be used, depending on the algorithms employed. 

The essential matrix uses only the extrinsic camera parameters and camera coordinates, and the 

fundamental matrix depends on both the extrinsic and intrinsic parameters and reveals pixel 

relationships between the stereo image pairs on epipolar lines. 

In either case, we end up with projective transformations to reconstruct the 3D points from the 2D 

camera points in the stereo image pair. 

Stereo processing steps are typically as follows 

1. Capture: Photograph the left/right image pair simultaneously. 

2. Rectification: Rectify left/right image pair onto the same plane, so that pixel rows x coordinates and 

lines are aligned. Several projective warping methods may be used for rectification [367]. Rectifica-

tion reduces the pattern match problem to a 1D search along the x-axis between images by aligning 

the images along the x-axis. Rectification may also include radial distortion corrections for the 

optics as a separate step; however, many cameras include a built-in factory-calibrated radial 

distortion correction. 

3. Feature Description: For each pixel in the image pairs, isolate a small region surrounding each 

pixel as a target feature descriptor. Various methods are used for stereo feature description 

[94, 180]. 

4. Correspondence: Search for each target feature in the opposite image pair. The search operation is 

typically done twice, first searching for left-pair target features in the right image and then right-pair 

target features in the left image. Subpixel accuracy is required for correspondence to increase depth 

field accuracy. 

5. Triangulation: Compute the disparity or distance between matched points using triangulation 

[369]. Sort all L/R target feature matches to find the best quality matches, using one of many 

methods [370]. 

6. Hole Filling: For pixels and associated target features with no corresponding good match, there is a 

hole in the depth map at that location. Holes may be caused by occlusion of the feature in either of 

the L/R image pairs, or simply by poor features to begin with. Holes are filled using local region 

nearest-neighbor pixel interpolation methods. 

Stereo depth-range resolution is an exponential function of distance from the viewpoint: in general, 

the wider the baseline, the better the long-range depth resolution. A shorter baseline is better for close-

range depth (see Figs. 1.10 and 1.20). Human-eye baseline or interpupillary distance has been 

measured as between 50 and 75 mm, averaging about 70 mm for males and 65 mm for females.
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Fig. 1.10 Simplified schematic of basic binocular stereo principles 

Multi-view stereo (MVS) is a related method to compute depth from several views using different 

baselines of the same subject, such as from a single or monocular camera, or an array of cameras. 

Monocular, MVS, and array camera depth sensing are covered later in this section. 

Structured and Coded Light 

Structured or coded light uses specific patterns projected into the scene and imaged back, then 

measured to determine depth; see Fig. 1.11.  We  define the following approaches for using structured 

light for this discussion [375]:

• Spatial single-pattern methods, requiring only a single illumination pattern in a single image.

• Timed multiplexing multi-pattern methods, requiring a sequence of pattern illuminations and 

images, typically using binary or n-array codes, sometimes involving phase shifting or dithering the 

patterns in subsequent frames to increase resolution. Common pattern sequences include gray 

codes, binary codes, sinusoidal codes, and other unique codes.
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a. 

b. 

c. d. 
e. 

f. 

Fig. 1.11 Selected structured light patterns and methods: (a) gray codes, (b) binary codes, (c) regular spot grid, (d) 

randomized spot grid (as used in original Kinect), (e) sinusoidal phase shift patters, (f) randomized pattern for 

compressive structured light [376] 

For example, in the original Microsoft Kinect 3D depth camera, structured light consisting of 

several slightly different microgrid patterns or pseudorandom points of infrared light are projected into 

the scene, then a single image is taken to capture the spots as they appear in the scene. Based on 

analysis of actual systems and patent applications, the original Kinect computes the depth using several 

methods, including (1) the size of the infrared spot—larger dots and low blurring mean the location is 

nearer, while smaller dots and more blurring mean the location is farther away; (2) the shape of the 

spot—a circle indicates a parallel surface, an ellipse indicates an oblique surface; and (3) by using 

small regions or a micro-pattern of spots together so that the resolution is not very fine—however, 

noise sensitivity is good. Depth is computed from a single image using this method, rather than 

requiring several sequential patterns and images. 

Multi-image methods are used for structured light, including projecting sets of time-sequential 

structured and coded patterns, as shown in Fig. 1.11. In multi-image methods, each pattern is sent 

sequentially into the scene and imaged, then the combination of depth measurements from all the 

patterns is used to create the final depth map. 

Industrial, scientific, and medical applications of depth measurements from structured light can 

reach high accuracy, imaging objects up to a few meters in size with precision that extends to 

micrometer range. Pattern projection methods are used, as well as laser-stripe pattern methods using 

multiple illumination beams to create wavelength interference; the interference is measured to compute 

the distance. For example, common dental equipment uses small, hand-held laser range finders inserted 

into the mouth to create highly accurate depth images of tooth regions with missing pieces, and the 

images are then used to create new, practically perfectly fitting crowns or fillings using CAD/CAM 

micro-milling machines. 

Of course, infrared light patterns do not work well outdoors in daylight; they become washed out by 

natural light. Also, the strength of the infrared emitters that can be used is limited by practicality and 

safety. The distance for effectively using structured light indoors is restricted by the amount of power 

that can be used for the IR emitters; perhaps 5 m is a realistic limit for indoor infrared light. Kinect 

claims a range of about 4 m for the current TOF (time of flight) method using uniform constant infrared 

illumination, while the first-generation Kinect sensor had similar depth range using structured light.
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In addition to creating depth maps, structured or coded light is used for measurements employing 

optical encoders, as in robotics and process control systems. The encoders measure radial or linear 

position. They provide IR illumination patterns and measure the response on a scale or reticle, which is 

useful for single-axis positioning devices like linear motors and rotary lead screws. For example, 

patterns such as the binary position code and the reflected binary gray code [374] can be converted 

easily into binary numbers (see Fig. 1.11). The gray code set elements each have a Hamming distance 

of 1 between successive elements. 

Structured light methods suffer problems when handling high-specular reflections and shadows; 

however, these problems can be mitigated by using an optical diffuser between the pattern projector 

and the scene using the diffuse structured light methods [373] designed to preserve illumination 

coding. In addition, multiple-pattern structured light methods cannot deal with fast-moving scenes; 

however, the single-pattern methods can deal well with frame motion, since only one frame is required. 

Optical Coding: Diffraction Gratings 

Diffraction gratings are one of many methods of optical coding [377] to create a set of patterns for 

depth-field imaging, where a light structuring element, such as a mirror, grating, light guide, or special 

lens, is placed close to the detector or the lens. The original Kinect system is reported to use a 

diffraction grating method to create the randomized infrared spot illumination pattern. Diffraction 

gratings [360, 361] above the sensor, as shown in Fig. 1.12, can provide angle-sensitive pixel sensing. 

In this case, the light is refracted into surrounding cells at various angles, as determined by the 

placement of the diffraction gratings or other beam-forming elements, such as light guides. This 

allows the same sensor data to be processed in different ways with respect to a given angle of view, 

yielding different images. 

Photo-diodes 

Gratings 

Fig. 1.12 Diffraction gratings above silicon used to create the Talbot Effect (first observed around 1836) for depth 

imaging. (For more information, see Ref. [360].) Diffraction gratings are a type of light-structuring element 

This method allows the detector size to be reduced while providing higher resolution images using a 

combined series of low-resolution images captured in parallel from narrow aperture diffraction 

gratings. Diffraction gratings make it possible to produce a wide range of information from the same 

sensor data, including depth information, increased pixel resolution, perspective displacements, and 

focus on multiple focal planes after the image is taken. A diffraction grating is a type of illumination 

coding device. 

As shown in Fig. 1.13, the light-structuring or coding element may be placed in several 

configurations, including (see [377]):
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• Object side coding: close to the subjects

• Pupil plane coding: close to the lens on the object side

• Focal plane coding: close to the detector

• Illumination coding: close to the illuminator 

DetectorDetector DetectorDetector 

Optical 

Encoder + 

Illuminator 

Optical 

Encoder 

Optical 

Encoder 

Optical 

Encoder 

Lens 
LensLensLens 

Fig. 1.13 Various methods for optical structuring and coding of patterns [377]: (Left to right): Object side coding, pupil 

plane coding, focal plane coding, illumination coding, or structured light. The illumination patterns are determined in the 

optical encoder 

Note that illumination coding is shown as structured light patterns in Fig. 1.11, while a variant of 

illumination coding is shown in Fig. 1.7, using a set of mirrors that are opened or closed to create 

patterns. 

Time-of-Flight Sensors 

By measuring the amount of time taken for infrared light to travel and reflect, a time-of-flight (TOF) 

sensor is created [380]. A TOF sensor is a type of range finder or laser radar [379]. Several single-chip 

TOF sensor arrays and depth camera solutions are available, such as the second version of the Kinect 

depth camera. The basic concept involves broadcasting infrared light at a known time into the scene, 

such as by a pulsed IR laser, and then measuring the time taken for the light to return at each pixel. 

Submillimeter accuracy at ranges up to several hundred meters is reported for high-end systems [379], 

depending on the conditions under which the TOF sensor is used, the particular methods employed in 

the design, and the amount of power given to the IR laser. 

Each pixel in the TOF sensor has several active components, as shown in Fig. 1.14, including the IR 

sensor well, timing logic to measure the round-trip time from illumination to detection of IR light, and 

optical gates for synchronization of the electronic shutter and the pulsed IR laser. TOF sensors provide 

laser range-finding capabilities. For example, by gating the electronic shutter to eliminate short round-

trip responses, environmental conditions such as fog or smoke reflections can be reduced. In addition, 

specific depth ranges, such as long ranges, can be measured by opening and closing the shutter at 

desired time intervals.
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Fig. 1.14 A hypothetical TOF sensor configuration. Note that the light pulse length and sensor can be gated together to 
target specific distance ranges 

Illumination methods for TOF sensors may use very short IR laser pulses for a first image, acquire a 

second image with no laser pulse, and then take the difference between the images to eliminate ambient 

IR light contributions. By modulating the IR beam with an RF carrier signal using a photonic mixer 

device (PMD), the phase shift of the returning IR signal can be measured to increase accuracy—which 

is common among many laser range-finding methods [380]. Rapid optical gating combined with 

intensified CCD sensors can be used to increase accuracy to the submillimeter range in limited 

conditions, even at ranges above 100 m. However, multiple IR reflections can contribute errors to 

the range image, since a single IR pulse is sent out over the entire scene and may reflect off several 

surfaces before being imaged. 

Since the depth-sensing method of a TOF sensor is integrated with the sensor electronics, there is 

very low processing overhead required compared to stereo and other methods. However, the 

limitations of IR light for outdoor situations still remain [378], which can affect the depth accuracy. 

LIDAR (Light Detection and Ranging) is a MONOCHROME method of illuminating a scene with 

pulsed laser, and measuring the reflections from the scene and composing a 3D distance map. NOTE: 

for this discussion, a 3D range map is loosely considered a spectrum. LIDAR is method of TOF (Time 

of Flight) depth imaging. LIDAR systems are used in high-end depth-sensing applications in satellite 

imaging, high-end industrial applications (including autonomous vehicles), and military applications. 

LIDAR has been used in Autonomous Vehicle Systems and is capable of depth imaging at better 

resolution and distance than RGB camera imaging. LIDAR lasers and detectors in a given system may 

use IR, visible light, UV, or other spectrum. Commercial LIDAR systems using pulsed light lasers 

have a depth range up to 300 m while maintaining high x, y, z spatial resolution and accuracy,



compared to human visual system with a depth resolution of perhaps only 20 yards of stereo range due 

to the left-right eye baseline distance, and as discussed in this chapter, the human visual system 

interpolates distances beyond the 20-yard stereo range using other visual cues, but with relative, 

learned accuracy. LIDAR systems are much more expensive than RGB depth cameras, due to the 

LIDAR system synchronization and control system driving the LIDAR illumination lasers, and the 

critical timing and synchronization logic required to measure reflected light deltas at the sensors and 

synthesize the 3D image and depth field. 
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Array Cameras 

As shown earlier in Fig. 1.9,  an  array camera contains several cameras, typically arranged in a 2D 

array, such as a 3 × 3 array, providing several key options for computational imaging. Commercial 

array cameras for portable devices are beginning to appear. They may use the multi-view stereo 

method to compute disparity, utilizing a combination of sensors in the array, as discussed earlier. Some 

of the key advantages of an array camera include a wide baseline image set to compute a 3D depth map 

that can see through and around occlusions, higher-resolution images interpolated from the lower-

resolution images of each sensor, all-in-focus images, and specific image refocusing at one or more 

locations. The maximum aperture of an array camera is equal to the widest baseline between the 

sensor s.

Radial Cameras 

A conical, or radial, mirror surrounding the lens and a 2D image sensor create a radial camera [343], 

which combines both 2D and 3D imaging. As shown in Fig. 1.15, the radial mirror allows a 2D image 

to form in the center of the sensor and a radial toroidal image containing reflected 3D information 

forms around the sensor perimeter. By processing the toroidal information into a point cloud based on 

the geometry of the conical mirror, the depth is extracted and the 2D information in the center of the 

image can be overlaid as a texture map for full 3D reconstruction. 

Fig. 1.15 (Left) Radial camera system with conical mirror to capture 3D reflections. (Center) Captured 3D reflections 

around the edges and 2D information of the face in the center. (Right) 3D image reconstructed from the radial image 3D 

information and the 2D face as a texture map. (Images used by permission # Shree Nayar Columbia University CAVE)



20 1 2D/3D Image Capture and Representation

Plenoptics: Light Field Cameras 

Plenoptic methods create a 3D space defined as a light field, created by multiple optics. Plenoptic 

systems use a set of micro-optics and main optics to image a 4D light field and extract images from the 

light field during postprocessing [353, 381, 382]. Plenoptic cameras require only a single image sensor, 

as shown in Fig. 1.16. The 4D light field contains information on each point in the space and can be 

represented as a volume dataset, treating each point as a voxel, or 3D pixel with a 3D oriented surface, 

with color and opacity. Volume data can be processed to yield different views and perspective 

displacements, allowing focus at multiple focal planes after the image is taken. Slices of the volume 

can be taken to isolate perspectives and render 2D images. Rendering a light field can be done by using 

ray tracing and volume rendering methods [383, 384]. 

Subjects Main Lens SensorMicro-Lens Array 

Fig. 1.16 A plenoptic camera illustration. Multiple independent subjects in the scene can be processed from the same 

sensor image. Depth of field and focus can be computed for each subject independently after the image is taken, yielding 

perspective and focal plane adjustments within the 3D light field 

In addition to volume and surface renderings of the light field, a 2D slice from the 3D field or 

volume can be processed in the frequency domain by way of the Fourier Projection Slice Theorem 

[385], as illustrated in Fig. 1.17. This is the basis for medical imaging methods in processing 3D MRI 

and CAT scan data. Applications of the Fourier Projection Slice method to volumetric and 3D range 

data are described by Levoy [382, 385] and Krig [108]. The basic algorithm is described as follows: 

1. The volume data are forward transformed, using a 3D FFT into magnitude and phase data. 

2. To visualize, the resulting 3D FFT results in the frequency volume and is rearranged by octant 

shifting each cube to align the frequency 0 data around the center of a 3D Cartesian coordinate 

system in the center of the volume, similar to the way 2D frequency spectrums are quadrant shifted 

for frequency spectrum display around the center of a 2D Cartesian coordinate system. 

3. A planar 2D slice is extracted from the volume parallel to the FOV plane where the slice passes 

through the origin (center) of the volume. The angle of the slice taken from the frequency domain 

volume data determines the angle of the desired 2D view and the depth of field. 

4. The 2D slice from the frequency domain is run through an inverse 2D FFT to yield a 2D spatial 

image corresponding to the chosen angle and depth of field.
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Fig. 1.17 Graphic representation of the algorithm for the Fourier Projection Slice Theorem, which is one method of 

light field processing. The 3D Fourier space is used to filter the data to create 2D views and renderings [108, 382, 

385]. (Image used by permission, # Intel Press, from Building Intelligent Systems) 

3D Depth Processing Method 

For historical reasons, several terms with their acronyms are used in discussions of depth-sensing and 

related methods, so we cover some overlapping topics in this section. Table 1.1 earlier provided a 

summary at a high level of the underlying physical means for depth sensing. Regardless of the depth-

sensing method, there are many similarities and common problems. Postprocessing, the depth infor-

mation is critical, considering the calibration accuracy of the camera system, the geometric model of 

the depth field, the measured accuracy of the depth data, any noise present in the depth data, and the 

intended application. 

We survey several interrelated depth-sensing topics here, including

• Sparse depth-sensing methods

• Dense depth-sensing methods

• Optical flow

• Simultaneous localization and mapping (SLAM)

• Structure from motion (SFM)

• 3D surface reconstruction, 3D surface fusion

• Monocular depth sensing

• Stereo and multi-view stereo (MVS)

• Common problems in depth sensing 

Human depth perception relies on a set of innate and learned visual cues, which are outside the 

scope of this work and overlap into several fields, including optics, ophthalmology, and psychology



[394]; however, we provide an overview of the above selected topics in the context of depth 

processing. 
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Overview of Methods 

For this discussion of depth-processing methods, depth sensing falls into two major categories based 

on the methods shown in Table 1.1:

• Sparse depth methods, using computer vision methods to extract local interest points and features. 

Only selected points are assembled into a sparse depth map or point cloud. The features are tracked 

from frame to frame as the camera or scene moves, and the sparse point cloud is updated. Usually 

only a single camera is needed.

• Dense depth methods, computing depth at every pixel. This creates a dense depth map, using 

methods such as stereo, TOF, or MVS. It may involve one or more cameras. 

Many sparse depth methods use standard monocular cameras and computer vision feature tracking, 

such as optical flow and SLAM (which are covered later in this section), and the feature descriptors are 

tracked from frame to frame to compute disparity and sparse depth. Dense depth methods are usually 

based more on a specific depth camera technology, such as stereo or structured light. There are 

exceptions, as covered next. 

Problems in Depth Sensing and Processing 

The depth-sensing methods each has specific problems; however, there are some common problems 

we can address here. To begin, one common problem is geometric modeling of the depth field, which is 

complex, including perspective and projections. Most depth-sensing methods treat the entire field as a 

Cartesian coordinate system, and this introduces slight problems into the depth solutions. A camera 

sensor is a 2D Euclidean model, and discrete voxels are imaged in 3D Euclidean space; however, 

mapping between the camera and the real world using simple Cartesian models introduces geometric 

distortion. Other problems include those of correspondence, or failure to match features in separate 

frames, and noise and occlusion. We look at such problems in this next section. 

The Geometric Field and Distortions 

Field geometry is a complex area affecting both depth sensing and 2D imaging. For commercial 

applications, geometric field problems may not be significant, since locating faces, tracking simple 

objects, and augmenting reality are not demanding in terms of 3D accuracy. However, military and 

industrial applications often require high precision and accuracy, so careful geometry treatment is in 

order. To understand the geometric field problems common to depth-sensing methods, let us break 

down the major areas:

• Projective geometry problems, dealing with perspective.

• Polar and spherical geometry problems, dealing with perspective as the viewing frustum spreads 

with distance from the viewer.

• Radial distortion, due to lens aberrations.
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• Coordinate space problems, due to the Cartesian coordinates of the sensor and the voxels, and the 

polar coordinate nature of casting rays from the scene into the sensor. 

The goal of this discussion is to enumerate the problems in depth sensing, not to solve them, and to 

provide references where applicable. Since the topic of geometry is vast, we can only provide a few 

examples here of better methods for modeling the depth field. It is hoped that, by identifying the 

geometric problems involved in depth sensing, additional attention will be given to this important 

topic. The complete geometric model, including corrections, for any depth system is very complex. 

Usually, the topic of advanced geometry is ignored in popular commercial applications; however, we 

can be sure that advanced military applications such as particle beam weapons and missile systems do 

not ignore those complexities, given the precision required. 

Several researchers have investigated more robust nonlinear methods of dealing with projective 

geometry problems [395, 396] specifically by modeling epipolar geometry-related distortion as 3D 

cylindrical distortion, rather than as planar distortion, and by providing reasonable compute methods 

for correction. In addition, the work of Lovegrove and Davison [411] deals with the geometric field 

using a spherical mosaicking method to align whole images for depth fusion, increasing the accuracy 

due to the spherical modeling. 

The Horopter Region, Panum’s Area, and Depth Fusion 

As shown in Fig. 1.18, the Horopter region, first investigated by Ptolemy and others in the context of 

astronomy, is a curved surface containing 3D points that are the same distance from the observer and at 

the same focal plane. Panum’s area is the region surrounding the Horopter where the human visual 

system fuses points in the retina into a single object at the same distance and focal plane. It is a small 

miracle that the human vision system can reconcile the distances between 3D points and synthesize a 

common depth field! The challenge with the Horopter region and Panum’s area lies in the fact that a 

postprocessing step to any depth algorithm must be in place to correctly fuse the points the way the 

human visual system does. The margin of error depends on the usual variables, including baseline and 

pixel resolution, and the error is most pronounced toward the boundaries of the depth field and less 

pronounced in the center. Some of the spherical distortion is due to lens aberrations toward the edges 

and can be partially corrected as discussed earlier in this chapter regarding geometric corrections 

during early sensor processing.
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Panum’s Area 

Horopter 

Fused Depth Points 

Fig. 1.18 Problems with stereo and multi-view stereo methods, showing the Horopter region and Panum’s area, and 

three points in space that appear to be the same point from the left eye’s perspective but different from the right eye’s 

perspective. The three points surround the Horopter in Panum’s area and are fused by humans to synthesize apparent 

depth 

Cartesian vs. Polar Coordinates: Spherical Projective Geometry 

As illustrated in Fig. 1.19, a 2D sensor as used in a TOF or monocular depth-sensing method has 

specific geometric problems as well; the problems increase toward the edges of the field of view. Note 

that the depth from a point in space to a pixel in the sensor is actually measured in a spherical 

coordinate system using polar coordinates, but the geometry of the sensor is purely Cartesian, so that 

geometry errors are baked into the cake. 

Because stereo and MVS methods also use single 2D sensors, the same problems that affect single 

sensor depth-sensing methods also affect multi-camera methods, compounding the difficulties in 

developing a geometry model that is accurate and computationally reasonable.
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Fig. 1.19 A 2D depth sensor and lens with exaggerated imaging geometry problems dealing with distance, where depth 

is different depending on the angle of incidence on the lens and sensor. Note that P1 and P2 are equidistant from the focal 

plane; however, the distance of each point to the sensor via the optics is not equal, so computed depth will not be accurate 

depending on the geometric model used 

Depth Granularity 

As shown in Fig. 1.20, simple Cartesian depth computations cannot resolve the depth field into a linear 

uniform grain size; in fact, the depth field granularity increases exponentially with the distance from 

the sensor, while the ability to resolve depth at long ranges is much less accurate. 

For example, in a hypothetical stereo vision system with a baseline of 70 mm using 480 p video 

resolution, as shown in Fig. 1.20, depth resolution at 10 m drops off to about 1/2 m; in other words, at 

10 m away, objects may not appear to move in Z unless they move at least plus or minus 1/2 m in Z. 

The depth resolution can be doubled simply by doubling the sensor resolution. As distance increases, 

humans increasingly use monocular depth cues to determine depth, such as for size of objects, rate of 

an object’s motion, color intensity, and surface texture details.
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Y Pixel size: 480 / 2 meter = 2.4 mm 

Zy granularity = 19 mm 

Y Pixel size: 480 / 3 meter = 6.25 mm 

Zy granularity = 41 mm 

Y Pixel size: 480 / 1 meter = 2 mm 

Zy granularity = 4 mm 

Y Pixel size: 480 / 5 meter = 10.4 mm 

Zy granularity= 116 mm 

Y Pixel size: 480 / 10 meter = 20.8 mm 

Zy granularity = 465 mm 

Stereo system, 480p sensors, 70mm baseline, 4.3mm focal length 

Sensor Y die size = .672mm 

Sensor Y Pixel size: .0014mm 

Zy Granularity = ( .0014mm * Z2 mm) / ( 4.3 mm * 70 mm) 
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Fig. 1.20 Z depth granularity nonlinearity problems for a typical stereo camera system. Note that practical depth sensing 

using stereo and MVS methods has limitations in the depth field, mainly affected by pixel resolution, baseline, and focal 

length. At 10 m, depth granularity is almost ½ m, so an object must move at least + or - ½ m in order for a change in 

measured stereo depth to be computed 

Correspondence 

Correspondence, or feature matching, is common to most depth-sensing methods, see Nikolaus et al. 

[802] for novel deep learning approaches. For a taxonomy of stereo feature matching algorithms, see 

Scharstein and Szeliski [370]. Here, we discuss correspondence along the lines of feature descriptor 

methods and triangulation as applied to stereo, multi-view stereo, and structured light. 

Subpixel accuracy is a goal in most depth-sensing methods, so several algorithms exist [398]. It is 

popular to correlate two patches or intensity templates by fitting the surfaces to find the highest match; 

however, Fourier methods are also used to correlate phase [397, 399], similar to the intensity 

correlation methods. 

For stereo systems, the image pairs are rectified prior to feature matching so that the features are 

expected to be found along the same line at about the same scale, as shown in Fig. 1.10; descriptors 

with little or no rotational invariance are suitable [94, 181]. A feature descriptor such as a correlation 

template is fine, while a powerful method such as the SIFT feature description method [132] is overkill. 

The feature descriptor region may be a rectangle favoring disparity in the x-axis and expecting little 

variance in the y-axis, such as a rectangular 3 × 9 descriptor shape. The disparity is expected in the x-

axis, not the y-axis. Several window sizing methods for the descriptor shape are used, including fixed 

size and adaptive size [370]. 

Multi-view stereo systems are similar to stereo; however, the rectification stage may not be as 

accurate, since motion between frames can include scaling, translation, and rotation. Since scale and



rotation may have significant correspondence problems between frames, other approaches to feature 

description have been applied to MVS, with better results. A few notable feature descriptor methods 

applied to multi-view and wide baseline stereo include the MSER [160] method (also discussed in 

Chap. 6), which uses a blob-like patch, and the SUSAN [135, 136] method (also discussed in Chap. 6), 

which defines the feature based on an object region or segmentation with a known centroid or nucleus 

around which the feature exists. 
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For structured light systems, the type of light pattern will determine the feature, and correlation of 

the phase is a popular method [399]. For example, structured light methods that rely on phase-shift 

patterns using phase correlation [397] template matching claim to be accurate to 1/100th of a pixel. 

Other methods are also used for structured light correspondence to achieve subpixel accuracy [397]. 

Holes and Occlusion 

When a pattern cannot be matched between frames, a hole exists in the depth map. Holes can also be 

caused by occlusion. In either case, the depth map must be repaired, and several methods exist for 

doing that. A hole map should be provided, showing where the problems are. A simple approach, then, 

is to fill the hole and use bilinear interpolation within local depth map patches. Another simple 

approach is to use the last known-good depth value in the depth map from the current scan line. 

More robust methods for handling occlusion exist [401, 402] using more computationally expen-

sive but slightly more accurate methods, such as adaptive local windows to optimize the interpolation 

region. Yet another method of dealing with holes is surface fusion into a depth volume [382] (covered 

next), whereby multiple sequential depth maps are integrated into a depth volume as a cumulative 

surface, and then a depth map can be extracted from the depth volume. 

Surface Reconstruction and Fusion 

A general method of creating surfaces from depth map information is surface reconstruction. Com-

puter graphics methods can be used for rendering and displaying the surfaces. The basic idea is to 

combine several depth maps to construct a better surface model, including the RGB 2D image of the 

surface rendered as a texture map. By creating an iterative model of the 3D surface that integrates 

several depth maps from different viewpoints, the depth accuracy can be increased, occlusion can be 

reduced or eliminated, and a wider 3D scene viewpoint is created. 

The work of Curless and Levoy [382] presents a method of fusing multiple range images or depth 

maps into a 3D volume structure. The algorithm renders all range images as iso-surfaces into the 

volume by integrating several range images. Using a signed distance function and weighting factors 

stored in the volume data structure for the existing surfaces, the new surfaces are integrated into the 

volume for a cumulative best-guess at where the actual surfaces exist. Of course, the resulting surface 

has several desirable properties, including reduced noise, reduced holes, reduced occlusion, multiple 

viewpoints, and better accuracy (see Fig. 1.21).
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b. TSDF or truncated signed 

distance function used to 

compute the zero-crossing at the 

estimated surface [382]. 

Raw Z depth map 

Raw 
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a. Method of volume integration, 

6DOF camera pose, and surface 

rendering used in Kinect Fusion 

[279, 403]. 

Fig. 1.21 (Right) The Curless and Levoy [382] method for surface construction from range images, or depth maps. 

Shown here are three different weighted surface measurements projected into the volume using ray casting. (Left) 

Processing flow of Kinect Fusion method 

A derivative of the Curless and Levoy method applied to SLAM is the Kinect Fusion approach 

[403], as shown in Fig. 1.22, using compute-intensive SIMD parallel real-time methods to provide not 

only surface reconstruction, but also camera tracking and the 6DOF or 6-degrees-of-freedom camera 

pose via surface alignment from frame to frame. Raytracing and texture mapping are used for surface 

renderings. There are yet other methods for surface reconstruction from multiple images [407, 475]. 

Noise 

Noise is another problem with depth sensors [339], and various causes include low illumination and, in 

some cases, motion noise, as well as inferior depth-sensing algorithms or systems. Also, the depth 

maps are often very fuzzy, so image preprocessing may be required, as discussed in Chap. 2, to reduce 

apparent noise. Many prefer the bilateral filter for depth map processing [258], since it respects local 

structure and preserves the edge transitions. In addition, other noise filters have been developed to 

remedy the weaknesses of the bilateral filter, which are well suited to remove depth noise, including the 

Guided Filter [413], which can perform edge-preserving noise filtering like the bilateral filter, the 

Edge-Avoiding Wavelet method [415], and the Domain Transform filter [416]. 

Monocular Depth Processing 

Monocular, or single sensor depth sensing, creates a depth map from pairs of image frames using the 

motion from frame to frame to create the stereo disparity. The assumptions for stereo processing with a 

calibrated fixed geometry between stereo pairs do not hold for monocular methods, since each time the 

camera moves, the camera pose must be recomputed. Camera pose is a 6 degrees-of-freedom (6DOF) 

equation, including x, y, and z linear motion along each axis and roll, pitch, and yaw rotational motion 

about each axis. In monocular depth-sensing methods, the camera pose must be computed for each 

frame as the basis for comparing two frames and computing disparity.
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Note that computation of the 6DOF matrix can be enhanced using inertial sensors, such as the 

accelerometer and MEMS gyroscope [410], as the coarse alignment step, followed by visual feature-

based surface alignment methods discussed later in regard to optical flow. Since commodity inertial 

sensors are standard with mobile phones and tablets, inertial pose estimation will become more 

effective and commonplace as the sensors mature. While the accuracy of commodity accelerometers 

is not very good, monocular depth-sensing systems can save compute time by taking advantage of the 

inertial sensors for pose estimation. Monocular depth estimation using Vision Transformers has been 

shown to improve the state of the art in voxel modeling, see Vision Transformers for Dense Prediction 

René Ranftl Alexey Bochkovskiy Intel Labs rene.ranftl@intel.com Vladlen Koltun, 2021. See 

Chap. 12 for details on View Synthesis for related depth estimation methods, including full 3D avatar 

generation from monocular images and image sequences. 

Multi-view Stereo 

The geometry model for most monocular multi-view stereo (MVS) depth algorithms is based on 

projective geometry and epipolar geometry; a good overview of both is found in the classic text by 

Hartley and Zisserman [367]. A taxonomy and accuracy comparison of six MVS algorithms is 

provided by Seitz et al. [406]. We look at a few representative approaches in this section. 

Sparse Methods: PTAM 

Sparse MVS methods create a sparse 3D point cloud, not a complete depth map. The basic goals for 

sparse depth are simple: track the features from frame to frame, compute feature disparity to create 

depth, and perform 6DOF alignment to localize the new frames and get the camera pose. Depending on 

the application, sparse depth may be ideal to use as part of a feature descriptor to add invariance to 

perspective viewpoint or to provide sufficient information for navigating that is based on a few key 

landmarks in the scene. Several sparse depth-sensing methods have been developed in the robotics 

community under the terms SLAM, SFM, and optical flow (discussed below). 

However, we first illustrate sparse depth sensing in more detail by discussing a specific approach: 

Parallel Tracking and Mapping (PTAM) [386, 387], which can both track the 6DOF camera pose and 

generate a sparse depth map suitable for light-duty augmented reality applications, allowing avatars to 

be placed at known locations and orientations in the scene from frame to frame. The basic algorithm 

consists of two parts, which run in parallel threads: a tracking thread for updating the pose, and a 

mapping thread for updating the sparse 3D point cloud. We provide a quick overview of each next. 

The mapping thread deals with a history buffer of the last N keyframes and an N-level image 

pyramid for each frame in a history buffer, from which the sparse 3D point cloud is continually refined 

using the latest incoming depth features via a bundle adjustment process (which simply means fitting 

new 3D coordinates against existing 3D coordinates by a chosen minimization method, such as the 

Levenberg–Marquardt [332]). The bundle adjustment process can perform either a local adjustment 

over a limited set of recent frames or global adjustment over all the frames during times of low scene 

motion when time permits. 

The tracking thread scans the incoming image frames for expected features, based on projecting 

where known-good features last appeared, to guide the feature search, using the 6DOF camera pose as 

a basis for the projection. A FAST9 [109] corner detector is used to locate the corners, followed by a 

Shi–Tomasi [128] non-maximal suppression step to remove weak corner candidates (discussed in



Chap. 6 in more detail). The feature matching stage follows a coarse-to-fine progression over the image 

pyramid to compute the 6DOF pose. 
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Target features are computed in new frames using an 8 × 8 patch surrounding each selected corner. 

Reference features are computed also as 8 × 8 patches from the original patch taken from the first-

known image where they were found. To align the reference and target patches prior to feature 

matching, the surface normal of each reference patch is used for pre-warping the patch against the 

last-known 6DOF camera pose, and the aligned feature matching is performed using zero-mean SSD 

distance. 

One weakness of monocular depth sensing shows up when there is a failure to localize; that is, if 

there is too much motion, or illumination changes too much, the system may fail to localize and the 

tracking stops. Another weakness is that the algorithm must be initialized entirely for a specific 

localized scene or workspace, such as a desktop. For initialization, PTAM follows a five-point stereo 

calibration method that takes a few seconds to perform with user cooperation. Yet another weakness is 

that the size of the 3D volume containing the point cloud is intended for a small, localized scene or 

workspace. However, on the positive side, the accuracy of the 3D point cloud is very good, close to the 

pixel size; the pose is accurate enough for AR or gaming applications; and it is possible to create a 360° 

perspective point cloud by walking around the scene. PTAM has been implemented on a mobile phone 

[386] using modest compute and memory resources, with trade-offs for accuracy and frame rate. 

Iterative surface alignment 

solution over Image Pyramid 

Fig. 1.22 Graphic representaion of the dense whole-image alignment solution of adjacent frames to obtain the 6DOF 

camera pose using ESM [412] 

Dense Methods: DTAM 

Dense monocular depth sensing is quite compute-intensive compared to sparse methods, so the 

research and development are much more limited. The goals are about the same as for sparse 

monocular depth—namely, compute the 6DOF camera pose for image alignment, but create a dense 

every-pixel depth map instead of a sparse point cloud. For illustration, we highlight key concepts from 

a method for Dense Tracking and Mapping (DTAM), developed by Newcombe et al. [409]. 

While the DTAM goal is to compute dense depth at each pixel rather than sparse depth, DTAM 

shares some of the same requirements with PTAM [387], since both are monocular methods. Both 

DTAM and PTAM are required to compute the 6DOF pose for each new frame in order to align the 

new frames to compute disparity. DTAM also requires a user-assisted monocular calibration method 

for the scene, and it uses the PTAM calibration method. And DTAM is also intended for small, 

localized scenes or workspaces. DTAM shares several background concepts taken from the Spherical 

Mosaicking method of Lovegrove and Davison [411], including the concept of whole image align-

ment, based on the Efficient Second Order Minimization (ESM) method [412], which is reported to 

find a stable surface alignment using fewer iterations than LK methods [388] as part of the process to 

generate the 6DOF pose.
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Apparently, both DTAM and spherical Mosaicking use a spherical coordinate geometry model to 

mosaic the new frames into the dense 3D surface proceeding from coarse to fine alignment over the 

image pyramid to iterate toward the solution of the 6DOF camera pose change from frame to frame. 

The idea of whole-image surface alignment is shown in Fig. 1.22. The new and existing depth surfaces 

are integrated using a localized guided-filter method [413] into the cost volume. That is, the guided 

filter uses a guidance image to merge the incoming depth information into the cost volume. 

DTAM also takes great advantage of SIMD instructions and highly thread-parallel SIMT GPGPU 

programming to gain the required performance necessary for real-time operation on commodity GPU 

hardware. 

Optical Flow, SLAM, and SFM 

Optical flow measures the motion of features and patterns from frame to frame in the form of a 

displacement vector. Optical flow is similar to sparse monocular depth-sensing methods, and it can be 

applied to wide baseline stereo matching problems [393]. Since the field of optical flow research and its 

applications is vast [389–391], we provide only an introduction here with an eye toward describing the 

methods used and features obtained. 

Optical flow can be considered a sparse feature-tracking problem, where a feature can be considered 

a particle [392], so optical flow and particle flow analysis are similar. Particle flow analysis is applied 

to diverse particle field flow-analysis problems, including weather prediction, simulating combustion 

and explosives, hydro-flow dynamics, and robot navigation. Methods exist for both 2D and 3D optical 

flow. The various optical flow algorithms are concerned with tracking-feature descriptors or matrices, 

rather than with individual scalars or pixels, within consecutive fields of discrete scalar values. For 

computer vision, the input to the optical flow algorithms is a set of sequential 2D images and pixels, or 

3D volumes and voxels, and the output is a set of vectors showing direction of movement of the 

tracked features. 

Many derivations and alternatives to the early Lucas Kanade (LK) method [388–391] are used for 

optical flow (see [135] for example); however, this remains the most popular reference point, as it uses 

local features in the form of correlation templates (as discussed in Chap. 6). Good coverage of the state-

of-the-art methods based on LK is found in Lucas Kanade 20 years on, by Baker and Matthews 

[407]. The Efficient Second Order Minimization (ESM) method [412] is related to the LK method. 

ESM is reported to be a stable solution using fewer iterations than LK. LK does not track individual 

pixels; rather, it relies on the pixel neighborhood, such as a 3 × 3 matrix or template region, and tries to 

guess which direction the features have moved, iteratively searching the local region and averaging the 

search results using a least-squares solution to find the best guess. 

While there are many variations on the LK method [389–391], key assumptions of most LK-derived 

optical flow methods include small displacements of features from frame to frame, rigid features, and 

sufficient texture information in the form of localized gradients in order to identify features. Various 

methods are used to find the local gradients, such as Sobel and Laplacian (discussed in Chap. 2). Fields 

with large feature displacements from frame to frame and little texture information are not well suited 

to the LK method. That is because the LK algorithm ignores regions with little gradient information by 

examining the eigenvalues of each local matrix to optimize the iterative solution. However, more 

recent and robust research methods are moving beyond the limitations of LK [389, 390] and include 

Deepflow [292], which is designed for deformable features and large displacement optical flow [321], 

using multilayer feature scale hierarchies [295] similar to convolutional networks [288]. 

Applications of surface reconstruction to localization and mapping are used in simultaneous 

localization and mapping (SLAM) and in structure from motion (SFM) methods—for example, in



robotics navigation. One goal of SLAM is to localize, or find the current position and the 6DOF camera 

pose. Another goal is to create a local region map, which includes depth. To dig deeper into SLAM and 

SFM methods, see the historical survey by Bailey and Durrant-Whyte [404, 405]. 
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3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds 

Depth information is represented and stored in a variety of convertible formats, depending on the 

intended use. We summarize here some common formats; see also Fig. 1.23. 

Fig. 1.23 Various 3D depth formats. Renderings of a Zernike polynomial. (Left to right): A depth map, a polygon mesh 

rendering using 3D quads, a point cloud rendering equivalent of voxels 

The ability to convert between depth formats is desirable for different algorithms and easy to 

do. Common 3D depth formats include:

• 2D Pixel Array, 3D Depth Map: A 2D pixel array is the default format for 2D images in memory, 

and it is the natural storage format for many processing operations, such as convolution and 

neighborhood filtering. For depth map images, the pixel value is the Z, or depth value. Each 

point in the array may contain {color, depth}.

• 3D Voxel Volume: A 3D volumetric data structure composed of a 3D array of voxels is ideal for 

several algorithms, including depth map integration for 3D surface reconstruction and raytracing of 

surfaces for graphical renderings. A voxel is a volume element, like a pixel is a picture element. Each 

voxel may contain {color, normal}; the depth coordinates are implicit from the volume structure.

• 3D Polygon Mesh: Storing 3D points in a standard 3D polygon mesh provides a set of connected 

points or vertices, each having a surface normal, 3D coordinates, color, and texture. Mesh formats 

are ideal for rendering surfaces in a GPU pipeline, such as OpenGL or DirectX. Each point in the 

mesh may contain {x, y, z, color, normal} and is associated with neighboring points in a standard 

pattern such as a quad or triangle describing the surface.

• 3D Point Cloud: This is a sparse structure that is directly convertible to a standard 3D polygon 

mesh. The point cloud format is ideal for sparse monocular depth-sensing methods. Each point in 

the cloud may contain {x, y, z, color, normal}. 

The Sapiens family of 3D human models by Khirodkar et. al [1027] as the authors state: 

“Sapiens… supports four fundamental human-centric vision tasks: 2D pose estimation, body-part 

segmentation, depth estimation, and surface normal prediction.” These models train on 2D images, can 

be fine-tuned for specific images, and are available on Hugging Face, as provided by Meta Labs. Also, 

Apple provides the Depth Pro Monocular Depth Mapping model [1028] from Bockkovshi et. al, which 

is accelerated to real time using the Mx family of Neural Processors in the SOC.
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Summary 

In this chapter, we survey image sensing methods and sensor image processing methods as the first step 

in the vision pipeline. We cover the image sensor technologies available, with an eye toward image 

preprocessing that may be useful for getting the most from the image data, since image sensoring 

methods often dictate the image preprocessing required. (More discussion on image preprocessing is 

provided in Chap. 2.) Sensor configurations used for both 2D and 3D imaging were discussed, as well 

as a wide range of camera configurations used for computational imaging to create new images after 

the data are captured, such as HDR images and image refocusing. Depth imaging approaches are 

covered here as well, and include stereo and time of flight, since mobile devices are increasingly 

offering 3D depth camera technology for consumer applications. Depth maps can be used in computer 

vision to solve many problems, such as 3D feature description and 3D image segmentation of 

foreground and background objects. The topic of 3D depth processing and 3D features is followed 

throughout this book; Chap. 6 covers 3D feature descriptors, and Chap. 7 and Appendix B cover 3D 

ground truth data. 

Learning Assignments 

1. Name at least two types of semiconductor materials used to create imaging sensors and discuss the 

trade-offs between each sensor material from a manufacturing perspective, and from an end user 

perspective. 

2. Discuss the visible RGB, IR, and UV wavelength response curve of silicon imaging sensors and 

optionally draw a diagram showing the spectral responses. 

3. Name at least one material that can be used as a near-IR filter for a silicon image sensor. 

4. Discuss dynamic range in camera systems, bits per pixel, and when dynamic range becomes 

critical. 

5. Discuss color cell mosaic patterns on image sensors, and some of the implications of the patterns 

for assembling the cells into color pixels. For example, silicon cell size and arrangement. 

6. Describe how color de-mosaicking algorithms work. 

7. Describe a range of camera and image sensor calibrations, and how they are established. 

8. Name a few sensor calibration adjustments that must be made to the image sensor color cell data 

after sensor readout, prior to assembling the color cells into RGB pixels. 

9. Discuss a few types of corrections that must be made to the assembled pixels after they are 

assembled from the image sensor. 

10. Describe how to compose a high dynamic range (HDR) image from several image frames. 

11. Describe how to compute the data rate to read out pixels from an RGB camera, assuming each 

RGB component contains 16 bits, the frame rate is 60 frames per second, and the frame size is 

7680 × 4320 pixels (UHDTV). 

12. Describe at a high level at least three methods for computing depth from camera images, including 

stereo, multi-view stereo, structured or coded light, and time of flight sensors. 

13. Discuss the trade-offs between stereo depth sensing and monocular depth sensing. 

14. Discuss the basic steps involved in stereo algorithms, such as image rectification and alignment, 

and other steps. 

15. Describe structured light patterns, and how they work. 

16. Describe how the Horopter region and Panum’s area affect depth sensing.



17. 
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Discuss problems created by occlusion in stereo processing, such as holes in the stereo field, and 

how the problems can be solved. 

18. Describe how 2D surface fusion of several images can be performed using a 3D voxel buffer. 

19. Discuss how monocular depth sensing is similar to stereo depth sensing. 

20. Describe the calibration parameters for a stereo camera system, including baseline. 

21. Describe how to compute the area a pixel covers in an image at a given distance from the 

camera. HINT: camera sensor resolution is one variable. 

22. Discuss voxels, depth maps, and point clouds.
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I entered, and found Captain Nemo deep in algebraical calculations of x and other quantities. 

—Jules Verne, 20,000 Leagues Under The Sea 

This chapter describes the methods used to prepare images for further analysis, including interest point 

and feature extraction. The focus is on image preprocessing for computer vision, so we do not cover the 

entire range of image processing topics applied to areas such as computational photography and photo 

enhancements, so we refer the interested reader to various other standard resources in Digital Image 

Processing and Signal Processing as we go along [4, 9, 276, 277], and we also point out interesting 

research papers that will enhance understanding of the topics. 

Note 

Readers with a strong background in image processing may benefit from a light reading of this chapter. 

Perspectives on Image Processing 

Image processing is a vast field that cannot be covered in a single chapter. So why do we discuss image 

preprocessing in a book about computer vision? The reason is that image preprocessing is typically 

ignored in discussions of feature description. Some general image processing topics are covered here in 

light of feature description, intended to illustrate rather than to proscribe, as applications and image 

data will guide the image preprocessing stage. 

Some will argue that image preprocessing is not a good idea, since it distorts or changes the true 

nature of the raw data. However, intelligent use of image preprocessing can provide benefits and solve 

problems that ultimately lead to better local and global feature detection. We survey common methods 

for image enhancements and corrections that will affect feature analysis downstream in the vision 

pipeline in both favorable and unfavorable ways, depending on how the methods are employed. 

Image preprocessing may have dramatic positive effects on the quality of feature extraction and the 

results of image analysis. Image preprocessing is analogous to the mathematical normalization of a 

data set, which is a common step in many feature descriptor methods. Or to make a musical analogy, 

think of image preprocessing as a sound system with a range of controls, such as raw sound with no 

volume controls; volume control with a simple tone knob; volume control plus treble, bass, and mid; or 

volume control plus a full graphics equalizer, effects processing, and great speakers in an acoustically 

superior room. In that way, this chapter promotes image preprocessing by describing a combination of 

corrections and enhancements that are an essential part of a computer vision pipeline. 
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Problems to Solve During Image Preprocessing 

Raw image data directly from a camera may have a variety of problems, as discussed in Chap. 1, and 

therefore it is not likely to produce the best computer vision results. This is why careful consideration 

of image preprocessing is fundamental. For example, a local binary descriptor using gray scale data 

will require different preprocessing than will a color SIFT algorithm; additionally, some exploratory 

work is required to fine-tune the image preprocessing stage for best results. We explore image 

preprocessing by following the vision pipelines of four fundamental families of feature description 

methods, with some examples, as follows: 

1. Local Binary Descriptors (LBP, ORB, FREAK, others) 

2. Spectra Descriptors (SIFT, SURF, others) 

3. Basis Space Descriptors (FFT, wavelets, others) 

4. Polygon Shape Descriptors (blob object area, perimeter, centroid) 

These families of feature description metrics are developed into a taxonomy in Chap. 5. Before that, 

though, Chap. 4 discusses feature descriptor building concepts, while Chap. 3 covers global feature 

description and then Chap. 6 surveys local feature description. The image preprocessing methods and 

applications introduced here are samples, but a more developed set of examples, following various 

vision pipelines, is developed in Chap. 8, including application-specific discussions of the 

preprocessing stage. 

Vision Pipelines and Image Preprocessing 

Table 2.1 lists common image preprocessing operations, with examples from each of the four 

descriptor families, illustrating both differences and commonality among these image preprocessing 

steps, which can be applied prior to feature description. 

Table 2.1 Possible image preprocessing enhancements and corrections as applied to different vision pipelines 

Image preprocessing 

Local binary (LBP, 

ORB) 

Spectra (SIFT, 

SURF) 

Basis space (FFT, 

Codebooks) 

Polygon shape (Blob 

Metrics) 

Illumination 

corrections 

x x  

Blur and focus 

corrections 

x x  

Filtering and noise 

removal 

x x  

Thresholding x 

Edge enhancements x x 

Morphology x 

Segmentation x 

Region processing and 

filters 

x x  

Point processing x x 

Math and statistical 

processing 

Color space 

conversions 

x x
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Local binary features deal with the pixel intensity comparisons of point-pairs. This makes the 

comparisons relatively insensitive to local illumination, brightness, and contrast, so there may not be 

much need for image preprocessing to achieve good results. Current local binary pattern methods as 

described in the literature do not typically call for much image preprocessing; they rely on a simple 

local comparison threshold that can be adjusted to account for illumination or contrast. 

Spectra descriptors, such as SIFT (which acts on local region gradients) and SURF (which uses 

HAAR-like features with integrated pixel values over local regions), offer diverse preprocessing 

opportunities. Methods that use image pyramids often perform some image preprocessing on the 

image pyramid to create a scale space representation of the data using Gaussian filtering to smooth the 

higher levels of the pyramid. Basic illumination corrections and filtering may be useful to enhance the 

image prior to computing gradients—for example, to enhance the contrast within a band of intensities 

that likely contain gradient-edge information for the features. But in general, the literature does not 

report good or bad results for any specific methods used to preprocess the image data prior to feature 

extraction, and therein resides the opportunity. 

Basis space features are usually global or regional, spanning a regular shaped such as a Fourier 

transform computed over the entire image or block. However, basis space features may be part of the 

local features, such as the Fourier spectrum of the LBP histogram, which can be computed over 

histogram bin values of a local descriptor to provide rotational invariance. Another example is the 

Fourier descriptor used to compute polygon factors for radial line segment lengths showing the 

roundness of a feature to provide rotational invariance. See Chap. 3, especially Fig. 3.20. 

The most complex descriptor family is the polygon shape-based descriptors, which potentially 

require several image preprocessing steps to isolate the polygon structure and shapes in the image for 

measurement. Polygon shape description pipelines may involve everything from image enhancements 

to structural morphology and segmentation techniques. Setting up the preprocessing for polygon 

feature shape extraction typically involves more work than any other method, since thresholds and 

segmentation require fine-tuning to achieve good results. Also note that polygon shape descriptors are 

not local patterns but, rather, larger regional structures with features spanning many tens and even 

hundreds of pixels, so the processing can be more intensive as well. 

In some cases, image preprocessing is required to correct problems that would otherwise adversely 

affect feature description; we look at this next. 

Corrections 

During image preprocessing, there may be artifacts in the images that should be corrected prior to 

feature measurement and analysis. Here are various candidates for correction.

• Sensor corrections. Discussed in Chap. 1, these include dead pixel correction, geometric lens 

distortion, and vignetting.

• Lighting corrections. Lighting can introduce deep shadows that obscure local texture and struc-

ture; also, uneven lighting across the scene might skew results. Candidate correction methods 

include rank filtering, histogram equalization, and LUT remap.

• Noise. This comes in many forms and may need special image preprocessing. There are many 

methods to choose from, some of which are surveyed in this chapter.

• Geometric corrections. If the entire scene is rotated or taken from the wrong perspective, it may be 

valuable to correct the geometry prior to feature description. Some features are more robust to 

geometric variation than others, as discussed in Chaps. 4–6.
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• Color corrections. It can be helpful to redistribute color saturation or correct for illumination 

artifacts in the intensity channel. Typically, color hue is one of the more difficult attributes to 

correct, and it may not be possible to correct using simple gamma curves and the sRGB color space. 

We cover more accurate colorimetry methods later in this chapter. 

Enhancements 

Enhancements are used to optimize for specific feature measurement methods, rather than fix 

problems. Familiar image processing enhancements include sharpening and color balancing. Here 

are some general examples of image enhancement with their potential benefits to feature description.

• Scale-space pyramids. When a pyramid is constructed using an octave scale (or a non-octave scale 

interval) and pixel decimation to subsample images to create the pyramid, subsampling artifacts and 

jagged pixel transitions are introduced. Part of the scale-space pyramid building process involves 

applying a Gaussian blur filter to the subsampled images, which removes the jagged artifacts. Also, 

anti-aliased scaling is available in the GPU hardware.

• Illumination. In general, illumination can always be enhanced. Global illumination can be 

enhanced using simple LUT remapping and pixel point operations and histogram equalizations, 

and pixel remapping. Local illumination can be enhanced using gradient filters, local histogram 

equalization, and rank filters.

• Blur and focus enhancements. Many well-known filtering methods for sharpening and blurring 

may be employed at the preprocessing stage. For example, to compensate for pixel aliasing artifacts 

introduced by rotation that may manifest as blurred pixels which obscure fine detail, sharpen filters 

can be used to enhance the edge features prior to gradient computations. Or, conversely, the rotation 

artifacts may be too strong and can be removed by blurring. 

In any case, the preprocessing enhancements or corrections are dependent on the descriptor using 

the images and the application. 

Preparing Images for Feature Extraction 

Each family of feature description methods has different goals for the preprocessing stage of the 

pipeline. Let us look at a few examples from each family here and examine possible image 

preprocessing methods for each. 

Local Binary Family Preprocessing 

The local binary descriptor family is primarily concerned with point-pair intensity value comparisons, 

and several point-pair patterns are illustrated in Chap. 4 for common methods such as FREAK, 

BRISK, BRIEF, and ORB. As illustrated in Fig. 2.1, the comparative difference (<, >, =) between 

points is all that matters, so hardly any image preprocessing seems needed. Based on this discussion, 

here are two approaches for image preprocessing:
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1. Preserve pixels as is. Do nothing except use a pixel value-difference compare threshold, such as 

done in the Census transform and other methods, since the threshold takes care of filtering noise and 

other artifacts. 

if point1- point2j j> thresholdð Þ  

2. Use filtering. In addition to using the compare threshold, apply a suitable filter to remove local 

noise, such as a smoothing or rank filter. Or, take the opposite approach and use a sharpen filter to 

amplify small differences, perhaps followed by a smoothing filter. Either method may prove to 

work, depending on the data and application. 

Figure 2.1 uses center-neighbor point-pair comparisons in a 3 × 3 local region to illustrate the 

difference between local threshold and a preprocessing operation for the local binary pattern LBP, as 

follows:

• Left image: Original unprocessed local 3 × 3 region data; compare threshold = 5, dark pixels > 5 

from center pixel.

• Left center image: Compare threshold = 10; note pattern shape is different simply by changing the 

threshold.

• Right center image: After a Laplacian sharpening filter is applied to 3 × 3 region, note that the center 

pixel value is changed from 52 to 49, so with the compare threshold set to 5 the pattern is now 

different from original on the left.

• Right image: Threshold on Laplacian filtered data set to 10; note different resulting binary patterns. 
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5335 

47 

59 

48 60 51 
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47 
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48 60 51 
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47 

59 
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Fig. 2.1 How the LBP can be affected by preprocessing, showing the compare threshold value effects. (Left) Compare 

threshold = 5. (Center left) Compare threshold = 10. (Center right) Original data after Laplacian filter applied. (Right) 

Compare threshold = 5 on Laplacian filtered data 

Spectra Family Preprocessing 

Due to the wide range of methods in the spectra category, it is difficult to generalize the potential 

preprocessing methods that may be useful. For example, SIFT is concerned with gradient information 

computed at each pixel. SURF is concerned with combinations of HAAR wavelets or local rectangular 

regions of integrated pixel values, which reduces the significance of individual pixel values. 

For the integral image-based methods using HAAR-like features such as SURF and Viola Jones, 

here are a few hypothetical preprocessing options. 

1. Do nothing. HAAR features are computed from integral images simply by summing local region 

pixel values; no fine structure in the local pixels is preserved in the sum, so one option is to do 

nothing for image preprocessing. 

2. Noise removal. This does not seem to be needed in the HAAR preprocessing stage, since the 

integral image summing in local regions has a tendency to filter out noise.
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3. Illumination problems. This may require preprocessing; for example, contrast enhancement may 

be a good idea if the illumination of the training data is different from the current frame. One 

preprocessing approach in this situation is to compute a global contrast metric for the images in the 

training set, and then compute the same global contrast metric in each frame and adjust the image 

contrast if the contrast diverges beyond a threshold to get closer to the desired global contrast 

metric. Methods for contrast enhancement include LUT remapping, global histogram equalization, 

and local adaptive histogram equalization. 

4. Blur. If blur is a problem in the current frame, it may manifest similar to a local contrast problem, so 

local contrast enhancement may be needed, such as a sharpen filter. Computing a global statistical 

metric such as an SDM as part of the ground truth data to measure local or global contrast may be 

useful; if the current image diverges too much in contrast, a suitable contrast enhancement may be 

applied as a preprocessing step. 

Note in Fig. 2.2 that increasing the local-region contrast results in larger gradients and more 

apparent edges. A feature descriptor that relies on local gradient information is affected by the local 

contrast. 

Fig. 2.2 The effects of local contrast on gradients and edge detection: (Left) Original image and Sobel edges. (Right) 

Contrasted adjusted image to amplify local region details and resulting Sobel edges 

For the SIFT-type descriptors that use local area gradients, preprocessing may be helpful to enhance 

the local gradients prior to computation, so as to affect certain features: 

1. Blur. This will inhibit gradient magnitude computation and may make it difficult to determine 

gradient direction, so perhaps a local rank filter, high-pass filter, or sharpen filter should be 

employed. 

2. Noise. This will exacerbate local gradient computations and make them unreliable, so perhaps 

applying one of several existing noise-removal algorithms can help. 

3. Contrast. If local contrast is not high enough, gradient computations are difficult and unreliable. 

Perhaps a local histogram equalization, LUT remap, rank filter, or even a sharpen filter can be 

applied to improve results. 

Basis Space Family Preprocessing 

It is not possible to generalize image preprocessing for basis space methods, since they are quite 

diverse, according to the taxonomy we are following in this work. As discussed in Chaps. 4–6, basis 

space methods include Fourier, wavelets, visual vocabularies, KTL, and others. However, here we 

provide a few general observations on preprocessing.



Problems to Solve During Image Preprocessing 41

1. Fourier Methods, Wavelets, Slant transform, Walsh Hadamard, KLT. These methods trans-

form the data into another domain for analysis, and it is hard to suggest any preprocessing without 

knowing the intended application. For example, computing the Fourier spectrum produces magni-

tude and phase, and phase is shown to be useful in feature description to provide invariance to blur, 

as reported in the LPQ linear phase quantization method described in Chap. 6, so a blurry image 

may not be a problem in this case. 

2. Sparse coding and visual vocabularies. These methods which employ local feature descriptors, 

which could be SURF, SIFT, LBP, or any other desired feature, are derived from pixels in the 

spatial domain. Therefore, the method for feature description will determine the best approach for 

preprocessing. For example, methods that use correlation and raw pixel patches as sparse codes may 

not require any preprocessing. Or perhaps some minimal preprocessing can be used, such as 

illumination normalization to balance contrast, local histogram equalization, or a LUT contrast 

remap. 

In Fig. 2.3, the contrast adjustment does not have much effect on Fourier methods, since there is no 

dominant structure in the image. Fourier spectrums typically reveal that the dominant structure and 

power is limited to lower frequencies that are in the center of the quadrant-shifted 2D plot. For images 

with dominant structures, such as lines and other shapes, the Fourier power spectrum will show the 

structure and perhaps preprocessing may be more valuable. Also, the Fourier power spectrum display 

is scaled to a logarithmic value and does not show all the details linearly, so a linear spectrum rendering 

might show the lower frequencies scaled and magnified better for erase of viewing. 

Fig. 2.3 In this example, no benefit is gained from preprocessing as shown in the Fourier spectrum; (Left) Before. 

(Right) After contrast adjusting the input image 

Polygon Shape Family Preprocessing 

Polygon shapes are potentially the most demanding features when considering image preprocessing 

steps, since as shown in Table 2.1, the range of potential preprocessing methods is quite large and the 

choice of methods to employ is very data-dependent. Possibly because of the challenges and intended 

use-cases for polygon shape measurements, they are used only in various niche applications, such as 

cell biology. 

One of the most common methods employed for image preparation prior to polygon shape 

measurements is to physically correct the lighting and select the subject background. For example, 

in automated microscopy applications, slides containing cells are prepared with florescent dye to 

highlight features in the cells, then the illumination angle and position are carefully adjusted under 

magnification to provide a uniform background under each cell feature to be measured; the resulting 

images are then much easier to segment.
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Fig. 2.4 Use of thresholding to solve problems during image preprocessing to prepare images for polygon shape 

measurement: (Left) Original image. (Center) Thresholded red channel image. (Right) Perimeter tracing above a 

threshold 

Fig. 2.5 Another sequence of morphological preprocessing steps preceding polygon shape measurement: (Left) 

Original image. (Center) Range thresholded and dilated red color channel. (Right) Morphological perimeter shapes 

taken above a threshold 

As illustrated in Figs. 2.4 and 2.5, if the preprocessing is wrong, the resulting shape feature 

descriptors are not very useful. Next we list some of the more salient options for preprocessing prior 

to shape-based feature extraction, then we will survey a range of other methods later in this chapter. 

1. Illumination corrections. Typically critical for defining the shape and outline of binary features. 

For example, if perimeter tracking or boundary segmentation is based on edges or thresholds, 

uneven illumination will cause problems, since the boundary definition becomes indistinct. If the 

illumination cannot be corrected, then other segmentation methods not based on thresholds are 

available, such as texture-based segmentation. 

2. Blur and focus corrections. Perhaps not as critical as illumination for polygon shape detection, 

since the segmentation of object boundary and shape is less sensitive to blur. 

3. Filtering and noise removal. Shape detection is somewhat tolerant of noise, depending on the 

type of noise. Shot noise or spot noise may not present a problem and is easily removed using 

various noise-cleaning methods. 

4. Thresholding. This is critical for polygon shape detection methods. Many thresholding methods 

are employed, ranging from the simple binary thresholding to local adaptive thresholding methods 

discussed later in this chapter. Thresholding is a problematic operation and requires algorithm 

parameter fine-tuning in addition to careful control of the light source position and direction to deal 

with shadows. 

5. Edge enhancements. May be useful for perimeter contour definition.
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6. Morphology. One of the most common methods employed to prepare polygon shapes for 

measurement, covered later in this chapter in some detail. Morphology is used to alter the shapes, 

presumably for the better, mostly by combinations or pipelines of erosion and dilation operations, 

as shown in Fig. 2.5. Morphological examples include object area boundary cleanup, spur 

removal, and general line and perimeter cleanup and smoothing. 

7. Segmentation. These methods use structure or texture in the image, rather than threshold, as a 

basis for dividing an image into connected regions or polygons. A few common segmentation 

methods are surveyed later in this chapter. 

8. Area/Region processing. Convolution filter masks such as sharpen or blur, as well as statistical 

filters such as rank filters or media filters, are potentially useful prior to segmentation. 

9. Point processing. Arithmetic scaling of image data point by point, such as multiplying each pixel 

by a given value followed by a clipping operation, as well as LUT processing, often is useful prior 

to segmentation. 

10. Color space conversions. Critical for dealing accurately with color features, covered later in this 

chapter. 

As shown in Fig. 2.4, a range thresholding method uses the red color channel, since the table 

background has a lot of red color and can be thresholded easily in red to remove the table top. The 

image is thresholded by clipping values outside an intensity band; note that the bottom right USB stick 

is gone after thresholding, since it is red and below the threshold. Also note that the bottom center 

white USB stick is also mostly gone, since it is white (max RGB values) and above the threshold. The 

right image shows an attempt to trace a perimeter above a threshold; it is still not very good, as more 

preprocessing steps are needed. 

The Taxonomy of Image Processing Methods 

Before we survey image preprocessing methods, it is useful to have a simple taxonomy to frame the 

discussion. The taxonomy suggested is a set of operations, including point, line, area, algorithmic, and 

data conversions, as illustrated in Fig. 2.6. The basic categories of image preprocessing operations 

introduced in Table 2.1 fit into this simple taxonomy. Note that each stage of the vision pipeline, 

depending on intended use, may have predominant tasks and corresponding preprocessing operations. 

Sensor Processing 

Image Pre-Processing 

Global Metrics 

Local Feature Metrics 

Classification, Learning 

Augment, Render, Control 

noitarepOegatSenilepiPnoisiV 

Point 

Line 

Area 

Algorithmic 

Data conversion 

Math 

Fig. 2.6 Simplified, typical image processing taxonomy, as applied across the vision pipeline
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We provide a brief introduction to the taxonomy here, followed by a more detailed discussion in 

Chap. 5. Note that the taxonomy follows memory layout and memory access patterns for the image 

data. Memory layout particularly affects performance and power. 

Point 

Point operations deal with 1 pixel at a time, with no consideration of neighboring pixels. For example, 

point processing operations can be divided into math, Boolean, and pixel value compare substitution 

sections, as shown in Table 2.2 in the section later on “Point Filtering.” Other point processing 

examples include color conversions and numeric data conversions. 

Line 

Line operations deal with discrete lines of pixels or data, with no regard to prior or subsequent lines. 

Examples include the FFT, which is a separable transform, where pixel lines and columns can be 

independently processed in parallel as 1D FFT line operations. If an algorithm requires lines of data, 

then optimizations for image preprocessing memory layout, pipelined read/write, and parallel 

processing can be made. Optimizations are covered in Chap. 8. 

Area 

Area operations typically require local blocks of pixels—for example, spatial filtering via kernel 

masks, convolution, morphology, and many other operations. Area operations generate specific 

types of memory traffic and can be parallelized using fine-grained methods such as common shaders 

in graphics processors and coarse-grained thread methods. 

Algorithmic 

Some image preprocessing methods are purely serial or algorithmic code. It is difficult or even 

impossible to parallelize these blocks of code. In some cases, algorithmic blocks can be split into a 

few separate threads for coarse-grained parallelism or else pipelined, as discussed in Chap. 8. 

Data Conversions 

While the tasks are mundane and obvious, significant time can be spent doing simple data conversions. 

For example, integer sensor data may be converted to floating point for geometric computations or 

color space conversions. Data conversions are a significant part of image preprocessing in many cases. 

Example conversions include:

• Integer bit-depth conversions (8/16/32/64)

• Floating point conversions (single precision to double precision)

• Fixed point to integer or float

• Any combination of float to integer and vice versa
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• Color conversions to and from various color spaces

• Conversion for basis space compute, such as integer to and from float for FFT 

Design attention to data conversions and performance are in order and can provide a good return on 

investment, as discussed in Chap. 8. 

Colorimetry 

In this section, we provide a brief overview of color science to guide feature description, with attention 

to color accuracy, color spaces, and color conversions. If a feature descriptor is using color, then the 

color representation and processing should be carefully designed, accurate, and suited to the applica-

tion. For example, in some applications it is possible to recognize an object using color alone, perhaps 

recognizing an automobile using its paint color, assuming that the vendor has chosen a unique paint 

color each year for each model. By combining a color descriptor (see Refs. [805–807], especially van 

de Weijer and Schmidt [808]) with another simple feature, such as shape, an effective multivariate 

descriptor can be devised. 

Color Science is a well-understood field defined by international standards and amply described in 

the literature [211–213]. We list only a few resources here.

• The Rochester Institute of Technology’s Munsel Color Science Laboratory is among the leading 

research institutions in the area or color science and imaging. It provides a wide range of resources 

and has strong ties to industry imaging giants such as Kodak, Xerox, and others.

• The International Commission on Illumination (CIE) provides standard illuminant data for a range 

of light sources as it pertains to color science, as well as standards for the well-known color spaces 

CIE XYZ, CIE Lab, and CIE Luv.

• The ICC International Color Consortium provides the ICC standard color profiles for imaging 

devices, as well as many other industry standards, including the sRGB color space for color 

displays.

• Proprietary color management systems, developed by industry leaders, include the Adobe CMM 

and Adobe RGB, Apple ColorSync, and HP ColorSmart; perhaps the most advanced is Microsoft’s 

Windows Color System, which is based on Canon’s earlier Kyuanos system using on CIECAM02. 

Overview of Color Management Systems 

A full-blown color management system may not be needed for a computer vision application, but the 

methods of color management are critical to understand when you are dealing with color. As illustrated 

in Fig. 2.7, a color management system converts colors between the device color spaces, such as RGB 

or sRGB, to and from a colorimetric color space, such as CIE Luv, Lab, Jch, or Jab, so as to perform 

color gamut mapping. Since each device can reproduce color only within a specific gamut or color 

range, gamut mapping is required to convert the colors to the closest possible match, using the 

mathematical models of each color device.
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Fig. 2.7 Color management system with an RGB camera device model, sRGB display device model, CMYK printer 

device model, gamut mapping module, and an illuminant model 

Illuminants, White Point, Black Point, and Neutral Axis 

An illuminant is a light source such as natural light or a fluorescent light, defined as the white point 

color by its spectral components and spectral power or color temperature. The white point color value 

in real systems is never perfectly white and is a measured quantity. The white point value and the 

oppositional black point value together define the endpoints of the neutral axis (gray scale intensity) of 

the color space, which is not a perfectly straight color vector. 

Color management relies on accurate information and measurements of the light source, or the 

illuminant. Color cannot be represented without accurate information about the light source under 

which the color is measured, since color appears different under florescent light versus natural light, 

and so on. The CIE standards define several values for standard illuminants, such as D65, shown in 

Fig. 2.8.



Colorimetry 47

N
e

u
tr

a
l 

A
x
is

 

White Point 

Black Point 

Hue Angle 
Saturation 

red 

green 

blue 

Fig. 2.8 (Left) Representation of a color space in three dimensions, neutral axis for the amount of white, hue angle for 

the primary color, and saturation for amount of color present. (Right) CIE XYZ chromaticity diagram showing values of 

the standard illuminant D65 OE as the white point, and the color primaries for R, G, and B 

Device Color Models 

Real devices like printers, displays, and cameras conventionally reproduce colors as compared against 

standard color patches that have been measured using calibrated light sources and spectrographic 

equipment—for example, the widely used Munsel color patches that define color in terms hue, value, 

and chroma (HVC) against standard illuminants. In order to effectively manage colors for a given 

device, a mathematical model or device color model must be created for each device, defining the 

anomalies in the device color gamut and its color gamut range. 

For the color management system to be accurate, each real device must be spectrally characterized 

and modeled in a laboratory to create a mathematical device model, mapping the color gamut of each 

device against standard illumination models. The device model is used in the gamut transforms 

between color spaces. 

Devices typically represent color using the primary and secondary colors RGB and CYMK. RGB is 

a primary, additive color space; starting with black, the RGB color primaries red, green, and blue are 

added to create colors. CYMK is a secondary color space, since the color components cyan, yellow, 

and magenta, are secondary combinations of the RGB primary colors; cyan = green plus blue, 

magenta = red plus blue, and yellow = red plus green. CYMK is also a subtractive color space, 

since the colors are subtracted from a white background to create specific colors. 

Color Spaces and Color Perception 

Colorimetric spaces represent color in abstract terms such as lightness, hue or color, and color 

saturation. Each color space is designed for a different reason, and each color space is useful for 

different types of analysis and processing. Examples of simple color spaces include HSV (hue, 

saturation, value) and HVC (hue, value, chroma). In the case of the CIE color spaces, the RGB 

color components are replaced by the standardized value CIE XYZ components as a basis for defining 

the CIE Luv and CIE Lab color spaces.
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At the very high end of color science, we have the more recent CIECAM02 color models and color 

spaces such as Jch and Jab. CIECAM02 goes beyond just the colorimetry of the light source and the 

color patch itself to offer advanced color appearance modeling considerations that include the 

surroundings under which colors are measured [211, 216]. 

While CIECAM02 may be overkill for most applications, it is worth some study. Color perception 

varies widely based on the surrounding against which the colors are viewed, the spectrum and angles of 

combined direct and ambient lighting, and the human visual system itself, since people do not all 

perceive color in the same way. 

Gamut Mapping and Rendering Intent 

Gamut mapping is the art and science of converting color between two color spaces and getting the best 

fit. Since the color gamuts of each device are different, gamut mapping is a challenge, and there are 

many different algorithms in use, with no clear winner. Depending on the intent of the rendering, 

different methods are useful—for example, gamut mapping from camera color space to a printer color 

space is different from mapping to an LCD display for viewing. 

The CAM02 system provides a detailed model for guidance. For example, a color imaging device 

may capture the color blue very weakly, while a display may be able to display blue very well. Should 

the color gamut fitting method use color clipping or stretching? How should the difference between 

color gamuts be computed? Which color space? For an excellent survey of over 90 gamut mapping 

methods, see the work of Morovic [214]. 

In Fig. 2.9 (left image), the sRGB color space is shown as fitting inside the Adobe RGB color space, 

illustrating that sRGB does not cover a gamut as wide as Adobe RGB. Each color gamut reproduces 

color differently, and each color space may be linear or warped internally. The right image in Fig. 2.9 

illustrates one gamut mapping method to determine the nearest color common to both color gamuts, 

using Euclidean distance and clipping; however, there are many other gamut mapping distance 

methods as well. Depending on the surrounding light and environment, color perception changes 

further complicating gamut mapping. 

Fig. 2.9 The central problem of gamut mapping: (Left) Color sRGB and Adobe RGB color gamuts created using 

Gamutvision software. (Right) Gamut mapping details
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In gamut mapping, there is a source gamut and a destination gamut. For example, the source could 

be a camera and the destination could be an LCD display. Depending on the rendering intent of the 

gamut conversion, different algorithms have been developed to convert color from source to destina-

tion gamuts. Using the perceptual intent, color saturation is mapped and kept within the boundaries of 

the destination gamut in an effort to preserve relative color strength; and out-of-gamut colors from the 

source are compressed into the destination gamut, which allows for a more reversible gamut map 

translation. Using the colorimetric intent, colors may be mapped straight across from source to 

destination gamut, and colors outside the destination gamut are simply clipped. 

A common method of color correction is to rely on a simple gamma curve applied to the intensity 

channel to help the human eye better visualize the data, since the gamma curve brightens up the dark 

regions and compresses the light regions of the image, similar to the way the human visual system 

deals with light and dark regions. However, gamut correction bears no relationship to the true sensor 

data, so a calibrated, colorimetrically sound approach is recommended instead. 

Practical Considerations for Color Enhancements 

For image preprocessing, the color intensity is usually the only color information that should be 

enhanced, since the color intensity alone carries a lot of information and is commonly used. In 

addition, color processing cannot be easily done in RGB space while preserving relative color. For 

example, enhancing the RGB channels independently with a sharpen filter will lead to Moiré fringe 

artifacts when the RGB channels are recombined into a single rendering. So to sharpen the image, first 

forward-convert RGB to a color space such as HSV or YIQ, then sharpen the V or Y component, and 

then inverse-convert back to RGB. For example, to correct illumination in color, standard image 

processing methods such as LUT remap or histogram equalization will work, provided they are 

performed in the intensity space. 

As a practical matter, for quick color conversions to gray scale from RGB, here are a few methods. 

(1) The G color channel is a good proxy for gray scale information, since as shown in the sensor 

discussion in Chap. 1, the RB wavelengths in the spectrum overlap heavily into the G wavelengths. 

(2) Simple conversion from RGB into gray scale intensity I can be done by taking I = (R + G + B)/3. 

(3) The YIQ color space, used in the NTSC television broadcast standards, provides a simple forward/ 

backward method of color conversion between RGB and a gray scale component Y, as follows: 

R 

G 

B 

¼ 

1  0:9663 0:6210 

1 - 0:2721 - 0:6474 

1 - 1:1070 1:7046 

Y 

I 

Q 

Y 

I 

Q 

¼ 

0:299 0:587 0:114 

0:595716 - 0:274453 - 0:321263 

0:211456 - 0:522591 0:311135 

R 

G 

B

Color Accuracy and Precision 

If color accuracy is important, 8 bits per RGB color channel may not be enough. It is necessary to study 

the image sensor vendor’s data sheets to understand how good the sensor really is. At the time of this



writing, common image sensors are producing 10–14 bits of color information per RGB channel. Each 

color channel may have a different spectral response, as discussed in Chap. 1. 
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Typically, green is a good and fairly accurate color channel on most devices; red is usually good as 

well and may also have near infrared sensitivity if the IR filter is removed from the sensor; and blue is 

always a challenge since the blue wavelength can be hardest to capture in smaller silicon wells, which 

are close to the size of the blue wavelength, so the sensor vendor needs to pay special attention to blue 

sensing details. 

Spatial Filtering 

Filtering on discrete pixel arrays is considered spatial filtering, or time domain filtering, in contrast to 

filtering in the frequency domain using Fourier methods. Spatial filters are alternatives to frequency 

domain methods, and versatile processing methods are possible in the spatial domain. 

Convolutional Filtering and Detection 

Convolution is a fundamental signal processing operation easily computed as a discrete spatial 

processing operation, which is practical for 1D, 2D, and 3D processing. The basic idea is to combine, 

or convolve, two signals together, changing the source signal to be more like the filter signal. The 

source signal is the array of pixels in the image; the filter signal is a weighted kernel mask, such as a 

gradient peak shape and oriented edge shape or an otherwise weighted shape. For several examples of 

filter kernel mask shapes, see the section later in the chapter that discusses Sobel, Scharr, Prewitt, 

Roberts, Kirsch, Robinson, and Frei–Chen filter masks. 

Convolution is typically used for filtering operations such as low-pass, band pass, and high-pass 

filters, but many filter shapes are possible to detect features, such as edge detection kernels tuned 

sensitive to edge orientation, or even point, corner, and contour detectors. Convolution is used as a 

detector in the method of convolution networks [60], as discussed in Chap. 4. 

The sharpen kernel mask in Fig. 2.10 (center image) is intended to amplify the center pixel in 

relation to the neighboring pixels. Each pixel is multiplied by its kernel position, and the result (right 

image) shows the center pixel as the sum of the convolution, which has been increased or amplified in 

relation to the neighboring pixels. 
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Fig. 2.10 Convolution, in this case a sharpen filter: (Left to right) Image data, sharpen filter, and resulting image data
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A convolution operation is typically followed up with a set of postprocessing point operations to 

clean up the data. Following are some useful postprocessing steps; many more are suggested in the 

“Point Filtering” section that follows later in the chapter. 

switch (post_processor) 
{ 
case RESULT_ASIS: 
break; 

case RESULT_PLUS_VALUE: 
sum + = value; 
break; 

case RESULT_MINUS_VALUE: 
sum - = value; 
break; 

case RESULT_PLUS_ORIGINAL_TIMES_VALUE: 
sum = sum + (result * value); 
break; 

case RESULT_MINUS_ORIGINAL_TIMES_VALUE: 
sum = sum - (result * value); 
break; 

case ORIGINAL_PLUS_RESULT_TIMES_VALUE: 
sum = result + (sum * value); 
break; 

case ORIGINAL_MINUS_RESULT_TIMES_VALUE: 
sum = result - (sum * value); 
break; 

case ORIGINAL_LOW_CLIP: 
sum = (result < value ? value : result); 
break; 

case ORIGINAL_HIGH_CLIP: 
sum = (result > value ? value : result); 
break; 

} 
switch (post_processing_sign) 
{ 
case ABSOLUTE_VALUE: 
if (sum < 0) sum = -sum; 
if (sum > limit) sum = limit; 
break; 

case POSITIVE_ONLY: 
if (sum < 0) sum = 0; 
if (sum > limit) sum = limit; 
break; 

case NEGATIVE_ONLY: 
if (sum > 0) sum = 0; 
if (-sum > limit) sum = -limit; 
break; 

case SIGNED: 
if (sum > limit) sum = limit; 
if (-sum > limit) sum = -limit; 
break; 

} 

Convolution is used to implement a variety of common filters including:

• Gradient or sharpen filters, which amplify and detect maxima and minima pixels. Examples 

include Laplacian.
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• Edge or line detectors, where lines are connected gradients that reveal line segments or contours. 

Edge or line detectors can be steerable to a specific orientation, like vertical, diagonal, horizontal, or 

omnidirectional; steerable filters as basis sets are discussed in Chap. 3.

• Smoothing and blur filters, which take neighborhood pixels. 

Kernel Filtering and Shape Selection 

Besides convolutional methods, kernels can be devised to capture regions of pixels generically for 

statistical filtering operations, where the pixels in the region are sorted into a list from low to high 

value. For example, assuming a 3 × 3 kernel region, we can devise the following statistical filters: 

sort(&kernel, &image, &coordinates, &sorted_list); 
switch (filter_type) 
{ 
case RANK_FILTER: 
// Pick highest pixel in the list, rank = 8 for a 3 × 3 kernel 0..8 
// Could also pick the lowest, middle, or other rank 
image[center_pixel] = sorted_list[rank]; 
break; 

case MEDIAN_FILTER: 
// Median value is kernel size / 2, (3 × 3 = 9)/2 = 4 in this case 
image[center_pixel] = sorted_list[median]; 
break; 

case MAJORITY_FILTER: 
// Find the pixel value that occurs most often, count sorted pixel values 
count(&sorted_list, &counted_list); 
image[center_pixel] = counted_list[0]; 
break; 

} 

The rank filter is a simple and powerful method that sorts each pixel in the region and substitutes a 

pixel of desired rank for the center pixel, such as substitution of the highest pixel in the region for the 

center pixel, or the median value or the majority value. 

Shape Selection or Forming Kernels 

Any regional operation can benefit from shape selection kernels to select pixels from the region and 

exclude others. Shape selection, or forming, can be applied as a preprocessing step to any image 

preprocessing algorithm or to any feature extraction method. Shape selection kernels can be binary 

truth kernels to select which pixels from the source image are used as a group, or to mark pixels that 

should receive individual processing. Shape selection kernels, as shown in Fig. 2.11, can be applied to 

local feature descriptors and detectors also; similar but sometimes more complex local region pixel 

selection methods are often used with local binary descriptor methods, as discussed in Chap. 4.
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Fig. 2.11 Truth and shape kernels: (Left) A shape kernel gray kernel position indicating a pixel to process or use—for 

example, a pixel to convolve prior to a local binary pattern point-pair comparison detector. (Right) A truth shape kernel 

specifying pixels to use for region average, favoring diagonals—T means use this pixel, F means do not use 

Point Filtering 

Individual pixel processing is typically overlooked when experimenting with image preprocessing. 

Point processing is amenable to many optimization methods, as will be discussed in Chap. 8. 

Convolution, as discussed above, is typically followed by point postprocessing steps. Table 2.2 

illustrates several common pixel point processing methods in the areas of math operations, Boolean 

operations, and compare and substitution operations, which seem obvious but can be quite valuable for 

exploring image enhancement methods to enhance feature extraction.
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Table 2.2 Possible point operations 

// Math ops // Compare and Substitution ops 

NAMES math_ops[] = { 

"src + value -> dst", 

"src - value -> dst", 

"src * value -> dst", 

"src / value -> dst", 

"(src + dst) * value -> dst", 

"(src - dst) * value -> dst", 

"(src * dst) * value -> dst", 

"(src / dst) * value -> dst", 

"sqroot(src) + value -> dst", 

"src * src + value -> dst", 

"exp(src) + value -> dst", 

"log(src) + value -> dst", 

"log10(src) + value -> dst", 

"pow(src ^ value) -> dst", 

"sin(src) + value -> dst", 

"cos(src) + value -> dst", 

"tan(src) + value -> dst", 

"(value / max(all_src)) * src -> dst", 

"src - mean(all_src) -> dst", 

"absval(src) + value -> dst", 

}; 

// Boolean ops 

NAMES bool_ops[] = { 

"src AND value -> dst", 

"src OR value -> dst", 

"src XOR value -> dst", 

"src AND dst -> dst", 

"src OR dst -> dst", 

"src XOR dst -> dst", 

"NOT(src) -> dst", 

"LO_CLIP(src, value) -> dst", 

"LO_CLIP(src, dst) -> dst", 

"HI_CLIP(src, value) -> dst", 

"HI_CLIP(src, dst) -> dst", 

}; 

NAMES change_ops[] = { 

"if (src = thresh) value -> dst", 

"if (src = dst) value -> dst", 

"if (src ! = thresh) value -> dst", 

"if (src ! = thresh) src -> dst", 

"if (src ! = dst) value -> dst", 

"if (src ! = dst) src -> dst", 

"if (src >  =  thresh) value -> dst", 

"if (src >  =  thresh) src -> dst", 

"if (src >  =  dst) value -> dst", 

"if (src >  =  dst) src -> dst", 

"if (src <  =  thresh) value -> dst", 

"if (src <  =  thresh) src -> dst", 

"if (src <  =  dst) value -> dst", 

"if (src <  =  dst) src -> dst", 

"if (lo <  =  src <  =  hi) value -> dst", 

"if (lo < = src < = hi) src -> dst",

};

Noise and Artifact Filtering 

Noise is usually an artifact of the image sensor, but not always. There are several additional artifacts 

that may be present in an image as well. The goal of noise removal is to remove the noise without 

distorting the underlying image, and the goal of removing artifacts is similar. Depending on the type of 

noise or artifact, different methods may be employed for preprocessing. The first step is to classify the 

noise or artifact, and then to devise the right image preprocessing strategy.

• Speckle, random noise. This type of noise is apparently random and can be removed using a rank 

filter or median filter.

• Transient frequency spike. This can be determined using a Fourier spectrum and can be removed 

using a notch filter over the spike; the frequency spike will likely be in an outlier region of the 

spectrum and may manifest as a bright spot in the image.

• Jitter and judder line noise. This is an artifact particular to video streams, usually due to telecine 

artifacts, motion of the camera, or the image scene and is complex to correct. It is primarily line 

oriented rather than just single-pixel oriented.
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• Motion blur. This can be caused by uniform or nonuniform motion and is a complex problem; 

several methods exist for removal; see Ref. [261]. 

Standard approaches to noise removal are discussed by Gonzalez [4]. The most basic approach is to 

remove outliers, and various approaches are taken, including thresholding and local region-based 

statistical filters such as the rank filter and median filter. Weighted image averaging is also sometime 

used for removing noise from video streams; assuming the camera and subjects are not moving, it can 

work well. Although deblurring or Gaussian smoothing convolution kernels are sometimes used to 

remove noise, such methods may cause smearing and may not be the best approach. 

A survey of noise-removal methods and a performance comparison model are provided by Buades 

et al. [438]. This source includes a description of the author’s NL-means method, which uses nonlocal 

pixel value statistics in addition to Euclidean distance metrics between similar weighted pixel values 

over larger image regions to identify and remove noise. 

Integral Images and Box Filters 

Integral images are used to quickly find the average value of a rectangular group of pixels. An integral 

image is also known as a summed area table, where each pixel in the integral image is the integral sum 

of all pixels to the left and above the current pixel. The integral image can be calculated quickly in a 

single pass over the image. Each value in the summed area table is calculated using the current pixel 

value from the image i(n,m) combined with previous entries s(n,m) made into the summed area table, 

as follows: 

s  x, yð  Þ ¼ i  x, yð  Þ þ s  x- 1, yð Þ þ  s  x, y- 1ð Þ- s  x  - 1, y- 1ð Þ

As shown in Fig. 2.12,  to  find a HAAR rectangle feature value from the integral image, only four 

points in the integral image table A, B, C, D are used, rather than tens or hundreds of points from the 

image. The integral image sum of a rectangle region can then be divided by the size of the rectangle 

region to yield the average value, which is also known as a box filter .
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Fig. 2.12 (Left) Pixels in an image. (Center) Integral image. (Right) Region where a box filter value is computed from 

four points in the integral image: sum = s(A) + s(D) - s(B) - s(C) 

Integral images and box filters are used in many computer vision methods, such as HAAR filters 

and feature descriptors. Integral images are also used as a fast alternative to a Gaussian filter of a small 

region, as a way to lower compute costs. In fact, descriptors with a lot of overlapping region 

processing, such as BRISK [103], make effective use of integral images for descriptor building and 

use integral images as a proxy for a fast Gaussian blur or convolution.
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Edge Detectors 

The goal of an edge detector is to enhance the connected gradients in an image, which may take the 

form of an edge, contour, line, or some connected set of edges. Many edge detectors are simply 

implemented as kernel operations, or convolutions, and we survey the common methods here. 

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei–Chen 

The Sobel operator detects gradient magnitude and direction for edge detection. The basic method is 

shown here. 

1. Perform two-directional Sobel filters (x and y axis) using basic derivative kernel approximations 

such as 3 × 3 kernels, using values as follows: 

Sy ¼

- 1 - 2 - 1 

0 0 0  

1 2 1  

Sx ¼

- 1  0  1

- 2  0  2

- 1 0 1

2. Calculate the total gradient as Gv = jSx|+|Sy| 

3. Calculate the gradient direction as theta = ATAN(Sy/Sx) 

4. Calculate gradient magnitude Gm = Sy2 þ Sx2 

Variations exist in the area size and shape of the kernels used for Sobel edge detection. In addition to 

the Sobel kernels shown above, other similar kernel sets are used in practice, so long as the kernel 

values cancel and add up to zero, such as those kernels proposed by Scharr, Prewitt, Roberts, 

Robinson, and Frei–Chen, as well as Laplacian approximation kernels. The Frei–Chen kernels are 

designed to be used together at a set, so the edge is the weighted sum of all the kernels. See Ref. [4] for 

more information on edge detection masks. Some kernels have compass orientations, such as those 

developed by Kirsch, Robinson, and others (see Fig. 2.13).
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Fig. 2.13 Several edge detection kernel masks 

Canny Detector 

The Canny method [125] is similar to the Sobel-style gradient magnitude and direction method, but it 

adds postprocessing to clean up the edges. 

1. Perform a Gaussian blur over the image using a selected convolution kernel (7 × 7, 5, 5, etc.), 

depending on the level of low-pass filtering desired. 

2. Perform two-directional Sobel filters (x and y axes) and find the edge strength as |G|= |Gx|  +  |Gy| and 

edge direction as theta = ATAN(Gy/Gx) and round the direction to one of the four directions 0, 90, 

180, or 270.

3. Perform non-maximal value suppression in the direction of the gradient to set to zero (0) pixels not 

on an edge (minima values). 

4. Perform hysteresis thresholding within a band (high, low) of values along the gradient direction to 

eliminate edge aliasing and outlier artifacts and to create better connected edges.
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Transform Filtering, Fourier, and Others 

This section deals with basis spaces and image transforms in the context of image filtering, the most 

common and widely used being the Fourier transform. A more comprehensive treatment of basis 

spaces and transforms in the context of feature description is provided in Chap. 3. A good reference for 

transform filtering in the context of image processing is provided by Pratt [9]. 

Why use transforms to switch domains? To make image preprocessing easier or more effective, or 

to perform feature description and matching more efficiently. In some cases, there is no better way to 

enhance an image or describe a feature than by transforming it to another domain—for example, for 

removing noise and other structural artifacts as outlier frequency components of a Fourier spectrum, or 

to compact describe and encode image features using HAAR basis features. 

Fourier Transform Family 

The Fourier transform is very well known and covered in the standard reference by Bracewell [191], 

and it forms the basis for a family of related transforms. Several methods for performing fast Fourier 

transform (FFT) are common in image and signal processing libraries. Fourier analysis has touched 

nearly every area of world affairs, through science, finance, medicine, and industry, and has been 

hailed as “the most important numerical algorithm of our lifetime” [246]. Here, we discuss the 

fundamentals of Fourier analysis, and a few branches of the Fourier transform family with image 

preprocessing applications. 

The Fourier transform can be computed using optics, at the speed of light [231]. However, we are 

interested in methods applicable to digital computers. 

Fundamentals 

The basic idea of Fourier analysis [4, 9, 191] is concerned with decomposing periodic functions into a 

series of sine and cosine waves (Fig. 2.14). The Fourier transform is bidirectional, between a periodic 

wave and a corresponding series of harmonic basis functions in the frequency domain, where each 

basis function is a sine or cosine function, spaced at whole harmonic multiples from the base 

frequency. The result of the forward FFT is a complex number composed of magnitude and phase 

data for each sine and cosine component in the series, also referred to as real data and imaginary data.
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Fig. 2.14 (Left) Harmonic series of sine waves. (Right) Fourier harmonic series of sine and cosine waves 

Arbitrary periodic functions can be synthesized by summing the desired set of Fourier basis 

functions, and periodic functions can be decomposed using the Fourier transform into the basic 

functions as a Fourier series, see Fig. 2.15. The Fourier transform is invertible between the time 

domain of discrete pixels and the frequency domain, where both magnitude and phase of each basis 

function are available for filtering and analysis, magnitude being the most commonly used component. 

How is the FFT implemented for 2D images or 3D volumes? The Fourier transform is a separable 

transform and so can be implemented as a set of parallel 1D FFT line transforms. So, for 2D images 

and 3D volumes, each dimension, such as the x, y, z dimension, can be computed in place, in parallel as 

independent x lines, then the next dimension or y columns can be computed in place as parallel lines, 

then the z dimension can be computed as parallel lines in place, and the final results are scaled 

according to the transform. Any good 1D FFT algorithm can be set up to process 2D images or 3D 

volumes using parallelization. 

Fig. 2.15 Fourier series and Fourier transform concepts showing a square wave approximated from a series of Fourier 

harmonics 

For accuracy of the inverse transform to go from frequency space back to pixels, the FFT 

computations will require two double precision 64-bit floating point buffers to hold the magnitude 

and phase data, since transcendental functions such as sine and cosine require high floating point 

precision for accuracy; using 64-bit double precision floating point numbers for the image data allows 

a forward transform of an image to be computed, followed by an inverse transform, with no loss of 

precision compared to the original image—of course, very large images will need more than double 

precision.
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Since 64-bit floating point is typically slower and of higher power, owing to the increased compute 

requirements and silicon real estate in the ALU, as well as the heavier memory bandwidth load, 

methods for FFT optimization have been developed using integer transforms, and in some cases fixed 

point, and these are good choices for many applications. 

Note in Fig. 2.16 that the low-pass filter (center right) is applied to preserve primarily low-frequency 

information toward the center of the plot and it reduces high-frequency components toward the edges, 

resulting in the filtered image at the far right. 

Fig. 2.16 Basic Fourier filtering: (Left) Original. (Center left) Fourier spectrum. (Center right) Low-pass filter shape 

used to multiply against Fourier magnitude. (Right) Inverse transformed image with low-pass filter 

A key Fourier application is filtering, where the original image is forward-transformed into 

magnitude and phase; the magnitude component is shown as a Fourier power spectrum of the 

magnitude data, which reveals structure in the image as straight lines and blocks, or outlier structures 

or spots that are typically noise. The magnitude can be filtered by various filter shapes, such as high-

pass, low-pass, band pass, and spot filters to remove spot noise, to affect any part of the spectrum. 

In Fig. 2.16, a circular symmetric low-pass filter shape is shown with a smooth distribution of filter 

coefficients from 1 to 0, with high multiplicands in the center at the low frequencies, ramping down to 

zero toward the high frequencies at the edge. The filter shape is multiplied in the frequency domain 

against the magnitude data to filter out the higher frequency components, which are toward the outside 

of the spectrum plot, followed by an inverse FFT to provide the filtered image. The low-frequency 

components are toward the center; typically these are most interesting and so most of the image power 

is contained in the low-frequency components. Any other filter shape can be used, such as a spot filter, 

to remove noise or any of the structure at a specific location of the spectrum. 

Fourier Family of Transforms 

The Fourier transform is the basis for a family of transforms [4], some of which are: 

1. DFT, FFT. The discrete version of the Fourier transform, often implemented as a fast version, or 

FFT, commonly used for image processing. There are many methods of implementing the 

FFT [191]. 

2. Sine transform. Fourier formulation composed of only sine terms. 

3. Cosine transform. Fourier formulation composed of only cosine terms. 

4. DCT, DST, MDCT. The discrete Fourier transform is implemented in several formulations: 

discrete sine transform (DST), discrete cosine transform (DCT), and the modified discrete cosine 

transform (MDCT). These related methods operate on a macroblock, such as 16 × 16 or 8 × 8 pixel 

region, and can therefore be highly optimized for compute use with integers rather than floating 

point. Typically, the DCT is implemented in hardware for video encode and decode applications for
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motion estimation of the macro blocks from frame to frame. The MDCT operates on overlapping 

macroblock regions for compute efficiency. 

5. Fast Hartley transform, DHT. This was developed as an alternative formulation of the Fourier 

transform for telephone transmission analysis about 1925, forgotten for many years, then 

rediscovered and promoted again by Bracewell [191] as an alternative to the Fourier transform. 

The Hartley transform is a symmetrical formulation of the Fourier transform, decomposing a signal 

into two sets of sinusoidal functions taken together as a cosine-and-sine or cas() function, where cas 

(vx) = cos(vx) + sin(vx). This includes positive and negative frequency components and operates 

entirely on real numbers for input and output. The Hartley formulation avoids complex numbers as 

used in the Fourier complex exponential exp( j ω x). The Hartley transform has been developed into 

optimized versions called the DHT, shown to be about equal in speed to an optimized FFT. 

Other Transforms 

Several other transforms may be used for image filtering, including wavelets, steerable filter banks, and 

others that will be described in Chap. 3, in the context of feature description. Note that transforms often 

have many common uses and applications that overlap, such as image description, image coding, 

image compression, and feature description. 

Morphology and Segmentation 

For simplicity, we define the goal of morphology as shape and boundary definition, and the goal of 

segmentation is to define regions with internal similarity, such as textural or statistical similarity. 

Morphology is used to identify features as polygon-shaped regions that can be described with shape 

metrics, as will be discussed in Chaps. 3 and 6, distinct from local interest point and feature descriptors 

using other methods. An image is segmented into regions to allow independent processing and analysis 

of each region according to some policy or processing goal. Regions cover an area smaller than the 

global image, but usually larger than local interest point features, so an application might make use of 

global, regional, and small local interest point metrics together as an object signature. 

An excellent review of several segmentation methods can be found in work by Haralick and Shapiro 

[272]. In practice, segmentation and morphology are not easy: results are often less useful than 

expected, trial and error is required, too many methods are available to provide any strict guidance, 

and each image is different. So here we only survey the various methods to introduce the topic and 

illustrate the complexity. An overview of region segmentation methods is shown in Table 2.3. 

Binary Morphology 

Binary morphology operates on binary images, which are created from other scalar intensity channel 

images. Morphology [9] is used to morph a feature shape into a new shape for analysis by removing 

shape noise or outliers, and by strengthening predominant feature characteristics. For example, isolated 

pixels may be removed using morphology, thin features can be fattened, and the predominant shape is 

still preserved. Note that morphology all by itself is quite a large field of study, with applications to 

general object recognition, cell biology, medicine, particle analysis, and automated microscopy. We 

introduce the fundamental concepts of morphology here for binary images, and then follow this section 

with applications to gray scale and color data.
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Table 2.3 Segmentation methods 

Method Description 

Morphological 

segmentation 

The region is defined based on thresholding and morphology operators 

Texture-based 

segmentation 

The texture of a region is used to group like textures into connected regions 

Transform-based 

segmentation 

Basic space features are used to segment the image 

Edge boundary 

segmentation 

Gradients or edges alone are used to define the boundaries of the region with edge linking 

in some cases to form boundaries 

Color segmentation Color information is used to define regions 

Super-pixel segmentation Kernels and distance transforms are used to group pixels and change their values to a 

common value 

Gray scale/luminance 

segmentation 

Grayscale thresholds or bands are used to define the regions 

Depth segmentation Depth maps and distance from viewer are used to segment the image into foreground, 

background, or other gradations of interscene features 

Binary morphology starts with binarizing images, so typically thresholding is first done to create 

images with binary-valued pixels composed of 8-bit black and white values, 0-value = black and 

255-value = white. Thresholding methods are surveyed later in this chapter, and thresholding is critical 

prior to morphology. 

Binary morphology is a neighborhood operation and can use a forming kernel with truth values, as 

shown in Fig. 2.17. The forming kernel guides the morphology process by defining which surrounding 

pixels contribute to the morphology. Figure 2.17 shows two forming kernels: kernel a, where all pixels 

touching the current pixel are considered, and kernel b, where only orthogonally adjacent pixels are 

considered. 

Fig. 2.17 3 × 3 forming 

kernels and binary erosion 

and dilation using the 

kernels; other kernel sizes 

and data values may be 

useful in a given 

application. (Image used by 

permission, # Intel Press, 

from Building Intelligent 

Systems)
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The basic operations of morphology include Boolean AND, OR, NOT. The notation used for the 

fundamental morphological operations is [ for dilation and \ for erosion. In binary morphology, 

dilation is a Boolean OR operator, while erosion is a Boolean AND operator. In the example provided 

in Fig. 2.17, only kernel elements with a “1” are used in the morphology calculation, allowing for 

neighborhood contribution variations. For erosion, the pixels under all true forming kernel elements 

are AND’d together; the result is 1 if all are true and the pixel feature remains, otherwise the pixel 

feature is eroded or set to 0. 

All pixels under the forming true kernel must be true for erosion of the center pixel. Erosion 

attempts to reduce sparse features until only strong features are left. Dilation attempts to inflate sparse 

features to make them fatter, only 1 pixel under the forming kernel elements must be true for dilation of 

the center pixel, corresponding to Boolean OR. 

Based on simple erosion and dilation, a range of morphological operations are derived as shown 

here, where + = dilation and - = erosion. 

Erode G( f ) = f - b 

Dilate G( f ) = f + b 

Opening G( f ) = ( f + b) - b 

Closing G( f ) = ( f - b) + b 

Morphological gradient G( f ) = f - b or G( f ) = f + b - f - b 

Morphological internal gradient G  i( f ) = f - f - b

Morphological external gradient G  e( f ) = f + b - f

Gray Scale and Color Morphology 

Gray scale morphology is useful to synthesize and combine pixels into homogeneous intensity bands 

or regions with similar intensity values. Gray scale morphology can be used on individual color 

components to provide color morphology affecting hue, saturation, and color intensity in various color 

spaces. 

For gray scale morphology or color morphology, the basic operations are MIN, MAX, and 

MINMAX, where pixels above the MIN are changed to the same value and pixels below the MAX 

are changed to the same value, while pixels within the MINMAX range are changed to the same value. 

MIN and MAX are a form of thresholding, while MINMAX allows bands of pixel values to be 

coalesced into equal values forming a homogenous region. 

Morphology Optimizations and Refinements 

Besides simple morphology [9], there are other methods of morphological segmentation using 

adaptive methods [216–218]. Also, the MorphoLibJ package (also a plugin for imageJ FiJi) contains 

one of the most comprehensive and high quality suites of morphological methods including segmen-

tation, filtering, and labeling. The simple morphology methods rely on using a fixed kernel across the 

entire image at each pixel and assume the threshold is already applied to the image; while the adaptive 

methods combine the morphology operations with variable kernels and variable thresholds based on 

the local pixel intensity statistics. This allows the morphology to adapt to the local region intensity and, 

in some cases, produce better results. Auto-thresholding and adaptive thresholding methods are 

discussed later in this chapter and are illustrated in Figs. 2.24 and 2.26.
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Euclidean Distance Maps 

The distance map, or Euclidean distance map (EDM), converts each pixel in a binary image into the 

distance from each pixel to the nearest background pixel, so the EDM requires a binary image for 

input. The EDM is useful for segmentation, as shown in Fig. 2.18, where the EDM image is 

thresholded based on the EDM values—in this case, similar to the ERODE operator. 

Fig. 2.18 Preprocessing sequence: (Left) Image after thresholding and erosion. (Center) EDM showing gray levels 

corresponding to distance of pixel to black background. (Right) Simple binary thresholded EDM image 

Super-Pixel Segmentation 

A super-pixel segmentation method [219–221] attempts to collapse similar pixels in a local region into 

a larger super-pixel region of equal pixel value, so similar values are subsumed into the larger super-

pixel. Super-pixel methods are commonly used for digital photography applications to create a scaled 

or watercolor special effect. Super-pixel methods treat each pixel as a node in a graph, and edges 

between regions are determined based on the similarity of neighboring pixels and graph distance (see 

Fig. 2.19). 

Fig. 2.19 Comparison of various super-pixel segmentation methods. (Image # Dr. Radhakrishna Achanta, used by 

permission) 

Feature descriptors may be devised based on super-pixels, including super-pixel value histograms, 

shape factors of each polygon-shaped super-pixel, and spatial relationships of neighboring super-pixel 

values. Apparently little work has been done on super-pixel-based descriptors; however, the potential 

for several degrees of robustness and invariance seems good. We survey a range of super-pixel 

segmentation methods next.
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Graph-Based Super-Pixel Methods 

Graph-based methods structure pixels into trees based on the distance of the pixel from a centroid 

feature or edge feature for a region of like-valued pixels. The compute complexity varies depending on 

the method.

• SLIC Method [220] Simple Linear Iterative Clustering (SLIC) creates super-pixels based on a 5D 

space, including the CIE Lab color primaries and the XY pixel coordinates. The SLIC algorithm 

takes as input the desired number of super-pixels to generate and adapt well to both gray scale and 

RGB color images. The clustering distance function is related to the size of the desired number of 

super-pixels and uses a Euclidean distance function for grouping pixels into super-pixels.

• Normalized Cuts [222, 223] Uses a recursive region partitioning method based on local texture and 

region contours to create super-pixel regions.

• GS-FH Method [224] The graph-based Felzenszwalb and Huttenlocher method attempts to 

segment image regions using edges based on perceptual or psychological cues. This method uses 

the minimum length between pixels in the graph tree structure to create the super-pixel regions. The 

computational complexity is O(nLog n), which is relatively fast.

• SL Method [224] The Super-pixel Lattice (SL) method finds region boundaries within tiled image 

regions or strips of pixels using the graph cut method. 

Gradient-Ascent-Based Super-Pixel Methods 

Gradient ascent methods iteratively refine the super-pixel clusters to optimize the segmentation until 

convergence criteria are reached. These methods use a tree graph structure to associate pixels together 

according to some criteria, which in this case may be the RGB values or Cartesian coordinates of the 

pixels, and then a distance function or other function is applied to create regions. Since these are 

iterative methods, the performance can be slow.

• Mean-Shift [225] Works by registering off the region centroid based on a kernel-based mean 

smoothing approach to create regions of like pixels.

• Quick-Shift [223] Similar to the mean-shift method, but does not use a mean blur kernel and 

instead uses a distance function calculated from the graph structure based on RGB values and XY 

pixel coordinates.

• Watershed [226] Starts from local region pixel value minima points to find pixel value-based 

contour lines defining watersheds, or basin contours inside which similar pixel values can be 

substituted to create a homogeneous pixel value region.

• Turbopixels [210] Uses small circular seed points placed in a uniform grid across the image around 

which super-pixels are collected into assigned regions, and then the super-pixel boundaries are 

gradually expanded into the unassigned region, using a geometric flow method to expand the 

boundaries using controlled boundary value expansion criteria, so as to gather more pixels together 

into regions with fairly smooth and uniform geometric shape and size. 

Depth Segmentation 

Depth information, such as a depth map as shown in Fig. 2.20, is ideal for segmenting objects based on 

distance. Depth maps can be computed from a wide variety of depth sensors and methods, including a 

single camera, as discussed in Chap. 1. Depth cameras, such as the Microsoft Kinect camera, are 

becoming more common. A depth map is a 2D image or array, where each pixel value is the distance or 

Z value.
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Fig. 2.20 Depth images from Middlebury Data set: (Left) Original image. (Right) Corresponding depth image. (Data 

courtesy of Daniel Scharstein and used by permission) 

Many uncertainties in computer vision arise out of the problems in locating three-dimensional 

objects in a two-dimensional image array, so adding a depth map to the vision pipeline is a great asset. 

Using depth maps, images can be easily segmented into the foreground and background, as well as be 

able to segment-specific features or objects—for example, segmenting by simple depth thresholding. 

Depth maps are often very fuzzy and noisy, depending on the depth sensing method, so image 

preprocessing may be required. However, there is no perfect filtering method for depth map cleanup. 

Many practitioners prefer the bilateral filter [258] and variants, since it preserves local structure and 

does a better job of handling the edge transitions. 

Color Segmentation 

Sometimes color alone can be used to segment and threshold, and there are many methods to use color 

guidance to processing and segment the image, and we explore various color processing and segmen-

tation methods throughout this chapter. Using the right color component can easily filter out features 

from an image. For example, in Fig. 2.5, we started from a red channel image from an RGB set, and the 

goal was to segment out the USB sticks from the table background. Since the table is brown and 

contains a lot of red, the red channel provides useful contrast with the USB sticks allowing segmenta-

tion via red. It may be necessary to color-correct the image to get the best results, such as gamut 

corrections or boosting the hue or saturation of each color to accentuate difference. 

Thresholding 

The goal of thresholding is to segment the image at certain intensity levels to reveal features such as 

foreground, background, and specific objects. A variety of methods exist for thresholding, ranging 

from global to locally adaptive. In practice, thresholding is very difficult and often not satisfactory by 

itself and must be tuned for the dataset and combined with other preprocessing methods in the vision 

pipeline. 

One of the key problems in thresholding is nonuniform illumination, so applications that require 

thresholding, like cell biology and microscopy, pay special attention to cell preparation, specimen



spacing, and light placement. Since many images do not respond well to global thresholding involving 

simple methods, local methods are often required, which use the local pixel structure and statistical 

relationships to create effective thresholds. Both global and local adaptive methods for thresholding are 

discussed here. A threshold can take several forms:
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• Floor Lowest pixel intensity allowed

• Ceiling Highest pixel intensity allowed

• Ramp Shape of the pixel ramp between floor and ceiling, such as linear or log

• Point May be a binary threshold point with no floor, ceiling, or ramp 

Global Thresholding 

Thresholding entire images at a globally determined thresholding level is sometimes a good place to 

start to explore the image data, but typically local features will suffer and be unintelligible as a result. 

Thresholding can be improved using statistical methods to determine the best threshold levels. Lookup 

tables (LUT) can be constructed, guided by statistical moments to create the floor, ceiling, and ramps 

and the functions to perform rapid LUT processing on images, or false-color the images for 

visualization. 

Fig. 2.21 Histogram annotated with arrows showing peaks and valleys, and dotted lines showing regions of similar 

intensities defined using hysteresis thresholds 

Histogram Peaks and Valleys, and Hysteresis Thresholds 

Again we turn to the old stand-by, the image histogram. Peaks and valleys in the histogram may 

indicate thresholds useful for segmentation and thresholding [271]. A hysteresis region marks pixels 

with similar values and is easy to spot in the histogram, as shown in Fig. 2.21. Also, many image 

processing programs have interactive sliders to allow the threshold point and even regions to be set 

with the pointer device.1 Take some time and get to know the image data via the histogram and become 

familiar with using interactive thresholding methods. 

If there are no clear valleys between the histogram peaks, then establishing two thresholds, one on 

each side of the valley, is a way to define a region of hysteresis. Pixel values within the hysteresis

1 See the open-source package ImageJ2, and menu item Image → Adjust-Brightness/Contrast for interactive 

thresholding.



region are considered inside the object. Further, the pixels can be classified together as a region using 

the hysteresis range and morphology to ensure region connectivity.
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LUT Transforms, Contrast Remapping 

Simple lookup tables (LUTs) are very effective for contrast remapping and global thresholding, and 

interactive tools can be used to create the LUTs. Once the interactive experimentation has been used to 

find the best floor, ceiling, and ramp function, the LUTs can be generated into table data structures and 

used to set the thresholds in fast code. False-coloring the image using pseudo-color LUTs is common 

and quite valuable for understanding the thresholds in the data. Various LUT shapes and ramps can be 

devised. See Fig. 2.22 for an example using a linear ramp function. 

Fig. 2.22 Contrast corrections: (Left) Original image shows palm frond detail compressed into a narrow intensity range 

obscuring details. (Center) Global histogram equalization restores some detail. (Right) LUT remap function spreads the 

intensity values to a narrower range to reveal details of the palm fronds. The section of the histogram under the diagonal 

line is stretched to cover the full intensity range in the right image; other intensity regions are clipped. The contrast 

corrected image will yield more gradient information when processed with a gradient operator such as Sobel 

Histogram Equalization and Specification 

Histogram equalization spreads pixel values between a floor and ceiling using a contrast remapping 

function, with the goal of creating a histogram with approximately equal bin counts approaching a 

straight-line distribution (see Fig. 2.23). While this method works well for gray scale images, color 

images should be equalized in the intensity channel of a chosen color space, such as HSV 

V. Equalizing each RGB component separately and re-rendering will produce color moiré artifacts. 

Histogram equalization uses a fixed region and a fixed remapping for all pixels in the region; however, 

adaptive local histogram equalization methods are available [266].
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Fig. 2.23 (Left) Original image and histogram. (Right) Histogram equalized image and histogram 

It is possible to create a desired histogram shape or value distribution, referred to as histogram 

specification, and then remap all pixel values from the source image to conform to the specified 

histogram shape. The shape may be created directly, or else the histogram shape from a second image 

may be used to remap the source image to match the second image. With some image processing 

packages, the histogram specification may be interactive, and points on a curve may be placed and 

adjusted to create the desired histogram shape. 

Global Auto Thresholding 

Various methods have been devised to automatically find global thresholds based on statistical 

properties of the image histogram [440–442] and in most cases the results are not very good unless 

some image preprocessing precedes the auto thresholding. Table 2.4 provides a brief survey of auto 

thresholding methods, while Fig. 2.24 displays renderings of each method. 

Table 2.4 Selected few global auto-thresholding methods derived from basic histogram features [259] 

Method Description 

Default A variation of the IsoData method, also known as iterative intermeans 

Huang Huang’s method of using fuzzy thresholding 

Intermodes Iterative histogram smoothing 

IsoData Iterative pixel averaging of values above and below a threshold to derive a new threshold above the 

composite average 

Li Iterative cross-entropy thresholding 

MaxEntropy Kapur-Sahoo-Wong (Maximum Entropy) algorithm 

Mean Uses mean gray level as the threshold 

MinError Iterative method from Kittler and Illingworth to converge on a minimum error threshold 

Minimum Iterative histogram smoothing, assuming a bimodal histogram 

Moments Tsai’s thresholding algorithm intending to threshold and preserve the original image moments 

Otsu Otsu clustering algorithms to set local thresholds by minimizing variance 

Percentile Adapts the threshold based on preset allocations for foreground and background pixels 

RenyiEntropy Another entropy-based method 

Shanbhag Uses fuzzy set metrics to set the threshold 

Triangle Uses image histogram peak, assumes peak is not centered, sets threshold in largest region on either 

side of peak
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Fig. 2.24 Renderings of selected auto-thresholding methods. (Images generated using ImageJ auto threshold plug-ins 

[259]) 

Local Thresholding 

Local thresholding methods take input from the local pixel region and threshold each pixel separately. 

Here are some common and useful methods. 

Local Histogram Equalization 

Local histogram equalization divides the image into small blocks, such as 32 × 32 pixels, and computes 

a histogram for each block, then re-renders each block using histogram equalization. However, the 

contrast results may contain block artifacts corresponding to the chosen histogram block size. There 

are several variations for local histogram equalization, including Contrast Limited Adaptive Local 

Histogram Equalization (CLAHE) [260]. 

Integral Image Contrast Filters 

A histogram-related method uses integral images to compute local region statistics without the need to 

compute a histogram, then pixels are remapped accordingly, which is faster and achieves a similar 

effect as shown in Fig. 2.25.
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Fig. 2.25 Integral image filter from ImageJ to remap contrast in local regions, similar to histogram equalization: (Left) 

Original. (Center) 20 × 20 regions. (Right) 40 × 40 regions 

Local Auto Threshold Methods 

Local thresholding adapts the threshold based on the immediate area surrounding each target pixel in 

the image, so local thresholding is more like a standard area operation or filter [440–442]. Local auto 

thresholding methods are available in standard software packages.2 Figure 2.26 provides some 

example adaptive local thresholding methods, summarized in Table 2.5. 

Fig. 2.26 Renderings of a selected few local auto and local thresholding methods using ImageJ plug-ins [259] 

2 See the open-source package ImageJ2, menu item Image → Adjust → Auto Local Threshold | Auto Threshold.
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Table 2.5 Selected few local auto-thresholding methods [259] 

Method Description 

Bernsen Bernsen’s algorithm using circular windows instead of rectangles and local midgray values 

Mean Uses the local gray level mean as the threshold 

Median Uses the local gray level mean as the threshold 

MidGrey Uses the local area gray level mean—C (where C is a constant) 

Niblack Niblack’ s algorithm is: 

p = (p > mean + k * standard_deviation - c)? object:background 

Sauvola Sauvola’s variation of Niblack: 

p = (p > mean * (1 + k * (standard_deviation/r - 1)))? object:background 

DNN Segmentation 

Segmentation is another term for morphology: both are concerned with defining the boundaries of 

regions, or thinking in the inverse direction, segmentation groups associated pixels together under 

various criteria such as color or brightness. Several methods for segmentation exist. However, while 

older systems were primarily concerned with simpler segmentation and morphology methods, newer 

segmentation methods using deep learning have been developed which can divide an image into 

regions by assigning a class to each pixel as surveyed below also. 

A critical and fundamental part of the human visual system is segmentation, where the visual scene 

is divided into regions which are persistent in visual memory as we look around. The segmentation 

process is constantly happening—the visual system is continually adjusting the segmentation criteria 

according to the scene changes and according to the current attentional focus and goal for visual 

analysis. So, there are several segmentations under consideration concurrently at any one time in the 

visual cortex, apparently computed at different focal points and stored in short-term visual memory, at 

hand for visual analysis, and what-if queries by the central cortex reasoning executive.
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Fig. 2.27 The simultaneous variant granularity of segmentations kept at attention in short-term visual memory in the 

visual cortex for use by the central reasoning executive for what-if analysis and scene queries; super-pixel methods 

shown here 

Figure 2.27 shows several example simultaneous segmentations like those maintained in the visual 

cortex for each scene, each with different levels of detail and color focus. Each segmentation region 

may be further refocused and divided into subregions according to their task at hand, to locate 

particular objects, shapes, color, lighting, and combinations. 

Following along the lines of BERT, GPT, and large NLP foundation models, the Segment Anything 

Model [1011] from Kirillov et al. contains the largest collection of training images, with over 1 billion 

learned segmentation masks from 11 M training images. This work is a major milestone in segmenta-

tion and we urge readers to read the paper since we did not survey this method here. Various learning 

methods are described which enable zero-shot AML style learning and interpolations of new 

segmentations by interpolating between segmentations in the model, so new segmentations are learned 

on the fly. For more on AML, see The AI third wave: Continuous Learning and Multimodal Models 

and Associative Multimodal Learning (AML) Chap. 12. 

Segmentation: Semantic, Instance, Panoptic 

Segmentation can be described using different terms depending on the segmentation analysis goals. In 

one scenario, the goal is to assign each pixel to a class label and perhaps color each segmented region 

the same: this has been called semantic segmentation. Another goal is to delineate pixel regions



describing a particular object class to count them and perhaps color each instance separately, such as 

people or cars—this has been called instance segmentation. As shown in Fig. 2.28, Kirillov et al. [930] 

develop a method of combining semantic and instance segmentation into a single system, which they 

refer to as Panoptic segmentation, see Fig. 777. Several other panoptic segmentation systems have 

been proposed since Kirillov, for example a similar system is proposed by deGeus et al. [931]. 
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Fig. 2.28 The segmentation terminology. (Image (C) Kirillov et al. [930]) 

The term panoptic segmentation as defined by Kirillov et al. is intended to enlarge the scope of 

segmentation to better assist in scene analysis, by “including everything visible in one view” under the 

panoptic umbrella. As the authors state, panoptic becomes a more global view of segmentation, where 

every pixel in an image must be assigned to a class, and color-coded accordingly, including location 

and positional information of all segments. An evaluation metric is also suggested, Panoptic Quality 

(PQ), in order to evaluate the effectiveness of any given panoptic segmentation method, leading to the 

development of more and better methods by comparing PQ scores, which is a good idea. 

Note that since panoptic segmentation is a more recent term used by some practitioners to describe 

the combination of instance and semantic methods (*some practitioners do not use the term panoptic), 

the panoptic practitioners also propose to rename the other established segmentation terms to fit the 

panoptic distinctions, by renaming segmentation terms into the vernacular:  as  ‘things’ and ‘stuff’ .

Lst ¼ stuff : semantic segmentation, classes colored equally 

Lth ¼ things : instance segmentation, instances colored separately 

L ¼ Lst [ Lth ¼ things þ stuff ¼ panoptic segmentation
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Refer to Fig. 2.28 

Alternatively, 

thingsþ stuff ¼ pile *in the vernacular :ð Þ  

DNN architectures have been designed specifically to segment images using U-Nets which vary 

from the standard LeNet style as described in Chaps. 9 and 10. The computations resourced required 

for DNN segmentation are begging to be suitable for general use, approaching real-time use. We will 

survey some of the DNN segmentation methods here. 

U-Nets for Segmentation, W-Nets 

Possibly the most influential method for deep learning neural network segmentation came in 2015 with 

the U-Net method proposed by Ronneberger et al. [932] intended for biomedical image segmentation 

and cell biology. The U-Net is a symmetrical architecture; there is an input encoder which processes 

the input image to downscale features into scaled encodings, and an output decoder section which 

processes the input encodings by upscaling, using skip-connections to feed forward original pixel 

details. 

The U-Net architecture is a specialization of the encoder-decoder architecture. The U-Net, in some 

respects, acts like a like a multi-resolution image pixel feature compressor, which creates pixel feature 

embeddings at multiple resolutions, connected serially to a multilevel feature expander which decodes 

the feature embeddings at various resolutions to re-project into image space, reconstructing features at 

multiple levels of resolution. 

Fig. 2.29 The symmetrical U-Net architecture. (Image (C) 2015 Olaf Ronneberger et al. [932])
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The U-Net is divided into two halves as shown in Fig. 2.29:

• Encoder: The encoder is like a contracting down-sampler which reduces the resolution of the image 

to several levels in a set of progressively down-sampled feature layers. The features represent 

different levels of detail. Each level of detail is passed forward to the corresponding resolution in the 

decoder section using long skip connections, intended to preserve all frequency details for optimal 

resolution.

• Decoder: The decoder is like an expanding up-sampler which extrapolates new features, simulta-

neously increasing the feature resolution size while decreasing the feature size until it reaches a 

single pixel—the last layer of features created are a single pixel in size, at full image resolution. The 

new features are optimized by combining features in the decoder path at each level with 

corresponding features from the encoder for the same level of resolution. The encoder features 

are carried forward using the long skip-connections shown as gray arrows in Fig. 2.29. Features in 

the encoder path still retain higher resolution details which are lost in the decoder path due to down-

sampling, so both encoder and decoder features are combined to perform the final segmentation and 

up-sampling. The decoder up-sampling process continues until the full-sized image is represented at 

the pixel level in a segmented manner at full pixel resolution. The output includes a binary 

segmentation mask for each segmented region (0-pixel = not in region, 1-pixel = in region). 

Note that the encoder and decoder are symmetrical with respect to image resolution: the idea is to 

encode at multiple resolutions, and then decode to reconstruct each learned and encoded pixel feature 

at each level of higher resolution until the image is reconstructed at the final resolution (input 

resolution = output resolution). 

The decoder stage is where the encoded image is translated into the segmentation map. For each 

layer, skip connections carry and crop the encoded image at the corresponding input layer and 

resolution across the U-Net in the corresponding resolution decoder stage—the skip value is linearly 

combined with the result passed forward from the prior segmentation decoder layer; the intuition is that 

the combination of values will smooth out disturbances and spikes in the data, since the original 

encoded data would otherwise be lost. 

Until the model is completely trained, the binary segmentation masks will have problems such as 

broken or incomplete borders around some pixel regions. The U-Net training process includes a cross-

entropy loss function which produced weights to prioritize the importance of pixels when creating the 

masks. The masks are trained by comparing the ground truth masks with learned masks, using the loss 

parameter to tune parameters successively for each training sample, until the mask accuracy is optimal. 

The U-Net authors use a training process incorporating data augmentation to add more samples to 

the training set. The augmentations chosen should be realistic in terms of the type of images used for 

the segmentation application, and for the original medical apps tested against the U-Net, 

augmentations included affine transforms like rotation, scaling, and shifting, as well as gray scale 

modifications for contrast and brightness, and random and random elastic deformations which are 

especially useful in medical images because (to put it colloquially) biological samples are often 

“squishy,” meaning that the outputs of the elastic deformations are still “realistic.” 

See the General Robustness Taxonomy section in Chap. 5 for details on data augmentation 

methods, as well as Chap. 7, Fig. 7.1. 

Major features of U-Net and key intuitions are summarized here.

• U-Net combines a contracting path of down-sampled resolution and a symmetric up-sampling path 

to enable precise pixel locations to be grouped semantically.

• U-Net is designed to avoid losing resolution and high frequency detail, as seen in the typical CNN 

pooling layers that reduce resolution, since typical CNN’s funnel all data down in resolution to a
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final FC layer (see Chap. 9) which has no WHERE information <x,y coordinates>, just WHAT 

information (i.e., learned features representing kernel functions). CNN’s models and FC classifiers 

do not contain any positional information—they produce and operate on position-less puzzle 

pieces.

• U-Net replaces the pooling layers with up-sampling layers using transpose convolution to 

up-sample and increase resolution in the decoder path, see Fig. 2.29.

• Long skip-connections are used to pass down-sampled features across several layers of the U-Net to 

carry forward resolution detail to the decoding stage to preserve detail. See Drozdzal et al. [934] for 

more details on long skip connections.

• The encoder makes something analogous to spatially condensed super-pixels; the decoder 

EXPANDS super-pixels incorporating the resolution detail from the encoder.

• The original use of short skip-connections (ResNets He et al. 2015 surveyed in Chap. 10) was for 

fixing problems with gradient descent training when near-zero values would otherwise be encoun-

tered, so short skip-connections bypassing a single layer fixed the problem by “passing over a weak 

connection” and propagating values forward that would otherwise be lost. The short skip-

connections smooth out the basin of attraction during gradient descent computations by eliminating 

near-zero values that act as transients.

• The U-Net operates on arbitrary sized images; this is very different and a major innovation 

compared to typical CNN’s which use a fixed-size input image pipeline for both training and 

inference.

• U-Net can be trained on small datasets, which is also a major advantage, and a departure from the 

huge training sets often used to train DNN’s. To augment the training set, training data are 

augmented using image augmentations including elastic deformations to introduce specific invari-

ance into the model. 

As shown in Fig. 2.29, the image input stage (the encoder stage) on the left carries full resolution 

image tiles which are processed and passed on to the next layer. Each layer is convolutionally 

processed using 3 × 3 convolution and weight matrices and RELU, then down-sampled 2× using a 

max pool layer (shown as a red arrow) prior to passing the image tiles forward to the next layer (see 

Fig. 2.31). 

The up-convolution shown by the 2 × 2 green arrows in the decoder stage up-samples the image 

using transposed convolution, as shown in Fig. 2.30, to be inversely symmetric with the corresponding 

max-pool down-sampling in the input encoder layer—to simulate higher image resolution to be 

combined with the skip-connection data. To understand transposed convolution with a 3 × 3 kernel 

example, we point out that a normal 2d convolution (without image padding) with stride 1 reduces the 

image output size by removing a single row from the top, bottom, and a single column from the left and 

right edges of the image (n = 2), while a 2 × 2 convolution only removes one row and one column from 

the output (n - 1). So, transposed convolution performs the inverse, to add the lost outer perimeter 

rows/columns back into the output image by using a rearrangement of the kernel by adding zeros to 

pad the output and make it larger (see Fig. 2.30).
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Fig. 2.30 Transpose Convolution to up-sample an image. This example uses an up-sampling stride of 2 and a 2 × 2 

kernel, the transpose method is like an inverse convolution that pads the image in order to fill-in image details from small 

to large—normal convolution makes the image smaller by 1 row and 1 column for a 2 × 2 kernel size 

U-Net outperforms previous segmentation methods on a variety of benchmarks, has become a 

standard go-to architecture for segmentation, and has been extended and improved by several 

researchers. For example, the UNet++ version uses a redesigned skip connection method to connect 

a set of several shallow independent U-Nets at the same resolution via the redesigned skip connections. 

The U-Net has also been extended to cover 3D segmentation—for details see Çiçek et al. [933]. W-Net 

[991] from Wu et al. is another U-Net variant, which improves on the U-Net embeddings by passing 

them forward to a second stage U-Net for pixel embedding learning. The resulting architecture 

contains two sequentially connected U-Nets, so the resulting network is W-shaped. The second 

stage U-Net learns pixel embeddings, improving from the first stage using a distance regression 

model to create additional distance embeddings, which are concatenated onto the first stage pixel 

embeddings, which promotes faster clustering of similar pixel embeddings. 

U-Nets are a very successful architecture, developed and modified for a range of applications 

besides segmentation. For a taxonomy and review of U-Net variants, including volumetric 3D U-Nets, 

see Azad et al. [935] (Fig. 2.31). 

Fig. 2.31 U-Net Segmentation results showing pairs of ground truth reference images and segmented images: ground 

truth (a, c) and segmentation results (b, d). (Image (C) 2015 Olaf Ronneberger et al. [932])
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CNN Segmentation Methods 

Convolutional neural networks using FFN architectures were used for successful segmentation 

systems prior to the U-Net and provided some inspiration. (For details on CNN and FNN 

architectures, see Chaps. 9 and 10.) U-Net is currently among the most effective methods for 

CNN-based segmentation. 

Segmentation is a form of region proposal. Typically, segmentation algorithms either scan the 

image multiple times to locate objects for segmentation in several passes, or else find a way to locate 

regions and detect objects in one pass. For some segmentation algorithm, object detection guides 

segmentation. 

CNN segmentation algorithms try to identify all pixels that are part of the detected object class. For 

example, if a car is detected, all the pixels contained on the car will be segmented together into a group. 

However, the algorithmic details of how each pixel is assigned to the detected class vary with each 

segmentation method and are outside the scope if this survey. But at a high level, the classifier section 

of the DNN first detects the class object as a set of features in a set of feature maps of learned features, 

then the pixels in each detected feature matching the class are identified positionally by mapping 

backwards from the detected feature maps to the actual positions in the image where the feature is 

found. This method is not fool proof, since occlusion and other problems might prevent each pixel 

from being properly assigned to the detected class, but it works well enough most of the time. 

We survey CN region proposal methods and segmentation methods in the following sections. 

One earlier segmentation example is the FCN Segmentation Network developed by Long et al. 

[936], which is a feed-forward neural network architecture. Another more recent example of CNN 

segmentation approach is the Mask RCNN from He et al. [937] which creates mask proposals for 

analysis. We will briefly review both methods in later sections. We will also look at the history of CNN 

segmentation methods next, including a very brief survey of a few key innovations along the way. 

CNN Segmentation History 

Here we briefly review the historical progression of segmentation methods, from the earliest FCN 

method, through RCNN methods, and finally on to Mask RCNN, one of the most recent accepted 

methods. 

To start, the FCN method from Long et al. 2014 [936] was likely the first FFN to be devised for 

pixel-level segmentation, capable of assigning a class label to each pixel in an image. We survey FCN 

in more details later. 

Next, RCNN from Girshick [937] generates rough segmentations or sub-segmentations from the 

image as candidate regions, combining similar regions together into larger regions to represent the 

final candidate region proposals—2000 regions were generated as the default. The main idea is that the 

RCNN learns features via standard CNN gradient descent training, and then feeds the features to an 

SVM classifier to locate target objects, with refinements to accurately create the four-coordinates <x,y, 

dx,dy> of the bounding boxes localizing the objects. The candidate search algorithm is hard-coded, not 

learned. 

Next, Girshick, Ren, He, and Sun made improvements to RCNN called Fast R-CNN [938], which 

generated the region proposals directly from the CNN model feature map at a fixed size to feed into an 

FC layer for softmax classification, replacing the SVN classification.
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Next, Ren, Girshick et al. [939] improved his own Fast R-CNN by devising the FASTER R-CNN 

method to directly generate region proposals without needing to separately generate the 2000 region 

proposals as in FAST-RCNN. 

Finally, the most recent method we review is Mask RCNN from He et al. [937], which is further an 

optimization of Faster R-CNN method from Girshick, Ren et al. [939], based on earlier work on FAST-

RCNN and RCNN. We survey Mask RCNN in more details later. 

FCN Segmentation Method 

The FCN segmentation network from Long et al. [936] was likely the first FFN to be devised for pixel-

level segmentation, capable of assigning a class label to each pixel in an image. FCN is an end-to-end 

solution to segmentation and does not require pre- or postprocessing steps, such as supervised 

pretraining, or precomputing superpixels or region proposals as other existing methods. 

FCN was informed from the best earlier work in CNN architectures available in 2014, such as 

AlexNet, VGG-Net, and GoogLeNet, see Chap. 10 for details on these CNN’s and others. 

CNN’s learn features at a coarse granularity, due to the size limitations of the input images, and also 

due to the strides taken from input resolution to final layers, which can be 10× or more coarser than the 

input layer. To overcome the loss of resolution and positional accuracy, FCN also used a novel skip 

connection method to combine various levels of pixel granularity from coarse to fine, deep, and 

shallow, to preserve appearance details at each resolution in the network to generate accurate details 

for each pixel <x,y coordinate>, and also to preserve pixel positional accuracy for creating the 

segmentation boundaries. 

Other key findings from the FCN research include:

• The authors experimented with methods for preserving spatial resolution and pixel positions in the 

areas of pooling, stride, and convolutional filter size; the design reflects the key learnings.

• Also, training data augmentation by jittering at the pixel level was tried but produced no noticeable 

improvement.

• Also, training on a grid of larger overlapping image patches (i.e., patch sampling) produced no 

significant improvement over whole-image training. 

The FCN was the first successful FNN method for training pixel-level classification for segmenta-

tion using a single FNN and achieved excellent benchmark results for its time. 

Mask RCNN Method 

Mask RCNN from He et al. [937] combines the best of Faster RCNN and FAST RCCN, and RNN in 

one architecture. MASK-RCN is both a region proposal method for generating masks and a segmen-

tation method combined; realized as polygon-shaped regions segmentations containing all pixels in an 

object from a trained class. 

Mask R-CNN adds a branch prediction feature to generate object masks that run in parallel with the 

bounding box predictor. The objects in the image and the segmentation masks are detected simulta-

neously. Mask R-CNN is simpler to generalize to incorporate other object description tasks, such as 

pose estimation, in the same network. The reported benchmark scores for the 2016 COCO challenge 

outperformed all other methods.
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Region Proposals, Rectangular, Segmented Polygon Regions 

Note that segmentation is a method of generating polygon-shaped region proposals; other methods for 

object detection commonly generate rectangular region proposals; rectangular regions and polygonal 

regions each have the applications. 

Region proposals can be generated with or without DNN’s, using other methods for segmentation 

and morphology, which we discuss in this chapter as well as Chap. 6. However, DNN methods for 

region proposal generation have proliferated with available computer power and larger training sets. 

Segmentation methods and morphology can use regional proposal networks, otherwise referred to 

as object detection networks, which may generate either polygonal regions, or more commonly 

rectangular bounding box regions. 

Masks or region proposals, commonly implemented as bounding boxes around objects like people 

or cars, are fundamental methods of object detection: the regions grossly segment an image into 

collections of overlapping regions of interest, which can be fed forward to various region analysis 

networks for object analysis tasks, such as pose analysis of human shapes and joints, or position and 

orientation analysis of vehicles in self-driving car systems. 

Optimizations to the CNN-based region proposal methods exist under one-shot and two-shot 

detector methods. YOLO and SSD use a single-pass through the CNN to detect and segment objects 

in one shot, while RCNN, FCN, and Mask RCNN use a two-pass method: the first pass generates the 

region proposals, the second pass detects objects within the proposed regions. We survey each of these 

methods in more detail below. 

Object Detectors and Object Descriptors 

In the context of segmentation using CNN neural networks, note that RCNN, Fast-CNN, and Faster-

CNN are multi-shot object detectors, each generating rectangular object region proposals which can be 

used for object detection, rather than segmentation, since segmentation is another type of region 

proposal for object detection: a polygon-shaped region proposal. Each of the CNN networks is trained 

on a dataset, such as Imagenet or COCO, and can detect objects in the training set, then create a 

bounding box around the objects, as well as classify each pixel detected for the object class. 

NOTE: Besides CNN methods of segmentation and object detection such as RCNN, object 

detection and object description are generic terms applied across diverse computer vision methods. 

Note that in this chapter we survey a wide range of basic color-based segmentation methods, and in 

Chap. 6, we survey many methods of detecting objects without CNN’s. 

For example, see Fig. 6.31 and Chap. 6; polygon-shaped descriptors used for particle analysis, 

which uses a perimeter-following detector algorithm to segment regions of specific pixel values (such 

as binary segmentation) or sets of pixel values within the range [n. . .m] to isolate a group of pixels. 

Also, many other methods of object detection and segmentation can be found in this chapter. Here we 

put segmentation region proposals into the context of generic object detectors. Note that one method 

for object detection uses a combination of Interest Point Detectors like FAST and Harris methods and 

Feature Descriptors like SURF and SIFT to describe the regions surrounding the interest points. 

For machine learning methods using neural networks, often the object detector finds regions of 

pixels within rectangular grids, while the object feature is a DNN learned feature trained on multiple 

samples used together with some trained classifier such as a FC Softmax or SVM. Either way, we have 

the same paradigm for detectors (Table 2.6): 

Object Detectors: learned—OR handcrafted mathematically described 

Object Descriptors: learned—OR handcrafted mathematically described 

Segmentation: can use Object Detectors or Object Descriptors
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Table 2.6 The concepts of feature learning vs. handcrafted feature description; for more, see Chap. 6; Interest Point 

Detector and Feature Descriptor Survey 

Interest Point Detector

• Mathematical

• Positional Detector 

Feature Descriptor

• Handcrafted

• Surrounds Interest Point 

Object Detector

• Learned by CNN

• Positional Detector 

Object Features

• Trained by CNN

• Learned Descriptor Set 

Laplace 

Moravic 

Harris 

Hessian 

FAST 

SUSAN 

. . .  

Perimeter-Followers 

Color Segmentation 

. . .  

SIFT 

SIFT-PCA 

SURF 

BRISK 

FREAK 

. . .  

Histograms 

. . .  

One Stage Detectors

• YOLO

• SSD 

Two Stage Detectors

• RCNN

• FCN

• MaskRCNN 

CNN 

Transformer 

Object detectors are a commodity item. Many pretrained object detector models are available from 

open source github and public ONYX models, and available from major companies such as Apple, 

Google, OpenAI, Microsoft, Meta, and more. Pretrained object models are available for applications 

such as human body analysis (20 or more body joints for activity analysis), facial expression points 

(30 or more points for emotion and age recognition), and hand models (includes 20 or more points for 

hand/finger joint detection), self-driving car applications (detect cars, signs, people, . . .), animal 

detection, and more. Next we will look at various single-shot region proposal methods and the various 

search strategies to find them (i.e., object detectors), particularly those used for segmentation. 

Single Shot Object Detection: SDD and YOLO 

Single Shot Object Detection (SSD) methods make predictions about the presence or absence of 

objects within a region of the image in a single-pass, by objects from trained object classes such as 

Imagenet. The end goal is to devise an object detection image search strategy that is effective under 

various constraints, and that can be optimized. 

Here we discuss single-pass detectors in general, then we provide more detailed surveys of two 

specific one-shot methods:

• YOLO from Redmon et al. [941].

• SSD Single Shot Multibox Detector [942] by Liu et al. 

Single-shot detectors, like two-shot or multi-shot detectors, assign all relevant pixels in the image to 

the detected class object and create a bounding box around the region and optionally label the region. 

The single-pass operation makes SSD computationally efficient. However, single shot detectors can be 

less accurate for detecting smaller image objects due to the internal algorithm used to subdivide the 

image into a set of smaller grid regions, each of which can be searched separately but may some 

objects. 

Instead of using sliding window, single-shot methods in this survey divide the image using a grid, 

where each grid cell is processed separately by the detector. Detection of objects simply means 

predicting the class and location of an object within each grid cell region by passing the grid section 

into the CNN. 

Since objects may overlap the hard grid cell regions, the term “anchor box” is often used to describe 

the offsets for overlapping boxes crossing grid cells to locate objects that span grid cells. Also, an



aspect ratio prior is defined in the object detection framework to account for objects that may have a 

slightly different pixel aspect ratio due to affine deformation (i.e., warped shapes), so objects may be 

recognized under affine deformations. Also, a zoom level range prior can be used to find objects closer 

or farther away, or just different sized. 

CNN Segmentation Methods 83

NOTE: YOLO and SSD are not the first methods to devise novel search single-pass strategies— 

similar methods have been employed in computer vision for treatment of object scales, occlusion of 

objects, and other issues. To dig deeper into search strategies, see Chap. 3, Search Strategies and 

Optimizations. Also, see The SWiN transformer (Chap. 11) which also divides the input image space 

into a hierarchical multi-scale grid of cells for both feature learning and object detection, using a 

shifted window approach to traverse and overlap between the grid cells. 

Single-shot detector inference scores are not always correct, mostly due to the grid size restrictions, 

and are subject to image scale problems, occlusion, and partial overlap of objects between grid regions. 

However, grids are preferred over sliding window style detectors like CNN style n × n template masks, 

which do not allow for partial object detection outside the n × n region—the entire object must be 

present inside the n × n template mask for a solid correlation match. 

SSD 

The SSD segmentation method by Liu et al. [942] is a one-shot approach using an FFN. The SSD 

architecture includes a backbone with a VGG-16 section followed by a set of additional layers at the 

end of the backbone, which predict alignment offsets and rectangular regions for different scales and 

offsets of the best scoring regions. Also, the detector uses multiple feature map scales that represent 

different resolutions for multi-scale detection. 

Fig. 2.32 The SSD architecture, composed of a VGG-16 network followed by added layers for region alignment of the 

best scoring objects. (Image (C) Liu et al. [942], courtesy Springer ECCV) 

As shown in Fig. 2.32, convolutional feature layers are added to the end of the truncated VGG 

backbone, each added layer being progressively lower resolution to allow multi-scale predictions. SSD 

predicts feature matches at multiple scales, and this is a key innovation compared to other detectors that 

operate on a single resolution of features. 

SSD eliminates the tedious proposal generation stages and pixel/feature resampling stages of multi-

pass methods by combining all computations in a one-pass network approach to optimize computer 

performance, which also simplifies training, which only requires the input image and corresponding 

default ground truth boxes for each image. For each box, the shape and offset and confidence scores are 

predicted for all object classes in the trained model.
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YOLO 

The YOLO method (You Only Look Once) from Redmon et al. [941] is an optimized feature detector 

which has influenced much follow-on research into subsequent improvements and versions (YOLO 

versions 1–12 at least). Both low-power and highly performant versions of the code have been 

developed in various versions using C++ and Python, running on CPU, or parallelized for GPU’s. 

The code versions are mostly open-sourced. 

Until YOLO, detectors worked by sequentially operating on regions of the image searching for 

targets—several sequential searches (look many times). However, YOLO instead parallelized the 

detector search, so the image was only searched once (you only look once). YOLO divides the 

image into search regions and predicts one or more bounding boxes within the regions, and scores 

the detections in each bounding box with a probabilistic weighting. So, YOLO developed an optimized 

approach for subsequent detectors to follow. 

YOLO’s regional grid search method provides clear performance and classification advantages over 

other detectors using single classifier CNN’s that require hundreds or thousands of sequential 

predictions over the entire image. And YOLO looks at the entire image in a global context all at 

once inside each grid (which is simple to parallelize in software on GPU’s), enabling a faster, simpler, 

and intuitive method of comparing detection scores over the grid regions across the entire image, 

providing a global context to the classifier (see Fig. 2.33). 

Here, we will survey and refer to the latest version of YOLO-7 and omit the history of progressive 

developments and improvements since the inception in 2015. YOLO uses a single-shot detector using 

a fully convolutional neural network (CNN) to process an image. YOLO is not like the other region 

detectors in the RCNN family, so we will dig into the differences below. YOLO can provide a 

classification score for up to 9000 trained classes within a grid of image regions in a single pass and 

can operate in real-time on the right hardware. 

Fig. 2.33 Key concepts of YOLO: S×S grid applied to image for detector searching; Class probability map generated by 

detector search shows strongest class similarity grid cells; Bounding box candidates generated from grid cells; Final 

detections showing regions of highest scoring classes with generated bounding boxes. (Image (C) Joseph Redmon et al. 

[941], courtesy Springer and CVPR)
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YOLO version YOLO 9000 has demonstrated superior results by being trained jointly on a 

combination of Imagenet and COCO training data—this provides about 9000 trained object classes, 

giving YOLO the ability to detect objects in each class, and also to detect objects with no labeled 

training data at a high probability which fall outside or in between the 9000 trained classes (i.e., multi-

class interpolation or zero-shot learning). 

First, YOLO splits the input image into a search grid, and then assigns each grid region a set of 

n subregional bounding boxes in the grid. Each bounding box is evaluated with the class detectors and 

assigned a classification score after validation against a scoring threshold value; object scores exceed-

ing the threshold are considered detected. YOLO-7 can process 608 × 608 pixel images, runs very fast 

compared to most methods, and can operate up to 155 frames per second when using a GPU 

accelerator, but runs slower on low-power devises like phones. 

Like other grid-search methods, YOLO struggles with common detection problems such as small 

objects, i.e., objects at extreme scales, occlusion, and objects with lighting and color variations. 

To deal with object size variations, YOLO developed a set of default bounding boxes with varying 

scales and aspect ratios, to use along with predicted offsets inside the boxes for evaluating objects 

detected at various positions inside the bounding boxes. The end result is better handling of multiple 

scales and aspect ratios. The SSD method, surveyed earlier, uses a similar strategy. 

Two-Shot Object Detection 

Two steps are used for two-shot object detection: (1) create positional proposals for where objects may 

be located, usually rectangular proposal regions, (2) refine the proposals and make prediction scores 

for each proposal region. Two-shot object detection and prediction can be more accurate than single-

shot detectors, and more computationally expensive since several passes over the image must be made, 

with one inference pass through the network for each region to create a final score. 

Examples of two-shot detectors include those surveyed already above: CFN, RCNN, Fast-RCNN, 

Faster-RCNN, MASK RCNN. 

Segmented Region Descriptors: Color and Texture 

Note that a segmented region can be used as the basis for computing a feature descriptor for object 

detection, rather than relying on a CNN to learn the features. After the image is segmented into regions, 

each region can be described by various metrics and statistics, useful for object detection and 

description. To dig deeper into research on segmented regions, see Synthetic Vision by Scott 

Krig [476]. 

According to Krig, using a wide set of segmentations taken under various parameters to yield 

several segmentations of the same region that are not on a grid is optimal, to simulate visual saccading 

of the human eye. Then using a common set of feature description metrics, all regions are described, 

believed to be the optimum approach to using segmentations for object detection and description, 

rather than relying on a single segmentation algorithm as is the case for the CNN methods we surveyed 

above. Many overlapping segmentations are needed to model the human visual system, since segmen-

tation results vary widely and none are optimum (see Figs. 2.34 and 2.35).
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Fig. 2.34 Examples of segmentation using different parameters for the same region. The differences are due to the 

image preprocessing and segmentation algorithm used. NOTE: several segmentation methods and parameters should be 

used together on the same image for best analysis, no single segmentation method is optimal for all scenes. (Image 

(C) Scott Krig [476]) 

Fig. 2.35 The centroid of region segments can be used in devising feature descriptors which associate segmented 

regions together into a whole object, as this set of images shows segmentation at a low and a higher level of granularity, 

with lines connecting the centroids of related regions containing a squirrel. (Image (C) Scott Krig [476]) 

Color descriptors of segmented regions are valuable for object detection and description, as 

illustrated in Figs. 2.36 and 2.37, illustrating texture description concepts using a color descriptor 

for each pixel within a segmented textured region, quantized at different RGB resolutions. For 

example, each pixel is a segmented region that is used to describe texture metrics or color metrics, 

useful for object description or object detection. 

Fig. 2.36 6D ([x, x - 1], [y, y - 1], [z, z - 1],R,G,B) Spatial Dependency Matrices (SDM) at different quantization 

levels (i.e., different pixel group size) shown as lighted, shaded 3D volume surface renderings, revealing local texture of 

all pixels in a polygonal region. Renderings are quantized at varying RGB color bit resolutions which segment the pixels 

and collapse similar pixel values together: left to right, SDM projected from 2-bit, 3-bit, 4-bit, 5-bit, 8-bit resolutions. 

(Image (C) Scott Krig [476]. For details on Spatial Dependency Matrices see Chap. 3, Co-occurrence Matrix, Haralick 

Features, and Fig. 3.7)



Illumination Estimation and Color Corrections for Segmentation 87

Fig. 2.37 3D volume projections (R,G,B) of pixels in a local polygonal region as unshaded transparent volume 

renderings of local RGB texture information from segmented regions, assigning x,y,z values to r,g,b color intensity 

values. (Image (C) Scott Krig [476]) 

Illumination Estimation and Color Corrections for Segmentation 

To create accurate segmentations, color properties of the image are crucial. Color estimations and 

subsequent colorimetrically accurate corrections may be necessary, see also Chap. 2 Fig. 2.8, and also 

Chap. 2 section “Illuminants, White Point, Black Point, and Neutral Axis” for relevant discussions. 

Here we survey a few topics and methods for color corrections including:

• Illumination estimation (i.e., light color) which is color-channel aware (i.e., RGB, Luv, etc.)

• Illuminant-based estimations (surface color) which treat color channels separately 

Dongliang et al. [943] develop an approach that is able to detect two (2) distinct light illuminations by 

the surface of an image and also provides a method to accurately measure the illuminants on the surface, 

allowing for the white balance across the neutral axis to be corrected. The method uses a novel approach 

of measuring the color space on large image subregions, rather than across the entire image (see 

Fig. 2.38). So, illumination is detected specifically for local features, rather than attempting to estimate 

the illumination value across the whole image—good idea. Note that this method does not attempt to treat 

illumination and shadow separately; however, shadows merit separate modeling and treatment. 

Fig. 2.38 The corrected illumination white balance across the neutral axis. (Image (C) Dongliang et al. [943], courtesy 

Springer and CVPR)
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When the two illuminants are estimated under the Dongliang model, they are treated separately and 

not combined together and used to correct the sub-images, which is a logical next step for this line of 

correction. However, a user preference is provided to choose one of the illuminants to apply to the 

entire image, so the user preference determines what is correct and pleasing. Future work along these 

lines could include a deep learning method trained using image statistics from each subregion 

compared to the proposed illumination corrections to learn the perceptual preferences, assuming 

such a dataset is devised. 

For related work on illumination estimation, see Lin [944]. For an overview of Single Image Depth 

Estimation which influences illumination estimation, see Mertan et al. [945]. For color estimations for 

separate color channels which is combined for final color estimation and corrections, see Laakom 

et al. [946]. 

Color Quantization 

Color Quantization is intended to reduce the number of colors in an image to an essential set of colors 

to represent the image, such as reducing an 24-bit RGB image into a color image having perhaps 

256 most popular actual colors. Many methods exist to accomplish the color reduction goal. By 

representing the image using fewer colors (a) compression is achieved, and (b) a form of color 

segmentation is achieved by mapping all pixel values to their closest essential color (Fig. 2.39).
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Fig. 2.39 RGB Bit Quantization: color images shown using reduced color bit depth. Top left: 2-bits per RGB color 

(4 values for each color), top right: 3-bits per RGB color (8 values for each color), bottom left: 4-bits per RGB color 

(16 values for each color), bottom right: 5-bits per RGB color (32 values for each color). Note that 5-bit color is often 

virtually indistinguishable from 8-bit color. (Image (C) Scott Krig [476]) 

History of Color Quantization Here is a bit of display monitor history contributing to color 

quantization research. In the early days of color monitors and frame buffers during the 1970s and 

1980s, using only 8-bits to contain all RGB colors was common, since 24-bit color with 8 bits for each 

RGB color was not affordable due to the memory cost. Color display monitors were large, heavy 

vacuum tube devices—there were no LCD displays. Like today, the monitor and display hardware is 

the most costly part of the system. Early 24-bit full-color frame buffers using 8-bits per each RGB color 

(8-8-8 = 24) were unaffordable to all except the government-funded elite scientists and engineers, so a 

color frame buffer memory with 931,600 bytes for a 640 × 480 image was not cheap and very 

impressive.



90 2 Image Preprocessing, Morphology, Segmentation, Colorimetry

Therefore, color popularity and color quantization methods were developed to display 24-bit color 

images reduced into 3-3-2 RGB color using only 8-bits for the frame buffer, 3-bits for red, 3 for green, 

and 2 for blue. 

Fig. 2.40 An early 8-bit frame buffer architecture supporting 3-3-2 and 2-2-2 RGB color by mapping separate fields of 

an 8-bit pixel to separate RGB LUT’s (lookup tables) for pixel display. NOTE: Imaging Technology Inc. was one such 

company in the 1980s 

So as shown in Fig. 2.40, some frame buffers such as those from Imaging Technology Inc. (early 

1980s) provided an 8-bit color frame buffer using separate 8-bit RGB LUT’s (256 values for each RGB 

lookup table) to support 24-bit RGB color as three separate 3-bit or 2-bit colors, where 3-3-2 color 

(3-bit red, 3-bits green, and 2-bits blue) was into the top bits of the 8-bit of each LUT’s, or else 2-2-2 

color using 2-bits for each R,G,B was mapped into the 8-bit LUT’s. 

We survey a few Color Compression and Color Popularity methods in the next section, which are 

more accurate than simple bit mappings such as 3-3-2 to reduce color resolution into more acceptable 

and realistic colors. 

Color Compression and Color Popularity 

Color compression can be used to reduce the displayed colors down into a smaller set.
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We only survey color representation topics at a high level. To dig deeper into color quantization 

methods, see Heckbert [947], and [948–950]. See also Learning to Structure an Image with Few 

Colors, Hou et al. [952]. 

Various methods exist to reduce the color space, see Fig. 2.41 for an example of the Median Cut 

method by Heckbert [947]. 

One method of color compression is color popularity, which creates a histogram of all colors used 

and selects perhaps the top 256 colors from the histogram as their color set. Then, actual 24-bit pixels 

in an image region are replaced by the nearest color value in the reduced color space, such as the color 

popularity histogram list method, or even a standard color set of perhaps 2000 chosen values. The final 

step is to replace the existing 8-8-8 RGB pixel colors with the most popular colors that are colorimet-

rically close to the original values in the color list, using simple distance functions to find color 

similarity, such as SSD or SAD. 

Note that colors can be quantized to any bit depth prior to finding popularity, since often too much 

color resolution is counter-productive—for basic analysis it may be best perhaps to stick with 5 bits or 

8-bits per RGB component (see Figs. 2.41, 2.42, 2.43, and 2.44). 

Color resolution itself may be used to reduce the color space, for example, the 24-bit color 

resolution of values 0×8fR 0×6cG 0×40B can be replaced with the color 0×80R 0×70G 0×40B and 

be visually close enough. Replacing all pixel values with the nearest value in a Standard Color Map of 

an arbitrary number of values such as 2000 unique colors may also be sufficient (see Fig. 2.39). 

Color quantization is another method, which reduces the bit resolution of each color from 8-8-8 

RGB to 5-5-5 RGB as a first step, and then each reduced resolution 5-5-5 RGB color is mapped to find 

the closest 8-8-8RGB popularity colors. 

According to Heckbert [947], here are a few common color popularity methods.

• The MEDIAN_CUT method creates a 3D color cube RGB histogram and then splits the cube space 

into smaller sub-cubes representing cubic color clusters. The final color for each cube is a centroid 

or average value of all the colors assigned to the sub-cube.

• The POPULARITY_LIST method actually starts from a list of all RGB colors in the 2D genome 

region and then sorts the colors into a list of the most popular colors and replaces colors outside the 

list with the closest color from the list.

• The K-MEANS_CLUSTERING method produces clusters of similar colors.
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Fig. 2.41 Color analysis illustration: (left) a 2D image region with predominantly green and reddish tints, and (right) the 

3D volume RGB color space distribution shown for the median cut algorithm to identify the 256 most popular colors. 

(Image (C) Scott Krig [476]) 

For segmented region color popularity comparison, two regions are run separately through the 

popularity algorithm, producing two color maps and percentage arrays. Then, the color maps and 

percentages can be compared using one of the several novel color distance functions described by Krig 

[476] as shown below, including parameters to control all color distance functionality.
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Fig. 2.42 Comparison of 5-bit color input to both MEDIAN_CUT (5M) and POPULARITY_LIST methods (5P); both 

methods produce similar results. The legend shows 24 rows, each row either MEDIAN_CUT (5M = 5-bits Median Cut) 

or POPULARITY (5P = 5-bits Popularity) color maps for the input images (raw, sharped, and retinex-sharpened) with 

color leveling applied for raw, saturation boost, Lab constant, and centered spaces, for details on the images and the color 

processing algorithms used see Krig [476]. (Image (C) Scott Krig [476])
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Fig. 2.43 Segmented regions in RGB color, which are analyzed for color popularity as shown in Fig. 2.44. (Image 

(C) Scott Krig [476])
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Fig. 2.44 Color popularity results for the segmented regions in Fig. 2.43 and their colors. See Fig. 2.42 for the legend 

for interpreting the color on each row. (Image (C) Scott Krig [476]) 

See Heckbert [947] for details on color popularity methods and other methods. Another good source 

for understanding color popularity is [951] End-to-end Optimized Image Compression Johannes Ballé 

et al. [951]. See also Learning to Structure an Image with Few Colors, Hou et al. [952]. 

A statistical comparison of several Image color space reduction methods, including reducing bits 

per color, as well as popularity methods, is covered in the comparison of the ColorCNN network 

against selected algorithms such as Median Cut and Octrees, see Hou et al. [952]. 

Summary 

In this chapter, we survey image processing as a preprocessing step that can improve image analysis 

and feature extraction. We explore several color quantization and color reduction methods. We color 

management systems, colorimetric spaces, color processing, segmentation, and object detection. We



survey segmentation methods using neural networks, such as the U-Net architecture, and the history of 

segmentation using neural networks, beginning with region proposals using Mask-RCNN using 

CNN’s. In addition, we examine a wider range of texture metrics and color corrections. The YOLO 

architecture is surveyed, which provides a basis for general object detection and customization. A 

simple taxonomy of general image processing operations for points, lines, and regions is developed to 

guide the discussion, with background for filter design using spatial kernels. Fourier processing is 

covered for 1D, 2D, and 3D cases, as well as a general discussion of related transforms such as Slant, 

Hadamard, and Walsh. Morphology methods are presented, along with an introduction to super pixels. 

Various methods for object detection are introduced, such as YOLO. Segmentation methods are 

surveyed, in particular semantic and instance segmentation using neural networks, as well as regional 

metrics such as texture which can be used in the segmented regions. 
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Learning Assignments 

1. Discuss why image processing is used to improve computer vision pipelines to make the images 

more amenable to specific feature descriptors. 

2. Discuss problems that image preprocessing can solve for gradient-based features descriptors such 

as SIFT. 

3. Discuss how image processing goals are influenced in part by the image sensor. 

4. Describe some goals for image processing in a general sense, such as goals for corrections and 

goals for enhancements. 

5. Discuss why image preprocessing is important for optimizing a system for making effective use of 

a given feature descriptor such as SIFT, and why the image preprocessing should be designed 

specifically for the given feature descriptor. 

6. Describe a hypothetical computer vision application, sketch out an architecture including the 

feature descriptors used, describe the goals for image preprocessing prior to feature extraction, and 

discuss the image processing algorithms chosen to reach the goals. 

7. Describe an image processing pipeline to improve the quality of images taken from a very high 

speed camera (4000 fps) in a low light environment (poor indoor lighting), including the 

objectives for selecting each algorithm and alternatives to each algorithm. 

8. Describe an image processing pipeline for correcting color images in an outdoor environment in 

very bright direct sunlight, including the objectives for selecting each algorithm, and alternatives 

to each algorithm. 

9. Discuss how noise affects feature descriptor algorithms. 

10. Discuss algorithms to reduce noise, and algorithms to amplify noise. 

11. Discuss how noise is related to contrast. 

12. Discuss general illumination problems in images, how to detect illumination problems using 

statistical and image analysis methods, and general approaches to correct the illumination. 

13. Discuss how contrast remapping works, and how it can be used to improve image contrast. 

14. Describe an image processing pipeline to prepare images for a segmentation algorithm that is 

based on following connected gradients or intensity ridges. 

15. A basic taxonomy for image processing operations can be described based on the region: (1) point 

operations, (2) line operations, and (3) area operations. Describe each of the three types of region 

operations in a general sense, describe the limitations of each of the three approaches, and name at 

least one example algorithm for each of the three approaches. 

16. Describe the following color spaces: RGB (additive), CYMK (subtractive), and HSV.
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17. Discuss how color image processing works in color intensity space, and why processing in 

intensity space is usually most effective, compared to processing other color space components 

such as saturation or hue. 

18. Discuss why color processing in RGB space leads to color moire effects. 

19. Describe the goals of a color management system, including why color management is needed, 

and provide a few examples. 

20. Describe the basic components of a color management system, including the illumination model, 

the input color space model, and the output color space model. 

21. Describe how color gamut mapping works in general, and the problems encountered. 

22. Describe how rendering intent is related to gamut mapping. 

23. Describe illumination model parameters including white point, black point, and neutral axis. 

24. Discuss color saturation, including causes and mitigation strategies. 

25. Discuss color resolution, 8-bit color vs. 16-bit color, and when color resolution is critical. 

26. Describe a few examples when image processing over local spatial regions is advantageous. 

27. Describe how the dot product and convolution are related, and how they are implemented by 

sketching out an algorithm. 

28. Provide the kernel matrix values of a few 3 × 3 convolution kernels, including a sharpen filter 

kernel and a blur filter kernel. 

29. Discuss why the values of a convolutional filtering kernel should sum to zero. 

30. Discuss useful postprocessing numerical conditioners applied to convolution results, such as 

absolute value. 

31. Describe how to detect noise in the image (for example, histograms and other methods), and 

spatial filtering approaches for noise removal. 

32. Compare the Sobel edge detector algorithm and the Canny edge detector algorithm. 

33. Provide the kernel matrix for a few types of edge detectors used for convolutional filtering. 

34. Compare Fourier Transform filtering in the frequency domain with convolutional kernel filtering 

in the discreet spatial domain and describe the comparative strengths and weaknesses of each 

method for image processing. 

35. Describe the integral image algorithm and how the integral image is used to implement box filters. 

36. Discuss the general goals for image segmentation and describe at least one segmentation algorithm 

using pseudo-code. 

37. Describe the binary morphology operations ERODE and DILATE, discuss the intended use, and 

provide example 3 × 3 binary kernels for ERODE and DILATE. 

38. Describe the gray-scale morphology operations MIN and MAX, discuss the intended use, and 

provide example 3 × 3 gray-scale kernels for MIN and MAX. 

39. Discuss in general how a super-pixel algorithm works. 

40. Discuss contrast remapping, and how it can be implemented using lookup tables. 

41. Compare histogram equalization of global and local regions. 

42. Describe the histogram specification algorithm.



Measure twice, cut once.

—Carpenter’s saying 

But we begin with a brief survey of some key ideas in the field of texture analysis and general vision

metrics.

Global and Regional Feature Descriptors 3 

This chapter covers the metrics of general feature description, often used for whole images and image 

regions, including textural, statistical, model-based, and basis space methods. Texture, a key metric, is 

a well-known topic within image processing, and it is commonly divided into structural and statistical 

methods. Structural methods look for features such as edges and shapes, while statistical methods are 

concerned with pixel value relationships and statistical moments. Methods for modeling image texture 

also exist, primarily useful for image synthesis rather than for description. Basis spaces, such as the 

Fourier space, are also used for feature description. 

It is difficult to develop clean partitions between the related topics in image processing and 

computer vision that pertain to global vs. regional vs. local feature metrics; there is considerable 

overlap in the applications of most metrics. However, for this chapter, we divide these topics along 

reasonable boundaries, though those borders may appear to be arbitrary. Similarly, there is some 

overlap between discussions here on global and regional features and topics that are covered in Chap. 2 

on image processing and that are discussed in Chap. 6 on local features. In short, many methods are 

used for local, regional, and global feature description, as well as image processing, such as the Fourier 

transform and the LBP. 

Historical Survey of Features 

To compare and contrast global, regional, and local feature metrics, it is useful to survey and trace the 

development of the key ideas, approaches, and methods used to describe features for machine vision. 

This survey includes image processing (textures and statistics) and machine vision (local, regional, and 

global features). Historically, the choice of feature metrics was limited to those that were computable at 

the time, given the limitations in compute performance, memory, and sensor technology. As time 

passed and technology developed, the metrics have become more complex to compute, consuming 

larger memory footprints. The images are becoming multimodal, combining intensity, color, multiple 

spectrums, depth sensor information, multiple-exposure settings, high dynamic range imagery, faster 

frame rates, and more precision and accuracy in x, y, and z depth. Increases in memory bandwidth and 

compute performance, therefore, have given rise to new ways to describe feature metrics and perform 

analysis. 
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moments); however, basis spaces are used in transforms for image processing and filtering as well.

some general trends in mainstream industry thinking and academic activity.

and applications by companies such as Krig Research.
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Many approaches to texture analysis have been tried; these fall into the following categories 

Structural, describing texture via a set of micro-texture patterns known as texels. Examples include 

the numerical description of natural textures such as fabric, grass, and water. Edges, lines, and 

corners are also structural patterns, and the characteristics of edges within a region, such as edge 

direction, edge count, and edge gradient magnitude, are useful as texture metrics. Histograms of 

edge features can be made to define texture, similar to the methods used in local feature descriptors 

such as SIFT (described in Chap. 6). 

Statistical, based on gray level statistical moments describing point pixel area properties, and 

includes methods such as the co-occurrence matrix or SDM. For example, regions of an image with 

color intensity within a close range could be considered as having the same texture. Regions with 

the same histogram could be considered as having the same texture. 

Model-based, including fractal models, stochastic models, and various semi-random fields. Typi-

cally, the models can be used to generate synthetic textures, but may not be effective in recognizing 

texture, and we do not cover texture generation. 

Transform or basis-based, including methods such as Fourier, Wavelets, Gabor filters, Zernike, 

and other basis spaces, which are treated here as a subclass of the statistical methods (statistical 

Key Ideas: Global, Regional, and Local Metrics 

Let us take a brief look at a few major trends and milestones in feature metrics research. While this 

brief outline is not intended to be a precise, inclusive look at all key events and research, it describes 

1960s, 1970s, 1980s—Whole-Object Approaches 

During this period, metrics describe mostly whole objects, larger regions, or images; pattern matching 

was performed on large targets via FFT spectral methods and correlation; recognition methods 

included object, shape, and texture metrics; and simple geometric primitives were used for object 

composition. Low-resolution images such as NTSC, PAL, and SECAM were common—primarily 

gray scale with some color when adequate memory was available. Some satellite images were 

available to the military with higher resolution, such as LANDSAT images from NASA and SPOT 

images from France. 

Some early work on pattern recognition began to use local interest points and features: notably, 

Moravec [446] developed a local interest point detector in 1981, and in 1988, Harris and Stephens 

[127] developed local interest point detectors. Commercial systems began to appear, particularly the 

View PRB in the early 1980s, which used digital correlation and scale space super-pixels for coarse to 

fine matching, and real-time image processing and pattern recognition systems were introduced by 

Imaging Technology. Rack-mounted imaging and machine vision systems began to be replaced by 

workstations and high-end PCs with add-on imaging hardware, array processors, and software libraries 

Early 1990s—Partial-Object Approaches 

Compute power and memory were increasing, enabling more attention to local feature methods, such 

as developments from Shi and Tomasi [128] improving the Harris detector methods, Kitchen and 

Rosenfeld [174] developing gray level corner detection methods, and methods by Wang and Brady 

[179]. Image moments over polygon shapes were computed using Zernike polynomials in 1990 by



Khotanzad and Hong [234]. Scale space theory was applied to computer vision by Moravec [446], and 

many other researchers followed this line of thinking into the future, such as Lowe [132] in 2004. 
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Metrics described smaller pieces of objects or object components and parts of images; there was 

increasing use of local features and interest points. Large sets of sub-patterns or basis vectors were used 

and corresponding metrics were developed. There was increased use of color information; more 

methods appeared to improve invariance for scale, rotational, or affine variations; and recognition 

methods were developed based on finding parts of an object with appropriate metrics. Higher image 

resolution, increased pixel depths, and color information were increasingly used in the public sector 

(especially in medical applications), along with new affordable image sensors, such as the KODAK 

MEGA-PLUS, which provided a 1024 × 1024 image. 

Mid-1990s—Local Feature Approaches 

More focus was put on metrics that identify small local features surrounding interest points in images. 

Feature descriptors added more details from a window or patch surrounding each feature, and 

recognition was based on searching for sets of features and matching descriptors with more complex 

classifiers. Descriptor spectra included gradients, edges, and colors. 

Late 1990s—Classified Invariant Local Feature Approaches 

New feature descriptors were developed and refined to be invariant to changes in scale, lightness, 

rotation, and affine transformations. Work by Schmidt and Mohr [296] advanced and generalized the 

local feature description methods. Features acted as an alphabet for spelling out complex feature 

descriptors or vectors whereby the vectors were used for matching. The feature matching and 

classification stages were refined to increase speed and effectiveness using neural nets and other 

machine learning methods [113]. 

Early 2000s—Scene and Object Modeling Approaches 

Scenes and objects were modeled as sets of feature components or patterns with well-formed 

descriptors; spatial relationships between features were measured and used for matching; and new 

complex classification and matching methods used boosting and related methods to combine strong 

and weak features for more effective recognition. The SIFT [132] algorithm from Lowe was published; 

SURF was also published by Bay et al. [131], taking a different approach using HAAR features rather 

than just gradients. The Viola–Jones method [431] was published, using HAAR features and a boosted 

learning approach to classification, accelerating matching. The OpenCV library for computer vision 

was developed by Bradski at INTEL™ and released as open source. 

Mid-2000s—Finer-Grain Feature and Metric Composition Approaches 

The number of researchers in this field began to mushroom; various combinations of features and 

metrics (bags of features) were developed by Csurka et al. [198] to describe scenes and objects using 

key points as described by Sivic [447]; new local feature descriptors were created and old ones refined; 

and there was increased interest in real-time feature extraction and matching methods for commercial 

applications. Better local metrics and feature descriptors were analyzed, measured, and used together 

for increased pattern match accuracy. Also, feature learning and sparse feature codebooks were 

developed to decrease pattern space, speed up search time, and increase accuracy. 

Post-2010—Multimodal Feature Metrics Fusion 

There has been increasing use of depth sensor information and depth maps to segment images and 

describe features and create VOXEL metrics, for example, see Rusu et al. [329]; for example, 2D 

texture metrics are expressed in 3-space. 3D depth sensing methods proliferate, increasing use of high-



resolution images and high dynamic range (HDR) images to enhance feature accuracy, and greater bit 

depth and accuracy of color images allows for valuable color-based metrics and computational 

imaging. Increased processing power and cheap, plentiful memory handle larger images on low-cost 

compute platforms. Faster and better feature descriptors using binary patterns have been developed and 

matched rapidly using Hamming distance, such as FREAK by Alahi et al. [102] and ORB by Rublee 

et al. [94]. Multimodal and multivariate descriptors [698, 699] are composed of image features with 

other sensor information, such as accelerometers and positional sensors. 
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Future computing research may even come full circle, when sufficient compute and memory 

capacity exist to perform the older methods, like correlation across multiple scales and geometric 

perspectives in real-time using parallel and fixed-function hardware methods. This would obviate some 

of the current focus on small invariant sets of local features and allow several methods to be used 

together, synergistically. Therefore, the history of development in this field is worth knowing, since it 

might repeat itself in a different technological embodiment. 

Since there is no single solution for obtaining the right set of feature metrics, all the methods 

developed over time have applications today and are still in use. 

Textural Analysis 

One of the most basic metrics is texture, which is the description of the surface of an image channel, 

such as color intensity, like an elevation map or terrain map. Texture can be expressed globally or 

within local regions. Texture can be expressed locally by statistical relationships among neighboring 

pixels in a region, and it can be expressed globally by summary relationships of pixel values within an 

image or region. For a sampling of the literature covering a wide range of texture methods, see Refs. 

[12, 14–18, 27, 28, 30, 31, 38]. 

According to Gonzalez [4], there are three fundamental classes of texture in image analysis: 

statistical, structural, and spectral. Statistical measures include histograms, scatter plots, and SDMs. 

Structural techniques are more concerned with locating patterns or structural primitives in an image, 

such as parallel lines, regular patterns, and so on. These techniques are described in [1, 5, 8, 

268]. Spectral texture is derived from analysis of the frequency domain representation of the data. 

That is, a fast Fourier transform is used to create a frequency domain image of the data, which can then 

be analyzed using Fourier techniques. 

Histograms reveal overall pixel value distributions, but say nothing about spatial relationships. 

Scatter plots are essentially two-dimensional histograms and do not reveal any spatial relationships. A 

good survey is found in Ref. [267]. 

Texture has been used to achieve several goals

• Texture-based segmentation (covered in Chap. 2).

• Texture analysis of image regions (covered in this chapter).

• Texture synthesis, creating images using synthetic textures (not covered in this book). 

In computer vision, texture metrics are devised to describe the perceptual attributes of texture by 

using discrete methods. For instance, texture has been described perceptually with several properties, 

including:

• Contrast

• Color

• Coarseness
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• Directionality

• Line-likeness

• Roughness

• Constancy

• Grouping

• Segmentation 

If textures can be recognized, then image regions can be segmented based on texture and the 

corresponding regions can be measured using shape metrics such as area, perimeter, and centroid 

(as discussed in Chap. 6). Chapter 2 included a survey of segmentation methods, some of which are 

based on texture. Segmented texture regions can be recognized and compared for computer vision 

applications. Micro-textures of a local region, such as the LBP discussed in detail in Chap. 6, can be 

useful as a feature descriptor, and macro-textures can be used to describe a homogenous texture of a 

region such as a lake or field of grass, and therefore, have natural applications to image segmentation. 

In summary, texture can be used to describe global image content, image region content, and local 

descriptor region content. The distinction between a feature descriptor and a texture metric may be 

small. 

Sensor limitations combined with compute and memory capabilities of the past have limited the 

development of texture metrics to mainly 2D gray scale metrics. However, with the advances toward 

pervasive computational photography in every camera providing higher resolution images, higher 

frame rates, deeper pixels, depth imaging, more memory, and faster compute, we can expect that 

corresponding new advances in texture metrics will be made. 

Here is a brief historical survey of texture metrics. 

1950s Through 1970s—Global Uniform Texture Metrics 

Autocorrelation or cross-correlation was developed by Kaizer [24] in 1955 as a method of looking for 

randomness and repeating pattern features in aerial photography, where autocorrelation is a statistical 

method of correlating a signal or image with a time-shifted version of itself, yielding a computationally 

simple method to analyze ground cover and structures. 

Bajcsy [23] developed Fourier spectrum methods in 1973 using various types of filters in the 

frequency domain to isolate various types of repeating features as texture. 

Gray level spatial dependency matrices, GLCMs and SDMs, or co-occurrence matrices [6] were 

developed and used by Haralick in 1973, along with a set of summary statistical metrics from the 

SDMs to assist in numerical classification of texture. Some, but not all, of the summary metrics have 

proved useful; however, analysis of SDMs and development of new SDM metrics have continued, 

involving methods such as 2D visualization and filtering of the SDM data within spatial regions [21], 

as well as adding new SDM statistical metrics, some of which are discussed in this chapter. 

1980s—Structural and Model-Based Approaches for Texture Classification 

While early work focused on micro-textures describing statistical measures between small kernels of 

adjacent pixels, macro-textures developed to address the structure of textures within a larger region. 

Laws developed texture energy-detection methods in 1979 and 1980 [22, 25, 26], as well as texture 

classifiers, which may be considered the forerunners of some of the modern classifier concepts. The 

Laws method could be implemented as a texture classifier in a parallel pipeline with stages for taking 

gradients via a set of convolution masks over Gaussian-filtered images to isolate texture micro-

features, followed by a Gaussian smoothing stage to deal with noise, followed by the energy calcula-

tion from the combined gradients, followed by a classifier which matched texture descriptors.
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Eigenfilters were developed by Ade [27] in 1983 as an alternative to the Laws gradient or energy 

methods and SDMs; eigenfilters are implemented using a covariance matrix representation of local 

3 × 3 pixel region intensities, which allows texture analysis and aggregation into structure based on the 

variance within eigenvectors in the covariance matrix. 

Structural approaches were developed by Davis [28] in 1979 to focus on gross structure of texture 

rather than primitives or micro-texture features. Hough transforms were invented in 1972 by Duda and 

Hart [192] as a method of finding lines and curves, and it was used by Eichmann and Kasparis [14] in 

1988 to provide invariant texture description. 

Fractal methods and Markov random field methods were developed into texture descriptors, and 

while these methods may be good for texture synthesis, they do not map well to texture classification, 

since both Fractal and Markov random field methods use random fields, thus there are limitations when 

applied to real-world textures that are not random. 

1990s—Optimizations and Refinements to Texture Metrics 

In 1993, Lam and Ip [15, 31] used pyramid segmentation methods to achieve spatial invariance, where 

an image is segmented into homogenous regions using Voronoi polygon tessellation and irregular 

pyramid segmentation techniques around Q points taken from a binary thresholded image; five shape 

descriptors are calculated for each polygon: area, perimeter, roundness, orientation, and major/minor 

axis ratio, combined into texture descriptors. 

Local binary patterns (LBP ) were developed in 1994 by Ojala et al. [142] as a novel method of 

encoding both pattern and contrast to define texture [12, 14, 17, 18]; since then, hundreds of 

researchers have added to the LBP literature in the areas of theoretical foundations, generalization 

into 2D and 3D, domain-specific interest point descriptors used in face detection, and spatiotemporal 

applications to motion analysis [16]. LBP research remains quite active at this time. LBPs are covered 

in detail in Chap. 6. There are many applications for the powerful LBP method as texture metric, a 

feature descriptor, and an image processing operator, the latter of which was discussed in Chap. 2. 

2000 to Today—More Robust Invariant Texture Metrics and 3D Texture 

Feature metrics research is investigating texture metrics that are invariant to scale, rotation, lighting, 

perspective, and so on to approach the capabilities of human texture discrimination. In fact, texture is 

used interchangeably as a feature descriptor in some circles. The work by Pun and Lee [29] is an 

example of development of rotational invariant texture metrics, as well as scale invariance. Invariance 

attributes are discussed in the general taxonomy in Chap. 5. 

The next wave of metrics being developed increasingly will take advantage of 3D depth informa-

tion. One example is the surface shape metrics developed by Spence [30] in 2003, which provide a 

bump-map type metric for affine invariant texture recognition and texture description with scale and 

perspective invariance. Chapter 6 also discusses some related 3D feature descriptors. 

Statistical Methods 

The topic of statistical methods is vast, and we can only refer the reader to selected literature as we go 

along. One useful and comprehensive resource is the online NIST National Institute of Science and 

Technology Engineering Statistics Handbook,1 including examples and links to additional resources 

and tools. 

1 See the NIST online resource for engineering statistics: https://www.itl.nist.gov/div898/handbook/.

https://www.itl.nist.gov/div898/handbook/
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Statistical methods may be drawn upon at any time to generate novel feature metrics. Any feature, 

such as pixel values or local region gradients, can be expressed statistically by any number of methods. 

Simple methods, such as the histogram shown in Fig. 3.1, are invaluable. Basic statistics such as 

minimum, maximum, and average values can be seen easily in the histogram shown in Chap. 2 in 

Fig. 2.21. We survey several applications of statistical methods to computer vision here. 

Fig. 3.1 Histogram with linear scale values (black) and log scale values (gray), illustrating how the same data are 

interpreted differently based on the chart scale 

Texture Region Metrics 

Now we look in detail at the specific metrics for feature description based on texture. Texture is one of 

the most-studied classes of metrics. It can be thought of in terms of the surface—for example, a burlap 

bag compared to silk fabric. There are many possible textural relationships and signatures that can be 

devised in a range of domains, with new ones being developed all the time. In this section we survey 

some of the most common methods for calculating texture metrics:

• Edge metrics

• Cross-correlation

• Fourier spectrum signatures

• Co-occurrence matrix, Haralick features, extended SDM features

• Laws texture metrics

• Tessellation

• Local binary patterns (LBP)

• Dynamic textures 

Within an image, each image region has a texture signature, where texture is defined as a common 

structure and pattern within that region. Texture signatures may be a function of position and intensity 

relationships, as in the spatial domain, or be based on comparisons in some other function basis and 

feature domain, such as frequency space using Fourier methods. 

Texture metrics can be used to both segment and describe regions. Regions are differentiated based 

on texture homogeneousness, and as a result, texture works well as a method for region segmentation. 

Texture is also a good metric for feature description, and as a result, it is useful for feature detection, 

matching, and tracking.
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Appendix B contains several ground truth datasets with example images for computing texture 

metrics, including the CUReT reflectance and texture database from Columbia University. Several key 

papers describe the metrics used against the CUReT dataset [19, 32, 33, 55], including the appearance 

of a surface as a bidirectional reflectance distribution function (BRDF) and a bidirectional texture 

function (BTF). 

These metrics are intended to measure texture as a function of direction and illumination, to capture 

coarse details and fine details of each surface. If the surface texture contains significant sub-pixel detail 

not apparent in single pixels or groups of pixels, the BRDF reflectance metrics can capture the coarse 

reflectance details. If the surface contains pixel-by-pixel difference details, the BTF captures the fine 

texture details. 

Edge Metrics 

Edges, lines, contours, or ridges are basic textural features [268, 269]. A variety of simple metrics can 

be devised just by analyzing the edge structure of regions in an image. There are many edge metrics in 

the literature, and a few are illustrated here. 

Computing edges can be considered on a continuum of methods from interest point to edges, where 

the interest point may be a single pixel at a gradient maxima or minima, with several connected 

gradient maxima pixels composed into corners, ridges line segments, or a contours. In summary, a 

gradient point is a degenerate edge, and an edge is a collection of connected gradient points. 

The edge metrics can be computed locally or globally on image regions as follows

• Compute the gradient g(d) at each pixel, selecting an appropriate gradient operator g() and select the 

appropriate kernel size or distance d to target either micro- or macro-edge features.

• The distance d or kernel size can be varied to achieve different metrics; many researchers have used 

3 × 3 kernels.

• Compute edge orientation by binning gradient directions for each edge into a histogram; for 

example, use 45° angle increment bins for a total of 8 bins at 0°,  45°,  90°, 135°, 180°, 225°, 270°. 

Several other methods can be used to compute edge statistics. The representative methods are 

shown here; see also Shapiro and Stockton [443] for a standard reference. 

Edge Density 

Edge density can be expressed as the average value of the gradient magnitudes gm in a region. 

Ed ¼
gm dð  Þ  

pixels in region 
: 

Edge Contrast 

Edge contrast can be expressed as the ratio of the average value of gradient magnitudes to the 

maximum possible pixel value in the region. 

Ec ¼
Ed 

max pixel value
:
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Edge Entropy 

Edge randomness can be expressed as a measure of the Shannon entropy of the gradient magnitudes. 

Ee ¼ 
n 

i¼0 

gm xið  Þ log bgm xið  Þ  :

Edge Directivity 

Edge directivity can be expressed as a measure of the Shannon entropy of the gradient directions. 

Ee = 

n 

i= 0 

gd xið  Þ log b gd xið  Þ  :

Edge Linearity 

Edge linearity measures the co-occurrence of collinear edge pairs using gradient direction, as shown by 

edges a–b in Fig. 3.2. 

Fig. 3.2 Gradient direction of edges a, b, c, d used to illustrate relationships for edge metrics 

El = cooccurrence of colinear edge pairs: 

Edge Periodicity 

Edge periodicity measures the co-occurrence of identically oriented edge pairs using gradient direc-

tion, as shown by edges a–c in Fig. 3.2. 

Ep ¼ cooccurrence of identically oriented edge pairs: 

Edge Size 

Edge size measures the co-occurrence of opposite oriented edge pairs using gradient direction, as 

shown by edges a–d in Fig. 3.2. 

Es = cooccurrence of opposite oriented edge pairs: 

Edge Primitive Length Total 

Edge primitive length measures the total length of all gradient magnitudes along the same direction. 

Et ¼ total length of gradient magnitudes with same direction:
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Cross-Correlation and Autocorrelation 

Cross-correlation [24] is a metric showing similarity between two signals with a time displacement 

between them. Autocorrelation is the cross-correlation of a signal with a time-displaced version of 

itself. In the literature on signal processing, cross-correlation is also referred to as a sliding inner 

product or sliding dot product. Typically, this method is used to search a large signal for a smaller 

pattern. 

f * g= f - tð  Þ * g  tð  Þ  :

Using the Wiener–Khinchin theorem as a special case of the general cross-correlation theorem, 

cross-correlation can be written as simply the Fourier transform of the absolute square of the function 

fv, as follows: 

c  tð  Þ=F v f vj  j2 tð Þ:

In computer vision, the feature used for correlation may be a 1D line of pixels or gradient 

magnitudes, a 2D pixel region, or a 3D voxel volume region. By comparing the features from the 

current image frame and the previous image frame using cross-correlation derivatives, we obtain a 

useful texture change correlation metric. 

By comparing displaced versions of an image with itself, we obtain a set of either local or global 

autocorrelation texture metrics. Autocorrelation can be used to detect repeating patterns or textures in 

an image, and also to describe the texture in terms of fine or coarse, where coarse textures show the 

autocorrelation function dropping more slowly than that of fine textures. See also the discussion of 

correlation in Chap. 6 and Fig. 6.20. 

Fourier Spectrum, Wavelets, and Basis Signatures 

Basis transforms, such as the FFT, decompose a signal into a set of basis vectors from which the signal 

can be synthesized or reconstructed. Viewing the set of basis vectors as a spectrum is a valuable 

method for understanding image texture and creating a signature. Several basis spaces are discussed in 

this chapter, including Fourier, HAAR, wavelets, and Zernike. 

Although computationally expensive and memory-intensive, the Fast Fourier Transform (FFT) is 

often used to produce a frequency spectrum signature. The FFT spectrum is useful for a wide range of 

problems. The computations typically are limited to rectangular regions of fixed sizes, depending on 

the radix of the transform (see Bracewell [191]). 

As shown in Fig. 3.3, Fourier spectrum plots reveal definite image features useful for texture and 

statistical analysis of images. For example, Fig. 3.10 shows an FFT spectrum of LBP pattern metrics. 

Note that the Fourier spectrum has many valuable attributes, such as rotational invariance, as shown in 

Fig. 3.3, where a texture image is rotated 90° and the corresponding FFT spectrums exhibit the same 

attributes, only rotated 90°. 

Wavelets [191] are similar to Fourier methods and have become increasingly popular for texture 

analysis [29], discussed later in the section on basis spaces.



Texture Region Metrics 109

Fig. 3.3 (Top row) Example images with texture. (Bottom row) Texture and shape information revealed in the 

corresponding FFT power spectrums 

Note that the FFT spectrum as a texture metric or descriptor is rotational invariant, as shown in the 

bottom left image of Fig. 3.3. FFT spectra can be taken over rectangular 2D regions. Also, 1D arrays 

such as annuli or Cartesian coordinates of the shape taken around the perimeter of an object shape can 

be used as input to an FFT and as an FFT descriptor shape metric. 

Co-occurrence Matrix, Haralick Features 

Haralick [6] proposed a set of 2D texture metrics calculated from directional differences between 

adjacent pixels, referred to as co-occurrence matrices, Spatial dependency matrices (SDM) spatial 

dependency matrices (SDM), or gray level co-occurrence matrices (GLCM)Spatial dependency 

matrices (SDM). A complete set of four (4) matrices is calculated by evaluating the difference 

between adjacent pixels in the x, y, diagonal x, and diagonal y directions, as shown in Fig. 3.4, and 

further illustrated with a 4 × 4 image and corresponding co-occurrence tables shown in Fig. 3.5. 

One benefit of the SDM as a texture metric is that it is easy to calculate in a single pass over the 

image. The SDM is also fairly invariant to rotation, which is often a difficult robustness attribute to 

attain. Within a segmented region or around an interest point, the SDM plot can be a valuable texture 

metric all by itself, therefore useful for texture analysis, feature description, noise detection, and pattern 

matching. 

For example, if a camera has digital-circuit readout noise, it will show up in the SDM for the 

x direction only if the lines are scanned out of the sensor one at a time in the x direction, so using the 

SDM information will enable intelligent sensor processing to remove the readout noise. However, it 

should be noted that SDM metrics are not always useful alone and should be qualified with additional 

feature information. The SDM is primarily concerned with spatial relationships, with regard to spatial 

orientation and frequency of occurrence. So, it is primarily a statistical measure.
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The SDM is calculated in four orientations, as shown in Fig. 3.4. Since the SDM is only concerned 

with adjacent pairs of pixels, these four calculations cover all possible spatial orientations. SDMs could 

be extended beyond 2 × 2 regions by using forming kernels extending into 5 × 5, 7 × 7, 9 × 9, and other 

dimensions. 

A spatial dependency matrix is basically a count of how many times a given pixel value occurs next 

to another pixel value. Figure 3.5 illustrates the concept. For example, assume we have an 8-bit image 

(0.255). If an SDM shows that pixel value x frequently occurs adjacent to pixels within the range x +  1  

to x - 1, then we would say that there is a “smooth” texture at that intensity. However, if pixel value 

x frequently occurs adjacent to pixels within the range x +  70  to  x- 70, we would say that there is quite 

a bit of contrast at that intensity, if not noise.

X Y Diagonal X    Diagonal Y 

Fig. 3.4 Four different vectors used for the Haralick texture features, where the difference of each pixel in the image is 

plotted to reveal the texture of the image 

Fig. 3.5 (a)  4  × 4 Pixel image, with gray values in the range 0–3. (b) Nearest neighbor angles corresponding to SDM 

tables. (c–f) With neighborhood counts for each angle

A critical point in using SDMs is to be sensitive to the varied results achieved when sampling over 

small vs. large image areas. By sampling the SDM over a smaller area (say 64 × 64 pixels), details will 

be revealed in the SDMs that would otherwise be obscured. The larger the size of the sample image 

area, the more the SDM will be populated. And the more samples taken, the more likely that detail will 

be obscured in the SDM image plots. Actually, smaller areas (i.e., 64 × 64 pixels) are a good place to 

start when using SDMs, since smaller areas are faster to compute and will reveal a lot about local 

texture. 

The Haralick metrics are shown in Fig. 3.6.
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Fig. 3.6 Haralick texture metrics. (Image used by permission, # Intel Press, from Building Intelligent Systems)
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The statistical characteristics of the SDM have been extended by several researchers to add more 

useful metrics [21], and SDMs have been applied to 3D volumetric data by a number of researchers 

with good results [20]. 

Extended SDM Metrics (Krig SDM Metrics) 

Extensions to the Haralick metrics have been developed by the author [21], primarily motivated by a 

visual study of SDM plots as shown in Fig. 3.7. Applications for the extended SDM metrics include 

texture analysis, data visualization, and image recognition. The visual plots of the SDMs alone are 

valuable indicators of pixel intensity relationships and are worth using along with histograms to get to 

know the data. 

Fig. 3.7 Pair of image co-occurrence matrix plots (x-axis plots) computed over 64 bins in the bottom row corresponding 

to the images in the top row
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The extended SDM metrics include centroid, total coverage, low-frequency coverage, total power, 

relative power, locus length, locus mean density, bin mean density, containment, linearity, and 

linearity strength. The extended SDM metrics capture key information that is best observed by looking 

at the SDM plots. In many cases the extended SDM metric is to be computed four times, once for each 

SDM direction of 0°,  45°,  90°, and 135°, as shown in Fig. 3.5. 

The SDMs are interesting and useful all by themselves when viewed as an image. Many of the 

texture metrics suggested are obvious after viewing and understanding the SDMs; others are neither 

obvious nor apparently useful until developing a basic familiarity with the visual interpretation of 

SDM image plots. Next, we survey the following:

• Example SDMs showing four directional SDM maps: A complete set of SDMs would contain 

four different plots, one for each orientation. Interpreting the SDM plots visually reveals useful 

information. For example, an image with a smooth texture will yield a narrow diagonal band of 

co-occurrence values; an image with wide texture variation will yield a larger spread of values; a 

noisy image will yield a co-occurrence matrix with outlier values at the extrema. In some cases, 

noise may only be distributed along one axis of the image—perhaps, across rows or the x axis, 

which could indicate sensor readout noise as each line is read out of the sensor, suggesting a row- or 

line-oriented image preparation stage in the vision pipeline to compensate for the camera.

• Extended SDM texture metrics: The addition of 12 other useful statistical measures to those 

proposed by Haralick.

• Some code snippets: These illustrate the extended SDM computations; full source code is shown in 

Appendix D. 

In Fig. 3.7, several of the extended SDM metrics can be easily seen, including containment and 

locus mean density. Note that the right image does not have a lot of outliner intensity points or noise 

(good containment); most of the energy is centered along the diagonal (tight locus), showing a rather 

smooth set of image pixel transitions and texture, while the left image shows a wider range of intensity 

values. For some images, wider range may be noise spread across the spectrum (poor containment), 

revealing a wider band of energy and contrast between adjacent pixels. 

Metric 1: Centroid 

To compute the centroid, for each SDM bin p(i,j), the count of the bin is multiplied by the bin 

coordinate for x, y and also the total bin count is summed. The centroid calculation is weighted to 

compute the centroid based on the actual bin counts, rather than an unweighted “binary” approach of 

determining the center of the binning region based on only bin data presence. The result is the weighted 

center of mass over the SDM bins. 

centroid ¼ 
n 

i¼0 

m 

j¼0 

x ¼ jp i, jð  Þ  

y ¼ ip i, jð  Þ  

z ¼ p  i, jð  Þ  

centroidy ¼ 
y 

z 

centroidx ¼ 
x 

z
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Metric 2: Total Coverage 

This is a measure of the spread, or range of distribution, of the binning. A small coverage percentage 

would be indicative of an image with few gray levels, which corresponds in some cases to image 

smoothness. For example, a random image would have a very large coverage number, since all or most 

of the SDM bins would be hit. The coverage feature metrics (2, 3, 4), taken together with the linearity 

features suggested below (11, 12), can give an indication of image smoothness. 

coveragec ¼ 
n 

i¼0 

m 

j¼0 

1  if - 0< p  i, jð  Þ,j 

0 otherwise 

coveraget ¼
coveragec 
n * mð Þ

:

Metric 3: Low-Frequency Coverage 

For many images, any bins in the SDM with bin counts less than a threshold value, such as 3, may be 

considered as noise. The low-frequency coverage metric, or noise metric, provides an idea of how 

much of the binning is in this range. This may be especially true as the sample area of the image area 

increases. For whole images, a threshold of 3 has proved to be useful for determining if a bin contains 

noise for a data range of 0–255, and using the SDM over smaller local kernel regions may use all the 

values with no thresholding needed. 

coveragec ¼ 
n 

i¼0 

m 

j¼0 

if 0< p  i, jð  Þ< 3 
1, 

else - 0j 

coveragel ¼ 
coveragec 
n * m ð Þ

:

Metric 4: Corrected Coverage 

Corrected coverage is the total coverage with noise removed. 

coveragen = coveraget - coveragel: 

Metric 5: Total Power 

The power metric provides a measure of the swing in value between adjacent pixels in an image and is 

computed in four directions. A smooth image will have a low power number because the differences 

between pixels are smaller. Total power and relative power are interrelated, and relative power is 

computed using the total populated bins (z) and total difference power (t). 

powerc ¼ 
n 

i¼0 

m 

j¼0 

if p  i, jð  Þ≠ 0 
zþ ¼  1, 

tþ ¼  i- jj  j  

powert ¼ t:

Metric 6: Relative Power 

The relative power is calculated based on the scaled total power using nonempty SDM bins t, while the 

total power uses all bins.
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powerr = 
t 

z 
: 

Metric 7: Locus Mean Density 

For many images, there is a “locus” area of high-intensity binning surrounding the bin axis (locus axis 

is where adjacent pixels are of the same value x = y) corresponding to a diagonal line drawn from the 

upper left corner of the SDM plot. The degree of clustering around the locus area indicates the amount 

of smoothness in the image. Binning from a noisy image will be scattered with little relation to the 

locus area, while a cleaner image will show a pattern centered about the locus. 

locusc ¼ 
n 

i¼0 

m 

j¼0 

if 0< i- jj  j< 7 
zþ ¼  1, 

dþ ¼ p  i, jð  Þ  

locusd ¼ 
d

z
:

The locus mean density is an average of the bin values within the locus area. The locus is the area 

around the center diagonal line, within a band of 7 pixels on either side of the identity line (x = y) that 

passes down the center of each SDM. However, the number 7 is not particularly special, but based 

upon experience, it just gives a good indication of the desired feature over whole images. This feature 

is good for indicating smoothness. 

Metric 8: Locus Length 

The locus length measures the range of the locus concentration about the diagonal. The algorithm for 

locus length is a simple count of bins populated in the locus area; a threshold band of 7 pixels about the 

locus has been found useful. 

y = length = 0; 
while (y < 256) { 
x = count = 0; 
while (x < 256) { 
n = |y-x|; 
if (p[i,j] == 0) && (n < 7) count++; 
x++; 

} 
if (!count) length++; 
y++; 
} 

Metric 9: Bin Mean Density 

This is simply the average bin count from nonempty bins. 

densityc ¼ 
n 

i¼0 

m 

j¼0 

if p  i, jð  Þ≠ 0 v ¼ p  i, jð  Þ, zþ ¼  1ð Þ  

densityb ¼ 
v 

z 
:
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Metric 10: Containment 

Containment is a measure of how well the binning in the SDM is contained within the boundaries or 

edges of the SDM, and there are four edges or boundaries, for example, assuming a data range 

[0. . .255], there are containment boundaries along rows 0 and 255, and along columns 0 and 255. 

Typically, the bin count m is 256 bins, or possibly less such as 64. To measure containment, basically 

the perimeters of the SDM bins are checked to see if any binning has occurred, where the perimeter 

region bins of the SDM represent extrema values next to some other value. The left image in Fig. 3.7 

has lower containment than the right image, especially for the low values. 

containment1 ¼ 
m 

i¼0 

if p  i, 0ð  Þ≠ 0 c1þ ¼  1ð Þ  

containment2 ¼ 
m 

i¼0 

if p  i,mð  Þ≠ 0 c2þ ¼  1ð Þ  

containment3 ¼ 
m 

i¼0 

if p 0, ið  Þ≠ 0 c3þ ¼  1ð Þ  

containment4 ¼ 
m 

i¼0 

if p  m, ið  Þ≠ 0 c4þ ¼  1ð Þ  

containmentt ¼ 1:0-
c1 þ c2 þ c3 þ c4ð Þ

4m
:

If extrema are hit frequently, this probably indicates some sort of overflow condition such as 

numerical overflow, sensor saturation, or noise. The binning is treated unweighted. A high contain-

ment number indicates that all the binning took place within the boundaries of the SDM. A lower 

number indicates some bleeding. This feature appears visually very well in the SDM plots. 

Metric 11: Linearity 

The linearity characteristic may only be visible in a single orientation of the SDM, or by comparing 

SDMs. For example, the image in Fig. 3.8 reveals some linearity variations across the set of SDMs. 

This is consistent with the image sensor used (older tube camera). 

linearityc ¼ 
m 

j¼0 

if p  jm, jð  Þ> 1 
zþ ¼  1, 

lþ ¼  p 256j, jð  Þ  

linearitynormalized ¼ 
z 

m 

linearitystrength ¼ 
l 

z
- * m- 1 

:
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Fig. 3.8 SDMs from old 

tube camera showing 

linearity variations in the 

sensor and include full set 

of 0°,  45°,  90°, and 135° 

SDMs. (Public domain 

image from National

Archives)
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Table 3.1 Extended SDM metrics from Fig. 3.8 

Metric 0° 45° 90° 135° Ave. 

Xcentroid 115 115 115 115 115 

Ycentroid 115 115 115 115 115 

Low_frequency_coverage 0.075 0.092 0.103 0.108 0.095 

Total_coverage 0.831 0.818 0.781 0.780 0.803 

Corrected_coverage 0.755 0.726 0.678 0.672 0.708 

Total_power 2.000 3.000 5.000 5.000 3.750 

Relative_power 17.000 19.000 23.000 23.000 20.500 

Locus_length 71 72 71 70 71 

Locus_mean_density 79 80 74 76 77 

Bin_mean_density 21 19 16 16 18 

Containment 0.961 0.932 0.926 0.912 0.933 

Linearity 0.867 0.848 0.848 0.848 0.853 

Linearity_strength 1.526 1.557 0.973 1.046 1.276 

Metric 12: Linearity Strength 

The algorithm for linearity strength is shown in Metric 11. If there is any linearity present in a given 

angle of SDM, both linearity strength and linearity will be comparatively higher at this angle than the 

other SDM angles (Table 3.1). 

Laws Texture Metrics 

The Laws metrics [22, 25, 26] provide a structural approach to texture analysis, using a set of masking 

kernels to measure texture energy or variation within fixed sized local regions, similar to the 2 × 2 

region SDM approach, but using larger pixel areas to achieve different metrics. 

The basic Laws algorithm involves classifying each pixel in the image into texture based on local 

energy, using a few basic steps 

1. The mean average intensity from each kernel neighborhood is subtracted from each pixel to 

compensate for illumination variations. 

2. The image is convolved at each pixel using a set of kernels, each of which sums to zero, followed by 

summing the results to obtain the absolute average value over each kernel window. 

3. The difference between the convolved image and the original image is measured, revealing the 

Laws energy metrics. 

Laws define a set of nine separable kernels to produce a set of texture region energy metrics, and 

some of the kernels work better than others in practice. The kernels are composed via matrix 

multiplication from a set of four vector masks, L5, E5, S5, and R5, described below. The kernels 

were originally defined as 5 × 5 masks, but 3 × 3 approximations have been used also, as shown below. 

5 × 5 form 

L5 Level Detector 1 4  6 4  1  

E5 Edge Detector - 1 - 2  0 2  1  

S5 Spot Detector - 1 0  2 0  1  

R5 Ripple Detector 1 - 4  6 - 4  1  

3 × 3 approximations of 5 × 5 form



]
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L3 Level Detector 1 2 1½ ]

E3 Edge Detector - 1  0  1½ ]

S3 Spot Detector - 1  2 - 1½ ]

R3 Ripple Detector *NOTE : cannot be reproduced in 3 × 3 form½ : 

Fig. 3.9 L3E3 kernel composition example

To create 2D masks, vectors Ln, En, Sn, and Rn (as shown above) are convolved together as 

separable pairs into kernels; a few examples are shown in Fig. 3.9. 

Note that Laws texture metrics have been extended into 3D for volumetric texture analysis [34, 35]. 

LBP Local Binary Patterns 

In contrast to the various structural and statistical methods of texture analysis, the LBP operator 

[16, 37] computes the local texture around each region as an LBP binary code, or micro-texture, 

allowing simple micro-texture comparisons to segment regions based on like micro-texture. (See the 

very detailed discussion on LBP in Chap. 6 for details and references to the literature, and especially 

Fig. 6.6.) The LBP operator [142] is quite versatile, easy to compute, consumes a low amount of 

memory, and can be used for texture analysis, interest points, and feature description. As a result, the 

LBP operator is discussed in several places in this book. 

As shown in Fig. 3.10, the uniform set of LBP operators, composed of a subset of the possible LBPs 

that are by themselves rotation invariant, can be binned into a histogram, and the corresponding bin 

values are run through an FFT as a 1D array to create an FFT spectrum, which yields a robust metric 

with strong rotational invariance.
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Fig. 3.10 (Left) Texture images. (Center) LBP histograms. (Right) FFT spectrum plots of the histograms which reveal 

the rotational invariance property of the LBP histograms. Note that while the histogram binning looks different for the 

rotated images, the FFT spectrums look almost identical. (Image # Springer-Verlag London Limited from Computer 

Vision Using Local Binary Patterns) 

Dynamic Textures 

Dynamic textures are a concept used to describe and track textured regions as they change and morph 

dynamically from frame to frame [12, 13]. For example, dynamic textures may be textures in motion, 

like sea waves, smoke, foliage blowing in the wind, fire, facial expressions, gestures, and poses. The 

changes are typically tracked in spatiotemporal sets of image frames, where the consecutive frames are 

stacked into volumes for analysis as a group. The three dimensions are the XY frame sizes, and the 

Z dimension is derived from the stack of consecutive frames n - 2, n - 1, n. 

A close cousin to dynamic texture research is the field of activity recognition (discussed in Chap. 6), 

where features are parts of moving objects that compose an activity—for example, features on arms 

and legs that are tracked frame to frame to determine the type of motion or activity, such as walking or 

running. One similarity between activity recognition and dynamic textures is that the features or 

textures change from frame to frame over time, so for both activity recognition and dynamic texture 

analysis, tracking features and textures often requires a spatiotemporal approach involving a data 

structure with a history buffer of past and current frames, which provides a volumetric representation to 

the data. 

For example, VLBP and LBP-TOP (discussed in Chap. 6) provide methods for dynamic texture 

analysis by using the LBP constructed to operate over three dimensions in a volumetric structure, 

where the volume contains image frames n - 2, n - 1, and n stacked into the volume.
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Statistical Region Metrics 

Describing texture in terms of statistical metrics of the pixels is a common and intuitive method. Often 

a simple histogram of a region will be sufficient to describe the texture well enough for many 

applications. There are also many variations of the histogram, which lend themselves to a wide 

range of texture analysis. So this is a good point at which to examine histogram methods. Since 

statistical mathematics is a vast field, we can only introduce the topic here, dividing the discussion into 

image moment features and point metric features. 

Image Moment Features 

Image moments [4, 444] are scalar quantities, analogous to the familiar statistical measures such as 

mean, variance, skew, and kurtosis. Moments are well suited to describe polygon shape features and 

general feature metric information such as gradient distributions. Image moments can be based on 

either scalar point values or basis functions such as Fourier or Zernike methods discussed later in the 

section on basis space. 

Moments can describe the projection of a function onto a basis space—for example, the Fourier 

transform projects a function onto a basis of harmonic functions. Note that there is a conceptual 

relationship between 1D and 2D moments in the context of shape description. For example, the 1D 

mean corresponds to the 2D centroid, and the 1D minimum and maximum correspond to the 2D major 

and minor axis. The 1D minimum and maximum also correspond to the 2D bounding box around the 

2D polygon shape (also see Fig. 6.29). 

In this work, we classify image moments under the term polygon shape descriptors in the taxonomy 

(see Chap. 5). Details on several image moments used for 2D shape description are covered in Chap. 6, 

under “Object Shape Metrics for Blobs and Objects.” 

Common properties of moments in the context of 1D distributions and 2D images include

• Zeroth-order moment is the mean or 2D centroid.

• Central moments describe variation around the mean or 2D centroid.

• First-order central moments contain information about 2D area, centroid, and size.

• Second-order central moments are related to variance and measure 2D elliptical shape.

• Third-order central moments provide symmetry information about the 2D shape, or skewness.

• Fourth-order central moments measure 2D distribution as tall, short, thin, short, or fat.

• Higher-level moments may be devised and composed of moment ratios, such as covariance. 

Moments can be used to create feature descriptors that are invariant to several robustness criteria, 

such as scale, rotation, and affine variations. The taxonomy of robustness and invariance criteria is 

provided in Chap. 5. For 2D shape description, in 1961, Hu developed a theoretical set of seven 2D 

planar moments for character recognition work, derived using invariant algebra, that are invariant 

under scale, translation, and rotation [7]. Several researchers have extended Hu’s work. An excellent 

resource for this topic is Moments and Moment Invariants in Pattern Recognition, by Jan Flusser 

et al. [444]. 

Point Metric Features 

Point metrics can be used for the following: (1) feature description, (2) analysis and visualization, 

(3) thresholding and segmentation, and (4) image processing via programmable LUT functions



Here is a summary of statistical point metrics

(discussed in Chap. 2). Point metrics are often overlooked. Using point metrics to understand the 

structure of the image data is one of the first necessary steps toward devising the image preprocessing 

pipeline to prepare images for feature analysis. Again, the place to start is by analysis of the histogram, 

as shown in Figs. 3.1 and 3.11. The basic point metrics can be determined visually, such as minima, 

maxima, peaks, and valleys. False coloring of the histogram regions for data visualization is simple 

using color lookup tables to color the histogram regions in the images. 
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Guitar Roads 

250 

200 

150 

100 

50 

1500 1000 500 0 150010005000 

Fig. 3.11 Two image histograms side by side, for analysis

• Quantiles, median, rescale: By sorting the pixel values into an ordered list, as during the histogram 

process, the various quartiles can be found, including the median value. Also, the pixels can be 

rescaled from the list and used for pixel remap functions (as described in Chap. 2).

• Mix, max, mode: The minimum and maximum values, together with histogram analysis, can be 

used to guide image preprocessing to devise a threshold method to remove outliers from the data. 

The mode is the most common pixel value in the sorted list of pixels.

• Mean, harmonic mean, and geometric mean: Various formulations of the mean are useful to 

learn the predominant illumination levels, dark or light, to guide image preprocessing to enhance 

the image for further analysis.
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• Standard deviation, skewness, and kurtosis: These moments can be visualized by looking at the 

SDM plots.

• Correlation: Topic was covered earlier in this chapter under cross-correlation and autocorrelation.

• Variance, covariance: The variance metric provides information on pixel distribution, and covari-

ance can be used to compare variance between two images. Variance can be visualized to a degree 

in the SDM, also as shown in this chapter.

• Ratios and multivariate metrics: Point metrics by themselves may be useful, but multivariate 

combinations or ratios using simple point metrics can be very useful as well. Depending on the 

application, the ratios themselves form key attributes of feature descriptors (as described in 

Chap. 6). For example, mean:min, mean:max, median: mean, area: perimeter. 

Global Histograms 

Global histograms treat the entire image. In many cases, image matching via global histograms is 

simple and effective, using a distance function such as SSD. As shown in Fig. 3.12, histograms reveal 

quantitative information on pixel intensity, but not structural information. All the pixels in the region 

contribute to the histogram, with no respect to the distance from any specific point or feature. As 

discussed in Chap. 2, the histogram itself is the basis of histogram modification methods, allowing the 

shape of the histogram to be stretched, compressed, or clipped as needed, and then used as an inverse 

lookup table to rearrange the image pixel intensity levels. 

Fig. 3.12 2D histogram shapes for different images
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Local Region Histograms 

Histograms can also be computed over local regions of pixels, such as rectangles or polygons, as well 

as over sets of feature attributes, such as gradient direction and magnitude or other spectra. To create a 

polygon region histogram feature descriptor, first a region may be segmented using morphology to 

create a mask shape around a region of interest, and then only the masked pixels are used for the 

histogram. 

Local histograms of pixel intensity values can be used as attributes of a feature descriptor, and also 

used as the basis for remapping pixel values from one histogram shape to another, as discussed in 

Chap. 2, by reshaping the histogram and reprocessing the image accordingly. Chapter 6 discusses a 

range of feature descriptors such as SIFT, SURF, and LBP, which make use of feature histograms to 

bin attributes such as gradient magnitude and direction. 

Scatter Diagrams, 3D Histograms 

The scatter diagram can be used to visualize the relationship or similarity between two image datasets 

for image analysis, pattern recognition, and feature description. Pixel intensity from two images or 

image regions can be compared in the scatter plot to visualize how well the values correspond. Scatter 

diagrams can be used for feature and pattern matching under limited translation invariance, but they are 

less useful for affine, scale, or rotation invariance. Figure 3.13 shows an example using a scatter 

diagram to look for a pattern in an image; the target pattern is compared at different offsets; the smaller 

the offset, the better the correspondence. In general, tighter sets of peak features indicate a strong 

structural or pattern correspondence; more spreading of the data indicates weaker correspondence. The 

farther away the pattern offset moves, the lower the correspondence.
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Fig. 3.13 Scatter diagrams, rendered as 3D histograms, of an image and a target pattern at various displacements. Top 

row: (left) image, (center) target pattern from image, (right) SDM of pattern with itself. Center row: (left) target and 

image offset 1,1, (right) target and image offset 8,8. Bottom row: (left) target and image offset 16,16, (right) target and 

image offset 32,32 

Note that by analyzing the peak features compared to the low-frequency features, correspondence 

can be visualized. Figure 3.14 shows scatter diagrams from two separate images. The lack of peaks 

along the axis and the presence of spreading in the data show low structural or pattern correspondence.
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Fig. 3.14 Scatter diagram from two different images showing low correspondence along diagonal 

The scatter plot can be made, pixel by pixel, from two images, where pixel pairs form the Cartesian 

coordinate for scatter plotting using the pixel intensity of image 1 which is used as the x coordinate, and 

the pixel intensities of image 2 as the y coordinate, then the count of pixel pair correspondence is 

binned in the scatter plot. The bin count for each coordinate can be false-colored for visualization. 

Figure 3.15 provides some code for illustration purposes.
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r1.x = sarea.x; 
r1.y = sarea.y; 
r1.z = sarea.z; 
r1.dx = dx; 
r1.dy = 1; 
r1.dz = 1; 

r2.x = darea.x; 
r2.y = darea.y; 
r2.z = darea.z; 
r2.dx = dx; 
r2.dy = 1; 
r2.dz = 1; 

/* INITIALIZE DATA */ 
for (x=0; x < 0x10000; mbin[x] = (int)0, x++); 

gf = c->grain; 
if (gf <= 0) gf = 1; 
if (gf > dx) gf = dx; 

z=0; 
while (z < dz) { 

r1.y = sarea.y; 
r2.y = darea.y; 
y=0; 
while (y < dy) { 

pix_read(c->soid, &r1, data1); 
pix_read(c->doid, &r2, data2); 
for (x=0; x < dx; mbin[ ((data2[x] << 8)&0xff00) + (data1[x] & 0xff) ]++, x += gf); 

y += gf; 
r1.y += gf; 
r2.y += gf; 

} 
z += gf; 
r1.z += gf; 
r2.z += gf; 

} 

Fig. 3.15 Code to illustrate binning 8-bit data for a scatter diagram comparing two images pixel by pixel and binning the 

results for plotting 

For feature detection, as shown in Fig. 3.12, the scatter plot may reveal enough correspondence at 

coarse translation steps to reduce the need for image pyramids in some feature detection and pattern 

matching applications. For example, the step size of the pattern search and compare could be optimized 

by striding or skipping pixels, searching the image at 8 or 16 pixel intervals, rather than at every pixel, 

reducing feature detection time. In addition, the scatter plot data could first be thresholded to a binary 

image, masked to show just the peak values, converted into a bit vector, and measured for correspon-

dence using HAMMING distance for increased performance. 

Multi-resolution, Multi-scale Histograms 

Multi-resolution histograms have been used for texture analysis [123] and also for feature recognition 

[123]. The PHOG descriptor described in Chap. 6 makes use of multi-scale histograms of feature 

spectra—in this case, gradient information. Note that the multi-resolution histogram provides scale 

invariance for feature description. For texture analysis [123], multi-resolution histograms are 

constructed using an image pyramid, and then a histogram is created for each pyramid level and 

concatenated together [10], which is referred to as a multi-resolution histogram. This histogram has the



Steps involved in creating and using multi-resolution histograms are as follows

desirable properties of algorithm simplicity, fast computation, low memory requirements, noise 

tolerance, and high reliability across spatial and rotational variations. See Fig. 3.16. A variation on 

the pyramid is used in the method of Zhao and Pietikainen [12], employing a multidimensional 

pyramid image set from a volume. 
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Fig. 3.16 Multi-resolution histogram image sequence. Note that the multiple histograms are taken at various Gaussian 

blur levels in an attempt to create more invariant feature descriptors 

1. Apply Gaussian filter to image. 

2. Create an image pyramid. 

3. Create histograms at each level. 

4. Normalize the histograms using L1 norm. 

5. Create cumulative histograms. 

6. Create difference histograms or DOG images (differences between pyramid levels). 

7. Renormalize histograms using the difference histograms. 

8. Create a feature vector from the set of difference histograms. 

9. Use L1 norm as distance function for comparisons between histograms. 

Radial Histograms 

For some applications, computing the histogram using radial samples originating at the shape centroid 

can be valuable [107, 108]. To do this, a line is cast from the centroid to the perimeter of the shape, and 

pixel values are recorded along each line and then binned into histograms. See Fig. 3.17.
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Fig. 3.17 Radial histogram illustrations [107, 108] 

Contour or Edge Histograms 

The perimeter or shape of an object can be the basis of a shape histogram, which includes the pixel 

values of each point on the perimeter of the object binned into the histogram. Besides recording the 

actual pixel values along the perimeter, the chain code histogram (CCH) that is discussed in Chap. 6 

shows the direction of the perimeter at connected edge point coordinates. Taken together, the CCH and 

contour histograms provide useful shape information. 

Basis Space Metrics 

Features can be described in a basis space, which involves transforming pixels into an alternative basis 

and describing features in the chosen basis, such as the frequency domain. What is a basis space and 

what is a transform? Consider the decimal system, which is base 10, and the binary system which is 

base 2. We can change numbers between the two number systems by using a transform. A Fourier 

transform uses sine and cosine as basis functions in frequency space, so that the Fourier transform can 

move pixels between the time-domain pixel space and the frequency space. Basis space moments 

describe the projection of a function onto a basis space [444]—for example, the Fourier transform 

projects a function onto a basis of harmonic functions. 

Basis spaces and transforms are useful for a wide range of applications, including image coding and 

reconstruction, image processing, feature description, and feature matching. As shown in Fig. 3.18, 

image representation and image coding are closely related to feature description. Images can be 

described using coding methods or feature descriptors, and images also can be reconstructed from 

the encodings or from the feature descriptors. Many methods exist to reconstruct images from 

alternative basis space encodings, ranging from lossless RLE methods to lossy JPEG methods; in 

Chap. 4, we provide illustrations of images that have been reconstructed from only local feature 

descriptors (see Figs. 4.12, 4.13, and 4.14).
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Fig. 3.18 An oversimplified spectrum of basis space options, showing feature set size and complexity of description and 

reconstruction 

As illustrated in Fig. 3.18, a spectrum of basis spaces can be imagined, ranging from a continuous 

real function or live scene with infinite complexity, to a complete raster image, a JPEG compressed 

image, a frequency domain, or other basis representations, down to local feature descriptor sets. Note 

that the more detail that is provided and used from the basis space representation, the better the real 

scene can be recognized or reconstructed. So the trade-off is to find the best representation or 

description, in the optimal basis space, to reach the invariance and accuracy goals using the least 

amount of compute and memory. 

Transforms and basis spaces are a vast field within mathematics and signal processing, which are 

covered quite well in other works, so here we only introduce common transforms useful for image 

coding and feature description. We describe their key advantages and applications and refer the reader 

to the literature as we go. See Fig. 3.19.
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Transform 

Rectangular Basis 

Walsh-Hadamard 

1969 

Slant 

1973 

Haar 

1909 

Statistical Basis 

Karhunen-Louve, 

Hotelling, PCA 

1933 

SVD 

Directional Basis 

Hough 

1962 

Radon 

1917 

Zernike 

1934 

Steerable Filters 

1991 

Sinusoidal Basis 

Fourier 

1807 

FFT 

1965 

Sine/Cosine 

DCT 

1974, 1977 

Hartley 

1925 

Wavelets 

1909, 1974 

Gabor 

1948 

Fig. 3.19 Various basis transforms used in image processing and computer vision 

Since we are dealing with discrete pixels in computer vision, we are primarily interested in discrete 

transforms, especially those which can be accelerated with optimized software or fixed-function 

hardware. However, we also cover a few integral transform methods that may be slower to compute 

and less used. Here is an overview:

• Global or local feature description. It is possible to use transforms and basis space representations 

of images as a global feature descriptor, allowing scenes and larger objects to be recognized and 

compared. The 2D FFT spectrum is only one example, and it is simple to compare FFT spectrum 

features using SAD or SSD distance measures.

• Image coding and compression. Many of the transforms have proved valuable for image coding 

and image compression. The basic method involves transforming the image, or block regions of the
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image, into another basis space. For example, transforming blocks of an image into the Fourier 

domain allows the image regions to be represented as sine and cosine waves. Then, based on the 

amount of energy in the region, a reduced amount of frequency space components can be stored or 

coded to represent the image. The energy is mostly contained in the lower-frequency components, 

which can be observed in the Fourier power spectrum such as shown in Fig. 2.16; the high-

frequency components can be discarded and the significant lower-frequency components can be 

encoded, thus some image compression is achieved with a small loss of detail. Many novel image 

coding methods exist, such as that using a basis of scaled Laplacian features over an image 

pyramid [270]. 

Fourier Description 

The Fourier family of transforms was covered in detail in Chap. 2, in the context of image 

preprocessing and filtering. However, the Fourier frequency components can also be used for feature 

description. Using the forward Fourier transform, an image is transformed into frequency components, 

which can be selectively used to describe the transformed pixel region, commonly done for image 

coding and compression, and for feature description. 

The Fourier descriptor provides several invariance attributes, such as rotation and scale. Any array 

of values can be fed to an FFT to generate a descriptor—for example, a histogram. A common 

application is illustrated in Fig. 3.20, describing the circularity of a shape and finding the major and 

minor axis as the extrema frequency deviation from the sine wave. A related application is finding the 

endpoints of a flat line segment on the perimeter by fitting FFT magnitudes of the harmonic series as 

polar coordinates against a straight line in Cartesian space. 

Fig. 3.20 Fourier descriptor of the odd-shaped polygon surrounding the circle on the left
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In Fig. 3.20, a complex wave is plotted as a dark gray circle unrolled around a sine wave function or 

a perfect circle. Note that the Fourier transform of the lengths of each point around the complex 

function yields an approximation of a periodic wave, and the Fourier descriptor of the shape of the 

complex wave is visible. Another example illustrating Fourier descriptors is shown in Fig. 6.29. 

Walsh–Hadamard Transform 

The Hadamard transform [4, 9] uses a series of square waves with the value of +1 or-1, which is ideal 

for digital signal processing. It is amenable to optimizations, since only signed addition is needed to 

sum the basis vectors, making this transform much faster than sinusoidal basis transforms. The basis 

vectors for the harmonic Hadamard series and corresponding transform can be generated by sampling 

Walsh functions, which make up an orthonormal basis set; thus, the combined method is commonly 

referred to as the Walsh–Hadamard transform; see Fig. 3.21. 

Fig. 3.21 (Left) Walsh–Hadamard basis set. (Center) HAAR basis set. (Right) Slant basis set 

HAAR Transform 

The HAAR transform [4, 9] is similar to the Fourier transform, except that the basis vectors are HAAR 

features resembling square waves, and similar to wavelets. HAAR features, owing to their orthogonal 

rectangular shapes, are suitable for detecting vertical and horizontal image features that have near-

constant gray level. Any structural discontinuities in the data, such as edges and local texture, cannot 

be resolved very well by the HAAR features; see Figs. 3.21 and 6.21.
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Slant Transform 

The Slant transform [242], as illustrated in Fig. 3.21, was originally developed for television signal 

encoding and was later applied to general image coding [4, 241]. The Slant transform is analogous to 

the Fourier transform, except that the basis functions are a series of slant, sawtooth, or triangle waves. 

The slant basis vector is suitable for applications where image brightness changes linearly over the 

length of the function. The slant transform is amenable to discrete optimizations in digital systems. 

Although the primary applications have been image coding and image compression, the slant trans-

form is amenable to feature description. It is closely related to the Karhunen–Loeve transform and the 

Slant–Hadamard transform [439]. 

Zernike Polynomials 

Fritz Zernike, 1953 Nobel Prize winner, devised Zernike polynomials during his quest to develop the 

phase contrast microscope, while studying the optical properties and spectra of diffraction gratings. 

The Zernike polynomials [230–232] have been widely used for optical analysis and modeling of the 

human visual system and for assistance in medical procedures such as laser surgery. They provide an 

accurate model of optical wave aberrations expressed as a set of basis polynomials, illustrated in 

Fig. 3.22. 

Fig. 3.22 The first 18 Zernike modes. Note various aberrations from a perfect filter; top left image is the perfect filter. 

(Images # Dr. Thomas Salmon at Northeastern State University and used by permission) 

Zernike polynomials are analogous to steerable filters [319], which also contain oriented basis sets 

of filter shapes used to identify oriented features and take moments to create descriptors. The Zernike 

model uses radial coordinates and circular regions, rather than rectangular patches as used in many 

other feature description methods. 

Zernike methods are widely used in optometry to model human eye aberrations. Zernike moments 

are also used for image watermarking [236] and image coding and reconstruction [237, 239]. The 

Zernike features provide scale and rotational invariance, in part due to the radial coordinate symmetry 

and increasing level of detail possible within the higher-order polynomials. Zernike moments are used 

in computer vision applications by comparing the Zernike basis features against circular patches in 

target images [234, 235]. 

Fast methods to compute the Zernike polynomials and moments exist [233, 238, 240], which 

exploit the symmetry of the basis functions around the x and y axes to reduce computations and also to 

exploit recursion.
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Steerable Filters 

Steerable filters are loosely considered as basis functions here and can be used for both filtering or 

feature description. Conceptually similar to Zernike polynomials, steerable filters [319, 331] are 

composed by synthesizing steered or oriented linearly combinations of chosen basis functions, such 

as quadrature pairs of Gaussian filters and oriented versions of each function, in a simple transform. 

Many types of filter functions can be used as the basis for steerable filters [320, 322]. The filter 

transform is created by combining together the basis functions in a filter bank, as shown in Fig. 3.23. 

Gain is selected for each function, and all filters in the bank are summed, then adaptively applied to the 

image. Pyramid sets of basis functions can be created to operate over scale. Applications include 

convolving oriented steerable filters with target image regions to determine filter response strength, 

orientation, and phase. Other applications include filtering images based on orientation of features, 

contour detection, and feature description. 

Gain 

Factors 

Input 

Image 

Basis 

Filter 

Bank

E.f(x) 

Filter 

Summing 

Filtered 

Image 

Fig. 3.23 (Left) Steerable filters basis set showing eight orientations of the first-order Gaussian filter. (Right) How 

steerable filters can be combined for directional filtering. Filter images generated using ImageJ Fiji SteerableJ plugin 

from Design of Steerable Filters for Feature Detection Using Canny-Like Criteria, M. Jacob, M. Unser, PAMI 2004 

For feature description, there are several methods that could work—for example, convolving each 

steerable basis function with an image patch. The highest one or two filter responses or moments from 

all the steerable filters can then be chosen as the set-ordinal feature descriptor, or all the filter responses 

can be used as a feature descriptor. As an optimization, an interest point can first be determined in the 

patch, and the orientation of the interest point can be used to select the one or two steerable filters 

closest to the orientation of the interest point; then the closest steerable filers are used as the basis to 

compute the descriptor. 

Karhunen–Loeve Transform and Hotelling Transform 

The Karhunen–Loeve transform (KLT) [4, 9] was devised to describe a continuous random process as 

a series expansion, as opposed to the Fourier method of describing periodic signals. Hotelling later 

devised a discrete equivalent of the KLT using principal components. “KLT” is the most common 

name referring to both methods. 

The basis functions are dependent on the eigenvectors of the underlying image, and computing 

eigenvectors is a compute-intensive process with no established fast transform known. The KLT is not 

separable to optimize over image blocks, so the KLT is typically used for PCA on small datasets such 

as feature vectors used in pattern classification, clustering, and matching.
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Wavelet Transform and Gabor Filters 

Wavelets, as the name suggests, are short waves or wavelets [283]. Think of a wavelet as a short-

duration pulse such as a seismic tremor, starting and ending at zero, rather than a continuous or 

resonating wave. Wavelets are convolved with a given signal, such as an image, to find similarity and 

statistical moments. Wavelets can therefore be implemented like convolution kernels in the spatial 

domain. See Fig. 3.24. 

Fig. 3.24 Wavelet concepts using a “Mexican top hat” wavelet basis. (Top) A few scaled Mexican top hats derived from 

the mother wavelet. (Bottom) A few translated wavelets 

Wavelet analysis is a vast field [247, 248] with many applications and useful resources available, 

including libraries of wavelet families and analysis software packages [245]. Fast wavelet transforms 

(FWTs) exist in common signal and image processing libraries. Several variants of the wavelet 

transform include:

• Discrete wavelet transform (DWT)

• Stationary wavelet transform (SWT)

• Continuous wavelet transform (CWT)

• Lifting wavelet transform (LWT)

• Stationary wavelet packet transform (SWPT)

• Discrete wavelet packet transform (DWPT)

• Fractional Fourier transform (FRFT)

• Fractional wavelet transform (FRWT) 

Wavelets are designed to meet various goals and are crafted for specific applications; there is no 

single wavelet function or basis. For example, a set of wavelets can be designed to represent the 

musical scale, where each note (such as middle C) is defined as having a duration of an eighth note 

wavelet pulse, and then each wavelet in the set is convolved across a signal to locate the corresponding 

notes in the musical scale. 

When designing wavelets, the mother wavelet is the basis of the wavelet family, and then daughter 

wavelets are derived using translation, scaling, or compression of the mother wavelet. Ideally, a set of 

wavelets are overlapping and complementary so as to decompose data with no gaps and be mathemat-

ically reversible. 

Wavelets are used in transforms as a set of nonlinear basis functions, where each basis function can 

be designed as needed to optimally match a desired feature in the input function. So, unlike transforms 

which use a uniform set of basis functions—as the Fourier transform uses sine and cosine functions— 

wavelets use a dynamic set of basis functions that are complex and nonuniform in nature. See Fig. 3.25.
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Fig. 3.25 Various 2D wavelet shapes: (left to right) Top hat, Shannon, Dabechies, Smylet, Coiflett 

Wavelets have been used as the basis for scale and rotation invariant feature description [208], 

image segmentation [243, 244], shape description [209], and obviously image and signal filtering of all 

the expected varieties, denoising, image compression, and image coding. A set of application-specific 

wavelets could be devised for feature description. 

Gabor Functions 

Wavelets can be considered an extension of the earlier concept of Gabor functions [249, 282], which 

can be derived for imaging applications as a set of 2D-oriented bandpass filters. Gabor’s work was 

centered on the physical transmission of sound and problems with Fourier methods involving time-

varying signals like sirens that could not be perfectly represented as periodic frequency information. 

Gabor proposed a more compact representation than Fourier analysis could provide, using a concept 

called atoms that recorded coefficients of the sound that could be transmitted more compactly. See 

Fig. 3.26. 

(b) velocity-tuned (moving envelope) 

(a) frequency-tuned (static envelope) 

Fig. 3.26 This figure showing Gabor filters (top) frequency tuned, and (bottom) velocity tuned. Images # Springer-

Verlag, taken from CVPR 2010, “Facial expression recognition using Gabor motion energy filters, Tingfan Wu, Bartlett, 

M.S. Movellan, Javier R” 

Hough Transform and Radon Transform 

The Hough transform [192–194] and the Radon transform [255] are related, and the results are 

equivalent, in the opinion of many [251, 256]; see Fig. 3.27. The Radon transform is an integral 

transform, while the Hough transform is a discrete method, therefore much faster. The Hough method 

is widely used in image processing and can be accelerated using a GPU [254] with data parallel 

methods. The Radon algorithm is slightly more accurate and perhaps more mathematically sound and 

is often associated with X-ray tomography applied to reconstruction from X-ray projections. We focus 

primarily on the Hough transform, since it is widely available in image processing libraries.
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d d  

Fig. 3.27 Line detection: (Left) Original image. (Center) Radon Transform. (Right) Hough Transform. The brightness 

of the transform images reveals the relative strength of the accumulators, and the sinusoidal line intersections indicate the 

angular orientation of features 

Key applications for the Hough and Radon transforms are shape detection and shape description of 

lines, circles, and parametric curves. The main advantages include:

• Robust to noise and partial occlusion

• Fill gaps in apparent lines, edges, and curves

• Can be parameterized to handle various edge and curve shapes 

The disadvantages include

• Look for one type or parameterization of a feature at a time, such as a line

• Colinear segments are not distinguished and lumped together

• May incorrectly fill in gaps and link edges that are not connected

• Length and position of lines are not determined, but this can be done in image space 

The Hough transform is primarily a global or regional descriptor and operates over larger areas. It 

was originally devised to detect lines and has been subsequently generalized to detect parametric 

shapes [257], such as curves and circles. However, adding more parameterization to the feature 

requires more memory and compute. Hough features can be used to mark region boundaries described 

by regular parametric curves and lines. The Hough transform is attractive for some applications, since 

it can tolerate gaps in the lines or curves and is not strongly affected by noise or some occlusion, but 

morphology and edge detection via other methods is often sufficient, so the Hough transform has 

limited applications. 

The input to the Hough transform is a gradient magnitude image, which has been thresholded, 

leaving the dominant gradient information. The gradient magnitude is used to build a map revealing all 

the parameterized features in the image—for example, lines at a given orientation or circles with a 

given diameter. For example, to detect lines, we map each gradient point in the pixel space into the 

Hough parameter space, parameterized as a single point (d, θ) corresponding to all lines with 

orientation angle θ at distance d from the origin. Curve and circle parameterization uses different 

variables [257]. The parameter space is quantized into cells or accumulator bins, and each accumulator 

is updated by summing the number of gradient lines passing through the same Hough points. The 

accumulator method is modified for detecting parametric curves and circles. Thresholding the accu-

mulator space and reprojecting only the highest accumulator values as overlays back onto the image 

are useful to highlight features.
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Summary 

This chapter provides a selected history of global and regional metrics, with the treatment of local 

feature metrics deferred until Chaps. 4 and 6. Some historical context is provided on the development 

of structural and statistical texture metrics, as well as basis spaces useful for feature description, and 

several common regional and global metrics. A wide range of topics in texture analysis and statistical 

analysis are surveyed with applications to computer vision. 

Since it is difficult to cleanly partition all the related topics in image processing and computer 

vision, there is some overlap of topics here and in Chaps. 2, 4, 5, and 6. 

Learning Assignments 

1. Discuss when to use a global image processing operation vs. a local or regional image processing 

operation. 

2. Discuss in general how global image statistics can guide image preprocessing for computer vision 

applications, and specifically name one global image metric and discuss how it can be applied. 

3. Compare global image feature metrics and local feature descriptors in general, and discuss a 

specific example global feature metric and compare it to a specific local feature descriptor. 

4. Describe global image texture in general terms. 

5. Discuss how a 2d histogram of an image can be used to understand image texture. 

6. Discuss how the 2d Fourier Series of an image is used to understand image texture. 

7. Discuss how the Haralick texture metrics based on the co-occurrence matrix are used to understand 

image texture. 

8. Discuss how Spatial Dependency Matrix (SDM) plots are used to understand image texture. 

9. Discuss statistical moments of an image histogram, including at least the mean value and variance, 

and how these features are useful as global image descriptors. 

10. Describe a multi-resolution histogram built from an image pyramid, and how to interpret the 

results of the histogram. 

11. Describe how a Fourier description of the shape of a circle is created from the Fourier Series, and 

how it is useful as a shape descriptor. 

12. Describe basis features for the HAAR transform, Slant Transform, and Walsh–Hadamard 

Transform. 

13. Compare Wavelet features to Fourier Series features. 

14. Describe the Hough Transform and the Radon Transform algorithms, and how they are used as a 

global image metric for shape detection.



Science, my boy, is made up of mistakes, but they are mistakes which it is useful to make,

because they lead little by little to the truth.

—Jules Verne, Journey to the Center of the Earth 

to both detector and descriptor methods. Note that the opportunity always exists to modify as well as

mix and match detectors and descriptors to achieve the best results.

Local Feature Descriptors 4 

In this chapter, we examine several concepts related to local feature descriptor design—namely local 

patterns, shapes, spectra, distance functions, classification, matching, and object recognition. The main 

focus is local feature metrics, as shown in Fig. 4.1. This discussion follows the general vision 

taxonomy that is presented in Chap. 5 and includes key fundamentals for understanding interest 

point detectors and feature descriptors, as surveyed in Chap. 6, including selected concepts common 

Sensor Processing 

Image Pre-Processing 

Global Metrics 

Local Feature Metrics 

Classification, Learning 

Augment, Render, Control 

Vision Pipeline Stages 

Fig. 4.1 Various stages in the vision pipeline; this chapter focuses on local feature metrics and classification and 

learning 
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Local Features 

We focus on the design of local feature descriptors and how they are used in training, classification, 

and machine learning. The discussion follows the feature taxonomy as is presented in Chap. 5 and as is 

illustrated in Fig. 5.1. The main elements are: (1) shape (for example, rectangle or circle); (2) pattern 

(either dense sampling or sparse sampling); and (3) spectra (binary values, scalars, sparse codes, or 

other values). A dense patterned feature will use each pixel in the local region, such as each pixel in a 

rectangle, while a sparse feature will use only selected pixels from the region. 

In addition to the many approaches to shape and pattern, there are numerous approaches taken for 

the spectra, ranging from gradient-based patch methods to sparse local binary pattern methods. The 

main topics covered here include:

• Detectors, used to locate interesting features in the image.

• Descriptors, used to describe the regions surrounding interesting features.

• Descriptor attributes, such as feature robustness and invariance.

• Classification, used to create databases of features and optimal feature matching.

• Recognition, used to match detected features in target images against trained features.

• Feature learning, or machine learning methods. 

Based on the concepts presented this chapter, the vision taxonomy offered in Chap. 5 provides a 

way to summarize and analyze the feature descriptors and their attributes, thereby enabling limited 

comparison between the different approaches. 

Detectors, Interest Points, Keypoints, Anchor Points, Landmarks 

A detector finds interesting features in the image. The terminology in the literature for discussing an 

“interesting feature” includes several interchangeable terms, such as keypoint, landmark, interest point, 

or anchor point, all of which refer to features such as corners, edges, or patterns that can be found 

repeatedly with high likelihood. In Chap. 6, we survey many detector methods, along with various 

design approaches. In some cases, the keypoint detector is used to determine the orientation vector of 

the surrounding feature descriptor—for example, by computing the overall gradient orientation of the 

corner. The uncertain or low-quality keypoints are commonly filtered out prior to feature description. 

Note that many keypoint methods operate on smaller pixel regions, such as 3 × 3 for the LBP and 7 × 7 

for FAST. 

The keypoint location itself may not be enough for feature matching; however, some methods 

discussed here rely on keypoints only, without a feature descriptor. Feature description provides more 

information around each keypoint and may be computed over larger regions and multiple scales, such 

as SIFT and ORB. 

Descriptors, Feature Description, Feature Extraction 

A feature descriptor can be computed at each key point to provide more information about the pixel 

region surrounding the keypoint. However, in methods that compute features across a fixed-size pixel 

grid such as the Viola–Jones method [117], no interest point is necessary, since the grid defines the 

descriptor region. Feature description typically uses some combination of color or gray scale intensity 

channels, as well as local information such as gradients and colors. Feature description takes place over



a shape, such as a square or circle. In some cases, pixel point-pair sample patterns are used to compute 

or compare selected pixel values to yield a descriptor vector—for example, as shown later, in Fig. 4.8. 
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Typically, an interest point provides some amount of invariance and robustness—for example, in 

scale and rotation. In many cases, the orientation of the descriptor is determined from the interest point, 

and the descriptor provides other invariance attributes. Combining the interest point with the descriptor 

provides a larger set of invariance attributes. And if several descriptors are associated together from the 

same object, object recognition is possible. 

For example, a descriptor may contain multivariate, multidimensional, and multigeometric 

quantities calculated over several intensity channels, multiple geometric scales, and multiple 

perspectives (see Varma [699] and Vedaldi [698] for more on multivariate descriptors). A multivariate 

descriptor may contain RGBD data (red, green, blue, and Z depth data); a multidimensional descriptor 

may contain feature descriptions at various levels of zoom across an image pyramid; and a 

multigeometry descriptor may contain a set of feature descriptions computed across affine transforms 

of the local image patch or region. 

There is no right or wrong method for designing features; many approaches are taken. For example, 

a set of metrics including region shape, region texture, and region color of an object may be helpful in 

an application to locate fruit, while another application may not need color or shape and can rely 

instead on sets of interest points, feature descriptors, and their spatial relationships. In fact, combining 

several weaker descriptor methods into a multivariate descriptor is often the best approach. 

Computing feature descriptors from an image is commonly referred to as feature extraction. 

Sparse Local Pattern Methods 

While some methods describe features densely within regular sampling grids across an image, such as 

the PHOG [157] method discussed in Chap. 6, other methods such as FREAK [102] use sparse local 

patterns to sample pixels anchored at interest points to create the descriptor. Depending on the method, 

the shapes may be trained, learned, or chosen by design, and many topologies of shapes and patterns 

are in current use. 

To frame the discussion on sparse local pattern and descriptor methods, notice that there is a 

contrast with global and regional descriptor methods, which typically do not rely on sparse local 

patterns. Instead, global and regional methods typically use dense sampling of larger shapes such as 

rectangles or other polygons. For example, polygon shape descriptors, as discussed in Chap. 6, may 

delineate or segment the feature region using dense methods such as mathematical morphology and 

region segmentation. Global and regional descriptor metrics, such as texture metrics, histograms, or 

SDMs discussed in Chap. 3, are typically computed across cohesive, dense regions rather than sparse 

regions. 

Local Feature Attributes 

This section discusses how features are chosen to provide the desired attributes of feature goodness, 

such as invariance and robustness. 

Choosing Feature Descriptors and Interest Points 

Both the interest point detector and the feature description method must be chosen to work well 

together and to work well for the type of images being processed. Robustness attributes such as



contrast, scale, and rotation must be considered for both the detector and the descriptor pair. As shown 

in Appendix A, each interest point detector is best designed to find specific types of features, and 

therefore no single method is good for all types of images. 
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For example, FAST and Harris methods typically find many small mono-scale interest points, while 

other methods, such as that used in SIFT, find fewer, larger and finely tuned multi-scale interest points. 

Some tuning of the interest point detector parameters is expected, so as to make them work at all, or 

else some preprocessing of the images maybe needed to help the detector find the interest points in the 

first place. (Chapter 6 provides a survey of interest point methods and background mathematical 

concepts.) 

Feature Descriptors and Feature Matching 

Feature description is foundational to feature matching, leading to image understanding, scene 

analysis, and object tracking. The central problems in feature matching include how to determine if 

a feature is differentiated from other similar features, and if the feature is part of a larger object. 

The method of determining a feature match is critical, for many reasons; these reasons include 

compute cost, memory size, repeatability, accuracy, and robustness. While a perfect match is ideal, in 

practice a relative match is determined by a distance function, where the incoming set of feature 

descriptors is compared with known feature descriptors. But we’ll discuss several distance functions 

later in this chapter. 

Table 4.1 Some attributes for good feature descriptors and interest points. (See also Fig. 5.2 for the general robustness 

criteria) 

Good Feature Metric 

Attributes Details 

Scale invariance Should be able to find the feature at different scales 

Perspective invariance Should be able to find the feature from different perspectives in the field of view 

Rotational invariance The feature should be recognized in various rotations within the image plane 

Translation invariance The feature should be recognized in various positions in the FOV 

Reflection invariance The feature should be recognized as a mirror image of itself 

Affine invariance The feature should be recognized under affine transforms 

Noise invariance The feature should be detectable in the presence of noise 

Illumination invariance The feature should be recognizable in various lighting conditions including changes in 

brightness and contrast 

Compute efficiency The feature descriptor should be efficient to compute and match 

Distinctiveness The feature should be distinct and detectable, with a low probability of mis-match, 

amenable to matching from a database of features 

Compact to describe The feature should not require large amounts of memory to hold details 

Occlusion robustness The feature or set of features can be described and detected when parts of the feature or 

feature set are occluded 

Focus or blur robustness The feature or set of features can be detected at varying degrees of focus (i.e., image 

pyramids can provide some of this capability) 

Clutter and outlier 

robustness 

The feature or set of features can be detected in the presence of outlier features and clutter
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Criteria for Goodness 

Measuring the goodness of features can be done one attribute at a time. A general list of goodness 

attributes for feature landmarks is provided in Table 4.1. Note that this list is primarily about invariance 

and robustness: these are the key concepts, since performance can be tuned using various optimization 

methods, as discussed in Chap. 8. Of course, in a given application, some attributes of goodness are 

more important than others; this is discussed in Chap. 7, in connection with ground truth data. 

How do we know a feature is good for an application? We may divide the discussion between the 

interest point methods and the descriptor method and the combined robustness and invariance 

attributes provided by both as shown in Table 4.1. The interest point at which the feature is anchored 

is critical, since if the anchor is not good and cannot be easily and repeatedly found, the resulting 

descriptor is calculated at a suboptimal location. 

Note that in many cases, image preprocessing is key to creating a good feature as shown in Fig. 4.2. 

If the image data have problems that can be corrected or improved, the feature description should be 

done after the image preprocessing. Note that many feature description methods rely on local image 

enhancements during descriptor creation, such as Gaussian blur of regions around keypoints for noise 

removal, so image preprocessing should complement the descriptor method. Each preprocessing 

method has drawbacks and advantages; see Table 2.1 and Chap. 2 for information on image 

preprocessing. 

Fig. 4.2 (Left) SURF feature descriptors calculated over original image. (Right) Image has been preprocessed using 

histogram equalization prior to feature extraction and therefore a different but overlapping set of features is found
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Repeatability, Easy vs. Hard to Find 

Ideally, the feature will be easy to find in an image, meaning that the feature description contains 

sufficient information to be robust under various conditions as shown in Table 4.1, such as contrast and 

brightness variations, scale, and rotation. Repeatability applies particularly to interest point detection, 

so the choice of interest point detector method is critical. (Appendix A contains example images 

showing interesting nonrepeatability anomalies for several common interest point detectors.) 

Some descriptors, such as SIFT [132, 146], are known to be robust under many imaging conditions. 

This is not too surprising, since SIFT is designed to be discriminating over multiple dimensions, such 

as scale and rotation, using carefully composed sets of local region gradients with a weighting factor 

applied to increase the importance of gradients closer to the center of the feature. But the robustness 

and repeatability come at a compute cost. SIFT [132, 146] is one of the most computationally 

expensive methods; however, Chap. 6 surveys various SIFT optimizations and variations. 

Distinctive vs. Indistinctive 

A descriptor is distinctive if:

• The feature can be differentiated from other, similar feature regions of the image.

• Different feature vectors are unique in the feature set.

• The feature can be matched effectively using a suitable distance function. 

A feature is indistinct if similar features cannot be distinguished; this may be caused by a lack of 

suitable image preprocessing, insufficient information in the descriptor, or an unsuitable distance 

function chosen for the matching stage. Of course, adding information into a simpler descriptor to 

make the descriptor a hybrid multivariate or multi-scale descriptor may be all that is needed to improve 

distinctiveness. For example, color information can be added to distinguish between skin tones. 

Relative and Absolute Position 

Positional information, such as coordinates, can be critical for feature goodness. For example, to 

associate features together using constraints on the corner position of human eyes, interest point 

coordinates are needed. These enable more accurate identification and location of the eyes by using, as 

part of an intelligent matching process, the distance and angles between the eye corner locations. 

With the increasing use of depth sensors, simply providing the Z or depth location of the feature in 

the descriptor itself may be enough to easily distinguish a feature from the background. Position in the 

depth field is a powerful bit of information, and since computer vision is often concerned with finding 

3D information in a 2D image field, the Z depth information can be an invaluable attribute for feature 

goodness. 

Matching Cost and Correspondence 

Feature matching is a measurement of the correspondence between two or more features using a 

distance function (discussed next in this section). Note here that feature matching has a cost in terms of



memory and compute time. For example, if a feature descriptor is composed of an array of 8-bit bytes, 

such as an 18 × 18 pixel correlation template, then the feature matching cost is the compute time and 

memory required to compare two 18 × 18 (324) pixel regions against each other, where the matching 

method or distance function used may be SAD, SSD, or similar difference metric. Another example 

involves local binary descriptors such as the LBP (linear binary patterns), which are stored as bit 

vectors, where the matching cost is the time to perform the Hamming distance function, which operates 

by comparing two binary vectors via Boolean XOR followed by a bit count to provide the match 

metric. 
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In general, distance functions are well-known mathematical functions that are applied to computer 

vision; however, some are better suited than others in terms of computability and application to a 

specific vision task. For example, SSD, SAD, cosine distance, and Hamming distance metrics have 

been implemented in silicon as computer machine language instructions in some architectures, owing 

to their wide applicability. So choosing a distance function that is accelerated in silicon can be an 

advantage. 

The feature database is another component of the matching cost, so the organization of the database 

and feature search contribute to the cost. We briefly touch on this topic later in this chapter. 

Distance Functions 

This section provides a general discussion of distance functions used for clustering, classification, and 

feature matching. Often the appropriate distance function for an application is unknown, therefore 

several distance functions should be tried to find the best one, or a new one should be devised. For 

example, a distance function can be augmented to selectively compare distance only for nonzero 

datums (intersection), or where one datum is zero and the other is not (outliers), or only for datums 

which exceed a threshold. Be creative. Note that distance functions can be taken over several 

dimensions—for example, 2D image arrays for feature descriptor matching, 3D voxel volumes for 

point cloud matching, and multidimensional spaces for multivariate descriptors. Since this is a brief 

overview, a deeper treatment is available by Pele [472], Varma [699], Vedaldi [698], Cha [809], Duda 

[750], and Deza [810]. 

Note that kernel machines [305, 535], discussed later in this chapter, and in more detail in Chap. 10 

in the section “Kernel Functions, Kernel Machines, SVM,” provide an automated framework to 

classify a feature space and substitute chosen distance function kernels. 

Early Work on Distance Functions 

In 1968, Rosenfeld and Pfaltz [95] developed novel methods for determining the distance between 

image features, which they referred to as “a given subset of the picture,” where the feature shapes used 

in their work included diamonds, squares, and triangles. The distance metrics they studied include 

some methods that are no longer in common use today:

• Hexagonal distance from a single point (Cartesian array)

• Hexagonal distance from a single point (staggered array)

• Octagonal distance from a single point

• City block distance from blank areas
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• Square distances from blank areas

• Hexagonal distance from blank areas

• Octagonal distance from blank areas

• Nearest integer to Euclidean distance from a single point 

This early work by Rosenfeld and Pfaltz is fascinating, since the output device used to render the 

images was ASCII characters printed on a CRT terminal or line printer, as shown in Fig. 4.3. 

Fig. 4.3 An early 

Rosenfeld and Pfaltz 

rendering that illustrates a 

distance function (square 

distance in this case) using 

a line printer as the output 

device. (Image # reprinted 

from Rosenfeld and Pfaltz, 

Pattern Recognition 

(Oxford: Pergamon Press, 

1968), 1:33–61. Used with 

permission from Elsevier) 

Euclidean or Cartesian Distance Metrics 

The Euclidean distance metrics include basic Euclidean geometry identities in Cartesian coordinate 

spaces; in general, these are simple and obvious to use. 

Euclidean Distance 

This is the simple distance between two points. 

Euclidean Distance a, bf  g, x, yf  g½ ]= a- xð  Þ2 þ b- yð  Þ2
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Squared Euclidean Distance 

This is faster to compute and omits the square root. 

Squared Euclidean Distance a, bf  g, x, yf  g½ ]= a- xð  Þ2 þ b- yð Þ2

Cosine Distance or Similarity 

This is angular distance, or the normalized dot product between two vectors to yield similarity of vector 

angle; also useful for 3D surface normal and viewpoint matching. 

cos θð  Þ ¼  A . B 
Ak  k  Bk  k  

Cosine Distance a, bf  g, x, yf  g½ ] ¼ 1-
ax þ by 

a2 þ b2 x2 þ y2

Sum of Absolute Differences (SAD ) or L1 Norm 

The difference between vector elements is summed and taken as the total distance between the vectors. 

Note that SAD is equivalent to Manhattan distance. 

SAD d1, d2ð  Þ= 

n1 

i= 0 

n2 

j= 0 

d1 i, j½ ]- d2 i, j½ ]ð Þ

Sum of Squared Differences (SSD) or L2 Norm 

The difference between vector elements is summed and squared and taken as the total distance between 

the vectors; commonly used in video decoding for motion estimation.
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SSD d1, d2ð  Þ= 

n1 

i= 0 

n2 

j= 0 

d1 i, j½ ]- d2 i, j½ ]ð Þ  2

Correlation Distance 

This is the correlation difference coefficient between two vectors, similar to cosine distance. 

C  u,v½ ]¼1 - u-Mean u½ ]ð Þ. v-Mean v½ ]ð Þ  
u-Mean u½ ]k k  v-Mean v½ ]k k  

C  a,bf  g, x,yf  g½ ]¼  
aþ1 

2
-a-bð Þ  xþ1 

2
-x-yð  Þ  þ 1 

2
-a-bð Þþb 

1 

2
-x-yð  Þþy 

Abs aþ1 
2
-a-bð Þ  2þAbs 1 

2
-a-bð Þþb 

2 
Abs xþ1 

2
-x-yð  Þ  2 

Abs 1 
2 
-x-yð Þ y

2

Hellinger Distance 

An effective alternative to Euclidean distance, Hellinger distance sometimes yields better accuracy for 

histogram-type distance metrics, as reported in the ROOTSIFT [143] optimization of SIFT. Hellinger 

distance, which can be formulated in a few different forms, is defined for L1 normalized histogram 

vectors as: 

H  x, yð  Þ= 

n 

i= 1 

xi 
p 

, - , yi 
p 2

Grid Distance Metrics 

These metrics calculate distance analogous to paths on grids. Therefore, the distance is measured as 

grid steps. 

Manhattan Distance 

Also known as city block difference or rectilinear distance, this measures distance via the route along a 

grid; there may be more than one path along a grid with equal distance. 

Manhattan Distance a, bf  g, x, yf  g½ ]=Abs a- xð  Þ þ  Abs b- yð  Þ
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Chebyshev Distance 

Also known as chessboard difference, this measures the greatest difference along a grid between two 

vectors. Note in the illustration below that each side of the triangle would have a Chebyshev distance, 

or length of 5, but in Euclidean space, one of the lines, the hypotenuse, is longer than the others. 

Chebyshev Distance a, bf  g, x, yf  g½ ]=Max Abs a- xð  Þ, Abs b- yð Þ½

Statistical Difference Metrics 

These metrics are based on statistical features of the vectors, and therefore the distance metrics need 

not map into a Euclidean space. 

Earth Movers Distance (EMD) or Wasserstein Metric 

Earth movers distance measures the cost to transform a multidimensional vector, such as a histogram, 

into another vector. The analogy is an earth mover (bulldozer) moving dirt between two groups of piles 

to make the piles of dirt in each group the same size. The EMD assumes there is a ground distance 

between the features in the vector—for example, the distance between bins in a histogram. The EMD is 

computed to be the minimal cost for the transform, which integrates the distance moved d × the amount 

moved f, subject to a few constraints. 

COST P,Q,Fð Þ= 

m 

i= 1 

n 

j= 1 

dijf ij 

Once the cost is computed, the result is normalized. 

EMD P,Qð  Þ= 

m 

i= 1 

n 

j= 1 

dijf ij 

m 

i= 1 

n 

j= 1 

f ij

The EMD has a high compute cost and can be useful for image analysis, but EMD is not an efficient 

metric for feature matching. 

Mahalanobis Distance 

Also known as quadratic distance, this computes distance using mean and covariance; it is scale 

invariant.
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dij ¼ xi - xj 
T 
S- 1 xi - xj 

1 
2 

SSD d1, d2ð  Þ ¼  
n1 

i¼- n1 

n2 

j¼- n2 

f  xþ i, yþ jð Þ- g  xþ i- d1, yj - d2
2

where xi = mean of feature vector 1, and xj = mean of feature vector 2. 

Bray Curtis Distance 

This is equivalent to a ratio of the sums of absolute differences and sums, such as a ratio of norms of 

Manhattan distances. Bray Curtis dissimilarity is sometimes used for clustering data. 

Bray Curtis Distance a, b, cf  g, x, y, zf  g½ ]= 
Abs a- xð  Þ þ  Abs b- yð  Þ þ  Abs c- zð  Þ  
Abs a þ xð  Þ þ  Abs bþ yð  Þ  þ Abs cþ zð Þ

Canberra Distance 

This measures the distance between two vectors of equal length: 

Canberra Distance a, bf  g, x, yf  g½ ]= 
Abs a- xð  Þ  

Abs að  Þ þ  Abs xð  Þ þ Abs b- yð  Þ  
Abs bð Þ þ Abs yð Þ

Binary or Boolean Distance Metrics 

These metrics rely on set comparisons and Boolean algebra concepts, which makes this family of 

metrics attractive for optimization on digital computers. 

L0 Norm 

The L0 norm is a count of nonzero elements in a vector and is used in the Hamming Distance metric 

and other binary or Boolean metrics. 

x0k  k= # ijxi ≠ 0 ð Þ

Hamming Distance 

This measures the binary difference or agreement between vectors of equal length—for example, string 

or binary vectors. Hamming distance for binary bit vectors can be efficiently implemented in digital 

computers with either complete machine language instructions or as an XOR operation followed by a 

bit count operation. Hamming distance is a favorite for matching local binary descriptors, such as LBP, 

FREAK, CENSUS, BRISK, BRIEF, and ORB.

• String distance: 5 = 0001100111 = compare “HelloThere” and “HelpsThing”

• Binary distance: 3 = 10100010 = (01001110) XOR (11001100)

• Bit count of (u XOR v)
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Jaccard Similarity and Dissimilarity 

The ratio of pairwise similarity of a binary set (0,1 or true, false) over the number of set elements. Set 1 

below contains two bits with the same pairwise value as Set 2, so the similarity is 2/5 and the 

dissimilarity is 3/5. Jaccard similarity can be combined with Hamming distance.

• Set 1: {1,0,1,1,0}

• Set 2: {1,1,0,1,1}

• Jaccard Similarity: 2/5 = 0.4

• Jaccard Dissimilarity: 3/5 = 0.6 

Descriptor Representation 

This section discusses how information is represented in the descriptors, including coordinates spaces 

useful for feature description and matching, with some discussion of multimodal data and feature 

pyramids. Here we provide an overview of shapes and styles, see Table 5.1 and Fig. 5.2 for details on 

computer vision feature shape taxonomies and accepted invariance and robustness qualities for 

features. 

Coordinate Spaces, Complex Spaces 

There are many coordinate systems used in computer vision, so being able to transform data between 

coordinate systems is valuable. Coordinate spaces are analogous to basis spaces. Often, choosing the 

right coordinate system provides advantages for feature representation, computation, or matching. 

Complex spaces may include multivariate collections of scalar and vector variables, such as gradients, 

color, binary patterns, and statistical moments of pixel regions (see Fig. 4.4). 

c 

p 

t 

g 

r 

F 

q 

Fig. 4.4 Coordinate spaces, Cartesian, polar, radial, and spherical 

Cartesian Coordinates 

Images are typically captured in the time domain in a Cartesian space, and for many applications, 

translating to other coordinate spaces is needed. The human visual system views the world as a 

complex 3D spherical coordinate space and humans can, through a small miracle, map the 3D space



into approximate or relative Cartesian coordinates. Computer imaging systems capture data and 

convert it to Cartesian coordinates, but depth perception and geometric accuracy are lost in the 

conversion. (Chapter 1 provided a discussion of depth-sensing methods and 3D imaging systems, 

including geometric considerations.) 
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Polar and Log Polar Coordinates 

Many descriptors mentioned later in Chap. 6 use a circular descriptor region to match the human 

visual system. Therefore, polar coordinates are logical candidates to bin the feature vectors. For 

example, the GLOH [115] method uses polar coordinates for histogram gradient binning, rather than 

Cartesian coordinates as used in the original SIFT [132] method. GLOH can be used as a retrofit  for  

SIFT and has proved to increase accuracy [115]. Since the circular sampling patterns tend to provide 

better rotational invariance, polar coordinates and circular sampling are a good match for descriptor 

desig n.

Radial Coordinates 

The RIFF descriptor (described later in Chap. 6) uses a local radial coordinate system to describe 

rotationally invariant gradient-based feature descriptors. The radial coordinate system is based on a 

radial gradient transform (RGT) that normalizes vectors for invariant binning. 

As shown in Figs. 4.4 and 6.27, the RGT creates a local coordinate system within a patch region 

c and establishes two orthogonal basis vectors (r,t) relative to any point p in the patch, r for the radial 

vector, and t for the tangential vector. The measured gradients g at all points p are projected onto the 

radial coordinate system (r,t), so that the gradients are represented in a locally invariant fashion relative 

to the interest point c at the center of the patch. When the patch is rotated about c, the gradients rotate 

also, and the invariant representation holds. 

Spherical Coordinates 

Spherical coordinates, also referred to as 3D polar coordinates, can be applied to the field of 3D 

imaging and depth sensing to increase the accuracy for description and analysis. For example, depth 

cameras today typically only provide (x,y)  an  Z depth information for each sample. However, this is 

woefully inadequate to describe the complex geometry of space, including warping, radial distortion, 

and nonlinear distance between samples. Chapter 1 discussed the complexities of 3D space, depth 

measurements, and coordinate systems. 

Gauge Coordinates 

The G-SURFmethods [155] use a differential geometry concept [156] of a local region Gauge coordinate 

system to compute the features. Gauge coordinates are local to the image feature, and they carry 

advantages for geometrical accuracy. Gauge derivatives are rotation and translation invariant.
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Multivariate Spaces, Multimodal Data 

Multivariate spaces combine several quantities, such as Tensor spaces which combine scalar and 

vector values, and are commonly used in computer vision. While raw image data may be scalar values 

only, many feature descriptors compute local gradients at each pixel, so the combination of pixel scalar 

value and gradient vector forms a tensor or multivariate space. For example, color spaces (see Chap. 2) 

may represent color as a set of scalar and vector quantities, such as the hue, saturation, and value (HSV) 

color space illustrated in Fig. 2.8, where the vectors include HS with H hue as the vector angle and S 

saturation as the vector magnitude. V is another vector with two purposes, first as the axis origin for the 

HS vector and second as the color intensity or gray scale vector V. It is often useful to convert raw RGB 

data into such color spaces for ease of analysis—for example, to be able to uniformly change the color 

intensity of all colors together so as to affect brightness or contrast. 

In general, by increasing the dimensions of the feature space, more discrimination and robustness 

can be added. For example, the LBP pattern as described later in Chap. 6 can be extended into multiple 

variables by adding features such as a rotational invariant representation (RILBP); or by replicating the 

LBP across RGB color cannels as demonstrated in the color LBP descriptor; or by extending the LBP 

pattern into spatiotemporal 3-space, like the LBP-TOP to add geometric distortion invariance. 

Multimodal sensor data are becoming widespread with the proliferation of mobile devices that have 

built-in GPS, compass, temperature, altimeter, inertial, and other sensors. An example of a multimodal, 

multivariate descriptor is the SIFT-GAFD [207] method, as illustrated in Fig. 4.5, which adds 

accelerometer information in the form of a gravity vector to the SIFT descriptor. The gravity vector 

is referred to as global orientation, and the SIFT local pixel region gradient is referred to as the local 

orientation. 

Gravity 

vector 

Pixel 

gradient  

vector 

Fig. 4.5 Multimodal descriptor using accelerometer data in the form of a gravity vector, in a feature descriptor as used in 

the SIFT-GAFD method [207]. The gravity vector of global orientation can be used for feature orientation with respect to 

the environment
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Feature Pyramids 

Many feature descriptors are computed in a mono-scale fashion using pixel values at a given scale 

only, and then for feature detection and matching the feature is searched for in a scale space image 

pyramid. However, by computing the descriptor at multiple scales and storing multiple scaled 

descriptors together in a feature pyramid, the feature can be detected on mono-scale images with 

scale variance without using a scale space pyramid. 

For interest point and feature descriptor methods, scale invariance can be addressed either by: 

(1) scaling the images prior to searching, as in the scale space pyramid methods discussed later in this 

chapter; or (2) scaling and pyramiding multiple scales of the feature in the descriptor. Shape-based 

methods are by nature more scale invariant than interest point and feature descriptor methods, since 

shape-based methods depend on larger polygon structures and shape metrics. 

Descriptor Density 

Depending on the image data, there will be a different number of good interest points and features, 

since some images have more pronounced texture. And depending on the detector method used, 

images with high texture structure, or wider pixel intensity range differences, will likely generate more 

interest points than images with low contrast and smooth texture. 

A good rule of thumb is that between 0.1% and 1% of the pixels in an image can yield raw, 

unfiltered interest points. The more sensitive detectors such as FAST and the Harris detector family are 

at the upper end of this range (see Appendix A). Of course, detector parameters are tuned to reduce 

unwanted detection for each application. 

Interest Point and Descriptor Culling 

In fact, even though the interest point looks good, the corresponding descriptor computed at the interest 

point may not be worth using and will be discarded in some cases. Both interest points and descriptors 

are culled. So tuning the detector and descriptor together are critical trial-and-error processes. Using 

our base assumption of 0.1–1% of the pixels yielding valid raw interest points, we can estimate the 

possible detected interest points based on video resolution, as shown in Table 4.2. 

Depending on the approach, the detector may be run only at mono-scale or across a set of scaled 

images in an image pyramid scale space. For scale space search methods, the interest point detector is 

run at each pixel in each image in the pyramid. What methods can be used to cull interest points to 

reduce the interest point density to a manageable number? 

One method to select the best interest points is to use an adaptive detector tuning method 

(as discussed in Chap. 6 under “Interest Point Tuning”). Other approaches include only choosing 

interest points at a given threshold distance apart—for example, an interest point that cannot be

Table 4.2 Possible range of detected interest points per image 

480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD 

Resolution 640 × 480 1920 × 1080 3840 × 2160 7680 × 4320 

Pixels 307,200 2,073,600 8,294,400 33,177,600 

Interest points 300–3k 2k–21k 8k–83k 33k–331k



adjacent to another interest point within a five-pixel window, with the best candidate point selected 

within the threshold.
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Another method is to vary the search strategy as discussed in this chapter—for example, search for 

features at a lower resolution of the image pyramid, identify the best features, and record their 

positions, and perhaps search at higher levels of the pyramid to confirm the feature location, then 

compute the descriptors. This last method has the drawback of missing fine-grain features by default, 

since features may only be present at full image resolution. 

Yet another method is to look for interest points every other pixel or within grid-sized regions. All 

of the above methods are used in practice, and other methods exist besides. 

Dense vs. Sparse Feature Description 

A dense descriptor makes use of all the pixels in the region or patch. By “dense” we mean that the 

kernel sampling pattern includes all the pixels, since a sparse kernel may select specific pixels to use or 

ignore. SIFT and SURF are classic examples of dense descriptors, since all pixels in rectangular 

regions contribute to the descriptor computation. 

Many feature description methods, especially local binary descriptor methods, are making use of 

sparse patterns, where selected pixels are used from a region rather than all the pixels. The FREAK 

descriptor demonstrates one of the most ingenious methods of sparse sampling by modeling the human 

visual system, using a circular search region, and leveraging the finer resolution sampling closer to the 

center of the region, as well as tuning a hierarchy of local sampling patterns of increasing resolution for 

optimal results. Not only can sparse features potentially use less memory and reduce computations, but 

the sparse descriptor can be spread over a wider area to compensate for feature anomalies that occur in 

smaller regions. 

Descriptor Shape Topologies 

For this discussion, we view descriptor shape topology with an eye toward surveying the various 

shapes of the pixel regions used for descriptor computations. Part of the topology is the shape or 

boundary, and part of the topology is the choice of dense vs. sparse sampling patterns, discussed later 

in this chapter. Sampling and pattering methods range from the simple rectangular regions up to the 

more complex sparse local binary descriptor patterns. As discussed in Chap. 6, both 2D and 3D 

descriptors are being designed to use a wide range of topologies. Let us look at a few topological 

design considerations, such as patch shape, sub-patches, strips, and deformable patches. 

Which shape is better? The answer is subjective and we do not attempt to provide absolute answers, 

just offer a survey. 

Correlation Templates 

An obvious shape is the simple rectangular regions commonly used by correlation template matching 

methods. The descriptor is thus the mugshot, or actual image in the template region. To select 

subspaces within the rectangle, a mask can be used—for example, it could be a circular mask inside 

the bounding rectangle to mask off peripheral pixels from consideration.
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Note 

Rectangles are the last invariant feature shape, yet recent AI methods for transformers and CNNs 

surveyed in Chaps. 9–12 use rectangular areas of interest for feature learning. Many other feature 

shapes and attributes will eventually be used in AI for feature learning, since AI is currently at a very 

primitive stage. See Table 5.1 and Fig. 5.2 for details on computer vision feature shape taxonomies and 

accepted invariance and robustness qualities for features. 

Patches and Shapes 

The literature commonly refers to the feature shape as a patch, and usually a rectangular shape is 

assumed. Patch shapes are commonly rectangular owing to the ease of coding 2D array memory 

access. Circular patches are widely used in the local binary descriptor methods. 

However, many descriptors also compute features over multiple patches or regions, not just a single 

patch. Here are some common variations on patch topology. 

Single Patches, Subpatches 

Many descriptors limit the patch count to a single 2D patch. This is true of most common descriptors 

that are surveyed in Chap. 6. However, some of the local binary descriptors use a set of integral image 

subpatches at specific points within the larger patch—for example, BRIEF uses a 5 × 5 integral image 

subpatch at each sample point in the local binary pattern, within the larger 31 × 31 pixel patch region, 

so the value of each subpatch becomes the value used for the point-pair comparison. The goal is to filter 

the values at each point to remove noise. 

Deformable Patches 

Rather than using a rigid shape, such as a fixed-size rectangle or a circle, feature descriptors can be 

designed with deformation in mind, such as scale deformations [293, 294], and affine or homographic 

deformation [186], to enable more robust matching. Examples include the DeepFlow [283, 325] deep 

matching method, and RFM2.3, as discussed in Chap. 6. Also, the D-NETS [106] method, using the 

fully connected or sparse connected topology, can be considered to be deformable in terms of 

invariance of the placement of the strip patterns; see Fig. 4.7 and the discussion of D-nets in 

Chap. 6. Many feature learning methods discussed later in this chapter also use deformed features 

for training. 

Fixed descriptor shapes, such as rigid rectangles and circles, can detect motion under a rigid motion 

hypothesis, where the entire descriptor is expected to move with some amount of variance, such as in 

scale or affine transformation. However, for activity recognition and motion, a more deformable 

descriptor model is needed, and DeepFlow [292, 325] bridges the gap between descriptor matching 

methods and optical flow matching methods, using deformable patches and deep matching along the 

lines of deep learning networks. 

Multi-patch Sets 

The SIFT descriptor uses multi-patch sets of three patches from adjacent DoG images taken from the 

scale space pyramid structure, as shown in Fig. 6.15. Several other methods, such as the LBP-TOP and 

VLBP shown in Fig. 6.12, use sets of patches spread across a volume structure. LBP-TOP uses patches 

from adjacent planes, and the VLBP uses intersecting patches in 3-space. Dynamic texture methods 

use sets of three adjacent patches from spatiotemporal image frame sets, as frame n - 2, frame n - 1, 

and frame - 0 (current frame).
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TPLBP, FPLBP 

The three-patch LBP TPLBP and four-patch LBP FPLBP [206] utilize novel multi-patch sampling 

patterns to add sparse local structure into a composite LBP descriptor. As shown in Fig. 4.6, the three-

patch LBP uses a radial set of LBP patterns composed using alternating sets of three patches, and the 

four-patch LBP uses a more distributed pairing of patches over a wider range. 

Fig. 4.6 Novel multi-patch sets developed by Wolf et al. [206]. (Left) The TPLBP compares the values from three-patch 

sets around the ring to compute the LBP code, eight sets total, so there is one set for each LBP bit. (Right) The four-patch 

LBP uses four patches to computed bits using two symmetrically distributed patches from each ring, to produce each bit 

in the LBP code. The radius of each ring is a variable, the patch pairing is a variable, and the number of patches per ring is 

a variable; here, there are eight patches per ring 

Strip and Radial Fan Shapes 

Radial fans or spokes originating at the feature interest point location or shape centroid can be used as 

the descriptor sampling topology—for example, with Fourier shape descriptors (as discussed in 

Chap. 6; see especially Fig. 6.29). 

D-NETS Strip Patterns 

The D-NETS method developed by Hundelshausen and Sukthankar [106] uses a connected graph-

shaped descriptor pattern with variations in the sampling pattern possible. The authors suggest that the 

method is effective using three different patterns, as shown in Fig. 4.7: 

1. Fully connected graph at interest points 

2. Sparse or iterative connected graph at interest points 

3. Densely sampled graph over a chosen grid
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Fig. 4.7 Reduced resolution examples of the D-NETS [106] sampling patterns. (Left) Full dense connectivity at interest 

points. (Center) Sparse connectivity at interest points. (Right) Dense connectivity over a regular sampling grid. The 

D-NETS authors note that a dense sampling grid with 10 pixel spacing is preferred over sampling at interest points 

The descriptor itself is composed of a set of d-tokens, which are strips of raw pixel values rather than 

a value from a patch region: the strip is the region, and various orientations of lines are the pattern. The 

sampling along the strip is between 80% and 20% of the strip length rather than the entire length, 

omitting the endpoints, which is claimed to reduce the contribution of noisy interest points. The 

sampled points are combined into a set s of uniform chunks of pixels and normalized and stored into a 

discrete d-token descriptor. 

Object Polygon Shapes 

The object and polygon shape methods scan globally and regionally to find the shapes in the entire 

image frame or region. The goal is to find an object or region that is cohesive. A discussion of the 

fundamental methods for segmentation polygon shapes for feature descriptors is provided here, 

including:

• Morphological object boundary methods

• Texture or regional structural methods

• Superpixel or pixel similarity methods

• Depth map segmentation 

Chapter 6 provides details on a range of object shape factors and metrics used to statistically 

describe the features of polygon shape. Note that this topic is often discussed in the literature as “image 

moments”; a good source of information is Flusser et al. [444]. 

Morphological Boundary Shapes 

One method for defining polygon shapes is to use morphology. Morphological segmentation is a 

common method for region delineation, either as a binary object or as a gray scale object. Morpholog-

ical shapes are sometimes referred to as blobs. In both binary and gray scale cases, thresholding is often 

used as a first step toward defining the object boundary, and morphological reshaping operations such 

as ERODE and DILATE are used to grow, shrink, and clean up the shape boundary. Morphological



segmentation is threshold- and edge-feature driven. (Chapter 3 provided a discussion of the methods 

used for morphology and thresholding.) 
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Texture Structure Shapes 

Region texture is also used to segment polygon shapes. Texture segmentation is a familiar image-

processing method for image analysis and classification and is an ideal method for segmentation in a 

nonbinary fashion. Texture reveals structure that simple thresholding ignores. As shown in Fig. 6.6, the 

LBP operator can detect local texture, and the texture can be used to segment regions such as sky, 

water, and land. Texture segmentation is based on local image pixel relationships. (Several texture 

segmentation methods were surveyed in Chap. 3.) 

Super-Pixel Similarity Shapes 

Segmenting a region using super-pixel methods is based on the idea of collapsing similar pixels 

together—for example, collapsing pixels together with similar colors into a larger shape. The goal is to 

segment the entire image region into super-pixels. Super-pixel methods are based on similarity. 

(Several super-pixel processing methods were discussed in Chap. 3.) 

Local Binary Descriptor Point-Pair Patterns 

Local binary descriptor shapes and sampling patterns, such as those employed in FREAK, BRISK, 

ORB, and BRIEF, are good examples to study in order to understand the various trade-offs and design 

approaches. We examine local binary shape and pattern concepts here. (Chapter 6 provides a more 

detailed survey of each descriptor.) 

Local binary descriptors use a point-pair sampling method, where pairs of pixels are assigned to 

each other for a binary comparison. Note that a drawback of local binary descriptors and point-pair 

comparisons is that small changes in the image pixel values in the local region may manifest as binary 

artifacts. Seemingly insignificant changes in a set of pixel values may cause problems during matching 

that are pronounced for: (1) noisy images, and (2) images with constant gray level. However, each 

local binary descriptor method attempts to mitigate the binary artifact problems. For example, BRISK 

(see Fig. 4.10) and ORB (see Fig. 4.11) compute a filtered region surrounding each interest point to 

reduce the noise component prior to the binary comparison. 

Another method to mitigate the binary artifact problem of constant gray level is used in a 

modification of the LBP method called the local trinary pattern operator, or LTP [448] (see also 

reference [142], Sect. 2.9.3), which uses trinary values of {-1, 0, 1} to describe regions. A threshold 

band is established for the LTP to describe near-constant gray values as 0, values above the threshold 

band as 1, and values below the threshold band as -1. The LTP can be used to describe both smooth 

regions of constant gray level and contrasted regions in the standard LBP. In addition, the compared 

threshold for point-pairs can be tuned to compensate for noise, illumination, and contrast, as employed 

in nearly all local binary descriptor methods. 

Figure 4.8 (left image) illustrates a hypothetical descriptor pattern to include selected pixels as the 

black values, while the center left image shows a strip-oriented shape and pattern where the descriptor 

calculates the descriptor over pixels along a set of line segments with no particular symmetry like the 

DNETS [106] method.
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Fig. 4.8 Various descriptor patterns and shapes. (Left) Sparse. (Center left) Nets or strips. (Center right) Kernels. (Right) 

Radial spokes 

In Fig. 4.8 also, the center right image illustrates a convolution kernel where the filter shape and 

filter goal are specified, while the right image is a blob shape using radial pixel sampling lines 

originating at the shape centroid and terminating on the blob perimeter. Note that a 1D Fourier 

descriptor can be computed from an array containing the length of each radial line segment from the 

centroid to the perimeter to describe shape, or just an array of raw pixel values can be kept, or else 

D-nets can be computed. 

A feature descriptor may be designed by using one or more shapes and patterns together. For 

example, the hypothetical descriptor pattern in Fig. 4.8 (left image) uses one pattern for pixels close to 

the interest point, another pattern uses pixels farther away from the center to capture circular pattern 

information, and another pattern covers a few extrema points. An excellent example of tuned sampling 

patterns is the FREAK descriptor, discussed next. 

FREAK Retinal Patterns 

The FREAK [102] descriptor shape, also discussed in some detail in Chap. 6, uses local binary patterns 

based on the human retinal system, as shown in Fig. 4.9, where the density of the receptor cells in the 

human visual system is greater in the center and decreases with distance from center. FREAK follows a 

similar pattern when building the local binary descriptors, referred to as a coarse-to-fine descriptor 

pattern, with fine detail in the center of the patch and coarse detail moving outward. The coarse-to-fine 

method also allows for the descriptor to be matched in coarse-to-fine segments. The coarse part is 

matched first, and if the match is good enough, the fine feature components are matched as well. 

Fig. 4.9 (Left) The human visual system concentration of receptors in the center Fovea region with less receptor density 

moving outward to periphery vision regions of Para and Peri. (Center) FREAK [102] local binary pattern sampling 

regions, six regions in each of six overlapping distance rings from the center, size of ring denotes compare point 

averaging area. (Right) Hypothetical example of a FREAK-style point-pair pattern
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FREAK descriptors can be built with several patterns within this framework. For FREAK, the 

actual pattern shape and point-pairing are designed during a training phase where the best point-pair 

patterns are learned using a method similar to ORB [94] to find point-pairs with high variance. The 

pattern is only constrained by the training data; only 45 point-pairs are used from the 32 × 31 image 

patch region. 

As illustrated in Fig. 4.9, the pairs of points at the end of each line segment are compared, the set of 

compare values is composed into a binary descriptor vector using 16 bytes, and a cascade of four 

separate 16-byte coarse-to-fine patterns is included in the descriptor set. Typically, the coarse pattern 

alone effectively rejects bad matches, and the finer patterns are used to qualify only the closest 

matches. 

Brisk Patterns 

The BRISK descriptor [103] point-pair sampling shape is symmetric and circular, composed of 60 total 

points arranged in four concentric rings, as shown in Fig. 4.10. Surrounding each of the 60 points is a 

circular sampling region; the sampling regions increase in size with distance from the center, and also 

proportional to the distance between sample points. Within the sampling regions, Gaussian smoothing 

is applied to the pixels and a local gradient is calculated over the smoothed region. 

Fig. 4.10 (Left) BRISK concentric sampling grid pattern. (Center) Short segment pairs. (Right) Long distance pairs. 

Note that the size of the region (left image) for each selected point increases in diameter with distance from the center, and 

the binary comparison is computed from the center point of each Gaussian-sampled circular region, rather than from each 

solitary center point. (Center and right images used by permission # Josh Gleason [114]) 

Like other local binary descriptors, BRISK compares pairs of points to form the descriptor. The 

point-pairs are specified in two groups: (1) long segments, which are used together with the region 

gradients to determine angle and direction of the descriptor, the angle is used to rotate the descriptor 

area, and then the pair–wise sampling pattern is applied; (2) short segments, which can be pair-wise 

compared and composed into the 512-bit binary descriptor vector. 

ORB and BRIEF Patterns 

ORB [94] is based in part on the BRIEF descriptor [104, 105], thus the name Oriented Brief, since 

ORB adds orientation to the BRIEF method and provides other improvements as well. For example,



ORB also improves the interest point method by qualifying FAST corners using Harris corner methods 

and improves corner orientation using Rosin’s method [38] in order to steer the BRIEF descriptor to 

improve rotational invariance (BRIEF is known to be sensitive to rotation). 
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ORB also provides a very good point-pair training method, which is an improvement over BRIEF. 

In BRIEF, as shown in Fig. 4.11, the sample points are specified in a random distribution pattern based 

on a Gaussian distribution about the center point within the 31 × 31 patch region; the chosen number of 

sample points is 256. Selected sample point-pairs are compared to each other to form the binary 

descriptor vector. The value of each point is calculated via an integral image method to smooth a 5 × 5 

region into the point value. 

Fig. 4.11 (Left) An ORB style pattern at greatly reduced point pair count resolution, using <32 points instead of the full 

256 points. (Right) A BRIEF style pattern using randomized point-pairs 

To learn the descriptor point-pair sample and compare pattern, ORB uses a training algorithm to 

find uncorrelated points in the training set with high variance and selects the best 256 points to define 

the pairwise sampling patterns used to create the binary feature vector. So the shape and pattern are 

nonsymmetric, as shown in Fig. 4.11, similar to some DNETS patterns. The ORB point-pair patterns 

are dependent on the training data. 

Note in Fig. 4.11 that a BRIEF style pattern (right image) uses random point-pairs. Several methods 

for randomizing point-pairs are suggested by the developers [104]. The ORB pattern shown in 

Fig. 4.11 is based on choosing point-pairs that have high statistical variance within a bounding 

31 × 31 image patch, where the smaller 5 × 5 gray image patch regions are centered at the chosen 

interest points. Then each 5 × 5 region is smoothed using an integral image method to yield a single 

value for the point. 

Descriptor Discrimination 

How discriminating is a descriptor? By discrimination we mean how well the descriptor can uniquely 

describe and differentiate between other features. Depending on the application, more or less discrimi-

nation is needed, thus it is possible to over-describe a feature by providing more information and 

invariance than is useful, or to under-describe the feature by limiting the robustness and invariance 

attributes. Feature descriptor discrimination for a given set of robustness criteria may be important and 

interesting, but discrimination is not always the right problem to solve in some cases. 

The need for increased discrimination in the descriptor can be balanced in favor of using a cascade 

of simple descriptors like correlation templates under the following assumptions.
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1. Assuming cheap massively parallel compute, deformable descriptors such as Taylor and Rosin’s 

RFM2.3 [186] become a more attractive option, allowing simple weakly discriminating correlation 

templates or pixel patches to be used and deformed in real-time in silicon using the GPU texture 

sampler for scale, affine, and homographic transforms. Matching and correspondence under various 

pose variations and lighting variations can be easily achieved using parallel GPU SIMT/SIMD 

compute and convolution kernels. So the GPU can effectively allow a simple correlation patch to be 

warped and contrast-enhanced to be used as a deformable descriptor and compared against target 

features. 

2. Assuming lots of fast and cheap memory, such as large memory cache systems, many 

nondiscriminating descriptors or training patterns can be stored in the database in the memory 

cache. Various weighting schemes such as those used in neural networks and convolutional 

networks can be effectively employed to achieve desired correspondence and quality. Also, other 

boosting schemes can be employed in the classifier, such as the Adaboost method, to develop strong 

classifiers from weakly discriminating data. 

In summary, both highly discriminating feature descriptors and cascades of simple weakly discrim-

inating feature descriptors may be the right choice for a given application, depending on the target 

system. 

Spectra Discrimination 

One dimension of feature discrimination is the chosen descriptor spectra or values used to represent the 

feature. We refer to spectra simply as values within a spectrum or over a continuum. A feature 

descriptor that only uses a single spectra, such as a histogram of intensity values, will have discrimi-

nation to intensity distributions, with no discrimination for other attributes such as shape or affine 

transforms. For example, a feature descriptor may increase the level of discrimination by combining a 

multivariate set of spectra such as RGB color, depth, and local area gradients of color intensity (see 

Varma [699] and Vedaldi [698] for more on multivariate descriptors). 

It is well known [210] that the human visual system discriminates and responds to gradient 

information in a scale and rotationally invariant manner across the retina, as demonstrated in SIFT 

and many other feature description methods. Thus, the use of gradients is common and preferred 

spectra for computer vision. 

Spectra may be taken over a range of variables, where simple scalar ranges of values are only one 

type of spectra: 

1. Gray scale intensity 

2. Color channel intensity 

3. Basis function domains (frequency domain, HAAR, etc.) 

4. 2D or 3D gradients 

5. 3D surface normals 

6. Shape factors and morphological measures 

7. Texture metrics 

8. Area integrals 

9. Statistical moments of regions 

10. Hamming codes from local binary patterns 

Each of the above spectra types, along with many others that could be enumerated, can be included 

in a multivariate feature descriptor to increase discrimination. Of course, discrimination requirements



for a chosen application will guide the design of the descriptor. For example, an application that 

identifies fruit will be more effective using color channel spectra for fruit color, shape factors to 

identify fruit shapes, and texture metrics for skin texture. 
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One way to answer the question of discrimination is to look at the information contained in the 

descriptor. Does the descriptor contain multivariate collections of spectra, and how many invariance 

attributes are covered, such as orientation or scale? 

Region, Shapes, and Pattern Discrimination 

Shape and pattern of the feature descriptor are important dimensions affecting discrimination. Each 

feature shape has advantages and disadvantages depending on the application. Surprisingly, even a 

single pixel can be used as a feature descriptor shape (see Fig. 1.7). Let us look at other dimensions of 

discrimination. 

Shapes and patterns may be classified as follows: 

1. A single pixel (discussion of single pixel description methods to follow) 

2. A line of pixels 

3. A rectangular region of pixels 

4. A polygon shape or region of pixels 

5. A pattern or set of unconnected pixels, such as foveal patterns 

The shape of the descriptor determines attributes of discrimination. For example, a rectangular 

descriptor will be limited in the rotational invariance attribute compared to a circular-shaped descrip-

tor. Also, a smaller shape for the descriptor limits the range to a smaller area and also limits scale 

invariance. A larger size descriptor area carries more pixels which can increase discrimination. 

Descriptor shape, pixel sampling pattern, sampling region size, and pixel metrics have been 

surveyed by several other researchers [100–102]. In this section, we dig deeper and wider into specific 

methods used for feature descriptor tuning, paying special attention to local binary feature descriptors, 

which hold promise for low power and high performance. 

Geometric Discrimination Factors 

The shape largely determines the amount of rotational invariance possible. For example, a rectangular 

shape typically begins to fall off in rotational discrimination at around 15°, while a circular pattern 

typically performs much better under rotational variations. Note that any poorly discriminating shape 

or pattern descriptor can be enhanced and made more discriminating by incorporating more than one 

shape or pattern into the descriptor vector. 

A shape and pattern such as a HAAR wavelet, as used in the Viola–Jones method, integrates all 

pixels in a rectangular region, yielding the composite value of all the pixels in the region. Thus, there is 

no local fine-detail pattern information contained in the descriptor, leading to very limited local area 

discrimination and poor rotational invariance or discrimination. 

Another example of poor rotational discrimination is the rectangular correlation template method, 

which compares two rectangular regions pixel by pixel. However, several effective descriptor methods 

use a rectangular-shaped region. 

In general, rectangles are a limitation to rotational invariance. However, SURF uses a method of 

determining the dominant orientation of the rectangular HAAR wavelet features within a circular 

neighborhood to achieve better rotational invariance. And SIFT uses a method to improve rotational



invariance and accuracy by applying a circular weighting function to the rectangular regions during the 

binning stage. 
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It should also be noted that descriptors with low discrimination are being used very effectively in 

targeted applications, such as correlation methods for motion estimation in video encoding. In this 

case, the rectangle shape is a great match to the encoding problem and lends itself to highly optimized 

fixed function hardware implementations, since frame-to-frame motion can be captured very well in 

rectangular regions, and there is typically little rotation or scale change from frame to frame for at 

30 Hz frame rates, just translation. 

With this discussion in mind, descriptor discrimination should be fitted appropriately to the 

application, since adding discrimination comes at a cost of compute and memory. 

Feature Visualization to Evaluate Discrimination 

Another way to understand discrimination is to use the feature descriptor itself to reconstruct images 

from the descriptor information alone, where we may consider the collection of descriptors to be a 

compressed or encoded version of the actual image. Image compression, encoding, and feature 

description are related; see Fig. 3.18. Next, we examine a few examples of image reconstruction 

from the descriptor information alone. 

Discrimination via Image Reconstruction from HOG 

Figure 4.12 visualizes a reconstruction using the HOG descriptor [80]. The level of detail is coarse and 

follows line and edge structure that matches the intended use of HOG. One key aspect of the 

discrimination provided by HOG is that no image smoothing is used on the image prior to calculating 

the descriptor. The HOG research shows that smoothing the image results in a loss of discrimination. 

Dalal and Triggs [80] highlight their deliberate intention to avoid image smoothing to preserve image 

detail. 

Fig. 4.12 Discrimination via a visualization of the HOG description (left image), original image on right. ((Image 

# Carl Vodrick, used by permission.) See also “HOGgles: Visualizing Object Detection Features, Carl Vondrick, Aditya 

Khosla, Tomasz Malisiewicz, Antonio Torralba, Massachusetts Institute of Technology, Oral presentation at ICCV 

2013”)
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However, some researchers argue that noise causes problems when calculating values such as local 

area gradients and edges and further recommend that noise be eliminated from the image by smoothing 

prior to descriptor calculations; this is the conventional wisdom in many circles. Note that there are 

many methods to filter noise without resorting to extreme Gaussian-style smoothing, convolution blur, 

and integral images, which distort the image field. 

Some of the better noise-filtering methods include speckle removal filters, rank filtering, bilateral 

filters, and many other methods that were discussed in Chap. 2. If the input image is left as is, or at least 

the best noise-filtering methods are used, the feature descriptor will likely retain more discrimination 

power for fine-grained features. 

Discrimination via Image Reconstruction from Local Binary Patterns 

As shown in Fig. 4.13,  d’Angelo and Alahi [99] provide visualizations of images reconstructed from 

the FREAK and BRIEF local binary descriptors. The reconstruction is rendered entirely from the 

descriptor information alone, across the entire image. BRIEF uses a more random pattern to compare 

points across a region, while FREAK uses a trained and more foveal and symmetrical pattern with 

increased detail closer to the center of the region. And d’Angelo and Alahi [99] note that the 

reconstruction results are similar to Laplacian filtered versions of the original image, which helps us 

understand that the discrimination of these features appears to be structurally related to detailed edge 

and gradient information.
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Fig. 4.13 Images reconstructed using local binary descriptors using 512 point-pairs. (Top row) BRIEF. (Middle row) 

Randomized FREAK (more similar to BRIEF). (Bottom row) Binary FREAK using the foveal pattern. (Images 

# Alexandre Alahi, used by permission) 

The d’Angelo and Alahi reconstruction method [99] creates an image from a set of overlapping 

descriptor patches calculated across the original image. To reconstruct the image, the descriptors are 

first reconstructed using a novel method to render patches, and then the patches are merged by 

averaging the overlapping regions to form an image, where the patch merge size may vary as desired. 

For example, note that Fig. 4.13 uses 32 × 32 patches for the Barbara images in the left column, and a 

64 × 64 patch size for the cameraman in the center column. Also note that Barbara is not reconstructed 

with the same discrimination as the cameraman, whose image contains finer details. Other fascinating 

feature visualization work is provided by Vondrick et al. [813].
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Discrimination via Image Reconstruction from SIFT Features 

Another method of approximate image reconstruction [79] proves the discrimination capabilities of 

SIFT descriptors; see Fig. 4.14. The reconstruction method for this research starts by taking an 

unknown image containing a scene such as a famous building, finding the set of Hessian-affine region 

detectors in the image, extracting associated SIFT feature descriptors, and then saving a set of elliptical 

image patch regions around the SIFT descriptors. 

Fig. 4.14 Image reconstruction of common scenes using combined SIFT descriptors taken from several views of the 

same object. (Images # Herve Jegou, used by permission) 

Next, an image database containing similar and, it is hoped, matching images of the same scene is 

searched to find the closest matching SIFT descriptors at Hessian-affine interest points. Then a set of 

elliptical patch regions around each SIFT descriptor is taken. The elliptical patches found in the 

database are warped into a synthesized image based on a priori interest region geometric parameters of 

the scenes. 

The patches are stitched together via stacking and blending overlapping patches and also via smooth 

interpolation. Any remaining holes are filled by smooth interpolation. One remarkable result of this 

method is the demonstration that an image can be reconstructed from a set of patches from different 

images at different orientations, since the feature descriptors are similar; and in this case, the 

discrimination of the SIFT descriptor is demonstrated well. 

Accuracy, Trackability 

Accuracy can be measured in terms of specific feature attributes or robustness criteria; see Tables 4.1 

and 7.4. A given descriptor may outperform another descriptor in one area and in not another. In the 

research literature, the accuracy and performance of each new feature descriptor is usually 

benchmarked against the standby methods SIFT and SURF. The feature descriptor accuracy is 

measured using commonly accepted ground truth datasets designed to measure robustness and 

invariance attributes. (See Appendix B for a survey of standard ground truth datasets, and Chap. 7 

for a discussion about ground truth dataset design.) 

A few useful accuracy studies are highlighted here, illustrating some of the ways descriptor and 

interest point accuracy can be measured. For instance, one of the most comprehensive surveys of 

earlier feature detector and descriptor accuracy and invariance is provided by Mikolajczyk and Schmid 

[115], covering a range of descriptors including GLOH, SIFT, PCA-SIFT, Shape Context, spin 

images, Hessian Laplacian GLOH, cross-correlation, gradient moments, complex filters, differential 

invariants, and steerable filters.
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In Gauglitz et al. [116], there are invariance metrics for zoom, pan, rotation, perspective distortion, 

motion blur, static lighting, and dynamic lighting for several feature metrics, including Harris, Shi– 

Tomasi, DoG, Fast Hessian, FAST, and CenSurE, which are discussed in Chap. 6. There are also 

metrics for a few classifiers, including randomized trees and FERNS, which are discussed later in this 

chapter. Figure 4.15 provides some visual comparisons of feature detector and interest point accuracy 

from Gauglitz et al. [116]. 

Fig. 4.15 Accuracy of feature descriptors over various invariance criteria. (From Gauglitz et al. [116], images 

# Springer Science + Business Media, LLC, used by permission)
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Turning to the more recent local binary descriptors, Alahi et al. [102] provide a set of comparisons 

where FREAK is shown to be superior in accuracy to BRISK, SURF, and SIFT on a particular dataset 

and set of criteria developed by Mikolajczyk and Schmid [115] for feature accuracy over attributes 

such as viewpoint, blur, JPEG compression, brightness, rotation, and scale. In Rublee et al. [94], ORB 

is shown to have better rotational invariance than SIFT, SURF, and BRIEF. In summary, local binary 

descriptors are proving to be attractive in terms of robustness, accuracy, and compute efficiency. 

Accuracy Optimizations, Subregion Overlap, Gaussian Weighting, and Pooling 

Various methods are employed to optimize feature descriptor accuracy, and a few methods are 

discussed here. For example, descriptors often use overlapping sampling pattern subregions, as 

shown in the FREAK descriptor pattern in Fig. 4.9. By overlapping sampling regions and treating 

boundaries carefully, accuracy seems to be better in most all cases [132, 146]. Overlapping regions 

makes sense intuitively, since each point in a region is related to surrounding points. The value of 

pattern subregion overlapping in feature description seems obvious for local binary pattern type 

descriptors and spectra descriptor variants such as SURF and others [115, 149]. When the sampling 

regions used in the descriptor do not overlap, recognition rates are not as accurate [122]. 

Gaussian weighting is another effective method for increasing accuracy to reduce noise and 

uncertainty in measurements. For example, the SIFT [132, 146] descriptor applies a Gaussian-based 

weighting factor to each local area gradient in the descriptor region to favor gradients nearer the center 

and reduce the weighting of gradients farther away. In addition, the SIFT weighting is applied in a 

circularly symmetric pattern, which adds some rotational invariance; see Fig. 6.17. 

Note that Gaussian weighting is different from Gaussian filtering; a Gaussian filter both reduces 

noise and eliminates critical fine details in the image, but such filtering has been found to be 

counterproductive in the HOG method [80]. A Gaussian weighting factor, such as used by SIFT on 

the gradient bins, can simply be used to qualify data rather than change the data. In general, a weighting 

factor can be used to scale the results and fine-tune the detector or descriptor. The subregion overlaps in 

the sampling pattern and Gaussian weighting schemes are complementary. 

Accuracy can be improved by relying on groups of nearby features together rather than just a single 

feature. For example, in convolutional networks, several nearby features may be pooled for a joint 

decision to increase accuracy via chosen robustness or invariance criteria [295]. The pooling concept 

may also be referred to as neighborhood consensus or semi-local constraints in the literature, and it can 

involve joint constraints, such as the angle and distance among a combined set of local features [296, 

297, 311]. 

Sub-pixel Accuracy 

Some descriptor and recognition methods can provide sub-pixel accuracy in matching the feature 

location [118–121]. Common methods to compute sub-pixel accuracy include cross-correlation, 

sum-absolute difference, Gaussian fitting, Fourier methods, and rigid body transforms and ICP. In 

general, sub-pixel accuracy is not a common feature in popular, commercial applications and is needed 

only in high-end applications like industrial inspection, aerospace, and military systems. 

For example, SIFT provides sub-pixel accuracy for the location of keypoints. Digital correlation 

methods and template matching are well known and used in industrial applications for object tracking 

and can be extended to compute correlations over a range of one-pixel offset areas to yield a set of



correlations that can be fit into a curve and interpolated to find the highest match to yield sub-pixel 

accuracy. 
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Sub-pixel accuracy is typically limited to translation. Rotation and scale are much more difficult to 

quantify in terms of sub-pixel accuracy. Typical sub-pixel accuracy results for translation only achieve 

better than ¼ pixel resolution, but resolution accuracy can be finer grained, and in some methods 

translation accuracy is claimed to be as high as 1/20th of a pixel using FFT registration methods [122]. 

Also, stereo disparity methods benefit from improved sub-pixel accuracy, especially at long ranges, 

since the granularity of Z distance measurements increases exponentially with distance. Thus, the 

calculated depth field contains coarser information as the depth field increases, and the computed depth 

field is actually nonlinear in Z. Therefore, sub-pixel accuracy in stereo and multi-view stereo disparity 

calculations is quite desirable and necessary for best accuracy. 

Search Strategies and Optimizations 

As shown in Fig. 5.1, a feature may be sparse, covering a local area, or it may cover a regional or global 

area. The search strategy used to isolate each of these feature types is different. For a global feature, 

there is no search strategy: the entire frame is used as the feature. For a regional descriptor, a region 

needs to be chosen or segmented (discussed in Chap. 2). For sparse local features, the search strategy 

becomes important. Search strategies for sparse local regions fall into a few major categories, as 

discussed in the following (also included in the taxonomy in Chap. 5). 

Dense Search 

In a dense search, each pixel in the image is checked. For example, an interest point is calculated at 

each pixel, the interest points are then qualified and sorted into a candidate list, and a feature descriptor 

is calculated for each candidate. Dense search is used by local binary descriptors and common 

descriptors such as SIFT. 

In stereo matching and depth sensing, each pixel is searched in a dense manner for calculating 

disparity and closest points. For example, stereo algorithms use a dense search for correspondence to 

compute disparity, line by line and pixel by pixel; monocular depth-sensing methods such as PTAM 

[278] use a dense search for interest points, followed by a sparse search for known features at predicted 

locations. 

Dense methods may also be applied across an image pyramid, where the lower resolution pyramids 

are usually searched first and finer-grain pyramids are searched later. Dense methods in general are 

preferred for accuracy and robustness when feature locations are not known and cannot be predicted. 

Grid Search 

In grid search methods, the image is divided into a regular grid or tiles, and features are located based 

on the tiles. A novel grid search method is provided in the OpenCV library, using a grid search adapter 

(discussed in Chap. 6 and Appendix A). This allows for repeated trial searches within a grid region for 

the best features and has the capability of adjusting detector parameters before each trial run. One 

possible disadvantage of a grid search from the perspective of accuracy is that features do not line up 

into grids, so features can be missed or truncated along the grid boundary, decreasing accuracy and 

robustness overall.
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Grid search can be used in many ways. For example, a regular grid is used as anchor points with the 

grid topology of D-NETS, as illustrated in Fig. 4.7. Or, a grid is used to form image tile patches and a 

descriptor is computed for each tile, such as in the HOG method, as shown in Fig. 4.12. Also, the 

Viola–Jones method [117] computes HAAR features on a grid. 

Multi-scale Pyramid Search 

The idea behind the multi-scale image pyramid search is either to accelerate searching by starting at a 

lower resolution or to truly provide multi-scale images to allow for features to be found at appropriate 

scale. Methods to reduce image scale include pixel decimation, bilinear interpolation, and other multi-

sampling methods. Scale space is a popular method for creating image pyramids, and many variations 

are discussed in the next section; see Fig. 4.16. 

Fig. 4.16 A five-octave scale pyramid. (The image is from Albrecht Durer’s Apocalypse woodcuts, 1498. Note that 

many methods use non-octave pyramid scales [94]) 

However, the number of detected features falls off rapidly as the pyramid levels increase, especially 

for scale space pyramids, which have been Gaussian-filtered, since Gaussian filters reduce image 

texture detail. Also, fewer pixels are present to begin with at higher pyramid levels, so a pyramid scale 

interval smaller than octaves is sometimes used. See Ref. [131] for a good discussion of image 

pyramids. 

Scale Space and Image Pyramids 

Often, instead of using simple pixel decimation and pixel interpolation to reduce image scale, a scale 

space [449, 450] pyramid representation, originally proposed by Lindberg [471], is built up using 

Gaussian filtering methods to decrease the scaling artifacts and preserve blob-like features. Scale space 

is a more formal method of defining a multi-scale set of images, typically using a Gaussian kernel g() 

convolved with the image f(x,y), as follows:
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g  x, y : tð  Þ ¼  1 

2πt 
e- x2þy2ð  Þ=2t 

L :, :; tð  Þ ¼  g :, : : tð  Þ× f :, :ð Þ,

or by an equivalent method: 

∂tL ¼ 1 
2
∇

2 
L, 

with the initial state L x, y; 0ð  Þ ¼  f  x, y ð Þ:

A good example of Gaussian filter design for scale space is described in the SURF method 

[131]. Gaussian filters implemented as kernels with increasing size are applied to the original image 

at octave-spaced subsampling intervals to create the scale space images—for example, starting with a 

9 × 9 Gaussian filter and increasing to 15 × 15, 21 × 21, 27 × 27, 33 × 33, and 39 × 39; see Fig. 4.17. 

One drawback of scale space is the loss of localization and lack of accuracy in higher levels of the 

image pyramid. In fact, some features are simply missing from higher levels of the image pyramid, 

owing to a lack of resolution and to the Gaussian filtering. The best example of effective scale space 

feature matching may be SIFT, which provides for the first pyramid image in the scale to be double the 

original resolution to mitigate scale space problems and also provides a good multi-scale descriptor 

framework (see also Fig. 4.18). 

Fig. 4.17 Scale space Gaussian images at scales of 0, 2, 4, 16, 32, 64. (Image is from Albrecht Durer’s Apocalypse 

woodcuts, 1498)
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Fig. 4.18 Scale and space 

Image pyramids are analogous to texture mip-maps used in computer graphics. Variations on the 

image pyramid are common. Octave and non-octave pyramid spacings are used, with variations on the 

filtering method also. For example, the SIFT method [132, 146] uses a five-level octave scale n/2 

image pyramid with Gaussians-filtered images in a scale space. Then, the Difference of Gaussians 

(DoG) method is used to capture the interest point extrema maxima and minima in the adjacent images 

in the pyramid. SIFT uses a double-scale first pyramid level with linear interpolated pixels at 2× 

original magnification to help preserve fine details. This technique increases the number of stable 

keypoints by about four times, which is quite significant. In the ORB [94] method, a non-octave scale 

space is built around a 2
p 

scale over a five-level pyramid, which has closer resolution gradations 

between pyramid levels than an octave scale of two times. 

Feature Pyramids 

An alternative to scale space pyramids and pyramid searching is to use feature-space pyramiding and 

build a set of multi-scale feature descriptors stored together in the database. In this approach, the 

descriptor itself contains the pyramid, and no scale space or image pyramid is needed. Instead, feature 

searching occurs directly from the mono-scale target image to the multi-scale features. The RFM method 

[186] discussed in Chap. 6 goes even further and includes multi-perspective transformed versions of each 

patch for each descriptor. In Table 4.3, note that the multi-scale features can be used to match directly on 

the target images, while the mono-scale features are better to use on an image pyramid. 

Table 4.3 Some trade-offs in using a mono-scale feature and a multi-scale feature 

Feature scale Feature size 

Feature description 

compute time 

Image pyramid used for 

matching 

Mono-scale images used 

for matching 

Mono-scale 

feature 

Smaller memory 

footprint 

Faster to compute Yes No 

Multi-scale 

feature 

Larger memory 

footprint 

Slower to compute No Yes
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Figure 3.16 shows the related concept of a multi-resolution histogram [123], created from image 

regions from a scale space pyramid and with the histograms concatenated in the descriptor that is used 

to determine texture metrics for feature matching. So in the multi-scale histogram method, no pyramid 

image set is required at run time; rather, the pyramid search uses histogram features from the descriptor 

itself to find correspondence with the mono-scale target image. 

A wide range of scalar and other metrics can be composed into a multi-scale feature pyramid, such 

as image intensity patches, color channel intensity patches, gradient magnitude, and gradient 

orientations. Histograms of textural features have been found useful as affine-invariant metrics as a 

part of a wider feature descriptor [144]. 

Sparse Predictive Search and Tracking 

In a sparse predictive search pipeline, specific features at known locations, found in previous frames, 

are searched for in the next frame at the expected positions. For example, in the PTAM [278] algorithm 

for monocular depth sensing, a sparse 3D point cloud and camera pose are created from sequential 

video frames from a single camera by locating a set of interest points and feature descriptors. For each 

new frame, a prediction is made of the coordinates where the same interest points and feature detectors 

might be in the new image, using the prior camera pose matrix. Then, for the new frame, a search or 

tracking loop is started to locate a small number of the predicted interest points using a pyramid coarse 

to fine search strategy. The predicted interest points and features are searched for within a range around 

where each is predicted to be, and the camera pose matrix is updated based on the new coordinates 

where the features are found. Then, a larger number of points are predicted using the updated camera 

pose and a search and tracking loop is entered over a finer scale pyramid image in the set. This process 

iterates to find points and refine the pose matrix. 

Tracking Region-Limited Search 

One example of a region-limited search is a video conferencing system that tracks the location of the 

speaker using stereo microphones to calculate the coarse location via triangulation. Once the coarse 

speaker position is known, the camera is moved to view the speaker, and only the face region is of 

interest for further fine positional location adjustments, auto-zoom, autofocus, and auto-contrast 

enhancements. In this application, the entire image does not need to be searched or processed for 

face features. Instead, the center of the FOV is the region where the search is limited to locate the face. 

For example, if the image is taken from an HD camera with 1920 × 1080 resolution, only a limited 

region in the center of the image, perhaps 512 × 512 pixels, needs to be processed to locate the face 

features. 

Segmentation-Limited Search 

A segmented region can define the search area, such as a region with specific texture, or pixels of a 

specific color intensity. In a morphological vision pipeline, regions may be segmented in a variety of 

ways, such as thresholding and binary erosion + dilation to create binary shapes. Then the binary 

shapes can be used as masks to segment the corresponding gray scale image regions under the masks 

for feature searching. Image segmentation methods were covered in Chap. 2.
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Depth or Z-Limited Search 

With the advent of low-cost commercial depth sensors appearing on mobile consumer devices, the 

Z dimension is available for limiting search ranges (see Fig. 4.19). For example, by segmenting out the 

background of an image using depth, the foreground features are more easily segmented and identified, 

and search can be limited by depth segments. Considering how much time is spent in computer vision 

to extract 3D image information from 2D images, we can expect depth cameras to be used in novel 

ways to simplify computer vision algorithms. 

Fig. 4.19 Segmentation of image regions based on a depth map. Depth image from Middlebury Data set. (Source: 

D. Scharstein and C. Pal “Learning conditional random fields for stereo” CVPR Conference, 2007. Courtesy of authors) 

Computer Vision, Models, Organization 

This section contains a high-level overview of selected examples to illustrate how feature metrics are 

used within computer vision systems. Here, we explore how features are selected, learned, associated 

together to describe real objects, classified for efficient searching and matching, and used in computer 

vision pipelines. This section introduces machine learning, but only at a high level using selected 

examples. A good reference on machine learning is found in [470] by Prince. A good reference for 

computer vision models, organization, applications, and algorithms is found in Szelinski [275]. 

Several terms are chosen and defined in this section for the discussion of computer vision models, 

namely feature space, object models, and constraints. The main topics for this section include:

• Feature spaces and selection of optimal features

• Object recognition via object models containing features and constraints

• Classification and clustering methods to optimize pattern matching

• Training and learning
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Note 

Many of the methods discussed in computer vision research journals and courses are borrowed from 

other tangent fields and applied, for example, machine learning and statistical analysis. In some cases 

computer vision is driving the research in such tangent fields. Since these fields are well established 

and considered beyond the scope of this work, we provide only a brief topical introduction here, with 

references for completeness [275, 470]. 

Feature Space 

The collection and organization of all features, attributes, and other information necessary to describe 

objects may be called the feature space. Features are typically organized and classified into a feature 

space during a training or learning phase using ground truth data as a training set. The selected features 

are organized and structured in a database or a set of data structures, such as trees and lists, to allow for 

rapid search and feature matching at run time. 

The feature space may contain one or more types of descriptors using spectra such as histograms, 

binary pattern vectors, as multivariate composite descriptors (see Varma [699] and Vedaldi [698] for 

more on multivariate descriptors). In addition, the feature space contains constraints used to associate 

sets of features together to identify objects and classes of objects. A feature space is unique to any 

given application and is built according to the types of features used and the requirements of the 

application; there is no standard method. 

The feature space may contain several parameters for describing objects; for example:

• Several types of feature descriptors, such as SIFT and simple color histograms.

• Cartesian coordinates for each descriptor relative to training images.

• Orientations of each descriptor.

• Name of training image associated with each descriptor.

• Multimodal information, such as GPS, temperatures, elevation, acceleration.

• Feature sets or lists of associated descriptors.

• Constraints between the descriptors in a set, such as the relative distance from each other, relative 

distance thresholds, angular relationships between descriptors, or relative to a reference point.

• Object models to collect and associate parameters for each object.

• Classes or associations of objects of the same type, such as automobiles.

• Labels for objects or constraints. 

Object Models 

The task of machine learning is creating models from data. As stated by Wittrock, “The brain is a 

model builder” (see Wittrock, M.C., Generative learning processes of the brain. Educational Psychol-

ogist, 27(4), 531–541). The human brain is an excellent learner, using input from the five senses of 

touch, smell, sight, taste, smell, as well as inputs from internal nerves and internal thoughts. All of 

these inputs feed into models we create to make decisions on actions and further thoughts. The models 

are believed to be true by our minds. 

Rather than building models via machine learning, many successful vision systems are designed 

specifically by experts to solve a problem in hard-coded program logic, and the systems are tuned by 

experts until the desired goals are achieved. Therefore, machine learning is only one method used to 

create complete models (see Chaps. 9 and 10 for more details on machine learning).
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Object model describes real objects or classes of objects using parameters from the feature space. 

For example, an object may contain all parameters required to describe a specific automobile, such as 

feature descriptor sets, labels, and constraints. A class of objects may associate and label all objects of 

the same class, such as an automobile of any type. There is no standard or canonical object model to 

follow, so in this section we describe the overall attributes of computer vision objects and how to 

model them. A Generative model generates model data within a class of objects; a Discriminative 

model differentiates between object classes. 

Object models may be composed of sets of individual features; constraints on the related features, 

such as position or orientation of features within an object model; and perhaps other multimodal 

information for the objects or descriptors, such as GPS information or time stamps, as shown in 

Fig. 4.20. The object model can be created using a combination of supervised and unsupervised 

learning methods [334]; we survey several methods later in this chapter. 

Labeled Object Model 

Labeled Object Model 

Labeled Object Model 

Feature Descriptor 
(Angular Orientation, 

Position Coordinates) 

Feature Space  

Feature Descriptor 
(Angular Orientation, 

Position Coordinates) 

Feature Descriptor 
(Angular Orientation, 

Position Coordinates) 

Feature Descriptor 
(Angular Orientation, 

Position Coordinates) 

Feature Descriptor 
(Angular Orientation, 

Position Coordinates) 

Feature Descriptor 
(Angular Orientation, 

Position Coordinates) 

Constraint 
(Relative Distance, 

Orientation, Thresholds) 

Multimodal Data 
(GPS, Temperature, Time) 

Constraint 
(Relative Distance, 

Orientation, Thresholds) 

Constraint 
(Relative Distance,  

Orientation, Thresholds) 

Feature Descriptor 
(Angular Orientation, 

Position Coordinates)
Multimodal Data 
(Accelerometer, Elevation) 

Fig. 4.20 Simplified hypothetical feature space showing organization and association of features, constraints, and 

objects 

One early attempt to formulate object models is known as parts-based models, suggested in 1973 by 

Fischler and Elschlager [455]. These describe and recognize larger objects by first recognizing their 

parts—for example, a face being composed of parts such as eyes, nose, and mouth. There are several 

variations on parts-based models; see Refs. [456–458], for example. Machine learning methods are 

also used to create the object models [470] and are discussed later in this section. 

A simple object model may be composed of only image histograms of whole images, the name or 

label of each associated image, and possibly a few classification parameters such as the subject matter



of the image, GPS location, and date. To identify unknown target images, a histogram of the target 

image is taken and compared against image histograms from the database. Correspondence is 

measured using a suitable distance metric such as SAD. In this simple example, brute-force searching 

or a hash table index may be used to check each histogram in the database against target image 

histograms, and perhaps other parameters from the object model may be matched along with the 

histograms, such as the GPS coordinates. No complex machine learning classification, clustering, data 

reductions, or organization of the database need to be done, since the search method is brute-force. 

However, finding correspondence will become progressively slower as more images are added to the 

database. And the histogram all by itself is not very discriminative and offers little invariance. 
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Constraints 

Key to object recognition, constraints are used to associate and qualify features and related attributes as 

objects. Features alone are probably insufficient to recognize an object without additional qualification, 

including neighborhood consensus or semi-local constraints involving joint constraints, such as the 

angle and distance among a combined set of local features [296, 297, 311]. Constraints associate object 

model elements together to describe and recognize a larger object [308, 309, 312], such as by minimum 

feature count thresholds required to ensure that a proper subset of object features is found together, or 

by using multimodal data constraints such as GPS position, or by voting. 

Since there are many approaches for creating constraints, we can only illustrate the concept. For 

example, Lowe [132] shows recognition examples illustrating how SIFT features can be used to 

recognize objects containing many tens of distinct features, in some cases using as few as two or three 

good features. This allows for perspective and occlusion invariance if some of the features describing 

the object cannot be found, taking into consideration feature orientation and scale as constraints. 

Another example is wide baseline stereo matching, which requires position and distance constraints on 

feature pairs in L/R image assuming that the scale and orientation of L/R feature pairs are about equal; 

in this case, translation would be constrained to be within a range based on depth. 

Selection of Detectors and Features 

Feature detectors are selected based on a combination of variables, such as the feature detector design 

method and the types of invariance and performance desired. Several approaches or design methods 

are discussed next. 

Manually Designed Feature Detectors 

Some feature detectors, such as polygon shape descriptors and sparse local features like SURF, are 

manually designed and chosen using the intuition, experience, and test results of the practitioner to 

address the desired invariance attributes for an application. This involves selecting the right spectra to 

describe the features, determining the shape and pattern of the feature, and choosing the types of 

regions to search. However, some detectors are statistically and empirically designed, which we 

cover next. 

Statistically Designed Feature Detectors 

Statistical methods are used to design and create feature detectors. For example, the binary sampling 

patterns used in methods such as ORB and FREAK are created from the training dataset based on the 

statistical characteristics of the possible interest point comparison pairs. Typically, ORB ranks each



detected interest point feature pair combination to find terms that are uncorrelated with high variance. 

This is a statistical sorting or training process to design the feature patterns and tune them for a specific 

ground truth dataset. See Fig. 4.11 for more details on ORB, and see the discussions of FREAK and 

ORB earlier in this chapter as well. 
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SIFT also uses statistical methods to determine, from a training set, the best interest points, 

dominant orientation of each interest point, and scale of each interest point. 

Learned Features 

Many systems learn a unique codebook of features, using sparse coding methods to identify a unique 

set of basis features during a training phase against selected ground truth data. The learned basis 

features are specific to the application domain or training data, and the chosen detectors and descriptors 

may simply be pixel regions used as correlation templates. However, any descriptor may be used, such 

as SIFT. Neural network and convolutional network approaches are popularly used for feature 

learning, as well as sparse coding methods, which are introduced later in this chapter, and surveyed 

in detail in Chaps. 9 and 10. 

Overview of Training 

This is a very basic overview of training, since the topic is so large and we do not address the topic in 

detail it deserves. See Chaps. 9–12 for more about deep learning style training protocols, which 

involve huge training sets and complex training hyperparameters. See also Chap. 8. Here we cover 

introductory concepts only. 

A machine vision system is trained to recognize desired features, objects, and activities. Training 

may be supervised and assisted by an expert, or unsupervised as in the deep learning methods 

discussed later in this section. Here, we provide an overview of common steps and provide references 

for more detail. One of the simplest examples of training would be to take image histograms associated 

with each type of image—for example, a set of histograms that describe a face, animal, or automobile 

taken from different images. 

Training involves collecting a training set of images appropriate for the application domain and then 

determining which detectors and descriptors can be tuned to yield the best results. In some cases, the 

feature descriptor itself may be trainable and designed to match the training data, such as the local 

binary pattern descriptors ORB, BRIEF, and FREAK, which can use variable pixel sampling patterns 

optimized and learned from the training data. 

In feature learning systems, the entire feature set is learned from the training set. Feature learning 

methods employ a range of descriptor methods such as simple correlation temples containing pixel 

regions, or SIFT descriptors. The learned feature set is reduced by keeping only the features that are 

significantly different from features already in the set. Feature learning methods are covered later in 

this chapter and in the Chap. 10 discussion on Feature Learning Architectures. 

To form larger objects during training, sets of features may be associated together using constraints, 

such as geometric relationships like angles or distances between features, or the count of features of a 

given value within a specific region, or via a softmax classifier for puzzle-piece-style feature probabil-

ity match counting. Objects are determined during training, which involves running detectors and 

descriptors against chosen ground truth data to find the features, and then determining the constraints to 

represent objects as a composite set of features. Activities can be recognized by tracking features and 

their positions within adjacent frames. 

In any case, the features obtained through the training phase are classified into a searchable feature 

space using a wide range of statistical and machine learning methods.
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Classification of Features and Objects 

This is a conceptual discussion of classification, or the sorting and evaluating features, similar to the 

way gold is classified in mesh layers to find progressively smaller rocks to examine for gold (i.e., 

analogous to feature evaluation for computer vision). Classification is a term sometimes used to 

describe the feature recognition, pattern recognition, or inference stage of the vision pipeline. Classifi-

cation compares unknown incoming target features against the trained feature space. 

Several approaches are taken for automatically building classifiers, including support vector 

machines (SVMs), kernel machines, and neural networks. See Krig [476] for details on intelligent 

classifiers, complex multivariate classifiers, hierarchical classifiers, and agent classifier learning 

methods. See also Chap. 10. See also Chaps. 9–12 for more about deep learning style classification 

methods. 

In general, the size of the training set or ground truth dataset is key to classifier accuracy [285– 

287]. During system training, first a training set with ground truth data is used to build up the classifier, 

see Chap. 7 for a discussion on ground truth data. The machine learning community provides a wealth 

of guidance on training, so we defer to established sources. Key journals to dig deeper into machine 

learning and testing against ground truth data include NIPS and IEEE PAMI, the latter of which goes 

back to 1979. Machine learning and statistical methods are used to guide the selection, classification, 

and organization of features during training. If no classification of the feature space is made, the feature 

match process follows a slow brute-force linear search of new features against known features. 

Key classification problems discussed in this section include:

• Group Distance and Clustering of similar features using a range of nearest–neighbor methods to 

assist in organization, fitting, error minimization, searching and matching, and enabling similarity 

constraints such as geometric proximity, angular relationships, and multimodal cues.

• Dimensionality Reductions to avoid over-fitting, cleaning the data to remove outliers and spurious 

data, and reducing the size of the database.

• Boosting and Weighting to increase the accuracy of feature matching.

• Constraints describing relationships between descriptors composing an object, such as pose 

estimators and threshold accept/reject filters.

• Softmax style statistical or probabilistic methods (not discussed here in detail) to sort uncorrelated 

sets of features (i.e., puzzle pieces), for example, from a DNN or transformer model, to find the 

strongest matches between target and trained features sets, the highest scoring matches and the 

number of highest scoring matches determine correspondence. See Chaps. 9 and 10.

• Structuring the Database for rapid matching vs. brute-force methods. 

Group Distance: Clustering, Training, and Statistical Learning 

We refer to group distance and clustering in this discussion, sometimes interchangeably, as methods to 

describe similarities and differences between groups of data atoms, such as feature descriptors. 

Applications of group distance and clustering include error minimization, regression, outlier removal, 

classification, training, and feature matching. 

According to Estivill-Castro [298], clustering is impossible to define in a mathematical sense, since 

there are so many diverse methods and approaches to describe a cluster. See Table 4.4 for a summary 

of related methods. However, we discuss clustering here in the context of computer vision to address 

data organization, pattern matching, and describing object model constraints (while attempting to not 

ruffle the feathers of mathematical purists who use different terminology). 

To identify similar features in a group, a wide range of clustering algorithms or group distance 

algorithms are used [82], which may also be referred to as error minimization and regression methods

http://dx.doi.org/10.1007/978-3-319-33762-3_10


in some literature. Features are clustered together for computer vision to help solve fundamental 

problems, including object modeling, finding similar patterns during matching, organizing and 

classifying similar data, and dimensionality reductions. 
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One way to describe a cluster is by similarity—for example, describing a cluster of related features 

under some distance metric or regression method. In this sense, clustering overlaps with distance 

functions: Euclidean distance for position, cosine distance for orientation, and Hamming distance for 

binary feature vector comparisons are examples. However, distance functions between two points are 

differentiated in this discussion from group distance functions, clusters, and group distributions. 

Efficiently organizing similar data in feature space for searching and classification is a form of 

clustering. It can be based on similarity or distance measures of feature vectors or on object constraint 

similarity, and it is required to speed up feature searching and matching. However, commercial 

databases and brute-force search may be used as-is for feature descriptors, with no attempt made to 

optimize. Custom data structures can be built for optimizations via trees, pyramids, lists, and hash 

tables. (We refer the reader to standard references in computer science covering data organization and 

searching; see the classic texts The Art of Computer Programming by Donald Knuth or Data Structure 

and Algorithms by Aho, Ullman, and Hopcroft.) 

Another aspect of clustering is the feature space dimension and topology. Since some feature spaces 

are multivariate and multidimensional, containing scalars and tensors, any strict definition of cluster-

ing, error minimization, regression, or distance is difficult; it really depends on the space in which 

similarity is to be measured. 

Group Distance: Clustering Methods Survey, KNN, RANSAC, K-Means, GMM, SVM, 

Others 

A spectrum of alternatives may be chosen for clustering and learning similarities between groups of 

data atoms, starting at the low end with basic C library searching and sorting functions and reaching the 

high end with statistical and machine learning methods such as kernel machines and support vector 

machines (SVMs) to build complete classifiers; kernel machines are introduced in Chap. 10 in the 

section “Kernel Functions, Kernel Machines, SVM”. Kernel machines allow various similarity 

functions to be substituted into a common framework to enable simplified comparison of similarity 

methods and classification. 

Table 4.4 is a summary of selected clustering methods, with a few key references for the interested 

reader.
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Table 4.4 Clustering, classification, and machine learning methods 

Group distance 

criteria Methods and references Description 

Distance K-Nearest Neighbor [307] Uses a chosen distance function, cluster based on simple 

distance to k-nearest neighbors in the training set 

Consensus 

Models 

RANSAC [83] 

PROSAC [306] 

Levenberg-Marquardt [332] 

Use random sample consensus to estimate model parameters 

from contaminated data sets 

Centroid Models K-Means [85], Voroni Tesselation, 

Delauney Triangulation 

Hierarchical K-Means, Nister trees 

[318] 

Use a centroid of distribution as the base of the cluster, 

which can be very slow for large datsasets; can be 

formulated in a hierarchical tree structure using vocabulary 

words (Nister method) for much better performance 

Connectivity of 

Clusters 

Hierarchical Clustering [300] Builds connectivity between other clusters. 

Density Models DBSCAN [299, 326] 

OPTICS [327] 

Locate distributions with maxima and minima density 

compared to surrounding data 

Distribution 

Models 

Gaussian Mixture Models [301] Iterative methods of finding maximum likelihood of model 

parameters 

Neural Methods Neural Networks [304] Neural methods defy a single definition, but typically use 

one or more inputs; adaptive weight factors for each input 

that can be learned and trained, a neural function to act on 

the inputs and weights, a bias factor for the neural function; 

produce one or more outputs 

Bayesian Naïve Bayesian [314] 

Randomize Trees [315] 

FERNS [263] 

Learning model recording probabilistic relationships 

between variables 

Probabilistic, 

Semantic 

[196] 

Latent Semantic Analysis (pLSA) 

Latent Dirichlet Allocation (LDA) 

Hidden Markov Models, HMM 

[316, 317] 

Learning model based on probabilistic relationships 

between variables 

Kernel Methods, 

Kernel Machines 

Kernel Machines [535]a 

Various Kernels [305] 

PCA [302, 303] 

*SVM is a well-known instance of 

a kernel machine 

Reduce a distribution to a set of uncorrelated, ranked 

principal components in a Euclidean space for ease of 

matching and clustering 

Support Vector 

Machines 

SVM [290] An SVM may produce structured or multivariate output to 

classify input 
a http://www.kernel-machines.org/ 

Classification Frameworks, Supervision, REIN, MOPED 

Training and classification fall into the following general categories in the literature (although these 

terms are outdated and convey little value, they are still in wide use).

• Supervised: A human will assist during the training process to make sure the results are correct.

• Unsupervised: The classifier can be trained automatically from feature data and parameters [334].

• Various other terms: Semi-supervised, . . .  

Putting all the pieces together, we see that training the classifiers may be manual or automated, 

simple or complex, depending on the complexity of the objects and the range of feature metrics used.

http://www.kernel-machines.org/
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An SVM or kernel machine may be the ideal solution, or the problem may be simpler. For example, 

a machine vision system to identify fruit may contain a classifier for each type of fruit, with features 

including simple color histograms, shape factors such as area and perimeter and Fourier descriptors, 

and surface texture metrics, with constraints to associate and quantify all the features for each type of 

fruit. The training process would involve imaging several pieces of fruit of each type; developing 

canonical descriptors for color, shape, and surface texture; and devising a top-level classifier perhaps 

discriminating first on color, next surface texture, and finally shape. A simpler fruit classifier may 

contain just a set of image histograms of accurate color measurements for each fruit object and may 

work well enough if each piece of fruit is imaged with a high-precision color camera against a black 

conveyor belt background in a factory. 

While most published research is based on a wide range of nonstandard classification methods 

designed for specific applications or to demonstrate research results, some work is being done toward 

more standardized classification frameworks. 

One noteworthy example of a potentially standard classifier framework developed for robot 

navigation and object recognition is the REIN method [328], which allows the mixing and matching 

of detectors, descriptors, and classifiers for determining constraints. REIN provides a plug-in architec-

ture and interfaces to allow for any algorithms, such as OpenCV detectors and descriptors, to be 

combined in parallel or serial pipelines. Two classification methods are available in REIN as plug-in 

modules for concurrent use: Binarized Gradient Grid Pyramids are introduced as a new method [328], 

and View Point Feature Histograms [329] are also used. 

The REIN pipeline provides interfaces for (1) attention operators to identify interesting 3D points 

and reduce the search space; (2) detectors for creating feature descriptors; and (3) pose estimators to 

determine geometric constraints for applications like robot motion such as grasping. REIN is available 

for research as open source; see Ref. [328]. 

Another research project, MOPED [330], provides a regular architecture for robotic navigation, 

including object and pose recognition. MOPED includes optimizations to use all available CPU and 

GPU compute resources in parallel. Moped provides optimized versions of SIFT and SURF for 

GPGPU and makes heavy use of SSE instructions for pose estimation. 

Kernel Machines 

In machine learning, a kernel machine [305] is a framework allowing a set of methods for statistically 

clustering, ranking, correlating, and classifying patterns or features to be automated. One common 

example of a kernel machine is the support vector machine (SVM) [533]. 

The framework for a kernel machine maps descriptor data into a feature space, where each 

coordinate in the feature space corresponds to a descriptor. Within the feature space, feature matching 

and feature space reductions can be efficiently carried out using kernel functions. Various kernel 

functions are used within the kernel machine framework, including RBF kernels, Fisher kernels, 

various polynomial kernels, and graph kernels. 

Once the feature descriptors are transformed into the feature space, comparisons, reductions, and 

clustering may be employed. The key advantage of a kernel machine is that the kernel methods are 

interchangeable, allowing for many different kernels to be evaluated against the same feature data. 

There is an active kernel machine community (see kernel-machines.org). See also Chap. 10 for more 

on SVMs and kernel descriptors. 

Boosting, Weighting 

Boosting [313] is a machine learning concept that allows a set of classifiers to be used together, 

organized into combinatorial networks, pipelines, or cascades, and with learned weights applied to 

each classifier. This results in a higher, synergistic prediction and recognition capability using the



combined weighted classifiers. Boosting is analogous to the weighting factors used for neural network 

inputs; however, boosting methods go further to combine networks of classifiers to create a single, 

strong classifier. 
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We illustrate boosting from the Viola–Jones method [117, 153], also discussed in Chap. 6, which uses 

the ADA-BOOST training method to create a cascaded pattern matching and classification network by 

generating strong classifiers from many weak learners. This is done through dynamic weighting factors 

determined in a training phase, and the method of using weighting factors is called boosting. 

The idea of boosting is to first start out by equally weighting the detected features—in this case, 

HAAR wavelets—and then matching the detected features against the set of expected features; for 

example, those features detected for a specific face. Each set of weighted features is a classifier. 

Classifiers that fail to match correctly are called weak learners. For each weak learner during the 

training phase, new weighting factors are applied to each feature to make the classifier match correctly. 

Finally, all weak learners are combined linearly into a cascaded classifier, which is like a pipeline or 

funnel of weak classifiers designed to reject bad features early in the pipeline. 

The training can takemany hours, days, or weeks and requires some supervision.While ADA-BOOST 

solved binary classification problems, the method can be extended into multiclass classification [113]. 

Selected Examples of Classification 

We call out a few noteworthy and popular classification approaches here, which are also listed in 

Table 4.5. See Chap. 10 for more information on feature learning architectures, including classification 

methods such as visual vocabularies. 

Table 4.5 Comparison of various interest point, descriptor, and classifier concepts 

Technique FERNS SIFT FREAK Convolutional Network Polygon Shape Factors 

Sparse Keypoints x x x x 

Feature Descriptor x x x x 

Multi-Scale Representation x x x 

Coarse to Fine Descriptor x 

Deep Learning Network x 

Sparse Codebook x 

Note: The FERNS method does not rely on a local feature descriptor, and instead relies on a classifier using constraints 

between interest points 

Randomized trees is a method using hierarchical patch classifiers [315] based on Bayesian proba-

bility methods, taking a set of simple patch features deformed by random homography parameters. 

Ozuysal et al. [263] further develop the randomized tree method with optimizations using nonhierar-

chical organization in the form of FERNS, using binary probability tests for patch classifier member-

ship. Matches are evaluated using a naïve Bayesian approach. 

FERNS training [263] involves combining training data from multiple viewpoints of each patch to 

add scale and perspective invariance, using trees with 11 levels and 11 versions of each patch, warped 

using randomized affine deformation parameters; some Gaussian noise and smoothing are also applied 

to the deformed patches. Keypoints are then located in each deformed patch, and the keypoints found 

in the most deformed patches are selected for the training set. The FERNS keypoints use maxima of 

Laplacian filters at three scales and retain only the strongest 400 keypoints. The Laplacian keypoints do 

not include orientation or fine-scale estimation. FERNS does not use descriptors, just the strongest 

Laplacian keypoints computed over the 11 deformed images in each set. 

While K-means [85] methods can be very slow, an optimization using hierarchical Nister Trees 

[318] is a highly scalable alternative for indexing massive numbers of quantized or clustered local



descriptors in a hierarchical vocabulary tree. The method is reported to be very discriminative and has 

been tested on large datasets. 
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Binary Histogram Intersection Minimization (BHIM) [273] uses pairs of multi-scale local binary 

patterns (MSLBP) [273] to form pairwise-coupled classifiers based on strong divergence between pairs 

of MSLBP features. Histogram intersection on pairs of MSLBP features uses a distance function such 

as SAD to find the largest divergence of histogram distance. The BHIM classifier is then composed of a 

list of “pairs” of MSLBP histograms with large divergence, and MSLBPs are matched into the 

classifier. BHIM uses features created across multiple scales of training data. It is reported by the 

authors to be at least as accurate as ADA-BOOST, and the MSLBP features are reported to be more 

discriminant than LBPs. 

Alahi et al. [322] develop a method for classification and matching using a cascaded set of coarse to 

fine grids of region descriptors called object descriptors (ODs). The target application is tracking 

objects across a set of cameras, such as traffic cameras in a metropolitan area. Each OD is a collection 

of multi-scale descriptors computed in equal-size regions over multi-scale grids; the grids range over 

six scales with a 25% scaling factor difference. Any existing descriptor method can be used in the OD 

method, such as SIFT, SURF, or correlation templates. The authors [322] claim improved performance 

by cascading descriptors in an OD compared with using existing descriptors. 

Feature Learning, Sparse Coding, Convolutional Networks 

Feature learning methods create a set of basis features (we use the term basis features loosely here) 

derived from the ground truth data during a training phase. The basis features are collected into a set. 

There are several related approaches taken to create the set, discussed in this section. 

The topics introduced in this section are covered in much more detail in Chap. 10 under Feature 

Learning Architectures. 

Terminology: Codebooks, Visual Vocabulary, Bag of Words, Bag of Features 

Several related approaches and terminologies are used in the feature learning literature, including 

variations such as sparse coding, codebooks, bag of words, and visual vocabularies. However, for the 

novice, there is some conceptual overlap in the various approaches and the terminology is subtle, 

describing minor variations in methods used to learn the features and build the classification networks; 

see references [88–93]. The sparse codes are analogous to basis features. Many researchers in the areas 

of activity recognition [45] are using sparse codebooks and extending the field of research. 

We describe some of the terminology and concepts, including:

• Dictionaries, codebooks, visual vocabularies, bags of words, bags of features, and feature alphabet, 

containing sets of features.

• Sparse codes, sparse coding, and minimal sets of features or codes.

• Multilayered sparse coding and deep belief networks, containing multilayered classification 

networks for hierarchical matching; these are composed of small, medium, and large scale 

features—perhaps ten or more layers of scale.

• Single-layer sparse coding, with no hierarchy of features, which may be built on top of a multi-scale 

descriptor such as SIFT.

• Unsupervised feature learning, including various methods of learning the best features for a given 

application from the ground truth dataset; feature learning has received much attention recently in 

the Neural Information Processing Systems (NIPS) community, especially as applied to 

convolutional networks.
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Sparse Coding 

Some early work in the area of sparse coding for natural images can be found in the work of Olshausen 

and Field [725], which forms the conceptual basis. To create a sparse codebook, first an image feature 

domain is chosen, such as face recognition or automobile recognition. Then a set of basis items 

(patches, vectors, or functions) is selected and put into a codebook based on a chosen uniqueness 

function. The sparse coding goal is to contain the smallest set of unique basis items required to achieve 

the accuracy and performance goals for the system. 

When adding a new feature to the codebook during the training stage, candidate features are 

compared against the features already in the codebook to determine feature uniqueness, using a 

suitable distance function and empirical threshold. If the feature is sufficiently unique, as measured 

by the distance function and a threshold, the new feature is added to the codebook. 

In work by Bo et al. [91], the training phase for learning features involves using objects such as a 

cup, which is positioned on a small rotating table. Multiple images are taken of the object from a 

number of viewpoints and distances to achieve perspective invariance, which then yields a set of 

patches taken from a variety of poses, from which the unique sparse codewords are created and added 

to the codebook (see also Refs. [91, 189, 190, 725]). Related work includes a histogram of sparse codes 

descriptor or HSC [98], as described in Chap. 7, used to retrofit a HOG descriptor. See Chap. 10 for 

more details on sparse coding architectures. 

Visual Vocabularies 

Visual vocabularies are analogous to word vocabularies and they share common research [195]. See 

Chap. 10 for more details on vocabulary architectures. In the area of document analysis, content is 

analyzed and described based on the histogram of unique word counts in the document. Of course, the 

histogram can be trimmed and remapped to reduce the quantization and binning. Visual vocabularies 

follow the same method as word vocabulary methods, representing images globally by the frequency of 

visual words, as illustrated in Fig. 4.21, where visual word methods use feature descriptors of many types. 

Fig. 4.21 Hypothetical, simplified illustration representing a set of visual words, and a histogram showing frequency of 

use of each visual word in a given image
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To build the visual vocabularies, unique feature descriptors are extracted and collected from ground 

truth images. To be included in the vocabulary, the new feature must have significant statistical 

differences from the existing features in the vocabulary, so features are added to the vocabulary only 

if they exceed a difference threshold function. 

To quantize the visual vocabulary features for determining their uniqueness, clustering and classifi-

cation methods are performed on the feature set, and candidate features are selected that are unique so 

as to reduce the feature space and assist in matching speed. Various statistical methods may be 

employed to reduce the feature space, such as K-means, KNN, SVM, Bayes, and others. 

To collect the visual features, practitioners are using all possible methods of feature description and 

image search, including sampling the image at regular grids and at interest points, as well as scale space 

searches. The features used in the vocabularies range from simple rectangular pixel regions, to SIFT 

features, and everything in between. Applications for the visual vocabularies range from analyzing 

spatiotemporal images for activity recognition [196, 199] to image classification [90, 92, 197–199]. 

Learned Detectors via Convolutional Filter Masks 

As illustrated in Fig. 4.22, Richardson and Olson [96] developed a method of learning optimal 

convolutional filters as an interest point detector with applications to stereo visual odometry. This 

method uses combinations of DCT and HAAR basis features composed together, using random 

weights to form a set of candidate 8 × 8 pixel basis functions, each of which is tested against a target 

feature set resembling 2D barcodes known as AprilTags [452]. Each 8 × 8 pixel candidate is measured 

against the AprilTags to find the best convolution masks for each tag to form the basis set. Of course, 

other target features such as corners could be used for ground truth data instead of AprilTags. 

Fig. 4.22 (Left) The optimal learned convolution filters for an image of an Office, a conference room, cubicle, and 

lobby; gray scale values represent filter coefficient magnitudes. (Right) Comparable corner detectors in the top row, 

difference of Gaussian in the bottom left, and a custom filter which is preferred by the author. (Images # Andrew 

Richardson and Edwin Olson, used by permission) 

Using the learned convolution masks, the steps in feature detection are as follows: (1) convolve 

each masks at chosen pixels to get a response; (2) compare convolution response against a threshold; 

(3) suppress non-extrema response values using a 3 × 3 spatial filter window. The authors report good 

accuracy and high performance on the order of a FAST detector, but with the benefit of higher 

performance for the combined detection and non-maximal suppression stage as feature counts 

increase.
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Convolutional Neural Networks, Neural Networks 

Convolutional neural networks which are discussed at length in Chaps. 9 and 10, pioneered by LeCun 

[288] and others, are one method of implementing machine learning algorithms based on neural 

network theory [304]. Convolutional networks are showing great success in academia and industry 

[289] for image classification and feature matching. 

Convolutional neural networks are one method of modeling a neural network. The main compute 

elements in the convolutional network are many optimized convolutions in parallel, as well as fast 

local memory between the compute units. The run-time classification performance can be quite fast, 

especially for hardware-optimized implementations [453]. 

As shown in Fig. 4.23 at a high level, one method of modeling each neuron and a network of 

neurons includes a set of inputs, a set of weighting factors applied to each input, a combinatorial 

function, and an output. Many neural models exist that map into convolutional networks; we refer the 

reader to the experts, see LeCun [288]. Neural networks have been devised using several models, but 

this topic is outside the scope of this work [304]; see the NIPS community research for more. 

Fig. 4.23 (Left) Neurons from a human brain. (Right) One of many possible models of an artificial neural network 

[304]. Note that each neuron may have several inputs, several outputs, a bias factor, and input/output weight factors (not 

shown). (Human neuron image on left # Gerry Shaw, used by permission) 

Neural networks are multilevel, containing several layers and interconnections. As shown in the 

hypothetical neural network in Fig. 4.23, a bias input is provided to each neural function as a weighting 

factor. Some neural network configurations use individual weights applied to each individual input, so 

the weighting factors act as convolution kernel coefficients. In terms of convolutional networks, the 

neural network paradigm can be mapped into localized patches of raw pixels as feature inputs at the 

lowest level. For example, the patch size may be 1 pixel or a 5 × 5 patch of pixels, each input having a 

convolutional weighting factor. 

See Chap. 9 for details on neural networks, including historical background and neuroscience 

concepts. See Chap. 10 for feature learning architectures employing neural networks.
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Summary 

In this chapter, we survey background concepts and ideas used to create local feature descriptors and 

interest point detectors. The key concepts and ideas are also developed into the vision taxonomy 

suggested in Chap. 5. Distance functions are covered here, as well as useful coordinate systems. We 

examine the shape and pattern of local descriptors, with an emphasis on local binary descriptors such 

as ORB, FREAK, and BRISK to illustrate the concepts. 

Feature descriptor discrimination is illustrated using image reconstructions from feature descriptor 

data alone. Search strategies are discussed, such as scale space pyramids and multilevel search, as well 

as other methods such as grid-limited search. Computer vision system models are covered, including 

concepts such as feature space, object models, feature constraints, statistically designed features, and 

feature learning. Classification and training are illustrated using several methods, including kernel 

machines, convolutional networks, and deep learning. Several references to the literature are provided 

for the interested reader to dig deeper. Practical observations and considerations for designing vision 

systems are also provided. 

In summary, this chapter provides useful background concepts to keep in mind when reading the 

local feature descriptor survey in Chap. 6, since the concepts discussed here are taken mainly from the 

current localå descriptor methods in use; however, some additional observations and directions for 

future research are suggested in this chapter as well. 

Learning Assignments 

1. Discuss how a local feature descriptor is different than a global image descriptor or global 

statistical metric, and provide an example comparison between a local feature descriptor and a 

global feature descriptor. 

2. A feature detector is equivalently called a local interest point, anchor point, and landmark. Discuss 

what a feature detector is used for, and describe in general how they work. 

3. Discuss how to cull down the set of local interest points (feature detectors), and why culling is 

critical for effective feature description. 

4. Discuss and compare alternatives to using feature detectors to find sparse local interest points, such 

as using dense feature descriptors computed at each pixel, or grid-aligned feature descriptors. 

5. Discuss why it is critical to pair the right combination of feature detector and feature descriptor 

together. 

6. Discuss the difference between feature description and feature extraction. 

7. Discuss feature invariance criteria such as scale and rotational invariance, and name at least five 

(5) other invariance criteria. 

8. Discuss why determining the invariance criteria in advance is critical for selecting the interest 

point and feature descriptor methods for a given application, and describe an example application 

and describe the relevant invariance criteria. 

9. Discuss why interest points, or feature detectors, should be distinct and easy to find with high 

repeatability. 

10. Describe as many distance functions as you can remember, at least Euclidean distance, cosine 

distance, and SSD difference. 

11. Describe how a distance function is used to measure correspondence between feature descriptors 

to feature matching.
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Describe how Hamming distance works, and why it is ideal for measuring correspondence 

between local binary descriptors. 

13. Discuss scale space, image pyramids, and feature descriptor pyramids, and provide example 

applications for each. 

14. Discuss feature descriptor shapes, otherwise referred to as patches, and the advantages and 

disadvantages of each shape. 

15. Discuss the motivations and goals behind the design of local binary descriptors. 

16. Compare local binary descriptors with other feature descriptor methods using other spectra such as 

pixel values or gradient values. 

17. Discuss several examples of spectra used to create feature descriptors, such as gradients, pixel 

values, and color information. 

18. Describe how saccadic dithering is used by the human visual system. 

19. Describe the shape of the variable levels of detail detected by the retina, and describe applications’ 

variable level of detail to feature descriptor design. 

20. Discuss the approach to determining the pixel sampling patterns used in local binary descriptors, 

including dense sample patterns used in the LBP, and sparse point-pair pixel patterns used by 

FREAK and ORB, and discuss the motivations and goals for each approach. 

21. Discuss applications for sub-pixel accuracy in feature descriptors, and name specific feature 

descriptor methods which have been demonstrated to be sub-pixel accurate. 

22. Describe feature search approaches including multi-scale image pyramid search, dense pixel 

search, grid tile search, and sparse local interest point search. 

23. Describe image classification and labeled classes. 

24. Describe how clustering of features is used during training to select representative features. 

25. Describe how K-MEANS and K-NN (K-nearest neighbor) clustering methods work at a high 

level, and how they are different. 

26. Describe the general operation and goals of the ADA-BOOST method used by the Viola–Jones 

Method. 

27. Describe sparse coding goals as applied to feature classification. 

28. Describe visual vocabularies and bag-of-words methods as applied to feature classification.



for the Entwives desired order, and plenty, and peace (by which they meant that things

should remain where they had set them).

—J. R. R. Tolkien, The Lord of the Rings 

Feature Descriptor Attribute Taxonomy 5 

This chapter develops a general Vision Metrics Taxonomy for feature description, so as to collect 

summary descriptor attributes for high-level analysis. The taxonomy includes a set of general robust-

ness criteria for feature description and ground truth datasets. The material presented and discussed in 

this book follows and reflects this taxonomy. By developing a standard vocabulary in the taxonomy, 

terms and techniques are intended to be consistently communicated and better understood. The 

taxonomy is used in the survey of feature descriptor methods in Chap. 6 to record “what” practitioners 

are doing. 

As shown in Fig. 5.1, the Vision Metrics Taxonomy is based on feature descriptor dimensions using 

three axes—shape and pattern, spectra, and density—intended to create a simple framework for 

analysis and discussion. A few new terms and concepts have been introduced where there had been 

no standard, such as for the term feature descriptor families. These have been broken down into 

categories of local binary descriptors, spectra descriptors, basis space descriptors, and polygon shape 

descriptors; these descriptor families are also discussed in detail in Chap. 4. Additionally, the 

taxonomy borrows some useful terminology from the literature when it exists there, including several 

terms for the robustness and invariance attributes.

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_5

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_5&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_5#DOI


nded to be used for comparing descriptors in terms of their goodness, performance, or accuracy.

The three axes of the Vision Metrics Taxonomy in Fig. are:

1.

3. Spectra: The scalar and vector quantities used for the metrics, and a summary breakdown of the

algorithms and computations.

scussed in detail in Chap. 6; these include the use of gradients and local binary patterns.

•

5.1

Why create a taxonomy that is guaranteed to be fuzzy, includes several variables, and will not 

perfectly express the attributes of any feature descriptor? The intent is to provide a framework to
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sparse global 
Density 
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Fig. 5.1 Taxonomy for feature descriptor dimensions, including (1) feature density as global, regional, and sparse local; 

(2) shape and pattern of pixels used to compute the descriptor, which includes rectangles, circles, and sparse sampling 

patterns; (3) spectra, which includes the spectrum of information contained in the feature itself 

describe various design approaches used for feature description. However, the taxonomy is not 

inte 

Shape and pattern: How the pixels are taken from the target image. 

2. Density: The extent of the image required for the descriptor, differentiating among local, regional, 

and global descriptors. 

Feature Descriptor Families 

Feature descriptors and metrics have developed along several lines of thinking into separate families. 

In many cases, the research communities for the various families are working on different problems, 

and there is little cross-pollination or mutual interest. For example, cell biology and medical 

applications are typically interested in polygon shape descriptors, also referred to in the literature as 

image moments. Those involved with trendy augmented reality applications for mobile phones, as 

discussed in the computer vision literature, may be more interested in local binary descriptors. In some 

cases, there are common concepts shared by feature detectors and feature descriptors, as will be 

di 

Based on the taxonomy shown in Fig. 5.1, we divide features into the following families: 

Local binary descriptors. These sample point-pairs in a local region and create a binary coded bit 

vector, 1 bit per compare, amenable to Hamming distance feature matching. Examples include LBP, 

FREAK, ORB, BRISK, and Census.



•

•

detectors and feature descriptors (as will be discussed in Chap. 8). Image moments [444] is a term

often used in the literature to describe shape features.

nference publishers. Here are a few noteworthy works that survey and organize the eld of feature

m

•

•

•

•

of literature on local features, performance and accuracy evaluations of several methods, types of

methods (corner detectors, blob detectors, and feature detectors), and implementation details.
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• Spectra descriptors. These use a wide range of spectra values, such as gradients and region 

averages. There is no practical limit to the spectra that could be used with these features. One of 

the most common spectra used in detectors is the local region gradient, such as in SIFT. Gradients 

are also used in several interest point and edge detectors, such as Harris and Sobel. 

Basis space descriptors. These methods encode the feature vector into a set of basis functions, such 

as the familiar Fourier series of sine and cosine magnitude and phase. In addition, existing and novel 

basis features are being devised in the form of sparse codebooks and visual vocabularies (we use the 

term basis space loosely). 

Polygon shape descriptors. These take the shape of objects as measured by statistical metrics, such 

as area, perimeter, and centroid. Typically, the shapes are extracted using a morphological vision 

pipeline and regional algorithms, which can be more complex than localized algorithms for feature 

Prior Work on Computer Vision Taxonomies 

Several research papers compare and contrast various aspects of sparse local features, and the field is 

rich with examples of comparisons of keypoint detectors [67, 262] and feature descriptors 

[81, 116]. New feature descriptor methods and improvements are usually compared to existing 

methods, utilizing several robustness and invariance criteria. However, there is a lack of formal 

taxonomy work to highlight the subtle details affecting design and comparison. For a good survey 

covering state-of-the-art computer vision methods, see Szelinski [275]. 

It should be noted that computer vision is a huge field. Several thousand research papers are 

published every year, and several thousand equally interesting research papers are rejected by 

co fi 

etrics and computer vision. 

Affine covariant interest point detectors. A good taxonomy is provided by Mikolajczyk et al. 

[124] for affine covariant interest point detectors. Also, Lindeberg [471] has studied the area of 

scale-independent interest point methods extensively. We seek a much richer taxonomy, however, 

to cover design principles for feature descriptors, and we have developed our taxonomy around 

families of descriptor methods with common design characteristics. 

Annotated computer vision bibliography. From USC and maintained by Keith Price, this 

resource provides a detailed breakdown of computer vision into several branches, as well as links 

to some key research in the field and computer vision resources.1 

CVonline: the evolving, distributed, nonproprietary, online compendium of computer vision. 

This provides a comprehensive and detailed list of topics in computer vision. The website is 

maintained by Robert Fisher, and indexes the key Wikipedia articles. This may be one of the best 

online resources currently available.2 

Local invariant feature detectors: a survey. Prepared by Tuytelaars and Mikolajczyk [81], this 

reference provides a good overview of several feature description methods, as well as a discussion 

1 http://iris.usc.edu/Vision-Notes/bibliography/contents.html. 
2 http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm.

http://iris.usc.edu/Vision-Notes/bibliography/contents.html%20
http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm%20


well-known detectors and descriptors, combined with various classifiers, to yield the desired robust-

ness and accuracy.
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Robustness and Accuracy 

A key goal for computer vision is robustness, or the ability of a feature to be recognized under various 

conditions. Robustness can be broken down into several attributes. For example, detecting a feature 

should be robust over various criteria that are critical to a given application, such as scale, rotation, or 

illumination. We might also use the terms invariant or invariance to describe robustness. The end goal 

is accurate localization, correspondence, and robustness under invariance criteria. 

However, some robustness attributes are dependent on the feature descriptor combined with other 

variables. For example, many local feature descriptor methods compute position and orientation based 

on a chosen interest point method, so the descriptor accuracy is interrelated with the interest point 

method. The distance function and classification method are interrelated as well, to determine final 

accuracy. 

Note 

Since it is not possible to define robustness or accuracy of a feature descriptor in isolation from the 

interest point method, the classifier, and the distance function, the opportunity exists to mix and match 

Robustness and accuracy are a combination of the following factors: 

1. Interest point accuracy, since many descriptors depend on the keypoint location and orientation. 

2. Descriptor accuracy, as each descriptor method varies, and can be tuned. 

3. Classifier and distance function accuracy, as a poor classifier and matching stage can lead to the 

wrong results. 

Part of the challenge for an application, thus, is to define the robustness criteria, attribute by 

attribute, and then to define the limits and bounds of invariance sought. For example, scale invariance 

from 1× to 100 magnification may not be needed and hardly possible, but scale invariance from 1× to 

4× may be all that is needed and much simpler to reach. 

Several attributes of robustness are developed here into a robustness taxonomy. To determine actual 

robustness, ground truth data is needed as a basis to check the algorithms and measure results. 

Chapter 7 provides a background in ground truth data selection and design. 

General Robustness Taxonomy 

Robustness criteria can be expressed in terms of attributes and measured as invariance or robustness to 

those attributes. (See Chap. 7, Table 7.1, for more information on each of the robustness criteria 

attributes, with considerations for creating ground truth datasets.) Robustness criteria and attributes are 

grouped under the following group headings:

• Illumination

• Color

• Incompleteness

• Resolution and distance

• Geometric distortion

• Discrimination and uniqueness 

Each robustness criterion group contains several finer-grain attributes, as illustrated in Fig. 5.2.
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Fig. 5.2 General robustness criteria and their attributes 

Let us take a look at these robustness attributes, along with some practical considerations for design 

and implementation of feature descriptors and the corresponding ground truth data to address the 

attributes. 

Illumination 

Light is the source of all imaging, and it should be the no. 1 priority area for analysis and consideration 

when setting requirements for a given application. Illumination has several facets and is considered 

separately from color and color spaces. In some cases, the illumination can be corrected by changing 

the light source, or by adding or relocating light sources. In other cases, image preprocessing is needed 

to correct the illumination to prepare the image for further analysis and feature extraction. 

Attention to illumination cannot be stressed enough; for example, see Fig. 4.2 showing the effects of 

preprocessing to change the illumination in terms of increasing the contrast for feature extraction. Key 

illumination attributes are:

• Uneven illumination: Image contains dark and bright regions, sometimes obscuring a feature that 

is dependent on a certain range of pixel intensities.

• Brightness: There is too much or too little total light, affecting feature detection and matching.

• Contrast: Intensity bands are too narrow, too wide, or contained in several bands.

• Vignette: Light is distributed unevenly, such as dark around the edges. 

Color Criteria 

When color is used, accuracy of color is critical. Color management and color spaces are discussed in 

Chap. 2, but some major considerations are:

• Color space accuracy: Which color space should be used—RGB, YIQ, HSV, or a perceptually 

accurate color space such as CIECAM02 Jch or Jab? Each color space has accuracy and utility 

considerations, such as the ease of transforming colors to and from color spaces.

• Color channels: Since cameras typically provide RGB data, extracting the gray scale intensity from 

the RGB data is often important. There are many methods for converting RGB color to gray scale 

intensity, and many color spaces to choose from.

• Color bit depth: Color information, when used, must be accurate enough for the application. For 

example, 8-bit color may be suitable for most applications, unless color discrimination is necessary, 

so higher precision color using 10, 12, 14, or 16 bits per channel may be needed. 

Also, depending on the camera sensor used, there will be signal characteristics, such as color 

sensitivity and dynamic range, which differ for each color channel. For demanding color-critical



applications, the camera sensor should be well understood and have a known method of calibration. 

Individual colors may need to be compensated during image preprocessing. (See Chap. 1 for a 

discussion of camera sensors.) 
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Incompleteness 

Features are not always presented in the image from frame to frame the way they are expected, or in the 

way they were learned. The features may appear to be incomplete. Key attributes of incompleteness 

include:

• Clutter: The feature is obscured by surrounding image features, and the feature aliases and blends 

into the surrounding pixels.

• Occlusion: The feature is partially hidden; in many cases, the application will encounter occluded 

features or sets of features.

• Outliers, proximity: Sometimes only features in certain regions are used, and outlying features 

must be detected and ignored.

• Noise: Can come from rain, bad image sensors, and many other sources. A constant problem, noise 

can be compensated for, if it is understood, using a wide range of filter methods during 

preprocessing.

• Motion blur: If it is measured and understood, motion blur can be compensated for using filtering 

during preprocessing.

• Jitter, judder: A motion artifact, jitter or judder can be corrected, but not always; this can be a 

difficult robustness criterion to meet. 

Resolution and Accuracy 

Robustness regarding resolution, scale, and distance is often a challenge for computer vision. This is 

especially true when using feature metrics that rely on discrete pixel sizes over which the pixel area 

varies with distance. For example, feature metrics that rely on pixel neighborhood structure alone do 

not scale well or easily, such as correlation templates and most local region kernel methods. Other 

descriptors, such as those based on shape factors, may provide robustness that pixel region structures 

cannot achieve. Depending on the application, more than one descriptor method may be required to 

handle resolution and scale. 

To meet the challenge of resolution and distance robustness, various methods are employed in 

practice, such as scale-space image pyramid collections and feature-space pyramids, which contain 

multi-scale representations of the feature. Key criteria for resolution and distance robustness include:

• Location accuracy or position: How close does the metric need to provide coordinate location 

under scale, rotation, noise, and other criteria? Is pixel accuracy or sub-pixel accuracy needed? 

Regional accuracy methods of feature description cannot determine positional accuracy as well; for 

example, methods that use HAAR-like features and integral images can suffer the most, since in 

computing the HAAR rectangle, all pixels in the rectangle are summed together, throwing away 

discrimination of individual pixel locations. Pixel-accurate feature accuracy can also be challeng-

ing, since as features move and rotate they distort, and the pixel sampling artifacts create 

uncertainty.
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• Shape and thickness distortion: Distance, resolution, and rotation combine to distort the pixel 

sample shapes, so a feature may appear to be thicker than it really is or thinner. Distortion is a type 

of sampling artifact.

• Focal plane or depth: Depending on distance, the pixel area covered by each pixel changes size. In 

this case, depth sensors can provide some help when used along with RGB or other sensors.

• Pixel depth resolution: For example, processing color channels to preserve the bit accuracy using 

float or unsigned short int as a minimum can be required. 

Geometric Distortion 

Perhaps the most common distortion of image features is geometric, since geometric distortions take 

many forms as the camera moves and as objects move. Geometric attributes for robustness include the 

following:

• Scale: Distance from viewpoint, a commonly addressed robustness criteria.

• Rotation: Important in many applications, such as industrial inspection.

• Geometric warp: Key area of research in the fields of activity recognition and dynamic texture 

analysis, as discussed in Chaps. 4 and 6.

• Reflection: Flipping the image by 180°.

• Radial distortion: A key problem in depth sensing and also for 2D camera geometry in general, 

since depth fields are not uniform or simple; see Chap. 1.

• Polar distortion: A key problem in depth sensing geometry; see Chap. 1. 

Efficiency Variables, Costs, and Benefits 

We consider efficiency to be related to compute, memory, and total invariance attributes provided. 

How efficient is a feature descriptor or feature metric? How much compute is needed to create the 

metric? How much memory is needed to store the metric? How accurate is the metric? How much 

robustness and invariance are provided vs. the cost of compute and memory? To answer the above 

questions is very difficult and depends on how the entire vision pipeline is implemented for an 

application, as well as the compute resources available. The Vision Metrics Taxonomy provides 

information to pursue such questions, but as always pursuing the wrong questions may lead to the 

wrong answers. 

Discrimination and Uniqueness 

The selection of optimal, discriminating features is achieved using a variety of methods. For example, 

local feature detector methods filter out only the most discriminating or unique candidates based on 

criteria such as corner strength; then descriptors are computed at the selected interest points as patches 

or other shapes; and finally the resulting descriptor is either accepted or rejected based on uniqueness 

criteria. Uniqueness is also the key criterion for creating sparse codebooks discussed in Chap. 4. 

Discrimination can be measured by the ability to recreate an image from only the descriptor 

information, as discussed in Chap. 4. A descriptor with too little information to adequately recreate 

an image may be considered weak or nondiscriminating.
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General Vision Metrics Taxonomy 

To understand feature metrics, we develop a Vision Metrics Taxonomy composed of summary criteria. 

Each criterion is selected with a practical, engineering perspective in mind to provide information for 

evaluation and implementation in specific terms, such as algorithm, spectra, memory size, and other 

attributes. The basic categories of the Vision Metrics Taxonomy are shown in Table 5.1, and also 

summarized here as a list, and each list item is discussed in separate sections in this chapter:

• Feature Descriptor Family

• Spectra Dimension

• Spectra Value

• Interest Point

• Storage Format

• Data Types

• Descriptor Memory

• Feature Shape

• Feature Pattern

• Feature Density

• Feature Search Method

• Pattern Pair Sampling

• Pattern Region Size

• Distance Function

• Run-Time Compute 

Many of the background concepts used in the taxonomy are discussed in Chap. 4, where attributes 

about the internal structure and goals of common features are analyzed. In addition, this taxonomy is 

illustrated in the Feature Metric Evaluation (FME) information tables later in this chapter. A small 

subset of the taxonomy is used in the Chap. 6 survey of feature descriptors to record summary 

information. The taxonomy in Table 5.1 is a guideline for collecting and summarizing information. 

No judgment on goodness or performance is recorded or implied.
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Table 5.1 Vision metrics taxonomy 

Feature descriptor family Interest point Pattern pair sampling 

Local binary descriptor Point, edge, or corner Center—boundary pair 

Spectra descriptor Contour-based, perimeter Random pair points 

Basis space descriptor Other Foveal centered trained pairs 

Polygon-shape descriptor No interest point Trained pairs 

Spectra dimensions Storage format Symmetric pairs 

Single variate Spectra vector Pattern region size 

Multivariate Bit vector Bounding box (x size, y size) 

Spectra value Multivariate collection Distance function 

Orientation vector Data types Euclidean distance 

Sensor, accelerometer data Float Squared Euclidean distance 

Multigeometry Integer Cosine similarity 

Multi-scale Fixed point Correlation distance 

Fourier magnitude Descriptor memory Manhattan distance 

Fourier phase Fixed length or variable length Chessboard or Chebychev distance 

Other basis function Byte count range Earth movers distance 

Morphological shape metrics Feature shape SAD L1 Norm 

Learned binary descriptors Rectangle block patch SSD L2 Norm 

Dictionary, codebook, vocabulary Symmetric polygon region Mahalanobis distance 

Region histogram 2D Irregular segmented region Bray Curtis difference 

3D histogram Volumetric region Canberra distance 

Log polar bins Deformable L0 Norm 

Cartesian bins Feature search method Hamming distance 

Region sum Coarse to fine image pyramid Jaccard similarity 

Region average Scale space pyramid Run-time compute 

Region statistical Pyramid scale Compute complexity % of SIFT 

Binary pattern Dense sliding window Feature density 

DoG (1-bit) Dense grid block search Global 

DoG (multi-bit) Window search Regional 

Bit vector of values Grid block search Sparse 

Gradient magnitude Sparse at interest points Feature pattern 

Gradient direction Sparse at predicted points Rectangular kernel 

3D surface normals Sparse in segmented regions Binary compare pattern 

Line segment metric Depth segmented regions (Z) DNET line sample strip set 

Gray scale info Super-pixel search Radial line sampling pattern 

Color space info Sub-pixel search Perimeter or contour edge 

Double-scale first pyramid level Sample weighting pattern 

Feature Descriptor Family 

As described at the beginning of this chapter, feature descriptors are classified in this taxonomy as 

follows:

• Local Binary Descriptors

• Spectra Descriptors

• Basis Space Descriptors

• Polygon Shape Descriptors
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Spectra Dimensions 

The spectra or values recorded in the feature descriptor vary, and may include one or more types of 

information or spectra. We divide the categories as follows:

• Single variate: Stores a single value such as an integral image or region average, or just a simple set 

of pixel gradients.

• Multivariate: Multiple spectra are stored; for example, a combination of spectra such as color 

information, gradient magnitude and direction, and other values. 

Spectra Type 

The spectral type of feature descriptor is a major axis in this taxonomy, as shown in Fig. 5.1. Here are 

common spectra, which have been discussed in Chap. 3 and will be discussed in Chap. 6 as well.

• Gradient magnitude: A measure of local region texture or difference, used by a wide range of 

patch-based feature descriptor methods. It is well known [210] that the human visual system 

responds to gradient information in a scale and rotationally invariant manner across the retina, as 

demonstrated in SIFT and many other feature description methods; thus, the use of gradients is a 

preferred method for computer vision.

• Gradient direction: Some descriptor methods compute a gradient direction and others do not. A 

simple region gradient direction method is used by several feature descriptors and edge detection 

methods, including Sobel and SIFT, to provide rotational invariance.

• Orientation vector: Some descriptors are oriented and others are not. Orientation can be computed 

by methods other than a simple gradient—for example, SURF uses a method of sampling many 

gradient directions to compute the dominant gradient orientation of the entire patch region as the 

orientation vector. In the RIFF method, a radial relative orientation is computed. In the SIFT 

method, any orientations detected within 80% of the dominant orientation will result in an 

additional interest point being generated, so the same descriptor may allow multiple interest points 

differing only in orientation.

• Sensor data: Data such as accelerometer or GPS information is added to the descriptor. In the 

GAFD method, a gravity vector computed from an accelerometer is used for orientation.

• Multigeometry: Multiple geometric transforms of the descriptor data that are stored together in the 

descriptor, such as several different perspective transforms of the same data as used in the RFM2.3 

descriptor; the latter contains the same patch computed over various geometric transforms to 

increase the scale, rotation, and geometric robustness.

• Multiscale: Instead of relying on a scale-space pyramid, the descriptor stores a copy of several scaled 

representations. The multi-resolution histogram method described in Chap. 4 is one such method of 

approximating feature description over a range of scales, where scale is approximated using a range of 

Gaussian blur functions, and their resulting histograms are stored as the multi-scale descriptor.

• Fourier magnitude: Both the sine and cosine basis functions from the Fourier series can be used in 

the descriptor—for example, in the polygon shape family of descriptors as illustrated in Fig. 6.29. 

The magnitude of the sine or cosine alone is a revealing shape factor, without the phase, as 

illustrated in Fig. 6.6, which shows the histogram of LBPs run through a Fourier series to produce 

the power spectrum. This illustrates how the LBP histogram power spectrum provides rotational 

invariance. Other methods related to Fourier series may use alternative arrangements of the 

computation, such as the discrete cosine transform (DCT), which uses only the cosine component 

and is amenable to integer computations and hardware acceleration as commonly done for media 

applications.
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• Fourier phase: Phase information has been shown to be valuable for creating a blur-invariant 

feature descriptor, as demonstrated in the LPQ method discussed in Chap. 6.

• Other basis functions: Can be used for feature description. Wavelets are commonly used in place 

of Fourier methods owing to greater control over the function window and tuning of the basis 

functions derived from the mother wavelet into the family of related wavelets. See Chap. 2 for a 

discussion of wavelets compared to other basis functions.

• Morphological shape metrics: Predominantly used in the polygon shape descriptor family, com-

posed of shape factors, and referred to as image moments in some literature. They are computed over 

the gross features of a polygon image region such as area, perimeter, centroid, and many others. The 

vision pipeline and image preprocessing used for polygon shape description may include morpholog-

ical and texture operators, rather than local interest point and descriptor computations.

• Learned binary descriptors: Created by running ground truth data through a training step, such as 

developed in ORB and FREAK, to create a set of statistically optimized binary sampling point-pair 

patterns.

• Dictionary, codebook, vocabulary from feature learning methods: Build up a visual vocabulary, 

dictionary, or sparse codebook as a sparse set of unique features using a wide range of descriptor 

methods, such as simple images correlation patches or SIFT descriptors. When combined as a 

sparse set, these are representative of the features found in a set of ground truth data for an 

application domain, such as automobile recognition or face recognition.

• Region histogram 2D: Used for several types of information, such as binning gradient direction, as 

in CARD, RFM2.3, and SURF; or for binning linear binary patterns, such as the LBP. The SIFT 

method of histogramming gradient information uses a fairly large histogram bin region, which 

provides for some translation invariance, similar to the human visual system treatment of the 3D 

position of gradients across the retina [210].

• 3D histogram: Used in methods such as used in SIFT, which represents gradient magnitude and 

orientation together as a 3D histogram.

• Cartesian bins: A common method of binning local region information into the descriptor simply 

based on the Cartesian position of pixels in a patch—for example, histogramming the pixel intensity 

magnitude of each point in the region.

• Log polar bins: Instead of binning local region feature information in Cartesian rectangular 

arrangements, some descriptors such as GLOH use a log polar coordinate system to prepare values 

for histogram binning, with the goal of adding better rotational invariance to the descriptor.

• Region sum: Such as an integral image, a method used to quickly sum the local region pixel values, 

or HAAR feature. The region sum is stored into the feature representing the total value of all the 

pixels in the region. Note that region summation may be good for coarse-feature description of an 

area, but the summation process eliminates fine local texture detail.

• Region average: Average value of the pixels in a region area, also referred to as a box filter, which 

may be computed from a convolution operation, scaled integral image, or by simply adding up the 

pixel values in the array.

• Region statistical: Such as region moments, like standard deviation, variance, or max or min 

values.

• Binary pattern: Such as a vector of binary values, or bits—for example, stored as a result of local 

pixel pair compare computations of local neighborhood pixel values as used in the local binary 

descriptor family, such as LBP, Census, and ORB.

• DoG (1-bit quantized): As used in the FREAK descriptor, a set of DoG or bandpass filter features 

of different sizes, taken over a local binary region in a retinal sampling pattern similar to the human 

visual system, compared in pairs, and quantized to a single bit in a histogram vector.
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• DoG (multi-bit): A type of bandpass filter that is implemented using many variations, where a 

Gaussian blur filter is applied to the image, then the image is subtracted from (a) a shifted copy of 

itself, (b) a copy of itself at another Gaussian blur level, or (c) a copy of itself at another image scale 

as in the SIFT descriptor method.

• Bit vector of values: A bit string containing a sequence of values quantized to a single bit, such as a 

threshold.

• 3D surface normals: The analog to 2D gradients except in 3D, used in the HON4D method [164] to 

describe the surface of a 3D object location in the feature descriptor.

• Line segment metric: As in the CCH method, used to describe the line segments composing an 

object perimeter. Or, as used as a shape factor for objects where the length of a set of radial line 

segments originating at the centroid and extending to the perimeter are recorded in the descriptor, 

which can be fed into a Fourier transform to yield a power spectrum signature, as shown in 

Fig. 6.29.

• Color space info: Some descriptors do not take advantage of color information, which in many 

cases can provide added discrimination and accuracy. Both the use of simple RGB channels, such as 

in the RGB-D methods [45, 92], or using color space conversions into more accurate spaces are 

invaluable. For example, face recognition has problems distinguishing faces from different cultures, 

and since the skin tone varies across regions, the color value can be measured and added to the 

descriptor. However, several descriptors make use of color information, such as S-LBP, which 

operates in a colorimetric, accurate color space such as CIE-Lab, or the F-LBP, which computes a 

Fourier spectrum of color distance from the center pixel to adjacent pixels, as well as color variants 

of SIFT and many others.

• Gray scale info: The gray scale or color intensity value is the default spectra in almost all 

descriptors. However, the method used to create the gray scale from color and the image 

preprocessing used to prepare intensity for analysis and measurement are critical for the vision 

pipeline and were discussed in Chap. 2. 

Interest Point 

The use of interest points is optional with feature description. Some methods do not use interest points, 

and sample the image on a fixed grid rather than at every pixel, such as the Viola–Jones method using 

HAAR-like features. It is also possible to simply create a feature descriptor for every pixel rather than 

just at interest points, but since the performance impact is considerable, interest points are typically 

used to find the best location for a feature first. 

Several methods for finding interest points are surveyed and discussed in Chap. 6. Categories of 

interest points for the taxonomy include:

• Point, edge, or corner: These methods typically start with locating the local region maxima and 

minima; methods used include gradients, local curvature, Harris methods, blob detectors, and edge 

detectors.

• Contour-based, perimeter: Some methods do not start feature description at maxima and minima, 

and instead look for structure in the image, such as a contour or perimeter, and this is true mainly for 

the morphological shape-based methods.

• Other: There are other possibilities for determining interest point location, such as prediction of 

likely interest point or feature positions, or using grid or tile regions.

• No interest point: Some methods do not use any interest points at all.
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Storage Formats 

Storage formats are a practical matter for memory efficiency and engineering real systems and 

designing data structures. Knowing the storage format can guide efforts during engineering and 

optimization toward various programming constructs, instruction sets, and memory architecture. 

For example, both CPU and GPGPU graphics processors often provide dedicated silicon to support 

various storage format organizations, such as scatter and gather operations, and sparse and dense data 

structure support. Understanding the GPGPU capabilities can provide guidelines for designing the 

storage format, as discussed in Chap. 8. Storage format summary

• Spectra vector: May be a set of histograms, a set of color values, a set of basis vectors.

• Bit vector: Local binary patterns use bit vector data types, some programming languages include bit 

vector constructs, and some instruction sets include bit vector handling instructions.

• Multivariate collection: A set of values such as statistical moments or shape factors. 

Data Types 

The data types used for feature description are critical for accuracy, memory use, and compute. 

However, it is worth noting that data types can be changed as a trade-off for accuracy in some 

cases. For example, converting floating point to fixed point or integer computations may be more 

memory efficient, as well as power efficient, since a floating point silicon ALU complex occupies 

almost four times more die space, thus consuming more power than an integer ALU. The data type 

summary includes:

• Float: Many applications require floating point for accuracy. For example, a Fourier transform of 

images requires at least 64 bits double precision (larger images require more precision); other 

applications like target tracking may require 32-bit floating point for precision trajectory 

computations.

• Integer: Pixel values are commonly represented with 8 bit values, with 16 bits per pixel common as 

image sensors provide better data. At least 32-bit integers are needed for many data structures and 

numerical results, such as integral images.

• Fixed point: This is an alternative representation to floating point, which saves data space and can 

be implemented more efficiently in silicon. Most modern GPUs support several fixed-point formats, 

and some CPUs as well. Fixed-point formats include 8-, 16-, and 24-bit representations. Accuracy 

may be close enough using fixed point, depending on the application. In addition to fixed-point data 

types, GPUs and some processors also provide various normalized data types (see manufacturer 

information). 

Descriptor Memory 

The total descriptor memory size is part of the efficiency of the descriptor, and compute performance is 

another component. A descriptor with a large memory footprint, few invariance attributes, and heavy 

compute is inefficient. We are interested in memory size as a practical matter. Key memory-related 

attributes include:

• Fixed length or variable length: Some descriptors allows for alternative representations.

• Byte count: The length of all data in the descriptor.
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Feature Shapes 

A range of shapes are used for the pixel sampling pattern; shapes are surveyed in Chap. 4 including the 

following methods:

• Rectangle block patch: Simple x, y, dx, dy range.

• Symmetric polygon region: May be an octagon, as in the CenSurE method, or a circular region, 

like FREAK or DAISY.

• Irregular segmented region: Such as computed using morphological methods following seg-

mented regions or thresholded perimeter.

• Volumetric region: Some features make use of stacks of images resembling a volume structure. As 

shown in Fig. 6.12, the VLBP or Volume LBP and the LBP-TOP make use of volumetric data 

structures. The dynamic texture methods and activity recognition methods often use sets of three 

adjacent patches from the current frame plus two past frames, organized in a spatiotemporal image 

frame history, similar to a volume.

• Deformable: Most features use a rigid shape, such as a fixed-size rectangle or a circle; however, 

some descriptors are designed with deformation in mind, such as scale deformations [293, 294], and 

affine or homographic deformation [186], to enable more robust matching. 

Feature Pattern 

Feature pattern is a major axis in this taxonomy, as shown in Fig. 5.1, since it affects memory 

architecture and compute efficiency. 

Feature shape and pattern are related. Shape refers to the boundary, and pattern refers to the 

sampling method. Patterns include:

• Rectangular kernel: Some methods use a kernel to define which elements in the region are 

included in the sample; see Fig. 5.3 (left image) showing a kernel that does not use the corner 

pixels in the region; see also Fig. 4.8. 
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Fig. 5.3 Feature shapes. (Left to right) Rectangular patch, symmetric polygon region, irregular segmented region, and 

volumetric region 

Binary compare pattern: Such as FREAK, ORB, and BRISK, where specific pixels in a region are 

paired to form a complex sampling pattern.

• DNET line sample strip set: Where points along a line segment are sampled densely; see Fig. 4.8.

• Radial line sampling pattern: Where points on radial line segments originating at a center point 

are sampled densely; for example, used to compute Fourier descriptors for polygon region shape; 

see Fig. 6.29.

• Perimeter or contour edge: Where points around the edge of a shape or region are sampled 

densely.
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• Sample weighting pattern: As shown in Fig. 6.17, SIFT uses a circular weighting pattern in the 

histogram bins to decrease the contribution of points farther away from the center of the patch. The 

D-NETS method uses binary weighting of samples along the line strips, favoring points away from 

the endpoints and ignoring points close to the end points. Weighting patterns can provide invariance 

to noise and occlusion. 

See Chap. 4 for more illustrations in the section on “Patches and Shapes”. 

Feature Density 

As shown in Fig. 5.1, feature density is a major axis in this taxonomy. The amount of the image used 

for the descriptor is referred to in this taxonomy as feature density. For example, some descriptors are 

intended to use smaller regions of local pixels, anchored at interest points, and to ignore the larger 

image. Other methods use larger regions. Density categories include:

• Global: Covers the entire image, each pixel in the image.

• Regional: Covers fairly large regions of the image, typically on a grid, or around a segmented 

structure or region, not anchored at interest points.

• Sparse: May be taken at interest points, or in small regions at selected points such as random points 

in the BRIEF descriptor, trained points such as FREAK and ORB, or a sparse sampling grid as in 

the RFM2.3 descriptor. 

Feature Search Methods 

The method used for searching for features in the image is a significant for feature descriptor design. 

The search method determines a lot about the design of the descriptor, and the compute time required 

in the vision pipeline. We list several search variations here, and more detailed descriptions and 

illustrations are provided in Chap. 4. Note that a feature descriptor can make use of multiple search 

criteria. Feature search-related information is summarized as follows:

• Coarse-to-fine image pyramid: Or multi-scale search, using a pyramid of coarser resolution copies 

of the original.

• Scale space pyramid: The scale space pyramid is a variation of the regular coarse-to-fine image 

pyramid, where a Gaussian blur function is computed over each pyramid scale image [471] to create 

a more uniform search space; see Fig. 4.17.

• Pyramid scale factor: Captures pyramid scale intervals, such as octaves or other scales—for 

example, ORB uses a ~1.41× scale.

• Dense sliding window: Where the search is made over each pixel in the image, often within a 

sliding rectangular region centered at each pixel.

• Grid block search: Where the image is divided into a fixed grid or tiles, so the search can be faster 

but does not discriminate as well as dense methods. For example, see Fig. 6.17 describing the 

PHOG method, which computes descriptors at different grid resolutions across the entire image.

• Window search: Limited dense search to particular regions, such as in stereo matching between 

two L/R frames where the correspondence search range is limited to expected locations.

• Sparse at interest points: Where a corner detector or other detector is used to determine where 

valid features may be found.
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• Sparse at predicted points: Such as in tracking and mapping algorithms like PTAM, where the 

location of interest points is predicted based on motion or trajectory, and then a feature search 

begins at the predicted points.

• Sparse in segmented regions: For example, when morphological shape segmentation methods or 

thresholding segmentation methods define a region, and a second pass is made through the region 

looking for features.

• Depth segmented regions (Z): When depth camera information is used to threshold the image into 

foreground and background, and only the foreground regions are searched for features.

• Super-pixel search: Similar to the image pyramid method, but a multi-scale representation of the 

image is created by combining pixel values together using super-pixel integration methods, as 

discussed in Chap. 2.

• Sub-pixel search: Where sub-pixel accuracy is needed—for example, with region correlation, so 

several searches are made around a single pixel, with sub-pixel offsets computed for each compare, 

and in some cases geometric transforms of the pattern are made prior to feature matching.

• Double-scale first pyramid level: In the SIFT scale-space pyramid method, the lowest level of the 

pyramid is computed from a doubled 2× linear interpolated version of the full-scale image, which 

has the effect of preserving high-frequency information in the lowest level of the image pyramid, 

and increasing the number of stable keypoints by about four times, which is quite significant. 

Otherwise, computing the Gaussian blur across the original image would have the effect of 

throwing away most of the high-frequency details. 

Pattern Pair Sampling 

For local binary patterns, pattern pair sampling design is one of the key areas of innovation. Pairs of 

points are compared using a function such as (center pixel < kernel pixel) using a compare region 

threshold, and then the result of the comparison forms the binary descriptor vector. Note that many 

local binary descriptor methods are discussed and illustrated in Chap. 4, to illustrate variations in point-

pair sampling configuration and compare functions. The vision taxonomy for point-pair sampling 

includes:

• Center—boundary pair: Such as in the LBP family and Census transform.

• Random pair points: Such as in BRIEF, and semi-random in ORB.

• Foveal centered trained pairs: Such as in FREAK and Daisy.

• Trained pairs: Many methods train the point-pairs using ground truth data to meet objective 

criteria, such as FREAK and ORB.

• Symmetric pairs: Such as BRISK, which provides short and long line segments spaced symmetri-

cally for point-pair comparisons. 

Pattern Region Size 

The size of the local pattern region is a critical performance factor, even though memory access is 

likely from fast-register files and cache. For example, if we are performing a convolution of a 3 × 3 

pattern region, there are nine multiplies per kernel, and possibly one summary multiply to scale the 

results, for a total of ten multiplies per pixel. For each multiply we have two memory reads, one for the 

pixel and one for the kernel value; and we have ten memory writes, one for each multiply. A 640 × 480 

image has 307,200 pixels, and assuming 8 bits per pixel gray scale only, per frame we end up with



3,072,000 multiplies, 60,720,000 memory reads, and 307,200 writes for the result. Larger kernel sizes 

and larger image sizes of course add more compute. 
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There are many ways to optimize the performance, which we cover in Chap. 8 on vision pipeline 

engineering. For this attribute, we are interested in the following:

• Bounding box (x size, y size): For example, the bounding box around a rectangular region, circular 

region, or polygon shape region. 

Distance Function 

Computing the pattern matching or correspondence is one of the key performance criteria for a good 

descriptor. Feature matching is a trade-off between accuracy and performance, with the key variables 

being the numeric type and size of the feature descriptor vectors, the distance function, and the number 

of patterns and search optimizations in the feature database. Choosing a feature descriptor amenable to 

fast matching is a good goal. 

In general, the fastest distance functions are the binary family and Hamming distance, which is used 

in the local binary descriptor family. Some common distance functions are enumerated here; see 

Chap. 4 for details. 

Euclidean or Cartesian Distance Family

• Euclidean distance

• Squared Euclidean distance

• Cosine similarity

• SAD L1 Norm

• SSD L2 Norm

• Correlation distance

• Hellinger distance 

Grid Distance Family

• Manhattan distance

• Chessboard or Chebychev distance 

Statistical Distance Family

• Earth movers distance

• Mahalanobis distance

• Bray Curtis difference

• Canberra distance 

Binary or Boolean Distance Family

• L0 Norm

• Hamming distance

• Jaccard similarity
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Feature Metric Evaluation 

This section addresses the question of how to summarize feature descriptor information at a high level 

from the Vision Metrics Taxonomy into a practical Feature Metric Evaluation Framework (FME) and 

Feature metric evaluation (FME) from an engineering and design perspective. 

Note 

The FME is intended as a template to capture high-level information for basic analysis. 

Efficiency Variables, Costs, and Benefits 

Efficiency can be measured for a feature descriptor in simple terms, such as the benefit of the compute 

cost and memory used vs. what is provided in the way of accuracy, discrimination, robustness, and 

invariance. How much value does the method provide for the time, space, and power cost? Efficiency 

metrics include:

• Costs: Compute, memory, time, power.

• Benefits: Accuracy, robustness, and invariance attributes provided.

• Efficiency: Benefits vs. costs. 

The effectiveness of the data contained in the descriptor varies—for example, a large memory 

footprint to contain a descriptor with little invariance is not efficient, and a high compute cost for small 

amounts of invariance and accuracy also reveals low efficiency. We could say that an efficient feature 

representation contains the least number of bytes and lowest compute cost providing the greatest 

amount of discrimination, robustness, and accuracy. Local binary descriptors have demonstrated the 

best efficiency for many robustness attributes. 

Image Reconstruction Efficiency Metric 

For a visual comparison of feature descriptor efficiency, we can also reconstruct an image from the 

feature descriptors, and then visually and statistically analyze the quality of the reconstruction vs. the 

compute and memory cost. Detailed feature descriptors can provide good visualization and recon-

struction of the original image from the descriptor data only. For example, Fig. 4.12 shows how the 

HOG descriptor captures oriented gradients using 32,780 bytes per 64 × 128 region, Fig. 4.13 shows 

image reconstruction illustrating how BRIEF and FREAK capture edge information similar to 

Laplacian or other edge filters using 64 bytes per descriptor, and Fig. 4.14 shows SIFT image 

reconstruction using 128 bytes per descriptor. 

Although we do not include image reconstruction efficiency in the FME, this topic was covered in 

Chap. 4, under the discussion of discrimination. 

Example Feature Metric Evaluations 

Here are a few examples showing how the Vision Metrics Taxonomy and the FME can be used to 

collect summary descriptor information.
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SIFT Example of the FME Taxonomy 

We use SIFT as an example baseline, since SIFT is widely recognized and carefully designed. 

Vision metric taxonomy FME 

Name SIFT 

Feature family Spectra 

Spectra dimensions Multivariate 

Spectra Gradient magnitude and direction, DoG scale space maxima 

Storage format Orientation and position, gradient orientation histograms 

Data type Float, integer 

Descriptor memory 128 bytes for descriptor histogram 

Feature shape Rectangular region 

Search method Dense sliding window in 2D and 3D 3 × 3 × 3 image pyramid 

Feature density Local 

Feature pattern Rectangular and pyramid-cubic 

Pattern pair sampling – 

Pattern region size 16 × 16 

Distance function Euclidean distance 

General robustness attributes 

Total 5 (scale, illumination, rotation, affine transforms, noise) 

LBP Example of the FME Taxonomy 

The LBP is a very simple feature detector with many variations, used for texture analysis and feature 

description. We use the most basic form of 3 × 3 LBP here as an example. 

Vision metric taxonomy FME 

Name LBP 

Feature family Local binary 

Spectra dimensions Single-variate 

Spectra Pixel pair compares with center pixel 

Storage format Binary bit vector 

Data type Integer 

Descriptor memory 1 byte 

Feature shape Square centered at center pixel 

Search method Dense sliding window 

Feature density Local 

Feature pattern Rectangular kernel 

Pattern pair sampling Center—Boundary pairs 

Pattern region size 3 × 3 or more 

Distance function Hamming distance 

General robustness attributes 

Total 3 (brightness, contrast, rotation using RILBP) 

Shape Factors Example of the FME Taxonomy 

This example uses binary thresholded polygon regions. For this hypothetical example, the 

preprocessing steps begin with adaptive binary thresholding and morphological shape definition 

operations, and the measurement steps begin with pixel neighborhood-based perimeter following to 

defined the perimeter edge, followed by centroid computation from perimeter points, followed by



determination of 36 radial line segments originating at the centroid reaching to the perimeter. Then 

each line segment is analyzed to find the shape factors including major/minor axis as the Fourier 

descriptor. The measurements assume a single binary object is being measured, and real-world images 

may contain at many objects. 
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We also assume the memory footprint as follows: angular samples taken around 360°, starting at 

centroid, at 10° increments for 36 angular samples, 36 floats for FFT spectrum magnitude, 36 integers 

for line segment length array, four integers for major/minor axis orientation and length, four integers 

for bounding box (x, y, dx, dy), one integer for perimeter length, two integers for centroid coordinates, 

TOTAL 36 × 4  +  36  × 2  +  4  × 2  +  4  × 2  +  1  × 2 × 2 × 2 = 238, assuming 2 byte short integers and 

4-byte floats are used. 

Vision metric taxonomy FME 

Name Shape factors 

Feature family Polygon shape 

Spectra dimensions Multivariate 

Spectra Perimeter following, area, perimeter, centroid, other image moments 

Storage format Complex data structure 

Data type Float, integer 

Descriptor memory Variable, several hundred bytes possible 

Feature shape Polygon shapes, rectangular bounding box region 

Search method Dense, recursive 

Feature density Regional 

Feature pattern Perimeter contour or edge 

Pattern pair sampling – 

Pattern region size Entire image 

Distance function Multiple methods, multiple comparisons

General robustness attributes 

Total 8 or more (scale, rotation, occlusion, shape, affine, reflection, noise, and illumination) 

Summary 

In this chapter, a taxonomy is proposed as shown in Fig. 5.1 to describe feature description dimensions 

as shape, pattern, and spectra. This taxonomy is used to divide the families of feature description 

methods into polygon shape descriptors, local binary descriptors, and basis space descriptors. The 

taxonomy is used throughout the book. Also, a general vision metrics taxonomy is proposed for the 

purpose of summarizing high-level feature descriptor design attributes, such as type of spectra, 

descriptor pixel region size, distance function, and search method. In addition, a general robustness 

taxonomy is developed to quantify feature descriptor goodness, one attribute at a time, based on 

invariance and robustness criteria attributes, including illumination, scale, rotation, and perspective. 

Since feature descriptor methods are designed to address only some of the invariance and robustness 

attributes, each attribute should be considered separately when evaluating a feature descriptor for a 

given application. In addition, the robustness attributes can be applied to the design of ground truth 

datasets, as discussed in Chap. 7. Finally, the vision metrics taxonomy and the robustness taxonomy 

are combined to form a feature metric evaluation (FME) table to record feature descriptor attributes in 

summary form. A simple subset of the FME is used to review the attributes of several feature descriptor 

methods surveyed in Chap. 6.
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Learning Assignments 

1. Describe the difference between the following feature descriptor families:

• Local Binary Descriptors

• Spectra descriptors using gradients and other scalar values

• Basis Space Descriptors

• Polygon Shape Descriptors 

2. Describe at a high level the types of problems that would be exhibited in images under each of the 

robustness and invariance categories below:

• Illumination variance

• Color variance

• Incompleteness of features

• Resolution and distance variance

• Geometric distortion

• Discrimination and uniqueness 

3. Describe a few example feature descriptor region shapes, and discuss the trade-offs involved when 

designing the shape. 

4. Describe illumination problems, and the sources of the problems. 

5. Describe geometric distortion, and the sources of the distortion. 

6. Describe different spectra, such as gradients and color, that can be used in a feature descriptor, and 

describe applications for each spectra. 

7. Describe pyramid search compared to sliding window search.



Who makes all these?

—Jack Sparrow, Pirates of the Caribbean

Feature Detector and Feature Descriptor 
Survey 6 

Many algorithms for computer vision rely on locating interest points, or keypoints in each image, and 

calculating a feature description from the pixel region surrounding the interest point. This is in contrast 

to methods such as correlation, where a larger rectangular pattern is stepped over the image at pixel 

intervals and the correlation is measured at each location. The interest point is the anchor point and 

often provides the scale, rotational, and illumination invariance attributes for the descriptor; the 

descriptor adds more detail and more invariance attributes. Groups of interest points and descriptors 

together describe the actual objects. 

However, there are many methods and variations in feature description. Some methods use features 

that are not anchored at interest points, such as polygon shape descriptors, computed over larger 

segmented polygon-shaped structures or regions in an image. Other methods use interest points only, 

without using feature descriptors at all. Some methods use feature descriptors only, computed across a 

regular grid on the image, with no interest points at all. 

Terminology varies across the literature. In some discussions, interest points may be referred to as 

keypoints. The algorithms used to find the interest points may be referred to as detectors, and the 

algorithms used to describe the features may be called descriptors. We use the terminology

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_6

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3393-8_6&domain=pdf
https://doi.org/10.1007/978-981-99-3393-8_6#DOI


chapter surveys the various methods for designing local interest point detectors and feature descriptors.

interchangeably in this work. Keypoints may be considered a set composed of (1) interest points, 

(2) corners, (3) edges or contours, and (4) larger features or regions such as blobs; see Fig. 6.1. This
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Fig. 6.1 Types of keypoints, including corners and interest points. (Left to right) Step, roof, corner, line or edge, ridge or 

contour, maxima region 

Interest Point Tuning 

What is a good keypoint for a given application? Which ones are most useful? Which ones should be 

ignored? Tuning the detectors is not simple. Each detector has different parameters to tune for best 

results on a given image, and each image presents different challenges regarding lighting, contrast, and 

image preprocessing. Additionally, each detector is designed to be useful for a different class of 

interest points and must be tuned accordingly to filter the results down to a useful set of good 

candidates for a specific feature descriptor. Each feature detector will work best with certain 

descriptors; see Appendix A. 

So, the keypoints are further filtered to be useful for the chosen feature descriptor. In some cases, a 

keypoint is not suitable for producing a useful feature descriptor, even if the keypoint has a high score 

and high response. If the feature descriptor computed at the keypoint produces a descriptor score that is 

too weak, for example, the keypoint and corresponding descriptor should both be rejected. OpenCV 

provides several novel methods for working with detectors, enabling the user to try different detectors 

and descriptors in a common framework, and automatically adjust the parameters for tuning and 

culling as follows:

• DynamicAdaptedFeatureDetector. This class will tune supported detectors using an 

adjusterAdapter() to only keep a limited number of features and iterate the detector parameters 

several times and redetect features in an attempt to find the best parameters, keeping only the 

requested number of best features. Several OpenCV detectors have an adjusterAdapter() provided, 

and some do not; the API allows for adjusters to be created.

• AdjusterAdapter. This class implements the criteria for culling and keeping interest points. 

Criteria may include KNN nearest-neighbor matching, detector response or strength, radius distance 

to nearest other detected points, number of keypoints within a local region, and other measures that 

can be included for culling keypoints for which a good descriptor cannot be computed.

• PyramidAdaptedFeatureDetector. This class can be used to adapt detectors that do not use a 

scale-space pyramid, and the adapter will create a Gaussian pyramid and detect features over the 

pyramid.

• GridAdaptedFeatureDetector. This class divides an image into grids and adapts the detector to 

find the best features within each grid cell.
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Interest Point Concepts (Keypoints, Detectors) 

An interest point (i.e., keypoint, detector, . . .) may be composed of various types of corner, edge, and 

maxima shapes, as shown in Fig. 6.1. In general, a good interest point must be easy to find and ideally 

fast to compute; it is hoped that the interest point is at a good location to compute a feature descriptor. 

The interest point is thus the qualifier or keypoint around which a feature may be described. 

Note 

Various keypoint and feature detectors based on feature learning models from deep learning CNN’s 

and Transformers are covered in Chaps. 9–11. 

There are various concepts behind the interest point methods currently in use, as this is an active 

area of research. One of the best analyses of interest point detectors is found in Mikolajczyk et al. 

[124], with a comparison framework and taxonomy for affine covariant interest point detectors, where 

covariant refers to the elliptical shape of the interest region, which is an affine deformable representa-

tion. Scale-invariant detectors are represented well in a circular region. Maxima region and blob 

detectors can take irregular shapes. See the response of several detectors against synthetic interest point 

and corner alphabets in Appendix A. 

Commonly, detectors use maxima and minima points, such as gradient peaks and corners; however, 

edges, ridges, and contours are also used as keypoints, as shown in Fig. 6.2. There is no superior 

method for interest point detection for all applications. A simple taxonomy provided by Tuytelaars and 

Van Gool [454] lists edge-based region (EBR) methods, maxima or intensity-based region (IBR) 

methods, and segmentation methods to find shape-based regions (SBR) that may be blobs or features 

with high entropy. 

Fig. 6.2 Candidate edge interest point filters. (Left to right) Laplacian, derivative filter, and gradient filter 

Corners are often preferred over edges or isolated maxima points, since the corner is a structure and 

can be used to compute an angular orientation for the feature. Interest points are computed over color 

components and grayscale luminance. Many of the interest point methods will first apply some sort of 

Gaussian filter across the image and then perform a gradient operator. The idea of using the Gaussian 

filter first is to reduce noise in the image, which is otherwise amplified by gradient operators. 

Each detector locates features with different degrees of invariance to attributes such as rotation, 

scale, perspective, occlusion, and illumination. For evaluations of the quality and performance of 

interest point detection methods measured against various robustness and invariance criteria on 

standardized datasets, see Mikolajczyk and Schmidt [115] and Gauglitz et al. [116]. One of the key 

challenges for interest point detection is scale invariance, since interest points change dramatically in 

some cases over scale. Lindeberg [178] has extensively studied the area of scale-independent interest 

point methods.
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Affine-invariant interest points have been studied in detail by Mikolajcyk and Schmid [29, 81, 112, 

115, 124, 262]. In addition, Mikolajcyk and Schmid [445] developed an affine-invariant version of the 

Harris detector. As shown in [466], it is often useful to combine several interest point detection 

methods to form a hybrid, for example, using the Harris or Hessian to locate suitable maxima regions 

and then using the Laplacian to select the best scale attributes. Variations are common, and Harris-

based and Hessian-based detectors may use scale-space methods, while local binary detector methods 

do not use scale space. 

A few fundamental concepts behind many interest point methods come from the field of linear 

algebra, where the local region of pixels is treated as a matrix. (Refer to a good linear algebra textbook 

as background for this section.) Additional concepts come from other areas of mathematical analysis. 

Some of the key math useful for locating interest points are illustrated below; however, note that in 

practice various forms of equations and algorithms are used, which deviate from those shown here; see 

the references for more details.

• A Matrix. We start with a 2D rectangular pixel region, or matrix, of some dimension x,y: 

Mx,y ¼ 
0, 0 . . .  x, 0  

. . .  . . .  . . .  

0, y . . .  x, y

• Gradient Magnitude. This is the first derivative of the pixels in the local interest region and 

assumes a direction. This is an unsigned positive number and is also a Laplacian operator. 

∂Mx,y 

∂x 

2 

þ ∂Mx,y 

∂y 

2

• Gradient Direction. This is the angle or direction of the largest gradient angle from pixels in the 

local region in the range +π to -π. 

tan - 1 ∂Mx,y 

∂x 

2 

= 
∂Mx,y 

∂y 

2

• Laplacian. This is the second derivative and can be computed selectively using any of three terms: 

∂
2 
fMx,y 

∂x2 

∂
2 
Mx,y 

∂y2 

∂
2 
Mx,y 

∂x∂x 

However, the Laplacian operator does not use the third form above and computes a signed value of 

average orientation with respect to x and y partials only; see the gradient magnitude operator above.

• Hessian Matrix or Hessian. A square matrix contains second-order partial derivatives of each 

pixel within the matrix region, describing surface curvature at each pixel. The Hessian has several 

interesting properties useful for interest point detection methods discussed in this section, which we 

can express in L notation as follows:
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H  x, σð  Þ ¼  
Lxx x, σð  Þ  Lxy x, σð  Þ  
Lxy x, σð  Þ  Lyy x, σð Þ

• Largest Hessian. This is based on the second derivative, as is the Laplacian, but the Hessian uses 

all three terms of the second derivative to compute the direction along which the second derivative 

is maximum as a signed value.

• Smallest Hessian. This is based on the second derivative, is computed as a signed number, and may 

be a useful metric as a ratio between largest and smallest Hessian.

• Hessian Orientation and Largest and Smallest Values. This is the orientation of the largest 

second derivative in the range +π to-π, which is a signed value, and it corresponds to an orientation 

without direction. The smallest orientation can be computed by adding or subtracting π/2 from the 

largest value.

• Determinant of Hessian, Trace of Hessian, and Laplacian of Gaussian. All three names are used 

to describe the trace characteristic of a matrix, which can reveal geometric-scale information by the 

absolute value and orientation by the sign of the value. See SURF [143] for an application, which 

we can express in L notation as follows. 

trace ℋnormL ¼ tγ∇2 L ¼ tγ Lxx þ Lyy 

det ℋnormL ¼ t2γ Lxx Lyy -L2 
xy

• Eigenvalues, Eigenvectors, and Eigenspaces. Eigen properties are important to understanding 

vector direction in local pixel region matrices. When a matrix acts on a vector, and the vector 

orientation is preserved, and when the sign or direction is simply reversed, the vector is considered 

to be an eigenvector, and the matrix factor is considered to be the eigenvalue. An eigenspace is 

therefore all eigenvectors within the space with the same eigenvalue. Eigen properties are valuable 

for interest point detection, orientation, and feature detection. For example, Turk and Pentland [129] 

use eigenvectors reduced into a smaller set of vectors via PCA for face recognition, in a method they 

call eigenfaces. 

Interest Point Method Survey 

We will now look briefly at algorithms and computational methods for some common interest point 

detector methods including:

• Laplacian of Gaussian (LOG)

• Moravac corner detector

• Harris and Stephens corner detection

• Shi and Tomasi corner detector (improvement on Harris method)

• Difference of Gaussians (DoG; an approximation of LOG)

• Harris methods, Harris–/Hessian–Laplace, Harris/Hessian Affine

• Determinant of Hessian (DoH)

• Salient regions

• SUSAN

• FAST, FASTER, AGAST

• Local curvature

• Morphological interest points

• MSER (discussed in the section on “Polygon Shape Descriptors”)
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• *NOTE: Many feature descriptors, such as SIFT, SURF, BRISK, and others, provide their own 

detector method along with the descriptor method see Appendix A 

Laplacian and Laplacian of Gaussian 

The Laplacian operator, as used in image processing, is a method of finding the derivative or maximum 

rate of change in a pixel area. Commonly, the Laplacian is approximated using standard convolution 

kernels that add up to zero, such as the following: 

L1 ¼
- 1 - 1 - 1

- 1  8 - 1

- 1 - 1 - 1 

L2 ¼
- 1  0 - 1 

0  4  0  

- 1 0 - 1

The Laplacian of Gaussian (LOG) is simply the Laplacian performed over a region that has been 

processed using a Gaussian smoothing kernel to focus edge energy; see Gunn [126]. 

Moravac Corner Detector 

The Moravac corner detection algorithm is an early method of corner detection whereby each pixel in 

the image is tested by correlating overlapping patches surrounding each neighboring pixel. The 

strength of the correlation in any direction reveals information about the point: A corner is found 

when there is change in all directions, and an edge is found when there is no change along the edge 

direction. A flat region yields no change in any direction. The correlation difference is calculated using 

the SSD between the two overlapping patches. Similarity is measured by the near-zero difference in the 

SSD. This method is compute-intensive; see Moravec [446]. 

Harris Methods, Harris–Stephens, Shi–Tomasi, and Hessian Type Detectors 

The Harris or Harris–Stephens corner detector family [127, 308] provides improvements over the 

Moravac method. The goal of the Harris method is to find the direction of fastest and lowest change for 

feature orientation, using a covariance matrix of local directional derivatives. The directional deriva-

tive values are compared with a scoring factor to identify which features are corners, which are edges, 

and which are likely noise. Depending on the formulation of the algorithm, the Harris method can 

provide high rotational invariance and limited intensity invariance, and in some of the formulations of 

the algorithm, scale invariance is provided such as the Harris–Laplace method using scale space 

[178, 445]. Many Harris family algorithms can be implemented in a compute-efficient manner. 

Note that corners have an ill-defined gradient, since two edges converge at the corner, but near the 

corner the gradient can be detected with two different values with respect to x and y—this is a basic 

idea behind the Harris corner detector.
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Variations on the Harris method include the following:

• The Shi, Tomasi, and Kanade corner detector [128] is an optimization on the Harris method, using 

only the minimum eigenvalues for discrimination, thus streamlining the computation considerably.

• The Hessian (Hessian affine) corner detector [124] is designed to be affine-invariant, and it uses the 

basic Harris corner detection method but combines interest points from several scales in a pyramid, 

with some iterative selection criteria and a Hessian matrix.

• Many other variations on the basic Harris operator exist, such as the Harris–Hessian–Laplace [280], 

which provides improved scale invariance using a scale selection method, and the Harris/Hessian 

affine method [124, 262]. 

Hessian Matrix Detector and Hessian–Laplace 

The Hessian Matrix method, also referred to as determinant of Hessian (DoH) method, is used in the 

popular SURF algorithm [131]. It detects interest objects from a multiscale image set where the 

determinant of the Hessian matrix is at a maxima and the Hessian matrix operator is calculated using 

the convolution of the second-order partial derivative of the Gaussian to yield a gradient maxima. 

The DoH method uses integral images to calculate the Gaussian partial derivatives very quickly. 

Performance for calculating the Hessian matrix is therefore very good, and accuracy is better than 

many methods. The related Hessian–Laplace method [262, 280] also operates on local extrema, using 

the determinant of the Hessian at multiple scales for spatial localization, and the Laplacian at multiple 

scales for scale localization. 

Difference of Gaussians 

The difference of Gaussians (DoG) is an approximation of the Laplacian of Gaussians, but computed in 

a simpler and faster manner using the difference in two smoothed or Gaussian-filtered images to detect 

local extrema features. The idea with Gaussian smoothing is to remove noise artifacts that are not 

relevant at the given scale, which would otherwise be amplified and result in false DoG features. The 

DoG features are used in the popular SIFT method [132], and as shown in Fig. 6.15, the simple 

difference of Gaussian-filtered images is taken to identify maxima regions. 

Salient Regions 

Salient regions [133, 134] are based on the notion that interest points over a range of scales should 

exhibit local attributes or entropy that are “unpredictable” or “surprising” compared to the surrounding 

region. The method proceeds as follows: 

1. The Shannon entropy E of pixel attributes such as intensity or color are computed over a scale 

space, where Shannon entropy is used as the measure of unpredictability. 

2. The entropy values are located over the scale space with maxima or peak values M. At this stage, the 

optimal scales are determined as well. 

3. The probability density function (PDF) is computed for magnitude deltas at each peak within each 

scale, where the PDF is computed using a histogram of pixel values taken from a circular window of 

desired radius from the peak.
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4. Saliency is the product of E and M at each peak and is also related to scale. So, the final detector is 

salient and robust to scale. 

SUSAN, and Trajkovic and Hedly 

The SUSAN method [135, 136] is dependent on segmenting image features based on local areas of 

similar brightness, which yields a bimodal valued feature. No noise filtering and no gradients are used. 

As shown in Fig. 6.3, the method works by using a center nucleus pixel value as a comparison 

reference against which neighbor pixels within a given radius region are compared, yielding a set of 

pixels with similar brightness, called a univalue segment assimilating nucleus (USAN). 

Fig. 6.3 SUSAN method 
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intersecting USANs A, B, 

and C. USAN A will be 
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Each USAN contains structural information about the image in the local region, and the size, 

centroid, and second-order moments of each USAN can be computed. The SUSAN method can be 

used for both edge and corner detection. Corners are determined by the ratio of pixels similar to the 

center pixel in the circular region: A low ratio around 25% indicates a corner, and a higher ratio around 

50% indicates an edge. SUSAN is very robust to noise. 

The Trajkovic and Hedly method [180] is similar to SUSAN and discriminates among points in 

USAN regions, edge points, and corner points. 

SUSAN is also useful for noise suppression, and the bilateral filter [258], discussed in Chap. 2,  is  

closely related to SUSAN. SUSAN uses fairly large circular windows; several implementations use 

37-pixel radius windows. The FAST [109] detector is also similar to SUSAN, but uses a smaller 7 × 7 

or 9 × 9 window and only some of the pixels in the region instead of all of them; FAST yields a local 

binary descriptor .

Fast, Faster, and AGHAST 

The FAST methods [109] are derived from SUSAN with respect to a bimodal segmentation goal. 

However, FAST relies on a connected set of pixels in a circular pattern to determine a corner. The 

connected region size is commonly 9 or 10 out of a possible 16; either number may be chosen, referred



to as FAST9 and FAST10. FAST is known to be efficient to compute and fast to match; accuracy is 

also quite good. FAST can be considered a relative of the local binary pattern LBP. 
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FAST is not a scale-space detector, and therefore, it may produce many more edge detections at the 

given scale than a scale-space method such as that used in SIFT. 

As shown in Fig. 6.4, FAST uses binary comparison with each pixel in a circular pattern against the 

center pixel using a threshold to determine if a pixel is less than or greater than the center pixel. The 

resulting descriptor is stored as a contiguous bit vector in order from 0 to 15. Also, due to the circular 

nature of the pixel compare pattern, it is possible to retrofit FAST and store the bit vector in a 

rotational-invariant representation, as demonstrated by the RILBP descriptor discussed later in this 

chapter; see Fig. 6.11. 

Fig. 6.4 FAST detector with a 16-element circular sampling pattern grid. Note that each pixel in the grid is compared 

against the center pixel to yield a binary value, and each binary value is stored in a bit vector 

Local Curvature Methods 

Local curvature methods [174–178] are among the early means of detecting corners, and some local 

curvature methods are the first known to be reliable and accurate in tracking corners over scale 

variations [176]. Local curvature detects points where the gradient magnitude and the local surface 

curvature are both high. One approach taken is a differential method, computing the product of the 

gradient magnitude and the level curve curvature together over scale space, and then selecting the 

maxima and minima absolute values in scale and space. One formulation of the method is shown here. 

α x, y; tð  g ¼ L2 xLyy þ L2 yLxx - 2LxLyLxy 

Various formulations of the basic algorithm can be taken depending on the curvature equation used. 

To improve scale invariance and noise sensitivity, the method can be modified using a normalized 

formulation of the equation over scale space, as follows:
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αnorm x, y; tð g ¼ t2γ L2 xLyy þ L2 yLxx - 2LxLyLxy 

where 

γ ¼ 0:875 

At larger scales, corners can be detected with less sharp and more rounded features, while at lower 

scales or at unity scale sharper corners over smaller areas are detected. The Wang and Brady method 

[179] also computes interest points using local curvature on the 2D surface, looking for inflection 

points where the surface curvature changes rapidly. 

Morphological Interest Regions 

Interest points can be determined from a pipeline of morphological operations, such as thresholding 

followed by combinations or erosion and dilation to smooth, thin, grown, and shrink pixel groups. If 

done correctly for a given application, such morphological features can be scale and rotation-invariant. 

Note that the simple morphological operations alone are not enough; for example, eroding left 

unconstrained will shrink regions until they disappear. So, intelligence must be added to the morphol-

ogy pipeline to control the final region size and shape. For polygon shape descriptors, morphological 

interest points define the feature, and various image moments are computed over the feature, as 

described in Chap. 3, and also in the section on “Polygon Shape Descriptors” later in this chapter. 

Morphological operations can be used to create interest regions on binary, grayscale, or color 

channel images. To prepare grayscale or color channel images for morphology, typically some sort of 

preprocessing is used, such as pixel remapping, LUT transforms, or histogram equalization. (These 

methods were discussed in Chap. 2.) For binary images and binary morphology approaches, binary 

thresholding is a key preprocessing step. Many binary thresholding methods have been devised, 

ranging from simple global thresholds to statistical and structural kernel-based local methods. 

Note that the morphological interest region approach is similar to the maximally stable extrema 

region (MSER) feature descriptor method discussed later in the section on “Polygon Shape 

Descriptors,” since both methods look for connected groups of pixels at maxima or minima. However, 

MSER does not use morphology operators. 

A few examples of morphological and related operation sequences for interest region detection are 

shown in Fig. 6.5, and many more can be devised. 

Fig. 6.5 Morphological methods to find interest regions. (Left to right) Original image, binary thresholded, and 

segmented image using Chan-Vese method, skeleton transform, pruned skeleton transform, and distance transform 

image. Note that binary thresholding requires quite a bit of work to set parameters correctly for a given application
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Feature Descriptor Survey 

This section provides a survey and observations about a few representative feature descriptor methods, 

with no intention to directly compare descriptors to each other. For more detailed information on 

analytical methods for comparing feature descriptors, see also Chatfield [770] and Huang [814]. In 

practice, the feature descriptor methods are often modified and customized, and often, several 

descriptors are used together as a multivariate descriptor to increase confidence; see Varma [699], 

Vedaldi [812], and Gehler [719] for more details about multivariate descriptors and applying boosting 

to weight the descriptors in the classifier (i.e., a multi-stage classifier). The goal of this survey is to 

examine a range of feature descriptor approaches from each feature descriptor family from the 

taxonomy that was presented in Chap. 5:

• Local binary descriptors

• Spectra descriptors

• Basis space descriptors

• Polygon shape descriptors

• 3D, 4D, and volumetric descriptors 

For key feature descriptor methods, we provide here a summary analysis:

• General Vision Taxonomy and FME: covering feature attributes including spectra, shape, and 

pattern, single or multivariate, compute complexity criteria, data types, memory criteria, matching 

method, robustness attributes, and accuracy.

• General Robustness Attributes: covering invariance attributes such as illumination, scale, and 

perspective. 

No direct comparisons are made between feature descriptors here, but ample references are 

provided to the literature for detailed comparisons and performance information on each method. 

See Table 8.2 for a comparison of the memory footprints for various feature descriptor methods in this 

survey, which is useful for performance analysis. 

Local Binary Descriptors 

This family of descriptors represents features as binary bit vectors. To compute the features, image 

pixel point pairs are compared and the results are stored as binary values in a vector. Local binary 

descriptors are efficient to compute, efficient to store, and efficient to match using Hamming distance. 

In general, local binary pattern methods achieve very good accuracy and robustness compared to other 

methods. 

A variety of local sampling patterns are used with local binary descriptors to set the pairwise point 

comparisons; see the section in Chap. 4 on local binary descriptor point-pair patterns for a discussion 

on local binary sampling patterns. We start this section on local binary descriptors by analyzing the 

local binary pattern (LBP) and some LBP variants, since the LBP is a powerful metric all by itself and 

is well known. 

Local Binary Patterns 

Local binary patterns (LBP) were developed in 1994 by Ojala et al. [17] as a novel method of encoding 

both pattern and contrast to define texture [17, 18, 140–142]. LBPs can be used as an image processing



operator. The LBP creates a descriptor or texture model using a set of histograms of the local texture 

neighborhood surrounding each pixel. In this case, local texture is the feature descriptor. 
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The LBP metric is simple yet powerful; see Fig. 6.6. We cover some level of detail on LBPs, since 

there are so many applications for this powerful texture metric as a feature descriptor as well. Also, 

hundreds of researchers have added to the LBP literature [142] in the areas of theoretical foundations, 

generalizations into 2D and 3D, applied as a descriptor for face detection, and also applied to 

spatiotemporal applications such as motion analysis. LBP research remains quite active at this time. 

In addition, the LBP is used as an image processing operator and has been used as a feature descriptor 

retrofit in SIFT with excellent results, described in this chapter. 

Fig. 6.6 (Above) A local binary pattern representation of an image where the LBP is used as an image processing 

operator, and the corresponding histogram of cumulative LBP features. (Bottom) Segmentation results using LBP texture 

metrics. (Images courtesy and # Springer Press, from Computer Vision Using Local Binary Patterns, by Matti 

Pietikäinen and Janne Heikkilä [140]) 

In its simplest embodiment, LBP has the goal of creating a binary-coded neighborhood descriptor 

for a pixel. It does this by comparing each pixel against its neighbors using the >operator and encoding 

the compare results (1, 0) into a binary number, as shown in Fig. 6.8. LPB histograms from larger 

image regions can even be used as signals and passed into a 1D FFT to create a feature descriptor. The 

Fourier spectrum of the LBP histogram is rotational-invariant; see Fig. 6.6. The FFT spectrum can then 

be concatenated onto the LBP histogram to form a multivariate descriptor; see Varma [699], Vedaldi 

[812], and Gehler [719] for more details about multivariate descriptors and applying boosting to 

weight the features.
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As shown in Fig. 6.6, the LBP is used as an image processing operator, region segmentation 

method, and histogram feature descriptor. The LBP has many applications. An LBP may be calculated 

over various sizes and shapes using various sizes of forming kernels. A simple 3 × 3 neighborhood 

provides basic coverage for local features, while wider areas and kernel shapes are used as well. 

Assuming a 3 × 3 LBP kernel pattern is chosen, this means that there will be 8 pixels compared and 

up to 28 combinations of results for a 256-bin histogram possible. However, it has been shown [16] that 

reducing the 8-bit 256-bin histogram to use only 58 LBP bins based on uniform patterns is the optimal 

number. The 58 bins or uniform patterns are chosen to represent only two contiguous LBP patterns 

around the circle, which consists of two connected contiguous segments rather than all 256 possible 

pattern combinations [12, 142]. The same uniform pattern logic applies to LBPs of dimension larger 

than 8 bits. So, uniform patterns provide both histogram space savings and feature compare-space 

optimization, since fewer features need to be matched (58 instead of all 256). 

LPB feature recognition may follow the steps shown in Fig. 6.7. 

Fig. 6.7 LBP feature flow for feature detection. (Image used by permission, # Intel Press, from Building Intelligent 

Systems) 

The LBP is calculated by assigning a binary weighting value to each pixel in the local neighborhood 

and summing up the pixel compare results as binary values to create a composite LBP value. The LBP 

contains region information encoded in a compact binary pattern, as shown in Fig. 6.8, so the LBP is 

thus a binary-coded neighborhood texture descriptor.
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Fig. 6.8 Assigned LBP weighting values. (Image used by permission, # Intel Press, from Building Intelligent Systems) 

Assuming a 3 × 3 neighborhood is used to describe the LBP patterns, one may compare the 3 × 3 

rectangular region to a circular region, suggesting 360° directionality at 45° increments, as shown in 

Fig. 6.9. 

Fig. 6.9 Concept of LBP directionality. (Image used by permission, # Intel Press, from Building Intelligent Systems) 

The steps involved in calculating a 3 × 3 LBP are illustrated in Fig. 6.10. 

7 9 9 

5 6 7 

5 4 7 

1 1 1 

0 – 1 

0 0 1 

Pixel .= 6 ? 1 : 0 

Pixel[0,0](7) >= 6 ? 1 : 0 = 00000001 

Pixel[1,0](9) >= 6 ? 1 : 0 = 00000010 

Pixel[2,0](9) >= 6 ? 1 : 0 = 00000100 

Pixel[2,1](7) >= 6 ? 1 : 0 = 00001000 

Pixel[2,2](7) >= 6 ? 1 : 0 = 00010000 

Pixel[1,2](4) >= 6 ? 1 : 0 = 00000000 

Pixel[0,2](5) >= 6 ? 1 : 0 = 00000000 

Pixel[0,1](5) >= 6 ? 1 : 0 = 00000000 

LBP                                       00011111 

Fig. 6.10 LBP neighborhood comparison
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Neighborhood Comparison 

Each pixel in the 3 × 3 region is compared to the center pixel. If the pixel ≥ the center pixel, then the 

LBP records a bit value of 1 for that position and a bit value of 0 otherwise. See Fig. 6.10. 

Histogram Composition 

Each LBP descriptor over an image region is recorded in a histogram to describe the cumulative 

texture feature. Uniform LBP histograms would have 56 bins, since only single-connected regions 

are histogrammed. 

Optionally Normalization 

The final histogram can be reduced to a smaller number of bins using binary decimation for powers 

of two or some similar algorithm, such as 256 → 32. In addition, the histograms can be reduced in 

size by thresholding the range of contiguous bins used for the histogram—for example, by ignoring 

bins 1–64 if little or no information is binned in them. 

Descriptor Concatenation 

Multiple LBPs taken over overlapping regions may be concatenated together into a larger histogram 

feature descriptor to provide better discrimination. 

LBP Summary Taxonomy 

Spectra: Local binary 

Feature shape: Square 

Feature pattern: Pixel region compares with center pixel 

Feature density: Local 3 × 3 at each pixel 

Search method: Sliding window 

Distance function: Hamming distance 

Robustness: 3 (brightness, contrast, *rotation for RILBP) 

Rotation-Invariant LBP (RILBP) 

To achieve rotational invariance, the rotation-invariant LBP (RILBP) [142] is calculated by circular 

bitwise rotation of the local LBP to find the minimum binary value. The minimum value LBP is used as 

a rotation-invariant signature and is recorded in the histogram bins. The RILBP is computationally 

very efficient. 

Fig. 6.11 Method of calculating the minimum LBP by using circular bit shifting of the binary value to find the minimum 

value. The LBP descriptor is then rotation-invariant 

To illustrate the method, Fig. 6.11 shows a pattern of three consecutive LBP bits; in order to make 

this descriptor rotation-invariant, the value is left-shifted until a minimum value is reached. 

Note that many researchers [140, 141] are extending the methods used for LBP calculation to use 

refinements such as local derivatives, local median or mean values, ternary or quinary compare functions, 

and many other methods, rather than the simple binary compare function, as originally proposed. 

Dynamic Texture Metric Using 3D LBPs 

Dynamic textures are visual features that morph and change as they move from frame to frame; 

examples include waves, clouds, wind, smoke, foliage, and ripples. Two extensions of the basic LBP 

used for tracking such dynamic textures are discussed here: VLBP and LBP-TOP.
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Volume LBP (VLBP) 

To create the VLBP [12] descriptor, first an image volume is created by stacking together at least three 

consecutive video frames into a volume 3D dataset. Next, three LBPs are taken centered on the 

selected interest point, one LBP from each parallel plane in the volume, into a summary volume LBP 

or VLBP, and the histogram of each orthogonal LBP is concatenated into a single dynamic descriptor 

vector, the VLBP. The VLPB can then be tracked from frame to frame and recalculated to account for 

dynamic changes in the texture from frame to frame. See Fig. 6.12. 

LBP-TOP 

The LBP-TOP [144] is created like the VLBP, except that instead of calculating the three individual 

LBPs from parallel planes, they are calculated from orthogonal planes in the volume (x,y,z) intersecting 

the interest point, as shown in Fig. 6.12. The 3D composite descriptor is the same size as the VLBP and 

contains three planes’ worth of data. The histograms for each LBP plane are also concatenated for the 

LBP-TOP like the VLBP. 

Fig. 6.12 (Top) VLBP 

method [12] of calculating 

LBPs from parallel planes. 

(Bottom) LBP-TOP method 

[144] of calculating LBPs 

from orthogonal planes. 

(Image used by permission, 

# Intel Press, from 

Building Intelligent 

Systems) 

Other LBP Variants 

As shown in Table 6.1, there are many variants of the LBP [142]. Note that the LBP has been 

successfully used as a replacement for SIFT, SURF, and also as a texture metric.



Table 6.1 LBP variants (from Ref. [142])
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ULBP (Uniform LBP)—Uses only 56 uniform bins instead of the full 256 bins possible with 8-bit pixels to create the 

histogram. The uniform patterns consist of contiguous segments of connected TRUE values. 

RLBP (ROBUST LBP)—Adds + scale factor to eliminate transitions due to noise (p1 - p2 + SCALE) 

CS-LBP—Circle-symmetric, half as many vectors an LBP, comparison of opposite pixel pairs vs. w/center pixel, useful 

to reduce LBP bin counts 

LBP-HF—Fourier spectrum descriptor + LBP 

MLBP—Median LBP uses area median value instead of center pixel value for comparison 

M-LBP—Multiscale LBP combining multiple radii LBPs concatenated 

MB-LBP—Multiscale block LBP; compare average pixel values in small blocks 

SEMB-LBP—Statistically effective MB-LBP (SEMB-LBP) uses the percentage in distributions, instead of the number 

of 0–1 and 1–0 transitions in the LBP and redefines the uniform patterns in the standard LBP. Used effectively in face 

recognition using GENTLE ADA-BOOSTing [473] 

VLBP—Volume LBP over adjacent video frames OR within a volume—concatenate histograms together to form a 

longer vector 

LGBP—Local Gabor binary pattern—40 or so Gabor filters are computed over a feature, and LBPs are extracted and 

concatenated to form a long feature vector that is invariant over more scales and orientations 

LEP—Local edge patterns—Edge enhancement (Sobel) prior to standard LBP 

EBP—Elliptic binary pattern—Standard LBP but over elliptical area instead of circular 

EQP—Elliptical quinary patterns—LBP extended from binary (2)-level resolution to quinary (5)-level resolution (-2,

-1, 0, -1, 2) 

LTP—LBP extended over ternary range to deal with near-constant areas (-1, 0, 1) 

LLBP—Local line binary pattern calculates LBP over line patterns (cross shape) and then calculates magnitude metrics 

using SQRT of SQUARES of each X/Y dimension 

TPLBP—[x5]three LBPs are calculated together: the basic LBP for the center pixel, plus two others around adjacent 

pixels so the total descriptor is a set of overlapping LBPs 

FPLBP—[x5]four LBPs are calculated together: the basic LBP for the center pixel, plus two others around adjacent 

pixels so the total descriptor is a set of overlapping LBPs, XPLBP 

*NOTE: The TPLBP and FPLBP method can be extended to 3, 4, n dimensions in feature space. LARGE VECTORS. 

TBP—Ternary (3) binary pattern, like LBP, but uses three levels of encoding (1, 0,-1) to effectively deal with areas of 

equal or near equal intensity, uses two binary patterns (one for + and one for -) concatenated together 

ETLP—Elongated ternary local patterns (elliptical + ternary[3] levels) 

FLBP—Fuzzy LBP where each pixel contributes to more than one bin 

PLBP—Probabilistic LBP computes magnitude of difference between each pixel and center pixel (more compute, more 

storage) 

SILTP—Scale-invariant LBP using a three-part piece-wise comparison function to compensate and support intensity-

scale invariance to deal with image noise 

tLBP—Transition-coded LBP, where the encoding is clockwise between adjacent pixels in the LBP 

dLBP—Direction-coded LBP—similar to CS-LBP, but stores both maxima and comparison info (is this pixel greater, 

less than, or maxima) 

CBP—Centralized binary pattern—center pixel compared to average of all nine kernel neighbors 

S-LBP—Semantic LBP done in a colorimetric-accurate space (such as CIE LAB.) over uniform connected LBP 

circular patterns to find principal direction + arc length used to form a 2D histogram as the descriptor. 

F-LBP—Fourier spectrum of color distance from center pixel to adjacent pixels 

LDP—Local derivate patterns (higher order derivatives)—basic 

LBP is the first-order directional derivative, which is combined with additional nth-order directional derivatives 

concatenated into a histogram, more sensitive to noise of course 

BLBP—Bayesian LBP—combination of LBP and LTP together using Bayesian methods to optimize toward a more 

robust pattern 

FLS—Filtering, labeling, and statistical framework for LBP comparison, translates LBPs or any type of histogram 

descriptor into vector space allowing efficient comparison “A Bayesian Local Binary Pattern Texture Descriptor” 

MB-LBP—Multiscale block LBP—compare average pixel values in small blocks instead of individual pixels; thus, a 

3 × 3 pixel PBL will become a 9 × 9 block LBP where each block is a 3 × 3 region. The histogram is calculated by 

(continued)



LATCH—LATCH: Learned Arrangements of Three Patch Codes [797]
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Table 6.1 (continued)

scaling the image and creating a rendering at each scale and creating a histogram of each scaled image and 

concatenating the histograms together. 

PM-LBP—Pyramid-based multistructured LBP—used five templates to extract different structural info at varying 

levels 1 Gaussian filters and four anisotropic filters to detect gradient directions 

MSLBF—Multiscale selected local binary features 

RILBP—Rotation invariant LBP rotates the bins (binary LBP value) until minimum value is achieved, and the max 

value is considered rotational-invariant. This is the most widely used method for LBP rotational invariance. 

ALBP—Adaptive LBP for rotational invariance, instead of shifting to a maximal value as in the standard LBP method, 

find the dominant vector orientation, and shift the vector to the dominant vector orientation 

LBPV—Local binary pattern variance—uses local area variance to weight pixel contribution to the LBP, align features 

to principal orientations, determine non-dominant patterns, and reduce their contribution. 

OCLBP—Opponent color LBP—describes color and texture together—each color channel LBP is converted, then 

opposing color channel LBPs are converted by using one color as the center pixel and another color as the 

neighborhood, so a total of 9 RGB combination LBP patterns are considered. 

SDMCLBP—SDM (co-LBP images for each color are used as the basis for generating occurrence matrices, and then, 

Haralick features are extracted from the images to form a multi-dimensional feature space. 

MSCLBP—Multi-Scale Color Local Binary Patterns (concatenate six histograms together)—uses color space 

components 

HUE-LBP OPPONENT-LBP (all three channels) nOPPONENT-LBP (computed over two channels), light intensity 

change, intensity shift, intensity change + shift, color-change color shift, define six new operators: transformed color 

LBP (RGB) [subtract mean, divide by STD DEV], opponent-LBP, nOpponent-LBP, Hue-LBP, RGB-LBP, nRGB-

LBP [x8] “Multi-scale Color Local Binary Patterns for Visual Object Classes Recognition,” Chao ZHU, Charles-

Edmond BICHOT, Liming CHEN 

3D histograms—3DRGBLBP [best performance, high memory footprint]—3D histogram computed over RGB-LBP 

color image space using uniform pattern minimization to yield 10 levels or patterns per color yielding a large descriptor: 

10 × 10 × 10 = 1000 descriptors. 

Census 

The Census transform [145] is basically an LBP, and like a population census, it uses simple greater-

than and less-than queries to count and compare results. Census records pixel comparison results made 

between the center pixel in the kernel and the other pixels in the kernel region. It employs comparisons 

and possibly a threshold and stores the results in a binary vector. The Census transform also uses a 

feature called the rank value scalar, which is the number of pixel values less than the center pixel. The 

Census descriptor thus uses both a bit vector and a rank scalar. 

Census Summary Vision Taxonomy 

Spectra: Local binary + scalar ranking 

Feature shape: Square 

Feature pattern: Pixel region compares with center pixel 

Feature density: Local 3 × 3 at each pixel 

Search method: Sliding window 

Distance function: Hamming distance 

Robustness: 2 (brightness, contrast) 

Modified Census Transform 

The modified Census transform (MCT) [171] seeks to improve the local binary pattern robustness of 

the original Census transform. The method uses an ordered comparison of each pixel in the 3 × 3 

neighborhood against the mean intensity of all the pixels of the 3 × 3 neighborhood, generating a 

binary descriptor bit vector with bit values set to an intensity lower than the mean intensity of all the 

pixels. The bit vector can be used to create an MCT image using the MCT value for each pixel. See 

Fig. 6.13.
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Fig. 6.13 Abbreviated set of 15 out of a possible 511 possible binary patterns for a 3 × 3 MCT. The structure kernels in 

the pattern set are the basis set of the MCT feature space comparison. The structure kernels form a pattern basis set, which 

can represent lines, edges, corners, saddle points, semicircles, and other patterns 

As shown in Fig. 6.13, the MCT relies on the full set of possible 3 × 3 binary patterns (29 - 1  or  

511 variations) and uses these as a kernel index into the binary patterns as the MCT output, since each 

binary pattern is a unique signature by itself and highly discriminative. The end result of the MCT is 

analogous to a nonlinear filter that assigns the output to any of the 29 - 1 patterns in the kernel index. 

Results show that the MCT results are better than the basic CT for some types of object 

recognition [171].

BRIEF 

As described in Chap. 4, in the section on “Local Binary Descriptor Point-Pair Patterns,” and 

illustrated in Fig. 4.11, the BRIEF [104, 105] descriptor uses a random distribution pattern of 

256 point pairs in a local 31 × 31 region for the binary comparison to create the descriptor. One key 

idea with BRIEF is to select random pairs of points within the local region for comparison. 

BRIEF is a local binary descriptor and has achieved very good accuracy and performance in 

robotics applications [169]. BRIEF and ORB are closely related; ORB is an oriented version of 

BRIEF, and the ORB descriptor point-pair pattern is also built differently than BRIEF. BRIEF is 

known to be not very tolerant of rotation. 

BRIEF Summary Taxonomy 

Spectra: Local binary 

Feature shape: Square centered at interest point 

Feature pattern: Random local pixel point-pair compares 

Feature density: Local 31 × 31 at interest points 

Search method: Sliding window 

Distance function: Hamming distance 

Robustness: 2 (brightness, contrast) 

ORB 

ORB [94] is an acronym for oriented BRIEF, and as the name suggests, ORB is based on BRIEF and 

adds rotational invariance to BRIEF by determining corner orientation using FAST9, followed by a 

Harris corner metric to sort the keypoints; the corner orientation is refined by intensity centroids using 

Rosin’s method [38]. The FAST, Harris, and Rosin processing are done at each level of an image 

pyramid scaled with a factor of 1.4, rather than the common octave pyramid scale methods. ORB is



discussed in some detail in Chap. 4, in the section on “Local Binary Descriptor Point-Pair Patterns,” 

and is illustrated in Fig. 4.11. 
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It should be noted that ORB is a highly optimized and very well-engineered descriptor, since the 

ORB authors were keenly interested in compute speed, memory footprint, and accuracy. Many of the 

descriptors surveyed in this section are primarily research projects, with less priority given to practical 

issues, but ORB focuses on optimizing and practical issues. 

Compared to BRIEF, ORB provides an improved training method for creating the local binary 

patterns for pairwise pixel point sampling. While BRIEF uses random point pairs in a 31 × 31 window, 

ORB goes through a training step to find uncorrelated point pairs in the window with high variance and 

means 0.5, which is demonstrated to work better. For details on visualizing the ORB patterns, see 

Fig. 4.11. 

ORBa SURF SIFT 

15.3 ms 217.3 ms 5228.7 ms 
a Results reported as measured in Ref. [94] 

For correspondence search, ORB uses multi-probe locally sensitive hashing (MP-LSH), which 

searches for matches in neighboring buckets when a match fails, rather than renavigating the hash tree. 

The authors report that MP-LSH requires fewer hash tables, resulting in a lower memory footprint. 

MP-LSH also produces more uniform hash bucket sizes than BRIEF. Since ORB is a binary descriptor 

based on point-pair comparisons, Hamming distance is used for correspondence. 

ORB is reported to be an order of magnitude faster than SURF, and two orders of magnitude faster 

than SIFT, with comparable accuracy. The authors provide impressive performance results in a test of 

over 24 NTSC resolution images on the Pascal dataset [94]. 

ORB Summary Taxonomy 

Spectra: Local binary + orientation vector 

Feature shape: Square 

Feature pattern: Trained local pixel point-pair compares 

Feature density: Local 31 × 31 at interest points 

Search method: Sliding window 

Distance function: Hamming distance 

Robustness: 3 (brightness, contrast, rotation, limited scale) 

BRISK 

BRISK [103, 114] is a local binary method using a circular symmetric pattern region shape and a total 

of 60 point pairs as line segments arranged in four concentric rings, as shown in Fig. 4.10 and 

described in detail in Chap. 4. The method uses point pairs of both short segments and long segments, 

and this provides a measure of scale invariance, since short segments may map better for fine resolution 

and long segments may map better at coarse resolution. 

The brisk algorithm is unique, using a novel FAST detector adapted to use scale space, reportedly 

achieving an order of magnitude performance increase over SURF with comparable accuracy. Here are 

the main computational steps in the algorithm:

• Detects keypoints using FAST or AGHAST-based selection in scale space.

• Performs Gaussian smoothing at each pixel sample point to get the point value.

• Makes three sets of pairs: long pairs, short pairs, and unused pairs (the unused pairs are not in the 

long pair or the short pair set; see Fig. 4.10).

• Computes gradient between long pairs and sums gradients to determine orientation.



• Uses gradient orientation to adjust and rotate short pairs.

• Creates binary descriptor from short pair point-wise comparisons. 

BRISK Summary Taxonomy 
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Spectra: Local binary + orientation vector 

Feature shape: Square 

Feature pattern: Trained local pixel point-pair compares 

Feature density: Local 31 × 31 at FAST interest points 

Search method: Sliding window 

Distance function: Hamming distance 

Robustness: 4 (brightness, contrast, rotation, scale) 

FREAK 

FREAK [102] uses a novel foveal-inspired multiresolution pixel-pair sampling shape with trained 

pixel pairs to mimic the design of the human eye as a coarse-to-fine descriptor, with resolution highest 

in the center and decreasing further into the periphery, as shown in Fig. 4.9. In the opinion of this 

author, FREAK demonstrates many of the better design approaches to feature description; it combines 

performance, accuracy, and robustness. Note that FREAK is fast to compute, has good discrimination 

compared to other local binary descriptors such as LBP, Census, BRISK, BRIEF, and ORB, and 

compares favorably with SIFT. 

The FREAK feature training process involves determining the point pairs for the binary 

comparisons based on the training data, as shown in Fig. 4.9. The training method allows for a 

range of descriptor sampling patterns and shapes to be built by weighting and choosing sample points 

with high variance and low correlation. Each sampling point is taken from the overlapping circular 

regions, where the value of each sampling point is the Gaussian average of the values in each region. 

The circular regions are designed in concentric circles of six regions in each circle, with small regions 

in the center, and larger regions toward the edge, similar to the biological retinal distribution of 

receptor cells with some overlap to adjacent regions, which improves accuracy. 

The feature descriptor is thus designed in a coarse-to-fine cascade of four groups of 16-byte coarse-

to-fine descriptors containing pixel-pair binary comparisons stored in a vector. The first 16 bytes, the 

coarse resolution set in the cascade, is normally sufficient to find 90% of the matching features and to 

discard nonmatching features. FREAK uses 45 point pairs for the descriptor from a 31 × 31 pixel patch 

sampling region. 

By storing the point-pair comparisons in four cascades of decreasing resolution pattern vectors, the 

matching process proceeds from coarse to fine, mimicking the human visual system’s saccadic search 

mechanism, allowing for accelerated matching performance when there is early success or rejection in 

the matching phase. In summary, the FREAK approach works very well. 

FREAK Summary Taxonomy 

Spectra: Local binary coarse-to-fine + orientation vector 

Feature shape: Square 

Feature pattern: 31 × 31 region pixel point-pair compares 

Feature density: Sparse local at AGAST interest points 

Search method: Sliding window over scale space 

Distance function: Hamming distance 

Robustness: 6 (brightness, contrast, rotation, scale, viewpoint, blur)
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Spectra Descriptors 

Compared to the local binary descriptor group, the spectra group of descriptors typically involves more 

intense computations and algorithms, often requiring floating point calculations, and may consume 

considerable memory. In this taxonomy and discussion, spectra is simply a quantity that can be 

measured or computed, such as light intensity, color, local area gradients, local area statistical features 

and moments, surface normals, and sorted data such as 2D or 3D histograms of any spectral type, such 

as histograms of local gradient direction. Many of the methods discussed in this section use local 

gradient information. 

Local binary descriptors, as discussed in the previous section, are an attempt to move away from 

more costly spectral methods to reduce power and increase performance. Local binary descriptors in 

many cases offer similar accuracy and robustness to the more compute-intensive spectra methods. 

SIFT 

The scale-invariant feature transform (SIFT) developed by Lowe [132, 146] is the most well-known 

method for finding interest points and feature descriptors, providing invariance to scale, rotation, 

illumination, affine distortion, perspective and similarity transforms, and noise. Lowe demonstrates 

that by using several SIFT descriptors together to describe an object, there is additional invariance to 

occlusion and clutter, since if a few descriptors are occluded, others will be found [132]. We provide 

some detail here on SIFT since it is well-designed and well-known. 

SIFT is commonly used as a benchmark against which other vision methods are compared. The 

original SIFT research paper by author David Lowe was initially rejected several times for publication 

by the major computer vision journals, and as a result, Lowe filed for a patent and took a different 

direction. According to Lowe, “By then I had decided the computer vision community was not 

interested, so I applied for a patent and intended to promote it just for industrial applications.” 1 

Eventually, the SIFT paper was published and went on to become the most widely cited article in 

computer vision history! 

SIFT is a complete algorithm and processing pipeline, including both an interest point and a feature 

descriptor method. SIFT includes stages for selecting center-surrounding circular weighted difference 

of Gaussian (DoG) maxima interest points in scale space to create scale-invariant keypoints (a major 

innovation), as illustrated in Fig. 6.14. Feature descriptors are computed surrounding the scale-

invariant keypoints. The feature extraction step involves calculating a binned histogram of gradients 

(HOG) structure from local gradient magnitudes into Cartesian rectangular bins, or into log-polar bins 

using the GLOH variation, at selected locations centered around the maximal response interest points 

derived over several scales. 

1 http://yann.lecun.com/ex/pamphlets/publishing-models.html.

http://yann.lecun.com/ex/pamphlets/publishing-models.html
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Fig. 6.14 (Top) Set of Gaussian images obtained by convolution with a Gaussian kernel and the corresponding set of 

DoG images. (Bottom) In octave sets. The DOG function approximates a LOG gradient, or tunable bypass filter. 

Matching features against the various images in the scaled octave sets yields scale-invariant features 

The descriptors are fed into a matching pipeline to find the nearest distance ratio metric between 

closest match and second closest match, which considers a primary match and a secondary match 

together and rejects both matches if they are too similar, assuming that one or the other may be a false 

match. The local gradient magnitudes are weighted by a strength value proportional to the pyramid 

scale level and then binned into the local histograms. In summary, SIFT is a very well thought out and 

carefully designed multiscale localized feature descriptor. 

A variation of SIFT for color images is known as CSIFT [147]. 

Here is the basic SIFT descriptor processing flow (note: the matching stage is omitted since this 

chapter is concerned with feature descriptors and related metrics): 

1. Create a Scale-Space Pyramid 

An octave scale n/2 image pyramid is used with Gaussian-filtered images in a scale space. The 

amount of Gaussian blur is proportional to the scale, and then, the difference of Gaussian (DoG) 

method is used to capture the interest point extrema maxima and minima in adjacent images in the 

pyramid. The image pyramid contains five levels. SIFT also uses a double-scale first pyramid level 

using pixels at two times the original magnification to help preserve fine details. This technique 

increases the number of stable keypoints by about four times, which is quite significant. Otherwise, 

computing the Gaussian blur across the original image would have the effect of throwing away the 

high-frequency details. See Figs. 6.15 and 6.16.
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Fig. 6.15 SIFT DoG as the simple arithmetic difference between the Gaussian-filtered images in the pyramid scale 

Fig. 6.16 SIFT interest point or keypoint detection using scale-invariant extrema detection, where the dark pixel in the 

middle octave is compared within a 3 × 3 × 3 area against its 26 neighbors in adjacent DOG octaves, which includes the 

eight neighbors at the local scale plus the nine neighbors at adjacent octave scales (up or down)



Þ
Þ
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2. Identify Scale-Invariant Interest Points 

As shown in Fig. 6.16, the candidate interest points are chosen from local maxima or minima as 

compared between the 26 adjacent pixels in the DOG images from the three adjacent octaves in the 

pyramid. In other words, the interest points are scale-invariant. 

The selected interest points are further qualified to achieve invariance by analyzing local contrast, 

local noise, and local edge presence within the local 26-pixel neighborhood. Various methods may 

be used beyond those in the original method, and several techniques are used together to select the 

best interest points, including local curvature interpolation over small regions and balancing edge 

responses to include primary and secondary edges. The keypoints are localized to subpixel 

precision over scale and space. The complete interest points are thus invariant to scale. 

3. Create Feature Descriptors 

A local region or patch of size 16 × 16 pixels surrounding the chosen interest points is the basis of 

the feature vector. The magnitude of the local gradients in the 16 × 16 patch and the gradient 

orientations are calculated and stored in a HOG (histogram of gradients) feature vector, which is 

weighted in a circularly symmetric fashion to downweight points farther away from the center 

interest point around which the HOG is calculated using a Gaussian weighting function. 

As shown in Fig. 6.17, the 4 × 4 gradient binning method allows for gradients to move around in the 

descriptor and be combined together, thus contributing invariance to various geometric distortions 

that may change the position of local gradients, similar to the human visual system treatment of the 

3D position of gradients across the retina [210]. The SIFT-HOG is reasonably invariant to scale, 

contrast, and rotation. The histogram bins are populated with gradient information using trilinear 

interpolation and normalized to provide illumination and contrast invariance. 

Fig. 6.17 (Left and center) Gradient magnitude and direction binned into histograms for the SIFT-HOG, note the circle 

over the bin region on the left image suggests how SIFT weights bins farther from center less than bins closer to the 

center. (Right) GLOH descriptors 

SIFT can also be performed using a variant of the HOG descriptor called the gradient location and 

orientation histogram (GLOH), which uses a log-polar histogram format instead of the Cartesian 

HOG format; see Fig. 6.17. The calculations for the GLOH log-polar histogram are straightforward, 

as shown below from the Cartesian coordinates used for the Cartesian HOG histogram, where the 

vector magnitude is the hypotenuse and the angle is the arctangent. 

m  x, yð  Þ  ¼ L  xþ 1, yð Þ- L  x- 1, yð Þð Þ2 þ L  x, yþ 1ð Þ- x, y- 1ð Þð 2 

θ x, yð  Þ  ¼ TAN- 1 L  x, y þ 1ð Þ- L  x, y- 1ð Þð Þ= L  xþ 1, yð Þ- x- 1, yð Þð
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As shown in Fig. 6.17, SIFT-HOG and GLOH are essentially 3D histograms, and in this case, the 

histogram bin values are gradient magnitude and direction. The descriptor vector size is thus 

4 × 4 × 8 = 128 bytes. The 4 × 4 descriptor (center image) is a set of histograms of the combined 

eight-way gradient direction and magnitude of each 4 × 4 group in the left image, in Cartesian 

coordinates, while the GLOH gradient magnitude and direction are binned in polar coordinate 

spaced into 17 bins over a greater binning region. SIFT-HOG (left image) also uses a weighting 

factor to smoothly reduce the contribution of gradient information in a circularly symmetric fashion 

with increasing distance from the center. 

Overall compute complexity for SIFT is high [148], as shown in Table 6.2. Note that feature 

description is most compute-intensive owing to all the local area gradient calculations for orienta-

tion assignment and descriptor generation including histogram binning with trilinear interpolation. 

The gradient orientation histogram developed in SIFT is a key innovation that provides substantial 

robustness. 

Table 6.2 SIFT compute complexity (from Vinukonda [148]) 

SIFT pipeline step Complexity Number of operations 

Gaussian blurring pyramid ⊖ N
2 
U
2 2 

W
2 
s 

Difference of Gaussian pyramid ⊖ sN2 4N2 s 

Scale-space extrema detection ⊖ sN2 104sN2 

Keypoint detection ⊖ αsN2 100sαN2 

Orientation assignment ⊖ sN2 (1 – αβ) 48sN2 

Descriptor generation ⊖ (x2 N2 
(αβ + γ)) ⊖ 1520x2 N2 

(αβ + γ)N
2 

The resulting feature vector for SIFT is 128 bytes. However, methods exist to reduce the 

dimensionality and vary the descriptor, which are discussed next. 

SIFT Summary Taxonomy 

Spectra: Local gradient magnitude + orientation 

Feature shape: Square, with circular weighting 

Feature pattern: Square with circular symmetric weighting 

Feature density: Sparse at local 16 × 16 DoG interest points 

Search method: Sliding window over scale space 

Distance function: Euclidean distance (*or Hellinger distance with RootSIFT retrofit) 

Robustness: 6 (brightness, contrast, rotation, scale, affine transforms, noise) 

SIFT-PCA 

The SIFT-PCA method developed by Ke and Suthankar [151] uses an alternative feature vector 

derived using principal component analysis (PCA), based on the normalized gradient patches rather 

than the weighted and smoothed histograms of gradients, as used in SIFT. In addition, SIFT-PCA 

reduces the dimensionality of the SIFT descriptor to a smaller set of elements. SIFT originally was 

reported using 128 vectors, but using SIFT-PCA the vector is reduced to a smaller number such as 

20 or 36. 

The basic steps for SIFT-PCA are as follows:
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1. Construct an eigenspace based on the gradients from the local 41 × 41 image patches resulting in a 

3042 element vector; this vector is the result of the normal SIFT pipeline. 

2. Compute local image gradients for the patches. 

3. Create the reduced-size feature vector from the eigenspace using PCA on the covariance matrix of 

each feature vector. 

SIFT-PCA is shown to provide some improvements over SIFT in the area of robustness to image 

warping, and the smaller size of the feature vector results in faster matching speed. The authors note 

that while PCA in general is not optimal as applied to image patch features, the method works well for 

the SIFT-style gradient patches that are oriented and localized in scale space [151]. 

SIFT-GLOH 

The gradient location and orientation histogram (GLOH) [115] method uses polar coordinates and 

radially distributed bins rather than the Cartesian coordinate style histogram binning method used by 

SIFT. It is reported to provide greater accuracy and robustness over SIFT and other descriptors for 

some ground truth datasets [115]. As shown in Fig. 6.17, GLOH uses a set of 17 radially distributed 

bins to sum the gradient information in polar coordinates, yielding a 272-bin histogram. The center bin 

is not direction oriented. The size of the descriptor is reduced using PCA. GLOH has been used to 

retrofit SIFT. 

SIFT-SIFER Retrofit 

The Scale-Invariant Feature Detector with Error Resilience (SIFER) [188] method provides 

alternatives to the standard SIFT pipeline, yielding measurable accuracy improvements reported to 

be as high as 20% for some criteria. However, the accuracy comes at a cost, since the performance is 

about twice as slow as SIFT. The major contributions of SIFER include improved scale-space 

treatment using a higher granularity image pyramid representation and better scale-tuned filtering 

using a cosine-modulated Gaussian filter. 

The major steps in the method are shown in Table 6.3. The scale-space pyramid is blurred using a 

cosine-modulated Gaussian (CMG) filter, which allows each scale of the octave to be subdivided into 

six scales, so the result is better scale accuracy. 

Table 6.3 Comparison of SIFT, SURF, and SIFER pipelines (adapted from [188]) 

SIFT SURF SIFER 

Scale-space filtering Gaussian second 

derivative 

Gaussian second derivative Cosine-modulated 

Gaussian 

Detector LoG Hessian Wavelet modulus maxima 

Filter approximation 

level 

OK accuracy OK accuracy Good accuracy 

Optimizations DoG for gradient Integral images, constant 

time 

Convolution, constant time 

Image up-sampling 2× 2× Not used 

Subsampling Yes Yes Not used 

Since the performance of the CMG is not good, SIFER provides a fast approximation method that 

provides reasonable accuracy. Special care is given to the image scale and the filter scale to increase 

accuracy of detection; thus, the cosine is used as a band-pass filter for the Gaussian filter to match the 

scale as well as possible, tuning the filter in a filter bank over scale space with well-matched filters for 

each of the six scales per octave. The CMG provides more error resilience than the SIFT Gaussian 

second derivative method.



244 6 Feature Detector and Feature Descriptor Survey

SIFT CS-LBP Retrofit 

The SIFT-CS-LBP retrofit method [142, 168] combines the best attributes of SIFT and the center 

symmetric LBP (CS-LBP) by replacing the SIFT gradient calculations with much more compute-

efficient LBP operators and by creating similar histogram-binned orientation feature vectors. LBP is 

computationally simpler both to create and to match than the SIFT descriptor. 

The CS-LBP descriptor begins by applying an adaptive noise removal filter (a Weiner filter is the 

variety used in this work) to the local patch for adaptive noise removal, which preserves local contrast. 

Rather than computing all 256 possible 8-bit local binary patterns, the CS-LBP only computes 

16 center symmetric patterns for reduced dimensionality, as shown in Fig. 6.18. 

p8 c 

p2p1 

p4 

p3 

p7 p6 p5 

LPB= 

s(p1 - c)0 + 

s(p2 – c)1 + 

s(p3 – c)2 + 

s(p4 – c)3 + 

s(p5 – c)4 + 

s(p6 – c)5 + 

s(p7 – c)6 + 

s(p8 – c)7 

CS-LPB= 

s(p1 – p5)0 + 

s(p2 – p6)1 + 

s(p3 – p7)2 + 

s(p4 – p8)3 

Fig. 6.18 CS-LBP sampling pattern for reduced dimensionality 

Instead of weighting the histogram bins using the SIFT circular weighting function, no weighting is 

used, which reduces compute. Like SIFT, the CS-LBP binning method uses a 3 × 3 region Cartesian 

grid; simpler bilinear interpolation for binning is used, rather than trilinear, as in SIFT. Overall, the 

CS-LCP retrofit method simplifies the SIFT compute pipeline and increases performance with 

comparable accuracy; greater accuracy is reported for some datasets. See Table 6.4. 

Table 6.4 SIFT and CS-LBP retrofit performance (as per Ref. [168]) 

Feature extraction Descriptor construction Descriptor normalization Total (ms time) 

CS-LBP 256 0.1609 0.0961 0.007 0.264 

CS-LBP 128 0.1148 0.0749 0.0022 0.1919 

SIFT 128 0.4387 0.1654 0.0025 0.6066 

RootSIFT Retrofit 

The RootSIFT method [143] provides a set of simple, key enhancements to the SIFT pipeline, resulting 

in better compute performance and slight improvements in accuracy, as follows:

• Hellinger Distance: RootSIFT uses a simple performance optimization of the SIFT object retrieval 

pipeline using Hellinger distance instead of Euclidean distance for correspondence. All other 

portions of the SIFT pipeline remain the same; K-means is still employed to build the feature 

vector set, and other approximate nearest-neighbor methods may still be used as well for larger 

feature vector sets. The authors claim a simple modification to SIFT code to perform the Hellinger 

distance optimization instead of Euclidean distance can be a simple set of one-line changes to the 

code. Other enhancements in RootSIFT are optional, discussed next.

• Feature Augmentation: This method increases total recall. Developed by Turcot and Lowe [281], 

it is applied to the features. Feature vectors or visual words from similar views of the same object in



The major innovations of CenSurE over SIFT and SURF are as follows:

Fig. 6.19 CenSurE bilevel center-surround filter shape approximations to the Laplacian using binary kernel values of

1 and -1, which can be efficiently implemented using signed addition rather than multiplication. Note that the circular

shape is the desired shape, but the other shapes are easier to compute using integral images, especially the rectangular

method
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the database are associated with a graph used for finding correspondence among similar features, 

instead of just relying on a single feature.

• Discriminative Query Expansion (DQE): This method increases query expansion during training. 

Feature vectors within a region of proximity are associated by averaging into a new feature vector 

useful for requirements in the database, using both positive and negative training data in a linear 

SVM; better correspondence is reported in Ref. [143]. 

By combining the three innovations described above into the SIFT pipeline, performance, accuracy, 

and robustness are shown to be significantly improved. 

CenSurE and STAR 

The Center Surround Extrema or CenSurE [152] method provides a true multiscale descriptor, creating 

a feature vector using full spatial resolution at all scales in the pyramid, in contrast to SIFT and SURF, 

which find extrema at subsampled pixels that compromise accuracy at larger scales. CenSurE is similar 

to SIFT and SURF, but some key differences are summarized in Table 6.5. Modifications have been 

made to the original CenSurE algorithm in OpenCV, which goes by the name of STAR descriptor. 

Table 6.5 Major differences between CenSurE and SIFT and SURF (adapted from Ref. [152]) 

CenSurE SIFT SURF 

Resolution Every pixel Pyramid subsampled Pyramid subsampled 

Edge filter method Harris Hessian Hessian 

Scale-space extrema method Laplace, center-surround Laplace, DOG Hessian, DOB 

Rotational invariance Approximate Yes No 

Spatial resolution in scale Full Subsampled Subsampled 

The authors have paid careful attention to creating methods, which are computationally efficient, 

memory efficient, with high performance and accuracy [152]. CenSurE defines an optimized approach 

to find extrema by first using the Laplacian at all scales, followed by a filtering step using the Harris 

method to discard corners with weak responses. 

1. Use of bilevel center-surround filters, as shown in Fig. 6.19, including difference of boxes (DoB), 

difference of octagons (DoO), and difference of hexagons (DoH) filters, and octagons and hexagons 

are more rotationally invariant than boxes. DoB is computationally simple and may be computed 

with integral images vs. the Gaussian scale-space method of SIFT. The DoO and DoH filters are 

also computed quickly using a modified integral image method. Circle is the desired shape, but 

more computationally expensive.
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2. To find the extrema, the DoB filter is computed using a seven-level scale space of filters at each 

pixel, using a 3 × 3 × 3 neighborhood. The scale-space search is composed using center-surround 

Haar-like features on non-octave boundaries with filter block sizes [1, 2, 3, 4, 5, 6, 7] covering 2.5 

octaves between [1 and 7] yielding five filters. This scale arrangement provides more discrimination 

than an octave scale. A threshold is applied to eliminate weak filter responses at each level, since the 

weak responses are likely not to be repeated at other scales. 

3. Nonrectangular filter shapes, such as octagons and hexagons, are computed quickly using 

combinations of overlapping integral image regions; note that octagons and hexagons avoid 

artifacts caused by rectangular regions and increase rotational invariance; see Fig. 6.19. 

4. CenSurE filters are applied using a fast, modified version of the SURF method called modified 

upright SURF (MU-SURF) [152, 155], discussed later with other SURF variants, which pays 

special attention to boundary effects of boxes in the descriptor by using an expanded set of 

overlapping subregions for the HAAR responses. 

CenSurE Summary Taxonomy 

Spectra: Center-surround shaped bilevel filters 

Feature shape: Octagons, circles, boxes, hexagons 

Feature pattern: Filter shape masks, 24 × 24 largest region 

Feature density: Sparse at local interest points 

Search method: Dense sliding window over scale space 

Distance function: Euclidean distance 

Robustness: 5 (brightness, contrast, rotation, scale, affine transforms) 

Correlation Templates 

One of the most well-known and obvious methods for feature description and detection, as used as the 

primary feature in basic deep learning architectures discussed in Chaps. 9 and 10, takes an image of the 

complete feature and searches for it by direct pixel comparison—this is known as correlation. 

Correlation involves stepping a sliding window containing a first-pixel region template across a second 

image region template and performing a simple pixel-by-pixel region comparison using a method such 

as sum of differences (SAD); the resulting score is the correlation. 

Since image illumination may vary, typically the correlation template and the target image are first 

intensity normalized, typically by subtracting the mean and dividing by the standard deviation; 

however, contrast leveling and LUT transform may also be used. Correlation is commonly 

implemented in the spatial domain on rectangular windows, but can be used with frequency domain 

methods as well [4, 9]. 

Correlation is used in video-based target tracking applications where translation as orthogonal 

motion from frame to frame over small adjacent regions predominates. For example, video motion 

encoders find the displacement of regions or blocks within the image using correlation, since usually 

small block motion in video is orthogonal to the Cartesian axis and maps well to simple displacements 

found using correlation. Correlation can provide subpixel accuracy between 1/4 and 1/20 of a pixel, 

depending on the images and methods used; see Ref. [122]. For video encoding applications, correla-

tion allows for the motion vector displacements of corresponding blocks to be efficiently encoded and 

accurately computed. Correlation is amenable to fixed-function hardware acceleration. 

Variations on correlation include cross-correlation (sliding dot product), normalized cross-

correlation (NCC), zero-mean normalized cross-correlation (ZNCC), and texture auto-correlation 

(TAC). 

In general, correlation is a good detector for orthogonal motion of a constant-sized mono-space 

pattern region. It provides subpixel accuracy and has limited robustness and accuracy over
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illumination, but little to no robustness over rotation or scale. However, to overcome these robustness 

problems, it is possible to accelerate correlation over a scale space, as well as various geometric 

translations, using multiple texture samplers in a graphics processor in parallel to rapidly scale and 

rotate the correlation templates. Then, the correlation matching can be done either via SIMD SAD 

instructions or else using the fast fixed-function correlators in the video encoding engines. 
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Correlation is illustrated in Fig. 6.20. 

Fig. 6.20 Simplified model of digital correlation using a triangular template region swept past a rectangular region. The 

best correlation is shown at the location of the highest point 

Spectra: Correlation 

Feature shape: Square, rectangle 

Feature pattern: Dense 

Feature density: Variable-sized kernels 

Search method: Dense sliding window 

Distance function: SSD typical, others possible 

Robustness: 1 (illumination, subpixel accuracy) 

HAAR Features 

HAAR-like features [4, 9] were popularized in the field of computer vision by the Viola–Jones [153] 

algorithm. HAAR features are based on specific sets of rectangle patterns, as shown in Fig. 6.21, which 

approximate the basic HAAR wavelets, where each HAAR feature is composed of the average pixel 

value of pixels within the rectangle. This is efficiently computed using integral images.
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Fig. 6.21 Example of HAAR-like features 

By using the average pixel value in the rectangular feature, the intent is to find a set of small patterns 

in adjacent areas where brighter or darker region adjacency may reveal a feature—for example, a bright 

cheek next to a darker eye socket. However, HAAR features have drawbacks, since rectangles by 

nature are not rotation-invariant much beyond 15°. Also, the integration of pixel values within the 

rectangle destroys fine detail. 

Depending on the type of feature to be detected, such as eyes, a specific set of HAAR features is 

chosen to reveal eye/cheek details and eye/nose details. For example, HAAR patterns with two 

rectangles are useful for detecting edges, while patterns with three rectangles can be used for lines, 

and patterns with an inset rectangle or four rectangles can be used for single-object features. Note that 

HAAR features may be a rotated set. 

Of course, the scale of the HAAR patterns is an issue, since a given HAAR feature only works with 

an image of appropriate scale. Image pyramids are used for HAAR feature detection, along with other 

techniques for stepping the search window across the image in optimal grid sizes for a given 

application. Another method to address feature scale is to use a wider set of scaled HAAR features 

to perform the pyramiding in the feature space rather than the image space. One method to address 

HAAR feature granularity and rectangular shape is to use overlapping HAAR features to approximate 

octagons and hexagons; see the CenSurE and STAR methods in Fig. 6.19. 

HAAR features are closely related to wavelets [191, 283]. Wavelets can be considered an extension 

of the earlier concept of Gabor functions [154, 282]. We provide only a short discussion of wavelets 

and Gabor functions here; more discussion was provided in Chap. 2. Wavelets are an orthonormal set 

of small-duration functions. Each set of wavelets is designed to meet various goals to locate short-term 

signal phenomenon. There is no single wavelet function; rather, when designing wavelets, a mother 

wavelet is first designed as the basis of the wavelet family, and then, daughter wavelets are derived 

using translation and compression of the mother wavelet into a basis set. Wavelets are used as a set of 

nonlinear basis functions, where each basis function can be designed as needed to optimally match a 

desired feature in the input function. So, unlike transforms which use a uniform set of basis functions 

like the Fourier transform, composed of SIN and COS functions, wavelets use a dynamic set of basis 

functions that are complex and nonuniform in nature. Wavelets can be used to describe very complex 

short-term features, and this may be an advantage in some feature detection applications. 

However, compared to integral images and HAAR features, wavelets are computationally expen-

sive, since they represent complex functions in a complex domain. HAAR 2D basis functions are 

commonly used owing to the simple rectangular shape and computational simplicity, especially when 

HAAR features are derived from integral images. 

HAAR Summary Taxonomy 

Spectra: Integral box filter 

Feature shape: Square, rectangle
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Feature pattern: Dense 

Feature density: Variable-sized kernels 

Search method: Grid search typical 

Distance function: Simple difference 

Robustness: 1 (illumination) 

Viola–Jones with HAAR-Like Features 

The Viola–Jones method [153] is a feature detection pipeline framework based on HAAR-like features 

using a perceptron learning algorithm to train a detector matching network that consists of three major 

parts: 

1. Integral images used to rapidly compute HAAR-like features. 

2. The ADA-BOOST learning algorithm to create a strong pattern matching and classifier network by 

combining strong classifiers with good matching performance with weak classifiers that have been 

“boosted” by adjusting weighting factors during the training process. 

3. Combining classifiers into a detector cascade or funnel to quickly discard unwanted features at early 

stages in the cascade. 

Since thousands of HAAR pattern matches may be found in a single image, the feature calculations 

must be done quickly. To make the HAAR pattern match calculation rapidly, the entire image is first 

processed into an integral image. Each region of the image is searched for known HAAR features using 

a sliding window method stepped at some chosen interval, such as every n pixels, and the detected 

features are fed into a classification funnel known as a HAAR cascade classifier. The top of the funnel 

consists of feature sets, which yield low false positives and false negatives, so the first-order results of 

the cascade contain high-probability regions of the image for further analysis. The HAAR features 

become more complex progressing deeper into the funnel of the cascade. With this arrangement, image 

regions are rejected as soon as possible if the desired HAAR features are not found, minimizing 

processing overhead. 

A complete HAAR feature detector may combine hundreds or thousands of HAAR features 

together into a final classifier, where not only the feature itself may be important but also the spatial 

arrangements of features—for example, the distance and angular relationships between features could 

be used in the classifier. 

SURF 

The speeded-up robust features method (SURF) [131] operates in a scale space and uses a fast Hessian 

detector based on the determinant maxima points of the Hessian matrix. SURF uses a scale space over 

a  3  × 3 × 3 neighborhood to localize blob-like interest point features. To find feature orientation, a set 

of HAAR-like feature responses are computed in the local region surrounding each interest point 

within a circular radius, computed at the matching pyramid scale for the interest point.

The dominant orientation assignment for the local set of HAAR features is found, as shown in 

Fig. 6.22, using a sliding sector window of size π 
3
. This sliding sector window is rotated around the 

interest point at intervals. Within the sliding sector region, all HAAR features are summed. This 

includes both the horizontal and vertical responses, which yield a set of orientation vectors; the largest 

vector is chosen to represent dominant feature orientation. By way of comparison, SURF integrates 

gradients to find the dominant direction, while SIFT uses a histogram of gradient directions to record 

orientation.
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dx dy 

Fig. 6.22 (Left) Sliding sector window used in SURF to compute the dominant orientation of the HAAR features to add 

rotational invariance to the SURF features. (Right) The feature vector construction process, showing a grid containing a 

4 × 4 region subdivided into 4 × 4 subregions and 2 × 2 subdivisions 

To create the SURF descriptor vector, a rectangular grid of 4 × 4 regions is established surrounding 

the interest point, similar to SIFT, and each region of this grid is split into 4 × 4 subregions. Within 

each subregion, the HAAR wavelet response is computed over 5 × 5 sample points. Each HAAR 

response is weighted using a circularly symmetric Gaussian weighting factor, where the weighting 

factor decreases with distance from the center interest point, which is similar to SIFT. Each feature 

vector contains four parts: 

v ¼ dx, dy, dxj  j, d y

The wavelet responses dx and dy for each subregion are summed, and the absolute value of the 

responses |dx| and |dy| provides polarity of the change in intensity. The final descriptor vector is 

4 × 4 × 4:4 × 4 regions with four parts per region, for a total vector length of 64. Of course, other 

vector lengths can be devised by modifying the basic method. 

As shown in Fig. 6.22, the SURF gradient grid is rotated according to the dominant orientation and 

computed during the sliding sector window process, and then, the wavelet response is computed in 

each square region relative to orientation for binning into the feature vector. Each of the wavelet 

directional sums dx, dy,  |dx|, |dy| is recorded in the feature vector .

The SURF and SIFT pipeline methods are generally comparable in implementation steps and final 

accuracy, but SURF is one order of magnitude faster to compute than SIFT, as compared in an ORB 

benchmarking test [94]. However, the local binary descriptors, such as ORB, are another order of 

magnitude faster than SURF, with comparable accuracy for many applications [94]. For more 

information, see the section earlier in this chapter on “Local Binary Descriptors”. 

SURF Summary Taxonomy 

Spectra: Integral box filter + orientation vector 

Feature shape: HAAR rectangles 

Feature pattern: Dense 

Feature density: Sparse at Hessian interest points 

Search method: Dense sliding window over scale space 

Distance function: Mahalanobis or Euclidean 

Robustness: 4 (scale, rotation, illumination, noise)
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Variations on SURF 

A few variations on the SURF descriptor [152, 155] are worth discussing, as shown in Table 6.6.  Of  

particular interest are the G-SURF methods [155], which use a differential geometry concept [156] of a 

local region gauge coordinate system to compute the features. Since gauge coordinates are not global 

but, rather, local to the image feature, gauge space features carry advantages for geometrical accuracy .

Table 6.6 SURF variants (as discussed in Alcantarilla et al. [155]) 

SURF Circular symmetric Gaussian weighting scheme, 20 × 20 grid 

U-SURF [152] Faster version of SURF, only upright features are used; no orientation. Like M-SURF except 

calculated upright “U” with no rotation of the grid, uses a 20 × 20 grid, no overlapping HAAR 

features, modified Gaussian weighting scheme, bilinear interpolation between histogram bins 

M-SURF, MU-SURF 

[152] 

Circular symmetric Gaussian weighting scheme computed in two steps instead of one as for 

normal SURF, 24 × 24 grid using overlapping HAAR features, rotation orientation left out in 

MU-SURF version 

G-SURF, GU-SURF 

[155] 

Instead of HAAR features, substitutes second-order gauge derivatives in Gauge coordinate 

space, no Gaussian weighting, 20 × 20 grid. Gauge derivatives are rotation and translation-

invariant, while the HAAR features are simple rectangles, and rectangles have poor rotational 

invariance, maybe ±15° at best 

MG-SURF [155] Same as M-SURF, but uses gauge derivatives 

NG-SURF [155] N = No Gaussian weighting as in SURF; same as SURF but no Gaussian weighting applied, 

allows for comparison between gauge derivate features and HAAR features 

Histogram of Gradients (HOG) and Variants 

The histogram of gradients (HOG) method [80] is intended for image classification and relies on 

computing local region gradients over a dense grid of overlapping blocks, rather than at interest points. 

HOG is appropriate for some applications, such as person detection, where the feature in the image is 

quite large. 

HOG operates on raw data; while many methods rely on Gaussian smoothing and other filtering 

methods to prepare the data, HOG is designed specifically to use all the raw data without introducing 

filtering artifacts that remove fine details. The authors show clear benefits using this approach. It is a 

trade-off: filtering artifacts such as smoothing vs. image artifacts such as fine details. The HOG 

method shows preferential results for the raw data. See Fig. 4.12, showing a visualization of a HOG 

descriptor. 

Major aspects in the HOG method are as follows:

• Raw RGB image is used with no color correction or noise filtering, using other color spaces and 

color gamma adjustment provided little advantage for the added cost.

• Prefers a 64 × 128 sliding detector window; 56 × 120 and 48 × 112 sized windows were also tested. 

Within this detector window, a total of 8 × 16 8 × 8 pixel block regions are defined for computation 

of gradients. Block sizes are tunable.

• For each 8 × 8 pixel block, a total of 64 local gradient magnitudes are computed. The preferred 

method is simple line and column derivatives [-1, 0, 1]  in  x/y; other gradient filter methods are 

tried, but larger filters with or without Gaussian filtering degrade accuracy and performance. 

Separate gradients are calculated for each color channel.

• Local gradient magnitudes are binned into a 9-bin histogram of edge orientations, quantizing 

dimensionality from 64 to 9, using bilinear interpolation; <9 bins produce poorer accuracy, and 

>9 bins does not seem to matter. Note that either rectangular R-HOG or circular log-polar CHOG 

binning regions can be used.

• Normalization of gradient magnitude histogram values to unit length to provide illumination 

invariance. Normalization is performed in groups, rather than on single histograms. Overlapping
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2 × 2 blocks of histograms is used within the detector window; the block overlapping method 

reduces sharp artifacts, and the 2 × 2 region size seems to work best.

• For the 64 × 128 pixel detector window method, a total of 128 8 × 8 pixel blocks are defined. Each 

8 × 8 block has four cells for computing separate 9-bin histograms. The total descriptor size is then 

8 × 16 × 4 × 9 = 4608. 

Note that various formulations of the sliding window and block sizes are used for dealing with 

specific application domains. See Fig. 4.12, showing a visualization of HOG descriptor computed 

using 7 × 15 8 × 8 pixel cells. Key findings from the HOG [80] design approach include the following:

• The abrupt edges at fine scales in the raw data are required for accuracy in the gradient calculations, 

and post-processing and normalizing the gradient bins later work well.

• L2-style block normalization of local contrast is preferred and provides better accuracy over global 

normalization; note that the local region blocks are overlapped to assist in the normalization.

• Dropping the L2 block normalization stage during histogram binning reduces accuracy by 27%.

• HOG features perform much better than HAAR-style detectors, and this makes sense when we 

consider that a HAAR wavelet is an integrated directionless value, while gradient magnitude and 

direction over the local HOG region provide a richer spectra. 

HOG Summary Taxonomy 

Spectra: Local region gradient histograms 

Feature shape: Rectangle or circle 

Feature pattern: Dense 64 × 128 typical rectangle 

Feature density: Dense overlapping blocks 

Search method: Grid over scale space 

Distance function: Euclidean 

Robustness: 4 (illumination, viewpoint, scale, noise) 

PHOG and Related Methods 

The Pyramid Histogram of Oriented Gradients (PHOG) [157] method is designed for global or 

regional image classification, rather than local feature detection. PHOG combines regional HOG 

features with whole image area features using spatial relationships between features spread across 

the entire image in an octave grid region subdivision; see Fig. 6.23. 

Fig. 6.23 Set of PHOG descriptors computed over the whole image, using octave grid cells to bound the edge 

information. (Center left) A single histogram. (Center right) Four histograms shown concatenated together. (Right) 

Sixteen histograms shown concatenated
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PHOG is similar to related work using a coarse-to-fine grid of region histograms called Spatial 

Pyramid Matching by Lazebni, Schmid, and Ponce [459], using histograms of oriented edges and SIFT 

features to provide multi-class classification. It is also similar to earlier work on pyramids of 

concatenated histogram features taken over a progressively finer grid, called Pyramid Match Kernel 

and developed by Grauman and Darrell [460], which computes correspondence using weighted, 

multiresolution histogram intersection. Other related earlier works using multiresolution histograms 

for texture classification are described in Ref. [123]. 

The PHOG descriptor captures several feature variables, including the following:

• Shape features, derived from local distribution of edges based on gradient features inspired by the 

HOG method [80].

• Spatial relationships, across the entire image by computing histogram features over a set of octave 

grid cells with blocks of increasingly finer size over the image.

• Appearance features, using a dense set of SIFT descriptors calculated across a regularly spaced 

dense grid. PHOG is demonstrated to compute SIFT vectors for color images; results are provided 

in [157] for the HSV color space. 

A set of training images is used to generate a set of PHOG descriptor variables for a class of images, 

such as cars or people. This training set of PHOG features is reduced using K-means clustering to a set 

of several hundred visual words to use for feature matching and image classification. 

Some key concepts of the PHOG are illustrated in Fig. 6.23. For the feature shape, the edges are 

computed using the Canny edge detector, and the gradient orientation is computed using the Sobel 

operator. The gradient orientation binning is linearly interpolated across adjacent histogram bins by 

gradient orientation (HOG), and each bin represents the angle of the edge. A HOG vector is computed 

for each size of grid cell across the entire image. The final PHOG descriptor is composed of a weighted 

concatenation of all the individual HOG histograms from each grid level. There is no scale-space 

smoothing between the octave grid cell regions to reduce fine detail. 

As shown in Fig. 6.23, the final PHOG contains all the HOGs concatenated. Note that for the center 

left image, the full grid size cell produces 1 HOG, for the center right, the half octave grid produces 

four HOGs, and for the right image, the fine grid produces 16 HOG vectors. The final PHOG is 

normalized to unity to reduce biasing due to concentration of edges or texture. 

PHOG Summary Taxonomy 

Spectra: Global and regional gradient orientation histograms 

Feature shape: Rectangle 

Feature pattern: Dense grid of tiles 

Feature density: Dense tiles 

Search method: Grid regions, no searching 

Distance function: l2 norm 

Robustness: 3 (image classification under some invariance to illumination, viewpoint, noise) 

Daisy and O-Daisy 

The Daisy Descriptor [180, 268] is inspired by SIFT and GLOH-like descriptors and is devised for 

dense-matching applications such as stereo mapping and tracking, reported to be about 40% faster than 

SIFT. See Fig. 6.24. Daisy relies on a set of radially distributed and increasing size Gaussian 

convolution kernels that overlap and resemble a flower-like shape (Daisy).
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Fig. 6.24 (Left) Daisy pattern region, which is composed of four sets of eight overlapping concentric circles, with 

increasing Gaussian blur in the outer circles, where the radius of each circle is proportional to the Gaussian kernel region 

standard deviation. The overlapping circular regions provide a degree of filtering against adjacent region transition 

artifacts. (Right) A hypothetical binary occlusion mask; darker regions indicate points that may be occluded and “turned 

off” in the descriptor during matching 

Daisy does not need local interest points and instead computes a descriptor densely at each pixel, 

since the intended application is stereo mapping and tracking. Rather than using gradient magnitude 

and direction calculations like SIFT and GLOH, Daisy computes a set of convolved orientation maps 

based on a set of oriented derivatives of Gaussian filters to create eight orientation maps spaced at equal 

angles. 

As shown in Fig. 6.24, the size of each filter region and the amount of blur in each Gaussian filter 

increase with distance away from the center, mimicking the human visual system by maintaining a 

sharpness and focus in the center of the field of view and decreasing focus and resolution farther away 

from the center. Like SIFT, Daisy also uses histogram binning of the local orientation to form the 

descriptor. 

Daisy is designed with optimizations in mind. The convolution orientation map approach consumes 

fewer compute cycles than the gradient magnitude and direction approach of SIFT and GLOH, yet 

yields similar results. The Daisy method also includes optimizations for computing larger Gaussian 

kernels by using a sequential set of smaller kernels and also by computing certain convolution kernels 

recursively. Another optimization is gained using a circular grid pattern instead of the rectangular grid 

used in SIFT, which allows Daisy to vary the rotation by rotating the sampling grid rather than 

recomputing the convolution maps. 

As shown in Fig. 6.24 (right image), Daisy also uses binary occlusion masks to identify portions of 

the descriptor pattern to use or ignore in the feature-matching distance functions. This is a novel feature 

and provides for invariance to occlusion. 

An FPGA-optimized version of Daisy, called O-Daisy [183], provides enhancements for increased 

rotational invariance. 

Daisy Summary Taxonomy 

Spectra: Gaussian convolution values 

Feature shape: Circular 

Feature pattern: Overlapping concentric circular
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Feature density: Dense at each pixel 

Search method: Dense sliding window 

Distance function: Euclidean 

Robustness: 3 (illumination, occlusion, noise) 

CARD 

The Compact and Real-Time Descriptor (CARD) method [184] is designed with performance 

optimizations in mind, using learning-based sparse hashing to convert descriptors into binary codes 

supporting fast Hamming distance matching. A novel concept from CARD is the lookup-table 

descriptor extraction of histograms of oriented gradients from local pixel patches, as well as the 

lookup-table binning into Cartesian or log-polar bins. CARD is reported to achieve significantly better 

rotation and scale robustness compared to SIFT and SURF, with performance at least ten times better 

than SIFT and slightly better than SURF. 

CARD follows the method of RIFF [185] for feature detection, using FAST features located over 

octave levels in the image pyramid. The complete CARD pyramid includes intermediate levels 

between octaves for increased resolution. The pyramid levels are computed at intervals of 1= 2
p 

, 

with level 0 being the full image. Keypoints are found using a Shi–Tomasi [128] optimized Harris 

corner detector. 

Like SIFT, CARD computes the gradient at each pixel and can use either Cartesian coordinate 

binning, or log-polar coordinate binning like GLOH; see Fig. 6.17. To avoid the costly bilinear 

interpolation of gradient information into the histogram bins, CARD instead optimizes this step by 

rotating the binning pattern before binning, as shown in Fig. 6.25. Note that the binning is further 

optimized using lookup tables, which contain function values based on principal orientations of the 

gradients in the patch. 
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Fig. 6.25 CARD patch pattern containing 17 log-polar coordinate bins, with image on left rotated to optimize binning
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As shown in Fig. 6.25, to speed up binning, instead of rotating the patch based on the estimated 

gradient direction to extract and bin a rotationally invariant descriptor, as done in SIFT and other 

methods, CARD rotates the binning pattern over the patch based on the gradient direction and then 

performs binning, which is much faster. Figure 6.25 shows the binning pattern unrotated on the right 

and rotated by π/8 on the left. All binned values are concatenated and normalized to form the 

descriptor, which is 128 bits long in the most accurate form reported [184]. 

CARD Summary Taxonomy 

Spectra: Gradient magnitude and direction 

Feature shape: Circular, variable-sized based on pyramid scale and principal orientation 

Feature pattern: Dense 

Feature density: Sparse at FAST interest points over image pyramid 

Search method: Sliding window 

Distance function: Hamming 

Robustness: 3 (illumination, scale, rotation) 

Robust Fast Feature Matching 

Robust feature matching in 2.3us developed by Taylor, Rosten, and Drummond [186] (RFM2.3) (this 

acronym is coined here by the author) is a novel, fast method of feature description and matching, 

optimized for both compute speed and memory footprint. RFM2.3 stands alone among the feature 

descriptors surveyed here with regard to the combination of methods and optimizations employed, 

including sparse region histograms and binary feature codes. One of the key ideas developed in 

RFM2.3 is to compute a descriptor for multiple views of the same patch by creating a set of scaled, 

rotated, and affine warped views of the original feature, which provides invariance under affine 

transforms such as rotation and scaling, as well as perspective. 

In addition to warping, some noise and blurring are added to the warped patch set to provide 

robustness to the descriptor. RFM2.3 is one of few methods in the class of deformable descriptors 

[292–294]. FAST keypoints in a scale-space pyramid are used to locate candidate features, and the 

warped patch set is computed for each keypoint. After the warped patch set has been computed, FAST 

corners are again generated over each new patch in the set to determine which patches are most distinct 

and detectable, and the best patches are selected and quantized into binary feature descriptors and 

saved in the pattern database. 

As shown in Fig. 6.26, RFM2.3 uses a sparse 8 × 8 sampling pattern within a 16 × 16 region to 

capture the patch. A sparse set of 13 pixels in the 8 × 8 sampling pattern is chosen to form the index 

into the pattern database for the sparse pattern. The index is formed as a 13-bit integer, where each bit is 

set to 1 if the pixel value is greater than the patch mean value, limiting the index to 213 or 8192 entries, 

so several features in the database may share the same index. However, feature differences can be 

computed very quickly using Hamming distance, so the index serves mostly as a database key for 

organizing like patches. A training phase determines the optimal set of index values to include in the 

feature database, and the optimal patterns to save, since some patterns are more distinct than others. 

Initially, features are captured at full resolution, but if few good features are found at full resolution, 

additional features are extracted at the next level of the image pyramid.
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Fig. 6.26 RFM2.3 (Left) Descriptor sparse sampling pattern. (Right) Sparse descriptor using 13 samples used to build 

the feature index into the database 

The descriptor is modeled during training as a 64-value normalized intensity distribution function, 

which is reduced in size to compute the final descriptor vector in two passes: First, the 64 values are 

reduced to a five-bin histogram of pixel intensity distribution; second, when training is complete, each 

histogram bin is binary encoded with a 1 bit if the bin is used, and a 0 bit if the bin is rarely used. The 

resulting descriptor is a compressed, binary encoded bit vector suitable for Hamming distance. 

RFM2.3 Summary Taxonomy 

Spectra: Normalized histogram patch intensity encoded into binary patch index code 

Feature shape: Rectangular, multiple viewpoints 

Feature pattern: Sparse patterns in 15 × 15 pixel patch 

Feature density: Sparse at FAST9 interest points 

Search method: Sliding window over image pyramid 

Distance function:Hamming 

Robustness: 4 (illumination, scale, rotation, viewpoint) 

RIFF, CHOG 

The rotation-invariant fast features (RIFF) [185] method is motivated by tracking and mapping 

applications in mobile augmented reality. The basis of the RIFF method includes the development 

of a radial gradient transform (RGT), which expresses gradient orientation and magnitude in a 

compute-efficient and rotationally invariant fashion. Another contribution of RIFF is a tracking 

method, which is reported to be more accurate than KLT with 26× better performance. RIFF is 

reported to be 15× faster than SURF. 

RIFF uses a HOG descriptor computed at FAST interest points located in scale space and generally 

follows the method of the author’s previous work in CHOG [171] (compressed HOG) for reduced 

dimensionality, low bitrate binning. Prior to binning the HOG gradients, a radial gradient transform 

(RGT) is used to create a rotationally invariant gradient format. As shown in Fig. 6.27 (left image), the 

RGT uses two orthogonal basis vectors (r, t) to form the radial coordinate system that surrounds the 

patch center point c, and the HOG gradient g is projected onto (r, t) to express as the rotationally 

invariant vector (gT r, gT t). A vector quantizer and a scalar quantizer are both suggested and used for 

binning, illustrated in Fig. 6.27.
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Fig. 6.27 Concepts behind the RIFF descriptor [185], based partially on CHOG [187] 

As shown in Fig. 6.27 (right image), the basis vectors can be optimized by using gradient direction 

approximations in the approximated radial gradient transform (ARGT), which is optimized to be easily 

computed using simple differences between adjacent, normalized pixels along the same gradient line, 

and simple 45° quantization. Also note in Fig. 6.27 (center left image) that the histogramming is 

optimized by sampling every other pixel within the annuli regions, and four annuli regions are used for 

practical reasons as a trade-off between discrimination and performance. To meet real-time system 

performance goals for quantizing the gradient histogram bins, RIFF uses a 5 × 5 scalar quantizer rather 

than a vector quantizer. 

In Fig. 6.27 (left image), the gradient projection of g at point c onto a radial coordinate system (r, t) 

is used for a rotationally invariant gradient expression, and the descriptor patch is centered at c. The 

center left image (Annuli) illustrates the method of binning, using four annuli rings, which reduces 

dimensionality, and sampling only the gray pixels provides a 2× speedup. The center and center right 

images illustrate the bin centering mechanism for histogram quantization: (1) the more flexible scalar 

quantizer SQ-25 and (2) the faster vector quantizer VQ-17. The right image illustrates the radial 

coordinate system basis vectors for gradient orientation radiating from the center outwards, showing 

the more compute efficient ARGT, or approximated radial gradient transform (RGT), which does not 

use floating point math (RGT not shown, see [185]). 

RIFF Summary Taxonomy 

Spectra: Local region histogram of approximated radial gradients 

Feature shape: Circular 

Feature pattern: Sparse every other pixel 

Feature density: Sparse at FAST interest points over image pyramid 

Search method: Sliding window 

Distance function: Symmetric KL-divergence 

Robustness: 4 (illumination, scale, rotation, viewpoint) 

Chain Code Histograms 

A chain code histogram (CCH) [172] descriptor records the shape of the perimeter as a histogram by 

binning the direction of the connected components—connected perimeter pixels in this case. As the 

perimeter is traversed pixel by pixel, the direction of the traversal is recorded as a number, as shown in 

Fig. 6.28, and recorded in a histogram feature. To match the CCH features, SSD or SAD distance 

metrics can be used.
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Fig. 6.28 Chain code process for making a histogram. (Left to right) (1) The eight possible directions that the connected 

perimeter may change. (2) Chain code values for each connected perimeter direction change; direction for determining 

the chain code value is starting from the center pixel. (3) An object with a connected perimeter highlighted by black 

pixels. (4) Chain code for the object following the connected perimeter starting at the top pixel. 5. Histogram of all the 

chain code values 

Chain code histograms are covered by U.S. Patent US4783828. CCH was invented in 1961 [172] 

and is also known as the Freeman chain code. A variant of the CCH is the vertex chain code [173], 

which allows for descriptor size reduction and is reported to have better accuracy. 

D-NETS 

The D-NETS (Descriptor-NETS) [106] approach developed by Hundelshausen and Sukthankar 

abandons patch or rectangular descriptor regions in favor of a set of strips connected at endpoints. 

D-NETS allows for a family of strip patterns composed of directed graphs between a set of endpoints; 

it does not specifically limit the types of endpoints or strip patterns that may be used. The D-NETS 

paper provides a discussion of results from three types of patterns:

• Clique D-NETS: A fully connected network of strips linking all the interest points. While the type 

of interest point used may vary within the method, the initial work reports results using SIFT 

keypoints.

• Iterative D-NETS: Dynamically creates the network using a subset of the interest points, increas-

ing the connectivity using a stopping criterion to optimize the connection density for obtaining 

desired matching performance and accuracy.

• Densely Sampled D-NETS: This variant does not use interest points, and instead densely samples 

the nets over a regularly spaced grid, a 10-pixel grid being empirically chosen and preferred, with 

some hysteresis or noise added to the grid positions to reduce pathological sampling artifacts. The 

dense method is suitable for highly parallel implementations for increased performance. 

For an illustration of the three D-NETS patterns and some discussion, see Fig. 4.8. 

Each strip is an array of raw pixel values sampled between two points. The descriptor itself is 

referred to as a d-token, and various methods for computing the d-token are suggested, such as binary 

comparisons among pixel values in the strip similar to FERNS or ORB, as well as comparing the 1D 

Fourier transforms of strip arrays, or using wavelets. The best results reported are a type of empirically 

engineered d-token, created as follows:

• Strip vector sampling, where each pixel strip vector is sampled at equally spaced locations 

between 10% and 80% of the length of the pixel strip vector; this sampling arrangement was 

determined empirically to ignore pixels near the endpoints.

• Quantize the pixel strip vector by integrating the values into a set of uniform chunks, s, to reduce 

noise.

• Normalize the strip vector for scaling and translation.
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• Discretize the vector values into a limited bit range, b.

• Concatenate all uniform chunks into the d-token, which is a bit string of length s × b. 

Descriptor matching makes use of an efficient and novel hashing and hypothesis correspondence 

voting method. D-NETS results are reported to be higher in precision and recall than ORB or SIFT. 

D-NETS Summary Taxonomy 

Spectra: Normalized, averaged linear pixel intensity chunks 

Feature shape: Line segment connected networks 

Feature pattern: Sparse line segments between chosen points 

Feature density: Sparse along lines 

Search method: Sliding window 

Distance function: Hashing and voting 

Robustness: 5 (illumination, scale, rotation, viewpoint, occlusion) 

Local Gradient Pattern 

A variation of the LBP approach, the local gradient pattern (LGP) [170], uses local region gradients 

instead of local image intensity pair comparison to form the binary descriptor. The 3 × 3 gradient of 

each pixel in the local region is computed, then each gradient magnitude is compared to the mean value 

of all the local region gradients, and the binary bit value of 1 is assigned if the value is greater, and 

0 otherwise. The authors claim accuracy and discrimination improvements over the basic LBP in face 

recognition algorithms, including a reduction in false positives. However, the compute requirements 

are greatly increased due to the local region gradient computations. 

LGP Summary Taxonomy 

Spectra: Local region gradient comparisons between center pixel and local region gradients 

Feature shape: Square 

Feature pattern: Every pixel 3 × 3 kernel region 

Feature density: Dense in 3 × 3 region 

Search method: Sliding window 

Distance function: Hamming 

Robustness: 3 (illumination, scale, rotation) 

Local Phase Quantization 

The local phase quantization (LPQ) descriptor [137–139] was designed to be robust to image blur, and 

it leverages the blur-insensitive property of Fourier phase information. Since the Fourier transform is 

required to compute phase, there is some compute overhead; however, integer DFT methods can be 

used for acceleration. LPQ is reported to provide robustness for uniform blur, as well as uniform 

illumination changes. LPQ is reported to provide equal or slightly better accuracy on nonblurred 

images than LBP and Gabor filter bank methods. While mainly used for texture description, LPQ can 

also be used for local feature description to add blur invariance by combining LPQ with another 

descriptor method such as SIFT. 

To compute, first a DFT is computed at each pixel over small regions of the image, such as 8 × 8 

blocks. The low four frequency components from the phase spectrum are used in the descriptor. The 

authors note that the kernel size affects the blur invariance, so a larger kernel block may provide more 

invariance at the price of increased compute overhead.
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Before quantization, the coefficients are de-correlated using a whitening transform, resulting in a 

uniform phase shift and 8° rotation, which preserves blur invariance. De-correlating the coefficients 

helps to create samples that are statistically independent for better quantization. 

For each pixel, the resulting vectors are quantized into an 8-dimensional space, using an 8-bit binary 

encoded bit vector like the LBP and a simple scalar quantizer to yield 1 and 0 values. Binning into the 

feature vector is performed using 256 hypercubes derived from the 8-dimensional space. The resulting 

feature vector is a 256-dimensional 8-bit code. 

LPQ Summary Taxonomy 

Spectra: Local region whitened phase using DFT → an 8-bit binary code 

Feature shape: Square 

Feature pattern: 8 × 8 kernel region 

Feature density: Dense every pixel 

Search method: Sliding window 

Distance function: Hamming 

Robustness: 3 (contrast, brightness, blur) 

Basis Space Descriptors 

This section covers the use of basis spaces to describe image features for computer vision applications. 

A basis space is composed of a set of functions, the basis functions, which are composed together as a 

set, such as a series like the Fourier series (discussed in Chap. 3). A complex signal can be decomposed 

into a chosen basis space as a descriptor. 

Basis functions can be designed and used to describe, reconstruct, or synthesize a signal. They 

require a forward transform to project values into the basis set and an inverse transform to move data 

back to the original values. A simple example is transforming numbers between the base 2 number 

system and the base 10 number system; each basis had advantages. 

Sometimes, it is useful to transform a dataset from one basis space to another to gain insight into the 

data, or to process and filter the data. For example, images captured in the time domain as sets of pixels 

in a Cartesian coordinate system can be transformed into other basis spaces, such as the Fourier basis 

space in the frequency domain, for processing and statistical analysis. A good basis space for computer 

vision applications will provide forward and inverse transforms. Again, the Fourier transform meets 

these criteria, as well as several other basis spaces. 

Basis spaces are similar to coordinate systems, since both have invertible transforms to related 

spaces. In some cases, simply transforming a feature spectra into another coordinate system makes 

analysis and representation simpler and more efficient. (Chapter 4 discusses coordinate systems used 

for feature representation.) Several of the descriptors surveyed in this chapter use non-Cartesian 

coordinate systems, including GLOH, which uses polar coordinate binning, and RIFF, which uses 

radial coordinate descriptors. 

Fourier Descriptors 

Fourier descriptors [191] represent feature data as sine and cosine terms, which can be observed in a 

Fourier power spectrum. The Fourier series, Fourier transform, and fast Fourier transform are used for 

a wide range of signal analysis, including 1D, 2D, and 3D problems. No discussion of image 

processing or computer vision is complete without Fourier methods, so we will explore Fourier 

methods here with applications to feature description.
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Instead of developing the mathematics and theory behind the Fourier series and Fourier transform, 

which has been done very well in the standard text by Bracewell [191], we discuss applications of the 

Fourier power spectrum to feature description and provide minimal treatment of the fundamentals here 

to frame the discussion; see also Chap. 3. The basic idea behind the Fourier series is to define a series of 

sine and cosine basis functions in terms of magnitude and phase, which can be summed to approximate 

any complex periodic signal. Conversely, the Fourier transform is used to decompose a complex 

periodic signal into the Fourier series set of sine and cosine basis terms. The Fourier series components 

of a signal, such as a line or 2D image area, are used as a Fourier descriptor of the region. 

For this discussion, a Fourier descriptor is the selected components from a Fourier power 

spectrum—typically, we select the lower-frequency components, which carry most of the power. 

Here are a few examples using Fourier descriptors; note that either or both the Fourier magnitude and 

phase may be used.

• Fourier Spectrum of LBP Histograms. As shown in Fig. 3.10, an LBP histogram set can be 

represented as a Fourier spectrum magnitude, which makes the histogram descriptor invariant to 

rotation.

• Fourier Descriptor of Shape Perimeter. As shown in Fig. 6.29, the shape of a polygon object can 

be described by Fourier methods using an array of perimeter to centroid line segments taken at 

intervals, such as 10°. The array is fed into an FFT to produce a shape descriptor, which is scale and 

rotation-invariant.

• Fourier Descriptor of Gradient Histograms. Many descriptors use gradients to represent features 

and use gradient magnitude or direction histograms to bin the results. Fourier spectrum magnitudes 

may be used to create a descriptor from gradient information to add invariance.

• Fourier Spectrum of Radial Line Samples. As used in the RFAN descriptor [107], radial line 

samples of pixel values from local regions can be represented as a Fourier descriptor of Fourier 

magnitudes.

• Fourier Spectrum Phase. The LPQ descriptor, described in this chapter, makes use of the Fourier 

spectrum phase information in the descriptor, and the LPQ is reported to be insensitive to blur 

owing to the phase information. 

Fig. 6.29 (Left) Polygon shape major and minor axis and bounding box. (Center) Object with radial sample length taken 

from the centroid to the perimeter, each sample length saved in an array, normalized. (Right) Image fed into the Fourier 

spectrum to yield a Fourier descriptor
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Other Basis Functions for Descriptor Building 

Besides the Fourier basis series, other function series and basis sets are used for descriptor building, 

pattern recognition,, and image coding. However, such methods are usually applied over a global or 

regional area. See Chap. 3 for details on several other methods. 

Sparse Coding Methods 

Any of the local feature descriptor methods discussed in this chapter may be used as the basis for a 

sparse codebook, which is a collection of descriptors boiled down to a representative set. Sparse coding 

and related methods are discussed in more detail in Chap. 10. Interesting examples are found in the 

work by Aharon, Elad, and Bruckstein [461] as well as Fei-Fei, Fergus, and Torralba [462]. See 

Fig. 6.30. 

Fig. 6.30 One method of feature learning using sparse coding, showing how histograms of sparse codes (HSC) are 

constructed from a set of learned sparse codes. The HSC method [98] is reported to outperform HOG in many cases 

Polygon Shape Descriptors 

Polygon shape descriptors compute a set of shape features for an arbitrary polygon or blob, and the 

shape is described using statistical moments or image moments (as discussed in Chap. 3). These shape 

features are based on the perimeter of the polygon shape. The methods used to delineate image 

perimeters to highlight shapes prior to measurement and description are often complex, empirically 

tuned pipelines of image preprocessing operations, like thresholding, segmentation, and morphology 

(as discussed in Chap. 2). Once the polygon shapes are delineated, the shape descriptors are computed; 

see Fig. 6.31. Typically, polygon shape methods are applicable to larger region size features. In the 

literature, this topic may also be discussed as image moments. For a deep dive into the topic of image 

moments, see Flusser et al. [444].
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Fig. 6.31 Polygon shape descriptors. (Left) Malachite pieces. (Right) Polygon shapes defined and labeled after binary 

thresholding, perimeter tracing, and feature labeling. (Image processing and particle analysis performed using ImageJ 

Fiji) 

Polygon shape methods are commonly used in medical and industrial applications, such as 

automated microscopy for cell biology, and also for industrial inspection; see Fig. 6.31. Commercial 

software libraries are available for polygon shape description, commonly referred to as particle 

analysis or blob analysis. See Appendix C. 

MSER Method 

The Maximally Stable Extremal Regions (MSER) method [160] is usually discussed in the literature as 

an interest region detector and in fact it is. However, we include MSER in the shape descriptor section 

because MSER regions can be much larger than other interest point methods, such as HARRIS 

or FAST. 

The MSER detector was developed for solving disparity correspondence in a wide baseline stereo 

system. Stereo systems create a warped and complex geometric depth field, and depending on the 

baseline between cameras and the distance of the subject to the camera, various geometric effects must 

be compensated for. In a wide baseline stereo system, features nearer the camera are more distorted 

under affine transforms, making it harder to find exact matches between the left/right image pair. The 

MSER approach attempts to overcome this problem by matching on blob-like features. MSER regions 

are similar to morphological blobs and are fairly robust to skewing and lighting. MSER is essentially 

an efficient variant of the watershed algorithm, except that the goal of MSER is to find a range of 

thresholds that leave the watershed basin unchanged in size. 

The MSER method involves sorting pixels into a set of regions based on binary intensity 

thresholding; regions with similar pixel value over a range of threshold values in a connected 

component pattern are considered maximally stable. To compute a MSER, pixels are sorted in a 

binary intensity thresholding loop, which sweeps the intensity value from min to max. First, the binary 

threshold is set to a low value such as zero on a single image channel—luminance, for example. Pixels 

< the threshold value are black, and pixels ≥ are white. At each threshold level, a list of connected 

components or pixels is kept. The intensity threshold value is incremented from 0 to the max pixel 

value. Regions that do not grow or shrink or change as the intensity varies are considered maximally 

stable, and the MSER descriptor records the position of the maximal regions and the corresponding 

thresholds.
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In stereo applications, smaller MSER regions are preferred and correlation is used for the final 

correspondence, and similarity is measured inside a set of circular MSER regions at chosen rotation 

intervals. Some interesting advantages of the MSER include the following:

• Multiscale features and multiscale detection. Since the MSER features do not require any image 

smoothing or scale space, both coarse features and fine-edge features can be detected.

• Variable-size features computed globally across an entire region, not limited to patch size or search 

window size.

• Affine transform invariance, which is a specific goal.

• General invariance to shape change, and stability of detection, since the extremal regions tend to be 

detected across a wide range of image transformations. 

The MSER can also be considered the basis for a shape descriptor and as an alternative to 

morphological methods of segmentation. Each MSER region can be analyzed and described using 

shape metrics, as discussed later in this chapter. 

Object Shape Metrics for Blobs and Polygons 

Object shape metrics are powerful and yield many degrees of freedom with respect to invariance and 

robustness. Object shape metrics are not like local feature metrics, since object shape metrics can 

describe much larger features. This is advantageous for tracking from frame to frame. For example, a 

large object described by just a few simple object shape metrics such as area, perimeter, and centroid 

can be tracked from frame to frame under a wide range of conditions and invariance. For more 

information, see Refs. [100, 101] for a survey of 2D shape description methods. 

Shape can be described by several methods, including the following:

• Object Shape Moments and Metrics: the focus of this section.

• Image Moments: see Chap. 3 under “Image Moments.”

• Fourier Descriptors: discussed in this chapter and Chap. 3.

• Shape Context Feature Descriptor: discussed in this section.

• Chain Code Descriptor for Perimeter Description: discussed in this section. 

Object shape is closely related to the field of morphology, and computer methods for morphological 

processing are discussed in detail in Chap. 2. Also, see the discussion about morphological interest 

points earlier in this chapter. 

In many areas of computer vision research, local features seem to be favored over object shape-

based features. The lack of popularity of shape analysis methods may be a reaction to the effort 

involved in creating preprocessing pipelines of filtering, morphology, and segmentation to prepare the 

image for shape analysis. If the image is not preprocessed and prepared correctly, shape analysis is not 

possible. (See Chap. 8 for a discussion of a hypothetical shape analysis preprocessing pipeline.) 

Polygon shape metrics can be used for virtually any scene analysis application to find common 

objects and take accurate measurements of their size and shape; typical applications include biology 

and manufacturing. In general, most of the polygon shape metrics are rotational and scale-invariant. 

Table 6.7 provides a sampling of some of the common metrics that can be derived from region shapes, 

both binary shapes and grayscale shapes. 

Shape is considered to be binary; however, shape can be computed around intensity channel objects 

as well, using grayscale morphology. Perimeter is considered a set of connected components. The 

shape is defined by a single pixel wide perimeter at a binary threshold or within an intensity band, and 

pixels are either on, inside, or outside of the perimeter. The perimeter edge may be computed by



scanning the image, pixel by pixel, and examining the adjacent touching pixel neighbors for connec-

tivity. Or, the perimeter may be computed from the shape matrix [284] or chain code discussed earlier 

in this chapter. Perimeter length is computed for each segment (pixel), where segment length = 1 for 

horizontal and vertical neighbors and 2
p 

otherwise for diagonal neighbors. 
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Table 6.7 Various common object shape and blob object metrics 

Description 

Object binary shape metrics 

Perimeter Length of all points around the edge of the object, including the sum of diagonal 

lengths ≃1.4 and adjacent lengths = 1 

Area Total area of object in pixels 

Convex hull Polygon shape or set of line segments enclosing all perimeter points 

Centroid Center of object mass, average value of all pixel coordinates or average value of all 

perimeter coordinates 

Fourier descriptor Fourier spectrum results from an array containing the length of a set of radial line 

segments passing from centroid to perimeter at regular angles used to model a 1D 

signal function, the 1D signal function is fed into a 1D FFT, and the set of FFT 

magnitude data is used as a metric for a chosen set of octave frequencies 

Major/minor axis Longest and shortest line segments passing through centroid contained within and 

touching the perimeter 

Feret Largest caliper diameter of object 

Breadth Shortest caliper diameter 

Aspect ratio Feret/breadth 

Circularity 4 × Pi × Area/Perimeter2 

Roundness 4 × Area/(Pi × Feret2 ) 

(Can also be calculated from the Fourier descriptors) 

Area equivalent diameter sqrt((4/Pi) × Area) 

Perimeter equivalent diameter Area/Pi 

Equivalent ellipse (Pi × Feret × Breadth)/4 

Compactness sqrt((4/Pi) × Area)/Feret 

Solidity Area/Convex_Area 

Concavity Convex_Area-Area 

Convexity Convex_Hull/Perimeter 

Shape Perimeter2 /Area 

Modification ratio (2 × MinR)/Feret 

Shape matrix A 2D matrix representation or plot of a polygon shape (may use Cartesian or polar 

coordinates; see Fig. 6.32) 

Grayscale object shape metrics 

SDM plots a See Chap. 3, “Texture Metrics” section 

Scatter plots a See Chap. 3, “Texture Metrics” section 

Statistical moments of grayscale 

pixel values 

MinimumMaximumMedianAverageAverage deviationStandard 

deviationVarianceSkewnessKurtosisEntropy 
a Note: Some of binary object metrics also apply to grayscale objects 

The perimeter may be used as a mask, and grayscale or color channel statistical metrics may be 

computed within the region. The object area is the count of all the pixels inside the perimeter. The 

centroid may be computed either from the average of all (x, y) coordinates of all points contained 

within the perimeter area, or from the average of all perimeter (x, y) coordinates. 

Shape metrics are powerful. For example, shape metrics may be used to remove or excluding 

objects from a scene prior to measurement. For example, objects can be removed from the scene when 

the area is smaller than a given size, or if the centroid coordinates are outside a given range.
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As shown in Fig. 6.29 and Table 6.2, the Fourier descriptor provides a rotation and scale-invariant 

shape metric, with some occlusion invariance also. The method for determining the Fourier descriptor 

is to take a set of equally angular-spaced radius measurements, such as every 10°, from the centroid out 

to points on the perimeter, and then to assemble the radius measurements into a 1D array that is run 

through a 1D FFT to yield the Fourier moments of the object. Or radial pixel spokes can be used as a 

descriptor. 

Other examples of useful shape metrics, shown in Fig. 6.29, include the bounding box with major 

and minor axis, which has longest and shortest diameter segments passing through the centroid to the 

perimeter; this can be used to determine rotational orientation of an object. 

The SNAKES method [465] uses a spline model to fit a collection of interest points, such as selected 

perimeter points, into a region contour. The interest points are the spline points. The SNAKE can be 

used to track contoured features from frame to frame, deforming around the interest point locations. 

In general, the 2D object shape methods can be extended to 3D data; however, we do not explore 3D 

object shape metrics here, see Refs. [166, 167] for a survey of 3D shape descriptors. 

Shape Context 

The shape context method developed by Belongie, Malik, and Puzicha [201–203] describes local 

feature shape using a reference point on the perimeter as the Cartesian axis origin, and binning selected 

perimeter point coordinates relative to the reference point origin. The relative coordinates of each point 

are binned into a log-polar histogram. Shape context is related to the earlier shape matrix descriptor 

[284] developed in 1985 as shown in Fig. 6.32, which describes the perimeter of an object using 

log-polar coordinates also. The shape context method provides for variations, described in several 

papers by the authors [201–203]. Here, we look at a few key concepts. 

Fig. 6.32 A shape matrix descriptor [284] for the perimeter of an object. (Left two images) Cartesian coordinate shape 

matrix. (Right two images) polar coordinate shape matrix using three rows of eight numbered bin regions, and gray boxes 

represent pixels to be binned. Note that multiple shape matrices can be used together. Values in matrix are set if the pixel 

fills at least half of the bin region, and no interpolation is used 

To begin, the perimeter edge of the object is sparsely sampled at uniform intervals, typically 

keeping about 100 edge sample points for coarse binning. Sparse perimeter edge points are typically 

distinct from interest points and found using perimeter tracing. Next, a reference point is chosen on the 

perimeter of the object as the origin of a Cartesian space, and the vector angle and magnitude (r, θ) 

from the origin point to each other perimeter point are computed. The magnitude or distance is 

normalized to fit the histogram. Each sparse perimeter edge point is used to compute a tangent with 

the origin. Finally, each normalized vector is binned using (r, θ) into a log-polar histogram, which is 

called the shape context.
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An alignment transform is generated between descriptor pairs during matching, which yields the 

difference between targets and chosen patterns, and could be used for reconstruction. The alignment 

transform can be chosen as desired from affine, Euclidean, spline-based, and other methods. Corre-

spondence uses the Hungarian method, which includes histogram similarity, and is weighted by the 

alignment transform strength using the tangent angle dissimilarity. Matching may also employ a local 

appearance similarity measure, such as normalized correlation between patches or color histograms. 

The shape context method provides a measure of invariance over scale, translation, rotation, 

occlusion, and noise. See Fig. 6.33. 

Fig. 6.33 Shape context method. (Left) Perimeter points are measured as a shape vector, both angle and distance, with 

respect to a chosen perimeter point as the reference Cartesian origin. (Right) Shape vectors are binned into a log-polar 

histogram feature descriptor 

3D, 4D, Volumetric, and Multimodal Descriptors 

With the advent of more and more 3D sensors, such as stereo cameras and other depth-sensing 

methods, as well as the ubiquitous accelerometers and other sensors built into inexpensive mobile 

devices, the realm of 3D feature description and multimodal feature description is beginning to 

blossom. 

Many 3D descriptors are associated with robotics research and 3D localization. Since the field of 3D 

feature description is early in the development cycle, it is not yet clear which methods will be widely 

adopted, so we present only a small sampling of 3D descriptor methods here. These include 3D HOG 

[162], 3D SIFT [161], and HON 4D [164], which are based on familiar 2D methods. We refer the 

interested reader to Refs. [166, 167, 182] for a survey of 3D shape descriptors. Several interesting 3D 

descriptor metrics are available as open source in the Point Cloud Library,2 including Radius-Based

2 http://pointclouds.org.

http://pointclouds.org


Surface Descriptors (RSD) [464], Principal Curvature Descriptors (PCD), Signatures of Histogram 

Orientations (SHOT) [466], Viewpoint Feature Histogram (VFH) [330], and Spin Images [463].
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Some noteworthy 3D descriptors we do not survey include 3D ShapeNets by Wu [789], 3D voxel 

patterns [790], triangular surface patches [791], 3D surface patch features [791], and Refs. [792– 

796]. Applications driving the research into 3D descriptors include robotics and activity recognition, 

where features are tracked frame to frame as they morph and deform. The goals are to localize position 

and recognize human actions, such as walking, waving a hand, turning around, or jumping. See also 

the LBP variants for 3D: V-LBP and LBP-TOP, which are surveyed earlier in this chapter as illustrated 

in Fig. 6.12, which are also used for activity recognition. Since the 2D features are moving during 

activity recognition, time is the third dimension incorporated into the descriptors. We survey some 

notable 3D activity recognition research here. 

One of the key concepts in the action recognition work is to extend familiar 2D features into a 3D 

space that is spatiotemporal, where the 3D space is composed of 2D x, y video image sequences over 

time t into a volumetric representation with the form v(x, y, t). In addition, the 3D surface normal, 3D 

gradient magnitude, and 3D gradient direction are used in many of the action recognition descriptor 

methods. 

The development of 3D descriptors is continuing, which is beyond the scope of this brief introduc-

tion. However, for the interested reader, we mention recent work in the areas of volumetric shape 

descriptors, depth image surface shape descriptors, and 3D reconstruction using depth-based landmark 

detectors, which can be found in Refs. [789–796]. 

3D HOG 

The 3D HOG [162] is partially based on some earlier work in volumetric features [165]. The general 

idea is to employ the familiar HOG descriptor [80] in a 3D HOG descriptor formulation, using a stack 

of sequential 2D video frames or slices as a 3D volume, and to compute spatiotemporal gradient 

orientation on adjacent frames within the volume. For efficiency, a novel integral video approach is 

developed as an alternative to image pyramids based on the same line of thinking as the integral image 

approach used in the Viola–Jones method. 

A similar approach using the integral video concept was also developed in [165] using a 

subsampled space of 64 × 64 over 4–40 video frames in the volume, using pixel intensity instead of 

the gradient direction. The integral video method, which can also be considered an integral volume 

method, allows for arbitrary cuboid regions from stacked sequential video frames to be integrated 

together to compute the local gradient orientation over arbitrary scales. This is space-efficient and time-

efficient compared to using precomputed image pyramids. In fact, this integral video integration 

method is a novel contribution of the work and may be applied to other spectra such as intensity, 

color, and gradient magnitude in either 2D or 3D to eliminate the need for image pyramids—providing 

more choices in terms of image scale besides just octaves. 

The 3D HOG descriptor computations are illustrated in Fig. 6.34.  To  find feature keypoints to 

anchor the descriptors, a space-time extension of the Harris operator [163] is used, and then, a 

histogram descriptor is computed from the mean of the oriented gradients in a cubic region at the 

keypoint. Since gradient magnitude is sensitive to illumination changes, gradient orientation is used 

instead to provide invariance to illumination, and it is computed over 3D cuboid regions using simple 

x, y, z derivatives. The mean gradient orientation of any 3D cuboid is computed quickly using the 

integral video method. Gradient orientations are quantized into histogram bins via projection of each 

vector onto the faces of a regular icosahedron 20-sided shape to combine all vectors, as shown in 

Fig. 6.34. The 20 icosahedron faces act as the histogram bins. The sparse set of spatiotemporal features 

is combined into a bag of features or bag of words in a visual vocabulary.
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Fig. 6.34 HOG 3D descriptor computation. (Left) 2 × 2 × 2 descriptor cell block. (Left center) Gradient orientation 

histogram computed over 2 × 2 × 2 cell sub-blocks. (Right center) Gradient orientations quantized by projecting the 

vector intersection to the faces of a 20-faceted icosahedron. (Right) Mean gradient orientation computed over integral 

video blocks (volume vector integral) 

HON 4D 

A similar approach to the 3D HOG is called HON 4D [164], which computes descriptors as Histogram 

of Oriented 4D Normals, where the 3D surface normal + time add up to four dimensions (4D). HON 

4D uses sequences of depth images or 3D depth maps as the basis for computing the descriptor, rather 

than 2D image frames, as in the 3D HOG method. So, a depth camera is needed. In this respect, HON 

4D is similar to some volume rendering methods, which compute 3D surface normals, and may be 

accelerated using similar methods [382–384]. 

In the HON 4D method, the surface normals capture the surface shape cues of each object, and 

changes in normal orientation over time can be used to determine motion and pose. Only the 

orientation of the surface normal is significant in this method, so the normal lengths are all normalized 

to unity length. As a result, the binning into histograms acts differently from the HOG style binning, so 

that the fourth dimension of time encodes differences in the gradient from frame to frame. The HON 

4D descriptor is binned and quantized using 4D projector functions, which quantize local surface 

normal orientation into a 600-cell polychron, which is a geometric extension of a 2D polygon into four-

space. 

Consider the discrimination of the HON 4D method using gradient orientation vs. the HOG method 

using gradient magnitude. If two surfaces are the same or similar with respect to gradient magnitude, 

the HOG style descriptor cannot differentiate; however, the HON 4D style descriptor can differentiate 

owing to the orientation of the surface normal used in the descriptor. Of course, computing 3D normals 

is compute-intensive without special optimizations considering the noncontiguous memory access 

patterns required to access each component of the volume. 

3D SIFT 

The 3D SIFT method [161] starts with the 2D SIFT feature method and reformulates the feature 

binning to use a volumetric spatiotemporal area v(x,y,t), as shown in Fig. 6.35.
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Fig. 6.35 Computation of the 3D SIFT [161] vector histogram bins as a combination of the combined gradient 

orientation of the sub-volumes in a volume space or 3D spatiotemporal region of three consecutive 2D image frames 

The 3D orientation of the gradient pair orientation is computed as follows: 

m3D  x, y, tð  Þ ¼  L2 x þ L2 y þ L2 t 

θ x, y, tð  Þ ¼  tan - 1 Ly 

Lx 

ϕ x, y, tð  Þ ¼  tan - 1 Lyt 

L2 x þ L2y

This method provides a unique two-valued (ϕ, θ) representation for each angle of the gradient 

orientation in three-space at each keypoint. The binning stage is handled differently from SIFT and 

instead uses orthogonal bins defined by meridians and parallels in a spherical coordinate space. This is 

simpler to compute, but requires normalization of each value to account for the spherical difference in 

the apparent size ranging from the poles to the equator. 

To compute the SIFT descriptor, the 3D gradient orientation of each sub-histogram is used to guide 

rotation of the 3D region at the descriptor keypoint to point to 0, which provides a measure of rotational 

invariance to the descriptor. Each point will be represented as a single gradient magnitude and two 

orientation vectors (ϕ, θ) instead of one, as in 2D SIFT. The descriptor binning is computed over three 

dimensions into adjacent cubes instead of over two dimensions in the 2D SIFT descriptor. 

Once the feature vectors are binned, the feature vector set is clustered into groups of like features, or 

words, using hierarchical K-means clustering into a spatiotemporal word vocabulary. Another step 

beyond the clustering could be to reduce the feature set using sparse coding methods [89–91], but the 

sparse coding step is not attempted.
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Results using 3D SIFT for action recognition are reported to be quite good compared to other 

similar methods; see Ref. [161]. 

Summary 

In this chapter, we survey a wide range of local interest point detectors and feature descriptor methods 

to learn “what” practitioners are doing, including both 2D and 3D methods. The vision taxonomy from 

Chap. 5 is used to divide the feature descriptor survey along the lines of descriptor families, such as 

local binary methods, spectra methods, and polygon shape methods. There is some overlap between 

local and regional descriptors; however, this chapter tries to focus on local descriptor methods, leaving 

regional methods to Chap. 3. Local interest point detectors are discussed in a simple taxonomy 

including intensity-based regions methods, edge-based region methods, and shape-based region 

methods, including background on key concepts and mathematics used by many interest point detector 

methods. Some of the difficulties in choosing an appropriate interest point detector are discussed, and 

several detector methods are surveyed. 

This chapter also highlights retrofits to common descriptor methods. For example, many descriptors 

are retrofitted by changing the descriptor spectra used, such as LBP vs. gradient methods, or by 

swapping out the interest point detector for a different method. Summary information is provided for 

feature descriptors following the taxonomy attributes developed in Chap. 5 to enable limited 

comparisons, using concepts from the analysis of local feature description design concepts presented 

in Chap. 4. 

Learning Assignments 

1. Interest points, or keypoints, are located in images at locations such as maxima and minima. 

Describe the types of maxima and minima features found in images. 

2. Interest point detectors must be selected and parametrically tuned to give best results. Describe 

various approaches to select and tune interest point detectors for a range of different types of 

images. 

3. Describe your favorite interest point detector, discuss the advantages compared to other detectors, 

and describe the basic algorithm. 

4. Describe and summarize the names of as many interest point detectors as you can remember, and 

describe the basic concepts and goals of each algorithm. 

5. An interest point adapter function can be devised to help tune interest point parameters to 

automatically find better interest points. Select an interest point detector of your choice, describe 

how the interest point detector algorithm works using pseudo-code, describe each parameter to the 

interest point function, describe the image search pattern the adapter could use, and describe 

parameters to control region size and iterations. (See also assignment 6 below.) 

6. Write an interest point adapter function using your favorite interest point detector in your favorite 

programming language, and provide test results. 

7. Describe how the local binary pattern (LBP) algorithm works using pseudo-code. 

8. List a few applications for the local binary pattern. 

9. Describe how the local binary pattern can be stored in a rotationally invariant format. 

10. Compare local binary pattern algorithms including Brief, Brisk, Orb, and Freak, and highlight the 

differences in the pixel region sampling patterns. 

11. List the distance function most applicable to local binary descriptors, and how it can be optimized.
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Describe the basic SIFT algorithm, highlighting the scales over which the pixel regions are 

sampled, the algorithm for detecting interest points, the algorithm for computing the feature 

descriptor, and the summary information stored in the descriptor. 

13. Describe at least one enhancement to the basic SIFT algorithm, such as SIFT-PCA and SIFT-

GLOH, SIFT-SIFER, or RootSIFT, and highlight the major improvements provided by the 

enhancement. 

14. Describe the pixel patch region shape and sizes used in the SIFT algorithm, and describe how the 

pixel samples are weighted within the region. 

15. Discuss the SURF feature descriptor algorithm. 

16. Compare the local binary feature descriptors ORB, FREAK, and BRISK. 

17. Describe how HAAR-like features are used in feature description, draw or describe a few example 

HAAR-like features, and discuss how HAAR features are related to wavelets. 

18. Describe integral images, how they are built, and discuss why integral images can be used to 

optimize working with HAAR filters. 

19. Describe the Viola–Jones feature classification funnel and pipeline. 

20. Design an algorithm to compute gradient histograms from a local region, describe how to create a 

useful feature descriptor from the gradient histograms, and select a specific distance function that 

could be applied to measure correspondence between gradient histograms, and discuss the 

strengths and weaknesses of your algorithm. 

21. Describe the algorithm for your favorite feature descriptor, discuss the advantages, and provide 

simple comparisons to a few other feature descriptors. 

22. Describe how a chain code histogram is computed. 

23. Describe how a polygon feature shape can be refined (e.g., using morphology operations and 

thresholding operations), and then describe the types of feature metrics that can be computed over 

polygon shapes. 

24. List at least five polygon shape feature metrics and describe how they are computed, including 

perimeter and centroid.



Buy the truth and do not sell it.

—Proverbs 23:23

Key topics include:

•

synthetic ground truth dataset

open questions.

What Is Ground Truth Data?

points, corners, feature descriptors, shapes, and histograms, forms a model.

Ground Truth Data Topics, Benchmarks, 
Analysis 7 

This chapter discusses several topics pertaining to ground truth data, the basis for computer vision 

metric analysis. We look at examples to illustrate the importance of ground truth data design and use, 

including manual and automated methods. We then illustrate ground truth data by developing a 

method and corresponding ground truth dataset for measuring interest point detector response as 

compared to human visual system response and human expectations. Also included here are example 

applications of the general robustness criteria and the general vision taxonomy developed in Chap. 5 as 

applied to the preparation of hypothetical ground truth data. Lastly, we look at the current state of the 

art, its best practices, and a survey of available ground truth datasets.

• Creating and collecting ground truth data: manual vs. synthetic methods

• Labeling and describing ground truth data: automated vs. human annotated

• Selected ground truth datasets

• Metrics paired with ground truth data

• Overfitting, underfitting, and measuring quality

• Publically available datasets 

An example scenario that compares the human visual system to machine vision detectors, using a 

Ground truth data may not be a cutting-edge research area; however, it is as important as the 

algorithms for machine vision. Let us explore some of the best-known methods and consider some 

In the context of computer vision, ground truth data includes a set of images, and a set of labels on the 

images, and defining a model for object recognition as discussed in Chap. 4, including the count, 

location, and relationships of key features. The labels are added either by a human or automatically by 

image analysis, depending on the complexity of the problem. The collection of labels, such as interest 
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For deep learning systems (surveyed in Chap. 10), the training protocols often involve expanding 

the training set by including geometric transformations and contrast enhancements to each original 

image to create more variations to the training set. 

A model may be trained using a variety of machine learning methods. At run-time, the detected 

features are fed into a classifier to measure the correspondence between detected features and modeled 

features. Modeling, classification, and training are covered elsewhere in this book. Instead, we are 

concerned here with the content and design of the ground truth images. 

Creating a ground truth dataset, then, may include consideration of the following major tasks:

• Model design. The model defines the composition of the objects—for example, the count, strength, 

and location relationship of a set of SIFT features. The model should be correctly fitted to the 

problem and image data so as to yield meaningful results.

• Training set. This set is collected and labeled to work with the model, and it contains both positive 

and negative images and features. Negatives contain images and features intended to generate false 

matches; see Fig. 7.1. 

Positive 

Images 

Negative 

Images 

All Images 

Fig. 7.1 Set of all ground truth data, composed of both positive and negative training examples 

Test set. A set of images is collected for testing against the training set to verify the accuracy of the 

model to predict the correct matches.

• Classifier design. This is constructed to meet the application goals for speed and accuracy, 

including data organization and searching optimizations for the model.

• Training and testing. This work is done using several sets of images to check against ground truth. 

Unless the ground truth data contains carefully selected and prepared image content, the algorithms 

cannot be measured effectively. Thus, ground-truthing is closely related to root-causing: there is no 

way to improve what we cannot measure and do not understand. Being able to root-cause algorithm 

problems and understand performance and accuracy are primary purposes for establishing ground truth 

data. Better ground truth data will enable better analysis. 

Ground truth data varies by task. For example, in 3D image reconstruction or face recognition, 

different attributes of the ground truth data must be recognized for each task. Some tasks, such as face 

recognition, require segmentation and labeling to define the known objects, such as face locations, 

position and orientation of faces, size of faces, and attributes of the face, such as emotion, gender, and 

age. Other tasks, such as 3D reconstruction, need the raw pixels in the images and a reference 3D mesh 

or point cloud as their ground truth.
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Ground truth datasets fall into several categories:

• Synthetic produced: Images are generated from computer models or renderings.

• Real produced: A video or image sequence is designed and produced.

• Real selected: Real images are selected from existing sources.

• Machine-automated annotation: Feature analysis and learning method are used to extract features 

from the data.

• Human annotated: An expert defines the location of features and objects.

• Combined: Any mixture of the above. 

Many practitioners are firmly against using synthetic datasets and insist on using real datasets. 

However, deep-learning systems often permute the original data by rotating, scaling, adding noise, and 

changing contrast to hopefully add more robustness to the training process. See Chap. 10 for details on 

the training protocols for various DNNs and CNNs. In some cases, random ground truth images are 

required; in other cases, carefully scripted and designed ground truth images need to be produced, 

similar to creating a movie with scenes and actors. 

Random and natural ground truth data with unpredictable artifacts, such as poor lighting, motion 

blur, and geometric transformation, is often preferred. Many computer problems demand real images 

for ground truth, and random variations in the images are important. Real images are often easy to 

obtain and/or easy to generate using a video camera or even a cell phone camera. But creating synthetic 

datasets is not as clear; it requires knowledge of appropriate computer graphics rendering systems and 

tools, so the time investment to learn and use those tools may outweigh their benefits. 

However, synthetic computer-generated datasets can be a way to avoid legal and privacy issues 

concerning the use of real images. 

Previous Work on Ground Truth Data: Art vs. Science 

In this section, we survey some literature on ground truth data. We also highlight several examples of 

automatic ground truth data labeling, as well as other research on metrics for establishing if, in fact, the 

ground truth data is effective. Other research surveyed here includes how closely ground truth features 

agree with human perception and expectations, for example, whether or not the edges that humans 

detect in the ground truth data are, in fact, found by the chosen detector algorithms. 

General Measures of Quality Performance 

Compared to other topics in computer vision, little formal or analytic work has been published to guide 

the creation of ground truth data. However, the machine learning community provides a wealth of 

guidance for measuring the quality of visual recognition between ground truth data used for training 

and test datasets. In general, the size of the training set or ground truth data is key to its accuracy [286– 

288] and the larger the better, assuming the right data is used. 

Key journals to dig deeper into machine learning and testing against ground truth data include the 

journal IEEE PAMI for Pattern Analysis and Machine Intelligence, whose articles on the subject go 

back to 1979. While the majority of ground truth datasets contain real images and video sequences, 

some practitioners have chosen to create synthetic ground truth datasets for various application 

domains, such as the standard Middlebury dataset with synthetic 3D images. See Appendix B for 

available real ground truth datasets, along with a few synthetic datasets.
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One noteworthy example framework for ground truth data, detector, and descriptor evaluation is the 

Mikolajczyk and Schmidt methodology (M&S), discussed later in this chapter. Many computer vision 

research projects follow the M&S methodology using a variety of datasets. 

Measures of Algorithm Performance 

Ericsson and Karlsson [76] developed a ground truth correspondence measure (GCM) for 

benchmarking and ranking algorithm performance across seven real datasets and one synthetic dataset. 

Their work focused on statistical shape models and boundaries, referred to as polygon shape 

descriptors in the vision taxonomy in Chap. 5. The goal was to automate the correspondence between 

shape models in the database and detected shapes from the ground truth data using their GCM. Since 

shape models can be fairly complex, the goal of automating model comparisons and generating quality 

metrics specific to shape description is novel. 

Dutagaci et al. [65] developed a framework and method, including ground truth data, to measure the 

perceptual agreement between humans and 3D interest point detectors—in other words, do the 3D 

interest point detectors find the same interest points as the humans expect? The ground truth data 

includes a known set of human-labeled interest points within a set of images, which were collected 

automatically by an Internet scraper application. The human-labeled interest points were sorted toward 

a consensus set, and outliers were rejected. The consensus criterion was a radius region counting the 

number of humans who labeled interest points within the radius. A set of 3D interest point detectors 

was ran against the data and compared using simple metrics such as false positives, false negatives, and 

a weighted miss error. The ground truth data was used to test the agreement between humans and 

machine vision algorithms for 3D interest point detectors. The conclusions included observations that 

humans are indecisive and widely divergent about choosing interest points, and also that interest point 

detection algorithms are a fuzzy problem in computer vision. 

Hamarneh et al. [62] develop a method of automatically generating ground truth data for medical 

applications from a reference dataset with known landmarks, such as segmentation boundaries and 

interest points. The lack of experts trained to annotate the medical images and generate the ground truth 

data motivated the research. In this work, the data was created by generating synthetic images 

simulating object motion, vibrations, and other considerations, such as noise. Prastawa et al. [63] 

developed a similar approach for medical ground truth generation. Haltakov et al. [437] developed 

synthetic ground truth data from an automobile-driving simulator for testing driver assistance 

algorithms, which provided situation awareness using computer vision methods. 

Vedaldi et al. [64] devised a framework for characterizing affine covariant detectors, using 

synthetically generated ground truth as 3D scenes employing ray tracing, including simulated natural 

and man-made environments; a depth map was provided with each scene. The goal was to characterize 

covariant detector performance under affine deformations, and to design better covariant detectors as a 

result. A set of parameterized features were defined for modeling the detectors, including points, disks 

and oriented disks, and various ellipses and oriented ellipses. A large number of 3D scenes were 

generated, with up to 1000 perspective views, including depth maps and camera calibration informa-

tion. In this work, the metrics and ground truth data were designed together to focus on the analysis of 

geometric variations. Feature region shapes were analyzed with emphasis on disks and warped 

elliptical disks to discover any correspondence and robustness over different orientations, occlusion, 

folding, translation, and scaling. (The source code developed for this work is available.1 ) 

1 See the “VLFeat” open-source project online (http://www.vlfeat.org).

http://www.vlfeat.org
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Rosin’s Work on Corners 

Research by Rosin [38, 66] involved the development of an analytical taxonomy for ground truth data 

pertaining to gray scale corner properties, as illustrated in Fig. 7.2. Rosin developed a methodology 

and case study to generate both the ground truth dataset and the metric basis for evaluating the 

performance and accuracy of a few well-known corner detectors. The metric is based on the receiver 

operating characteristic (ROC) to measure the accuracy of detectors to assess corners vs. noncorners. 

The work was carried out over 13,000 synthetic corner images with variations on the synthetic corners 

to span different orientations, subtended angles, noise, and scale. The synthetic ground truth dataset 

was specifically designed to enable the detection and analysis of a set of chosen corner properties, 

including bluntness or shape of apex, boundary shape of cusps, contrast, orientation, and subtended 

angle of the corner. 

Fig. 7.2 Images 

illustrating the Rosin corner 

metrics: (Top left) Corner 

orientation and subtended 

angle. (Top right) 

Bluntness. (Bottom left) 

Contrast. (Bottom right) 

Black/white corner color. 

(Images # Paul Rosin and 

used by permission [38]) 

A novel aspect of Rosin’s work was the generation of explicit types of synthetic interest points such 

as corners, nonobvious corners, and noncorners into the dataset, with the goal of creating a statistically 

interesting set of features for evaluation that diverged from idealized features. The synthetic corners 

were created and generated in a simulated optical system for realistic rendering to produce corners with 

parameterized variations including affine transformations, diffraction, subsampling, and in some cases, 

adding noise. Rosin’s ground truth dataset is available for research use, and has been used for corner 

detector evaluation of methods from Kitchen and Rosenfeld, Paler, Foglein, and Illingworth, as well as 

the Kittler Detector and the Harris and Stephens Detector. 

Similar to Rosin, a set of synthetic interest point alphabets are developed later in this chapter and 

tested in Appendix A, including edge and corner alphabets, with the goal of comparing human 

perception of interest points against machine vision methods. The synthetic interest points and corners 

are designed to test pixel thickness, edge intersections, shape, and complexity. The set diverges



significantly from those of Rosin and others, and attempts to fill a void in the analysis of interest point 

detectors. The alphabets are placed on a regular grid, allowing for determining position detection 

count. 
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Key Questions for Constructing Ground Truth Data 

In this section, we identify some key questions to answer for creating ground truth data, rather than 

providing much specific guidance or answers. The type of work undertaken will dictate the type of 

guidance, for example, published research usually requires widely accepted ground truth data to allow 

for peer review and duplication of results. In medical or automobile industries, there may be 

government regulations, and also legal issues if competitors publish measurement or performance 

data. For example, if a company publishes any type of benchmark results against a ground truth dataset 

comparing the results with those of competitor systems, all such data and claims should be reviewed by 

an attorney to avoid the complexities and penalties of commerce regulations, which can be daunting 

and severe. 

For real products and real systems, perhaps the best guidance comes from the requirements, 

expectations, and goals for performance and accuracy. Once a clear set of requirements are in place, 

then the ground truth selection process can begin. 

Content: Adopt, Modify, or Create 

It is useful to become familiar with existing ground truth datasets prior to creating a new one. The 

choices are obvious:

• Adopt an existing dataset.

• Adopt-and-Modify an existing dataset.

• Create a new dataset. 

Survey of Available Ground Truth Data 

Appendix B has information on several existing ground truth datasets. Take some time to get to know 

what is already available, and study the research papers coming out of SIGGRAPH, CVPR, IJCV, 

NIPS in Appendix C, and other research conferences to learn more about new datasets and how they 

are being used. The available datasets come from a variety of sources, including:

• Academic research organizations, usually available free of charge for academic research.

• Government datasets, sometimes with restricted use.

• Industry datasets, available from major corporations like Microsoft, sometimes can be licensed for 

commercial use. 

Fitting Ground Truth Data to Algorithms 

Perhaps the biggest challenge is to determine whether a dataset is a correct fit for the problem at hand. 

Is the detail in the ground truth data sufficient to find the boundaries and limits of the chosen algorithms 

and systems? “Fitting” applies to key variables such as the ground truth data, the algorithms used, the



object models, classifier, and the intended use-cases. See Fig. 7.3, which illustrates how ground truth 

data, image preprocessing, detector and descriptor algorithms, and model metrics should be fitted. 
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Fig. 7.3 (Top left) Image 

preprocessing for edges 

shown using Shen-Castan 

edge detection against 

ground truth data. (Top 

right) Overfitting detection 

parameters yield too many 

small edges. (Bottom left) 

Underfitting parameters 

yield too few edges. 

(Bottom right) Relaxed 

parameters yield reasonable 

edges 

Ground truth data should be carefully selected to fit and measure the accuracy of the statistical 

model of the classifier and machine vision algorithms. Overfitting happens when the model captures 

the noise in the training data, or in other words, the model fits the training data too well and does not 

generalize to related data. Overfitting may be caused by a complex model. Underfitting happens when 

the model fails to capture the underlying data trend. Underfitting may be caused by a simplistic mode. 

The sweet spot between overfitting and underfiting can be found with the right ground truth data. 

Usually, ground truth data is divided into a larger training set and one or more smaller test sets as 

needed. 

The training results can be evaluated against the following criteria: overfitting captures noise, 

underfitting misses the trend, and good fitting captures the trend. Both training data and the training 

algorithms are related. 

Here are a few examples to illustrate the variables.

• Training Data fitting: If the dataset does not provide enough pixel resolution or bit depth, or there 

are insufficient unique samples in the training set, the model will be incomplete, the matching may 

suffer, and the data is under-fitted to the problem. Or, if the ground truth contains too many different 

types of features that will never be encountered in the test set or in real applications. If the model 

resolution is 16 bits per RGB channel when only 8 bits per color channel are provided in real data, 

the data and model are over-fitted to the problem.
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• Training Algorithm fitting: If scale invariance is included in the ground truth data, and the LBP 

operator being tested is not claimed to be scale invariant, then the algorithm is under-fitted to the 

data. If the SIFT method is used on data with no scale or rotation variations, then the SIFT algorithm 

is over-fitted to the data.

• Use-case fitting: If the use-cases are not represented in the data and model, the data and model are 

under-fitted to the problem. 

Scene Composition and Labeling 

Ground truth data is composed of labeled features such as foreground, background, and objects or 

features to recognize. The labels define exactly what features are present in the images, and these labels 

may be a combination of on-screen labels, associated label files, or databases. Sometimes a randomly 

composed scene from the wild is preferred as ground truth data, and then only the required items in the 

scene are labeled. Other times, ground truth data is scripted and composed the way a scene for a movie 

would be. 

In any case, the appropriate objects and actors in the scene must be labeled, and perhaps the 

positions of each must be known and recorded as well. A database or file containing the labels must 

therefore be created and associated with each ground truth image to allow for testing. See Fig. 7.4, 

which shows annotated or labeled ground truth dataset images for a scene analysis of cuboids [39]. See 

also the Labelme database described in Appendix B, which allows contributors to provide labeled 

databases. 

Fig. 7.4 Annotated or labeled ground truth dataset images for scene analysis of cuboids (left and center). The labels are 

annotated manually into the ground truth dataset, in yellow (light gray in B&W version) marking the cuboid edges and 

corners. (Right) Ground truth data contains precomputed 3D corner HOG descriptor sets, which are matched against live 

detected cuboid HOG feature sets. Successful matches shown in green (dark gray in B&W version). (Images used by 

permission # Bryan Russel, Jianxiong Xiao, and Antonio Torralba)
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Composition 

Establishing the right set of ground truth data is like assembling a composition; several variables are 

involved, including:

• Scene Content: Designing the visual content, including fixed objects (those that do not move), 

dynamic objects (those that enter and leave the scene), and dynamic variables (such as position and 

movement of objects in the scene).

• Lighting: Casting appropriate lighting onto the scene.

• Distance: Setting and labeling the correct distance for each object to get the pixel resolution 

needed—too far away means not enough pixels.

• Motion Scripting: Determining the appropriate motion of objects in the scene for each frame; for 

example, how many people are in the scene, what are their positions and distances, number of 

frames where each person appears, and where each person enters and exits. Also, scripting scenes to 

enable invariance testing for changes in perspective, scale, affine geometry, and occlusion.

• Labeling: Creating a formatted file, database, or spreadsheet to describe each labeled ground truth 

object in the scene for each frame.

• Intended Algorithms: Deciding which algorithms for interest point and feature detection will be 

used, what metrics are to be produced, and which invariance attributes are expected from each 

algorithm; for example, an LBP by itself does not provide scale invariance, but SIFT does.

• Intended Use-Cases: Determining the problem domain or application. Does the ground truth data 

represent enough real use-cases?

• Image Channel Bit Depth, Resolution: Setting these to match requirements.

• Metrics:  Defining the group of metrics to measure—for example, false positives and false 

negatives. Creating a test fixture to run the algorithms against the dataset, measuring and recording 

all necessary results.

• Analysis: Interpreting the metrics by understanding the limitations of both the ground truth data and 

the algorithms, defining the success criteria.

• Open Rating Systems: Exploring whether there is an open rating system that can be used to report 

the results. For example, the Middlebury Dataset provides an open rating system for 3D stereo 

algorithms, and is described in Appendix B; other rating systems are published as a part of grand 

challenge contests held by computer vision organizations and governments, and some are reviewed 

in Appendix B. Open rating systems allow existing and new algorithms to be compared on a 

uniform scale. 

Labeling 

Ground truth data may simply be images returned from a search engine, and the label may just be the 

search engine word or phrase. Figure 7.5 shows a graph of photo connectivity for photo tourism [40– 

42] that is created from pseudo-random images of a well-known location, the Trevi Fountain in Rome. 

It is likely that in 5–10 years, photo tourism applications will provide high-quality image reconstruc-

tion including textures, 3D surfaces, and rerenderings of the same location, rivaling real photographs.
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Fig. 7.5 Graph of photo connectivity (center) created from analyzing multiple public images from a search engine of the 

Trevi Fountain (a). Edges show photos matched and connected to features in the 3D scene, including daytime and 

nighttime lighting (b–d). (Images # Noah Snavely [41] and used by permission) 

For some applications, labels and markers are inserted into the ground truth datasets to enable 

analysis of results, as shown in the 3D scene understanding database for cuboids in Fig. 7.4. Another 

example later in this chapter composes scenes using synthetic alphabets of interest points and corners 

that are superimposed on the images of a regularly spaced grid to enable position verification (see also 

Appendix A). In some visual tracking applications, markers are attached to physical objects (a wrist 

band, for example) to establish ground truth features. 

Another example is ground truth data composed to measure gaze detection, using a video sequence 

containing labels for two human male subjects entering and leaving the scene at a known location and 

time, walking from left to right at a known speed and depth in the scene. The object they are gazing at 

would be at a known location and be labeled as well. 

Defining the Goals and Expectations 

To establish goals for the ground truth data, questions must be asked. For instance, what is the intended 

use of the application requiring the ground truth data? What decisions must be made from the ground 

truth data in terms of accuracy and performance? How is quality and success measured? The goals of 

academic research and commercial systems are quite different. 

Mikolajczyk and Schmid Methodology 

A set of well-regarded papers by Mikolajczyk, Schmid, and others [29, 54, 57, 65, 262] provides a 

good methodology to start with for measuring local interest points and feature detector quality. Of 

particular interest is the methodology used to measure scale and affine invariant interest point detectors 

[262] which uses natural images to start, then applies a set of known affine transformations to those



images, such as homography, rotation, and scale. Interest point detectors are run against the images, 

followed by feature extractors, and then the matching recall and precision are measured across the 

transformed images to yield quality metrics. 
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Open Rating Systems 

The computer vision community is, little by little, developing various open rating systems, which 

encourage algorithm comparisons and improvements to increase quality. In areas where such open 

databases exist, there is rapid growth in quality for specific algorithms. Appendix B lists open rating 

systems such as the Pascal VOC Challenge for object detection. Pascal VOC uses an open ground truth 

database with associated grand challenge competition problems for measuring the accuracy of the 

latest algorithms against the dataset. 

Another example is the Middlebury Dataset, which provides ground truth datasets covering the 3D 

stereo algorithm domain, allowing for open comparison of key metrics between new and old 

algorithms, with the results published online. 

Corner Cases and Limits 

Finding out where the algorithms fail is valuable. Academic research is often not interested in the rigor 

required by industry in defining failure modes. One way to find the corner cases and limits is to run the 

same tests on a wide range of ground truth data, perhaps even data that is outside the scope of the 

problem at hand. Given the availability of publicly available ground truth databases, using several 

databases is realistic. 

However, once the key ground truth data is gathered, it can also be useful to devise a range of corner 

cases—for example, by providing noisy data, intensity filtered data, or blurry data to test the limits of 

performance and accuracy. 

Interest Points and Features 

Interest points and features are not always detected as expected or predicted. Machine vision 

algorithms detect a different set of interest points than those humans expect. For example, Fig. 7.6 

shows obvious interest points missed by the SURF algorithm with a given set of parameters, which 

uses a method based on determinant of Hessian blob detection. Note that some interest points obvious 

to humans are not detected at all, some false positives occur, and some identical interest points are not 

detected consistently.
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Fig. 7.6 Interest points detected on the same image using different methods: (Left) Shi–Tomasi corners marked with 

crosses. (Right) SURF interest points marked with circles. Results are not consistent or deterministic 

Also, real interest points change over time—for example, as objects move and rotate—which is a 

strong argument for using real ground truth data vs. synthetic data to test a wide range of potential 

interest points for false positives and false negatives. 

Robustness Criteria for Ground Truth Data 

In Chap. 5, a robustness criteria was developed listing various invariance attributes, such as rotation 

and scale. Here, we apply the robustness criteria to the development of ground truth data. 

Illustrated Robustness Criteria 

Table 7.1 discusses various robustness criteria attributes, not all attributes are needed for a given 

application. For example, if radial distortion might be present in an optical system, then the best 

algorithms and corresponding metrics will be devised that are robust to radial distortion, or as 

mitigation, the vision pipeline must be designed with a preprocessing section to remove or compensate 

for the radial distortion prior to determining the metrics.
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Table 7.1 Robustness criteria for ground truth data 

Attribute Discussion 

Uneven illumination Define range of acceptable illumination for the application; uneven illumination may 

degrade certain algorithms, some algorithms are more tolerant 

Brightness Define expected brightness range of key features, and prepare ground truth data accordingly 

Contrast Define range of acceptable contrast for the application; some algorithms are more tolerant 

Vignette Optical systems may degrade light and manifest as dim illumination at the edges. Smaller the 

features are localized better and may be able to overcome this situation; large features that 

span areas of uneven light are affected more 

Color accuracy Inaccurate color space treatment may result in poor color performance. Colorimetry is 

important; consider choosing the right color space (RGB, YIQ, Lab, Jab, etc.) and use the 

right level of bit precision for each color, whether 8/16 bits is best 

Clutter Some algorithms are not tolerant of clutter in images and rely on the scene to be constructed 

with a minimal number of subjects. Descriptor pixel size may be an issue for block search 

methods—too much extraneous detail in a region may be a problem for the algorithm 

Occlusion and clipping Objects may be occluded or hidden or clipped. Algorithms may or may not tolerate such 

occlusion. Some occlusion artifacts can be eliminated or compensated for using image 

preprocessing and segmentation methods 

Outliers and proximity Sometimes groups of objects within a region are the subject, and outliers are to be ignored. 

Also, proximity of objects or features may guide classification, so varying the arrangement 

of features or objects in the scene may be critical 

Noise Noise may take on regular or random patterns, such as snow, rain, single-pixel spot nose, line 

noise, random electrical noise affecting pixel bit resolution, etc. 

Motion blur Motion blur is an important problem for almost all real-time applications. This can be 

overcome by using faster frame rates and employing image preprocessing to remove the 

motion blur, if possible 

Jitter and judder Common problem in video images taken from moving cameras, where each scan line may be 

offset from the regular 2D grid 

Focal plane or depth If the application or use-case for the algorithm assumes all depths of the image to be in focus, 

then using ground truth data with out-of-focus depth planes may be a good way to test the 

limits 

Pixel depth resolution If features are matched based on the value of pixels, such as gray scale intensity or color 

intensity, pixel resolution is an issue. For example, if a feature descriptor uses 16 bits of 

effective gray scale intensity but the actual use-case and ground truth data provide only 8 bits 

of resolution, the descriptor may be over-fitted to the data, or the data may be unrealistic for 

the application 

Geometric distortion Complex warping may occur due to combinations of geometric errors from optics or distance 

to subject. On deformable surfaces such as the human face, surface and feature shape may 

change in ways difficult to geometrically describe 

Scale, projection Near and far objects will be represented by more or less pixels, thus a multi-scale dataset may 

be required for a given application, as well as multi-scale feature descriptors. Algorithm 

sensitivity to feature scale and intended use-case also dictate ground truth data scale 

Affine transforms and 

rotation 

In some applications like panoramic image stitching, very little rotation is expected between 

adjacent frames—perhaps up to 15° may be tolerated. However, in other applications like 

object analysis and tracking of parts on an industrial conveyor belt, rotation between 0 and 

360° is expected 

Feature mirroring, 

translation 

In stereo correspondence, L/R pair matching is done using the assumption that features can 

be matched within a limited range of translation difference between L/R pairs. If the 

translation is extreme between points, the stereo algorithm may fail, resulting in holes in the 

depth map, which must be filled 

Reflection Some applications, like recognizing automobiles in traffic, require a feature model, which 

incorporates a reflective representation and a corresponding ground truth dataset. 

Automobiles may come and go from different directions, and have a reflected right/left 

feature pair 

Radial distortion Optics may introduce radial distortion around the fringes; usually this is corrected by a 

camera system using digital signal processors or fixed-function hardware prior to delivering 

the image
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Using Robustness Criteria for Real Applications 

Each application requires a different set of robustness criteria to be developed into the ground truth 

data. Table 7.2 illustrates how the robustness criteria may be applied to a few real and diverse 

applications. 

Table 7.2 Robustness criteria applied to sample applications (each application with different requirements for 

robustness) 

General 

objective 

criteria 

attributes 

Industrial inspection of apples on a 

conveyor belt, fixed distance, fixed speed, 

fixed illumination 

Automobile identification on 

roadway, day and night, all 

road conditions 

Multi-view stereo 

reconstruction 

bundle adjustment 

Uneven 

illumination 

– Important Useful 

Brightness Useful Important Useful 

Contrast Useful Important Useful 

Vignette Important Useful Useful 

Color accuracy Important Important Useful 

Clutter – Important Important 

Occlusion – Important Important 

Outliers – Important Important 

Noise – Important Useful 

Motion blur Useful Important Useful 

Focal plane or 

depth 

– Important Useful 

Pixel depth 

resolution 

Useful Important Important 

Subpixel 

resolution 

Important 

Geometric 

distortion 

(warp) 

– Useful Important 

Affine 

transforms 

– Important Important 

Scale – Important Important 

Skew 

Rotation Important Useful Useful 

Translation Important Useful Useful 

Projective 

transformations 

Important Important – 

Reflection Important Important – 

Radial 

distortion 

Important 

Polar distortion Important 

Discrimination 

or uniqueness 

– Useful – 

Location 

accuracy 

– Useful – 

Shape and 

thickness 

distortion 

– Useful –
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As illustrated in Table 7.2, a multi-view stereo (MVS) application will hold certain geometric 

criteria as very important, since accurate depth maps require accurate geometry assumptions as a basis 

for disparity calculations. For algorithm accuracy tuning, corresponding ground truth data should be 

created using a well-calibrated camera system for positional accuracy of the 3D scene to allow for 

effective comparisons. 

Another example in Table 7.2 with many variables in an uncontrolled environment is that of 

automobile identification on roadways—which may be concerned with distance, shape, color, and 

noise. For example, identifying automobiles may require ground truth images of several vehicles from 

a wide range of natural conditions, such as dawn, dusk, cloudy day, and full sun, and including 

conditions such as rainfall and snowfall, motion blur, occlusion, and perspective views. An example 

automobile recognition pipeline is developed in Chap. 8. 

Also shown Table 7.2 is an example with a controlled environment: industrial inspection. In 

industrial settings, the environment can be carefully controlled using known lighting, controlling the 

speed of a conveyor belt, and limiting the set of objects in the scenes. Accurate models and metrics for 

each object can be devised, perhaps taking color samples and so forth—all of which can be done a 

priori. Ground truth data could be easily created from the actual factory location. 

Pairing Metrics with Ground Truth 

Metrics and ground truth data should go together. Each application will have design goals for 

robustness and accuracy, and each algorithm will also have different intended uses and capabilities. 

For example, the SUSAN detector discussed in Chap. 6 is often applied to wide baseline stereo 

applications, and stereo applications typically are not concerned much with rotational invariance 

because the image features are computed on corresponding stereo pair frames that have been affine 

rectified to align line by line. Feature correspondence between image pairs is expected within a small 

window, with some minor translation on the x axis. 

Pairing and Tuning Interest Points, Features, and Ground Truth 

Pairing the right interest point detectors and feature descriptors can enhance results, and many interest 

point methods are available and were discussed in Chap. 6. When preparing ground truth data, the 

method used for interest point detection should be considered for guidance. 

For example, interest point methods using derivatives, such as the Laplace and Hessian style 

detectors, will not do very well without sufficient contrast in the local pixel regions of the images, 

since contrast accentuates maxima, minima, and local region changes. However, a method such as 

FAST9 is much more suited to low-contrast images, uses local binary patterns, and is simple to tune the 

compare threshold and region size to detect corners and edges; but the trade-off in using FAST9 is that 

scale invariance is sacrificed. 

A method using edge gradients and direction, such as eigen methods, would require ground truth 

containing sufficient oriented edges at the right contrast levels. A method using morphological interest 

points would likewise require image data that can be properly thresholded and processed to yield the 

desired shapes. 

Interest point methods also must be tuned for various parameters like strength of thresholds for 

accepting and rejecting candidate interest points, as well as and region size. Choosing the right interest 

point detector, tuning, and pairing with appropriate ground truth data are critical. The effect of tuning 

interest point detector parameters is illustrated in Fig. 7.6.
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Examples Using the General Vision Taxonomy 

As a guideline for pairing metrics and ground truth data, we use the vision taxonomy developed in 

Chap. 5 to illustrate how feature metrics and ground truth data can be considered together. 

Table 7.3 presents a sample taxonomy and classification for SIFT and FREAK descriptors, which 

can be used to guide selection of ground truth data and also show several similarities in algorithm 

capabilities. In this example, the invariance attributes built into the data can be about the same— 

namely scale and rotation invariance. Note that the compute performance claimed by FREAK is orders 

of magnitude faster than SIFT, so perhaps the ground truth data should contain a sufficient minimum 

and maximum number of features per frame for good performance measurements. 

Table 7.3 General vision taxonomy for describing FREAK and SIFT 

Visual metric taxonomy comparison 

Attribute SIFT FREAK 

Feature category family Spectra descriptor Local binary 

descriptor 

Spectra dimensions Multivariate Single variate 

Spectra value Orientation vector 

Gradient magnitude 

Gradient direction 

HOG, Cartesian bins 

Orientation vector 

Bit vector of values 

Cascade of 4 saccadic 

descriptors 

Interest point SIFT DOG over 3D scale 

pyramid 

Multi-scale AGAST 

Storage format Spectra vector Bit vector 

Orientation vector 

Data types Float Integer 

Descriptor memory 512 bytes, 128 floats 64 bytes, 4 16-byte 

cascades 

Feature shape Rectangle Circular 

Feature search method Coarse to fine image pyramid 

Scale space image pyramid 

Double-scale first pyramid level 

Sparse at interest points 

Sparse at interest 

points 

Pattern pair sampling n.a. Foveal centered 

trained pairs 

Pattern region size 41 × 41 bounding box 31 × 31 bounding box 

(may vary) 

Distance function Euclidean distance Hamming distance 

Run-time compute 100% (SIFT is the baseline) 0.1% of SIFT 

Feature density Sparse Sparse 

Feature pattern Rectangular kernel 

Sample weighting pattern 

Binary compare 

pattern 

Claimed robustness 

*Final robustness is a combination of interest point 

method, descriptor method, and classifier 

Scale 

Rotation 

Noise 

Affine distortion 

Illumination 

Scale 

Rotation 

Noise
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Synthetic Feature Alphabets 

In this section, we create synthetic ground truth datasets for interest point algorithm analysis. We create 

alphabets of synthetic interest points and synthetic corner points. The alphabets are synthetic, meaning 

that each element is designed to perfectly represent chosen binary patterns, including points, lines, 

contours, and edges. 

Various pixel widths or thicknesses are used for the alphabet characters to measure fine and coarse 

feature detection. Each pattern is registered at known pixel coordinates on a grid in the images to allow 

for detection accuracy to be measured. The datasets are designed to enable comparison between human 

interest point perception and machine vision interest point detectors. 

Here is a high-level description of each synthetic alphabet dataset:

• Synthetic Interest Point Alphabet. Contains points such as boxes, triangles, circle, half boxes, half 

triangles, half circles, edges, and contours.

• Synthetic Corner Point Alphabet. Contains several types of corners and multi-corners at different 

pixel thickness.

• Natural Images Overlaid with Synthetic Alphabets. Contains both black and white versions of 

the interest points and corners overlaid on natural images. 

Note 

The complete set of ground truth data is available in Appendix A. 

Analysis is provided in Appendix A, which includes running ten detectors against the datasets. The 

detectors are implemented in OpenCV, including SIFT, SURF, ORB, BRISK, HARRIS, GFFT, 

FAST9, SIMPLE BLOB, MSER, and STAR. Note that the methods such as SIFT, SURF, and ORB 

provide both an interest point detector and a feature descriptor implementation. We are only concerned 

with the interest point detector portion of each method for the analysis, not the feature descriptor. 

The idea of using synthetic image alphabets is not new. As shown in Fig. 7.2, Rosin [38] devised a 

synthetic set of gray corner points and corresponding measurement methods for the purpose of 

quantifying corner properties via attributes such as bluntness or shape of apex, boundary shape of 

cusps, contrast, orientation, and subtended angle of the corner. However, the synthetic interest point 

and corner alphabets in this work are developed to address a different set of goals, discussed next. 

Goals for the Synthetic Dataset 

The goals and expectations for this synthetic dataset are listed in Table 7.4. They center on enabling 

analysis to determine which synthetic interest points and corners are found, so the exact count and 

position of each interest point is a key requirement.
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Table 7.4 Goals and expectations for the ground truth data examples: comparison of human expectations with machine 

vision results 

Goals Approach 

Interest point and corner detectors, 

stress testing 

Provide synthetic features easily recognized by a human; measure how well 

various detectors perform 

Human recognizable synthetic 

interest point sets 

Synthetic features recognized by humans are developed spanning shapes and 

sizes of edges and line segments, contours and curved lines, and corners and 

multi-corners 

Grid positioning of interest points Each interest point will be placed on a regular grid at a known position for 

detection accuracy checking 

Scale invariance Synthetic interest points to be created with the same general shape but using 

different pixel thickness for scale 

Rotation invariance Interest points will be created, then rotated in subsequent frames 

Noise invariance Noise will be added to some interest point sets 

Duplicate interest points, known 

count 

Interest points will be created and duplicated in each frame for determining 

detection and performance 

Hybrid synthetic interest points 

overlaid on real images 

Synthetic interest points on a grid are overlaid onto real images to allow for 

hybrid testing 

Interest point detectors, determinism 

and repeatability 

Detectors will include SIFT, SURF, ORB, BRISK, HARRIS, GFFT, FAST9, 

SIMPLE BLOB, MSER, and STAR. By locating synthetic interest points on a 

grid, we can compute detection counts 

The human visual system does not work like an interest point detector, since detectors can accept 

features which humans may not recognize. The human visual system discriminates and responds to 

gradient information [210] in a scale and rotationally invariant manner across the retina, and tends to 

look for learned features relationships among gradients and color. 

Humans learn about features by observations and experience, so learned expectations play a key 

role interpreting visual features. People see what they believe and what they are looking for, and may 

not believe what they see if they are not looking for it. For example, Fig. 7.7 shows examples of 

machine corner detection; a human would likely not choose all the same corner features. Note that the 

results are not what a human might expect, and also the algorithm parameters must be tuned to the 

ground truth data to get the best results. 

Fig. 7.7 Machine corner detection using the Shi–Tomasi method marked with crosses; results are shown using different 

parameter settings and thresholds for the strength and pixel size of the corners
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Accuracy of Feature Detection via Location Grid 

The goal of detector accuracy for this synthetic ground truth is addressed by placing synthetic features at 

a known position on a regular spaced grid, then after detection, the count and position are analyzed. Some 

of the detectors will find multiple features for a single synthetic interest point or corner. The feature grid 

size chosen is 14 × 14 pixels, and the grid extends across the entire image. See Figs. 7.8 and 7.9. 

Fig. 7.8 Portion of the synthetic interest point alphabet: points, edges, edges, and contours. (Top to bottom) White on 

black, black on white, light gray on dark gray, added salt and pepper noise, added Gaussian noise 

Fig. 7.9 Scaled and rotated examples of the synthetic interest point alphabet. Notice the artifacts introduced by the affine 

rotation, which distorts the synthetic binary patterns via anti-aliasing and subsampling artifacts
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Rotational Invariance via Rotated Image Set 

For each ground truth set, rotated versions of each image are created in the range 0–90° at 10° 

increments. Since the synthetic features are placed on a regularly spaced grid at known positions, the 

new positions under rotation are easily computed. The detected synthetic features can be counted and 

analyzed. See Appendix A for results. 

Scale Invariance via Thickness and Bounding Box Size 

The synthetic corner point features are rendered into the ground truth data with feature edge thickness 

ranging from 1 to 3 pixels for simulated scale variation. Some of the interest point features, such as 

boxes, triangles, and circles, are scaled in a bounding box ranging from 1 × 1 pixels to 10 × 10 pixels to 

allow for scale invariance testing. 

Noise and Blur Invariance 

A set of synthetic alphabets is rendered using Gaussian noise, and another set using salt-and-pepper 

noise to add distortion and uncertainty to the images. In addition, by rotating the interest point alphabet 

at varying angles between 0 and 90°, digital blur is introduced to the synthetic patterns as they are 

rendered, owing to the anti-aliasing interpolations introduced in the affine transform algorithms. 

Repeatability 

Each ground truth set contains a known count of synthetic features to enable detection rates to be 

analyzed. To enable measurement of the repeatability of each detector, there are multiple duplicate 

copies of each interest point feature in each image. A human would expect identical features to be 

detected in an identical manner; however, results in Appendix A show that some interest point 

detectors do not behave in a predictable manner, and some are more predictable than others. 

As shown in Fig. 7.6, detectors do not always find the same identical features. For example, the 

synthetic alphabets are provided in three versions—black on white, white on black, and light gray on 

dark gray—for the purpose of testing each detector on the same pattern with different gray levels and 

polarity. See Appendix A showing the how the detectors provide different results based on the polarity 

and gray level factors. 

Real Image Overlays of Synthetic Features 

A set of images composed of synthetic interest points and corners overlayed on top of real images is 

provided, sort of like markers. Why overlay interest point markers, since the state of the art has moved 

beyond markers to markerless tracking? The goal is to understand the limitations and behavior of the 

detectors themselves, so that analyzing their performance in the presence of natural and synthetic 

features will provide some insight. 

Synthetic Interest Point Alphabet 

As shown in Figs. 7.7 and 7.8, an alphabet of synthetic interest points is defined across a range of pixel 

resolutions or thicknesses to include the following features:
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• POINT/SQUARE, 1–10 PIXELS SIZE

• POINT/TRIANGLE HALF-SQUARE, 3–1 PIXELS SIZE

• CIRCLE, 3–10 PIXELS SIZE

• CIRCLE/HALF-CIRCLE, 3–10 PIXELS SIZE

• CONTOUR, 3–10 PIXELS SIZE

• CONTOUR/HALF-CONTOUR, 3–10 PIXELS SIZE

• CONNECTED EDGES

• DOUBLE CORNER, 3–10 PIXELS SIZE

• CORNER, 3–10 PIXELS SIZE

• EDGE, 3–10 PIXELS SIZE 

The synthetic interest point alphabet contains 83 unique elements composed on a 14 × 14 grid, as 

shown in Fig. 7.8. A total of seven rows and seven columns of the complete alphabet can fit inside a 

1024 × 1024 image, yielding a total of 7 × 7 × 83 = 4067 total interest points. 

Synthetic Corner Alphabet 

The synthetic corner alphabet is shown in Fig. 7.9. The alphabet contains the following types of 

corners and attributes:

• 2-SEGMENT CORNERS, 1,2,3 PIXELS WIDE.

• 3-SEGMENT CORNERS, 1,2,3 PIXELS WIDE.

• 4-SEGMENT CORNERS, 1,2,3 PIXELS WIDE 

As shown in Fig. 7.10, the corner alphabet contains patterns with multiple types of corners composed 

of two-line segments, three-line segments, and four-line segments, with pixel widths of 1, 2, and 3. The 

synthetic corner alphabet contains 54 unique elements composed on a 14 × 14 pixel grid. 

Fig. 7.10 Portion of the synthetic corner alphabet, features include 2-, 3-, and 4-segment corners. (Top to bottom) White 

on black, black on white, light gray on dark gray, added salt and pepper noise, added Gaussian noise
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Each 1024 × 1024 pixel image contains 8 × 12 complete alphabets composed of 6 × 9 unique 

elements each, yielding 6 × 9 × 12 × 8 = 5184 total corner points per image. The full dataset includes 

rotated versions of each image from 0 to 90° at 10° intervals. 

Hybrid Synthetic Overlays on Real Images 

We combine the synthetic interest points and corners as overlays with real images to develop a hybrid 

ground truth dataset as a more complex case. 

The merging of synthetic interest points over real data will provide new challenges for the interest 

point algorithms and corner detectors, as well as illustrate how each detector works. Using hybrid 

synthetic feature overlays on real images is a new approach for ground truth data (as far as the author is 

aware), and the benefits are not obvious outside of curiosity. One reason the synthetic overlay approach 

was chosen here is to fill the gap in the literature and research, since synthetic features overlays are not 

normally used. See Figs. 7.11 and 7.12. 

Fig. 7.11 Synthetic corner points image portions 

Fig. 7.12 Synthetic interest points combined with real images, used for stress testing interest point and corner detectors 

with unusual pixel patterns
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The hybrid synthetic and real ground truth datasets are designed with the following goals:

• Separate ground truth sets for interest points and corners, using the full synthetic alphabets overlaid 

on real images, to provide a range of pixel detail surrounding each interest point and corner.

• Display known positions and counts of interest points on a 14 × 14 grid.

• Provide color and gray scale images of the same data.

• Provide rotated versions of the same data 0–90° at 10° intervals. 

Method for Creating the Overlays 

The alphabet can be used as a binary mask of 8-bit pixel values of black 0 × 00 and white 0 × ff for 

composing the image overlays. The following Boolean masking example is performed using 

Mathematica code ImageMultiply and ImageAdd operators. 

ImageMultiply is used to get the negatives, and then followed by ImageAdd to get the positives. 

Note that in other image processing tool systems, a Boolean ImageAND, ImageOR, and ImageNOT 

may be provided as alternatives. 

Summary 

We survey manual and automated approaches to creating ground truth data, identify some best 

practices and guidelines, apply the robustness criteria and vision taxonomy developed in Chap. 5, 

and work through examples to create a ground truth dataset for evaluation of human perceptions 

compared to machine vision methods for keypoint detectors.
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Here are some final thoughts and key questions for preparing ground truth data:

• Appropriateness: How appropriate is the ground truth dataset for the analysis and intended 

application? Are the use-cases and application goals built into the ground truth data and model? 

Is the dataset under-fitted or over-fitted to the algorithms and use-cases?

• Public vs. proprietary: Proprietary ground truth data is a barrier to independent evaluation of 

metrics and algorithms. It must be possible for interested parties to duplicate the metrics produced 

by various types of algorithms so they can be compared against the ground truth data. Open rating 

systems may be preferred, if they exist for the problem domain. But there are credibility and legal 

hurdles for open-sourcing any proprietary ground truth data.

• Privacy and legal concerns: There are privacy concerns for individuals in any images chosen to be 

used; images of people should not be used without their permission, and prohibitions against the 

taking of pictures at restricted locations should be observed. Legal concerns are very real.

• Real data vs. synthetic data: In some cases, it is possible to use computer graphics and animations 

to create synthetic ground datasets. Synthetic datasets should be considered especially when privacy 

and legal concerns are involved, as well as be viewed as a way of gaining more control over the data 

itself. 

Learning Assignments 

1. Describe specific goals for ground truth data with respect to robustness and invariance attributes for 

a face emotion recognition application. 

2. Discuss the classes of image emotions required for collecting a ground truth dataset. Derive a 

statistical method to determine how many images are needed for each class, and how the images 

should be processed. 

3. Provide a high-level design or write some script code (php, ruby, etc.) to automatically collect and 

evaluate the ground truth data against the selected goals. Include statistical metrics and other image 

analysis methods in the code for automatically evaluating the images, and describe what is possible 

to automate in the code, and what must be done by humans. 

4. Name a few publically available ground truth datasets, and where they can be obtained. 

5. Discuss positive and negative training samples. 

6. Discuss when synthetic ground truth images might be useful, and how synthetic images might be 

designed, and prepare a plan including the names of software tools needed. 

7. Discuss when a ground truth dataset should be adopted vs. created from scratch. 

8. Discuss when a labeled ground truth dataset is appropriate vs. an unlabeled ground truth dataset. 

9. Discuss how to select interest point detectors that work well with specific ground truth data, 

describe the process you would follow to find the best interest point detectors, and devise some 

pseudo-code to evaluate and cull interest point detectors.



More speed, less haste . . .

—Treebeard, Lord of the Rings

This chapter addresses the following major topics, in this order:

3.

Vision Pipelines and HW/SW 
Optimizations 8 

This chapter explores some hypothetical computer vision pipeline designs to understand HW/SW 

design alternatives and optimizations. Instead of looking at isolated computer vision algorithms, this 

chapter ties together many concepts into complete vision pipelines. Vision pipelines are sketched out 

for a few example applications to illustrate the use of different methods. Example applications include 

object recognition using shape and color for automobiles, face detection and emotion detection using 

local features, image classification using global features, and augmented reality. The examples have 

been chosen to illustrate the use of different families of feature description metrics within the Vision 

Metrics Taxonomy presented in Chap. 5. Alternative optimizations at each stage of the vision pipeline 

are explored. For example, we consider which vision algorithms run better on a CPU versus a GPU and 

discuss how data transfer time between compute units and memory affects performance. 

Note 

This chapter does not address optimizations for the training stage or the classification stage. Instead, we 

focus here on the vision pipeline stages prior to classification. Hypothetical examples in this chapter 

are sometimes sketchy, not intended to be complete. Rather, the intention is to explore design 

alternatives. Design choices are made in the examples for illustration only; other, equally valid or 

even better design choices could be made to build working systems. The reader is encouraged to 

analyze the examples to find weaknesses and alternatives. If the reader can improve the examples, we 

have succeeded. 

1. General design concepts for optimization across the SOC (CPU, GPU, memory). 

2. Four hypothetical vision pipeline designs using different descriptor methods. 

Overview of SW optimization resources and specific optimization techniques.*NOTE: we do not 

discuss DNN-specific optimizations here (see Chaps. 9 and 10), and we do not discuss special-

purpose vision processors here. For more information on the latest vision processors, contact the 

Embedded Vision Alliance. 
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Stages, Operations, and Resources 

A computer vision solution can be implemented into a pipeline of stages, as shown in Fig. 8.1.  In  a  

pipeline, both parallel and sequential operations take place simultaneously. By using all available 

compute resources in the optimal manner, performance can be maximized for speed, power, and 

memory efficiency.

 

Sensor Processing 

Image Pre-Processing 

Global Metrics 

Local Feature Metrics 

Classification, Learning 

Augment, Render, Control 

Vision Pipeline Stages Operations 

Point 

Line 

Area 

Algorithmic 

Data conversion 

DSP Sensor 

GPU SIMT/SIMD 

CPU Threads 

CPU SIMD 

CPU General 

Memory System 

Resources 

Math 

Fig. 8.1 Hypothetical assignment of vision pipeline stages to operations and to compute resources. Depending on the 

actual resource capabilities and optimization targets for power and performance, the assignments will vary 

Optimization approaches vary by system. For example, a low-power system for a mobile phone 

may not have a rich CPU SIMD instruction set, and the GPU may have a very limited thread count and 

low memory bandwidth, unsuitable to generic GPGPU processing for vision pipelines. However, a 

larger compute device, such as a rack-mounted compute server, may have several CPUs and GPUs, 

and each CPU and GPU will have powerful SIMD instructions and high memory bandwidth. 

Table 8.1 provides more details on possible assignment of operations to resources based on data 

types and processor capabilities. For example, in the sensor processing stage, point line and area 

operations dominate the workload, as sensor data are assembled into pixels and corrections are applied. 

Most sensor processors are based on a digital signal processor (DSP) with wide SIMD instruction 

words, and the DSP may also contain a fixed-function geometric correction unit or warp unit for 

correcting optics problems like lens distortion. The sensor DSP and the GPU listed in Table 8.1 

typically contain a dedicated texture sampler unit, which is capable of rapid pixel interpolation, 

geometric warps, and affine and perspective transforms. If code is straight line with lots of branching 

and not much parallel operations, the CPU is the best choice.
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Table 8.1 Hypothetical assignment of basic operations to compute resources guided by data type and parallelism (see 

also Zinner [422]) 

Operations Hypothetical resources and data types 

DSP 

uint16 

int16 

WarpUnit 

GPU 

SIMT/ 

SIMD 

uint16/32 

int16/32 

float/double 

TextureUnit 

CPU 

Threads 

uint16/32 

int16/32 

float/ 

double 

CPU 

SIMD 

uint16/32 

int16/32 

float/ 

double 

CPU 

General 

uint16/32 

int16/32 

float/ 

double 

Memory system 

DMA 

Point ×  

Line ×  

Area × (tiles) × 

Algorithmic branching × 

General math × 

Data copy and 

conversions 

× (DMA 

preferred) 

As illustrated in Table 8.1, the data type and data layout normally guide the selection of the best 

compute resource for a given task, along with the type of parallelism in the algorithm and data. Also, 

the programing language is chosen based on parallelism, such as using OpenCL vs. C++. For example, 

a CPU may support float and double data types, but if the underlying code is SIMT and SIMD parallel 

oriented, calling for many concurrent thread-parallel kernel operations, then a GPU with a high thread 

count may be a better choice than a single CPU. However, running a language like OpenCL on 

multiple CPUs may provide performance as good as a smaller GPU; for performance information, see 

reference [468] and vendor information on OpenCL compilers. See also the section later in this 

chapter, “SIMD, SIMT, and SPMD Fundamentals.” 

For an excellent discussion of how to optimize fundamental image processing operations across 

different compute units and memory, see the PfeLib work by Zinner et al. [422], which provides a deep 

dive into the types of optimizations that can be made based on data types and intelligent memory 

usage. 

To make the assignments from vision processing stages to operations and compute resources 

concrete, we look at specific vision pipelines examples later in this chapter. 

Compute Resource Budgets 

Prior to implementing a vision pipeline, a reasonable attempt should be made to count the cost in terms 

of the compute platform resources available, and determine whether the application is matched to the 

resources. For example, a system intended for a military battlefield may place a priority on compute 

speed and accuracy, while an application for a mobile device will prioritize power in terms of battery 

life and make trade-offs with performance and accuracy. 

Since most computer vision research is concerned with breaking ground in handling relatively 

narrow and well-defined problems, there is limited research available to guide a general engineering 

discussion on vision pipeline analysis and optimizations. Instead, we follow a line of thinking that 

starts with the hardware resources themselves, and we discuss performance, power, memory, and I/O 

requirements, with some references to the literature for parallel programming and other code-

optimization methods. Future research into automated tools to measure algorithm intensity, such as 

the number of integer and float operations, the bit precision of data types, and the number of memory



transfers for each algorithm in terms of read/write, would be welcomed by engineers for vision pipeline 

analysis and optimizations. 
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As shown in Fig. 8.2, the main elements of a computer system are composed of I/O, compute, and 

memory. 

DSP memory 

GPU memory 

System memory 

L1 L2 

L1 L2 

L1 L2 

L1 L2 

L1 L2 
CPU 1 
controller 

CPU 2 
SIM D 

CPU 3 
SIM D 

CPU 4 
SIM D 

GPU 1 
256 SIM T 

4 tex ture 

samplers 

DSP 2 

DSP 1 

Camera 1 
1080p depth 

Camera 2 
1080p RGB | depth 

MIPI 

MIPI  

L1 L2 

DMA 

RF 

RF 

RF 

RF 

RF 

RF 

RF 

Fig. 8.2 Hypothetical computer system, highlighting compute elements in the form of a DSP, GPU, 4 CPU cores, 

DMA, and memory architecture using L1 and L2 cache and register files RF within each compute unit 

We assume suitable high bandwidth I/O buses and cache lines interconnecting the various compute 

units to memory; in this case, we call out the MIPI camera interface in particular, which connects 

directly to the DSP in our hypothetical SOC. In the case of a simple computer vision system of the near 

future, we assume that the price, performance, and power curves continue in the right direction to 

enable a system-on-a-chip (SOC) sufficient for most computer vision applications to be built at a low 

price point, approaching throw-away computing cost—similar in price to any small portable electronic 

gadget. This would thereby enable low-power and high-performance ubiquitous vision applications 

without resorting to special-purpose hardware accelerators built for any specific computer vision 

algorithms. 

Here is a summary description of the SOC components shown in Fig. 8.2:

• Two 1080p cameras, one for RGB and the other for a self-contained depth camera, such as a TOF 

sensor (as discussed in Chap. 1).

• One small low-power controller CPU with a reduced instruction set and no floating point, used for 

handling simple things like the keyboard, accelerometer updates, servicing interrupts from the DSP, 

and other periodic tasks, such as network interrupt handlers.

• Three full SIMD capable CPUs with floating point, used for heavy compute, typically thread-

parallel algorithms such as tiling, but also for SIMD parallel algorithms.
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• A GPU capable of running >256 threads with full integer and floating point, and four texture 

samplers. A wide range of area algorithms map well to the GPU, but the programming model is 

SIMT kernels such as compute shaders for DirectX and OpenGL, or OpenCL.

• A DSP with a limited instruction set and VLIW processing capabilities well suited to pixel 

processing and sensor processing in general.

• A DMA unit for fast memory transfers; although obvious, DMA is a simple and effective method 

to increase memory bandwidth and reduce power. 

Compute Units, ALUs, and Accelerators 

There are several types of compute units in a typical system, including CPUs, GPUs, DSPs, and 

special-purpose hardware accelerators such as cryptography units, texture samplers, and DMA 

engines. Each ALU has a different instruction set tuned to the intended use, so understanding each 

compute unit’s ALU instruction set is very helpful. 

Generally speaking, computer architecture has not advanced to the point of providing any standard 

vision pipeline methods or hardware accelerators. That is because there are so many algorithm 

refinements for computer vision emerging; choosing to implement any vision accelerators in silicon 

is an obsolescence risk. Also, creating computer vision hardware accelerators is difficult, since 

applications must be portable. So developers typically choose high-level language implementations 

that are good enough and portable, with minimal dependencies on special-purpose hardware or APIs. 

Instead, reliance on general-purpose languages like C++ and optimizing the software is a good path 

to follow to start, as is leveraging existing pixel processing acceleration methods in a GPU as needed, 

such as pixel shaders and texture samplers. The standard C++ language path offers flexibility to change 

and portability across platforms, without relying on any vendor-specific hardware acceleration 

features. 

In the example vision pipelines developed in this section, we make two basic assumptions. First, the 

DSP is dedicated to sensor processing and light image preprocessing to load-balance the system. 

Second, the CPUs and the GPUs are used downstream for subsequent sections of the vision pipeline, so 

the choice of CPU vs. GPU depends on the algorithm used. 

Since the compute units with programmable ALUs are typically where all the tools and attention for 

developers are focused, we dedicate some attention to programming acceleration alternatives later in 

this chapter in the “Vision Algorithm Optimizations and Tuning” section; there is also a survey of 

selected optimization resources and software building blocks. 

In the hypothetical system shown in Fig. 8.2, the compute units include general-purpose CPUs, a 

GPU intended primarily for graphics and media acceleration and some GPGPU acceleration, and a 

DSP for sensor processing. Each compute unit is programmable and contains a general-purpose ALU 

with a tuned instruction set. For example, a CPU contains all necessary instructions for general 

programming and may also contain SIMD instructions discussed later in this chapter. A GPU contains 

transcendental instructions such as square root, arctangent, and related instructions to accelerate 

graphics processing. The DSP likewise has an instruction set tuned for sensor processing, likely a 

VLIW instruction set. 

Hardware accelerators are usually built for operations that are common, such as a geometric 

correction unit for sensor processing in the DSP and texture samplers for warping surface patches in 

the GPU. There are no standards yet for computer vision, and new algorithm refinements are being 

developed constantly, so there is little incentive to add any dedicated silicon for computer vision 

accelerators, except for embedded and special-purpose systems. Instead, finding creative methods of 

using existing accelerators may prove beneficial. 

Later in this chapter, we discuss methods for optimizing software on various compute units, taking 

advantage of the strengths and intended use of each ALU and instruction set.
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Power Use 

It is difficult to quantify the amount of power used for a particular algorithm on an SOC or a single 

compute device without very detailed power analysis; likely simulation is the best method. Typically, 

systems engineers developing vision pipelines for an SOC do not have accurate methods of measuring 

power, except crude means such as running the actual finished application and measuring wall power 

or battery drain. 

The question of power is sometimes related to which compute device is used, such as CPU vs. GPU, 

since each device has a different gate count and clock rate, therefore is burning power at a different 

rate. Since silicon architects for both GPU and CPU designs are striving to deliver the most perfor-

mance per watt per square millimeter (and we assume that each set of silicon architects is equally 

efficient), there is no clear winner in the CPU vs. GPU power/performance race. The search to save 

power by using the GPU vs. the CPU might not even be worth the effort compared to other places to 

look, such as data organization and memory architecture. 

One approach for making the power and performance trade-off in the case of SIMD and SIMT 

parallel code is to use a language such as OpenCL, which supports running the same code on either a 

CPU or a GPU. The performance and power would then need to be measured on each compute device 

to quantify actual power and performance; there is more discussion on this topic later, in the “Vision 

Algorithm Optimizations and Tuning” section. 

For detailed performance analysis using the same OpenCL code running on a specific CPU vs. a 

GPU, as well as clusters, see the excellent research by the National Center for Super Computing 

Applications [468]. Also, see the technical computing resources provided by major OpenCL vendors, 

such as INTEL, NVIDIA, and AMD, for details on their OpenCL compilers running the same code 

across the CPU vs. GPU. Sometimes the results are surprising, especially for multi-core CPU 

systems vs. smaller GPUs. 

In general, the compute portion of the vision pipeline is not where the power is burned anyway; 

most power is burned in the memory subsystem and the I/O fabric, where high data bandwidth is 

required to keep the compute pipeline elements full and moving along. In fact, all the register files, 

caches, I/O busses, and main memory consume the lion’s share of power and lots of silicon real estate. 

So memory use and bandwidth are high-value targets to attack in any attempt to reduce power. The 

fewer the memory copies, the higher the cache hit rates; the more reuse of the same data in local 

register files, the better. 

Memory Use 

Memory is the most important resource to manage as far as power and performance are concerned. 

Most of the attention on developing a vision pipeline is with the algorithms and processing flow, which 

is challenging enough. However, vision applications are highly demanding of the memory system. The 

size of the images alone is not so great, but when we consider the frame rates and number of times a 

pixel is read or written for kernel operations through the vision pipeline, the memory transfer 

bandwidth activity becomes clearer. The memory system is complex, consisting of local register 

files next to each compute unit, caches, I/O fabric interconnects, and system memory. We look at 

several memory issues in this section, including:

• Pixel resolution, bit precision, and total image size

• Memory transfer bandwidth in the vision pipeline

• Image formats, including grayscale and color spaces



Memory Use 305

• Feature descriptor size and type

• Accuracy required for matching and localization

• Feature descriptor database size 

To explore memory usage, we go into some detail on a local interest point and feature extraction 

scenario, assuming that we locate interest points first, filter the interest points against some criteria to 

select a smaller set, calculate descriptors around the chosen interest points, and then match features 

against a database. 

A reasonable first estimate is that between a lower bound and upper bound of 0.05–1% of the pixels 

in an image can generate decent interest points. Of course, this depends entirely on: (1) the complexity 

of the image texture, and (2) the interest point method used. For example, an image with rich texture 

and high contrast will generate more interest points than an image of a faraway mountain surrounded 

by clouds with little texture and contrast. Also, interest point detector methods yield different results— 

for example, the FAST corner method may detect more corners than a SIFT scale invariant DoG 

feature, see Appendix A. 

Descriptor size may be an important variable, see Table 8.2. A 640 × 480 image will contain 

307,200 pixels. We estimate that the upper bound of 1%, or 3072 pixels, may have decent interest 

points; and we assume that the lower bound of 0.05% is 153. We provide a second estimate that interest 

points may be further filtered to sort out the best ones for a given application. So if we assume perhaps 

only as few as 33% of the interest points are actually kept, then we can say that between 153 × 0.33 and 

3072 × 0.33 interest points are good candidates for feature description. This estimate varies widely out 

of bounds, depending of course on the image texture, interest point method used, and interest point 

filtering criteria. Assuming a feature descriptor size is 256 bytes, the total descriptor size per frame is 

3072 × 256 × 0.33 = 259,523 bytes maximum—that is not extreme. However, when we consider the 

feature match stage, the feature descriptor count and memory size will be an issue, since each extracted 

feature must be matched against each trained feature set in the database. 

Table 8.2 Descriptor bytes per frame (1% interest points) (adapted from [112]) 

Descriptor Size in bytes 480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD 

Resolution 640 × 480 1920 × 1080 3840 × 2160 7680 × 4320 

Pixels 307,200 2,073,600 8,294,400 33,177,600 

BRIEF 32 98,304 663,552 2,654,208 10,616,832 

ORB 32 98,304 663,552 2,654,208 10,616,832 

BRISK 64 196,608 1,327,104 5,308,416 21,233,664 

FREAK (4 cascades) 64 196,608 1,327,104 5,308,416 21,233,664 

SURF 64 196,608 1,327,104 5,308,416 21,233,664 

SIFT 128 393,216 2,654,208 10,616,832 42,467,328 

LIOP 144 442,368 2,985,984 11,943,936 47,775,744 

MROGH 192 589,824 3,981,312 15,925,248 63,700,992 

MRRID 256 786,432 5,308,416 21,233,664 84,934,656 

HOG (64 × 128 block) 3780 n.a. n.a. n.a. n.a. 

In general, local binary descriptors offer the advantage of a low memory footprint. For example, 

Table 8.2 provides the byte count of several descriptors for comparison, as described in Miksik and 

Mikolajczyk [112]. The data are annotated here to add the descriptor working memory size in bytes per 

frame for various resolutions. 

In Table 8.2, image frame resolutions are in row 1, pixel count per frame is in row 2, and typical 

descriptor sizes in bytes are in subsequent rows. Total bytes for selected descriptors are in column 

1, and the remaining columns show total descriptor size per frame assuming an estimated 1% of the



pixels in each frame are used to calculate an interest point and descriptor. In practice, we estimate that 

1% is an upper-bound estimate for a descriptor count per frame and 0.05% is a lower-bound estimate. 

Note that descriptor sizes in bytes do vary from those in the table, based on design optimizations. 
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Memory bandwidth is often a hidden cost, and often ignored until the very end of the optimization 

cycle, since developing the algorithms is usually challenging enough without also worrying about the 

memory access patterns and memory traffic. Table 8.2 includes a summary of several memory 

variables for various image frame sizes and feature descriptor sizes. For example, using the 1080p 

image pixel count in row 2 as a base, we see that an RGB image with 16 bits per color channel will 

consume: 

2, 073, 600pixels × 3channels=RGB × 2bytes=pixel ¼ 12, 441, 600bytes=frame 

And if we include the need to keep a grayscale channel I around, computed from the RGB, the total 

size for RGBI increases to: 

2, 073, 600pixels × 4channels=RGBI × 2bytes=pixel ¼ 16, 588, 800 bytes=frame 

If we then assume 30 frames per second and two RGB cameras for depth processing + the I channel, 

the memory bandwidth required to move the complete 4-channel RGBI image pair out of the DSP is 

nearly 1 GB/s: 

16, 588, 800pixels × 30fps × 2stereo ¼ 995, 328, 000 mb=s 

So we assume in this example a baseline memory bandwidth of about ~1 GB/s just to move the 

image pair downstream from the ISP. We are ignoring the ISP memory read/write requirements for 

sensor processing for now, assuming that clever DSP memory caching, register file design, and loop-

unrolling methods in assembler can reduce the memory bandwidth. 

Typically, memory coming from a register file in a compute unit transfers in a single clock cycle; 

memory coming from various cache layers can take maybe tens of clock cycles; and memory coming 

from system memory can take hundreds of clock cycles. During memory transfers, the ALU in the 

CPU or GPU may be sitting idle, waiting on memory. 

Memory bandwidth is spread across the fast-register files next to the ALU processors, and through 

the memory caches and even system memory, so actual memory bandwidth is quite complex to 

analyze. Even though some memory bandwidth numbers are provided here, it is only to illustrate the 

activity. 

And the memory bandwidth only increases downstream from the DSP, since each image frame will 

be read, and possibly rewritten, several times during image preprocessing, then also read again during 

interest point generation and feature extraction. For example, if we assume only one image 

preprocessing operation using 5 × 5 kernels on the I channel, each I pixel is read another 25 times, 

hopefully from memory cache lines and fast registers. 

This memory traffic is not all coming from slow-system memory, and it is mostly occurring inside 

the faster-memory cache system and faster register files until there is a cache miss or reload of the fast-

register files. Then, performance drops by an order of magnitude waiting for the buffer fetch and 

register reloading. If we add a FAST9 interest point detector on the I channel, each pixel is read another 

81 times (9 × 9), maybe from memory cache lines or registers. And if we add a FREAK feature 

descriptor over maybe 0.05% of the detected interest points, we add 41 × 41 pixel reads per descriptor



to get the region (plus 45 × 2 reads for point-pair comparisons within the 41 × 41 region), hopefully 

from memory cache lines or registers. 
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Often the image will be processed in a variety of formats, such as image preprocessing the RGB 

colors to enhance the image, and conversion to grayscale intensity I for computing interest points and 

feature descriptors. The color conversions to and from RGB are a hidden memory cost that requires 

data copy operations and temporary storage for the color conversion, which is often done in floating 

point for best accuracy. So several more GB/s of memory bandwidth can be consumed for color 

conversions. With all the memory activity, there may be cache evictions of all or part of the required 

images into a slower system memory, degrading into nonlinear performance. 

Memory size of the descriptor, therefore, is a consideration throughout the vision pipeline. First, we 

consider when the features are extracted; and second, we look at when the features are matched and 

retrieved from the feature database. In many cases, the size of the feature database is by far the critical 

issue in the area of memory, since the total size of all the descriptors to match against affects the static 

memory storage size, memory bandwidth, and pattern match rate. Reducing the feature space into a 

quickly searchable format during classification and training is often of paramount importance. Besides 

the optimized classification methods discussed in Chap. 4, the data organization problems may be 

primarily in the areas of standard computer science searching, sorting, and data structures; some 

discussion and references were provided in Chap. 4. 

When we look at the feature database or training set, memory size can be the dominant issue to 

contend with. Should the entire feature database be kept on a cloud server for matching? Or should the 

entire feature database be kept on the local device? Should a method of caching portions of the feature 

database on the local device from the server be used? All of the above methods are currently employed 

in real systems. 

In summary, memory, caches, and register files exceed the silicon area of the ALU processors in the 

compute units by a large margin. Memory bandwidth across the SOC fabric through the vision pipeline 

is key to power and performance, demanding fast memory architecture and memory cache arrange-

ment, and careful software design. Memory storage size alone is not the entire picture, though, since 

each byte needs to be moved around between compute units. So careful consideration of memory 

footprint and memory bandwidth is critical for anything but small applications. 

Often, performance and power can be dramatically improved by careful attention to memory issues 

alone. Later in the chapter, we cover several design methods to help reduce memory bandwidth and 

increase memory performance, such as locking pages in memory, pipelining code, loop unrolling, and 

SIMD methods. Future research into minimizing memory traffic in a vision pipeline is a worthwhile 

field. 

I/O Performance 

We lump I/O topics together here as a general performance issue, including data bandwidth on the 

SOC I/O fabric between compute units, image input from the camera, and feature descriptor matching 

database traffic to a storage device. We touched on I/O issues above the discussion on memory, since 

pixel data are moved between various compute devices along the vision pipeline on I/O busses. One of 

the major I/O considerations is feature descriptor data moving out of the database at feature match time, 

so using smaller descriptors and optimizing the feature space using effective machine learning and 

classification methods is valuable. 

Another type of I/O to consider is the camera input itself, which is typically accomplished via the 

standard MIPI interface. However, any bus or I/O fabric can be used, such as USB. If the vision 

pipeline design includes a complete HW/SW system design rather than software only on a standard



SOC, special attention to HW I/O subsystem design for the camera and possibly special fast busses for 

image memory transfers to and from a HW-assisted database may be worthwhile. When considering 

power, I/O fabric silicon area and power exceed the area and power for the ALU processors by a large 

margin. 
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The Vision Pipeline Examples 

In this section, we look at four hypothetical examples of vision pipelines. Each is chosen to illustrate 

separate descriptor families from the Vision Metrics Taxonomy presented in Chap. 5, including global 

methods such as histograms and color matching, local feature methods such as FAST interest points 

combined with FREAK descriptors, basis space methods such as Fourier descriptors, and shape-based 

methods using morphology and whole object shape metrics. The examples are broken down into 

stages, operations, and resources, as shown in Fig. 8.1, for the following applications:

• Automobile recognition, using shape and color

• Face recognition, using sparse local features

• Image classification, using global features

• Augmented reality, using depth information and tracking 

None of these examples includes classification, training, and machine learning details, which are 

outside the scope of this book (machine learning references are provided in Chap. 4). A simple 

database storing the feature descriptors is assumed to be adequate for this discussion, since the focus 

here is on the image preprocessing and feature description stages. After working through the examples 

and exploring alternative types of compute resource assignments, such as GPU vs. CPU, this chapter 

finishes with a discussion on optimization resources and techniques for each type of compute resource. 

Automobile Recognition 

Here, we devised a vision pipeline to recognize objects such as automobiles or machine parts by using 

polygon shape descriptors and accurate color matching. For example, polygon shape metrics can be 

used to measure the length and width of a car, while color matching can be used to measure paint color. 

In some cases, such as custom car paint jobs, color alone is not sufficient for identification. 

For this automobile example, the main design challenges include segmentation of automobiles from 

the roadway, matching of paint color, and measurement of automobile size and shape. The overall 

system includes an RGB-D camera system, accurate color and illumination models, and several feature 

descriptors used in concert. See Fig. 8.3. We work through this example in some detail as a way of 

exploring the challenges and possible solutions for a complete vision pipeline design of this type.
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Fig. 8.3 Setting for an automobile identification application using a shape-based and color-based vision pipeline. The 

RGB and D cameras are mounted above the road surface, looking directly down 

We define the system with the following requirements:

• 1080p RGB color video (1920 × 1080 pixels) at 120 fps, horizontally mounted to provide highest 

resolution in length, 12 bits per color, 65° FOV.

• 1080p stereo depth camera with 8 bits Z resolution at 120 fps, 65° FOV.

• Image FOV covering 44 ft. in width and 60 ft. in length over four traffic lanes of oncoming traffic, 

enough for about three normal car lengths in each lane when traffic is stopped.

• Speed limit of 25 mph, which equals ~37 ft./s.

• Camera mounted next to overhead stoplight, with a street lamp for night illumination.

• Embedded PC with 4 CPU cores having SIMD instruction sets, 1 GPU, 8 GB memory, 80 GB disk; 

assumes high-end PC equivalent performance (not specified for brevity).

• Identification of automobiles in real time to determine make and model; also count of occurrences 

of each, with time stamp and confidence score.

• Automobile ground truth training dataset provided by major manufacturers to include geometry, 

and accurate color samples of all body colors used for stock models; custom colors and after-market 

colors not possible to identify.

• Average car sizes ranging from 5 to 6 ft. wide and 12–16 ft. long.

• Accuracy of 99% or better.

• Simplified robustness criteria to include noise, illumination, and motion blur. 

Segmenting the Automobiles 

To segment the automobiles from the roadway surface, a stereo depth camera operating at 1080p 

120 fps (frames per second) is used, which makes isolating each automobile from the roadway simple



using depth. To make this work, a method for calibrating the depth camera to the baseline road surface 

is developed, allowing automobiles to be identified as being higher than the roadway surface. We 

sketch out the depth calibration method here for illustration. 
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Spherical depth differences are observed across the depth map, mostly affecting the edges of the 

FOV. To correct for the spherical field distortion, each image is rectified using a suitable calibrated 

depth function (to be determined on-site and analytically), then each horizontal line is processed, 

taking into consideration the curvilinear true depth distance, which is greater at the edges, to set the 

depth equal across each line. 

Since the speed limit is 25 mph, or 37 ft./s, imaging at 120 FPS yields maximum motion blur of 

about 0.3 ft., or 4 in. per frame. Since the length of a pixel is determined to be 0.37 inches, as developed 

in a subsequent section below “Measuring the Automobile Size and Shape,” the ability to compute car 

length from pixels is accurate within about 4 in./0.37 in. = 11 pixels, or about 3% of a 12-ft-long car at 

25 mph including motion blur. However, motion blur compensation can be applied during image 

preprocessing to each RGB and depth image to effectively reduce the motion blur further; several 

methods exist based on using convolution or compensating over multiple sequential images 

[261, 419]. 

Matching the Paint Color 

We assume that it is possible to identify a vehicle using paint color alone in many cases, since each 

manufacturer uses proprietary colors; therefore, accurate colorimetry can be employed. For matching 

paint color, 12 bits per color channel should provide adequate resolution, which is determined in the 

color match stage using the CIECAM02 model and the Jch color space [215]. This requires develop-

ment of several calibrated device models of the camera with the scene under different illumination 

conditions, such as full sunlight at different times of day, cloud cover, low-light conditions in early 

morning and at dusk, and nighttime using the illuminator lamp mounted above traffic along with the 

camera and stop light. 

The key to colorimetric accuracy is the device models’ accounting for various lighting conditions. A 

light sensor to measure color temperature, along with the knowledge of time of day and season of the 

year, is used to select the correct device models for proper illumination for times of day and seasons of 

the year. However, dirty cars present problems for color matching; for now, we ignore this detail (also 

custom paint jobs are a problem). In some cases, the color descriptor may not be useful or reliable; in 

other cases, color alone may be sufficient to identify the automobile. See the discussion of color 

management in Chap. 2. 

Measuring the Automobile Size and Shape 

For automobile size and shape, the best measurements are taken looking directly down on the car to 

reduce perspective distortion. As shown in Fig. 8.4, the car is segmented into C (cargo), T (top), and H 

(hood) regions using depth information from the stereo camera, in combination with a polygon shape 

segmentation of the auto shape. To compute shape, some weighted combination of RGB and D images 

into a single image will be used, based on best results during testing. We assume the camera is mounted 

in the best possible location centered above all lanes, but that some perspective distortion will exist at 

the far ends of the FOV. We also assume that a geometric correction is applied to rectify the images 

into Cartesian alignment. Assuming errors introduced by the geometric corrections to rectify the FOV 

is negligible, the following approximate dimensional precision is expected for length and width, using 

the minimum car size of 5′ × 12′ as an example:



FOV Pixel Width: 1080 /(44′ × 12″) = each pixel is ~0.49 in. wide

Automobile Recognition 311

Mirror 

Length 

Width 

Fig. 8.4 Features used for automobile identification 

pixels inches 

FOV Pixel Length: 1920pixels/(60′ × 12″)inches = each pixel is ~0.37 in. long 

Automobile Width: (5′ × 12″)/0.49 = ~122 pixels 

Automobile Length: (12′ × 12″)/0.37 = ~389 pixels 

This example uses the following shape features:

• Bounding box containing all features; width and length are used

• Centroid computed in the middle of the automobile region

• Separate width computed from the shortest diameter passing through the centroid to the perimeter

• Mirror feature measured as the distance from the front of the car; mirror locations are the smallest 

and largest perimeter width points within the bounding box

• Shape segmented into three regions using depth; color is measured in each region: cargo compart-

ment (C), top (T), and hood (H)

• Fourier descriptor of the perimeter shape computed by measuring the line segments from centroid to 

perimeter points at intervals of 5° 

Feature Descriptors 

Several feature descriptors are used together for identification, and the confidence of the automobile 

identification is based on a combined score from all descriptors. The key feature descriptors to be 

extracted are as follows:

• Automobile shape factors: Depth-based segmentation of each automobile above the roadway is 

used for the coarse shape outline. Some morphological processing follows to clean up the edges and 

remove noise. For each segmented automobile, object shape factors are computed for area, 

perimeter, centroid, bounding box, and Fourier descriptors of perimeter shape. The bounding box 

measures overall width and height, the Fourier descriptor measures the roundness and shape factors; 

some automobiles are more boxy, some are more curvy. (See Chap. 6 for more information on 

shape descriptors. See Chap. 1 for more information on depth sensors.) In addition, the distance of 

the mirrors from the front of the automobile is computed; mirrors are located at width extrema 

around the object perimeter, corresponding to the width of the bounding box.
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• Automobile region segmentation: Further segmentation uses a few individual regions of the 

automobile based on depth, namely the hood, roof, and trunk. A simple histogram is created to 

gather the depth statistical moments, a clustering algorithm such as K-means is performed to form 

three major clusters of depth: the roof will be highest, hood and trunk will be next highest, windows 

will be in between (top region is missing for convertibles, not covered here). The pixel areas of the 

hood, top, trunk, and windows are used as a descriptor.

• Automobile color: The predominant colors of the segmented hood, roof, and trunk regions are used 

as a color descriptor. The colors are processed in the Jch color space, which is part of the CIECAM 

system yielding high accuracy. The dominant color information is extracted from the color samples 

and normalized against the illumination model. In the event of multiple paint colors, separate color 

normalization occurs for each. (See Chap. 3 for more information on colorimetry.) 

Calibration, Setup, and Ground Truth Data 

Several key assumptions are made regarding scene setup, camera calibration, and other corrections; we 

summarize them here:

• Roadway depth surface: Depth camera is calibrated to the road surface as a reference to segment 

autos above the road surface; a baseline depth map with only the road is calibrated as a reference 

and used for real-time segmentation.

• Device models: Models for each car are created from manufacturer’s information, with accurate 

body shape geometry and color for each make and model. Cars with custom paint confuse this 

approach; however, the shape descriptor and the car region depth segmentation provide a failsafe 

option that may be enough to give a good match—only testing will tell for sure.

• Illumination models: Models are created for various conditions, such as morning light, daylight, 

and evening light, for sunny and cloudy days; illumination models are selected based on time of day 

and year and weather conditions for best matching.

• Geometric model for correction: Models of the entire FOV for both the RGB and depth camera 

are devised, to be applied at each new frame to rectify the image. 

Pipeline Stages and Operations 

Assuming the system is fully calibrated in advance, the basic real-time processing flow for the 

complete pipeline is shown in Fig. 8.5, divided into three primary stages of operations. Note that the 

complete pipeline includes an image preprocessing stage to align the image in the FOV and segment 

features, a feature description stage to compute shape and color descriptors, and a correspondence 

stage for feature matching to develop the final automobile label composed of a weighted combination 

of shape and color features. We assume that a separate database table for each feature in some standard 

database is fine.
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Fig. 8.5 Operations in hypothetical vision pipeline for automobile identification using polygon shape features and color 

No attempt is made to create an optimized classifier or matching stage here; instead, we assume, 

without proving or testing, that a brute-force search using a standard database through a few thousand 

makes and models of automobile objects works fine for the ALPHA version. 

Note in Fig. 8.5 (bottom right) that each auto is tracked from frame to frame, we do not define the 

tracking method here. 

Operations and Compute Resources 

For each operation in the pipeline stages, we now explore possible mappings to the available compute 

resources. First, we review the major resources available in our example system, which contains 8 GB 

of fast memory, we assume sufficient free space to map and lock the entire database in memory to 

avoid paging. Our system contains four CPU cores, each with SIMD instruction sets, and a GPU 

capable of running 128 SIMT threads simultaneously with 128 GB/s memory bandwidth to shared 

memory for the GPU and CPU, considered powerful enough. Let us assume that, overall, the compute 

and memory resources are fine for our application and no special memory optimizations need to be 

considered. Next, we look at the coarse-grain optimizations to assign operations to compute resources. 

Table 8.3 provides an evaluation of possible resource assignments.
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314 8 Vision Pipelines and HW/SW Optimizations

Table 8.3 Assignment of operations to compute resources 

Operations 

Resources and predominant data types 

DSP sensor 

VLIW 

uint16 

int16 

WarpUnit 

GPU SIMT/SIMD 

uint16/32 

int16/32 

float/double 

TextureUnit 

CPU 

Threads 

uint16/32 

int16/32 

float/double 

CPU 

SIMD 

uint16/32 

int16/32 

float/double 

CPU 

General 

uint16/32 

int16/32 

float/double 

1. Capture RGB-D images × 

2. 4-point warp image rectify 

3. Remove motion blur × 

4. Segment auto, roadway × 

5. Segment autoshape regions × 

6. Morphology to clean up shapes × 

7. Area, perimeter, centroid × 

8. Radius line segments × 

9. Radius histograms × 

10. Fourier descriptors × 

11. Mirror distance × 

12. Dominant region colors × 

13. Classify features × 

14. Object classification score × 

Criteria for Resource Assignments 

In our simple example, as shown in Table 8.3, the main criteria for assigning algorithms to compute 

units are processor suitability and load balancing among the processors; power is not an issue for this 

application. The operation to resource assignments provided in Table 8.3 is a starting point in this 

hypothetical design exercise; actual optimizations would be different, adjusted based on performance 

profiling. However, assuming what is obvious about the memory access patterns used for each 

algorithm, we can make a good guess at resource assignments based on memory access patterns. In 

a second-order analysis, we could also look at load balancing across the pipeline to maximize parallel 

uses of compute units; however, this requires actual performance measurements. 

Here, we will tentatively assign the tasks from Table 8.3 to resources. If we look at memory access 

patterns, using the GPU for the sequential tasks 2 and 3 makes sense, since we can map the images into 

GPU memory space first and then follow with the three sequential operations using the GPU. The GPU 

has a texture sampler to which we assign task 2, the geometric corrections using the four-point warp. 

Some DSPs or camera sensor processors also have a texture sampler capable of geometric corrections, 

but not in our example. In addition to geometric corrections, motion blur is a good candidate for the 

GPU as well, which can be implemented as an area operation efficiently in a shader. For higher-end 

GPUs, there may even be hardware acceleration for motion blur compensation in the media section. 

Later in the pipeline, after the image has been segmented in tasks 4 and 5, the morphology stage in 

task 6 can be performed rapidly using a GPU shader; however, the cost of moving the image to and 

from the GPU for the morphology may actually be slower than performing the morphology on the 

CPU, so performance analysis is required for making the final design decision regarding CPU vs. GPU 

implementation. 

In the case of stages 7–11, shown in Table 8.3, the algorithm for area, perimeter, centroid, and other 

measurements spans a nonlocalized data access pattern. For example, perimeter tracing follows the 

edge of the car. So we will make one pass using a single CPU through the image to track the perimeter 

and compute the area, centroid, and bounding box for each automobile. Then, we assign each bounding



box as an image tile to a separate CPU thread for computation of the remaining measurements: radial 

line segment length, Fourier descriptor, and mirror distance. Each bounding box is then assigned to a 

separate CPU thread for computation of the colorimetry of each region, including cargo, roof, and 

hood, as shown in Table 8.3. Each CPU thread uses C++ for the color conversions and attempts to use 

compiler flags to force SIMD instruction optimizations. 
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Tracking the automobile from frame to frame is possible using shape and color features; however, 

we do not develop the tracking algorithm here. For correspondence and matching, we rely on a generic 

database from a third party, running in a separate thread on a CPU that is executing in parallel with the 

earlier stages of the pipeline. We assume that the database can split its own work into parallel threads. 

However, an optimization phase could rewrite and create a better database and classifier, using parallel 

threads to match feature descriptors. 

Fig. 8.6 Pose points for human body joints created using the Openpose method analyzing synthetic diffusion model 

images using view synthesis, images courtesy of openposes.com—images available for public use—# Openposes.com. 

There are many methods avaiable for pose points, including 3D and 6DOF 

Object Models for Human Body, Generic Objects, Pose Point Detectors 

Pre-trained pose-point object models are available from both open-source and major companies such 

as Google, Microsoft, Apple, and Meta for applications such as human body analysis (20 or more body 

joints for activity analysis), facial expression points (30 or more points for emotion and age recogni-

tion), and hand models (includes 20 or more points for hand/finger joint detection), self-driving car 

applications (detect cars, signs, people, . . .), animal detection, and more. Such commercial products 

could be used to develop a more comprehensive solution than our next simple exercise using the 

custom methods below. Some human pose point methods even detect the 6D pose x, y, z position 

including roll, putch, and yaw of the bone structures (see poseai.com). See Fig. 8.6 for an example of 

human body pose points. 

Pose point detection methods for 2D/3D are available for monocular, stereo, and multi-view 

reconstruction from several images, using a CPU only, but mostly requiring a GPU, and perhaps 

special-purpose hardware accelerators. Face, hands, and body pose points can be detected, as well as

http://poseai.com
http://openposes.com
http://openposes.com


other objects. Many methods exist, such as using neural networks trained to model and detect each 

separate body joint, and other methods use CV algorithmic methods similar to those developed in this 

chapter using feature descriptors and other metrics, where some methods are closely related to image 

stitching (see Chap. 12). Object and human pose point detection can be accelerated in real time in 

hardware at speeds above 30fps. The company poseAI.com provides 6DOF pose joints (a major 

innovation) incurring bone rotation descriptors in 3D. 
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To dig deeper into object detectors and human pose point methods (which is a very active area of 

research). For a good overview of the field see [1016]. For more details on the underlying methods 

and algorithms for object detection, see Object Detectors and Object Descriptors in Chap. 2 

(especially YOLO). 

The Sapiens family of 3D human models by Khirodkar et. al [1027] as the authors state: “Sapiens… 

supports four fundamental human-centric vision tasks: 2D pose estimation, body-part segmentation, 

depth estimation, and surface normal prediction.” These models train on 2D images, can be fine-tuned 

for specific images, available on Hugging Face, as provided by Meta. 

Face, Emotion, and Age Recognition 

In this example, we design a face, emotion, and age recognition pipeline that uses local feature 

descriptors and interest points. Face recognition is concerned with identifying the unique face of a 

unique person, while face detection is concerned with determining only where a face is located and 

interesting characteristics such as emotion, age, and gender. Our example is for face detection, and 

finding the emotions and age of the subject, using discreet algorithms we develop here. These 

algorithms are not optimal, and are for developing intuition only. 

Note 

This exercise is developed by creating novel low-level facial features, however facial feature pose 

points could be used instead as discussed in the prior section, see Fig. 8.6. 

For simplicity, this example uses mugshots of single faces taken with a stationary camera for 

biometric identification to access a secure area. Using mugshots simplifies the example considerably, 

since there is no requirement to pick out faces in a crowd from many angles and distances. Key design 

challenges include finding a reliable interest point and feature descriptor method to identify the key 

facial landmarks, determining emotion and age, and modeling the landmarks in a normalized, relative 

coordinate system to allow for distance ratios and angles to be computed. 

Excellent facial recognition systems for biometric identification have been deployed for several 

decades that use a wide range of methods, achieving accuracies of close to 100%. In this exercise, no 

attempt is made to prove performance or accuracy.We define the systemwith the following requirements:

• 1080p RGB color video (1920 × 1080 pixels) at 30 fps, horizontally mounted to provide the highest 

resolution in length, 12 bits per color, 65° FOV, 30 FPS

• Image FOV covers 2 ft. in height and 1.5 ft. in width, enough for a complete head and top of the 

shoulder

• Background is a white drop screen for ease of segmentation

• Illumination is positioned in front of and slightly above the subject, to cast faint shadows across the 

entire face that highlight corners around eyes, lips, and nose

• For each face, the system identifies the following landmarks: 

– Eyes: two eye corners and one center of eye 

– Dominant eye color: in CIECAM02 JCH color coordinates 

– Dominant face color: in CIECAM02 JCH color coordinates
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– Eyebrows: two eyebrow endpoints and one center of eyebrow arc, used for determining 

emotions 

– Nose: one point on nose tip and two widest points by nostrils, used for determining emotions and 

gender 

– Lips: two endpoints of lips, two center ridges on upper lip 

– Cheeks: one point for each cheek center 

– Chin: one point, bottom point of chin, may be unreliable due to facial hair 

– Top of head: one point; may be unreliable due to hairstyle 

– Unique facial markings: these could include birthmarks, moles, or scars, and must fall within a 

bounding box computed around the face region

• A FREAK feature is computed at each detected landmark on the original image

• Accuracy is 99% or better

• Simplified robustness criteria to include scale only 

Note that emotion, age, and gender can all be estimated from selected relative distances and 

proportional ratios of facial features, and we assume that an expert in human face anatomy provides 

the correct positions and ratios to use for a real system. See Fig. 8.7. 

Fig. 8.7 (Left) Proportional ratios based on a bounding box of the head and face regions as guidelines to predict the 

location of facial landmarks. (Right) Annotated image with detected facial landmark positions and relative angles and 

distances measured between landmarks. The relative measurements are used to determine emotion, age, and gender 

The set of features computed for this example system includes: 

1. Relative positions of facial landmarks such as eyes, eyebrows, nose, and mouth 

2. Relative proportions and ratios between landmarks to determine age, sex, and emotion 

3. FREAK descriptor at each landmark 

4. Eye color
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Calibration and Ground Truth Data 

The calibration is simple: a white backdrop is used in back of the subject, who stands about 4 ft. away 

from the camera, enabling a shot of the head and upper shoulders. (We discuss the operations used to 

segment the head from the background region later in this section.) Given that we have a 1080p image, 

we allocate the 1920 pixels to the vertical direction and the 1080 pixels to the horizontal. 

Assuming the cameraman is good enough to center the head in the image so that the head occupies 

about 50% of the horizontal pixels, and about 50% of the vertical pixels, we have pixel resolution for 

the head of ~540 pixels horizontal and ~960 pixels vertical, which is good enough for our application 

and corresponds to the ratio of head height to width. Since we assume that average head height is about 

9 in. and width as 6 in. across for male and female adults, using our assumptions for a four-foot 

distance from the camera, we have plenty of pixel accuracy and resolution: 

9″/(1920pixels × 0.5) = 0.009″ vertical pixel size 

6″/(1080pixels × 0.5) = 0.01″ horizontal pixel size 

The ground truth data consists of: (1) mugshots of known people, and (2) a set of canonical eye 

landmark features in the form of correlation templates used to assist in locating face landmarks 

(a sparse codebook of correlation templates). There are two sets of correlation templates: one for 

fine features based on a position found using a Hessian detector, and one for coarse features based on a 

position found using a steerable filter-based detector (the fine and coarse detectors are described in 

more detail later in this example). 

Since facial features like eyes and lips are very similar among people, the canonical landmark 

feature correlation templates provide only rough identification of landmarks and their location. Several 

templates are provided covering a range of ages and genders for all landmarks, such as eye corners, 

eyebrow corners, eyebrow peaks, nose corners, nose bottom, lip corners, and lip center region shapes. 

For sake of brevity, we do not develop the ground truth dataset for correlation templates here, but we 

assume the process is accomplished using synthetic features created by warping or changing real 

features and testing them against several real human faces to arrive at the best canonical feature set. 

The correlation templates are used in the face landmark identification stage, discussed later. 

Interest Point Position Prediction 

To find the facial landmarks, such as eyes, nose, and mouth, this example application is simplified by 

using mugshots, making the position of facial features predictable and enabling intelligent search for 

each feature at the predicted locations. Rather than resort to scientific studies of head sizes and shapes, 

for this example we use basic proportional assumptions from human anatomy (used for centuries by 

artists) to predict facial feature locations and enable search for facial features at predicted locations. 

Facial feature ratios differ primarily by age, gender, and race; for example, typical adult male ratios are 

shown in Table 8.4.
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Table 8.4 Basic approximate face and head feature proportions 

Head height Head width × 1.25 

Head width Head height × 0.75 

Face height Head height × 0.75 

Face width Head height × 0.75 

Eye position Eye center located 30% in from edges, 50% from top of head 

Eye length Head width × 0.25 

Eye spacing Head width × 0.5 (center to center) 

Nose length Head height × 0.25 

Lip corners About eye center x, about 15% higher than chin y 

Note 

The information in Table 8.4 is synthesized for illustration purposes from elementary artists’ materials 

and is not guaranteed to be accurate. 

The most basic coordinates to establish are the bounding box for the head. From the bounding box, 

other landmark facial feature positions can be predicted. 

Segmenting the Head and Face Using the Bounding Box 

As stated earlier, the mugshots are taken from a distance of about 4 ft. against a white drop background, 

allowing simple segmentation of the head. We use thresholding on simple color intensity as RGBI-I, 

where I = (R + G + B)/3 and the white drop background is identified as the highest intensity. 

The segmented head and shoulder region are used to create a bounding box of the head and face, 

discussed next. (Note: wild hairstyles will require another method, perhaps based on relative sizes and 

positions of facial features compared to head shape and proportions.) After segmenting the bounding 

box for the head, we proceed to segment the facial region and then find each landmark. The rough size 

of the bounding box for head is computed in two steps: 

1. Find the top and left, right sides of the head—Topxy, Leftxy, Rightxy—which we assume can be 

directly found by making a pass through the image line by line and recording the rows and columns 

where the background is segmented to meet the foreground of head, to establish the coordinates. All 

leftmost and rightmost coordinates for each line can be saved in a vector, and sorted to find the 

median values to use as Rightx/Leftx coordinates. We compute head width as: 

Hw ¼ Rightx -Leftx 

2. Find the chin to assist in computing the head height Hh. The chin is found by first predicting the 

location of the chin, then performing edge detection and some filtering around the predicted location 

to establish the chin feature, which we assume is simple to find based on gradient magnitude of the 

chin perimeter. The chin location prediction is made by using the head top coordinates Topxy and 

the normal anatomical ratio of the head height Hh to head width Hw, which is known to be about 

0.75. Since we know both Topxy and Hw from step 1, We Can predict the x and y coordinates of the 

chin as follows: 

Chiny ¼ 0:25×Hwð Þ þ Topy 

Chinx ¼ Topx 

Actually, hairstyle makes the segmentation of the head difficult in some cases, since the hair may be 

piled high on top or extend widely on the sides and cover the ears. However, we can either iterate the 

chin detection method a few times to find the best chin, or else assume that our segmentation method



will solve this problem somehow via a hair filter module, so we move on with this example for the sake 

of brevity. 
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To locate the chin position, a horizontal edge detection mask is used around the predicted location, 

since the chin is predominantly a horizontal edge. The coordinates of the connected horizontal edge 

maxima are filtered to find the lowest y coordinates of the horizontal edge set, and the median of the 

lowest x/y coordinates is used as the initial guess at the chin center location. Later, when the eye 

positions are known, the chin x position can be sanity-checked with the position of the midpoint 

between the eyes and recomputed, if needed. See Fig. 8.8. 

Fig. 8.8 Location of facial landmarks. (Left) Facial landmarks enhanced using largest eigenvalues of Hessian tensor 

[420] in FeatureJ; note the fine edges that provide extra detail. (Center) Template-based feature detector using steerable 

filters with additional filtering along the lines of the Canny detector [331] to provide coarse detail. (Right) Steerable filter 

pattern used to compute center image. Both images are enhanced using contrast window remapping to highlight the 

edges. FeatureJ plug-in for ImageJ used to generate eigenvalues of Hessian (FeatureJ developed by Erik Meijering) 

The head bounding box, containing the face, is assumed to be: 

BoundingBoxTopLeftx = Leftx 
BoundingBoxTopLefty = Topy 
BoundingBoxBottomRightx = Rightx 
BoundingBoxBottomRighty = Chiny 

Face Landmark Identification and Compute Features 

Now that the head bounding box is computed, the locations of the face landmark feature set can be 

predicted using the basic proportional estimates from Table 8.4. A search is made around each 

predicted location to find the features; see Fig. 8.7. For example, the eye center locations are ~30% 

in from the sides and about 50% down from the top of the head. 

In our system, we use an image pyramid with two levels for feature searching, a coarse-level search 

down-sampled by four times, and a fine-level search at full resolution to relocate the interest points, 

compute the feature descriptors, and take the measurements. The coarse-to-fine approach allows for 

wide variation in the relative size of the head to account for mild scale invariance owing to distance 

from the camera and/or differences in head size owing to age. 

We do not add a step here to rotate the head orthogonal to the Cartesian coordinates in case the head 

is tilted; however, this could be done easily. For example, an iterative procedure can be used to 

minimize the width of the orthogonal bounding box, using several rotations of the image taken every



2° from -10 to +10°. The bounding box is computed for each rotation, and the smallest bounding box 

width is taken to find the angle used to correct the image for head tilt. 
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In addition, we do not add a step here to compute the surface texture of the skin, useful for age 

detection to find wrinkles, which is easily accomplished by segmenting several skin regions, such as 

forehead, eye corners, and the region around mouth, and computing the surface texture (wrinkles) 

using an edge or texture metric. 

The landmark detection steps include feature detection, feature description, and computing relative 

measurements of the positions and angles between landmarks, as follows: 

1. Compute interest points: Prior to searching for the facial features, interest point detectors are used to 

compute likely candidate positions around predicted locations. Here, we use a combination of two 

detectors: (1) the largest eigenvalue of the Hessian tensor [420], and (2) steerable filters [319] 

processed with an edge detection filter criteria similar to the Canny method [331], as illustrated in 

Fig. 8.8. Both the Hessian and the Canny-like edge detectors images are followed by contrast 

windowing to enhance the edge detail. The Hessian style and Canny-style images are used together 

to vote on the actual location of best interest points during the correlation stage next. 

2. Compute landmark positions using correlation: The final position of each facial landmark feature is 

determined using a canonical set of correlation templates, described earlier, including eye corners, 

eyebrow corners, eyebrow peaks, nose corners, nose bottom, lip corners, and lip center region 

shapes. The predicted location to start the correlation search is the average position of both detectors 

from step 1: (1) The Hessian approach provides fine-feature details, (2) while the steerable filter 

approach provides coarse-feature details. Testing will determine if correlation alone is sufficient 

without needing interest points from step 1. 

3. Describe landmarks using FREAK descriptors: For each landmark location found in step 2, we 

compute a FREAK descriptor. SIFT may work just as well. 

4. Measure dominant eye color using CIECAM02 JCH: We use a super-pixel method [219, 220] to 

segment out the regions of color around the center of the eye, and make a histogram of the colors of 

the super-pixel cells. The black pupil and the white of the eye should cluster as peaks in the 

histogram, and the dominant color of the eye should cluster in the histogram also. Even multicol-

ored eyes will be recognized using our approach using histogram correspondence. 

5. Compute relative positions and angles between landmarks: In step 2 above, correlation was used to 

find the location of each feature (to sub-pixel accuracy if desired [398]). As illustrated in Fig. 8.7, 

we use the landmark positions as the basis for measuring the relative distances of several features, 

such as: 

(a) Eye distance, center to center, useful for age and gender 

(b) Eye size, corner to corner 

(c) Eyebrow angle, end to center, useful for emotion 

(d) Eyebrow to eye angle, ends to center positions, useful for emotion 

(e) Eyebrow distance to eye center, useful for emotion 

(f) Lip or mouth width 

(g) Center lip ridges angle with lip corners, useful for emotion 

Pipeline Stages and Operations 

The pipeline stages and operations are shown in Fig. 8.9. For correspondence, we assume a separate 

database table for each feature. We are not interested in creating an optimized classifier to speed up 

pattern matching; brute-force searching is fine.
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Fig. 8.9 Operations in hypothetical vision pipeline for face, emotion, and age detection using local features 

Operations and Compute Resources 

For this example, there is mostly straight-line code best suited for the CPU. Following the data access 

patterns as a guide, the bounding box, relative distances and ratios, FREAK descriptors and corre-

spondence are good candidates for the CPU. In some cases, separate CPU threads can be used, such as 

computing the FREAK descriptors at each landmark in separate threads (threads are likely overkill for 

this simple application). We assume feature matching using a standard database. Our application is 

assumed to have plenty of time to wait for correspondence. 

Some operations are suited for a GPU; for example, the area operations, including the Hessian and 

Canny-like interest point detectors. These methods could be combined and optimized into a single 

shader program using a single common data read loop and combined processing loop, which produce 

output into two images, one for each detector. In addition, we assume that the GPU provides an API to 

a fast, HW accelerated correlation block matcher in the media section, so we take advantage of the HW 

accelerated correlation. 

Criteria for Resource Assignments 

In this example, performance is not a problem, so the criteria for using computer resources are relaxed. 

In fact, all the code could be written to run in a single thread on a single CPU, and the performance 

would likely be fast enough with our target system assumptions. However, the resource assignments



shown in Table 8.5 are intended to illustrate reasonable use of the resources for each operation to 

spread the workload around the SOC. 
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Table 8.5 Assignments of operations to compute resources 

Operations 

Resources and predominant data types 

DSP sensor 

VLIW 

uint16 

int16 

WarpUnit 

GPU SIMT/SIMD 

uint16/32 

int16/32 

float/double 

TextureUnit 

CPU 

Threads 

uint16/32 

int16/32 

float/ 

double 

CPU 

SIMD 

uint16/32 

int16/32 

float/ 

double 

CPU 

General 

uint16/32 

int16/32 

float/ 

double 

1. Capture RGB-D images × 

2. Segment background from head × 

3. Bounding box × 

4. Compute Hessian and Canny × 

5. Correlation × 

6. Compute relative angles, distance × 

7. Super-pixel eye segmentation × 

8. Eye segment color histogram × 

9. FREAK descriptors × 

10. Correspondence × 

11. Object classification score × 

Image Classification 

For our next example, we design a simple image classification system intended for mobile phone use, 

with the goal of identifying the main objects in the camera’s field of view, such as buildings, 

automobiles, and people. For image classification applications, the entire image is of interest, rather 

than specific local features. The user will have a simple app which allows them to point the camera at 

an object, and wave the camera from side to side to establish the stereo baseline for MVS depth 

sensing, discussed later. A wide range of global metrics can be applied (as discussed in Chap. 3), 

computed over the entire image, such as texture, histograms of color or intensity, and methods for 

connected component labeling. Also, local features (as discussed in Chap. 6) can be applied to describe 

key parts of the images. This hypothetical application uses both global and local features. 

We define the system with the following requirements:

• 1080p RGB color video (1920 × 1080 pixels) at 30 fps, 12 bits per color, 65° FOV, 30 FPS

• Image FOV covers infinite focus view from a mobile phone camera

• Unlimited lighting conditions (bad and good)

• Accuracy of 90% or better

• Simplified robustness criteria, including scale, perspective, occlusion

• For each image, the system computes the following features: 

– Global RGBI histogram, in RGBI color space 

– GPS coordinates, since the phone has a GPS 

– Camera pose via MVS depth sensing, using the accelerometer data for geometric rectification to 

an orthogonal FOV plane (the user is asked to wave the camera while pointed at the subject, the 

camera pose vector is computed from the accelerometer data and relative to the main objects in 

the FOV using ICP)
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– SIFT features, ideally between 20 and 30 features stored for each image 

– Depth map via monocular dense depth sensing, used to segment out objects in the FOV, depth 

range target 0.3–30 m, accuracy within 1% at 1 m, and within 10% at 30 m 

– Scene labeling and pixel labeling, based on attributes of segmented regions, including RGBI 

color and LBP texture 

Scene recognition is a well-researched field, and several grand challenge competitions are held 

annually to find methods for increased accuracy using established ground truth datasets, as shown in 

Appendix B. The best accuracy achieved for various categories of images in the challenges ranges 

from 50 to over 90%. In this exercise, no attempt is made to prove performance or accuracy. 

Segmenting Images and Feature Descriptors 

For this hypothetical vision pipeline, several methods for segmenting the scene into objects will be 

used together, instead of relying on a single method, as follows: 

1. Dense segmentation, scene parsing, and object labeling: A depth map generated using monocu-

lar MVS is used to segment common items in the scene, including the ground or floor, sky or 

ceiling, left and right walls, background, and subjects in the scene. To compute monocular depth 

from the mobile phone device, the user is prompted by the application to move the camera from left 

to right over a range of arm’s length covering 3 ft. or so, to create a series of wide baseline stereo 

images for computing depth using MVS methods (as discussed in Chap. 1). MVS provides a dense 

depth map. Even though MVS computation is compute-intensive, this is not a problem, since our 

application does not require continuous real-time depth map generation—just a single depth map; 

3–4 s to acquire the baseline images and generate the depth map is assumed possible for our 

hypothetical mobile device. 

2. Color segmentation and component labeling using super-pixels: The color segmentation using 

super-pixels should correspond roughly with portions of the depth segmentation. 

3. LBP region segmentation: This method is fairly fast to compute and compact to represent, as 

discussed in Chap. 6. 

4. Fused segmentation: The depth, color, and LBP segmentation regions are combined using Boolean 

masks and morphology and some logic into a fused segmentation. The method uses an iterative loop 

to minimize the differences between color, depth, and LBP segmentation methods into a new fused 

segmentation map. The fused segmentation map is one of the global image descriptors. 

5. Shape features for each segmented region: basic shape features, such as area and centroid, are 

computed for each fused segmentation region. Relative distance and angle between region centroids 

are also computed into a composite descriptor. 

In this hypothetical example, we use several feature descriptor methods together for additional 

robustness and invariance, and some preprocessing, summarized as follows: 

1. SIFT interest points across the entire image are used as additional clues. We follow the SIFT 

method exactly, since SIFT is known to recognize larger objects using as few as three or four SIFT 

features [132]. However, we expect to limit the SIFT feature count to 20 or 30 strong candidate 

features per scene, based on training results. 

2. In addition, since we have an accelerometer and GPS sensor data on the mobile phone, we can use 

sensor data as hints for identifying objects based on location and camera pose alone, for example 

assuming a server exists to look up the GPS coordinates of landmarks in an area.
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3. Since illumination invariance is required, we perform RGBI contrast remapping in an attempt to 

normalize contrast and color prior to the SIFT feature computations, color histograms, and LBP 

computations. We assume a statistical method for computing the best intensity remapping limits is 

used to spread out the total range of color to mitigate dark and oversaturated images, based on 

ground truth data testing, but we do not take time to develop the algorithm here; however, some 

discussion on candidate algorithms is provided in Chap. 2. For example, computing SIFT 

descriptors on dark images may not provide sufficient edge gradient information to compute a 

good SIFT descriptor, since SIFT requires gradients. Oversaturated images will have washed-out 

color, preventing good color histograms. 

4. The fused segmentation combines the best of all the color, LBP, and depth segmentation methods, 

minimizing the segmentation differences by fusing all segmentations into a fused segmentation 

map. LBP is used also, which is less sensitive to both low-light and oversaturated conditions, 

providing some balance. 

Again, in the spirit of a hypothetical exercise, we do not take time here to develop the algorithm 

beyond the basic descriptions given above. 

Pipeline Stages and Operations 

The pipeline stages are shown in Fig. 8.10. They include an image preprocessing stage primarily to 

correct image contrast, compute depth maps and segmentation maps. The feature description stage 

computes the RGBI color histograms, SIFT features, a fused segmentation map combining the best of 

depth, color, and LBP methods, and then labels the pixels as connected components. For correspon-

dence, we assume a separate database table for each feature, using brute-force search; no optimization 

attempted. 

Capture wide baseline 

images 

RGBI contrast remapping 

Compute M VS depth map 

Color segmentation map 

LBP tex ture segmentation 

map 

Compute RGBI color 

histograms 

Compute SIFT features 

Compute 
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Labeling segmented 

objects 

Classify features 
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pose 

Segmented 

Objects 

SIFT features  
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Image Pre-processing Feature Description Correspondence 

Fig. 8.10 Operations in hypothetical image classification pipeline using global features
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Mapping Operations to Resources 

We assume that the DSP provides an API for contrast remapping, and since the DSP is already 

processing all the pixels from the sensor anyway and the pixel data are already there, contrast 

remapping is a good match for the DSP. 

The MVS depth map computations follow a data pattern of line and area operations. We use the 

GPU for the heavy-lifting portions of the MVS algorithm, like left/right image pair pattern matching. 

Our algorithm follows the basic stereo algorithms, as discussed in Chap. 1. The stereo baseline is 

estimated initially from the accelerometer, then some bundle adjustment iterations over the baseline 

image set are used to improve the baseline estimates. We assume that the MVS stereo workload is the 

heaviest in this pipeline and consumes most of the GPU for a second or two. A dense depth map is 

produced in the end to use for depth segmentation. 

The color segmentation is performed on RGBI components using a super-pixel method 

[219, 220]. A histogram of the color components is also computed in RGBI for each super-pixel 

cell. The LBP texture computation is a good match for the GPU since it is an area operation amenable 

to shader programming style. So it is possible to combine the color segmentation and the LBP texture 

segmentation into the same shader to leverage data sharing in register files and avoid data swapping 

and data copies. 

The SIFT feature description can be assigned to CPU threads, and the data can be tiled and divided 

among the CPU threads for parallel feature description. Likewise, the fused segmentation can be 

assigned to CPU threads and the data tiled also. Note that tiled data can include overlapping boundary 

regions or buffers, see Fig. 8.13 for an illustration of overlapped data tiling. Labeling can also be 

assigned to parallel CPU threads in a similar manner, using tiled data regions. Finally, we assume a 

brute-force matching stage using database tables for each descriptor to develop the final score, and we 

weigh some features more than others in the final scoring, based on training against ground truth data. 

Criteria for Resource Assignments 

The basic criterion for the resource assignments is to perform the early point processing on the DSP, 

since the data are already resident, and then to use the GPU SIMT SIMD model to compute the area 

operations as shaders to create the depth maps, color segmentation maps, and LBP texture maps. The 

last stages of the pipeline map nicely to thread-parallel methods and data tiling. Given the chosen 

operation to resource assignments shown in Table 8.6, this application seems cleanly amenable to 

workload balancing and parallelization across the CPU cores in threads and the GPU.
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Table 8.6 Assignments of operations to compute resources 

Operations 

Resources and predominant data types 

DSP 

sensor 

VLIW 

uint16 

int16 

WarpUnit 

GPU SIMT/ 

SIMD 

uint16/32 

int16/32 

float/double 

TextureUnit 

CPU 

Threads 

uint16/32 

int16/32 

float/ 

double 

CPU 

SIMD 

uint16/32 

int16/32 

float/ 

double 

CPU 

General 

uint16/32 

int16/32 

float/ 

double 

1. Capture RGB wide baseline 

images 

× 

2. RGBI contrast remapping × 

3. MVS depth map × 

4. LBP texture segmentation map × 

5. Color segmentation map × 

6. RGBI color histograms × 

7. SIFT features × 

8. Fused segmentation × 

9. Labeling segmented objects × 

10. Correspondence × 

11. Object classification score × 

Augmented Reality 

In this fourth example, we design an augmented reality application for equipment maintenance using a 

wearable display device such as glasses or goggles and wearable cameras. The complete system 

consists of a portable, wearable device with camera and display connected to a server via wireless. 

Processing is distributed between the wearable device and the server. (Note: this example is especially 

high level and leaves out a lot of detail, since the actual system would be complex to design, train, and 

test.) 

The server system contains all the CAD models of the machine and provides on-demand graphics 

models or renderings of any machine part from any viewpoint. The wearable cameras track the eye 

gaze and the position of the machine. The wearable display allows a service technician to look at a 

machine and view augmented reality overlays on the display, illustrating how to service the machine. 

As the user looks at a given machine, the augmented reality features identify the machine parts and 

provide overlays and animations for assisting in troubleshooting and repair. The system uses a 

combination of RGB images as textures on 3D depth surfaces and a database of 3D CAD models of 

the machine and all the component machine parts. 

The system will have the following requirements:

• 1080p RGB color video camera (1920 × 1080 pixels) at 30 fps, 12 bits per color, 65° FOV, 30 FPS

• 1080p stereo depth camera with 8 bits Z resolution at 60 fps, 65° FOV; all stereo processing 

performed in silicon in the camera ASIC with a depth map as output

• 480p near infra-red camera pointed at eyes of technician, used for gaze detection; the near-infrared 

camera images better in the low-light environment around the head-mounted display

• 1080p wearable RGB display

• A wearable PC to drive the cameras and display, descriptor generation, and wireless communications 

with the server; the system is battery-powered for mobile use with an 8-h battery life
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• A server to contain the CAD models of the machines and parts; each part will have associated 

descriptors precomputed into the database; the server can provide either graphics models or 

complete renderings to the wearable device via wireless

• Server to contain ground truth data consisting of feature descriptors computed on CAD model 

renderings of each part + normalized 3D coordinates for each descriptor for machine parts

• Simplified robustness criteria include perspective, scale, and rotation 

Calibration and Ground Truth Data 

We assume that the RGB camera and the stereo camera system are calibrated with correct optics to 

precisely image the same FOV, since the RGB camera and 3D depth map must correspond at each 

pixel location to enable 2D features to be accurately associated with the corresponding 3D depth 

location. However, the eye gaze camera will require some independent calibration, and we assume a 

simple calibration application is developed to learn the technician’s eye positions by using the stereo 

and RGB cameras to locate a feature in the FOV and then overlay an eye gaze vector on a monitor to 

confirm the eye gaze vector accuracy. We do not develop the calibration process here. 

However, the ground truth data take some time to develop and train and require experts in repair and 

design of the machine to work together during training. The ground truth data include feature sets for 

each part, consisting of 2D SIFT features along corners, edges, and other locations such as knobs. To 

create the SIFT features, first a set of graphics renderings of each CAD part model is made from 

representative viewpoints the technician is likely to see, and then, the 2D SIFT features are computed 

on the graphics renderings, and the geometry of the model is used to create relative 3D coordinates for 

each SIFT feature for correspondence. 

The 2D SIFT feature locations are recorded in the database along with relative 3D coordinates and 

associated into objects using suitable constraints such as angles and relative distances, see Fig. 8.11. 

An expert selects a minimum set of features for each part during training—primarily strongest features 

from corners and edges of surfaces. The relative angles and distances in three dimensions between the 

2D SIFT features are recorded in the database to provide for perspective, scale, and rotation invariance. 

The 3D coordinates for all the parts are normalized to the size of the machine. In addition, the dominant 

color and texture of each part surface are computed from the renderings and stored as texture and color 

features. This system would require considerable training and testing.
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Fig. 8.11 SIFT vertex descriptor is similar to a computer graphics vertex using 3D location, color, and texture. The 

SIFT vertex descriptor contains the 2D SIFT descriptor from the RGB camera, the 3D coordinate of the 2D SIFT 

descriptor generated from the depth camera, the RGB color at the SIFT vertex, and the LBP texture at the SIFT vertex. 

The Part object contains a list of SIFT vertex descriptors, along with relative angles and distances between each 3D 

coordinate in the SIFT vertex list 

Feature and Object Description 

In actual use in the field, the RGB camera is used to find the 2D SIFT, LBP, and color features, and the 

stereo camera is used to create the depth map. Since the RGB image and depth map are pixel-aligned, 

each feature has 3D coordinates taken from the depth map, which means that a 3D coordinate can be 

assigned to a 2D SIFT feature location. The 3D angles and 3D distances between 2D SIFT feature 

locations are computed as constraints, and the combined LBP, color, and 2D SIFT features with 3D 

location constraints are stored as SIFT vertex features and sent to the server for correspondence. See 

Fig. 8.11 for an illustration of the layout of the SIFT vertex descriptors and parts objects. Note that the 

3D coordinate is associated with several descriptors, including SIFT, LBP texture, and RGB color, 

similar to the way a 3D vertex is represented in computer graphics by 3D location, color, and texture. 

During training, several SIFT vertex descriptors are created from various views of the parts, each view 

associated by 3D coordinates in the database, allowing for simplified searching and matching based on 

3D coordinates along with the features. 

Overlays and Tracking 

In the server, SIFT vertex descriptors in the scene are compared against the database to find parts object. 

The 3D coordinates, angles, and distances of each feature are normalized relative to the size of the 

machine prior to searching. As shown in Fig. 8.11, the SIFT features are composed at a 3D coordinate 

into a SIFT vertex descriptor, with an associated 2D SIFT feature, LBP texture, and color. The SIFT 

vertex descriptors are associated into part objects, which contain the list of vertex coordinates describing 

each part, along with the relative angles and distances between SIFT vertex features.
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Assuming that the machine part objects can be defined using a small set of SIFT vertex features, 

sizes and distance can be determined in real time, and the relative 3D information such as size and 

position of each part and the whole machine can be continually computed. Using 3D coordinates of 

recognized parts and features, augmented reality renderings can be displayed in the head-mounted 

display, highlighting part locations and using overlaying animations illustrating the parts to remove, as 

well as the path for the hand to follow in the repair process. 

The near-infrared camera tracks the eyes of the technician to create a 3D gaze vector onto the scene. 

The gaze vector can be used for augmented reality “help” overlays in the head-mounted display, 

allowing for gaze-directed zoom or information, with more detailed renderings and overlay informa-

tion displayed for the parts the technician is looking at. 

Pipeline Stages and Operations 

The pipeline stages are shown in Fig. 8.12. Note that the processing is divided between the wearable 

device (primarily for image capture, feature description, and display), and a server for heavy 

workloads, such as correspondence and augmented reality renderings. In this example, the wearable 

device is used in combination with the server, relying on a wireless network to transfer images and 

data. We assume that data bandwidth and data compression methods are adequate on the wireless 

network for all necessary data communications. 

Align RGB + stereo images 

Compute 2D SIFT 

descriptors 

3D info: Add 3D coordinate 

to 2D SIFT 

Compute LBP tex ture + RGB 

color 

Send 2DSIFT, 3D info, 

tex ture & color to server 

3D info: Compute 3D angles 

& distances 

Convert 3D info to relative 

coordinates 

M atch 2D SIFT descriptors 

M atch 3D info with SIFT 3D 

coordinates 

M atch RGB-I tex ture + RGB  
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Classify features 
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Feature Description 
(device) 

Correspondence 
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Augment & Track 
(server) 

Update gaze pose vector 

Determine augmented 

rendering coordinates 

Render overlay & animation 

images 

Send graphics geometry to 

device 

Render augmentation to 

head-mounted display 

Fig. 8.12 Operations in hypothetical augmented reality pipeline
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Mapping Operations to Resources 

We make minimal use of the GPU for GPGPU processing and assume the server has many CPUs 

available, and we use the GPU for graphics rendering at the end of the pipeline. Most of the operations 

map well into separate CPU threads using data tiling. Note that a server commonly has many high-

power and fast CPUs, so using CPU threads is a good match. See Table 8.7. 

Table 8.7 Assignments of operations to compute resources 

Operations 

Resources and predominant data types 

DSP 

sensor 

VLIW 

uint16 

int16 

WarpUnit 

GPU SIMT/ 

SIMD 

uint16/32 

int16/32 

float/double 

TextureUnit 

CPU 

Threads 

uint16/32 

int16/32 

float/ 

double 

CPU 

SIMD 

uint16/32 

int16/32 

float/ 

double 

CPU 

General 

uint16/32 

int16/32 

float/ 

double 

1. Capture RGB & stereo images Device 

2. Align RGB and stereo images Device 

3. Compute 2D SIFT Device 

4. Compute LBP texture Device 

5. Compute color Device 

6. Compute 2D SIFT Device 

7. Compute 3D angles/distances Device 

8. Normalize 3D coordinates Server 

9. Match 2D SIFT descriptors Server 

10. Match SIFT vertex coordinates Server 

11. Match SIFT vertex color & LBP Server 

12. Object classification score Server 

13. Update gaze pose vector Server 

14. Render overlay & animation 

images 

Server 

15. Display overlays & animations Device *GFX 

pipe 

Criteria for Resource Assignments 

On the mobile device, the depth map is computed in silicon on the depth camera. We use the GPU to 

perform the RGB and depth map alignment using the texture sampler, then perform SIFT computations 

on the CPU, since the SIFT computations must be done first to have the vertex to anchor and compute 

the multivariate descriptor information. We continue and follow data locality and perform the LBP and 

color computations for each 2D SIFT point in separate CPU threads using data tiling and overlapped 

regions. See Fig. 8.13 for an illustration of overlapped data tiling.
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Tile 1 

Tile 2 

Tile 3 

Tile 4 

16 

16 

16 16 

Fig. 8.13 Data tiling into four overlapping tiles. The tiles overlap a specific amount, 16 pixels in this case, allowing for 

area operations such as convolutions to read, not write, into the overlapped region for assembling convolution kernel data 

from adjacent regions. However, each thread only writes into the nonoverlapped region within its tile. Each tile can be 

assigned to a separate thread or CPU core for processing 

On the server, we have assigned the CAD database and most of the heavy portions of the workload, 

including feature matching and database access, since the server is expected to have large storage and 

memory capacity and many CPUs available. In addition, we wish to preserve battery life and minimize 

heat on the mobile device, so the server is preferred for the majority of this workload. 

Acceleration Alternatives 

There are a variety of common acceleration methods, acceleration methods that can be applied to the 

vision pipeline, including attention to memory management, coarse-grained parallelism using threads, 

data-level parallelism using SIMD and SIMT methods, multi-core parallelism, advanced CPU and 

GPU assembler language instructions, and hardware accelerators. 

There are two fundamental approaches for acceleration: 

1. Follow the data 

2. Follow the algorithm 

Optimizing algorithms for compute devices, such as SIMD instruction sets or SIMT GPGPU 

methods, also referred to as stream processing, is oftentimes the obvious choice designers consider. 

However, optimizing for data flow and data residency can yield better results. For example, bouncing 

data back and forth between compute resources and data formats is not a good idea; it eats up time and 

power consumed by the copy and format conversion operations. Data copying in slow-system memory 

is much slower than data access in fast-register files within the compute units. Considering the memory



architecture hierarchy of memory speeds, as was illustrated in Fig. 8.2, and considering the image-

intensive character of computer vision, it is better to find ways to follow the data and keep the data 

resident in fast registers and cache memory as long as possible, local to the compute unit. 
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Memory Optimizations 

Attention to memory footprint and memory transfer bandwidth are the most often overlooked areas when 

optimizing an imaging or vision application, yet memory issues are the most critical in terms of power, 

bandwidth, silicon area, and overall performance. As shown in Table 8.2 and the memory discussion 

following, a very basic vision pipeline moves several GB/s of descriptor through the system between 

compute units and system memory, and DNNs may be an order of magnitude more data intensive. In 

addition, area processes like interest point detection and image preprocessing move even more data in 

complex routes through the register files of each compute unit, caches, and system memory. 

Why optimize for memory? By optimizing memory use, data transfers are reduced, performance is 

improved, power costs are reduced, and battery life is increased. Power is costly; in fact, a large 

Internet search company has built server farms very close to the Columbia River’s hydroelectric 

systems to guarantee clean power and reduce power transmission costs. 

For mobile devices, battery life is a top concern. Governments are also beginning to issue carbon 

taxes and credits to encourage power reductions. Memory use, thus, is a cost that is often overlooked. 

Memory optimization APIs and approaches will be different for each compute platform and operating 

system. A good discussion on memory optimization methods for Linux is found in reference [421]. 

Minimizing Memory Transfers Between Compute Units 

Data transfers between compute units should be avoided, if possible. Workload consolidation should 

be considered during the optimization and tuning stage in order to perform as much processing as 

possible on the same data while it is resident in register files and the local cache of a given compute 

unit. That is, follow the data. 

For example, using a GPGPU shader for a single-area operation, then processing the same data on 

the CPU will likely be slower than performing all the processing on the CPU. That is because GPGPU 

kernels require device driver intervention to set up the memory for each kernel and launch each kernel, 

while a CPU program accesses code and data directly, with no driver setup required other than initial 

program loading. One method to reduce the back and forth between compute units is to use loop 

coalescing and task chaining, discussed later in this section. 

Memory Tiling 

When dividing workloads for coarse-grained parallelism into several threads, the image can be broken 

into tiled regions and each tile assigned to a thread. Tiling works well for point, line, and area processing, 

where each thread performs the same operation on the tiled region. By allowing for an overlapped read 

region between tiles, the hard boundaries are eliminated and area operations like convolution can read 

into adjacent tiles for kernel processing, as well as write finished results into their tile. See Fig. 8.13.
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DMA, Data Copy, and Conversions 

Often, multiple copies of an image are needed in the vision pipeline, and in some cases, the data must 

be converted from one type to another. Converting 12-bit unsigned color channel data stored in a 16-bit 

integer to a 32-bit integer allowing for more accurate numerical precision downstream in computations 

is one example. Also, the color channels might be converted into a chosen color space, such as RGBI, 

for color processing in the I component space (R × G × B)/3 = I; then, the new I value is mixed and 

copied back into the RGB components. Careful attention to data layout and data residency will allow 

more efficient forward and backward color conversions. 

When copying data, it is good to try using the direct memory access (DMA) unit for the fastest 

possible data copies. The DMA unit is implemented in hardware to directly optimize and control the 

I/O interconnect traffic in and out of memory. Operating systems provide APIs to access the DMA unit 

[421]. There are variations for optimizing the DMA methods, and some interesting reading comparing 

cache performance against DMA in vision applications is found in references [422, 424]. 

Register Files, Memory Caching, and Pinning 

The memory system is a hierarchy of virtual and physical memories for each processor, composed of 

slow fixed storage such as file systems, page files, and swap files for managing virtual memory, system 

memory, caches, and fast-register files inside compute units, and with memory interconnects in 

between. If the data to process is resident in the register files, it is processed by the ALU at processor 

clock rates. Best-case memory access is via the register files close to each ALU, so keeping the data in 

registers and performing all possible processing before copying the data is optimal, but this may 

require some code changes (discussed later in this section). 

If the cache must be accessed to get the data, more clock cycles are burned (power is burned, 

performance is lost) compared to accessing the register files. And if there is a cache miss and much 

slower system memory must be accessed, typically many hundreds of clock cycles are required to 

move the memory to register files through the caches for ALU processing. 

Operating systems provide APIs to lock or pin the data in memory, which usually increases the 

amount of data in cache, decreasing paging and swapping. (Swapping is a hidden copy operation 

carried out by the operating system automatically to make more room in system memory.) When data 

are accessed often, the data will be resident in the faster cache memories, as illustrated in Fig. 8.2. 

Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization 

The data structures used contribute to memory traffic. Data organization should allow serial access in 

contiguous blocks as much as possible to provide best performance. From the programming perspec-

tive, data structures are often designed with convenience in mind, and no attention is given to how the 

compiler will arrange the data or the resulting performance. 

For example, consider a data structure with several fields composed of bytes, integers, and floating 

point data items; compilers may attempt to rearrange the positions of data items in the data structures 

and even pack the data in a different order for various optimizations. Compilers usually provide a set of 

compiler directives, such as in-line pragmas and compiler switches, to control the data packing 

behavior; these are worth looking into. 

For point processing, vectors of data are the natural structure, and the memory system will operate at 

peak performance in accessing and processing contiguous vectors. For area operations, rectangles



spanning several lines are used, and the rectangles cause memory access patterns that can generate cache 

misses. Using scatter-gather operations for gathering convolution kernel data allows a large data structure 

to be split apart into vectors of data, increasing performance. Often, CPU and GPU memory architectures 

pay special attention to data access patterns and provide hidden methods for optimizations. 
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Scatter-gather operations, also referred to as vectored I/O or strided memory access, can be 

implemented in the GPU or CPU silicon to allow for rapid read/write access to noncontiguous data 

structure patterns. Typically, a scatter operation writes multiple input buffers into a contiguous pattern 

in a single output buffer, and a gather operation analogously reads multiple input buffers into a 

contiguous pattern in the output buffer. 

Operating systems and computer languages provide APIs for scatter-gather operations. For Linux-

style operating systems, see the readv and writev function specified in the POSIX 1003.1-2001 specifi-

cation. The async_work_group_strided_copy function is provided by OpenCL for scatter-gather. 

Coarse-Grain Parallelism 

A vision pipeline can be implemented using coarse-grain parallelism by breaking up the work into 

threads and also by assigning work to multiple processor cores. Coarse-grained parallelism can be 

achieved by breaking up the compute workload into pipelines of threads or by breaking up the memory 

into tiles assigned to multiple threads. 

Compute-Centric vs. Data-Centric 

Coarse-grain parallelism can be employed via compute-centric and data-centric approaches. For 

example, in a compute-centric approach, vision pipeline stages can be split among independent 

execution threads and compute units along the lines of pipeline stages, and data are fed into the next 

stage a little at a time via queues and FIFOs. In a data-centric approach, an image can be split into tiles, 

as shown in Fig. 8.13, and each thread processes an independent tile region. 

Threads and Multiple Cores 

Several methods exist to spread threads across multiple CPU cores, including reliance on the operating 

system scheduler to make optimum use of each CPU core and perform load balancing. Another is by 

assigning specific tasks to specific CPU cores. Each operating system has different controls available to 

tune the process scheduler for each thread and also may provide the capability to assign specific threads 

to specific processors. (We discuss programming resources, languages, and tools for coarse-grained 

threading later in this chapter.) Each operating system will provide an API for threading, such as 

pthreads. See Fig. 8.14.
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Fig. 8.14 (Left) Typical SIFT descriptor pipeline compute allocation [148]. (Right) Reported compute times [94] for 

ORB, SURF, and SIFT, averaged over 24 640 × 480 images containing about 1000 features per image. Retrofitting ORB 

for SIFT may be a good choice in some applications 

Fine-Grain Data Parallelism 

Fine-grain parallelism refers to the data organization and the corresponding processor architectures 

exploiting parallelism, traditionally referred to as array processors or vector processors. Not all 

applications are data parallel. Deploying non-data-parallel code to run on a data-parallel machine is 

counterproductive; it is better to use the CPU and straight-line code to start. 

A data-parallel operation should exhibit common memory patterns, such as large arrays of regular 

data like lines of pixels or tiles of pixels, which are processed in the same way. Referring back to 

Fig. 8.1, note that some algorithms operate on vectors of points, lines, and pixel regions. These data 

patterns and corresponding processing operations are inherently data parallel. Examples of point 

operations are color corrections and data type conversions, and examples of area operations are 

convolution and morphology. Some algorithms are straight-line code, with lots of branching and little 

parallelism. Fine-grained data parallelism is supported directly via SIMD and SIMT methods. 

SIMD, SIMT, and SPMD Fundamentals 

The supercomputers of yesterday are now equivalent to the GPUs and multi-core CPUs of today. The 

performance of SIMD, SIMT, and SPMD machines, and their parallel programming languages, is of 

great interest to the scientific community. It has been developed over decades, and many good 

resources are available that can be applied to inexpensive SOCs today; see the National Center for 

Supercomputing Applications [468] for a starting point. 

SIMD instructions and multiple threads can be applied when fine-grained parallelism exists in the 

data layout in memory and the algorithm itself, such as with point, line, and area operations on vectors. 

Single instruction multiple data (SIMD) instructions process several data items in a vector simulta-

neously. To exploit fine-grained parallelism at the SIMD level, both the computer language and the 

corresponding ALUs should provide direct support for a rich set of vector data types and vector 

instructions. Vector-oriented programming languages are required to exploit data parallelism, as 

shown in Table 8.8; however, sometimes compiler switches are available to exploit SIMD. Note that 

languages like C++ do not directly support vector data types and vector instructions, while data-

parallel languages do, as shown in Table 8.8.
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Table 8.8 Common data-parallel language choices 

Language name Standard or proprietary OS platform support 

Pixel Shader GLSL Standard OpenGL Several OS platforms 

Pixel Shader HLSL Direct3D Microsoft OS 

Compute Shader Direct3D Microsoft OS 

Compute Shader Standard OpenGL Several OS platforms 

RenderScript Android Google OS 

OpenCL Standard Several OS platforms 

C++ AMP Microsoft Microsoft OS platforms 

CUDA Only for NVIDIA GPUs Several OS platforms 

OpenMP 

*NOTE: many languages are adding native 

SIMT/SIMD parallel features 

Standard Several OS platforms 

In some cases, the cost of SIMT outweighs its benefit, especially considering run-time overhead for 

data setup and tear-down, thread management, code portability problems, and scalability across large 

and small CPUs and GPUs. 

In addition to SIMD instructions, a method for launching and managing large groups of threads 

running the same identical code must be provided to exploit data parallelism, referred to as single 

instruction multiple threading (SIMT), also known as single program multiple data (SPMD). The 

SIMT programs are referred to as shaders, since historically the pixel shaders and vertex shaders used 

in computer graphics were the first programs widely used to exploit fine-grained data parallelism. 

Shaders are also referred to as kernels. 

Both CPUs and GPUs support SIMD instructions and SIMT methods—for example, using 

languages like OpenCL. The CPU uses the operating system scheduler for managing threads; however, 

GPUs use hardware schedulers, dispatchers, and scoreboarding logic to track thread execution and 

blocking status, allowing several threads running an identical kernel on different data to share the same 

ALU. For the GPU, each shader runs on the ALU until it is blocked on a memory transfer, a function 

call, or is swapped out by the GPU shader scheduler when its time slice expires. 

Note that both C++ AMP and CUDA seem to provide language environments closest to C++. The 

programming model and language for SIMT programming contain a run-time execution component to 

marshal data for each thread, launch threads, and manage communications and completion status for 

groups of threads. Common SIMT languages are shown in Table 8.8. 

Note that CPU and GPU execution environments differ significantly at the hardware and software 

level. The GPU relies on device drivers for setup and tear-down, and fixed-function hardware 

scheduling, while CPUs rely on the operating system scheduler and perhaps micro-schedulers. A 

CPU is typically programmed in C or C++, and the program executes directly from memory and is 

scheduled by the operating system, while a GPU requires a shader or kernel program to be written in a 

SIMT SIMD-friendly language such as a compute shader or pixel shader in DirectX or OpenGL, or a 

GPGPU language such as CUDA or OpenCL. 

Furthermore, a shader kernel must be launched via a run-time system through a device driver to the 

GPU, and an execution context is created within the GPU prior to execution. A GPU may also use a 

dedicated system memory partition where the data must reside, and in some cases, the GPU will also 

provide a dedicated fast memory unit. 

GPGPU programming has both memory data setup and program setup overhead through the 

run-time system, and unless several kernels are executed sequentially in the GPU to hide the overhead, 

the setup and tear-down overhead for a single kernel can exceed any benefit gained via the GPU SIMD/ 

SIMT processing.
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The decision to use a data parallelism SIMT programming model affects program design and 

portability. The use of SIMT is not necessary, and in any case, a standard programming language like 

C++ must be used to control the SIMT run-time environment, as well as the entire vision pipeline. 

However, the performance advantages of a data-parallel SIMT model are in some cases dramatically 

compelling and the best choice. Note, however, that GPGPU SIMT programming may actually be 

slower than using multiple CPU cores with SIMD instructions, coarse-grained threading, and data 

tiling, especially in cases where the GPU does not support enough parallel threads in hardware, which 

is the case for smaller GPUs. 

Shader Kernel Languages and GPGPU 

As shown in Table 8.8, there are several alternatives for creating SIMD SIMT data-parallel code, 

sometimes referred to as GPGPU or stream processing. As mentioned above, the actual GPGPU 

programs are known as shaders or kernels. Historically, pixel shaders and vertex shaders were 

developed as data-parallel languages for graphics standards like OpenGL and DirectX. However, 

with the advent of CUDA built exclusively for NVIDIA GPUs, the idea of a standard, general-purpose 

compute capability within the GPU emerged. The concept was received in the industry, although no 

killer apps existed and pixel shaders could also be used to get equivalent results. In the end, each 

GPGPU programming language translates into machine language anyway, so the choice of high-level 

GPGPU language may not be significant in many cases. 

However, the choice of GPGPU language is sometimes limited for a vendor operating system. For 

example, major vendors such as Google, Microsoft, and Apple do not agree on the same approach for 

GPGPU and they provide different languages, which means that industry-wide standardization is still a 

work in progress and portability of shader code is elusive. Perhaps the closest to a portable standard 

solution is OpenCL, but compute shaders for DirectX and OpenGL are viable alternatives. 

Advanced Instruction Sets and Accelerators 

Each processor has a set of advanced instructions for accelerating specific operations. The vendor 

processor and compiler documentation should be consulted for the latest information. A summary of 

advanced instructions is shown in Table 8.9. 

APIs provided by operating system vendors may or may not use the special instructions. Compilers 

from each processor vendor will optimize all code to take best advantage of the advanced instructions; 

other compilers may or may not provide optimizations. However, each compiler will provide different 

flags to control optimizations, so code tuning and profiling are required. Using assembler language is 

the best way to get all the performance available from the advanced instruction sets.
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Table 8.9 Advanced instruction sets and HW acceleration processors 

Instruction type Description 

Transcendentals GPUs have special assembler instructions to compute common transcendental math functions for 

graphics rendering math operations, such as dot product, square root, cosine, and logarithms. In 

some cases, CPUs also have transcendental functions 

Fused 

instructions 

Common operations such as multiply and add are often implemented in single fused MADD 

instruction, where both multiply and add are performed in a single clock cycle; the instruction may 

have three or more operands 

SIMD 

instructions 

CPUs have SIMD instruction sets, such as the IntelSSE and Intel AVX instructions, similar SIMD 

for AMD processors, and NEON for ARM processors 

Advanced data 

types 

Some instruction sets, such as for GPUs, provide odd data types not supported by common language 

compilers, such as half-byte integers, 8-bit floating point numbers, and fixed-point numbers. Special 

data types may be supported by portions of the instruction set, but not all 

Memory 

access modifiers 

Some processors provide strided memory access capability to support scatter-gather operations, 

bit-swizzling operations to allow for register contents to be moved and copied in programmable bit 

patterns, and permuted memory access patterns to support cross-lane patterns. Intel processors also 

provide MPX memory protection instructions for pointer checking 

Security 

Scalar[0], 

Vector[1], 

Matrix[2], 

Tensor[≥3] 

Cryptographic accelerators and special instructions may be provided for common ciphers such as 

SHA or AES ciphers; for example, INTEL AES-NI. In addition, Intel offers the INTEL SGX 

extensions to provide curtained memory regions to execute secure software; the curtained regions 

cannot be accessed by malware 

For accelerating tensor mathematics which are common to deep learning training and inferencing, 

some GPUs and SOCs incorporate tensor HW units for accelerated memory access and parallel 

computation of tensor arrays. A tensor of rank = 0 a scalar, rank 1 = a vector, rank 2 = a 2d matrix, 

and rank 3 or greater is a tensor. Tensor data structures are arrays, which are straightforward to 

organize in memory and accelerate in terms of memory access and parallel instructions for the math 

operations on the arrays. Matrix math accelerators, array processors and DPS units, matrix math 

accelerators in the GPU, and tensor processing units are available separately from various HW 

vendors usually in the GPU; however, Google was the first to deploy a tensor HW core separate 

from the GPU 

Hardware 

accelerators 

Common accelerators include GPU texture samplers for image warping and sub-sampling, and 

DMA units for fast memory copies. Operating systems provide APIs to access the DMA unit 

[437]. Graphics programming languages such as OpenGL and DirectX provide access to the texture 

sampler, and GPGPU languages such as OpenCL and CUDA also provide texture sampler APIs. 

Many vendors offer computer vision accelerators for basic tasks such as object recognition and 

tracking with and without neural network methods, especially Intel Corp, which offers a range of 

products that can be deployed as small embedded devices with built in camera and SW on a small 

SOC. Sometimes, OpenCV code is provided using acceleration alternatives specific to a given 

processor 

Vision Algorithm Optimizations and Tuning 

Optimizations can be based on intuition or on performance profiling, usually a combination of both. 

Assuming that the hotspots are identified, a variety of optimization methods can be applied as discussed 

in this section. Performance hotspots can be addressed from the data perspective, the algorithm perspec-

tive, or both. Most of the time memory access is a hidden cost and not understood by the developer (the 

algorithms are hard enough). However, memory optimizations alone can be the key to increasing 

performance. Table 8.11 summarizes various approaches for optimizations, which are discussed next. 

Data access patterns for each algorithm can be described using the Zinner, Kubinger, and Isaac 

taxonomy [422] shown in Table 8.10. Note that usually the preferred data access pattern is in-place 

(IP) computations, which involve reading the data once into fast registers, processing and storing the 

results in the registers, and writing the final results back on top of the original image. This approach 

takes maximal advantage of the cache lines and the registers, avoiding slower memory until the data 

are processed.
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Table 8.10 Image processing data access pattern taxonomy (from Zinner et al. [422]) 

Type Description Source images Destination images READ WRITE 

(1S) 1 source, 0 destination 1 0 Source image No 

(2S) 2 source, 0 destination 2 0 Source images No 

(IP) In-placea 1 0 Source image Source image 

(1S1D) 1 source, 1 destination 1 1 Source image Destination image 

(2S1D) 2 source, 1 destination 2 1 Source images Destination image 
a IP processing is usually the simplest way to reduce memory read/write bandwidth and memory footprint 

Compiler and Manual Optimizations 

Usually, a good compiler can automatically perform many of the optimizations listed in Table 8.11; 

however, check the compiler flags to understand the options. The goal of the optimizations is to keep 

the CPU instruction execution pipelines full, or to reduce memory traffic. However, many of the 

optimizations in Table 8.11 require hand coding to boil down the algorithm into tighter loops with 

more data sharing in fast registers and less data copying. 

Table 8.11 Common optimization techniques, manual and compiler methods 

Name Description 

Sub-function 

inlining 

Eliminating function calls by copying the function code in-line 

Task chaining Feeding the output of a function into a waiting function piece by piece 

Branch 

elimination 

Re-coding to eliminate conditional branches, or reduce branches by combining multiple branch 

conditions together 

Loop coalescing Combining inner and outer loops into fewer loops using more straight-line code 

Packing data Rearranging data alignment within structures and adding padding to certain data items for better 

data alignment to larger data word or page boundaries to allow for more efficient memory read and 

write 

Loop unrolling Reducing the loop iteration count by replicating code inside the loop; may be accomplished using 

straight-line code replication or by packing multiple iterations into a VLIW 

Function 

coalescinga 
Rewriting serial functions into a single function, with a single outer loop to read and write data to 

system memory; passing small data items in fast registers between coalesced functions instead of 

passing large images buffers 

ROS-DMAa Double-buffering DMA overlapped with processing; DMA and processing occur in parallel, DMA 

the new data in during processing, DMA the results out 

Note: See references [425, 426] for more information on compiler optimizations, and see each vendor’s compiler 

documentation for information on available optimization controls 
a Function coalescing and ROS-DMA are not compiler methods and may be performed at the source code level 

Tuning 

After optimizing, tuning a working vision pipeline can be accomplished from several perspectives. The 

goal is to provide run-time controls. Table 8.12 provides some examples of tuning controls that may be 

implemented to allow for run-time or compile-time tuning.
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Table 8.12 Run-time tuning controls for a vision pipeline 

Image resolution Allowing variable resolution over an octave scale or other scale to reduce workload 

Frames per second Skipping frames to reduce the workload 

Feature database size and 

accuracy 

Finding ways to reduce the size of the database, for example have one database with 

higher accuracy, and another database with lower accuracy, each built using a different 

classier 

Feature database 

organization and speed 

Improving performance through better organization and searching, perhaps have more 

than one database, each using a different organization strategy and classifier 

Feature Descriptor Retrofit, Detectors, Distance Functions 

As discussed in Chap. 6, many feature descriptor methods such as SIFT can be retrofitted to use other 

representations and feature descriptions. For example, the LBP-SIFT retrofit discussed in Chap. 6 uses 

a local binary pattern in place of the gradient methods used by SIFT for impressive speedup, while 

preserving the other aspects of the SIFT pipeline. The ROOT-SIFT method is another SIFT accelera-

tion alternative discussed in Chap. 6. Detectors and descriptors can be mixed and matched to achieve 

different combinations of invariance and performance, see the REIN framework [328]. 

In addition to the descriptor extractor itself, the distance functions often consume considerable time 

in the feature-matching stage. For example, local binary descriptors such as FREAK and ORB use fast 

Hamming distance, while SIFT uses the Euclidean distance, which is slower. Retrofitting the vision 

pipeline to use a local binary descriptor is an example of how the distance function can have a 

significant performance impact. 

It should be pointed out that the descriptors reviewed in Chap. 6 are often based on academic 

research, not on extensive engineering field trials and optimizations. Each method is just a starting 

point for further development and customization. We can be sure that military weapon systems have 

been using similar, but far more optimal feature description methods for decades within vision 

pipelines in deployed systems. 

Boxlets and Convolution Acceleration 

Convolution is one of the most common operations in feature description and image preprocessing, so 

convolution is a key target for optimizations and hardware acceleration. The boxlet method [323] 

approximates convolution and provides a speed vs. accuracy trade-off. Boxlets can be used to optimize 

any system that relies heavily on convolutions, such as the convolutional network approach used by 

LeCun and others [60, 285, 288]. The basic approach is to approximate a pair of 2D signals, the kernel 

and the image, as low-degree polynomials, which quantizes each signal and reduces the data size and 

then differentiating the two signals to obtain the impulse functions and convolution approximation. 

The full convolution can be recovered by integrating the result of the differentiation. 

Another convolution and general area processing acceleration method is to reuse as much 

overlapping data as possible while it exists in fast registers, instead of reading the entire region of 

data items for each operation. When performing area operations, it is possible to program to use sliding 

windows and pointers in an attempt to reuse data items from adjacent rectangles that are already in the 

register files, rather than copying complete new rectangles into registers for each area operation. This is 

another area suited for silicon acceleration.
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Also, scatter-gather instructions can be used to gather the convolution data into memory for 

accelerated processing in some cases, and GPUs often optimize the memory architecture for fast 

area operations. 

Data Type Optimizations, Integer vs. Float 

Software engineers usually use integers as the default data type, with little thought about memory and 

performance. Often, there is low-hanging fruit in most code in the area of data types. For example, 

conversion of data from int32 to int16, and conversion from double to float, are obvious space-saving 

items to consider when the extra bit precision is not needed. 

In some cases, floating point data types are used when an integer will do equally well. Floating point 

computations in general require nearly four times more silicon area, which consumes correspondingly 

more power. The data types consume more memory and may require more clock cycles to compute. As 

an alternative to floating point, some processors provide fixed-point data types and instructions, which 

can be very efficient. 

Optimization Resources 

Several resources in the form of software libraries and tools are available for computer vision and 

image processing optimizations. Some are listed in Table 8.13. 

Table 8.13 Vision optimization resources 

Method Acceleration strategy Examples 

Threading 

libraries 

Coarse-grained parallelism Intel TBB, pthreads 

Pipeline 

building tools 

Connect functions into pipelines PfeLib Vision Pipeline Library [422] 

Halide [467]a 

Primitive 

acceleration 

libraries 

Functions are pre-optimized Intel IPP, NVIDIA NPP, Qualcomm FastCV 

GPGPU 

languages 

Develop SPMT SIMD code using data parallelism CUDA, OpenCL, C++ AMP, INTEL CILK++, 

GLSL, HLSL, Compute Shaders for OpenGL 

and Direct3D, RenderScript 

Compiler flags Compiler optimizes for each processor; see 

Table 8.11 

Vendor-specific 

SIMD 

instructions 

Directly code in assembler, or use compiler flags 

for standard languages, or use GPGPU languages. 

Vendor-specific 

Hardware 

accelerators 

See Table 8.9 above See Table 8.9 above 

Advanced 

instruction sets 

Accelerate complex low-level operations, or fuse 

multiple instructions; see Table 8.9 

INTEL AVX, ARM NEON, GPU instruction 

sets 
a Open source available
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Summary 

This chapter ties together the discussions from previous chapters into complete vision systems by 

developing four purely hypothetical high-level application designs. Design details such as compute 

resource assignments and optimization alternatives are discussed for each pipeline, intended to 

generate a discussion about how to design efficient systems (the examples are sketchy at times). The 

applications explored include automobile recognition using shape and color features, face and emotion 

detection using sparse local features, whole image classification using global features, and augmented 

reality. Each example illustrates the use of different feature descriptor families from the Vision Metrics 

Taxonomy presented in Chap. 5, such as polygon shape methods, color descriptors, sparse local 

features, global features, and depth information. A wide range of feature description methods are used 

in the examples to illustrate the challenges in the preprocessing stage. 

In addition, a general discussion of design concepts for optimizations and load balancing across the 

compute resources in the SOC fabric (CPU, GPU, and memory) is provided to explore HW/SW system 

challenges, such as power reductions. Finally, an overview of SW optimization resources and specific 

optimization techniques is presented. 

Learning Assignments 

1. Estimate the memory space and memory bandwidth required to process stereo RGB images of 

resolution 1920 × 1080 at 60 frames per second, and show how the estimates are derived. 

2. A virtual memory system allows each running program to operate in a large virtual memory space, 

sharing physical memory with all other programs. Describe how a virtual memory system operates 

at a high level, including all layers and speeds of memory used between the fast registers, main 

memory, and the slowest page/swap file. Discuss the relative speeds of each memory layer in the 

memory architecture (HINT: registers operate at one processor clock cycle per read/write access). 

3. Describe memory swapping and paging in a virtual memory system, and discuss the performance 

implications for computer vision applications. 

4. Describe how DMA operates, and how memory regions can be locked into memory. 

5. Discuss how data structure organization can influence memory performance in a computer vision 

application, and provide an example worst-case memory organization for a specific algorithm. 

6. Compare the power use of a CPU and a GPU and compare the silicon die area of each 

compute unit. 

7. Name a few compiler flags that can be used to optimize code in a C++ compiler. 

8. Describe sub-function in-lining and function coalescing. 

9. Describe loop coalescing and loop unrolling. 

10. Discuss the trade-off between using integer and floating point data types, and when each data type 

is appropriate. 

11. List several methods to optimize memory access in computer vision applications by illustrating 

how a specific algorithm works, and how to optimize memory access for the specific 

algorithm. HINT: memory access can be optimized by the structure of memory items, and the 

speed of the memory used. 

12. Describe at least three types of image processing and computer vision algorithms that can be 

optimized to use a multi-core CPU, and describe the algorithm optimization. 

13. Name at least two types of assembler instructions available in high-end CPUs to accelerate 

computer vision and imaging applications.
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Discuss multi-threading and how it can be applied to computer vision, and describe an algorithm 

that has been optimized for multi-threading. 

15. Discuss SIMD instructions and how SIMD can be applied to computer vision. 

16. Describe the major features of a GPU and describe how the GPU features can be applied to 

computer vision, and describe an algorithm that has been optimized for a GPU. 

17. Name at least two programming languages that can be used to program a GPU. 

18. Discuss SIMT processing and describe how SIMT can be applied to computer vision, and describe 

an algorithm that has been optimized for SIMT. 

19. Discuss VLIW and instruction level parallelism, and how VLIW can be applied to computer 

vision, and describe an algorithm that has been optimized for VLIW. 

20. Choose a computer vision application, then describe at a high level how to partition the compute 

workload to operate in parallel across a multi-core CPU and a GPU. 

21. Name several image processing operations and describe specific optimization methods for each 

image processing operation. 

22. List and describe the facial landmark features, such as eye corners, that should be detected to 

classify emotions, and describe the pixel characteristics of each facial landmark. 

23. Define and code a face recognition algorithm and describe each pipeline stage. Provide an 

architecture document with requirements and a high-level design, suitable for someone else to 

implement the system from the architecture document. Example pipeline stages may include 

(1) sensor processing, (2) global image metrics used to guide image preprocessing, (3) search 

strategies and feature detectors used to locate the face region in the image to know where to search 

for individual facial landmark features, (4) which feature detectors to use to locate the face 

landmark features, (5) how to design culling criteria for ignoring bad features (HINT: relative 

position of features is one possibility), how to measure correspondence between detected features 

and expected features, (6) define a visual vocabulary builder for the final classifier, using 

K-MEANS to cluster similar feature descriptors into the reduced vocabulary set, and a select 

distance function of your choice to measure correspondence between incoming detected features 

and learned vocabulary features in the dictionary. Select or create a face image database of your 

choice for ground truth data (some examples are in Appendix A, such as Faces In The Wild and 

CMU Multi-Pie Face). Create code to implement a training protocol to build the vocabulary 

dictionary. The code may run on the computer of your choice.



. . . they have sought out many inventions.

—Solomon, 848–796 BC

Feature Learning Taxonomy 
and Neuroscience Background 9 

The next wave of AI innovation will be in the area of classifier learning, rather than feature learning, 

based on commodity foundation models using muti-modal and multiclass feature models and classifi-

cation methods, used together in huge ensembles together with associative multimodal classifiers 

(AML), which can learn and grow without retraining—continuously learning as they are used, as 

discussed in Chap. 12. And the big data statisticians continue to move heavily into computer vision 

applications and data analysis as well, treating video content as another form of big data, borrowing 

feature description, and learning tools from computer vision systems to build huge visual learning 

systems to classify and correlate visual information together with other forms of electronic information 

on a massive scale (Fig. 9.1). 

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 

S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8_9
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Fig. 9.1 Connectome 

images, which are maps or 

wiring diagrams of 

connectivity pathways, 

captured in vivo using 

multiple neuroimaging 

modalities, “Courtesy of 

the Laboratory of Neuro 

Imaging and Martinos 

Center for Biomedical 

Imaging, Consortium of 

the Human Connectome 

Project—www. 

humanconnectomeproject. 

org” 

Computer vision is becoming a commodity. 

Here, we provide a taxonomy of feature learning architecture concepts, a list of terminology, and a 

brief introduction to basic neuroscience concepts which have inspired many of the feature learning 

architectures surveyed in Chap. 10. We identify the basic architecture types, components, and 

structural elements here. 

Key topics covered in this chapter include:

• Neuroscience inspiration

• Historical developments in machine learning for feature learning

• Terminology

• Feature learning architecture and component taxonomy 

This chapter is recommended to understand key terminology and background concepts for the 

Feature Learning Architecture and Deep Learning Survey in Chap. 10. Expert computer vision 

practitioners may also benefit from a quick perusal. 

Neuroscience Inspirations for Computer Vision 

Neural networks can mimic portions of the visual pathway in the brain, resulting in a deep learning 

approach to computer vision consisting of a hierarchy of features that represent visual intelligence, 

such as low-level textures, object parts, entire objects, and scenes. While many computer vision and 

local feature descriptor methods, such as SIFT and FREAK, are heavily inspired by the anatomy of the 

human vision system closer to the retina, advances in compute power have made neurological models 

of the entire visual pathway in the brain attractive and practical for computer vision and feature 

learning systems. For example, we will survey various types of artificial neural networks and models of 

the entire visual pathway such as HMAX and HMO in Chap. 10.

http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
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Given the value of neuroscience, computer vision practitioners will benefit by following neurobiol-

ogy and neuroscience journals as well as computer vision journals. Computer vision methods are 

feeding into neurobiological research. This chapter and Chap. 10 cover deep learning and feature 

learning architectures, complementing the other computer vision approaches using local feature 

descriptors covered in Chaps. 4 and 5. 

Neural network architectures can implement complete, but primitive, computer vision systems. 

Even the recognition and classification logic can be entirely described and trained in the artificial 

neural architecture models, rather than relying on mathematical and statistical classification methods as 

discussed in Chap. 4. And hybrid methods combine neural networks with other methods. 

The race is on to develop artificial brains [584–586] that provide a common framework architecture 

for vision and other forms of learning and reasoning. Up to the present time, we have seen the 

foundations for computer vision laid in basic understanding of color science, image processing science, 

and systems inspired by the human visual system at the retina. Now, with neuroscience investigations 

providing more insight into neurobiology, and sufficient compute power to implement artificial neural 

networks that mimic the human brain, we are witnessing the success of early synthetic vision systems, 

modeled after the combined principles of imaging science, biological visual science, and neuroscience. 

In addition to neural networks, we introduce related machine-learning topics which are applied 

across a wide range of application domains, such as data analytics for marketing and investment and 

government intelligence, speech recognition, and computer vision analytics of images and videos to 

understand scenes and find objects. We cannot provide a comprehensive treatment of machine 

learning, but only highlight a small subset of machine learning as applied to feature learning, and 

refer the interested reader to better references into machine-learning topics outside our scope as we go 

along. An excellent introductory reference text to neural network design and training is provided by 

Hagan et al. [601], and another by Bishop [573]. See the machine-learning text by Mitchel [735]. Good 

references on classification and learning include Duda and Hart [733], Alpaydin [734], Deng et al. 

[493], and LeCun [736]. To dig deeper into the field or ANNs in general, see Bengio et al. [494] and 

Schmidhuber [492]. A good survey text of statistical methods applied to machine learning is found in 

Hastie [300] (Fig. 9.2). 

Fig. 9.2 (Top) A hierarchy of learned features, left low-level, center mid-level, and right high-level. Feature 

visualizations from Zeiler and Fergus [576], # M.D. Zeiler [576].
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Feature Generation vs. Feature Learning 

What is termed feature learning in deep learning networks could also be termed feature generation. 

Deep learning networks typically use a backpropagation method analogous to a tedious averaging 

procedure to generate features generically over all training samples, but not specifically for any. The 

generated features are similar to the features in the images, but not exactly the same. In fact, by slightly 

changing the training data or weight initializations for a given deep learning architecture, different 

features are generated, so therefore nothing is really learned at all but rather different features are 

generated. It could be argued that features are latent within the image data and that a good learning 

system would learn the features regardless of the weight initializations or slight variations in the 

training data, but this does not happen as one might expect in DNNs today. Thus, the deep learning 

systems following artificial neural models and deep learning training mechanisms are still very 

primitive systems. 

The deep learning training process, discussed in detail in Chap. 10, starts by taking training samples 

for input, and tuning a set of feature weights until each feature weight best represents the average of the 

features attracted by a similarity measure to the feature weights from the training set. In other words, 

the generated features are a compressed representation, not an exact representation, of a group of 

features. This is not how humans learn. Neuroscience suggests that the brain creates new impressions 

of important items, rather than averaging impressions together, under the view-based theories surveyed 

in the HMAX section in Chap. 10. 

However, we discuss a dense memory-based approach to feature representation based on stored 

hierarchical feature memory impressions, called Volume Learning and Visual DNA in [476]. The basic 

idea is that features are unprocessed hierarchical memory impressions along the visual pathway and 

that feature memory is virtually unlimited following view-based assumptions. 

In summary, what is called feature learning in deep learning today is still a very primitive art form 

and may be termed as feature generation instead. 

Terminology of Neuroscience Applied to Computer Vision 

Here, we introduce some high-level terms for feature learning concepts, especially useful for under-

standing the artificial intelligence and deep learning approaches to feature learning. Reviewing this 

terminology section is encouraged, since there is some obscurity in the literature where practitioners 

(this author included) use many equivalent terms for the same concepts. 

There are several independent research communities that have contributed to terminology in 

computer vision discussions on feature learning: 

1. Neuroscience, Neurobiology 

2. Artificial Neural Networks (ANNs) 

3. Artificial Intelligence and machine learning 

4. Computer Vision and Image Processing 

As a result, the terminology used in computer vision literature ends up being a mixture of several 

dialects, often hard to understand, and sometimes confusing. In fact, the deep learning community has 

a dialect, which we elucidate and clarify as we can. 

The neuroscientist takes a different approach than the computer vision practitioner, since neurosci-

ence is concerned with understanding and modeling the biological structures and functions of the brain 

as neuroscientific information. The computer vision ANN researcher is mostly concerned with



mimicking the neurobiology to create synthetic, or artificial models and architectures suitable for 

implementation in software and hardware, perhaps to solve real problems. The use of ANNs for 

computer vision has been mostly driven from outside the computer vision community, and introduced 

to computer vision as the ANN practitioners looked for new applications. ANN practitioners usually 

know less about existing methods for computer vision and image processing, and computer vision 

practitioners are usually well versed in image processing, signal processing, pattern recognition, and 

statistical methods for data classification, and know little or nothing of neuroscience or ANNs, which 

makes it challenging for computer vision practitioners to learn and apply ANN methods without a huge 

learning curve. 
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This section lists many common vocabulary terms intended to bridge the gap between computer 

vision and neuroscience research. The ANN community would benefit from more understanding of 

computer vision science, particularly local feature description methods surveyed in Chaps. 4, 5, and 6, 

to enable ANNs to be more effectively enhanced to incorporate the best thinking from computer vision. 

Some of the terms used in deep learning discussions are overloaded, meaning one thing in normal 

conversation, and quite another thing in deep learning research parlance. For example, ambiguous 

terms include deep learning (what is deep?), greedy learning (greedy in what way?), pooling (is water 

involved?), and stating that convolution is trice (1) a filter,  (2) a feature, and (3) weights, depending on 

the context. Sometimes, practitioners introduce entirely new terminology to describe their own work, 

in spite of perfectly suitable words and existing terminology that would work equally well, if not better. 

So the author apologizes in advance for terminology confusion found herein, since terminology 

problems likely infect this author’s work and chosen terminology as well.

Brief list of terms and definitions (not in any particular order):

• Machine Learning (ML): Systems that can be trained from input data to learn features or patterns, 

in order to make decisions and take actions.

• Feature Learning (FL): A method for generating, learning, and tuning sets of features or patterns 

from specific ground truth data (images in the computer vision case).

• Hierarchical Learning (HL): A model, like a pipeline of layers, that learns a hierarchy of feature 

sets for each level of the hierarchy, for example, the lowest level features may be oriented edges, 

contours, or blobs, the next higher level may be larger micro-textures and shapes, and higher levels 

may resemble motifs or parts of objects, or complete objects.

• Artificial Neural Network (ANN): One of many methods for implementing a NN, including FNN, 

RCN, and any method which is neurobiologically inspired.

• Neural Computing (NC): methods for machine learning and ANNs.

• Neuron, Neural Function, Artificial Neuron, Synthetic Neuron, Neural Model: Neurons are the 

processing units in the NN, taking inputs and producing outputs to feed to other layers. Many neural 

models are possible such as polynomial or correlational, or convolutional models. A convolutional 

neural function may model a neuron as follows: first, features are computed using a function such as 

f() = (inputs × weights)  +  bias, second, an activation function is used to condition the result using a 

nonlinear function such as sigmoid to squash or spread the results (see Activation Function).

• Activation Function, Transfer Function, Activation Function, Biological neurons act as 

switches, and fire or activate in a binary all-or-nothing fashion when input values are sufficient. 

In this sense, a biological neuron activation function determines simply when to fire based on inputs 

and electrochemical bias. However, some artificial neural networks do not fire in a binary fashion, 

but rather as an analog numerical strength. The activation is the result of the neuron model (see 

Neuron) and may be a convolutional, or a polynomial, or some other function. See Nonlinearity, 

and Transfer Function. The output of the transfer function may be further conditioned (see Pooling 

and Rectification) and finally fed directly into the next layer of the network as inputs. Various



350 9 Feature Learning Taxonomy and Neuroscience Background

transfer functions are used such as sigmoid, see Fig. 9.18. Transfer functions are chosen to be 

differentiable to support backpropagation using gradient descent methods. Transfer functions are 

chosen to operate for example by centering the results around zero, which implies that the input data 

should also be centered around zero. Also, the transfer function is intended to reduce saturation 

effects at the extrema of the data range. One goal of nonlinearity is to project the purely linear 

convolution operation into a nonlinear solution space, which is believed to improve results. In 

addition, the nonlinearity may result in faster convergence during backpropagation training to move 

the gradient more quickly out of flat spots toward the local minima. Also, the nonlinearity is used to 

ensure that the value is differentiable for backpropagation.

• Nonlinearity, in convolutional-style neural networks (CNNs), the Transfer Function (activation 

function) for each neuron may use a nonlinear function, such as a sigmoid, which distributes, or 

spreads, the actual output result from the feature match stage within a range of values (squashing) in 

a nonlinear fashion, which is believed to improve performance of ANNs in general, since neurobi-

ology suggests that the neuron is a nonlinear function. In addition, the nonlinearity can move the 

data into a higher dimensional space, where features that were not separable become separable. 

However, nothing concrete is known about the algorithms used inside biological neural activation 

functions, so practitioners guess. For example, using sigmoid nonlinearity is believed to help solve 

problems of data saturation, perhaps caused by numeric overflow, poor lighting, or very strong 

lighting. For example, if the correlation output is saturated at 1 in range -1 . . .  +1, a nonlinearity 

function may be chosen to ideally redistribute the value +1 value somewhere within the range, say

-0.99 to +0.99, to overcome saturation.

• Pooling and Subsampling, grouping features in a local region such as a 2 × 2  or  5  × 5 region, 

which may overlap adjacent pool regions, and then selecting a new feature to represent the entire 

pool to reduce the spatial resolution. See Fig. 9.3. Various methods are used to subsample the pool 

such as taking the average value or MAX value. Pooling also provides for some translational and 

deformation invariance. Pooling can help to produce more stable features from a related group of 

more unstable features. 

2×2 pooling regions,  stride 1,   9:4 subsampling, 

s1 

s2 

s0 

s3 

MAX (s0, s1, s2, s3) 

Fig. 9.3 Pooling, with input as 4 × 4 regions from a 3 × 3 image, yielding an output of 4 × 4 pixels, which is then 

subsampled down to a single pixel using the MAX value of the pool
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• Multilayer Pooling, Cross-Channel Pooling, Cross-Channel Parametric Pooling, CCCP,  

pooling method that includes pixels from the current layer feature map and prior layer feature maps 

together (x, y, z regions), rather than limiting the pooling to spatial x,y regions only.

• Rectification, a method of dealing with poor feature matches by rectifying the value to account for 

feature polarity (positives and negatives of the feature). Rectification solves problems where, for 

example, negative matches occur where the feature is inverted. Various methods are used for 

rectification including ABSVAL().

• Threshold, Bias, in convolutional networks, various thresholds are used to scale the transfer 

functions or the convolutional filter in each neuron. In most neural networks we survey, the bias 

is ignored and used only as a convenience for matrix math operations in the neural model. In 

neurobiology, the bias may be a chemically or hormonally induced factor.

• Feature, Filter, Weights: all these terms may be used to refer to a single feature. For convolutional 

features, an input region is processed using a filter weight matrix as the dot product of the input and 

the matrix. The output is a filtered version of the input, and the output is placed in a feature map or 

output image. For a convolutional-style network, weights are the features. Positive weights excite; 

negative weights inhibit. Stronger weights have more influence. Typically, floating point numbers 

are used for weights. In convolutional-style networks, the feature is used three ways: (1) as a filter on 

the input image to produce an output image for the next layer in the network, (2) as a feature 

descriptor, or correlation template, for pattern matching in the input, and (3) as a tunable feature, by 

tuning and adjusting the weights in the matrix during backpropagation to better match the input. The 

word filter is a misnomer here, since normally we refer to a filter as an operation that changes the 

image. However, mathematically it can be shown that convolution is equivalent to correlation under 

certain assumptions, but still this may be confusing since the filters are used for both filtering, and as 

features themselves. The correlation template weights resemble shapes in the hierarchy of features, 

such as edges in the low-level features, and higher-level concepts such as motifs or object parts in 

the higher-level features.

• Feature Map, This term is used in convolutional-style networks to describe the output of applying 

the weight filter to the input image, which produces a filtered image called a feature map, which is 

passed to the next layer of the network as the input image. A series of feature maps are produced in 

each layer, one feature map per filter or feature weight matrix.

• Subsampling, a method to reduce the size of the image for the next layer, see Pooling.

• Feature Set: For a convolutional network, a feature set is a collection of weight matrices, one set for 

each layer in the hierarchy. A feature set may contain several hundred features per layer. Some 

networks use basis functions as feature descriptors for the lower-level features, such as Gabor 

functions. See Basis Functions.

• Basis Functions, Basis Features, Basis Set: a function used to create and define a feature, rather 

than learning and tuning the features from scratch. Examples include Gabor Functions and Fourier 

Series. ANN models render the basis features into a weight matrix to use as convolutional features.

• Codebook, Dictionary, Bag of Visual Words: terms used to describe sets of learned features, 

perhaps local feature descriptors or ANN style features, for use in visual vocabulary analysis, 

similar to textual word analysis to determine the subject of an email. For example, a set of SIFT 

descriptors learned from a training set can be considered a codebook, and the codebook is useful to 

classify images.

• Encoding, Sparse Coding: various methods used to create, learn, and represent condensed basis 

sets of features, rather than exhaustive sets, allowing for feature classification and reconstruction 

from linear combinations of basis features.
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• Layers: levels or stages in a hierarchical network, which include numerical conditioning, 

convolutional filtering layers, fully connected classification layers, and post-process functions 

such as pooling and nonlinear activation functions.

• Input Unit: input the network, such as pixel input.

• Output Unit: output of the network, may be from a classifier or multi-stage classifier.

• Hidden Layers: In DNN parlance, hidden means any layer of neurons in between the sensory 

inputs such as pixels, and the classification outputs of the network.

• Hidden Unit: In DNN parlance, this is an artificial neuron in a hidden layer.

• Deep Learning (DL): In DNN parlance, a DL model is a hierarchical learning model containing 

hidden units in hidden layers, typically three or more hidden layers.

• Neural Network (NN): a network architecture and learning model inspired by neurobiology. 

Abbreviated as NN or ANN (artificial neural network). Several variants exist such as CNNs and 

RNNs. Typically, ANNs use the convolutional filtering neural model with a nonlinear output 

conditioning function.

• Convolutional Neural Network (CNN), Convnet: the most common style of ANN used in 

computer vision presently, implemented using a feed-forward network with several hidden layers 

of convolutional neural models. The major innovation in convnets is the use of a uniform-sized 

local receptive field containing an n × n kernel of pixels from the input, which feeds into a single 

convolutional neural function. In this way, a single convolutional neuron can be sequentially fed 

with all the local receptive fields from the input image, rather than implementing a system with one 

neuron per receptive field.

• Deep Neural Network (DNN): another term for NNs or HLs or CNNs, specifically networks where 

several layers of neural processing are used to produce hierarchical, or deeper sets of features, 

usually deep means several levels of features.

• Feed-Forward Neural Network (FNN): an NN which does not have feedback loops, the hierarchy 

is a straight pipeline feed forward from input through the hierarchy of features to classifiers and 

outputs.

• Recurrent Neural Network (RNN): an NN with some recurrent feedback loops, implementing a 

basic form of memory. Typically, RNNs are applied to spatiotemporal problems, or sequence 

learning.

• Latent Variables, Features: another term for features, or inferred variables in the statistical sense, 

features being latent in the image pixels until they are learned.

• Hyperparameters, DNN parameters tuned during learning and training to control learning rates, 

learning momentum, regularization terms to control weight decay, and other such variables.

• Error Minimization, Cost Function, an algorithm used during training to quantify the error 

between the trained pattern and the computed pattern. The error is computed using a suitable 

distance function.

• Early Stopping, stopping the training process before the local minima are reached, in order to 

speed up training, especially when the convergence is very slow and proceeds in small steps.

• Autoencoder (AE): a type of FNN that learns a sparse, compressed set of basis features to 

reconstruct its own input. One main difference between an AE and other ANNs is that the AE 

has the same number of outputs as inputs. Autoencoders can be useful for layer-wise training 

of DNNs.

• Restricted Boltzmann Machine (RBM): a type of FNN with the restriction that all input units are 

connected directly to a hidden layer containing hidden units, rather than connecting inputs to output 

units. The input of an RBM may be pixels, or else the output of an RBM. The RBM architecture 

enables training protocols such as back propagation using gradient descent to tune feature weights.
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• Deep Belief Network (DBN): a type of FFN, such as a CNN, that is typically implemented using 

autoencoders or RBMs for the hidden layers.

• Labeled Data, Unlabeled Data: training data, such as training images, which have been annotated 

to define the contents of the training image. In this way, the system can be trained according to the 

known labels, as opposed to trying to learn image features and contents without labels.

• Supervised Learning: learning which takes place using labeled data, and other preconditions 

which are set up to define a learning model.

• Reinforcement Learning: A close relative of supervised learning, which adds a reinforcement 

function for feedback, similar to a reward, to encourage the network to train itself according to the 

reinforcement feedback.

• Unsupervised Learning: a learning method that attempts to create and tune features or patterns 

using unlabeled data and no learning preconditions.

• Classifier: an algorithm modeling a mapping between feature inputs and class outputs. Examples 

include SVMs, FC layers in CNNs, and regression models. Some classifiers (linear regression 

models, for example) rely on data groupings that can be separated by a line in 2D (linearly 

separable), or by hyperplanes in higher dimensions, to find the largest margin between data 

groupings to delimit the classes. Other classifiers may use binary feature vectors representing 

parts models, where each bit in the vector represents the presence or absence of a part, and matching 

is performed using Hamming distance to compute matches. There is no limit to the clustering and 

group distance methods used for classification, see Chap. 4 for more details.

• Fully Connected Layer (FC Layer): describes a connection topology where all outputs of a layer 

are each connected to all inputs of the next layer. Fully connected layers may implement the 

classifier of a CNN, modeled as a 1D vector of artificial neurons with a 1D vector of weights and 

bias factors.

• Kernel-Connected Layer: instead of connecting all inputs to each convolutional processing layer 

node in the FC sense, kernel-connected layers gather n × n kernels of local regions using a sliding 

window over the input. This topology provides for parallelization of the convolutions by providing 

one n × n input kernel to each virtual artificial neuron to perform the convolutions. A single artificial 

neuron may be fed sequentially from all the kernels, or the kernels may be queued up for a group of 

artificial neurons to service in parallel.

• Sparse Connected Layers allow for random or sparse connection patterns from the input to 

subsequent layers. Sparse connections may be defined using variants of dropout methods to 

regularize the model, see Dropout.

• Softmax: a logistic or exponential function, typically used as the last classification layer, to squash 

and normalize class predictions into a range of probabilities 0.0.1, like a probability expressed as a 

percentage. For example, each node in the softmax layer will produce a result in the range 0.0.1 to 

rank the classification for the given sample.

• Back Propagation: A family of methods used during ANN training for tuning the accuracy of 

feature weights in NNs. Back propagation works by taking the results of the forward pass through 

the NN, finding the error between the current predicted result and the correct result, and distributing 

the error proportionally backward through the network, to minimize the error at each layer by 

adjusting the feature weights. Backpropagation methods resemble a huge feature averaging process. 

Many methods are used, and some contain optimizations for various goals such as more rapid 

convergence. Examples include gradient descent and contrastive divergence.

• Gradient Descent: a backpropagation method based on modeling the classification error as a total 

gradient, and then working backward through the network layer by layer, proportionally finding the
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contributing gradients for each feature weight, which can be understood from the chain rule from 

calculus. The gradients become smaller and smaller as they are propagated backward.

• Transformer: a feature learning architecture that is used widely in natural language processing 

(NLP) and increasingly in computer vision, which models the input as a stream of tokens or 

encodings, where each token is represented by an embedding vector of attributes. The tokens are 

passed through an encoder section and output through a decoder section to generate final output. 

See Chap. 11 for details.

• Self-Attention, Attention: a method of representing features contextually by comparing local 

regions of tokens (words, pixels) token by token to each other, and recording the contextual 

relationships for comparison and analysis. Self-attention is the comparison of all tokens in a local 

contextual region; general attention is the comparison of local regions to other regions. For 

computer vision, RGBI pixels may be the tokens. There are many variations of attention, equally 

as complex and engineered as any feature descriptors such as SIFT, SURF. 

Classes of Feature Learning 

We take a wide view of feature learning in this work and consider many approaches including artificial 

neural networks, deep learning, sparse coding, dictionary learning, and local feature descriptor 

learning. As described in Chaps. 4, 5, and 6, many local feature descriptor methods like SIFT, ORB, 

and FREAK contain attributes that are learned, such as shape, pixel sampling pattern, and various 

weights. Some practitioners primarily refer to feature learning methods in the context of deep learning 

methods like CNNs and then go on to claim that local feature descriptors, such as SIFT, ORB, and 

FREAK, are not learned, but rather handcrafted. However, this distinction does not hold since many 

attributes of the better local features are learned and tuned. In fact, the best local features are inspired by 

the human vision system, and descriptors such as SIFT, ORB, and FREAK actually incorporate several 

features of the human visual system in their design. Actually, DNNs are heavily handcrafted, requiring 

extensive empirical work to get the architecture and parameters correct for training. In addition, DNNs 

typically use the most primitive and least invariant feature of all: correlation templates, limiting 

invariance. 

Given this wide view of feature learning, we survey and discuss several classes of feature learning. 

Our criteria for dividing the various approaches are based on the feature descriptor used in each 

approach, so we find three primary categories of feature learning: (1) convolution feature weight 

learning, (2) local feature descriptor learning, and (3) basis feature composition and learning. 

Convolutional Feature Weight Learning 

For computer vision, a convolutional neural network (CNN) learns hierarchical sets of features 

represented as weights in a kernel or matrix shape, such as 3 × 3. Features are created in a feature 

hierarchy, with low-level features representing micro-textures, and higher-level features representing 

part of objects. Some or all of the features in the hierarchy are fed to a classifier for matching larger 

objects composed from the features. Each weight is tuned during training, as discussed in Chap. 10. 

Some practitioners view CNN methods as a variant of parts models [489].
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Local Feature Descriptor Learning 

Many of the local feature descriptor methods discussed in Chap. 6, such as ORB, SIFT, FREAK, and 

D-NETS, actually learn their shape, pixel sampling pattern, and weight thresholds during a training 

process. For example, FREAK and ORB are trained against ground truth data to learn how to build the 

feature sampling pattern, see Chap. 4. However, some of the more primitive local feature descriptor 

methods do not learn or tune themselves to the ground truth data, such as shape detectors like Gabor 

Functions, and other hard-coded descriptors. 

In Chap. 11, we discuss self-attention and general attentional features, which are created as 

embedding vectors representing the relationships between tokens in a local region, such as words in 

a sentence for natural language processing, or pixels within a patch region for computer vision. There 

are many variations of attention representations and algorithms, similar to all the feature descriptor 

variations covered in Chap. 4. Attentional features are very handcrafted, but they can be learned in a 

transformer or DNN architecture and represented as weights. Sometimes both attentional and 

convolutional n × n kernels are combined in the same backbone, see Chap. 11. 

Sparse coding is often employed with local feature descriptors to boil down the size of the 

descriptor set into a visual vocabulary, rather than an exhaustive vocabulary. The visual vocabulary 

of features is used to classify the image, similar to a word vocabulary to classify textual information. 

Sparse coding is analogous to JPEG image compression, which uses the selected level of frequency 

detail from local DCT transforms of image pixel blocks to create, or encode, a compressed representa-

tion of the image. Sparse coding is an encoding and compression method. Sparse coding can also be 

considered as a performance optimization method, since compute performance increases with fewer 

features to manage, but sparse coding in the extreme may affect accuracy if too much detail is 

compressed away. 

The K-SVD method developed by Aharon et al. [707] is one example of a sparse feature encoding 

method, Aharon provides a good survey of various sparse coding methods. The Histogram of Sparse 

Codes (HSC) method [98] discussed in Chap. 6 learns a single-level representation of features in an 

unsupervised manner by using a sliding window edge detector and then generates a histogram of 

gradients feature descriptor from the edges within the features. The K-SVD method is used for 

reducing the feature set to a sparse code set. Feng et al. [724] and Bo et al. [111] developed 

optimizations on the K-SVD method to shrink the codebook and more uniformly distribute the values 

within the reconstruction space. 

See Chap. 10 for a deeper dive into sparse coding and vocabulary methods. 

Basis Feature Composition and Dictionary Learning 

Basis features created from basis functions like Gabor functions can be used as primitive base level 

features, and then, higher-level features can be composed from the basis features and further tuned into 

new higher-level features and collected into a dictionary, alternatively referred to as a visual vocabu-

lary. The basis features may also be collected in a feature hierarchy. In this context, the higher-level 

vocabulary is learned and is based on the lower-level basis features. Similar to textual analysis using 

histograms of word counts from the vocabulary dictionary, visual vocabularies can be used to discover 

the content of an image, for example by using a histogram format containing the weighted visual words 

detected in an image, fed into a classifier for matching, see Fig. 10.70. With parts models, for example 

the parts of a bicycle, either as patches or as local feature descriptors such as SIFT, may be learned and



composed into a dictionary, and then at classification time, if enough parts of the bicycle are detected in 

an image, then the classifier can predict and match on a bicycle. 
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Summary Perspective on Feature Learning Methods 

We can conclude that deep learning methods create a hierarchical set of averaged, compressed, or a 

sparse set of features, which correspond to the dominant features in the training set. Local features 

such as SIFT and FREAK are trained to represent complex and more invariant features, which are 

individually more powerful than the single correlation template features used in deep learning. It seems 

that the power of deep learning style features arises from (1) the sheer number of features, and (2) the 

hierarchical nature of the features to represent low-, mid-, and higher-level concepts. This perspective 

suggests that sets of local features, such as SIFT and FREAK, can be created likewise in a hierarchical 

manner, to rival or exceed the performance of simple correlation template features as used in 

convolutional-style deep learning methods. 

Machine-Learning Models for Computer Vision 

Here, we outline a very broad-brush picture of machine learning to set the stage for digging into feature 

learning architectures. 

As Juergen Schmiduber has noted, machine learning is about compression. The learned features are 

a compressed set of parameters, which represent a wide range of objects. In a convolutional neuron 

model such as a CNN or RNN, each filter is a compressed representation of many similar features. 

Perhaps deep learning methods compress millions of parameters, or features, into a few hundred. 

In the early days of machine learning, the field of Artificial Intelligence (AI) was popularized as the 

field of study encompassing all methods for computerized learning and machine understanding. 

Initially, primitive compute and memory capabilities hampered development of practical AI systems, 

so many considered the field of AI to be over-hyped, and AI was relegated to obscure academic 

research programs for many years. Interest in AI methods has gradually renewed, keeping pace with 

technological advances in electronics, inexpensive compute power, and more memory, allowing AI 

methods to be applied to commercially viable systems such as databases. Over time, machine learning 

and AI have branched off into several research segments to address different approaches to machine 

learning, which are summarized in Fig. 9.4.
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Fig. 9.4 A simplified taxonomy of AI approaches, highlighting similarities and differences, after Bengio et al. [494] 

As shown in Fig. 9.4, the machine-learning pipeline has been expressed several ways: 

1. Feature extraction, could be local feature descriptors or learned DNN features 

2. Encoding features, perhaps keep all or only a sparse set of all features 

3. Classifier design and training 

The power of the DNN approach is that all three steps in the pipeline can be collapsed into a single 

feature learning architecture, applicable to a range of applications, which can be trained to generate 

(or learn) features from the training set. In essence, the goal is that the DNN network architecture is 

fixed; the features become the program code, the learning parameters and training protocol are the 

programmer, and the DNN is the computer. 

See the resources in Appendix C, which lists some open-source projects, commercial products, and 

links to follow several key researchers including Schmidhuber, Ng, LeCun, and others.
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Expert Systems 

At one time, Expert Systems were hot topics in AI research. Expert systems [496] are the equivalent of 

a system encoding the knowledge of an expert and have been referred to as Rule-Based Expert Systems, 

and Decision Support Systems. The rule-based method allowed for recursive process models [543], 

similar to the RNN. The main expert systems architecture components include (1) a knowledge base of 

rules and facts, and (2) an inference engine to make decisions from inputs using the knowledge base. 

To populate the knowledge base, experts are interviewed by programmers who code the expert’s 

knowledge as logical decisions and rules. At one time, attempts were made to generalize and structure 

the concept of expert systems into software products, which were programmable and trainable for a 

range of applications. AI researchers developed several variants of commercial expert systems in the 

1970s and 1980s, and then, research interest tapered off. After some time, the ideas and key learnings 

from expert system have been integrated into business logic software and database software, and expert 

systems are hardly discussed in academic circles today. However, in many cases, expert systems have 

been embodied as ad hoc systems, often composed of expert-level logic hard-coded into software. 

Using a loose definition of expert systems as hard-coded expert logic, a great many software programs 

are, informally, expert systems. No attention is given in this chapter to expert system methods, but a 

few ad hoc expert system approaches are already covered in the Chap. 8 examples. 

Statistical and Mathematical Analysis Methods 

Perhaps the largest portion of AI is based on standard numerical analysis methods developed over the 

past few hundred years, using a huge range of regression, group distance, clustering, and error 

minimization methods to classify feature descriptors. There is no limit to the numerical methods 

applied to machine learning and computer vision tasks. We cover several statistical methods used for 

distance and clustering in Chap. 4, and some statistical methods as applied to deep learning and feature 

learning in this chapter, and briefly touch on SVMs in Chap. 10. See also Hastie et al. [629] for an 

overview of statistical learning. 

Neural Science-Inspired Methods 

Inspired by the brain’s neural networks as studied in neuroscience, Neural Network Methods (NNs) 

and deep learning represent intelligence using multilevel networks of primitive, artificial neurons. As 

shown in Fig. 4.23, the human brain composes quite complex neural networks, which apparently grow 

and change over time. Since the brain’s neural networks are so complex and impossible to model in a 

real system, researchers have developed primitive models to mimic the brain’s architecture, as 

illustrated in Fig. 9.10. 

Neurobiology is at the forefront of artificial neural network research in the computer science 

community, and neurobiologists routinely modify ANN architectural models, such as CNNs, and 

also create new models such as HMAX and HMO. Artificial neural networks are part of the future: 

This author predicts that neural network research and the resulting architectures inspired by biological 

mechanisms will ultimately drive computer science to produce real products and commercial 

breakthroughs in the near future, based on a common neural programming language and architecture 

accelerated in silicon. 

Table 9.1 provides a comparison of artificial neural methods to human neural biology.
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Table 9.1 A simple comparison of an artificial neural network to the human brain 

Deep Learning 

The term deep learning was popularized in the early 2000s by Hinton and others [481, 557] to describe 

hierarchical feed-forward neural networks with several layers. In DNN parlance, deep means a neural 

network with more than one hidden layer between the input and output. A hidden layer contains hidden 

units or artificial neurons, which represent learned features from the input data, see Fig. 9.2. In DNNs, 

layers may be replicated, and each layer learns and produces features. See Fig. 9.5. In CNN-DNN 

systems, the features are generated by the convolutional neurons at each layer as feature weights or 

correlation templates and stored in a hierarchy of feature sets. 
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Fig. 9.5 A typical deep learning architecture with input, Convolutional Layers, Classifier Layers, and the output as 
labeled objects. There are many variations covered in the surveys in Chap. 10
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Earlier work starting in the late 1980s and early 1990s by LeCun and others [514, 516, 517], 

popularized as Convnets and CNNs at that time, can also be considered as deep learning. Deep learning 

was demonstrated to be effective by Schmidhuber in 1991 [522] using deep RNNs. Several feature 

learning concepts besides CNNs fall into the deep learning category. At this time, most DNN systems 

follow the work of LeCun and Hinton and are implemented as CNNs, or convolutional-style networks, 

using correlation templates for the feature descriptor. Also, the HMAX model [738] was developed by 

Riesenhuber and Poggio in the late 1990s to model the entire visual cortex in a primitive manner, rather 

than just mimic parts of the neurobiology as CNNs do. 

Transformers are more recent deep learning architectures. Transformers have fewer layers, perhaps 

ten or twenty layers, contrasted to convolution-style FFNs which can be a hundred or more layers deep 

as discussed in Chap. 10. The transformer is a feature learning architecture invented for natural 

language processing (NLP) tasks and effectively replaces an RNN in NLP. The Transformer can be 

parallelized (unlike RNNs and LSTM that are serial and recursive), which is a good match for NLP 

sequential & recursive processing of words. Transformers have been applied to computer vision also. 

Transformers operate on an input as a stream of tokens or encodings (i.e., pixels or words), where each 

token is represented by an embedding vector of attributes. The tokens are passed through an encoder 

section and output through a decoder section to generate final output. See Chap. 11 for details. 

Deep Learning Neural Networks (DNNs) implemented as CNNs have become more common for 

solving computer vision problems, due mainly to advances in commodity compute power. DNNs have 

done well in computer vision challenge events and real-world applications since around 2010, resulting 

in many new computer vision researchers who have adopted DNN methods, as surveyed in Chap. 10. 

In a typical convolutional-style DNN (CNN), each feature set in the hierarchy contains perhaps 

hundreds of individual features in each hidden layer in DNN parlance. Each feature is simply a 

correlation template. Each correlation template is represented as a matrix containing trained weights. 

Each feature captures a different type of detail so that low-level features capture finer details, and 

higher-level features capture higher-level concepts like parts or objects. DNN features are a hierarchy 

of objects and parts of objects. Indeed, some have called deep learning a variant of the well-known 

method of parts models [489]. While this is conceptually true, the nuances of deep learning methods go 

farther than parts models since the architectures allow for a uniform training protocol, and the 

architecture of deep learning alone is a field in and of itself, since it relies heavily on neuroscience 

and machine learning, and is applicable to a wide range of problems besides computer vision. 

Deep architectures, or hierarchical architectures, are not a new concept per se, but the nuances made 

possible by deep learning networks, such as feature learning, transfer learning (discussed later in this 

chapter and Chap. 10), and the common DNN architecture are novel and effective. The power of the 

DNN lies in the quantity of features in each level of the feature map hierarchy, and the quality of the 

features resulting from tuning each feature during training. In Chap. 10, we survey the limits and 

capabilities of selected DNNs, as well as fundamental innovations at various stages of the DNN 

architecture. 

DNN Hacking and Misclassification 

It should be pointed out that deep learning methods, particularly convolutional networks, are vulnera-

ble to adversarial misclassification. For example, when an image is modified with just minor changes 

to some of the pixel values, the DNN may misclassify. This is a serious problem for trusted 

applications of DNNs. In the future, alternative methods for training and classification will be needed 

to overcome such problems, yet even so we are likely to see hacking threats to computer vision 

systems, and perhaps hacking challenge events for computer vision systems.
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Deep learning methods have been shown to fail to recognize features that are obviously correct and 

succeed in recognizing features that are obviously incorrect [482]. See Goodfellow et al. [530] for 

details on DNN misclassification of adversarial data with high confidence, based on intentionally 

corrupted data (i.e., DNN hacking). See also Sutskever et al. 2014 regarding intriguing anomalies 

of DNNs. 

History of Machine Learning (ML) and Feature Learning 

The history of machine learning is fascinating, so we present this brief introduction which is well worth 

reading, especially for the novice. Perhaps the most detailed and complete historical information and 

references can be found in Schmidhuber [492], who is one of the pioneers in this field. In addition, the 

comprehensive survey by Anderson [495] provides references to many of the seminal research papers 

for machine learning and artificial intelligence. See also Haykin [304] for a comprehensive introduc-

tion to neural networks. 

A review of history can never be comprehensive, since certain details may be left out. However, 

here we survey several historical developments in machine learning relevant to computer vision feature 

learning, specifically hierarchical or deep learning methods. We highlight the early foundations of ML, 

especially the inspiration from neuroscience. We also touch upon some related statistical and numeri-

cal methods. Machine learning has historically been discussed using several related terms and 

concepts, such as neurodynamics, cybernetics, autonomics, synnoetics, intelectronics, artificial intelli-

gence, neurocomputing, pattern recognition, expert systems, analytics, and deep learning. See Fig. 9.6. 

Historical Survey, 1940s–2010s 

Much of the foundation for machine learning was laid in the 1940s, 1950s, and 1960s, without the 

computing power and computing languages available today. And as usual for technology fields, 

practitioners unfamiliar with historical research and concepts often reinvent the same concepts over 

again, giving them a new name and a new spin. Later in this chapter we will dig deeper into many of 

the key historical concepts, which have remained influential in feature learning.
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Fig. 9.6 Prevailing theories of the nature of neuroscience around the early 1960s, image # Springer-Verlag, from Brain 

Theory, Palm, Gunther, Aertsen, Ad, Frank Roseblatt: Principles of Neurodynamics: Perceptrons and the Theory of 

Brain Mechanisms, Springer Berlin Heidelberg, 1986 

1940s and 1950s 

During the 1940s and 1950s, with the dawn of the first analog computers, we begin to see progress in 

the area of concrete, working artificial intelligence models. The first model of the brain was 

implemented as a Boolean circuit by McCulloch and Pitts in 1943 [501], using a hardwired neural 

model of their Logical Calculus for Nervous Activity in Boolean logic, using vacuum tubes. Rudimen-

tary learning concepts soon followed, in the area of unsupervised learning by Hebb in 1949 [502] and 

supervised learning in the simple Perceptron model in 1958 by Rosenblatt [497, 503] and also in 1961 

by Joseph [498]. The Perceptron is a major milestone, using adjustable weights for learning like CNNs, 

even though learning was limited to tasks with linearly separable training data. We will dig deeper into 

the Perceptron concepts later in Chap. 10. Wiesel and Hubel in 1959 [499] and 1962 [500] developed 

an influential hierarchical or deep model of the brain, where some neurons closer to sensory input 

detected simple (S) or low-level features, and other neurons detected complex (C) or higher-level 

features, to enable high-level reasoning. This Hubel and Wiesel work on the concepts of Simple Cells 

(S) and Complex Cells (C) has inspired the development of most deep learning architectures to date, 

especially the notion that features exist in a hierarchy of detail, low, mid, and high detail. So we will 

dig deeper into the Hubel and Wiesel model later in this chapter (Fig. 9.11). 

The Pandemonium model introduced in 1959 by Selfridge [741] is perhaps the earliest model for 

pattern recognition and unsupervised feature learning using a set of local feature detectors. The 

application was 1D signal Morse Code detection. The detectors are referred to as computational 

sub-daemons. The classifier is the cognitive daemon, which computes a score via a weighted sum of 

the detected features. The Pandemonium system also addresses the problem of finding the highest 

score using a hill climber method in the score space where gradient descent methods may find several 

solutions. In Pandemonium, each feature detector is scanned across the image in sliding windows to 

look for low-level and mid-level features. Then, a decision demon is used to classify the signal based



on the presence of a specific set of the strongest feature activations using tuned feature weights. 

Pandemonium defines two methods for feature learning, called mutated fission and conjugation,  to  

determine if a new feature should be added to the feature set to increase the representational power, or 

removed from the feature set if little used and not needed.
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1960s 

In the 1960s, slightly larger computers and memory systems enabled more detailed neuroscience-

inspired models to be implemented. Some of the first single-level feed-forward neural networks were 

implemented by Joseph [498] in 1961. Also, Rosenblatt developed multilayer Perceptron models with 

up to four layers, which are described using the terms “forward coupling, cross-coupling, and back-

coupling” between layers (RNN style). Another one of the earliest multilayer or deep network is called 

the Group Method for Data Handling (GMDH), modeled as a multilayer Perceptron, demonstrated by 

Ivakhneko and Lapa starting in 1965 [504–506]. Note that Ivakhneko work is very much worth reading 

today, containing advanced concepts that are no longer in common use. Ivakhenko’s work appeared 

frequently in Avtomatika, the journal of Soviet Automatic Control, and other Soviet publications, 

which were not available to Western researchers. In addition during the 1960s, several researchers 

explored gradient descent and maximum descent methods applicable to back propagation algorithms, 

see Dreyfus in 1962 [512], Kelley in 1960 [518], and Bryson in 1961 [520]. 

In 1963, Vapnik and Lerner [532] introduced the generalized portrait method algorithm for 

statistical classification, which is the basis for the support vector machine (SVM) still widely used in 

classification for machine learning. Later work on SVMs by Vapnik [534] and others [287, 535] has 

expanded the basic SVM model [525], and SVMs remain one of the most widely used statistical tools 

for machine-learning classification. 

Neural networks and AI in general went through a lull stage as the 1960s progressed, when many 

researchers became disillusioned due to limitations with the simple Perceptron model introduced in 

1958 by Rosenblatt [497, 503] and also in 1961 by Joseph [498]. In 1964, Powell [536] developed a 

method for computing gradient descent without using derivatives. 

1970s 

In 1971, Ivakhneko [507] refined the GMDH model as the first deep NN-inspired model, which was 

fairly deep using eight layers, also known as a Polynomial Neural Network (PNN), which learned the 

number of layers, neural units per layer, and pruned units as needed. The methods in GMDH are quite 

advanced for their time, and some of the concepts have been rediscovered in recent years and renamed, 

and others still remain quite advanced and worth further research. An active GMDH research 

community continues today, see the GMDH survey in Chap. 10 for more details. 

Also in the 1970s, the first back propagation algorithms were implemented for tuning the weight 

factors in CNNs. Although back propagation and gradient descent were applied to NNs the 1960s, only 

a few people actually implemented the algorithms. For example, Dreyfus [513] developed back prop 

methods for error minimization using weight control parameters in 1972 and 1973. Also, in 1974 

Werbos demonstrated a method for multilayer threshold adjustments in DNNs using backprop in his 

Ph.D. thesis.
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1980s 

The decade of the 1980s saw the introduction of the Neocognitron by Fukishima [510, 511] in 1979, 

based on his earlier work on the Cognitron [610], which was the first deep style of neural network, 

similar to the CNN/FNN architectures of today. The Neocognitron used convolutional-style features, 

where the features were modeled as rectangular correlation templates, biologically inspired by the 2D 

visual field spanning some small, local receptor distance. Each correlation template filter coefficient 

was given a weight factor, which was adjusted. The output of each filter stage was fed as input to the 

next convolutional layer of similar filters. Weight parameters were shared or replicated in each layer. 

The Neocognitron included subsampling units to look for the strongest filter activations in small local 

regions, to provide some translation invariance for feature detection. Instead of max pooling to find the 

best filter responses in the subsampling units, spatial averaging was used instead. The Neocognitron 

weights were tuned using unsupervised hard-coded learning rules, and Neocognitron did not use back 

propagation. 

The 1980s also saw more back propagation innovations in deep learning. In 1981, Werbos [521] 

demonstrated a method for back propagation using gradient descent specifically for tuning weights in 

an NN, which is an early forerunner of current systems. Also, LeCun [514, 515] developed early 

success with back propagation. LeCun is one of the early pioneers in deployed neural network systems 

and led the effort to create several, commercially successful NN systems [288], including handwritten 

postal code recognition, and bank check handwriting recognition, which were commercial successes. 

LeCun-style FNNs are often referred to as Convnets, and Convolutional Neural Networks (CNNs). 

In 1989, LeCun et al. [516] introduced the basic convolutional neural network CNN architecture 

still used today often referred to as LeNet, including max-pooling, weight sharing via kernel-connected 

layers, and advances in back propagation [515]. LeCun’s work also introduced the MNIST ground 

truth dataset for handwritten digits, one of the most widely known benchmarks in machine learning. 

Also in the 1980s, early hierarchical, or deep networks of autoencoders were developed by Ballard 

and Hinton to learn feature hierarchies one layer at a time using unsupervised learning. Boltzmann 

Machines [527, 528] were introduced by Ackley, Hinton, Sejnowski as a type of RNN, related to the 

Hopfield Network [650] RNN. Both Boltzmann Machines and Hopfield Networks were difficult to 

train, but even so they were important theoretical advances. Smolensky introduced the Harmonium 

[529], a variant of the basic Boltzmann Machine, which had restrictions on the connectivity making it a 

FNN instead of an RNN. The Harmonium was later reintroduced as a Restricted Boltzmann Machine 

by Hinton and others after 2000, with a much-improved training protocol for faster learning. 

1990s 

According to Schmidhuber (lecture in NYC on Deep Learning RNNaissance), Neural Network 

research went through a dark age from the early 1990s to the early 2000s, for about a decade, where 

nobody would fund it, and nobody outside the academic community was interested. According to 

LeCun (comments made during CVPR private Intel meeting in Portland), during this dark period, a lot 

of NN research applied to computer vision was ignored by the computer vision community. But major 

advances in compute technology, coupled with advances in key algorithms, profoundly advanced the 

science during this time, and propelled CNNs to the forefront of computer vision. 

In the 1990s, several improvements were made to NNs. In 1991, Hochreiter’s diploma thesis 

explored back propagation training using gradient descent and identified the key problems: 

(1) vanishing gradients where the errors become too small as the errors are propagated backward to



previous layers, (2) exploding gradients, and (3) oscillating gradients which prevented the algorithms 

from converging to tune the weights. For exploding and oscillating gradients, the gradient problems 

manifested themselves early in the training cycle vs. later, since the gradients are expected to get 

smaller and smaller as the error minimization functions converge at a solution. Hochreiter’s insight, 

together with collaborations with Schmidhuber, led to several innovations in back propagation to 

overcome problems with gradients. 

2000s–2010s 365

In 1992, Schmidhuber [522] proposed a method to overcome the gradient descent problems 

identified by Hochreiter using a hierarchical, or multilayer network, which could be pretrained layer 

by layer using unsupervised learning to yield a sparse, compressed set of reasonable and useful starting 

feature weights, that were subsequently fine-tuned using back propagation under supervised learning. 

In 1992, the Cresceptron [552] was demonstrated by Wang et al., providing a hierarchical 

framework for learning multiscale feature hierarchies over an image scale pyramid, similar to earlier 

work by LeCun [516, 517]. The Creseptron defined a neural plane for recognizing low-level features 

anywhere in the image, and a concept module for classifying higher-level features. In addition, the 

Creseptron could identify the coordinates of each feature found in the image by back-tracking the 

response paths through the network (good idea). 

Then in 1997, the LSTM (Long Term Short Term Memory) RNN architecture was developed by 

Hochreiter and Schmidhuber [524] that includes memory units which can feed back prior information 

into the RNN at a later time to assist in learning time-related sequences. LSTM uses long-term and 

short-term memory cells as carousels, gating the introduction of backpropagated gradients in a 

controlled manner into a time-aware gradient descent algorithm. The original LSTM paper [524] 

also provides a very complete survey of gradient descent algorithm variants. LSTM is a major 

advancement in NN architecture, so we will study LSTM architecture in more detail later in 

Chap. 10. LSTM is not affected by gradient descent problems such as vanishing and exploding 

gradients, since the LSTM gradient descent algorithm is gated and controlled to condition the 

gradients. The LSTM makes the layer-wise training protocol using unsupervised pretraining followed 

by supervised training unnecessary, therefore dramatically speeding up the training process. 

SVMs were enhanced to almost their current form in 1992 by Boser et al. [533] based on the 

original 1963 algorithm by Vapnik. Other SVM enhancement was made in 1993 by Cortes and Vapnik 

[290]. For introductory material, see Ng [525]. 

A hierarchical model of the visual cortex dubbed HMAX was first introduced by Riesnhuber and 

Poggio in 1999 [738] taking inspiration from the known facts about the visual ventral pathway, largely 

based on experimental data from Logothetis et al. [739] who measured responses to shapes across the 

visual pathway in monkeys. Logothetis found that some groups of neurons along the hierarchy respond 

to specific shapes similar to Gabor-like basis functions at the low levels, and object-level concepts such 

as faces in higher levels. We survey HMAX in some detail in Chap. 10. This author contends that 

neuroscience is now the driving force in computer vision research and will lead to synthetic vision 

systems with a biological interface. 

2000s–2010s 

Inexpensive computing power brought rapid advances in CNN-style networks. Personal computers 

containing relatively powerful GPUs, multi-core CPUs, large memories, and SIMD instruction sets, 

could be exploited via GPGPU, SIMD, and SIMT programming methods, providing massive parallel-

ism ideal for backpropagation training using very large datasets, the key to effective CNN training. 

Many of the concepts developed prior to 2000 resurfaced as NN research accelerated. In some cases, 

older concepts were refined further. The rapid innovation spawned several new architectural and



algorithmic variations to NNs and feature learning, which we survey throughout Chap. 10, such as 

pooling, subsampling, numeric conditioning, dropout, and mini-batch training to name a few. 

366 9 Feature Learning Taxonomy and Neuroscience Background

The terms Deep Learning and Deep Neural Networks (DNNs) were popularized around 2006 when 

a think-tank was formed by Hinton, LeCun, Bengio, and others, who were funded by the Canadian 

Government’s CIFAR program to promote research into neural networks; their work paid off. Key 

research breakthroughs and success followed. Beginning in the mid-late 2000s, DNNs began to excel 

in computer vision applications, and a new, larger group of academics and industrialists took notice. 

With the renewed attention to NN research and real-world applications, including thousands of new 

researchers and SW development engineers in industry, the science advanced rapidly. 

In 2006, Hinton et al. [481, 557] demonstrated FNNs which were trained effectively using 

unsupervised pretraining and promoted a style of NNs called deep belief networks (DBNs) built as a 

deep hierarchy of restricted Boltzmann machine layers, trained layer by layer using contrastive 

divergence [537]. In the early 2010s, LeCun and Hinton led research groups who demonstrated 

success with FNNs, winning the top positions in several CVPR IMAGENET challenge events,1 and 

influencing most of the other researchers to follow their architectures. 

Research teams worldwide are continuing to create DNN innovations. For example in 2012, 

Ciresan et al. [538] demonstrated a DNN setting the record for the German traffic sign benchmark, 

beating human experts, and also winning several other international machine-learning competitions, 

including the ICDAR 2009 handwriting recognition challenge to learn three languages. Schmidhuber’s 

NN lab is one of the most diversified, has won several competitions, and extends into many areas 

besides computer vision.2 

Based on CNNs styled after LeCun’s earlier LeNet, plus the work of many others mentioned in this 

brief history, the new millennium has seen rapid architectural and algorithmic innovations to ANNs. In 

fact, recent work on local feature descriptor and interest point methods has slowed dramatically in the 

research community, as research has shifted attention to NNs, and eventually the research topics will 

settle down and become more balanced. While the newer DNN methods are effective, the best local 

feature descriptor methods, such as SIFT and FREAK, still provide superior invariance and robustness 

across a wider range of criteria. However, by introducing variations into the training set for the DNN, 

much of the desired invariance can be learned and represented in correlation templates, at a great cost 

of feature set size increase, and training time increase. 

2020s– 

The Transformer Architecture has been developed for NLP and migrated to computer vision, see 

Chap. 11. Transformers can replace the serial RNN and LSTM architectures for language processing, 

with the benefit or workload parallelization since the transformer model of self-attention can be 

computed in parallel across the entire input token stream. Transformers perform equally as well as 

LSTM depending on the benchmarks, see Chap. 10 for more on LSTM. 

Self-attention and attention are the new handcrafted feature descriptor, both for NLP and computer 

vision; self-attention operates over larger pixel patches or regions such as 16 × 16 which provides more 

discrimination to high-frequency detail compared to smaller 3 × 3  or  5  × 5 convolution feature kernels 

used in CNNs. The current research work on DNNs and CNN’ is mostly in the area of creating tools 

and models for practitioners, such as pytorch, keras, tensorflow, and other libraries, as well as

1 http://www.image-net.org —see “Challenges” for 2013-2015 and onwards. 
2 http://people.idsia.ch/~juergen/ Schmidhuber’s home page.

http://www.image-net.org
http://people.idsia.ch/~juergen/


foundation models pretrained for NLP or computer vision such as ONYX, Hugging Faces, BERT, 

GPT, and more as discussed in Chaps. 10–12. We see fewer research fundamental innovations to the 

CNN architecture since the performance is well enough for many applications. The feature learning 

backbone of CNNs and Transformers has been hybridized, so we see cross-pollination of architectures; 

we see n × n convolutional kernels in the lower layers of CNNs, combined with 16 × 16 or larger self-

attention features in the higher layers.
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In summary, the CNN, LSTM, and Transformer neural network architectures are mature enough for 

widespread use, accompanied by a set of open-sourced and commercially available resources for 

engineers and researchers, including python language-based software tools and libraries, with a 

growing and foundation model infrastructure upon which to build AI applications with little effort. 

The groundwork was laid before 2000 for the progress in neural networks that we see today. Increased 

computing power and large sets of labeled training data images make real-world computer vision 

applications using NNs possible and very effective. In Chaps. 10 and 11, we will dig further into the 

architecture and design innovations that have occurred in NNs, comparing and contrasting the various 

approaches. 

Artificial Neural Network (ANN) Taxonomy Overview 

As shown in Fig. 10.1, we break down ANN architectures into three types: 

– FNN—Feed-Forward Neural Networks, where all the inputs move in the same direction toward the 

classifiers at the output stage. CNNs are equivalent to FNNs. 

– RNN—Recurrent Neural Networks, which allow for feedback paths in the network. In other words, 

an arbitrarily connected network (ACN). 

– BFN—Basis Function Networks, which do not always follow neural network principles as defined 

in the CNN, FNN, and RNN models, and instead use alternate architecture configurations and basis 

functions such as Gabor features or SIFT features, rather than correlation templates as used in 

FNN-CNNs and most RNNs. 

– Transformers are considered as hybrids in the taxonomy; relatives of LSTM/RNNs except for 

conceptual parallelization, and relatives of FFNs since a hierarchical feature map is created. 

Transformers and CNNs are hybridized together into a single system by some practitioners; we 

survey transformers and hybrids in the deep descriptor networks (DDNs) section in Chap. 11. 

Note that BFNs are broken out here into a separate category, and the term BFN is introduced in this 

work for the sake of developing a taxonomy. However, several deep learning models, which we refer 

to here as BFNs, do not use correlation templates or filters, and instead use alternate basis functions 

such as Gabor, SIFT, and others, or else the BFNs deviate in some other fashion from a more 

neuroscience-inspired network model as embodied in typical CNNs. So BFN is the catch-all category. 

Further, since the general variants of the ANN architecture are applicable to a wide range of 

problems, we can expect to see more and more commercial and open-source software resources to 

accelerate application development, increasing special purposes ANN accelerators, some 

standardization of ANN variants, and more classes offered in academia to train the engineering 

workforce. Selected resources are provided in Appendix C.
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Feature Learning Overview 

The idea of feature learning is to create features from a set of ground truth data and also to tune the 

features to be optimal for all similar features in the data. For example, a feature learning problem may 

include learning the optimal feature sets to represent a wide range of human faces, as the faces are 

presented in the ground truth data. A typical feature learning goal is to collect only the optimal 

features, limiting the feature set size to only maintain the strongest and most common features, rather 

than an exhaustive set of all the features possible. 

Learned Feature Descriptor Types 

A range of feature description methods are used to learn features, and we take a broad view of feature 

learning to include: 

– Local feature descriptors—Some are learned; for example, SIFT, SURF, FREAK, ORB are 

trained to encode several dimensions of information to identify unique pixel patterns. Learned 

feature descriptor dimensions include gradient information, scale information, and pixel sampling 

pattern information. 

– Transformers and hierarchical self-attention and general attention mechanisms—For com-

puter vision, attentional features, such as self-attention, use pixel patches as input to encode the 

pixels into tokens, represented as RGBI color attributes, combined with positional information and 

class labels. Attentional features are learned as weights and organized in feature hierarchies, and 

details are covered in Chap. 11. 

– Regional feature sets—For example, Spatial Pyramid Matching by Lazebnik et al. [694] described 

in Chap. 6, trains a descriptor by dividing an image into regions, and each region is described 

separately to make up the final descriptor. 

– Basis feature sets—may include selected sets of Gabor features, selected Fourier frequency 

components, or HMP-style [706] learned features composed by sparse coding alone. CNNs learn 

a hierarchical set of basis features. 

– CNN-style hierarchical feature sets—CNNs are composed of n × n correlation templates, or 

filters, learned at each level of the network, represented as tunable weight matrices as covered in 

Chap. 10. 

By definition, a neural network style feature learning approach does not mandate any particular 

style of feature, as long as the features can be learned and trained by the neural network. However, 

most neural networks for computer vision are using convolution-style features, or correlation 

templates, rather than other feature descriptor methods. 

With local feature descriptors such as SIFT, a feature at an interest point in a local region is learned 

in a scale-invariant manner from an image pyramid by finding local maxima points present at adjacent 

scales in the image pyramid, and then, local region gradients around the interest point are pooled and 

encoded into a gradient orientation histogram. A set of SIFT features are collected together for 

identifying an object. With SIFT-style features, it is often possible to recognize objects with very 

small numbers of features, such as 10–20 features total, since so much local information is encoded in 

each descriptor. In some applications, hundreds of CNN features are equivalent to 10–20 SIFT feature 

descriptors.
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Hierarchical Feature Learning 

Typically, deep networks have 2, 3, or more layers of features. The feature set size is usually limited to 

a few hundred or so features per level, see Fig. 9.2. The first layer features in the neural network may be 

derived directly from pixels, and the subsequent layers of the neural network take the input from the 

pixel correlations at each layer in the form of a feature map with filtered output values (i.e., a processed 

image), so the values are no longer strictly pixels, but a nonlinear mapping from pixels to intermediate 

values. This nonlinearity is typically a feature of CNNs and viewed as desirable. 

How Many Features to Learn? 

In the extreme, if a complete memory image of all objects, at all angles, under all invariance criteria 

was stored, and the computer had enough memory and processing power to sample, match, and 

classify all inputs to the stored features in a practical amount of time, then computer vision would be 

much simpler. If a method existed to automatically capture the ground truth data for subjects complete 

with all the desired invariance attributes, such as scale, geometric, and lighting variations, then training 

would be much simpler. In the extreme, as many features as possible could be useful. 

There is a large body of research into smaller neural network models, see Chaps. 10–12. For many 

applications, small models are fine; for example, see the U-Net model developed for medical 

applications in Chap. 2 section U-Nets for Segmentation, W-Nets. And some methods are specifically 

designed to avoid large neural network models all together; for example, see Chap. 11 on the Indextron 

Inverse Index Feature Learning Mikhailov et al. [992], and Volume Learning And Visual DNA 

Krig [476]. 

Currently, Transformer architectures are being developed which allow for trillions of model 

parameters including features, see Fedua et al. [954]. CNN and Transformer models containing 

hundreds of gigabytes of features are common already, see Chaps. 10–12. 

However, practical problems, such as limited ground truth data with bad labels and lack of 

invariance attributes built-in, limit training efficiency. In addition, memory and compute practicalities 

limit the number of features that can be stored and searched. So the bulk of the time being spent in 

feature learning research seems to be toward creating compromises,  or  optimizations, devising more 

efficient and discriminating features and classifiers, working within the limits of practical feature 

compression into a sufficient number of features, and looking for optimal performance within the 

memory and compute limitations of the day. See Varma and Ray [699] for a discussion of optimal 

descriptor characterization as a trade-off between invariance and discriminat ion.

The type of feature descriptor used does not seem to be nearly as critical as the sheer number of 

features. In this survey, we will see a wide range of feature descriptors used successfully in various 

architectures. Simply using a large number of features, especially deep sets of features, seems to be a 

consistent ingredient for success, and the type of feature does not seem to matter. For example, large 

numbers of simple image pixel regions have been demonstrated by Gu et al. [637] to be very capable 

image descriptors for segmentation, detection, and classification. Gu organizes the architecture as a 

robust bag of overlapped features, using Hough voting to identify hypothesis object locations, 

followed by a classifier, to achieve state-of-the-art accuracy on several tests. 

In general, more features are better, but not too many to manage, as discussed in the architecture 

survey later in this chapter.



370 9 Feature Learning Taxonomy and Neuroscience Background

The Power of DNNs 

By themselves, individual features learned by a neural network are not very useful. However, the 

power of deep neural networks is a combination of several factors: 

1. The hierarchical nature of the features to represent multilevel concepts. Spreading the features out 

across layers actually reduces the number of features a CNN would require, since eliminating layers 

result in the need to add more features to other layers to compensate. 

2. The quantity of individual features in each layer. A CNN generates many features at each level, 

which actually increases the accuracy, since the features allow for an overcomplete set of features, 

rather than a sparse set. 

3. Generic feature tuning. A CNN tunes each feature to learn generic features, which represent a 

group of similar features. Each feature is typical trained on thousands of similar images, and tuned 

via gradient minimization methods to best represent the average feature within a range of similarity. 

Essentially, the CNN-style filters are well-tuned blob patterns and contour pattern detectors 

represent low-, mid-, and high-level concepts. The DNN features are ideally contrast invariant, 

which is accomplished by nonlinear transforms to the input, such as whitening, normalization, and 

local histeq. We know that the human visual system (as discussed in the SIFT survey in Chap. 6)  is  

sensitive to gradients, and due to the local receptor pooling in the LGN, the gradients are allowed to 

slide around the retina and still be recognized. This provides limited deformation invariance for 

low-level features and extends to higher-level features which pool local receptive fields. 

Transformers use self-attention based on pixel encodings and pixel embeddings, covered in 

Cha p. 11. 

The concepts used in deep learning and NN systems, such as hierarchical learning, algorithm 

pipelines, replicated compute stages (neurons), tuning features via training, and computing via graph 

methods, are nothing new or novel. Rather, the power of deep learning methods lies mostly in the 

synergy of the architecture and the sum of its parts. 

Encoding Efficiency 

It should be noted that the most effective local feature descriptors, such as ORB, SIFT SURF, or 

FREAK, individually encode much more information than any single CNN feature. In fact, many local 

feature descriptors are quite powerful, and entire images can be reconstructed fairly well from the local 

features alone, see Figs. 4.12, 4.13, and 4.14. However, single CNN features do not contain enough 

information to reconstruct an image very well. We could conclude that powerful local feature 

descriptors individually encode more information than individual CNN features. 

Handcrafted Features vs. Handcrafted Deep Learning 

There is some debate about the value of DNNs compared to other computer vision methods. Many 

DNN practitioners have developed a preference for deep learning methods, stating that learning 

features are better than designing features, thus taking a biased view against what they call handcrafted 

features, such as SIFT, FREAK, and other local feature descriptors. However, DNN architectures and 

training methods are very handcrafted and rely on several ad hoc design assumptions, such as the DNN 

architecture, the DNN training protocol, and the learning parameters. A DNN is much more difficult to



develop and use compared to local feature descriptors. Local feature descriptors are handcrafted as 

much as DNNs are handcrafted, both involve empirical engineering processes, and trial and error are 

expected. 
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The CNN resembles a system composed of square puzzle pieces (i.e., features), where the content of 

each puzzle piece is learned similar to the average value of several similar square pieces from the 

training images, and the final classification is a best guess based on the puzzle pieces presented. The 

puzzle pieces are not designed to fit together, since no spatial relationships or coherence are encoded in 

each piece. One could argue that this is not feature learning at all and more like serendipity. 

While neural networks are inspired by a few neuroscience concepts, the best local feature 

descriptors, such as SIFT and FREAK, are inspired by the best visual science. So this author envisions 

a merger of the both the neurobiology inspired approaches, and the vision-science-inspired 

approaches, combining the best feature representations with the best learning and training architectures 

into a common system. 

This discussion and comparison of CNNs and local feature descriptors revolve around the conun-

drum of top-down vs. bottom-up design. One perspective is that local feature descriptors such as SIFT 

or FREAK are designed top-down, using high-level concepts based on the human visual system and 

intuition to guide the descriptor design, while CNN features are designed bottom-up, using large sets of 

very primitive simple correlation templates, simply relying on local receptive fields to guide the 

formation of the hierarchy of features. 

And Transformers use self-attention in many variations, and in fact, attention mechanisms are very 

hand-crafted! See the sections on attention in Chap. 11 for a deep dive and survey. 

Here are some of the comments this author has seen: “handcrafted features are fragile, inferior, 

over-specified, or incomplete,”  “DNNs are the only method worth using today,” and “we must move 

beyond handcrafted features and simple machine learning.” Practitioners state that “they do not 

understand local features, like SIFT,” and surprisingly also state that “they do not really understand 

neural networks and back propagation . . .  but they work.” And perhaps the most intriguing comment 

may be “handcrafted features are time consuming to create,” since training DNNs can be so time-

intensive, data-intensive, and it is difficult to set up all the learning parameters, transfer functions, 

numeric conditioning, and other parts of the pipeline. Until recently, when multi-core CPUs and GPUs 

with lots of memory were available, DNN training was often not practical or even possible except 

within academia for small problems. Local features are simple by comparison. Today, only very skilled 

practitioners, typically dedicated academic researchers, are presently capable of understanding enough 

to successfully design and deploy DNNs, although DNN toolkits and commercial products are making 

DNN applications simpler to develop by nonexperts. Soon DNNs will be commoditized, see the 

resource products in Appendix C.

No method is clearly better in all cases. Depending on the objective criteria chosen, any feature 

learning or feature descriptor method may be optimized to score better than another. Invariance 

criterion is often critical. If training speed is important, perhaps DNNs are not the right choice. If 

scale and geometric distortion invariance is important, perhaps some combination of local feature 

descriptors with a focused training protocol to present all the scale and geometric views is best. 

Deep learning practitioners develop ad hoc methods to make DNNs work at all, and to steer the 

feature learning in the right direction. For this reason, practitioners often copy existing DNNs that 

work (i.e., like cut and paste coding) and make architectural adjustments looking for incremental 

improvements. The best-performing DNNs are typically designed and maintained by teams of 

dedicated developers at major companies or universities, since the complexities are daunting for a 

single person to grasp. DNNs are handcrafted.
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Invariance and Robustness Attributes for Feature Learning 

Invariance and robustness attributes are a measure of quality for any feature descriptor method (See 

Figs. 5.1 and 5.2). DNN/CNN learned features are individually inferior with respect to invariance 

attributers compared to the better local feature descriptors, but collectively as a hierarchical group 

DNN/CNN feature can be as good or better. The square kernel matrices used in typical CNNs are 

perhaps the least invariant feature descriptor type. However, by introducing variations into the training 

set for the DNN, including training samples with the desired variations such as rotations, deformations, 

contrast, scale, and other variations, the desired invariance can be learned and represented in CNN 

feature set. We survey training protocols and training sample variations in Chap. 10. 

What Are the Best Features and Learning Architectures? 

Researchers and practitioners are constantly trying to disentangle the components and architecture 

attributes of DNNs and other feature learning methods, to find the most critical variables and the best 

solutions. As the scope of the vision problems grow, the solutions are harder and harder to evaluate and 

compare. Many researchers are trying to design the ultimate solution: recreate human intelligence as 

artificial brains (see Table 9.2 on various initiatives). 

Major areas for architecture optimization include: 

1. Training protocol, ordering and dropping samples, sample batch sizing, and adding modified 

copies of each sample to the training set to add invariance, such as geometrically transformed 

images, and numerically conditioned images to affect contrast, noise, and other techniques surveyed 

later in this chapter 

2. Features, the type of feature used (correlation templates vs. SIFT or basis features), the depth of the 

feature hierarchy or number of convolutional layers, number of color channels per feature, features 

per layer, and the size of each feature, such as 3 × 3 vs. 11 × 11. 

3. Classifiers, varying the number of convolutional classifier layers, or using other classifiers such 

as SVMs. 

4. Numeric Conditioning, breaking apart the data via numeric conditioning to enhance the spectra, 

such as local equalizations, normalizations, and whitening methods, as well as the choice of 

activation functions. 

5. Pooling and subsampling methods to reduce the feature size and add some invariance by varying 

the pool size, and pooling criteria, such as MAX pooling and CCCP pooling. 

Various practitioners have offered research findings to point toward the best places for DNN 

optimizations, and findings vary. 

Bergstra et al. [579] recommend random experiments to find the best architectures. One study by 

Russakovsky et al. [578] analyzed the types of errors found in the Imagenet challenge, where mostly 

CNN methods are performing best. However, only a small handful of comparative conclusions are 

provided. Many DNN architectures and other non-DNN approaches are used and compete favorably. 

Usually, from year to year, the best methods from the prior year are taken as a starting point by many 

practitioners, and enhancements are made to compete for the next year. Currently, ensemble methods 

using several networks voting together are popular, as well as variations in the training protocol, 

covered later in the surveys in Chap. 10. 

Coates and Ng argue [554] that trying to choose the best features, or basis functions, is not as critical 

as choosing the right architecture and encoding scheme. For example, Jarrett et al. [555] found that



using random features (untrained weights) for the feature set could perform quite well compared to 

templates with trained weights, which demonstrates that the power of the CNN architecture is to 

leverage many features together, rather than the choice of the optimal basis features. Using random 

weights for correlation templates is equivalent to a random set of edge detectors. 
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However, Parikh and Zitnick [572] found that features are the most critical part of the architecture, 

by comparing (1) feature descriptors, (2) learning algorithms, and (3) the training data. Parickh and 

Zitnik created a baseline by using human experts to take the place of algorithms, to compare what a 

human can do to increase performance in any area compared to various DNN algorithms. 

Other research by Eigen et al. [574] evaluated several parameters of deep CNNs to find the most 

critical elements. Parameters considered were number of layers, feature map dimensions, spatial kernel 

extents, number of parameters, pooling size, and pooling placements. Eigen’s work focused on (1) the 

number of layers, (2) features per layer, and (3) the number of parameters, and their work demonstrates 

that, within the CNN architecture, increasing convolutional layers alone provides the most significant 

accuracy increase, compared to increasing the number of features in each feature layer in the hierarchy. 

Also, Eigen found that convolutional layers are fairly insensitive to the number of features, and more 

sensitive to the dimension (size) of each correlation template, i.e., the number of weights in each 

correlation template. 

Other research by Fergus and his team at Microsoft Research involved removing layers from a 

CNN-DNN and found that deeper networks performed better. Fergus started by taking the Krizhevsky 

[289] CNN architecture (two classifier layers, five convolutional layers), and removed layers from the 

architecture, a few layers at a time, to check the effect on accuracy. In general, multiple convolutional 

layers and multiple classification layers all add to the effectiveness of the DNN. In addition, the Fergus 

slides [575] provide information on invariance attributes, confirming the general lack of robustness 

provided by static correlation templates to occlusion, scale, and rotation, except for orthogonal 

rotations, which correspond to mirroring. Of course, these results are expected because the correlation 

template features used are known to provide this level invariance, and nothing more. 

Zeiler and Fergus [576, 577] explored methods to visualize the quality of the features in the 

hierarchy by using an instrumented CNN they call a deconvolutional network architecture, to enable 

visualization of strong feature activations in the input space. In other words, the image regions which 

strongly activate each feature can be displayed to visually check the quality of the features. However, 

no actual deconvolutions are performed. Rather, the method uses instrumentation built into the CNN to 

choose only the best or strongest activating functions in the forward pass by following gradient descent 

backward, and setting to zero the lowest gradients to sparsify the features of interest. Also, during the 

forward pooling pass, a record is kept of the strongest features chosen, along with their Cartesian 

coordinates in the input space, allowing the region in the input space to be visualized as an image, 

which is useful to make sure the features are unique and discriminative. 

In the view of several practitioners, DNNs are not as novel or different as claimed. See the 

Deformable Part Models are Convolutional Neural Networks [489] Tech report, by Ross Girshick, 

Forrest Iandola, Trevor Darrell, Jitendra Malik. In this work, a deformable parts model is shown to be 

equivalent to a DNN, and a deformable parts model is refactored to use a basic DNN architecture. 

Paradoxically, deep learning methods have been shown to fail to recognize features that are 

obviously correct, and succeed in recognizing features that are obviously incorrect [482, 530]. Just 

changing a small number of pixel values is all that is needed in some cases to fool the DNN. Of course, 

this is to be expected during the training of any computer vision system and is correctable via retraining 

and redesign. Perhaps we will see deep learning hacking contests [530] where coders try to 

spoof DNNs. 

Finally, several novel architectures and findings from the latest research are covered in the 

architecture survey later in this chapter, to illustrate some of the better approaches.
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Merger of Big Data, Analytics, and Computer Vision 

A trend is becoming visible: neural network architectures are applicable to a wide range of analytic 

applications, such as speech recognition, computer vision, and general data analytics. The underlying neural 

network architectures for all the applications are remarkably similar, leading to the possibility of a common 

architecture for learning and artificial intelligence, such as a neural computer or NC. This means that a single 

NC architecture may become a common building block for analytics, similar to the idea of a common CPU 

architecture used for general computing problems. Neural computing will become a commodity item. 

Neural computing and similar hierarchical and multivariate methods will be used together as hybrids. 

In the near future, we should commonly see mobile and hand-held devices with neural computers 

connected to a remote server used by business, commercial, governmental, military, law enforcement, 

and legal organizations to perform a complete audio, visual, historical, and textual evaluations of 

people for employment interviews, banking, commerce, law enforcement, or housing applications. The 

neural computers will evaluate facial expression, body language, and clothing style for emotions and 

intentions, as well as audio evaluation of the tone and rhythm of spoken words for latent intentions and 

assumptions, with complete NC textual analysis of the words they have written in email, texts and 

blogs, and other documents, including historical records from local governments, academic 

institutions, purchasing records, and other financial transactions, to develop a composite character 

profile—all using the same neural computing architecture. The result will be complete online, virtual 

personal profiles stored on the Internet somewhere, which can be queried by voice commands or 

textual commands to learn about a person with or without their knowledge, and perform what-if 

analysis and prediction of their future behavior within a set of circumstances, for example allowing a 

commercial enterprise to design situations or opportunities to suit their preferences and influence 

purchasing behavior, or by allowing governments to develop policies and propaganda to test the 

reactions of a population, their preferences, intentions, and personal beliefs. 

How much such information will be relied upon is another matter; however, the technology is in 

place today to be assembled and developed into a commodity appliance, available for a fee, depending 

upon the analysis desired, the databases you wish to access, and the turnaround time desired. NC-based 

personal behavior prediction services and NC-based personal profiling services are very near, and in 

the early stages now, with huge investments being made into early-stage analytics startups now. 

Computer vision will be a central component of the future of analytics. Imagine government policy and 

business plans being designed around the predictions generated by an NC to form future programs, 

and evaluation of each program by another NC to form recommendations, and the recommendations 

being made by another NC to the final decision authority—a human . . .  or? 

Neural network innovations have disrupted and refocused academic research and industry 

investments to apply neural network methods to more areas. Today, commercial NC products from 

major corporations enable rapid development of commercial neural network solutions. We are seeing 

commoditization and standardization of neural network methods, APIs, and software libraries, see 

Appendix C. Fundamental research has laid the foundations to spawn the first generation of commod-

ity neural computing architectures in silicon, leading to widespread and pervasive solutions. 

The race is on, and will play out similar to the space race and the weapons race, since artificial 

intelligence is a business and national security priority, garnering billions of dollars of government and 

industry investment today, and spawning commercial products and services. The stakes are huge, 

given the potential of creating machines that learn, reason, make decisions, and perform actions, and in 

some cases, the machines will be preferable to humans. Major initiatives are being funded as shown 

below in Table 9.2. In the near future, robotics, automation, and analytics will become as pervasive as 

kitchen appliances and power tools, changing the nature of society worldwide, and changing the face 

of government, military, industry, and commerce.
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Table 9.2 Major initiatives in neural computing, including research, products, and services 

Investor Initiative Description 

USG/Exascale Project 

USG/DARPA 

Goal to create EXASCALE computing systems (exaflops/ 

exabytes) 

Brain Machine Initiative [584] 

$3 BIL USD over 10 years, similar to NASA-level funding 

http://www.artificialbrains.com/darpa-synapse-program 

European Union 

China 

Russia 

Human Brain Project, includes 24 countries 

Basic research into neurobiology, genomics, and 

neuroanatomy. [585] 

Very large supercomputers and huge AI investments by 

government 

National priority and major government investments across 

science, military, and industry 

https://www.humanbrainproject.eu 

Institute For Brain Science, (Paul Allen Foundation in 

Seattle) 

Basic research into neurobiology, genomics, and 

neuroanatomy. 

http://en.wikipedia.org/wiki/Allen_Brain_Atlas 

NCAP Neural Computation & Adaptive Perception 

Canadian Institute For Advanced Research CIFAR 

Canadian govt. funded basic research into neuroscience and 

artificial neural networks, [586] 

http://www.cifar.ca/neural-computation-and-adaptive-

perception-research-progress 

Baidu Largest Asian search engine worldwide

• Investing in large Deep Learning (DL) SW/Servers/HW 

worldwide

• Institute of Deep Learning Silicon Valley 2013

• Investing heavily in large data centers

• Marrying cloud + device DL together

• Hiring key AI researchers

• Licensing their DL technology to with mobile device 

companies 

http://technews.co/2014/08/01/mediatek-baidu-developing-

super-smartphones/ 

Apple Largest computer company in the world, making major 

investments.

• Apple currently offers the SIri voice recognition service 

using deep learning methods,

• Working on visual recognition products as well.

• Working on analytics products for their product lines to 

understand their customers better 

Google Brain Largest search engine company 

– Invests hundreds of millions of dollars annually in 

AI-related research 

– Visual search, user analytics, and speech recognition, 

more 

– Related areas, robotic cars, Google Glass, more 

Facebook Major artificial intelligence laboratory, huge investment 

($ amount unknown) 

Microsoft Several projects including voice recognition, visual search, 

and various SW APIs and libraries to enable developers use 

NC for general analytics, computer vision, speech recognition 

Startups and VC funding Several robotics, analytics and computer vision startups are 

being funded to apply deep learning to practical (and 

sometimes faddish) applications

http://www.artificialbrains.com/darpa-synapse-program
https://www.humanbrainproject.eu
http://en.wikipedia.org/wiki/Allen_Brain_Atlas
http://www.cifar.ca/neural-computation-and-adaptive-perception-research-progress
http://www.cifar.ca/neural-computation-and-adaptive-perception-research-progress
http://technews.co/2014/08/01/mediatek-baidu-developing-super-smartphones/
http://technews.co/2014/08/01/mediatek-baidu-developing-super-smartphones/
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Key Technology Enablers 

Certainly, AI and machine-learning methods have benefited and come into widespread use due to the 

technology available today, which has enabled a vast army of researchers to explore new concepts and 

improve methods. With the rise in compute horsepower, deep learning and neural network research 

have proliferated. 

Some of the main technology enablers propelling advances in machine learning are: 

1. Compute power increase: Commodity graphics processors (GPUs) available on laptops and 

desktops, as well as multi-core CPUs, provide huge SIMD and SIMT compute power that is well 

matched to large parts of the machine learning and vision pipeline. Note that in some cases, multi-

core CPUs perform equivalently to a GPU, depending on the exact specifications of each compute 

unit. See Chap. 8. 

2. Programming language advances: GPGPU programming languages such as CUDA and OpenCL 

have opened up direct methods for algorithm acceleration utilizing the SIMT methods and the 

SIMD instruction sets of CPUs and GPUs. See Chap. 8. 

3. Memory size increase: with much larger main memory and cache memories, the large training data 

sets used in machine learning are, in many cases, easy to fit into fast memory. 

4. Training data size increase: The Internet has made it possible to find and collect large labeled 

datasets on most any topic, such as pictures labeled as dogs or cats for example hosted on picture-

sharing sites. Scraper scripts can scour Internet websites to collect images with the desired labels, or 

by using search engines to find the images. Large labeled data sets are usually required for effective 

machine learning. 

Neuroscience Concepts 

Since much of computer vision is inspired by neuroscience studies regarding learning mechanisms and 

the human visual system, we provide a high-level overview here of selected neuroscience topics, with a 

focus on the visual pathway from the eye through the visual cortex. It is believed that each neuron 

performs pattern matching, internal processing, control of neural network connections, and memory 

storage management. The brain contains perhaps 100 billion neurons (estimates vary), each of which 

may vary in diameter from 4 to 100 μm (0.00015–0.004 in.), typically 25 μm for the nucleus alone 

(~0.001 in., or the diameter of a human hair). The volume of the neuron contains enough room for a 

substantial amount of processing, networking, and memory apparatus. By comparison with sub-5 nm 

silicon technology, a typical neuron contains enough room in the 3D volume for millions of gates to 

implement a small computer at least as powerful as an ARM/68000 class processor (~25,000 

transistors) with perhaps 1 Mbyte of memory, and another ~25,000 transistors for interconnects, 

assuming 3D stacked transistors and interconnect methods, since a neuron is a 3D volumetric shape 

and several silicon stacks could fit inside as shown in Figs. 9.7 and 9.8.
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Typical neuron nucleus diameter: 

25 micrometers, *same as human hair 

5 nanometer technology: 

>1 million gates using 

3D stacked transistors and 

stacked interconnects 

CPU 

1MB 

Memory 

Interconnects 

~ 

Fig. 9.7 The figure illustrates how the 3D volumetric space inside a neuron nucleus can easily contain the equivalent of 

a small 25,000 transistor CPU and 1 MB memory using sub-5 nm silicon technology, stacked transistors, and stacked 

interconnects 

Fig. 9.8 Neurons and dendrites. Image # Springer-Verlag, from Hierarchical Neural Networks for Image Interpreta-

tion, Sven Behnke [488], Draft submitted to Springer-Verlag Published as volume 2766 of Lecture Notes in Computer 

Science ISBN: 3-540-40722-7 

Each neuron is connected to 10,000 other neurons on average, making over 100 trillion connections 

to control all memories and learned behaviors [784], compared to the estimated 200–400 million stars 

in the Milky Way galaxy. By comparison, state-of-the-art artificial neural networks may contain over 

ten billion parameters and require more than a week to train for a single dataset using thousands of 

CPUs and GPUs. If we consider that each neuron may perform a mere 1 MOPS (ops per second) and 

has 1 MB storage, then the neurocortex contains perhaps 100× more MOPS per second and memory 

cells than the number of stars in the milky way. 

Neurons represent both memories and behaviors. Biological neural networks are dynamic and 

adaptive: the neurons grow and shrink as they learn or forget, and new dendrites are formed to connect 

the neurons to each other in seemingly unlimited topologies, and the dendrite connections grow or



shrink over time as well. The fragile nature of biological neural networks seems to corroborate the 

wisdom of Solomon “lean not on your own understanding.” We know that neural processing 

functions, memories, and connections grow like a plant, based on environment, circumstances, and 

experience, so even DNA clones of a biological organism will develop biologically different neural 

topologies and traits if grown in a different environment. 
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Biology and Blueprint 

There are basically two forces at work in the visual pathway of the human mind which inspire artificial 

neural networks: biology and blueprint. 

The biological structure of neural networks is becoming more understood, being a complex 

electrochemical machine of connected neurons, the central processors of our nervous system. 

Researchers can measure the electrical activity in the brain to map out the various neural regions 

where processing occurs for sensory tasks, such as visual learning tasks, and where the optical nerves 

are connected. See the Human Connectome Project [618] for the latest images and simulations of 

neural pathways and Fig. 9.1. The Human Connectome Project uses various imaging modalities, 

similar to very fast MRIs, to image the neuron states and measure the electrical impulses when the 

neurons fire across dendrites to understand neural activity [567]. In some cases, neural imaging can 

reveal if a subject recognizes the object they are viewing, and whether or not they are telling the truth 

[778, 779]. 

From neuroscience, we know that neurons process inputs using a trained activation function which 

fires as needed, taking inputs as well as bias from electric-chemical stimulus. Apparently, the activa-

tion function for each neuron is developed over time via learning and experience. We know that 

neurons fire, or activate, in a binary or all-or-nothing fashion. We know that the neurons have some 

sort of memory for the input patterns they recognize, and memory for the concepts and perceptions 

formed in the higher-level reasoning sections of the brain. But how does the memory work biologi-

cally? How much information can be stored? When is memory forgotten? What activates memories 

that have apparently been forgotten? How can neurobiological memory models guide the construction 

of artificial neural memories? 

Nobody really knows the blueprint for the brain, except that it is encoded in DNA. As with the DNA 

programming code that genetic engineers are only beginning to understand, deliberate intelligence is 

evident in the design of the human visual system also. DNA is a programming language and that 

creates a learning machine—the brain. Two identical humans, twins or clones, can share the same 

DNA, yet their learning experiences determine how the biological neural network will grow in 

each one: the neural biology will turn out to be different; therefore, each one develops in a different 

direction. There is some debate about how much neurology is learned vs. innate. Is a baby born with 

neurobiology pretrained to recognize its mother? Research suggests that DNA can be imprinted by our 

ancestors, genetically encoding predispositions toward disease, as well neurological predispositions— 

perhaps visual memories and learnings are passed to us at birth. Basic aspects of vision seem to be 

innate or else humans are predisposed to learn them, such as depth perception, size, texture, color, 

gradient detection, and shape. 

Humans can discover the basic meaning of a scene in about 100 ms, and find specific targets in 

150 ms as shown by Metin and Frost [562]. The visual system operates using very high dynamic range 

optimizations for color, grayscale, and various lighting conditions, taking input from rods and cones in 

the retina, able to evaluate a scene using a number of hypotheses to check assumptions and locate 

specific visual information under several robustness and invariance criteria (see Fig. 5.2). 

And nobody really knows exactly how a neuron works, how neurons process inputs, why neurons 

fire, and how neurons learn. Nobody really knows how the connection topology between neurons is



directed to form and grow as learning occurs, what causes neurons to grow and shrink, and what causes 

new dendrites to grow and connect to other neurons. And nobody really understands the center of the 

conscious spirit that directs the entire system. 

The Elusive Unified Learning Theory 379

Neuroscience has inspired researchers to develop artificial neural networks (ANNs), using simple 

models and simple assumptions, to mimic the biology of the human brain, while simultaneously 

guessing about the actual blueprint of how it really works. Thus, we say that the structure, or 

architecture, of ANNs is biologically inspired. 

The Elusive Unified Learning Theory 

According to neuroscience, the human brain is composed of several different interacting regions, 

where each region is dedicated to different tasks. For example, the five senses (visual, hearing, taste, 

touch, and smell) are processed across separate and sometimes overlapping pathways across the brain, 

see Fig. 9.10. Emotional and rational thought are processed in separate regions of the brain as well; for 

example, speech and vision have dedicated neural processing centers and unique neurobiology. 

However, since the underlying neuron biology looks generally the same in all regions, many 

researchers have speculated that the neurons are simply waiting to be trained according to a universal 

learning mechanism. 

Metin and Frost [562] tested this universal learning hypothesis by rewiring the cortex of test 

animals, for example to swap the visual nerves into the audio cortex, and found that the rodents did 

in fact still learn to see using their audio cortex region instead of the visual cortex region, although the 

visual abilities were slightly impaired. Other similar experiments have corroborated such results. This 

universal learning hypothesis has inspired researchers to develop artificial learning models that can 

learn all types of information. As a result, ANNs are often applied, with little additional work, to 

different types of learning domains such as text, speech, and vision. Roe et al. [563] also rewired the 

visual receptive fields into the auditory pathway of ferrets and found that visual learning was 

accomplished. 

In the 1960s, noted neuroscientist Bach-y-Rita postulated that we see with our brain, not our eyes, 

and his later research [564, 565] proved the concept by demonstrating a sensor for the tongue 

connected to a video camera, that allowed a blind person to be trained to see with their tongue, see 

Fig. 9.9. Subsequently, several commercial products have been developed along this line. 

Fig. 9.9 A set of electrodes representing pixels originating from a camera, which can be placed on the tongue, used to 

train blind people to see. Image # University of Wisconsin-Madison, used by permission
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Human Visual System Architecture 

It is useful to explore the human visual system from a neurobiology viewpoint, to enhance the 

discussion of artificial neural networks. So we provide a quick overview highlighting some of the 

concepts that inspire the computer vision-related neural networks. ANNs mimic a few key of the 

biological structures and programmable behaviors of the brain that are observed by neuroscience. We 

will highlight key neurobiological structures and programmable behaviors of the brain in this brief 

overview. Additional background and references on the human visual system, particularly the spectral 

response of the eye from a pure illumination perspective, is provided in Chap. 1 on imaging. An 

excellent reference text for the human visual system is Kandel et al. [559]. 

A standard research model of the visual pathway has been developed by neuroscientists called 

HMAX, and many researchers have extended the basic HMAX model which we survey in Chap. 10. 

From the computer vision community point of view, local feature descriptors and more recently CNNs 

have been popular, and HMAX has been popular in the neuroscience community. 

A simple model of the visual system is shown in Fig. 9.10, where the retina sends images to into the 

visual cortex. A good overview and reference on the history of visual cortex mapping is provided by 

Yeo et al. [567]. The knowledge of the neurobiological activity of the visual pathway is being filled in 

little by little, for example shift and size invariance in the visual pathway have been explored by 

Wiskott et al. [566]. Many more examples can be cited. 

Fig. 9.10 “Courtesy of the Laboratory of Neuro Imaging and Martinos Center for Biomedical Imaging, Consortium of 

the Human Connectome Project—www.humanconnectomeproject.org.” This Connectome Image has been overlayed 

with the visual pathway regions including approximate cumulative travel time between regions. Connectome images are 

maps or wiring diagrams of connectivity pathways, captured in vivo using multiple neuroimaging modalities

http://www.humanconnectomeproject.org
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As shown in Fig. 9.10, the human visual pathway uses about six levels in the hierarchy (LGN, V1, 

V2, V4, PIY, AIT) and shares the higher-level reasoning centers (PFC, PMC, MC). Various machine-

learning practitioners have also found good results using close to six layers as well. According to Yann 

LeCun, there are between 5 and 10 separate layers in the visual cortex pathway, depending on what is 

counted. As a first approximation, the visual pathway resembles a feed-forward network, or FNN. 

However, the actual processing architecture, including feedback mechanisms and electrochemical 

stimulus algorithms, is unknown. There is some feedback in the visual cortex, and the processing is not 

all feed-forward, see Rao et al. [560]. 

As shown in Fig. 9.11, Hubel and Wiesel [499, 500] developed influential models for the lower 

levels of the visual pathway and introduced several concepts which have guided the development of 

hierarchical artificial neural networks. The basic concepts include (1) simple cells, which collect 

inputs from a local receptive region, and tune themselves to recognize oriented local features like 

gradient patterns or edges, and (2) complex cells, which pool and select the best activations from local 

receptive fields of simple cells. 

Fig. 9.11 The Hubel and Wiesel model of simple cells and complex cells. Image # Springer-Verlag, from Hierarchical 

Neural Networks for Image Interpretation, Sven Behnke [488], Draft submitted to Springer-Verlag Published as volume 

2766 of Lecture Notes in Computer Science ISBN: 3-540-40722-7 

As we summarize neurobiological architecture of the visual pathway below, please refer to 

Figs. 9.10 and 9.12 as we go along.
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Fig. 9.12 An illustration of the visual processing pathway (“standard model”), including the types of features 

represented in the visual neural region hierarchy. Image # Springer-Verlag, from Hierarchical Neural Networks for 

Image Interpretation, Sven Behnke [488], Draft submitted to Springer-Verlag Published as volume 2766 of Lecture 

Notes in Computer Science ISBN: 3-540-40722-7

• LGN, Lateral Geniculate Nucleus, studied by Hubel and Wiesel [499, 500], who proposed that 

the LGN is a critical part of the visual cortex, and as shown in Fig. 9.12 composes the smallest 

aligned features from small, overlapping concentric regions in local retinotopic fields, and is the 

beginning of a serial, hierarchical visual processing pathway.

• Localized Neural Field Interactions, several neuroscience researchers [568–571] have observed 

that the local neural fields (neurons close together dealing with adjacent stimulus) interact with each 

other, similar to lateral controls between themselves. For example, the V1, V2, V2, and higher-level 

components in the visual pathway combine local region inputs, and even scatter inhibitory and 

excitatory signals laterally across the local regions to change the perception parameters in the local 

region.

• V1, S1, receives inputs from the overlapping LGN local retinotopic cell regions, and forms simple 

cells (S1 cells) or low-level features, which have some amount of invariance to translation and 

rotational orientation. The outputs of the simple cells are therefore aligned with respect to rotational 

orientation. The V1 also receives backpropagated signals from the V2 area, apparently to provide 

guidance for constructing the local receptive fields into features. As postulated by Hubel and 

Wiesel, simple cells contain local features like edges and micro-textures, which are sent up the 

visual processing hierarchy as inputs to the complex cells or C1 cells.

• V2, C1, composes the low-level S1 features from the V1 into mid-level features or C1 complex 

cells. V2 also pools local features from a retinotopic region, as shown in Fig. 9.12. The C1 cells 

combine the outputs of aligned, overlapping retinotopic regions from V1 by local retinotopic region 

pooling, similar to overlapping feature kernels used in convolutional networks, where each feature



Human Visual System Architecture 383

map is independently sensitive to phase, translation and rotational orientation. The C1 complex 

cells combine the simple S1 cell features in a phase invariant manner, responding to edges and bars. 

The C1 receptive field is perhaps 2× larger than S1. Note that this concept of many simple cells, or 

low-level features such as edges, and local retinotopic pooling of features feeding into higher-level 

cells such as mid-level features like motifs and object parts, is one of the key inspirations for CNNs.

• V3, some researchers have defined an additional low-level oriented edge feature layer as V3, which 

is similar to but higher level than V1 and V2.

• V4, here, mid-level concepts are assembled, such as motifs and object parts. The C1 cell outputs 

from the V2 are combined in V4 into higher-level concepts, using the same types of feature map 

response pooling, as done in V1 and V2. So we see a common architecture among V1, V2, and V4 

levels of the hierarchy, that is also another significant inspiration to CNN design and is usually 

implemented as multiple replicated hidden layers composed of filtering, pooling, and a nonlinear 

neuron activation function. The nonlinearity of the data, and the nonlinearity of the neural transfer 

function of the ANNs is another method inspired from biology, since at each layer in the V1, V2, 

V4, and higher levels, we are moving farther and farther away from pixels, and more and more 

toward abstract concepts which are not pixels at all.

• PIT, CIT, contains mid-level concepts, such as directionality, motifs, hidden-layer architecture.

• AIT, STPa, contains higher-level concepts, such as object parts, hidden-layer architecture.

• PFC, MFC, contains classifier layers used to reach conclusions, make judgments, and make 

decisions. May also generate new hypothesis and corresponding neural programming and classifier 

programming, and direct multiple-hypothesis evaluations.

• Hypothesis: Each additional hypothesis, as directed by the higher-level consciousness of the brain 

in MFC and similar regions, requires a round trip through the visual pathway to evaluate. The 

electrical signals in the visual pathway have been measured [562] to take about 100–150 ms per 

hypothesis. 

Now that we have briefly surveyed the neurobiological architecture of the visual pathway, we will 

next summarize how ANN implementations typically translate neurobiology research into actual 

implementations.

• Receptive Field Size, the LGN sets the initial visual receptive field size, which is partially 

determined by the optic nerve architecture which arranges the impulses from the retina for 

transmission to the visual pathway. ANNs often represent the receptive field as the correlation 

template window size, or kernel size. It is not clear what the size for a receptive field actually is; 

however, CNNs typically use various sizes, ranging from 15 × 15 down to 3 × 3, at different layers 

of the network, using empirical guidance based on the expertise of the practitioner. The shape of the 

receptive field is also unknown; however, the best local feature descriptors, such as FREAK and 

SIFT, use a notion of circularity to shape the receptive field, FREAK actually uses a circular region, 

and SIFT circularly weights the rectangular field.

• Local Receptive Field Overlap, the use of local overlapping receptive fields that are pooled 

together is inspired by the LGN cortex layer and the V1, V2, and V3 layers. The receptive field, or 

kernel, is scanned across the input field at some stride, such as at each pixel or striding every 

n pixels. Each hidden layer may have a different receptive field size.

• Pooling, Subsampling, the LGN, V1, V2, and V3 layers apparently pool features in a local 

receptive field to find the best feature for the current hypothesis under evaluation, to find the best 

one in the pooled local region, for example using max pooling or the strongest feature matched in 

the pool. Pooling can reduce noise effects. Feature subsampling resolution in ANNs, which 

involves striding the kernel window across the image, and the region size of the local pool, becomes
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lower resolution as the visual processing hierarchy moves upward to higher-level concepts. As 

reported by several neuroscience researchers [568–571], biological neurons exhibit interesting 

programmable behaviors across local regions emulated in ANNs, such as winner-take-all or max 

pooling, subsampling, automatic contrast gain control and other nonlinear numeric conditioning, 

hierarchical concepts, and noise suppression.

• Weight Sharing, in CNNs this is simply sharing the same filter weights to use with each sliding 

window input kernel (i.e., kernel-connected layers) as an implementation convenience. Actual 

neurons apparently contain their own unique memory cells, so weight sharing is a purely computer 

vision concept. Compared to fully connected layers, kernel-connected layers are far more efficient 

in terms of compute and memory. This allows each artificial neuron to share the same parameters, 

which can be said to mimic the evident sharing of memories among neurons. Weight sharing also 

reduces the number of parameters in the network, enabling a simpler design using a replicated 

convolutional neuron design pattern.

• Hidden Layers, the visual pathway sections are implemented in CNNs using replicated function-

ality in V1, V2, V4 hidden layers, arranged in a feed-forward concept hierarchy, from low, through 

mid, and up to high-level features or concepts.

• Feature maps are used as intermediate memories in the CNNs to record the response of each 

feature to the input. One feature map records the response to each filter.

• Learning, the mechanisms of neural learning and training are harder to understand, and less is 

known about how neurobiological learning really works. As discussed earlier, some amount of 

preprogrammed learning may be encoded genetically into the DNA (see Appendix F on Visual 

Genomes). CNNs typically use a variant of back propagation learning via gradient descent and 

similar methods, discussed in Chap. 10. 

However, the DNN approaches are working well in terms of accuracy and performance in 

comparison with humans in limited circumstances. Many examples can be cited, such as the German 

traffic sign recognition benchmark competition won Ciresan et al. [538] that actually surpassed the 

accuracy of a human expert. In other work by Cadieu [553], as shown in Fig. 9.13 DNNs rival primates 

for visual recognition tasks, and the DNNs tested were actually faster and more accurate than primates 

as shown in Fig. 9.13. In Cadieu’s work, humans and monkeys were tested for image recognition, and 

only given 100 ms to make a first guess and identify an image (no training or prior knowledge). The 

100 ms time limit is in keeping with the visual pathway hypothesis turnaround time in humans [553] 

from LGN through AIT, see Fig. 9.12.
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Fig. 9.13 DNNs compared to actual primate visual response accuracy (V4 Cortex and IT Cortex Split-Half), from 

Cadieu et al. [553]. Note that DNNs rival primates according to the metrics used in the tests. The paper reports that DNNs 

rival the representational accuracy of primate IT cortex. Image used by permission, published under the Creative 

Commons Attribution (CC BY) license 

In summary, neurobiology has revealed architectural concepts that have inspired machine learning, 

and it is remarkable that ANNs inspired by neurobiology seem to perform very well, even though the 

exact methods used seem to defy mathematical modeling and rational explanation in some cases. 

Indeed, much of the progress in ANN research seems to be due to perseverance of the practitioners, and 

tricks of the trade [588]. Few of the key elements of ANN design and architecture are mathematically 

modeled satisfactorily and require a combination of trial and error, expertise, and good fortune to 

apply. 

Taxonomy of Feature Learning Architectures 

The taxonomy is intended to sketch out the overall architecture and components which have been used 

in DNNs, to provide a basis for comparison between DNNs. The taxonomy summarizes connections, 

layers, components, and algorithms. The taxonomy consists of: 

– Architecture Topologies, connections and graph structure 

– Components, algorithms and layers 

For example, architecture topology defines the connections, data flow, depth of the network, and 

overall organization, while the components comprise the algorithms and methods used in each layer of 

the architecture. Table 9.3 contains the Taxonomy Summary, followed by a quick introduction to each 

of the taxonomy component elements.
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Feature Learning Architecture & Component Taxonomy Summary 

ANN type Training protocols 

FNN (no loops) Randomizing training samples 

RNN (loops) Jittering/translating data 

BFN (hybrids) Warping samples 

Memory Model Reflection of samples 

Simple Fixed Memory Region proposals via segmentation 

Spatiotemporal Memory Bagging 

Associative Memory, CAM Batch 

Mini-Batch 

Input Sampling Subcategory Mining & Fusion 

Region nonoverlapping, tiled Adversarial perturbations 

Region overlap, n-stride, or each pixel Layer totals 

Region normalization (segment likely regions) Total layers 

Shape rectangle Feature hierarchy layers (n×m) 

Shape circular Classification layers (1×1) 

Shape polygon Other layers 

Pattern every pixel dense Features, Filters 

Pattern trained sparse Correlation Template/Convolutional Filter 

Spectra float MLP 

Self-attention, Attentional Variations 

Spectra int CCCP feature map reduction 

Dropout, reconfiguration, regularization RCL feature 

Input sample dropout Basis Function or Local Feature 

Bagging Composite (inception) 

Input weight to zero Activation, Transfer Function 

Drop connection (random, sparsification) Binary Step Function 

Drop output to zero Linear Ramp 

Noise Injection Saturating Linear Ramp 

Preprocessing, numeric conditioning Log-Sigmoid 

Mean-zero normalization Hyperbolic Tangent Sigmoid 

Local EQ Normalization Competitive 

Global EQ normalization Softmax 

Whitening Rectification (ReLu) 

PCA Parameterized Rectification (PrReLu) 

Other ABSVAL Rectification 

Feature Set Dimensions Radial Basis Functions 

Feature patch size per layer Maxout 

Features count per layer NiN. MLP 

Feature initialization Post-processing, numeric conditioning 

Transfer learning Response Normalization (local, cross-channel) 

Unsupervised pretraining Divisive normalization 

Random feature initialization Local EQ normalization 

Fixed basis set Other 

Layer Connection Topology Pooling, subsampling, upsampling 

Kernel Connected Tiled pooling 

Fully Connected Overlapped pooling 

Sparse Connected Stochastic Pooling 

Gaussian Connected LWTA pooling 

Other MAX pooling

(continued)
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Multiscale MAX pooling (HMAX)
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Table 9.3 (continued) 

Feature Learning Architecture & Component T 

AVE pooling 

Overlapped pooling 

GPU pixel shaders for rescaling 

Upsampling 

Global Average Pooling 

Multi-way local pooling 

Spatial Pyramid Max Pooling (HMP) 

Affine pooling (SYMNETS) 

The taxonomy also shows that image processing, computer graphics, and media processing 

methods are being applied to ANN design; however, most DNN practitioners have little knowledge 

of image processing, computer graphics, media processing, and how GPUs implement and accelerate 

fundamental operations in silicon. As a result, DNN practitioners commonly reimplement common 

operations with new names or use slow algorithms, such as rank filtering which they call max pooling, 

and the implementation of average pooling in software instead of using image processing accelerators 

in DSPs connected the cameras, as well as silicon in the GPU for rescaling and anti-aliasing, other 

examples are pointed out as we go along. 

Note 

The architecture taxonomy and component taxonomy are introduced here first in summary format, 

followed by more details on each element. The terminology and explanatory information are useful to 

understand the architecture surveys in Chap. 10. 

Architecture Topologies 

The architecture topology deals with the connection structure, otherwise known as a network or graph, 

between the components or algorithm sections. The architecture topology defines the graph of 

connections between inputs, outputs, and components. Topology is the top-level characteristic in 

this architecture taxonomy, providing the structure to incorporate the additional details for each 

component. The basic ANN architecture topologies are shown in Fig. 9.14 and discussed below. 

See Bengio [451] for a good review of neural network connection topologies. A foundational text is 

provided by Rojas [714].
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Fig. 9.14 ANN 

architecture topologies, (top 

left) a Feed-Forward Neural 

Network or FNN, (top 

right) a Recurrent Neural 

Network or RNN, showing 

recursive, lateral, forward, 

and backward connection 

topology, and (bottom) a 

hypothetical Basis Function 

Network or BFN, using 

tiled input, basis functions 

such as Gabor functions, 

feeding into a fully 

connected 1D 

convolutional neural output 

layer, followed by an SVM 

classifier 
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ANNs (Artificial Neural Networks) 

There is no clear pattern for ANNs to follow. Therefore, practitioners have defined a few common 

types of artificial neural networks that are practical to implement, being only a tiny subset of the 

unlimited variety of biologically plausible biological neural networks. Therefore, this taxonomy 

identifies three basic types of ANNs: (1) feed-forward neural networks (FNNs), (2) recurrent neural 

networks (RNNs), and (3) basis function networks (BFNs). 

FNN (Feed-Forward Neural Network) 

Inspired by the visual pathway, FNNs provide an architecture analogous to a pipeline of replicated 

operations or stages. FNNs typically use a simple memory model which only stores the hierarchical 

feature set (weights) and some parameters. For our discussion, FNNs are also a type of CNN, and use 

convolutional weight matrices as features and filters. Deep Descriptor Networks are also FFNs, 

including Transformers and Hybrids CNN/Attention mechanisms.
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RNN (Recurrent Neural Network) 

Recurrent means loops exist in the network. In other words, the network may be arbitrarily connected. 

However, many recurrent styles of architecture exist, such as FFNs with a few feedback loops, and 

Network in Network styles (NiN) with smaller ANNs inside the larger network. RNNs may also 

incorporate a memory model using temporal storage units for learning spatiotemporal sequences and 

related parameters. RNNs are related to CNNs and typically use the same type of convolutional weight 

matrices as features and filters. 

BFN (Basis Function Network) 

For this survey, BFNs are the catch-all category, incorporating all types of features and architectures. 

One of the most interesting architectures in the BFN category is the HMAX model, which is perhaps 

the most detailed model of the visual cortex, using basis function neuron models instead of the purely 

convolutional neuron feature model used in CNNs and RNNs. Often inspired by high-level reasoning 

approaches rather than the bottom-up neurobiology approaches, BFNs use a range of topologies and 

feature descriptors, a wide range of classifiers, and a wide range of architectures. For the BFN category, 

we consider basis functions to include functional features such as Gabor functions, Zernike Functions, 

Fourier features, plus all types local feature descriptors such as SIFT or FREAK. 

Ensembles, Hybrids 

Analogous to a room full of experts, ensemble methods combine several networks together, and 

perhaps use a master classification stage at the end to combine and vote on the results from each 

network. Hybrids may combine ANNs with other methods. We will survey a few examples of hybrids 

and ensemble networks in Chap. 10. See also Deep Descriptor Networks in Chap. 11. 

Architecture Components and Layers 

The components are connected within the architecture as nodes in the graph or network, resembling a 

pipeline. See Fig. 9.15. Another way to describe a component is a layer. In some cases, a layer is a 

single function such as a convolutional filter layer or pooling layer, in other cases practitioners 

combined several components together into a layer. In DNNs, patterns of layers are often replicated, 

such as convolution layers followed by pooling layers, see Fig. 9.16.
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Fig. 9.15 The figure illustrates selected components used in feature learning architectures; however, see Table 9.3 for 

the complete taxonomy 

Fig. 9.16 Typical CNN layers with replicated convolutional and pooling layers
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Note that Fig. 9.16 shows the classifier and convolutional layers, which are referred to as hidden 

layers in DNN parlance (note: the layers are not hidden, but any layer between the input and output is 

considered a hidden layer in DNN parlance). The convolutional layers implement a hierarchy of 

low-level and high-level features. 

In CNN parlance, there is some ambiguity in terminology (we point out terminology clarifications 

as we go along, apologies for repetition). Here are some equivalences:

• filters = weights = convolution_kernels = correlation_templates = features

• feature_map = image = 2D array = output (filter × input)

• hidden layer = any layer between the input layer and output layer

• layer = algorithm = set_of_algorithms = pipeline_stage 

This ambiguity and equivalence of terms is unfortunate; however, we also follow this terminology 

in our discussions, since many terms are in wide use. For example, when discussing processing the 

input, we may refer to features as convolution_kernels acting as filters over the input to produce an 

output image or feature_map, and correlation_templates to measure the strength of the feature match 

for each feature over the input. When discussing back propagation to tune the features, we will refer to 

features as weights. 

Next, we introduce and summarize the components in the taxonomy. 

Layer Totals 

Besides the input and output layers, the main types of layers are kernel-connected convolutional 

filtering layers, and fully connected classification layers. 

CNNs use several replicated layers connected in pipeline fashion as shown in Fig. 9.16, where each 

layer contains a pipeline of processing elements, such as numeric conditioning followed by 

convolutions then MAX pooling. A regular architecture at each layer also supports sharing of 

parameters within each layer, such as feature weights, greatly simplifying implementation. Other 

ANN architectures are asymmetric, containing feedback loops or recurrence as in the RNN style, 

and are often more difficult to implement.
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Layer Connection Topology 

Each layer in a typical CNN is connected to other layers in a potentially different input/output 

topology. For example, the input layers in convolutional networks are typically assembled into n × n 

kernel patterns containing 2D templates or patterns, and each kernel is kernel connected to a (virtual) 

separate artificial neuron for convolutional processing. Fully connected layers are typically used in the 

last 1D classification layers, although in typical DNNs the full connectedness is always forward and 

not a fully connected mesh, for example connecting each feature into all neurons (see the FC layer 

discussion in Chap. 10). Sparse connected layers are found in RNNs supporting feedback, and also, 

feature descriptors may use sparse statistical sampling patterns to group inputs, similar to the patterns 

used in ORB, FREAK, BRISK, and other local binary descriptors discussed in Chap. 4. Sparse 

connections are also created using various dropout methods discussed in this taxonomy. Actually, 

from neurobiology we see that the entire neural network seems to be sparse connected with amazing 

variation. See Fig. 9.17. 
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Fig. 9.17 Fully connected vs. kernel-connected vs. linear-connected patterns. (Left) shows a 3 × 3 kernel with nine 

inputs connected to a single neuron, (center) showing a sparse linear-connected 3 × 3 spreading pattern, and (right) a fully 

connected arrangement where each output is connected to each forward input 

Memory Model 

Several types of memory models are used in ANNs.

• Simple, fixed memory: Typical CNNs use a simple model of fixed memory, storing a fixed number 

of features at each layer, and using dynamic parameters at run-time.

• Spatiotemporal memory: RNNs, such as the LSTM style networks [LSTM], have a spatiotempo-

ral function to learn sequences of features or events and therefore use a memory model which 

includes time-based memory management functions and gating mechanisms to control memory 

content, memory R/W access, and store a history of events.

• Associative memory, CAM, some ANNs, particularly RNNs, make use of dedicated memory 

units, known as content-addressable memories (CAM), or associative memories, so instead of using 

a memory address to access memory contents, the contents are accessed via a key which references 

the memory content.
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• Inverse Indexes; similar to a CAM, or a search engine using query tokens and corresponding lists 

of related content, which has been implemented for computer vision in the Indextron Inverse Index 

Feature Learning method, and the Instant Learning method by Mikhailov et al. [992, 999], see 

Chap. 11. 

Training Protocols 

Training protocols are concerned with methods of data preparation and presentation, such as creating 

rotated or cropped copies of the training data, and presentation of data in batches. The goal of the 

training protocol design is to ensure that sufficient samples and randomization of the training samples 

is provided to train the system, and many variations are in common use. 

Input Sampling Methods 

Input to each neural layer is sampled using a wide range of methods:
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• Regions, includes tiled nonoverlapping regions, or strided, overlapping regions, such as at each 

pixel or every n pixels.

• Shape, typically rectangular patches are sampled, such as 3 × 3 kernels, but could be rectangular or 

circular.

• Pattern, in CNNs the pattern is typically a dense pattern, using all values in a 3 × 3 kernel region for 

example. However, some local features, such as FREAK, use a dithering or saccadic style sampling 

pattern to provide more resolution and detail, modeled after the human retina as it examines a 

particular area closely.

• Spectra, for pixel input, the values are scalars, perhaps floating point, fixed point, or integers. For 

higher levels of input in a CNN-style network, the values are no longer strictly pixels, since each 

value has been nonlinearly transformed by the filter, as well as the nonlinearity of the activation 

function, plus perhaps other numeric conditioning. 

Dropout, Reconfiguration, Regularization 

Various methods, known collectively as dropout, are used for many reasons during training, and 

appear as layers in the architecture. Reasons for using drop include:

• Ignoring data samples, to prevent overfitting.

• Dynamically reconfigure the network input/output topology, to ignore samples for regulariza-

tion, and randomize the connection topology to regularize training.

• Dynamically setting weights to zero, for model regularization. 

It has been shown by several practitioners that dropout methods can improve training convergence 

speed, reduce overfitting, and perhaps training accuracy. 

Dropout is used to prevent overfitting by ignoring (dropping), or setting inputs or outputs to zero. 

Dropout effectively alters the neural network model, randomly setting some of the data samples to zero 

for each forward pass through the network, which results in a set of semi-random network variations 

which are averaged together during training. Dropout yields modest improvements when applied to



most any neural network model [508, 594]. Dropout is most effective during early stages of training, 

where the tuning parameter step sizes are larger and still converging, rather than at later training stages 

where the tuning steps are smaller. Note that dropout appears to be mathematically motivated, rather 

than neurobiologically inspired. 
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Random sample drops have the effect of randomizing the architecture as well, creating sparsely 

connected layers at run-time with different connection topologies. The number of neural inputs 

dropped is chosen empirically, and many practitioners choose to drop >50% for only inputs, and 

other practitioners perhaps drop <50% for only outputs. Other methods to drop random neural inputs 

or outputs, or even individual filter weights, in convolutional layers have been tried as well [547, 557, 

594, 595]. Also, l2 regularization and adding input noise have also been applied. 

Dropout is intended to make DNN training possible by addressing overfitting and failure to 

converge. Overfitting during training can be caused by data samples that vary quite a bit, which causes 

the classifier to fit a model to bad values, causing anomalies like overshoot and undershoot. In addition, 

neural network models using back propagation weight tuning algorithms will easily overfit to the data 

variations rather than the data trend, manifested as oscillations and failure to converge, which can 

complicate and increase training time. Also, using too few data samples can also cause overfitting, 

since sampling artifacts due to undersampling are well known, such as Nyquist effects. Some 

practitioners also add noise, such as Gaussian noise, during training to regularize the data, but not 

during testing. The noise is be mostly filtered out during training as all the samples are averaged 

together. 

Part of the problem with any sampling operation is noise; the data samples by definition may not be 

a smooth, regular continuum of values, and instead may contain bad training samples and a 

non-uniform distribution of values, with some strong outliers that will skew the results. Dropout is 

the inverse of adding noise to the data and is analogous to adding Gaussian filtering to the data to 

remove noise. Dropout is intended to deal with noise or overfitting artifacts by subtracting the noise 

out. Of course, dropout is currently implemented using a random dropout mechanism, so in fact the 

dropout effect is simply analogous to thinning out the data samples, which seems to work fine in 

practice. 

In 1971, Ivakhneko’s GMDH neural network model [504–506, 509] was the first deep NN-inspired 

model to use a parameterized data sample conditioning method to ignore certain data samples (an early 

dropout variant), which prevented model overfitting. 

More recently, around 2012, Hinton et al. [557, 594] popularized a dropout method variant called 

random dropout, to drop random training samples to prevent overfitting. One variant includes setting a 

dropout mask that is symmetrically applied to each round trip through the network: the same mask is 

used for both the forward pass from input to classifier, and the backpropagation tuning pass. The mask, 

of course, is random, and changes for each round trip. By using a value of zero for neuron output, back 

propagation correspondingly finds several zero-valued gradients during gradient descent, speeding up 

back propagation, and hopefully preventing overfitting. 

Regularization is an attempt to force the models to train correctly by altering the training variables 

(making them more regular), sort of like Gaussian filtering or blurring, to try and eliminate artifacts 

manifested as “overfitting.” Data regularization methods may be considered as nonlinear data 

reductions, which either regularize data on the input side or the output side of each neural processor. 

Dropout regularization methods implement crude forms of lateral inhibition and lateral 

communications between neurons at the same layer of the hierarchy in the visual pathway of the 

brain [568–571].
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Preprocessing, Numeric Conditioning 

Preprocessing of the data for purposes of numeric conditioning is common, for example to remove 

noise, squash or compress the data into a zero-centered range, or present only the most common data 

elements as in PCA. Several methods are applied from standard signal and image processing, see also 

Chaps. 2 and 3. However, it is worth noting that no numeric conditioning functions have been 

discovered from neuroscience research, so numeric conditioning, image preprocessing, and 

nonlinearities are used as ad hoc methods of compensating for other problems in the network.
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Feature Set Dimensions 

The feature set dimensions include the number of feature sets in the hierarchy, and the number of 

features per set. Each architecture typically fixes the number of features per layer, perhaps increasing 

the number of features in higher layers. 

Feature Initialization 

The method of initializing the features for a CNN will affect the final training results. Running the same 

training data over features initialized slightly differently will lead to a different feature set, likely due to 

the different local minima in each set. Many practitioners have used random initializations, and in 

some cases, it is beneficial to use transfer learning and start learning from a set of preexisting trained 

features. In other cases, an unsupervised pretraining session is run to build up a feature base, and then, 

supervised training is used to refine the features. 

Features, Filters 

Typical DNNs follow the CNN model and use correlation templates such as n × n weight kernels as the 

features. The weight kernels also double as convolutional filters, used to transform the input in a 

nonlinear fashion producing a subsampled reduction known as a feature map in CNN parlance, for 

input to the next layer. 

However, some ANN methods (BFNs) may use basis features, or local feature descriptors such as 

SIFT, instead of simple convolutional filters.
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Activation, Transfer Functions 

The basic artificial neural processor model used in most DNNs consists of two parts: (1) a convolution 

function: s = f(inputs × weights), and (2) a nonlinear activation function: a = n(s) to spread or squash 

the data, which produces a scalar value. Several types of activation functions are used; see Hagan et al. 

[601] for details and Fig. 9.18. 
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Fig. 9.18 Various activation functions, which act as threshold functions, numeric range compressors, companders, or 

remappers. NOTE: GELU, SILU, ELU, and SWISH activation function not shown, to dig deeper into more activation 

functions see Gaussian error linear units (GELUs) Dan Hendrycks et al. 2020 and Murilo Gustineli, Activation Functions 

in Deep Learning: A Comprehensive Survey and Benchmark Shiv Ram Dubey, Satish Kumar Singh, Bidyut Baran 

Chaudhuri, 2022 

Activation functions, or transfer functions, are used to (1) introduce nonlinearity into the neural 

function, (2) prevent saturation of values, and (3) ensure that the neural output is differentiable to 

support back propagation methods using gradient descent. One key goal of nonlinear activation 

functions is to project the purely linear convolution operation into a nonlinear solution space, which 

is believed by many to improve results. In addition, the nonlinearity may result in faster convergence 

during backpropagation training to move the gradient more quickly out of flat spots toward the local 

minima.



Post-processing, Numeric Conditioning 399

However, the actual nonlinearity function for neurobiological activations is still an unknown function, 

if it exists at all. Artificial neural networks, such as CNNs, do not fire in a binary all-or-nothing manner as 

real neurons, but rather produce an analog outputwhich is then numerically conditioned by the activation 

function and other functions such as pooling. The simple Perceptron model according to McCulloch and 

Pitts [501] does not use activation functions, instead using only weights on the inputs. 

Maxout networks, or deep maxout networks (DMNs), as proposed by Goodfellow et al. [546], are 

an interesting variation on CNNs using a new type of activation function, called maxout, which pools 

across spatial regions and across feature map channels from prior layers, able to approximate any 

convex function. The basic idea is to pool a small group of nonoverlapping neural outputs, and select 

only the MAX activation from the group to pass forward to the next layer, and zero out the others as in 

dropout. This is similar also to MAX pooling, but replaces the activation function and can take input 

from prior layer feature maps. The maxout function can implement various activation functions, such 

as absolute value rectification, and quadratic functions. The end result is a reduction of parameters for 

the model, amenable to smaller computers. 

Post-processing, Numeric Conditioning 

Some practitioners further post-process the results from the activation function or the pooling function, 

for example using normalization, compression, and expansion. Post-processing adds further nonline-

arity and also may correct numeric range problems. There seems to be no limit to the other post-

processing methods in use.
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Pooling, Subsampling, Downsampling, Upsampling 

Pooling is a method of combining several neural outputs consisting of the scalars from the activation or 

transfer function into a pool, or group, and creating a new output from the pool. Several methods are 

used to select the value from the pool. Actually, computer graphics methods for scaling and anti-

aliasing using pixel shaders may be a preferred approach, and GPUs even provide hardware accelera-

tion for this fundamental operation, but the author is not aware of any practitioners using GPU anti-

aliasing. Upsampling is a method to regularize features for some classification schemes, see Fig. 9.19. 
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Fig. 9.19 Pooling from 3 × 3 convolutions taken across nonoverlapping tiles, yielding a 4 × 1 pooling set from which 

the MAX value is selected. Total subsampling for the MAX pooling is 36:1
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As demonstrated in the compete-to-compute (CTC) approach taken by Srivastava et al. [549], the 

LWTA pooling and dynamic connections method is a form of Local Winner Take All dropout, which 

generates dynamic neural connections based on the competition between local neurons, essentially 

turning neural outputs temporarily off when they lose the local competition. LWTA is a form of local 

activation inhibition. Note that LWTA does not downsample the output like other pooling methods, 

but rather changes the network topology or sparsifies the topology temporarily. As shown in Fig. 9.20, 

LWTA methods first groups neurons into blocks at each layer. The blocks within each layer compete. 

Each block contains logic to turn off the output connections from the losing neurons and turn on the 

output connection output from the winning neuron. LWTA is also shown to add a form of memory to 

the network, preventing what the authors call catastrophic forgetting. Neurobiology shows [200] that 

there is local pooling, or competition, among neurons, as leveraged in the SIFT approach which pools 

local gradient magnitudes in a histogram feature.
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Fig. 9.20 LWTA pooling and dynamic connections [549], where local groups of neurons, groups of 2 in this case, 

compete within their group to forward their output up to the next layer. Winning neurons (dark) forward output to the 

next layer, losing neurons (white) do not. Winning neurons form a dynamic network topology, which changes with 

input data 

Classifiers 

While classification methods are not the focus of this work, we include some notation in this taxonomy 

for classifiers and provide some background discussions in Chaps. 4 and 10. Classification is typically 

the last stage of the computer vision system, where the presence and absence of features are used to 

make decisions (NOTE: the Google Inception Architecture uses multiple classifiers at various layers, 

surveyed in Chap. 10). The classifier matches detected patterns against learned patterns to identify the 

class of the input and make a score to show confidence. 

The latest innovation in classifiers includes the zero-shot learning methods and the AML classifiers 

(see Chap. 12). The basic idea is a multimodal classifier that can resolve several classes in one model, 

for example associating text descriptions (i.e., captions) and visual object concepts bidirectionally or 

associatively, allowing for classification of unseen exemplars by interpolating a match using features 

of related class objects. See Chap. 11 section Learning Model Innovations, and Chap. 12 section 

Captioned Multiclass Classification, Classifier-Free Guidance, N-Shot Learning. 

An ensemble of classifiers may also be used, working in tandem. First, a hypothesis is determined, 

such as am I looking at a dog or a cat? The hypothesis determines which parameters and features are 

used to set up the classifier, using the same architecture which has been trained for several recognition 

tasks using several classifiers. 

According to Cadiue et al. [553], the human brain sequentially processes multiple hypothesis. The 

brain may take about 100 MS to make a forward pass through its neural network for a first evaluation of 

a hypothesis against a new scene. After that, other passes may be made to compare other hypothesis 

against each other for the new scene, generating additional hypothesis in response to a question, 

uncertainty, or need for further analysis, and so on. Thus, the brain acts as an ensemble classifier, 

checking a hypothesis against the scene, and then perhaps changing the hypothesis and making further 

evaluations, and then choosing the best hypothesis.
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Summary 

This chapter lays the groundwork for the feature learning architecture survey in Chap. 10 and should be 

read prior to reading Chap. 10. The neuroscience inspiration behind deep learning networks and the 

visual pathway is explored here, including key ideas from the history of neuroscience and artificial 

neural networks. The idea of synthetic vision was introduced, where complete systems are being 

designed to mimic the entire human visual system along the lines of other prosthetic sciences such as 

robotics. A brief history of the various approaches to machine learning is discussed which includes 

expert systems, local feature description, representational learning, and deep learning. The notion of 

deep learning systems is introduced where multiple levels of features or concepts are learned at 

different scales in a hierarchy, similar to the hierarchy in the visual pathway. Key terminology is 

summarized, and a taxonomy of deep learning architectures is developed. The taxonomy includes three 

architecture families: feed-forward neural networks (FNNs), recurrent neural networks (RNNs), and 

basis function networks (BFNs) to capture all other feature learning methods which do not necessarily 

use ANN methods to learn all the features. The taxonomy also includes a breakdown of the various 

design elements and algorithms used in the feature learning network layers. 

Chapter 9: Learning Assignments 

1. Describe several goals of feature learning. 

2. Describe an artificial neuron model typically used in deep learning networks for computer vision, 

and describe each model component. 

3. Describe, at a high level, hierarchical learning (deep learning). 

4. Compare hierarchical learning to dictionary learning. 

5. Describe a visual vocabulary and discuss they types of features that can be used. 

6. Describe several goals of sparse coding.



7.
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Describe basis features and how they are used in deep learning for computer vision, and give at 

least two examples of basis features. 

8. Describe an expert system and how it is designed. 

9. Describe the design of a local feature descriptor of your choice. 

10. Compare and contrast CNN feature learning against local descriptor feature training using the 

ORB descriptor. 

11. Compare a feed-forward neural network (FFN) with a recurrent neural network (RNN) and a basis 

function network (BFN). 

12. Provide an estimate of the number of neurons in the human brain, the number of neural 

connections in the human brain, and the recognition speed the human brain. 

13. Describe the architecture of a convolutional neural network (CNN), including a description of 

typical layers. 

14. Describe what is known about the architecture of a biological neuron, including the component 

parts of the neuron. 

15. Describe the layers in the visual pathway including all layers between V1 . . .  AIT. 

16. Describe the higher-level classification layers of the visual pathway PFC, MFC. 

17. Provide a theory about how the human brain develops conceptual visual understanding and high-

level visual reasoning. 

18. Provide a theory about the neurological mechanism for introducing a hypothesis to the visual 

pathway for evaluating the visual field. 

19. Provide a hypothetical model of a neuron that includes local neural memory, shared neural 

memory with other neurons, and enumerate the neural processing operations and parameters. 

20. Discuss the local receptive field in visual cortex, and the local receptive field as implemented 

in CNNs. 

21. Describe at least two goals for an activation function (i.e., transfer function), and provide 

algorithm descriptions of at least two types of activation functions. 

22. Describe at least two goals of pooling and subsampling in CNNs, and compare at least two pooling 

methods. 

23. Describe how a fully connected neural layer is organized, and how it can be used in a CNN. 

24. Discuss the Hubel and Weiss model of S-cells and C-cells. 

25. Discuss the concept of a hierarchy of features (deep learning), and how deep learning is inspired by 

neurobiology. 

26. Discuss CNN training protocols including batch and mini-batch training. 

27. Discuss training considerations such as number of training samples, and modifications to the 

training samples. 

28. Describe hidden units and hidden layers. 

29. Describe how a convolutional neuron model works, including the inputs, feature weights, and at 

least four (4) other possible functions in the model including the activation function and the 

pooling function. 

30. Discuss the goals of a classifier. 

31. Name at least two types of classifiers, and discuss the design and operation of each classifier.



. . . the code is more like . . . guidelines.

—Captain Barbossa, Pirates of the Caribbean

Feature learning architectures in the survey cover two broad categories:

1.

2.

of local receptive fields into artificial neurons, and wide and deep feature hierarchies.

It’s not who has the best algorithm that wins, it’s who has the most data—Bank and Brill

It’s all about compression—Juergen Schmidhuber

Feature Learning and Deep Learning 
Architecture Survey 10 

In this chapter, we survey a wide range of feature learning architectures and deep learning 

architectures, which incorporate a range of feature models and classification models. This chapter 

digs deeper into the background concepts of feature learning and artificial neural networks summarized 

in the taxonomy of Chap. 9, and complements the local and regional feature descriptor surveys in 

Chaps. 3, 4, 5, and 6. The architectures in the survey represent significant variations across neural-

network approaches, local feature descriptor and classification-based approaches, and ensemble 

approaches. The architecture taken together as the sum of its parts is apparently more important than 

individual parts or components of the design, such as the choice of feature descriptor, number of levels 

in the feature hierarchy, number of features per layer, or the choice of classifier. Good results are being 

reported across a wide range of architectures. 

Statistical learning methods using a wide range of feature descriptors, learning methods, sparse 

coding, and statistical classifiers. 

Neural network methods inspired by a few simple neurobiology concepts, such as concentration 

This chapter surveys both historical and recent examples of deep learning architectures, especially 

the area of feature learning, where the features composing objects and the relationships among features 

are learned in common architectures. We examine the components used in each architecture, and 

discuss some of the motivation and intuition behind the designs. 

Several detailed background sections are provided to explain key concepts for each type of 

architecture, such as artificial neuron models, backpropagation methods such as gradient descent, 

sparse coding, and visual vocabularies. 

Deep learning architectures are used to generate features from training data under the control of a 

skilled practitioner—there is a learning curve. And the sheer amount of training data available and its 

preparation is usually the most important factor for successful feature learning. Here are some insights 

from skilled practitioners. 

The weights are the program code 
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Architecture Survey 

The survey includes selected representative architectures following the taxonomy from Chap. 9. The 

goal is to explore the boundaries of innovation across the architecture families. Most of the 

architectures surveyed can be considered deep learning methods, but we also survey a few hybrids 

and exceptional cases. The survey focuses on architecture variations, rather than which architecture is 

the leader in a single benchmark. Unfortunately, we cannot survey every significant development in 

this field. However, we refer the reader to Schmidhuber’s excellent historical survey [492]. A good 

introduction to basic neural network designs, including descriptions of several influential FNN 

architectures, is provided by Hagan et al. [601]. In addition, we provide a list of key journals and 

conferences in Appendix C for the interested reader to follow the latest research. 

As shown in Fig. 10.1, the survey is taxonomized into three architecture families: 

Statistical 

Methods 

ANN 

Artificial Neural 

Network 

RNN 

Recurrent 

Neural Network 

Feedback 

Loops 

FNN 

Feed Forward 

Neural Network 

No Feedback 

Loops 

BFN 

Basis Function 

Networks 

Not Strict ANN’s 

Fig. 10.1 This figure shows a simple taxonomy of feature learning architecture topologies used for the survey. Note that 

neural network methods and statistical methods overlap 

FNNs: Feed-forward convolutional style networks. 

– RNNs: Recurrent networks, primarily convolutional style. 

– BFNs: Typically basis functions as the features, such as Gabor or Fourier. 

Artificial neural networks (ANNs, NNs) are closely related to statistics methods, and in fact can 

solve many of the same problems. Note that we show FNNs and RNNs as subsets of the ANN 

category, and BFNs as hybrids, since some BFNs incorporate a few neural network concepts, as well as 

statistical and heuristic methods. 

Neural networks are function approximation engines: they learn features in a compressed, sparse 

manner to reconstruct their input functions, which are images or image sequences in computer vision



applications. The architecture of the NN determines the ease of training and the effectiveness of the 

function approximation. 
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ANN design may be inspired by neurobiology, but the architecture and design of real systems is an 

art form. Actually, the leading practitioners advocate experimenting with different architectures, 

components, and training protocols, and comparing results to tune the architecture incrementally. 

Often, researchers start with an existing architecture, and then make small changes, measure the 

results, and publish. 

FNN Architecture Survey 

We start the architecture survey with feed-forward neural networks or FNNs as shown in Fig. 10.2, 

since many of the first successful neural network applications used feed-forward models. In particular, 

we spend considerable time on a survey of Convnets, or convolutional neural networks (CNNs), which 

are implemented as FNNs. Convnets have been influential, forming the basis for substantial research, 

as pioneered by LeCun and others. The Perceptron, surveyed later, is often cited as the basis of 

convolutional models, where weight factors acting as the features are applied to the inputs to measure 

correspondence. FNNs have been demonstrated to work in various application domains, providing a 

fairly regular architecture that has been extended and refined by several practitioners. 

FNN 
Feed-Forward Neural Networks 

P 
PerceptronMLP 

Multilayer 
Perceptron 

SYMNET 

CNN 
Convnet 

R-CNN 
Region CNN 

SP-CNN 
Spatial Pooling 

CNN 

NiN 
Network-In-

Network 

Cognitron 

NeoCognitron 

LeNet 

AlexNetZFNet VGG 

MSRA-22
Baidu 

DeepImage 

Half-CNN 

Maxout 

GoogeLenet 
Inception 

Fig. 10.2 This figure shows the FNN architectures in the survey 

P—Perceptron 

The Perceptron model developed by Roselblatt in 1958 [497, 503] was part of a classified artificial 

intelligence project, studying what Rosenblatt termed Neurodynamics for the US Navy, that took place 

during the 1950s, later declassified [540] in 1961. Reaction of the public to news about artificial 

intelligence may best be summarized as wild expectations, as stated by The New Yorker December 

19, 1959 [540] “That’s a simplification. Perception is standing on the sidewalk, watching all the girls 

go by.” The original Perceptron was implemented in hardware, and used 400 photosensors to compose



a raster image, where each photosensor was connected to an electrical potentiometer which could be 

adjusted to control the weight factors, implementing a primitive single-layer neural model. There was 

no hierarchy of features, and no concept of a fixed-sized local receptive field, since all the 

400 photoreceptors represented the receptive field, and the 400 weights were tuned together as a 

single feature. The Perceptron was not purely feed-forward, but allowed for some feedback laterally 

and backwards to provide positive and negative reinforcement. However, the Perceptron is the basis 

for most feed-forward neural networks, therefore included here in the FNN architecture survey. As 

shown in Fig. 10.3, the Perceptron was housed in a cabinet, with a cable patch bay for manually 

connecting photosensors to weight potentiometers to form receptive fields. Weight tuning could be 

done using motors connected to each potentiometer under software control, or manually via knob 

adjustments. 

408 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.3 This figure shows the original perceptron machine [497, 503], implementing a primitive artificial neural 

network model. Note all the individual wires used to connect phototransistor pixel inputs to potentiometers storing the 

filter weights, and define the filter shape. Image # Cornell University, used by permission, Cornell University News 

Service records, #4-3-15. Division of Rare and Manuscript Collections, Cornell University Library



Perceptron Architecture 409
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Fig. 10.4 This figure shows the basic perceptron architecture [497, 503] composed of retinal stimulus (pixels), a 

projection area to form localized receptive fields, an association area to multiply pixels by weights, and a response area 

(Rx) for multiple classifiers. Note the semi-random connection patterns and the feedback loops, following RNN models 

The Perceptron is the basis for many artificial neural network concepts; in particular convnets are 

based on the Perceptron neural model of weight adjustment to learn features (Fig. 10.4). The single-

layer Perceptron architecture limited learning and accuracy to simple problems, and initially led many 

researchers to abandon artificial neural network research for many years. However, many of the 

limitations of the single hidden layer Perceptron were overcome by the Multilayer Perceptron 

(MLP) model developed later and refined in the 1980s, using backpropagation and learning methods. 

We survey various MLP architectures in the next section. Some researchers have developed parallel 

perceptron models, and corresponding training algorithms, see for example Auer et al. [606]. 

Here is a summary of interesting features of the Perceptron, including the architecture, weight 

tuning, and learning. 

Perceptron Architecture

• The Perceptron architecture is three layers: pixel stimulus (S-units), associated pixels (A-units), and 

responses (R-units), as shown in Fig. 10.6.

• S-points, or input stimuli, impinged upon a retina, or image.

• The S-points are clustered as a local receptive field about a point, but not densely, rather semi-

randomly.

• The density or number of S-points in the cluster decreases exponentially with distance from the 

central point, which is based on biological evidence of the radially decreasing retinal nerve 

distribution revealed in more modern research [604], and seems to support contour detection. See 

a similar local response field distribution model used by FREAK in Chap. 4. In other words, high-

density S-points are desired concentrated in the center of the receptive field, and sparser S-points are 

desired as distance from the center increases.

• A-units, or associated cells, receive groups of S-points. A-unit connections define a receptive field. 

The associated cells are referred to as the projection area.

• The pattern of associated cells in the local receptive field is assumed to be random, not structured as 

an n × n or circular kernel, but shaped similar to a blob to allow for contour detection (see Fig. 10.5).
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Fig. 10.5 This figure shows a hypothetical, nonsymmetric, sparse feature sampling pattern allowed in the perceptron 

architecture, which would be manually created by connecting cables in a patch bay between photoreceptors for the raster 

image to weight potentiometers. Note that the patterns allowed in the perceptron are similar to modern local binary 

descriptors such as FREAK, BRISK, and ORB as discussed in Chap. 4. Modern DNNs typically use fixed n × n matrix 

patterns

• The S-points may be excitatory, or inhibitive, as represented by their weights. The weights either 

excite (positive values) or inhibit (negative values).

• The algebraic sum of the chosen S-points for an A-unit causes the A-unit to fire all-or-nothing 

(however, perceptrons allow an analog value or scalar firing event).

• The Responses, or R-units R1 . . .  R n (or labeling mechanisms, classifiers) receive input from a set of 

A-units with assumed semi-random input. The best output is a binary all-or-nothing firing event, 

inspired by neurobiology. Using several R-unit responses combined together to determine object 

recognition is better than fewer R-units. However, the binary nature of firing events means that the 

Perceptron can model the AND function well, but not the XOR function, which was viewed as a 

severe limitation to the capability for classification, which discouraged many researchers from 

Perceptron-related research (see Minsky and Papert, 1969).

• Responses are mutually exclusive, and only one response to input is expected, and any strong 

responses tend to inhibit other responses.

• The Perceptron memory was described as associative and distributed, allowing for some memory 

units to be removed via the weight settings with only slight decreases in overall accuracy.
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As shown in Figs. 10.4 and 10.5, the Perceptron allowed for a variable connection topology, including 

localized connections between the retina stimulus (S-points, photoreceptors, pixels), and random 

connections between the neuron (A-units) and R-units (classifiers). 

Perceptron Weight Tuning 

Learning rules used in the Perceptron are novel, and included several techniques. Feedback in the 

system, laterally and backwards, was implemented similar to the RNN concept, to adjust or bias the 

weights collectively in different layers, in the form of inhibitory signals from R-units (classifiers) to 

A-units (receptive field concentrator neurons), and even signals between A-units, to effectively 

increase the strength of the best responding R-unit, decreasing the strength of weaker responding 

R-units, implementing a form of reinforcement learning (see Fig. 10.6). 

One of the novel learning concepts explored by Rosenblatt includes bivalent weight reinforcement 

to implement reinforcement learning, which is worth reconsidering today for incorporation into DNNs. 

Bivalent adjustments allow for inhibitory (negative) and excitatory (positive) weight tuning, as well as 

recursive, lateral, and backwards bias adjustments between A-units and R-units in an RNN style. 

The Perceptron was very sensitive to initial values for the weight setting, and different initial values 

would lead to different solutions. Best results were achieved by setting the initial weights close to zero. 

The overall Perceptron weight tuning approach, and learning in general, was termed trial and error 

learning by Rosenblatt. (In the opinion of this author, DNNs today have not overcome the trial and 

error paradigm.) Several types of feedback systems and weight training protocols were investigated in 

the Perceptron research:

• Time-unit gain, where the active A-units were amplified or their weight increased for one unit of 

time when activated.

• Permanent gain of weight values which when activated, causing weights to keep growing 

unreasonably.

• Bivalent reinforcement, decreases weights for inactive A-units, increases weights for active units.

• Magnitude-proportional weight decay, so that inactive A-units receive weight decay proportional 

to the magnitude of the weight, rather than a more localized distribution of weight adjustments in a 

receptive field. 

Inhibitory 

S 

R1 

R2 

A1 

A2 

Excitory 

Fig. 10.6 This figure shows how the perceptron used RNN-style feedback laterally and backwards for reinforcement 

learning adjustments to the weight parameters, similar to a reinforcement bias, see Rosenblatt [497]
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Perceptron Learning, Training, Classification 

The Perceptron is considered a type of linear classifier. Perceptron learning and training presents 

several problems such as (1) separable data can lead to several solutions depending on the initial 

weight values, (2) the training iterations required to converge can be very large, similar to modern 

Convnets using the same style of incremental adjustments analogous to averaging the weights for the 

best fit over all training examples, and (3) if the data are not separable, convergence does not occur, and 

oscillations develop, which can be long duration cycles, difficult to detect. 

Rosenblatt investigated several training and learning protocols [605]. Since the local receptive fields 

were intended to be semi-random sparse patterns surrounding the center position, and the connection 

patterns were allowed to decrease in density with distance from the center, designing good feature 

extractors was truly, as Rosenblatt remarked, “. . .  a trial and error learning system” and required 

considerable expertise to get anything to work—encore vu in DNNs today. Since a cable patch bay was 

used to design the sparse feature sampling patterns by manually connecting photoreceptors to 

potentiometers, Perceptron feature extractors were truly handcrafted. 

For a given Perceptron, six parameters define the system in terms of training, learning, discrimina-

tion, and generalization:

• x: the number of excitatory inputs to each A-unit,

• y: the number of inhibitory inputs per each A-unit,

• z: the threshold value of the A-unit,

• w: the ration of A-units connected to R-unit,

• Ta: total number of A-units,

• Tr: the total number of R units in the system. 

Rosenblatt reported that increasing the number of A-units, or receptive fields, generally increased 

accuracy to a point, and increasing the number of R-units (classification categories) generally 

decreased accuracy. Also, as the size of the retinal area increased, the number of S-points needed 

ceases to be as significant. 

The training method involved setting all 400 potentiometers independently to best match the target 

raster pattern. During training, the potentiometers could be set with electric motors. The Perceptron is a 

simple linear classifier, and requires linearly separable data in order to be trained. Although the 

Perceptron was criticized for limited function representations which hampered learning nonlinear 

problems, the basic concept of convolution introduced in the Perceptron, inputs * weights, is still 

the predominate basis for convolutional style neural networks today. However, the modern Convnets 

use enhancements such as local receptive fields, several convolutional layers with sets of hierarchical 

features instead of just one, and other techniques such as pooling. 

The Perceptron learning rule for linear classification has been highly influential, and inspired the 

Support Vector Machine and Kernel Machine classifiers, as discussed elsewhere in this work. The 

basic Perceptron learning rule algorithm can be expressed as follows:

• Define feature sampling pattern in cable patch bay.

• Define target_pattern rasters, for example digits 0...9.

• Initialize weights to random values, such as small random values close to 0.

• Compute difference test_input: target_pattern for each weight.

• If target_pattern weights! = test_input weights, adjust weights:
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wj t þ 1ð  Þ=wj tð  Þ þ n  d- yð Þx

where: 

y = (target_pattern - test_input) 

d = desired output 

t = iteration number (0 . . .  400) 

n = the learning rate constant, 0 . . .  1 

wj = weights 

Else leave weights alone, do not adjust. 

Repeat until error minimum reached, or iteration count limit reached. 

As shown in the algorithm above, if the weight settings = the test inputs, no weight adjustments are 

made. Thus, the Perceptron implements a sort of repulsive learning rule, only changing weights when 

the weights are incorrect. The goal of the weight adjustments was to classify unique patterns and 

separate the patterns in weight space. Note also that the inputs are not normalized, and neither is the 

pattern normalized, which made parameter adjustments hard to manage, so subsequent researchers 

addressed this weakness by adding various forms of normalization and numeric conditioning to the 

network, surveyed later. 

See Hagan [601] for a detailed introduction to Perceptron design and learning, with worked out 

examples, mathematical proofs, sample algorithms, and coding guidelines. 

Multilayer Perceptron (MLP), Cognitron, Neocognitron 

The Multilayer Perceptron, or MLP, is a deeper model based on the Perceptron model, where the MLP 

contains more hidden layers and other refinements. Several types of MLP architectures have been 

developed, which are essentially the forerunners of the Convnet-style architectures, such as LeCun’s 

LeNet architecture surveyed later, which provides the basis for most of the current generation of DNNs. 

As shown by Hornik et al. [815], an MLP can be devised as a general function approximator, taking 

scalar inputs, convolving them with weights, and adding bias factors to provide a scalar output. The 

MLP function approximation idea is analogous to the Fourier Series concept, where frequency inputs 

can be combined to produce arbitrary functions in the frequency domain. However, the 

backpropagation training used in MLPs is not in any way analogous to the inverse Fourier transform. 

The Cognitron and Neocognitron are early and influential examples of the MLP architecture, which 

we survey next. 

Cognitron 

Fukushima’s Cognitron [610] was demonstrated in 1975 as one of the first multilayer Perceptrons, 

enhancing the basic Perceptron model into a deep architecture. The Cognitron is an FNN. However, 

the Cognitron is primitive given the engineering capabilities of the time, and did not support much 

invariance for low-level features such as translation or scale invariance over smaller receptive fields in 

low-level features, but for higher-level features more invariance was demonstrated, in part due to the 

fact that higher-level features cover a larger receptive field due in part to convolutional subsampling. 

The Cognitron is inspired by the neurobiology of the time, and Fukushima provides several interesting



observations about neurobiology, for example that the hierarchical Hubel and Wiesel model does not 

hold for all types of visual reasoning, but may represent a major part of the neurological visual 

pathway. Fukushima also notes that the Hubel and Wiesel model does not specify higher-level cells 

above complex or hypercomplex cells, yet higher-level cells are known to exist which respond very 

well to larger features under all sorts of invariance, such as scale and deformation, referred to as 

Grandmother cells. 
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The Cognitron, as shown in Fig. 10.7, is the first-generation model proposed by Fukushima, 

followed a few years later by improvements to add translational invariance and some distortion 

invariance known as the Neocognitron, which we discuss after the Cognitron. 

Fig. 10.7 This figure shows the basic cognitron concept of excitatory weights Un and inhibitory weights Vn. Image 

# Springer-Verlag, used by permission, from “Cognitron: A self-organizing multilayered neural network,” 

K. Fukushima, used by permission, Biol. Cybernetics 20, 121–136 (1975) Springer-Verlag 

The Cognitron learning rule embodied a concept Fukushima called Dynamic Equilibrium, which 

increased weights for the strongest feature matches to make the matches stronger, and decreased other 

weights for inhibition to balance the excitatory and inhibitory weights. However, the Cognitron weight 

settings were difficult to manage to balance excitatory and inhibitory factors. The excitatory and 

inhibitory weight adjustment rules allowed the excitatory weights to keep growing unchecked, so 

Fukushima introduced a weight limiter function. If the weights were set correctly then better recogni-

tion of overlapped patterns was possible than the Perceptron. Also, better discrimination between 

binary and gray-scale patterns was also possible with the Cognitron, provided the weights were set 

correctly. 

The Cognitron weight adjustment rules are summarized in Fig. 10.8.
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Excitory weight adjustment rule* 

where 

e = excitory increment 

e = 
P * v  

n
i = 

G * s  

t 

P = proportionality constant 

v = line value (input value) 

n = # inputs in pattern subcircuit (i.e. kernel) 

Inhibitory weight adjustment rule* 

where 

i = inhibitory increment 

G = generality constant 

s = sum of input values in subcircuit (i.e. kernel) 

t = sum of  weight values in pattern kernel 

*Excitory weight limiter function 

l = 
e – i  

1 + i  

Fig. 10.8 This figure shows the cognitron weight adjustment rules 

Neocognitron 

The Neocognitron [511, 612] is an extension of Fukushima’s Cognitron [610]. One major enhance-

ment in the Neocognitron over the Cognitron is translational invariance, enabled by OR’ing a local 

region of subcircuit comparator outputs together (i.e., convolutional filters pooled together) at the 

output of each layer, so that the same feature could be detected in multiple locations, limited only by 

feature overlap range. 

The Neocognitron is the forerunner of the Convnet style DNNs. The Neocognitron was first 

demonstrated by Fukushima in 1980 [510, 511] capable of self-organization in the words of 

Fukushima, referred today as unsupervised learning. The learning method produces features that 

capture the Gestalt or geometric gist of each feature, providing for pattern matching based on 

geometric similarity with translational invariance. The Neocognitron is an FNN, composed of the 

input layer, followed by regular two-part layers mimicking the Hubel and Wiesel model [499, 500] as 

simple cells containing input patterns, followed by complex cells containing higher-level concepts 

derived from the simple cells. Each input (or synapse as Fukushima notes) is afferent, plastic, and 

modifiable (i.e., via the weights). After training, the last layer of C-cells become a set of trained 

classifiers, responsive to only a single type of high-level concept or feature, with some deformation and 

translation invariance. 

Fukushima notes that the division between excitatory cells and inhibitory cells is a form of lateral 

inhibition, a neurobiologically inspired concept, since the inhibitory weight factors will tend to allow 

the feature pattern to shift in position, yet still be recognized from location to location since the 

excitatory weights will yield a strong response at various positions. The Neocognitron uses Simple 

Cells to act as convolutional features (S-cells), Complex Cells to pool S-cells (C-cells), and V-cells to 

sum C-cell activity, which is used to provide a gain control for S-cell convolutions. 

Figure 10.9 (top) shows the basic types of cells represented in the Neocognitron based on current 

neuroscience, starting with the retina on the left, proceeding through simple and complex cells grouped 

together into receptive fields as per the Hubel and Wiesel model, finally leading to hyper-complex cells 

representing high-level concepts, and Grandmother cells which represent the highest-level concepts. 

Figure 10.9 (middle) shows the cell features actually cover more pixels as they are represented in 

higher levels of the network, illustrated by the large letter A in the input image at the left, which is 

eventually represented as a condensed, subsampled letter A feature at the top of the feature hierarchy



on the right. The condensation of the feature is the result of convolutions and subsampling, resulting in 

a representation of a set of unique top-level features. Also note that each feature is represented as a 

hierarchy of feature parts, or deep representation. The bottom image in Fig. 10.9 shows excitatory cell 

outputs as dark lines between layers that best match the input pixels representing the letter T; however, 

the inhibitory cells are also present in the system, but not shown with synaptic connection lines. 
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Fig. 10.9 This figure illustrates neocognitron architecture concepts. (Top) The correspondence between Hubel and 

Wiesel simple and complex cells and the neocognitron layers. (Middle) Illustration of the hierarchical, cascaded feed-

forward nature of the layers, and corresponding features. (Bottom) An illustration of a regular hierarchy of convnet style 

filtering, note the pattern “T” in the inputs. Note the excitatory weights Un and the inhibitory weights Vn. Image 

# Springer-Verlag, used by permission, from “Cognitron: A self-organizing multilayered neural network,” 

K. Fukushima, used by permission, Biol. Cybernetics 20, 121–136 (1975) Springer-Verlag 

The Neocognitron inputs were not normalized around zero, but were floats mostly in the range 0–1 

(sometimes >1), also the neuron outputs or C-cells were not normalized either. Note that in subsequent 

generations of CNNs, we see greater attention given to data normalization to pair the data with various 

activation functions that operate in a mean-zero normalized range. 

S-columns represented the Hyper column concept introduced by Hubel and Wiesel in 1977, 

illustrated in the Neocognitron layers as shown in Fig. 10.10, and note that a single cell may overlap



and contribute to several S-columns. The S-column concept describes a focused formation of the 

features up through the hierarchy, and tends to suppress feature overlap. 
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Fig. 10.10 This figure shows S-columns which focus, combine, and condense features in the S-layer hierarchy. Image 

# Springer-Verlag, used by permission, from “Cognitron: A self-organizing multilayered neural network,” 

K. Fukushima, used by permission, Biol. Cybernetics 20, 121–136 (1975) Springer-Verlag 

Fukushima had several more experiments in mind to test and refine the Neocognitron, but only went 

as far as possible given the computing power available. The entire Neocognitron was simulated on 

early digital computers typically containing less than 64,000 bytes of memory, probably hand-wound 

core memory. The major innovations of the Neocognitron architecture that inspired the later Convnet-

style developed by LeCun and other DNNs are summarized here:

• Regular, feed-forward layers composed of replicated functions.

• Input windowing using striding to assemble n × n input kernels for filters.

• Convolutional layers, composed of filters (features) in hierarchical sets.

• Weight replication and sharing in each layer, for parallel convolutions, which reduced the number 

of parameters.

• Subsampling layers fed by convolutional layers, to provide translation invariance. Subsampling 

used local spatial feature averaging of entire features.

• Learning via interesting weight tuning methods, although backpropagation methods were not used, 

the inspiration and foundation for tuning algorithms were laid, see [611, 612].

• LWTA weight tuning and training. Instead of backprop, weights were tuned either using (1) local 

winner-take all (LWTA) unsupervised learning, or (2) by prewiring the electrical circuit (transfer 

learning). 

Concepts for CNNs, Convnets, Deep MLPs 

Convolutional Neural Networks, abbreviated as Convnets or CNNs, are a good starting point for 

learning about DNNs in general. A CNN is a type of Multilayer Perceptron (MLP). A summary of 

CNN motivations is provided by LeCun [589], who is considered one of the pioneers in this field. In 

this section, we will survey the basic architecture and components of a CNN, including features, types 

of layers, convolutional neuron models, and backpropagation and training parameters, to lay the 

foundation for surveying several innovations on the basic CNN architecture. 

Convolutional neural networks leverage the historical concepts developed in the Perceptron, 

Cognitron, Neocognitron, and other systems described in the history section earlier. See Table 10.1 

for a summary comparison of the progression in CNN developments.
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Table 10.1 Summarizing convnets compared to historical P and MLP models 

CNN architecture feature Perceptron Cognitron Neocognitron LeNet 

Raster pixel input grid y y y y 

Convolutional filters/features/weights y y y y 

Hierarchical deep network – 

Sliding window n × m input kernels – 

Weight sharing in layers – 

Non-rectangular feature shapes y 

Pre-processing, global normalization y 

Non-linear activation functions y 

Pooling and subsampling 

Post-processing, local normalization y 

1d classification layers y 

LWTA or hard-wired training – – 

Backpropagation training y 

Convolution is the basic operation used to model an artificial neuron to both learn and detect the 

features, using a weight matrix convolved against an input window of pixels. Convolutions are used 

like a correlation template or feature detector. The output of each convolutional filter is assembled into 

an output image referred to as a feature map, which is sent along as input to the next layer. One output 

image is created for each filter, and there are usually hundreds of filters per layer. Each convolutional 

filter acts as both a feature detector and a filter. The convolutional filters are composed together into 

feature sets at each level of the hierarchy, and each filter is tuned during training as discussed in the 

backpropagation section later. 

As shown in Fig. 10.11, Convnet feature layers can be conceptually represented as a volume or stack 

of separate input images and output images. For example, the input volume may contain a stack of 

three images, one for each RGB color channel, and if the convolutional layer contains 128 filters 

(features), then the output of the layer is a volume or stack of 128 feature maps. So, for an RGB input 

containing three channels, the output is 3 × 128 feature maps. 

R Feature Maps 1..128RGB Input 

Features, filters 1..128 

R  G  B R G  GR 

G Feature Maps 1..128 B Feature Maps 1..128 

Fig. 10.11 This figure illustrates convolutional layers taking an RGB input volume (stack of 2D images) and producing 

a volume or stack of 2D output images or feature maps, one per feature per input image
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Note that convolution is only one way to model the neuron in DNNs. We survey a range of models 

in this chapter. For example, in the NiN model by Li [572], convolution as a generalized linear model is 

replaced by an MLP model, acting as a fully connected microclassifier inside each neuron to achieve 

equivalent, of not better, results than convolution. Polynomials are used to model the neurons in the 

PNN model surveyed later. Also, using basis features in place of convolutions to model the neuron is 

demonstrated in the HMAX model [738] surveyed later. Raw memory impressions are used to model 

the neuron in the Visual Genomes model [476], see Appendix E. 

CNNs are used for many applications including (1) classification of families of objects, (2) recog-

nition of specific objects within a class such as the specific face of a known person, (3) localization of 

objects to find coordinates, (4) segmentation of region of pixels into classes such as water, grass, or 

roadway, and (5) general regression analysis. We will survey the architectures and design 

considerations used for these tasks in this chapter. 

The foundational architecture used by many CNNs today, LeNet-5, is described by LeCun [288], 

and surveyed later in this section. LeCun notes [589] that Convnets are a fundamental type of 

multistage Hubel and Wiesel model, using a design pattern of convolutional filter banks as simple 

cells, and pooling layers as complex cells. 

The Convnet is a feed-forward network, with data moving from input through processing to output 

classification. However, the training phase for feature learning operates backwards, computing the 

error between expected results and computed results, and distributing the errors back to their source to 

correct the filter weights (features) in a method referred to as backpropagation, discuss in some detail 

later. 

While current generation Convnets are all based on discreet convolution of scalar data in square 

n × n kernels, future research is pointing toward alternative basis spaces for the data, such as Fourier 

space [613], allowing other dimensions to be mapped into the Convnet framework. 

Forward and Backward Pass Through the CNN 

Next, we describe the basic CNN operations in both directions as the starting point for the survey of the 

myriad CNN variations used in practice. 

Forward Pass Overview (Feature Detection Pass, Training Pass Covered Later)

• Each training sample, one at a time, is moved forward through the network to compute the error 

between the sample and the closest matching target feature.

• Inputs, pixels in the case of the first layer and feature maps for subsequent layers, are fed forward 

into convolutional layers in local pixel groups of say 3 × 3 taken from a sliding window over the 

image.

• Some numerical conditioning may be applied to the input data, for example mean-zero normaliza-

tion to condition the data for a mean-zero activation function.

• Correlation/Convolution: The data is then convolved with an n × m filter (i.e., weights) to compute 

the filter correlation or result value.

• Stored results are kept in the output feature map (the filtered image) from the convolution, and also a 

derivative is stored by taking the difference between the current convolution results f′ and the 

previous results f″. The derivative is computed and stored for each training sample for each feature. 

Initially, each stored feature weight matrix may be substantially different than the closest matching 

training sample, until corrected by backpropagation tuning to reduce the difference.

• Some postprocessing is typically applied to the filter result using an activation function, such as a 

zero-centered sigmoid, which introduces nonlinearity into the result. One goal of nonlinearity is to
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project the purely linear convolution operation into a nonlinear solution space, which is believed to 

improve results. In addition, the nonlinearity may result in faster convergence during 

backpropagation training to move the gradient more quickly out of flat spots toward the local 

minima. Also, the nonlinearity is used to ensure that the value is differentiable for backpropagation.

• Pooling and subsampling is typically applied to the output feature map in a pooling layer, where 

local regions are combined into a single value, such as 2 × 2 regions, via averaging values together 

or choosing the max value. The result is a smaller output image or feature map, see Fig. 9.19.

• At the end of the CNN, the FC layers reduce and classify the features by performing 1D vector 

convolutions, see Fig. 9.5. The last layer of the FC classifier produces a best-guess label or 

identification of the input data (Fig. 10.12). 

Feature Maps Processed 

Feature Maps 

2×2 Max Pooling, 

Tiled, 
2× Sub-sampling 

Filter Bank 

(Features, 

Weights) 

160 160 Input Image, 
Feature Map 

Convolution 
filter: k * f 

Gather input kernel k 
using sliding window 

Filter 

outputs 

Non-linearity 
applied 

80  80 Output Image, 

Feature map 

Fig. 10.12 This figure illustrates the basic operations that occur in a convolutional layer. Note that the output image is 

reduced in resolution (we assume that a 1-pixel padding is used around all images in this example, so no border pixel 

resolution is lost to convolutional window border effects), based on the reduction from the 3 × 3 kernel (3 × 3 region → 1 

pixel) and the final pooling and subsampling layer (2 × 2 region → 1 pixel)
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• The output classification guess is measured as an error term (expected vs. computed result) to be 

used for backpropagation tuning, discussed next. 

Backward Pass Overview (Weight Tuning, or Learning)

• The total error term computed during the forward pass at the classifier output is the basis for 

backpropagation. See the section on backpropagation below for details. The output value is a 

classification result, which has an error term (computed vs. expected result). The total error term at 

the classifier output is a combination of errors from all the previous convolutional layers, including 

contributions from the feature weights, processing steps such as pooling and normalization, and 

learning parameters.

• Backpropagation traces the error backwards through each feature layer to the contributing weight 

sources, and decomposes the error term into smaller and smaller parts (partial derivatives or 

gradients) at each layer, one feature weight at a time, in order to adjust each weight to reduce the 

error. Backpropagation is discussed in detail later in the section “Backpropagation, Feature 

Learning, Feature Tuning,” see also Figs. 10.22 and 10.23.

• Each feature weight is tuned independently by scaling the gradient against the derivative error f′- f″ 

stored at each neuron. The derivative corresponds to the response change between current weights 

and previous weights, useful for scaling weight adjustments with the gradient to adjust each weight, 

see Fig. 10.23. 

Fully Connected (FC) Layers, Flatten, Reduction, Reshape 

Feed-forward networks typically make use of special network connection arrangements for particular 

goals such as (1) fully connecting feature weights to a 1D vector for linear classification, and 

(2) reduction of large fully connected layers into smaller layers to reduce the parameter count, see 

Fig. 10.13. In some architectures in this survey, layer connections may be designed to reshape, split, or 

to go between 1D and 2D shapes. A fully connected network is sometimes referred to as a Perceptron 

(P), and serially connecting several Perceptrons together is known as a Multilayer Perceptron (MLP). 

An FC layer can be considered an array of neurons, and is trainable via backpropagation.
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Fig. 10.13 This figure 

illustrates flattening of 

256 3 × 3 features into a 

2304 × 1D vector, fully 

connected to a 2304 FC 

layer of neurons with 2304 

weights per neuron, finally 

reduced 3:1 into an FN 

neuron layer of 768 

2304×1×Z 

weights 

256 features, 

3×3 weights 

256 flattened 3×3 features into: 

3×3×256=2304×1 

Z is the number of classes 
Two 1d weight vectors 

are trained for each class Z: 

[ w
1
, w

2
, . . . w

2304 
][Z] 

[ w
1
, w

2
, . . . w

768 
][Z] 

Fully 

Connected 

Reduce, 

Reshape 
Flatten 

768×1×Z 

3:1 weight reduction 

In DNNs, the FC layers act as a bridge between the filtering layers and a classifier. FC models are 

seamlessly trainable in CNN architectures, since the same convolutional neural weight model is used. 

Since fully connected layers can be prone to overfitting for high parameter counts, various mitigation 

strategies are used during training to reduce and regularize the parameters, such as randomly dropping 

data (see dropout, Chap. 9). 

The first FC layer usually contains the largest number of parameters in the entire system, specifi-

cally the most connections and weights. Subsequent FC layers are typically reduced in size for 

practical reasons. For example, the 2304 element FC layer in Fig. 10.13 must compute a 1 × 1 

convolution over each of the 2304 connections for each FC neuron (2304 × 2304 = 5,308,416 MADD 

instructions + some sort of activation function). Also, each FC layer maintains a set of 1D weight 

vectors and bias vectors, one for each class, to be trained via backpropagation. For example, the FC 

feature vector for a 2304-wide FC layer may be an array of [5308416][number_of_classes] 1D feature 

weight vectors and bias vectors, compared to a kernel-connected layer with only [256][3 × 3] feature 

weights and a bias for each feature. A kernel-connected layer preserves local spatial relationships in the 

receptive field, while a 1D vector in an FC classification layer does not necessarily do so. 

An FC layer is a typical building block in a DNN, typically used in the last layers for classification. 

Alternative methods of employing or ignoring the FC layers are surveyed later, including purely 

kernel-connected convolutional filter layers as used in the Half-CNN, and the Inception architectures 

with multiple FC classifiers at different layers in the network. An FC network can be described in 

several different ways depending on the intended use:

• As a simple Perceptron P, or as an MLP when several FCs are stacked.

• As a dimensionality reduction layer to reduce the input features to the desired number of output 

classes, like a final pooling layer.

• As a normalization layer to feed into a softmax classifier.

• As a linear regression network over the FC inputs.

• As a logistic regression network for binary classification.

• As a general function approximator.
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A fully connected layer is a general function approximator, capable of implementing a linear 

classifier,  or  a  logistic regression function for binary classification, perhaps using Hamming distance 

for matching. By weighting each input to each neuron in the FC layer, the combination of inputs and 

weights forms a linear classifier. Usually, one or two FC layers stacked together are sufficient to 

approximate the desired function. Even a single-layer or shallow FC network has been shown to be 

able to approximate any function to arbitrary precision as shown by Hornik et al. [815]. The final FC 

layer vector length will typically be reduced in a reduction layer to provide the correct number of class 

outputs for an application. The FC layer uses one 1D weight vector for each label or class, so an array 

of 1024 1D weight vectors is needed to classify 1024 objects, and each of the weight vectors must be 

trained and evaluated to find the best match. Sometimes, FCs are replaced after training with an SVM 

or other classifier to increase accuracy.

Sparse Gaussian-connected layers, instead of fully connected layers, have also been used to reduce 

the connection count, and other sparse topologies are possible. A circular matrix projection connection 

topology proposed by Cheng et al. [627], and other methods are discussed in the component’s 

taxonomy in Chap. 9. For example, a Global Average Pooling (GAP) layer as introduced in the NiN 

[487] architecture has been used to replace the FC layers and vastly reduce parameter counts. 

When the author implemented his first FC neural network to recognize audio guitar chords from a 

microphone on a PC in 1999 using Fourier spectrum features, it was difficult to believe that this simple 

FC neural model was little more than hype, since it seemed so simple from a programming perspective, 

but it worked (Fig. 10.14). 

Fig. 10.14 Images 
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by Jochem and Pomerleau 
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The FC model provides a framework to think about classification, forcing the system to be designed 

around vectors of features to support the FC layers. A small network of FCs can regularize the input to 

the correct dimension and label the results, for example reducing a larger number of features into a 

classification vector of the desired number of classes. An FC can be designed to filter out inputs, 

similar to dropout, by setting the 1D vector to contain zero-valued mask weights for pixel inputs not of 

interest, and nonzero values to include those of interest. For normalization and other processing, the FC



weights may be set to excite (i > 0) certain inputs, inhibit (i < 0) certain inputs, and ignore (i = 0) 

certain inputs. For binary classification and logistic regressions, the weight values of 1 and 0 can be 

sufficient. 
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A fully connected mesh topology may be used for example to connect each pixel in the image 

together for a segmentation application (a huge number of connections!). To illustrate the capabilities 

of a fully connected mesh, Fig. 10.15 provides a few feature weight visualizations created by Andrej 

Karpathy1 using the Caffe open-source neural network library. The FC mesh was trained on Imagenet 

data to create very primitive features. The architecture is just a single FC mesh connecting all the pixels 

in the image, simply intended for visualizing and studying linear classifier failure modes, and is not 

intended to be competitive or accurate, since this architecture is reported to be <3% accurate at best. 

The training protocol involves resizing each image in the 1.2 million Imagenet image training set to 

64 × 64 pixels to reduce training time, then train using backprop. All input pixels in each image are 

fully connected into a linear classifier of size 64 × 64 = 4096. The resulting features are visualized as a 

blob-like color feature showing the dominant color distribution across all the training set images for 

each of the 1000 images per class. 

Fig. 10.15 This figure shows a single-layer FC classification and visualization of all the pixels from a few of the 1000 

classes in the Imagenet data. Image # Andrej Karpathy, used by permission 

We can illustrate a very simple FC as shown in Fig. 10.16, using three ASCII characters as input, 

with an objective to classify a set of three-letter character strings into three classes: CAR, MOT, and 

PED. The FC layer contains three artificial neurons, each with a weight and bias. As the input values 

are propagated through the FC layer, each input letter is multiplied by the corresponding weight factor 

and summed in the neuron, and the weights are designed so that matches will sum to 3 (based on ASCII 

character values). In this simple example, the bias is a scaling factor, not an additive bias. The FC 

output is passed directly to the final single-connected classifier layer, and a correct match for each class 

will yield a value of 3 when all three characters match the expected values. A nonlinear activation 

function is not needed for this simple example, since we are seeking a linear classification. 

1 See http://karpathy.github.io/2015/03/30/breaking-Convnets/ for the training parameters and goals.

http://karpathy.github.io/2015/03/30/breaking-Convnets/
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COMBINATORIAL_PARAMETERS[3] = 
{ 

“CAR”, Weights[1/‘C’, ‘1/A’, 1/‘R’], Bias[1,1,1], 
“MOT”, Weights[1/‘M’, 1/‘O’, 1/‘T’], Bias[1,1,1], 
“PED”, Weights[1/‘P’, 1/‘E’, 1/‘D’], Bias[1,1,1] 

} 

LABEL_PARAMETERS[3] = 
{ 

“CAR”, Weights[3,0,0], Bias[1,0,0], 
“MOT”, Weights[0,3,0], Bias[0,1,0], 
“PED”, Weights[0,0,3], Bias[0,0,1] 

} 

Fig. 10.16 This figure illustrates a simple FC network used to classify three-letter character strings. Note: in this 

example, we use the bias as a multiplicative scaling factor for the convolution result, not as an additive bias. Typically, 

CNNs ignore the bias and set it to 1 

Layers and Depth 

CNN architectures are typically described a layer at a time. For simplicity, we distinguish between the 

following major layers: 

1. Input Layer. 

2. Convolutional Feature Layers (a hidden layer in DNN parlance). 

3. Convolutional Classification Layers (a hidden layer in DNN parlance). 

4. Output Layer. 

Note 

We taxonomize convolutional layers to be an aggregate layer, containing multiple operations such as 

numeric conditioning, convolution, activation functions, and pooling. We do not call out separate 

layers for all of the various operations, since there are too many possibilities. See Fig. 10.19 and the 

taxonomy in Chap. 9. 

One key CNN concept is the use of replicated convolutional layers in the architecture. As shown in 

Fig. 10.17, a few basic types of layers are used. The input layer is the simplest, consisting of pixels for a 

2D imaging application, feeding into convolutional layers. The output of convolutional layers 

consists of: (1) Feature, or filters as n × n weight kernels, and (2) filtered images (one image per 

feature), referred to as feature maps in CNN parlance, which are fed as input to the next convolutional 

layers.
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Fig. 10.17 This figure shows the layered architecture of convnets. Note that there are five layers in this network, three 
convolutional filter layers, and two convolutional classification layers 

Typically the convolutional layers are replicated, or else changed slightly from layer to layer. For 

example, a convolutional layer may optionally include numeric conditioning of the input data, 

convolutional filtering, followed by a nonlinear transform of the convolutional result, pooling and 

subsampling, and local region postprocessing of the data (see Fig. 10.18 and Table 10.2). 
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Fig. 10.18 This figure shows the basic components in a convolutional layer, described in Table 10.2 

Classification layers in a CNN may also be implemented using statistical methods such as an SVM, 

rather than as convolutional layers (see FC layers discussed above). FC classification layers are similar 

to pooling layers, but used for regularization. The classifier layers flatten out the 2D weight kernels 

from the feature layer(s) into a 1D vector to allow for (1) a 1D linear classifier to be modeled and tuned, 

and (2) to support training via backpropagation. 

The depth of the entire network is an architecture variable, and typically the final depth is arrived at 

after trial and error. In Fig. 10.17, we see a network with a depth of five convolutional layers total: three 

filtering convolutional layers and two 1D convolves for classification. In practice, up to 20 or more 

convolutional layers are used, as discussed in the architecture survey later in this chapter and 

Table 10.3. 

Table 10.2 Summary description of typical components in a CNN 

Convolution layer component Description and rationale 

Input Pixel images for input layer, processed images for subsequent layers 

Pre-processing Numeric conditioning, dropout 

Filter bank, features, weights Correlation, projection on overcomplete basis, dimension expansion 

Nonlinearity, activation Lateral inhibition, sparsification, squashing, spreading 

Pooling and subsampling Subsampling over tiles, translational invariance 

Post-processing Numeric conditioning, dropout 

Output A feature map, or Image, to feed to the next convolutional layer
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Table 10.3 This table showing a comparison of convolutional features is several CNNs 

CNN name 

Typical 

configuration 

shown
a Year 

Total 

layers 

Filtering 

layers 

Convolve 

n × n 

Filter sizes 

Used in various 

layers 

Pooling 

layers 

Classification 

layers 

Convolve 1D 

vector 

Other layers (not 

counted in totals)a 

LeNet5 1998 7 2 (3 × 3), (5 × 5) 2 3 – 

Ale × Net 2012 10 5 (11 × 11), (5 × 5), 

(3 × 3) 

3 – 

NiNb 2014 6 4 MLP’s (11 × 11), (5 × 5), 

(3 × 3), (3 × 3) 

0 1 Global 

Ave. Pool 

1000 

– 

Inceptiona 2014 41 22 (1 × 1), (3 × 3), 

(5 × 5) 

14 5 11 

VGG-19 2015 24 16 (3 × 3) 10 3 19 

MSRA-22 2015 29 19 (3 × 3) 6 3 – 

HMA× 1999 5 2 (3 × 3), 

. . .  

(29 × 29) 

1 – 

DRLc [798] 2015 100– 

1000 

Variable Variable Variable Variable Skip connections 

a Inception note: Inception’s architecture is not a straightforward CNN, therefore difficult to compare, since at several 

layers there are parallel convolutions, pooling operations, and classification operations. So, the author is not sure if the 

inception layer counts above are comparable to other CNNs 
b 
DRL note: We discuss DRL in more detail later in this chapter in the deep neural network futures section at the end of 

this chapter 
c NiN note: Based on the ILSVRC slides for NiN classification [531] 

Several practitioners have demonstrated that depth of the feature hierarchy is more important than 

the features and the classifier, including Coates, Lee, and Ng [539], Simonyan et al. [590], Ren Wu 

(comments at the Embedded Vision Summit Oct. 2014), and Szegedy in the Inception architecture 

[544]. Using more and deeper features is an intuitive advantage. 

Convnets have been implemented using a strided window method to gather pixels from spaced tiles 

in the input image for faster compute, or to introduce subsampling to the input to condition the data, or 

to introduce translational invariance. However, more recent Convnets set the stride to 1 to gather input 

over each possible window and generally see better results. 

Modeling an Artificial Neuron 

As shown in Fig. 10.19, an artificial neuron is modeled using a pipeline of operations. We will discuss 

methods to optimize the pipeline later in this section, for example, see Mamalet et al. [597]. Here is a 

discussion of the components in typical convolutional neuron models.
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Fig. 10.19 This figure shows common which may be combined in various fashions combined to model an artificial 

neuron in a convolutional feature layer 

Convolutional Features, Filters 

Convolutional feature layers represent the neural function as a convolution, or a template match via 

correlation, and the features are weight matrices, which are tuned to the training set using various 

training protocols and backpropagation methods. There is some variation in terminology among 

practitioners, and subtle nuances in intent, which we cover in this section. For 2D images, the weights 

are modeled as 2D kernel arrays or weights. For fully connected classification layers (also discussed in 

this chapter), the weights are flattened into a 1D vector to feed a 1D array of neurons. 

The main operation of each artificial neuron is convolution of inputs and weights. The term 

convolution is used very imprecisely in CNN discussions, and what is meant is the dot product of 

the input vector I and the weight vector W: 

I .W = 

n 

i= 0 

I iW i = I0W0 þ I1W2 þ ⋯þ InWn
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Actually, the mathematical definition of convolution assumes that one of the input vectors has been 

reversed and shifted prior to the dot product (i.e., the filter has been flipped horizontally and vertically); 

however, correlation by definition takes straight data. In typical image processing packages, there is 

usually a scaling factor s applied to the convolution result, and possibly an added bias b: 

convolve I,Wð  Þ= s 

n 

i= 0 

I iW iÞ þ b

Convolution and correlation are mathematically equivalent given some setup assumptions. Tem-

plate matching is another term commonly used to describe correlation. Also, filtering is a term 

typically used in CNN discussions for convolution, which produces a filtered feature map (output 

image), since the dot product results can be interpreted as a filter. See the section on Convolution vs. 

Correlation later in this chapter for more details on convolution and correlation. 

Besides the more complex neural model pipelines for 2D feature filtering layers, the FC layers 

contain a simpler neuron pipeline usually consisting of only convolution and an activation function for 

the 1D feature vectors, see the discussion on FC layers. 

For the feature layers, a set of unique filters are kept at each layer in the hierarchy, and the number of 

features are typically limited to a few hundred features per layer. Convolutional filters are symmetric, 

rectangular, such as 3 × 3, 7 × 7, 11 × 11. A hierarchy of feature concepts are kept in higher layers of 

abstraction, consisting of edge and texture filters at low layers and higher-level concepts at higher 

layers, such as motifs, object parts, complete objects, and scenes. Each filter is run against the input 

feature map exactly like any other spatial filter, typically as a sliding window across the image at each 

pixel or strided, producing a new feature map. So Convnet filters are dual purpose: (1) the filters are 

features (correlation templates), and (2) the filters are in fact filters. For the FC layers, a set of 1D 

vectors are kept, one vector for each output class, for example if the output classes are dog, cat, and 

bird, the FC layer keeps a separate 1D vector to train for each class. 

As shown in Fig. 10.20, the convolution (i.e., dot product) is typically followed by an activation 

function, or transfer function, to provide nonlinearity to the response, discussed in the next section. The 

nonlinearity ensures that the value is differentiable for backpropagation using gradient descent and 

similar methods to tune the feature weights, as discussed in the backpropagation section (Fig. 10.21). 

Fig. 10.20 This figure illustrates the basic convolutional artificial neuron model composed of a dot product filter 

followed by an activation function, or transfer function, to provide nonlinearity to the response
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Fig. 10.21 This figure illustrates convolutional filter response, (left) input image, (center) results of applying two filters 

highlighted by strength of filter response, filter #66 and #118, and (right) examples of filter response, top right showing 

V-like features which responded to filter #66, and bottom right showing a corner-like features which respond to filter 

#118. Image # Springer, from He et al. [483], used by permission 

Transfer Function (Activation Function) 

Activation functions may be linear, such as simple thresholds or ramp functions, or nonlinear, such as 

sigmoids, see the discussion on activation function in Chap. 9, and see also Fig. 9.18. In a CNN, the 

convolution result is sent to the activation function to perform a nonlinear thresholding mechanism. 

One goal of nonlinearity is to project the purely linear convolution operation into a nonlinear solution 

space, which is believed to improve results. In addition, the nonlinearity may result in faster conver-

gence during backpropagation training to move out of flat spots toward the local minima. Also, the 

nonlinearity is used to ensure that the value is differentiable for backpropagation. A Threshold Bias can 

be provided to the activation function; however, it is rarely used in most CNN models except for 

mathematical convenience in matrix operations and set to 1, see Fig. 4.23. 

Nonlinearity is believed to help solve problems of data saturation, perhaps caused by numeric 

overflow perhaps due to poor lighting or very strong lighting. For example, if the correlation output is 

255 in range 0–255, a well-designed nonlinearity function will redistribute the limit value 255 some-

where within the range, say to 180, to overcome saturation and avoid the limit. The nonlinear 

distribution produced by the activation function is affected by any numeric conditioning functions 

used on the input data, such as normalization or whitening, also referred to as local response 

normalization or LRN. Some researchers report that local response normalization does not work 

well enough to justify the increased compute time. 

LeCun2 has stated that a fundamental goal of the activation function is to break apart the data and 

project to other spaces in a nonlinear fashion, since each space may provide a better way to represent 

and match features. Scaling and image pyramids do not meet the break and project criteria. A bias 

factor is used for the nonlinear projection, either by scaling or in an additive manner. The bias can also 

be used as a mask to influence which features are important. 

2 Private presentation to Intel during CVPR 2013.
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Feature Weights and Initialization 

The feature weight matrices are the features, typically 2D matrices or kernels for computer vision 

applications. Each layer of the network contains a set of feature weights, perhaps a different number of 

features for each layer. Typically, floating point values are used for the feature weights, and the size of 

the features ranges from 3 × 3 up to perhaps 29 × 29 or larger, as we point out in the surveys of real 

CNNs in this chapter. 

The method of feature weight initialization determines the final outcome of the feature learning. For 

example, starting from biased feature weights will lead to biased feature learning. Random weight 

initialization has been used in many systems. The feature weight initializations are critical, since the 

initial values lead in the direction the weight tuning will follow. Transfer learning is a method to use 

pretrained features as starting points. Layer-wise pretraining is another method, starting at the bottom 

layer and working upward, training the features at each layer until they seem to converge. For more 

information, see the discussion on Feature Initialization in Chap. 9. 

Local Receptive Field 

As shown in Fig. 10.26, each convolutional neuron is fed by a local receptive field from the input 

image or feature map from a small window The concept of a local receptive field is influenced by work 

in neurobiology. Local competition among the local regions processed by neurons at each layer is 

observed in neurobiology [591, 592], and there is speculation that the neural firing activation function 

includes a nonlinearity similar to a local histogram equalization among spatially adjacent pixels, which 

is often implemented in artificial neural models to mimic competition. In addition, competition is 

mimicked by local receptive field overlap at the input side, or pooling at the output side. 

The input is modeled as a receptive field of view, foveal region, or attention field. This attention 

field moves across the image as directed; for example, scanning across the image or directed to stare at 

a location, or perhaps using saccadic movements to dither for greater resolution. Convnets implement 

the neurological concept of local receptive fields, using n × m sliding windows across the 2D image to 

mimic the local receptive fields in the human visual system. Convolutional windows may overlap 

adjacent windows according to a stride factor of 1 or more, although convnets may use nonoverlapping 

tiled windows. 

Note that the local receptive fields are typically processed and stored as independent, spatially 

disconnected, and unordered, with no association with other windows or features. The Convnets 

simply learn and record the features, and the classifier discriminates based on the strength, presence 

and absence of features. Rosenfeld [561] provides some early work on preserving spatial relationships 

between features used in scene labeling applications. 

Receptive Field Compression via Input Striding or Output Pooling 

Subsampling or compression is achieved equivalently at each neuron by either (1) striding the input 

window, or (2) pooling windows in the output. To gain some invariance to local feature deformations, 

Convnets may use strided input windows to reduce input resolution, or pooled output windows to 

reduce output resolution. Strided input windows are run against the filters to effectively downsample, 

or reduce the resolution up front, for example sliding the filter window across the image at a stride of 

2 pixels. The pooled output window consists of grouping the filter results in small local regions such as



2 × 2 regions, and choosing the max or average value in the local region, and using this pooled value as 

the filter result for the pooled region, effectively downsampling or reducing the resolution at the output. 

However, Schmidhuber [492] notes that the Cresceptron [552] added blurring layers to add a measure 

of translational invariance, yielding similar results to pooling. 
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Trainable Bias 

Each feature may have a trainable bias, which is applied to the results of the convolution operation, 

implemented as a scale factor or additive bias, before the nonlinearity and subsequent processing. Bias 

factors are biologically inspired, although nobody really knows how they operate, or how many bias 

factors biological neurons may have. 

Memory for Current Neuron State 

For purposes of backpropagation and learning, each convolutional layer maintains several state 

variables in local memory, such as the current output and previous output of the neuron after the 

activation function, and the derivative of the neural state (current output - previous output). See the 

next section on backpropagation. 

Backpropagation, Feature Learning, Feature Tuning 

The feature learning in a CNN takes place during backpropagation, where features are tuned by 

distributing the classification errors back through the network, layer by layer, to adjust the feature 

weights to minimize the errors. 

We provide only a brief introduction to backpropagation fundamentals here, since this is an area of 

active research, suitable to an entire book all by itself. Likely several months time will be required to 

master the concepts and gain practical experience. 

For an introduction to backpropagation and a survey of methods, see Hagan [601], and other good 

discussions are found in Werbos [521]. See Rojas [714] for a readable step-by-step explanation. For a 

history of backpropagation with details and references on key innovations, see Schmidhuber 

[492]. Some of the earliest work to establish a backpropagation algorithm using gradient descent 

was developed in 1986 by Plaut et al. [781], which is still the basis for many methods today. Perhaps 

the best place to start to learn how backpropagation really works is to use open-source code packages 

and DNN software libraries such as Caffe, some of which are listed in the Appendix C resources. 

Backpropagation is multidirectional and follows many separate gradient descent paths back down 

the network through all contributing feature weights. Gradients are found using (1) numeric methods 

such as Newton’s iterative method which are simpler to implement, provide close approximations, but 

slower convergence, and (2) closed-form analytic methods which can be more accurate, faster to 

compute, but usually harder to parameterize. In practice, both numerical and analytic methods can be 

used together as parallel baselines to cross-check each other. 

Some fundamental problems for a backpropagation algorithm to solve include:

• Adjusting the backpropagation learning parameters.

• Setting convergence criteria and stopping criteria.

• Choosing the error minimization algorithm.
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• Avoiding over fitting.

• Training time reductions.

• Folding error term corrections back into the weights. 

The basic order of events for backpropagation includes the following: 

1. Forward pass through the network. 

(a) Compute responses f() at each neuron for each feature to feed-forward. 

(b) Store response derivatives f′() at each neuron for each feature for backprop. 

(c) Compute classification scores and errors. 

2. Backward pass through the network. 

(a) Distribute errors backwards to each contributing neuron. 

(b) Adjust weights using errors and stored response derivatives. 

(c) Compute residuals for current layer, distribute backwards, repeat. 

3. Continue until stopping criteria reached (threshold, iterations, elapsed time). 

Ideally, convex data are desired with well-defined local minima for use in gradient descent and other 

backpropagation methods, so input data conditioning can be used to reduce noise, reduce outliers, and 

hopefully eliminate spurious basins of attraction. Backpropagation methods using gradient descent 

rely on the neural transfer function to provide a nonlinearity to their output response to ensure that the 

value is differentiable for backpropagation. In addition, the nonlinearity may result in faster conver-

gence during backpropagation training to move the gradient more quickly out of flat spots toward the 

local minima. 

Several backpropagation approaches are used (see Schmidhuber [492, 524]):

• Gradient descent variations—uses the chain rule from Calculus.

• Conjugate Gradient—approximates the gradients for speed improvement.

• Levenberg–Marquardt—a damped least-squares method for pattern matching.

• Cascade Correlation—adds unique features instead of training old ones.

• Rprop Algorithm—optimized method using partial derivative errors.

• LSTM—optimization to gate the introduction of gradients over time.

• Quickprop Algorithm—iterative loss function following Newton’s method.

• SuperSAB Algorithm—adaptive backpropagation for faster convergence. 

Next, we will conceptually describe backpropagation using gradient descent to develop some 

intuition; however, see the references given above for actual algorithms since there is no need here 

to duplicate the algorithms found in the references. The concepts discussed below do not follow a 

specific backpropagation algorithm and are for purposes of illustration only. 

As shown in Figs. 10.22 and 10.23 example, we have four classes to classify: Face, Cat, Plane, and 

Bird. The class scores are a weighted sum of the trained features * the input. In our example, a Face 

image candidate is presented to a hypothetical CNN, and the resulting Face score is 0.6 which is 

smaller than the Cat score of 0.8, so there is a classification error. For each image candidate x, the 

actual output score o for each class is measured against each desired target class score t. For example, 

we expect a match to be close to 1.0, and a miss to be close to 0. The total error E is the sum of the 

difference between the actual score and desired score for all classes. For example, SSD may be used to 

sum the total error E:
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Fig. 10.22 An over-

simplified example 

illustrating the final 

classification error and 

weight tuning. Face feature 

score 0.6 is too low, 

compared to the winning 

Cat score 0.8 (classification 

error). Adjust Face feature 

weights up, but adjust Cat 

and other feature 

weights down 

Bird 

.2 

Plane 

.3 

Cat 

.8 

Face 

.6 

Adjust 

weights 

down 

Adjust 

weights 

up 

Back propagate errors & adjust weights 

Classification Scores 

Cat 

.8 

Face 

.6 

+.08 

+.04

-.2

-.3

-.8 

+.4 

… 
Vanishing 
Gradients 

… 

Fig. 10.23 This figure illustrates backpropagation of gradients 

E= 
1 

2 
i 

oi - ti½ ]2 

The total network error term E is broken apart and distributed proportionally to all the contributing 

feature weights in a process called backpropagation. Each gradient portion is passed backwards 

through the network through each contributing neuron as a signed gradient to allow for the weights 

to be adjusted higher or lower. For example, from Fig. 10.23 we can visualize the class gradient as a 

signed value for each feature class as follows:
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∇Face / þ  1:0- :6ð Þ / þ  
δE 

δFace 

∇Cat / - 0þ :8ð  Þ / -
δE 

δ Cat

During backpropagation, the class error gradients are fed backwards to their contributing neural 

inputs, and then the class error gradient is scaled in proportion to the error contribution of each neuron. 

Here are the key points to follow the backward pass: 

1. Determine the derivative change at each neuron output (forward pass). 

2. Determine the error contribution at each neuron output (backward pass). 

3. Proportionally scale and distribute the error to contributing neurons (backward pass). 

4. Adjust the weights for this neuron (backward pass). 

The network output N is the functional composition of all n neural responses, composed of a set of 

feature weights against which candidate images are classified. To find the source of the classification 

errors, a functional decomposition of the entire network N is made using the chain rule from Calculus 

to find the derivative function contributions N′ for each neuron output with respect to each input x: 

N 0 
1...n xð  Þ= ∏ 

n 

k = 0 

N 0 
k N kþ1...nð Þ  x ð Þ

The weight adjustments are made proportional to the derivative of each neuron response N′. In other 

words, whatever changes were made to the weights during the last forward pass through the network 

have contributed to the current error term E, so each neuron’s derivative response N′ is used as the 

baseline increment for weight adjustments. As shown in Fig. 10.24, during the forward pass, partial 

derivatives at each neuron are stored to be used during backpropagation. The convolutional neural 

response N is the input * weight dot product followed by the activation function. 

Fig. 10.24 The partial derivatives for each neural input sn are computed and stored during the forward pass, and the 

neuron output N and its derivative N′ are stored as well for use in backpropagation
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Figure 10.24 illustrates how the backpropagated gradient E is fed into neuron N and proportionally 

scaled into EZ, and then the proportional gradient contribution for the neuron N inputs is computed to 

backpropagate to the contributing neurons N1, and NZ, and the backpropagated gradient is computed as 

E1, and EZ. One key to understanding gradient backpropagation is visualizing the proportional scaling 

of the gradient as it is backpropagated as an incoming value. We will work through a simple example 

below to illustrate the concept and show how the weights are updated. 

To begin with, on the forward pass the derivative N′ of each neuron response N is stored. We can 

visualize N′ as (Nprevious - Ncurrent) which is the difference between the current response and the 

previous response. Likewise, the partial derivatives κ1 and κ2 are the contributions to neural response 

N taken as a partial derivative with respect to the neural inputs x1 and x2 and stored for use during 

backpropagation. 

N 0 / Ncurrent -Nprevious 

κ1 ¼ 
δN 

δx1 

κ2 ¼ 
δN 

δx2 

We will show how s1 and s2 and N′ are used to scale the incoming gradient contribution and 

compute the outgoing backpropagated gradient contributions next. 

Intuitively, the stored derivatives N′ and κ1 and κ2 represent the change in network response from 

the last round of weight changes to the neuron compared to the current response, providing the basis 

for weight adjustment relative to the last weight change. Usually, the first hundred or so weight 

adjustments are larger and hopefully result in faster convergence toward the local minima, and 

subsequently smaller weight adjustments are made as the partial derivatives become smaller and 

smaller, and convergence may be slower. The vanishing gradient problem occurs especially in deeper 

networks as the gradient error becomes infinitesimally small. 

To determine the gradient error contribution EN of the neuron relative to the response derivative N′, 

the derivative of the backpropagated gradient error Ez is taken with respect to the neuron’s response 

derivative N′: 

EN = 
δ Ez 

δN 

Note that the feed-forward step computes the response of each weight w with each input x as wx, and 

since w is the derivative of wx then the weight w is a derivative of the input function, and is therefore



used for both the forward and backward directions to proportionally adjust both the input x and the 

backpropagated gradient error term EN. 
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The error contribution for the neuron EN is combined with each weight to scale the weights to 

compensate for the neuron N gradient error EN: 

Δw1 ¼ 
δEN 

δw1 

Δw2 ¼ 
δEN 

δw2 

The stored input partials s1 and s2 are combined with the gradient contribution of the current neuron 

N′ to propagate backwards to the contributing neuron for each input x1 and x2 to produce gradient error 

terms E1 and E2 feed into the input neurons N1 and N2: 

N1 ←E1 ¼ 
δN 0 

δs1 

N2 ←E2 ¼ 
δN 0 

δs2 

Conceptually, a simple method for adjusting each weight is to change each weight proportionally 

with respect to the accumulated error, in other words using the partial derivative of E with respect to 

each weight: 

Δwi = - β 
δEN 

δwi 
for i= 1, . . . , n 

where β is a learning constant to scale the weight update to limit oscillations. 

However, there are many methods used in practice to proportionally distribute and combine the 

error term with each weight. Typically, a weight tuning function is defined for weight adjustments, 

incorporating various learning parameters. Typically, the gradient value is scaled smaller using a 

learning rate parameter β to prevent too much oscillation due to noise and numerical artifacts. Also, a 

momentum function can be devised to control the weight adjustment using a history buffer of recent 

error activity, acting as a 1D convolution function across the history buffer to smooth out the trajectory 

of the error curve to reduce noise, overshoot, and undershoot. 

Note that in a typical CNN, the feature weight contributions are intertwined, since a single low-level 

feature weight may contribute to several higher-level features. This makes backpropagation very 

difficult to describe analytically, and typically very time-consuming to compute since the weight 

adjustments may alternate over the course of training between better and worse for various classes and 

training examples. Backpropagation is analogous to a tedious averaging procedure resulting in 

features that are tuned generically over all training samples but not specifically for any.
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If the weights are immediately adjusted for each forward pass, the gradient descent may not follow a 

direct path to the local gradient maxima and may oscillate significantly and prevent convergence, or in 

the best case the oscillations may be beneficial to help avoid shallow local minima. If the weights are 

updated in batches of training images, there is added storage needed in the CNN to save all the 

intermediate values. Besides the uncertainty regarding the weight adjustments regarding oscillations 

and false local minima, the error term shrinks in size and vanishes as it is propagated to each lower 

layer. Hochrieter et al. [652] are credited with identifying and quantifying vanishing gradient 

problems. When the gradients are too small, further training is useless. See “Neural Networks Tricks 

of the Trade” [588] and especially the chapter on Stochastic Gradient Descent Tricks. 

Backpropagation can take days and weeks even on the fastest computers. In fact, backpropagation 

does not work at all if the learning parameters are not set up correctly, and the difficulties of training 

with backpropagation, especially for deep networks, are well known in the machine learning commu-

nity. LaRochelle [626] names convergence at local minima and basins of attraction in the feature 

space as two major challenges. It is well known that gradient descent can get stuck in certain local 

minima before reaching the lowest minima, and that random weight initialization contributes to this 

phenomenon. In fact, each layer has a different set of local minima, so reaching all the lowest minima 

becomes cumulatively more difficult with deeper networks. In fact, weight initialization values usually 

determine where the basins of attraction may be located. 

Zeiler et al. [576, 577] developed methods for visualizing the convolutional feature weights to help 

with devising better backpropagation methods, since actually viewing the weight matrices as images 

can lead to better feature tuning, see Fig. 9.2. Zeiler found that if the visualized features look about the 

same or indistinct, perhaps the learning parameters are wrong, and if the visualized features look 

different and distinct, then perhaps the learning parameters are better. 

Backpropagation learning is not inspired by neurobiology, and in fact the dendrites leaving neurons 

are one-way firing mechanisms generally feeding forward into the visual pathway. Neurobiology does 

not validate the neural model used by backpropagation learning. In fact, humans learn far faster than 

backpropagation. It seems more likely that the view-based models of the visual pathway are more 

realistic, adding new views of objects with corresponding the hierarchy of features as needed to build 

up better models, see Tarr [740] and the discussion of HMAX later in this chapter, and also Appendix F 

on Visual Genomes [476]. There are no neurobiological mechanisms or connection paths to support 

backpropagation learning. Note that actual physical neurons use a binary step function for activation 

and fire all-or-nothing across dendrite connections, while the CNN and related ANN models fire 

through an activation function yielding a firing range or strength. 

Alternatives to Backpropagation 

Note that backpropagation is a blurry operation, since it is not entirely clear if all the feature weights 

should be adjusted indiscriminately in the direction of the gradient, as backpropagation and gradient 

descent methods typical operate, ignoring the more complex and difficult questions regarding individ-

ual feature weight balance and weight independence. Individual weights in each feature could be 

treated more independently and adjusted up, down, or proportionally. This is a complex problem. Note 

that we survey other learning methods later, including the NAP architecture which incorporates spatial 

relationships in the learning process, and adjusts each weight separately using Hebbian learning 

principles. Also, the dasNet architecture uses novel attentional learning and boosting methods to 

tune weak and misclassified features, one at a time. See Schmidhuber [492] for more on learning 

methods.
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Note that early CNNs did not use backpropagation, see the description of the Perceptron in the 

previous section. 

Features per Layer 

A sufficient number of features at each layer are required to create a robust hierarchical feature model. 

Too many features and too many parameters are counter-productive, too few features may lead to over 

fitting and difficulty in training. The feature counts per layer are ad hoc numbers. In some architectures, 

the CNN feature count increases with higher levels of the network. Later, we survey specific CNN 

examples to explore feature count as a component of the overall architecture. In Table 10.3, w   e

summarize the number of layers and feature sizes are variety of CNN s.

Compute Cost of Convolutional Features and Layers 

Each feature carries a compute cost, and each layer carries a compute cost. For features, the larger the 

kernel size, the larger the compute cost. The current state of the art training methods can take days and 

weeks given the propensity for deeper networks. 

Usually, the minimum feature considered for convolutional layers is 3 × 3, since this allows for a 

center pixel and a 1-pixel neighborhood to be represented, including nine orientations of rotation (0°, 

45°,  90°, 135°, 180°, 225°, 270°, 315°). In fact, one of the CNNs in this survey, VGG [590], 

exclusively uses stacked 3 × 3 convolutions, see Fig. 10.33. However, many CNN architectures in 

the survey below use a range of different filter sizes together in the same network, ranging from 

perhaps 1 × 1  up  to  11  × 11. See Table 10.4 and Fig. 10.25 for a summary of the hidden compute costs 

of an unoptimized convolution, assuming all data loaded in registers for single clock-cycle instruction 

operation, prefetched with no cache misses. Convolutions can be heavily optimized using SIMD 

instructions, SIMT, memory tiling and pipelining, and dedicated silicon. See Chap. 8 for details on 

optimization strategies. Convolutions are also optimized using separable kernels, discussed later. 

Table 10.4 This table itemizing convolution compute costs 

Convolve size 

n × n 

Operations per convolve 

(Rp + Rk + I + W ) 

Rp 

Input reads 

Rk 

Weight reads 

M 

Multiply/add instructions 

Rc 

Convolve 

Result write 

3 × 28 9 9 1  

5 × 76 2 25 1  

7 × 7 148 49 49 49 1 

9 × 9 244 81 81 81 1 

11 × 11 364 121 121 121 1 

13 × 13 508 169 169 169 1 

15 × 15 675 225 225 225 1
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Fig. 10.25 This figure shows the compute cost of various sizes of convolution kernels using the data from Table 10.4 

across a 1024 × 1024 image, with a simplistic breakdown of unoptimized microoperations per convolution kernel size, 

including memory read/write and machine instructions 

See also the section on Parameters and Hyperparameters below for more information on compute 

cost. For more discussion on convolutional acceleration, see the discussion on Boxlets and Convolu-

tion Acceleration in Chap. 8. 

Filter Shape and Size 

Convolutional networks typically use square kernel shapes for the filters, such as 3 × 3  or  5  × 5. 

However, square features are the least invariant shape with respect to rotational invariance, see

Chap. 4. To compensate for the rotational invariance of the single rectangular features, the training 

data can be augmented to include rotated copies of the data, and additional features can be trained, so in 

the end many more features are generated, along with the associated compute and memory cost. 

As shown in Fig. 10.26, the filter shape also contributes to image boundary effects. To mitigate the 

boundary effects of square filters, the input image can be made larger by padding one or more pixels 

around the edges to preserve the true image boundary, which would otherwise be clipped off due to the 

convolution. Padding can be implemented using a replicated copy of the boundary pixels, the mean 

value of the entire image, and other methods.
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Fig. 10.26 This figure illustrates image padding to preserve the input image size 

In practice, the filter size at each layer is empirically determined to find the optimal size and set size 

granularity for a given data set. According to LeCun [288], for the MINST data set composed of rather 

small 28 × 28 pixel images, each containing handwritten characters and numbers, a 5 × 5 convolution 

kernel for the first layer proved to be beneficial. For other datasets using larger image sizes such as 

256 × 256 and up, larger filter shapes have been used at the first layer and higher layers, such as 11 × 11 

or 15 × 15 for the first layer. However, stacked convolutions using a pipeline of smaller kernels such as 

size 3 × 3 as shown in the VGG architecture surveyed later, can be a good alternative to large kernels, 

with the added benefit of reducing compute cost. Stacked kernels are discussed next. 

Stacked Convolutions 

It is possible to stack several smaller convolutions together to approximate a larger convolutional 

kernel. As shown in Fig. 10.27, a stack of three 3 × 3 kernels can be used to approximate a 7 × 7 kernel, 

since the first convolution reduces the 7 × 7 image to 5 × 5, and the second convolution reduces the 

image to 3 × 3, and the final convolution produces 1 pixel output. Simonyan and Zisserman [590] 

demonstrate a very deep convolutional network called VGG, using up to 19 layers of exclusively 3 × 3 

convolutional features, noting that stacked 3 × 3 convolutions are a viable alternative to larger kernels, 

and offer equivalent accuracy. For example, by looking at the total receptive field, it is apparent that 

two 3 × 3 kernels stacked together are equivalent to a 5 × 5 kernel. The key advantage of smaller 

kernels is computational efficiency.
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Fig. 10.27 This figure illustrates stack convolutional equivalence, showing three stacked 3 × 3 convolutions applied to 

the 7 × 7 input image yield a 5 × 5, followed by a 3 × 3 convolution to the 5 × 5 image yields a 3 × 3 image, followed by a 

3 × 3 convolution on the 3 × 3 yielding a single pixel output, yielding the same effective receptive field coverage as a 

single 7 × 7 kernel 

Several practitioners have attempted to reduce the computational burden of larger convolutional 

kernels by using a striding factor to skip pixels during input kernel assembly. For example, 

Khrishevsky et al. [289] developed an architecture called AlexNet, as shown in Fig. 10.30, using 

several kernel sizes, including 11 × 11, 5 × 5, and 3 × 3, and to mitigate the performance for the 11 × 11 

kernels, a stride of 2 is used. Stacked convolutions have limited usefulness, since a larger kernel such 

as 11 × 11 may be the right choice depending upon the input data and the application, since larger 

kernels capture more local region information to describe higher-level object features. 

Stacking convolutional kernels are also claimed [590] to add some regularization by adding 

rectification or nonlinearity after each three kernels, forcing a decomposition through the 3 × 3 filters 

in the chain, claimed to add increased discrimination to the final result. And of course, the number of 

parameters are greatly reduced for smaller convolutions, perhaps increasing performance depending on 

the overall architecture. For example, assuming the inputs and outputs to a stack of convolutions are 

the same C, a three-channel RGB input to the stack of 3 × 3 convolutions uses 3(32 C2 ) = 27C2 weight 

parameters (excluding the bias parameters) to cover a 7 × 7 region, while a single 7 × 7 convolution 

uses (72 C2 ) = 49C2 weight parameters (excluding the bias parameters). 

In summary, stacked smaller convolutions rather than single larger kernels are a viable alternative in 

some applications to reduce the number of weight parameters. 

Separable and Fused Convolutions 

Another approach for reducing convolution overhead is to use separable filters. Many 2D filters, such 

as convolutions, are separable filters, which can be broken down into row and column operations. For 

example, the Discreet Fourier Transform is a separable filter and can be broken down into overlapping 

1D FFTs across a 2D or 3D field. Convolutions can also be implemented as separable filters. This 

means that rows and columns can be processed independently as 1D vectors, and vectors can be 

processed using fast SIMD instructions to accelerate processing. 

For example, a 2D Gaussian blur kernel can be separated into two 1D kernels as follows:
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Another approach is to fuse several convolutional filters together, collapsing into a single filter. 

Since convolution is associative and implemented as multiplication in the frequency domain and 

multiplication in the spatial (pixel) domain, a set of convolutional filters can be convolved together, or 

preconvolved, yielding a single filter representing a set of filters. For example, Mamalet et al. [597] 

developed a method to apply fused convolutions to combine the filter, activation function, and pooling 

function and approximate the same results within <1% of the same accuracy. Although the fusion is 

not perfectly equivalent to the separate steps, the performance is increased by 2–6×, depending on the 

configuration, and whether the network is in the training phase or the operational matching stage. In 

addition, Mamalet developed backpropagation methods for fused and separable filters. 

Convolution vs. Correlation 

The terms convolution and correlation are often used interchangeably, although the actual mathemat-

ics and intended use are often different. We will discuss some of the possible points of confusion here. 

The term convolution is used very imprecisely in CNN discussions, and what is meant is the dot 

product of the input vector I and the feature weight vector W: 

I .W = 

n 

i= 0 

I iW i = I0W0 þ I1W2 þ ⋯þ InWn 

In fact, mathematically convolution and correlation are closely related, since convolution is 

equivalent to correlation by simply rotating the convolution template by 180°, or in other words 

reflecting the rows and columns of the matrix. A variant of correlation, normalized correlation,  is  

computed to allow for invariance to scale using a scale factor x :

i I  ið ÞW  xþ ið  Þð Þ  

iI  xþ ið  Þ  2
i W ið Þ2

In fact, the term convolutional neural network is somewhat confusing, since both correlation and 

convolution are implied. And coming from the image processing perspective, some confusion arises also, 

sine the term convolutional filter is an image processing operator, and the term correlation is either a 

statistical metric or a template matching feature detector. However, both methods are mathematically 

about the same. Convolution is typically used to change the image, and correlation is used as a hit-or-

miss pattern matching operation, which can alternatively be implemented with morphology operations, 

see Chap. 2. Typically, correlation kernels represent patterns, shapes, and structure used for template 

matching. Correlation matching occurs pixel-by-pixel within the image region, and correlation strength is 

measured using a similarity metric (several methods are used such as SSD, see Chap. 4 for a discussion



on distance metrics) to find the difference between corresponding pixels in the template, and sum a final 

score. See Ref. [615] for a comparison between correlation and convolution. 
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In image filtering operations, convolution kernels most often are designed using a scaling factor to 

condition the results as needed. The convolutional scaling factor is analogous to the bias factor 

parameter in CNNs, which is tuned along with each feature during CNN training. So, each 

convolutional feature consists of a kernel with individual weight parameters and a bias factor parame-

ter, for example a 3 × 3 feature kernel consists of 9 + 1 tunable parameters: 

bias 

w1 w2 w3 

w4 w5 w6 

w7 w8 w9 

or alternatively bias þ 

w1 w2 w3 

w4 w5 w6 

w7 w8 w9 

The bias factor may also be implemented as an additive scaling factor, instead of a multiplicative 

scaling factor, with the convolution kernel. 

Convnets use convolutional filters for two purposes: as feature weight matrices analogous to 

correlation templates, and as filters to change the input image to produce output for the next 

convolutional layer. In CNN parlance, filters produce feature maps containing latent features. 

For symmetric features built around a central origin, such as Gaussian blur kernels, convolution and 

correlation are essentially the same. However, the learned features in Convnets are not constrained to 

be symmetric, and rarely are. 

For example, a nonsymmetric edge detector as used in a convolution:

- 1  0  1

- 1  0  1  

- 1 0 1

is equivalent to correlation using the same kernel rotated 180°: 

1  0 - 1 

1  0 - 1 

1  0  - 1

For more information on convolution and correlation, see Chap. 2. For more information on 

correlation used as a template matching feature detector, see Chap. 6. 

Pooling, Subsampling 

Pooling is another name for subsampling in CNN parlance (i.e., image rescaling in image processing 

parlance), and several methods are discussed in Chap. 9. Pooling is typically used as the last step, or 

one of the last steps, in each convolutional layer. The Neocognitron [511, 612] was the first CNN to use 

pooling in 1980. The stated goal for pooling is typically to add some translational invariance, or to



simply subsample the image smaller to reduce compute and parameters. However, the subsampling 

methods used in ANNs are different than standard computer graphics sampling methods such as linear 

interpolation and other antialiasing methods. We discuss several variants here. 
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For CNNs, simple approaches such as taking the average value of the pool have been used. 

However, the most popular method seems to be the RANK filter method (see Chap. 2) to selecting 

the MAX value of the local region. Choosing the MAX value seems intuitive and obvious, since the 

MAX activation in a local region is analogous to the strongest feature, while using the average value 

implies uncertainty. 

Is the pooling layer needed at all? Dosovitskiy et al. [616] argue that replacing the max pooling 

layer by a convolutional layer with a stride of at least 2 is equivalent in terms of accuracy. Graham 

proposes to create variable sized max pooling regions [617]. In practice, many of the CNNs we survey 

do not always use a pooling layer. However, pooling operations to subsample or upsample the images 

are often required to size the outputs to match the inputs for a fully connected classification layer. 

Convolutional neural layers also subsample the image, and larger kernels, such as 11 × 11, may be 

used to produce more subsampling than smaller kernels. In addition, a stride factor for the sliding 

window larger than 1 also subsamples the image. So, the combined subsampling effect of the 

convolution kernel, stride, and the pooling region size is an important consideration for understanding 

the level of detail represented by the features (Fig. 10.28). 

Pixel 0 Pixel 1 

Pixel 3Pixel 2 

2  2 pooled region, MAX value chosen, 

similar to a RANK filter (see Chapter 2) 

MAX 

Fig. 10.28 This figure illustrates MAX pooling, where a RANK filter is run over a local region and the MAX value is 

selected to assemble the final output image 

Parameters and Hyperparameters 

Several practitioners separately summarize (1) the architecture parameters, and (2) the learning 

hyperparameters for a CNN. Architecture parameters are useful to summarize the moving parts in 

the CNN, which corresponds to training difficulty and overall performance. CNN parameter counts 

typically ranging from millions to billions of parameters for the entire network. The hyperparameters 

used for learning, such as momentum and learning rate, are discussed in the Backpropagation 

discussion in this chapter. 

CNNs contain a dizzying number of parameters comparable in magnitude to the neurons in the 

human brain, which contains billions of neurons and connections, see Table 9.1. Fortunately, CNNs 

have a much more regular architecture, which simplifies the architecture. We encourage the reader to 

develop a mental visualization of CNN architecture parameters in order to better understanding the 

fundamentals.
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Architecture Parameters 

Parameters are the program code for the CNN. The architecture is put in place to program itself via 

tuning the learning parameters and the training data, resulting in feature learning. The parameters are 

analogous to the neural DNA code in the brain. When analyzing architectural complexity, we may be 

interested in analyzing parameters to compare design alternatives. For example, we may want to 

explore the cost of using larger images as input, more image channels, larger features, or deeper 

networks. Since each parameter implies corresponding memory and compute operations, parameter 

analysis is useful for estimating training time and run-time performance. 

Key architecture parameters types include:

• General Parameters: typically computed, for a convolutional layer, as the total of 

(input_feature_maps × output_feature_maps * weights_per_kernel) + bias factors for each kernel 

at current layer. The parameters are the neural DNA code.

• Neurons: the number of artificial neurons simulated in the network. The actual number of neurons 

may not be simultaneously in operation, since artificial neurons are typically shared serially to 

process for one feature at a time, rather than running simultaneously in parallel for all features. 

However, parallel implementations are used as well to increase performance at the cost of 

system size.

• Connections: the total number of connections between artificial neurons. This is a simple measure 

of artificial dendrites and axons simulated in the network. 

Here we provide a few methods to compute architecture parameters, which may be different than 

the methods used by other practitioners to compute parameters, operations, and connection complex-

ity, where: 

Subscripts denote:

• t = totals

• l = layer

• l - 1 = previous layer

• n = single neuron 

Parameters:

• nt = total neurons for network

• ct = total connections for network

• pt = total parameters for network

• sl = total parameters in a single convolutional layer

• il = inputs to convolutional layer, from prior layer 

– either n × n sliding windows from each feature map for kernel filtering 

– or fully connected weights from each feature map for 1D convolve

• dl = depth, number of channels for this feature map

• fl = number of features for this layer

• ml = number of feature maps output for this layer (ml = fl)

• fl - 1 = number of features for previous layer

• ml - 1 = number of feature maps output from previous layer (ml - 1 = fl - 1)

• kl = number of feature weights in each n × n kernel, for example 3 × 3 = 9

• bl = bias factor, 1 per feature (= total features per layer)

• xn = operations per neuron, such as normalization, max pooling, etc.
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(1) Neurons: For 2D convolutional filtering layers, each neuron receives a single n × n kernel input 

window (kernel-connected), counted as 1 input, from each feature map in the prior layer. For each 1D 

convolutional 1D classifier layer, each neuron receives fully connected inputs from each weight in each 

feature from the prior layer. 

total neurons for networkð Þ  nt = 

total layers 

l= 1 

il- 1ml- 1f l 

(2) Parameters: Simple parameter total for convolutional neurons, including the weights and biases. 

networkð Þ  pt = 

total layers 

t = 1 

ml- 1klml þ bl 

(3) Operations: The activation function and convolution are implied as default parts of the neuron, 

and are not counted as separate operations here. Instead, operations are extra functions in the neural 

pipeline, including preprocessing (dropout, numeric conditioning, . . .), and postprocessing (response 

normalization, pooling, . . .). We consider operations here as a serial part of the artificial neuron 

pipeline (part of the hidden unit), rather than a separate layer. Operations as a metric are a simple 

measure of neuron complexity, though some operations are more complex than others. Operation 

functions can independently be assigned an error term during backpropagation, which some 

practitioners refer to as loss weights, to allow each operation function to be tuned to reduce their 

error contribution, for example by adjusting the parameters of the operation. 

networkð Þ  xt = 

total layers 

l= 1 

xnnlpt 

(4) Connections: We count connections as inputs from each feature map at the previous layer to 

each weight in each filter at the current layer. An input may be either a kernel-connected window, or 

fully connected weights as per the 1D convolve layers. 

total connections for networkð Þ  ct = 

total layers 

l= 1 

il- 1ml- 1kl 

Note that the first fully connected 1D classification layer may have more parameters than other 

layers, since it is the first fully connected layer, taking input as each feature weight from the last 

convolutional layer fully connected to each neuron in the classification layer (Table 10.5).
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Table 10.5 This table illustrating hypothetical network parameters 

Convolutional layers Parameters Neurons Connections 

Layer 0—INPUT 

640 × 480 image 

Monochrome, 1 chan. 

Fully padded output 

640 × 480 × 1* 

*Fully padded 

i.e., 642 × 472 for 7 × 7 kernels 

P = 307,200 

Layer 1—FILTER 

256 bias factors 

256 7 × 7 features 

(op*1) mean-zero norm 

(op*2) ReLu activation 

Fully padded output 

(1 * 7 × 7 * 256) + 256 

P = 12,800 

640 × 480 * 256 

N = 78,643,200 

640 × 480 * 256 * 7 × 7 

c = 3,853,516,800 

Layer 2—FILTER 

512 bias factors 

512 5 × 5 features 

(op*1) ReLu activation 

Fully padded output 

(1)(256 * 5 × 5 * 512) + 512 

P = 3,277,312 

640 × 480 * 512 

N = 15,7286,400 

640 × 480 * 512 * 5 × 5 

c = 3,932,160,000 

Layer 3—FILTER 

1024 bias factors 

1024 3 × 3 features 

(op*1) ReLu activation 

Fully padded output 

(1)(512 * 3 × 3 * 1024) + 1024 

P = 4,719,616 

640 × 480 * 1024 

N = 314,572,800 

640 × 480 * 1024 * 3 × 3 

c = 2,831,155,200 

Layer 4—CLASSIFY 

8192 1d vector weights 

1024 * 3 × 3 * 8192 

P = 75,497,472 

1024 * 8192 

N = 8,388,608 

1024 * 8192 * 3 × 3 

N = 75,497,472 

Layer 5—CLASSIFY 

4096 1d vector weights 

8192 × 4096 

P = 33,554,432 

8192 × 4096 

P = 33,554,432 

8192 × 4096 * 1 

P = 33,554,432 

Layer 6—CLASSIFY 

1024 1d vector weights 

4096 × 1024 

P = 4,194,304 

4096 × 1024 

P = 4,194,304 

4096 × 1024 * 1 

P = 4,194,304 

Layer 7—OUTPUT 

Labeling 

1024 Softmax –  

TOTALS 121,563,136 596,639,745 10,730,385,408 

Learning Hyperparameters 

Learning Hyperparameters include a range of variables and constants used in the DNN training 

process, such as initial feature weights, bias, momentum, learning rate, and several other parameters. 

We do not delve deeply into learning parameters here, and instead refer the interested reader to better 

references provided in the backpropagation section and elsewhere in this work. Hyperparameters are 

known to be difficult to choose, understand, and control, see for example LeCun et al. [588] “Neural 

Networks, Tricks of the Trade.” 

From statistical analysis, the term hyperparameter is determined from a prior, and therefore must be 

initialized intelligently, and optimized from there. However, many DNN practitioners argue that there 

are no known methods to initialize DNN training hyperparameters, and advocate empiricism [579]. In 

this respect, we may say that DNN practitioners often use a best guess, rather than statistically 

generated hyperparameters. However, for feature weight initialization, transfer learning is effective, 

and follows the statistical analysis pattern of using priors, since existing trained feature weights are 

reused to initialize weights, usually at the lower levels of the CNN. Besides transfer learning, there 

seems to be little formal guidance to follow to initialize and tune hyperparameters. See the discussions 

in Chap. 9, and LeCun [619]. 

Next, we will move past the convnet fundamentals discussed above, and begin a survey of several 

illustrative examples of CNN architectures.
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LeNet 

LeNet is the canonical CNN architecture developed by Yann LeCun [514, 515] in the late 1980s, and is 

a good starting point for understanding CNNs. Probably Yann is most associated with the research, 

development, and successful deployment of practical Convnets to solve real-world problems [288], 

such as commercially deployed handwriting recognition systems for zip code recognition for postal 

sorting, and handwriting recognition systems for bank check processing. Given that fundamental 

Convnet research was completed in the mid-1980s, and sufficient compute power was available, 

LeCun was able to synthesize and improve the Convnet architecture in the LeNet architecture 

[514, 515] which has progressed up to and beyond the LeNet5 version, forming the basis for most 

of the DNNs used in academic research and industry today. 

Here we survey an early LeNet architecture [516], which was deployed by the US Postal Service for 

mail sorting. The LeNet architecture was one of the first to successfully apply backpropagation to a 

real-world problem [517]. 

The training data consisted of 9298 individually digitized handwritten numerals or digits, taken 

from handwritten zip codes from actual mail, written in many sizes and styles. The training data also 

contained a sampling of unrecognizable, ambiguous, and misclassified digits. For training data 

preparation, each digitized numeral was rendered into a 16 × 16 pixel template using linear interpola-

tion to preserve the aspect ratio of each digit. Random, erroneous markings surrounding each digit 

were manually removed via pixel editing. 

Each 16 × 16 input image was processed as a gray-scale image, preprocessing using mean-zero 

normalization in the range -1 . . .  +1. The input images were fully padded around the edges using a 

value of -1. So, including padding, the input features are treated as 24 × 24 pixel images to allow for 

complete 5 × 5 input window sampling of each pixel in the 16 × 16 template by padding four pixels on 

each side (16 + 4 + 4 = 24). Subsequent layers included padding for the input feature map images as 

well. Weights were initialized with random values, which is a form of primitive edge detector. 

One goal for LeNet was to reduce computational overhead, so careful attention was paid to reducing 

parameters. Weight sharing was used to allow for one feature at a time to be searched for. The filter 

weights and bias were shared for all neurons simultaneously in the same layer, so virtual neurons are 

implemented to share weights instead exhaustively implementing all neurons with their own copy of 

the weights—shared weights and virtual neurons are an innovation successfully demonstrated In 

LeNet. While this seems natural, LeCun et al. were among the first to employ this technique in the 

context of a regular convolutional network. Note that LeCun used the terminology feature map to 

represent the result of convolving weights with the input, which is often confusing, since the result of 

convolution is just another image and not a feature at all, since the weights are features. However, the 

term latent features is used in CNN parlance to describe the features lurking in the feature maps, 

waiting to be discovered at the next layer. 

The architecture is illustrated in Fig. 10.29. There are three hidden layers (convolutional layers), 

labeled H1, H2, and H3. Note that all images at each layer are fully padded. The input (bottom) is a 

16 × 16 mean zero normalized gray-scale template. The input kernel window size is 5 × 5 strided at 

each pixel. The layer H1 output feature map size is 8 × 8, a 2× reduction from the 16 × 16 input, due to 

the 2-pixel stride resulting in an undersampled input image. The rationale for the reduction was to 

provide some translational invariance. Likewise, the 2D input undersampling was used for layer H3 

resulting in a reduction from 8 × 8  to  4  × 4 feature maps. No pooling layers were used in the first 

version, but subsequent LeNet architectures added pooling and subsampling layers [288] equivalent to 

undersampling the input at a stride of 2 or more.
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5×5 kernels 

layer H1 

12 × 64 = 768 

hidden units 

256 input units 

layer H2 

12 × 16 = 192 

hidden units 

layer H3 

30 hidden units 

10 output units 

6000 fully connected links 

300 fully connected links 

Fig. 10.29 The basic LeNet architecture, after LeCun from 1986 [516], used for digit recognition 

Today, some practitioners refer to a hidden layer as a complete convolutional layer, and a hidden 

unit as a single convolutional neural processor in a hidden layer. However, note that LeCun used the 

term hidden unit for a single pixel in a feature map, which is equivalently the output of a neural 

processor. Each LeNet hidden unit is computed using convolution weights, whether they be kernels in 

filter layers, or 1D vectors in fully connected layers. H1 contained 12 feature maps of size 8 × 8, for a 

total of 12 × 8 × 8 = 768 hidden units. H2 contained 12 × 4 × 4 = 192 hidden units. H3 is a fully 

connected layer with the largest hidden unit count at 30 × 192 = 5750 hidden units + 30 biases = 5790. 

The input contained 16 × 16 pixels, or 256 hidden units. The output was a decimal classifier with ten 

outputs, one per digit. In summary, layer H1 contained 12.5 × 5 features, H2 contained 12.5 × 5 

features, and H3 contained a 1D vector with 30 weights, fully connected to the 192 weights from H3. 

LeCun is also a pioneer in hardware-accelerated CNNs. For example, the initial LeNet was 

implemented using a DSP for acceleration, which is a departure from most academic research which 

is usually only concerned with exploring new concepts, and leaving the optimizations to applied 

researchers and engineers. In addition, Farabet, LeCun, and others [621, 622] developed a hardware-

accelerated CNN using an FPGA and later an ASIC, which was the basis for a start-up company. 

Name LeNet 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window stride = 2 

Dropout, reconfiguration – 

Pre-processing, numeric conditioning Mean zero input normalization 

Feature set dimensions 5 × 5 × 12, 5 × 5 × 12, 30 × 192, 1 × 30 

Feature initialization Random 

Layer totals 2 filter, 1 classify 

Features, filters Convolutional 

Activation, transfer function Sigmoid 

Post processing, numeric conditioning – 

Pooling, subsampling Later versions used 2 × 2 × 2 ave. pooling
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AlexNet, ZFNet 

The LeNet architecture is the basis for several modern CNNs including the AlexNet CNN variation 

developed by Krizhevsky et al. [289], which was the first CNN to realize the potential of Convnets on 

large natural image data sets.3 AlexNet has likewise become the basis for subsequent CNNs used for 

image recognition.4 In fact, Zeiler and Fergus [576, 577] improved the AlexNet architecture, referred 

to as ZFNet, which was subsequently commercialized in a start-up called Clarifai. Part of the success of 

ZFNet is due to Zeiler’s method to visualize learned features corresponding to the pixel regions they 

match in the input image, referred to as deconvolutional networks, to develop intuition about how to 

enhance the learning hyperparameters to improve weak features. In addition, ZFNet reduced the 

number of hyperparameters, and expanded the convolutional filtering layer depth, improving the 

accuracy by several percentage points. 

The basic AlexNet architecture is shown in Fig. 10.30. Several major innovations were introduced 

to provide optimizations for engineering efficiency (unusual for academic work), which we will 

survey here: 

Fig. 10.30 This figure shows the AlexNet CNN architecture, with two parallel paths for implementation on two GPUs. 

Image used by permission, # Alex Krizhevsky from [289] 

Optimized to run across two GPUs in parallel.

• Overfitting mitigation techniques.

• Training time algorithm optimizations. 

As shown in Fig. 10.30, AlexNet contains five convolutional filtering layers, and three 1D 

classification layers. Fewer layers were tried, but accuracy decreased. As discussed in Chap. 9, 

Rectified Linear Units (ReLu) were used for the activation function, a departure from sigmoid-

shaped functions commonly used at the time. Training time is reduced using ReLu since it uses a 

simpler, ramp style function. Also, ReLus can operate on unnormalized data without saturation, 

eliminating the compute cost of normalization during preprocessing. The GPU parallelization was 

designed to run half of the feature kernels on each GPU, with minimal communication between GPUs. 

In fact, the memory limitations of the GPUs were one of the primary reasons that the parallelization 

was followed. 

3 Imagenet competition 2012, “Supervision”, http://image-net.org/challenges/LSVRC/2012/results.html. 
4 A version of AlexNet is implemented in the Caffe open source package, and accelerated by NVIDIA, see http://caffe. 

berkeleyvision.org.

http://image-net.org/challenges/LSVRC/2012/results.html
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org
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One interesting side effect of the dual-GPU partitioning in AlexNet is that each GPU focused on 

learning an independent feature set. As shown in Fig. 10.31, one GPU generated the top features, 

which are mostly gradient-style monochrome features, while the other GPU generated the bottom 

features which are mostly color blob-style features. Figure 10.31 also serves to illustrate the point that 

CNNs will generate different features based on the convergence of the gradient descent algorithm for 

the given data, the method in which each weight is actually updated and tuned, and on the initial values 

of the weights, all of which affect convergence. Gradient descent and backpropagation are difficult to 

visualize, predict or control. The parallel GPU results for AlexNet are similar to cloned humans with 

identical DNA: both individuals are formed by their conditions and experiences, leading to different 

outcomes. 

Fig. 10.31 This figure from Krizhevsky et al. [289] showing the partitioning of features learned on separate GPUs, (top) 

gradients learned on GPU A, and (bottom) color blobs learned on GPU B. Note: same training data split between GPU A 

and B. Image used by permission, # Alex Krizhevsky 

AlexNet uses response normalization over a local region in the convolutional output feature map 

using a fairly compute intensive function: 

xt = aj x,y = kþ /  

min N- 1, iþn 
2ð Þ  

j= max 0, i- n 
2ð  Þ  

aj x,y 

2 

β

The local response normalization includes contributions from overlapping local regions in the 

output feature map. Hyperparameters are determined from the training set, including k, a, α, and β. The 

normalization objective was a brightness adjustment, similar to other methods like local histogram 

equalization or a LUT ramp, see Chap. 2. Note that some recent practitioners do not use response 

normalization and find no benefit to justify the compute cost [590]; however, Krizhevsky reported that 

response normalization was advantageous to decrease the error rates. 

AlexNet used a method of pooling via overlapped regions, rather than nonoverlapping regions used 

in other CNNs of the day, and reported <1% accuracy improvements compared to nonoverlapped 

pooling.
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Memory and training time are the key bottlenecks that limit the architecture, so Krizhevsky’s 

architecture can be adjusted to fit within the available memory and training time budget. The training 

data set (ILSVRC) included over 1.2 million images with 256 × 256 RGB resolution, mean-

normalized. New training samples are introduced using mirrored and translated version of each 

sample, to incorporate multiple views into the scoring. Also, the RGB channels for each image are 

preprocessed using a PCA-based algorithm to select dominant components and add variance to the 

intensity and color of the images, which reduces the error rate < 1%. During training, dropout is used 

to randomly set the output of half of the neurons to zero on fully connected layers. During test time, the 

output of each neuron is multiplied by 0.5 to approximate the geometric mean of the cumulative 

dropout effects. Weights are initialized from a zero-mean Gaussian distribution, and biases are 

initialized to 1. 

In summary, the AlexNet architecture was the first to demonstrate the potential of CNNs for natural 

image datasets, enabled by GPUs for compute acceleration and large labeled datasets. 

Name AlexNet 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window stride = 4 1st layer, 1 otherwise 

Dropout, reconfiguration Dropout 50% on fully-connected layers 

Pre-processing, numeric 

conditioning 

Mean-zero normalization 

Feature set dimensions 11 × 11 × 96 RGB, 3 × 3 × 256 RGB, 3 × 3 × 384 RGB, 3 × 3 × 384 RGB, 

3 × 3 × 256 RGB, 1 × 4096 RGB, 1 × 4096 RGB 

Feature initialization Gaussian distribution 

Layer totals 5 filter, 2 classify 

Features, filters Convolutional 

Activation, transfer function ReLu 

Post processing, numeric 

conditioning 

Local Brightness EQ 

Pooling, subsampling Max pooling 2 × 2 × 2 

VGGNet and Variants MSRA-22, Baidu Deep Image, Deep Residual Learning 

The VGGnet architecture developed by Simonyan and Zisserman [590] has been highly influential, 

spawning variants from Microsoft MSRA [603] and Baidu [631], so we briefly discuss VGGNet and 

variants here, with a more detailed survey on each variant later in this section. At the time of this 

writing, the VGGNet variants from MSRA and Baidu, along with Google Inception, are achieving 

almost identical state-of-the-art results within a few tenths of a percentage point difference, which won 

several Imagenet competitions. Based in part on VGGNet, the current leader in most Imagenet 

competition categories as of 2015 is the Deep Residual Learning (DRL) method of He et al. [798], 

discussed in more detail in the Deep Neural Network Futures section at the end of this chapter, which 

supports very deep networks—over 1000 layers have been tried—the deepest DNNs to date 

(Fig. 10.32).



454 10 Feature Learning and Deep Learning Architecture Survey

Fig. 10.32 This figure shows (left) the VGGNet-19 variant used by Baidu, (center) the Microsoft MSRAA 22-layer 

VGGNet variant, compared with (right) the 33-layer Google InceptionNet V2 architecture. Together, these architectures 

currently (2015) represent the state-of-the-art in accuracy. Image # Karen Simonyan, used by permission, see also [632] 

Simonyan and Zisserman [590] developed the first versions of VGGNet using up to 19 layers of 

3 × 3 convolutional kernels rather than an assortment of larger kernels, with minimal other operations, 

namely pooling and ReLu, with excellent results. The central concept was to use stacked convolutions 

to reduce the parameter count and increase performance. As explained in the Stacked Convolutions 

section above (worth reviewing prior to reading this section), a stack of three 3 × 3 convolutions 

covers the same receptive field and approximates a 7 × 7 convolution; however, using stacked 

convolutions uses far fewer parameters, resulting in significant performance advantage at training 

time and run time. However, it may be argued that larger features such as 11 × 11 or 15 × 15 are 

invaluable for some applications requiring more detail to describe features, where 3 × 3 stacked 

reductions may not work due to the limited receptive field. 

VGGNet has inspired some notable CNNs. Note that Microsoft MSRA [603], surveyed later, also 

used a modified VGGNet architecture with 22 convolutional layers, with other modifications such as 

spatial pyramid pooling [483], parametric ReLu (PreLu) [603], improvements to weight initialization 

methods, some larger convolution kernels, and more aggressive downsampling. Baidu Deep image 

[631], surveyed later, also used a 19 layer VGGNet with a huge investment in the training protocol 

incorporating vastly more training samples than anyone else to date, assisted by a custom Baidu-

designed DNN supercomputer and other customer hardware achieving 1.9PFlops. 

For the first-generation VGGNet, the input images are 224 × 224 RGB, which are preprocessed by 

subtracting the RGB mean from each pixel. The training process involves random color shifting, 

cropping, horizontal mirroring, and scale jittering by randomly rescaling the training samples to add 

scale invariance in the range [256 × 256–512 × 512]. Scale jittering increased accuracy by ~1%, 

however, at a compute cost. In addition, horizontal mirroring of test images is applied, and at the 

softmax layer the average score of the original and mirrored version is used for scoring. Random RGB 

color shifting is also used on training samples; however, this seems to be more of a guess than a rifle 

shot, yielding less than 1% improvement, since shifting color in RGB space is quite ambiguous and



unnatural, see Chap. 1 for more information on color spaces. Multiple crops of each image were 

evaluated but proved to be insignificant, equivalent to fully padded dense evaluation using overlapping 

kernels. 
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The basic VGGNet architecture is based on AlexNet.5 Several network depths were tried as shown 

in Fig. 10.33, including various sizes of convolution stacks followed by MAX pooling at stride 2. To 

preserve spatial resolution, the stride is fixed at 1 to incorporate each pixel, and full edge padding is 

used. Each convolution uses the ReLu nonlinearity. The authors note that local response normalization 

at the output was tried, and proved to be costly and did not improve performance. The best results were 

obtained by exclusively using deeper stacks of 3 × 3 convolutions. Three fully connected classification 

layers are followed by a soft-max classifier. 

Fig. 10.33 This figure 

shows six different deep 

architectures using 

exclusively 3 × 3 

convolutions. Image from 

Simonyan and Zisserman 

[590] in CVPR, 

# Springer-Verlag used by 

permission 

Weight initialization was done in two steps. First, random weights were zero-mean normalized and 

trained on network A shown in Fig. 10.33. Then the weights were transferred to the other layers and 

training continued. The authors also recommend the training procedure proposed by Glorot and 

Bengio [636] for better random weight initialization. Training follows a mini-batch protocol. 

For classification testing, all input images were scaled to a uniform minimum size for a test scale, 

which could be different than the training scale. In addition, the first FC layer was converted to a 7 × 7 

convolutional layer, and the last two FC layers used as 1 × 1 convolutional layers for feature map

5 VGGNet and AlexNet can be fully implemented in the open source Caffe neural net package, and the best performing 

VGGNet models are available as Caffe configuration files, see http://www.robots.ox.ac.uk/~vgg/research/very_deep/.

http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/


reductions, see the NiN survey below regarding 1 × 1 convolutions. The network is applied densely 

over the entire image, so no cropping or region proposals were used. The test set is also sent as a 

mirrored image pair through the network, so the final soft-max classifier averages the image pair to 

obtain the final score. The authors evaluated using multiple crops from each test image as input, but did 

not find that the cost justified the results (Fig. 10.34).
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Fig. 10.34 This figure 
shows (top) the architecture 

parameters for VGGNet, 

and (bottom) the test results 

for a single-scale set of test 

images, from [590] in 

CVPR, # Springer-Verlag 

used by permission 

VGGNet is a preferred choice for many research tasks, especially for creating initial features for 

transfer learning, and several working models are available in the Caffe open-source neural network 

library. 

Name VGG 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window stride = 1 

Dropout, reconfiguration Dropout 50% on 1st two fully-connected layers 

Pre-processing, numeric conditioning RGB Mean-zero normalization 

Feature set dimensions 3 × 3 RGB, 1 × 4096 RGB, 1 × 4096 RGB, 1 × 1024 RGB 

Feature initialization Random mean-zero distribution 

Layer totals 16 filter, 3 classify, 5 maxpool, 1 softmax 

Features, filters Convolutional 

Activation, transfer function ReLu 

Post processing, numeric conditioning Local Brightness EQ 

Pooling, subsampling Max pooling 2 × 2 × 2 

Half-CNN 

The Half-CNN [625] was proposed by Yuan et al. as a whole-image regression model or locally 

correlated classifier. The half-CNN is a viable alternative to an SVM or other regression model. The 

Half-CNN method entirely removes fully connected layers, which eliminates the need for classifier 

design. Instead, the output is a feature map showing the correlation between the input and the features 

learned in the trained network, which has applications in detection and segmentation. As shown in 

Fig. 10.35, note the use of the novel upsampling layer which follows the pooling layer to normalize 

feature sizes to support a linear combination of detected features, followed by a sigmoid activation 

function, into a uniform sized image. The goal of the system is local correlation of input to features, 

leveraging the local nature of n × n convolutions over sliding windows. Note that the MSRA-22 [603]



system surveyed in this section also makes use of a strategy similar to upscaling to normalize feature 

sizes, with a different intent, called SPP [483] discussed later. 
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Fig. 10.35 This figure shows the Half-CNN architecture. Note the novel upsampling layer to support variable sized 

input images. Images from [625] in CVPR, # Springer-Verlag, used by permission 

Since the Half-CNN is a full-image generic regression classifier, it does not depend on region 

proposals, and is designed to support unequally sized input images. The ground truth data consists of 

prepared images using a Gaussian weight mask generated inside of a marked region (detector region), 

and the Gaussian weight mask is centered in the marked region, for example the center of the facial 

landmarks as shown in Fig. 10.36. Each image is padded to 256 × 256. This allows for the input image 

to be segmented in a smooth, Gaussian manner. The output in Fig. 10.36 is a linear combination of the 

convolutional features learned from the input images, which can be used as a mask to merge with the 

input image for segmentation output. 

Fig. 10.36 This figure shows the output of the Half-CNN, showing simultaneous detection and segmentation. The left 

image is the input image, center left is the ground truth feature map Gaussian mask fitted to the facial landmarks, center 

right is the output shown as a linear combination of the learned features, and the right image is a merge of the input image 

with the output segmentation region mask. Images from [625] in CVPR, # Springer-Verlag, used by permission 

The elements of the architecture are composed of strictly kernel-connected convolutional kernel 

filtering layers, ReLu activation, and max pooling, along with a final filtering layer using a novel 

upsampling function to force all output images to the same size, eliminating the need for input images 

to be the same dimensions. No fully connected layers are used. The filter dimensions for each layer are 

11 × 11 × 5, 7 × 7 × 5, and 5 × 5 × 5. The last layer features are upsampled to allow for a linear 

combination of features into a final feature map, which can be applied as an overlay mask to the input 

image to visualize correspondence.
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As shown in Fig. 10.35, instead of regularizing the feature sizes in a first fully connected layer, the 

upsampling layer takes care of regularizing the dimensions by rescaling all the features to the same 

size. However, due to the amount of downsampling in the maxpooling layers, there is a limit to the 

amount of upsampling that is possible, particularly for smaller images. Yuan reports that larger training 

sets (i.e., Imagenet sized) are required for good results. 

Name Half-CNN 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window stride = 1 

Dropout, reconfiguration – 

Pre-processing, numeric conditioning RGB Mean-zero normalization 

Feature set dimensions 11 × 11 RGB, 7 × 7 RGB, 5 × 5 RGB + upsampling 

Feature initialization – 

Layer totals 3 filter, 3 maxpooling, 1 upsample, 1 linear combine 

Features, filters Convolutional 

Activation, transfer function ReLu 

Post processing, numeric conditioning Local Normalization 

Pooling, subsampling Max pooling 2 × 2 × 2 

NiN, Maxout 

The Network in Network (NiN) model developed by Lin et al. [487] is perhaps the most novel and 

significant architecture in the DNN survey, and has introduced fundamental changes to the approach 

taken to create an artificial neural model. Besides the original paper [487], the NiN slides [531] and the 

poster from ILSVRC 2014 provide a good overview. The NiN authors were inspired to improve upon 

the Maxout network [546] developed by Goodfellow et al. by adding the MLP (multilayer perceptron) 

instead of simple convolution kernels as the activation function. Maxout networks use stacks of 

convolutional layers followed by Maxout layers, followed by a classification layer. Both NiN and 

Maxout use multilayer, or cross-channel methods, to create input from columns of pixels across all 

input feature maps, which we refer to as Z-columns. So, we survey both NiN and Maxout methods 

together here, focusing on NiN and briefly discussing the relevant features from Maxout networks. 

NiN innovations include: 

1. MLP feature model, using a MLP (Multilayer Perceptron) supporting a nonlinear learning model 

instead of the general linear model of convolutional features. The MLP is implemented as a three-

layer MLP micronetwork in place after the convolution operation, which gives rise to the name 

network-in-network (NiN) (see Fig. 10.37)
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Fig. 10.37 This figure shows (top) illustration a convolution pair 5 × 5 → 1 × 1 as used in the MLP layer, by pairing the 

1 × 1 MLP convolution immediately after the 5 × 5 convolution layer, and (bottom) showing another view of the CCCP 

layer following the convolutional layer. Images from [531] in CVPR, # Springer-Verlag, used by permission 

2. Z-Columns for 1 × 1 convolutions are used as a method of reducing the number of feature maps, as 

shown in Fig. 10.38. Z-columns are taken from all input feature maps at once, which the authors 

refer to as cascaded cross-channel parametric pooling (CCCP) to perform 1 × 1 × n convolutions 

(n = number of input feature maps) to reduce the volume of input feature maps. The 1 × 1 × n 

vectors are fed into the MLP. The Maxout [546] authors refer to the Z-column concept as cross-

channel pooling (CCP), used for taking the max across n feature maps. Z-column convolutions and 

Z-max-pooling have huge implications, raising questions about the precise reasons why feature 

maps are needed, what functions should be used to create feature maps, and how feature maps 

contribute to accuracy, since the Z-columns and 1 × 1 convolutions recombine the feature maps 

generated from the carefully crafted and tuned feature weights.
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Fig. 10.38 This figure shows an example method for reducing the number of feature maps (input = 64, output = 16), 

implementing Z-column pixel input for Z-pooling or 1 × 1 convolution, combining pixels from the complete set of input 

feature maps (i.e., the feature map volume) into a 1D input vectors, which the NiN method uses for input to the MLP, and 

the Maxout network uses in the max pooling operation, and InceptionNet users for dimensionality reductions. The total 

number of feature maps are reduced 

3. Convolution Pairs n × n → 1 × 1, the NiN MLP layers use a pairing of a normal 2D convolution 

immediately followed by a 1 × 1 convolution of a Z-column, to add richer representational power to 

the convolutional features. This is different from stacked convolutions, discussed earlier, since the 

goal is different. 

4. Use of Global Average Pooling (GAP) to replace fully connected layers for classification, by 

taking the spatial average of features in the last layer for scoring. This reduces the training load and 

bypasses overfitting issues as well, see Fig. 10.39. GAP is in some ways analogous to the Maxout 

Z-pooling. 

Fig. 10.39 This figure 

illustrates the global 

average pooling 

classification concept 

compared to the FC layer 

classification concept. 

Images generated by Lin 

et al. [487] from CVPR 

poster talk, # Springer-

Verlag and used by 

permission
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Maxout innovations include: 

1. Z-columns, Z-pooling, a method of reducing the number of feature maps by taking the max value 

of several feature maps and combining into a single map, reducing the feature map count, which the 

Maxout authors refer to as cross-channel pooling (CCP), combining single-pixel columns from 

input feature maps, along with spatial x, y max pooling at current layer, which adds a more robust 

convex function approximation. Note that Z-pooling reduces the number of feature maps. 

2. Dropout optimized, Maxout is designed to be complementary to dropout, and uses the same 

dropout mask for cross-channel pooling, and incorporates dropout results into the maxout function. 

Terminology Note: the terms cross-channel pooling (CCP) and cross-channel parametric pooling 

(CCCP) are used in the NiN and Maxout literature to describe collecting z columns of pixels from a set 

of input feature maps, rather than collecting x, y kernels as tiles from one feature 2D map at a time. We 

use the term Z-columns here instead, to describe the multilayer input pattern, since the term channel 

may be confused with RGB or other channels. 

As shown in Fig. 10.38, the Z-columns directly support the concept of 1 × 1 convolutions, which is 

also referred to as CCCP and CCP. As shown in Fig. 10.37, the MLP operation immediately follows a 

2D convolution operation as a convolutional pipeline. The 1 × 1 convolutions are performed as part of 

the MLP feature detector in a sliding window across all the input feature maps along with the 2D 

convolutions. 1 × 1 convolutions have several interesting properties compared to 2D x, y input patterns. 

First, 1 × 1 convolutions can be used for dimensionality reduction in the z direction, to reduce the 

number of output feature maps. Z dimensionality reduction is invaluable for reducing system 

parameters. For example, if there are 256 input feature maps of dimension 640 × 480 × 256 (x, y, z), 

the 256 feature maps can be reduced to 64 feature maps (z reduction) by performing a set of 

64.1 × 1 × 256 convolutions on the input set, yielding a smaller or reduced set of feature maps as 

desired. In addition, 1 × 1 convolutions are novel and produce rich features, and have proven to yield 

excellent results in Maxout networks, NiN, and GoogLeNet (Inception), complementary to x, y input 

patterns, and may be used together. 

The implications of the success of using 1 × 1 convolutions across Z-columns for feature map space 

reduction are profound, touching the basic assumptions of CNN design. The same can be said for 

global average pooling, see Fig. 10.39. Consider that CNN practitioners often, without questioning 

why, use each convolutional feature at each layer as a filter to transform the input images into output 

feature maps, assuming that the filters are all needed and effective. CCCP reduces the feature maps into 

a smaller set which reduces the specific contribution of each filter, raising questions about the intrinsic 

value of each feature and feature map, and suggesting serendipity. The effectiveness of CNNs seems to 

result from the sheer number of features learned in the hierarchy (averaged and generated features), 

rather than the methodology of the CNN itself. CNN-style 2D filtering involves an empirically selected 

pipeline of numeric conditioning, convolution, a nonlinear activation function, and pooling to create 

each 2D feature map. In the end, the resulting feature map is declared effective if it works good enough 

or better than another approach. However, since the 1 × 1 convolutions reduce the entire feature map 

space into a new space, whatever supposed benefit is gained from the choice of filters and the 

processing pipeline is moot, since the 1 × 1 convolutions produce an entirely different view of the 

feature maps from the originals. Therefore, representing neurons as convolutional filters to produce 

feature maps is apparently a serendipitous design choice. The NiN and Maxout results also call into 

question the very notion of generating the convolutional filter weights via backpropagation in the first 

place, even though it seems to work. Perhaps preexisting features, such as basis functions or visual 

genomes ([476] see Appendix F) are more logical starting points. Future research into the area of 

feature map Z transformations is certainly a fruitful area.
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Maxout uses a close variant of ReLu, but Maxout does not produce a zero value. NiN MLP uses 

ReLu as the activation function. Convolutions are linear functions, and often a nonlinear activation 

function is applied to add nonlinearity. Note that since the MLP is a nonlinear function itself, there is 

no strict need to apply a nonlinear activation function to the MLP result. 

Maxout adds generality to the activation function, providing for the definition of arbitrary convex 

functions such as ReLu, ABS, and quadratic functions, and is motivated by and intended to operate 

well with dropout. However, compared to the convex functions of Maxout, MLP as used in NiN is not 

limited to convex functions, which motivated the NiN authors to provide a better MLP-based feature to 

limit feature explosion and complexity in the higher layers of the network. 

The NiN approach is guided by the observation that higher-level features are composed from lower-

level features, therefore better abstractions via the MLP model for lower-level features will contribute 

to better and fewer higher-level features. The NiN approach addresses the fundamental limitation of 

convolutional features as linear functions, or a simple linear sum of scalar values * weights. 

To maximize the effectiveness of convolutional features in a CNN, an overcomplete set of features 

is needed in each layer of the DNN feature hierarchy to separately capture nonlinear variations among 

very similar features, which adds more parameters to the system. The MLP is capable of approximating 

richer features with fewer parameters, compared to convolutional features. By using the MLP instead 

of convolution, the feature count is reduced from over-complete to sufficient. Since an MLP has 

weights, MLP is compatible with the general CNN architecture and supports backpropagation training. 

NiN systems using the MLP model and global average pooling (GAP) shown in Fig. 10.39 greatly 

reduce the parameter count, mostly due to the reduced parameter count of GAP compared to a set of FC 

layers (see the discussion on fully connected layers in this chapter). Note that an NiN system with four 

MLP layers and a final global average pooling layer was demonstrated by the authors using only 7.5 

million parameters and 29 MB of memory space, compared to the Khrishevsky architecture using 

60 million parameters and 230 MB, with NiN achieving equivalent performance and half the training 

time [531]. 

In Maxout pooling, Z-column input (which the Maxout authors refer to as cross-channel pooling) 

and x, y pooling regions from the current layer are combined into a novel three dimensional x, y, z pool 

from which the max value is selected, prior to an activation function being applied. Typical max 

pooling alone only uses x, y region features from the current layer, pooled after applying an activation 

function to add nonlinearity. Maxout pooling apparently works well without rectification, and should 

be used separately for best results. 

As shown in Fig. 10.39, Global Average Pooling (GAP) is a novel operation, which reduces the 

number of parameters and eliminates the FC layers often used for classification in CNNs. FC layers are 

typically the most parameter and connection intensive layers, and GAP provides a much lower-cost 

approach to achieve similar results. The main idea of GAP is to generate the average value from each 

last layer feature map as the confidence factor for scoring, feeding directly into the softmax layer. 

Global average pooling makes sense, since stronger features in the last layer are expected to have a 

higher average value, see Fig. 10.40. So GAP can simply be used as a proxy for the classification score. 

As the NiN authors state, the feature maps under GAP are interpreted as confidence maps, and force 

correspondence between the feature maps and the categories. GAP may be particularly effective if the 

last layer features are at a sufficient abstraction for direct classification; however, GAP alone is not 

enough if multilevel features should be combined into groups like parts models, which is best 

performed by adding a simple FC layer or other classifier after the GAP.
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Fig. 10.40 This figure shows the average strength of features in the diagonal as used in the global average pooling 

method. Left and right images are different classification sets. # Min Lin and used by permission, image taken from Lin 

et al. [487] 

Also with GAP, training becomes simpler with fewer parameters, and overfitting is not a problem as 

it would be in FC layers, since the parameters are so greatly reduced. Again, the NiN authors expect 

that the MLP-generated features are higher quality to begin with, and can therefore be relied upon 

individually for supporting the global average pooling method. This author expects other trainable 

classification methods to emerge along the lines of global average pooling, rather than FC layers. 

Global average pooling is an intuitive and sensible alternative to FC layers. FC layers are not 

optimal solutions, since FC layers increase the number of connections and weight parameters quite a 

bit, and are prone to overfitting, requiring regularization methods such as dropout to prevent 

overfitting. 

In summary, NiN is a profound architecture, and should significantly influence the path of CNN 

research going forward. 

Next we will survey the GoogLeNet Inception architectures, which are influenced by NiN. 

Name NiN 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window stride = 1 

Dropout, reconfiguration Using 70% dropout rate 

Pre-processing, numeric conditioning RGB Mean zero norm 

Feature set dimensions – 

Feature initialization – 

Layer totals 22 convolutional, 5 pooling 

Features, filters MLP 

Activation, transfer function ReLu 

Post processing, numeric conditioning – 

Pooling, subsampling 4 Max pooling, 1 Ave. pooling 5 × 5-stride = 3
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GoogLeNet, InceptionNet 

The InceptionNet architecture introduced by Szegedy et al. [544], otherwise known as GoogLeNet, 

demonstrates several novel architecture concepts for creating complex CNNs, leveraging a few 

concepts from the NiN architecture [487] and Maxout architecture [546] surveyed previously. Perhaps 

the major innovation in GoogLeNet is the Inception module as shown in Fig. 10.41, which defines an 

aggregation of different sized convolution filters at the same layer, providing (1) multiscale 

convolutions, and (2) feature space dimension reduction using the 1 × 1 convolution model introduced 

by NiN. The InceptionNet architecture provides a ~10× parameter count reduction over the Krizhevsky 

architecture, and ~ 25% less compute. InceptionNet is currently one of the three top CNNs for various 

Imagenet benchmarks. Since the system is proprietary to Google, some details are not known. 

Fig. 10.41 This figure shows (top) a single inception module, combining 1 × 1, 3 × 3, and 5 × 5 convolutions into 

convolution pairs, and (bottom) the InceptionNet V1 architecture, other more recent variants exist. Note the inception 

modules, and the three branches for separate classifiers (yellow boxes). # Springer-Verlag, used by permission, taken 

from CVPR [544] 

InceptionNet is perhaps the most baroque CNN developed to date. An excellent overview of 

InceptionNet V2 is provided by Simonyan [632], and see also some overview slides by Jonathon 

Shlens [633]. Details on recent InceptionNet variants are provided by Ioffe et al. [634], and further 

developments incorporating Resnets and DRL concepts covered in Szegedy [818]. 

As shown in Fig. 10.41, the basic Inception module is similar to the NiN module with respect to the 

use of n × n → 1 × 1 convolution pairs, i.e., 1 × 1 convolutions and n × n convolutions together. 

However, Inception uses several pairs of 1 × 1 → n × n convolutions, using several parallel 2D spatial 

convolutions to increase the representation of multisize features together, such as 3 × 3, 5 × 5, and also 

uses maxpooling. So, the output of Inception modules is multiscale due to the convolutional 

reductions, even if the input is not.
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Here we highlight a few novel features of the InceptionNet architecture. Note that this summary 

covers information from several variants of the basic architecture, since exact details are difficult to 

obtain.

• CNN in early layers: A typical CNN architecture is used in the layers closer to the input, preferring 

medium-sized features, such as 5 × 5  and  7  × 7 for more aggressive downsampling to reduce 

parameters and reduce the compute load.

• Z-column 1D MLP convolutions: Like the NiN architecture, 1 × 1 convolutions are used for both 

(1) adding representational power and (2) allowing for aggressive reduction of feature map count, 

which would otherwise explode exponentially in higher layers. See Fig. 10.38 in the NiN survey 

above.

• Inception modules: Each module aggregates a series of convolutions of differing sizes, and may 

include a pooling layer and a branch off at intermediate levels for a softmax classifier, supporting 

multiscale classification. One stated Inception module goal is to support parallel multiscale feature 

extraction and classification at multiple layers.

• Multisized feature aggregation and concatenation: Multiple sizes of convolutions, such as 1 × 1, 

3 × 3, and 5 × 5 are performed in each Inception module, and concatenated together as a single 

feature vector for output to the next layer, which reduces the parameter count. Inception features 

provide a type of multiscale feature representation at each level, since the convolutional output scale 

is reduced at each layer. The feature vector contains 1 × 1, 3 × 3, 5 × 5, and 3 × 3 maxpooling → 1 

features. Feature aggregation adds representational power inspired by the NiN method, surveyed 

earlier. The authors state that the major reason for the 1 × 1 convolutions is to reduce dimensions of 

the input feature maps prior to the 3 × 3 and 5 × 5 convolutions.

• Max, Ave, striding, and convolutional pooling: Max pooling is used during feature 

downsampling between layers, and average pooling is used prior to softmax classification. Use of 

stride > 1 and convolutional downsampling is also used instead of strict pooling for some layers.

• Branched classifiers, reduced FC layers: InceptionNet allows for branching off from the lower 

levels of the network to classify features, so the network includes (1) lower-level classifiers using 

FC layers and a softmax layer, and (2) a final softmax classifier with a single FC layer. 

InceptionNet’s classification is multiscale. Splitting the classification into several parts also reduces 

the total FC network parameters in the system.

• Preference for smaller convolutions: Similar to the VGGNet concept using 3 × 3 stacked 

convolutions, smaller kernels are preferred to reduce parameters and compute overhead.

• Aggressive spatial downsampling in lower network layers to reduce parameters. 

The InceptionNet training protocol involved independently training seven slightly different 

InceptionNet architectures to arrive at an ensemble score. The training for each of the seven 

architectures only differed in the training protocol selection of images and the order of presentation. 

The final softmax score is averaged over multiple images from each scale and crop. A final FC layer 

using average pooling is used to arrive at the softmax score, and the authors note that average pooling 

worked best among several alternatives evaluated. 

Image augmentation during training included an aggressive set of operations, which the authors 

note keeps changing over time, and is hard to summarize here, such as four scales of images 

(256 × 256, 288 × 288, 320 × 320, 352 × 352) with crops taken from each scale image, and mirrored 

versions of each crop. Other scaling of patch candidate images was from 8% to 100%. Aspect ratio 

changes were chosen randomly in the range 3/4 to 4/3. Also, some geometric distortions were applied 

for some images, and also different methods for computing scale changes and other geometric 

distortions were tried including bicubic interpolation and other standard computer graphics methods.



However, due to the huge number of training image variations and changes to the hyperparameters 

during training, no conclusions were made regarding the best training protocols. 
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InceptionNet is quite complex, and defies simple mathematical analysis. In fact, the authors are very 

cautious about making claims for the architecture, since they are not sure if the success is attributable to 

the guiding principles, or just informed serendipity and hard work. But it works. See Table 10.3 for a 

parameter comparison of the top performing DNNs including InceptionNet, which is available in the 

Caffe open-source library, and more pretrained network models may be released in the future. 

Name InceptionNet Vn 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window stride = 1 or 2 for pooling layers 

Dropout, reconfiguration 40% dropout 

Pre-processing, numeric 

conditioning 

– 

Feature set dimensions 7 × 7  at  first layer otherwise 3 × 3 kernels, features/layer include 64, 192, 256, 320, 

576, 1024

Feature initialization – 

Layer totals 33 (not comparable to non-inception architectures) 

Features, filters 2d convolutional, 1 × 1 MLP 

Activation, transfer function ReLu 

Post processing, numeric 

conditioning 

– 

Pooling, subsampling Max, Ave, striding, convolutional reductions 

*Note: parameters are guesses based on published info of different versions 

MSRA-22, SPP-Net, R-CNN, MSSNN, Fast-R-CNN 

The MSRA-22 architecture developed at Microsoft by He et al. [603] is based on the VGGNet 

architecture, with enhancements in the area of weight initialization optimized for the Parametric 

Rectified Linear Unit (PReLu) introduced by He et al. [603], and also using Spatial Pyramid Pooling 

(SPP) introduced by He et al. [483] to reduce the fixed-size input image limitation of the CNN to speed 

up training and improve scale invariance. We will summarize the major MSRA-22 innovations over 

VGGnet here. Since the system is proprietary to Microsoft, some details are not known. 

The SPP approach reduces the need for fixed-sized region input, similar to other region proposal 

selection methods, so we provide a brief survey and discussion here of similar methods. The Fast-R-

CNN system (Region-CNN) developed by Girshick [638] is a simplified and optimized version of the 

SPP approach. Note: the SPP method was proposed to speed up the R-CNN approach, then Fast-R-

CNN was proposed to speed up the SPP approach. R-CNN is based on Girshick et al.’s earlier work 

[635] on segmented region proposals as input to the CNN to separately learn features and classify each 

region. A related method using a saliency score to group similar region proposals is found in [123] by 

Erhan et al. The Fast-R-CNN method applies a training protocol using mini-batches of images, and a 

sparse set of region proposals. Girchick provides interesting research on the major bottleneck of the 

method: how to determine the optimal number of region proposals. Apparently, comparing the results 

of dense versus sparse region proposals demonstrates that somewhere over 1000 sparse region 

proposals are optimum. Sparse regions proposals seem to reduce false positives. Another method of 

creating region proposal candidates is via segmentation using super-pixels as proposed by Farabet 

et al. [776]. Super-pixels can be among the best segmentation techniques, see Chap. 2 for more on



super-pixel segmentation and related methods. Uijlings et al. [600] present another method of 

generating region proposals using segmentation based on image partitions. 
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One problem addressed by MSRA-22 is scale invariance, which is often addressed by training 

multiple networks with different scales, and averaging the results. Another problem addressed by 

MSRA-22 is weight initialization and the activation function, which are correlated together and affect 

training and convergence toward best features. 

SPP is also inspired by the HMP method of spatial pooling [91, 111] surveyed later in this chapter, 

and the Spatial Pyramid Matching (SPM) method [459], surveyed in Chap. 6, which divides the image 

into nested regions, and computes features for each region. The SPP authors leverage the spatial 

pooling concept, and simply assemble all the extracted CNN features into a spatial pool from the last 

feature maps. The feature maps act like a scale pyramid of feature maps. Spatial pooling regularizes the 

input to a single size, since the number and proportion of the spatial pooling regions are the same, 

regardless of the image or feature map size. Note that the Half-CNN system [625], surveyed in this 

section, also makes use of a strategy similar to SPP, called upsampling, to normalize feature sizes. 

Spatial Pyramid Pooling [483] is used to reduce input size restrictions on the images, since most 

CNNs are designed to support a fixed-size image. CNN training protocols often incorporate cropping, 

rescaling, and warping regions into fixed-sized windows, which can distort and cut off image 

information. The authors note that SPP addresses the fixed-size limitations of CNNs that come from 

the FC classification layers which must be sized to the correct number of classification slots, while the 

convolutional feature extraction layers can accept any sized image. This observation inspired the SPP 

authors to move the scale normalization after the feature extraction, using a spatial pooling pyramid, 

just before the classification stage, to ensure class alignment, as shown in Fig. 10.42. However, the 

authors note that image scale is critical no matter what, and SPP can partially overcome scale issues. If 

pixel resolution is critical to capture local texture, then missing local texture information (i.e., pixels 

and scale) cannot be reconstructed. 

Input Classifier OutputConvolutional LayersTraining 

Protocol 

Size 

normalization 

via rescales, 
warps, 

… 

SPP Layer 

Size normalization 

via feature pooling 

SPP normalizes feature sizes after the feature layers prior to classification. 

Fig. 10.42 This figure illustrates how the SPP layer replaces the cropping and geometric transformations in the training 

protocol layer at the input by using the SPP layer prior to classification. The training protocol layer cropping and 

geometric transformations are not needed under SPP
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First as shown in Fig. 10.42, the SPP layer shifts the scale invariance steps into the SPP pooling 

layer following the last convolutional feature layer, prior to classification. SPP eliminates the repeated 

convolutional feature extractions required using different scales of images, so only one pass over the 

training image is needed, rather than multiple crops and geometric transforms. The SPP layer pools and 

scale normalizes the features prior to feeding into the classification layers, in this case an FC layer. SPP 

simplifies and accelerates the training protocol significantly. Performance is claimed to be significantly 

faster than other methods, between 24× and 170×, depending on the comparison. Speedup can be 

partially attributed to the feature pooling used by SPP, since SPP pools the final features from a 

relatively small set of feature maps, rather than from large sets of cropped or geometrically transformed 

region proposals from the input images, so the SPP pooling space is far smaller. 

Second, the feature weight initialization is optimized to work with the PReLu activation function 

introduced by He et al. [603]. The PReLu method is motivated, in part, to eliminate zero gradients, 

which stall backpropagation training. PReLu is an activation function with a learnable parameter that 

can be tuned during training to define the zero threshold. PReLu is inspired by the method of Gloriot 

and Bengio [636], which chooses a scaled uniform weight initialization to work well with a linear 

activation function. So, the PReLu authors created a weight initialization method designed to work 

well with the PReLu activation function, which turns out to be based on a mean-zero Gaussian 

distribution with standard deviation 2=ni, which works well with rectifier nonlinearities. The authors 

claim that the PReLu weight initialization method allows deeper networks to converge better, while the 

Gloriot method does not. More discussion on activation functions is found in Chap. 9. 

The MSRA-22 training protocol includes mean-zero pixel normalization, random cropping, scale 

jittering, horizontal mirroring, random color shifting, and mini-batches. Separate scores are developed 

for mirrored and unmirrored images. In addition to training on a single network, the MSRA-22 team 

tried a modified training protocol using two networks trained in parallel on separate sized images, 

sharing all weights between the networks. One network accepted 180 × 180 images, and the other 

accepted 224 × 224 images. This choice was motivated by the Imagenet competition, which provides 

224 × 224 images. The model scores were averaged together. 

As shown in Fig. 10.43, MSRA-22 architectures use up to 22 convolutional layers, including a few 

examples using some layers with larger convolution kernels and larger strides for more aggressive 

downsampling. Note that InceptionNet, along with VGG-net variants MSRA-22, Baidu Deep Image, 

are the first DNNs to surpass human accuracy on some Imagenet benchmarks.
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Fig. 10.43 This figure shows various MSRA-22 architecture variants, based on VGGnet, image # Springer-Verlag 

used by permission, taken from CVPR [603] 

Name MSRA-22 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window stride = 1 

Dropout, reconfiguration – 

Pre-processing, numeric conditioning RGB Mean-zero normalization 

Feature set dimensions 7 × 7  at  first layer otherwise 3 × 3

Feature initialization – 

Layer totals 19 filter, 3 max pool, 1 SPP 

Features, filters Convolutional 

Activation, transfer function PReLu 

Post processing, numeric conditioning – 

Pooling, sub-sampling Max pooling 3 × 3, 2 × 2, 1 × 1
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Baidu, Deep Image, MINWA 

Funded by search engine giant Baidu, the Deep Image system [631] introduced by Wu et al. employs a 

custom supercomputer hardware architecture called MINWA, and the most complex DNN training 

software architecture to date, achieving results that virtually equal the best systems in the world from 

Microsoft and Google. Deep Image is based on the VGGnet style model surveyed earlier in this 

chapter, and uses a 19-layer model with 3 × 3 convolutions at all levels, further underscoring the value 

of smaller convolutions and deeply stacked convolutions. 

Deep Image and MINWA are in a class by themselves, and employ far more compute power, huge 

groups of labeled training samples, and more extensive training sample augmentations than any 

system known to the author. The compute resources employed are staggering. 

The MINWA hardware is used to accelerate the Deep Image DNN, providing 6.9 TB of host 

memory, 1.7 TB local GPU device memory, and 0.6PFlops of total single-precision performance. The 

total compute power employed by Baidu in MINWA is in a class by itself compared to the other 

systems in this survey. MINWA is fundamentally a GPU cluster with high-speed Infiniband 

interconnects for direct GPU-to-GPU RDMA memory access, huge local memory for each GPU, 

and very large global system memory, similar to Cray supercomputer architectures from the 1990s, but 

at a fraction of the cost due to commodity GPUs. 

In addition to the huge compute power, the software is extensively optimized for parallel operation 

to fully take advantage of MINWA, far beyond any other DNN optimization reported to date (NSA has 

not reported in yet . . .), obviously intended for heavy commercial use. One technique mentioned 

regarding the optimizations is called model-data parallelism, where fully connected layers are split up 

to run in segments across several GPUs. FC layers are the major bottleneck in most DNNs, so model-

data parallelism is apparently a key to optimized performance. Convolutional layers express a kernel-

connected workload, and can be accelerated reasonably well in GPUs as-is using the SIMD and SIMT 

capabilities of GPUs, and perhaps silicon accelerators in the GPUs for convolution, if available. 

Deep Image implements the most extensive training data augmentation regime of any known DNN, 

made possible by MINWA. For training data augmentation, the authors reference the phrase “the more 

you see, the more you know” [631] to guide the preparation of training data—lots of data. 

The goals for MINWA are far higher than any academic DNN published in research journals to 

date. The authors claim to have 10,000 times more training data than other systems. Various batch 

sizes are used for training different classes, tuned to work best across MINWA. The training samples 

are broken down 75% for training, and 25% for testing. Multiple resolutions of data are used, including 

higher resolutions than smaller systems can handle, up to 512 × 512. Scale normalization combines 

multiple image scale results at the softmax layer. Note that use of higher-resolution images is made 

practical via MINWA. Use of higher-resolution images preserves detail, especially in image crops. 

Other augmentations include color castings to alter the RGB components independently in abnormal 

ways, vignetting, lens distortion, rotation, flipping, and cropping. In summary, no other DNN to date 

has been able to support so many augmentations and large datasets due to the huge compute 

requirements. 

The training protocol uses several known labeled image databases for pretraining to generate a base 

set of features for various classes of images. To date, no other system has apparently been trained on so 

many labeled databases. Apparently, the pretrained features are used at all layers to start additional 

training sessions, and all layers are fine-tuned during ongoing training. 

In summary, Deep Image and MINWA are in a class by themselves, leveraging massive data sets 

and a huge compute infrastructure to accelerate learning and analysis, pointing toward a future with 

massive, dedicated deep learning systems, employed by various state and commercial enterprises.
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Name Deep image 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window stride = 1 

Dropout, reconfiguration Dropout 50% on 1st two fully-connected layers (like VGG) 

Pre-processing, numeric conditioning – 

Feature set dimensions 3 × 3 RGB, 1 × 4096 RGB, 1 × 4096 RGB, 1 × 1024 RGB 

Feature initialization Massive pre-training 

Layer totals 16 filter, 3 classify, 5 maxpooling, 1 softmax 

Features, filters Convolutional 

Activation, transfer function ReLu 

Post processing, numeric conditioning – 

Pooling, subsampling Max pooling 2 × 2 × 2 

SYMNETS—Deep Symmetry Networks 

Gens and Domingos introduced Deep Symmetry Networks or Symnets [598] to address the fundamen-

tal invariance limitations of static weight templates normally used as features in CNNs. SYMNETS 

provide invariance to the feature space, which is missing from convnets, by projecting input patches 

into a six-dimensional affine feature space yielding affine-invariant features. A SYMNET is like a 

CNN, except that the feature generation layer operates in a six-dimensional affine space, using a set of 

affine transforms applied to each feature weight matrix prior to filtering. While the affine transform 

space is chosen to demonstrate the SYMNET concept, other symmetry spaces could be implemented. 

The features learned in SYMNETS are powerful, and more similar to deformable parts models [489] 

rather than typical convolutional style sparse features. SYMNETS incorporate several novel features 

not found in other CNNs. Note that a related concept for using invariant features is used in HMAX for 

lower-level features for composition into higher-level features, surveyed later in the BFN section. 

Gens and Domingos take inspiration from symmetry group theory to develop an affine class of 

invariant features. A symmetry transform preserves the class or identity of the feature, and is invertible. 

SYMNETS support the affine symmetry group including rotation, scaling, shear, reflection, and 

translation, as illustrated in Fig. 10.44. So, there is one set of identity feature weight matrices learned 

in the CNN for each level, and the affine feature variations are derived from the identity feature for 

filtering with the input as shown in Fig. 10.45.
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Fig. 10.44 This figure shows (top) the affine transform S1, and (bottom) an exaggerated rendering of the six-element 

generating set of affine transforms (six transforms including identity, rotation, scaling, shear, reflection, and translation) 

applied to a square, representing a square feature weight matrix. Image from [598], # Robert Gens, used by permission 

Fig. 10.45 This figure shows how SYMNET tracks feature under affine transforms. Each part A, B, C corresponds to a 

different part of the cartoon object in a feature hierarchy, and horizontal lines represent the feature position within affine 

feature space. Left shows unpooled affine feature positions in affine space for the single dark cartoon, light gray image 

represents the cartoon at another pose in affine space, and right shows how affine pooling kernels track the same feature 

under affine transformation, notice how B1 and C1 are affine transformed in light gray, and their position is located by 

affine pooling, represented by the wide ovals for B1 and C1. Image from [598], # Robert Gens, used by permission 

SYMNETS offer a feature representation that is consistent across pose variations and object part 

deformations in affine space. CNN training protocols often augment the training data via geometric and 

intensity transforms to add variation to the training set, which adds a degree of invariance to the feature 

set, at the cost of increasing the size of the feature set and training time. Instead, SYMNETS use affine



invariant features, which reduce training protocol augmentation requirements, and are demonstrated to 

speed up training convergence. 
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SYMNETS mutilevel feature representation allows for composition of higher-level affine-invariant 

features from combinations of the low-level affine-invariant features. As shown in Fig. 10.45, the 

identity of the high-level features is preserved as the low-level features move in affine space, since the 

identity of the low-level features is also preserved as they move in affine space. This is a powerful 

concept not found in other CNNs. Invariance is accomplished using a set of 100 affine variations of 

each identity feature, allowing each feature to be tracked in affine space. Each affine variation is used 

as a filter across the input image space, and all filter results are pooled (we discuss more details on the 

pooling method later). Since the higher-level features are composed of lower-level identity features, 

the lower-level identity features may be detected under affine transforms, preserving the higher-level 

feature identity. 

SYMNETS maintain an identity set of 20 × 20 pixel feature weights at each level in the hierarchy, 

used as in other CNNs for gradient descent tuning during backpropagation. However, for filtering, a set 

of novel sparse affine features, composed of 100 affine variations of each identity feature are computed 

at semi-random uniformly spaced control points within the 6D affine space. A control point in affine 

space is computed using Eq. (S1) in Fig. 10.44, by selecting appropriate affine transform coefficients 

[a, b, c, d, e, f], and then rendering the identity feature using the affine transform into a 20 × 20 pixel 

feature weight matrix. To prepare for filtering, a forward-compositional (FC) warp extension to the 

Lucas-Kanade method is used to align the affine-transformed feature patch matrix at local maxima at 

fractional resolution near grid points at a chosen stride, such as 5, and the exact grid point position is 

adjusted during LK alignment with the feature. Using the local maxima surrounding grid locations is 

similar to using an interest point, and is a novel approach for CNNs. 

Next, the dot product of each 20 × 20 feature is taken aligned at each adjusted grid point. By 

aligning the feature with the input window maxima, the dot product is maximized. Next, a sigmoid 

nonlinearity is applied, and the output for each of the 100 features is stored in a vector, analogous to a 

feature map per each of the 100 affine transforms, to allow for pooling of all the affine activations to 

find the strongest activation among all the 100 affine transforms to reveal the location of the identity 

feature in affine space. 

The result of all the 100 affine filters is reduced to a summary feature map containing the strongest 

activation of all 100 affine filters, using novel affine pooling kernels to reveal the position of the 

strongest activation in the 6D affine space, or to locate a feature under a specific combination of affine 

transformations. The summary feature map can be considered like an accumulator of all 100 affine 

transforms, similar to the accumulator used in the Hough transform (see Chap. 3). If we visualize for a 

moment that each of the 100 filters produces a separate feature map in a volume, then the affine pooling 

kernels cross the Z dimension of the feature map volume (similar to Z-columns use in NiN and 

Inception for 1 × 1 convolutions, surveyed earlier), so all affine feature activations at the current 

position are part of the affine feature activation pool. SYMNETS allow for affine pooling kernels to be 

designed to pool over combinations of transforms in the affine feature space to represent expected 

affine transformations of real objects. For example, a pooling kernel can be devised to favor pooling 

over a small range of scales and a wide range of rotations to represent realistic movement for specific



objects such as faces, or arm movements, as the features are transformed across the 6D affine space 

(see Fig. 10.46). 
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The combined results for all the filters act as a symmetry pool in the local region, supporting either 

average pooling or max pooling, max pooling being preferred by the authors. As shown in Fig. 10.46, 

symmetric kernel group pools can detect the same features under affine transforms. 

Fig. 10.46 This figure illustrates the process of affine feature generation, affine filtering, and affine kernel pooling 

Due to the affine nature of the features, the training protocol does not require extensive additions to 

the training set to include affine transformed test images. SYMNETS are trained as Convnets in mini-

batches, using gradient descent and backpropagation. The authors demonstrate that a SYMNET can 

achieve faster training convergence with fewer training samples than a typical Convnet. 

SYMNETS are compute intensive with respect to the affine transformations, and the control point 

alignments. However, CPU SIMD instructions, GPGPU kernels, image processing libraries, and 

GPU hardware accelerators could be employed, but are not mentioned. So, without optimization to 

compute affine features at control points, the affine transforms would be intractable for larger images. 

Both one layer and two layer networks are evaluated, the two-layer network performs best. 

The resulting features are fed into a fully connected layer with 500 connections, then a softmax 

layer. Larger features perform best in SYMNETS, such as 20 × 20 feature patches, compared to the 

trend in CNNs to use smaller features such as 3 × 3  or  5  × 5, thus SYMNET feature convolutions are 

very compute intensive, and in fact a single 20 × 20 convolution is equivalent to a stack of nine 

sequential 3 × 3 convolutions (see Stacked Convolution section in the Convnets discussion).

In summary, SYMNETS provide an elegant path forward toward adding invariant features into the 

basic Convnet architecture. Related work regarding adding invariant features to Convnets includes the 

work by Bruna et al. [708] using cascaded wavelets composed into feature descriptors similar to SIFT. 

A scattering-based wavelet transform adds invariance to the basic wavelets by using a nonlinearity to 

produce variant wavelets. The resulting nonlinear wavelet transforms are used in place of



convolutional features in a CNN, which Bruna refers to as a Scattering Convolutional Network, which 

includes a novel affine space classification model. 
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Name SYMNETS 

ANN type CNN 

Memory model Simple, fixed 

Input sampling Sliding window at feature-aligned grid points, stride = n 

Dropout, reconfiguration – 

Pre-processing, numeric conditioning – 

Feature set dimensions <100 features per layer, 20 × 20 size 

Feature initialization 100 affine transform permutations per feature 

Layer totals 1–2 feature layers, 1 FC layer, 1 softmax 

Features, filters Convolutional, 100 affine permutations 

Activation, transfer function Sigmoid 

Post processing, numeric conditioning – 

Pooling, sub-sampling Max pooling over 100 affine activations per feature, no subsampling 

RNN Architecture Survey 

RNNs are the most complex type of ANN to discuss, since there is no clear architecture pattern. Since 

this survey focuses on feature metrics and computer vision, we only cover the basic concepts of RNNs. 

The RNN architectures surveyed here, shown in Fig. 10.47, are selected to span a range of novel 

applications to computer vision, which is an emerging area of research. We consider Spiking Neural 

Networks (SNNs) to be related to RNNs, since SNNs use a complex neuron model allowing ad hoc 

feedback paths between neuron groups to influence neuron group firing. However, we do not cover 

SNNs and other complex neuron models in this brief survey. For more on complex neuron models, 

consult a standard text such as “Theoretical Neuroscience,” Dayan and Abbot, MIT Press. 

RNN 
Recurrent Neural Networks 

LSTM 
Long-Term 

Short-Term memory 

GRU 
NTM 

RNN-NTM 

RL-NTM 

MD-RNN 
Multidimensional RNN 

MD-LSTM 
DAG-RNN 

BD-RNN 

C-RNN 

QD-RNN RCL-RNN 

dasNET 

NAP 

Fig. 10.47 This figure illustrates the RNN variations covered in the survey
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Perhaps the most popular application for RNNs is sequence learning, such as text processing, since 

RNNs provide primitive memory cells to store previous states and predicted states. However, today 

RNNs are being combined with CNNs for computer vision applications, for example where the CNN 

performs feature learning and classification, and the RNN is used for video frame sequence learning 

and video captioning, and the CNN classification of the images can be used to influence the RNN 

sequence learning via bias weights. 

To dig deeper specifically into RNNs, the best resources include the work of Schmidhuber, Graves, 

Hochrieter, and Bengio, whose publications are cited as we go along. However, we focus here on 

selected research applicable to computer vision. To dig deeper into the field or RNNs, see Bengio et al. 

[494], Schmidhuber [492], and the upcoming book on RNNs by Schmidhuber. To get how-to 

information about designing and using RNNs, see the open-source resources in Appendix C, and 

follow the source code. We deliberately steer clear of how-to materials and detailed math here, which is 

already presented very well in the references provided. 

Early success with recurrent networks for 1D sequence learning was demonstrated in 1986 by 

Rumelhard and McClelland [670], and subsequently further developed in 1990 by Elman [671–673] 

and many others. LSTM-RNNs, a more versatile variety, are being applied in computer vision to 

spatiotemporal video sequences for applications such as activity recognition and video captioning, 

often combining both a CNN and an RNN in the same system. For example, video captioning work by 

Vinyals et al. [640] uses a combination of a deep CNN for analyzing the images, and an LSTM-RNN 

[524] for generating the text captioning. A video question-and-answer system was demonstrated by 

Ren et al. [641] utilizing a VGGnet style CNN for image feature learning, combined with an LSTM-

RNN and softmax classifier to generate answers, using the DAQUAR labeled video question and 

answer dataset for ground truth. Venugopalan et al. [642] demonstrate matching image sequences to a 

series of words which are formed into sentences, using a combined CNN and LSTM-RNN network. 

Graves [643] demonstrates a novel method of applying an LSTM-RNN to the task of analyzing 

handwriting styles, and generating plausible handwriting in a selected style. Socher et al. [660] 

combine CNNs and RNNs together for RGB-D image classification, using a tree of RNNs for 

hierarchical feature pooling. Gregor et al. [659] developed a novel RNN for image generation. 

At this time, only a small percentage of computer vision literature is devoted to RNNs. RNNs were 

originally designed to deal with sequence learning, which has been primarily researched as a one-

dimensional problem, therefore computer vision applications using 2D data are rare. However, 

Multidimensional RNNs (MDRNNs) are emerging designed for 2D image data, which we survey 

later in this section. In the future, this author envisions RNNs applications proliferating in computer 

vision, for example applied to aggregating feature descriptors together for image classification, using 

RNNs to define pattern adjacency associations among features in local regions, where ordered sets or 

sequences of features in a region are fed into an RNN for feature adjacency signature encoding, 

prediction, and matching. The classifier may then be realized using RNN signature encodings for 

various classes and objects. 

Notable methods which we do not survey include the Recurrent Attention Model (RAM) developed 

by Mnih et al. [639], which uses an RNN to select regions of the image to track and process at high 

resolution, incorporating a Glimpse Sensor and a Glimpse Network, which is trained using reinforce-

ment learning rather than BPTT (Backpropagation Through Time, used to train RNNs). Another 

method using RNNs to process images selectively at high resolutions is proposed by Mnih et al. 

[639]. Mnih et al. [639] proposed an RNN which can be selectively processing images only at high 

resolution in regions of interest.
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Concepts for Recurrent Neural Networks 

We will look into some basic concepts of RNNs here to set the stage for the survey, such as different 

RNN architecture concepts, how to unfold an RNN into an FNN to understand the forward pass and 

backward tuning pass, RNN weight sharing, and the types of memory implemented in RNNs. 

A recurrent neural network is a class of dynamic, nonlinear systems for mapping sequences to 

sequences using a concept of virtual time. The RNN uses an internal state space composed from a 

trace of the inputs seen so far, see Boden [677]. RNNs also implement a form of memory via the 

recurrent inputs, which is useful for modeling sequences composed of current and past states or events. 

Compared to other finite state models such as HMMs, the RNN is trainable, and much more efficient 

and compact for sequence representation and prediction, distributing the memory states across the 

network in uniform memory cells, rather than forcing each state of the model to store all possible state 

transitions. The RNN stores the state transitions in learned weights, like other artificial neural models. 

The RNN is also trainable via backpropagation. See Pascanu [582] regarding the difficulty of training 

recurrent neural networks. An RNN is like a finite state machine. Also, an RNN can emulate a finite 

state machine. See Tino et al. [667] and Arai et al. [668] for a discussion on the differences between 

finite state machines and RNNs. See also Pascanu [614] for some fundamental considerations on RNN 

design. 

The basic ideas embodied in RNNs include the following capabilities:

• Memory Cells: recurrent inputs are a form of memory, inputs persist.

• Serial Sequence Storage: sequences are learned and stored in RNN memory.

• Time-based and state-based shifting of input through network.

• Lateral Inhibitors/Excitators: recurrent inputs can be lateral inhibitors and excitators.

• Backwards Feedback and Controls: feedback and controls to same or other neurons.

• Weight replication over time: weights may be used and updated at each time step.

• Correlation between input data separated by long- and short-time intervals.

• Complex input pattern dependency representations to form sequences.

• Reuse of neurons in hidden layers to accumulate sequence state. 

Depending on the goals of the RNN and the exact architecture, recursive inputs can be used along 

with recurrent inputs for specific purposes including:

• Control signals from other parts of the network.

• Self-feedback for short-term memory to store state and sequence data.

• Resilience to noise.

• Excitatory signals (i.e., Hebbian learning) from associated cells.

• Inhibitory signals. 

RNN Contrasted with CNN 

A simple comparison between FNNs and RNNs is as follows:

• FNNs can approximate arbitrary functions.

• RNNs can approximate arbitrary programs6 and sequences. 

6 In fact, Zaremba and Sutskever [669] design and train an RNN to evaluate short python programs, acting as a Python 

language interpreter.
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Like the CNN, an RNN incorporates the basic convolutional artificial neural model, using weights 

and bias factors multiplied against the inputs. However, RNNs contain recurrent connections, com-

bined with some feed-forward connections. The difference between a recursive network and a 

recurrent network is that the recurrent network is organized with chained connection structures to 

support sequences, while a recursive or arbitrarily connected network is not restricted by time or 

sequences. Recursive NNs have been applied to natural language by Socher et al. [682, 683]; however, 

we do not survey recursive NNs here. A recurrent network can be unfolded into virtual time into an 

FNN, but a recursive network likely cannot be unfolded into virtual time (see Figs. 10.48 and 10.50). 
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(delayed) 

Fig. 10.48 This figure illustrates basic differences between an FNN and an RNN, after Boden [677]
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Unlike the FNN, the RNN’s time-based or state-based sequence analysis and prediction structure 

allows the data to be repeatedly, sequentially, and serially shifted into the network as if the RNN was a 

giant shift register or ring buffer. This fundamental notion of time and sequence underlies the RNN 

concept, providing both advantages and limitations. In contrast, the CNN takes 2D input window 

inputs from the current image frame, feeds the feature results forwards, then discards the entire frame 

and starts on a new frame. 

*It should be noted that FNNs are also bidirectional and recurrent during backpropagation 

training. For example, gradient descent is feed-backwards, and tuning parameters such as momentum 

may use recurrent feedback for self-adjustment. Also, an RNN can be converted into an FNN by 

unfolding over time, as discussed later in this section. 

Next we examine the method of transforming an RNN into an FNN via unfolding, which allows for 

visualizing the network as it acts on the input sequence, and is also useful for backpropagation training. 

Unfolding an RNN into an FNN 

An RNN can be remapped as a flow graph over a sequence of inputs, and then the flow graph can be 

unfolded into a feed-forward network (FNN), or chain of events. Unfolding allows the forward pass 

and the backward pass through the RNN to be visualized, and also enables backpropagation through 

time (BPTT [677]). See Figs. 10.49 and 10.50, which show equivalency between an FNN using a 

tapped delay line, an RNN, and an unfolded RNN. A simple summary of unfolding in the context of 

backpropagation is described by Boden [677], see also Bengio [494]. 

Tapped Delay Line FNN 

Output 

Hidden State h(t) 

i(t – n) i(t – 1) i(t) 

Weights W 

Weights U Weights U Weights V 

Fig. 10.49 This figure illustrates a set of delay line inputs implemented with an FNN. Note the weight sharing
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Fig. 10.50 This figure illustrates (left) a simple RNN, and (right) the simple RNN unfolded into an FNN. Note the 

weight sharing. Unfolding an RNN into an FNN is useful for visualizing the input data sequence over time, and also 

useful for backpropagation training over time (BPTT) 

The size of the sequence determines the size of the unfolded graph, or FNN. An RNN is designed 

with the sequence size in mind. Or, perhaps the RNN is designed with multiple sequence networks 

operating in parallel, each of a different length. The state or output of the RNN is composed of all prior 

inputs in the sequence: 

ot = ht it, it- 1, it- 2, . . . , i2, i1,ð Þ  

Note that the RNN state is not precise for every sequence that fits within the possible sequence size, 

but suffers some loss as the contributions are summed together, since depending on the training 

protocol, some contributions are weighted more precisely than others. The larger sequence sizes 

especially allow for generalization to sequences not found in the training data. The best precision for 

sequences will be found by designing the RNN with several parallel graphs containing different sized 

sequences, supporting sequence lengths expected in the training data and test data. However, with 

larger networks, of course more parameters and connections are introduced, increasing complexity.
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As shown in Fig. 10.50, a simple RNN can be unfolded along its input sequence as time steps, 

where the forward pass is used to compute the current state of each cell by combining the new input 

with the previous state. Note that the weights in an RNN are shared across the cells at each layer, and 

the current state is stored in the RNN cell, which we discuss later. The unfolded network appears as a 

CNN, so during the backward pass, Backpropagation Through Time (BPTT) is used to tune the 

weights; the error is computed as a partial derivative at the output of the network, and for propagating 

the error backwards, the partial derivative is partitioned into contributions for distribution to each of 

the contributing RNN cells at the nearest layer, and the process repeats backwards through the network 

to the input. We refer the reader to Graves [656] regarding backpropagation methods used in RNNs, 

including BPTT as described by Williams et al. [674] and Werbos [676], and Real-Time Recurrent 

Learning (RTRL) as described by Robinson et al. [675]. See Also Bengio et al. [494]. 

RNN Weight Sharing and Probabilistic Matching 

Weight sharing is an artifact of RNN unfolding into an FNN, as previously described. As shown in 

Fig. 10.50, the same weights are shared at different time steps in the graph for the unfolded FNN. This 

reduces parameters, but also reduces precision to a point. Weight sharing is apparent in the unfolded 

graph, but in the recurrent graph the weights are implicitly shared at each time step, so the single RNN 

cell does not share weights, but rather reuses the same weights for each time step. 

In RNNs, the idea of weight sharing across time allows for the same weights to apply to a range of 

sequences and subsequences such as “abcd” and “abcdefg,” and anomalously to different sequences of 

the same length such as “abcd” and “abcz.” The idea of sharing weights allows for generalization to 

new sequences similar to the learned sequences. But in this respect, weight sharing provides for a 

statistical modeling capability allowing for generalization and approximation, rather than an exhaus-

tive, logical exact-match modeling capability requiring a larger memory system containing all known 

sequences to match against (which may be preferable if obtaining the complete training set is possible, 

and exact matches are required). Generalization and weight sharing for sequences and subsequences 

implies variable precision. 

The final effect of weight sharing is that the sequence matching is not precise, but rather 

approximated, so an appropriate distance function must be used to predict the match probability. 

Therefore, the final classification and matching is similar to polling each RNN cell in the sequence, and 

then combining the strength of the activations of each cell into the final match probability for a given 

sequence. 

RNN Cell and Network Taxonomy 

For the sake of this basic overview to illustrate the RNN concept, we taxonomize RNNs with the 

following examples of cells and network topologies, knowing that this list is far from complete (see 

Behnke [488] to dig deeper and find detailed references). 

RNN Cell Type, as illustrated in Fig. 10.51, implements a form of memory, utilizing recurrent 

inputs, input from other RNN cells, and programmable gate functions for variable combinations of 

values. RNN cells have been developed and improved to provide more control over the memory, and in 

particular the Long Short-Term Memory model (LSTM), introduced by Schmidhuber [524] in 1991, is 

particularly attractive, which we survey later.
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Fig. 10.51 This figure illustrates a few possible RNN cell concepts. The RNN cell is a hidden unit, or artificial neuron. 

The recurrent feedback is a form of memory. (Left) Example RNN cell, (center) example LSTM cell with input trainable 

combinations of input, current state, and output, and (right) GRU cell combining weight combinations of input and 

current state. Cell types discussed later in this section 

For the RNN cell taxonomy, we recognize:

• RNN Simple Cells, using a simple recurrent input, each cell is an artificial neuron with inputs, 

weights, bias, and output.

• LSTM Cells, GRU Cells, like the simple cells, with the addition of gating functions to allow the 

memory to persist and be more controlled. 

RNN Network Topology is composed of RNN cells and other artificial neuron cells, using various 

connection topologies. RNN architecture topology may include recurrent portions, FNN portions, and 

arbitrarily connected portions. There is no common RNN architecture. 

Various RNN network topologies include:

• DAG-RNN, DirectedAcyclicGraphRNN,whichmay use recursive connections in a lattice, tree or other 

graph structure topology. DAGs provide a basic topology used in multidimensional RNNs, see [658].

• ACRNN—Arbitrarily Connected Recurrent Neural Network, which is the model neurobiology 

reveals; however, it is difficult to model.

• DTRNN—Discrete-Time RNNs, which are synchronous, and operate like a state machine driven 

by a clock.

• CTRNN—Continuous-Time RNNs which are asynchronous, operate similar to a state machine, 

and react dynamically.

• BRNN, BLSTM—Bidirectional RNN or LSTM, composed of two RNNs working in opposite 

directions. The BRNN provides context in both directions by incorporating inputs into the RNN cell 

from both the forward (next) and backwards (prior) direction, combined into a single output, also 

known as a 1D DAG-RNN.

• RRNN—Reverse Direction RNN, where the input sequence is read in reverse, rather than forwards, 

see Sutskever et al. [680].

• MDRNN, MDLSTM—Multidimensional RNN, capable of supporting 2D imaging and computer 

vision problems, using an extension of the BRNN into two or more dimensions. 

RNN topologies shown in Fig. 10.52 include (right) an MLP modified to accept recurrent inputs at 

each layer, (center) skip connections used to distribute the input to all cells in the network, to reduce the 

path for computing the gradients so the gradients do not vanish, and (left) a deeper RNN for modeling 

longer-time sequences, where for example the network is divided into an encoder section to store 

sequence tokens, and a predictor section that interprets the tokens.
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Fig. 10.52 This figure illustrates a variety of RNN architecture connection topologies 

RNN Sequencing and State 

RNNs implement a neural model that stores sequences in distributed memory. The memory may 

persist over a variable length of time, and is distributed over several memory cells depending on the 

depth of the RNN architecture. RNNs may be designed to operate more like a finite state machine, 

rather than an FNN. The concept of time is central to RNN sequence learning, and may be synchronous 

or asynchronous. For example, data flow through the RNN one input per time step, and past input is 

stored in the network as desired. While FNNs are typically organized after the concept of layers, RNNs 

are not easily decomposed into layers, and more often resemble a network of cells or cell groups. 

A lucid overview of neural methods for sequence processing is provided by Cho et al. [665], 

summarizing key research and concept development, and providing good intuition and working 

knowledge. Cho also introduces the gated recurrent unit (GRU), surveyed later along with the 

LSTM. As shown in Fig. 10.53, a sequence is first encoded from the input and stored in the RNN 

memory cells until the sequence is determined to be complete, and subsequently the sequence can be 

translated into another sequence or decoded, and then the sequence memory is released to process the 

next input sequence. For example, an English sentence with ten words may first be encoded into a 

vector representation, and subsequently decoded into a sequence of 14 French words, where each 

word, word pair, or phrase may be a recoded as needed to a correct length sequence.
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Fig. 10.53 This figure illustrates the processing of a simple sequence in an RNN. Note that for this illustration, each 

input token “string” x is internally encoded as an integer acting as an index into a table of strings 

The RNN cell state depends on the past state combined with the present inputs. RNNs are often used 

to predict future states, since a series of past states which have been learned and stored in the network 

are the basis for future sequential states added to the known past states. By combining RNN cells into 

deep networks, deep sequences can be learned. In fact, RNNs are often very deep compared to CNNs. 

We will survey a few examples later in this section. 

Complex spatiotemporal patterns or rhythms can be learned and stored in RNNs. The RNN takes 

input, records state in memory, and produces outputs. RNN state memory can change based upon input 

and other gating factors, and produce state-related outputs. Other methods used to learn sequences such 

as finite state machines, Hidden Markov Models (HMMs), and Gaussian Mixture Models (GMMs), are 

not trainable using differentiation and backpropagation. 

While an MLP or CNN is a general function approximator, and RNN is a general sequence 

approximator, and have been used to create program code sequences [669]. However, the sequence 

state is probabilistic due to the representation as a combination of weights and bias, since the RNN 

does not contain a full dictionary of every possible word and phrase combination; instead, the RNN 

goal is to generalize and learn via phrase encoding. In the RNN, the probabilistic notions are encoded 

in the individual weights for each cell and combined into a summary probability, rather than comparing 

complete phrase candidates to known phrases via probability. RNNs take advantage of temporal state 

information in the RNN cells for dynamic learning and prediction of spatiotemporal sequences. While 

FNNs learn classes in batches, the RNN can dynamically learn over time. RNNs are more versatile 

than state-less models, such as HMMs and SVMs which are applicable to classification. However, an 

RNN can be applied to both classification and sequences. An RNN can perform parallel and sequential 

computing. In general, recurrent networks are designed with far fewer parameters than an FNN, 

resulting in faster learning. In addition, RNNs can be designed with good generalization compared 

to strict CNN features.
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RNN Memory Models 

A central concept in the RNNs is memory models. Most RNN variations center around the memory 

model used, summarize below. The RNN memory models are designed to be intelligent, smart 

building blocks to implement spatiotemporal machine learning algorithms. So far, most of the work 

applying smart memory systems to computer vision is very primitive, and is done within the RNN 

architecture rather than the CNN architecture. However, we highlight the work of Weston et al. [645] 

as one recent example of applying a more advanced memory model to machine learning for text 

recognition. We expect that smart memories alone could provide impressive tools for developing 

entirely new approaches to machine intelligence and computer vision, since biological intelligence 

denotes associative memory categorization and recall. Smart memory is a trend to watch for the future. 

See Appendix F for a discussion of Visual Genomes [476], which are a form of computer vision feature 

memory impressions. 

For example, it is possible to represent a CNN by an associative memory matrix (AMM) as 

demonstrated by LaRue [646] under contract with DARPA. LaRue converts a CNN into a bidirectional 

memory matrix of relatively small dimensions to replace an entire CNN, compressing all hidden layers 

in a single association matrix, which is faster to train and faster to execute—a full order of magnitude 

faster is claimed. Smart memories for computer vision and machine learning are a fruitful area for 

future research, but outside the scope of this brief survey. 

Here we briefly summarize a few types of smart memory, which have been incorporated into neural 

networks, with some of the methods implemented using RNNs. References are provided to dig deeper.

• CEC LSTM, GRU—Constant Error Carousel (CEC) and Long Short-Term Memory (LSTM)— 

Developed by Schmidhuber et al. [524]. CEC and LSTM allow memory to persist, and errors to 

remain constant, rather than vanishing or exploding. See Fig. 10.54, LSTM is especially effective 

over long-time lags. LSTM is a trainable artificial neural model using weights and bias factors, 

where the memory cell is surrounded with a few gating functions, to control memory persistence, 

updates, and reset. The constant error carousel is the mechanism of preserving the memory 

unmodified at the current state. We survey LSTM along with the variant GRU later in this section.
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Fig. 10.54 This figure illustrates one embodiment of an LSTM memory cell, others are possible. Note that the Forget 

Gate controls the error carousel (CEC), and the CEC value stays at 1 to preserve the memory until the Forget gate 

changes. The Input Gate and Output Gate control their corresponding gate units. See Schmidhuber [651] and Graves 

[643]

• Semi-infinite Tape Model (NTM)—The Neural Turing Machine RNN, developed by Graves et al. 

[523], uses a semi-infinite tape memory model containing LSTM cells; the memory persists as long 

as needed. NTM is novel, but difficult to optimize for random-access workloads. Instead of hard-

coding the number of LSTM cells, the semi-infinite tape of LSTM memory cells can grow and 

shrink. NTM also allows forward-backward traversal of time (Virtual Time).

• CAM, AMM, Hopfield Networks, SOM—Content Addressable Memory was first implemented 

as an RNN by Hopfield [650] in 1982, also known as a Hopfield Network. In a CAM, the memory 

address corresponds by association to the contents of the cell, similar to a hashed-key of the cell 

contents. CAM memories have been applied to a variety of problems in computing for several 

decades, but are not popular in machine learning for computer vision. An Associative Memory 

Matrix (AMM) is similar, but can be derived from a CNN, see LaRue [646], which can also be used 

to implement a BAM (Bidirectional AMM) using SVD and PCA on the vectors to mitigate spurious 

basins of attraction. See also Kohonen [649] for a discussion on a similar concept, the Self-

organizing Map (SOM).

• BAM—Bidirectional Associative Memory in an RNN was first demonstrated by Kosko [648] in 

1988, similar to CAM memory, except that each memory cell contents is a key to other related 

memory cells. The concept of associations is a vital notion within intelligence, so BAM memory 

systems can be used similar to distance functions (see Chap. 4) to identify feature candidates for 

classification and feature matching. LaRue [646] has developed a novel CNN using a BAM running 

concurrently with a CNN, which apparently is much faster to train than a CNN alone. Much earlier 

work has also been done in the area of BAM memories and variants, see for example Zhou and 

Quek [647] for a discussion on DBAM and DCBAM. See also LaRue [646].
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LSTM, GRU 

The LSTM is a type of RNN designed to implement a memory cell providing short-term memory 

(STM), which can bridge long (L )-time lags (L + STM). LSTM was introduced by Schmidhuber [524] 

in 1991 as an improvement on the RNN model to overcome gradient descent problems, and to 

efficiently compress learned representations in a deep architecture using groups of interconnected 

RNN-LSTMs. The LSTM model provides for constant error flow back in time, preserving the RNN 

memory cell contents when needed, and preserving backpropagated gradient information over long-

time lags to avoid vanishing gradient problems. RNNs have been limited by backpropagation training 

difficulties, and the lack of any standard RNN architecture. However, the LSTM-RNN innovations 

have made RNNs much more trainable and have enabled deeper networks. See also Ders [678] for a 

detailed analysis of LSTM strengths and weaknesses. 

An LSTM is a linear integrator, like other artificial neural models, using weights and bias to 

integrate over inputs. The LSTM contains training mechanisms (gates) to determine when and how 

much the integrator listens to inputs to influence the current state. However, as shown in Fig. 10.54, the 

LSTM is a more complex artificial neural model of a memory cell than a simple RNN, incorporating a 

combination of gates as follows:

• Input gate (logistic unit, weights = [1:0]).

• Forget Gate, controls the current state (linear unit, weights = [0. . .1]).

• Output gate (logistic unit, weights = [1:0]). 

The input gate and the forget gate together determine how much input is stored, and how much of 

the current state is forgotten. This arrangement allows for long-term dependencies between sequence 

elements to be represented and learned. For example, with the forget gate weight set to 1, the LSTM 

will retain its current state value over time, and when set to 0 the current state is forgotten. Intermediate 

weight values are possible also for partial forgetting. The input and output gates with the value of 1 or 

0 produce simple derivatives during backpropagation, so since the derivative of a constant is zero, no 

error is propagated. 

The LSTM cell state in Fig. 10.54 can be computed as follows: 

it ¼ σ ð  Wxixt þ Whiht- 1 þ Wcict- 1 þ biÞ

f ¼ σ Wxf xt þWhf ht- 1 þ Wcf ct- 1 þ bf 

ct ¼ f tct- 1 þ it tanh ð Þ  Wxixt þWhiht- 1 þ bi

ot ¼ σ ð  Wx0xt þ Whoht- 1 þ Wcoct- 1 þ boÞ

ht ¼ ot tanh ð  ctÞ  

*where σ is the sigmoid function. 

A recent variation of the LSTM is the Gated Recurrent Unit (GRU) developed by Cho et al. 

[665, 666], which uses only two control gates: the input gate and the dynamic gate, providing a simpler 

model for backpropagation tuning. If we consider the current cell value and the new input value as two 

inputs to the GRU neural function, then the GRU dynamic gate allows for weight combinations of 

current value and input value. As shown in Fig. 10.54, when the input gate is closed, the contents of the 

memory are overwritten with new input. When the dynamic gate is closed, past information from 

previous cells is incorporated in the weighting computations at the desired strength proportional to the 

dynamic gate value, which can be used to reduce vanishing gradient problems. Also, Cho developed a 

gated recursive convolutional neural network (grConv) based on the GRU for text translation, see 

[666]. Note that the LSTM concept was originally implemented with fewer gates also, like the GRU.
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A weakness of basic RNNs is that there is no way to control updates to each memory cell, which is 

simply a recurrent feedback or input with no controls. The LSTM allows data in each cell to be 

protected, and retains state as long as desired, using a combination of gates. The gates are analogous to 

memory read/write, and reset operations. However, the gates may use a nonlinear sigmoid function 

range 0–1. If the output gate = 0, the LSTM cell cannot be read. If the forget gate is zero, the data in the 

cell are zero, or reset. 

One fundamental problem solved by the LSTM is elimination of vanishing gradients, which are the 

thorn in the side of gradient-based backpropagation methods. The solution: the Constant Error 

Carousel (CEC), which provides a constant backpropagation error flow to one or more neural units, 

since LSTM cells can be integrated together to share the CEC. The forget gate is used to control the 

CEC on one or more cells. (NOTE: there is no fixed LSTM design, since the CEC can be shared among 

LSTM cells.) The constant value of 1 is used multiplicatively as the CEC weight to preserve the current 

state, rather than feeding an infinitesimal gradient in, which would scale the cell value toward zero. 

When the forget gate is changed to a value other than 1, the neuron cell value will change. The CEC 

also mitigates the problem of oscillating gradients. The work of Lyu et al. [679] on the gating functions 

shows that steeper gating functions, such as a steeper sigmoid that forces values to 1 faster, are better 

for accelerating learning and forcing convergence. 

Within a connected network, the LSTM can learn when to forget memory, and when to update 

memory. LSTMs typically use the basic convolutional neural learning model to support 

backpropagation by gradient descent. However, other training approaches besides backpropagation 

via gradient descent are possible using LSTMs, see Schmidhuber et al. [644], and there is no clear best 

method for training RNNs since the topology varies widely. The LSTM concept can be implemented in 

several ways, for example with or without the forget gates. One method is illustrated in Fig. 10.55. 

Fig. 10.55 This figure illustrates LSTM cells interconnected with other cells, after Schmidhuber [651]
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LSTM is a time-aware learning method. Sequences such as algorithm steps, or larger processes can 

be learned. LSTM can learn to reproduce sequences, organize, and recall data associatively. LSTM can 

handle sequences, and disconnected sequence delimiters analogous to quotes or brackets. For example, 

an LSTM cell could be set to recognize an open bracket “[,” and trained to reset itself on detection of 

close bracket “].” LSTMs operate well when the training data, or input stream, contain sufficient 

redundancy and predictability. Purely random data would not do well in an LSTM architecture, since 

the purpose is sequence learning. 

Another key concept of LSTMs is compression. For example, an LSTM cell may be set to monitor a 

sequence of characters looking for delimiter sequences, such as “,.” By doing this, the intermediate 

values are not stored, only the delimiters are stored. This is sequence compression. The sequence 

compression idea can make the LSTM network more resilient to errors, since sequences which are 

much larger than expected are required to break the paradigm. LSTMs are often organized into layers 

to represent time steps, or sequence steps. The lower layers would learn initial sequences, and the 

higher layers would learn the unknown sequences which lower layers did not learn, in more and more 

compact form. In addition, LSTMs can be organized into larger memory blocks containing entire 

sequences per block, with a common CEC to control the block. 

Future directions for RNN-LSTM style approaches includes meta-learning or learning to learn, and 

memory networks, see Schmidhuber [653]. A good introduction to meta-learning using LSTMs is 

found in Hochreiter et al. [652], which is an ideal application for LSTMs since an LSTM can change its 

own weights to improve its own algorithm. We discuss 2D LSTMs applied to computer vision in the 

multidimensional RNN (MDRNN) section below. 

NTM, RNN-NTM, RL-NTM 

The Neural Turing Machine (NTM, or RNN-NTM) is an RNN developed by Graves et al. [523] to 

implement an RNN as a trainable, probabilistic memory controller for a physical memory unit such as 

a DRAM. The NTM is designed to automatically learn algorithms, particularly basic memory access 

patterns (sequences) and the memory values (CAM) written to memory. The NTM can also generalize 

the learned algorithms, which is much more demanding than learning simple sequences such as a word 

phrases or sentences typically performed via RNNs. Currently the author knows of no computer vision 

applications for the NTM; however, computer vision applications are expected as research continues. 

The NTM memory model is demonstrated as an enhancement to the LSTM model [524]. However, 

as the NTM model’s memory size and sequence size increase, compute complexity exponentially 

increases also, since RNNs access each memory cell at each time step. The physical memory address is 

actually represented by NTM as a probability distribution over the possible memory addresses, rather 

than as an absolute memory address. Therefore, as the memory space size increases, the probability 

computation increases exponentially, limiting NTMs to sequence sizes practical for computation on 

the chosen platform. To address limitations of the NTM, the RL-NTM (Reinforcement Learning NTM) 

was developed by Zaremba and Sutskever [686] to improve the NTM model, substituting reinforce-

ment learning rather than an RNN to learn memory access patterns. We only briefly survey the NTM 

and RL-NTM here as extensions of the LSTM concept, illustrative of the capabilities of RNN style 

memory, and refer the interested reader to the original papers cited. 

Graves et al. [523] provide the analogy that the NTM-RNN is like a Turing Machine acting on an 

external memory device, so following the Turing Machine model which uses a semi-infinite tape as 

memory, the NTM model incorporates the archaic concept of read and write heads (a read/write head 

is used on magnetic tape drives). Like the Turing Machine, the NTM incorporates a notion of



instruction sequences such as sequence position, read, erase, and add, as well as RNN constraint 

concepts including time and clocking (Fig. 10.56). 
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Fig. 10.56 This figure illustrates the basic NTM concept. Note that the NTM is a controller for an external memory 

device, with an instruction set controlled by weights, trainable like other RNNs 

As shown in Fig. 10.57, the NTM implements a probabilistic read and write address method which 

provides an attentional focus window on variable sized groups or windows of concepts, which can be 

one of:

• A CAM: a value or range of values spread across memory locations.

• A Sequence: an address (time step) or range of addresses. 

The attentional focus window can be narrow or wide, depending on a blurriness weighting factor 

and other weighting factors, which make the learning process differentiable and amenable to gradient 

descent learning like other RNNs, but therefore probabilistic rather than absolute. Blurriness allows 

memory concepts to be selectively ignored while others are in focus, as shown in Fig. 10.57. It is not 

entirely clear how the blur parameter works from the NTM paper [523], since the NTM system is 

proprietary. 
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Fig. 10.57 This figure illustrates the variable-focus memory window concept in the NTM model, where the level of 

focus can be increased to be more specific, or decreased to be more probabilistic. (Left) A variable-width of a time-based 

sequence window, and (right) a variable-specificity content-based window
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The NTM CAM addressing mechanism is similar to content addressing in a Hopfield network 

[650], using a blurry, approximate address, or sparse address, which uses part of the concept’s data, 

which is then compared into the other concepts (chunks) to find the chunk containing the closest 

match. Another way to describe the NTM memory is similar to a classifier, which finds the closest 

memory concept given a sparse descriptor or key, and weights. 

The NTM authors cite a range of neurobiological research as inspiration. For example, Baddeley 

[541] and others have shown that human learning and reasoning process typically keeps several 

concepts at attention simultaneously at the request of the central executive, which is directing the 

reasoning task at hand. The central executive concept assumes that inputs may come in at different 

times, thus several concepts need to be at attention at a given time for the best learning to take place. 

Perhaps up to seven concepts can be held at attention by the human brain at once, thus Bell Labs 

initially create phone numbers using seven digits. Selected concepts are kept at attention in a working 

memory or short-term memory (i.e., attention memory,  or  concept-memory), as opposed to a long-term 

memory from the past that is not relevant to the current task. As shown by Goldman-Rakic [542] for the 

human brain, the attention-memory or concepts may be accessed at different rates, for example 

checked constantly, or not at all, during delay periods while the central executive is pursuing the 

task at hand and accessing other parts of memory. The short-term memory will respond to various cues, 

or according to some logic or rules, and loosely resembles the familiar associative memory or content-

addressable memory (CAM) used for caching in some CPUs.

Graves et al. demonstrate that the NTM can be trained and optimized for sequential access copy 

operations, chunked access, and sorting, further illustrating how the NTM can learn longer sequences 

than an LSTM model. However, since the LSTM can be arranged in a variety of configurations, it is not 

clear how the comparisons are made. In addition, the exact NTM architecture is not provided in the 

paper [523], neither is the LSTM architecture provided which is used for the comparison. 

The applications of the NTM seem well matched to searching and sorting operations performed by 

search engines. If developed further, the NTM concepts could be made into a standardized type of 

silicon device with wide applications to machine intelligence (NTM-RAM or SMART-RAM), storing 

and organizing learned sequences and tuples such as n-grams, which could be a viable alternative to 

most classification methods, and also support other general purpose computing applications for data 

analysis. 

Multidimensional RNNs, MDRNN 

We introduce the Multidimensional RNN (MDRNN) and variants here as a group of related 

architectures, to point out their similarities and applications to 2D images. The MDRNN is a special 

case of the DAG-RNN model introduced by Baldi and Pollastri in 2003 [658], sometimes implemented 

as a sequence model for 1D via the BRNN (Bidirectional RNN), which uses a directed acyclic graph 

model and recursion within the RNNs to handle sequences. DAG-RNNs can also be implemented in 

multiple dimensions such as for 2D images, for example supporting a 2D network with a separate RNN 

for the forward and backward passes. The DAG-RNN concept is described by Baldi and Pollastri as 

analogous to two wheels, containing weights, moving in opposite directions across the data sequence, 

combining the current input and bidirectional wheel outputs to compute the prediction.
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2D RNNs and 2D LSTMs for Computer Vision 

A few applications of RNNs and LSTMs to computer vision are appearing in the literature, we briefly 

highlight a few here. Graves developed an MDRNN [656] for image segmentation, including the 

related MD-LSTM variation [663]. Of all the RNN architectures, the MDRNN is most applicable to 2D 

imaging and computer vision, since 2D and higher dimensions are directly supported. Donahue et al. 

[654] developed an LSTM-based image captioning and activity recognition system using LSTMs and 

CNNs together, see Fig. 10.58. Byeon et al. [709] developed a novel Quad-LSTM arrangement to 

capture sequences in the four compass directions (n, s, e, w), process an image frame using four parallel 

LSTMs, feeding the four sequences into a CNN to sum and squash the sequences using a nonlinearity, 

and feed the result into a softmax layer, the goal is to model local and global pixel dependency 

sequences for scene labeling. Yong et al. [710] apply RNNs to action recognition, using the RNN to 

learn motion sequences. 

Fig. 10.58 This figure illustrates (left) a hybrid CNN and LSTM architecture for sequence learning in activity 

recognition and video captioning applications, (right) the concept of encoding and decoding sequences using LSTMs, 

images from Donahue et al. [654] CVPR 2015, # Springer-Verlag, used by permission 

In many cases, 2D RNNs and CNNs are combined so each can accomplish different complementary 

tasks, usually relying on CNNs to learn features, and RNNs to learn sequences of features from frame 

to frame, or spatial relationship sequences between local features. For example, CNNs for visual 

recognition and LSTMs for sequence prediction are found in Venugopal et al. [642], Ren [655], and 

Donahue et al. [654] who apply LSTMs for activity recognition and video captioning. 

Later, we also survey the C-RNN [662] in more detail as an example of an MDRNN application to 

computer vision.
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MDRNN, MDLSTM, DAG-RNN, BDRNN, RRNN 

We will survey variations of the basic MD-RNN in this section. Variants include the multidimensional 

LSTM (MDLSTM), and the directed acyclic graph RNN (DAG-RNN). Also, we discuss the related 1D 

RNNs on which the 2D variants are based including the bidirectional RNN (BDRNN), and the reverse 

RNN (RRNN). To understand the concept of the MDRNN for 2D images, we first look at the 1D case, 

the BDRNN or bidirectional RNN (sometimes abbreviated BRNN) as shown in Fig. 10.59, which is 

composed of three RNN networks: 
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Fig. 10.59 This figure illustrates a simplified BDRNN, or 1D case of the MDRNN. Note that the forward layer F and the 

backward layer B are composed of a separate path of hidden units 

Fi—forward network to predict the upstream sequence. 

2. Bi—backward network to predict the downstream sequence. 

3. NO—summary network to combine the output from (1) and (2). 

*Note that Fi and Bi run in opposite directions on the data sequence. 

For each position in the sequence, the forward and backward networks are combined by NO into a 

final prediction, and errors are propagated in both directions along Fi and Bi. Imagine two overlapping 

sequence predictions running in opposite directions, distributed about the current position: the 

BDRNN output prediction at the current location is a combination of both directions. 

According to Fig. 10.59, the 1D BRNN output Oi is composed from the NO, NB, and NF RNNs and 

may be computed as follows: 

Oi ¼ No I i,Fi,Bið Þ  

Fi ¼ NF I i,Fi- 1ð Þ  

Bi ¼ NB I i,Biþ1ð Þ  

Note that the BRNN reads sequences in both directions: forward and reverse. However, Sutskever 

et al. [680] developed an RNN for text-to-text translation which reads the input sequence in reverse, 

which we refer to here as an RRNN (Reverse RNN). Sutskever found that by reversing the input strings 

during training, the RNN-LSTMs used were able to deal with much larger sentences, and performed 

measurably better. Sutskever believes that training similar RNN networks with reversed input 

sequences will enable them to perform better as well.



494 10 Feature Learning and Deep Learning Architecture Survey

To extend the BRNN into the 2D case, we introduce a 2D network using four overlapping networks 

following the compass directions NSEW as NN, NS, NE, and NW within the image raster, centered about 

the pixel at the current time step, illustrated in Fig. 10.60. 
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Fig. 10.60 This figure illustrates the 2D MDRNN concept illustrating a 3 × 3 pixel 2D image as input to four RNN 

sequences (N, S, E, W) combined into a fifth output RNN. Note: compare this illustration with the 1D BRNN example in 

Fig. 10.59 

According to Fig. 10.60, the 2D MDRNN output Oi can be composed from the NO, NN, NS, NE, and 

NW RNNs as follows: 

Oi,j ¼ No I i,j,Ei,j,W i,j, Si,j,N i,j 

Ei,j ¼ NE I i,j,Ei- 1,j,Eiþ1,j 

W i,j ¼ NW I i,j,W iþ1,j,W i- 1,j 

Si,j ¼ NS I i,j, Si,j- 1, Si,jþ1 

N i,j ¼ NN I i,j,N i,jþ1,N i,j- 1 

As described by Graves et al. [656, 657, 663], the basic idea for the MDRNN or MDLSTM is to 

extend the single recurrent input with as many recurrent inputs as there are dimensions. As illustrated 

in Fig. 10.60 for the 2D case, the MDRNN is modeled as an ordered sequence of pixels on a series of 

scan lines in Cartesian coordinate space. Note that the pixels from the image are scanned into the RNN 

as a sequence, one line at a time, from left to right, from top to bottom. This sequence defines the RNN 

adjacency connection patterns possible. The application of the MDRNN in this case [656, 657] is 

image segmentation into regions of similar texture patterns, the textures are known and labeled in the



training data, so adjacent pixels from the current line and prior line are useful to detect and define the 

segmentation. However, Graves et al. [664] also developed a method for RNN classification of 

unlabeled data via the Connectionist Temporal Classification method (CTC). 
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As shown in Fig. 10.61, the image is scanned a frame and line at a time into the RNN, therefore the 

RNN sequence state at any one time includes prior pixels only, including the adjacent pixel from the 

prior scan line, and the previous pixel on the current line, so only two directions of connectedness are 

known at once. So for this example, the RNN architecture should at least be large enough to hold two 

lines of pixels, the current and previous lines, and perhaps the input buffer can be arranged as a circular 

pixel buffer,  or  a  line buffer pool for previous, current and next lines, with pointers to each which 

change as the previous line becomes the current line, and so on.

y = 480 scan lines  

x = 640 pixels / line 

Image 

(x,y)(x-1,y) 

(x,y-1) 

Fig. 10.61 This figure illustrates frame-based scanline input to an MDRNN 

In summary, the MDRNN can be applied to 2D images or higher dimensional arrays, and has been 

used effectively in image segmentation. However, the type of feature generated by the MDRNN is a 

very primitive set of 1D weight templates, forming a 1D intersection kernel around the center pixel. It 

is not clear if the MDRNN approach has enough foundation to be extended into more powerful 

hierarchical feature sets, which have been demonstrated in the CNN approach to be very effective for 

classification. 

Next, we survey selected examples of MDRNNs. 

C-RNN, QDRNN 

The Convolutional-RNN (C-RNN), or Quad-Directional RNN (QDRNN), introduced by Zuo et al. 

[662] learns spatial dependencies between convolutional features in local regions, which has been a 

glaring weakness of the simple CNN feature model. (To be fair, we note that the CNN model was not 

designed to handle the problem of spatial dependencies.) The C-RNN is one of the few examples of an 

RNN being directly applied to computer vision feature representation. First, the C-RNN uses a CNN to 

capture features across the image. Second, the 2D CNN features are fed into four RNNs operating in 

parallel to capture feature sequence signatures in quad-directional compass directions, forming a



cross-shaped feature dependency pattern. The quad-directional sequences are collected in a global 

hidden layer, as shown in Fig. 10.62. Note that the C-RNN is different from the MDRNN and 

MDSLSTM developed by Graves [656, 663] for image segmentation, since the C-RNN operates on 

CNN features rather than pixels. The relationship between the features themselves is sequenced. 

However, both the MDRNN and QDRNN use the same bidirectional scanning pattern for each axis 

(x, y). Note that an image labeling application of the C-RNN is discussed by Shuai et al. [661]. 
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Fig. 10.62 This figure illustrates the C-RNN method, where (left) CNN style correlation template features are collected, 

(center) the image is scanned in four directions using an RNN to learn the directional connected sequences of features, 

and (right) fully connected layers are used to learn the classification of the features and associated sequences. Image from 

CVPR Zuo et al. [662], # Springer-Verlag, used by permission 

The C-RNN uses five feature layers composed of convolution and pooling, a recurrent layer for 

computing the four compass direction RNN sequences, and two fully connected layers for classifica-

tion, and a softmax layer. The five C-RNN CNN layers include 11 × 11–96, 5 × 5–256, 3 × 3–384, 

3 × 3–384, and 3 × 3–256. Input window stride is four for the first layer, and one otherwise. 3 × 3 max 

pooling is used, with a stride of 2, at the first, second, and fifth layers. The summary filter sizes fed into 

the RNN are thus 6 × 6 × 256. 

As shown in the center of Fig. 10.62, there are four RNNs computing sequences over all the 6 × 6 

(36) features, and the RNN sequence length is 36 for each feature map (one of 256). The four 

sequences weight vectors wx are concatenated into vector hs as input to the FC layers, similar to the 

MDRNN formulation, as follows: 

For notational convenience, we convert symbols from Fig. 10.62: 

", # , → , ←½ ] ¼  n, s, e,w½ ]

∴ 

hs ¼ wn þ ws þ we þ wwð Þ  

In summary, the C-RNN explores a novel feature learning architecture, combining a CNN to learn 

the features with an RNN to learn the spatial relationships between the features. This author expects to



see a trend toward more research into heterogeneous CNN/RNN architectures for computer vision 

applications. 
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RCL-RCNN 

The Recurrent Convolutional Layer (RCL) proposed by Liang and Hu [681] is one of the first promising 

applications of RNNs to computer vision, and combines several novel features together. The novel RCL 

(Recurrent Convolutional Layer) substitutes an RNN for the convolutional function normally used in 

CNNs. The RCL is used in each convolutional layer to build an FNN, which the authors refer to as an 

RCNN (Recurrent Convolutional Neural Network). It could be said that the RCL-RCNN is more like a 

CNN than an RNN and should be covered in the CNN survey section earlier; however, we cover it here 

instead since the RNN is incorporated. Additionally, the RCL-RCNN is quite novel in the direct use of 

multiscale inputs to each RCL layer, as shown in Fig. 10.63, where the original image at full scale is fed 

into each RCL layer to compute the features, along with the feature map image from the previous layer 

which has been convolved and possibly pooled, reducing the image scale. This arrangement requires 

some scaling and alignment to get the images to line up for feature computations, and the exact method 

used by Liang and Hu is not specified in the paper [681]. 

Fig. 10.63 This figure illustrates the recurrent convolutional layer (RCL), which uses an RNN in place of the 
convolution function. Compare to the NiN method, which uses an MLP in place of the convolutional function. Image 

from CVPR Liang and Hu [681], # Springer-Verlag used by permission
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The RCL-RCNN creates novel CNN-style feature patches by combining input patches recurrently 

from previous layers, for example using identically sized input windows from the current layer with 

input windows from a previous layer (which is shown in Fig. 10.63 as the original input layer), 

resulting in a deep recurrent feature representation. For example, a 3 × 3 feature for the current feature 

map k (from the set of 96 feature maps) using both the current c layer and a previous p layer, is 

computed as follows: 

f k tð  Þ= 

3 

i= 1 

3 

j= 1 

wc 
i,j ci,j þ wp 

i,j pi,j þ b 

where:

• (i, j) are coordinates in the image

• k is the index into the feature map images [1. . .96]

• w is the weight matrix (3 × 3 window) for a layer

• c is the current layer input window, t(k)  (3  × 3 window)

• p is previous layer input, t - 1(k)  (3  × 3 window)

• t is time, so t is the current layer, t - 1 previous layer

• b is the bias for the feature map k 

As shown in Fig. 10.63, layer 1 is a CNN layer using 5 × 5 features, and layers 2–5 are RCL layers 

using 3 × 3 features. The network is expressed as RCL-RCNN-n, where n is the number of features per 

layer—all layers use the same number of features, in contrast to most other CNNs which vary the 

number of features at each layer. The authors report good results using 96, 128, and 160 features per 

layer, and report that the results only vary by about 0.5% depending on the number of features per 

layer. Max pooling is used between some layers, with a region size of 3 × 3 and stride of 2 for some 

overlap. Local response normalization (LRN) is also used, similar to the method used in AlexNet 

surveyed above in the FNN section. A novel Global Max Pooling layer (GMP) combines the strongest 

activations from feature maps at each layer, which feeds into a softmax classifier. 

Note that what we see in the RCL-RCNN and the NiN surveyed earlier is both similar and novel: 

both methods replace the convolutional layer used in standard CNNs with another function 

(MLP + RCL), and both methods replace the fully connected classifier with global, inclusive models 

(GAP + GMP). 

dasNeT 

The Deep Attention Selective Network (dasNet) developed by Stollenga et al. [548] uses a novel 

recurrent feedback mechanism to adjust the sensitivity of convolutional feature weights in a CNN to 

boost the feature weights to optimize for misclassified samples. The central idea includes a method to 

evaluate multiple hypothesis in the form of slightly different feature weights, similar to the visual 

reasoning process a human expert might use, to arrive at the best feature weights overall. Some of the 

inspiration comes from the research of Branson et al. [684] and Cadieu et al. [553], showing how 

human experts perform complex visual evaluations by testing multiple hypothesis sequentially, similar 

to a 20-question game where the number of questions are intelligently minimized via multiclass 

classification, using separate classifiers such as color, size, and shape to narrow down the scope of 

the solution space. One benefit of dasNet is that each feature is automatically evaluated and optimized,



one at a time, by the built-in boosting process, reducing the need to visualize features as images for 

visual quality inspection [576]. 
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The dasNet combines a slightly modified Maxout architecture (see Goodfellow et al. [546]) with a 

recurrent feedback mechanism to implement a variant of reinforcement learning [685] to optimize the 

feature weights. The Maxout network modifications allow for the weights to be modified one at a time 

as a single image is fed into the network multiple times in a tuning loop to compute the best weights 

over a range of possible values. Note that the Maxout Z-pooling parameters are set to reduce every 

n consecutive feature map images down to a single feature map image by taking the maximum value of 

all the maps in the Z pool (see the NiN, Maxout survey above for more details). 

The dasNet operates in two phases: training phase, followed by the boosting phase. First, the 

Maxout network enters a normal training phase using labeled training samples in a supervised learning 

manner. Next, a boosting phase is performed to learn a control policy to improve the trained network 

by intelligently boosting the weights for misclassified samples or weakly classified samples. Note that 

the control policy is embodied in learned weights, trained during the boosting phase. The control 

policy uses a recurrent feedback mechanism, which iterates the network n times over a single image. 

During the boosting iterations, feature weight parameters and softmax classification scores are 

collected into an observation vector, see Fig. 10.64. The control policy takes input from the observa-

tion vector to implement a probabilistic optimization for the feature weights, reducing the error 

gradients by inhibiting or exciting the feature weights, using multiple passes over the same image to 

find the best weights. The output of the control policy is an Action Vector used to modulate the feature 

weight parameters. The end result is a form of attentional learning, which selectively enhances and 

inhibits features which were not effectively trained during normal supervised training. The boosted 

feature weight changes are applied before the maxout feature map reductions. 

Fig. 10.64 This figure illustrates the dasNet boosting phase, where the network parameters are composed into an 

observation vector (vertical bar) which is analyzed to produce an action vector used to optimize the feature weight 

parameters, implementing a form of reinforcement learning. Image from [488], # Marijn Stollenga used by permission
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In essence, the observation vector provides a way for all parameters to influence each other in a form 

of coadaptation. The observation vector and action vector are the parameter space used to implement 

the control policy for weight optimizations. 

The boosting phase involves the following process:

• Select a random batch of images from the training set

• Run the random batch through the network n times: 

Run each image through network m times: 

Run image through network 

Collect the observation vector 

Compute error term (* misclassified images are highest) 

Update control policy from error term and observation 

vector 

Produce action vector via control policy 

Change weights according to action vector 

In summary, dasNet is one of the most elegant combinations of RNNs and CNNs, leveraging the 

strengths of both methods, and in addition incorporating reinforcement learning to select and boost 

misclassified and weak features to optimize the feature weights. In addition, dasNet points the way 

toward future research into more intelligent feature weight optimization and boosting methods, 

including selective image feature focus (which may bring us back full circle to earlier research on 

local feature descriptors and interest points to find candidate features to focus on within a CNN or 

RNN). 

NAP—Neural Abstraction Pyramid 

The Neural Abstraction Pyramid (NAP) proposed by Behnke [488] is a novel hierarchical recurrent 

network, combining lateral locally recurrent, feed-forward, and backward feedback connections into a 

single network. The NAP takes a unique approach to neural network design, guided by iterative 

refinement objectives to form the network and processing architecture, following neuroscience 

research. The human visual system iterates, and saccades, at specific interesting locations, comparing 

features and higher-level concepts together at the same level and across levels to verify key details. 

Neither local features relationships nor multilevel feature relationships alone can model the human 

visual system, so NAP supports a synergistic classification based on local lateral as well as hierarchical 

feature relationships. NAP addresses a major gap in existing CNN architectures in which features are 

independent, and the classification model is more like a probability distribution of features, with no 

notion of local or hierarchical feature dependence. 

The NAP classification process is iterative, focusing on one feature, then another, using separate 

sets of excitatory features and inhibitive features to build confidence, inspired by neurons in the visual 

cortex which excite and inhibit in the same local region and across spatial regions, described later. 

Reliable and trusted features excite confidence and inhibit unreliable features. Short-distance 

correlations, or lateral correlations, are most important in the saccadic iteration process, and long-

distance correlations between different scale feature layers are less important. The iterative approach 

assumes that an FNN captures primitive features in the low layers, and then lateral and local spatial 

feature relationships within layers can resolve most partial representations, and decisions that cannot 

be made locally are deferred to higher layers. The highest layers contain abstract feature 

representations.



NAP—Neural Abstraction Pyramid 501

As shown in Fig. 10.65, the basic architecture consists of a hierarchical pyramid of features, where 

the lower-layer features are primitive concepts such as edges, and higher levels represent mid-level and 

higher-level concepts. The features are referred to as Feature Cells, and the number of feature cells 

increase with higher levels of abstraction. Like CNNs, NAP low-level features are taken at a higher 

spatial resolution, and higher-level features are taken at reduced spatial resolution. The number of 

features increase up the NAP layer hierarchy, and the higher-layer features represent more abstract 

concepts. The features are motivated by the success of CNNs and weight sharing is used at each layer. 

Fig. 10.65 This figure illustrates the neural abstraction pyramid, showing low-level feature layers, mid-level feature 

layers, and higher-level concept layers. Image # Springer-Verlag, from hierarchical neural networks for image 

interpretation, Sven Behnke [488], draft submitted to Springer-Verlag published as volume 2766 of lecture notes in 

computer science 

The NAP pyramid abstraction is novel, and allows all features in the hierarchy to be associated 

laterally and across levels with regard to spatial x, y coordinates, so that a higher-level concept 

spanning a large pixel window can be decomposed down the pyramid into mid-level or low-level 

features within the same window. Spatial relationships are thus preserved and used to guide classifica-

tion. As shown in Fig. 10.65, NAP associates features using Hypercolumns and Hyperneighborhoods. 

Each feature retains an x, y coordinate which locating each hypercolumn and hyperneighborhood. The 

pyramid structure allows features to be correlated via projection across scale layers, for example 

allowing for analysis of a high-level abstract feature and its contents of mid-level and low-level 

features. The feature relationships in the hypercolumns and hyperneighborhoods are described in a 

convolutional weight vector, representing associative excitation and inhibition. Weights represent 

local, lateral contextual influences within the same layer, and bias influences from other layers via 

forward or backward connections within the hierarchy. The NAP connection organization within and 

across layers can be advantageous for various coding optimizations and caching mechanisms that 

exploit locality, such as parallel processing, SIMT, and SIMD (Fig. 10.66).
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Fig. 10.66 This figure illustrates the concept of using feature coordinates to allow for location-based hierarchical 
feature associations across layers in the NAP pyramid, Image # Springer-Verlag, from hierarchical neural networks for 

image interpretation, Sven Behnke [488], draft submitted to Springer-Verlag published as volume 2766 of lecture notes 

in computer science 

Like a CNN, an NAP feature is computed as a weighted sum and bias. However, the feature inputs 

are much more complex. Feature cells are composed over a lateral region + recurrent inputs + inputs 

from other layers, followed by a transfer function such as a zero-centered sigmoid. For details, see 

Behnke [488] section 4.2. NAP provides for both excitatory features and inhibitory features. The 

inhibitory features are composed of the sum of features within a layer, following the neocognitron 

model [510, 511, 612], where the feature sum is used like an inhibitory gain factor. Global inhibition 

and excitation can be used to implement winner-take-all classification or boosting. Local inhibition or 

excitation can be used similar to max pooling in a CNN. The NAP operates in a recurrent fashion, 

recomputing features at discreet time steps. Depending on the specific NAP architecture, features can 

be computed bottom-up, layer by layer, as in an FNN, and computed as groups within layers, for 

example excitatory feature groups and inhibitory feature groups. 

NAP implements a novel set of learning rules to optimize the response of each sparse feature, 

ensuring each feature is unique and necessary. The learning rules follow Hebbian [502] principles for 

weight updates and MAX pooling, rather than following gradient descent methods which uniformly 

distribute gradients across all weights indiscriminately for weight updates. In NAP learning, each 

feature is adjusted individually during training to respond more specifically, rather than more gener-

ally. Competition is used at each level to find features which should be inhibited or excited via weight 

updates, with the goal that all features respond to specific rather than general features, so that no feature 

wins too frequently. As the training image is sent through the network, the two most responsive 

features are selected and the top responding feature is adjusted relative to the second most responsive, 

which decorrelates the feature from all other features. Individual weights are adjusted differently 

within the feature kernel neighborhood to optimize maxima and ridge detection.
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Behnke demonstrates, at a high level, how the NAP architecture may be adapted to a wide range of 

applications including local contrast normalization, handwriting binarization (i.e., skeletonization 

morphology), and translation invariant feature extraction using Gabor filters implemented using a 

DFT over Gaussian localized windows (similar to Wavelets). In addition, Behnke develops novel NAP 

architectures and performance analysis for more demanding applications including postage meter 

stamp recognition, binarization of 1D barcodes and 2D barcodes, face localization, local iterative 

image reconstruction on MNIST handwriting digits with injected occlusion defects and injected noise 

defects. Figure 10.67 shows a NAP architecture for a six-layer sparse hierarchical feature learning 

feature system using an unsupervised learning approach applied to handwritten digits. 

Fig. 10.67 This figure illustrates the NAP architecture for an unsupervised, sparse learning approach to handwritten 

digits, Image # Springer-Verlag, from hierarchical neural networks for image interpretation, Sven Behnke [488], draft 

submitted to Springer-Verlag published as volume 2766 of lecture notes in computer science 

BFN Architecture Survey 

This BFN survey will cover a lot of ground, touching on most of the feature learning architectures used 

in computer vision that are not considered in the ANN style deep-learning architectures as covered in 

the FNN and RNN survey sections earlier. In other words, we consider BFNs as a catch-all category 

to contain all other nonneural network DNN architectures, which is a large category indeed, so we can 

only select representative architectures for this survey, and highlight common underlying concepts and 

components (Fig. 10.68).
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BFN 
Basis Function Networks 

PNN, GMDH 
Polynomial Neural 

Networks 

HKD 
Hierarchical Kernel 

Descriptors 

HMP 
Sparse Coding 

HMAX 
Neural Model 

Visual Pathway 

HMO 
Neural Model 

High Level Reasoning
BoW, Vocabularies 

Kernel Descriptors 
SVM’s 

Fig. 10.68 This figure illustrates the Basis Function Networks covered in the survey 

We distinguish basis functions from CNN-style weight features generated from training data. For 

example, a Gabor function or a Fourier Series components are basis functions generating basis features 

under this taxonomy. We define a BFN as a Basis Function Network, a network using basis features 

rather than purely convolutional features and artificial neuron models common in CNNs and RNNs. In 

a BFN, basis functions are used rather than convolutional neural layers. In many systems, hybrid 

feature models are used, combining BFN, CNN, RNN, and several styles of features and classifiers, 

which we refer to as ensemble methods or hybrid networks. Basis functions and CNN style functions 

are used together in some networks in this survey. 

First we will survey several key background concepts to lay the groundwork for the BFN architec-

ture surveys including:

• Feature Models, Classification models.

• Basis Sets.

• Vocabulary Learning.

• Kernel Descriptor Learning.

• Sparse Coding and Codebook Learning.

• Other classifiers, Trees, Boosting. 

After exploring the background concepts, we survey representative BFN Architectures:

• Polynomial Features—PNN.

• Kernel Descriptor Features—HKD.

• Local Feature Descriptors—HMP.

• CNN + Basis Features—HMAX. 

Concepts for Machine Learning and Basis Feature Networks 

In this section, we discuss some key background concepts used in feature learning networks using 

basis functions including vocabulary methods, codebooks and sparse coding, and statistical classifica-

tion models such as kernel machines and SVMs, which are distinct from ANN-style convolutional



filter features and ANN-style classification models such as FC layers. The goal of this section is to lay 

the groundwork at a high level to appreciate the various BFN architecture examples in the survey. 
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Feature Models, Classification Models, Decision Models 

As shown in Fig. 10.69, the basic models used to define BFNs and CNNs are illustrated at a high level 

for comparison. Note that neural network models are a subset of statistical models, for example neural 

classifiers such as FC layers and simple MLPs are equivalent to statistical methods such as regression 

and SVMs. However, BFNs are typically not based on neural models, but rather on a different set of 

feature models and classification models. As shown in Fig. 10.69, feature learning networks roughly 

correspond to the following basic model parts: 
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Fig. 10.69 This figure illustrates feature learning architecture concepts for basis function networks, compared to 

CNNs. Note: Zernike polynomials (bottom left) are one of many mathematical basis feature alternatives. Depending 

on the features chosen, the classifier stage may be different, for example requiring kernel methods to project features into 

a linearly separable space for an SVM. CNNs commonly use SVMs in place of FCs
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• A Feature Model: any feature descriptor, such as pixel patches, local, regional, basis, or ANN style 

features. The features may be organized into a fixed-size feature hierarchy as used in CNNs, and 

encoded into a sparse codebook or a visual vocabulary (bag of words).

• A Classification Model: we divide classification models as follows: 

– Convolutional Classifier Models (ANN, CNN, RNN). 

FC classifiers (discussed earlier) are common in CNNs and ANNs, implementing layers of 

simple linear classifiers using layered neural models of weights and bias trained using 

backprop. 

– Statistical Classifier Models (many methods exist, discussed later). 

Statistical regression and clustering methods such as KNN (see Chap. 4). 

SVM (Support Vector Machines), Kernel Machines, a framework for regression analysis and 

classification, mapping linearly unseparable features into a linearly separable space using 

kernel methods.

• A Decision Model: (sometimes the classifier performs this function): performing some decision 

function on the classified data, for example a probabilistic softmax %. 

The feature model in large part determines the feature learning architecture, and especially 

influences the classifier model. Note that the items in shaded gray boxes on the left in Fig. 10.69 are 

typically associated in the same style of architecture, such as statistical classifiers and 

nonconvolutional style features, but many variations are used in practice. The style of features also 

determines the training protocol, since convolutional features are tuned in fully convolutional 

networks via gradient descent methods, while BFNs use a wide range of other classifiers and training 

protocols. Neural style classification models were introduced earlier in this chapter under the Fully 

Connected (FC) Layers, Flatten, Reduction, Reshape section. Statistical classifier models, SVMs, and 

Kernel Methods were briefly introduced in Chap. 4, and are discussed in more detail later. 

Function Basis vs. CNN Basis vs. Other Models 

What is a basis function or basis feature? We take a wide and inclusive view of basis functions, 

defining a basis as a base set of features generated by a function. A basis function is typically a 

mathematical function or polynomial (see Chap. 3 and Fig. 3.19 for a summary of mathematical basis 

functions), but by our wider definition may also be any of the local feature descriptor methods 

discussed in Chaps. 4, 5, and 6, as well as global and regional feature descriptors discussed in 

Chap. 3. For example, in frequency space, the Fourier Series components represent Sine and Cosine 

basis functions. Gabor Basis Functions (see Chap. 3) describing oriented edge-like features have been 

used in several DNNs for the lower-level features, since they resemble the types of low-level edge 

features detected in the V1–V2 regions of the visual pathway as suggested by neuroscience research. 

Using basis features as low-level features eliminates the need to learn low-level features from scratch. 

Then, mid-level and higher-level features can be learned on top of the Gabor functions, and expressed 

as convolutional filter masks for CNN style feature learning of mid-level and high-level features, for 

example the HMAX model surveyed later is a good example. While most ANNs use the basic 

convolutional dot product of inputs against weights + bias followed by a nonlinear function, it is 

possible to create an ANN using purely basis functions such as the PNN or Polynomial Neural 

Network surveyed later in this section. (Note: A CNN feature hierarchy of features could be considered 

a CNN basis set under our loose definition; however, we separate CNN models from BFN models for 

the sake of the taxonomy.) 

While the CNN tunes the feature weights to represent a group of similar features, the statistical 

methods tune feature groups to represent clusters of similar features. In other words, the CNN tunes 

each feature weight, contrasted against the statistical methods that tune the feature space.
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We can compare the CNN feature models and architectures with other feature models and 

architectures to gain some insight:

• The CNN Feature Model: CNN features are generated using a complex backpropagation process 

analogous to averaging, tuning each feature weight in each feature to represent groups of similar 

features. The CNN classification stage typically uses an FC layer (discussed earlier in this chapter) 

composed of a single large 1D feature weight vector taking inputs from all the feature weights, 

trained in a similar manner to the other lower-level feature weight matrices. A CNN can be designed 

using purely convolutional features end-to-end by incorporating feature weight layers and FC 

layers. Some CNNs use an SVM in place of the FC, or on top of the FC. The softmax layer can 

be used as the last layer in a CNN as a probabilistic method for generating a confidence score for the 

classification decision.

• Other Feature Models: Other feature models such as basis features, vocabulary features, sparse 

codebooks, and local feature descriptor sets, require some amount of training to learn the feature set 

or tune the feature descriptor parameters, for example tuning and selecting Gabor functions, boiling 

down a vocabulary of features into a sparse set, and learning and tuning local feature descriptors 

(local feature descriptor learning) as discussed in Chaps. 4, 5, and 6. Basis features other than CNN 

features typically use some sort of statistical classification model, like an SVM, or a clustering 

method such as KNN, and the final decision layer may be a softmax. 

Visual Vocabularies, Bag of Words (BoW) Model, Alternative Encodings 

Similar to a word vocabulary, a Visual Vocabulary [696] or Bag of Words (BoW) model allows for an 

image or image region to be classified based on the visual words detected. A visual vocabulary may 

also be referred to as a visual dictionary or a codebook of code words. Many types of feature 

descriptors can be used as visual words. The vocabulary can be used to form a histogram descriptor, 

as shown in Fig. 10.70, binning the total count of detected features against the closest feature in the 

vocabulary. Depending on the descriptor format of the visual words, different types of distance 

functions are used to perform the feature matching, and a variety of methods are used to reduce the 

vocabulary set via clustering similar features together, analogous to sparse coding methods. 

Visual Vocabulary 

Object #1 histogram Object #n histogram 

Feature 

Match 

? 

Target Object 

Fig. 10.70 This figure illustrates a visual vocabulary and simple histogram-based feature vector representation; each 

object is a histogram vector counting the features detected in the object. Target features may be matched via 

reconstructing weighted combinations of a few vocabulary features
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The vocabulary is the basis feature set. The features in the basis set may be encoded to change the 

representation of the feature, typically to a smaller representation or alternative encoding, in order to 

reach design goals such as reducing the memory footprint and increasing searching and matching 

performance. We will survey several encoding methods later in this section. 

Visual dictionaries typically contain a few thousand or a few tens of thousands of visual words. 

Vocabulary methods are flexible and allow for (1) powerful local feature descriptors such as FREAK, 

ORB, and SIFT, (2) vocabulary feature comparisons using a wide range of distance functions, (3) a 

wide range of clustering methods to boil down the feature set into a lower dimensional set, and 

(4) high-dimensional feature set topologies such as aggregated sets, and hierarchical sets. Search time 

for feature distance measurements and memory usage for the feature set can be limiting factors. 

The vocabulary is typically encoded in a sparse manner, boiling down the features to the appropriate 

sized set using a range of clustering methods (see Chap. 4). In the literature, several related terms are 

used to describe a visual vocabulary, such as a bag of words or bag of features model, also called a 

dictionary or codebook (some practitioners make very fine distinctions within this terminology). One 

of the first vocabulary methods based on texture patches was pioneered in 1981 by Julesz [692], using 

selected textons or texture patches for the feature vocabulary, and other research has continued along 

these lines [19, 32, 33, 55] including research to create a dataset of preexisting texture samples from 

real images in the CUReT dataset, see Appendix B. Vocabulary methods are applicable to generating 

image statistics and for scene recognition, see Jurie and Triggs [696]. Often, vocabulary methods are 

applied to image recognition, image and scene classification, and visual search engines. 

As shown in Fig. 10.71, any type of feature can be used as the vocabulary basis. The vocabulary 

feature descriptor is typically a histogram of features from the codebook. Basic vocabulary models are 

primitive, and rely on orderless presence or absence of features, ignoring sequences, spatial 

associations, and feature invariance criteria such as rotation and scale. However, orderless vocabulary 

methods have been enhanced several ways, for example by aggregating multiple descriptors such as 

color, shape, and texture [701], or color, gradients, and LBP [702], incorporating feature descriptor 

locality to cluster nearby descriptors into a metadescriptor group by Ionescu [704], or by incorporating 

geometric scale (see the Pyramid Match Kernel [186] in Chap. 6). 

Extract 
Features 

All FeaturesInput Images 

Cluster or 
Sparse 
Code 

Features 

Reduced Vocabulary 
(for histograms) 

SimilarityDescriptors, Spectra 

Fig. 10.71 This figure illustrates the process of developing a visual vocabulary. As shown on the right, the vocabulary is 

a clustered or reduced codebook set of prototype features, which is used as a feature vector to contain a histogram binning 

of the occurrence of each vocabulary feature in a given image
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The number of features in the vocabulary is a design choice. One might include all features detected 

in the training set into an exhaustive vocabulary, but for efficiency it is common to boil down the 

vocabulary into a smaller representative set of features using sparse coding methods, clustering 

methods or soft quantization methods [768]. We note that both BoW methods and CNN methods 

use hard-coded fixed numbers of features. How many features are needed? The feature count is 

typically based on the experience and intuition of the practitioner, along with some experimentation 

during training. Usually, CNNs use a different number of features at each layer, maybe a few hundred 

features per layer, and the features are classified using one or more fully connected (FC) layers or 

perhaps using an SVM. However, for basis features, descriptors, visual vocabularies, and the optimal 

number of features can be learned from the training data, taking guidance by finding the minimal 

reconstruction error, see Chap. 4 for some discussion on image reconstruction from local feature 

descriptors. 

Vocabulary Encodings 

The vocabulary items may be encoded in a variety of ways for convenience. For example, a feature 

descriptor like SIFT or spectra such as pixel intensity may be encoded or projected into another 

representational format to enable more uniform treatment in a particular classification algorithm. The 

encoding may be a kernel-based meta-descriptor, or simply a distance from a prototype feature in the 

vocabulary. Early work by Jakkola and Haussler [767] on deriving kernel functions has been extended 

by many researchers, which we cover in this section. Many encodings have been devised to optimize 

feature encodings for searching and matching. One of the key ideas used to make visual vocabulary 

representation and matching more efficient is to aggregate sets of feature descriptors into compact 

encodings, and then the encoded visual words become smaller and faster to process for classification. 

We highlight a few alternative visual word optimization methods here, and refer to the readers Jegou 

[768], Chatfield et al. [770], Tolias [766], and van de Sande [490] to dig deeper.

• Histogram Encoding (Visual word dictionary basis, hard assignment to a single codeword, simple 

SSD or SAD distance)—Simply creates a histogram counting the number of features matching each 

closest descriptor in the dictionary. The histogram bin assignments are hard assignments to the 

single nearest visual word to a single descriptor. The histograms may be normalized or weighted 

[768]. Correspondence can be computed using Euclidean distance, SSD, SAD, and other simple 

methods.

• Kernel Codebook Encoding (Visual word dictionary basis, soft assignment to multiple 

codewords, simple distance to nearest matches)—Uses a soft assignment or distributed assignment 

of a single feature descriptor to multiple nearest features in the vocabulary, such as the nearest five 

features. See Gemert et al. [772]. 

Note 

The Fisher Vectors, VLAD, and Super Vector encodings are similar and efficient since they encode 

differences between basis shapes in feature centroid space rather than encoding entire descriptor 

vectors for computing distance. As a result, distance is strongly affected by the clustering method used 

and the cluster initialization process. For example, see Fig. 10.73 illustrating cluster center anomalies 

using K-MEANS.
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• Fisher Vectors (HMM Gaussian basis, residual vector difference of feature descriptor from 

nearest HMM Gaussian basis)—Fisher Vectors developed by Perronnin et al. [486, 764, 765] are 

based on creating a vocabulary set of Gaussian basis features to encode features as a Gaussian 

Mixture Model (GMM). The Gaussian basis features are created from a training set of feature 

descriptors such as SIFT. The vocabulary is created by clustering all the feature descriptors from the 

training set into several thousand clusters. Perronnin [774] optimized the vocabulary set by 

reducing the cluster count to 256 by first pooling the SIFT descriptor set using PCA. The Gaussian 

basis features are defined by each cluster shape’s centroid, mean, and variance. The Fisher Vector 

encoding is a concatenation of all the distances between the GMM basis features. The distance from 

target features to the GMM basis shapes is a scaled directional gradient, which reduces the size of 

the descriptor to a small scalar value, rather than a large set of individual distances matching the 

SIFT descriptor structure. Perronnin [773] developed a method to optimize Fisher Vectors for more 

efficient large-scale searching, computing similarity using the dot product of Fisher Vectors, and 

also a binarized method of representing Fisher Vectors with Hamming encoding.

• VLAD, MultiVLAD [766, 768] (Feature descriptor basis over visual word dictionary, Cosine 

difference of residual angles)—VLAD (Vectors of Locally Aggregated Descriptors) encodings are 

optimized to be compact and fast for feature matching. VLAD builds a vocabulary of local 

descriptors such as SIFT, and clusters the descriptors using K-MEANS or a similar method. 

VLAD is based on a coarse vocabulary set of perhaps 256 features. For each basis cluster center, 

the residual distance between clusters is accumulated and concatenated into a vector matching the 

size of the SIFT descriptor, typically 128 bytes. So each VLAD is a vector aggregation of residual 

distances. VLAD encodes the distance of a descriptor to the basis cluster center using Cosine 

distance residual angles. VLADs are designed to be very low-dimensional descriptors containing 

16 bytes to describe an entire image, which is ideal for large-scale image classification tasks. For 

classification, each new target descriptor is evaluated based on the distance to the cluster center. 

Arandjelovi and Zisserman [769] provide a very readable summary of VLAD and make several 

improvements to the original method, notably the Multi-VLAD method to use multiple VLAD 

descriptors at multiple scales and multiple tilings across the image.

• Super Vectors (Centroid of codeword cluster basis, simple distance, residual distance)—Proposed 

by Zhou et al. [771] are similar to Fisher encodings combined with a histogram encoding. One 

variant is assignment to the closest codeword, and another variant uses soft assignment distributed 

across a set of five nearest neighbors. Assignment is based on a novel distance criterion 

incorporating a cluster normalization step, the first-order difference between individual features 

and cluster centers, and factoring in the mass of the clusters.

• Hamming Encoding (Hamming Code Basis, fast Hamming Distance)—Proposed by Douze et al. 

[775] extends the BoW model by a combined encoding for each visual word including (1) a binary 

signature generation and encoding for use in quickly computing Hamming Distance between 

descriptors, since Hamming distance is extremely fast and is often implemented in CPU and 

GPU instruction sets, and (2) weak geometric consistency constraints providing matching penalties 

for rotation and scale mismatches. A novel soft-assignment to a variable number of closest visual 

words is also proposed.

• FLAIR (Visual word basis + integral images for each codeword, various distance functions)— 

FLAIR (Fast Local Area-Independent Representation) developed by van de Sande [490] encodes 

the image in a multidimensional integral image space containing codeword indexes for each pixel 

into the dictionary. One integral image is encoded for each visual word. Integral images are 

extremely efficient and fast to compute in constant time, so matching performance is very fast 

and predictable. FLAIR can embed one or more encodings into the integral image framework, with
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one integral image dimension per encoding. FLAIR is most effective on more complex encodings, 

such as Fisher Vectors and Flair, compared to BoW representations. Van de Sande provides an 

excellent survey of relevant search optimization approaches. 

Next we discuss sparse coding methods, which are used to encode vocabulary features into an 

overcomplete sparse set for classification. 

Sparse Coding and Codebook Learning Overview, K-MEANS, K-SVD 

Sparse coding methods are used in a wide range of applications such as noise removal, inpainting, 

signal encoding, and general compression. For computer vision applications, a sparse codebook 

contains a sparse overcomplete set of codewords (features), from which unknown features are matched 

to the codebook by approximately reconstructing the unknown feature using linear weighted 

combinations of a small set of codewords. An overcomplete set allows for more than one way to 

approximate a feature from the basis set of codewords. For example, consider Fourier series-based 

signal reconstruction. 

Image reconstruction from a sparse codebook of image patches is illustrated in Fig. 10.72. The 

sparse codebook becomes the basis feature set for a given feature domain, and may be chosen from 

some preexisting basis set which can be further tuned to fit the training data, or an entirely new basis set 

can be learned from a training set. Overcompleteness of the codebook is required for sufficient 

reconstruction from combinations of codewords. We provide a fundamental introduction to sparse 

codebook feature learning here, along with references to dig deeper. 
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Fig. 10.72 This figure illustrates the process of sparse codebook initialization, feature learning, and feature matching. 

Note that the same types of reconstruction algorithms are used for learning the features, and reconstruction of feature 

matches from the sparse codebook features
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Sparse coding can be divided into the following tasks: 

1. Codebook Initialization from some basis set or random values. 

2. Feature Learning to modify the codeword entries from the training data. 

3. Feature Matching via reconstruction from small sets of codebook features. 

A sparse codebook does not contain a complete vocabulary of all possible codes needed to perfectly 

represent or reconstruct the training data, but rather sparse codes are a compressed set of features, 

defined to the desired level of sparsity desired for signal reconstruction and pattern matching accuracy. 

Sparse coding is a form of signal compression. One goal of signal compression can be to represent a 

signal using a smaller number of signals than normally required by the Nyquist Frequency sampling 

rate, which states that the signal must be oversampled by at least >2×. Sparse coding dramatically 

reduces the reconstruction requirements. Sparse coding is analogous to coalescing scalar values in a 1D 

feature space using some form of quantization criteria, such as varying bit resolution from 8 bits to 

4 bits to collapse similar values into fewer values, reducing the level of detail. However, sparse coding 

operates in a multidimensional feature space. For computer vision, sparse coding addresses the trade-

off between classifier discrimination versus classifier compute efficiency, since more features provide 

more discrimination, at the cost of compute efficiency. 

Several approaches are taken to learn a sparse codebook of features, for example single-layer SIFT 

feature codebooks and pixel patch codebooks. Aharon et al. [707] provide a good survey of various 

sparse coding methods, see also Feng et al. [724]. See Yu et al. [726] for a comparative survey of SIFT 

versus pixel patch methods used for sparse coding, which are shown to be equally effective. See 

Candes et al. [722] for more on theoretical sparse coding optimizations. See Olshausen [725] for 

details on neurobiological theories about sparse coding. See Coates and Ng [554], who find that the 

encoding scheme and architecture are more critical than any specific feature descriptor method used. In 

addition, the preponderance of researchers note that many weak features in a feature hierarchy can be 

as effective as powerful local feature descriptors for sparse coding. Mairal has developed several 

methods for feature learning and sparse coding, see [729, 730], including novel hierarchical methods 

[731, 732]. Bo et al. [111, 204] implement a novel hierarchical sparse codebook using a Hierarchical 

Matching Pursuit (HMP) to learn features from raw pixel patch features, surveyed in detail later. 

Ranzato et al. [491] developed a model of sparse coding convolutional features similar to an RBM 

network called SESM (Sparse Encoding Symmetric machine). 

We can illustrate sparse coding by following Fig. 10.72. First, the sparse codebook is initialized via 

one of many methods such as (1) transfer learning using pretrained features from another sparse 

codebook, (2) from a basis set such as DCT or Gabor feature, or (3) from randomly sampled image 

patches or random-valued feature vectors, or (4) from a set of candidate local feature descriptors 

computed at interest points which have first been clustered and reduced to a smaller set. For example, 

Belongie [201] initializes the codebook to a set of overcomplete DCT basis features, and in another 

case initializes a codebook to a random set of image patches taken from the training images. Since it is 

impossible to know in advance precisely how to initialize the codebook, using an overcomplete set 

with more than enough detail is common, rather than an undercomplete set. Both the range of feature 

variation and the number of features in the set are interrelated in this respect. 

Next, feature learning is accomplished tuning the initial sparse codebook features to fit the training 

data. To illustrate the concepts of sparse codebook building, we focus on the K-SVD method 

developed by Aharon et al. [707]. K-SVD iteratively recomputes the feature codebook during training. 

K-SVD is a singular value decomposition method, implementing a parameterized generalization of 

K-means, which iteratively recomputes the codebook to minimize the error between the new sample 

and the closest codewords. K-SVD will recursively reshape the codebook as it learns, to balance the



uniformity of feature distribution within the feature space. K-SVD is one of many parameterized 

generalizations of K-MEANS clustering [707]. 
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K-MEANS learns a centroid cluster set from the training samples, and then test samples are 

classified by matching to the nearest cluster in the centroid cluster set. The cluster set positions are 

therefore the codebook entries for the feature vocabulary. K-MEANS iteratively clusters samples into a 

chosen number of cells around a centroid. We refer the interested reader to more detailed references, 

see the original paper by Lloyd [728], a good text by Hartigan [82], and a larger survey text by Hastie 

[300]. As shown in Fig. 10.73, the K-MEANS cell boundaries are often illustrated via the Voronoi 

Tessellation Diagram proposed in 1908 by Voronoi [86], which partitions the space into polygon cells 

with polygon boundaries equidistant to each neighboring cell centroid. K-MEANS allows the number 

of centroids and the coordinates of each centroid to be chosen in advance, and then the algorithm 

assigns each sample to the nearest centroid. The centroid distance to each sample may be computed 

simply in Euclidean space as the average of all x, y coordinates in a region. K-MEANS results vary 

depending on the distance function used to determine the cluster centroids, for example Euclidean 

distance versus Manhattan distance will produce different results. Also, K-MEANS clustering will 

vary depending on the precise number of centroids chosen, and the coordinates of the centroid 

positions, as shown in Fig. 10.73. 

Fig. 10.73 This figure illustrates K-MEANS clustering into eight groups using Euclidean distance, with Vornoi 

tessellation lines dividing each cluster. The left and right images contain the same data; however, the centroid starting 

positions have been assigned to be at slightly different coordinates for each left and right image (see the crosshair 

positions), illustrating how K-MEANS produces different clusters depending on the starting centroid positions selected 

K-MEANS clustering can be summarized as follows: 

Initialization:

• Choose the number of clusters.

• Assigning a centroid starting position for each cluster, perhaps by 

choosing samples points from the dataset at random, or by some other 

method [82, 300].
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Iteratively learn and refine clusters:

• Assign each sample to the nearest centroid using some distance function, 

such as Euclidean Distance (see distance functions in Chap. 4).

• Recompute each centroid to refine fit to nearest samples.

• Repeat 1–3 until stopping condition reached: the difference between the 

new centroid and previous centroids is computed and compared to a thresh-

old; when the values are lower than the threshold, K-MEANS stops. 

The weakness of K-MEANS and similar methods is that clustering results vary depending on the 

number of centroid points, the distance function used, and the coordinates of each centroid point. 

Therefore, improvements and variations have been devised such as K-SVD to solve for other specific 

objective functions, see Chap. 4 for a survey of clustering methods and clustering objectives. 

K-SVD developed by Aharon et al. [707] is a combination of K-Means (K) and Singular Value 

Decomposition (SVD)—thus the name K-SVD. The goal of K-SVD is to generalize and parameterize 

K-MEANS in the context of SVD. SVD is equivalent to Principal Component Analysis (PCA), since 

both methods decorrelate values to identify the principal component values with the highest variance, 

which is conceptually similar to finding cluster centroids. 

The K-SVD algorithm can be summarized as follows: 

Initialization:

• Choose the number of basis set items.

• Initialize basis items from basis functions, randomly, PCA on training 

samples, other. 

Iteratively learn and refine sparse codebook:

• Recompute basis items (sparse coding): 

– Add new sample using basis pursuit to approximate value. 

– Recompute all basis items.

• Recompute dictionary (dictionary optimization): 

– Prune basis items that are not used often. 

– Remove basis items that are too similar (mutually coherent). 

– Replace seldom used codewords with underrepresented codewords. 

K-SVD reconstructs each new target feature as an approximation composed of a linear combination 

of a few basis features from the codebook. K-SVD adds the new approximation to the dictionary, 

updates each dictionary item, and finally updates the entire dictionary to prune and remove mutually 

coherent (i.e., similar) items. For example, Fourier Series approximation is a similar method for 

reconstructing a target feature from the basis features, see Fig. 2.15. 

K-SVD can be used with any matching pursuit method to approximate new sample features from 

the sparse codebook features. A matching pursuit method composes a linear combination of sparse 

codes to approximately reconstruct a sample feature, similar to a series reconstruction from the 

familiar Fourier Series sine and cosine basis waves (see Figs. 2.14 and 2.15). Depending on the 

feature descriptor representation details, different matching pursuit algorithms are chosen. Matching 

pursuit methods have been pioneered in signal processing by Pati et al. in 1993 [706] for wavelet signal 

dictionary composition, which Pati calls Orthogonal Matching Pursuit, i.e., looking for the closest 

features orthogonally across the basis set. Several matching pursuit approaches are surveyed by 

Aharon [707], including the more common Orthogonal Matching Pursuit (OMP) and Basis Pursuit 

(BP). More sophisticated matching pursuit methods are also used, which evaluate several possible 

reconstructions using multiple-path codeword combinations [707, 727] and batch methods [737].
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An oversimplified algorithm for a matching pursuit could be devised as follows: 

// the sample feature to match 

input: sampleFeature 

// record the weighted sum of best matching codewords 

output: reconstruction = 0 

// keep a running total of the match residual range [0–1] 

Residual = 1 

// find the n closest matching codewords 

Iterate n times: 

closestCodeword = findClosestCodeword 

(sampleFeature * residual) 

//reconstruct the best fit of n weighted codewords 

Reconstruction += residual * closestCodeword 

// the difference between the sampleFeature and the best match 

residual = residual – closestCodeword 

As illustrated in the algorithm, and in Fig. 10.74,  a  basis pursuit approach can be used to 

approximate a target feature d using a vector projection of the target against all basis codewords, to 

find the match with the greatest magnitude. The magnitude is the strength of the match, and is saved as 

the weighting coefficient. The residual is recorded by subtracting the weighting coefficient from the 

sample feature. The basis pursuit repeats recursively n times to find the best n sparse codewords to 

represent the remaining n residuals. The final approximation is reconstructed from the weighted sum of 

the n best matching vectors. A stopping criterion can be devised, such as a reconstruction error 

threshold, or a fixed number of iter ations.
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Fig. 10.74 This figure illustrates a simplified reconstruction of feature d by projection of vector d into the basis vector 

space to determine the two best matching basis vectors. Note the weights w1 and w3 are determined by projecting vector d 

onto closest matching basis vectors b1 and b3 

Here are the simplified basis pursuit and reconstruction details from Fig. 10.74. 

(Sparse Codebook basis vectors): 

ℝc = b0, . . . , bnf g  

(First approximation of feature d from weighted sum of codebook features):
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x  dð  Þ= 8ℝc : 

n 

i= 0 

wibi dð Þ

(Residual to minimize): 

r= d- x 

(Second approximation of residual r from weighted sum of codebook features): 

y  rð  Þ= 8ℝc : 

n 

i= 0 

wibi rð Þ

(Reconstruction using two basis vectors *NOTE: more residuals may be computed and combined): 

Ω dð  Þ= xþ y 

where:

• x—the signal to approximate.

• wi—weight determined via projection of feature [d,r] onto closest matching basis atom, see 

Fig. 10.74. 

The sparse coding feature space deserves special consideration, especially the distribution of 

features in the space, and the distance between features. Measuring similarity between features in a 

feature space is typically a multidimensional problem, and methods vary among matching pursuit 

methods. For example, we discuss Kernel Methods in the next section, which are sometimes used to 

project features into a higher-dimensional feature space in a matrix representation to enable efficient 

similarity solutions, and could also be used within a basis pursuit algorithm. Some of the 

considerations for creating a good sparse-coded feature space include ensuring a uniform distribution 

of features in the feature space with no distance distortions around common features, which leads to 

distance distortions around uncommon but necessary features which may be otherwise quantized out 

via the encoding scheme. We discuss sparse code feature space uniformity compensations and 

reshaping later in the HMP method survey. 

To verify that the sparse codebook is sufficient, one method is to reconstruct images from the sparse 

codebook by sampling the image patches, matching each sample image patch into the sparse codebook 

to find the best matching sparse code combinations, and then reconstructing the image from the sparse 

code combinations. A sufficient feature set should allow for decent image reconstruction to the 

expected level of detail, as illustrated with several examples in Chap. 4 based on local feature 

descriptors such as SIFT, HOG, and FREAK. See Fig. 10.75 illustrating how the original images 

patches are reconstructed, one by one, from combinations of either two or five codebook feature 

combinations in the HMP method. Thus, the codebook is trained to sparsely represent the feature 

vocabulary for the application domain, and is used to reconstruct pattern matches from combinations of 

sparse codebook entries.
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Fig. 10.75 This figure illustrates image reconstruction from sparse codes, each codeword is a 5 × 5 image patch. (Left) 

original, (center) reconstruction using two codewords and looking blocky, (right) reconstruction using five codewords 

and working well. Image from Bo et al. [204] from ISER Springer Tracts in Advanced Robotics, # Springer used by 

permission 

For more details on sparse coding for feature learning, see Grimes [477], Grosse [478], and Bergstra 

[479]. Signal processing literature and video compression literature are also good sources. See 

Wang et al. [711] for an example of locality-based sparse encoding, as well as [554, 560]. See 

Candes et al. [722] for more on sparse coding optimizations. See also Boureau et al. [630] for more 

on preserving 2D locality or position, as well as preserving feature space locality to improve results on 

smaller dictionaries. 

Kernel Functions, Kernel Machines, SVM 

A vocabulary or codebook of features may provide invariance, robustness, and the feature description 

and extraction compute efficiency, yet be difficult to untangle in the feature space to perform 

classification. To allow for optimal feature classification, kernel methods are often used to prepare 

features for classification of vocabularies using a range of machine learning methods. The term kernel 

has various meanings within mathematics. For example, in the literature regarding data mining 

[629, 716], the term kernel is used in several different contexts, for example within the domain of 

kernel regression methods, which treat the kernel function like a bump-map or windowing function 

along the regression line, to weight the local data points within the window prior to distance 

measurements. In statistical classification discussions on Kernel Machines and Support Vector 

Machines (SVMs), kernel functions are used to map feature vectors into a kernel matrix (kernel) to 

perform dot product similarity measures between kernels in a higher-dimensional space. Computing 

similarity between kernel matrix pairs is much faster than first converting the features to a higher-

dimensional space prior to computing similarity, and also allows for feature aggregations for multi-

variate descriptors, as illustrated below. 

The kernels operate in a Hilbert space, analogous to a multidimensional Euclidean space, where 

familiar vector operations can be used to search for linear relationships, using dot products to compute 

angles and distances. A kernel matrix is also referred to as a Gram matrix, which is symmetric and 

positive semi definite, solved via the dot product between all points in the kernel matrix pairs to 

completely define the coordinates in the multidimensional Hilbert space. Many application-specific 

kernel functions have been devised to create kernel matrices, and methods exist to learn a kernel matrix 

referred to as Multiple Kernel Learning (MKL), see Lanckriet et al. [720]. We provide a high-level 

overview here, and refer the reader to better references in machine learning and statistical analysis texts 

as we go (Fig. 10.76).
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Kernel methods are used to perform either or both:

• Aggregation of one or more features into a new meta-feature representation.

• Projection of features or spectra into another representational space for classification (Figs. 10.77 

and 10.78). 

Feature Vector(s) 

(Descriptor, Spectra) 

K(X,Z) K 

Kernel Function 

(Mapping) 

Kernel Matrix 

(Meta-Descriptor) 

PA(K) 

Pattern Analysis 

(Dot-product) 

Custer, 

Correlate, 

Match 

Fig. 10.76 This figure illustrates how a kernel function is used to map feature vector data or raw pixel patch spectra into 

a kernel matrix (i.e., meta-descriptor) in a different feature space for optimal pattern analysis and classification via simple 

dot products between kernel matrices, see also Shawe-Taylor and Christiani [526, 713] 
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Fig. 10.77 This figure illustrates how a kernel function maps linearly unseparable data in space X (left) into linearly 

separable data in space Z (right), after Boswell [703] 

The need for kernel methods arises from the nonlinear distribution of data in some applications, 

which complicates analysis. As shown in Fig. 10.78, data that are not linearly separable become 

separable using the right kernels. So, a kernel function is like a mapping function, or a projection 

function, to move features into another feature space. Thus, the kernel matrix is a powerful method for 

unifying, normalizing, and combining heterogeneous feature descriptor or spectra combinations into a 

common feature space for pairwise similarity computations for classification. We will survey examples 

in this section showing how features descriptors, such as SIFT features and RGB spectra pixel patches, 

are converted into kernel matrices for classification.
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Fig. 10.78 This figure illustrates how kernel mappings can yield linearly separable data in the VC-dimension (i.e., a 

higher-dimensional space), (top) kernel mapping of 1D data into 2D space, and (bottom) kernel mapping of 2D data into 

3D space, separable with a hyperplane 

Kernel methods (see Hoffmann [305]) are used with Kernel Machines, such as Support Vector 

Machines (SVMs). Kernel Machines allow for various kernels to be substituted and tried during 

training to find the optimal kernels. When kernels are used with SVMs, the kernel projects the data 

from a space of dimension n into a higher-dimensional space n  +  1  (i.e., the VC-dimension, n + 1). As 

shown in Fig. 10.78, in a 1D space, the maximum number of points that are guaranteed to be separable 

are 2. In a 2D space, the maximum number of points guaranteed to be separable are 3 (unless the points 

are colinear). In a 3D space, the nonseparable 2D points may become separable by hyperplanes. The 

goal of kernel function design is to find the best kernel to map the data into some higher-dimensional 

space for optimal analysis, which involves a combination of stretching and compressing the feature 

space for optimal clustering and separation, so many kernels are used in practice. 

Instead of using coordinates of features to compute distance for pattern matching, kernel methods 

compute the distance between two kernel matrices via the dot product of kernel matrix pairs, which 

projects one feature onto the other to reveal similarity. The kernel matrix acts as a meta-descriptor. The 

kernel functions which create the kernel matrices are problem-specific, and details on the derivation of 

specific kernel functions are beyond the scope of this work, and are covered in various texts, see 

Vapnik [534] and also Shawe-Taylor and Nello Cristianini [526, 713]. Kernel solutions return a single 

value, the dot product of one kernel matrix with another kernel matrix. A range of standard statistical 

analysis methods are performed using kernel methods, such as pair-wise distance analysis, principal 

component analysis, and cluster analysis. Complex and irregular data such as character strings and data 

structures like trees must first be converted to a suitable matrix form in order for kernel methods to 

apply. For example, structured-data can be run through a hash-like function to produce a matrix
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representation of the data for kernel methods, see also Hausler [705] for more references and details on 

his method of generating kernels to represent abstract structures. Gaussian kernels, RBF kernels, and 

simple polynomial kernels are commonly employed in most cases, although a wide range of kernels are 

employed for different applications. Finding the right kernel for the data is also important to make 

kernel methods work well, as covered in the references. The NIPS7 community contains a large body 

of research papers and other information on the subject of kernel machines, SVMs, and kernel 

functions. 
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Kernel matrices can also make classification much faster, acting as a shortcut to avoid direct 

computations in the higher-dimensional space to compute distance. As shown in the simplified 

example below, the kernel function uses a simple dot product between two kernel matrices, rather 

than taking a complete algebraic solution to first move the kernel matrix features into the higher 

dimension prior to computing the distances (often referred to as the kernel trick < vulgar> in the 

literature). Note that for large feature vectors and large feature sets, the algebraic solution is computa-

tionally prohibitive compared to the dot product. 

A verbose example using a hypothetical kernel function K(x, y) = (hx, yi)2 is compared to the 

equivalent algebraic solution below, illustrating the computational differences. 

Slow Algebraic Method (full projection into higher-dimension space): 

ϕ x, yð  Þ ¼  f  xð  Þ, f  yð  Þh i  

f  nð  Þ ¼  x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3ð  

x ¼ 1, 3, 5ð  Þ  

y ¼ 2, 1, 3ð  Þ  

f  xð  Þ ¼  1, 3, 5, 3, 9, 15, 5, 15, 25ð Þ  

f  yð  Þ ¼  4, 2, 6, 2, 1, 3, 6, 3, 9ð Þ  

f  xð  Þ  j  f  yð  Þh i ¼ 4þ 6þ 30þ 6þ 9þ 45þ 30þ 45þ 225ð 400

Faster Kernel Method (no projection into higher-dimensional space, use dot product instead): 

K  x, yð  Þ ¼  x, yh  ið  Þ2 

K  x, yð  Þ ¼  x1, x2,x3½ ] . y1, y2,y3 
2 

K  x, yð  Þ ¼  1, 3, 5½ ] . 2, 1, 3½ ]ð Þ2 

K  x, yð  Þ ¼  2þ 3þ 15ð Þ2 ¼ 202 ¼ 400

Kernel functions map the feature data or spectra into another feature space of higher dimension, 

where the features can be disentangled into linearly separable clusters. Recall from Fig. 5.1 that we 

define spectra as any representation of data derived from pixels, such as a basis set, pixel patch 

intensity values, RGB colors, depth information, local region histograms, or LBPs. Kernel functions 

create a new feature representation (i.e., Meta-Descriptor) from combinations of various data (i.e., 

spectra and features), by projecting the data into a kernel matrix representing the data in a vector space. 

A range of problem-specific kernel functions have been designed. For a survey kernel method 

application, see Müller et al. [700], Cho et al. [697], Lampert [695], Zhang et al. [693], and Vedaldi 

et al. [698]. A good tutorial on SVMs is provided by Teknomo [715]. SVMs are also applied in DNNs. 

In some CNNs, no FC layers are used, and an SVM is used instead for classification. In other CNN

7 http://www.nips.cc —Neural Information Processing Systems.

http://www.nips.cc


systems, the FC layers are replaced by an SVM after training, and fine-tuned from the learned CNN 

features.
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Vocabularies or codebooks may be represented as collections or hierarchies of kernel matrices (i.e., 

meta-descriptors) built from other feature descriptors and spectra. As demonstrated by Bo et al. in the 

Hierarchical Kernel Descriptor (HKD) and Hierarchical Matching Pursuit (HMP) methods [90, 110, 

201, 593, 616], RGB-D spectra and LBP feature descriptors are used as input into kernel functions 

used to create the kernel matrices or meta-descriptors, which we survey later in this section. A novel 

application of kernel methods using optimized match kernels is provided by Bo et al. [691], which we 

survey later as well. Multiple descriptors may be aggregated and encoded together into a single kernel 

matrix, for example see Tolias et al. [766] regarding their Selective Match Kernel (SMK) and 

Aggregated SMK (ASMK), compared to similar methods such as Vector and Locally Applied 

Descriptors (VLAD), and Hamming Encoding (HE). An algebraic method for aggregating set kernels 

is also found in Shashua and Hazan [718]. See Gehler and Nowozin [719] for more details about 

multivariate descriptors composed using kernel methods. For a good survey of kernel methods with 

several references, see Lampert [695] and Zhang et al. [693]. 

Other Statistical Classification Methods, Decision Trees, Forests, Boosting 

We have only briefly surveyed three classification methods: (1) CNN FC layers, (2) Kernel Methods 

and SVMs, and (3) Vocabulary and Sparse Coding, and have ignored the vast majority of other 

interesting classification models. The author believes that the topic of statistical classification is far 

larger than the field of computer vision and feature learning, which is the primary reason why the focus 

of this work is the pixel side of computer vision and especially feature descriptors, rather than the 

mathematical and statistical classification methods that are borrowed and applied. 

A few other notable classification approaches we do not survey include Tree and Forest-Based 

classifiers such as FERNS [262], which organize the features into a hierarchy of feature similarity. 

Also the Viola-Jones method [117, 153] for feature learning is noteworthy, combining multiple 

features into a hierarchy or funnel of features, trained and optimized by boosting weak feature 

[313], see also Chaps. 4 and 6 for more on Viola Jones. 

For more information on classification methods applied in machine learning, see the standard texts 

by Hartigan [82] and Hastie [300]. See also the NIPS community resources. 

Next, we will begin a survey of representative BFNs to illustrate all the background concepts we 

have covered including various feature models and classifier models. 

PNN—Polynomial Neural Network, GMDH 

We begin the BFN survey with perhaps the world’s first DNN, the Group Method Of Data Handling 

(GMDH), otherwise known as a Polynomial Neural Network (PNN), developed by Ivakhenko and 

Lapa in 1965 [504–506]. The PNN uses tunable polynomials as the basis features, rather than 

convolutional filters as in the CNN architecture. A good overview of PNN, along with neural network 

implementation details, is provided by Zjavka [690]. PNN departs from the McCulloch and Pitts work 

(1943), so rather than defining neurons as binary two or three state equilibrium systems, GMDH 

defines neurons as complex, nonlinear functions. Note that neuroscience has not yet discovered a 

verifiable electrochemical model of a physical neural function; however, the PNN polynomials appear



to offer flexibility to model a wide range of possibilities compared to simple weight templates as used 

in CNNs. Ivakhenko’s work appeared frequently in Avtomatika and other Soviet publications 

unknown outside the USSR. The GMDH model is inductive and self-organizing, and has continued 

to be popular [688] especially in Russia, and other parts of the world as well, with a significant 

community of researchers. GMDH implementations are found in several commercial software 

packages and systems worldwide. Most of the GMDH applications are statistical in nature including 

general multidimensional mathematical modeling, data mining and forecasting, but some computer 

vision and pattern recognition applications have been developed [688]. 
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GMDH is inspiring and unique. The basic ideas embodied in GMDH sound too good to be true 

compared to ad hoc methods for designing CNNs and RNNs used by many practitioners. Here is a 

summary of a few key GMDH concepts:

• Creates an optimal mathematical model of the data.

• Self-organizing network, learned inductively by sorting the data.

• Polynomials used to describe features, instead of CNN style templates.

• Number of neurons and layers determined automatically.

• Automatic structuring of network model.

• Automatic learning of interrelationships and patterns in data. 

In 1971, Ivakhnenko [507] refined the GMDH using eight layers to learn the optimal number of 

layers, optimal number of neural units per layer, and prune neural units as needed. For example, the 

GMDH neural activation functions used second-order polynomials, and self-adjusting thresholds, and 

could take advantage of Kolmogorov-Gabor polynomials, providing more control than other simple 

activation functions used in later systems such as sigmoids. In fact, the original paper mentions over 

20 algorithms (similar to neural activation functions in today’s parlance) that had been proposed 

within GMDH. The Ivakhenko system could learn and train features from a validation set, much like 

today, and each layer could be trained differently for the given data and application. In fact, the 

validation set for the GMDH was conditioned using a variant of dropout which is parameterized to 

eliminate unwanted data samples which can lead to overfitting during training. 

The GMDH polynomials are modeled after Kolmogorov-Gabor polynomials, a type of Gabor 

function. The PNN neural model takes two inputs, and produces a single output via a quadratic 

function of inputs using a total of six weights, combining the polynomials as a multinomial to produce 

the final output, as shown in Fig. 10.79. See Zjavka [690] for a good overview.
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Fig. 10.79 This figure illustrates a GMDH PNN, after Zjavka [690]. Note the computation of each PNN neuron takes 

two inputs, uses a polynomial neural function with six weights, and produces a single output 

Since Ivakhenko introduced dropout in 1971, several other researchers [509] have rediscovered 

dropout variants. Recently, [508] another dropout method was introduced, random dropout, to drop 

random training samples by setting them to zero to prevent overfitting. Apparently, nobody yet has 

compared random dropout to Ivakhneko’s work, so perhaps Ivakhneko’s work will be revisited. More 

work has continued on GMDH in Russia and the Ukraine, see the detailed website [688] summarizing 

historical and continuing GMDH research [689, 690]. 

HKD—Kernel Descriptor Learning 

Kernel descriptor methods learn features by converting feature vectors into kernel matrices, such as 

simple pixel patches, local region gradients, color patches, LBPs, Z depth information, and other 

feature descriptors. The kernel matrix is the kernel descriptor,  or  meta-feature, suitable for use in 

kernel machines. Sometimes in the literature a kernel descriptor is referred to as a match kernel. Kernel 

descriptors can represent vocabulary feature vector histograms, and turn such histograms into kernel 

matrices for use in a kernel machine. Kernel methods may be considered to be more mathematically 

sound and common in statistical analysis, compared to DNN methods that rely on ad hoc models of 

neurons trained in artificial connection topologies .

For background on kernel methods mentioned in this HKD survey, review the section above on 

Kernel Functions, Kernel Machines, SVMs. 

In this section, we survey a few architectures using kernel-based feature learning to produce meta-

descriptors from spectra such as RGB-D patches and LBP features in a hierarchical architecture. 

The Hierarchical Kernel Descriptor method (HKD) developed by Bo et al. [687] learns kernel 

descriptors from various pixel patch spectra such as gradient color, depth, and LBPs. HKD is based on 

the earlier work of Bo et al. on Kernel Descriptors [702] and extends the descriptors into a hierarchy by



computing kernel descriptors over kernel descriptors in a layered hierarchy. Thus, HKD extends the 

basic kernel descriptor method to take input from the output of other kernel descriptors in a hierarchy, 

combining features from local receptive fields into higher-level features, rather than taking input from 

pixel patches or other features (see Fig. 10.80). 
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Fig. 10.80 This figure illustrates the HKD method of computing kernel descriptors recursively over kernel descriptors 

into a feature hierarchy. Image from Bo et al. [687] in CVPR, # Springer, used by permission 

The goal of HKD is to provide a principled, uniform method for learning kernel descriptors from 

pixel spectra or other feature descriptors, inspired by the earlier work on efficient match kernels (EMK) 

developed by Bo et al. [691] which produces kernel descriptors from SIFT features and Fourier spectra. 

However, HKD learns kernels from raw pixel patches and other spectra from rectangular patches 

including:

• KDES-G: Gradient Match Kernel, composed of a normalized gradient histogram weighted using 

gradient magnitudes, with contributions from the gradient orientations and a Gaussian pixel 

position kernel within the patch. The KDES-G learns a kernel representation of a HOG or SIFT 

style features.

• KDES-C: Color Match Kernel, composed of individual color channel components such as RGB, 

combined with a Gaussian pixel position kernel within the patch.

• KDES-S: Shape Match Kernel, using the LBP to represent local patch shape information, with a 

Gaussian pixel position kernel within the patch.

• KDES-D: Depth Match Kernel, composed of Z depth channel scalars, combined with a Gaussian 

pixel position kernel within the patch. 

The HKD gradient kernel descriptors learn a representational view of gradient orientation 

histograms from a pixel patch, similar to SIFT and HOG descriptors, but HKD gradient descriptors 

are claimed to be slightly more accurate. The HKD gradient kernel descriptor includes three 

components: (1) a pixel-by-pixel attribute comparison for gradient magnitude, (2) orientation, and 

(3) a Gaussian-weighted pixel position comparator. 

HKDs address the computational problems associated with large feature matrices. If a kernel matrix 

is large, and the feature set is large, the compute cost of kernel methods grows to be prohibitive. To 

address the compute cost of larger kernel matrices, HKD first maps the features into a lower 

dimensional space (reduction of feature set), and then shrinks the size of each feature (compaction 

of each feature) via a convex quadratic approximation method.
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In HKD, the kernel descriptors are learned from the training data from pixel patches, for example 

patches of size 16 × 16 taken across a dense 8 × 8 sampling grid. Next the patches are reduced into a 

sparse set (lower dimensional set). For example, if 1,000,000 patches are collected across the sampling 

grid, the vocabulary is reduced down to 1000 words using K-MEANS clustering. Next the final kernel 

descriptors are computed from the reduced patch set into the dictionary vocabulary. The kernel 

descriptors are individually compacted in size to reduce the compute workload, since larger feature 

vectors require more compute, which is especially apparent as the feature set size grows. The 

compaction is performed using a modified KPCA (Kernel-PCA) operating on joint basis vectors in 

the feature set. The goal is to approximate the kernels over a finite dimension, to make the kernel 

descriptors smaller, and reduce redundancy in the feature set. Bo finds that patch sizes of 16 × 16 are 

sufficient to approximate the basis vectors. 

Various patch sizes and spectra can be used together. For example, intensity channels represent 

gradient information, RGB color channels to represent color appearance, depth information from a 

depth camera for z spatial information, and LBPs to represent local x, y spatial relationships or local 

intensity shape. The HKD research confirms some interesting findings noted by other researchers, 

namely that using a variety of patch sizes together, rather than only a single patch size, increases 

accuracy slightly. For example, patch sizes of 8 × 8, 16 × 16, 25 × 25, and 31 × 31 were tried to confirm 

that multisize patches increase accuracy. Another finding is that accuracy is improved by using 

multivariate feature descriptor kernels, concatenating different types of feature vectors such as 

gradients and color together prior to mapping the descriptors into kernel matrices. See Gehler and 

Nowozin [719] and Vedaldi et al. [812] for more details about multivariate descriptors. 

Another interesting architecture using kernel descriptors is developed by Mairal et al. [721] as a 

Convolutional Kernel Network (CKN), incorporating kernel descriptors in a CNN framework, instead 

of using convolutions and associated functions to model the artificial neuron. CKN is claimed to be a 

generalization of HKD methods, with additional kernel variations and optimizations. A useful over-

view and comparison of HMP and HKD are found in Reubold [712] who analyzes the details and 

trade-offs between each method. 

In summary, we note that HKD is yet another example illustrating the point that feature hierarchies 

and the sheer number of features supported in an architecture seem to be the key to best results, rather 

than attributing success to any specific feature descriptor, learned or otherwise crafted. And a corollary 

observation is that strong local feature descriptors such as SIFT, FREAK, and ORB can be rivaled and 

sometimes surpassed by large sets of individually weak features in a deep and wide hierarchy, such as 

HKD and CNNs. 

HMP—Sparse Feature Learning 

In this section, we illustrate a sparse feature learning architecture via a survey of the Hierarchical 

Matching Pursuit (HMP) method by Bo et al. [111]. HMP learns and encodes a multilevel feature 

hierarchy as a sparse dictionary of pixel patch features in an unsupervised framework from unlabeled 

data. HMP has been extended by Bo et al. [204] to incorporate data from RGB-D color channels, depth 

maps (D), and surface normal vectors (N). More HMP enhancements were made in the multipath 

extensions MP-HMP [91] to use three or more layers of features in the hierarchy with multiple sized 

feature patches.
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For background on sparse coding, codebook learning, K-SVD, K-MEANS, and matching pursuit 

methods mentioned in this HMP survey, review the Sparse Coding and Codebook Learning Overview 

section above. 

We provide observations in this survey on a few of the key innovations across HMP versions 

including:

• PSC—Pyramid Sparse Code Features [204] encode sparse-coded features from pixel patches using 

a novel method call Spatial Max Pooling.

• Multivariate RGB-D-N data [204] descriptors are introduced.

• MI-KSVD [111] uses a variation of K-SVD called MI-KSVD to learn a hierarchical sparse 

codebook with optimized distance between features.

• M-HMP [91] uses multisized feature patches [91] encoded through multiple paths. 

Note that Yu et al. [723] previously developed a method similar to HMP, using hierarchical sparse 

coding (HSC) which jointly encodes low-level feature codes in a local region from layer 1 into higher-

level feature codes in layer 2, demonstrating that hierarchical sparse coding methods can provide 

spatial encoding in the higher layers to spatially associate local features together into higher-level 

sparse codes, which is lacking in single-layer sparse coding methods using orderless BoW feature 

vocabularies. HMP follows the same approach as HSC to encode higher-level sparse code features 

from lower-level features using local region spatial dependence. 

HMP Pyramid Sparse Code (PSC) Feature Descriptor 

HMP’s Pyramid Sparse Code feature descriptor is novel, encoding of a set of 21 sparse codes 

concatenated together. In the M-HMP extensions to PSC, the positive and negative sparse codes are 

split out into separate features to allow for separate weighting and responses. PSC is therefore one of 

the most complex features in this survey. 

As shown in Fig. 10.81, HMP encodes features-in-features using Spatial Pyramid Max Pooling to 

select the MAX sparse code from each region of the spatial pyramid. Each sparse code is computed 

from a 5 × 5 pixel region as shown in Fig. 10.81. Note that there are 21 regions defined in the spatial 

pyramid of Fig. 10.81 (right), and the MAX sparse codes from each region are concatenated together 

into the 21-element PSC descriptor. The resulting HMP PSC descriptor is similar to Pyramid Match 

Kernel (PMK) developed by Grauman and Darrell [460] discussed in Chap. 6, except that the PMK 

descriptor is computed over the entire image, using simple histogram features of each subdivided 

image region, and the histograms for each region are concatenated together. However, the HMP 

pyramid sparse code feature is composed over a 16 × 16 patch of sparse codes where the MAX values 

are concatenated together to represent the scale pyramid in the 16 × 16 region.
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Fig. 10.81 This figure illustrates the composition of pyramid sparse code features composed of 21 sparse codes taken 

from the MAX sparse codes in a spatial pyramid of 21 regions of size 4 × 4 (16 codes), 8 × 8 (4 codes), and 16 × 16 

(a code) 

The M-HMP extension uses the same 5 × 5 sparse codes and 16 × 16 patches for the first level, but 

extends the patch sizes and pooling region counts. Each layer in the feature hierarchy takes input from 

the lower-level spatially max pooled and contrast normalized features. The second level uses 36 × 36 

patches to learn mid-level features, and the third layer uses 36 × 36 patches to learn whole-image 

features. Bo reports M-HMP, a range of results using one, two, and three layer networks, and variable 

feature counts ranging from 300 to 1000. 

HMP Dictionary Learning with MI-KSVD 

The first version of HMP [153] uses the K-SVD dictionary learning method developed by Aharon et al. 

[707] to encode features in the sparse codebook. K-SVD recursively optimizes and recomputes the 

entire codebook as each new feature is added, as explained earlier. However, Bo [91] later made key 

enhancements to K-SVD referred to as MI-KSVD (Mutually Incoherent-K-SVD) [204] to create a 

balance between common and uncommon features by encoding basis features with a more uniform 

relative distance to include common and uncommon features, rather than clustering the codebook 

around the most common features. To illustrate the problem, imagine building the sparse codebook 

from only the most commonly observed pixel patches—this would yield a codebook overfit to the most 

commonly observed patches, not likely covering the entire feature space. M-HMP balances mutual 

incoherence with reconstruction error to incorporate common and uncommonly observed patches to 

optimize the codebook for a more uniform feature space distribution. The MI-KSVD method is 

therefore novel.
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To add features or find features in the sparse codebook, MI-KSVD uses an orthogonal matching 

pursuit (OMP) method, as discussed earlier, to compose a linear combination of sparse codes to 

approximately reconstruct pixel patches from combinations of codebook features, similar to a series 

reconstruction of a wave using the familiar Fourier Series (see Fig. 2.15). During codebook learning, 

the basic idea is to ideally find the single closest feature in the sparse codebook matching the sample 

feature, and if nothing close exists, add in a new feature. A matching pursuit will reconstruct a feature 

from multiple basis codewords if needed. HMP uses an optimization method called Batch-Tree OMP 

(BTOMP) which subdivides the basis set dictionary into smaller dictionaries (i.e., batches) using 

K-means clustering, so that the matching pursuit is computed more quickly in parallel over each batch, 

see Rubinstein [737]. 

We compare the K-SVD and MI-KSVD objectives here: 

D,X 
min Y -DXk k2 F ð  KSVD objectiveÞ

ð  MI-KSVD objectiveÞD,X 
min Y -DXk k2 F þ λ 

M 

i= 1 

M 

j= 1, j≠ i 

d⊺ i dj

where:

• D = [dk,,. . .] Codebook

• X = [xk,,. . .] Sparse codes

• Y = [yk,,. . .] Pixel patch matrix observations

• λ = mutual coherence trade-off parameter 

As shown in the equations, for each new patch sample matrix Y, the sparse code matrix X is 

computed from codebook D to approximately reconstruct Y using BT-OMP to find the set of closest 

matching codebook items. Next each item in the codebook is recomputed using the MI-KSVD objective 

function, parameterized by λ to balance reconstruction error against mutual incoherence (i.e., codebook 

entry similarity avoidance) resulting in a reshaped codebook. The codebook D is recomputed repeat-

edly in the same manner for all new samples Y. 

Figure 10.82 illustrates the basic method for building HMP layer 1 features.
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Fig. 10.82 This figure illustrates the sparse coding for the first layer (1) encoding pixels into sparse codes over 5 × 5 

regions, (2) combining sparse codes into the 21-element pyramid sparse code feature vector using spatial pyramid max 

pooling, (3) adding each feature into the sparse codebook 

As shown in Fig. 10.82 (1), the first layer sparse codebook is initialized to an overcomplete DCT 

basis set converted to sparse codes. The second level codebook is initialized from a reasonably random 

set of perhaps 1,000,000 5 × 5 image patches mean-zero normalized and converted to sparse codes. 

HMP builds sparse codes from randomly sampled 5 × 5 pixel patches, and then assembles the sparse 

codes into a sparse code image. 

As shown in 10.82 (2) HMP uses spatial pyramid pooling over a 16 × 16 patch of sparse codes, 

using three levels of spatial resolution, rather than the simple subsampling pooling over a single spatial 

resolution region typically used in CNNs. The three pooling levels used in HMP are 1 × 1 (the current 

feature pixel patch), a 2 × 2 image division into four regions, and a 4 × 4 image division into 16 regions, 

and one 16 × 16 region, for a total of 21 regions in the spatial max pool concatenated into the Pyramid 

Sparse Code (PSC). The max feature from each region is selected and encoded. All features are 

normalized in the range 0–1. 

Next in 10.82 (3), MI-KSVD is used to add each feature into the codebook. HMP is trained in a 

layer-wise fashion, starting from the lower layers. Steps (2) and (3) are repeated for each layer of the



codebook. However, Bo also tries a method for joint pooling over multiple layers [204] with the RGB-

D-N data, and reports improved results. 
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The HMP training protocol is novel and involves training the first layer to record sparse codes 

within 16 × 16 spatial pyramid pools, and then in intermediate layers (2 - n)  refines the sparse codes 

by using 16 × 16 patches across the whole image. To train, 16 × 16 pixel patches are taken at a stride of 

4 across the input training images. The 16 × 16 pixel patch is first encoded into 16 × 16 sparse code 

patch from the sparse codebook, using a 5 × 5 pixel local region around each pixel to compute the 

sparse codes. Each sparse code is then composed from the codebook using B-OMP. Next for each 

16 × 16 region of sparse codes, a spatial pyramid subdivision is built consisting of a 2 × 2 subdivision 

and a 4 × 4 subdivision and the entire 16 × 16 region. The maximum sparse code from each region is 

selected, and concatenated together into a regional sparse code.

In one test, Bo freezes the first layer DCT basis and does not perform feature learning at all on the 

first layer. When the DCT basis is compared against the features learned via K-SVD, both the DCT 

basis and the K-SVD sparse-coded basis perform within a few percentage points of accuracy, again 

illustrating that the feature descriptor itself is not as important as the sheer number of features in the 

feature hierarchy. 

HMP Multivariate I-RGB-D-N Features 

HMP is extended [204] to use features from a depth camera ([204] is one of the first methods of 

encoding depth information into feature descriptors), as well as color information, with four channels 

as input patches: (1) Intensity, (2) RGB, (3) Depth camera Z pixels, and (4) Surface Normal vectors. 

The method follows basically the same sparse coding and K-SVD methods as employed in HMP. 

However, the final set of four feature vectors can be associated together for a stronger feature via 

concatenation of the features from each channel, which forms a 188,300 dimensional feature 

descriptors. Bo concludes that this method of learning separate smaller features for each channel 

works better than learning a single larger feature learned from all channels combined into a single 

larger channel. See Fig. 10.83 for an illustration of the learned I-RGB-D-N features. 

Fig. 10.83 This figure illustrates the different sparse codebooks learned by HMP methods, including (left to right) 

RGB-I intensity, RGB, depth channel, and 3D surface normal encoded using RGB. Image from Bo et al. [204] from ISER 

Springer Tracts in Advanced Robotics, # Springer used by permission
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M-HMP Multiscale Features 

The Multipath Hierarchical Matching Pursuit extends the basis HMP method across several patch sizes 

(16 × 16 and 32 × 32) and a three-level feature hierarchy, resulting in a deep network with unusually 

large features compared to many CNNs using 3 × 3 and 5 × 5 features. The Multipath matching pursuit 

extends the single-path encoding each patch across multiple paths to extract a wider and deeper range 

of features. The Multipath HMP method using several patch sizes creates a richer feature set, 

increasing accuracy over mono-sized patches as in the original HMP method. 

We note that many local feature descriptors such as FREAK (31 × 31 or other large size) and SIFT 

(16 × 16) also use larger feature sizes as well, with good success. 

In summary, HMP variants show that learning features from simple pixel patches can rival the 

performance of SIFT feature sets. Bo et al. find that two-level feature hierarchies perform better than a 

single-level, and two-level hierarchies perform about as well as three-layer hierarchies. Multivariate 

I-RGB-D-N features used together are shown to be more effective than mono I-channel features. 

Multipath coding using multiple feature patch sizes is demonstrated to increase effectiveness. 

HMAX and Neurological Models 

We will survey the original HMAX work here as introduced by Riesnhuber and Poggio in 1999 [738], 

and also survey related neurovision models including a few subsequent variations from the basic 

HMAX architecture. The interested reader should consult the collection of historical papers and 

continuing research within the HMAX community at Riesenhuber’s MAXLab at Georgetown [763] 

which includes online source code resources and references. To dig deeper into neuroscience research, 

see the neuroscience journals listed in Appendix C. 

To understand HMAX, we provide some brief background on the visual pathway here, which 

influenced the HMAX model. HMAX is one of the first models of the entire visual pathway hierarchy 

based on neuroscience. The neuroscience community is quite active in developing models of the visual 

pathway, and their work does not often overlap with the computer vision community since the research 

goals are different. So, this section serves as a brief introduction, via HMAX, to a neuroscience model 

for vision and feature learning which is different and perhaps more complex than the CNNs and RNNs 

surveyed earlier. 

The Standard Model of the Visual Pathway 

The foundations of HMAX lie in a so-called standard model of the visual pathway described by 

Ungerleider in 1994 [760], Riesenhuber [759], and others. HMAX is based on a standard model of the 

visual pathway as shown in Fig. 10.84. The standard model includes a hierarchy of receptive fields 

following the general Hubel and Wiesel model discussed earlier in this chapter. (See also the 

discussion on the visual pathway and Figs. 9.10 and 9.12.) Many of the HMAX concepts are 

biologically inspired, some are not. HMAX is more widely used as a research tool in the neuroscience 

community, compared to CNNs being increasingly used in commercial systems and within the 

computer vision community. This author notes that neuroscience research is increasingly driving 

computer vision toward synthetic vision models like HMAX, rather than ad hoc computer vision 

models designed as trade-offs to solve real problems under primitive compute and memory constraints.



As computing power increases, synthetic vision models are becoming more complex and realistic, 

often driven by the best neuroscience. 
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Fig. 10.84 This figure illustrates the standard visual pathway and the HMAX model after Riesenhuber [759] 

HMAX [738] models the low-level features as a small set of oriented Gaussian Radial Basis 

Functions (RBFs) which are similar in appearance to Gabor functions and oriented edge patterns. The 

simple Gaussian RBFs can be composed together into complex features, where combinations of scaled 

and translated features may overlap and compose together, see Fig. 10.85. HMAX is largely based on 

the experimental data of Logothetis et al. [739] who measured responses to shapes across the visual 

pathway in monkeys. Logothetis found that groups of neurons along the feed-forward hierarchy 

respond to specific shapes like edges at the low levels, and higher-level concepts such as faces in 

higher levels, which is to be expected since each neuron in the ventral stream V1 V2 takes some input 

from lower-level local receptive fields, so lower-level neurons are taking input from small regions 

where edge and blob features predominate. Neurobiology research by Logothetis and others indicates 

that the visual pathway has a huge hierarchical feature memory containing billions of features, 

processed via extremely massive amounts of parallel and simultaneous processing, where some 

neurons are dedicated to a single low-level feature, and other neurons are dedicated to part of a larger 

feature, and other neurons are dedicated to making high-level classification decisions to form and test 

hypothesis. The implications are that future synthetic vision models may be designed with the 

assumption that huge numbers of features are useful and advantageous, in contrast to models using 

smaller number of features and statistical classifiers which tend to be better at generalization, 

compressed, and suitable for implementation on modest computer systems.
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Fig. 10.85 This figure illustrates the apparent 3D rotational and scale appearance of a set of multiscale Gabor features. 

By building the same Gabor features at multiple scales, the set appears to contain a 3D set of scaled and rotated Gabor 

features, since scaled versions of a feature can be interpreted by the eye as a rotated version of the cell in 3D. Using 

multiscale low-level features allows HMAX to compose higher-level view-tuned features using combinations of lower-

level apparently 3D invariant features 

Viewpoint Invariance Models 

HMAX provides a bridge model that partially reconciles theories on viewpoint invariance in human 

vision. In other words, how does the human visual system identify the same object from different 

viewpoints? According to Tarr [740], there are two fundamental visual representation theories to 

account for viewpoint invariance: 

1. Hierarchical Parts Models (mostly viewpoint-independent): Hierarchies of parts, each of which are 

wholly or partially viewpoint invariant. Most viewpoint invariance is assumed to be recorded in the 

features hierarchy, likely at the higher levels. It is theorized that some interpolation between view-

dependent features is performed in the visual pathway to reconcile viewpoints. 

2. Appearance Models (mostly viewpoint-dependent): Each viewpoint is represented by separate 

neural feature memories, perhaps with higher-level concepts sharing some features between 

viewpoints. Viewpoint representations are theorized to record new neural memory impressions 

from the original viewing, perhaps with new neural growth and interconnects forming based on the 

novelty of the impressions, and the importance of the impressions. 

*HMAX synthesizes both models (1) and (2): HMAX uses a hierarchy of parts for the lower-level 

features, and viewpoint-dependent models (view-tuned units or VTUs) for higher-level concepts. 

HMAX introduced the term view-tuned cells to represent higher-level concepts in the View -Tuned 

Units (VTUs), as shown in Figs. 10.84 and 10.86. Each view-tuned cell is based on a hierarchy of 

lower-level features. The higher-level viewpoint-dependent view-tuned cells are pattern recognizers 

composed of lower-level viewpoint-independent features. HMAX has proven to model scale and 

translation invariance well, with some mirroring invariance about the x or y axis also, leveraging the 

view-tuned cells and low-level viewpoint-independent features.
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Fig. 10.86 This figure illustrates the HMAX model of view-tuned features representing higher-level concepts, built on 

top of a hierarchy of view-dependent lower-level features 

HMAX Feature Hierarchy 

HMAX composes an overcomplete set of lower-level features into a representation of higher-level 

concepts, which mitigates feature invariance problems. As shown in Fig. 10.85, note that the lower-

level features are similar to Gabor functions, which can model an object such as an edge segment as a 

collection of 3D rotations, equivalent to 3D rotation and scale invariance. We consider viewpoint 

invariance to consist primarily of affine transformations. The higher-level features are thus built on 3D 

invariant edge-like features, see also the SYMNETS survey earlier regarding the affine-invariant 

symmetry group of features. 

HMAX is based on neurobiology concepts and some hypothetical models as well. HMAX uses 

hard-wired feature for the lower levels such as Gabor or Gaussian functions, which resemble the 

oriented edge response of neurons observed in the early stages of the visual pathway as reported by 

Tanaka [752], Logoethtis [753], and others. HMAX builds higher-level concepts on the lower-level 

features, following research showing that higher levels of the visual pathway (such as IT) are receptive 

to highly view-specific patterns such as faces, shapes, and complex objects, see Perrett [747, 748] and 

Tanaka et al. [749]. In fact, clustered regions of the visual pathway IT region were shown by Tanaka 

[752] to respond to similar clusters of objects, suggesting that neurons grow and connect to create 

semantically associated view-specific feature representations as needed for increased discrimination. 

And Connectome research is also providing evidence that related feature concepts are stored in 

adjacent areas [778, 785]. HMAX provides a viewpoint-independent model that is invariant to scale 

and translation, leveraging a MAX pooling operator over scale and translation for all inputs feeding the 

higher-level S2, C2, and VTU units, resembling lateral inhibition which has been observed between



competing neurons, allowing the strongest activation to shut down competing lower strength 

activations. HMAX also allows for sharing of low-level features and interpolations between them as 

they are combined into higher-level viewpoint-specific features. 
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Under HMAX assumptions, each neuron is more like a very simple memory cell with a neural 

correlator. Indeed, neurobiological research [742–744] provides ample evidence that specific groups 

of neurons act as independent memory cells, each one containing different views of the same object, 

rather than encoding viewpoint invariance in a single neuron. Under the view-dependent assumptions, 

smaller number of neurons are needed to remember the higher-level viewpoint-dependent differences 

between groups of neurons [745–747] as noted in research on monkeys, where specific neurons in the 

anterior IT respond to view-specific features. Viewpoint dependence of specific neural structures 

seems likely, for example where it is necessary for features learned in the top-level IT region of the 

visual pathway to be very specific and even viewpoint-specific to recognize a human face such as 

family member. 

The original HMAX concept is illustrated in Fig. 10.86 as a way to visualize the architecture of a 

real system. HMAX does not learn the bottom layer features in S1, C1, S2, and C2, but instead uses 

basis functions [484]. The low-level features in HMAX are hard-coded or supplied using transfer 

learning, based on the findings from see Serre et al. [761] who implemented real HMAX systems, 

showing that learning features as are common in CNN models are no more effective than providing 

basis features or features derived from transfer learning which can adapt to the training set. The high-

level View-Tuned Units (VTUs) are where the features are learned. The S1 and C1 units produce 

feature maps, and the S2 and C2 units produce dictionaries of unordered features (BoW model). More 

and more research shows that DNA may contain memory impressions or genetic memory such as 

instincts and character traits, analogous to basis functions rather than learned functions (see [750], 

many more references can be cited). Other research shows that DNA can be modified via memory 

impressions and experiences [751] which can be passed on to subsequent generations via the DNA. So, 

the HMAX model using preexisting features at the low levels is neurobiologically plausible, with 

specialization and higher-level concept learning occurring at higher levels of the visual cortex. 

The keys layers in the HMAX model are as follows:

• S1: Simple cells compute oriented multiscale filter responses via template matching.

• C1: Complex C cells perform a multiscale MAX pooling operation.

• S2: Compose combinations of scaled and translated features into prototype features.

• C2: A 1D feature dictionary of MAX pooled S2 cells.

• VTU: The view-independent units (VTUs) composed of high-level features. 

HMAX Layers 

Here we survey Reisenhuber’s original HMAX version [738] here following Reisenhuber’s MAXLab 

open-source code [763], layer by layer, and point out more recent HMAX enhancements and 

innovations by other researchers as we go. 

S1 Layer 

The S1 layer is for multiscale filtering of the input image into a set of multiscale output feature maps 

containing filter responses across the entire input image which are subsampled according to the size of 

the filter region.
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As shown in Fig. 10.87, S1 composes four oriented Gaussian edge-like functions computed across 

12 scales (4 × 12 = 48) into weight template matrices for correlation. Each output feature map contains 

the filter response for a different scale of each feature, using a retinal coordinate system to preserve the 

spatial grid location of features after subsampling. The original HMAX versions use second derivative 

Gaussian filters. Mutch and Lowe [484, 754], Serre [485], and later versions of HMAX [755, 757] use 

Gabor Filters instead of Gaussians, and Hu et al. [756] uses PCA learning to create convolutional filters 

from patches. Gabor filters are more commonly used in more recent versions of HMAX since the 

Gabor filters can be tuned more precisely than the Gaussians. Sharpee et al. tried curved Gabor Filters 

[587] and found that curved Gabor filters are still insufficient to describe the types of features detected. 

Fig. 10.87 This figure 
illustrates the S1 layer 

features, containing four 

oriented filter functions, 

and the 12 scales for each 

filter, yielding 48 filters. 

Each filter is rendered as a 

circular template weight 

matrix 

29x29 
27x27 

25x25 
23x23 
21x21 

19x19 
17x17 
15x15 
13x13 
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9x9 
7x7 

Original HMAX second derivative of Gaussian 2D filter shape: 

Gx,y =
- x cos θ þ y sin θð Þ2 

σ2 σ2 - 1ð  Þ
exp 

xcos θ þ y sin θð Þ2 þ - x cos θ þ y sin θð 2 

2σ 2

where orientation = θ and width = σ 

Gabor filter shape (Mutch & Lowe, and Serre): 

G  x, yð  Þ= exp 
X2 þ γ2Y2 

2σ2
cos 

2π 

λ 
X

where:
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X ¼ x cos θ- y sin θ 

y ¼ x sin θ þ y cos θ 

x and y range - 5 . . . 5½ ]

θ range 0 . . . π½ ]

γ aspect ratioð Þ, σ effective widthð Þ, λ wavelengthð Þ  

Pixel patch X response to Gabor filter: 

R  X,Gð  Þ= 
ΣXiGi 

ΣX 2i

Each filter is replicated into four orientations of 0, 45, 90, and 135, and each orientation is replicated 

into 12 scaled versions ranging from 7 × 7  to  29  × 29 pixels in scale increments of 2: [7 × 7, 9 × 9, . . .  

29 × 29]. So, the total number of S1 features are 4 × 12 = 48. Later versions of HMAX use slightly 

different arrangements of filter sizes [755–757]. The S1 features are contained in a circular region, 

rather than a rectangular region, which increases rotational invariance and is more biologically 

plausible than a sim ple rectangle.

S1 produces filter responses via template matching, so the filters are rendered into weight matrices 

for template matching against pixel regions, similar to CNNs. Each filter is centered over each pixel in 

the input image for filtering, and all filter responses are collected into 48 output feature maps to feed 

into layer C1. Instead of creating scaled features ranging from 7 × 7 . . .  29 × 29, Mutch and Lowe 

[484, 754] scale the input image instead and use a monoscale filter, see Fig. 10.88. Serre et al. [761] 

extend the filter scale range from 7 × 7  to  37  × 37 at spacing of 2 leading to 16 scales at four 

orientations for 64 feature types.

Input image 

Output Feature mapsApply each filter centered at each pixel
Alternative:4 monoscale filters, 
12 multiscale input images 

Input images 

Fig. 10.88 This figure illustrates the HMAX S1 layer. (Left, center) Each filter is applied centered at each pixel location 

in the input image, and filter responses collected as output feature maps for input to the C1 units. (Right) an alternative 

method using monoscale features applied to multiscale input images after Mutch and Lowe [484]



538 10 Feature Learning and Deep Learning Architecture Survey

C1 Layer 

The C1 layer performs Multiscale MAX pooling of all filter responses at all orientations and scales to 

create V2 complex cells which are scale invariant within a small scale band, and position invariant 

within local regions. Each oriented filter set is pooled independently. As shown in Fig. 10.89, C1 pools 

and subsamples the 48 input feature maps from S1 into 16 output feature maps corresponding to scale 

bands. The scale bands contain filters of similar size, for example band 4: [7 × 7, 9 × 9], band 3: 

[11 × 11, 13 × 13, 15 × 15], band 2: [17 × 17, 91 × 19 21 × 21], and band 1: [23 × 23, 25 × 25, 27 × 27, 

29 × 29]. The idea of using bands is to increase scale invariance by pooling the response of similar 

sized filter responses. The MAX pooling region sizes are 4 × 4, 6 × 6, 9 × 9, and 12 × 12 to be large 

enough for the features in each band, which provides some invariance for feature position, and the 

regions may overlap by a variable stride. Alternatively, features of each polarity may be generated and 

used instead. As shown in Fig. 10.89, the MAX pooling region size is proportional to the size of the 

features in each band, for example using smaller regions such as 4 × 4 for smaller features, and larger 

regions such as 12 × 12 for larger features. MAX pooling region overlap can be adjusted, for example 

using a stride factor for dense overlapped region sampling, or higher stride factors to reduce region 

overlap. The absolute value of each filter response is used for MAX pooling to provide feature polarity 

invariance in the case of contrast inversion. 

noigernxnniloopXAMstupnipamerutaef1S 
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Fig. 10.89 This figure illustrates the HMAX C1 layer. The S1 filter responses are pooled into four bands, then MAX 

pooled through n × n regions. The pooled features contain scale and position variations
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S2 Layer 

The S2 layer corresponds to the V4 or posterior IT layer in the standard model. The S2 units pool 

afferent inputs from filter responses in C1 2 × 2 local regions for each scale band at each of four 

orientations, then compose a complex combined filter response against a prototype n × n patch P taken 

from a training image at the C1 layer. S2 cells respond to coactivation of C1 feature combinations of 

orientations and scales over larger receptive field sizes. As shown in Fig. 10.91, each S2 unit pools and 

combines input from a local 2 × 2 region at each orientation in the C1 feature maps to create the 

complex filter. Mutch and Lowe [484] improve the feature composition by only using the dominant 

orientation of each filter response as shown in Fig. 10.90. 

Fig. 10.90 This figure illustrates the Mutch and Lowe [484] approach for sparse feature composition (tuning) using 

only the MAX orientation from all filter band responses, instead of using all filter responses combined. Image from [484] 

IJCV 2008, # Springer and used by permission 

S2 units find the response of C1 patches X to prototype patches P from the training image. Each 

patch region has a depth of 4 (one for each of the four C1 scale bands), and contains four possible 

values. C1 feature maps contain four feature orientations × four pooled size bands, so the possible 

number of scale and orientation invariant feature combinations are 44 = 256. All combinations are 

considered at the S2 layer across the entire image in local 2 × 2 regions. Note that the feature count can 

be increased by including a wider region than 2 × 2 and increasing the number of C1 feature 

orientations included. Cadieu [757] extends the region size to 3 × 3, and includes features from all 

orientations in the composition instead of just a single orientation. For information and visualizations 

regarding S2 unit shape representation, see Cadieu [757]. 

The composition and tuning method varies across implementations, and the original HMAX 

version [755] uses a response function with a weighted Gaussian summation {1,1,1,1} of four features 

with standard deviation 1. In the HMAX-S derivative, Theriault et al. [758] use Cosine similarity 

between C and C1 patches, and use a normalized dot product between P and X which is invariant to 

illumination intensity, while the RBF is intensity sensitive. Other similarity functions are used as well 

in HMAX variants [754, 762]. 

The complex features contain several scales and orientations of each filter combined together, so the 

S2 output is a single 2D feature map dictionary of complex prototype features P, as shown in 

Fig. 10.91.
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Fig. 10.91 This figure illustrates the S2 unit complex feature composition from C1 feature maps, which contains all 

combinations (44 = 256) of multiscale and translated features 

The S2 feature is taken by comparing the difference between the current image patch X from the 

training image against the current C1 prototype feature X, and the difference corresponds to the 

strength of the feature match. To compose each S2 prototype, random image patches X are taken for 

each image at the C1 level, and a response function R(X,P) is used to compose a feature Y from the 

current image patch X in C1 and the prototype Pi patch at all positions for all image patches across each 

band and orientation as follows: 

Y = R(X, P) = exp ( - γ(kX - Pik
2 ) (RBF from Serre and Reisenhuber [485, 761]) 

*where γ is a sharpness tuning parameter, distance is Euclidean. 

X-Pik k2 
Y =R  X,Pð  Þ= exp -

2σ2σ
(RBF—Mutch and Lowe [484, 754]) 

*where α = (n/4)2 is a normalizing factor, n is the filter size dimension n × n, distance is Euclidean.

Y =R  X,Pð  Þ= 
PjX 

(Norm. Dot Product—Theriault et al. [758])

The S2 unit activation function is a tunable Gaussian function, and subsequent HMAX versions use 

a Gabor function. The S2 units are used to hold the feature dictionary which is a combination of 

bar-like features contained in the C2 cells at four orientations. 

Note that Cadieu [757] also provides extensions to S2 and C2 to relax the method for combining 

features by allowing some feature learning at S2 to tune features to better match target patterns, and the 

C2 layer pooling parameters are also more flexible. 

C2 Layer 

C2 cells combine different sizes of S2 cells to respond to larger receptive field sizes. The C2 layer takes 

the S2 units as input, and produces output as an unordered 1D dictionary. C2 units can be constructed 

simultaneously while the S2 layer is constructed by taking the MAX response at all positions and scale



bands across the whole image. C2 units feed into the VTUs to compose higher-level concepts. The C2 

dictionary contains composite oriented-bar features. The C2 units MAX pool across all the composite 

features from the S2 units of a specific orientation from all four filter bands together across the whole 

image, which provides a large amount of rotational and translation invariance. The S2 units compose 

the composite features, and the C2 units essentially just choose the MAX values. There is no spatial 

arrangement to the pooling, so at this point the features are simply collected as an unordered dictionary. 

The patterns contained in the 256 C2 units can combine to encode arbitrary object shapes (Fig. 10.92). 
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Fig. 10.92 This figure illustrates the C2 layer, which performs max pooling across the S2 feature maps over all positions 

and scales into a 1D dictionary containing no scale or position information 

Note that the HMAX C2 dictionary is entirely based on the training data prototypes; however, Serre 

[761] also provides research regarding much larger feature counts in a Universal Feature Dictionary 

incorporating other features besides the Gabor-like oriented edges, using larger feature counts ~5000 

features, and larger numbers of training examples than earlier HMAX implementations. 

VTU Classification 

The VTU layer is the final classification layer where C2 features and perhaps C1 features are combined 

to form higher-level objects. Finally, the actual feature learning in HMAX occurs at the VTU layer. 

The VTU units (View-Tuned Units) take input from C2 units and mimic response to a 2D view of a 3D 

object, which closely resemble VTUs observed in monkeys by Logothetis [739]. The VTUs may use a 

Gaussian response function tuned to respond to a smaller width to focus the response, to achieve a 

maximum response of unity for strongest matches, and zero for no match. C2 units may be filtered out 

and ignored if the activation strength is too weak, or alternatively selected as afferents if strong enough. 

Note that Serre and Riesenhuber [755] later extend the basic architecture to use more features 

(17 instead of 12), as well as providing parameters for filter band grouping and pooling region size 

tuning. Mutch and Lowe [484] introduce sparsity into the feature set using several methods including 

(1) suppressing weak activations for a particular feature orientation if the activation is <50%, 

(2) computing matches for only the strongest orientations of each feature at a given location (a form 

of lateral inhibition), and (3) discarding weight templates with low values instead of passing them 

forward to the VTUs. Hu et al. [756] also make enhancements to the HMAX feature basis by learning 

S-layer features via sparse coding, transfer learning, and PCA/ICA PCA, instead of starting with the 

hard-wired Gabor filters. Serre et al. [485] use an SVM classifier at the VTU layer taking inputs from 

C1 and C2 features, and experimented with boosting [431].
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Training Protocols 

HMAX training protocols vary, with early versions using smaller training sets of unmodified images, 

compared to the massive scaled, rotated, and contrast-modified training sets often used for CNNs. The 

HMAX training process involves extracting a set of size N randomly located pixel patches X from the 

training images. Typically, several thousand patches are extracted all together. The pixel patch X sizes 

match the region pooling sizes for C1 filters (i.e., 4 × 4, 6 × 6, 9 × 9, 12 × 12 for the original HMAX 

version). Each of the patches is filtered to compute the response at the C1 level for all orientations and 

scales, and then is considered a prototype P. The number of C1 filter responses vary with the region 

pooling size, so for a 4 × 4 patch, there are 16 positions, and for each position there are four oriented 

filter units, so a 4 × 4 patch contains 4 × 4 × 4 = 64 C1 unit responses. Each prototype is centered and 

filtered against all the S2 unit features, and the response is measured using a distance function such as 

Euclidean distance [761] or Cosine distance [758]. Lau et al. [777] and Theriault [758] use a dot 

product to measure distance. The HMAX-S method [758] uses multiple local scales for deeper 

prototype feature responses, resulting in much more detailed and sensitive prototypes. The prototypes 

are then MAX pooled to create the C2 feature dictionary. 

In summary, the HMAX model is one of the most detailed models of neurobiology, primitive 

though it is, and is popular in the neuroscience research community. As compute power and memory 

increase, models like HMAX will become more common and be extended. 

HMO—Hierarchical Model Optimization 

Another neurological model is the Hierarchical Model Optimization (HMO) developed by Yamins 

et al. [581, 583] which models the high-level reasoning centers in the IT cortex. By comparison, CNN 

models deal with the lower-level through higher-level features in the visual pathway, and local feature 

descriptor methods focus mostly on modeling the retina and eye with some other processing, yet in 

both CNNs and local descriptor models, the higher-level IT region and learning centers are not well 

addressed, and instead are posed as a classification problem solved using FC layers and SVM 

approaches. So, HMO fills a unique niche within computer vision models at the highest level. 

HMO optimizes an ensemble of lower-level hierarchical models using boosting and other optimi-

zation methods to model higher-level reasoning, and achieves remarkable equivalence with the human 

visual pathways under some tests, see Fig. 10.93. The HMO model development process involved 

basic research connecting electrodes to 168 neurons in a subject, and measuring the neural electrode 

response to a labeled training set. Then, thousands of possible response models such as CNNs and 

HMAX were evaluated and tuned in a hierarchical model optimization process (HMO) to discover the 

closest matching classifications from the candidate models (i.e., reverser engineering). The HMO 

response model set is optimized starting with random combinations of tuning parameters, such as 

feature counts, layers, and momentum, with training protocol variations on image rotations, scales, and 

intensity. HMO discovers and combines the best performing models together to both predict and 

achieve high-classification scores, using adaptive boosting and parameter optimizations.
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Fig. 10.93 This figure illustrates the impressive results of the hierarchical model optimization (HMO) model. Image 

# by Yamins et al. [581], used by permission 

Ensemble Methods 

Ensemble methods are combinations of networks working together, which may build features in 

parallel, classify in parallel, and vote on the combined results. The ensemble of networks may be 

heterogeneous or homogeneous, for example using multiple CNNs exclusively, or perhaps using 

CNNs and vocabulary methods together, or using CNNs and RNNs together as surveyed earlier (see 

C-RNN, QDRNN, RCL_RCNN, and dasNET). A simple ensemble network might include five CNNs 

each using slightly different training protocols and learning parameters (see Inception), each yielding 

labeled features for classification, with a final voting mechanism at the end incorporating all results. 

Ensembles can provide some advantages such as:

• Reduce overfitting.

• Add more degrees of invariance to the feature set.

• Increase overall accuracy.

• Speed up training, as suggested in 1989 by Waibel [620]. 

One disadvantage of ensembles is the increased computational requirements; however, methods for 

optimizing ensembles have been explored as explained next. 

As noted by Bucila et al. [550], many of the best performing models are ensembles of hundreds or 

thousands of models. This is intuitive since no single model can be optimized for all types of data, and 

models are trained to specialize on a given training set. Bucilla developed a method for compressing a 

set of models into a smaller set of models. The key concepts include identifying smaller faster models 

to approximate the slower larger models, and their work focuses on identifying the best training 

protocols and training data to enable the model comparisons. See also Hinton et al. [556] for more on 

distilling ensembles on neural networks (Fig. 10.94).
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The dasNet method [548] surveyed earlier uses an ensemble of CNNs in parallel to allow for 

parallel testing of different hypothesis via modifying the weights in each network, similar to the way an 

expert might test a set of hypothesis. DasNet incorporates an automatic feature optimization and 

evaluation process. 

The AlexNet method [289] surveyed earlier in the CNN section splits the feature learning into two 

parallel networks: one network learning low-level features, and the other network learning the higher-

level features. Although the motivation for AlexNet’s dual feature learning network is performance, a 

side effect is that the feature learning in each parallel network follows a slightly different route and 

leads to slightly different results than if the features were learned in the same network. 

The Multicolumn DNN (MCDNN) developed by Ciresan Meier and Shmidhuber [717] uses several 

DNNs in parallel and provides different image input to each DNN, and then averages the results for the 

final classification score. Each column of DNNs uses shared weights, and allows for parallel evaluation 

of features. Each DNN is trained on overlapping columns of the input images in a winner-take-all 

manner, and only the winning DNN features are trained. This preserves features that have already been 

learned, and allows each network to potentially focus on a different level in the feature hierarchy, so 

each DNN may be the winner for a different level of the hierarchy. The input image columns may be 

processed in different ways. 

The HMO method by Yamins et al. [583] surveyed earlier evaluates thousands of candidate models, 

such as CNNs and HMAX models, and optimizes the final results across all the models via a boosting 

and hyper parameter optimization and tuning process. HMO is another model driven from the 

neuroscience community rather than the computer vision community.
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The downside of ensembles is the design by committee syndrome, where nobody is right, nobody is 

wrong, everybody contributes, and nobody is 100% happy. Even if one of the committee members are 

correct, the design by committee approach ensures that they will be muted. As evidenced by MAX 

pooling (choosing the strongest activation), the highest confidence response has proven in many cases 

to be better than average pooling response (i.e., the ensemble approach). 

For more references and historical developments in the area of ensembles and committees, see 

Schmidhuber [492]. 

Deep Neural Network Futures 

The current state of the art of DNNs has been surveyed in this chapter, so here we will explore a few 

areas for future research to expand the boundaries of DNNs. Future research into more complex neuron 

models continues, such as Spiking Neural Networks which provide feedback paths between neuron 

groups to influence neuron group firing. Other areas for future research include (1) how to increase 

network depth to the maximum useful level in a compute efficient manner (network depth optimiza-

tion), (2) refactoring and compressing a single deep network or a complex ensemble network into a 

smaller single network as an approximation (model compression), (3) decomposing complex 

classifiers into a set of simpler classifiers (classifier decomposition and recombination), and (4) training 

protocols will be a key future research area, we should expect additional breakthroughs incorporating 

better preparation of the training set and better selection of images, combined with better segmentation 

of the correct regions of interest from the training set images by the DNN, propelling classification 

accuracy to higher levels. Finally, we should expect to see a proliferation of special-purpose 

DNN-related processors, such as the Baidu data bandwidth accelerators for their cloud-based systems 

surveyed earlier in the MINWA section, the Google TPU cloud accelerator for increased compute 

performance, and special purpose accelerators for endpoint devices to perform inferencing on local 

images and trained DNN models. 

Increasing Depth to the Max—Deep Residual Learning (DRL) 

Deep Residual Learning (DRL) was developed by He et al. [798] to explore methods of increasing 

DNN network depth as far as possible to improve accuracy, and borrows from He’s earlier work on 

SPP [483] and Fast-R-CNN [638] architectures discussed earlier in this chapter. He et al. report that 

DRL networks are the deepest networks to date, and architectures using 100–1000 layers have been 

implemented using a very efficient parameterization comparable to much smaller networks. The DRL 

method is driven by the goal to solve a key problem observed in DNN research, namely that when the 

depth of layers increase, a point is reached where accuracy stops converging, and then accuracy begins 

to become worse, ending up inferior to DNNs with fewer layers. In addition, He et al. show another 

benefit of DRL concepts, namely the mitigation of problems associated with improper initialization of 

the weights and network parameters. See also earlier related work by Deng et al. [816], and more recent 

developments of DRL as Resnet by Targ [817] and Szegedy [818]. 

One of the basic concepts used by DRL to increase the network depth is shortcut connections as 

shown in Fig. 10.95, which feed the input forward to reuse later. (Note Inception Net surveyed earlier 

in this chapter also uses shortcut connections. Many historical MLPs have also used shortcut 

connections in an ad hoc manner, see Schmidhuber [492].) The DRL network reformulates the basic 

FNN into layer groups separated by novel Residual Learning Building Blocks (RLBBs) as shown in 

Fig. 10.95, which are inserted typically after each filter layer in He’s work. RLBBs take input from the



skip connection to compute a residual, or difference, between the input and a processed input, using 

residual functions to combine the input x to a group of layers F(x) with the output of the group of 

layers, yielding the residual difference. The key idea is that training on the numerically smaller 

magnitude residuals makes true fluctuations in the gradients easier to spot during training, and enables 

more accurate weight updates to be made. The residual function is defined on a group of layers as a 

mapping function expressed as follows: 
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Fig. 10.95 This figure illustrates the residual learning building block (RLBB) formulation using shortcut connections 

H  xð  Þ  : underlying mapping function 

F  xð  Þ  :¼ H  xð  Þ- x : stacked non‐linear mapping 

F  xð  Þ  þ x : recast mapping using residuals

He et al. demonstrate networks using RLBBs which can effectively eliminate the need for most of 

the compute and parameter intensive fully connected classification layers, discussed earlier in this 

chapter. Since large FC layers represent most of the parameters in a typical DNN, by eliminating FCs 

the total network parameter count can be greatly reduced even with the increased layer count by 

incorporating RLBBs. Thus, the RLBB formulation does not add complexity or additional parameters 

to the network, is trainable using backpropagation, and shown to solve the accuracy divergence 

anomalies of deeper networks. 

To illustrate the anomalies observed in DNNs of varying layers, He et al. provide results showing a 

22 layer CNN architecture that yields better accuracy than a similar 50 CNN layer architecture which 

exhibits the training accuracy divergence anomalies. While the root cause of the accuracy divergence 

and degradation is not explored in He’s work and is noted as an area for future research, a likely cause 

of the divergence seems to be the method of gradient descent itself, which may create transient gradient 

spikes across the network due to anomalous gradient error combinations, similar to transient spikes in 

electrical circuits. Perhaps, when a given gradient is corrected, the correction may lead to related 

oscillations in other gradients, which at specific training epoch intervals may align and sum together 

into an objectionable gradient transient spike, which is then adjusted by corresponding anomalous 

weight updates, subsequently contributing to increased gradient transients. The very method of 

gradient descent itself is not well understood, and resembles a massive, serendipitous averaging and 

dithering procedure, controlled using ad hoc learning rate and momentum parameters to smooth out the 

gradient descent, as introduced earlier in this chapter.
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Approximating Complex Models Using a Simpler MLP (Model Compression) 

One approach to increasing DNN accuracy is to employ an ensemble of DNNs together, each 

architected and trained slightly differently, and the results of the ensemble are averaged to get a 

synergistic design by committee style classification. However, since the ensemble is a large compute 

workload, researchers have developed methods to approximate the ensemble using a single DNN to 

reduce the compute workload, which seems intuitive since an MLP is a general function approximator. 

The end result is a smaller and compact approximation of the much larger ensemble. In a similar 

fashion, a single complex and deep DNN may be approximated by a simpler DNN to provide compute 

benefits. One obvious application for model reductions is to first train a much larger cloud-based 

ensemble or complex network, and then reduce the model to a single smaller and faster DNN for 

deployment on a small embedded or portable device. We discuss some relevant research here. 

One approach to approximating an ensemble via a single model is the two-stage approach taken by 

Bucila et al. [801] which first trains an ensemble to label the training set, and second takes the labeled 

output of the ensemble and the test set as the input to train a single DNN to approximate the ensemble. 

Using a single DNN to approximate a large ensemble vastly decreases the compute workload, both at 

training time and deployment time. In this respect, model compression is related to transfer learning in 

DNNs as discussed earlier in this chapter, where a DNN is first trained, and then the weights are 

transferred into another DNN which is further trained for a similar knowledge domain, gaining faster 

training times, feature refinement and specialization, and perhaps better accuracy. The compressed 

model thus approximates both the classification labels and the weights. Of course, instead of an 

ensemble, a very deep network could also be approximated by a smaller and more efficient compressed 

model in a similar fashion. 

To generalize Bucila’s work, Hinton et al. [799] define a Knowledge Distillation model (KD) using 

a teacher model and a student model. A parameterized softmax relaxation function is applied to the 

teacher model outputs to allow the student model to generalize a new model within a general range of 

accuracy. The student model is then further optimized using an objective function on the classifier that 

compares the student and teacher model results. 

A further refinement to the KD model is the FitNets architecture developed by Romero et al. [800], 

which uses hints derived from the teacher model to guide the training of the student model. A hint is 

taken from the hidden layers of the teacher network, and used to guide the approximation of a hidden 

layer in the student network. Thus, the hint process guides and optimizes the student to reproduce the 

weights of a certain layer of the teacher, which is intended to optimize the student network in the right 

direction toward the correct classification output. FiNets are shown to increase approximation accuracy 

over both KD and Bucila’s method. Hint-based training is considered to be a relative of Bengio’s 

earlier work on Curriculum Learning [451], which trains the network using a simple to complex 

training protocol, similar to transfer learning (i.e., we may term curriculum learning as a successive 

refinement transfer learning protocol). First, simple training examples are used to train the network, 

and then the network weights are progressively retrained by using more expressive and complex 

training examples in series. Thus, curriculum learning successively refines the same network to 

generalize from simple to complex training examples.
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Classifier Decomposition and Recombination 

A related method for model compression is developed by Hinton et al. [799] to decompose the 

classifier to produce one or more specialist models or fine-grained classifiers. Hinton models the 

teacher classifier as a set of smaller fine-grained classifiers, since the larger teacher models may 

confuse classification in some cases into a coarse grain classification. The idea of decomposing a 

coarse-grained classifier into a set of fine-grained classifiers is novel, and is a promising area of future 

research to increase classification accuracy. 

Contrary wise, future work is expected to find optimal ways to recombine a set of fine-grained 

classifiers together to produce a stronger hybrid classifier which is more generic or application-specific, 

for example by training a set of smaller DNNs on smaller training sets, and then combining the smaller 

DNNs together into a classification bank, similar to a filter bank. The classification bank may be 

implemented as a very wide FC layer, parallel FC layers, or as an ensemble network for specific 

applications. 

Summary 

We explore feature learning architectures and deep learning using both ad hoc and neuroscience-

inspired methods. In most feature learning systems, a hierarchy of features are learned, ranging from 

low-level edge and texture features, through mid-level motif concepts, up to higher-level object parts 

and whole objects. Some use an ensemble of classifiers to evaluate the features, while other approaches 

use a hierarchy of classifiers together to reach a conclusion. In the future, we will see an increase in 

better feature representations beside the simple correlation templates used today in most DNNs, taking 

advantage of local, regional, and global features. 

The neural network approaches used in feature learning point to a future merger of synthetic 

intelligence and synthetic vision, using the same underlying neural network architecture standardized 

into silicon, which can be tuned for a wide range of analytic problems including computer vision, 

speech, investing, marketing, and surveillance. 

Science and technology are like waves, forming power as they rise, carrying the best research minds 

surfing on the crest, and as the waves rapidly approach the shoreline, applications become more 

widespread and tower over older methods, then become commercialized or militarized, which changes 

societies and nations. Then the waves crash on the sand as the technology is commoditized 

approaching a zero-price point (i.e., free and expected), then the research is perhaps uninteresting to 

many, and often the best minds and researchers who have spent the prime years of their life researching 

the technology are stranded on the beach, with obsolete knowledge, several past successes, and not 

enough of a lifetime left to switch to a new discipline and ride the next big wave. While the present 

wave crashes, new waves of technology are approaching on the back of the previous waves, surfed by a 

new crop of researchers and bright minds, imbued with all the excitement and power of the new tidal 

wave, and so the cycle repeats. We are nearing the crest of the new wave of synthetic vision systems 

based on visual neuroscience concepts: synthetic brains. We will soon see synthetic brains, synthetic 

vision, intelligent prosthetics, and robotics change society forever. The current wave of AI and feature 

learning has already left earlier waves of computer vision researchers washed up on the beach, since 

they are not riding the surging wave of neurological vision research. 

The early crest of the synthetic brain and synthetic vision wave is already here, pushing along new 

innovations such as smart cars, visual surveillance, smart advertising, and smart analytics, but there is 

much more to come. When the synthetic vision and synthetic brain waves onto the shore of commercial



markets in a big way, we will see a flood of inexpensive and ubiquitous smart devices that save time 

and energy, similar to apps and inexpensive appliance-like devices. The products will be complete 

physical appliances, which will likely use a common core architecture of ANNs, robotic motor 

controllers, and synthetic vision, allowing an ecosystem of intelligent devices to be built and 

customized for a wide range of commercial applications. This will change the nature of society. 

However, the ANNs cannot create the human spirit and soul, so we will live on as before, but with 

more synthetic assistance. 
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Learning Assignments 

1. Discuss the Perceptron (P) architecture, and the Multilayer Perceptron (MLP), including the 

learning rules and training protocols used. 

2. Discuss the Neocognitron architecture. 

3. Describe how to create a feature map. 

4. Describe a hierarchical feature map volume (stack). 

5. Describe the layers in the basic LeNet architecture. 

6. Describe a forward pass through a CNN based on the basic LeNet architecture. 

7. Describe a backward pass through a CNN based on the basic LeNet architecture. 

8. What is stored in memory during the forward pass through the CNN? 

9. Describe how a fully connected layer (FC layer) is used for classification in a CNN, discuss the FC 

layer feature weights, and provide a hypothetical FC layer design. 

10. Describe the common layers in a CNN. 

11. Describe how a convolution kernel is applied across input images and feature maps. 

12. Describe the difference between the dot product, convolution, correlation, and normalized corre-

lation, in the context of CNNs. 

13. Compare at least two methods for initializing CNN feature weights. 

14. Discuss sliding windows and how a stride factor is used, and compare the advantages and 

disadvantages of small versus large windows. 

15. Describe the bias input to the artificial neuron, and how it is used. 

16. Describe the information collected during the forward pass of the CNN which is used in the 

backpropagation step. 

17. Describe backpropagation using gradient descent. 

18. Describe how the total gradient error is computed at the classifier to begin the backpropagation 

step, and describe how the total gradient error is proportionally split apart into partial derivatives 

and distributed backwards through the network at each neuron. 

19. Describe how the partial derivatives of the total gradient error passed backwards, and the neural 

state derivative, are used together at each neuron to adjust the feature weights. 

20. Describe learning rate and momentum parameters used during backpropagation to tune the feature 

weights. 

21. Discuss considerations for determining the number of layers in a CNN, and the number of features 

per layer. Include considerations for compute performance and memory. 

22. Describe the advantages and limitations of using stacked convolutions with small kernel windows 

versus using convolutions over larger windows. 

23. Discuss separable convolution, and provide an example algorithm. 

24. Discuss fused convolution, and provide an example algorithm. 

25. Discuss how to estimate architecture parameters to measure CNN complexity. 

26. Describe the VGGnet architecture, including variations.
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Describe the artificial neuron model in the NiN architecture, which computes the features. 

28. Describe cross-channel parametric pooling (CCCP) in the NiN architecture. 

29. Describe cross-channel pooling (CCP) in the Maxout architecture. 

30. Describe advantages of using Z-columns for 1 × 1 convolutions across feature map volume. 

31. Compare global average pooling (GAP) as used in the NiN architecture against FC layers used in 

typical CNNs. 

32. Describe the composition of a GoogLenet feature layer (i.e., the Inception module). 

33. Describe the feature vector format of a GoogLenet inception module. 

34. Describe the feature model of the SMYNETS architecture. 

35. Discuss the Polynomial Neural Network (PNN) model, otherwise referred to as the Group Method 

for Data Handling (GMDH). 

36. Describe vanishing gradients and exploding gradients in the context of backpropagation. 

37. Describe an RNN neuron model and discuss short-term memory in RNNs. 

38. Discuss how to unroll an RNN into an FNN, and motivations for doing so. 

39. Describe the Long Short-Term Memory (LSTM) enhancement to RNNs. 

40. Discuss why an RNN is suited to sequence processing and spatiotemporal pattern matching. 

41. Describe a bidirectional RNN, draw a diagram also. 

42. Describe a 2D RNN, draw a diagram, and discuss applications of a 2D RNN to computer vision. 

43. Describe the K-MEANS clustering algorithm at a high level, and discuss practical considerations 

and pitfalls for using K-MEANS clustering to build a dictionary or visual vocabulary. 

44. Name and describe at least two feature encoding methods. 

45. Describe the K-SVD sparse coding algorithm, and compare it to the K-MEANS method. 

46. Describe a kernel function, kernel projection, kernel encoding, and why kernels are used in 

classification (HINT: the kernel trick). 

47. Describe the general concept and advantages of kernel machines, such as the Support Vector 

Machine. 

48. Describe how a linear classifier works, and how a logistic classifier works. 

49. Describe the basic HMAX architecture. 

50. Discuss the types of features used in the lower layers of the HMAX architecture. 

51. Discuss feature learning in the HMAX architecture. 

52. Discuss view-tuned units in the HMAX architecture. 

53. Discuss viewpoint-dependent versus viewpoint-independent models of vision, and explain the 

difference in terms of the types of features stored in memory. 

54. Discuss the concepts behind ensemble architectures. 

55. Discuss the HMO architecture ensemble approach to higher-level reasoning.



You keep using that word. I do not think it means what you think it means.

—Montoya, Princess Bride

along with the feature models, for example, see the volume learning model [476] from Krig.

Attention, Transformers, Hybrids, 
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Fig. 11.1 Illustrating the categories for deep descriptor networks, which contain non-convolutional features such as 

Fourier features, polynomial features, pixel-pair features resembling SDMs (Spatial Dependency Matrices), attentional 

features, as well as hybrid networks similar to CNNs and transformers combine together, using multiple descriptor 

methods together in the same backbone 

Wewill look in this section at Attention, Transformers, and Deep Descriptor Networks (DDNs) as shown 

in Fig. 11.1, which represent new directions and next-generation trainable hybrid architectures 

incorporating a variety of innovations in feature representations using multiple types of features together, 

organized into hybrid backbone networks combining more than one feature type, novel processing and 

numerical conditioning, and complex classifiers. We also cover novel text-to-image synthesis classifiers, 

which can learn to interpolate between features in the trained models to identify unseen features as a 

combination of classes, thus referred to as multi-class classifiers. Classifier innovations are increasing 

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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Deep Descriptor Networks (DDNs) Overview 

Deep Descriptor Networks (DDNs) are networks that use non-convolutional functions to build 

features, different from CNNs discussed in Chaps. 9 and 10. Usually such networks are discussed 

together in the literature with transformers and CNNs. Yet, the DDN architectures contain fundamental 

differences and advantages over transformers and CNNs, primarily via richer feature descriptors such 

as Fourier, binary, and NL-Means features, as well as self-attention: the newest hand-crafted trainable 

feature descriptor. Transformers are included in the DDN category, since the transformer is a departure 

from the CNN feature model, incorporating encoder and decoder concepts with token encodings and 

word embeddings from their roots in NLP natural language processing. 

The concept of self-attention is central to the transformer, which was developed for NLP processing 

as an alternative to the LSTM-style RNNs for sequence processing in NLP applications covered in 

Chap.10. In this chapter, we review the historical background and key concepts from Natural 

Language Processing (NLP) which also inspire computer vision transformer architectures. We dig 

into a few of the significant transformer architectures first from the perspective of NLP where it all 

started, and next on to a review of a few key visual image transformers operating on pixels instead of 

words and text. 

Also, we highlight innovative DDN networks that use richer types of feature descriptors, primarily 

non-convolutional features as used in CNNs like LeNet, ResNet, and other common neural networks. 

CNN methods surveyed in Chap. 10 primarily use n × n convolutional features over several layers to 

create feature maps, which are finally fed into an FC layer classifier stage or some other classifiers such 

as an SVM. Transformer attention models are entirely different then n × n CNN-style kernels, instead 

using larger blocks of pixels together to learn the contextual relationships of all pixels in the block. 

DDN and CNN Contrasted 

Deep descriptor networks are a class of neural networks that incorporate various types of richer and 

more complex feature descriptors—such as attention, Fourier, or other basis functions for feature 

description. Attention uses a non-convolutional feature descriptor, and attention methods are very 

hand-crafted with many variations in the literature. Attentional features allow for neural network style 

gradient descent feature learning. We discuss attention methods later in this chapter. Note: this author 

expects to see additional and more neurologically accurate feature descriptor methods incorporated 

into DNNs including BRISK, SIFT, SURF, FREAK, as discussed in Chaps. 4, 5, and 6. 

CNNs by the original and historical definition use only convolutional n × n convolutional feature 

kernels. But. . .  CNNs are now becoming hybrid, borrowing concepts from transformers such as the 

encoding, embeddings, and attentional features for some layers, usually the last layers in the deep 

network. Some neural network researchers use CNNs and smaller 3 × 3  or  5  × 5 region features at the 

low level of the backbone for low-frequency features, combined with the transformer-style attentional 

pixel patches covering larger pixel regions such as 16 × 16 of more to capture higher frequency 

features.

Yann LeCun has observed (*during a talk on his latest work on joint embeddings Feb. 2023) that 

n × n convolutional features are translation invariant and track pixel-level translations well for 

low-level feature concepts, while transformer-style larger patch features are permutation invariant, 

tracking changes to the larger feature patches separated by position permutations to different image 

locations representing higher level feature concepts, and that therefore combining both types of 

features together in the same backbone architecture is complimentary and provides the advantages 

of both approaches. Transformer features are trained similar to convnet features using gradient descent, 

and the difference between convolutional and attentional features is visualized as shown in Fig. 11.2.
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Fig. 11.2 Illustrating the difference between convolutional nxn features and transformer attentional features of 16 × 16 

pixel patches. Attentional features preserve higher frequency detail due to the larger pixel patch region. Image on the 

right of transformer features (C) 2017 Alexey Dosovitskiy et al. [824]. Image on the left showing CNN features (C) Alex 

Krizhesky 

Hybrid networks are also increasing, containing non-convolutional DDN features, combined with 

other features, into novel backbone architecture using a range of innovations such as skip-connections, 

transformer-style encodings and embeddings, and reasonable combinations of feature attention, 

convolutional features, and basis features, along with a wide range of other innovations we survey 

in this section. 

It seems safe to say that there is a consensus about one thing in AI parlance: if a network uses a 

differentiable MLP-style linear function model for learning features in one or more layers, then it is a 

neural network (NN); if more than one layer, it is a deep neural network (DNN); everything else is an 

enhancement to the basic neural network concept and falls into our discussion of the hybrid DDN 

category. 

Novel DDN architectures are exploring non-convolutional n × n kernels and alternative feature 

descriptors such as Fourier and NL-Means Attention, which provide richer representations of feature 

data than the simple CNN or transformer pixel patches. However, note that the self-attention mecha-

nism is a powerful, projecting the pixels into an embedding space which may also include a positional 

component added or otherwise combined within the embedding, which is a great step forward in the 

science of feature description to incorporate spatial relationships between features. 

Improved and standardized embedding spaces for pixel attention, as used in vision transformer 

architectures, will lead to large and tunable foundation models for computer vision, similar to the 

BERT [963] and GPT [983] foundation model approach for NLP, creating shareable dictionaries, and 

word embeddings, since both methods first use unsupervised training using a transformer over vast 

amounts of data such as all of Wikipedia, and then fine-tuning the model for specific tasks by 

re-training using smaller, supervised datasets. 

Here are some observations about hybrid features (Attentional, Convolutional, Others).

• CNNs focus on local features that fit the convolution kernel sizes (n × n) and miss larger features, 

thus missing high-resolution relationships in larger pixel regions.

• Transformer attention in larger pixel patches such as 16 × 16 and above is capable of resolving 

higher frequency feature details than smaller 3 × 3 CNN features.

• Combined backbones using CNN features for low-frequency details in the early layers, with 

attentional features for higher resolution details in the higher layers are effective.

• Transformers compute short-range and long-range spatial attentional feature relationships.
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• Convolutions compute spatially unrelated features that fit into n × n kernels.

• CNN convolutional kernels have no spatial component—no positional awareness.

• CNN feature overlap: smaller kernels (3 × 3, 5 × 5) confuse/convolve overlapping features.

• Feature independence: Transformers model unique and separate features over larger regions. 

The transformer uses various types of attentional features (discussed later in this chapter) that 

provide spatial awareness between tokens and features as well as powerful feature embeddings to 

allow for even more spatial relationships to be represented. For example, transformer self-attention can 

encode intra-block spatial pixel relationships, useful for inter-block similarity associations. 

Transformers have roots in natural language processing (NLP), where embeddings encoding multiple 

attributes per word, which can be visualized in 2D to aid in detecting language meaning via distance in 

an embedding space (covered later in this chapter). Embedding spaces are useful for comparing 

languages for translation purposes and also for language synthesis from caption-like concepts using 

conversational BOTS. As we go along in this chapter, we point out how the transformer and attention 

are influencing computer vision. 

Learning Model Innovations 

Many methods for learning acceleration are being developed all the time, too many to survey here, 

such as recycling older ideas like expert models and data augmentation, model fine-tuning, novel SGD 

optimizers, and model pre-training methods. Too many innovations to list here, but we survey some 

methods as we go along in later sections. 

Neural network architecture innovations are driving classifier innovations. Here are a few key 

observations.

• Faster learning methods: Global Average Pooling (GAP) (see [487] Min et al.) is a concept to 

reduce the feature space by removing fine details, as used in the NiN and inception networks 

surveyed in Chap. 10. GAP has proven that feature learning may be achieved by using sort-cuts to 

create a feature model which averages out feature detail instead of slowly producing features around 

the basins of attraction and preserving the tedious details. GAP (i.e., feature averaging) opens the 

door to reducing feature count by averaging features in groups up-front, instead of using averaging 

after the feature learning: simply learning features one at a time, and then average them all together 

after they are learned, rather than relying on the tedious batch training protocols, drop-out, 

momentum filtering, and other empirical methods. In fact, similar sequence averaging methods 

are used in self-attention for next-token-prediction by averaging together all tokens prior to the 

token used for predicting the next token. 

Classifier learning possible: Hard-coded (i.e., hand-crafted) classification blocks are a design 

choice; very little research is available on the subject of classifier learning and allowing classifiers 

to change and develop with use over time. Volume learning from Krig [476] allows for learning 

agents to perform classification as trained by continuous learning in parallel or sequentially, and add 

or modify classifiers into an intelligent network of classifiers—see Fig. 11.3. View synthesis from 

text captions (as discussed in Chap. 12) also opens the door to caption classifiers and caption 

learning, as well as zero-shot learning or AML feature interpolation to classify and recognize 

features that are not in the training set and therefore not pre-trained in the trained model. See 

Chap. 12: captioned multi-class classification, classifier-free guidance, zero-shot learning, AML.

• Golden models: Instead of collecting huge training sets, many practitioners would rather rely on 

selected golden exemplar samples from experts—then either 1) interpolate targets between the
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exemplars or 2) train the model and the classifier from the small set of exemplars, and perhaps 

permute and augment the exemplars into a larger synthetic set for various affine or color contrast 

conditions (see U-Nets [932] which are also surveyed in Chap. 2 for an example of golden 

exemplar training set augmentations). A golden model is also an “Expert Systems” style model, 

where an expert has confirmed that the golden model is good—and a good starting point for 

deriving other models. A “golden model” may be created using no labeled training data, but directly 

from the expert as an expert system, allowing experts to directly state their opinions into a model— 

we have gone full circle back to the 1970s... see Chap. 9 and the Section on Expert Systems, Fig. 9.4. 

As with all fields of knowledge, the distinctions among terminology continue to expand and splinter 

into finer and finer grained points as new research goes forward, and older research is forgotten. The 

perceptron and the PPN are still amazing—see Chap. 10. 

Here is a snapshot of some of the discussion topics regarding training and learning models which we 

touch upon in the surveys below, as we explore third-generation classifiers in Chap. 12. See Fig. 11.3.

• Expert system imitation learning—see imitation learning tutorial by Yisong Yue & Hoang M. Le, 

ICML 2018.

• Continuous learning—see synthetic vision [476].

• One-shot, few shot, interpolation learning—see also Chap. 12, View Synthesis, Captioned Multi-

class Classification and Synthesis.

• Model-reuse, transfer learning, pre-training, pre-tuning.

• Recurrent learning one DNN with another—see generative adversarial networks.

• Hull learning, autolearning, classifier learning [476].

• Associative multimodal learning (AML), see Chap. 12.
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Fig. 11.3 Showing the generations of classifiers: first generation: single-class training, mono-class training sets, second 

generation: multi-class caption learning (text:image pairs aka DALLE-2, third generation classifiers incorporating a large 

visual DNA feature corpus combined with AML classifiers will become the basis for continuous learning 

Classifier Innovations: Hand-Crafted vs. Learned 

Classifier innovations are appearing alongside the standard CNN-style FC layer fed into a softmax— 

this is totally hand-crafted and data dependent, and the classifier does not learn anything, but rather 

emits a probabilistic inference score. Classifier innovation is occurring via the caption classifiers used



in text-to-image synthesis; these are a separate type of classifier which can learn and infer multiple 

classes, as well as perform zero-shot learning to classify unknown exemplars. 
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Today in computer vision CNNs, the classifier is chosen and surrounded with hand-crafted numeric 

conditioning for using a function to inference a probabilistic score from a 1D layer of puzzle-piece 

features, all hard-coded to the end of neural network. The classifier architecture leaves little to learn 

anything from the features or the target input images. The final FC layer connected to a softmax is often 

chosen for the CNN classifier, or an SVM Support Vector Machine may be chosen, but there is no 

tunable or learnable component in either the softmax or S–M—they are hard-coded algorithms—see 

the Chap. 4, Overview of Training Section, particularly Table 4.4 Clustering, Classification, and 

Machine Learning Methods. 

Trainable classifiers and agents are a new direction for classification. 

Third-generation classifiers will use associative multimodal learning (AML) and continuous 

learning, as discussed below, and operate on library foundation models and visual genome models 

and visual DNA. The classifier lives on outliving foundation models, performing continuous learning 

over time (*see [476]). 

The softmax classifier, most commonly used in CNNs, is a very simplistic classifier, a probabilistic 

function operating in a manner similar to likes on social media (or academic research paper “likes” 

expressed as references to determine research paper value), where the softmax measures quality or 

probability by how many target features like (i.e., appear similar to) the trained model features via high 

softmax correlation scores. 

Innovation in classification methods and classifier learning is occurring. According to Fig. 11.3 in 

the lower classifier diagram, three generations of classifiers can be identified:

• First-Generation Classifiers: Single-Class, Softmax and SVM: Imagenet style grained features, 

untrained classifier: Simple single-class classifiers aka Imagenet class training data.

• Second-Generation Classifiers: Multi-Class Caption Classifiers, Zero-Shot Multimodal Feature 

Interpolations: DALLE-2 and Visual N-gram style: multi-class classifiers allow captions to be 

trained with corresponding images, enabling query on caption text to find images, or query on 

images to find caption text, and interpolate queries that fall between image/caption boundaries (i.e., 

one-shot learning to allow detection of targets outside the training regime—target interpolation— 

one-shot learning).

• Third-Generation Classifiers: AML Volume Learning, Multimodal Metric Feature Interpolation vs 

Feature Training via gradient descent and backprop; Visual DNA Feature Corpus, Continuous 

Learning And Classifier Learning, Volume learning, AML Associative multimodal Learning—A 

large corpus of visual DNA is learned initially, and then continually refreshed over time via Agents 

and with user feedback, adding features as they are encountered and inferred. The third-generation 

classifiers allow for self-training via learning agents and complex classifiers that can be learners 

over time, perhaps learning and retaining in the model new features with no labels at all if they are 

unique and not in the feature model, and then label the features later, if at all, under human or agent 

supervision. No need to be concerned with the notions of supervised, unsupervised, class names, or 

crude distinctions between training data—the classifiers are learning continually after the fact of 

initial feature learning—the features may be first recorded as they are encountered in an unnamed 

and unknown class, and processed later for naming and associations—continual learning. New 

objects are inserted into the models as they are learned over time. Training becomes only a starting 

point, like humans continue to learn, so the classifier continues to learn as it interpolates among 

known features and labels unknown features, but building models incrementally over time with 

experience, incorporating inferred objects and associations between objects.
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Associative multimodal learning is a part of third-generation classifiers—it is not a single-modal 

class-based classification model such as defined via the outdated hand-crafted Imagenet data sets and 

corresponding trained models—Imagenet will be subsumed by multimodal models and datasets and 

continuous learning. The classifier becomes the crown jewel; the data comes and goes. Autonomous 

learning agents will create and update classifiers over time, see Fig. 11.4. 

Fig 11.4 Illustrating how complex classifiers will be maintained by learning agents work together for continuous 

learning, image (C) Scott Krig, Synthetic Vision [476] 

A few questions arise: should features be interpolated AML style between chosen exemplar metric 

clusters, or trained to represent artificial feature attributes representing a huge training set in gradient 

descent backprop ImageNet style? See the discussion on AML in Chap. 12 for more. 

Commodity Models—Foundation Models 

AI is becoming a commodity, where the trained model can be developed, shared, sold, and re-used 

after some fine-tuning. The discussions about AI have led to official discussions of how the best 

learned AI models can be used as a starting point for common use and customization via transfer 

learning, referred to by some practitioners as Foundation Models. Governments seek to regulate AI 

models by forming policies for many areas such as privacy, equal opportunity, and any other 

government-led social engineering tasks such as defining and legislating cultural and behavioral 

norms, rather than allowing for AI models which are free from legislation. The discussion of approved



foundation models has reached the highest levels of the US government as a task force in the Biden 

administration formed in 2021 to study and identify policy goals, which will ultimately be sent to 

congress to continually develop legislation and statutes with all the accompanying costs and hurdles to 

researchers and industry, where policy and statute interpretations will be litigated in the courts 

continually. For more, see On the Opportunities and Risks of Foundation Models, Bomassine et al. 

(i.e., 75+ authors for this paper). 
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Here are some technical directions contributing the foundation model discussion.

• Third-Generation Model Sizes: Hundreds of trillions of parameters in models will be possible, but 

will they really be useful, considering how ensembles of smaller models can be used instead? 

Graphcore today claims to provide support for 500 trillion parameter models on systems with 

10 EXAFOPS with 4 PETABYTES of memory—Graphcore capabilities are larger than any 

systems in the USG Exascale program at the time of this writing. Due to the financial cost of 

large memory spaces and storage systems, large parameter models are not possible except to the 

elite research teams such as Google, Baidu, and the US Government. Today, China’s WuDao 2.0 

uses 1.75 trillion parameters. Google and OpenAI have used 1–2 trillion parameter models—see 

Fedus et al. [954] Switch Transformers: scaling to trillions parameter models with simple and 

efficient sparsity.

• Excellent pre-trained models are freely available—Google and OpenAI (and others to follow) 

continue to release free and easily licensed foundation models for NLP and computer vision, which 

can be used as-is, or fine-tuned for specific applications. Model repositories using common model 

formats will proliferate to enable new applications and products across market segments. Example 

model repositories include ONNX model format—makes CNN model sharing possible https:// 

github.com/onnx/models, Modelzoo.co—pre-trained models for DNNs https://modelzoo.co/, 

HUGGING FACE—pre-trained Transformer models https://huggingface.co/transformers/pre-

trained_models.html. 

Attention Mechanisms 

Hand-Crafted Feature Descriptors have returned as Attention. 

Attention is the latest complex feature descriptor, 

trainable using gradient descent, 

and the variations are very hand-crafted. 

Scott Krig 

The idea of attention is naturally simple: focus based on affinity; either presence or absence of an 

attribute; focus on white or non-white. But for machine learning and AI, the concept of attention is not 

simple at all. There are many methods and variations for building attentional models for application 

specific problems, particularly 1D NLP, 2D imaging, and 3D models such as point clouds. 

Self-attention learns how tokens are related sequentially, by computing self-attention over several 

variable length sequential tokens derived as pieces or subtokens from the same local context, which 

enables token relationships to be predicted and translated using global attention (i.e., cross-attention) 

across separate local contexts. Self-attention is represented as weight vectors describing learned 

attentional features. 

Attention reveals multiple levels of focus and relationships among tokens, like deep concentric or 

multiresolution levels of detail surrounding a token in a dimensional space. For NLP, the focus is 

sequential relationship between sequential streams of characters, words, and grammatical marks. For

https://github.com/onnx/models
https://github.com/onnx/models
https://modelzoo.co/
https://huggingface.co/transformers/pre-trained_models.html
https://huggingface.co/transformers/pre-trained_models.html


computer vision, the focus is metrics surrounding a pixel, or metrics describing related groups of pixels 

in a rectangular or segmented region, or in a metric manifold space. 
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For example, in natural language processing (NLP), goals include reproducing character-by-

character or sub-word sequences that represent words and sentences, as well as language translation. 

The NLP trained models learn the character and word sequences found in the training data as weights. 

The concept of attention includes the context of word tokens, their sequential ordering, related words, 

the frequency of word use, grammatical constructions, and more. For 2D computer vision and other 

higher-dimensional domains, attention likewise converges to capture relevant visual concepts such as 

geometry, visual cues, colors, and textures. 

In later sections, we discuss low-level implementation details for attention mechanisms, but first we 

survey the key concepts and background. 

NOTE: rather than academic research papers and conferences, it seems that blogs, corporate 

research, and commercial product details are now critical resources to follow the innovations in 

attention and AI, since the volume of work and the scope of research and innovations are global and 

exponential—impossible for any one person to track. Fine research work is very often misunderstood, 

ignored, perhaps poorly written, and usually forgotten, but it waits to be recognized, and hopefully we 

will find some gems here. 

Attentional research history was journaled beginning in the 1950s and 1960s, as the research 

community was increasingly interested in feature detection and feature description as patterns: the 

IEEE Pattern Analysis and Machine Learning (PAMI) journal was the major research journal. As 

computing power increased and imaging capabilities increased, the field advanced and splintered 

beyond the concept of describing and detecting patterns to incorporate more and more topics such as 

classification and more powerful machine learning methods. So, primitive attention was first conceived 

as pattern recognition and machine learning, which was hard-coded mostly using small data sets or 

expert systems. 

Perhaps the earliest work to develop and name the attention mechanism in 2014 is is found in [1035] 

Neural Machine Translation by Jointly Learning to Align and Translate, Dzmitry Bahdanau, 

Kyunghyun Cho, Yoshua Bengio, ICLR 2015. 

Attentional research has proceeded through several phases—here are some historical advancements 

leading to self-attention.

• Pioneering combination of DNN with attention mechanisms—Mnih et al. [955], pioneering work 

that combined deep neural networks with attention mechanisms. 2014.

• Neural turing machines—[523] Graves et al. 2014.

• Attention in caption generation and view synthesis, [956] Gregor et al. 2015.

• Self-attention in the Vaswani [819] text-transformer in 2017,

• Self-attention in the Dosovitskiy [824] vision transformer in 2021. 

Here are a few notable quotes about attention. 

J. R. Firth 1957 “You shall know a word by the company it keeps” 

Alex Graves quotes from Deep Learning Lecture 7: 

“There are lots of different kinds of attention... more will keep on appearing... “ 

“Attention is still a fertile area of research” 

“Memory is Attention over time” 

Ashish Vaswani: 

“Attention is all you need” 

“Self-attention, sometimes called intra-attention, is an attention mechanism relatingdifferent positions of a 

single sequence in order to compute a representation of the sequence.” 

Andrej Karpathy: 

“Attention is a communication mechanism. . .  for nodes [tokens] in a directed graph.”
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“Attention. . .  aggregates values from a weighted sum of all nodes connected to it. . .  

“Nodes [tokens] have no idea where they are positioned in space. . .”— 

“that’s why we need to encode them positionally. . .  [i.e add a positional encoding NLP]” 

“Attention is a set of vectors [embedding vectors] in space. . .  that just communicate. . .” 

“. . .  convolutional filters never talk to each other [no spatial or contextual relationships] 

Self-Attention 

Perhaps self-attention is the fundamental term to explore when creating computer vision feature 

descriptors of local regions of pixels. Here are some ways to describe and understand self-attention 

in NLP and computer vision. 

Computer vision self-attention is a local feature descriptor, the contextual-attentional-feature-

signature of a sequence of pixels from a local region. The signature, or pattern, is a numeric vector, 

computed using the embedding vectors for each pixel token in a pixel patch context (we cover 

embedding in detail in a later section). The local region of the descriptor is the patch area of self-

attention, and the combined relationships between all the pixels in the descriptor record a specific value 

or weighting of self-attention learned during training. There are many types of self-attention for 

computer vision in use, which we touch upon in this section. In fact, compared to richer feature 

descriptors (i.e., SIFT, SURF, Fourier features, and other methods), the simple method of pixel patch 

self-attention as used in ViT is a primitive type of feature descriptor in terms of robustness and 

invariance as discussed in Chaps. 4, 5, and 6. However, we find in deep learning that the sheer number 

of features in the model, and the amount of training data used, can often compensate for the individual 

simplicity of each descriptor. 

Self-attention is a signature-embedding vector representing the combined weighted embedding 

vector attributes of each token or pixel in the local context. For text applications, the self-attention 

vector is trained to be a weighted combination of embedding vector attributes (discussed later in this 

chapter) in the context of a sentence, perhaps several hundred attributes in a one-hot vector combined 

and weighted together into a signature-embedding vector. Attributes may include RGB colors for 

pixels, grammatical tags for NLP, or graph node functions for other modalities using graph node 

transformers (NOTE: we do not cover graph transformers, to dig deeper see [1021] A Generalization of 

Transformer Networks to Graphs, Vijay Prakash Dwivedi, Xavier Bresson, 2020). 

Attention is like a learned distance function, composed into a weight vector. The attention weight 

vector set is trained from initialized embedding vectors over the training corpus. In NLP, embeddings 

contain numerical encodings in an embedding space, which are computed from ASCII encoded word 

token sequences into a vector of numeric values representing each token—many variations of token 

sizes and encodings are used, some mentioned later in this section. For training, the training set is 

divided into blocks of tokens for training—one block at a time. The block length varies for a given 

application [30, 500, 1000, . . .]. Each block represents a sequence of text encoded into tokens. Feature 

learning via self-attention occurs for each token in the sequence, one token at a time, to find self-

attention contextually between all prior tokens in the sequence block. For pixels, often the RGB pixel 

channels are concatenated together as three channels of RGB pixels to represent tokens, ranging each 

from [0.0.256], although other tokens can be used for the embeddings. 

Attention is like a learned multi-classifier, with one classifier for each trained feature. The classifier 

is composed of a set of attention weight vectors for each known feature (i.e., a key/value pair), so 

attention provides one classifier per trained feature. Attention is therefore learned to determine how 

much attention to place on a target feature, by comparing with the reference features. 

Attention is a form of memory. RNN systems also use memory, such as LSTM models with long-

term and short-term memory with a limited size, while transformers use a memory length that is not



limited except by the architecture choice of the segment length, which can effectively be 10–50× larger 

than an RNN or LSTM model. Attention has advantages over the RNN memory limitations for NLP, 

since RNNs and LSTMs can effectively process sequences of words given that the sequence is fairly 

short—longer sequences such as 20 or more items begin to degrade the performance of RNN methods. 

Transformer attention has larger practical limits on sequence length, since all sequence items can be 

processed, in chosen chunks, independently and in parallel. 
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Attention in computer vision can be viewed as a relative of segmentation or a heat map—where 

related image features can be isolated to a degree. Segmentation produces clear polygon shapes 

containing related pixels. But attention can be used to produce fuzzy and ill-defined regions of pixels, 

which are still useful for a variety of purposes, even though they are ill-defined and fuzzy. The 

attentional segmentations can range in quality from light and suggestive, fuzzy ill-defined regions, 

through much cleaner regions of segmentation. The segmentations using attention are more probabi-

listic than other methods such as super pixels (see Chap. 2). Both CNNs and transformers are capable 

of image segmentation as discussed in the Chap. 2, Section CNN Segmentation, and transformers such 

as the U-Net in particular using the encoder-decoder architectures are particularly noteworthy, see the 

Chap. 2, Section U-Nets for Segmentation. 

Pixels are the features in most image attention models. The author expects that the features used in 

attention models and other deep nets will become richer and multivariate—new models will be 

developed following the path of earlier computer vision feature descriptors and emerging neuroscience 

models—pixels alone are primitive features, and must be associated with other pixels to form higher 

level abstract features that carry higher levels of representational power. Representational power 

comes from the inter-pixel relational attributes, as well multivariate expressions such as statistical 

models of texture, color, pixel distances, etc. (see Chap. 5, Interest Points and Feature Descriptors for 

example of rich feature descriptors based on neuroscience and visual science models). 

Self-Attention patches are primitive, commonly, rectangular pixel patterns flattened into a 1D 

vector, and then each pixel vector is converted into an embedding or encoding—this is a form of 

serendipity: the selection of the pixel patch regions as descriptors is purely unrelated to the content of 

the pixels themselves and may cut and clip desirable features into smaller pieces. Image attention using 

pixel patches looks like a primitive guess, compared to carefully designed feature descriptors such as 

Visual Genomes [476], SIFT, BRISK, and SURF, which are purely designed following neurological 

principles of human vision to represent and describe invariant interest point locations in an image and 

the surrounding pixels. 

Attentional features are represented in embeddings, vectors of attributes describing semantics for 

each token. Embeddings are typically learned by a DNN from a large corpus of tokens such as words 

for NLP, and learned from the image pixels for computer vision. We survey embeddings in detail later. 

Embedding Vectors may represent hundreds of individual attributes to describe a token, such as a 

word token for NLP containing synonyms, linguistic relationships, grammar, and word context. The 

number of attributes defines the embedding vector length. Embedding vectors are the basis of attention. 

Neuroscience of Visual Attention 

Here are some interesting observations from the literature from the neuroscience perspective on 

attention and neural networks—many more items can be cited, see also Appendix E The Visual 

Genomes Model (VGM), and Krig [476] for an overview of key research from visual neuroscience 

with illustrated C++ code models. The time is ripe for richer neural models, including more time-aware 

models for visual attention that incorporate visual sequences with associative time-aware memory 

models. See Figs. 11.22 and 11.24.
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On the Weakness of FFN Models for Attentional Learning 

*Note from the author: FFN’s have changed the world! They work well for what they do. 

Here is a quote from [957] G. Rousselet et al.—How parallel is visual processing in the 

ventral path? 2004. 

Despite its success in explaining some basic aspects of human perception such as object recognition, the 

hierarchical feed-forward theory remains highly schematic. Many aspects of biological visual processing, from 

anatomy to behavior, do not fit in this cartoon-like framing. 

Transient Attention—Sustained Attention 

Quotes from [958] Liu et al. Transient Attention Enhances Perceptual Performance and fMRI 

Response in Human Visual Cortex 

In behavioral studies, the two attentional systems can be differentiated by their distinct temporal dynamics. 

Voluntary, goal-driven attention is slow and maintained over long periods of time, whereas involuntary, stimulus-

driven attention is fast and decays quickly (Jonides, 1980, Nakayama and Mackeben, 1989, Yantis, 2000). Here, 

we refer to the two systems as sustained and transient attention, respectively. 

[attention] enable us to selectively attend and process a subset of the vast amount of information that impinges on 

our retina at any moment (Jonides, 1980, Nakayama and Mackeben, 1989, Yantis, 2000). 

Saccading and Time-Aware Neurons 

Notes on [959] Kirsch, Schmidhuber, meta learning back propagation and improving it. 

A recent paper by Kirsch and Schmidhuber on Metalearning explores the complexity of the time-aware neuron 

model direction further, proposing a neural model composed of a network of interconnected LSTM neurons. This 

encapsulates various attentional models together: continuous memory in the range of short to long. 

LSTM networks model attention in a time-aware fashion: the period of attention is gated, so there is both long-

term and short-term memory, which is another expression of Transient Attention vs. Sustained Attention The 

LSTM concept is a memory-centric attentional approach to neural modeling, and will continue to pave a 

significant path forward in neural models of the human visual system. (Scott Krig) 

Local Features and Joint Attention 

Quotes from [960] Bio-inspired computer vision: Towards a synergistic approach of artificial and 

biological vision, Medathatia et al. 

The processing of a local feature is always influenced by its immediate surrounding in the image.
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Such diversity would result from complex connectivity patterns where neurons tuned for different features (e.g., 

orientation, direction, spatial frequency) can be dynamically interconnected. 

How information encoded in neural systems is still highly disputed and an active field of theoretical and empirical 

research. 

Attention Variations 

The basic idea of attention is not concrete, and the term is used by neuroscientists as well as computer 

vision and machine learning practitioners in many ways. The concept of attention was emphasized in 

the seminal transformer paper natural language learning (NLP) paper from Vaswani et al. [819] 

“Attention is all you need,” where they developed a method of computing local sentence context as 

local self-attention within a sentence or local region, and a global association context called global 

attention. The transformer is a major milestone in AI, with applications to different modalities 

emerging. 

Attention creates a symbolic picture of the context of related tokens like words or pixels. 

Attention all by itself is an interesting concept for image recognition, since it acts as a hand-crafted 

feature descriptor that has trainable weights via various training protocols and gradient descent back 

propagation methods, like other CNNs and neural networks. There are nearly as many computer vision 

visual attentional feature descriptor representations and relationships as there are transformers with 

visual attention—each seems to be different or improved. Attentional features have been used to make 

hybrid CNNs to augment the last layers of CNN backbone since they incorporate more high-frequency 

details due to the larger pixel patch sizes used, such as 16 × 16 and higher. 

Attention is a form of memory, an associative memory. 

Attention concepts can be used to design new memory systems in hardware with attention support 

for various sized tuples inside the memory cells—modeling associations in an attentional content-

addressable fashion, for example, as used inside computer CPUs for CAM memory caches (i.e., 

Content Addressable Memories) for caching variables inside the ALU and rapidly retrieving them. 

Here are a few things people have said about attention. 

J. R. Firth 1957 “You shall know a word by the company it keeps” 

Ashish Vaswani [819] 

“Attention is all you need” 

“Self-attention, sometimes called intra-attention, is an attention mechanism relatingdifferent positions of a 

single sequence in order to compute a representation of thesequence.” 

Alex Graves quotes from Deep Learning Lecture 7: 

“There are lots of different kinds of attention... more will keep on appearing... 

”...attention is still a fertile area of research” 

“Attention is ...attending to... “ 

“Memory is attention over time” 

“With Neural Networks, more is more...” 

“Associative memory can fill in the gaps of missing information” 

”... turn static images into sequences... [associations]... reconstruction of the image...” 

Alex Graves on the NTM memory access model, see The Neural Turing Machine RNN, developed by Graves 

et al. [523] (*paraphrased below by this author) 

– Provides fuzzy attention (loosely similar values, and focused attention. 

– Also provides shifted local-attention (similar to a sparse convolution kernel in 2D). 

– General rule for building things with neural networks;
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– Whatever you want the network to do, you have a functional form for it, and get the network to supply [i.e. 

learn] the parameters for that functional form [i.e. another way to conceptualize an MLP function 

approximator]. 

According to the fine survey on attention methods from Meng-Hao et al. [961], separate categories 

of attention are identified in various transformer architectures and compared. The authors have boiled 

down the various methods of attention into common categories as follows:

• Channel attention—select important channels via channel mask generation.

• Spatial attention—select important image regions via region mask generation.

• Temporal attention—select key frames using generated masks.

• Branch attention—select important network branches via mask generation.

• Channel and spatial attention—joint prediction of various types of channels using variable criteria 

to select feature regions of interest.

• Spatial and temporal attention—joint prediction of spatio-temporal regions via masks. 

And here are other noteworthy visual attention methods from the literature:

• Strand attention—a method to compare strands of feature metrics [476].

• Self-attention—attention within a local region, such as a patch or word sentence.

• Multi-headed attention—parallel computation of attention features.

• Cross-attention—attention within a pixel patch, or between pixel patches [835].

• Hard attention—not differentiable, must be computed by direct hard number comparison.

• Soft attention—maybe computed probabilistically; differentiable values can be trained.

• Content attention—CAM memory based [476].

• Location attention—location based or cluster based [476].

• Geometric attention—(Csordas et al. ICLR 2022).

• Focal self-attention—Focal Self-attention [953].

• Visual word codebook attention—BEIT vision transformer from Bao et al. [985].

• Coordinate attention—[989] uses coordinate embeddings to locate target features.

• Transient attention vs. sustained attention, [959] Kirsch, Schmidhuber.

• SuperGlue attention: compares self-attention (within an image) and cross-attention (between two 

images) to determine correspondence between any type of feature: classical feature descriptors, or 

learned CNN or self-attention descriptors. See DeTone et al. [1015] SuperGlue. 

Attention Element Overview: Encodings and Embeddings 

Attention is computed from dictionary token encodings (i.e., numerical values) projected into embed-

ding vectors which are trained to containing a set of tokens representing a local sequence. The 

embedding vectors contain the contextualized vector weights tuned via gradient descent, to be 

compared between other model embeddings or target embeddings during training and inference to 

find feature similarity. Features in an embedding vector are contextualized via training to learn to 

represent weighted associations between embedded tokens in a context over the distribution of the 

training set. Contextualization is the process of learning attentional feature weights that represent a 

local context, similar to learning and comparing local co-occurrence matrixes, which is true for NLP 

and computer vision, see Figs. 11.11 and 11.14. The embedding vector weights form the features. 

Comparison takes place via a vector similarity function (SSD, SAD, Cosine Distance, . . .) between



trained model embedding vectors and a target token sequence (i.e., sentence for NLP or pixel patch for 

computer vision), discussed in more detail later. 
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“Encodings are only as good as the training data. 

Embeddings are only as good as the encodings.” 

—Scott Krig 

Historical computer vision encodings for pixel feature descriptors, and NLP using LSTM and RNN 

architectures, are covered in Chaps. 9 and 10 including “Vocabulary Encodings,”  “Visual 

Vocabularies, Bag of Words (BoW) Model, Alternative Encodings,”  “Sparse Coding and Codebook 

Learning Overview, K-MEANS, K-SV D.”

A dictionary contains unique encodings for a set of tokens from one or more training sets. A token 

can be made from any object including pixels, words, basis functions, or other datum. In NLP, a text 

corpus is parsed into separate tokens such as for each word, sub-word, or syntactical marking. The 

dictionary then is built up or trained to contain unique encodings for each token (i.e., word). Word 

embedding vectors are created containing a 1D vector of encodings, representing key semantic 

attributes for chosen sets of encodings in a context. The word embedding is the context, such as a 

sentence or sequential group of a chosen length such as 50, 100, 1000, or more, to enable NLP 

translation and textual understanding at the word embedding vector level. Embedding vectors are 

containers or features to learn contextualized sequences of tokens. 

To find the unique tokens, the input must be parsed into tokens of some size, and various methods 

exist for parsing word streams into tokens, such as whole word parsing, punctuation and sub-word 

parsing, or perhaps multiword tokens. For computer vision, the dictionary may be composed from 

pixel regions, using features (i.e., tokens) such as RGB pixel values, or image features from basis 

functions over the pixel regions (for example, see the BEIT and VICE transformer surveys later in this 

section). 

Each token is assigned a unique value or numerical encoding in the token encoding lexicon, which 

does not contain semantics of the token. The tokens in a sequential context are represented in an 

embedding vector, which is trained to represent the learned semantics tuned as embedding weights, a 

contextualized set of encodings trained to contain attribute weights. 

Historical NLP embedding methods based on token encodings include Word2Vec, GLoVE, and 

more methods are discussed in [963] and the bibliography references. NLP solutions may choose to 

use multiple encoding methods together, such as encode character by character (i.e., ASCII codes or 

similar), or as sub-words, i.e., Google has used Sentencepiece, OpenAI has used Tiktoken for 

bi-character or byte-pair encodings which act like a 2-digit (bi-character) number system with digits 

composed of the encoded value of the byte-pairs. For example, the ASCII char value encodings could 

be used to represent digit encodings for AB = [0 × 41, 0 × 42] = 0 × 4142 = [65, 66] = 6566 decimal. 

More details on encodings are also provided by McCormick [964]. See also the seminal NLP paper 

from Bahdanau et al. [981]. 

Once encoded into tokens, the tokens can also be decoded back to the natural language domain as 

characters, sub-words, or words in the decoder section of the transformer. 

Next in the following sections, we provide a parallel discussion of dictionary learning and 

embedding spaces, for both NLP text and computer vision image and pixel concepts together, since 

the text concepts have greatly influenced the computer vision concepts. In fact, the first computer 

vision transformer ViT used an NLP transformer almost as-is to process pixels encoded like word 

tokens, which we survey later.
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Input Tokenization for Text and Images 

In NLP 1D sequence applications, tokenization is the process of parsing the corpus of text training data 

into separate tokens using a variety of encoding methods, where tokens may be derived from words, 

characters, sub-words, punctuation marks, along with variations such as prefixes, post-fixes, and 

special characters. The training data is processed to produce a stream of numerical encodings for 

each token with unique numerical ID values. The tokens are used in the embedding vectors. Many 

tokenization methods exist for textual parsing, but none is perfectly suited to computer vision. See 

Fig. 11.5. 

In computer vision, the input image is commonly tokenized into polygon or patch-shaped regions 

containing RGB pixels, and for some methods, the regions are intentionally overlapping, or taken over 

a pyramid range of different scales and resolutions, sometimes including other geometric affine 

transforms besides scale, such as rotation. We survey such methods later. 

Text 

I have 500,000 prerelease albums 

My dog is, or was, hungry 

I like cheesburgers with pickles 

Tokens 

I      have 500  ,     000 pre release    albums 

My dog   is      ,     or   was    ,   hungry 

I      like    cheese  burgers     with    pickles 

Tokenizer 

Fig. 11.5 Illustrating input tokenization into words. Each word token is assigned a unique value or numerical encoding 

in the token encoding lexicon (i.e., dictionary) with no actual definition of the token. The tokens in a sequential context 

are represented in an embedding vector which contains the learned meaning as embedding weights, a contextualized set 

of encodings which represent contextualized meaning 

Tokens are stored into a dictionary or lexical format. For NLP, the dictionary represents a set of 

tokens taken from an input text corpus, such as the entire WIKIPEDIA collection, reduced to the set of 

unique tokens with unique numerical values. The tokens are scrubbed to remove duplicates and 

rendered into a canonical format for each dictionary. The encodings dictionary does not contain 

meaning; the embedding vectors contain the meaning. Embedding vectors are sequential vectors of 

encodings representing trainable token context weights, see Fig. 11.6. 

For computer vision, tokens may be pixels, pixel patches, or alternative basis features such as 

Fourier features. There is no standard embedding method or principled historical improvement path to 

follow among computer vision dictionaries or pixel-oriented embeddings, since computer vision 

approaches vary from research paper to research paper. The best way to understand pixel attention 

and pixel embeddings is to read a variety of papers describing different approaches, which we 

introduce as we go along. 

In computer vision, dictionaries are not standardized like NLP dictionaries. However, it is possible 

to create standardized vision dictionaries for various feature spaces. Currently, the majority of research 

into vision does not mention visual token dictionaries. However, the visual genome model [476] does 

in fact use a collection of dictionaries of modal visual feature metrics (several thousand metrics in the 

current version) and proposes standardization as volume learning for visual DNA and visual genomes. 

For insight into computer vision dictionary concepts, we will survey the ViT and SWiN methods in 

the section Transformer Architectures for Vision below. 

Pixel-oriented embeddings, as used in computer vision attention, are ad-hock methods created 

separately by each practitioner, sometimes re-used and extended in later research. However, the



Volume Learning model as proposed by Krig [476] and surveyed later is an early proposal to create a 

standard vision dictionary and multivariate embeddings within a volumetric metric space containing 

visual DNA metrics representing features forming visual objects, which is organized as individual 

collections of visual DNA for visual objects into visual genomes. 
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Embeddings for Text and Images 

Embedding vectors are used to describe a target feature, and after training used to find the closest 

matching feature vectors in a trained model. Embedding vectors contain weights trained via self-

attention to describe sequential tokens in a local context, such as words, sentences, or pixel features. 

Embeddings are vectors of tokens such as words or pixels represented as numbers, learned and trained 

to represent context within an embedding space; the space associates similar concepts close together. 

The embedding weights are thus contextualized during training to represent token associations over a 

chosen context. 

Embeddings are a major advancement in sequence learning particularly for NLP, and many good 

methods exist for NLP text embeddings. In fact, standardized embedding vectors are available 

pre-trained from Google, OpenAI, and other sources. NLP is much farther along in the science of 

creating good embedding vectors compared to computer vision, where the embedding methods vary 

widely. See Fig. 11.6 illustrating how token attributes are trained into embedding vectors, representing 

learned local contextual values for each attribute. 

Attributes  > 

Tokens 

    \/ 

human animal food hungry 

albums 0 0 0 0 

dog 0 1 0 0 

hungry 0 0 0 1 

cheeseburgers 1 0 1 0 

pickles 0 0 1 0 

Token attribute encodings *examples only some tokens shown 

Embedding Vec-

tors v[0..n] 

v[0] 

human 

v[1] 

animal 

v[2] 

food 

v[3] 

hungry 

albums .1 0 .05 0 

dog 0 .9 .1 .2 

hungry .15 .05 .1 .8 

cheeseburgers .05 .1 .09 .01 

pickles .01 .3 .8 .2 

Token embedding vectors (top), pre-trained by a DNN, are the default vectors to use re-

train into contextualized embeddings (bottom), which are weighted for a local context of 

tokens such as sentences or pixels. 

Fig. 11.6 Hypothetical illustrations of (top) lexical concepts of attributes for tokens and (bottom) embeddings created 

for the token attributes 

The length of embedding vectors varies; for example, in NLP, BERT [963] uses a range of 

embedding vector sizes are used, sch as BERT-Base = 768, BERT-Tiny = 128, and BERT-Mini = 64. 

The size of the word embeddings affects the performance of the BERT model on different tasks. In 

general, larger word embeddings tend to perform better in terms of accuracy on tasks that require a 

more nuanced understanding of the meaning of words. However, larger word embeddings also require 

more memory and computational resources.
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We introduce key concepts and topics in this section from NLP as background for the discussion on 

computer vision feature encodings and embedding vector spaces, with some computer vision examples 

of embedding methods for pixels and visual features in the next section. 

For computer vision, embeddings are ad-hock, developed in a range of methods by various 

practitioners. Specific computer embeddings are surveyed in the survey section later. Most of the 

embedding science originates in NLP where transformers were first applied, as discussed in this section 

for background. However, room for advancement in computer vision embeddings is identified as we 

go along. 

Pixel embedding learning is an emerging area of research, with growing popularity in image 

segmentation applications, where each pixel must be assigned to a class using the embedding vector 

class attributes in order to segment each pixel into classes. Pixel embedding learning is briefly 

surveyed by Wu et al. [991] in the W-Net architecture comparison to U-Net and related work, see 

the U-Net survey in Chap. 2 for more details on W-Net. 

Embeddings,  or  embedding vectors, are the numerical representations of features from a given 

domain, such as text tokens in NLP, or pixel feature patches from an image, or nearly any statistical 

features from an image or text. Transformers rely on feature embeddings to determine context and 

attentional relationships. Embeddings can be multidimensional. Any object can be represented by a 

numerical vector in an embedding space, such as words, user profiles, images, audio recordings, or 

weather patt erns.

Embeddings are learned representational features, created via AI methods, which support genera-

tive AI which can create output representations composed of combinations and permutations of 

representational features. See also http://projector.tensorflow.org for visualizations of various word 

embeddings. 

For NLP, encodings learned by a transformer or DNN are the base model. Or, existing trained 

models can be used as the base model via transfer learning as the starting point, and then fine-tuned as 

foundation models [980] where embedding vectors are initialized and then trained. Both the dictionary 

and the embedding vector formats can be pre-trained and ready use, speeding the process. 

The embedding vectors are the center of the transformer model; good embeddings are required, and 

embeddings are a science all to themselves, with roots in NLP. All transformer analysis is based on the 

embedding vectors and their values. NLP embedding vectors are useful for textual context understand-

ing, analysis, prediction for generative models, and translation. 

To query the trained NLP model, hand-crafted textual prompt vectors are created. The prompts are 

like questions and statements acting as indexes into the model and are not learned via training. Rather, 

the prompts are created separately by human experts, via trial and error, to represent the sense of the 

knowledge domain contained in the model. Bad prompts yield bad model matches and bad results. 

Currently, there is no automated learning method to create prompts. Using deep learning to find the 

prompts is in a very primitive state of research, with no clear end in sight to automate the human 

expertise required to generate intelligent prompts. Prompts are very hand-crafted—but the 

corresponding attentional features representing attentional context in the model are learned. 

Therefore, we do not present details here about creating NLP prompts (i.e., prompts 

engineering). Why? Because prompt engineering is out of scope for computer vision, since there is 

no clear analog process required for computer vision applications. Therefore, to dig deeper into hand-

crafting of embedding vectors for NLP and defining the prompt engineering embedding sets, see 

[1020] OpenAI—GPT-4 Technical Report OpenAI—March 2023. 

An embedding space contains a set of trained or contextualized embedding vectors, which can be 

reprojected into a lower dimensional space such as 2D for similarity discovery using distance 

functions, see Figs. 11.6, 11.7, and 11.8. Embeddings are multidimensional coordinates, which can 

be stored in vectors of arbitrary length to represent chosen attributes, which act as coordinates to 

represent similarity within the embedding space.

http://projector.tensorflow.org
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Each element in the trained embedding vector represents a weight for a certain attribute which is 

semantically useful for textual context understanding, analysis, and translation. Embedding vectors are 

created from a set of token encodings from a dictionary—the dictionary is created from a token corpus, 

such as a text corpus, as discussed in the prior section. The embedding vectors are created by 

projecting a token (such as a word in an NLP model, or a region of pixels in an image model), and 

their attributes, into numerical embedding vectors, which can be viewed within the embedding space 

to observe relationships between tokens, and measure similarity between tokens for analysis of 

context, meaning, token understanding, token substitutions, and translation. Any token can be 

represented by a numerical encoding and projected into a numerical vector in an embedding space. 

Embedding vectors can be reprojected into and vector space to measure simple similarity as the 2D 

distance between embeddings, revealing context and meaning, enabling token substitutions and 

translation. Any token in any domain can be represented by a numerical vector of useful attributes 

and represented in an embedding space. 

Embedding vectors contain weights, which can be trained to push vectors in space to adjust 

similarity depending on the context of the words; training for a medical word corpus will re-weight 

the word vector weights to better represent the medical word contexts. This is referred to as contextu-

alized word embedding. For example, medical language is contextualized differently than sports 

language. 

See “Intuition Behind Self-Attention Mechanism in Transformer Networks” on YouTube for an 

intuitive introduction. The vector dot product reveals similarities, where the cosine distance is smaller, 

see Fig. 11.8. and see Table 11.1. 

Good token embedding vectors encode domain meaning as separate attributes into each element of 

the embedding vector, enabling similarity metrics to use token-to-token distance to find relationships 

between any specific token attributes. 

Good embeddings contain meaning, for example, allowing noun tense changes, associations of 

attributes together such as persons, places, and things. Distance provides semantic information for the 

language of the tokens. Embedding positions are fixed, so table vector position indexing can be used 

for comparing embeddings and their attributes. 

Increasingly, DNNs and transformers for computer vision may use embedding spaces based on 

projections from alternative basis features such as CNN feature maps and Fourier features representing 

a pixel patch, as well as pixels themselves. 

NOTE: Most NLP systems use pre-trained embedding spaces and dictionaries of word tokens, so 

the applications are built on pre-made dictionaries and embedding vectors. 

BERT [963] is a major advancement in natural language processing (NLP) transformers using a 

bi-directional encoder/decoder architecture, used to create one of the most comprehensive and vast 

trained sets of word embeddings suitable as a foundation model, and in 2019 Google began using it for 

processing search engine queries, which added the capability for conversational queries rather than 

topical queries, since it captures complex nuances in language. BERT has over 200 variants. It can be 

implemented using an encoder-only architecture for embeddings. 

BERT combines several key features:

• A new emphasis on token-oriented contextual attention mechanisms.

• Along with other transformers, BERT can be interfaced with the established Relational Database 

Systems and the SQL query language (E. F. Codd 1970 [1978], [965]). See [982] Guo et al. for 

converting natural language queries into SQL queries for transformers.

• Uses the transformer architecture, allowing for training and feature learning like other neural 

networks.
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• Uses the WordPiece tokenizer and embeddings, which splits text input into full word forms, or else 

splits whole words into pieces as multiple tokens. The tokens are organized into an intelligent 

embedding model. Word pieces sometimes have advantages in NLP for language translation and 

language understanding, enabling more accuracy. See also McCormick [964]. 

The NLP embedding vectors may contain many thousands of attribute dimensions or entries. For 

pixel embeddings, there is no standard embedding space across the variations in pixel attention 

methods; however, we will describe the ViT pixel embedding method briefly in a later section. 

For computer vision, the BEIT method creates a visual vocabulary, or codebook, of visual features 

to represent pixels, and also uses 2D pixel patches flattened into 1D vectors as the basis for generating 

encodings for embedding vectors, we survey BEIT later in this section. 

Besides visual vocabularies, Bag of Words and similar embedding models are used computer vision 

to organize feature spaces, similar to dictionaries and embeddings, see Chap. 4, Section Terminology: 

Codebooks, Visual Vocabulary, Bag of Words, Bag of Features. 

Embeddings are also associative memory addresses, which locate similar objects together. Embed-

ding is a method to encode an associative memory, where the distance between memory objects is 

small for similar concepts, and large for unrelated concepts. Embedding is also a clustering method, 

where similar concepts are clustered together by similar encodings. The embedding space, or associa-

tive space, enables many forms of machine learning. 

In fact, embeddings themselves must be learned, often using DNNs or numerical and statistical 

methods. The embedding space is a similarity space, where similar concepts are near to each other 

within the space, and unrelated concepts are far away from each other within the space, and unrelated 

concepts are far away from each other. 

As shown in Fig. 11.7, self-attention for NLP is the method of computing frequency of association 

within a local region such as sentence, by measuring the frequency of word associations in a large 

corpus of training data. For pixels, self-attention or intra-attention describes pixel context and 

relationships within a pixel region, and inter-attention describes the relationships and similarity 

between independent pixel regions. Transformers use an encoder to create the embeddings and encode 

the similarity between words in a local context (such as a sentence or pixel patch), or in global context 

comparing pixels within patches with pixels in other patches or across the entire image. The trans-

former decoder uses the embeddings to find NLP textual similarity and to understand the token 

meanings for translation. For pixels, attention is used for object detection and scene understanding. 

Tokens (words or pixels) that are more frequently found in the same sentence or pixel patch are 

defined contextually as being more related and closer together in the embedding space—words or 

pixels that are not often used together are defined as more unrelated and farther apart in the embedding 

space. See Figs. 11.7 and 11.8 and Table 11.1.



572 11 Attention, Transformers, Hybrids, and DDNs

Fig 11.7 Illustrating how self-attention analysis over many training examples reveals contextual relationships between 

words. Training with different word encoding sets produces different contextual relationships 

bank  

went 

river 

cash 

I 

get see 

dog 

Word embedding space showing word contextual associations, 

word distance records contextual associativity 

Fig. 11.8 Showing a rough hypothetical embedding space where word similarity and synonyms can be represented, 

where smaller distances between tokens in the embedding space reveal similarity, and contextually unrelated words have 

a larger distance between them 

Training pulls the word vectors toward the direction of the training data—this is 

contextualization—and is represented in the model embedding weights. 

Note that Figs. 11.7 and 11.8 illustrate attention concepts within a hypothetical embedding space, 

where similarity is shown using Cartesian distance. Note how the training example describing “the dog 

going to the bank to get cash” is not common in the training set, therefore not likely to be encountered 

in real examples, thus helping to train the feature embedding space to have low similarity in this case. 

Therefore, training with different test data and different tokenization methods, and different 

embedding length requirements produce different word encodings and dictionaries, resulting in 

different embeddings for contextual relationships, thus different self-attention features can be 

described, learned, and detected. In this way, the dictionary and the embeddings can be specialized



to a specific knowledge domain, such as legal, medical, software code engineering, etc. For example, 

ChapGPT is trained over GitHub software source code and can therefore generate decent software 

source code for simple cases. See OpenAI LangChain API for details on fine-tuning the ChatGPT word 

model by using additional data for specific knowledge domains. Fine-tuning models in small chunks to 

add knowledge is the future—combining model ensembles, re-training quickly and often for small 

items, and managing model ensembles as a group, will providing continuous learning—see Associa-

tive Multimodal Learning in Chap. 12. 
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Rethinking Positional Encodings for Text Tokens and Pixel Patches 

NLP transformer embeddings also use a positional encoding added to each token, which is like a 

sequence number in LSTM/RNN networks, ensuring that each token is treated separately even if 

several tokens are identical in value, for example, all the occurrences of the word “the” in the input will 

be treated separately if they each have a unique positional encoding. But what are the justifications for 

positional encodings in transformers, and are positional encodings needed for computer vision 

embeddings for pixel patches? 

Positional encodings in 1D sequences make sense and are useful for text processing to uniquely 

identify each embedding vector in case words in the sequence are identical, since the number of 

different word tokens encountered in NLP may only be a few thousand, so the positional encoding acts 

like a sequenceID number to uniquely identify words that may occur multiple times in a sentence or 

context, i.e., “I had desert in the desert.” 

But for computer vision, positional encodings, or perhaps the types of positional encodings in use 

for pixel patch embeddings, do not seem to matter very much, as reported by many practitioners (for 

example see ViT [824]). 

Positional encodings as used in pixel patches are, at best, simply a very weak method to add a 

nonlinearity into the embedding vector. Adding some nonlinearity for feature learning is considered 

desirable in CNNs to help avoid basins of attraction during back propagation gradient descent training, 

sort of like a bit of accuracy drop-out, but more research is needed to find guidance for transformer-

style attention in computer vision. 

To questions the need for positional encodings in computer vision patches, the intuition is that if a 

16 × 16 = 256 image patch contains 3 RGB channels for each of the 256 pixels for 768 total pixels, 

each pixel with a value in range 0.0.255, then under self-attention 768256 possible pixel value weights 

per patch are compared (or attended-to as some practitioners prefer), and 768256 is NAN using today’s 

computers. So, the odds of two 16 × 16 image patches being identical are 1/8.578177753 E+506, 

therefore positional encodings will not help and are superfluous. But perhaps there is room for more 

thinking and innovation on this topic. 

768^256 = 44923369994357333539605999728098833291720240728307887603351260009855 

9451565249175628595292456704022571997613515823515513734622292882657034689202487 

77809904209756669524920069763251019391427003033355426110502374011032726720608817 

93127801002571604252438928862521023311573660248150526723744935884467979627832374 

34111094173094021628475414852157601215589958185345083521688434653935839194084011 

6080209999012697775279346897020112614640965167345110489318253243757439616522765 

88704909263190772109814500605835126009661678111432300079321437962252563776494923 

60530908153234140351962848198859770503655514139478432681743081347248105121438465 

12460847251379671209024085476167120375962051263679302110591447471221696471498770 

360394719409288647937257715531776



574 11 Attention, Transformers, Hybrids, and DDNs

Most practitioners have noticed and reported that pixel positional encodings seem ineffective. 

Perhaps, a random number for the positional embedding would get equivalent or the same results 

that still do not help, or else using the coordinates of the pixel patch within the original image could be 

tried, if a future need exists. But perhaps pixel patch positional encodings are not needed at all, which is 

observed in the ViT method surveyed later. See Hou et al. [989] for using coordinate attention 

encodings to add spatial awareness to CNNs. 

Each pixel patch does have an (x,y) coordinate origin and centroid, which may be a better choice 

than other positional encoding methods if in fact 2D positional information is wanted for visual token 

embeddings, and can be proven to work. According to the research this author has seen, vision 

transformers do not require 2D (x,y) pixel patch positional information, nor do transformers make 

special use of multi-patch spatial feature relationships incorporating 2D (x,y) spatial representations 

after Hou. However, the volume learning method from Krig [476] does in fact form multi-patch feature 

relationships which requires 2D (x,y) positional information, see Fig. 11.23 for details. 

Illustrated Encodings and Embedding Space 

In NLP, the embeddings in a transformer model are represented as a table with a row for each prepared 

input token, and columns for each attribute to be learned about each token during training. Self-

attention is used to learn define and learn the column attributes as weights within each token, and input 

tokenization is used to define and enumerate the separate rows in the table—this is a lot like a relational 

database table, which we delve into later. See Figs. 11.7 and 11.8 and Table 11.1. 

The encodings and embeddings are usually learned in practice as discussed in previous sections. 

However, domain experts can manually create embeddings, such as medical XRAY technicians, 

containing ground truth embeddings to identify the golden attributes that must be learned, fine-

tuned, and detected for their work. Such embeddings contain unique embedding attributes such as 

shapes, intensities, or other features they specify. This is a very expensive method to create 

embeddings, but still used. 

Association is only as good as your embeddings. ...— 

Alex Graves quotes from Deep Learning Lecture 7 

Some practitioners learn multiple embedding models, each separately optimized for specific 

attributes and use cases—this is common for NLP methods, but not popular (yet) for computer vision. 

Variations may include the embedding vector size or number of encodings in the embedding vector, 

where each encoding may be required for one use case, but not another. A. class name and class 

description token may be used for interpolating between related classes to find the best match (i.e., 

zero-shot learning). 

However, embeddings are learned and tuned via transformers using various encoding schemes. A 

common encoding method assigns each unique token (i.e., class) to be encoded as a unique value in the 

embedding space, commonly used is often referred to as one-hot encoding in the literature, however 

many methods exist. One-hot encodings contain one row for each token, and one column for each 

possible token attribute with only one attribute column to be set as “hot” = 1, and all other columns set 

=0. For pixels, typically the pixel RGB component values can be used for encodings, but embeddings 

vary as each vision transformer may use a different method which is beyond the scope of this work. To 

dig deeper into vision transformer embedding methods for compute vision, see the survey [961] 

Attention mechanisms in computer vision: A survey, Guo et al.
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Since embeddings are crucial, high-quality embeddings are being developed and sold commercially 

(see OpenAI) which is common for NLP, but not for computer vision. Not all embeddings are useful 

for a given problem. NLP embedding vectors have different requirements than computer vision, which 

we touch upon briefly as we go. 

For pixels and computer vision, additional items may be added to the embedding such as a positional 

encoding to represent some spatial information, or perhaps a pre-computed class token analogous to a 

dictionary encoding. We survey the ViT transformer method as an example later in this section. 

For embedding space learning and training, the first step is to tokenize the input into unique values: 

for pixels this may be using the pixel value as the token in range [0.0.255] for each RGB color channel. 

For NLP and textual values, tokenization can be done by parsing the input text and separating values 

based on punctuation marks into words, and in some cases separating words into sub-words. 

Encodings assign each unique token to a unique value—this is often referred to as one-hot encoding 

in the literature. 

Table 11.1 Illustrating hypothetical token blocks Z,X, tokens, token subsets, and token similarity scores for subTokens 

Z1.0.6 and test block X: XZ1 .. XZ6. Note that the block length could be hundreds or thousands long, this example 

Block Z: ground truth 

shows a block length of 6 which is not practical or advised 

Block X: test block/target block 

Block Z The dog likes pickles for breakfast 

tokenSubset Z1 The 

tokenSubset Z2 The dog 

tokenSubset Z3 The dog likes 

tokenSubset Z4 The dog likes 

tokenSubset Z5 The dog likes pickles for 

tokenSubset Z6 The dog likes pickles for breakfast 

Block X My cat wants sardines for snacks 

Similarity XZ1 1.0 

Similarity XZ2 1.0 0.4 

Similarity XZ3 1.0 0.4 0.6 

Similarity XZ4 1.0 0.4 0.6 

Similarity XZ5 1.0 0.4 0.6 0.5 1.0 

Similarity XZ6 1.0 0.4 0.6 0.5 1.0 0.7
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For NLP training, as shown in Table 11.1, tokenSubsets from the input block are separated as: 

Tokens 0½ ], tokens 0, 1½ ], tokens 0,1,2½ ], tokens 0:1:2::blockSize½ ]

The transformer therefore sees each token in the block contained in subsets of the entire block as 

tokenSubsets of size 1 .. blockSize. Each tokenSubset is separately compared to create separate self-

attention features to learn the local context. In this way, self-attention is computed at each tokenSubset 

in the token sequence, with the goal of being able to predict the next token of each subset, for example, 

to predict the next token in the set Z2 token[0,1] (the dog) we use Z3 (likes) from Block Z as shown in 

Table 11.1. Training is performed by testing similarity between tokenSubsets and the block of tokens 

from which they derive: Block Z in Fig. 11.1 is used as ground truth. Then, similarity between 

tokenSubsets and test blocks contextualize the weights as additional test blocks are used to perform 

self-attention and adjust the weights in batches as training proceeds. 

To dig into actual code self-attention transformer training details, see the Andrej Karparthy 

youtube.com training session: see the Andrej Karparthy youtube.com training session: “Let’s 

build GPT: from scratch, in code, spelled out” 

The tokenSubsets are trained into attentional feature weights using the QKV Query, Key, Value 

mechanism to learn to perform token predictions, token-to-token language translations, and token 

model searches as discussed in the next section in more detail. 

NOTE: The key idea of using tokenSubsets is to train the model to be able to predict the next token 

in a larger set of variable length token sequence blocks, using past sequential token values from known 

positions according to the relative positional embeddings to predict future token values, contextual-

izing the weights for self-attention similarity over the training samples. 

The tokenSubsets (which can be as small as one token) are used for QKV attention Q values (i.e.,what 

to look for), the blocks are used as the source of the K values (i.e., what is contained) and used in the 

QKV learning process to compute QK similarity (using dot product, cosine distance, . . .) into the V 

value similarity weights, to contextualize all token relationships from the training data, where high 

similarity is high sequential contextual relevance. Multiple QK similarity computations are enabled via 

computer using multiple tokenSubsets as Q against multiple target blocks in K as QK vector similarity— 

which can be computed in parallel—this is referred to as multi-headed attention—see Fig. 11.11 for an 

illustration. The queries are performed against all Keys in all Blocks, and the highest QK similarity scores 

V add the most context to the model feature weights. Note that only prior tokens in the sequence are used 

as the context contributing to the similarity computation for self-attention for weight tuning. 

Typically for NLP, the tokens and corresponding tokenSubsets are processed in batches containing 

a subset of all the training data, where the batch processing includes both a forward self-attention pass 

and a backward gradient descent tuning pass for each batch. The goal of the training is to compute 

self-attention features for each tokenSubset to enable sequence prediction of subsequent tokens 

following each tokenSubset. 

The transformer is trained to produce a token embedding table of dimension nTokens, initialized 

from the tokenized input only, to contain the first-order initial prediction of the tokens following each 

token, not using any other local context. But these predictions must be further trained and fine-tuned 

via self-attention of a large set of contextual tokens, to discover the most common local tokenSubset 

context from the training set to produce weights—this is called learning in AI parlance. 

The tokens and tokenSubsets are fed to the transformer to learn the relationships between each 

token’s context within all the tokens in the training samples. The transformer learns by predicting

http://youtube.com
http://youtube.com


relationships and scoring the predictions. For NLP, predicting future or unknown states from past state 

sequences is the method since future states are not known and therefore cannot be used to predict future 

states. For attention, past states are sometimes represented as a single value containing the average of 

n past states, enabling fuzzy predictions of future states by using both the fuzzy past state and the 

current known state. However, for computer vision, the transformer can be used to predict the 

surrounding tokens in 2D pixel blocks as surveyed later. 
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Transformers learn by predicting sequentially using self-attention from the local context. The 

embedding weight values are learned as self-attention features recorded in the weight layers of the 

network after training. In the embedding space, the weights are analogous to the coordinates in the 

embedding space, allowing similarity between tokens to be represented using simple distance metrics, 

such as Cosine Distance or dot product within the embedding space. 

Pixel-oriented embedding methods are discussed in the surveys of vision transformers later, 

providing some details on various methods. See Fig. 11.9. 

To dig deeper into computer vision embedding spaces and positional encodings for 2D pixel attention, 

see the survey Attention mechanisms in computer vision: A survey Meng-Hao et al. [961], and also the 

comprehensive survey Transformers in Vision: A Survey [962] Salman Khan et al. 

Fig 11.9 Illustrating a simple pixel embedding alphabet representing binary visual word masks, as used for feature 

detector analysis, see Appendix A: Synthetic Feature Analysis 

Attention Mechanism Illustrated: Tokens, Embeddings, QKV Self-Attention 

In this section, we provide hypothetical examples for self-attention in transformers for both text and 

images to compare the concepts. The examples include tokenization, dictionary encodings, embedding 

vectors, positional embeddings, and the vector mathematics of the self-attention mechanism, including 

multi-headed attention (i.e., parallel attention). For the NLP examples, we will combine NLP details 

taken from the Vaswani method with later improvements in NLP such as BERT, and for computer 

vision we provide details from the Dosovitskiy ViT method for computer vision with some variations 

from SWiN and others. Finally, we will compare both NLP and computer vision methods at key points. 

We do not provide a how to approach here, no code or algorithms. This is introductory with 

references to dig deeper; here we only can discuss fundamentals at a high level. 

To dig into transformer code from a classroom perspective, with complete transformer code in 

python and pytorch, see the Andrej Karparthy youtube.com training session: “Let’s 

build GPT: from scratch, in code, spelled out.”

http://youtube.com
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See also the many other transformer code resources which are constantly appearing in GitHub, 

mentioned in the various literature cited herein. 

The QKV model is the transformer attention mechanism which performs embedding vector 

comparisons of queries against keys to yield values, analogous to an SQL relational database query, 

but much more intricate and powerful. The QKV attention mechanism uses query, key and value 

vectors to implement self-attention, to compare a query vector and context-weighted key sequences 

together to locate sequences of intertest and to predict sequentially. The Q vector represents the 

sequence we are looking for; the K vectors are a set of sequential vectors compared to the Q vector 

using a similarity metric to compute weights for each sequence at consecutive positions; and theV 

vector is the aggregated QK dot product values from either a single QK self-attention value or multiple 

multi-headed QK attention values. 

NOTE: we mainly follow the Vaswani NLP transformer details compared to the ViT vision 

transformer details as we go along, since ViT deliberately follows the Vaswani architecture as close 

as possible. We highlight key similarities and differences between NLP and computer vision 

transformers as we go along. 

Self-attention transforms the set of local token encodings in an embedding vector, resulting in a new 

contextualized re-weighted embedding vector, which falls somewhere in between all the existing 

embedding vectors in the space. In other words, local self-attention produces a unique feature value 

as an embedding vector within the embedding space, where self-attention is a learned embedding in 

between existing embeddings, allowing for model growth and re-training, as well as detection and 

similarity to be determined with the embedding space. 

Multi-head attention is just a parallel attention mechanism as shown in Fig. 11.11 illustrating the 

NLP BERT method of multi-headed attention, using multiple slightly different Q queries and QK 

similarity highlighting specific embedding vector attributes. Figure 11.10 illustrates vision transformer 

embeddings using specific attributes of the embedding vector to contribute to the self-attention (for 

computer vision, focus on the RED pixels with a higher weighting, or for NLP focus on the nouns in 

the word tokens). The QKV self-attention learns new features by weighting QKV vector embeddings 

according to the Q attributes selected. Each multi-head projection set can focus on calculating different 

types of relationships between the tokens, to identify or learn specific contextualized embeddings. In 

multi-headed attention as per the BERT model, the contextualized embeddings from the different 

attention heads are simply concatenated together for further processing. 

Embedding vectors may contain an arbitrary number of attributes. However, for NLP commonly the 

size is limited to between 100 and 300 attributes, and for pixels the embeddings typically contain just a 

few attributes such as RGB pixel colors, gray scale colors, maybe a positional encoding, and perhaps a 

class token—see Fig. 11.10. Often for NLP transformers, the total number of embedding vector 

attributes is downsized during analysis for learning coarser or more general categories.
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Fig. 11.10 Illustrating hypothetical embedding vectors, (top) a generic embedding combining a class token and a 

positional encoding, (bottom left): a generic word embedding combining grammar attributes and a positional encoding, 

(bottom right): a pixel patch embedding with no class token or positional embedding 

As shown in Fig. 11.10, a class token may be prepended to each embedding vector, and a positional 

encoding may be concatenated. In some cases, the positional embedding is added into the embedding 

vector instead of concatenated. 

All pre-trained embedding vectors are unique to start, and new embedding vectors learned during 

training are processed to be unique also. Self-attention analyzes all tokens in the local context—a 

sentence or pixel region—then computes embedding vector token similarity (perhaps dot products) for 

each combination of tokens in the context. 

Vaswani tried both a sin/cos positional encoding method and a learned positional encoding method 

and compared the results. The positional encoding acts as a unique sequence number to differentiate 

tokens that have the same value, i.e., “the dog sees the cat.” The positional encoding is added as the 

first step in the encoder and decoder blocks, ensuring sequential uniqueness of each token. Vaswani 

reports that both the learned encodings and the sin/cos encodings produced nearly the same results— 

neither was superior. The sin/cos positional encoding is defined as: 

PE pos,2ið  Þ  = sin pos=10002i=d model

PE pos,2iþ1ð Þ  = cos pos=10002i=dmodel 

between [0.0.1], amplifying similarity and reduces dissimilarity. 

Vaswani uses a scaled dot product to compute attention between vectors, where a scale factor 

normalizes the values for better softmax distribution of values. The scale factor is the token encoding 

attribute array length n which Vaswani calls dk: “. . .  queries and keys of dimension dk, and values of 

dimension dv . . .”. 

The Vaswani attention function for scaled dot product is as follows: 

Attnn =Attention Q,K,Vð Þ= softmax 
QKT 

dk 
p V, where dk is the head size scale factor, n= head



580 11 Attention, Transformers, Hybrids, and DDNs

*Attention Q,K,Vð Þ= softmax QKT V * without scaling 

Multiheaded Attention=Concat Attn0 . . .Attnnð Þ  

Each embedding vector is used to create the QKV Query, key and value vectors. By selecting the 

vector embedding attributes of interest, attentional focus is defined so that the QK vector similarity 

represents the desired encoded attribute relationships as V. The QK scalar product in the attention 

function measures the relationship between the embedding attributes of the Q vector and other applied 

K vectors. The Q vector represents the current query token (i.e., what to look for), used in the self-

attention function to determine relevance within the local sequence context vector K. 

The QKV mechanism is not only used to learn the self-attention feature weights, but is used 

basically similar to other retrieval systems, such as YouTube and other search engines, and also 

similar to SQL database queries, where a Query is typed as the search term, and the search engine maps 

the Query to the set of existing video Keys (video title, subject, and other attributes) using dot product 

similarity or other similarity such as SSD or SAD, then displays the list of values which are relevant 

videos to the query. The attention process works like a retrieval system, but is implemented with 

learned contextual nuances (Fig. 11.11). 

Fig. 11.11 Illustrating (left) the Query, Key Value (QKV) dot product and matrix operations for self-attention, and 

(right) parallel self-attention or multi-headed attention of the BERT model. Images # 2023 Dr. Romain Futrzynski, used 

by permission 

The softmax amplifies similarity and feature significance to highlight the extremes and can be 

performed more than once, with different amplification, in various sequential functions through the 

network to achieve complex transformations with the softmax nonlinearity; adding nonlinearity in the 

network at certain locations is considered a necessary numerical conditioning component of deep 

learning by many practitioners. The scalar products are typically normalized, or scaled down within the 

range 0,1, for numerical stability prior to passing through the softmax function.
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New learned embeddings are contextualized via weight adjustments during training, in the propor-

tion of similarity between attributes; as shown in Figs. 11.7 and 11.8 if the query for the river token has 

high similarity with the bank token, the bank token’s attribute weights are amplified in the learned 

contextualized feature weights. 

Attention functions transform a set of Q,K,V embedding vectors into a new vector, by using the 

query Q embedding applied to a pair of K embedding to produce the V embedding. For Vaswani’s 

method, the output is a vector of learned weights from the Attention(Q,K,V) function, where the 

softmax function is used to ensure embedding vector weights add up to 1.0. Self-attention is perfect for 

parallel processing to compute all embeddings in a sequence at once—a parallel computation for each 

word in a context, or for each pixel token in a region. 

Embedding  

Vectors v[0..n] 

v[0] 

human 

v[1] 

animal 

v[2] 

food 

v[3] 

hungry 

My .1 .3 .05 0.04 

dog .02 .9 .35 .2 

likes .15 .15 .1 .22 

hamburgers .08 .02 .85 .5 

and .08 .08 .25 .02 

pickles .01 .3 .6 .3 

Her .88 .02 .01 .03 

cat .15 .95 .16 .34 

smells .08 .35 .4 .56 

hamburgers .08 .08 .76 .65 

and .01 .3 .02 .3 

fish .02 .78 .92 .86 

Fig. 11.12 Illustrating hypothetical learned embedding attributes for words shown in table format like a relational 

database table might appear. The attributes are stored in the embedding vectors for each word and used by attention 

mechanisms to compute similarity when learning new embeddings during training for feature learning, also used for 

inference when searching for feature similarity in the embedding vectors using QKV 

Attention, as shown in Fig. 11.12, is the dot product similarity of two arbitrary local contexts 

represented as weighted encoded embedding vectors of attributes, as described earlier in the basic 

Vaswani QKV formulation as illustrated with a little detail in Fig. 11.12: 

D= dog embedding vector row 2ð  Þ  

C= cat embedding vector row 9ð  Þ  

Weighted similarity= Dj  j  Cj  j cos thetað Þ

DC = :1  x:88þ 02 x:15þ :9  x:95þ :35 x:16 þ :2  x:34= DCj  j  cos thetað Þ

Self-attention compares the embedding vector to itself, which is a comparison to weight the local 

context. Each value is compared to all other values of itself in the embedding vector, using normaliza-

tion and distance functions (such as dot product) to produce the resulting embedding weights within 

range [0.0.1]. Figure 11.13 illustrates aspects of the self-attention relationships between each item 

against all other items in the embedding vector. Here are steps based on the Vaswani method:
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1. Dot product (or other) similarity between all embeddings in the vector. 

2. Normalize each similarity result to get weights to [0.0.1]. 

3. Re-weight original embeddings using new weights (contextualize). 

Fig. 11.13 Illustrating self-attention, using a selection of visualizations of hypothetical learned embeddings, shown 

with embedding weights indicated by the strength of the colored lines. These diagrams are generated using the Google 

Research BERTVIZ Colab Python interactive online demo. Darker lines show stronger attention and contextual 

association; lighter lines show weak attention and rarer contextual association 

Self-attention for computer vision can follow ViT, which deliberately follows the Vaswani archi-

tecture as much as possible also using scaled dot product attention and simply splits the image into 

16 × 16 pixel patches, copies all the pixels into a 1D array of length 256 (16 × 16) containing the R,G,B 

pixel values as encoding attributes, treated analogous to a 1D vector of word token encodings by the 

transformer. However, ViT pre-pends a learned class token to the embedding attribute vector to act as a 

key embedding attribute to identify patches, and also concatenates a novel learned positional encoding 

to the end of the attribute vector, and finally feeds the embedding vectors to the input stage of the 

Transformer. Note that Dosovitsky et al. claim the positional encoding does not seem to matter after 

some testing of various methods. See Fig. 11.14. 

We describe the internal details of ViT attention and embeddings in some detail later in this chapter 

in the ViT survey. We skip the details here.
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Fig. 11.14 Illustrating hypothetical pixel self-attention and similarity using simple RGB color embeddings for each 

pixel, with a class token and a positional embedding, similar to the ViT model. Darker lines show stronger attention and 

contextual association; lighter lines show weak attention and rarer contextual association 

Results of self-attention include:

• A contextualized or self-attention embedding of all tokens in the attended context.

• Contains a weighted sum of all token embedding vectors in the attended context.

• Proportional to softmax: related embeddings in context are amplified/squished. 

Q,K,V Attention mechanisms have roots in Relational Database Systems, where rows and columns 

in tables are processed using related but simpler Q,K,V concepts and definitions of Queries, Keys, and 

Values vis the SQL language. 

As shown in Fig. 11.13, any projections of selected attributes can be learned according to the task at 

hand—some projections are difficult to understand or vague, and similarity might not have any 

apparent meaning to the task at hand, so training is required task-by-task to balance the attributes 

with complimentary functions. Interpretation of QKV attention and embedding vector attributes in an 

embedding space is a learned art. 

Q,K,V Queries, Keys, and Values can be visualized as organized in tables, each table composed of 

rows and columns, with Q tables containing one target pattern embedding column per row, and KV 

tables containing two column embeddings per row: a K column embedding and a V column, like an 

EXCEL spreadsheet of matrices. Like relational databases, transformers incorporate attention 

mechanisms that use tables or tensors organized as matrices of QKV embedding vectors. 

Transformers can be interfaced directly to SQL for database abstraction of the model and treated 

like a set of relational database tables. For more information on relational databases, see The SQL 

Standard ISO/IEC 9075:2016 (ANSI X3.135). See [982] Guo et al. for converting natural language 

queries into SQL queries for transformers, like BERT. 

Embeddings are the features. As discussed above in this section, embeddings are used to represent 

and compare the attentional key, value, relationships via queries. 

Q: queries define the target value to search for in the embedding space. 

K: keys define the attention weights representing features (pixel patches or words). 

V: values are the contextualized embedding weights from the QK scalar product.



Key Value Pairs: each Key K is associated with a Value V as a KV pair of vectors: EachKey vector 1..n

is compared for similarity to a Query Q vector across all K embedding vectors in the embedding

space: the best matching QK score determines which V is referenced from the embedding space:
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QK is the scalar product, the score (i.e. attentional relationship between Q and K), which is an 

unnormalized weighting or similarity computed in the MLP section of the Transformer, which is then 

normalized and recorded in the softmax vector as the weighted sums revealing attentional weights. V 

scalar computation happens in each attention head in parallel. 

The attentional encode/decode process repeats at each layer using different weights, where each 

weight is updated as the machine operates on new data feeding into the encoders and on to the 

decoders. Layer norms for each layer are computed during computation to make training behaviour 

better (i.e. avoid transients, basins, etc). Note that at each layer, the entire prior (not future) sequence of 

data is available for conditioning each layer of the model weights using QKV attention as the machine 

runs util the desired stopping criteria is reached. All data in the encoder space is visible for the 

encoding, but the Decoder only sees data friom the last layer of the Encoder, see Vaswani et al. [819] 

for the original encoder decoder block design, and The Vision Transformer ViT [824] from Dosovitsky 

et al. adapted for visual learning. 

In suumary, as Karpathi says in Stanford CS25 (*as paraphrased here by the author): “Multihead 

attention is a copy/paste of the same attention mechanism in parallel on different parts of the input data 

stream, and Encode / Decode layers are just copy/paste duplicates of encode/decode blocks in series”. 

Further Karpathi says: “Self-attention uses QKV values only from encoder data block (i.e. self-

attention), while cross-attention uses the Q value from the Decoder block, together with KV values 

from the Encoder block model (i.e. cross-time attention)”. 

In practice, pretrained Transformers trained on huge data sets are commonly fine-tuned via transfer 

learning, and re-training the entire model on a smaller specific dataset to modify and fine-tune the base 

Transformer foundation model. Thus, Transformer accuracy has been demonstrated by Google and 

others to increase when first trained on extremely huge data sets, and then re-trained on smaller data 

sets for fine tuning. Therefore, Transformers require more training data than CNN’s to achieve similar 

results, but Transformers slightly exceed CNN’s when trained first on huge data sets, followed by fine 

tuning. But not many organizations have the compute capabilities to train extremely huge tranformer 

models, so CNN’s still have preferred applications. 

For good surveys on a wide range of attention mechanisms and transformer innovations, see [1033] 

Attention mechanisms in computer vision: A survey, Meng-Hao Guo et. al. 

In terms of pixels and vision transformers (following along with Fig. 11.11): 

Query vector Q represents a target pixel patch embedding to locate in the target image, and Q is 

compared to each pixel patch K embedding in the input image to find highest Q  K  scalar product 

simil arity.

Value with the highest similarity between QK = highest V. 

Key vector K: the K vector is the pixel patch embedding vector to compare with the Q embedding 

vector: all 1..n K vectors across the image are tested for Q: K similarity. 

Value vector V: the V vector represents the trained weights for a pixel patch embedding K: the weights 

for all V patch embeddings are computed to update the hidden state of the model weights based on 

the QK similarity score. 

Transformer Architectures for Vision 

In this section, we survey a few key transformer architectures including the seminal vision transformer 

ViT. Also, we survey one of the most effective and widely used methods to come after ViT called the



SWiN transformer. We also survey the roots of transformer architecture in NLP, which has inspired 

computer vision and other applications of transformers, including the fundamentals of the contextual 

self-attention method of feature learning. 
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Transformers are based on attention, which we survey earlier. Often, transformers use an encoder-

decoder architecture, such as the U-Net from Ronneberger et al. [932] surveyed in Chap. 2 used for 

segmentation. However, a transformer may use a decoder-only block for feature learning and genera-

tive output, or add an encoder to the architecture allowing for cross-attention between the encoder and 

the decoder stage to condition the decoder from the encoder input, for example, in language translation 

applications where language 1 is encoded and then fed across to the decoder for translation into 

language 2. 

Thus, the transformer architecture is not fixed, but has many variations in practice. We do not cover 

all the variations, but instead survey the basic historical developments of transformers for both NLP 

and computer vision, and the papers we survey contain good historical summaries of innovations to the 

basic architecture with references to dig deeper. 

Transformers are a major innovation in feature learning and provide some advantages over CNNs. 

A main advantage of vision transformers is that the input image resolution can be much larger 

compared to most deep CNNs, since CNNs require down-sampling the input images to a smaller 

uniform size such as 350 × 350 pixels or smaller—the input image down-sampling loses information 

since pixels are thrown out or averaged together to shrink the input images to a smaller uniform size. 

NOTE ALSO that using large images in a CNN (i.e., 4096 × 4096 for example) is virtually impossible 

on today’s computers due to the number of feature layers + memory required for the feature hierarchy, 

and the corresponding compute processing required is exponentially intractable, especially for larger 

feature regions beyond 3 × 3  or  5  × 5. However, transformers typically can take larger images, use 

much larger features such as 16 × 16, and transformers can have better performance, as well as 

allowing optimizations using parallel processing of separate 16 × 16 feature blocks or input 

embeddings at a given block size—each input block can be processed in parallel to compute self-

attention features.

The transformer was originally intended for NLP models, to replace the RNN and LSTM models 

with a feed-forward contextual, attentional feature model which allows for parallel processing of all or 

part of the input sequence, without the forward/backward sequential time management required for 

RNNs and LSTMs. Transformers are not a purely sequential recursive architecture; rather the 

transformer unfolds the entire sequence model into a parallel processing virtual-time memory space, 

where sequences and context can be overlayed on the memory space, and independent sub-sequences 

can be processed in parallel. 

Transformers have gone on to become well established in NLP using models such as BERT [963] 

from Google, and GPT [983] from OpenAI, which are now commodity items and widely used. The 

applications for transformers are growing. 

Transformers implement sequence-to-sequence translation method based in NLP research, using 

the Encoder and Decoder architecture with separate input and output embedding spaces. Encoders 

convert the input tokens (words, characters, pixels), . . .into a uniform differentiable input embedding 

space for feature learning and sequence processing to compute the model containing feature weights 

learned using the QKV process discussed in the previous section. After sequence processing and 

feature learning, the embedding space of encoded feature weights is passed to the decoder which 

converts the encodings back to the input format (characters, word, pixels, . . .). For pixels as input data 

to transformers, typically the encoding uses the numeric pixel values, perhaps normalized into floating 

point value range [0.0.1] for each RGBI value. Words and characters also use similar normalization 

methods into a range [0.0.1], which we discuss later.



586 11 Attention, Transformers, Hybrids, and DDNs

In more detail, the transformer converts input data, block by block (for example, 6 × 16 blocks of 

pixels, or strings of 1000 consecutive text tokens), into numeric encodings within the embedding space 

of independent tensors or vectors representing blocks of input data. The vectors are numerically 

processed independently or in parallel to learn features via training using backpropagation and gradient 

descent. Independent features are learned using self-attention sequence learning within each encoded 

block of tokens in the embedding space, where the features are contextually described by weighting 

encoding relationships in sequential order, i.e., which encodings are found prior to a specific encoding, 

or after, within the input block—this is referred to as self-attention, which uses weights to represent 

contextual relationships between tokens within the block. Note that within the embedding space, there 

are perhaps millions or billions of trained independent features, which can be used for global 

attentional comparisons (i.e., cross-attention into other positions or models) to associate and learn 

from each other by comparing similarity and training their corresponding weights and sequence 

prediction and encoding comparisons to locate target features using a similarity function such as 

vector cosine distance then passed downstream to the decoder, which translates embedded tokens for 

output tokens nearly word for word, or creates translations that summarize and reduce the translation to 

essential points. We discuss sequence to sequence transformers using encode and decoder blocks in the 

ViT and SWiN transformer reviews below, and also in the Chap. 2, Section U-Nets for Segmentation. 

Transformer attention methods, for both NLP and computer vision, rely on an Embedding Space to 

represent tokens—words or pixel patches—in a manner where similarity can be determined easily 

between tokens using a distance function, such as 2D Euclidean distance. Many methods exist for 

creating embedding spaces, some include positional encodings for spatial relationships, others do not. 

The positional encodings are powerful methods of incorporating spatial relationships into the atten-

tional features, an improvement over the generic CNN architecture using independent non-spatially 

associated features in the feature maps. The methods for computing positional embeddings are varied 

and outside the scope of this section, but we discuss a few methods later as used in the ViT and SWiN 

transformers. 

Transformers are a feature learning architecture, as well as a feature translation architecture. 

Transformers enable language translation in NLP; for example, French to English, by first learning and 

encoding English features and French features separately, which then enables English features to be 

decoded into French using both the English and the French embedding spaces, as discussed in the 

earlier section on embedding spaces. 

Since which we do not have time to survey the many fine existing variations of the computer vision 

transformer architectures and attention mechanisms, see the comprehensive survey Transformers in 

Vision: A Survey [962] Salman Khan et al. 

ViT the First Vision Transformer 

The Vision Transformer ViT [824] from Dosovitsky et al. was a brilliant work, based on the first NLP 

transformer from Vaswani et al. [819]. The original NLP transformer from Vaswani was minimally 

extended by Dosovitsky et al. [824] to take input images instead of text, by taking a very simple 

approach to explore a question: “what would happen if we used local pixel patches flattened into 1D 

pixel vectors like word vectors, fed them directly into the transformer, and devised some pixel 

positional embeddings to assist in creating a pixel embedding space?” Sounded so simple, yet this 

approach worked very well, with little change required to the original word-oriented transformer 

architecture. ViT has become the basis for subsequent research into pixel transformers.



Transformer Architectures for Vision 587

Fig 11.15 Illustrating the ViT architecture, showing the linear embedding layer for the flattened patches, connected to 

the encoder layer, followed by the MLP head and the classifier. Image # Dosovitsky [824] 

The conceptually simple and brilliant method ViT from [824] from Dosovitsky et al. compares well 

to the best CNN networks on Imagenet and other benchmarks. We survey ViT and variants later in this 

section. 

Dosovitsky [824] stated: “In model design we follow the original Transformer (Vaswani et al., 

2017) as closely as possible. An advantage of this intentionally simple setup is that scalable NLP 

Transformer architectures—and their efficient implementations—can be used almost out of the box 

[for computer vision].” 

ViT uses global self-attention, and like the Vaswani architecture, ViT computes the attentional 

relationships between a token and all other tokens globally, which limits the applications to vision 

applications which require large numbers of tokens for higher resolution prediction. 

However, SWiN (surveyed next) computes self-attention locally in equal sized non-overlapping 

window partitions. 

As shown in Fig. 11.2, visual self-attention features preserve higher frequency feature details using 

16 × 16 pixel patch regions (or larger), compared to convolutional features typically computed over 

smaller 3 × 3  or  5  × 5 regions. The larger pixel patch provides incre ased detail.

The attentional features were represented in the QKV framework but slightly recast into a neural 

network framework. In the transformer, values could be accessed by a query using a learned and 

trained key to match against the stored attentional values. There are many variations within the 

transformer family on the composition of keys and values, and queries some using geometric 

positional encodings to incorporate into the embeddings, along with a wide range of alternative 

embeddings which include none or some other type of positional encoding. 

As shown in Fig. 11.15 (on the right side of the illustration), the transformer contains alternating 

multi-head self-attention layers and MLP layers. Normalization is applied before each layer, and 

residual connections pass unprocessed input values forward after each block. 

The basic flow of the vision transformer architecture is as follows:

• Divide image into rectangular pixel patches, ViT uses 16 × 16 patches.

• Flatten each 16 × 16 patch into a 1D 256-element pixel vector. The embedding vector is simply a set 

of RGB pixel values.
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• Add a positional embedding to each embedding vector to add relative spatial information to the 

embedding vector. Positional embeddings are added (not concatenated) to the embedding vector, and 

there is no specific positional encoding method which seems to provide all around improvements. 

Some practitioners append the positional encoding embedding vector instead of adding it in, and 

others omit the positional encoding entirely and do not seem to report much difference.

• Prepended a class token to the embedding vector, which is learned using a classification MLP 

section, and fine-tuned by the MLP during training.

• Pass the sequence of embedding vectors, one at a time, into the transformer encoder layer, which 

contains layer normalization, an MLP for linear functions, and a multi-headed self-attention layer 

for computing a set of attention values to pass to the next encoder layer.

• Self-attention computes pixel relationships between all pixels in the patch, resulting in a self-

attention vector. Layer normalization precedes each block, and residual connections follow each 

block. See Fig. 11.15.

• Multi-head self-attention computes multiple attention scores as weights for each patch embedding, 

using slightly different parameters for each score, resulting in multiple features for each embedding. 

See the section on QKV attention earlier in this section for details on multi-head attention.

• Embeddings are learnable features. Each embedding is multiplied by the embedding matrix during 

training, and multiple attention heads each use a separate embedding matrices for feature learning 

resulting in feature weights.

• ViT can use also take input as CNN feature maps instead of raw image patches. 

ViT Pixel Patch Embeddings 

ViT adapts the Vaswani transformer model to use pixels instead of word embeddings. Each 16 × 16 2D 

image region is reshaped or flattened into a 1D pixel array. The pixel embedding process is described in 

Eq. 11.1 below, where H,W is the resolution of the input image, C is the number of color channels 

(3 for RGB images). 

The patch embedding is computed as follows: 

ximage 2 R HxWxCð Þ, xflattened patches 2 RN  P2Cð  Þ ð11: 1Þ

where 

(H, W) image resolution. 

C = Channels: RGB = 3. 

P2 
= patch resolution i.e. 16 × 16. 

N = patch count (HW/P). 

*N is the input sequence length to the transformer. 

A learned class token is prepended to the sequence of pixel patch embeddings, see Fig. 11.14. 

As an alternative to taking pixel patches as input, ViT can take an input sequence from CNN feature 

maps by projecting them to the 16 × 16 attention region dimension and flattening them into a 1D vector 

of length 256, and concatenating the positional encoding to the 1D vector and pre-pending the class 

token. 

E 2 R P2xCð  ÞxD ,Epos 2 R Nþ1ð  ÞxD
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The ViT method has spawned many variations and is comparable to state-of-the art visual CNNs 

and transformer methods, see also the fine survey on follow-on innovations to ViT from Han et al. 

[966] A survey on vision transformer. 

UViT, the Universal Vision Transformer UViT transformer from Chen et al. [967], presents a 

principled approach which studies how to simplify the ViT-style architecture as much as possible, not 

to achieve optimal performance, but rather the goal is not to add sophisticated features following to the 

latest CNN research enhancements. UViT strives to learn and preserve the strengths of the ViT 

transformer architecture and attention mechanisms, rather than pursue hybrid approaches and 

enhancements for the sake of enhancements. 

The end result is that UViT provides a better understanding of ViT: how it works, why it works, and 

where to add or subtract principled enhancements. 

SWiN Transformer 

The SWiN transformer (Shifted Window Transformer) from Liu et al. [827] has influenced a family of 

follow-on transformers and introduces hierarchical features maps and attention across shifted, strided 

windows forming shifted-window-attention. The feature map built by SWiN is hierarchical; as shown 

in Fig. 11.18, the layers 1–4 each scale the feature map between 2×–6×. 

The patch size is 4 × 4, but the Patch Merging Blocks concatenate local regions of 2 × 2 patches 

together into a single feature, so by adding a dimension of 3 for each RGB channel into the patch size is 

becomes a 4 × 4 × 3 tensor which forms the embedding. 

SWiN does not compute attentional relationships between a token and all other tokens globally like 

ViT, but instead computes self-attention locally in equal sized non-overlapping window partitions 

(Figs. 11.16 and 11.17). 

Fig. 11.16 Showing the SWiN architecture 

As shown in Fig. 11.1, the SWiN processing flow is as follows: 

Image 4× down-sample =  >  Layer1

Layer 

1 

Linear encoding, transformer block, 2× down-sample =  >  Layer2

Layer 

2 

Patch merging, transformer block, 2× down-sample =  >  layer 3

Layer 

3 

Patch merging, transformer block, 2× down-sample =  >  layer 4

Layer 

4 

The hierarchical layers allow SWiN to be sensitive to high-frequency detail, as well as medium- and 

low-frequency details using the hierarchical pixel resolution of layers 1–4
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Fig. 11.17 Illustrating the SWiN concept of local patches and global self-attention. Each local patch has a self-attention 

vector embedding, which can be compared globally to other patch self-attention embeddings 

Fig. 11.18 Illustrating the multiple window and sub-window hierarchy 

As shown in Fig. 11.18, the patches inside a local window are merged together, so that self-attention 

is only performed on patches in the local window. The local window self-attention differs from the 

global attention mechanism of ViT, adding more variability and expressiveness to the attention 

mechanism, analogous to multi-head attention which also adds variability to the set of attentional 

features. 

SWiN also uses shifted window attention, as shown in Fig. 11.19, moving the local window across 

the image in a strided fashion, similar to the striding of n × n convolutional kernels in CNNs. The 

shifted window approach adds representational expressiveness to the feature set and eliminates feature 

clipping and occlusion which would otherwise occur across windows. The cross-window shifting 

pattern is strided 1 downward and 1 to the right, Fig. 11.19 illustrates the overlapping sliding window 

operation where some windows are outside the image region during the slide and shift. Note that the 

YOLO CNN [941] and the SSD CNN [942], surveyed in Chap. 2, also use overlapping shifted 

windows within a grid of local regions for object detection; the shifted windows include a variable 

aspect ratio to capture affine deformations. 

SWiN is designed with several architecture variants to vary the parameters complexity and number 

of layers between 96, 128192 for various performance targets, and results vary for each version on 

various benchmarks.
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Fig. 11.19 Illustrating how the SWiN local windows can be shifted across the image, resulting in overlapping windows 

that mitigate feature clipping between windows 

See also the revised SWiN V2 architecture [984] from Hu et al. which scales the model to support 

1536 × 1536 image input and up to three billion parameters, adds scaled cosine attention, and provides 

relative positional encodings for supporting additional window resolutions. V2 improves results on 

key benchmarks. 

For an overview of SWiN with details on key concepts, see [968] from Loy et al. 

A Comprehensive Guide to Microsoft’s Swin Transformer In-depth Explanation and Animations, 

James Loy. 

For a deep-dive into the advantages of SWiN, see Hu [969] Swin Transformer and 5 Reasons to Use 

Transformer/Attention in Computer Vision. 

DDN Hybrid Backbones: Multi-feature Networks 

Since vision transformers were developed during recent history alongside CNN architectures, we are 

seeing cross-pollination and hybridization between transformer networks and CNN networks, as well 

as novel Deep Descriptor Networks (DDNs). The results are encouraging. We highlight a range of 

DDN and hybrid network innovations in the survey below including:

• Transformers swapping self-attention for n × n convolutions in all or some layers.

• CNN’s swapping n × n convolutions for self-attention in all or some layers.

• Skip-connections all around.

• Novel features (Fourier, NL-Means, Binary) replacing self-attention and n × n convolutions.

• Hybrid architectures with all of the above and more. 

Novel feature learning using a layer for pre-processesing the input data using adaptive IIR filters to 

focus the pixel groups, has been shown to produce better feature learning model quality with reduced 

parameter count, see [1034] Lutari et al Focus Your Attention (with Adaptive IIR Filters) Shahar 

Lutati, Itamar Zimerman, Lior Wolf, Oct 2023. NOTE: the idea of pre-processing and post-processing 

the pixels for the model inputs and classification is emphasized and discussed in Chap. 2, also see Krig 

[534] for multi-modal variations. 

For most of the DDN/Hybrid architectures surveyed below, we avoid highlighting larger and deeper 

DNN networks, since we see many smaller feature learning backbones with fewer layers being



successfully deployed, using non-CNN-style alternative feature descriptors, with significant reductions 

in model size and compute requirements, as compared to both transformers and CNNs, while 

remaining very competitive as measured by various benchmarks. 
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Here we survey a few hybrid neural networks using multiple features. Note that most neural 

networks use a single type of convolutional feature as n × n templates, but increasingly other features 

are being applied as surveyed below including attentional, convolutional, polynomial, and other 

features:

• PPN—Polynomial Neural Network GMDH.

• Non-Local Means Network (NLM-Net).

• Stand-Alone Self-Attention Network (SASA).

• Attention + CNN: ViT Lite Variants CvT + CCT, BotNet.

• Fourier Features: FNET.

• Binary Features: XNOR-Net, Binary Net.

• Volume Learning for Visual Genomes and Visual DNA.

• Indextron Inverse Index Feature Learning. 

Next, we survey a range of DDN and hybrid networks. 

PPN—Polynomial Neural Network GMDH 

The PPN is a historical milestone as the first deep neural network, created in 1965 by Ivakhenko and 

Lapa [504–506], used widely in the USSR. Ivakhenko’s work appeared frequently in Avtomatika and 

other Soviet publications unknown outside the USSR. PPN uses polynomials as features, not 

convolutional filters like CNNs. A polynomial has much more flexibility than an MLP to represent a 

complex function. 

We survey the PPN in detail in Chap. 10 in the historical background section earlier, but briefly 

reintroduce the PPN here in the context of DDNs. The PPN network goals sound too good to be true 

and should be reviewed by today’s neural network practitioners for inspiration and insight. 

Here is a summary of a few key GMDH concepts:

• Creates an optimal mathematical model of the data.

• Self-organizing network, learned inductively by sorting the data.

• Polynomials used to describe features, instead of CNN-style templates.

• Number of neurons and layers determined automatically.

• Automatic structuring of network model.

• Automatic learning of inter-relationships and patterns in data. 

Please see the PNN survey in the history section of Chap. 10, Section PNN—Polynomial Neural 

Network, GMDH 

Non-local Means Network (NLM-Net) 

Wang et al. [970] replace convolutional n × n filters with a non-local means operation (see Buades 

et al. [438]) which records long-range dependencies and relationships between features via non-local 

operations. Note that this approach addresses a fundamental flaw of convolutional features: spatial 

awareness is missing CNN features—each feature is an independent texture that does not encode 

spatial relationships between other features.
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While convolutional networks model local features as feature maps of separate n × n kernels, 

NL-Means models a set of non-local features spread across the image. As a feature descriptor and noise 

metric, non-local means (NL-Means) is used in image processing for noise removal (see Chap. 5 Noise 

and Artifact Filtering, and also Buades et al. [438]). NL-Means uses non-local pixel value statistics in 

addition to Euclidean distance metrics between similar weighted pixel values over spatially distant 

image regions to identify and remove noise. However, in the case of the Non-local neural network by 

Wang, the NL-Means distance metric is used as a feature descriptor. 

FULL-CIRCLE: the non-local means function is a very simple feature descriptor. the feature is 

described by comparing patches of pixels. Similarity can be measured using a variety of methods. 

From the science of feature descriptors, we know that the better feature descriptors encode more visual 

acuity than any single CNN feature, see Chaps. 4, 5, and 6. The NL-means descriptors compute a 

feature descriptor from the weighted average of selected features at selected positions, or all features at 

all positions as desired. 

Wang lists the following main advantages of the method:

• NL-means features record long-range feature dependencies and can be used for static images or 

spatio-temporal image sequences and video.

• Direct computation of feature vectors from two positional pixel value sets, rather than progressive 

training of features, adds spatial dependencies to the model (missing from CNNs).

• Several distance metrics can be computed across the image for each pixel set.

• Only a few layers of features in the network yield best results, which yields comparable or superior 

scores compared to very deep CNNs running the same benchmarks.

• Variable input sizes and distances are used to compute a feature response using a weighted sum of 

features across the input feature maps.

• ML-means can be used as a retrofit into existing neural networks and can be combined with other 

features such as CNN dot products. 

The NL-means network is a new neural network architecture and should inspire other work in the 

same direction whether or not the ML-means feature is used, or if some other feature is used. Next we 

survey a method inspired by NL-means called stand-alone self-attention network. 

Stand-Alone Self-Attention Network (SASA) 

With inspiration form the NL-means network, the stand-alone self-attention network by 

Ramachandran et al. [971] also addresses the fundamental CNN lack of spatial awareness among 

features and long-range dependencies, by creating a stand-alone feature primitive layer using attention 

mechanisms instead of convolutional n × n features, which is preferential to just using attention 

mechanisms as an addition integrated into existing CNNs. 

SASA starts by modifying ResNet, replacing the convolutional n × n features with a self-attention 

feature. The results are excellent when measured by Imagenet benchmarks, showing SASA is 

competitive using 12% less FLOPS with a 29% reduction in model parameters. And for the COCO 

benchmarks, SASA matches the best results of other networks but with 34% less FLOPS and 34% less 

model parameters. The ablation studies show that SASA is most effective in the final layers of the 

network, with more pronounced improvement. 

The SASA completely replaces convolutions with the novel self-attention features, going beyond 

other practitioners who have used global self-attention to augment CNNs. SASA is a valuable method



of adding spatial relationships between CNN features into the model to increase spatial dependencies 

into the final classification. 
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Attention + CNN: ViT Lite Variants CvT + CCT, BotNet 

Here we examine the ViT Lite network from Ali Hassani et al. [972], which is almost the same as the 

original ViT network we surveyed earlier, except that the novel sequence pooling method is used 

(SeqPool) to pool the complete sequence of all transformer tokens from the transformer encoder. The 

ViT network is designed to allow for training with less data and lower compute power, yet still provide 

competitive benchmark results using leaner training sets, compared to much larger compute-intensive 

models using larger training sets. 

For details on other approaches to hybrid convolutional and attentional features in the same 

backbone, this paper provides some good background on prior and similar methods, which we do 

not survey here. 

ATT-CNN: Incorporating Attentional Guidance to CNN Classifiers 

In the paper LEARN TO PAY ATTENTION [990] from Jetley et al., a method of adding trainable 

attention to a CNN is explored, where the heat maps or attention maps visualizing attentional 

relevancy are used to support image classification. The method works by adding a local descriptor 

weight tag to each feature, where the tag indicates the proportional relevancy of the feature for final 

classification, similar to adding a heat map score to each feature marking features with dominant 

relevancy to the feature class category. Jetly et al. note that their method is a form of weakly supervised 

classification. The method elevates intermediate layer features into the classification process via the 

local descriptor weights, along with the last FC layer global features. 

ATT-CNN is a hybrid CNN + Attentional architecture, see Fig. 11.20.
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Fig. 11.20 Showing hybrid ViT architecture modifications: (top) original ViT, (middle) ViT Lite CvT modification by 

adding the Seq Pool backbone end layers to pool all encoder tokens, and (bottom) the hybrid convolutional and 

attentional backbones for CcT. Image (C) 2022 by Ali Hassani et al. [972] 

ViT Lite can be arranged into two different backbone configurations by combining SeqPooling, 

convolutional layers, and transformer network features in two different ways: Compact Vision 

Transformers (CVT) add a SeqPooling layer into the backbone in place of the class tokenization end 

layers, and Compact Convolutional Transformers (CCT) add convolutional layers to the front end of 

the backbone as used in CNNs in place of the patch-based tokens used in transformers. Thus, two 

different backbones are enabled, and both are very effective. 

The major idea of ViT Lite is to augment convolutions with self-attention mechanisms, by 

concatenating together convolutional feature maps at the lower network layers, and concatenate self-

attention layers and SeqPool to the higher layers of the network. This arrangement combines the 

locality of convolutional features at the lower levels with the longer-range spatial dependency of 

attention to the higher layers. 

For related work on attentional augmentations to CNNs, see [973] Bello et al. Analogous work on 

BoTNet [974] by Srinivas et al. simply replaces the last 3 layers of a ResNet backbone with self-

attention blocks, with very good benchmark results. 

FNet Transformer with Fourier Features 

FNet from Lee-Thorp et al. [852] is an attention-free transformer architecture influenced by the 

transformer model from Devlin et al. [963]. Each FNet layer uses a feed-forward Fourier feature 

sub-layer which replaces the self-attention layer at each encoder block. 

Although FNet is an NLP transformer for text processing, we survey it here since the novelty of this 

work is in a promising area for vision transformers; like ViT converts a 1D transformer to a 2D image



transformer, FNet can be easily adapted to computer vision simply by taking 2D image patches and 

flattening them to 1D vectors to feed into the encoder, and also adding a pixel embedding mechanism 

like ViT. Research similar to ViT pixel embedding research is identified in the FNet paper, but mostly 

using CNN network backbones. For example, one of the earliest works from 2007 by El-Barky et al. 

[975] does in fact perform face detection using Fourier features with a non-transformer architecture, we 

do not review this work here. The Perceiver architecture from Jaegle et al. [976] also uses Fourier 

features that are scalable, by creating positional encodings from the Fourier features. 
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Main take-aways from the research show that transformer architectures can be made more compute 

efficient by replacing the more complex self-attention layers with simpler Fourier feature layers, while 

retaining about the same accuracy. 

The basic flow of the FNet architecture is as follows:

• Replace all self-attention block with a Fourier feature block.

• The linear encoder is modified to include two (2) trainable sub-layers, one for the hidden feature 

dimension and one for the sequence tokens.

• A random encoder is added to replace the self-attention layer to include two (2) trainable sub-layers, 

one for the hidden feature dimension and one for the sequence tokens.

• A feed-forward only model replaces the encoder to remove self-attention with no token mixing.

• Fourier features are computed using a combination of DFT and FFT for longer sequences.

• Real (magnitude) Fourier data is used, not imaginary (phase).

• A 2D FFT is used for the sequence length/hidden dimension embedding layer, and a 1D DFT is 

used for the sequence dimension and the hidden dimension. 

Of special importance is that the authors experimented with alternatives transforms, not just Fourier 

transform, but also DCT, Hartley, and Hadamard, finding that the Hartley transform performed almost 

as well as the Fourier transform for their purposes. 

Also, FNet can achieve accuracy of 97–99% using only two Fourier layers blocks which replace 

self-attention, and still run 40–70% faster, so the authors conclude that attention need not be used at 

each layer. 

Binary Networks: XNOR-Net, Binary Weight Networks (BWN) 

Rastegari et al. [977] propose two methods of replacing convolutional n × n blocks in the CNN 

architecture by using binary values to replace all the float weights in the features, yielding 32× memory 

savings. NOTE: the binary feature approach is also used in a variety of feature descriptors such as 

Local Binary Descriptors (LBP), as well as more robust methods such as FREAK, BRISK, and ORB 

discussed in Chap. 4. 

As shown in Fig. 11.21, Rastergari proposes two variations of binary weight networks: 

1. XNOR networks that use the XNOR operation in place of convolution, when both the input values 

and the weights use binary values. 

2. Binary weight networks that use binary values in the filters in place of floats for real-valued input.
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Fig. 11.21 Illustrating the binary network variations (left columns), image (C) Mohammad Rastegari et al. [977], 

Courtesy Springer ECCV 2016 

Related follow-on work to XNOR-Net can be found in [979] XOR-Net: an efficient computation 

pipeline for binary neural network inference on edge devices, Shien et al. 2020, which contains several 

other binary feature variants. 

See also Courbariaux et al. [978]. Training deep neural networks with weights and activations 

constrained to +1 or -1 and also note that the binary networks compute gradient parameters using 

binary values and activations, but accumulate weights as real numbers (floating point). Binarization is 

similar to drop-out, as noted by Cournariax, since binary values are thresholded at 0.5 to resolve to 

1 and 0 during binarization, and that both activations and weights are binarized using the same (n >  =  

0.5 = 1) and (n < 0.5 = 0) thresholds. Binary numbers save memory space and can be faster to 

compute in parallel using Hamming distance and assembler language instructions for parallel bit vector 

Boolean op erations.

BEIT Visual Vocabulary Features, VICE 

BEIT is a vision transformer, inspired by BERT, from Bao et al. [985], following the BERT approach 

for pre-training using auto-encoding and masked input. Each image is processed into two simultaneous 

views as different visual feature types: (1) 16 × 16 image patches and (2) visual tokens learned by a 

discrete variational autoencoder (dVAE). Pixels are mapped into tokens using a visual codebook, a 

visual vocabulary. The token grid is 14 × 14 overlayed on the image. The number of tokens and patches 

turns out the same for the 224 × 224 image size used. During training, some patches are randomly 

masked out (i.e., like drop-out), fed into the transformer, with the objective to recover the visual tokens 

in the codebook from the corrupt patches. The model is fine-tuned after training, similar to BERT. 

Since the latent tokens are in a vocabulary set that is non-differentiable, gradient descent cannot be 

used for training, so Gumbel-softmax relaxation is used for training feature weights, to effectively 

estimate differentiable values at transient points. Gumbel-softmax relaxation can also replace gradient 

descent methods in DNNs that rely on differentiable data, see Jang et al. [986] and Madison et al. [987]. 

The VICE method from Karlsson et al. [988] is similar to BEIT and also learns a set of more 

expressive visual concept embeddings from groups of pixels, using a scale pyramid decomposition of 

the image with associated scaled pixel patches to analyze various resolutions. Like the volume learning 

method from Krig [476], VICE also uses superpixels [219–221, 224, 227] to segment semantic regions 

of the image for learning visual features. Superpixels (see Chap. 2 Super-pixel Segmentation) are 

polygonal segmented regions surrounding pixels of like value, instead of rectangular pixel patches. 

Superpixels are like large pixels.
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FULL-CIRCLE: the visual vocabulary and visual concept embeddings (i.e., feature descriptors) 

have been used in computer vision prior to the widespread use of CNNs, BEIT is another example of 

the trend to incorporate earlier computer vision features descriptors into neural networks and feature 

learning architectures. See Chap. 4, Section Terminology: Codebooks, Visual Vocabulary, Bag of 

Words, Bag of Features. 

Volume Learning for Visual Genomes and Visual DNA 

The Volume Learning Architecture by Krig [476] was developed in 2015, to incorporate a large set of 

multivariate features into a multidimensional feature space manifold, instead of using monovariate 

n × n kernels in a linear feature space as CNNs do. Volume learning explores computer vision using a 

corpus of image segmentations as local regions or polygonal pixel patches, each region described by a 

multidimensional volume of uniform metrics (i.e., visual DNA), envisioned to provide a vast corpus of 

multivariate local regional features organized as strands of visual DNA to form visual genomes, similar 

to how the Human Genome Project isolates human DNA into sets of separate genomes. Volume 

learning (i.e., learning a very large volume of unique features attributes expressed as encodings or 

feature metrics) is similar to the idea of using a large natural language corpus as developed by both 

BERT [963] and GPT [983] for creating foundation models, dictionaries, and word embeddings, since 

both methods first use unsupervised training via a transformer on vast amounts of data such as all of 

Wikipedia, and then fine-tuning the model by re-training using smaller, supervised datasets for specific 

tasks. Volume learning is like this and provides a multimodal foundation model of visual attributes, but 

much more. 

The volume learning model is based on neuroscience models, which do not follow the training 

methods of deep learning FFNs or RNNs or LSTMs. Instead, neuroscience suggests a view-based 

visual cortex, which stores memory impressions as the features; the neuron has memory and coupled 

processing locally; no invariant features are learned, and no fuzzy gradient descent styled probabilistic 

features are learned; instead the visual memory of the feature is ground truth. Related features are 

stored apparently locally and proximate in the visual cortex (see the Indextron survey later in this 

chapter). Instead of using random locations for features, neuroscience has proof that related features 

are stored near each other in the visual cortex memory. MRI imaging clearly reveals visual cortex 

regions that are electrically active for specific visual stimulus. In fact, electrical activity of the brain is 

like a fingerprint and allows a primitive form of mind reading using MRI imaging as specific visual 

stimulus can cause corresponding specific visual cortex electric field neural activity and electrical/ 

magnetic field signatures, not based on gradient descent and mcdoodles of training samples. See Krig 

[476] for a discussion of key neuroscience with references to dig deeper, and also Appendix E The 

Visual Genome Model Neuroscience Inspiration for VGM. 

Volume Learning for Visual Genomes and Visual DNAis a method to organize pre-trained visual object 

representations. 

The volume learning model [476] is inspired by the human visual cortex model expressed as 

associative memory with dedicated neural processors coupled locally to the memory (see Fig. 11.24), 

within a VDNA catalog of multidimensional attributes as metrics representing VDNA describing each 

local segmented region or feature, analogous to a vector format of word embedding spaces, allowing 

various styles of learning to be implemented separately by an ensemble of learning agents (i.e., similar 

to multi-channel attention), where selected agents are grouped together enabling classifier learning via 

agent recombination and continuous learning into multi-level classifiers.
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Visual DNA is modeled after human DNA, where human DNA is associated with strands 

representing the genome of a living object as pairs of the four AGCT nucleobases as shown in 

Fig. 11.22. Similarly, visual DNA strands can be collected into CSTG attribute group metrics 

(Color, Shape, Texture, and Glyphs) to represent common metrics describing visual objects.  

nucleobase is analogous to a VDNA attribute group metric. Classification follows by finding similar 

visual DNA among visual objects by comparing strands (i.e., genome sequencing as per the Human 

Genom Project), and looking for enough similar visual DNA matches. Early results show that very 

strong visual DNA similarity of one or more metrics is often all that is required to confirm similarity 

and a VDNA match (Fig. 11.22). 

Fig 11.22 Illustrating the visual DNA catalog containing over 8000 metrics and learning agents which continually learn 

to create complex classifiers, middle/bottom images (C) Scott Krig [476]. The human DNA spiral diagram (top) is in the 

public domain (C) USG NIH
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A vast collection, or corpus, of visual genomes and visual DNA will enable computer vision 

architectures with visual description and detection representations to proceed way beyond the discrim-

ination capabilities of primitive n × n learned CNN convolutional feature templates, and beyond the 

expressiveness of transform style attention mechanisms based on monovariate pixel value 

relationships. Visual DNA can be collected together by intelligent agents to build VDNA strands for 

complex classifiers and delayed labeling of unknown but previously detected strands, expressed as 

strand similarity metrics, see Fig. 11.23. 

Fig 11.23 Illustrating how visual DNA metrics can be organized into strands expressing selected attributes, such as 

spatial relationships as well as metric similarity, image (C) Scott Krig [476] 

Early results show that collections of visual genomes map well into transformers or neural network 

training regimes using differentiable data. Also, the visual DNA values can be expressed as int8, short 

float and short integer values, amenable to reductions in numerical precision and memory space to 

enable quick numerical comparisons in quantization space pyramids, in CAM feature spaces for 

associative memory relationships, and quantized reduced color space representations, and other 

arbitrary metric spaces.
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Fig 11.24 Illustrating the synthetic neurobiological machinery used for visual genomes and VDNA, incorporating a 

feature memory model, metric functions, distance functions, and an autolearning hull boundary to direct activation and 

firing for correspondence. The VDNA neuron is more detailed than the simple neuron models of CNN and transformers, 

which use simple activation functions and pooling methods to model neurons, image (C) Scott Krig [476] 

In the visual genome model, the memory is the feature—neural memory is assumed to be virtually 

unlimited. As shown in the synthetic biological machinery model in Fig. 11.24, the metrics and 

classifiers forming intelligence and learning methods are associated closely with the memory in 

each neuron and act on it (i.e., memory and compute are bound together locally in each neuron). 

Neurons can query other neurons for their memory as well as form associations between neurons via 

dendrite connections, very similar to concepts we observe from biological neurons where neural 

connections via dendrites form, and later strengthen with use, or become stale over time. Obliviously 

the synthetic microbiological machinery is not exactly the same as a real neuron: but who really knows 

what a neuron is or how it works? The visual genome model assumes a smart memory inside each 

neuron, which is capable of present, short-term, or long-term attention, as well as attentional forgetting 

and attentional revitalization of each neuron following what is observed in neurobiology. 

Indextron Inverse Index Feature Learning 

Several papers from—Mikhailov et al. [992, 999] describe a method for hierarchical feature learning 

and object detection using inverse indexes, similar to a search engine approach, which has been called 

the Indextron [996] and index-based pattern recognition [896], and more recently instant learning 

[998]. The instant learning method has been demonstrated in many scientific applications using 

numerical feature models from various sources, including aircraft component failure prediction, data 

mining, DNA sequence pattern discovery, image segmentation, and pattern recognition for computer 

vision. The research has built upon itself and progressed toward several related goals, and here we are 

interested in the computer vision applications and underlying concepts.
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As discussed in Chap. 10, a related concept—BAM, Bi-directional Associative Memory—was used 

in an RNN first demonstrate by Kosko [648] in 1988, similar to CAM memory used inside CPUs, 

except that each memory cell contents is a key to other related memory cells. See the BAM discussion 

in Chap. 10 to learn about other related CAM/BAM as used in RNNs and CNNs. 

Inverse Indexing: The Indextron is analogous to search engines, which organize search terms into 

an inverse index to directly access corresponding URLs containing the words. For example, in search 

engines the search query word hamburger has an entry in an inverse index, which lists URLs with 

content relevant to the word, such as text pages, PDFs, images, music, and videos. However, the 

Indextron acts like a search engine using pixel-encodings as inverse index offsets to find sets of related 

pixel features, images, and classes. 

is a key contribution of this work. 

Pattern vectors Pn contained in sets Sx are the learned features. 

Patterns and sets are associated via inverse indexing Pn $ Sx. 

Note on Inverse Identities: Pixel features {P1 . . .  Pn} and sets of image classes containing pixel 

features Sx = {P1 . . .  Pn} can be defined as inverse identities or inverse sets, leading to useful 

properties. Mikhailov describes the set-theoretical derivation of the inverse indexes and inverse sets 

for feature learning and classification in [997] which we do not repeat here. For example, if a set of 

pixel features {P1 . . .  Pn} are represented together in an image class set Sx, then the inverse of a pixel 

feature P is the sets Sx containing image classes features P. The bi-directional association between 

features and class sets is illustrated below. 

For sets {z,y, u, x, v} containing features {a, b, c, d} we have: 

z= a, cf  g, y= b, c, df  g, u= a, bf  g, x= a, df  g, v= df g

Then, the collection of inverse sets is: 

a= z, u, xf  g, b= y, uf  g  c= y, zf  g, d= y, x , vf g

Illustration of feature set z = {a,c} and inverse set associations of features a,c.
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Using revised notation from Mikhailov in [998] to deal more succinctly with set operations 

we have: 

sets : a, cf  gz, b, c, df  gy, a, bf  gu, a, df  gx , df gv

inverse sets : z, u, xf  ga, y, uf  gb, y, zf  gc, y, x, vf gd

One could compare sets and inverse sets to other methods: patterns = features = descriptors, since 

they serve the same purpose. However, inverse sets contain representational advantages for machine 

learning and classification due to the vector of features and inverse vector of sets approach. 

Instant Learning: The goal of instant learning [995, 998] is to quickly organize features, images, 

and the sets of images that contain the features into a model that does not require a distance function to 

learn or determine pattern matches and feature class associations. Instead, feature learning takes place 

quickly, allowing for new features to be added to the model one at a time, and target patterns are 

located using inverse indexes in constant linear time. 

Continuous learning model: The Indextron inverse indexes contain multiple classes of features 

learned over time, and new exemplar classes and features can be added into the model to support 

continuous learning [476]. 

Constant linear time model access: Bi-directional model access between class image sets and 

features is performed in constant linear time O(1), via the inverse indexes of features and classes, rather 

than using distance functions (+1) for similarity and a list search in linear time O(N  +  1  ).

Hierarchical neurological class associations: The model stores class-related features together 

similar to columns in the visual cortex IT, allowing a local hierarchy of related features to be recovered 

by association, see Fig. 11.25. 

Inverse indexes form a hierarchical method for pattern learning and recognition, grouping related 

features together in the sets forming indexes, which also avoids the standard probabilistic classification 

problem of pattern space search using distance functions to find similarity. 

The hierarchical inverse indexing reflects the observed hierarchical mechanism in the visual cortex 

for visual object feature associations, which is revealed biologically via IR imaging under the skull of a 

Macaque money as shown in Fig. 11.25. Infrared heat maps (left) reveal increased blood flow defining 

circular regions of increased neural activity in the IT while the monkey looks at images of a cartoon cat, 

cat head, cat ear, and head outline. The IR heat maps (left) clearly reveal a hierarchy of related features 

associated together in colored circular columns for classes of features. For the Indextron (right), class 

associations are shown from the inverse index feature model for real cat image patterns learned by the 

Indextron, showing the same hierarchical pattern associations as the macaque money reflecting the 

inverse index model. Note: some slight offsets are made to the circles to prevent occlusion of 

overlapping circles of feature overlap.
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Fig. 11.25 Showing (left) the actual inferotemporal (IT) cortex region of a Macaque monkey imaged using IR imaging 

under the skull revealing blood flow (i.e., heat maps) under visual stimulation looking cartoon cat features, and (right) the 

Indextron model display of cat features. Both the monkey and the Indextron show a feature hierarchy or related columns. 

Image # Alexei Mikhailov [996] used by permission 

The Indextron method implements is a bi-directional index of pattern feature tokens (K key vectors) 

and contextual class sets (V value vectors) which is an alternative to the QKV query, key, values in 

visual transformer attention models as discussed earlier. 

For images and pixel pattern features, a list of patterns is learned from the images, projected into 

numerical encodings used as inverse index offsets, to organize the inverse index referring to all sets of 

images and classes containing the features. In the Indextron, the pattern space is composed of Inverse 

Sets and Inverse Patterns (see [999] for details on inverse patterns) for bi-directional linear-time 

access. 

The pixel patterns are analogous to algorithmic basis feature descriptors projected as inverse index 

addresses encodings; they are not hand designed feature descriptors, nor are they CNN-style weights, 

nor are they transformer-style attentional patch encodings. More details are provided below on the 

exact methods used in the research. 

In Mikhailov [996], the Indextron creates pixel features and index address encodings for each 

feature, derived during training from groups of 20 local points in clusters in the training images. The 

method is explained in detail mostly in the Indextron paper—see Sect. 4.1 Feature Extraction [996], 

with additional details to be gleaned in the related papers [992–995, 997–999] for the index address 

encodings. No source code is provided. We briefly discuss the feature extraction algorithm at a high 

level here. 

First, each color image is converted to a gray scale image, then a series of edge detections is 

performed across the entire image, followed by morphological edge-thinning operations to remove 

outliers, to form intermediate pixel points. The point-to-point distance between each remaining 

intermediate pixel point is measured via Euclidean distance to compose clusters of the 20 nearest 

points within a radius parameter R. Then, the set of 20-point distances in the cluster are summed to a 

total length for the feature cluster distances, forming the feature cluster encoding. 

Figure 11.26 displays a Class Histogram revealing each object class as clusters of features, where 

the color of each bin is the class (rose or cat), and the vertical size of each bin is the total length of the 

20-pixels within the cluster defined by radius R. Each feature cluster encoding is projected and used as 

a class index into the inverse index, see [996] for details.
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The Indextron feature method is biologically plausible as a representation of neural activity, 

using edge detection and morphological thinning to produce feature point clusters representing 

neurons using Euclidean distance outlines. 

The Indextron point cluster features seem to model the Infrared heat maps revealed under IR 

imaging as biological neural cluster activity in columns of the IT, as shown in Fig. 11.25. Future work 

could include enhancing the feature model beyond the current point thinning pipeline involving edge 

detection and morphology, and perhaps incorporate alternative feature descriptors to model clusters, 

see FREAK and BRISK in Chap. 4 for example. 

Fig. 11.26 Class feature cluster diagram illustrating the object classes Rose 1 and Cat 1, represented as a plot of clusters 

of learned features. The horizontal axis are the class indexes, limited to 1000 in this particular case, and the vertical 

columns represent the feature point lusters. Image # Alexei Mikhailov [996] used by permission. The vertical axis 

shows the feature detection threshold level with a red dot where the feature is above the threshold, and the vertical size 

(length) of each bin in the histogram is the strength of the 20-point feature clusters 

For classification, the maximum value bin in the class histogram clusters is the feature class used to 

classify the object, not the centroid or average of all bins for the feature. The classification mechanism 

uses the inverse patterns and inverse sets. 

In another example from [998], invariance attributes for rotation and scale using binary images are 

modeled as features, using 360 rotations and 128 different scales; the algorithm uses a histogram of 

features for each invariance attribute (360 bins for rotations and 128 bins for scale) and scores using a 

quasi-intersection method (see [998] for details). See Fig. 11.27. Accuracy is reported to be 100% most 

of the time, with accuracy as low as 92%. Training time is about 3 s on a 1,6GHZ Pentium PC and the 

code is purely for proving the concept and not optimized. The rotational and scale invariance iterations 

do slow down the model inference step, however the method is simple to parallelize using a GPU and 

CUDA or OpenCL.
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Fig. 11.27 Showing (top) test images and (bottom) augmented test images with rotation and scaling variations. Image 

# Alexei Mikhailov [998] used by permission. Detection accuracy is reported between 100% and 92% 

Feature and image class associations are learned quickly from one training sample at a time, little by 

little, so the learning is continuous. Features are not averaged together in the Indextron inverse indexes. 

No gradient descent and hyper-parameter settings are required as in time consuming neural network 

training protocols. Accuracy is addressed little by little by learning specific new training samples as 

model improvements or model tuning, to add precision or additional classes into the model, without 

entirely re-training the model. The paper [996] provides a comparison between a simple 4-layer MLP 

and the Indextron for a small number of training samples, showing similar accuracy of 85% for the 

MLP and 83% for the Indextron, with training times of 900 s for the MLP using an AMD Ryzen 53600 

and NVIDIA GeoForce GT, and 16 s for the Indextron only using an AMD RyZen 53600 on a 

PC. However, the training information is intended only to prove the reduced compute requirements 

and low power consumption of the Indextron to achieve comparable results with deep learning neural 

networks. 

Summary 

In this chapter, we explored attention, transformers, and several examples of Deep Descriptor 

Networks (DDNs), which represent new directions and next-generation trainable hybrid architectures 

incorporating a variety of innovations in feature representations using multiple types of features 

together, organized into hybrid backbone networks combining more than one feature type, with 

some incorporating encoder-decoder architectures (also covered in Chap. 2 under U-Nets and 

W-Nets). We also cover novel text-to-image synthesis classifiers, which can learn to interpolate 

between features in the trained models to identify untrained and never before seen features as a 

combination of features from unrelated class features. Classifier innovations are increasing along 

with the feature models, such as AML associative multimodal learning, for example, see the volume 

learning model [476] from Krig. We explored applications of attention concepts in CNNs. Key 

historical milestones in transformer architectures are examined, starting in natural language processing 

in the Vaswani method through the BERT method, which inspired attention and transformers to be 

applied in computer vision specifically the visual image transformer ViT method, and other visual 

transformers such as SWiN. We survey feature learning approaches in transformers such as self-

attention, Fourier features, NL-Means features, and binary features which do not use convolutional 

CNN-style n × n feature weight learning.
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Learning Assignments 

1. Describe the Vaswani transformer architecture for NLP. 

2. Contrast the ViT, Vision Transformer by Dosovitsky with the Vaswani transformer, in particular 

discuss architecture differences for using pixels in a transformer. 

3. Explain word embeddings for NLP, how they are made, and how they are used. 

4. Explain pixel embeddings as used in the ViT Transformer by Dosovitsky, and discuss the 

justification for the class embedding and the positional embedding in the Dosovitsky ViT pixel 

embeddings. 

5. Compare and contrast at least three different attention mechanisms including self-attention, and 

how each is optimized for a particular type of attention. 

6. Compare and contrast CNN-style n × n features and transformer-style pixel patches, and explain 

which is better suited to find high-frequency pixel details, and why so. 

7. Discuss the advantages of YOLO. 

8. Describe Visual DNA and volume learning by Krig [476]. 

9. Describe the non-local means operation, and how it is used to replace convolutional features in the 

NLM-network by Wang et al. [970]. 

10. Discuss pixel patch window scales and overlapping windows used in the SWiN Vision Trans-

former Liu et al. [827], and identify at least one problem which is solved by using overlapping 

windows to gather pixel patches. 

11. Discuss the Q,K,V self-attention model introduced by Vaswani, and provide a description of the 

query, key, and value algorithm and how it learns features, and how it finds a target feature match 

from the model. 

12. Discuss multi-headed attention, why it works, and what it does. 

13. Explain how a feature dictionary works, how it is made, and how it is used. 

14. Compare the bag-of-words model to a dictionary. 

15. Discuss token encodings for text and computer vision, and how computer vision encodings could 

be hypothetically created to include multimodal information. 

16. Discuss positional encodings in transformer embedding vectors for NLP, and how they are similar 

to a sequence number in an RNN NLP app. 

17. Discuss positional encoding methods that could be hypothetically devised to be effective for 

vision transformers, if they are needed, and why. 

18. Discuss class encodings for embedding vectors, and if adding class encodings to embedding 

vectors is useful, and why. 

19. Describe bi-directional indexing for features and classes and images as described in the Indextron, 

and compare and contrast the Indextron to a CAM memory.
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—Wallace and Gromit

various feature modalities, time sequences, language association, GPS, and sensor data.

Applied and Future Visual Computing 
Topics 12 

Since the advent of practical deep learning methods, we are seeing visual sciences accelerate, enabled 

by higher performance computing systems which are portable and pervasive. Computer vision is now 

an expected and familiar commodity, with common computer vision apps on any smartphone such as 

face recognition, selfie-images turned into 3D avatars, interactive scenic tours overlaying virtual 

objects onto the video scene in a mixed-reality fashion, view synthesis to create novel renderings of 

multiple objects in 3D, text-to-image synthesis to describe a visual scene and then render it, and much 

more. The GPU is becoming a visual computing processor, assisted by special-purpose computer 

vision and machine learning processors, as all the pixels are processed and combined for display inside 

the GPU. We cover a selected range of applied computer vision technologies in this chapter to illustrate 

the progress, pointing to a future of mixed synthetic objects and real objects through the merger of 

computer vision, computer graphics, and imaging, in a sea of increasing compute horsepower enabling 

even more. 

Neural Radiance Field Code Books are surveyed, pointing to a future of reusable view synthesis 

components. View synthesis methods that use mixed voxel-polygon models are also surveyed, this will 

lead to changes in the very nature of the GPU to allow voxel models and polygon models to coexist 

interchangeable. View synthesis representations will move the graphics pipeline to directly support 

and accelerate more representational methods and standards for graphics objects beside polygons, such 

as voxel models and 5D/6D light fields moving into the graphics API’s like OpenGL and DirectX to 

program the GPU to be used for acceleration. 

The next wave of AI will include third-generation classifiers using Associative Multimodal 

Learning (AML) are discussed here. AML will emerge as the next wave of AI, and finally AML 

will be the commodity classifier for continuous learning as a dominant theme of AI going forward, and 

producing lifetime models representing the growth and development of key fields of knowledge; large 

AML-generated foundation models will be commodity items and the intellectual property of the 

trainers, far surpassing the capabilities of the first wave of simple SoftMax style ImageNet-style 

classifiers, surpassing chatbot systems with zero-shot learning such as GPT. In the third wave, AML 

classifiers act as custom AI experts that have continuously learned models tuned from actual use. AML 

classifiers will be freely available to be used in groups like a panel of experts. Computer vision using 

third-generation AI will yield breakthroughs in multimodal classification to identify visual concepts 

using cues and associations with multimodal data, such as visual objects verified by association with 
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Image Sensor Enhancements 

CMOS image sensors are in a rapid innovation stage, where specific features and algorithms are being 

added directly into the CMOS silicon. CMOS imaging sensor silicon area is being increased to host 

features on-chip. 

NOTE: to follow the state of the art in image sensors and cameras, see the research and conferences 

published by the SPIE—The International Society For Optics And Photonics Also, see also the latest 

product announcements and specs from each major image sensor OEM for innovation details. 

Application Specific Image Sensor Features for HDR and More 

Application-specific features are being added into the CMOS image sensor, for example, self-driving 

car system features. Sensors now include progressive on-chip CV-, AI-, and DNN-based features. Each 

image sensor may include specific features on-chip for specific applications, such as sophisticated 

super-resolution consumer photography, or LED lighted traffic sign flicker mitigation self-driving cars. 

Camera Sensor Hardware Innovations 

Here is a short-list of imaging sensor innovations on-chip.

• Higher Resolution Sensors—At the time of this writing, high-end commercial digital camera use 

CMOS sensors up to 120MP which translates into 13,272 horizontal x 9176 vertical pixel 

resolution.

• On-chip HDR (High Dynamic Range)—Implemented in silicon by adding additional sensors to the 

CMOS sensor, a large sensor for quick exposures, and a smaller sensor for long exposures; both 

large/small exposures are combined together to capture an extended high dynamic range. We 

discuss HDR in more detail in this section.

• On-chip LED Flicker Mitigation—since LEDS and fluorescent lighting are refreshed at a given 

frequency, flicker can result if the imager frequency and the light frequency are different—thus 

creating an optical spectrum beat frequency, where the imager cannot capture the light at a matched 

frequency. To overcome flicker for self-driving cars (which are required to read LED traffic signs), 

the CMOS image sensor can be engineered to sample, hold, and integrate light together from 

various exposures and frequencies to smooth out the frequency flicker anomalies at a perceived 

constant sensor integration rate.

• Improved Photodiode Cell Isolation—The best camera sensors are increasing image quality by 

isolating each photodiode sensor well from cross-cell photon bleeding for crisper colors and 

contrast.

• Super-Resolution—on consumer devices, digital zoom is often implemented using a variation of 

super-resolution, where the sensor resolution is increased by a wide range of methods including 

noise removal, deblurring, and other methods surveyed below, see also Chan et al. [857]. Various 

methods are used for digital-zoom on lower resolution images, to give the impression of higher 

resolution. Many image sensor vendors provide these features in the silicon and associated driver 

software. 

GPU Incorporation of Neural Networks and Computer Vision into the GPU 

The GPU hardware itself is moving beyond basic features of traditional graphics pipelines, and this 

trend will continue as path tracing, ray tracing, and view synthesis are accelerated and become



dominant GPU workloads, going beyond basic 20-year old graphics pipeline architectures which 

support vector graphics and raster rendering. For example, neural networks are being used in the GPU 

for super-resolution, super sampling, and motion vectors for features such as generating additional 

frames between existing frames in the display stream, simulating faster frame rates with less compute 

up front. The intermediate frames are generated at higher resolution providing more image detail. We 

mention below some other examples accelerated in the GPU hardware pipeline.
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• DLSS (Deep Learning Super Sampling) and DLAA (Deep Learning Anti-Aliasing)—The goal is to 

add anti-aliased pixel details to increase image resolution and add interpolated frames to increase 

frame rate using deep learning, which improves viewing perception quality. To implement, deep 

learning has been applied to the GPU pipeline via shaders and in the sampler section for optimized 

variants of super sampling similar to MSAA and other sampling methods. Training requires a game 

at a fairly low resolution and low frame rate, then the training process builds an enhanced video 

containing all the increased resolution pixels and frame rate details, which is bound to the original 

game binary image designed to run on specific hardware. For training, the neural network compares 

the low-resolution image to a 16 K reference image, using optical flow accelerators to track motion, 

increase pixel resolution, and generate additional intermediate frames. Nvidia DLAA is a related 

product, a subset of DLSS for pixel anti-aliasing only. Hardware acceleration is required for both 

DLAA and DLSS via tensor cores.

• Optical Flow with GPU HW acceleration—Optical Flow methods track pixels or pixel groups from 

frame to frame, used for object tracking, video encoding, super-sampling, and anti-aliasing. 

Historical methods related to optical flow are surveyed in the Chap. 1, Section “Optical Flow, 

SLAM, and SFM” using non neural network methods. Deep learning has been applied more 

recently to optical flow methods, and accelerated in hardware, which we only touch on here. 

Optical flow methods compute gradient motion vectors (i.e., flow vectors) either densely for each 

pixel, or sparsely for groups of pixels, similar to standard motion vectors in video encoding for 

DCT-style pattern tracking of 8 × 8 and 4 × 4 pixel blocks from frame to frame for video 

compression. However, optical flow methods have been implemented using deep learning methods 

using optical flow accelerators in hardware. We do not survey these methods here. However, to dig 

deeper, refer Nvidia optical flow acceleration literature, and the paper FlowAcc by Ling et al. 

[1017], which provides comparisons of several optical flow methods, as well as some historical 

background. Path tracing and ray tracing are accelerated in GPU hardware using optical flow 

acceleration, for adding realism to the scene lighting and shadow generation.

• Neural Rendering Caches are accelerated in GPU HW to support and accelerate view synthesis of 

NeRF and other models such as diffusion models and GAN’s, useful for synthesizing and rendering 

new images from a collection of image object parts, as described later in this chapter in the View 

Synthesis section. Also, refer [1018] Müller et al. for more details.

• Tiny accelerated real-time neural networks are accelerated in GPU HW, which learn light transport 

models at real-time at frame rates to support global illumination for advanced graphics rendering via 

path tracing and ray tracing to model light transport reflected off of all objects in a scene, adding 

tremendous realism to the renderings. Also, refer [1018] Müller et al. for details.

• Real-time object classification, segmentation, and replacement—Qualcomm has added support to 

the Snapdragon™ SOC and GPU and ISP, partially inside the camera sensor, GPU, and partially 

into the Image Signal processor, for real-time object segmentation using computer vision methods, 

including real-time multi-frame noise reduction HDR, which are surveyed in Chap. 2.

• Human Pose Point Detection and Object Tracking—although details are obscure the Apple Mx 

Neural Processors contain HW acceleration for advanced computer vision use cases inside the GPU
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and dedicated neural network processor, which works together to support object tracking using 

YOLO [941] from Redmon et al. discussed in Chap. 2, and human pose point detection for locating 

joints and body parts, see [1016] from Chen et al. to dig deeper. 

Imaging Sensor Functions: HDR and Super Resolution (SR) 

Next, we survey key methods for HDR and SR, which may be implemented in the CMOS image 

sensor, or on the SOC in the CPU (Central Processor Unit), GPU (Graphics Processor Unit), 

IPU/DSP (Image Processing Unit), or NNU (Neural Network Unit). Some of the functions we survey 

are entirely implemented in CMOS processors build in deeper layers and edge layers of the CMOS 

imager, other features we discuss are implanted in application software on the CPU and GPU or 

IPU/DSP or NNU and use more compute intensive deep learning methods. 

HDR on a Single CMOS Imager Chip 

The basic idea of High Definition Imagers (HDR) is to combine low-light details and high-light details 

into the same image, while removing light saturation. When the light exposure is too long for the given 

light and image sensor, the pixels are imaged at a numerical value that overflows the peak limit; for 

example, with 8-bit pixels in range [0 . . .  255], an over-exposed image will have many pixels with a 

value clamped at 255, with all details in the high-frequencies truncated. An entire HDR process using 

multiple exposures (only two exposures of more) can be implemented on an HDR CMOS image 

sensor, where a small photodiode cell is used to capture fast high-res high light details in one 

photodiode cell, and a larger photodiode cell is used to capture a longer exposure for capturing 

low-light details, and then both the fast and slow photodiode cell data are combined on the imager 

into an HDR image. Note that low-light details require a longer exposure, and thus a larger silicon 

photodiode to capture and integrate the low-light details. A smaller photodiode can be used to capture 

faster, high frequency details at higher brightness where more photons are accumulated quicker 

(Fig. 12.1).
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 Image Sensor with HDR on the chip 

S = small photodiode cell = fast exposure (PARVO) 

 L = large photodiode cell = long exposure (MAGNO) 

Combine exposures into single HDR value on-chip: 

HDR = {S + L} 

S  +   L           Blue 

S + L Red 

S    + L                                   Green 

S   +    L                             Gray 

Fig. 12.1 Showing a hypothetical image sensor design f 

capture high-frequency in intense lighting details togeth 

low-light, where both the small and large photon-well p 

which spreads out the frequency distribution, eliminating h 

light regions, and adding increased sensitivity to low-light 

combining quick-exposure time small-cell photodiodes to 

with longer exposure large-cell photodiodes to capture 

todiode data are combined together into an HDR image 

h-frequency numerical overflow in the pixel data for high-

age regions 

Super Resolution (SR) Methods: On-Chip and in SOC Software 

Super Resolution (SR) is a method of digital zoom which can be performed using input from (1) a 

single image or (2) a burst of images taken rapidly to create a sequence of images. 

The basic problem for SR is how to extract invisible higher frequency image details from a 

low-resolution image to project into a plausible higher-resolution rendering. In the methods we 

surveyed below, the invisible high-frequency image detail can be produced using purely statistical 

methods, semi-random estimates, or else using deep-learning methods to find the scaling kernels or 

functions to add detail by analyzing one or more training images or pairs of training images (i.e., one 

lower resolution and one higher resolution). 

Single-image methods for computing super-resolution (SISR) have resorted to various approaches 

to add detail to images, such as algorithms using image priors and algorithms for enhancing high-

frequency details (Super resolution + HDR: HDR-DSP multi-resolution learning above). 

However, multi-frame image super resolution (MFSR) methods take input from a burst-mode 

sequence of images taken in rapid succession, to extract high frequency details from images in the 

burst sequence, then combine all frequency details into a final super-resolution image. Multi-image 

methods may apply various methods, such as shifting or dithering several images around a center point 

origin, to reveal high frequency details using x/y translational homography analysis, which is analo-

gous to saccadic dithering performed by the human eye as it is apparently staring fixed at a point. The 

high frequency details revealed in the processed multi-image set are then combined into super-

resolution images.
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It is possible to semi-randomly generate image details using a fractal expansion to create details. 

Fractal or Mandelbrot set methods have also been used in image encoding and image compression. 

However, alternative machine learning methods are increasingly employed using DNN’s or GAN’s  to  

learn perceptually plausible models of functions and kernels to add high frequency details. SR DNN’s 

are trained using pairs of low-resolution and high-resolution images in the training set, and then the 

corresponding image detail generation functions or kernels are learned by the model to match the 

training set low/high resolution image pairs.

In addition, deep learning is being applied to produce HDR imaging algorithms, and other image 

corrections such as in-painting to fill in details from depth sensing holes. SR and HDR and other 

application specific image processing are increasingly implemented on the CMOS image sensor as a 

standard feature. Refer Chap. 1 for an overview of image sensing. 

Super-resolution is used to implement digital zoom on consumer camera systems to replace 

expensive optics. Also, a related family of super-sampling methods are used in computer graphics 

systems to remove jagged coarse artifacts from rendered images in the anti-aliasing pipeline when the 

polygon detail is very low, for example, to scale low-resolution video games up into hi-resolution 

displays. 

However, here we will focus on super-resolution for computer vision applications including single 

image methods (SISR) and multi-image methods (MISR). We look at DNN networks and GANs used 

for super resolution, which train using pairs of low- and high-resolution images in order to learn the 

underlying relationships and noise models between the image detail of low and high resolutions, and 

the blur functions and kernels between low- and high-resolution images. 

Many methods exist for performing super-resolution. Figure 12.5 shows the Deep Burst method 

discussed later, comparing super-resolution from a single image vs. using a burst of multiple images. In 

this section, we will review a few approaches using DNN’s and machine learning methods for super-

resolution and HDR. 

Super Resolution for Multi-image Mixed Reality (MR) 

Super resolution for mixed reality (MR) image frames is especially challenging, since MR images 

contain a composite of several real images and computer-generated images, each of which do not 

precisely match in all attributes such as color gamut, lighting and shading, resolution, or viewpoint. So, 

the best possible super-resolution process for MR images must be preceded by various image 

corrections and joint normalization of the separate composite images, in order to handle joint color 

balance, image sharpness, image scale, resolution, and warping for viewpoint perspective. After all the 

corrections and normalizations are made to the separate images, then the composited image can be fed 

to the SR process. Single-image super resolution and multi-image super resolution methods are 

surveyed later. 

Using machine learning, it is possible to learn the right functions to add detail to a low-resolution 

image to generate a corresponding high-resolution image. 

Figure 12.2 compares four methods of super-resolution revealing how each method is appropriate to 

a different problem—refer the image for details—particularly the result image section on the right of an 

MR super-resolution method developed by Cornillère et al. [861] which is ideal for MR SR. Notice 

that the composition background image of the star-filled sky is combined with the computer graphics 

image of the spacecraft. Each image has different attributes that make the optimal SR generation jointly 

impossible in raw image form, unless joint normalizations on image attributes are performed prior to 

the composition and SR stage. Each image was down-sampled with a different kernel, so no single 

kernel is known in advance to perform SR on the composite. Cornillère’s method learns a single kernel 

optimal for the SR.
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Fig. 12.2 Showing a composite MR image, where eac 

separately for super-resolution and 10 composted together. 

from Spaceship by Francois Grassard (CC-BY Public Lice 

of the foreground and background images are adjusted 

mage (C) Cornillère et al. [861]. Photo Credits: Derivative 

se) 

As shown in Fig. 12.2, both images in the composition (the spacecraft and the starry background) 

exhibit spatially varying artifacts, so both images must be re-sampled first to a uniform scale prior to 

compositing and SR, and the down-scaling method in this case involves applying a different kernel to 

each image, so the composite image has no single kernel to apply for effective SR generation without 

artifacts. Therefore, Cornillère et al. perform an automated method to learn local corrections for the 

degradation, as well as learning the appropriate SR kernel function to add detail to extrapolate the 

low-res image into a high-res image, where the extra detail function is modeled as a degradation kernel 

function. The degradation kernel discovery process is performed using a CNN-based Kernel Discrimi-

nator Network trained using a set of plausible base kernels (including Impulse, Bi-cubic, Lanczos) 

each convolved with a 2D anisotropic Gaussian. The end result is a learned kernel for SR re sampling. 

*Note that this method ignores color gamut re-sampling and color corrections. In fact, most if not all 

SR methods ignore color gamut space artifacts. For details on colorimetry, refer Chap. 2, Section 

Illuminants, White Point, Black Point, and Neutral Axis. 

Blind Super-Resolution 

Cornillère et al. [861] use a blind SR method which has no prior knowledge of the relation between the 

low- and the high-resolution image pairs used to train DNN models to learn the SR functions—there 

are no training parameters for scale, resolution, color info, or viewpoints of each training image. 

However, blind methods can infer the optimal SR image generation parameters for a composite MR 

image using analytical means. Cornillère et al. develop a blind method using a neural network to 

generate a degradation model to synthesis the SR view given a first image and a blur kernel. The 

network trains a kernel discriminator to find the loss function from the blur kernel used for SR image 

generation, by analyzing the SR generated high res image details such as edges and color extremes, 

making sure the best kernel was used for SR, since incorrect kernels generate detectable artifacts in the 

high res SR image. The discriminator recovers the original degradation ratio by error minimization and 

an optimization process, to arrive at the best blur kernels.
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For another related blind super-resolution method, refer Zheng et al. [859]. For a historical survey of 

earlier blind methods, refer Liu et al. [858]. For related work on blind single-image SR methods, refer 

Wang et al. [860] A fully progressive approach to single-image super-resolution, and also 

Djelouah [861]. 

Super Resolution from a Single Image: SR-GAN DNN 

Using a deep-learning approach, Ledig et al. [862] develop a super-resolution method with a GAN to 

recover finer-texture details that are lost with many other super-resolution methods. The approach 

relies on a Generative Adversarial Network (GAN) they call SR-GAN, which generates candidate 

super-resolution images and chooses the best candidates based on a novel set of loss functions, 

including perceptual loss, contextual loss, and adversarial loss. Specifically using the adversarial 

loss metric, the super-resolution artifacts are detected, allowing natural photo-realistic and synthetic 

super-resolution images to be compared and differentiated. SR-GANN is able to extract natural 

textures from extremely down-sampled test sample images in the benchmark training and test sets. 

Quality of results are shown in Fig. 12.3 compared to similar methods. 

SR-GAN achieves leading benchmark scores against 4× image zoom samples with structural 

similarity scored using PSNR with a ResNet with 16 blocks. Results are evaluated using a range of 

widely used benchmarks such as BSD100, BSD300, Set5, and Set14, as shown in the paper. The 

super-resolution magnification test scale uses image scale factors of 4× between low and high 

resolution, representing a 16× pixel reduction between lo-hi res. 

Refer also Wang et al. [860] describing a super resolution method which progressively up-samples 

the image in scaled steps and uses a GAN to provide progressive super-resolution details. 

Fig. 12.3 Showing SR-GAN super resolution from a single image using various methods, image (C) 2017 Ledig et al. 

[862], used by permission from Springer Verlag
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Super Resolution + HDR: HDR-DSP Multi-resolution Super Resolution 

Here, we review an HDR + super-resolution approach using an encoder/decoder DNN developed by 

Ngoc et al. [863], who implement a trainable network for generating super resolution renderings from 

multi-image exposure sequences, which they call High Dynamic Range Deep Shift-and-Pool 

(HDR-DSP), which uses self-supervised learning to denoise and increase resolution of satellite 

image multi-exposure sets. Compared to CMOS camera sensor HDR (as discussed above) which 

use a sequence of two images with different exposure times to create an HDR image, HDR-DSP is a 

much more complex approach that includes denoising for both HDR and super-resolution. 

The method extends on other approaches using a shift-and-combine strategy to create a composite 

rendering of all the exposure levels in a single image, using a trainable encoder-decoder style DNN 

network. First, all images in the multi-exposure sequence are normalized to a unit exposure time by 

adjusting all pixel levels. The image set includes a high-resolution (HR) and a low-resolution 

(LR) paired set of corresponding images. Next, the base frequencies are extracted and aligned, and 

used in a function to reduce low-frequency details in the normalization function. The normalized 

images are re-sampled using bi-linear zoom to create the high-resolution base frequency component 

images. All normalized LR paired images are fed into an encoder to generate low-resolution 

(LR) features. The LR features are then converted using an MLP into the high-resolution 

(HR) features. The LR and HR images are then fed to the decoder to enhanced LR features (ELR) 

incorporating HR details. Finally, the ELR and HR features are combined into the super-resolution 

image, refer Fig. 12.4 for comparative results against other methods. 

Fig. 12.4 Comparing five methods of super-resolution tog 

Bottom reconstruction from five different methods compa 

Springer Verlag 

her. Top images used are taken at different exposure levels. 

d. Image (C) Ngoc et al. [863], used by permission from
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Deep Burst Super-Resolution: Multi-image vs. Single Image Methods 

The Deep Burst super-resolution method proposed by Goutam et al. [864] uses a DNN trained on 

multi-image sequences, which they call a BurstSR dataset, consisting of several hundred raw burst 

image sets from a mobile phone camera. The test set intentionally includes noise and positional 

aberrations from slight camera motion. In addition, a high quality high-resolution natural ground 

truth dataset is included for reference as a baseline for comparison, pointing the way towards more 

regular benchmarking and algorithm competitions. 

Example Deep Burst super-resolution images are shown in Fig. 12.5. 

The network directly operates on noisy RAW bursts captured from a hand-held camera and 

generates a denoised image from an arbitrary sized frame set. A pixel-wise optical flow method is 

also used to operate on the deep feature encodings of each image to align them. The images are merged 

using an element-wise combination (a fusion) of the DNN weights in the embedding space. The fusion 

of attentional features increases the quality of the final super-resolution, and by discarding mis-aligned 

features Deep Burst denoises and demosaics the cumulative burst image set details into a final output. 

Fig. 12.5 Showing the Deep Burst super-resolution meth 

multiple image frames into a composite higher-resolution i 

from Springer Verlag 

by Goutam et al. [864], which combines information from 

ge. Image (C) 2021 Goutam et al. [864], used by permission 

Panoramics and Image Stitching 

Image Stitching covers a range of methods which automatically stitch images together to make a 

composite image which is perceptually acceptable, by connecting images together semantically— 

correctly joining multiple images together at common interests points with no overlap or pixel scale 

errors—into an image mosaic. Such methods are routinely employed in satellite and space imagery to 

create image surfaces composed from a series of sequentially scanned images: a panorama of images 

stitched together to incorporate swaths of territory from the planet Pluto, swaths taken from the NASA 

New Horizons spacecraft is shown in Fig. 12.6.
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Fig. 12.6 NASA image of Pluto, using 2D image stitc 

positions of satellite image scans, each of which is a tripl 

spacecraft Ralph/Multi-spectral Visual Imaging Camera in 

ng to render a set of surface patches from several image 

of three RGB color filter images from the New Horizons 

015. Image (C) NASA public domain image 

Another example, as shown in Figs. 12.8 and 12.9, illustrates stitching together several images of a 

roadway and cars. The common interest points (stitch points) between images are first located—these 

are the stitching points common to both images. Next the images must be matched and rectified to the 

stitch points, which involves scaling and warping so they fit together; there are many methods used for 

locating the interest points, scaling, and warping, and we survey a few methods below. In addition, the 

images can be color matched including contrast, brightness and color gamut. 

Historical methods for image stitching going back to the first NASA space programs are frequently 

used in computer vision, and the key details of historical and as well as modern methods for image 

stitching are well summarized by Szelinski [865] in the classic text Computer Vision: Algorithms and 

Applications. Image stitching methods incorporate higher-order enhancements to make the image 

characteristics blend into a better quality mosaic, using techniques such as accurate image warping for 

perspective corrections, smoothing the image at the stitching joints to blend the images, corrections for 

color, white balance, sharpness, view perspective, and scale. Various image Stitching examples and 

corrective functions to accomplish these goals are discussed by Szelinski [865]. 

3D 360-Degree Panoramic Image Stitching 

While there is much research into 3D panoramic image mapping, we only cover a brief introduction 

here. The company Matterport has created perhaps the best commercial solutions possible, supporting 

large-scale capability to compose thousands of separate images stitched together into a VR environ-

ment, which allows fully immersive exploration and walk-throughs with arbitrary camera views! 

Matterport also offers a dedicated 3D panoramic camera for space mapping, to collect all required
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images for generating a 3D panoramic spaces, which can be interactively viewed in a VR space. 

Matterport products are available for a wide range of commercial and industrial applications. 
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In order to perform 3D image stitching from multiple camera pose images, various consecutive 

sequential image capture methods are used, refer Fig. 12.7 for an example schematic showing image 

set capture methods for various walk throughs to obtain a complete 3D immersive image set. The goal 

is then to stitch the images together in 3D, allowing for VR viewing inside and outside the space where 

the images are captured—almost like being there with your own camera. 

By extracting an entire 3D volumetric representation of an object from a 2D multi-image set, and 

then stitching the images together as a 360° image set, a multi-attribute 3D perspective view is created, 

commonly used in mixed reality experiences, were for example the interior of a house can be imaged in 

a random order, and then stitched and composed and rectified into a 3D walk-through model of the 

home for real estate purposes. 

Note that the perspective generation methods use 2D sets of images captured in a spatially-aware 

fashion, for example 2D images are captured as a camera rotates from a fixed position to capture 

surroundings in 360° from the inside or the outside, or 2D images are captured as the camera travels in 

a random path (Fig. 12.7). 

3D capture sequences: 

1) 360 rotating around subject 

2) 360 rotating inside subject 

3) Random Path 

300° 

330° 

270° 

240° 

210° 

180° 

150° 

120° 

90° 

60° 

30° 

0 

Fig. 12.7 Panoramic image sequence capture methods: O 

sequence, or an inside camera can rotate at a fixed position 

randomly takes a path to create the 3D sequence, requiri 

random image locations in a rectified stitched field 

side camera rotates around subject to capture a 360 ° image 

side subject to capture a 360 ° image sequence, or a camera 

additional image coordinate rectification to represent the 

Adaptive (APAP) 2D Image Stitching 

Here, we discuss a method by Chung-Ching et al. [866] called Adaptive As Natural As Possible 

(APAP), which uses a novel method of smoothing the stitch region across the stitched images, 

implemented using a novel global similarity function combined with a local homography function. 

The method reduces perspective distortion in the non-overlapping regions by algorithmically combin-

ing the variations in the local homography and global similarity using a linear function. 

To make the final multi-image panoramas look more natural, Chung-Ching carefully creates a 

continuous stitching field region across all images by linearizing and smoothing the separate
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homography of each image slowly across the field, to eliminate blending artifacts between the images, 

paying careful attention to perspective matching in the non-overlapping regions to estimate the optimal 

final stitching alignment. 
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Figures 12.8 and 12.9 illustrate the process. 

Fig. 12.8 Results of the Adaptive 2D Image Stitching me 

final stitched image, images published at CVPR 2015 (C) 2 

Verlag 

od, showing (top) original unstitched images and (bottom) 

5 Ching Lin et al. [866], used by permission from Springer 

Fig. 12.9 Illustrating the algorithm: (a) original images, ( 

warp across the local image fields, (c) homography estim 

similarity transform, and (e) final stitched image, images p 

used by permission from Springer Verlag 

warped images using direct linear transform to smooth the 

ion of non-overlapping areas, (d) final warps using global 

blished at CVPR 2015 (C) 2015 Chung-Ching et al. [866],
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Stereo Pair Estimation from 2D Images—Deep3D 

The goal of Deep3D is to generate one pair of a stereo image, given the other pair. Deep3D by Junyuan 

et al. [867] creates a stereo pair image, suitable for viewing on 3D glasses or 3D displays, or head 

mounted VR devices, from a single 2D stereo image set. Deep3D is trained on prepared sets of stereo 

pairs of images from existing 3D format movie content. The method works by estimating a right stereo 

pair generated as a probabilistic disparity map when given the left stereo pair. Disparity is the 

difference between the left and right stereo pair images, pixel by pixel. A DNN trained with both 

left and right stereo pairs is used to estimate a new stereo pair to match a single stereo pair set, thus 

Deep3D does not require a 3D depth map for supervising the left/right disparity map estimation 

(Fig. 12.10). 

Fig. 12.10 Illustrating the Deep3D estimation or the right store pair from a left stereo pair using a DNN trained from a 

library of 3D movies. Images presented at ECCV 2016, (C) Xie et al. [867] 

The Deep3D method leverages the empirical knowledge that lower-level pixel scale features are 

very effective for generating the model. However, higher pixel-level accuracy is preferred for other 

pixel-level estimations including disparity estimation, optical flow, and segmentation. So, the model 

generates features that are about the same scale as the input image, closer to the raw pixel resolution. 

Pixel scale features are commonly observed in the early layers of DNN’s. The Deep3D network sums 

the pooling layers at each branch via a learned up-sampling filter into a feature map, and all the feature 

maps at the branch are summed together for a unified feature map at raw pixel scale. 

Deep3D compares slightly better against similar methods, as shown in the benchmarks in the paper. 

View Synthesis 

View Synthesis covers a wide field of methods used to create novel image renderings by first learning 

how to represent a set of 2D images inside a virtual 3D volumetric field of voxels, to enable novel 2D 

novel perspectives via volume rendering which is discussed in a subsequent section below. 

In this section, we hope to boil down the many fine methods for view synthesis and focus on a 

selected few examples: the scope of research is astounding and increasing exponentially it seems, 

according to Dan. 12:4: “. . .  many shall run to and fro, and knowledge shall be increased”. Here we 

examine how views can be synthesized by taking the input from a set of one or more 2D images from



various perspectives, and mathematically and procedurally modeled, allowing view synthesis as 2D 

and 3D re-projections of the models—the results are often remarkable as well as photo-realistic. 
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Historically, view synthesis has been a research topic under the terms Plenoptic modeling, and 

Image-Based Rendering (IBR) since the early 1990’s, along with related research on 3D light field 

rendering and 3D and 4D light fields represented as voxels, and early volume rendering methods to 

directly render discreet voxel fields as 2D images. See Chap. 1 Plenoptics: Light Field Cameras and 

subsequent topics in Chap. 1 for more history. Voxels and point-cloud representation are covered in 

Chap. 1. However, we revisit some of these topics in this section including recent innovations and 

refinements to the image representations. 

Major topics for view synthesis and IBR are as follows:

• Sampling 3D and 3D representations

• Modeling 3D voxel samples using plenoptic functions and/or voxels

• Reconstructing or synthesizing new 2D views from the 3D model

• Re-sampling the model for high-quality renderings 

One of the key problems to solve is how to extract 3D depth information from 2D images alone, and 

another key problem is how to represent the 3D light field, so we discuss various recent developments 

to these topics in this section. View Synthesis also incorporates panoramic imaging concepts, where 

multiple images are stitched into a synthesized image, and we survey Panoramic imaging in this 

chapter also. View Synthesis also incorporates super-resolution to add detail to the synthesized 2D 

image views, and we cover super-resolution in this chapter also. 

View synthesis methods (such as NeRF surveyed later) take many 2D input images with known 3D 

orientation of the view direction, in order to create an overfitted 3D voxel model or light field 

accurately; however, many recent methods can also work with just 1 or a few images, which we 

survey later. 

Historical references include the following:

• McMillan and Bishop, “PlenopticPlenoptic Modeling: An Image-Based Rendering Modeling: An 

Image-Based Rendering System,” 1995.

• Chen and Williams, “View Interpolation for Image Synthesis,” Proceedings of SIGGRAPH 93of 

SIGGRAPH 93, pages 286–287.

• Chen, “Quick-Time VR: An Image-Based Approach to Virtual Environment Navigation, Environ-

ment Navigation,” Proceedings of SIGGRAPH 95 Proceedings of SIGGRAPH 95. 

Introduction 

View synthesis includes learning 3D voxel models from 2D images, how to render scaled and rotated 

re-projections from 3D voxel models to 2D images, as well as text-to-image synthesis to create entirely 

new synthetic visual scenes or mixed-reality models combining synthetic, real, or edited visual 

objects. Wow. 

In this future world of view synthesis, everything changes: everything is virtual: nothing is real. 

View Synthesis can be compared to a virtual synthetic camera that can alter reality (mixed reality. . .). 

The applications and methods for view synthesis are ever increasing, and will change the notion of 

computer graphics and computer generated imagery forever. The author expects all of computer 

graphics to change going forward, to allow view synthesis to drive mixed polygon and voxel 

representations to coexist and become melded inside the GPU. For examples of the voxel/polygon



mesh interoperability trend, see Khalid et al. [868] and also the Point-E system from Nichol et al. [869], 

which we touch on in our survey section below. 
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View synthesis often covers the following basic steps: 

1. Given 2D image(s) with known position (x,y,z roll, pitch, yaw), 2D size (x,y), R,G,B. 

2. Project 2D image(s) with known position into a sparse volumetric model *refer NeRF below. 

3. Optimize the volumetric model to rectify views of multiple objects of known position. 

4. Render unique views of the volumetric model using volume rendering. 

5. The volumetric model is differentiable and can be trained as a Neural Radiance Field. 

As shown in Fig. 12.11, the Neural Radiance Field method NeRF (reviewed later in this chapter) 

for view synthesis involves modeling a wevolumetric field generated from a set of one or more 2D 

images, which is differentiable and trainable, and then generate synthetic 3D discreet volume 

renderings from arbitrary view perspectives. 

Fig. 12.11 Illustrating the Neural Radiance Field (NeRF) method of modeling 2D image sets as 3D projected into a 3D 

volume, allowing for arbitrary 2D image projections, Image (C) Mildenhall et al. [870] 

As illustrated in Fig. 12.11, the input 2D views are first converted into a synthetic 3D volume model 

which is differentiable, allowing for novel 3D viewpoints and 2D generative renderings from the 3D 

volume model. Three-dimensional view synthesis uses a range of techniques, including radiance field 

methods, light field methods, diffusion models, volume rendering methods, and machine learning 

methods. The basic results are remarkable—producing a 3D model from a single image or a set of 

images viewing the same object from different viewpoints, and then rendering different perspective 

views. Figure 12.11 illustrates how a set of input images of a subject are optimized together into a 3D 

model using neural network methods, allowing for new realistic 2D views to be rendered with 

remarkable quality. 

NOTE: Various view synthesis background concepts are discussed in upcoming sections, such as 

volumetric modeling, volume rendering, diffusion, and light fields, which may be helpful as back-

ground for those new to the field to understand view synthesis methods in the subsequent implementa-

tion examples. 

View Synthesis has many possible use-cases, such as of creating 3D avatars from 2D images from a 

basic camera: take a picture of yourself, and suddenly a 3D avatar of yourself can be animated and 

displayed in a MR environment in a multiverse or omniverse, with complete avatar animation for body 

pose and activities—as if your avatar represents you in a virtual world. However, view synthesis 

renderings have all the usual industrial, security, gaming and military applications as well. 

View Synthesis, as expressed in NeRF and other view synthesis models, share some similar 

concepts with corresponding depth point capture and rendering methods discussed in Chap. 1 under 

Surface Reconstruction and Fusion. For example, DTAM (Dense Tracking and Mapping), and also the 

older Kinect-Fusion method, both of which project depth points into a volume for re-rendering into 2D



image projections from various angles and distances. Both DTAM Kinect-Fusion integrate depth 

images from successive frames into the 3D volumetric structure, which is suitable for both refining the 

volumetric data and making it more accurate, and also for rendering the 2D views from the volume. 

Details on DTAM and Kinect-Fusion are discussed earlier in Chap. 1—refer Figs. 1.21 and 1.22 and 

the Dense Methods. Also, refer the PTAM model in Chap. 1, which is a sparse model, and shares some 

concepts with the various view synthesis models such as NeRF. NOTE: sparse models do not require a 

voxel at each x,y,z coordinate in the volume, thus reducing memory space requirements, and perhaps 

allowing volume rendering optimizations, more details are covered in the NeRF survey later. 

View Synthesis 625

Historically, view synthesis is nothing new and has increased in realism little by little for several 

decades. Hollywood movie special effects and synthetic images are well known, as well as the 

improvements to realism in video games. Compute power increases have made it all possible, 

paralleling the deep learning explosion around the same time. 

However, around 2018, the idea of view synthesis was given prime time media narratives using the 

buzzword “Deep Fakes,” and the technology was roundly viewed as malicious AI, with obvious 

potential for criminal and political purposes. For example, in 2018, a video circulated in the media 

containing a fake picture of the US President created with view synthesis methods, using Deep Fakes 

as a new narrative requiring immediate government action, which was a rallying point for politicians, 

governments, and privacy advocates to raise various alarms, suggest policy, and pass legislation. 

Policy research and planning for AI scenarios by the USG is a very active topic, affecting academic 

research and commercial products. 

For a good review of the scope of free software available on GitHub to perform view synthesis to 

create or modify faces, objects, and scenes in photo-realistic ways, refer the excellent survey by 

Nguyen et al. [871]: Deep Learning for Deepfakes Creation and Detection: A Survey. 

Next, we provide some common background models and thinking used or for the various view 

synthesis methods. Then, we survey representative methods of view synthesis in more detail. 

Background Concepts 

Several key concepts and approaches are taken to create the 3D models for view synthesis, including 

light fields, radiance fields, volume rendering, diffusion models, curiosity models, text-to-image 

synthesis, and text captions as image classifiers, so we provide background sections here, followed 

by a survey of representative models and methods. 

Light Fields and Radiance Fields 

In this section, we discuss field-based models for light and radiance, which are learned and generated 

for view synthesis. Typicality, one or more images are projected into the fields which are basically 3D 

volumetric fields of individual voxels, and then images can be synthesized from taking various 3D 

perspective views through the volume using volume rendering to synthesize a new image view. Voxel 

model details and volume rendering are covered in the next section. 

Michael Faraday, a British scientist (1791–1867), explored and described electromagnetic fields 

and light fields (which he called light vibrations), and he proposed that light fields and electromagnetic 

fields could be modeled in a similar fashion. From the particle physics point of view, photons and 

electrons are similar in many respects, and some physicists believe that electricity and light are 

interchangeable, as demonstrated by photovoltaic cells (i.e., solar energy cells) which absorb photons 

and turn them into electrons; so to many scientists, electrons and photons are the same particle with a



different frequency attribute or particle spin in the spectrum. Both electromagnetic fields and light 

fields emit a radiance, according to the part of the electro-magnetic spectrum each occupies, and thus 

occupy a radiance field. 
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Light field radiation is subject to various wave propagation phenomenon, including absorption, 

reflection, refraction, diffraction scattering, birefringence or double-refraction, and polarization. Light 

polarization has unique properties which we cover in the Scientific Imaging Systems section later in this 

chapter under the Polarimetric Imaging section for directional light sensing, and also in the 

Microscopy Applications section illustrating how microscopy takes advantage of field radiation 

phenomenon to enhance images. 

A light field can be considered a radiance field, which represents all light in a space, as each light ray 

is emitted and radiated in every direction from all non-empty points in the space, and reflected and 

refracted by co-linear non-empty points in the space in every ray direction. A light field is an 

omnidirectional radiance field. Practically speaking, light fields are modeled several different ways 

in terms of the application, in terms of optics, sensors, imaging devices, computer vision, computer 

graphics rendering, and display devices. Here we are most concerned with the computer vision and 

computer graphics rendering models. For a good overview of light fields pertaining to general sciences, 

and particularly applicable to computer vision, plenoptics and holograms, refer Zhou et al. [872]. 

A ray of light is modeled as a radiance function, containing the constant measure of photons 

traveling in the linear ray of light from point to point, including points unobscured by any other 

particles, and points beyond a transparent particle. As the ray reaches an occupied particle in space, the 

ray is re-represented as a new radiance accumulation as the ray is modified for reflectance, refraction 

and combined RGB color of all transparent lighted particles along the ray, and continues to travel until 

occlusion or opacity stops the ray accumulation, since the ray may encounter transparent voxels as 

objects along its path that allow the ray to continue to propagate until full occlusion and maximum 

opacity. We cover volume rendering methods later, which describe models for RGB ray propagation 

through multivariate voxel volumes. 

As shown in Fig. 12.12, the rays of light can be parameterized directionally in several ways that 

include the following: 

Ray passing through two planes 

4D L  u, v, s, tð Þ : u, vð  Þ= intersection at plane 1, s, tð  Þ= intersection at plane 2

Ray origin on spherical surface and plane intersection 

4D L θ,ω, s, tð Þ : θ,ωð  Þ  

¼ spherical surface; s, tð  Þ  

¼ plane surface where light is projected

Ray origin in 3-space and 3D directional vector 

5D L x, y, z θ,ωð Þ  : x, y, zð  Þ ray origin, θ,ωð  Þ= ray 3D directional vector
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Fig. 12.12 Showing a few 4D and 5D ray parameterizatio 

details of voxel modeling such as (1) light sources (positi 

opacity, transmittance, or surface orientations(s) 

options. NOTE: the parameterization does not include other 

ns, colors) or (2) voxel light modeling parameters such as 

Volume Rendering for 3D Light Fields 

Using variations of several volume rendering methods, 3D Radiance fields can be rendered into a 2D 

image. Simple volume rendering models are composed of an equidistant 3D grid of voxels (i.e., 3D 

pixels) each occupying an addressable x,y,z coordinate point in 3-space. Thus, the volume becomes a 

discreet particle model of a field, with applications to particle physics, probabilistic models, weather 

modeling, and graphics modeling of fields such as smoke or haze particles. 

Voxels are modeled in some systems as tri-planes, which are simply a set of 2D planar structures 

overlayed on a 3D voxel grid, useful for training 2D diffusion models of each plane as an image for 

view synthesis using diffusion models, which we cover later. See 3D Neural Field Generation using 

Triplane Diffusion, J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, Gordon 

Wetzstein, 2022. 

Note that future visual computing architectures will increasingly accelerate visual information in 

multiple formats, and allow conversions between formats. Today, we see rasterization of polygons 

meshes, triangles, and quads in the standard OpenGL and DirectX pipeline, with ray tracing also 

operating on the same vertex-style 3D polygons. However, in the future we will see direct voxel 

rendering inside the GPU from point clouds, voxel models, and 5D plenoptic models, as well as direct 

rendering from view synthesis diffusion models neural radiance fields such as their NeRF 5D plenoptic 

function models. To dig deeper, See 3D Neural Field Generation using Triplane Diffusion J. Ryan 

Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, Gordon Wetzstein, 2022 for an example 

of conversions between computer graphics 3D polygon representational models. 

Each voxel has attributes for rendering and analysis, such as an x,y,z coordinate, a surface normal 

vector, an RGB color, and a set of surface parameters such as transparency/opacity, lighting and surface 

reflection strength, refraction vector strength—all of which can be used for accumulating the cumula-

tive light traced along the ray through each particle/voxel until it reaches full occlusion and final color 

(Figs. 12.13 and 12.14).
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3D Volume Rendering (basic) 

Cast rays through each voxel in volume 

- Voxel {R, G, B, O} where O = opacity [ 0.0 .. 1.0] 

- Light and shade each voxel from light source 

- Ray-accumulate voxel RGB and opacity along ray until opacity >= 1.0 

- Ray-accumulated opacity >= 1.0 : ray finished accumulating  

- Render accumulated voxels as 2D pixels in image 

Fig. 12.13 Illustrating simple volume rendering: ray ent 

path are accumulated as RGB color, intensity, and trans 

accumulation is stopped when a stopping criteria is met, 

additional light passes through the ray and accumulation is 

the volume are projected to the 2D image output 

s the volume, contributions from each voxel along the ray 

rency combined with one or more light sources, the ray 

ch as saturation of opacity along the ray, meaning that no 

nished. The final ray accumulations for each view through 

Normal 

View 

Reflection 

Light 

Surface Voxel attributes *hypothetical model

- RGB color  

- Opacity/transparency 

- Surface normal vector

- Reflection strength 

- Transparency refraction vector 

Fig. 12.14 Illustrating a basic model of how a single vox 

view vector (i.e., the half-way vector), with the surface 

direction, RGB color are accumulated based on voxel opa 

is rendered: light source vector reflects of the surface to the 

rmal being used to determine reflected light strength and 

ty strength, allowing for transparency
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Of course, for physics simulations a voxel may have multidimensional attributes such as speed, 

acceleration, temperature, 3D vector direction, mass, directional motion vector, etc. Normally, each 

voxel is assigned an RGB color that can represent an actual 2D pixel color in the case of view 

synthesis, or else for other visualization applications the voxel can be assigned pseudo-colors to 

represent materials properties such as R for surface temperature, G for metal, and B for plastic. 

Light sources in RGB are also modeled to illuminate each voxel from a given 3D lighting angle, 3D 

viewpoint, and 3D voxel surface normal; the strongest reflection is when the viewpoint and reflection 

vectors coincide. The incident ray is the light source; the reflected ray is computed against the surface 

normal and other surface properties such as color and texture properties for specular and diffuse 

reflection and refraction. Cosine distance is used to compute the strength of the reflected vector. 

Transparency and opacity at each voxel are also included in the model to moderate the reflection value 

for surface absorption. References are provided at the end of this section to dig deeper into graphics 

rendering. 

Voxel surface normal N may be computed as a discreet approximation based on adjacent voxel 

values using an interpolation of the gray-scale color brightness value of the voxel (R + G + B)/3)—see 

[383] Drebin, Carpenter and Hanrahan for a simple model. 

Nx =∇xD=Dxþ1 -Dx 

Ny =∇yD=Dyþ1 -Dy 

Nz =∇zD=Dzþ1 - zx 

The combined RGB lighting model, directional surface normal, RGB voxel color model, opacity, 

combined within the user viewport yield the light field rendering. Advanced ray tracing effects can be 

added to model for reflectance and refractance along the ray projections into other voxels in the volume 

to generate more realism similar to ray tracing surface models in computer graphics. 

Note that there are many variations of volume rendering, some of which include variable sized 

voxels, sparse voxel grids, multiple light sources, ray tracing features, and alternatives for shadows and 

reflections at the voxel level. 

To dig deeper into volume rendering, follow the advances in volume rendering methods in the 

SIGGRAPH conference papers and sessions. For an excellent overview and survey of more recent 

light field methods, including volume rendering, see Zhou et al. [872] and Lombardi et al. [873] and 

look into the bibliography references contained in each paper, as well as the comparative method 

descriptions and prior work on historical progress in each paper. 

For a good overview of recent volume rendering methods (there are several), refer the YouTube 

video “Interactive Graphics 25—Volume Rendering,” by Cem Yuksel, and refer also Cem Yuksel’s 

research papers. 

For historical information on volume rendering, refer classic works such as: 

[381] Levoy, M., Hanrahan, P. 

[382] Curless, B., Levoy, M. 

[383] Drebin, R.A., Loren Carpenter, and Pat Hanrahan 

[384] Levoy, M. 

[382] Surface Reconstruction And Fusion, and Curless and Levoy [382]. 

Refer Computer Graphics: Principles and Practice, James D. Foley Addison-Wesley, 1995 for 

details on computer graphics rendering, surface properties, lighting, shading, and more.
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Generative Adversarial Networks (GAN’s) and Curiosity Models 

Here, we discuss two methods for predicting future states that are applied to view synthesis to generate 

image and scene states: (1) Generative Adversarial Networks (GAN’s) and (2) Curiosity Models. Both 

methods are similar to Diffusion models, discussed in the next section, in that the common goal is to 

model, train, and predict a future state, which is what view synthesis is all about: learning, training, 

and predicting a desired image. 

We discuss GAN’s and Curiosity Models together here, since they are historically inter-related. 

Since their introduction, GAN research has continued into many applications, such as view 

synthesis, where GAN’s are used to generate an image from partial observations or text captions of 

multiple image classes trained with the model. GAN’s, as applied to view synthesis, often use radiance 

or light field models, rather than diffusion models (there are always exceptions:). Some practitioners 

complain that GAN models require specific expertise in training methods, dual-model supervision 

controls, and complex hyper parameter tuning. 

More recently, Curiosity Models following more after the concepts of Schmidhuber [874] were 

developed by Bucher et al. [876], which are equally applicable to generating images via a refinement 

model until the right image is generated, in the GAN style trial and error model (Fig. 12.15). Notice 

that Bucher’s curiosity model step to generate predictions is similar to the Diffusion Model steps 

(or predictions) using Markov models to predict next states given a current state and vice versa. We 

discuss Diffusion Models in the next section.

 

Evaluate Model For 
Possible Action Sequences 

Generate Predictions 

[1..n] 

Select Prediction p  
via Curisity Objective 

Execute Action 

Update Model State 

Model 

Fig. 12.15 Illustrating the curiosity model of Bucher et al. [876], where the model state is updated based on a curiosity 

objective, and can be used to produce an image or other object 

For a good overview of curiosity models in AI (which we cannot hope to find better), including a 

summary of the literature describing historical developments, refer Artificial Curiosity & Creativity 

Since 1990–91 J. Schmidhuber, 2021. Refer Schmidhuber [874, 875] and also Bucher [876] for more 

on curiosity. 

The operation and goals of Generative Adversarial Networks GAN’s were originally conceived by 

Schmidhuber under his work on Curiosity Models over a span of a few years in 1990–1992 [877, 878] 

and later refinements continued [879] with the combined objective of “Artificial Curiosity and 

Dynamic Reinforcement Learning and Planning”—in other words, predictive neural networks that



could learn to refine their predictions using curiosity-based objectives to guide the learning. More 

specifically Schmidhuber developed “. . .a general algorithm for a reinforcement learning neural 

network with internal and external feedback in a non-stationary reactive environment . . .”—there was 

no adversarial intention for the use of such curiosity-based networks. 
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Later in 2014, Goodfellow [880] followed a similar line of predictive research with a new objective: 

not curiosity, but as Generative Adversarial Networks (GAN’s). The GAN model is a dual-DNN 

model, where two separate DNN’s are trained together, where one network acting as a “counterfeiter” 

learns how to fool another network “the police” by producing fake goods, where the counterfeiter 

keeps making false goods until the police network cannot detect the counterfeits, then the “police 

network” tries to strengthen and re-train the real model so that it cannot be counterfeited—ad nauseam 

or ad contenti. 

The dual-DNN model nature of GAN’s includes specific heuristic supervision code to guide the 

adversarial training process between the dual DNN’s. Also, a specific training protocol is required 

coupling the two DNN’s together to manage the feedback from the second GAN to the first GAN. The 

overall complexity of GAN’s has made the model inaccessible to many practitioners, who turn instead 

to other models such as Diffusion Models, which we discuss in a subsequent section. However, there 

are many excellent success stories using GAN models, and we survey a few here and provide 

references to the literature to dig deeper. 

The Goodfellow GAN’s were quite sensational at the time and drew many researchers (i.e., DNN’s 

teaching DNN’s—wow!), and recently GAN’s have been applied to view synthesis. Following the 

Goodfellow et al. context involving a method for one DNN to learn from another DNN by heuristic 

guidance and learned model generation, using trial and error, for the counterfeiter to mimic the 

authentic DNN. GAN’s were considered to be “adversarial” networks, with the malicious motive of 

generating security problems across the DNN application domain, for example generating fake traffic 

signs, fake portraits of people, etc. The Goodfellow model does not use a Markov chain model, but 

rather a CNN model with additional heuristic guidance code to control the two models, where the 

heuristic code guides the production fake models and images in a first DNN, and predicting fake 

images in the second DNN. 

For a hypothetical GAN architecture to implement the GAN malicious exploit, a first DNN would 

be primed to generate an image, and sent the image to a second DNN which was already trained on a 

target class. The trained second DNN would send back the classification match score and model details 

to the first DNN, which would use the score and model details from the second DNN as guidance to 

generate another “adversarial” image in order to raise the score to fool the second DNN, and so on. 

By changing the original GAN objective from adversarial to a generative objective only, the 

adversarial connotation is changed to be applicable to a variety of generative applications such as view 

synthesis. Also, many variations of GAN architectures have been developed diverging from the 

original GAN suitable to generative objectives. 

Figure 12.16 is a simple pseudo-code analogy for a hypothetical GAN architecture training process, 

illustrating how a second GAN teaches a first DNN its trained model, which is learned in training steps 

by trial and error (i.e., this is not the actual GAN training process—just for fun!):



632 12 Applied and Future Visual Computing Topics

Loop { 

   1st DNN creates a spoof_image,  
   sends it the the 2nd trained DNN 

   2nd DNN inferences the spoof_image,  
   sends back the FC classification layer vector (spoof_score) to 1st DNN

   1st DNN uses FC layer (spoof_score) from 2nd DNN for back-prop retraining
   1st DNN creates spoof_image, 
   sends it the the 2nd trained DNN 

   2nd DNN inferences the spoof_image,  
   sends back the FC classification layer vector (spoof_score) to 1st DNN 

} until spoof_score == good_enough 

Two DNN’s are created with identical architecture, #layers, width, etc. 

2st DNN (teacher) is initialized to X (initial_spoof_image) 
2nd DNN (teacher) is trained on some training set 
1st DNN (learner) is initialized to X like 2ndDNN, but not trained 

Fig. 12.16 Illustrating how a GAN can be architected at a high level 

Diffusion Models 

Diffusion models can be applied to a wide range of discreet fields, including 1D signals, 2D images, 

and 3D volumes. Alternatively, the goal of the diffusion modeling can be expressed in terms of 

imaging, learning the structure of an image model using structured noise in order to apply the model as 

super-resolution structure to synthesize and generate another image. See Fig. 12.17. In other words, 

diffusion models can generate or expand the model size by removing noise from a target image, which 

is equivalent to expanding or generating structure. GAN’s and variational auto-encoders are other 

methods that can likewise be used, which we survey later. Image Diffusion models are also trained for 

use in image inpainting applications to add detail to image regions. 

Diffusion models are conditioned using text prompts implementing guidance for image synthesis, 

combining one or more diffusion models to synthesize and generate multi-object images of several 

image concepts together, such as adding purple eyes to a face, or a dog head to a car. The text prompts 

are represented in word embeddings, designed, trained and fine-tuned to trigger the desired image style 

characteristics for each keyword, and work well with each of the supported image class diffusion 

models. The noise prediction step consumes the text prompts in a cross-attention stage multiple times 

(i.e., for each token) to condition the image noise. 

More technical details are provided in the survey section below DALLE-2 Text-to-Image View 

Synthesis, Stable Diffusion, Imagen. 

Diffusion models are also used for 3D scene synthesis from several image classes represented as 

voxel entities composed together into 3D image re-projections (Lee et al. [881]). 2D diffusion models 

are commonly used for image super-resolution, to model the super-resolution process as a resolution 

increase following a step-sequential diffusion noise removal process (Li et al. [882]).
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Forward diffusion process:  add noise, reduce structure at each state 

Reverse diffusion process: generatively reduce noise, recover structure at each state 

State 1 State n+1 State n+2 State n+3 State n 

Fig. 12.17 Illustrating the process of image diffusion models for generative image rendering in view synthesis; forward 

process diffuses noise into the data to reduce structure; reverse process removes noise to reveal original structure 

For example, Intel Corp. provides commercial grade, processor-optimized diffusion methods and 

pretrained models for sound synthesis, image synthesis, data visualizations, and various application-

specific structures such as molecular models and more. 

In summary, Fig. 12.17 illustrates how the duffusion model is trained to contain set of features 

representing the incremental noise models at each noise step for an image class, which is used to 

reconstruct and synthesize an image class by feature subtraction, step by step, to remove the learned 

noise features, step by step, from a random noise image. It is a remarkable concept, which we 

summarize here. 

Diffusion involves a forward diffusion to create the model, and inverse diffusion to reconstruct the 

underlying image. The forward diffusion process turns an image into noise to remove all structure. As 

shown in Fig. 12.17, the diffusion model is created by adding increments of noise to an image class, 

step by step, to learn the set of noise/image difference steps as a noise predictor model for each step, 

which is encoded into model weights, which describe the forward diffusion results at each step/ 

increment. Perhaps 20 or more steps may be used. The inverse diffusion process subtracts the learned 

noise predictor features from the noised image, step by step, to remove the noise. For image synthesis, 

multiple diffusion models are often used together to reconstruct and synthesize several models 

together, for example combining a cat with a dog with an ocean beach. 

A transformer or CNN may be used to learn the noise steps. Variational autoencoders are also often 

used, learning noise features stepwise in the encoder stage, and removing noise in the decoder stage. 

Autoencoders encode the image features in a lower dimensional space, perhaps reduced by 50× 

resolution from the full resolution image space. Some diffusion methods first compress the images 

prior to training to which reduces feature details and saves space. Then during synthesis and 

reconstruction from the compressed noise model, various methods are used by practitioners to preserve 

and amplify fine details which would be lost without careful attention to high-frequency detail, see 

each paper cited below for various methods. Diffusion-based image synthesis uses structured, learned 

noise removal in fine-grained steps, subtracting the noise step features one at a time to reveal an image 

from the noise, often using a momentum hyper parameter to limit the noise reductions per step until the 

noise is removed. More details are provided in the survey section below DALLE-2 Text-to-Image View 

Synthesis, Stable Diffusion, Imagen. 

Note that diffusion models are highly correlated to scale, so training separate models from separate 

sets of image scales must be used for best results. Noised training images at various scale intervals must 

be created for maximum sampling accuracy and model accuracy. At each timestep, the training images 

have various amount of noise added, perhaps over a range of 1000 steps in some methods. Inferencing



could be done in parallel using n shaders to compare images to the model(s) at a set of diffusion time 

steps [n, . . .]. 
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The concept of diffusion (i.e., to distribute) is a common discreet mathematical method, often 

expressed in Markov Chain concepts, used for simulating or estimating complex stochastic probability 

distributions, which is applicable to many discreet fields such as generic topology, thermodynamics, 

weather prediction, and physics simulation: diffusion models provide inspiration to computer vision 

methods, using models expressed as volumetric fields, amenable to volume rendering for the view 

synthesis. Refer Jascha et al. [883] for more background on diffusion models in sciences. 

Generically speaking, a diffusion model is a stochastic, probabilistic state-based network model, 

where future states are predicted, limited to alternatives which are based only on the current state. In 

view synthesis, the future model states (i.e., Markov stochastic image permutations) are the basis for 

generating future renderings based off the model—the model allows for view synthesis to be carried 

out in a step by step fashion. The future state predictions for a state sequence position are at various 

time or step intervals starting from a current state. For diffusion models, all future state transitions are 

learned and trained for a current 2D or 3D state. In other words, given a current state, all future states 

can be probabilistically predicted. 

Diffusion models use a forward pass and a reverse pass: the forward pass of the model predicts a set 

of probabilistic future states by adding noise to a current state to reverse the structure to predict future 

states, and the reverse pass process learns the previous state transitions by adding structural features 

back into to the data, working backwards to cancel out the noise to find the original data (Fig. 12.17). In 

theory, the reverse pass also models a Gaussian process, similar to a denoising process. This noise 

addition and removal process maps well to a simple neural network formulation for weight training 

using gradient descent, being differentiable. Of course, there are many variations off of the basic 

diffusion models applied to view synthesis, some of which we survey below. 

Diffusion models can be learned with fewer images (i.e., few-shot learning) compared to radiance 

field methods such as NeRF which require dozens of images. Diffusion models can be simpler to train 

compared to GAN methods which require sophisticated and sensitive hyper-parameters tuning. 

However, recent some NeRF methods can use single monocular images as well, which we survey 

later with the NeRF method. 

Diffusion models have been successfully applied to many problems in machine learning and 

computer vision, including text-to-image generation, super-resolution, image in-painting, colorization, 

and image artifact removal. Refer Yang et al. [884] which we survey later in this section. 

Given that diffusion models usually require lots of memory and compute, we are seeing research 

emerge to mitigate the compute and memory workloads. Yang et al. [884] provide research on 

slimming down the diffusion models memory and compute workloads, as well as increasing the 

image generation accuracy. Yang shows that diffusion probabilistic models (DPM’s) are biased against 

high-frequency components that are required to provide edge details and image clarity, and instead 

introduces a Spectral Diffusion (SD) model using wavelets, which slims down the model to make 

computation faster, and enables gated spectrum-aware and frequency-based feature introduction of 

selected higher frequency components at each noise diffusion reduction step in image synthesis to 

promote higher resolution image features. 

In a later section, we briefly review one of the most promising methods of view synthesis using 

diffusion models called Stable Diffusion as outlined by Rombach et al. [885]. 

Text-to-Image Synthesis Models 

Presently, many DNN systems learn classes of images from huge labeled training sets; for example, 

millions of pictures of cats are classified as generic ‘cats’. So, each image is classified using a single



concept. But View Synthesis using text captions has changed the possibilities—complex classifiers 

and multiclass (multimodal) classifier interpolations (i.e., referred to as one-shot learning by some 

practitioners) has created a new path forward. Systems such as DALLE-2 allow a text caption to 

generate a synthetic new image, using systems trained with associated text captions and corresponding 

image components, which can be combined to attempt to match the text caption. Unknown classes can 

even be inferred from trained models even if the unknown class has not been seen or trained for, by 

using existing features in the model which together closely model the unknown class. This interpola-

tive class learning approach is similar to Volume Learning [476]. We will discuss several such 

representative text-caption to image synthesis systems below. 
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Text to image view synthesis allows multiple image class models to be combined to generate a 

composite multi-object image, fine-tuned using text captions, to allow for style goals for image 

synthesis such as adding purple eyes to a face, or a dog head to a car. See Fig. 12.20. Text caption 

generation by itself is an art; it involves learning and creating simultaneous textual models 

corresponding to image models, and also involves trial and error use, to carefully design text captions 

to yield the desired image vies synthesis; we provided a few references on text prompt generation 

methods to dig deeper as we go along. 

Innovation in view synthesis is moving into richer 3D visual models towards photo realism, as well 

as richer representational models including point clouds and polygon meshes. 

A key trend is as follows: we are seeing, for the first time, view synthesis research with the goals of 

generation of polygons meshes AND voxel point clouds together—pointing to a future of rendering 

voxels and polygons together, and perhaps interchangeably, allowing for bidirectional translation 

between point clouds and polygon meshes for image rendering. Although current point cloud learning 

resolution used in view synthesis is very low, eventually the methods will increase in density and allow 

for the generation and rendering of photo-realistic fields. Thus, in the near future, we end up with a 

diffusion field surrounding a point field intersecting with a field of polygon meshes in future discreet 

rendering systems, producing high-quality renderings. We will survey a few representative methods 

below. 

To dig deeper into image synthesis from text prompts, see [1024] Narek et al. Plug-and-Play 

Diffusion Features for Text-Driven Image-to-Image Translation, which uses an image as semantic 

guidance, and a text prompt to guide translation and retain semantics of the guidance image, which is 

based on analysis of preserving the semantics from feature maps to obtain the image structure as 

encoded in the feature maps to guide image translation. Semantic similarity is expressed via the feature 

encodings. Guidance features and self-attention maps are injected into the target image synthesis 

process to fulfill the text prompt. Narek et. al compare their method to other similar methods, worth 

reaing. 

Captioned Multiclass Classification, Classifier-Free Guidance, N-Shot Learning 

Simple classifiers are trained to recognize a single class of images—for example training on millions of 

cat images to produce a feature model and classifier for prediction matches to the class CAT. But, view 

synthesis from textual captions changes all this. The caption not only is used to create the image scene 

as in DALLE-2, but the caption can also be the classifier for scene analysis. The caption is also the 

basis for Multiclass Classification, as we shall discover as we survey various emerging text-to-image 

synthesis approaches.
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N-shot learning is a collection of similar methods from AI, NLP and computer vision, including 

zero-shot, few-shot, and one-shot learning; these are all related methods of inference and feature 

recognition for objects of unknown classes which are not part of the training set and therefore not part 

of a given model. Instead, the unknown classes are inferred using a variety of methods, but without 

retraining the base model. So, n-shot terminology and methods vary widely among practitioners to 

accentuate subtle variations. We introduce the term AML in this work to go beyond the basic n-shot 

learning concepts, which we discuss in the next section on AML. 

In zero-shot learning, the model is trained on a set of known classes but is also provided with 

additional information about each class, such as textual descriptions or semantic attributes. These 

attributes capture high-level characteristics such as style attributes of the classes, such as color, shape, 

or behavior. During inference and synthesis, the model can then generalize its knowledge to recognize 

and classify unseen classes by associating them with their corresponding descriptive attributes. A key 

idea behind zero-shot learning is to learn a mapping between the visual features extracted from the data 

and the semantic attributes or text descriptions associated with each class. This allows the model to 

make predictions for classes it has never seen before by relying on the shared information between seen 

and unseen classes. The models are trained to learn the mapping between the visual features and the 

encoded auxiliary semantic information. 

For a comprehensive survey of n-shot variations taken from nearly 200 papers covering a wide 

range of historical approaches, refer [1019] A Comprehensive Survey of Few-shot Learning: Evolution, 

Applications, Challenges, and Opportunities, from Song et al. 2023. 

View Synthesis from text captions has opened up the way for generating complex multi-class 

images from textual descriptions—and perhaps by serendipity—also opened up the way for complex 

classification, where images are classified based on how they are synthesized from complex text 

captions, and classified by similarity to textual class labels. See Fig. 12.20 showing an example 

DALLE-2 rendering a synthetic image from a multiclass text description: “3d render salmon and 

cabbage on moon”. 

Are complex classifiers using [caption: image] models and other multi-model associations, multi-

modal guidance, continuous learning with rapid model training updates for fine-tuning the wave of the 

future? The author thinks so. 

Classifier-free guidance (Ho et al. [886]) is a concept describing how similarity interpolations can 

be made by combining “. . .  the score estimate of a diffusion model with the gradient of an image 

classifier. . .” which points to interpolations between trained model feature class granularity. Ho 

suggests that classifier-free guidance can be used to replace a classifier. This notion can change the 

way the model is trained, perhaps requiring fewer training examples. Classifier-free guidance is related 

to the term zero-shot learning (as coined in the DALLE-2 model surveyed later) to interpolate 

classification results between the feature granularity of the trained model. All of this points to a future 

where model training changes, and classifiers change, and text caption classifiers will be viable in 

many cases. 

For an example of a hybrid classifier system capable of recognizing untrained classes, imagine if a 

classifier is trained to recognize animals (horse, dog, . . .) and another classifier is trained to recognize 

textual descriptions (i.e., striped, spots, . . .), both classifiers can be used together to classify an animal 

that is outside the training data (i.e., zebra) by associating the zebra to the trained class ‘horse’ and the 

trained texture classes ‘striped’. This is an example of zero-shot learning or interpolative learning. 

For a discussion of the future of classification, refer the next section TEXT—IMAGE Associative 

Multimodal Learning (AML). Also, refer Fig. 12.18 to evaluate the concepts of AML, classifier-free 

guidance, and zero-shot learning.



View Synthesis 637

According to Ho [886], the scoring guidance can be created by jointly training a conditional and 

unconditional diffusion model and using both model scores together to balance sample quality and 

model completeness (i.e., compensating for incomplete training samples). A similar classification 

concept enables the zero-shot learning [887, 889] approach to multi-class similarity interpolations. 

Classifier-free guidance and Zero-Shot Learning (Ramesh et al. [887]) show how similarity 

classification can be performed against models which are not completely trained with all the desired 

training samples, interpolating the correct classification score in between the training samples from the 

model features using various algorithms. So, traditional single-class FC-layer classifier style guidance 

is not needed to get perfectly acceptable results in all cases for text-to-view synthesis for a multiclass 

scene, as reported in some of the papers we survey in this section which query for a score within a 

multiclass classification space. 

Powerful caption classification and view synthesis is an emerging trend. Imagine large classes of 

image objects collected together and described in some visual object format, such as renderable NeRF 

models (or similar models), which are captioned and parameterized for both scene analysis and multi-

class classification, as well as multiclass view synthesis. Such a system is envisioned by several 

researchers, which we discuss later in the section Neural Radiance Field Code Books, ObSuRf 3D 

Scene Segmentation. 

The AI Third Wave: Continuous Learning and Multi-modal Models 

Everything changes. Future AI systems will incorporate continuous learning, so that models are built 

up and refined over time as they are used, and also refined by autonomous Learning Agents who refine 

the models over time (Krig [476]). Future systems will mushroom in the direction of AML classifiers. 

View synthesis has scratched the surface steps in this direction via caption-based view synthesis using 

[image: caption] pairs, as we survey later in this chapter. Figure 12.18 illustrates complex classification 

and views synthesis concepts together. 

AML represents a shift towards interpolative learning and prediction from computed feature metrics 

over a set of chosen examplars, rather than forcing learning to follow the SGD backprop path using 

huge training sets to learn independent, uncorrelated features like puzzle pieces, which are complex 

averages of the training data, but not precise features for any real item. AML represents a more 

deterministic feature representation which can be classified metrically based on specific metrics, rather 

than using softmax-style probabalistic classification. AML is more related to zero-shot and one-shot 

learning approaches. 

AML is related to, but goes well beyond, the basic notions of zero-shot and one shot learning as 

discussed blow and in [476]. For a comprehensive survey of nearly 200 papers and a wide range of 

historical approaches to n-shot learning, refer [1019] from Song et al. 2023. 

Artificial General Intelligence as a research goal will give way to research goals based on human 

psychology science. Rather than finding a single generic or fundamental Artificial General Intelligence 

(AGI) model, third-generation AI will incorporate Multiple Intelligence Theory (MI) to model multiple 

modes of human intelligence using distinct and fundamentally different models and concepts to 

address the different modes of human intelligence such as “musical–rhythmic,”  “visual–spatial,” 

“verbal–linguistic,”  “logical–mathematical,”  “bodily–kinesthetic,”  “interpersonal,”  “intrapersonal,” 

“naturalistic,” and “existential intelligence”. Refer Howard Gardner’s seminal work Gardner, 

H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.
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Fig. 12.18 Describing the method of associating [text, im 

word/pattern N-grams, and an image feature encoder. The 

pairs with each other. So the system could be used for multi 

synthesis 

e] pairs into a model which is jointly trained on using text/ 

ncoded text features and image features correspond in 1:1 

lass classification, and multi-class scene generation or view 

In view synthesis as described in Fig. 12.18, each caption and each image has a separate embedding 

value (not shown in the diagram), so the embedding values (i.e., features or text captions) can be used 

for queries or similarity interpolations between captions and images that are not in the trained model, 

since the images or captions were not in the training set, allowing similarity interpolations to find the 

closest matching queries regardless (*this may be called one-shot, zero shot, or few shot learning to 

some practitioners, although nothing is learned, rather close matches between a query and a set of 

embeddings can be obtained using a similarity metric, and then the final match can be interpolated 

between the best candidates). 

Therefore, a complex classifier can allow image retrieval using captions, which is also the inverse of 

image creation using captions, especially if we consider the pair [caption: image] as used in DALLE-

2 and similar systems. So, the caption becomes the class describing an image, a complex image label. 

Also, captions as retrieval classes opens up the notion of creating text strings to query existing 

synthesized views—Associative Multimodal Learning (AML) classifiers, discussed in the next section. 

Instead of a classifier being a decision mechanism, the AML classifiers act as learning mechanisms 

themselves, by modifying the classifier using continuous learning mechanisms [476], so AML 

classification agents will become experts over time by encountering specific use-case experiences, 

implementing continuous learning like the human brain, to provide opinions and probabilistic 

viewpoints, as well as acting as independent learning agents themselves as human expert do, creating 

their own models as they are used. Model concepts may be labeled, and other model concepts learned 

as unlabeled which is expected and encouraged, awaiting later review by a panel of AML expert



CLIP also builds on the zero-shot learning methods [887, 889] developed in the GPT-2 and GPT-3

natural language processing methods, which is a significant development in that we discuss in detail

models, autonomous learning Agents, or actual human experts who may label the concepts and add 

them to the AML models, which may be interactively reviewed and updated via chosen use-cases and 

exemplars, perhaps using a combination of interactive and batch mini-training sessions to refine the 

concepts, then update the model with labels and class associations [476]. 
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AML classifiers will learn to identify unknown concepts as unlabeled or unidentified, which is 

expected and fine. Assigning labels and identities and classes to learned features is a separate problem, 

not always required. It’s a bird, it’s a plane, . . .  oh well let’s work on that later. . .  looks like. . .  sound 

like. . .  feels like. . .  is it labeled. . .  was it supervised. . .  is it rogue or fake? 

A recent innovation in zero-shot methods which is along the directions of AML, uses zero-shot 

(i.e., interpolative) inference to approximate of infer unknown untrained classes via interpreting the 

nearest matches from the trained model, see [1025] Recognize Anything: A Strong Image Tagging 

Model Youcai Zhang et al. 

Besides view synthesis [text: caption] multimodal neural networks, we are seeing multimodal 

datasets and transformer networks using [text: video] models for NLP applications such as lip reading 

from Shi et al. [1008], and Audio-Visual Speech Recognition (AVSR) for speech-to-text [1007] from 

Anwar et al. More multimodal NLP systems could be mentioned here, but the trend is well in place. 

Computer vision use of multimodal data and modeling will increase also. And AML styled classifiers 

will become prevalent as learning mechanisms in their own right in the third wave of AI. 

For more on multimodal object detectors and view synthesis models using cross-modality fusion, 

see [1029] Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object 

Detection, Liu et al. For a forward-looking example of multimodal data types and concepts for 

multimodal models using shared model space tokens from various modalities for synthesized feature 

analysis, see [1030] Meta-Transformer: A Unified Framework for Multimodal Learning Yiyuan Zhang 

et al. 

Currently, the author sees a huge paradigm shift in computer vision away from training single-class 

classifiers (i.e., a DNN trained to inference on the class cats) and instead, we see a new path emerging 

via multiclass caption view synthesis in the early stages along the path of Volume Learning [476]. 

Text captions will become central for a range of computer vision tasks:

• View Synthesis

• Scene Description, Learning, Analysis

• Scene segmentation into object classes

• Image Retrieval

• Image Classification

• Visual Object Databases containing several categories 

– Captioned visual objects 

– Visual object codes (for example, NeRF object codes, NRC’s) 

– Computer vision object attribute data (texture, RGB, shape factors, . . .) 

– Golden Exemplars 

In the following sections, first we will survey the details of a few backbone model view synthesis 

methods, including CLIP method [868] Khalid et al. and the GLIDE method [890] from Nichol, which 

provide the associative [caption: image] model from which view synthesis methods are based using 

various approaches such as GAN and models diffusion models to synthesize images and classify 

images and captions. CLIP and GLIDE are used in many variant view synthesis such as DALLE-2 and 

others surveyed later.



later sections (Wu et al. [891]). We do not survey all the GPT natural language processing methods

here. However, NLP concept influence on computer vision is present, zero-shot learning is just one

example. NLP models were early pioneers of attention concepts and transformer architectures, which

have also been migrated over to computer vision, we discuss transformers and attention in Chap. 11.
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Associative Multi-modal (Multiclass) Learning (AML)—Third-Generation Classifiers 

The text-to-image models, such as CLIP, are early Multiclass learning models, and hold extreme 

promise going forward for Associative Multimodal (Multiclass) Learning classification with continu-

ous learning to infer the caption of an image, or render the image for a caption. In other words, infer a 

caption from the closest matching images in the foundation model, or generate an image from the 

closest matching caption. This is a form of bi-directional multi-modal learning. 

In the future third generation of AI, the classifier will grow and learn as it is used, via continuous 

learning, similar to the human mind. Classifiers will be the expert models; they will exist indefinitely 

and use available foundation models and actual use to continually learn and record their knowledge. 

This is the future—using multimodal data from groups of modal models together, adding small 

models to large models by fine-tuning and ensemble model combination, retraining quickly and often 

for small items, managing model ensembles as a group, personal interaction with each model for 

personalized fine-tuning, and providing continuous learning—this is Associative Multimodal 

Learning, and will result in expert models, like experts in specific fields who are continualy learning, 

with AML models rivaling the best human experts and trained personally by their masters, as well as 

other select AI models. Human expertise encoded by humans into AML. 

ImageNet and singe-class trained models will be superceded by Multi-modal datasets and expert 

models for AML classifiers, refer Chap. 11 Classifier Innovations: Hand-Crafted vs. Learned. Asso-

ciative Multimodal Learning is a part of third generation classifiers. For example, we discussed the 

Ego4D multimodal dataset from Grauman [1012] below as indicative of the multimodal trend. 

And in the big picture, AML will use an ensemble of multimodal foundation models together to feed 

into an AML classifier. Multimodal means images, word captions, sensor data, GPS, history, sequences, 

or anything else that can be learned and stored in models, so the AML classifier performs continuous 

learning to create specialized models based on the models it knows. The AML classifier grows an 

associative expert model depending on how the AML classifier it is used, to infer new concepts from 

what is already in the model libraries, and record them in the AML models. Inferred concepts are added 

to the AML classifier expert model as it is used to implement continuous learning (Krig [476]). The 

classifier learns over time as it is used for a range of applications, developing expertise and knowledge, 

and taking advise and being corrected by AI agents or experts at any time, just like humans learn from 

experts and experience—the AML will learn by itself, or learn from others, and improve indefinitely. 

We can call this concept Associative Multimodal Learning (AML). 

AML enables Associative Multimodal Classifiers (AMC). 

AML enables Associative Multimodal Supervision (AMS). 

AML enables Associative Multimodal Relationships—1-1, 1-n, n-n—(AMR). 

AML is like a forward and inverse transform; for example, [caption <- > Image]. Any concept 

within the multimodal data space can be associated in a multidirectional associative memory. 

AML will support multi-directional multi-modal class associations and indexing, possible via 

various methods such as hash tables, multi-linked lists, and other data structures to codify the multi-

modal associations. For example, Chap. 4, Fig. 4.5 illustrates an early Multimodal Feature Descriptor 

from 2011, associating accelerometer data in the form of a gravity vector in the SIFT-GAFD method 

Kurz et al. [207]. The gravity vector can be used for feature orientation with respect to the environment 

(i.e., upright or tilted); GPS position info could be added.



View Synthesis 641

AML is Multiclass = multimodal: text, images, geometrical viewpoint info, Visual DNA [476], 

attributes from sensors,. . .  

What are modes? Modes are representations of concepts such as text and images. In music theory, a 

mode is simply one of seven basic scales composed of the notes in the set [CDEFGAB] starting at a 

different position: Ionian [C.B], Dorian [D.C], . . .  Locrian [B.C]. In the Visual DNA model [476], the 

modes are Color (C), Shape (S), Texture (T), and Glyph (G), analogous to human DNA bases adenine 

(A), guanine (G), cytosine (C), and thymine (T) (Figs. 12.11–12.23). In view synthesis, the modes are 

text captions and visual image concepts. In view synthesis, the modes used today are commonly text 

captions and visual image concepts, but many more modes can be used besides text and image 

concepts discussed below. 

For example, bi-directional multiclass inference (a primitive form of AML) is demonstrated in the 

CLIP system, which trains a text model and an image model jointly, so text and image class learning and 

class prediction are coupled together and associative for both text and image modalities. But with AML, 

many models can be trained or retrained and used together, enabling an AML classifier to learn and grow 

over time—continuous learning. New learnings are kept in a separate expert model, with dependency 

information recorded in the model revealing learnings and associations with the corresponding founda-

tion models, supporting new releases of foundation models with more and better data. 

Another key example of the trend in large multimodal data is represented by Grauman et al. [1012] 

Ego4D: Around the World in 3000 h of Egocentric Video, Kristen Graumann et al. 2023. The work is 

purely multi-modal and collects many synchronized multimodal data classes such as Portions of the 

video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized 

videos from multiple egocentric cameras at the same event. The model include narrations of video 

segments, episodic memory for locating events or object classes in time such as past or present, social 

interactions to associate audio and visual cues together (look at person, talk to person, . . .), forecasting of 

future intentions, action and object taxonomies, visual queries, audio queries, time (moment) queries, and 

example scenario query is “making coffee” and more. An example moment-class query is “taste food 

while cooking:”. Overall, this is a massive step towards the future of multi-modal datasets. 

Another key AML and zero-shot learning trend example is the Segment Anything Model (SAM) 

project from Kirillov et al. [1011]. SAM is like a foundation model of segmentations, similar but less 

detailed than the earlier concepts of volume learning and visual genomes from Krig [476]. The goal of 

SAM is to we built the largest segmentation data base for image segmentation masks using AML (zero-

shot learning) to continuously grow the model, which at the time of this writing contains over 1 billion 

segmentation masks generated from over 11 million images. The SAM project is a representative 

example for future AML style concepts of continuous learning and feature interpolation against classes 

not explicitly trained into the model. The goal of SAM is to create a very large foundation model, 

similar to the BERT and GPT systems, which can be extended by model interpolations or zero-shot 

learning. Multi-modal interpolations and classification are not specifically implemented, but the 

foundation is there. 

A major inflexion point step towards multi-modal learning and classification is the Meta-Trans-

former: A Unified Framework for Multimodal Learning from Zhang et al. [1026], which has been used 

for multimodal perception from a set of 12 different unassociated and unpaired multimodal models 

learned from many training sets (see the paper). Tasks supported include Multi-Classification, Seg-

mentation, and Prediction. 

Meta-transformer style Unified Multimodal Learning is described in this quote from the paper [1026]: 

“Meta-Transformer utilizes the same backbone to encode natural language, image, point cloud, audio, 

video, infrared, hyperspectral, X-ray, time-series, tabular, Inertial Measurement Unit (IMU), and graph 

data. It reveals the potential of transformer architectures for unified multi-modal intelligence.” 

Modalities implemented in the Meta-Transformer include:
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• Text understanding.

• Image understanding

• Infrared, X-Ray, and Hyperspectral data understanding.

• Point cloud understanding.

• Audio recognition.

• Video recognition.

• Time-series forecasting.

• Graph understanding.

• Tabular analysis.

• IMU recognition. 

As illustrated in some aspects of the Meta-Transformer, AML is the trend or the future. But over 

time imagine that all models contained in a multimodal model ecosystem work together as a public 

ecosystem of multi-modal compatible models, with new models added and upgraded over time. This is 

AML—multimodal models working together, with model interoperability contained in the open-

sourced models. This direction will develop exponentially over time in future AML systems, providing 

unprecedented machine learning and understanding. 

Emerging systems surveyed in this chapter like DALLE, CLIP, and GLIDE are multimodal 

(captions: images), and point the direction to the future of multi-modal bi-directional associations 

for classification and inference, and will openly become more so incorporating additional modal 

attributers as applications emerge for learning multiclass, multimodal associations [476]. Also, 

[1009] Flamingo: a Visual Language Model for Few-Shot Learning, Jean-Baptiste Alayrac et al. is 

another example of the trend in AML and multimodal learning and inference. 

Associative Multimodal (Multiclass) Learning (AML) 

Learn the caption for an image, 

or generate the image for a caption. 

Infer a caption from the closest matching image, 

or interpolate an image from the closest matching caption. 

AML models a forward and inverse bidirectional transform 

between multiple modal metrics 

Instead of zero-shot learning [887, 889], we use the term class interpolation in this discussion to 

describe how unknown samples are classified by determining the best similarity between items within 

classes of features in the trained model. The zero-shot operation occurs at inference time or synthesis 

time, not during learning time, so no zero-shot learning is actually taking place: rather inferencing and 

interpolation are taking place. 

Class interpolation steers a path between training on a limited number of “golden” training samples 

and training on huge numbers of training samples—the class interpolation is equivalent or better than 

relying on large training datasets in some cases, if not better. Also, relying on SoftMax classifiers and 

huge training sets is not as flexible for multiple classes, and does not allow for the zero-shot class 

interpolation approach. It is well known that DNN models using SoftMax are brittle, acting like a 

puzzle-piece probability counter, and often mis-classify and fail in catastrophic manners, see Chap. 9, 

DNN Hacking and Misclassification section. 

AML also points towards a new type of learning supervision: Associative Multimodal Supervision 

(AMS) to learn associative relationships between multi-modal features, for example to learn captions 

for target images, and learn to synthesize images from captions. Radford [892] refers to CLIP captions 

as Natural Language Supervision—the captions guide the view synthesis, and also label the image. 

However, the inverse is also true: Image Feature Supervision—the image guides the derivation of the 

corresponding caption. AML supports many-to-one and one-to-many, and many-to-many associations



in a multi-modal space, unlike CLIP which only supports bi-directional association between captions 

and images. Of course, the goals are simply different, but the concepts are linked. 

View Synthesis 643

AML supports a topological n-space of associations in a multimodal manifold into modal feature 

DNA strands like human DNA strands, with corresponding metrics within a unity metric range for 

learning and correspondence, like the auto-learning hull space ranges used in Volume Learning and 

Visual DNA—Modal Feature DNA are included in each strand (Krig [476]). 

AML using hull learning and unity metric range spaces will compliment some of the current DNN 

models trained just for single-class learning using gradient descent and large ImageNet-style training 

sets—SGD and variants will be not required in some cases; this will save time and compute resources 

and provide a much richer landscape of multi-class and multi-modal model learning for the masses in 

certain problem domains. Current DNN models often require gazillions and bizillions of images for 

training, and huge compute resources that are unavailable to the masses. Instead, a new path forward 

uses AML ensembles and smaller training exemplar requirements for continuous learning of smaller 

models to compliment larger models. 

Models can be generated in small chunks, using less training resources, and provide inference 

matches and class interpolations of unknown modalities using inference between ensembles of AML 

models, which will over time, continuously learn better models. AML becomes the crown jewel using 

continuous learning. 

The AML equation: 

C ¼ L  FImageClass 1::n½ ],FText 1::n½ ], FGPS,Ftemp, 

FVisualDNA 1::n½ ]FVDNAStrand 1::n½ ], . . .

Where: 

C = continuously learned model 

L = AML function(): learning via interpolation and metrics from a library of foundation models 

F = foundation models of some variety 

AML is developed separately under the terms Visual DNA, Volume Learning (volumes of classes 

or modes), and Agent-Based continuous learning (Krig [476]). The basic idea of AML in Volume 

Learning is to learn multimodal features first; associate and classify later. Classification includes 

muti-modal associations between metrics. Classifier learning is ongoing—continuous learning—using 

agents or actual users. Agent learning is used to continually scrub existing multi-modal metrics to 

generate new associations, weights, and classifiers. An expert person or agent can follow behind later 

to add labels or textual descriptions (i.e., captions). The Segment Anything model [1011] from Kirillov 

et al., discussed in Chap. 2, is also a preliminary step in the AML direction. 

Ferret [1031] develops a Multimodal Large Language Model (MLLM), modeling nested images 

inside image regions, incorporating sub-image coordiantes (i.e. Grounding relationships). Ferret uses 

mutiple annotataed modalities in joint training, using image regions of any shape, for describing and 

highlighting sub-regions of an image. For example, text queries to find sub-regions of a motorcycle are 

possible, such as the gas tank. NOTE: similar multi-modal visual region relationships were pioneered 

in the Visual Genomes model (see Krig [476]). 

A related concept for bi-directional association of image features to image classes is developed by 

Mikhailov et al. [996] as the Indextron surveyed in Chap. 11. 

In the next sections, we survey multiple systems in the text-to-image view synthesis area, 

illustrating the emergence of key concepts and trends in captioned classification and of AML.
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View Synthesis Applications 

Here, we survey various examples of view synthesis systems, apologies to the many researchers with 

fine research which we have overlooked, or do not have time to cover, since we are only looking for an 

introduction to a range of methods here. View synthesis has become a free commodity in the past few 

years, and will only get better—it will become nearly impossible to tell the difference between your 

own avatar and yourself in time. 

View synthesis applications are increasing daily, the research is in several areas. One of the most 

popular areas is avatar generation, including generation of 3D avatar polygon meshes and textures from 

single monochrome and color images (Fig. 12.19). We will look into a few avatar methods below. 

Fig. 12.19 Generating a complete 3D avatar from a singl 

pose points, as well as voice synthesis and talking to mov 

facial expression. Avatars generated by Avatar SDK, Itsee 

Topics addressed in the various applications we survey below include text-to-image synthesis, 

locating image scenes by caption query to search for (i.e., “images with pizza and small dogs in 

New York City”), image editing to insert or erase video objects, image relighting and shadow removal, 

plus creating full 3D avatars that are fully programmable for life-like animation from single images 

(Fig. 12.20). 

CLIP Text-to-Image Synthesis 

The Contrastive Language Image Pre-training Encoders method CLIP developed by Radford et al. 

[892] provides complete view synthesis from text captions, and is the basis for several follow-on 

systems in the subsequent surveys in this section, such as DALLE-2 and Point-E. CLIP is the basis for 

a variety of research into text-to-image view synthesis. Radford refers to CLIP captions as Natural 

Language Supervision rather than Supervised, Unsupervised or Self-supervised—the captions guide 

the view synthesis, and also label the image. 

The CLIP model is trained to understand the semantic similarity between captions and images, so is 

a candidate for creating a repository of foundation models for caption-image association.

http://itseez3d.com
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CLIP can be used to predict other images and captions not in the trained model by classification 

using the similarity of features to find the nearest matching score, referred to in the paper as zero-shot 

learning, which we refer to as class interpolation. Unknown classes can be inferred from trained 

models even if the unknown class has not been seen in the training set, interpolating from sets of 

existing features in the model which together closely model the unknown class. 

CLIP can be used as a classifier with variable length text labels (i.e., captions). Send the caption into 

CLIP, and either generate a view synthesis for the caption, or find the closest matching image to the 

caption. The key is to train on a sufficiently large set of [caption: image] variations to enable the view 

synthesis to be class-interpolated close enough to model, yet still realistic. 

CLIP learns to associate together (1) specific image parts as separate objects (i.e. classes) found in 

larger scenes and (2) text captions describing scenes. as pairs: [image object parts: text captions], and 

was trained on over 400 million pairs of [image: caption] pairs, to act as a rewards network, so when 

query pairs are matched correctly the similarity score is good. 

Clip uses embeddings to describe the captions and the image parts within an embedding to space to 

facilitate similarity scoring. The embeddings enable associative learning, and are generated using two 

separate encoders such as:

• A text encoder to generate embedding codes for the text

• An image part encoder to generate embedding codes for single image classes 

Embeddings are commonly used in natural language processing for text translation, queries and 

similar tasks, to provide a representational space for determining embedding attribute similarity— 

similar captions and similar images will have similar embeddings that are near to each other in the 

embedding space. 

CLIP allows for various queries such as:

• Query by caption text

• Query by image

• Query by embedding *NOTE the CLIP model produces embeddings for each caption text and 

embeddings for each image, so if the embeddings are known, of course CLIP can be queried using 

embeddings 

According to Radford et al. [892], CLIP models match the ImageNet performance of ResNet-50 

without using the ancillary 1.28 million crowd-labeled training examples. The CLIP NLP image 

description model is a huge step forward towards NLP classifiers, rather than single-class classifiers 

using SoftMax, and also resets the expectation for what a classifier should be, and what an inference 

engine should be. 

CLIP allows associative learning of multimodal representations. Although the current CLIP model 

associates only two modalities (text and images), similar multimodal models are easily envisioned 

along the same lines (i.e., multimodal items such as GPS coordinates, temperature, weight, caption, 

image part, voice signature,. . .), where each modality is learned and encoded into an embedding 

space, and then multiple embeddings spaces may be associated together as an N-dimensional Associa-

tive Multimodal Model with n-dimensional forward and inverse transforms. 

We refer to the CLIP approach as Associative Multimodal Learning (AML) according to the taxonomy 

of the author; see Fig. 12.18 and the Associative Multimodal Learning (AML) section above for details of 

a multiclass learning representation. CLIP only associates two modes together: the text caption and the 

image scene, and allows associative learning representations that are bidirectional:
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image scenes as text< - > text captions as images]½ 

In other words, CLIP is a forward and inverse transform between text captions and image scenes 

with multiple classes of visual objects. 

Depending on how the various CLIP models are implemented to represent images, each image 

object can be represented as a captioned individual NeRF objects for single and multiclass image 

objects. In fact, the ObSuRF method developed by Stelzner et al. [905] in fact uses separate NeRF 

representations for each captioned image object part, we briefly survey ObSuRF later in the NeRF 

survey sections. The NeRF representation is suitable for image composition of multiple image objects 

using captioning to define the view synthesis goals, and of course other image representations are used 

for view synthesis as well. 

CLIP trains a pair of models that are tightly coupled together: pair 1: a caption mode, and pair 2: an 

image model. The pair association is trained to have a high dot product similarity between an image 

(i) and a caption (c) when they are associated, and a low dot product when a caption an image are not 

associated. C LIP is trained on noisy images to extract the right gradients for the reverse diffusion 

process. Therefore, CLIP models are noise conscious. 

CLIP takes inspiration from the Visual N-gram model developed by Li et al. [893] in a manner 

inspired by natural language processing tasks, using the analogy of learning word pattern sequences in 

order to predict derivative word pattern sequences, unlike N-grams that learn patterns of words or 

syllables—n-words or n-syllables. The N-grams can be learned by considering the words that follow 

each word as consecutive sets, so the N-gram pattern is similar to Marcov Chain models that learn a 

probabilistic model of subsequent values from a current value, as used in Diffusion models. For N-gram 

prediction, the model incorporates likelihood density learning to fit unforeseen words and phrases. 

GLIDE Model for Image Modeling and Editing 

GLIDE was developed by Nichol et al. [890] for image synthesis in a diffusion-model context, 

producing some of the most photo-realistic images among similar methods, while also allowing for 

specific tuning of parameters for image in-painting and image editing using a guide text to control the 

in-painting and editing objectives, similar to captioning text string as objectives. For example, GUIDE 

allows for interactive image editing to a region (the hair on the head for example) and then allows a 

specific guide text to direct the alteration of the masked region, for example, “add a flower”. 

GUIDE demonstrates how diffusion models using classifier-free guidance usually generate the most 

photo-realistic view synthesis, especially compared to CLIP and GAN methods. The GLIDE photo-

realism is recognized and preferred by human judges as well as automated benchmark scores, as we shall 

briefly survey below. For more on diffusion models compared to GAN’s see Dhariwal et al. [894]. 

GUIDE research shows that guidance parameters are the key to creating the most realistic image 

synthesis, and considered two methods for similarity guidance of the diffusion model such as:

• Classifier-free guidance (Ho et al. [886]), does not require a separate model to be trained to estimate 

and interpolate correspondence (i.e. zero-shot class interpolation) between captions and images, 

which is shown to produce photo-realistic images. Rather Nichols states “classifier-free guidance, a 

form of guidance that interpolates between predictions from a diffusion model with and without 

labels.” Classifier-free guidance interpolates between a range of model predictions to arrive at the 

solution, without using labels, and without requiring extensive trained sets.
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• CLIP-style [caption:image pair] guidance which requires an extensive [caption:image] model to be 

trained from a wider range of exemplars, and this can be difficult since the training sets are laborious 

to create and maintain, and no interpolation is included in the model, so the synthesis results are 

sort-of hard-coded and therefore closely match the training data. For example, Dhariwal & Nichol 

(2021) use classifier guidance by training the model with noisy image exemplars, which are used to 

converge the sample images towards the corresponding labels.

• * See also Dhariwal and Nichol’s prior work [890] which provides even more background on how 

improvements to the basic architecture of diffusion models using classifier guidance improved the 

state of the art scores over GAN’s and generative models. 

With photo-realism as the goal, GLIDE trains a 3.5 billion sample diffusion model, and like CLIP 

uses a dual text encoder and an image encoder. Nichol found that the diffusion model must be 

explicitly trained to be “noise aware,” which they refer to as a “noised CLIP model”. The training 

noise was found to be essential to obtain the correct gradients (i.e., differences) during the reverse 

process of recovering the image structure from the noise, in order to synthesize optimal photo-realistic 

images, compared to non-noised models. 

DALLE-2 Text-to-Image View Synthesis, Stable Diffusion, Imagen 

DALLE-2 is an API to a text-to-image synthesis system developed by OpenAI, which is a product 

based on earlier work by Ramesh et al. on the original DALLE system, see Zero shot text-to-image 

generation Ramesh et al. [887, 889]. The idea of DALLE is to train a model using a paired text encoder 

for captions describing an image, and a corresponding image encoder describing corresponding image 

captions. DALLE-2 leverages the CLIP method of Radford et al. [892] for learning 2D image 

embeddings from internet images which are classified into categories such as used in the ImageNet 

datasets. 

Captions are an art, not a science. There is considerable room for improvement, since image captions often do 

not generate the image one has in mind. 

It is reported by many users of DALLE-2 and CLIP that the caption must often be edited to steer the 

image generation in the desired direction: this is a fruitful area to apply ML and AI to assist in caption 

analysis, caption generation, caption interpretation, and multiple image generation from a single 

caption, to suggest alternative captions via caption analysis to correct and steer the caption to make 

the desired images. DALLE captions often unexpectedly synthesize disparate objects together during 

image synthesis, resulting in unreal fantasy images that cannot be found in the real world, similar to 

morphing a man and a tree together. DALLE-2 provides some caption text control flags for steering the 

style of rendering, and other similar features. 

Still, for all the caption-based image synthesis models, choosing the right caption is an art, not a 

science. Minor changes to the text captions yield major changes to the image rendering. 

More research is needed to arrive at captioning alternatives to produce desired output, using 

ensembles of images generated from a single caption, or attentional-analysis of the captions to see 

which individual word-elements of caption sequences actually influence the image generation the most 

(i.e., heat-maps showing heat on each word in the caption according to the level of influence on the 

image generation). 

DALLE uses an idea called Zero-Shot learning [887, 889], which means inferring or detecting 

object classes at inference time from the caption alone. Zero-shot learning can infer new classes using



existing features of other classes trained in the model, so classes that are not explicitly part of the 

training set and seem to fall outside or in between captions that were in the training set are learned by 

inference and interpolation around the existing classes of features defined in the model. Instead of zero-

shot learning, we use the term class interpolation in this discussion (Fig. 12.18). 
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DALLE-2 starts from text descriptions of common objects represented as seeds of random points in 

space, and then alters the seed points by adding detail using diffusion models to represent images of the 

common objects, then composes desired objects into novel 2D images. DALLE-2 can also expand the 

image canvas in size to add novel objects to the scene. DALLAE-2 uses diffusion models to add, 

modify, or remove objects from images. Diffusion models (DM’s) are generative: they can produce or 

generate more detailed and structured outputs and are increasingly used to generate novel 2D images. 

DALLE-2 follows similar point cloud image class and image feature generation methods to the 

Point-e system from Nichol et al. [869], which we survey below, which also generates a 3D diffusion 

model and 3D point cloud from conversational text descriptions. The point clouds are the basis for the 

compositional image renderings. 

Diffusion as shown in Fig. 12.20 works by adding together multiple diffusion models to reconstruct 

a combined synthesis in image space. Note that interactive tools are a current area of research, being 

developed to manually alter the diffusion image results, allowing interactive dragging and dropping of 

image areas to warp the results, see Chong et al. [1022]. In addition, other tools are in research for 

guiding the additive diffusion of models to compensate for scale, rotation, colors, and more. 

The basic research for DALLE-2 is covered by Ramesh et al. [887, 889], with details showing how 

DALLE-2 includes the CLIP method of learning 2D image embeddings from internet images which 

are classified into categories such as used in the ImageNet datasets. The images are classified and then 

represented as textual class descriptions, and then assigned numerical tokens in an embedding space, 

allowing image associations with similar images, as well as associations with correct textual descrip-

tive strings (i.e., class names or multiclass text captions). The words occupy an embedding space, and 

the images occupy a separate embedding space, for providing pre-computed association between 

words and images. 

DALLE-2 renders realistic shadows and reflections generated from hard surfaces and high quality 

textured surfaces. In addition, various style parameters are used in the caption text to guide the 

renderings towards a particular artist or artistic style, or towards general styles like pixel art. 

CLIP image class embeddings encode similar image classes nearby in an embedding space, and 

DALLE-2 follows the CLIP model to understand the image classes in a scene within the CLIP 

embedding space, and also modify, add or delete image classes from a scene. DALLE-2 creates and 

associates word embeddings and image embeddings, so that text words and images are associated 

together and can be textually described, and follows CLIP to implement a method of learning image 

embeddings for classes of images. DALLE-2 can then use combinations of text embeddings and 

associated image class embeddings to compose a novel image, using various other stylistic rendering 

instructional keywords such as “create a house with legs and wings,” refer the examples described in 

Fig. 12.20. 

DALLE-2 uses the CLIP embeddings as the basis for a diffusion model based generative system for 

composing object class embeddings from text descriptions into composite images. So, the images are 

generated using diffusion from base image models, which leaves some fuzzy residue in the renderings 

in some cases due to the noise-based diffusion model (see the discussion on Diffusion Models above). 

The DALLE-2/CLIP embeddings are linked to object class images. We cover background research on 

word embeddings in Chap. 11. 

More recent diffusion view synthesis approaches use more refined diffusion models, and are worth a 

deep dive which we do not have time for in this brief topical introduction. See also the refinements 

proposed in the Stable Diffusion model from Rombach et al. [885] which uses a latent diffusion model 

based on the CLIP ViT-L/14 text encoding, similar to the Imagen model from Saharia et al. [895].
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Fig. 12.20 Showing (top) an example DALLE-2 render 

cabbage on moon,” top right image: text=“3d render real 

above are created using the DALLE-2 online test software. 

caption “dad sitting at his desk with little 2-year-old on his 

of DALLE-2 diffusion model method 

g from text top left image: text=“3d render salmon and 

tic salmon and lemon on mount rainier”. The top Images 

ottom showing four view synthesis variations from the same 

p,” images created by Midjourney view synthesis variation
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Neural Radiance Fields (NeRF) 

Of the many possible methods for generating the view synthesis, the NeRF method from Mildenhall 

et al. [870] is noteworthy, and the name has become synonymous with the field of 3D view synthesis in 

some circles. NeRF involves generating a 3D radiance field of voxels computed for each input 2D 

input image pixel, by computing the 5D radiance field (x,y,z + roll, pitch—but not yaw) at each pixel, 

and projecting the 5D radiance field into a 3D volumetric model or neural radiance field, i.e., a 

trainable differentiable 3D field of voxels, and then rendering unique 3D views of the volumetric 

model using discreet volume rendering methods into a 2D target image, as discussed earlier in this 

chapter in the Volume Rendering section. 

The NeRF paper discusses the tradeoff’s considered in designing the method, the details on prior 

work, considerations from related work, and how NeRF is optimized—the NeRF paper [870] is 

recommended reading. Here we provide a summary of the basic model. 

To convert the 2D image into a 3D coordinate system to project into the volume, the 3D position of 

each pixel in the input 2D images is computed in 3D space. NOTE that NeRF requires parameters to 

learn the model: the 2D image position and viewing direction must be provided and known (x,y,z), and 

also the roll, pitch, and yaw must be known to project the 2D input image pixels into the 5D radiance 

field. 

NeRF requires tens or hundreds of images for some implementations to compute the 5D light field, 

but recent methods can use only one image to estimate a 3D field for view synthesis. The NeRF 

radiance field contains a projection of a set of one or more images, usually many images are required, 

which is fine when the images are near the camera, but present sampling and blur problems for images 

far away from the camera. For single-image NeRF methods, refer [1013] Gu et al. and [1014] Xu et al. 

To train their neural radiance field, optimization is performed using an MLP to minimize the 5D 

difference between (1) the known multiple input image views and (2) the reprojected 5D view from the 

volume for each input image; therefore, training minimizes the difference between the input and the 

reprojection images, and maximizes the model accuracy. 

NeRF uses a continuous (not discreet) positional encoding scheme (not like the Transformer 

positional encoding scheme) for each 5D input coordinate to allow a higher-dimensional space for 

optimizing the neural radiance fields for high frequency details. Encoding the input pixels into the 5D 

radiance fields enables increased photo-realism in the 2D re-projections from the volumetric model. 

Standard volume rendering methods use a 3D discreet volume of voxels, and the renderings are 

accumulated from rays traced through the discreet 3D volume. However, NeRF uses the 5D positional 

encoding as the basis for the volume rendering—5D coordinates are sparse, continuous in space, and 

do not fill a discreet dense volume. 

The NeRF method does not require a dense sampling or 3D volumetric model which increases 

memory and compute requirements for the volume operations; instead NeRF encodes a continuous 5D 

field, rather than a discreet volume, within the parameters of the MLP network, and since the field is 

continuous, there are no jagged artifacts in the voxel sampling and accumulation from discretization in 

the model, thus yielding higher quality renderings approaching continuous gradations, rather than 

jagged discreet points. 

For rendering, the 5D coordinates along a ray projected through the volume and sampled in 3-space 

as voxels V; the V values along the ray are fed into the MLP to accumulate into the final RGB opacity 

voxel. Since the 5D voxels and the voxel accumulation is differentiable, their final values can be 

optimized using the residual between the accumulation and the ground truth input images. In summary, 

the rendering is directly taken from the 5D coordinates from points along the ray in the 2D input image 

space (i.e., the neural radiance field), not from a discreet continuous voxel volume.
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Please see the NeRF paper from Mildenhall [870] for other specialized features we do not survey 

here in detail including (1) a composition of two functions for training and learning the rendering 

values: one function learned by the MLP, and one function hard-coded, in an attempt to avoid well-

known bias of MLP and CNN learning towards low frequency details, and (2) a hierarchical volume 

sampling method with a coarse and fine network for rendering optimizations: the coarse network is 

used to identify parts of the volume which should be finely rendered (similar to surface culling 

pre-processing in computer graphics, but rather the inverse: to identify features for high-resolution 

treatment). 

There is much related research into the NeRF family of models. To dig deeper, we mention a few 

papers, including a good survey of many NeRF papers here: A comprehensive review of NerF research 

[896], the DreamFusion method [897], Neural Fields method [898], PlenOctree real-time NeRF 

renderings [899], and finally Nerfies (little quick nerfs from your cell phone) [900]. 

A particularly noteworthy NeRF method is [1006] HumanNeRF: Free-viewpoint Rendering of 

Moving People from Monocular Video from Weng et al. The goal of free-viewpoint NeRF is to 

generate a 3D volumetric model from a monocular image, for example from a frame in a YouTube 

video. Unlike the original NeRF approach discussed above which computes a 5D field from a known 

3D viewpoint for the view synthesis, the challenges of free-viewpoint rendering are different, include 

synthesis of arbitrary cameras views when the viewpoint must be learned and inferred from the image 

itself, treatment of cloth deformations, hair motion, and arbitrary body poses. Another recent NeRF. 

variation using only a single monocular image is NerfDiff [1013] from Gu et al. 

Future topics in the research for NeRF and volumetric models for view synthesis have been 

explored by Rudnev et al. [903] and includes; Light field estimation—identify the light source(s) in 

the 2D images for incorporation into the model; Light field relighting of the 3D model—if needed, the 

light sources of a 3D model can be discovered, so then each light source can be subtracted from the 

model, or new light source(s) can be added to relight the 3D model enabling variable lighting 

enhancements to suite a particular MR view, or to remove bad lighting, etc. see “Apparatus for 

enhancement of 3D images using depth mapping and light source synthesis,” US Patent—Scott Krig 

[901]). 

Also, look for more research into view synthesis methods using novel voxel computing models with 

Fourier features or other basis space features, for example, refer Wang et al. [902]. Also, refer Chap. 3 

and Basis Space Metrics. 

NeRF and NeRF-OSR 

NeRF-OSR from Rudnev et al. [903] provides improvements and additional features to the common 

NeRF architecture, for example extended features include editing of the camera viewpoint, illumina-

tion viewpoint, and editing the scene illumination. 

Especially interesting is the addition of a scene illumination method which includes a second order 

spherical harmonics model with an enhanced light re-rendering equation for relighting the view from a 

chosen perspective (Fig. 12.21). The paper provides a good background on related scene relighting 

research. Also, NeRF-OSR uses a novel dedicated shadow model in a shadow generation network with 

an MLP, carefully designed to learn only local shadows rather than global shadows from scene lighting 

effects—the MLP uses a shadow prediction method of accumulating shadow values along a ray using a 

modified volume rendering equation.
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Fig. 12.21 NeRF-OSR re-lighting examples for radiance 

position and direction vector, with parameters to recolor & 

(C) Rudnev et al. [903] ECCV 2022 Springer Link 

lds, including relighting applied to alter the light source 3D 

engthen the light, as well as to add/remove shadows. Image 

Neural Radiance Field Code Books, ObSuRf 3D Scene Segmentation 

Codebooks for image synthesis are a future trend, similar to reusable visual objects and captions in a 

large foundation model, available to many applications and perhaps standardized. As view synthesis 

becomes ubiquitous, many types of image object and caption codebooks will be available and expected 

for general use (i.e. like dictionaries or public repositories), and each codebook will have specific sets 

of associated visual object repositories and captions for intended applications. The NLP research has 

already led to language foundation models in a similar fashion, as surveyed in Chap. 11. 

The Neural Radiance Field Codebooks (NRC) method [904] developed by Wallingford et al. is used 

to create a codebook and repository of common scene objects to be used as building blocks, from 

which view synthesis can be performed to create synthetic scenes from the building blocks, or enhance 

existing scenes. Highlights of the NRC model include the following:

• Unsupervised discovery and segmentation of visual objects

• Scene decomposition

• Z ordering of objects for depth

• Cataloging objects for detection or synthesis 

NRC Codebooks represents a future direction of research, enabling visual synthesis to be 

normalized and standardized with a basis of common libraries containing scene objects, allowing 

both synthesis rendering as well as scene analysis via conceptual visual object segmentation—this is a 

predicted emerging field in the opinion of this author. 

Imagine large classes of image objects collected together and described as NeRF models (or similar 

models), which are captioned and parameterized for both scene analysis and multi-class classification, 

as well as multiclass view synthesis; such as system is envisioned in the Neural Radiance Field 

Codebooks research from Wallingford et al. [904] as well as similar research on the Marionette system 

from Smirinov et al. [888] which decomposes scenes into 2D sprites discussed later. 

The NRC system learns an unlimited number of object codes from the basic building blocks of 

scenes (ideally common scene building blocks common to many different scenes). NRC stores the 

codes in a code book. The NRC codebook entries contain common attributes of scene building blocks 

that (ideally) are reusable across many different types of scenes and occur regularly. 

In NRC, the codes are used to generate synthetic scenes containing real-world objects, which the 

authors refer to under the umbrella of object-centric learning.
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NRC is a key pioneer in the emerging field of scene segmentation or scene analysis into a dictionary 

of common visual objects. The NRC model enables segmentation at the object level (i.e., conceptual 

visual object segmentation, which is different from panoptic, instance and semantic segmentation 

which are purely pixel based, not object concept based). 

Objects are learned by unsupervised discovery, from multiple views of a scene in an input image 

group—so that 3D perspective is included in all the learned objects, which can be fed into a volumetric 

view synthesis model for composition and rendering. Learned objects are cataloged into semantically 

related groups of objects which includes the learned geometry and visual appearance attributes (i.e., 

RGB, texture, and geometry) for each object in the input image group. The objects from the image 

input group thus allow the variations between objects in the scene to be modeled together, thus the 

entire scene is modeled as a total composite scene of objects including geometry, 3D position, 

viewpoint orientation, color, and other attributes. 

NRC is designed to work with existing datasets for scene analysis benchmarking and 3D 

segmentation—dataset used for testing include the following:

• ProcTHOR and RoboTHOR (Kolve et al., 2017) contains models and interactive scenes of home 

interiors, used in Unity game engines.

• CLEVR-3D (Johnson et al., 2017) collects together synthetic data representing multiple geometric 

views of multiple geometric primitives designed for 3D segmentation.

• NYU Depth The NYU Depth Dataset (Silberman et al., 2012) contains a collection of real-world 

images from indoor scenes, with depth maps and segmentation maps for the scene objects. 

One of the main inspirations for NRF Codebooks is from the earlier methods of Dictionary and 

Codebook learning, in particular Wallingford mentions the Marionette system from Smirinov et al. 

[888] which decomposes scenes into 2D sprites. 

A similar model, ObSuRF developed by Stelzner et al. [905] pursues related 3D scene modeling 

research in the area of 3D Scene Segmentation, which we do not survey here, where separate objects in 

an image scene are represented by separate NeRF’s for 3D volume object segmentation and view 

synthesis from the 3D segmentations—the paper includes a survey of related work on 3D Object Shape 

Learning, and information on additional 3D object segmentation methods. 

For some historical context and discussion on codebook learning, refer Chap. 9 on Learning 

Methods and refer Table 5.1 Vision Metrics Taxonomy. Refer also prior work using feature 

descriptors, showing how a rough 2D scene reconstruction has been performed using learned feature 

descriptors such as SIFT, LBP’s, and HOG in Chap. 4, Fig. 4.14, Image reconstruction of common 

scenes using combined SIFT descriptors, Fig. 4.12 Discrimination via a visualization of the HOG 

description, and Fig. 4.13 Discrimination via Image Reconstruction from Local Binary Patterns. 

POINT-E Text-to-Image View Synthesis 

The Point-e system from Nichol et al. [869] generates a 3D diffusion model and 3D point cloud from 

conversational text descriptions, and is particularly noteworthy for the refinement and use of the point 

cloud models for view synthesis. The idea of using point clouds is powerful, and offers a path forward 

by-passing polygon mesh models, to more photo-realistic volume rendering revealing transparency, 

and ray tracing. 

Point-E converts point clouds into polygon meshes by learning a model of signed distance function 

SDF. For background on SDF’s, see also Chap. 1 Surface Reconstruction and Fusion, and Curless and 

Levoy [382]). Volume rendering is applied to render the synthesized views.
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One motivation for the Point-E work is to find faster ways to produce view synthesis from text 

captions, and they reduce the scene complexity to reach this goal, generating a single synthetic image 

using one diffusion model, and then use a second diffusion model to generate voxels within a 3D point 

cloud, which is simple to render—refer Fig. 12.22. Even though the point cloud rendering detail is 

cartoon-like, still this approach points the way to the future with highly detailed voxel and point cloud 

models that will surpass polygon models in accuracy and flexibility. 

Fig. 12.22 Showing the basic Point-e architecture and point cloud output images, (top) system processing stages, 

(bottom) output image samples. Illustrations (C) Nichol et al. [869] (2022) 

The Point-E pipeline includes a caption text prompt sent to a variation of the GLIDE model [890] 

trained using three billion parameters and fine-tuned via transfer learning with their specialized 3D 

dataset. The low-resolution point clouds generated are from the base diffusion model, and a separate 

diffusion model is trained to be used for up-sampling the low-resolution point clouds for higher 

resolution rendering. 

3D View Synthesis from Two Images + Pose: 3DiM 

In the 3DiM view synthesis model proposed by Watson et al. [906], is a pose-conditioned diffusion 

model designed to generate consistent high-quality 3D views by learning pose-conditioned 3D view 

model parameters, taking two views of the same scene from different 3D pose (x,y,x) positions as the 

starting point to find the common noise diffusion models, and then using a stochastic conditioning 

method to sample the model for clarity during image rendering. The model is trained using two images 

as pairs of the same scene, where each image of the pair includes the pose viewpoint in 3D space, so the 

final model can predict and generate one view of the model given another view of the model and its 

pose. 3DiM compares well to similar methods, refer Fig. 12.23.
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Fig. 12.23 Showing the 3DiM view synthesis 3D rendering results compared to similar systems, image (C) Watson 

et al. [906] 

Some of the novel architecture and modeling contributions of 3DiM include the following:

• X-UNet architecture with special features for view synthesis.

• Stochastic conditioning of 3D sampling points from multiple image views, rather than a single 

view, for increased accuracy and realism.

• An evaluation method is proposed for scoring geometry-free models.

• The models use classifier-free guidance from Ho et al. [886]. 

3DiM uses a novel X-UNet architecture incorporating improvements from the earlier U-Net 

architecture introduced by (Ronneberger et al. [932] for image segmentation (discussed further in 

Chap. 2 for image segmentation). 3DiM’s X-UNet changes the base U-Net architecture to be 

discriminative for high fidelity results by using self-attention combined with residual layers. 3DiM 

uses novel pose conditioning to add increasing amounts of noise to the image data model using the 

learned noise distribution from image view pairs of the same scene, and stochastic conditioning to 

autoregressively denoise the data as frames are generated, using 256 denoising steps to increase sample 

quality and improve 3D accuracy. 

In more detail, the pose-conditioned image-to-image training takes a pair of two frames with 

different viewpoints from the same scene + the pose of each frame, and attempts to undo the noise 

difference between frames. The X-UNet uses the poses (R,t) of both training images, and predicts the 

amount of Gaussian noise injected to corrupt one of the pair of training image set, so the predicted view 

(synthesis view) is a linear combination of the predicted noise e from the training images with the 

target image noise. The X-Unet shares weights across the pair of input images for the conditioning 

clean view, and the target denoising view. Also, cross-attention using self-attention blocks is employed 

to mix information from the input and output view. 

See also EG3D by Chan et al. [907] (Efficient Geometry-Aware 3D Generative Adversarial 

Networks) which uses GAN’s for view synthesis of 3D images using volume rendering followed by 

super-resolution for adding detail to the renderings. The basis for the EG3D GAN work is taken from 

StyleGAN (Karras et al., 2019). 

Avatars and Animation—SMPL and AvatarSDK 

Generation of avatars from single images has been commercialized, based on years of earlier research. 

Early avatar generation systems for video gaming provide some of the best examples of what can be 

done using standard OpenGL and DirectX graphics API features to skin a polygon mesh with 

appropriate textures, and feed the model into a graphics pipeline to integrate with a game scene.



Also, movie studios like Pixar and Dreamworks have been creating avatars for decades, and also using 

image morphing to combine visual objects together—such as combining a human face with the face of 

a lion. All this work is coming together for commodity use. 
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Today, avatars can be generated free on the internet (or from a phone) from a selfie photo of only the 

face, and the body shape is inferred using deep learning and a few parameters from the user, and 

animations can be applied to avatars from pose points to move the whole body, using human kinematic 

sequences. 

Generating realistic looking human avatars has a rich history, which can be tracked mostly through 

the SIGGRAPH computer graphics research papers going back several decades. We cannot hope to 

review all the work in this area, but instead focus on more recent research work in machine learning 

methods, and associated commercial products. At the high-end of the avatar models, we will review 

perhaps one of the most seminal approaches: SMPL, a Skinned Multi-Person Linear Model (Loper 

et al. [908]). 

Pose points are now a commodity item, able to locate a set of human joints and body features such 

as elbows, shoulders, ears, nose, eyes, hands, finger joints, etc. Some methods even detect the 6D pose 

x,y,z position including roll, pitch and yaw of the bone structures (pose AI). Apple provides pose point 

detection in real-time in hardware. Of course, avatar and human body animation can be done using 

pose points in commercial packages. 

A survey of 3d pose point generation from 2d pose points using monocular 2D images is found in 

Tian [1032]. 

Avatars can be generated from a selfie photo, for example, the AvatarSDK approach is covered later 

in this survey, sophisticated yet very accessible on mobile devices, and animations can be applied to 

the avatar from pose points to move the whole body in real-time. At the high end, avatars can also be 

generated from sophisticated methods which 3D scan the entire body from many viewpoints, and then 

use machine learning and statistical methods to develop complete avatar models that are accurate and 

capable of assuming many pose positions and shapes such as the SMPL method we survey here. 

While there are many avatar generators and animators available today, and many excellent concepts 

and improvements to learn from research, we only touch on this topic here by way of introduction to 

the field, by reviewing some of the seminal research, and reviewing a commercial example. 

1. SMPL, seminal research from Lopez et al. [908] “A Skinned Multi-Person Linear Model,” which 

contains a complete system for accurate and extensible avatar learning with refinements, used by 

many movie studios and computer graphics solutions. 

2. AvatarSDK from Itseesz3d, a Commercial Product for Avatar Generation and Animation. 

SMPL 

The Skinned Multi-Person Linear—Avatar Learning Fundamental Research. In summary, SMPL 

builds on the history of the field, which is summarized by Dr. Michael Black, one of the key 

researchers leading the effort. The SMPL work is a true milestone. For historical details and guiding 

principle for the SMPL family of research into avatar support for human body, face, hand, and animals, 

see the YouTube video “SMPL made Simple Tutorial at CVPR 2021: Michael Black”. Also, we 

mention key research papers below to dig deeper. 

The goals of avatar research include (1) accuracy body models which are suitable for realistic 

animation, and (2) accurate methods for animation of whole body models. These goals have directed 

the research for decades, which we summarize below. 

Historically, pose analysis has focused on pose point analysis of the major body joints which are 

invisible to the eye (perhaps 18 or more or less joints total for the body, plus 10 or so for the face, and 

10 or so for the hands), rather than modeling all the parts of the body (skin, hair) that are visible under



motion. In other words, we should also understand and model the outer surface of the body for 

completeness, and we cover this in some details later. Skin touching skin is a problem for modeling, as 

well as occlusion of body joints and skin, body shape analysis, etc. 

View Synthesis 657

Early methods to model both the entire body skin surface as a polygon mesh, and the joints as pose 

points, was enabled by a US Army project called CAESAR which captured a set of human body poses 

as 3D objects from male and female subjects aged 18–65, each wearing tight cotton clothing and latex 

caps and 74 white markers for 3D registration of key body parts. 3D point data was then extracted from 

the body scans to create the body shape space. Early analysis of the data was performed by Allen et al. 

[909] “The space of human body shapes: reconstruction and parameterization from range scans”. 

Allen was able to wrap the body shape into a mesh, but found it hard to interpolate between 

incorrect or morphed portions of the scanned points in the mesh, so the mesh was not optimal. The 

basic goal of the body space model is to model the shape of virtual humans. 

The body mesh and associated 3D points is a differentiable numerical field, which enables many 

machine learning algorithms particularly those using many training samples and various training 

protocols using gradient descent (i.e., neural networks). The data thus enables the fitting of the 

model to target images to find the differences between points in the mesh, as well as optimizations 

to improve the pose and shape fit between target and mesh model. The intended fit would be carried out 

in a lower resolution space to make the computations simpler. The end result should be a realistic mesh 

that is deformable under animation. 

SMPL devised a standard mesh template, using 12,000 mesh coordinate points <x,y,z>. The fitting 

from the standard mesh template model to a target subject was performed in a special function using 

PCA space. The pose representation was controlled by weights, intended to preserve and modify point 

to point relationships under various types of motions and poses, primarily to control the pose points, 

but not intended to control the body volume distortions and body shape distortion under certain poses 

and motions. For example, the weights could model how the elbow influenced the wrist, and other joint 

motion relationships. Basic poses were learned and the associations between joints were recorded for 

various poses, such as a standing rest position, etc. 

Skinning was a challenge, especially dealing with volumetric changes to parts of the body shape 

under motion, and skin patch morphing under stretching and motion poses, so SMPL developed model 

parameters to correct distortions for selected poses under motion and body shape changes. 

The SMPL model for each part is represented by a 9D rotation matrix (9 × 23 Joints = 207 blend 

shapes). Quaternions are also used as they are equivalent to 9D matrices, but more convenient for 

computation. For motion deformation corrections, a set of Eigenvectors at each joint are used to blend 

shapes under motion, performing a linear combination from a subset of the 207 Eigenvectors relevant 

for all joints. SMPL collected some novel data in the AMAS dataset. 

The total joint model is as a linear combination of 207 Eigenvectors from the 207 blend shapes. 

Pose coordinates, and identity body segment lengths and articulated motion capabilities of a unique 

person are modeled using an Eigenvector sum, including the total shape or morph of the body pose 

defining the unique shape of each subject at pose. 

For model development and training, a deep learning front-end can be used to get the model trained 

in the ball park (the DNN generates the rough pose), and then classical optimization methods are used 

to clean things up and fine-tune—nothing beats optimization using an accurate numerical optimiza-

tion technique. DNN’s are function approximators. 

For understanding and modeling the body shape in a simple and effective manner, the first 30 points 

from PCA analysis were used. The 30 points capture 98.5% of the shape variance between all subjects. 

Also, PCA can represent linear Gaussian models very well. But, PCA does not model the subject age or 

related shape variations very well—separate models are needed for sex, weight, age, and other physical 

conditioning variables. Each body is represented as 21-dimensional vector to compress into a low



dimensional space using Eigenvalues and vectors for a PCA body shape signature. Body shape is 

represented by the total dataset MEAN + subject as a composition with Eigenvectors, which can 

approximate any body shape in the shape space. 
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However, SMPL research found that some body poses are:

• Impossible, the body cannot contort in some ways.

• Possible but unlikely, and very difficult without special training (i.e. gymnast training).

• Some poses are common.

• Pose priors were developed to give probability distribution of pose over the whole population in the 

dataset, using the Vposer method, see Pavlakos et al. [910]. 

Allen and Back’s other associates found that SMPL was not enough, so they invented:

• SMPL-X model [910] expressive body, hands and face).

• MPL-H [911] hands models [910].

• SMAL model [912] to represent animal avatars. 

The basic model steps for SMPL and the related models is summarized as follows:

• Learn shape space.

• Factor out pose in the same way by differentiation.

• Learn pose-dependent deformations using 9D or quaternions.

• Factor out expressions towards normal expression and poses.

• Learn linear subspace for expression variation.

• Registration alignment, solve for PCA, solve for blend shapes (207 currently). 

Note that the GHUM model re-implements the key algorithms in SMPL with a different non-linear 

functions model instead of linear functions, see GHUM Generative 3D Human Shape and Articulated 

Pose Models Xu et al. [913]. Refer also [914] PIFuHD: Multi-Level Pixel-Aligned Implicit Function 

for High-Resolution 3D Human Digitization. 

For related work see also Photo-realistic Monocular 3D Reconstruction of Humans Wearing 

Clothing by Alldieck et al. [915]. 

AvatarSDK 

AvatarSDK, provided by from Itseez3D.com, is a commercial product for generating avatars from a 

single face selfie, and uses concepts from the SMPL model reviewed above, for a high-end modeling 

approach for generating realistic full body models with a human mesh, face, upper body, skeleton and 

pose [908]. AvatarSDK also uses standard assets from meshcapade to generate life-like avatars https:// 

meshcapade.com/about-us, specifically photo-realistic 3D human body models composed from skin-

ning and blending base shape models based on thousands of 3D body scans. The avatars are virtual 

human models that can deform in shape and size for various body parameter. The body models have a 

low but adequate polygon count, which makes them effective to use with low compute power compute 

devices, and the models include pose-dependent weighting to model pose deformations, soft tissue 

morphing, and are very compatible with gaming engines such as Unity, 3D graphics API’s, and 

GPU’s. 

Avatak SDK also interfaces with the Itseez.com 3D mobile scanning products, allowing 3D models 

and avatars to be created using a mobile device. 

Unity avatar animation capabilities are supported by AvatarSDK with a Unity plugin—suitable for 

video games and custom video productions. In addition, an animated face avatar that includes eye

http://itseez3d.com
https://meshcapade.com/about-us
https://meshcapade.com/about-us
http://itseez.com
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blinks and realistic talking using the mouth and lips, can be created using the Itseez Remoteface app 

from a selfie, which acts as a virtual camera to use in place of the built-in camera on the computer or 

phone, useful for video conference calls using Zoom, etc.—avatar can represent your face and upper 

body and talk for you on the video call. See Fig. 12.24. 
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Fig. 12.24 Illustrating AvatarSDK and the RemoteFace a 

model. TOP: examples of creating an avatar from a selfi

inferred from the selfie by default, but shape and size can 

3D facial mesh is extracted and the face is morphed to the 

Itseez3D.com 

from Itseez, and also showcases capabilities of the SMPL 

with selectable parameters; BOTTOM: the body shape is 

modified via settings. The face is extracted from a selfie, a 

sh, ready to join the 3D body mesh shape. Images (C) 2023 

The body animation model provides 50 body joints (i.e. pose points or keypoints) to provide very 

realistic animation of the avatars, and includes customization options for various attributes such as 

haircuts, skin color, eye color, and more. 

Scientific Imaging Systems 

Since there are many types image sensors for various scientific applications, combined with many 

illumination techniques, there are many types of specialized scientific camera systems. In this section, 

we survey scientific imaging at an introductory level, providing fundamental background concepts, 

and suggesting other resources to dig deeper. In general, we are seeing deep learning methods applied 

to scientific imaging to solve familiar problems in new ways. 

In the following sections, we survey key system concepts and applications for various light 

spectrums and modalities used in scientific imaging including:

http://itseez3d.com
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• Polarimetric Imaging is intended for directional light sensing, to identify Ines and linear textures 

and structures for analysis. Directional oriented filters are often used to structure the photons in a 

linear grid.

• Multi spectral Imaging concepts pertain to industrial radar inspection, medical applications, and 

satellite and ground-based Radar Imaging, LIDAR, SAR, as well as IR and UV. Typically, satellite 

images are taken as a line-oriented or swath-oriented pattern, and stitched together to form larger 

images.

• Tomography, Confocal Microscopy, Florescence Imaging: Tomography is a method of slicing a 

volume into 2D images, and reconstructing the 2D images back into a volume, MRI scans and 

Confocal Microscopy are medical system examples. Fluorescence imaging is used to detect specific 

features that have been dyed a specific color with florescent die, and imaged using controllable light 

sources. 

Note that for computer vision applications, the type of imaging system used and the intended 

application determines the computer vision methods required in order to process and analyze the 

images, so as we survey various scientific imaging systems, we will also highlight pertinent computer 

vision methods useful for each applications such as:

• Edge Enhancements (Chap. 2).

• Super Resolution (Chap. 1).

• Object Detection (Chaps. 4, 5, 9, and 10).

• View Synthesis and Volume Rendering (Chap. 1). 

To dig deeper into scientific imaging systems, consult the SPIE—The International Society for 

Photonics And Optics—http://spie.org. The SPIE is an excellent source of scientific resources for 

practitioners, including conferences and research papers across most all disciplines including optics, 

algorithms and methods, and applications including materials science, biology, satellite imagery, and 

medical imaging. 

Polarimetric Imaging and Polarized Light Cameras 

Polarized light sensing systems detect directional light, and edge-oriented features. Directional 

polarimetric sensing is used for a variety of image analysis applications, for example man-made 

objects typically contain directional edges as surface features and polygon shapes, while natural 

images are typically of a non-uniform texture and shape orientation similar to fractals rather than 

oriented edges. Polarized light can also reveal cell component structure inside living organisms and 

tissues. 

Microscopy applications in the areas of biology and materials science are enhanced by using a 

combination of columnar polarized illumination to lighten an object, or polarized filters to capture 

reflected light from an object. In fact, some aspects of the composition of a biological specimen are 

only revealed using polarized light, refer Fig. 12.25. Optical characteristics such as refractive index, 

birefringence, transmittance, diattenuation, and dichroism respond in various ways to polarized light.

http://spie.org
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Fig. 12.25 Images showing a primary spermatocyte o 

enhancements. Polarized light illumination is directional, 

illuminated with normal polarized light and (right) same i 

Note that polarization reveals structures that do not appear 

Mehta et al. [916], a polarized light microscope is used to a 

as refraction and absorption (i.e., surface texture also). Im 

a crane fly, Nephrotoma suturalis, using polarized light 

ilar to a directional edge enhancement (Chap. 2). (LEFT) 

age enhanced c (double refraction) of the polarized light. 

ith other lighting methods. Images from NIH research by 

alyze the anisotropy of a specimen’s optical properties such 

e # Mehta et al. [916] Courtesy Springer Nature 

Polarized light imaging reveals shape and texture information reflected from surfaces, and captures 

the orientation of light source phase on an object. Some objects and surfaces respond quite differently 

to various polarized light effects. Optical light phase filters can be used to polarize the light prior to 

imaging, resulting in polarized light imagery. Common applications of light phase filtering include 

polarized sun glasses, and polarized camera lenses for consumer devices, advanced military imaging 

devices, and scientific imagers on microscopes. NASA and the military make great use Synthetic 

Aperture Radar (SAR) imaging, to combine signal strength of a reflection with the phase of the 

returned radar signal. 

Interferometry is concerned with the differences in phase between images of the same object taken 

over a range of time and perhaps different spectrums, which is processed to produce a difference signal 

which forms a Multi Spectral Signature of the objects (i.e., treating spectrums like consecutive frames 

in a video). 

Polarized light reveals molecular order in biological objects which affects optical reflectance, 

specifically as the order is revealed in the characteristics of the reflective surface of an object. 

For example, Synthetic Aperture Radar systems (SAR) operate in multiple polarizations or 

orientations via the synthetic aperture polarimetric shapes used. Various applications using SAR 

imagery take advantage of the directional edge features to classify images according to the orientation 

of edges in grasslands, forests, and developed areas containing man-made structures. Early work on 

texture analysis is found in Haralick [5, 6, 272], Krig [21], and Appendix D: Extended SDM Metrics. 

Military objects that are hidden in the visible RGB spectrum can often be easily identified using 

polarimetric features, inducing underground structures, landmines, and archeological structures by 

using the right SAR bands and polar orientation. 

For example, polarimetric imaging was explored in 2001 by Sadjadi [917], providing an early 

example of target detection published from unclassified military research. The research uses Infrared 

SAR data, mainly using the characteristics of polarimetric imaging (oriented light phase) alone, with 

little to no advanced image processing or machine vision, using only raw polarized light images.
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Basic features of the Sadjadi algorithm include the following:

• Using Stokes Vectors to detect connected regions of pixels (i.e., man-made structure shape) as 

distinguished from background clutter, measured using Bayesian error probabilities.

• Uses physics models to generate synthetic polarimetric JR test imagery of satellite scenes, including 

target man-made objects and natural looking background scene clutter. 

The results shown provide relatively good indications of where the background clutter is found, 

with minimal false detections of where the target objects are found, even when the target objects are 

only 4 pixels in area. The algorithm also responds well to increases in distance from imager to target, in 

the range 1 to 12 km for this particular satellite images. 

This unclassified military research paper describes detection of man-made objects in a clutter of 

natural objects. Note that polarized light is directionally oriented, therefore can detect oriented light 

reflections, corresponding to uniformly aligned surfaces or structures that are typically man-made 

compared to natural structures that are often more fractal-like. Polarimetric imaging is ideal for military 

applications and similar object detection applications such as aerial archaeology to find ancient 

structures. Note that using the optics of the imaging device is a short-cut for many applications to 

pre-segment and pre-filter images for a particular application, in this case the optical directional filters 

for polarimetry are used to segment features from clutter. 

Finally, there are many types of image processing operations that can be used to process 

non-polarized imagery to locate and enhance edges (edge polarization) under normal optical and 

lighting conditions, which may be equally useful instead of requiring polarized light imaging, see 

Chap. 2. 

To dig deeper into polarized light systems, refer [918] Polarized Light and Optical Systems (CRC 

Press, 2018) by Russell Chipman, Wai Sze Tiffany Lam, and Garam Young. See also Temple et al. 

[919] regarding sensitivity of the human eye to polarization. 

Multi-spectral Imaging 

We introduce a few multi-spectral imaging topics at an introductory level in this chapter. To dig 

deeper, probably the best source of scientific and practical resources for practitioners across all image 

spectrums is the SPIE—The International Society for Photonics And Optics—http://spie.org. 

Multi-spectral imaging has specific challenges for each spectral component used, see Fig. 12.26. 

For example IR imaging challenges are different than UV imaging challenges. Multi spectral camera 

systems are design to deal with visible light field radiation and invisible spectral fields. Each spectral 

field is subject to frequency-dependent wave propagation phenomenon, including absorption, reflec-

tion, refraction, diffraction scattering, birefringence or double-refraction, and polarization. We will 

only touch on some of these phenomenon in this section.

http://spie.org
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Fig. 12.26 The radiation spectrum. Note that the Optical Spectrum area extends from Infrared through visible to UV, 

XRAYS, GAMMA rays, and COSMIC rays. Image # NASA USG Public Domain Image 

Light is measured using brightness/contrast intensity (gray levels) and spectral information (RGB, 

Infrared, and Ultraviolet). Each component of the light spectrum contains different useful information. 

The Phase of the light (orientation) also contains useful information, which is the basis for Polarimetric 

Imaging, useful to detect light which rays which are column-oriented and traveling parallel in the same 

direction, useful for indicating man-made objects in a clutter of natural objects and clutter. 

Imaging is all about illumination and the detectors: the type of illumination used, and the type of 

imager used. It is critical in any computer vision application to find out the first principles about the 

origin of the images of interest and the lighting and perhaps atmospherics: particularly the spectrum 

(s) used, the angles of the illumination and the angles of the detectors used. Even the lens and optical 

system should be critically characterized: camera vendors typically perform geometric factory 

corrections in FFHW/SW on each camera to compensate for lens defects to correct geometric 

aberrations at the edges of images. For example, the first Hubble Telescope lens was ground wrong 

and had bad spots distorting the images, and was so defective that Fourier Spectrum Filtering was used 

to characterize the image defects and correct them using various algorithms before a replacement lens 

could be retrofitted. All these details, and more, combine to form images, and provide opportunities for 

specific processing and enhancements for each application. 

Light is a form of radiation of particles in the emission spectrum, and various types of radiation can 

be captured across a range of spectrums and used singly or in combinations such as RGB color 

combinations, SAR interferometric SAR radar systems which combine two or more SAR images from 

different frequencies together to reveal 3D surface topography and motion. Radiation spectrums 

overlap slightly, including invisible Infrared (IR) and near-IR, Red, Green, Blue, Ultraviolet, and 

various higher frequency radar spectrums. Multispectral imaging applications include satellite imag-

ing, biological microscopy systems, materials analysis, planetary science, and medical imaging such as 

dental radar images (XRAYS) and magnetic resonance imaging (MRI). Note that MRI images are 

composed of layers, or cross-sections of a 3D object, which can be reassembled into a 3D volume. And 

Confocal Microscopy is a related technology, allowing the image focal plane in the microscope to be 

moved up and down, in order to collect a set of layers that are all in focus, which can later be 

reassembled into a volume for unified analysis and rendering. 

An example of target detection research involving Multi spectral imaging to detect muzzle flashes is 

found in [920] from Montoya et al. who provide the following details on their research. The target 

detection system uses a dual-band imaging system, capturing 340 images per second, where the light 

source follows two separate paths to the image plane, and then on to a processing pipeline. First, the 

<x,y> coordinate location of each pixel, which represents muzzle flash energy, is mapped to the plane 

from each band via a spatial registration function. The size of the pixel field determines the energy of
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the possible muzzle flash, and is used to determine if there is sufficient energy to possibly be a muzzle 

flash. The determination includes accounting for atmospheric attenuation and optical range. Also, 

spectral shift in the optical range is determined, to be sure that the signals are within the operational 

range of the imaging system. All these considerations are considered in order to determine if a valid 

muzzle flash is detected. NOTE: IR and NEAR-IR images are a good spectrum for detecting heat 

energy. 
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Multi-spectral imaging is also used for segmenting earth ground images according to elevation, type 

of crops or ground cover, temperature, and other variables to perform remote analysis (Fig. 12.27). 

Note that multiple images from multiple spectrums can be combined together for visualization of 

specific surface attributes, to detect to the light response variations of various subjects in a single 

image, such as the RGB and a Z range map (*i.e., elevation) shown together in Fig. 12.27. 

Fig. 12.27 Showing (left) a SAR (Synthetic Aperture Rad 
earth, and receives the signal reflection in swaths which ar 

(drone) based SAR radar elevation of a region of the El 

portion sinking ~28 inches) due to ground water extract 

# courtesy JPL [921] 

) satellite, which transmits radar signals to the surface of the 

processed and combined for imaging, (right) L-band UAV 

entro valley in California, showing elevation change (red 

n during the 2015–2016 drought. Public domain images 

Tomography for Confocal Microscopy and MRI 

Tomography is the acquisition of 2D image slices from 3D volumes. The 2D slices (Fig. 12.28 top left) 

are ideally all taken in focus, which requires precision mechanical optical focus adjustments and 

distance data from the system to proceed, slice by slice, to take each 2D image in focus. Such systems 

are motorized and accurately controlled via software and scripting API’s and GUI interfaces. 3D 

Tomography for MRI and X-Ray imaging are familiar in medical applications, where slices of a 

specimen are imaged, and later assembled into a volume for image rendering. Industrial applications of 

tomography include X-Ray scans of aircraft parts to locate defects and surface cracks. Confocal
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microscopy and MRI medical imaging produce stacks of 2D image scans, which can be combined into 

a 3D voxel volume for visualization and analysis, and can take advantage of 3D Fourier transform 

methods for data visualization and processing. 
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Fig. 12.28 Fourier slice projection theorem shown for #D 

space where the quadrants are shifted, extracting any 2D 

Fourier transforming the plane into a discrete 2D image. 

quadrant shifted 2D Fourier Series space from a 2D imag 

signal 

d 2D image sources. TOP: showing a 3d volume in Fourier 

age plane passing through the center origin, then inverse 

TTOM: extracting a line passing through the center from 

and then inverse transforming the extracted line into a 1D 

The Fourier transform allows for a forward and inverse transform of 1D, 2D, 3D, and even nD data. 

The forward transform generates a frequency spectrum of the sin and cos waves composing the input 

source, and the spectrum can be filtered and then inverse transformed to enhance the image, by 

removing or enhancing specific frequencies. 

Refer Fig. 12.28 for a graphic representation of the algorithm for the Fourier Projection Slice 

Theorem, which is one method of 3D light field processing. The 3D Fourier space is used to represent 

3D data, for example, data from confocal microscopy stacks as shown in Fig. 12.28 (top left) or MRI 

slice scans. To convert the 3D Fourier magnitude & phase results into a space for visualization, 2D 

views and renderings are created by slicing out arbitrary 2D plane orientations passing through the



origin of the octant-shifted re-assembled 3D volume—the extracted planes are then inverse 

transformed using the 2D FFT resulting in 2D images, see details in Krig [108] and Curless [382, 385]. 
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For further information on the 3D FFT analysis, and the Fourier slice method of extracting 2D 

images from a 3D volume, refer [922] “DRR Generation using Fourier Slice Theorem on the GPU,” 

Marwan Abdellah, Ayman Eldeib, Mohamed I. Owis, 2015. For details on Fourier Signatures for 

volumetric 3D data see Skibbe et al. [923] “Fast computation of 3D spherical Fourier harmonic 

descriptors—a complete orthonormal basis for a rotational invariant representation of three-

dimensional objects”. For tomography applications see also Three-Dimensional Computer Tomogra-

phy Volume Rendering [924], and Real-time 3D analysis during electron tomography using 

tomviz [925]. 

Confocal Microscopy and Florescence Imaging 

Confocal Microscopy methods allow the depth of field to be focused at a specified focal plane in deeper 

specimens, and use planar light to illuminate and capture 2D image slices, which can be composed into 

a 3D volume, allowing volume rendering and volumetric enhancements, as well as measurement in 3D 

(Fig. 12.29). The depth of field controls are implemented by a Z axis travel motor controller, which 

moves the specimen on the stage to travel up/down in relation to the lens for imaging different planes in 

focus, and later the focused planes are reconstructed into an all-in-focus volume. 

Fluorescence Imaging methods introduce colored and fluorescent dyes into the prepared sample, 

which allows a precise spectral light source to enhance the desired features in the desired wavelengths 

of the dyes, such as cells or intern structures of cells. Note that the light source used may be a laser 

illuminating a plane rather than a bulb illuminating a 3D field. The planar light source is selected to 

enhance the fluorescence of the prepared and dyed sample in the image plane for optimal visualization.
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Fig. 12.29 Comparison of various microscopy technique 

slice set reconstruction and volume rendering, bottom left: 

probe (red) of nuclear proteins in (green), bottom right: 

various densities as lighted shaded polygons. Image (C) Jon 

Top left: single-slice widefield image, top right: confocal 

onfocal slice image rendering with fluorescence membrane 

visualization of nuclear protein regions, color coded for 

man et al. [927], used courtesy of Springer Nature Protocols 

To dig deeper into microscopy applications and equipment, see the product literature of high-end 

microscope vendors, and see also various textbooks:

• Confocal Microscopy Springer Protocol Handbooks [926]

• Tutorial: guidance for quantitative Confocal microscopy [927]

• Springer Handbook of Microscopy [928]

• Confocal Microscopy: Principles and Modern Practices [929]
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Summary 

This chapter provides a discussion of a wide range of applied and future visual computing topics. We 

highlight specific background concepts and provide an introduction to the fundamentals of view 

synthesis models and computer graphics volume rendering methods. Neural network methods 

discussed in Chaps. 9 and 10 and the DDN hybrid networks as discussed in Chap. 11 are being 

increasingly applied across visual sciences and research projects. In the commercial realm, we 

highlight areas where computer vision is now an expected and familiar commodity, with mostly free 

default apps on any smartphone such as face recognition, selfie-images turned into 3D avatars, full 3D 

body reconstruction including skin and clothing models, interactive scenic tours overlaying objects 

onto the video scene in a mixed-reality fashion, view synthesis, text-to-image synthesis, and much 

more. The GPU is becoming a visual computing processor, assisted by special-purpose computer 

vision and machine learning processors, as all the pixels are processed and combined for display inside 

the GPU. We cover a selected range of applied computer vision technologies in this chapter which 

seem to a broad impact, pointing to a future of mixed synthetic objects and real objects through the 

merger of computer vision, computer graphics, and imaging. 

Learning Assignments 

1. Describe view synthesis at a high-level, and discuss a specific view synthesis method of your 

choice to add detail to the description as a case in point. 

2. Discuss how text-to-image synthesis as used in view synthesis leads to innovations in classifier 

design beyond the single-class FC to SoftMax style commonly used in DNN’s. 

3. Describe three innovations to image sensors which solve problems with lighting, contrast, and 

pixel resolution. 

4. Describe super-resolution, what it does, and how it works. 

5. Explain how super-resolution can be applied to correct blind spots and occlusion. 

6. Describe super-sampling in video, and discuss a few applications. 

7. Explain the difference between single-image and multi-image super resolution. 

8. List the major technical challenges for image stitching of multiple images together, and describe an 

algorithmic-level solution for at least one of the challenges in the stitching process. 

9. Describe a light field in terms of various representations including 3D, 5D, and 6D. 

10. Create a flow chart showing how Volume Rendering works. 

11. Describe a voxel, and create a model of a voxel incorporating color and multi-modal attributes for 

GPS coordinates and particle/voxel motion. 

12. Discuss applications where 2D image slices are collected and combined into a 3D volume, and 

how to eliminate problems that may be unique in each axis, such as low resolution in the z or stack 

axis compared to higher resolution in the x,y 2D image axis. 

13. Discuss voxel surface lighting and shading, given two light sources, and provide a pseudo-code 

implementation. 

14. Describe diffusion models and Markov Chain Models. 

15. Contrast and compare Curiosity models and GAN’s. 

16. Describe the DALLE-@ text-to-image synthesis architecture. 

17. Describe Zero-Shot learning, and provide an example. 

18. Describe AML classification and feature learning, and contrast with zero-shot learning. 

19. Describe how an avatar can be animated using pose points.
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Discuss why Neural Radiance Field Code Books are useful, how a codebook would be used in a 

view synthesis application, and what items should be contained in the codebooks such as visual 

model info, and catalog indexing info. 

21. Describe the 3D Fourier Slice projection method (volume to 2D slices), and describe how the 3D 

Fourier Transform works compared to the 2D Fourier Transform. 

22. Discuss polarimetric imaging and applications. 

23. Discuss fluorescence imaging systems and applications. 

24. Describe how avatars created from real images for the cases of simgle image and multiple image 

source. 

25. Describe how human pose point detection works, and how pose points can be used for biometric 

analysis and animation.



Appendix A: Synthetic Feature Analysis 

This appendix provides analysis of several common detectors against the synthetic feature alphabets 
described in Chap. 7. The complete source code, shell scripts, and the alphabet image sets are available 
from Springer Apress at: http://www.apress.com/source-code/ComputerVisionMetrics (Fig. A.1). 

Fig. A.1 Example analysis results from Test #4 below, (left) annotated image showing detector locations, (center) count 
of each alphabet feature detected, shown as a 2D shaded histogram, (right) set of 2D shaded histograms for rotated image 
sets showing all ten detectors 

This appendix contains the following:

• Background on the analysis, methodology, goals, and expectations.
• Synthetic alphabet ground truth image summary.
• List of detector parameters used for standard OpenCV methods: SIFT, SURF, BRISK, FAST, 

HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB. Note: No feature descriptors are computed 
or used, only the detector portions of BRISK, SURF, SIFT, ORB, and STAR are used in the 
analysis.

• Test 1: Interest point alphabets.
• Test 2: Corner point alphabets. 

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8
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http://www.apress.com/source-code/ComputerVisionMetrics
https://doi.org/10.1007/978-981-99-3393-8#DOI
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• Test 3: Synthetic alphabet overlays onto real images.
• Test 4: Rotational invariance of detectors against synthetic alphabets. 

Background Goals and Expectations 

The main goals for the analysis are as follows:

• To develop some simple intuition about human vs. machine detection of interest point and corner 
detectors, to observe detector behavior on the synthetic alphabets, and to develop some understand-
ing of the problems involved in designing and tuning feature detectors.

• To measure detector anomalies among white, black, and gray versions of the alphabets. A human 
would recognize the same pattern easily whether or not the background and foreground are 
changed; however, detector design and parameter settings influence detector invariance to back-
ground and foreground polarity.

• To measure detector sensitivity to slight pixel interpolation artifacts under rotation. 

Note 

Experienced practitioners with well-developed intuition regarding capabilities of interest point and 
corner detector methods may not find any surprises in this analysis. 

The analysis uses several well-known detector methods as implemented in the OpenCV library 
(Table A.1). The analysis provides detector information only, with no intention to compare detector 
goodness against any criteria. Details on which features from the synthetic alphabets are recognized by 
the various detectors are shown in summary tables, counting the number of times a feature is detected 
with each grid cell. For some applications, the synthetic interest point alphabet approach could be 
useful, assuming that an application-specific alphabet is designed, and detectors are designed and 
tuned for the application, such as a factory inspection application to identify manufactured objects or 
parts. 

Test Methodology and Results 

The images in the ground truth data set are used as input for a few modified OpenCV tests:

• opencv_test_features2d 
(BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB)

• opencv_test_nonfree 
(SURF, SIFT) 

The tuning parameters used for each detector are shown in Table A.1; refer the OpenCV documen-
tation for more information. Note that no attempt is made to tune the detector parameters for the 
synthetic alphabets. Parameter settings are reasonable defaults; however, the maximum keypoint 
feature count is bumped up in some cases to allow all the detected features to be recorded. 

Each test produces a variety of results, including the following results:
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Table A.1 Tuning parameters for detectors 

Detector Tuning parameters 

BRISK octaves = 3 
threshold = 30 

FAST threshold = 10 
nonMaximalSuppression = TRUE 

HARRIS maxCorners = 60000 (to capture all detections) 
qualityLevel = 1.0 
minDistance = 1 
blockSize = 3 
useHarrisDetecror = TRUE 
k = .04 

GFFT maxCorners = 60,000 (to capture all detections) 
qualityLevel = .01 
minDistance = 1.0 
blockSize = 3 
useHarrisDetector = FALSE 
k = .04 

MSER Delta = 5 
minArea = 60 
maxArea = 14400 
maxvariation = .25 
minDiversity = .2 
maxEvolution = 200 
areaThreshold = 1.01 
minMargin = .003 
edgeBlurSize = 5 

ORB WTA_K = 2 
edgeThreshold = 31 
firstLevel = 0 nFeatures = 60,000 (to capture all detections) nLevels = 8 patchSize = 31 
scaleFactor = 1.2 scoreType = 0 

SIFT contrastThreshold = 4.0 edgeThreshhold = 10.0 nFeatures = 0 nOctaveLayers = 3 sigma = 1.0 

STAR maxSize = 45 responseThreshold = 30 lineThresholdProjected = 10 lineThresholdBinarized = 8 

SURF Extended = 0 hessianThreshold = 100.0 nOctaveLayers = 3 nOctaves = 4 upright = 0 

SIMPLEBLOB thresholdStep = 10 
minThreshold = 50 
maxThreshold = 220 
minRepeatability = 2 
minDistBetweenBlobs = 10 
filterByColor = true 

blobColor = 0 
filterByArea = true 

minArea = 25 
maxArea = 5000 
filterByCircularity = false 

minCircularity = 0.8f 
maxCircularity = std::numeric_limits< float >:: max () 
filterByInertia = true 

minInertiaRatio = 0.1f 
maxInertiaRatio = std::numeric_limits< float >:: max () 
filterByConvexity = true 

minConvexity = 0.95f 
maxConvexity = std::numeric_limits< float >:: max ()
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1. Annotated images showing location and orientation (if provided) for detected features. 
2. Summary count of each detected synthetic feature across the grid in text files, including interest 

point coordinates, detector response strength, orientation if provided by the detector, and the 
number of total detected synthetic features found. 

3. Two-dimensional histograms showing bin count for each feature in the alphabet. 

Detector Parameters Are Not Tuned for the Synthetic Alphabets 

No feature detector tuning is attempted here. Why? In summary, feature detector tuning has very 
limited value in the absence of (1) a specific feature descriptor to use the keypoints and (2) an intended 
application and use-cases. Some objections may be raised to this approach, since detectors are 
designed to be tuned and must be tuned to get best results for real applications. However, the test 
results herein are only a starting point, intended to allow for simple observations of detector behavior 
compared to human expectations. 

In some cases, a keypoint is not suitable for producing a useful feature descriptor, even if the 
keypoint has a high score and high response. If the feature descriptor computed at the keypoint 
produces a descriptor that is too weak, the keypoint and corresponding descriptor should both be 
rejected. Each detector is designed to be useful for a different class of interest points, and tuned 
accordingly to filter the results down to a useful set of good candidates for a specific feature extractor. 

Since we are not dealing with any specific feature descriptor methods here, tuning the keypoint 
detectors has limited value, since detector parameter tuning in the absence of a specific feature 
description is ambiguous. Furthermore, detector tuning will be different for each detector–descriptor 
pair, different for each application, and potentially different for each image. 

Tuning detectors is not simple. Each detector has different parameters to tune for best results on a 
given image, and each image presents different challenges for lighting, contrast, and image 
preprocessing. For typical applications, detected keypoints are culled and discarded based on some 
filtering criteria. OpenCV provides several novel methods for tuning detectors; however, none are used 
here. The OpenCV tuning methods include the following:

• DynamicAdaptedFeatureDetector class will tune supported detectors using an adjusterAdapter() 
to only keep a limited number of features, and to iterate the detector parameters several times and 
redetect features in order to try and find the best parameters, keeping only the requested number of 
best features. Several OpenCV detectors have an adjusterAdapter() provided while some do not, 
and the API allows for adjusters to be created.

• AdjusterAdapter class implements the criteria for culling and keeping interest points. Criteria may 
include KNN nearest matching, detector response or strength, radius distance to nearest other 
detected points, removing keypoints for which a descriptor cannot be computed, or other.

• PyramidAdaptedFeatureDetector class is can be used to adapt detectors that do not use a scale-
space pyramid, and this adapter will create a Gaussian pyramid and detect features over the 
pyramid.

• GridAdaptedFeatureDetector class divides an image into grids, and adapts the detector to find the 
best features within each grid cell.
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Expectations for Test Results 

The reader should treat these tests as information only to develop intuition about feature detection. The 
test results do not prove the merits of any detector. Interpretation of the test results should be done with 
the following information in mind: 

1. One set of detector tuning parameters is used for all images, and detector results will vary widely 
based on tuning parameters. In fact, the parameters are deliberately set to over-sensitive values for 
ORB, SURF, and other detectors to generate the maximum number of possible keypoints that can 
be found. 

2. Sometimes an alphabet feature generates multiple detections; for example, a single corner alphabet 
feature may actually contain several corner features. 

3. The detection results may not be repeatable over the distribution of replicated features in the image 
feature grid. In other words, identical patterns, which look about the same to a human, are 
sometimes not recognized at different locations. Without looking in detail at each algorithm, it is 
hard to say what is happening. 

4. Detectors that use an image pyramid such as SIFT, SURF, ORB, STAR, and BRISK may identify 
keypoints in a scale space that are offset or in between the actual alphabet features. This is expected, 
since the detector is using features from multiple scales. 

Summary of Synthetic Alphabet Ground Truth Images 

The ground truth dataset is summarized here. Note that rotated versions of each image file in the set are 
provided from 0 to 90° at 10° intervals. The 0° image in each set is 1024 × 1024 pixels, and the rotated 
images in each set are slightly larger to contain the entire rotated 1024 × 1024 pixel grid. 

Synthetic Interest Point Alphabet 

The synthetic interest point alphabet contains multiples of the 83 unique patterns, as shown in Fig. A.2. 
A total of 7 × 7 sets of the 83 features fit within the 1024 × 1024 image. Total unique feature count for 
the image is 7 × 7 × 83 = 4116, with 7 × 7 = 49 instances of each feature. The features are laid out on a 
14 × 14 pixel grid composed of 10 rows and 10 columns, including several empty grid locations. Gray 
image pixel values are 0 × 40 and 0 × c0, black and white pixel values are 0 × 0 and 0 × ff, respectively. 

Fig. A.2 Synthetic interest points
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Synthetic Corner Point Alphabet 

The synthetic corner point alphabet contains multiples of the 63 unique patterns, as shown in Fig. A.3. 
A total of 8 × 12 sets of the 63 features fit within the 1024 × 1024 image. Total unique feature count is 
8 × 12 × 63 = 6048, with 8 × 12 = 96 instances of each feature. Each feature is arranged on a grid of 
14 × 14 pixel rectangles, including nine rows and six columns of features. Gray image pixel values are 
0 × 40 and 0 × c0, black and white pixel values are 0 × 0 and 0 × ff. 

Fig. A.3 Synthetic corner point 

Synthetic Alphabet Overlays 

A set of images with the synthetic alphabets overlaid is provided, including rotated versions of each 
image, as shown in Fig. A.4. 

Fig. A.4 Synthetic alphabets overlaid on real images 

Test 1: Synthetic Interest Point Alphabet Detection 

Table A.2 provides the total detected synthetic interest points. Note that total detector counts include 
features computed at each scale of an image pyramid. For detectors, which report feature detections at 
each level of an image pyramid, individual pyramid-level detections are shown in Table A.3.
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Table A.2 Summary count of detected features found in the synthetic interest point alphabet, 0° rotation 

Detector 
Interest points 
White on black 

Interest points 
Black on white 

Interest points 
White on black 
Salt/pepper noise 

Interest points 
White on black 
Gaussian filtered 

Interest points 
Lt. Gray on Dk. Gray 

SURF 18178 19290 33419 22951 13526 

SIFT 11672 15208 18323 19054 8519 

BRISK 823 4634 25070 9075 550 

FAST 343 4971 41265 50711 2112 

HARRIS 14833 14217 47025 23473 14854 

GFFT 16296 14069 52415 58804 15876 

MSER 0 1 2758 2289 0 

ORB 32414 42675 56653 55044 27996 

STAR 3486 5847 3692 4336 2277 

SIMPLEBLOB 441 1201 68 385 441 

Table A.3 Octave count of detected features found in the synthetic interest point alphabet, 0° rotation 

Detector 

Interest points 
White on 
black 

Interest points 
Black on 
white 

Interest points 
White on black 
Salt/pepper 
noise 

Interest points 
White on black 
Gaussian 
filtered 

Interest points 
Lt. Gray on 
Dk. Gray 

SURF total: Octave 
0 
Octave 1 
Octave 2 
Octave 3 

18178 
9044 
4392 
4623 
119 

19290 
9807 
4505 
4862 
116 

33419 
24820 
5199 
3270 
130 

22951 
15667 
3936 
3226 
122 

13526 
8176 
2801 
2435 
114 

BRISK total 
Octave 0 
Octave 1 
Octave 2 
Octave 3 

823 
258 
21 

402 
136 

4634 
3482 
170 
851 
101 

25070 
24686 

2 
315 
54 

9075 
8256 
226 
555 
31 

326 
143 
0 

179 
4 

ORB total 
Octave 0 
Octave 1 
Octave 2 
Octave 3 
Octave 4 
Octave 5 
Octave 6 
Octave 7 

32414 
330 
5507 
7437 
6114 
4575 
3390 
2988 
2073 

42675 
4924 
9467 
8519 
6333 
4625 
3495 
3150 
2162 

56653 
13030 
10859 
9049 
7541 
6284 
4744 
3173 
1973 

55044 
13030 
10859 
9049 
7541 
6284 
3869 
2793 
1619 

27996 
330 
5126 
7003 
5704 
3922 
2787 
2061 
1063 

The total number of features detected in each alphabet cell is provided in summary tables from the 
annotated images. Note that several features may be detected within each 14 × 14 cell, and the 
detectors often provide non-repeatable results, which are discussed at the end of this appendix. The 
counts show the total number of alphabet features detected across the entire image, as shown in 
Fig. A.5.
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Fig. A.5 Annotated BRISK detector results. NOTE: there are several non-repeatability anomalies
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Annotated Synthetic Interest Point Detector Results 

For ORB and SURF detectors, the annotated renderings using the drawkeypoints() function are too 
dense to be useful for visualization, but are included in the online test results. 

The diameter of the circle drawn at each detected keypoint corresponds to the “diameter of the 
meaningful keypoint neighborhood,” according to the OpenCV KeyPoint class definition, which 
varies in size according to the image pyramid level where the feature was detected. Some detectors 
do not use a pyramid, so the diameter is always the same. The position of the detected features is 
normalized to the full resolution image, and all detected keypoints are drawn. 

Entire Images Available Online 

To better understand the detector results for each test, the entire image should be viewed to see the 
anomalies, such as where detectors fail to recognize identical patterns. Figure A.5 is an entire image 
showing BRISK detector results, while others are available online. Test results shown in Figs. A.6, 
A.7, A.8, A.9, A.10, A.11, A.12, A.13, A.14, and A.15 only show a portion of the images.
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Fig. A.6 SIMPLEBLOB detector , with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white and gray images, color-coded 
tables
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Fig. A.7 STAR detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper response. 
(Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature detections 
across all the alphabets in the grid across each 1024 × 1024 image, black, white and gray images, color-coded tables



682 Appendix A: Synthetic Feature Analysis

Fig. A.8 GFFT detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper response. 
(Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature detections 
across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded tables
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Fig. A.9 MSER detector (black on white, white on black, and light gray on dark gray have no detected features) 

Fig. A.10 ORB detector (annotations using default parameters not useful, images provided online), with results showing 
summary count of individual alphabet feature detections across all the alphabets in the grid, across each 1024 × 1024 
image, black, white, and gray images, color-coded tables
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Fig. A.11 BRISK detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded 
tables
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Fig. A.12 FAST detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded 
tables
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Fig. A.13 HARRIS detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded 
tables
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Fig. A.14 SIFT detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper response. 
(Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature detections 
across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded tables
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Fig. A.15 SURF detector (annotations using default parameters not useful, images provided online), with results 
showing summary count of individual alphabet feature detections across all the alphabets in the grid, across each 
1024 × 1024 image, black, white, and gray images, color-coded tables 

Test 2: Synthetic Corner Point Alphabet Detection 

Table A.4 provides the total detected synthetic corner points at all pyramid levels; some detectors do 
not use pyramids. Note that for detectors that report features separately over image pyramid levels, 
individual pyramid-level detections are shown in Table A.5. 

Each feature exists within a 14 × 14 pixel region, and the total number of features detected in each 
cell is provided in summary tables with the annotated images. Note that several features may be 
detected within each 14 × 14 cell, and the detectors often provide non-repeatable results, which are 
discussed at the end of this appendix. 

Table A.4 Summary count of detected features found in the synthetic interest point alphabet, 0° rotation 

Detector 
Corner points 
White on black 

Corner points 
Black on white 

Corner points 
White on black 
Salt/pepper noise 

Corner points 
White on black 
Gaussian filtered 

Corner points 
Lt. Gray on Dk. Gray 

SURF 28579 28821 32637 26806 26406 

SIFT 17996 17515 22377 28624 16122 

BRISK 1852 2286 22472 12522 550 

FAST 2112 2304 37283 51266 2112 

HARRIS 28616 29210 45615 30868 29760 

GFFT 32720 31578 51969 55069 32597 

MSER 0 0 3751 2446 0 

ORB 40162 40373 59549 58693 37665 

STAR 5932 6178 5589 7473 4251 

SIMPLEBLOB 0 96 1 1 0
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Table A.5 Octave count of detected features found in the synthetic corner point alphabet, 0° rotation 

Detector 

Interest points 
White on 
black 

Interest points 
Black on 
white 

Interest points 
White on black 
Salt pepper 
noise 

Interest points 
White on black 
Gaussian 
filtered 

Interest points 
Lt. Gray on 
Dk. Gray 

SURF total: Octave 
0 
Octave 1 
Octave 2 
Octave 3 

28579 
16122 
2327 
9989 
141 

28821 
16217 
2315 

10141 
148 

32637 
20494 
2925 
9062 
156 

26806 
15402 
2008 
9297 
99 

26406 
16120 
1692 
8582 
12 

BRISK total 
Octave 0 
Octave 1 
Octave 2 
Octave 3 

1852 
1356 
172 
324 

0 

2286 
1223 
278 
727 
57 

22472 
21913 

2 
535 
22 

12522 
11686 

183 
644 
8 

550 
426 
0 

124 
0 

ORB total 
Octave 0 
Octave 1 
Octave 2 
Octave 3 
Octave 4 
Octave 5 
Octave 6 
Octave 7 

40162 
1932 
6752 
9049 
6870 
4334 
4072 
3909 
3244 

40373 
2105 
6653 
9049 
6920 
4343 
4181 
3919 
3203 

59549 
13030 
10859 
9049 
7541 
6284 
5237 
4364 
3185 

58693 
13030 
10859 
9049 
7541 
6284 
5010 
4080 
2840 

37665 
1932 
6594 
9049 
6664 
4140 
3751 
3316 
2219 

Annotated Synthetic Corner Point Detector Results 

Test 2 is exactly like the interest point detector results in Test 1. As such, for ORB and SURF detectors, 
the annotated renderings using the drawkeypoints() function are too dense to be useful, but are 
included in the online test results. 

The diameter of the circle drawn at each detected keypoint corresponds to the “diameter of the 
meaningful keypoint neighborhood,” according to the OpenCV KeyPoint class definition, which 
varies in size according to the image pyramid level where the feature was detected. Some detectors 
do not use a pyramid, so the diameter is always the same. The position of the detected features is 
normalized to the full resolution image, and all detected keypoints are drawn. 

Entire Images Available Online 

To better understand the detector results for each test, the entire image should be viewed to see the 
anomalies, such as where detectors fail to recognize identical patterns. Test results shown in 
Figs. A.16, A.17, A.18, A.19, A.20, A.21, A.22, A.23, A.24, and A.25 only show a portion of the 
images.
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Fig. A.16 SIMPLE BLOB detector (black on white is the only image with detected features), with results showing 
summary count of individual alphabet feature detections across all the alphabets in the grid, across each 1024 × 1024 
image, black, white, and gray images, color-coded tables



Test 2: Synthetic Corner Point Alphabet Detection 691

Fig. A.17 STAR detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded 
tables
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Fig. A.18 GFFT detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded 
tables



Test 2: Synthetic Corner Point Alphabet Detection 693

Fig. A.19 BRISK detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded 
tables
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Fig. A.20 FAST detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded 
tables
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Fig. A.21 HARRIS detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper 
response. (Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature 
detections across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded 
tables
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Fig. A.22 SIFT detector, with results shown for a single alphabet grid set. (Top row) Gaussian and salt/pepper response. 
(Middle row) Black, white, and gray response. (Bottom row) Summary count of individual alphabet feature detections 
across all the alphabets in the grid, across each 1024 × 1024 image, black, white, and gray images, color-coded tables
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Fig. A.23 SURF detector (annotations using default parameters not useful, images provided online), with results 
showing summary count of individual alphabet feature detections across all the alphabets in the grid, across each 
1024 × 1024 image, black, white, and gray images, color-coded tables 

Fig. A.24 ORB detector (annotations using default parameters not useful, images provided online), with results showing 
summary count of individual alphabet feature detections across all the alphabets in the grid, across each 1024 × 1024 
image, black, white, and gray images, color-coded tables
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Fig. A.25 MSER detector (black on white, white on black, and light gray on dark gray have no detected features) 

Table A.6 Summary count of detected features found in the synthetic overlay images of little girls 

Detector 
Normal 
Image, no overlays 

Black corners 
Overlay 

White 
Corners 
Overlay 

Black interest 
Points overlay 

White interest points 
Overlay 

SURF 3945 16458 20809 10134 14196 

SIFT 1672 12417 15347 8017 11551 

BRISK 600 7919 10351 5914 8741 

FAST 9026 25463 24952 17770 17995 

HARRIS 475 9393 22201 4408 11097 

GFFT 4474 23009 25120 11632 13872 

MSER 1722 174 163 309 209 

ORB 7325 53080 57016 41300 50946 

STAR 477 3135 5558 2728 4756 

SIMPLEBLOB 19 45 10 551 405 

Test 3: Synthetic Alphabets Overlaid on Real Images 

Table A.6 provides the total detected synthetic features found in the test images of little girls, shown in 
Fig. A.3. Note that only the 0° version is used (no rotations), and both the black versions and the white 
versions of each alphabet are overlaid. In general, the white feature overlays produce more interest 
points and corner-point detections. 

Annotated Detector Results on Overlay Images 

Annotated images are available online. 

Test 4: Rotational Invariance for Each Alphabet 

This section provides results showing detector response as rotational invariance across the full 0–90° 
rotated image sets of black, white, and gray alphabets. Key observations:
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• Black on white, white on black: Rotational invariance is generally less using black and white 
images with the current set of detectors and parameters, mainly owing to (1) the maxima and 
minima values of 0 × 0 and 0 × ff used for pixel values and (2) un-optimized detector tuning 
parameters. The detectors each seem to operate in a similar manner on images at orientations of 0° 
and 90° that contain no rotational anti-aliasing artifacts on each alphabet pattern; however, for the 
other rotations of 10–80°, pixel artifacts combine to reduce rotational invariance for these alphabet 
patterns—each detector behaves differently.

• Light gray on dark gray: Rotational invariance is generally better for the detectors using the 
reduced-range gray scale image alphabet sets using pixel values of 0 × 40 and 0 × c0, rather than the 
full maxima and minima range used in the black and white image sets. The gray alphabet detector 
results generally show the most well-recognized alphabet characters under rotation. This may be 
due to the less pronounced local curvature of closer range gray values in the local region at the 
interest point or corner. 

Methodology for Determining Rotational Invariance 

The methodology for determining rotational invariance is illustrated in Figs. A.26, A.27, and A.28, and 
illustrated via pseudo-code as follows: 

Fig. A.26 Method of computing and binning detected alphabet features across rotated image sets, mocked-up SIFT data 
for illustration. (Left) original image. (Center left) Rotated image annotated with detected points. (Center) count of all 
detected points across entire image superimposed on alphabet cell regions. (Center right) Summary bin counts of detected 
alphabet features in grid cells. (Right) 2D histogram rendering of bin counts as an image; each pixel value is the bin count. 
Brighter pixels in the image have a higher bin count, meaning that the alphabet cell has a higher detection count 

Fig. A.27 Group of 10 SIFT gray scale corner alphabet feature detection results displayed as a 2D histogram image, 
sephia LUT applied, with pixel values set to the histogram bin values. The histogram for each rotated image is 
shown here: left image = 0° rotation; left-to-right sequence: 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90° rotations. Note 
that the histogram bin counts are computed across the entire image, summing all detections of each alphabet feature
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Fig. A.28 (Left) Gray corner points 2D histogram bin images. Left to right: 0–90° rotations, gray scale LUT applied, 
and light gray on dark gray interest points alphabet 2D histogram binning image, contrast enhanced, sephia LUT applied 

For (degree = 0; degree < 100; degree += 10) 
Rotate image (degree) 
For each detector (SURF, SIFT, BRISK, . . .): 
Compute interest point locations 
Annotate rotated image showing interest point locations 
Compute bin count (# of times) each alphabet feature is detected 
Create bin count image: pixel value = bin count for each alphabet character
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Figures A.29 and A.30 show the summary bin counts of synthetic corner point detections across 0– 
90° rotations. The 10 columns in each image show, left to right, the 0–90° rotated image final bin 
counts displayed as images. 

Fig. A.29 Summary bin counts of detected corner alphabet features displayed as a set of 6 × 9 pixel images, where each 
pixel value is the bin count. (Left 10 × 10 image group) Black on white corners. (Center 10 × 10 image group) Light gray 
on dark gray corners. (Right 10 × 10 image group) White on black corners. Note that the gray alphabets are detected with 
the best rotational invariance. The columns are left to right 0–90° rotations, and rows are top to bottom, SURF, SIFT, 
BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB. Sephia LUT applied 

Fig. A.30 Summary bin counts of detected interest point alphabet features displayed as a set of 10 × 10 pixel images, 
where each pixel value is the bin count. (Left 10 × 10 image group) Black on white corners. (Center 10 × 10 image group) 
Light gray on dark gray corners. (Right 10 × 10 image group) White on black corners. Note that the gray alphabets are 
detected with the best rotational invariance. The columns are left to right 0–90° rotations, and rows are top to bottom, 
SURF, SIFT, BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB. Sephia LUT applied
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Analysis of Results and Non-repeatability Anomalies 

Complete analysis results are online, including annotated images showing detected keypoint locations 
and text files containing summary information on each detected keypoint. 

Caveats 

There are deliberate reasons why each interest point detector is designed differently; no detector may 
be considered superior in all cases by any absolute measure. A few arguments against loosely 
interpreting these tests results are as follows: 

1. Unpredictability: Interest point detectors find features that are often unpredictable from the human 
visual system standpoint, and they are not restricted by design into the narrow boundaries of 
synthetic interest points and corners points shown here. Often, the interest point detectors find 
features that a human would not choose. 

2. Pixel aliasing artifacts: The aliasing artifacts affect detection and are most pronounced for the 
rotated images using maxima and minima alphabets, such as black on white or white on black, and 
are less pronounced for light gray on dark gray alphabets. 

3. Scale space: Not all the detectors use scale space, and this is a critical point. For example, SIFT, 
SURF, and ORB use a scale-space pyramid in the detection process. The scale-space approach 
filters out synthetic alphabet features that are not visible in some levels of a scale-space pyramid. 

4. Binary vs. scalar values: FAST uses a binary value comparison to build up the descriptor, while 
other methods use scalar values such as gradients. Binary value methods, such as FAST, will detect 
the same feature regardless of polarity or gray value range; however, scalar detectors based on 
gradients are more sensitive to pixel value polarity and pixel value ranges. 

5. Pixel region size: FAST uses a 7 × 7 patch to look for connected circle perimeter regions, while 
other features like SIFT, SURF, and ORB use larger pixel regions that bleed across alphabet grid 
cells, resulting in interest points being centered between alphabet features, rather than on them. 

6. Region shape: Features such as MSER and SIMPLEBLOB are designed to detect larger connected 
regions with no specific shape, rather than smaller local features such as the interest point alphabets. 
An affine-invariant detector, such as SIFT, may detect features in an oval or oblong region 
corresponding to affine scale and rotation transformations, while a non-affine detector, such as 
FAST, may only detect the same feature as a template in a circular or square region with some 
rotational invariance at scale. 

7. Offset regions from image boundary: Some detectors, such as ORB, SURF, and SIFT, begin 
detector computations at an offset from the image boundaries, so features are not computed across 
the entire image. 

8. Proven value: Each detector method used here has proved useful and valuable for real applications. 

With these caveats in mind, the test results can be allowed to speak for themselves. 

Non-repeatability in Tests 1 and 2 

One interesting anomaly visible in Tests 1 and 2 appears in the annotated images, illustrating that 
detector results are not repeatable on the synthetic interest point and corner alphabets. In some cases,



the nonlinearity is striking; see the annotated images for Tests 1 and 2. The expectation of a human is 
that identical interest points should be equally well recognized. Here are some observations: 
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1. A human would recognize the same pattern easily whether or not the background and foreground 
are changed; however, some detectors do not have much invariance to extreme background and 
foreground polarity. The anomalies between detector behavior across white, black, and gray 
versions of the alphabets are less expected and harder to explain without looking deeper into 
each algorithm. 

2. Some detectors compute over larger region boundaries than the 14 × 14 alphabet grid, so detectors 
virtually ignore the alphabet feature grid and use adjacent pieces of alphabet features. 

3. Some detectors use scale space, so individual alphabet features are missed in some cases at higher 
scale levels, and detectors such as SIFT DoG use multiple scales together. 

In summary, interest point detection and parameter tuning are analogous to image processing 
operators and their parameters: there are endless variations available to achieve the same goals. It is 
hoped that, by studying the test results here, intuition will be increased and new approaches can be 
devised. 

Other Non-repeatability in Test 3 

We note non-repeatability anomalies with Test 3 using little girl images with synthetic overlays, but 
there is less expectation of repeatability in this test. Some analysis of the differences between the 
positive (white) and negative (black) feature overlays can be observed in the annotated synthetic 
overlay images online. 

Test Summary 

Take-away analysis for all tests includes the following: 

1. Non-repeatability: Some non-repeatability anomalies detecting nearly identical features, differing 
only under rotation by local pixel interpolation artifacts. Some detectors also detect the black, white 
and gray alphabets differently. 

2. Gray level alphabets (lt.gray on dk.gray) are detected generally most similar to human 
expectations. The results show that detectors, with the current tuning parameters, respond more 
uniformly across rotation with gray level patterns, rather than maxima black and white patterns. 

3. Real images overlaid with synthetic images tests provide interesting information to develop 
intuition about detector behavior—for illustration purposes only. 

Future Work 

Additional analysis should include devising and using alternative alphabets suited for a given type of 
application, including a larger range of pixel sizes and scales, especially alphabets with closer gray 
level value polarity, rather than extreme maxima and minima pixel values. Detector tuning should also 
be explored across the alphabets.



Appendix B: Survey of Ground Truth 
Datasets 

Table B.1 is a brief survey of public domain datasets public domain datasets in various categories, in 
no particular order. Note that many of the public domain datasets are freely available from universities 
and government agencies. 

Table B.1 Public domain datasets 

Name Labelme 

Description Annotated scenes and objects 

Categories Over 30,000 images; comprehensive; hundreds of categories, including car, person, building, road, 
sidewalk, sky, tree 

Contributions Open to contributions 

Tools and 
apps 

Labelme app for iPhone to contribute to database 

Key papers [44, 159] 

Owner MIT CSAIL 

Link http://new-labelme.csail.mit.edu/Release3.0/ 

Name COCO challenge 

Description Deals with various types of segmentation using a few standard curated sets of images, over 500,000 
images total in over 80 categories 
Superpixels Instance/Semantic/Panoptic 
Scene recognition 

Link https://cocodataset.org/#home 

Name DIV8K 

Description DIVerse 8K Resolution Image Database SuperResolution challenge 

Link https://people.ee.ethz.ch/~timofter/publications/Gu-ICCVW-2019b.pdf 

Name Waymo Open datasets 

Description DIVerse 8K Resolution Image Database SuperResolution challenge 

Link https://arxiv.org/pdf/2008.10112v1.pdf 

Name SUN 

Description Annotated scenes and objects 

Categories 908 scene categories, 3,819 object categories,13,1072 objects, and growing 

Contributions Open to contributions 

Tools and 
apps 

Image classifier source code + API, iOS app, Android app 

Key papers [46] 

Owner MIT CSAIL 

(continued)
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Table B.1 (continued)

Name SUN

Link http://groups.csail.mit.edu/vision/SUN/ 

Name UC Irvine Machine Learning Repository 

Description Very useful; huge repository of many categories of images 

Categories Too many to list; very wide range of categories, many attributes of the data are specifically searchable 
and designed into the ground truth datasets 

Contributions Ongoing 

Tools and 
apps 

Online assistant to search for specific ground truth datasets 

Key papers [474] 

Link http://archive.ics.uci.edu/ml/datasets.html 

Name Stanford 3D Scanning Repository 

Description High-resolution 3D scanned images with sub-millimeter accuracy, including XYZ and RGB datasets 

Categories Several scanned 3D objects with 3D point clouds, resolution ranging from 3,400,000 scanned point to 
750,000 triangles and upwards 

Link http://graphics.stanford.edu/data/3Dscanrep/ 

Name KITTI Benchmark Suite , Karlsruhe Institute of Technology 

Description Stereo datasets for various city driving scenes 

Categories KITTI benchmark suite covers optical flow, odometry, object detection, object orientation estimation; 
Karlsruhe sequences cover grayscale stereo sequences taken from a moving platform driving through a 
city; Karlsruhe objects cover grayscale stereo sequences taken from a moving platform driving through 
a city 

Link http://www.cvlibs.net/datasets/index.html 

Name Caltech Object Recognition Datasets 

Description Old but still useful; objects in hundreds of categories, some annotated with outlines 

Categories Over 256 categories, animals, plants, people, common objects, common food items, tools, furniture, 
and many more 

Key papers [47] 

Link http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 
http://www.vision.caltech.edu/Image_Datasets/Caltech256/ 
http://authors.library.caltech.edu/7694/ (latest versions of 101 and 256) 

Name ImageNet + Wordnet 

Description Labeled, annotated, bounding-boxed, and feature-descriptor marked images; over 14,197,122 images 
indexed into 21,841 sets of similar images, or synsets, created using sister app Wordnet 

Categories Categories include almost anything 

Contributions Images taken from Internet searches 

Tools and 
apps 

Online controls: http://www.image-net.org/download-API 
Source Code: ImageNet Large Scale Visual Recognition Challenge (ILSVRC2010) http://www. 
image-net.org/challenges/LSVRC/2010/index 

Key papers [48]; several see http://www.image-net.org/about-publication 

Owner Images have individual owners; website is # Stanford and Princeton 

Link http://www.image-net.org/ 
http://www.image-net.org/challenges/LSVRC/2012/ 

Name Middlebury Computer Vision Datasets 

Description Scholarly and comprehensive datasets, and algorithm comparisons over most of the datasets 

Categories Stereo vision (excellent), multi-view stereo (excellent), MRF, Optical Flow (excellent), Color 
processing 

Contributions Algorithm benchmarks over the datasets can be submitted 

Key papers Several; see website 

Owner Middlebury College 

Link http://vision.middlebury.edu/

http://groups.csail.mit.edu/vision/SUN/
http://archive.ics.uci.edu/ml/datasets.html
http://graphics.stanford.edu/data/3Dscanrep/
http://www.cvlibs.net/datasets/index.html
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http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://authors.library.caltech.edu/7694/
http://www.image-net.org/download-API
http://www.image-net.org/challenges/LSVRC/2010/index
http://www.image-net.org/challenges/LSVRC/2010/index
http://www.image-net.org/about-publication
http://www.image-net.org/
http://www.image-net.org/challenges/LSVRC/2012/
http://vision.middlebury.edu/
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Name ADL Activity Recognition Dataset 

Description Annotated scenes for activity recognition of common living scenes 

Categories Daily life 

Tools and 
apps 

Activity recognition code available (see link below) 

Key papers [49] 

Link http://deepthought.ics.uci.edu/ADLdataset/adl.html 

Name MIT Indoor Scenes 67, Scene Classification 

Description Annotated dataset specifically containing diverse indoor scenes 

Categories 15,620 images organized into 67 indoor categories, some annotations in Labelme format 

Key papers [37] 

Link http://web.mit.edu/torralba/www/indoor.html 

Name RGB-D Object Recognition Dataset, U of W 

Description Dataset contains RGB and corresponding depth images 

Categories 300 common household objects, 51 categories using Wordnet similar to ImageNet style (ImageNet 
dataset reviewed above), each object recorded in RGB and Kinect depth at various rotational angles 
and viewpoints 

Key papers [45] 

Link http://www.cs.washington.edu/rgbd-dataset/ 

Name NYU Depth Datasets 

Description Annotated dataset of indoor scenes using RGB-D datasets + accelerometer data 

Categories Over 500,000 frames, many different indoor scenes and scene types, thousands of classes, 
accelerometer data, inpainted and raw depth information 

Tools and 
apps 

MATLAB toolbox + g++ code 

Key papers [51] 

Link http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html 

Name Intel Labs Seattle —Egocentric Recognition of Handled Objects 

Description Annotated dataset for egocentric handled objects using a wearable camera 

Categories Over 42 everyday objects under varied lighting, occlusion, perspectives; over 6GB total video 
sequence data 

Key papers [52, 53] 

Link http://seattle.intel-research.net/~xren/egovision09/ 

Name Georgia Tech GTEA Egocentric Activities—Gaze(+) 

Description Annotated dataset for egocentric handled objects using a wearable camera 

Categories Many everyday objects under varied lighting, occlusion, perspectives 

Tools and 
apps 

Code library of vision functions and mathematical functions 

Key papers [54] 

Link http://www.cc.gatech.edu/~afathi3/GTEA_Gaze_Website/ 

Name CUReT: Columbia-Utrecht Reflectance and Texture Database 

Description Extensive texture sample and illumination datasets directions 

Categories Over 60 different samples with over 200 viewing and illumination combinations, BRDF measurement 
database, more 

Key papers 

Link 

[55] 

http://www.cs.columbia.edu/CAVE/software/curet/ 

Name MIT Flickr Material Surface Category Dataset 

Description Dataset for identifying material categories including fabric, glass, metal, plastic, water, foliage, leather, 
paper, stone, and wood 

Categories Contains images of materials for surface property analysis, in contrast to object or texture analysis; 
10 categories of materials + 100 images in each category 

Key papers [56]
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Table B.1 (continued)

Name MIT Flickr Material Surface Category Dataset 

Link http://people.csail.mit.edu/celiu/CVPR2010/index.html 

Name Faces in the Wilds 

Description Collection of over 13,000 images of faces annotated with names of people 

Categories Faces 

Key papers [57] 

Link http://vis-www.cs.umass.edu/lfw/ 

Name The CMU Multi-PIE Face Database 

Description Annotated face and emotion database with multiple pose angles 

Categories 750,000 face images are taken over a period of several months for each of 337 subjects over 
15 viewpoints and 19 illuminations, annotated facial expressions 

Key papers [58] 

Link http://www.multipie.org/ 

Name Stanford 40 Actions 

Description People actions image database 

Categories People performing 40 actions, bounding-box annotations, 9,532 images, 180-300 images per action 
class 

Key papers [59] 

Link http://vision.stanford.edu/Datasets/40actions.html 

Name NORB 3D Object Recognition from Shape 

Description NYU object recognition benchmark 

Categories Stereo image pairs; 194,400 total images of 50 toys under 36 azimuths, 9 elevations, and 6 lighting 
conditions 

Tools and 
apps 

EBLEARN C++ learning and vision library, LUSH programming language, VisionGRader object 
detection tool 
http://www.cs.nyu.edu/~yann/software/index.html 

Key papers [60] 

Link http://www.cs.nyu.edu/~yann/research/norb/ 

Name Optical Flow Algorithm Evaluation 

Description Tools and data for optical flow evaluation purposes 

Categories Many optical flow sequence ground truth datasets 

Tools and 
apps 

Tool for generating optical flow data, some optical flow code algorithms 

Key papers [61] 

Link http://of-eval.sourceforge.net/ 

Name PETS Crowd Sensing Dataset Challenge 

Description Multi-sensor camera views composed into a dataset containing sequences of crowd activities 

Categories Challenge goals include crowd estimation, density, tracking of specific people, flow of crowd 

Key papers [68] 

Link http://www.cvg.rdg.ac.uk/PETS2009/a.html 

Nam I-LIDS 

Description Security-oriented challenge ground truth dataset to enable competitive benchmarking including scenes 
for locating parked vehicles, abandoned baggage, secure perimeters, and doorway surveillance 

Categories Various categories in the security domain 

Contributions No, funded by UK government 

Tools and 
apps 

n.a. 

Key papers n.a. 

Link http://computervision.wikia.com/wiki/I-LIDS 

Name TRECVID, NIST, US Government

(continued)
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Table B.1 (continued)

Name TRECVID, NIST, US Government 

Description NIST-sponsored public project spanning 2001-2013 for research in automatic segmentation, indexing, 
and content-based video retrieval 

Categories (1) Semantic indexing (SIN), (2) known-item search (KIS), (3) instance search (INS), (4) multimedia 
event detection (MED), (5) multimedia event recounting (MER), and (6) surveillance event detection 
(SER), natural scenes, humans, vegetation, pets, office objects, and many more 

Contributions Annually by the U.S. Government 

Tools and 
apps 

The Framework For Detection Evaluations (F4DE) tool, story evaluation tool, and others 

Key papers [69] 

Link http://www-nlpir.nist.gov/projects/trecvid/ 

Name Microsoft Research Cambridge 

Description Pixel-wise labeled or segmented objects 

Categories Several hundred objects 

Link http://research.microsoft.com/en-us/projects/objectclassrecognition/ 

Name Optical Flow Algorithm Evaluation 

Description Volume-rendered video scenes for optical flow algorithm benchmarking 

Categories Various scenes for optical flow; mainly synthetic sequences generated via ray tracing 

Contributions n.a. 

Tools and 
apps 

Yes, Tcl/Tk 

Key papers [70] 

Link http://of-eval.sourceforge.net/ 

Name Pascal Object Recognition VOC Challenge Dataset 

Description Standardized ground truth data for a research challenge spanning 2005-2013 in the area of object 
recognition; competitions include classification, detection, segmentation, and actions over each of 
20 classes of data 

Categories Consists of over 20 classes of objects in scenes including persons, animals, vehicles, and indoor 
objects 

Contributions Via the Pascal conference 

Tools and 
apps 

Includes a developer kit and other useful software for labeling data and database access, and tools for 
reporting benchmarks results 

Key papers [71] 

Link http://pascallin.ecs.soton.ac.uk/challenges/VOC/ 

Name CRCV 

Description Very extensive; University of Central Florida’s Center for Research in Computer Vision hosts a large 
collection of research data covering several domains 

Categories Comprehensive set of categories (aerial views, ground views) including dynamic textures, multi-modal 
iPhone sensor ground truth data (video, accelerometer, gyro), several categories of human actions, 
crowd segmentation, parking lots, human actions, and much more 

Contributions n.a. 

Tools and 
apps 

n.a. 

Key papers [72] 

Link http://vision.eecs.ucf.edu/datasetsActions.html 

Name UCB Contour Detection and Image Segmentation 

Description U.C. Berkeley Computer Vision group provides a complete set of ground truth data, algorithms, and 
performance evaluations for contour detection, image segmentation, and some interest point methods 

Categories 500 ground truth images on natural scenes containing a wide range of subjects and labeled ground truth 
data 

Contributions n.a.

(continued)

http://www-nlpir.nist.gov/projects/trecvid/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://of-eval.sourceforge.net/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://vision.eecs.ucf.edu/datasetsActions.html
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Table B.1 (continued)

Name UCB Contour Detection and Image Segmentation 

Tools and 
apps 

Benchmarking code (globalPB for CPU and GPU) 

Key papers [73] 

Link http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bench 

Name 

Description 

CAVIAR Ground Truth Videos for Context-Aware Vision 

Project site containing labeled and annotated ground truth data of humans in cities and shopping 
centers, including 52 videos with 90K frames total including people in indoor office scenes and 
shopping centers 

Categories Both scripted and real-life activities in shopping centers and offices, including walking, browsing, 
meeting, fighting, window shopping, and entering/exiting stores 

Contributions n.a. 

Tools and 
apps 

n.a. 

Key papers [74] 

Link http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm 

Name Boston University Computer Science Department 

Description Image and video database covering a wide range of subject categories 

Categories Video sequences for head tracking and sign language; some datasets are labeled; still images for hand 
tracking, multi-face tracking, vehicle tracking, and many more 

Contributions Anonymous FTP 

Tools and 
apps 

n.a. 

Key papers [75] 

Link http://www.cs.bu.edu/groups/ivc/data.php

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bench
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
http://www.cs.bu.edu/groups/ivc/data.php


Appendix C: Imaging and Computer Vision 
Resources 

This appendix contains a list of some resources for computer vision and imaging, including commer-
cial products, open-source projects, organizations, and standards bodies. 

Commercial Products 

Name MATLAB 

Description Industry standard math package with many scientific package options for various fields including 
imaging and computer vision. Includes a decent software development environment, providing add-on 
libraries for computer vision, image processing, visualization, and many more. Suited well for code 
development. 

Library 
API 

Extensive API libraries Internal to the SDE. 

SDE Includes software development environment for coding. 

Open 
Source 

Not for the product, but possibly for some code developed by users. 

Link http://www.mathworks.com/products/matlab/ 

Name Mathematica 

Description Industry standard math package with many scientific package options for various fields, including image 
processing and computer vision. Excellent for creation of publication-ready visualizations and math 
notebooks. Add-on libraries for computer vision, image processing, visualization, and many more. 

Library 
API 

Extensive API libraries Internal to the SDE. 

SDE Includes a default function-based script development environment, and some code development add-ons. 

Open 
Source 

Not for the product, but possibly for code developed by users. 

Link http://www.wolfram.com/mathematica/ 

Name Intel TBB, Intel IPP, Intel CILK++ 

Description Intel provides libraries, languages, and compilers optimized for the IA instruction set. Intel TBB is a 
multi-threading library for single and multi-core processors, Intel IPP provides imaging and computer 
vision performance primitives optimized for IA and SIMD instructions and in some cases GPGPU, and 
Intel CILK++ is a language for writing SIMD/SIMT parallel code. 

Library 
API 

Extensive API libraries. 

SDE No, but Intel CILK++ is a programming language. 

tinued)(co 

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8 

n
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Name Intel TBB, Intel IPP, Intel CILK++ 

Open 
Source 

No. 

Link http://software.intel.com/en-us/intel-tbb, http://software.intel.com/en-us/intel-ipp 

Open Source 

Name OpenCV 

Description Industry standard computer vision and image processing library, used worldwide by major 
corporations and others. 

Library API Extensive API library. 

SDE No. 

Open Source BSD license. 

Link http://opencv.org/ 

Name ImageJ—FIJI 

Description Application for image processing, visualization, and computer vision. Developed by the USG National 
Institutes of Health [429], available for public use. Extensive. FIJI is a distribution of ImageJ with 
many plug-ins submitted by the user community. 

Library API No. 

SDE No. 

Open Source Public domain use. 

Link http://rsbweb.nih.gov/ij/index.html 
http://rsb.info.nih.gov/ij/plugins/ 
http://fiji.sc/Fiji 

Name VLFEAT 

Description C library containing a range of common computer vision algorithms for feature description, pattern 
matching, and image processing. 

Library API Extensive API library. 

SDE No. 

Open Source BSD license. 

Link http://vlfeat.org 

Name VTK 

Description C++ library containing a range of common image processing, graphics, and data visualization 
functions. Includes GUI widgets. VTL also provides consulting. 

Library API Extensive API library. 

SDE No. 

Open Source BSD license. 

Link http://vtk.org/ 

Name MeshLab 

Description Application for visualizing, rendering, annotating, and converting 3D data meshes such as point clouds 
and CAD designs. Extensive. Uses the VCG library from ISTI—CNR. 

Library API No. 

SDE No.

(continued)

http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-ipp
http://opencv.org/
http://rsbweb.nih.gov/ij/index.html
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Name MeshLab 

Open Source BSD license. 

Link http://meshlab.sourceforge.net/ 

Name PfeLIb 

Description Library for image processing and computer vision acceleration. 

Library API Yes. 

SDE No. 

Open Source No. 

Link See reference [422]. 

Name Point Cloud Library (PCL) 

Description Extensive open-source library for dealing primarily with 3D point clouds, including implementations 
of many cutting-edge 3D descriptors from the latest academic research and visualization methods. 

Library API Yes. 

SDE No. 

Open Source Yes. 

Link http://pointclouds.org/downloads/ 
http://pointclouds.org/documentation/ 
http://docs.pointclouds.org/trunk/a02944.html 

Name Shogun Machine Learning Toolbox 

Description Library for machine learning and pattern matching. Extensive. 

Library API Yes. 

SDE No. 

Open Source GPL. 

Link http://shogun-toolbox.org/page/features/ 

Name Halide High-Performance Image Processing Language 

Description C++ language classes optimized for SIMD, SIMT, and GPGPU. 

Library API Yes. 

SDE No. 

Open Source Open-source MIT license. 

Link http://halide-lang.org/ 

Name REIN (Recognition Infrastructure) Vision Algorithm Framework 

Description Framework for computer vision in robotics; uses ROS operating system. 
See references [328, 430]. 

Library API Yes. 

SDE No. 

Open Source Open-source MIT license. 

Link http://wiki.ros.org/rein 

Name ECTO—Graph Network Construction for Computer Vision 

Description Library for creating directed acyclic graphs of functions for computer vision pipelines, supports 
threading. Written in a C++/Python framework. Can integrate with OpenCV, PCL and ROS. 

Library API Yes. 

SDE No. 

Open Source Apparently. 

Link http://plasmodic.github.io/ecto/

http://meshlab.sourceforge.net/
http://pointclouds.org/downloads/
http://pointclouds.org/documentation/
http://docs.pointclouds.org/trunk/a02944.html
http://shogun-toolbox.org/page/features/
http://halide-lang.org/
http://wiki.ros.org/rein
http://plasmodic.github.io/ecto/
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Organizations, Institutions, and Standards 

Microsoft Research 
http://academic.research.microsoft. 

com/ 
Google Research, Deep Mind #1 

FAIR—Facebook Research 
(META 

Microsoft Research has one of the largest staff of computer vision experts in the 
world, and actively promotes conferences and research. Provides several good 
resources online. 
Google Research combined with Deep Mind publishes over half of all research 
papers in major conferences such as CVPR, NIPS, and others. 
META has collected a large group of researchers in the areas of AI and machine 
learning. 

CIE 
http://www.cie.co.at/ 

International Commission on Illumination, abbreviated CIE after the French 
name, provides standard illuminant data for a range of light sources as it pertains 
to color science, as well as standards for the well-known color spaces CIE XYZ, 
CIE Lab and CIE Luv. 

ICC 
http://www.color.org/index.xalter 

International Color Consortium provides the ICC standard color profiles for 
imaging devices, as well as many other industry standards, including the sRGB 
color space for color displays. 

CAVE Computer Vision 
Laboratory 
http://www.cs.columbia.edu/ 
CAVE/ 

Computer Vision Laboratory at Columbia University, directed by Dr. Shree 
Nayar, provides world-class imaging and vision research. 

RIT Munsell Color Science 
Laboratory 
http://www.rit.edu/cos/ 
colorscience/ 

Rochester Institute of Technology Munsell Color Science Laboratory is among 
the leading research institutions in the area or color science and imaging, 
provides a wide range of resources, and has with strong ties to industry imaging 
giants such as Kodak, Xerox, and others. 

OPENVX KHRONOS 
http://www.khronos.org/openvx 

OPENVX is a proposed standard for low-level vision primitive acceleration, 
operated with the KHRONOS standards group. 

SPIE 
Society for Optics and Photonics 
Journal of Medical Imaging 

Journal of Electronic Imaging 

Journal of Applied Remote Sensing 

http://spie.org/ 

Interdisciplinary approach to the science of light, including photonics, sensors, 
and imaging; promotes conferences and publishes journals. 

IEEE 
CVPR, Computer Vision and 
Pattern Recognition 
PAMI, Pattern Analysis and 
Machine Intelligence 
ICCV, International Conference on 
Computer Vision 
IP, Trans. Image Processing 
http://ieee.org 

Society for publication of journals and conferences, including various computer 
vision and imaging topics. 

CVF 
Computer Vision Foundation 
http://www.cv-foundation.org/ 

Promotes computer vision, provides dissemination of papers. 

NIST—Image Group (USG) 
National Institute Of Standards 
http://www.nist.gov/itl/iad/ig/ 

Promotes computer vision and imaging grand challenges; covers biometrics 
standards, fingerprint testing, face, iris, multimodal testing, nextgeneration test 
bed. 

I20—Darpa information innovation 
office (USG) 

http://www.darpa.mil/Our_Work/ 
I2O/Programs/ 

http://www.darpa.mil/ 
OpenCatalog/index.html 

Extensive array of computer vision and related program research for military 
applications. 
Some work is released to the public via the OpenCatalog

http://academic.research.microsoft.com/
http://academic.research.microsoft.com/
http://www.cie.co.at/
http://www.color.org/index.xalter
http://www.cs.columbia.edu/CAVE/
http://www.cs.columbia.edu/CAVE/
http://www.rit.edu/cos/colorscience/
http://www.rit.edu/cos/colorscience/
http://www.khronos.org/openvx
http://spie.org/
http://ieee.org
http://www.cv-foundation.org/
http://www.nist.gov/itl/iad/ig/
http://www.darpa.mil/Our_Work/I2O/Programs/
http://www.darpa.mil/Our_Work/I2O/Programs/
http://www.darpa.mil/OpenCatalog/index.html
http://www.darpa.mil/OpenCatalog/index.html
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Journals and Their Abbreviations

• CVGIP Graphical Models/graphical Models and Image Processing/computer Vision, Graphics, 

and Image Processing

• CVIU Computer Vision and Image Understanding
• IJCV International Journal of Computer Vision
• IVC Image and Vision Computing
• JMIV Journal of Mathematical Imaging and Vision

• MVA Machine Vision and Applications

• TMI—IEEE Transactions on Medical Imaging 

Conferences and Their Abbreviations

• 3DIM International Conference on 3D Imaging and Modeling
• 3DPVT 3D Data Processing Visualization and Transmission
• ACCV Asian Conference on Computer Vision
• AMFG Analysis and Modeling of Faces and Gestures
• BMCV Biologically Motivated Computer Vision
• BMVC British Machine Vision Conference
• CRV Canadian Conference on Computer and Robot Vision
• CVPR Computer Vision and Pattern Recognition
• CVRMed Computer Vision, Virtual Reality and Robotics in Medicine
• DGCI Discrete Geometry for Computer Imagery
• ECCV European Conference on Computer Vision
• EMMCVPR Energy Minimization Methods in Computer Vision and Pattern Recognition
• FGR IEEE International Conference on Automatic Face and Gesture Recognition
• ICARCV International Conference on Control, Automation, Robotics and Vision
• ICCV International Conference on Computer Vision
• ICCV Workshops
• ICVS International Conference on Computer Vision Systems
• ICWSM International Conference on Weblogs and Social Media
• ISVC International Symposium on Visual Computing
• NIPS Neural Information Processing Systems
• Scale-Space Theories in Computer Vision
• VLSM Variational, Geometric, and Level Set Methods in Computer Vision
• WACV Workshop on Applications of Computer Vision



716 Appendix C: Imaging and Computer Vision Resources

Online Resources 

Name CVONLINE 

Description Huge list of computer vision software and projects, indexed to Wikipedia 

Link http://homepages.inf.ed.ac.uk/rbf/CVonline/environ.htm 

Name Annotated Computer Vision Bibliography 

Description Huge index of links to computer vision topics, references, software, and many more 

Link http://www.visionbib.com/bibliography/contents.html 

Name NIST Online Engineering Statistics Handbook(USG) 

Description Handbook for statistics, includes examples and software 

Link http://www.itl.nist.gov/div898/handbook/ 

Name The Computer Industry (David Lowe) 

Description Includes links to major computer vision and imaging product companies 

Link http://www.cs.ubc.ca/~lowe/vision.html 

Artificial Intelligence and Computer Vision-Key Research

• Dalle Molle Institute for Artificial Intelligence Research, Juergen Schmidhuber
• The Courant Institute of Mathematical Sciences, Center for Neural Science, Yann LeCun
• Department of Computer Science and Operations Research Canada Research Chair in Statistical 

Learning Algorithms, Yoshua Bengio and Geoffrey E. Hinton
• Stanford Computer Science Department, Andrew Ng 

Neuroscience Journals and Research

• Nature—International weekly journal of science
• Nature Reviews Neuroscience
• Nature Neuroscience Journal
• Brain (A journal of Neurology Oxford University)
• Annals of Neurology
• Behavioral and Brain Sciences
• NeuroImage (Elsevier)
• NeuroComputing (Elsevier)
• Neuroscience (Elsevier)
• Neuron (Elsevier)
• The Journal of Neuroscience
• European Journal of Neuroscience
• PLOS Computational Biology
• Neural Information Processing Systems (NIPS)
• Vision Research (Elsevier)

http://homepages.inf.ed.ac.uk/rbf/CVonline/environ.htm
http://www.visionbib.com/bibliography/contents.html
http://www.itl.nist.gov/div898/handbook/
http://www.cs.ubc.ca/~lowe/vision.html
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• Brain Research (Elsevier)
• International Conference on Machine Learning
• Journal of Cognitive Neuroscience
• The Journal of Machine Learning Research 

Selected Deep Learning Resources

• PyTorch—Python open source code for machine learning 
https://pytorch.org/

• TensorFlow—more deep learning libraries HW/SW optimized by Google 
https://www.tensorflow.org/

• Keras—AI api’s 
https://keras.io/

• ONEAPI (Intel, NVIDIA, AMD, and others) Opensource acceleration code for AI, more 
https://www.oneapi.io/spec/ 
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#gs.rl3pie

• ONYX open source foundation models 
https://onnx.ai/

• Modelzoo.co—pretrained models for DNN’s 
https://modelzoo.co/

• HUGGING FACE open source foundation models 
https://huggingface.co/models

• TORCH open source code for machine learning 
http://torch.ch

• FANN Fast Artificial Neural Network Library 
http://leenissen.dk/fann/wp/

• Minerva: deep learning toolkit for multi-GPU acceleration 
https://github.com/dmlc/minerva

• Caffe—CNN deep learning open source 
http://caffe.berkeleyvision.org

• Caffe 2 (from Facebook)—faster and distributed options 
https://developer.nvidia.com/blog/caffe2-deep-learning-framework-facebook/

• cuDNN—Optimized NVIDIA deep learning library, works with caffe 
https://developer.nvidia.com/cudnn

• DeepLearnToolbox—MATLAB deep learning tools 
https://github.com/rasmusbergpalm/DeepLearnToolbox

• Neon—Python-based deep learning library 
http://neon.nervanasys.com/docs/latest/index.html

• GraphLab Create—Machine learning toolkit 
https://dato.com/products/create/

https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/
https://www.oneapi.io/spec/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#gs.rl3pie
https://onnx.ai/
https://modelzoo.co/
https://huggingface.co/models
http://torch.ch
http://leenissen.dk/fann/wp/
https://github.com/dmlc/minerva
http://caffe.berkeleyvision.org
https://developer.nvidia.com/blog/caffe2-deep-learning-framework-facebook/
https://developer.nvidia.com/cudnn
https://github.com/rasmusbergpalm/DeepLearnToolbox
http://neon.nervanasys.com/docs/latest/index.html
https://dato.com/products/create/


Appendix D: Extended SDM Metrics 

Listing Fig. D.1 illustrates the extended SDM metrics from Chap. 3. The code is available online 
at http://www.apress.com/source-code/ComputerVisionMetrics 

Fig. D.1 SDM extended metrics 

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8
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Listing D.1 Extended SDM metrics from Chap. 3. 

/* 
** CREATED 1991 (C) KRIG RESEARCH, SCOTT KRIG - UNPUBLISHED SOFTWARE 
** PORTED TO MAC 2014 
** 
** ALL RIGHTS RESERVED 
** 
** THIS SOFTWARE MAY BE USED FREELY FOR ACADEMIC AND RESEARCH PURPOSES. 
** REFERENCE THIS BOOK AND PROVIDE THIS NOTICE WHEN USING THE SOFTWARE. 
*/ 
using namespace std; 
#include <math.h> 
#include <stdio.h> 
#include <opencv2/opencv.hpp> 
#include "/usr/local/include/opencv/cv.h" 
#include "/usr/local/include/opencv2/core/core.hpp" 
#include "/usr/local/include/opencv2/highgui/highgui.hpp" 
#include <iostream> 
using namespace cv; 
#define TINY 0.0000000001 
#define F6U "%6f.3" 
#define F6F "%.6f" 
#define F3F "%.3f" 
#define FXF "%.0f" 
#define FALSE 0 
#define TRUE 1 
typedef struct area { 

int x; 
int y; 
int dx; 
int dy; 

} area_t; 
typedef struct { 

double t0; 
double t90; 
double t135; 
double t45; 
double tave; 
} ctab; 

typedef struct { 
double median; 
double ave; 
double adev; 
double sdev; 
double svar; 
double skew; 
double curt; 
int min; 
int max; 
ctab xcentroid; 
ctab ycentroid; 
ctab _asm; 
ctab low_frequency_coverage; 
ctab total_coverage; 
ctab corrected_coverage; 
ctab total_power; 
ctab relative_power; 
ctab locus_length;



ctab locus_mean_density; 
ctab bin_mean_density; 
ctab containment; 
ctab linearity; 
ctab linearity_strength; 
ctab autocorrelation; 
ctab covariance; 

ctab inertia; /* haralick contrast */ 
ctab absolute_value; 

ctab inverse_difference; /* haralick */ 

ctab entropy; /* haralick */ 

ctab correlation; /* haralick */ 
} glob_t; 

glob_t gt; 
/* FUNCTIONS */ 
int i_sort( 
int *x, 
int n, 
int parm) 
{ 

int k,i,ii; 
int y,found; 
int xi; 
int n2, n2p; 
x--; 
for (k=1; k<n+1; k++) { 

y = x[k]; 
for (i=k-1, found = FALSE; i>=0 && !found;) { 

xi = x[i]; 
ii = i+1; 
if (y < xi) { 

x[ii] = xi; 
i--; 

} else { 
found = TRUE; 

} 
} 
x[ii] = y; 

} 
if (parm == 0) return 0; 
n2p = (n2=(n>>1))+1; 
return (n % 2 ? x[n2p] : (x[n2] + x[n2p]) >> 1); 

} 
int lmoment( 
int *data, 
int n, 
double *median, 
double *ave, 
double *adev, 
double *sdev, 
double *svar, 
double *skew, 
double *curt) 
{ 

int j; 
double s,p,ep=0.0; 
if (n <= 1) return 0; 
s=0.0; 
for (j=1; j<=n;j++) s += (double)data[j];
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*ave=s/n; 
*adev=(*svar)=(*skew)=(*curt)=0.0; 
for (j=1;j<=n;j++) { 

*adev += abs(s=(double)data[j]-(*ave)); 
*svar += (p=s*s); 
*skew += (p *= s); 
*curt += (p *= s); 

} 
*adev /= n; 
*svar = (*svar - ep*ep / n) / (n-1); 
*sdev=sqrt(*svar); 
if (*svar) { 

s = (n*(*svar)*(*sdev)); 
if (s != 0) *skew /= s; 
else *skew = 0; 
s = (n*(*svar)*(*svar))-3.0; 
if (s != 0) *curt = (*curt) / s; 
else *curt = 0; 

} else { 
*skew = *curt = 0.0; 

} 
*median = 0; 
if (n > 20000) return 0; 
*median = (double)i_sort(data, n, 1); 
return 0; 

} 
int mean_sdev( 
int xp, 
int yp, 
int *xdata, 
double *xmean, 
double *xsdev, 
double *ymean, 
double *ysdev) 
{ 

double u_x1, a_x1; 
int mx, my,v,t,x,y,z, offset; 
int dif[256]; 
/* first calculate mean */ 
offset = 256 * yp; 
x = y = 0; 
for (z=0; z < 256; x += xdata[offset+z], z++); 
for (z=0; z < 256; y += xdata[xp + (z*256)], z++); 
mx = x / 256.; 
*xmean = (double)mx; 
my = y / 256.; 
*ymean = (double)my; 
/* now calculate standard deviation */ 
x = y = 0; 
z=0; 
while (z < 256) { 

v = mx - xdata[offset+z]; 
x  += v*v; 
v = my - xdata[xp + (z*256)]; 
y  += v*v; 
z++; 

} 
*xsdev = x / 256; 
*ysdev = y / 256;
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return 0; 
} 
int lohi( 
int n, 
int *cv, 
int *lo, 
int *hi) 
{ 

int x; 
int lv, hv; 
lv = 0x1fffff; 
hv =0; 
x=0; 
while (x < n) { 

if (cv[x] < lv) lv = cv[x]; 
if (cv[x] > hv) hv = cv[x]; 
x++; 

} 
*lo = lv; 
*hi = hv; 
return 0; 

} 
int savegt( 
ctab *ctp, 
double dv1, 
double dv2, 
double dv3, 
double dv4) 
{ 

ctp->t0 = dv1; 
ctp->t90 = dv2; 
ctp->t135 = dv3; 
ctp->t45 = dv4; 
ctp->tave = (dv1 + dv2 + dv3 + dv4) / 4; 
return 0; 

} 
int gtput( 
char *prompt, 
char *fs, 
ctab *ctp, 
FILE *fstream) 
{ 

char str[256]; 
char form[256]; 
fputs(prompt, fstream); 
sprintf(form, "%s %s %s %s %s \n", fs, fs, fs, fs, fs); 
sprintf(str, form, ctp->t0, ctp->t90, ctp->t135, ctp->t45, ctp->tave); 
fputs(str, fstream); 
return 0; 

} 
int put_txfile( 
FILE *fstream) 
{ 

char str[256]; 

sprintf(str, "gray value moments: min :%u max:%u mean:%u\n",gt.min,gt.max, 
(int)gt.ave); 

fputs(str, fstream); 

sprintf(str, "moments: adev :%.4f sdev :%.4f svar :%.4f skew:%.6f curt:%.6f \n", 
gt.adev, gt.sdev, gt.svar, gt.skew, gt.curt);
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fputs(str, fstream); 
fputs("\n", fstream); 
fputs(" ------------------------------------–\n", fstream); 

fputs(" 0deg 90deg 135deg 45deg ave \n", fstream); 
fputs(" ------------------------------------–\n", fstream); 

gtput(" xcentroid ", FXF, &gt.xcentroid, fstream); 

gtput(" ycentroid ", FXF, &gt.ycentroid, fstream); 
gtput("low_frequency_coverage ", F3F, &gt.low_frequency_coverage, fstream); 
gtput("total_coverage ", F3F, &gt.total_coverage, fstream); 
gtput("corrected_coverage ", F3F, &gt.corrected_coverage, fstream); 
gtput("total_power ", F3F, &gt.total_power, fstream); 
gtput("relative_power ", F3F, &gt.relative_power, fstream); 
gtput("locus_length ", FXF, &gt.locus_length, fstream); 
gtput("locus_mean_density ", FXF, &gt.locus_mean_density, fstream); 
gtput("bin_mean_density ", FXF, &gt.bin_mean_density, fstream); 
gtput("containment ", F3F, &gt.containment, fstream); 
gtput("linearity ", F3F, &gt.linearity, fstream); 
gtput("linearity_strength ", F3F, &gt.linearity_strength, fstream); 
return 0; 

} 
int texture( 
char *filename) 
{ 

char str[256]; 
int pmx[256], pmy[256]; 
int x,y,z,dx,dy,dz,sz,bpp; 
int accum, tmin, tmax; 
int tmin2, tmax2, yc; 
int *data; 
int mval0, mval90, mval135, mval45; 
double median, ave, adev, sdev, svar, skew, curt; 
double median2, ave2, adev2, sdev2, svar2, skew2, curt2; 
int *dm0, *dm90, *dm135, *dm45; 
FILE *fstream; 
int i0, i90, i135, i45, iave, n; 
int c0, c90, c135, c45, cave; 
int p0, p90, p135, p45, pave; 
double d0, d90, d135, d45, dave; 
double f0, f90, f135, f45; 
/*********************************************************************/ 
/* READ THE INPUT IMAGE, EXPECT IT TO BE 8-bit UNSIGNED INT */ 
/* Mat type conversion is simple in openCV, try it later */ 
Mat imageIn = cv::imread(filename); 
dx = imageIn.rows; 
dy = imageIn.cols; 
unsigned char *pixels = imageIn.data; 

cout << " dx "  <<  dx  <<  "  dy  " << dy << " elemSize() " << imageIn.elemSize() << endl; 
data = (int *)malloc(dx * dy * 4); 
if (data == 0) 
{ 

cout << " malloc error in texture()" << endl; 
} 
for (y=0; y < dy; y++) { 

for (x=0; x < dx; x++) { 
int pixel = (int)*(imageIn.ptr(x,y)); 
if (pixel > 255) {pixel = 255;} 
data[(y * dx) + x] = pixel;

}
}
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/***********************************************************************/ 
/* PART 1 - get normal types of statistics from pixel data */ 
lmoment(data, sz, &median, &ave, &adev, &sdev, &svar, &skew, &curt); 
lohi(sz, data, &tmin, &tmax); 
gt.median = median; 
gt.ave = ave; 
gt.adev = adev; 
gt.sdev = sdev; 
gt.svar = svar; 
gt.skew = skew; 
gt.curt = curt; 
gt.min = tmin; 
gt.max = tmax; 
fstream = fopen("SDMExtended.txt", "w"); 
if (fstream <= 0) { 

cout << "#cannot create file" << endl; 
return 0; 

} 
sprintf(str, "texture for object: %s\n", filename); 
fputs(str, fstream); 
sprintf(str, "area: %u, %u \n", dx, dy); 
fputs(str, fstream); 
/***********************************************************************/ 

/* PART 2 - calculate the 4 spatial dependency matricies */ 
dm0 = (int *)malloc(256*256*4); 
dm90 = (int *)malloc(256*256*4); 
dm135 = (int *)malloc(256*256*4); 
dm45 = (int *)malloc(256*256*4); 
if ((dm0==0) || (dm90==0) || (dm135==0) || (dm45==0)) { 

cout << " malloc error in texture2" << endl; 
return 0; 

} 
x=0; 
while (x < 256*256) { 

dm0[x] = dm90[x] = dm135[x] = dm45[x] = 0; 
x++; 

} 
y=0; 

while (y < dy-1) { 
yc = dx * y; 
x=0; 
while (x < dx-1) { 
dm0[(data[yc + x]&0xff) + (((data[yc + x + 1])<< 8)&0xff00)]++; 
dm0[(data[yc + x + 1]&0xff) + (((data[yc + x])<< 8)&0xff00)]++; 
dm90[(data[yc + x]&0xff) + (((data[yc + x + dx])<< 8)&0xff00)]++; 
dm90[(data[yc + x + dx]&0xff) + (((data[yc + x])<< 8)&0xff00)]++; 
dm135[(data[yc + x]&0xff) + (((data[yc + x + dx + 1])<< 8)&0xff00)]++; 
dm135[(data[yc + x + dx + 1]&0xff) + (((data[yc + x])<< 8)&0xff00)]++; 
dm45[(data[yc + x + 1]&0xff) + (((data[yc + x + dx])<< 8)&0xff00)]++; 
dm45[(data[yc + x + dx]&0xff) + (((data[yc + x + 1])<< 8)&0xff00)]++; 

x++; 
} 
y++; 
} 

/************************* CALCULATE TEXTURE METRICS *************************/ 

/* centroid */ 
pmx[0] = pmx[1] = pmx[2] = pmx[3] = 0; 
pmy[0] = pmy[1] = pmy[2] = pmy[3] = 0; 
i0 = i90 = i135 = i45 = 0;
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y=0; 
while (y < 256) { 

x=0; 
while (x < 256) { 

z = x + (256 * y); 
pmx[0] += (x * dm0[z]); 
pmy[0] += (y * dm0[z]); i0 += dm0[z]; 
pmx[1] += (x * dm90[z]); 
pmy[1] += (y * dm90[z]); i90 += dm90[z]; 
pmx[2] += (x * dm135[z]); 
pmy[2] += (y * dm135[z]); i135 += dm135[z]; 
pmx[3] += (x * dm45[z]); 
pmy[3] += (y * dm45[z]); i45 += dm45[z]; 
x++; 

} 
y++; 

} 
pmx[0] = pmx[0] / i0; 
pmy[0] = pmy[0] / i0; 
pmx[1] = pmx[1] / i90; 
pmy[1] = pmy[1] / i90; 
pmx[2] = pmx[2] / i135; 
pmy[2] = pmy[2] / i135; 
pmx[3] = pmx[3] / i45; 
pmy[3] = pmy[3] / i45; 
x = (pmx[0] + pmx[1] + pmx[2] + pmx[3]) / 4; 
y = (pmy[0] + pmy[1] + pmy[2] + pmy[3]) / 4; 
gt.xcentroid.t0 = pmx[0]; 
gt.ycentroid.t0 = pmy[0]; 
gt.xcentroid.t90 = pmx[1]; 
gt.ycentroid.t90 = pmy[1]; 
gt.xcentroid.t135 = pmx[2]; 
gt.ycentroid.t135 = pmy[2]; 
gt.xcentroid.t45 = pmx[3]; 
gt.ycentroid.t45 = pmy[3]; 
gt.xcentroid.tave = x; 
gt.ycentroid.tave = y; 
/* low frequency coverage */ 
i0 = i90 = i135 = i45 = 0; 
c0 = c90 = c135 = c45 = 0; 
x=0; 
while (x < 256*256) { 
if ((dm0[x] != 0) && (dm0[x] < 3)) i0++; 
if ((dm90[x] != 0) && (dm90[x] < 3)) i90++; 
if ((dm135[x] != 0) && (dm135[x] < 3)) i135++; 
if ((dm45[x] != 0) && (dm45[x] < 3)) i45++; 
if (!dm0[x]) c0++; 
if (!dm90[x]) c90++; 
if (!dm135[x]) c135++; 
if (!dm45[x]) c45++; 
x++; 
} 
d0 = (double)i0 / 0x10000; 
d90 = (double)i90 / 0x10000; 
d135 = (double)i135 / 0x10000; 
d45 = (double)i45 / 0x10000; 
savegt(&gt.low_frequency_coverage, d0, d90, d135, d45); 
d0 = (double)c0 / 0x10000; 
d90 = (double)c90 / 0x10000;
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d135 = (double)c135 / 0x10000; 
d45 = (double)c45 / 0x10000; 
savegt(&gt.total_coverage, d0, d90, d135, d45); 
d0 = (c0-i0) / (double)0x10000; 
d90 = (c90-i90) / (double)0x10000; 
d135 = (c135-i135) / (double)0x10000; 
d45 = (c45-i45) / (double)0x10000; 
savegt(&gt.corrected_coverage, d0, d90, d135, d45); 
/* power */ 
i0 = i90 = i135 = i45 = 0; 
c0 = c90 = c135 = c45 = 0; 
p0 = p90 = p135 = p45 = 0; 
y=0; 
while (y < 256) { 
z = y * 256; 
x=0; 
while (x < 256) { 
n = x-y; 
if (n < 0) n = -n; 
if (dm0[x+z] != 0) {i0 += n; c0++;} 
if (dm90[x+z] != 0) {i90 += n; c90++;} 
if (dm135[x+z] != 0) {i135 += n; c135++;} 
if (dm45[x+z] != 0) {i45 += n; c45++;} 
x++; 
} 
y++; 
} 
d0 = (i0 / 0x10000); 
d90 = (i90 / 0x10000); 
d135 = (i135 / 0x10000); 
d45 = (i45 / 0x10000); 
savegt(&gt.total_power, d0, d90, d135, d45); 
d0 = (i0 / c0); 
d90 = (i90 / c90); 
d135 = (i135 / c135); 
d45 = (i45 / c45); 
savegt(&gt.relative_power, d0, d90, d135, d45); 
/* locus density */ 
d0 = d90 = d135 = d45 = 0.0; 
c0 = c90 = c135 = c45 = 0; 
p0 = p90 = p135 = p45 = 0; 
y=0; 
while (y < 256) { 
z = y * 256; 
i0 = i90 = i135 = i45 = 0; 
x=0; 
while (x < 256) { 
n = x-y; 
if (n < 0) n = -n; 
if ((dm0[x+z] != 0) && (n < 7)) {c0++; p0 += dm0[x+z];} 
if ((dm90[x+z] != 0) && (n < 7)) {c90++; p90 += dm90[x+z];} 
if ((dm135[x+z] != 0) && (n < 7)) {c135++; p135 += dm135[x+z];} 
if ((dm45[x+z] != 0) && (n < 7)) {c45++; p45 += dm45[x+z];} 
if ((dm0[x+z] == 0) && (n < 7)) {i0++;} 
if ((dm90[x+z] == 0) && (n < 7)) {i90++;} 
if ((dm135[x+z] == 0) && (n < 7)) {i135++;} 
if ((dm45[x+z] == 0) && (n < 7)) {i45++;} 
x++; 
}
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if (!i0) d0 += 1; 
if (!i90) d90 += 1; 
if (!i135) d135 += 1; 
if (!i45) d45 += 1; 
y++; 
} 
savegt(&gt.locus_length, d0, d90, d135, d45); 
d0 = (p0/c0); 
d90 = (p90/c90); 
d135 = (p135/c135); 
d45 = (p45/c45); 
savegt(&gt.locus_mean_density, d0, d90, d135, d45); 
/* density */ 
c0 = c90 = c135 = c45 = 0; 
p0 = p90 = p135 = p45 = 0; 
x=0; 
while (x < 256*256) { 
if (dm0[x] != 0) {c0 += dm0[x]; p0++;} 
if (dm90[x] != 0) {c90 += dm90[x]; p90++;} 
if (dm135[x] != 0) {c135 += dm135[x]; p135++;} 
if (dm45[x] != 0) {c45 += dm45[x]; p45++;} 
x++; 
} 
d0 = c0 / p0; 
d90 = c90 / p90; 
d135 = c135 / p135; 
d45 = c45 / p45; 
savegt(&gt.bin_mean_density, d0, d90, d135, d45); 
/* containment */ 
i0 = i90 = i135 = i45 = 0; 
x=0; 
while (x < 256) { 
if (dm0[x]) i0++; if (dm0[256*256 - x - 1]) i0++; 
if (dm90[x]) i90++; if (dm90[256*256 - x - 1]) i90++; 
if (dm135[x]) i135++; if (dm135[256*256 - x - 1]) i135++; 
if (dm45[x]) i45++; if (dm45[256*256 - x - 1]) i45++; 
if (dm0[x*256]) i0++; if (dm0[(x*256)+255]) i0++; 
if (dm90[x*256]) i90++; if (dm90[(x*256)+255]) i90++; 
if (dm135[x*256]) i135++; if (dm135[(x*256)+255]) i135++; 
if (dm45[x*256]) i45++; if (dm45[(x*256)+255]) i45++; 
x++; 
} 
d0 = 1.0 - ((double)i0 / 1024.0); 
d90 = 1.0 - ((double)i90 / 1024.0); 
d135 = 1.0 - ((double)i135 / 1024.0); 
d45 = 1.0 - ((double)i45 / 1024.0); 
savegt(&gt.containment, d0, d90, d135, d45); 
/* linearity */ 
i0 = i90 = i135 = i45 = 0; 
c0 = c90 = c135 = c45 = 0; 
y=0; 
while (y < 256) { 
z = y * 256; 
if (dm0[z + y] > 1) {i0++; c0 += dm0[z+y];} 
if (dm90[z + y] > 1) {i90++; c90 += dm90[z+y];} 
if (dm135[z + y] > 1) {i135++; c135 += dm135[z+y];} 
if (dm45[z + y] > 1) {i45++; c45 += dm45[z+y];} 
y++; 
}
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d0 = (double)i0 / 256.; 
d90 = (double)i90 / 256.; 
d135 = (double)i135 / 256.; 
d45 = (double)i45 / 256.; 
savegt(&gt.linearity, d0, d90, d135, d45); 
/* linearity strength */ 
d0 = (c0/(i0+.00001)) / 256.; 
d90 = (c90/(i90+.00001)) / 256.; 
d135 = (c135/(i135+.00001)) / 256.; 
d45 = (c45/(i45+.00001)) / 256.; 
savegt(&gt.linearity_strength, d0, d90, d135, d45); 

/* WRITE ALL STATISTICS IN gt . STRUCTURE TO OUTPUT FILE */ 
put_txfile(fstream); 
/* clip to max value 255 */ 
mval0 = mval90 = mval135 = mval45 = 0; 
x=0; 
while (x < 256*256) { 
if (dm0[x] > 255) dm0[x] = 255; 
if (dm90[x] > 255) dm90[x] = 255; 
if (dm135[x] > 255) dm135[x] = 255; 
if (dm45[x] > 255) dm45[x] = 255; 
x++; 
} 
/******************************************************/ 

/* Convert data to unsigned char to write into png */ 
unsigned char *dm0b = (unsigned char *)malloc(256*256); 
unsigned char *dm90b = (unsigned char *)malloc(256*256); 
unsigned char *dm135b = (unsigned char *)malloc(256*256); 
unsigned char *dm45b = (unsigned char *)malloc(256*256); 
if ((dm0b==0) || (dm90b==0) || (dm135b==0) || (dm45b==0)) { 

cout << " malloc error in texture3" << endl; 
return 0; 
} 
x=0; 
while (x < 256*256) { 
dm0b[x] = (unsigned char) (dm0[x] & 0xff); 
dm90b[x] = (unsigned char) (dm90[x] & 0xff); 
dm135b[x] = (unsigned char) (dm135[x] & 0xff); 
dm45b[x] = (unsigned char) (dm45[x] & 0xff); 
x++; 
} 
/* 
* write output to 4 quadrants: 0=0, 1=90, 2=135, 3=145 
*/ 
char outfile[256]; 

sprintf(outfile, "%s_SDMQUadrant_0deg_8UC1. png ", filename); 
Mat SDMQuadrant0(256, 256, CV_8UC1, dm0b); 
imwrite(outfile, SDMQuadrant0); 

sprintf(outfile, "%s_SDMQUadrant_90deg_8UC1. png ", filename); 
Mat SDMQuadrant90(256, 256, CV_8UC1, dm90b); 
imwrite(outfile, SDMQuadrant90); 

sprintf(outfile, "%s_SDMQUadrant_135deg_8UC1. png ", filename); 
Mat SDMQuadrant135(256, 256, CV_8UC1, dm135b); 
imwrite(outfile, SDMQuadrant135); 

sprintf(outfile, "%s_SDMQUadrant_45deg_8UC1. png ", filename); 
Mat SDMQuadrant45(256, 256, CV_8UC1, dm45b); 
imwrite(outfile, SDMQuadrant45); 
free(dm0);
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free(dm90); 
free(dm135); 
free(dm45); 
free(data); 
free(dm0b); 
free(dm90b); 
free(dm135b); 
free(dm45b); 
fclose(fstream); 
return 0; 
} 
int main (int argc, char **argv) 
{ 
cout << "8-bit unsigned image expected as input" << endl; 
texture (argv[1]); 
return 0; 
}
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Appendix E: The Visual Genome Model 
(VGM) 

The memory impression is the feature. 

—Scott Krig 

Volume renderings of synthetic neural clusters represented as visual genome features 

In this appendix, we discuss the Visual Genome Model VGM), a view-based vision model, assuming 
virtually unlimited feature memory space to store features and concepts, rather than constraining and 
compressing the feature representation to a sparse or more computable set as is typical in common 
neural models such as CNNs. Visual Genomes record all the features detected in separate virtual 
neurons modeled as simple memory cells to record each feature, and a comparator to test input 
impressions presented to the neuron against the memory cell. Visual Genomes are composed together 
into sequences or visual genomes, similar to a DNA chain, to represent higher-level concepts in strands 
and bundles. The Visual Genome Model is inspired by the basic low-level structures of the visual 
pathway including the retina through, LGN, and V1-V4 layers. The higher-level reasoning centers of 
the visual pathway are not included in the VGM, and instead, high level reasoning centers are assumed 
to be a consciousness level which can be modeled as a special-purpose proxy agent process 
implemented in software, managing a suitable training protocol, classifier, and hypothesis testing 
mechanism. In this respect, the VGM may be considered as a visual memory machine suitable for use 
under the control of a proxy agent within a larger visual processing machine. We present an overview 
of the VGM in this appendix, and additional details with more comprehensive results for classification 
and object recognition are provided in Krig [476] and http://krigresearch.com. 

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Krig, Computer Vision Metrics, https://doi.org/10.1007/978-981-99-3393-8
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The VGM follows the neurobiological concepts of local receptive fields and a hierarchy of features, 
similar to the Hubel and Wiesel model [499, 500]. As shown in Fig. E.1, the hierarchy consists of 
parvo, magno, strand, and bundle features as discussed below. Each feature is simply a memory record 
of the visual inputs stored in groups of neuron memory. This is in contrast to the notion of designing a 
feature descriptor (Figs. E.2, E.3, E.4, E.5,  an  d E.6). 

Fig. E.1 This figure illustrates the visual genome architecture and feature memory concepts 
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Fig. E.2 This figure illustrates the partetal and temporal visual pathways composed of larger magno cells with lower 
resolution, and smaller parvo cells with higher resolution. Parvo cells are 10–20 % as large as magno cells
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Fig. E.3 This figure illustrates the five Parvo feature channels 
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Fig. E.4 This figure illustrates the magno feature channels
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Magno 

20% scale 

Parvo 

100% scale 

Fig. E.5 This figure illustrates the relative scale of parvo and magno image input. The scale difference corresponds to the 
magno cell area vs. parvo cell area, where parvo cells are 10–20% as large as magno cells. The parvo cells are full 
resolution retinal images, and the magno cells are 5:1 down-sampled images 

VGM stores low-level Parvo and Magno features as raw memory records or impressions, and 
groups the low-level memory records within contiguous segmented primal regions as strands, and 
groups of strands are associated together as bundles describing higher-level concepts. The raw input 
pixel values of local receptive fields are used to compose a feature address vector referencing a huge 
virtual multi-dimensional address space, refer Fig. E.7. The address is the feature. The intent of using 
the raw pixel values concatenated into an address is to enable storage of the raw visual impressions 
directly in a virtually unlimited feature memory with no intervening processing, following the view 
based model of neurobiology. The bit precision of the address determines the size of the memory 
space. The bit precision and coarseness of the address is controlled by a quantization parameter, 
discussed later along with the VGM neural model. So the VGM operates in a quantization space, 
revealing more or less detail about the features as per the quantization level. 

VGM 
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Fig. E.6 This figure illustrates the VGM model for magno and parvo neurons
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Why such as simple feature model? The VGM model assumes that the sheer number of features is 
more critical than the type of feature chosen, as evidenced by the feature learning architecture survey 
in Chap. 10, providing several examples of systems that all achieve similar accuracy, using a wide 
range of feature types and hierarchy levels. It is not clear from CNN research that the scale hierarchy 
itself is the major key to success, or if a large set of mono-scale multi-model features, rather than a scale 
hierarchy, would be equally effective. For example, large numbers of simple image pixel regions have 
been demonstrated by Chunhui et al. [637] to be very capable image descriptors for segmentation, 
detection and classification. Gu organizes the architecture as a robust bag of overlapped features, using 
Hough voting to identify hypothesis object locations, followed by a classifier, to achieve state of the art 
accuracy on several tests. 

Neuroscience Inspiration for VGM 

Here, we summarize the specific neuroscience research which informs and inspires the VGM, followed 
by the corresponding architecture and design details. We cover the basics of the visual pathway, 
memory mechanisms, neural models, and the retinal processing model. 

Feature and Conceptual Memory Locality 

Neuroscience research shows that the visual pathway stores related concepts in contiguous memory 
regions [778, 779], suggesting a view-based model [740] for vision. Under the view-based model, new 
memory records, rather than invariant features, are created to store variations of similar items for a 
concept. Related concepts are stored in a local region of memory proximate to similar objects. The 
mechanism for creating new memory features is likely based on an unknown learning motivation or 
bias, as directed by higher layers of reasoning in the visual pathway. Conversely, the stored memories 
do not appear to be individually invariant, but rather the invariance is built up conceptually by 
collecting multiple scene views together with geometric or lighting variations. Brain mapping research 
supports the view-based model hypothesis. Research using functional MRI scans ( fMRI) shows that 
brain mapping can be applied to forensics, by mapping the brain regions that are activated while 
viewing or remembering visual concepts, as reported by Lengleben et al. [785]. In fact, nature has 
reported that limited mind reading is possible [778, 779, 786] using brain mapping, revealing in 
MRI-type imaging modalities specific regions of the cerebral cortex that are electrically activated while 
viewing a certain subject, evaluating a certain conceptual hypothesis, or responding to verbal questions 
(of related interest, according to some researchers brain mapping reveals cognitive patterns that can 
be interpreted to reveal raw intelligence levels, and also brain mapping has been used to record 

cognitive fingerprints which are currently fashionable within military and government security 

circles). 
New memory impressions will remain in short-term memory for evaluation of a given hypothesis, 

and may be subsequently forgotten unless classified and committed to long-term memory by the 
higher-level reasoning portions of the visual pathway. The higher level portions of the visual pathway 
consciously direct classification using a set of hypothesis against either incoming data in short term 
memory, or to reclassify long term memory. The higher-level portions of the visual pathway are 
controlled perhaps independently of the biology by higher-level consciousness of the soul. The eye and 
retina may be directed by the higher level reasoning centers to adjust the contrast and focus of the 
incoming regions.
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Attentional Neural Memory Research 

Baddeley [541] and others have shown that the human learning and reasoning process typically keeps 
several concepts at attention simultaneously at the request of the central executive, which is directing 
the reasoning task at hand. (VGM models the central executive as a proxy agent, discussed below.) The 
central executive concept assumes that inputs may come in at different times, thus several concepts 
need to be at attention at a given time. Perhaps up to seven concepts can be held at attention by the 
human brain at once, thus Bell Labs initially create phone numbers using seven digits. Selected 
concepts are kept at attention in a working memory or short-term memory (i.e., attention memory or 
concept-memory), as opposed to a long-term memory from the past that is not relevant to the current 
task. As shown by Goldman-Rakic [542], the attention-memory or concepts may be accessed at 
different rates, for example checked constantly, or not at all, during delay periods while the central 
executive is pursuing the task at hand and accessing other parts of memory. The short-term memory 
will respond to various cues, and loosely resembles the familiar associative memory or content-
addressable memory (CAM) used for caching in some CPUs. The VGM address feature model is 
similar to a CAM model, and allows the central executive to determine feature detection on-demand, 
and VGM does not distinguish short/long term memory or limit short term memory. 

HMAX Model and Visual Cortex Models of the Visual Pathway 

The HMAX model is designed after the visual pathway regions, which clearly shows a hierarchy of 
concepts. HMAX uses hardwired feature for the lower levels such as Gabor or Gaussian functions, 
which resemble the oriented edge response of neurons observed in the early stages of the visual 
pathway as reported by Tanaka [752], Logothetis [753], and others. Logothetis found that some groups 
of neurons along the hierarchy respond to specific shapes similar to Gabor-like basis functions at the 
low levels, and object-level concepts such as faces in higher levels. HMAX builds higher level 
concepts on the lower level features, following research showing that higher levels of the visual 
pathway (IT) are receptive to highly view-specific patterns such as faces, shapes and complex objects, 
see Perrett [747, 748] and Tanaka et al. [749]. In fact, clustered regions of the visual pathway IT region 
are reported by Tanaka [752] to respond to similar clusters of objects, suggesting that neurons grow 
and connect to create semantically associated view-specific feature representations as needed for view-
based discrimination. HMAX provides a viewpoint-independent model that is invariant to scale and 
translation, leveraging a MAX pooling operator over scale and translation for all inputs feeding the 
higher-level S2, C2, and VTU units, resembling lateral inhibition which has been observed between 
competing neurons, allowing the strongest activation to shut down competing lower strength 
activations. HMAX also allows for sharing of low-level features and interpolations between them as 
they are combined into higher-level viewpoint-specific features. 

Virtually Unlimited Feature Memory 

The brain contains perhaps 100 billion neurons or 100 giga-neurons (GN), (estimates vary), and each 
neuron is connected to perhaps 10,000 other neurons on average (estimates vary), yielding over 
100 trillion connections [784] compared to the estimated 200–400 billion stars in the Milky Way 
galaxy. Apparently, there are plenty of neurons to store information in the human brain, so the VGM 
takes the assumption that there is no need to reduce the size of the feature set, and supports virtually



unlimited feature memory. Incidentally for unknown reasons, the brain apparently only uses a portion 
of the available neurons, estimates range from 10 to 25% (10GN–25GN). Perhaps with longer life 
spans of perhaps 1000 years, all the neurons could be activated into use. 
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VGM feature memory is represented in a quantization space where the bit resolution of the features 
is adjusted to expand or reduce precision, which is useful for practical implementations. In effect, the 
size of the virtual memory for all neurons is controlled by the numeric precision of the pixels. Visual 
genomes represent features at variable resolution to produce either coarse of fine results in a 
quantization space, discussed in subsequent sections on the VGM neural model and memory structure 
below. 

Genetic Preexisting Memory 

More and more research shows that DNA may contain memory impressions or genetic memory such as 
instincts and character traits (see [750], many more references can be cited). Other research shows that 
DNA can be modified via memory impressions [751] that are passed on to subsequent generations via 
the DNA. 

Neuroscience suggests that some features are preexisting in the neurocortex at birth, for example 
memories and other learnings from ancestors may be imprinted into the DNA, while other behaviors 
are pre-wired in the basic human genome, designed into the DNA, and not learned at all. It is well 
known that DNA can be modified by experiences, for better or worse, and passed to descendants by 
inheritance. So the DNN training notion of feature learning by initializing weights to random values 
and averaging the response over training samples is primitive best, and a rabbit trail following the 
evolutionary assumptions of time + chance = improvement. In other words, we observe that visible 
features are both recorded and created by genetic design, not generated by random processes. 

The VGM model allows for preexisting memory to be emulated using transfer learning to initialize 
the VGM memory space, which can be subsequently improved by recording new impressions from a 
training set or visual observation on top of the transferred features. Specifically, some of the higher 
level magno, strand, and bundle features can be initialized to primal basis sets, for example shapes or 
patterns, to simulate inherited genetic primal shape features, or to provide experience-based learning. 

Neurogenesis, Neuron Size, and Connectivity 

As reported by Bergami et al. [787, 788] as well as many other researchers, the process of neurogenesis 
(i.e., neural growth) is regulated by experience. Changes to existing neural size and connectivity, as 
well as entirely new neuron growth, take place in reaction to real or perceived experiences. As a result, 
there is no fixed neural architecture for low-level features, rather the architecture grows. Even identical 
twins (i.e., DNA clones) develop different neurobiological structures based on experience, leading to 
different behavior and outlook. 

Various high level structures have been identified within the visual pathway, as revealed by brain 
mapping [778, 779], such as conceptual reasoning centers and high-level communications pathways 
[618], see also Fig. 9.10. Neurogenesis occurs in a controlled manner within each structural region. 
Neurogenesis includes both growth and shrinkage, and both neurons and dendrites have been observed 
to grow significantly in size in short bursts, as well as shrink over time. Neural size and connectivity 
seem to represent memory freshness, and forgetting, so perhaps forgetting may be biologically 
expressed as neuronal shrinkage accompanied by disappearing dendrite connections. Neurogenesis



is reported by Lee et al. [788] to occur throughout the lifetime of adults, and especially during the early 
formative years. 
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To represent neurogenesis, VGM represents neural size and connectivity by the number of times a 
feature impression is detected, which can be interpreted as (a) a new neuron for each single impression, 
or (b) a larger neuron for multiple impression counts (it is not clear from neuroscience if either a OR b, 
or both a AND b are true). Therefore, neurogenesis is reflected in terms of the size and connectivity of 
each neuron in VGM. 

Bias and Motivation for Learning New Memory Impressions 

Neuroscience suggests that the brain creates new memory impressions of important items under the 
view-based theories surveyed in the HMAX section in Chap. 10, rather than dithering visual 
impressions together as in DNN backprop training. Many computer vision models are based on the 
notion that features should be designed to be invariant to specific robustness criteria, such as scale, 
rotation, occlusion, and other factors discuss in Chap. 5, which may be an artificial notion only 
partially expressed in the neurobiology of vision. Although bias is assumed during learning, VGM 
does not model a bias factor in the VGM neuron. Most artificial neural models include a bias factor for 
matrix method convenience, but usually the bias is ignored or fixed. Bias can account for the 
observation that people often see what they believe, rather than believing what they see, and therefore 
bias seems problematic to model. 

Depth Processing 

Depth processing in the human visual system is accomplished in at least two ways: (1) using stereo 
depth processing within a L/R stereo processing pathway in the visual cortex, and (2) using other 2D 
visual cues associated together at higher level reasoning centers in the visual pathway. As discussed in 
Chap. 1 and summarized in Table 1.1, the human visual system relies on stereo processing to determine 
close range depth out to perhaps 5–10 m, and then relies on other 2D visual cues like shadows and 
spatial relationships to determine long range depth, since stereo information from the human eye is not 
available at increasing distances due to the short baseline distance between the eyes (see Fig. 1.20). In 
addition, stereo depth processing is affected by a number of key problems including occlusion and 
holes in the depth map due to the position of objects in the field of view, and also within the Horopter 
region where several points in space may appear to be fused together at the same location, requiring 
complex approximations in the visual system. The VGM model does not attempt to model depth or the 
stereo pathway. 

However, future work may include providing a depth map channel and surface normal vector 
images as input channels for magno and parvo features, but perhaps the better approach is to provide 
depth maps and surface normal images to the higher-level proxy agent for incorporation into strands, 
bundles, and a classifier. 

Dual Retinal Processing Pathways: Magno and Parvo 

As shown in Fig. E.2, there are two types of cells in the retina which provide ganglion cell inputs to the 
optic nerve: magno cells and parvo cells. Of the approximately one million ganglion cells leaving the 
retina, about 80–90% are smaller parvo cells with smaller receptive fields, and about 10–20% are larger



magno cells with a larger receptive field. The magno cells track gross movement in 3D and are 
sensitive to contrast, luminance and coarse details (i.e., the receptive field is large). The parvo cells are 
slower to respond and represent color and fine details (i.e., the receptive field is small). Magno cells are 
spread out across the retina and provide the gross low-resolution outlines, and parvo cells are 
concentrated in the center of the retina and respond most to the saccadic dithering to increase effective 
resolution. 
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The magno and parvo cell resolution differences suggest a two-level spatial pyramid arrangement 
built into the retina for magno-subsampled low resolution, and parvo high resolution. In addition, the 
visual pathway contains two separate parallel processing pathways—a fast magno shape tracking 
monochrome pathway, and a slow parvo color and texture pathway. Following the magno and parvo 
concepts, Visual Genomes provides two classes of genomes: low-resolution luminance genomes for 
coarse shapes and segmentations (magno features), and higher resolution color and texture genomes 
(parvo features). 

Following the dual parvo and magno pathways in the human visual system, Visual Genomes 
models parvo features as micro-level RGB color and texture tiles at higher resolution, and magno 
features as low-level luminance channels at lower resolution, such as primitive shapes with connec-
tivity and spatial relationships. The magno features correspond mostly to the rods in the retina which 
are sensitive to luminance and fast-moving shapes, and the parvo features correspond mostly to the 
cones in the retina which are color sensitive to RGB, and capture low-level details with spatial acuity. 
The central foveal region of the retina is exclusively RGB cones, optimized to capture finer detail, and 
contains the highest density of cells in the retina, with retinal cell density becoming sparser towards the 
edge of the field of view. 

Retinal Processing Model 

The retina can perform a wide range of processing, including dynamic range adjustments at each cell. 
The retina performs a saccadic dithering process to get more detail from a specific area by dithering the 
focal point around the area. The iris can open and close to control lighting, and the receptive rod, cone 
and ganglion cells together perform local contrast enhancement. In addition, the lense can be used to 
change the depth of field and focal plane (depth of field is a stereo process, and the visual pathway 
provides a separate L/R processing pathway for depth processing). Notice that the retinal model does 
not include geometric position or scale changes. 

VGM provides a retinal input processing model consisting of a set of separate input images, which 
reflect the capabilities of actual vision biology at the eye: 

– Luminance images 
– RGB color images and separate color channel images 
– High dynamic range contrast enhanced images using the biologically inspired Retinex method (see 

Scientific American, May 1959 and December 1977) 
– Local contrast normalization 
– Sharpened and blurred images 

Visual Genomes assume a retinal model for input processing, combined with simple neurons that 
do not perform any processing. The retina provides depth of field and focus controls, contrast controls, 
dynamic range controls for compression and expansion. However, other variations such as rotation and 
scale are controlled by moving the body and eye position, rather than neural image processing. In this



respect, the training protocol can be optimized by including prepared images of different views and 
perspectives for optimal learning. 
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Visual Genomes Model Concepts 

Here we describe more details on each component of the VGM model. 

Magno and Parvo Features 

Following the biological region subsampling that occurs in magno cells, VGM defines two types of 
features and two types of images in a two-level feature hierarchy: 

1. Parvo features: Parvo features are modeled as RGB features with high detail, following the design 
of parvo cells, take input images at full resolution (100%), use RGB color, and represent color and 
texture features. 

2. Magno features: Magno features are modeled as lower resolution luminance features, following 
the magno cell biology, chosen to be 20% of full resolution (as a default approximation to retinal 
biology), following the assumption that the larger magno cells integrate and subsample a larger 
retinal area, therefore yielding a lower resolution image suited for the rapid tracking of shapes, 
contours and edges for masks and cues. Since actual magno cells use predominantly monochrome 
rod cells, VGM defines magno features to use a monochrome space and a Retinex processing 
algorithm (see Scientific American, May 1959 and December 1977) to model the low light-level rod 
response which provides local contrast enhancement, and also a global contrast normalization 
method similar to histogram equalization. 

The parvo and magno features are collected in four genome shapes A, B, C, D within overlapped 
input windows, simulating the Hubel and Weiss [499, 500] primitive edges found in local receptive 
fields, see Figs. E.7, E.8,  and  E.9. The genome shapes are discussed in more detail later.
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Fig. E.7 This figure illustrates the method of defining four genomes from the 3 × 3 matrix, each genome is a set of three 
bytes forming a 24-bit address, which is the feature descriptor
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Fig. E.8 This figure shows (upper image) parvo input processing of a total of 15 image inputs combined into separate 
RGB genomes 
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Fig. E.9 This figure illustrates the luminance-channel magno image recorded into four genomes A, B, C, and D
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It is also observed that the visual pathway operates in two main phases:

• Scanning phase (magno features): Apparently the visual system first identifies regions of interest 
via the magno features, such as shapes and patterns, during a scanning phase, where the eye is 
looking around the scene and not focused on a particular area. During the scanning phase, the retinal 
model is not optimized for a particular object or feature, except perhaps for controlling gross 
lighting and focus via the iris and lense. The Magno features are later brought into better focus and 
dynamic range is optimized when the eye focuses on a specific region for closer evaluation.

• Saccadic phase (parvo features): For closer evaluation, the visual system inspects interesting 
magno shapes and patterns to identify parvo features, and then attempts to identify larger concepts. 
The retinal processing optimizations may change several times during the parvo feature scanning in 
the saccadic dithering stage according to the current hypothesis under attention by the high-level 
proxy agent, for example focus and depth of field may be changed at a particular point to test a 
hypothesis. 

Parvo Retinal Processing 

Parvo cells are designed to capture color and texture with high detail, and operate at a higher resolution 
than the magno cells, and slower to respond to changes. To emulate the parvo cells in the VGM retinal 
model, four types of input processing are used to create full-resolution images for parvo features, 
corresponding to the biological capabilities of the eye: 

1. Unprocessed raw first-pass RGB images. 
2. Local contrast enhanced RGB images emulating saccadic dithering. 
3. Global contrast enhanced RGB images to mitigate shadow and saturation effects and support high 

dynamic range contrast enhancements. 
4. Sharpened RGB images supporting focus increase. 
5. Blurred RGB images emulating depth of field effects. 

The input images are all processed and combined by the VGM neuron into the same genome 
features (A, B, C, D as shown in Fig. E.7), so there is not a separate feature genome for blur, sharpen, 
raw and contrast enhanced images. Instead, the goal is to integrate the range of retinal features into 
each memory cell, making the assumption that there is short term memory in biological neurons, 
allowing the neuron to form and commit the feature memory as controlled by the proxy agent. Also, 
using separate genomes for each retinal processing function would explode the feature memory count 
and processing load without clear justification at this stage of the VGM prototype development. 

Magno Retinal Processing 

For the magno features, we assume a much simpler model than the parvo cells, since the magno cells 
are lower resolution and are attuned to fast moving objects, which implies that the retinal model does 
not change the magno features as much from impression to impression, rather the retinal model for 
magno scanning is perhaps changed three times: (1) global scene scan at constant settings, (2) pause 
scan at specific location and focus, and (3) contrast enhance at paused position, and then hand off 
processing to the parvo stage. Therefore, we propose to model the magno features as raw luminance 
input subsampled to 20% of full resolution, with prepared luminance images reflecting the eye 
processing biology. Since magno cell regions contain several cells within the magno region, and are



predominantly attuned to faster-moving luminance changes, subsampling luminance 5:1 (i.e., 20% 
scale) is a reasonable emulation of magno cell biology. Perhaps, the larger size of the magno region is 
both (1) faster to accumulate a low light response over all the cells in the magno region and (2) the 
magno cell output is lower resolution due to the subsampling of all the cells within the magno region. 
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Note that scale and other geometric changes are not controlled by the eye, but rather by the body 
containing the eye, or the position of the subject. Therefore, geometric variations such as scale, 
rotation, and warping can be accomplished best by using a range of carefully selected labeled training 
samples from various viewpoints, angles and distances, or else emulated by applying geometric 
transforms to the labeled training images (not as desirable under the viewpoint model). 

Magno Primal Feature Segmentation 

And it also seems necessary to carefully mask out extraneous information from the labeled training 
samples, for example masking out only the apple in a labeled image of apples, for recording the 
optimal genome impressions for the apple. To emulate selective region masking and attentional focus, 
the magno scanning phase incorporates an image segmentation pipeline to identify interesting regions, 
discussed later in the Visual Genome Sequences, Tiles, Strands, Bundles, Primal Features section. 

VGM Neuron Model 

Each magno and parvo neuron models a separate feature; however, features may be shared 
corresponding to neurons being connected to multiple other neurons. In the VGM, neural size and 
connection density are modeled as corresponding to the number of times the neuron is shared. The 
feature sharing is recorded as feature detection counts for each stored neural memory impression. 
(Note: strand and bundle neurons and features are discussed in more detail in [476].) As shown in 
Fig. E.6, neurons representing tiled magno and parvo features are composed of a CAM memory cell 
and a comparator δ, which operates at a bit precision quantization level θ input to the neuron. The 
neural input k is either considered as a 3 × 3 matrix representing tile features,  or  as  a  9  × 1 vector. 
Likewise, the CAM memory corresponds to a 3 × 3 tile or 9 × 1 vector. (See Krig [476] for information 
on other sizes besides 3 × 3.) The contents of the CAM memory and the input k are taken by the 
comparator δ to produce two items: (1) the Correlation Distance output k ‘, and (2) the Motivation or 
Firing output Φ which is a TRUE or FALSE output, corresponding to a dendrite firing all or nothing. 
The correlation distance k ‘ can be used for implementing inhibition (a biologically plausible neural 
mechanism), when the distance is small. The Motivation firing activity and Output Distance of each 
neuron can be used by a higher level proxy agent for forgetting memory (discussed in [476]) or 
determining feature distance. To generate Φ, a quantization factor input θ is used with k ‘ to implement 
a quantization space for determining the firing threshold. The quantization space is based on binary 
quantization, so eliminating a bit of precision quantizes the space by a power of 2, for example 
11111111 = 256 space quantization, 11111110 = 128 space quantization. The bit-level quantization 
simulates a form of attentional level of detail, which is biologically plausible.
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In raw Impression mode (similar to a learning mode), all memory impressions are captured in CAM 
memory cells as detection counts. Common impressions have larger impression counts since they are 
detected more often. As shown in the Genome Renderings at the end of this appendix, commonly 
detected features are typically recorded in regular patterns follow the address format structure. The 
Quantization input θ bits can be used to shape the memory address by masking each pixel to coalesce 
similar memory addresses which focuses and groups similar features together, as explained in the 
VGM Memory Structures section and Fig. E.10. Essentially, the Quantization input θ is used to mask 
off the lower bits of each pixel in an address to (1) reduce the level of detail and number of different 
features detected, and correspondingly and (2) increase the detection count by coalescing similar 
features. We also refer to θ as Quantization Distance or Quantization Space. Quantization allows 
variable precision feature interpretation, or recording, allowing the same feature to be represented with 
a variable amount of detail depending on the task, for example lower detail for high-level passes to find 
candidate matches, and high detail for final classification passes. 

for(int y=0; y < ysize-2; y++) 
{ 

for(int x=0; x < xsize-2; x++) 
{ 

getRegion3x3_u8((U8_PTR)filedata_8u_g, x, y, xsize, ysize, (U8_PTR)w3x3); 
// 

// [x x x] [x B x] [C x x] [x x D] 

// [A A A] [x B x] [X C x] [x D x] 

// [x x x] [x B x] [X X C] [D x x] 

// 

U32 genome_A_address = ((w3x3[1][1]) & 0xff) | ((w3x3[0][1]<<8) & 0xff00) | ((w3x3[2][1]<<16) & 0xff0000); 
U32 genome_B_address = ((w3x3[1][1]) & 0xff) | ((w3x3[1][0]<<8) & 0xff00) | ((w3x3[1][2]<<16) & 0xff0000); 
U32 genome_C_address = ((w3x3[1][1]) & 0xff) | ((w3x3[0][0]<<8) & 0xff00) | ((w3x3[2][2]<<16) & 0xff0000); 
U32 genome_D_address = ((w3x3[1][1]) & 0xff) | ((w3x3[2][0]<<8) & 0xff00) | ((w3x3[0][2]<<16) & 0xff0000); 

quantization_mask = 0xF8F8F8; 
magno_luminance_g[GENOME_A_0_DEGREES][genome_A_address & quantization_mask]++; 
magno_luminance_g[GENOME_B_90_DEGREES][genome_B_address & quantization_mask]++; 
magno_luminance_g[GENOME_C_135_DEGREES][genome_B_address & quantization_mask]++; 
magno_luminance_g[GENOME_D_45_DEGREES][genome_C_address & quantization_mask]++; 

} 
} 

Fig. E.10 This figure illustrates the method of creating 24-bit addresses from 8-bit pixel values into the four genomes, 
using a quantization mask to coalesce and focus the features
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To illustrate Quantization Space, consider two different feature addresses that become equal after 
coalescing using a quantization θ mask:

• Feature 1 = 0x81A89D
• Feature 2 = 0x83A19e 

– Quantization input θ mask = 0xFCFCFC 
– 0x81A89D & 0xFCFCFC = 0x80A89C 
– 0x83A19e & 0xFCFCFC = 0x80A89C 

Each neuron represents a complete Magno or Parvo feature at some level of the feature hierarchy in 
the visual pathway. 

VGM Feature Memory Structures 

The VGM feature is a memory address composed from a 3 × 3 region of pixel values—the pixel values 
comprise the address. The idea is to represent each visual impression as a memory feature. Of course, 
this leads to a very large memory space, so several models were evaluated to come up with a 
reasonable memory address format to limit the size. The simplest format is to concatenate the pixels 
together into a memory address. For example using the nine 8-bit pixel values from the 3 × 3 pixel 
region concatenated into a 72-bit address yields an space of 9 × 8 = 72 = 272 (4 zetabytes) which is 
impractical for desktop computers. Note that while it is possible to reduce the pixel resolution to less 
than 8-bits, the trade-off of bit precision does not seem worthwhile, for example 4-bit pixel precision 
yields 9*4 = 236 = 68 GB which is outside the per-process address space limitation of typical desktop-
class systems, and the level of detail of the pixels is greatly reduced which may not be desirable. The 
current implementation uses a trade-off to segment the address space into four regions, as shown in 
Fig. E.7. Most desktop computers using 32-bit and 64-bit memory addressing with commercial 
operating systems support at least 2GB of address space per process (note: for practical reasons, 
desktop computers and operating systems do not use all 64 bits of the CPU address lines to map 

against a contiguous 64-bit addressed memory space). 
As shown in Fig. E.7, the address space is reduced by segmenting the address into four 16M feature 

segments for genomes A, B, C, and D. Each input 3 × 3 matrix of pixels is broken into the four 
genomes A, B, C, and D by combining three pixels from oriented line segments. Each genome memory 
unit contains a 32-bit unsigned int (four bytes) to record feature detection counts, so 16M 32-bit 
features consumes 64MB of memory. Using 5-bit pixels instead of 8-bit pixels yields genomes 
containing only 32k 32-bit features, and since 5-bit color images are realistic, 5-bit pixel values for 
the genome computations saves space. 

In addition, the features can be coalesced together by using the Quantization input θ bits as shown 
in the code example in Fig. E.10 (note the quantization mask used to adjust each address). 

As shown in Fig. E.8, parvo features are computed from five types of input images: raw, sharpened, 
blurred, local contrast enhanced, and global contrast enhanced, broken into 3 RGB channels, for a total 
of 15 input images combined into the four genomes A, B, C, D for each RGB color. The input images 
are combined together into the same genome, so each genome represents combined variations of raw, 
sharpened, blurred, and contrast enhanced impressions. Figure E.9 shows magno luminance channel 
input to compute the four magno genomes A, B, C, D, so for magno level segmentation into primal 
regions, any or all 5 types of retinal images may be used. 

For the parvo features as shown in Fig. E.8, for 8-bit pixels the total memory space occupied by 
each genome is 4 genomes * 3 RGB colors * 16M features * 4 bytes = 1.2 GB. For the magno features
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as shown in Fig. E.9, the total memory space occupied by each genome is 4 genomes * 
1luminance_channel * 16 M features * 4 bytes = 268 MB. 

The parvo and magno feature genomes together comprise sixteen groups. As shown in the feature 
count details below, if all the tile feature genomes shown in Figs. E.8 and E.9 are concatenated into a 
contiguous address (for illustration purposes only), then the total virtual feature count for all magno 
and parvo genomes at 8-bit pixel resolution is 2384 . 

Feature Count Details (8-Bit Pixels for Each RGBL Channel)

• 224 = 16M possible features for each genome
• 4=3+1:3 color genomes (R,G,B) for each parvo feature* + 1 magno luminance
• 4 (A, B, C, D) genomes
• 2384 = total possible features (2(24  *  4  *  4))

Feature Count Details (5-Bit Pixels for Each RGBL Channel)

• 215 = 32k possible features for each genome
• 4=3+1: 3 color genomes (R,G,B) for each parvo feature* + 1 magno luminance
• 4 (A, B, C, D) genomes
• 2240 = total possible features (2(15  *  4  * 4))
• *Note: the five parvo inputs (raw, sharp, blur, retinex, global contrast) are combined into the shape 

genomes (A, B, C, D) rather than separately recorded 

It should be noted that the 2384 possible feature addresses for 8-bit pixels will not occur for real 
images, and therefore the entire address space will never be populated, and will be clustered around the 
center of the volume space like a 3D SDM, as illustrated in the Genome Renderings at the end of this 
appendix, due to the fact that maximally or widely diverging adjacent pixel values do not often occur in 
natural images, and instead, the adjacent pixels are usually closer together in value. Widely diverging 
adjacent pixel values are more characteristic of noise and saturation effects, while reasonable diver-
gence corresponds to texture, and no divergence corresponds to no texture or a flat surface. So, the 
extremes of the address space will likely never be populated for visual genome features, which will 
resemble sparse volumetric shapes. 

Each time a given feature address is detected in the image, the count for the address is incremented, 
corresponding to feature commonality. The method for computing the feature addresses and counts is 
simple as illustrated in Fig. E.7, and relies on the quantization input to the VGM neuron as introduced 
in the VGM Neuron Model section above, see Fig. E.6. As a practical example using 8-bit pixel values 
for each RGB-L channel, the address can be quantized and focused by using a quantization space 
represented as an 8-bit hexadecimal mask value of 0xF8 (binary 1111 1000), and then each pixel value 
in the address is bit-masked into the desired quantization space to ignore the bottom 3 bits. This is 
illustrated in the following code snippet. 

Visual Genome Sequences, Tiles, Strands, Bundles, Primal Features 

VGM allows for a hierarchy of feature types, more details are provided in Krig [476]. Since DNA can 
apparently encode visual features into the visual neurons which then become biological defaults for 
subsequent learning, VGM allows for a set of primal features to be loaded into the model. The primal 
features correspond to region shape masks, corresponding to one of: (1) a segmentation mask derived 
from the actual Magno images (see Fig. E.11), (2) primal feature template masks containing are some



preexisting shape (see Appendix A), or (3) segmentations from another image set, which correspond to 
a form of transfer learning. The primal features are shape masks, and the masks comprise a region of 
the image over which a complete set of parvo features are computed and summed into a visual genome 
address space. Since the masks are computed at magno resolution, the masks are first scaled 5× prior to 
applying the masks to the full resolution parvo images. 
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Fig. E.11 (Left) One method of segmenting the magno image into mask regions, and (center) using each mask region as 
a template under which to define RGB-L parvo feature segmentation masks, and (right) the 16 visual genome parvo 
features, and RGB-L pixel histogram features for the mask region 

The actual segmentation pipeline to create the shape masks is currently based on superpixel 
segmentations [224] (see also Chap. 2 regarding Morphology and Segmentation). A range of 
superpixel size settings are used to collect a large set of candidate segmentations, with some amount 
of statistical criteria applied to select the optimal superpixel regions to use as shape masks, and which 
ones to ignore. The present statistical selection criteria uses a combination of Haralick feature metrics 
and the Krig Extended SDM metrics discussed in Chap. 3. The superpixels are the primal shape masks 
for bounding the magno and parvo features. The current segmentation pipeline is based on heuristics 
and testing; however, a promising area for future work is developing a more automated and adaptive 
image segmentation pipeline, which is a central area of research for imaging. 

If the shape masks are based on a segmentation of the current image being viewed, the registration 
and alignment of the masks is correct, and corresponding visual genome features are computed as 
intended. However, for primal features based on postulated primal shapes or transfer learning of 
segmented shapes from another image, the alignment of the shape masks does not exist. To use such 
primal features in the image pixel space would require the masks to be stepped across the entire image 
for correlation, and then for strong correlations the visual genome would be computed in the shape 
region. We reserve future work in this area to evaluate primal feature shape mask correlation as a part 
of the VGM, but for now we ignore it. However, the visual genome features based on a true 
segmentation of the current image will provide the desired results by allowing for correlation in the 
visual genome space, rather than in the image pixel space. 

Besides the 16 parvo features recorded under each mask, other features can be computed for each 
mask shape, such as a color histogram of the pixels under the mask, and various shape factors such as 
Fourier circularity descriptors or Freeman chain codes (see Chap. 6).
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Note that Hubel and Weiss define primal shapes for the lowest level receptive fields as oriented 
edge-like features which VGM models in a similar manner as Genomes A, B, C, and D, see Figs. E.8 
and E.9. VGM also postulates higher level primal feature shapes at the Strand feature level as 
segmented regions resembling corners, blobs, and circular regions as shown in Fig. E.12. For example, 
a hierarchy of shapes can be defined in the strand feature model for segmentation of the image into 
familiar parts based on the strand shapes, to collect the corresponding magno and parvo features in the 
segmented features into a strand. The primal features are recorded over time by experiential learning, 
see [476]. 

Fig. E.12 This figure illustrates example primal shapes for parvo, magno, strand, and bundle features. Note that the 
parvo and magno features are primal shapes consisting of oriented edges, following Hubel and Weiss. Strands are also 
primal shapes segmenting and collecting lists of the underlying magno and parvo tile textures from the RGB and Luma 
regions. Bundles are high level concepts composed of the primal shape strands 

The summary of the VGM feature types is as follows:

• Magno and Parvo Tiles—A  3  × 3 tile region is translated into four line segments representing 
micro-features as a 24-bit address (for 8-bit pixels) representing genomes A, B, C, and D. The 
address is the feature. The count of all detected tiles of each type is recorded at the address as a bin 
count for analysis and classification. Tiles genomes are the default feature stored in memory, from 
which strands of tiles are built up by the proxy agent to represent bundles of higher-level concepts. 
Magno features are used to segment the primal shapes.

• Strands, Primal—A segmented primal shape is used as the basis region to assemble sequences of 
3 × 3 tiles into a strand, analogous to a DNA chain sequence, stored in a strand memory space. 
Strands are defined within a magno feature shape region as a set of parvo tile features contained in 
the region, or perhaps defined within other preexisting primal segmented shaped regions. The strand 
is a genome sequence type further defined in [476].

• Bundles—Groups of strands, typically representing a high-level concept defined by the proxy 
agent, and stored in a bundle memory space. The bundle genome sequence types are defined 
in [476].
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In simple terms, parvo features are like texture and color tile codes. Magno features are shapes. 
Strands are shaped sets of magno and parvo tiles. The strand memory stores the variable length strands 
which are collections of magno and parvo features. The strands can be created several ways, such as 
using preexisting feature shape masks, or masks segmented from real images. Bundles are sets of 
strands. The proxy agent associates and creates sets of strands into bundles. 

VGM Proxy Agent 

The proxy agent represents the intelligence of the system, and is not defined in the VGM model. The 
VGM represents a memory space for storing and organizing visual features, and provides controls for 
the proxy agent. A variety of proxy agents can be devised for an application, since the VGM does not 
attempt to model the higher-level consciousness necessary. However, the following assumptions are 
made to devise controls within the VGM to enable the proxy agent:

• Retinal Processing Controller—VGM uses a very simple retinal model to provide biologically 
plausible image processing for the Parvo pathway (raw, sharp, blur, local contrast enhancement for 
high dynamic range adjustments, and global contrast normalization) and Magno pathway. This 
basic retinal model of processing is adequate to emulate the visual pathway, instead of resorting to a 
range of ad hoc processing methods as typically applied in CNN architecture feature layers. For 
example, the typical CNN neuron model uses a wide range of pre and post processing methods, see 
the taxonomy in Chap. 9 and Table 9.3. Instead the VGM assumes a strictly memory and 
comparator based neuron model, with no processing at the neuron except for the bit-level 
quantization control for attentional level of detail, which is biologically plausible.

• Training Protocol Controller—We propose a detailed learning and training model in [476] which 
provides for highly segmented labeled regions masked off to exclude extraneous details, rather than 
simply providing labeled images with multiple labels per image, or ill-prepared images with 
occlusions, geometric variations, lighting and color variations. Better prepared training sets should 
yield better results when the system is applied over real-life variations.

• Hypothesis Controller—A method to examine and compare objects against a range of hypotheses 
is part of an intelligent controller to direct domain-specific (1) creation of new memory records and 
(2) to classify objects. The VGM neural model and memory hierarchy are flexible with no 
restriction on the controllers, and provide a quantization space to carry out progressive refinement 
of hypothesis evaluations.

• Multi-Memory-Region Controller—A proxy agent may control multiple VGM memory models 
which are pretrained on a range of subjects, to simulate an entire visual cortex with separate feature 
regions. We develop an architecture using multiple-memory regions in [476].

• Environmental Controls In Feature Space—It is also possible to provide some sort of environ-
mental processing to the pixel values within each feature, to allow for hypothesis testing at 
classification time using colorimetric and environmentally accurate pixel processing to alter the 
features to test a given hypothesis. For example, pixel color and luminance will change at different 
times of the day, so the VGM model allows for what-if pixel processing of the feature space to 
account for seasonal lighting, cloud cover, rain, snow, fog, noise, or haze. To perform environmen-
tal hypothesis testing, the dynamic range for each RGB-L color component can be altered, treating 
color channels and luminance independently in each pixel in each feature, by adjusting pixel values 
in a color-space accurate manner. Environment-specific genomes can be recomputed, and classifi-
cation can be repeated. Such environmental hypothesis testing is highly relevant for surveillance
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and military applications. Environmental processing of the feature sets as part of a detection and 
recognition process is explored in [476]. 

Summary 

In summary, the VGM architecture is based on view-based model assumptions, a simplified retinal 
processing model, separate paths and purposes for magno and parvo features, and a hierarchy of primal 
strand and bundle features based on memory impressions, rather than using local feature descriptors, or 
a hierarchical feature scale pyramid created via pooling and subsampling as is typical for CNNs. 

Tile Genome Renderings 

For visualizing the tile genomes, each 16M feature genome is rendered into a 4096 × 4096 32-bit 
integer image. Then, some false coloring is applied to visualize the hot-spots in the address space 
where the most common features were detected. Image set 1 illustrates a representation of the magno A 
genome for an indoor scene (Bandits image), and image set 2 represents the magno A genomes for an 
outdoor scene (Sequoia image). Notice that the indoor scene contains many flat regions with similar 
texture and color for doors and walls, while the outdoor scene contains a much wider range of textures 
and almost no flat surfaces of similar texture or color. The magno luminance genomes clearly reflect 
the color and texture. 

Note that classification and matching results are provided in Krig [476] for a wider range of image 
classes. 

Image Set 1: Indoor Scene of Little Girls (Bandits), 24-Bit RGB 2448 × 3264 Image
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Zoom-in close on region of 4096 × 4096 visualized Genome A address space for indoor Bandits image, false colored to 
show hot spots or commonly detected Genome A features
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Full 4096 × 4096 visualized Genome A address space for indoor Bandits image, highlighted to show commonly detected 
features
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Image Set 2: Outdoor Scene of Giant Sequoia Trees 24-Bit RGB 2112 × 2816 Image
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Zoom-in close on region of 4096 × 4096 visualized Genome A address space for outdoor Sequoia image, false colored to 
show hot spots or commonly detected Genome A features
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Full 4096 × 4096 visualized Genome A address space for outdoor Sequoia image, highlighted to show commonly 
detected features
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Image Set 3: Comparative Volume Renderings of Entire Genome A Feature Space 
for Sequoias Scene, Representing Each n-Bit Feature Component for the Volume 
Coordinates x, y, and z
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(Top) 256 × 256 × 256 8-bit pixel value volume renderings of genome A features for the Sequoias image, (Bottom) 
32 × 32 × 32 5-bit pixel value volume renderings, notice the dynamic range quantization space reduction in 5-bit pixel 
images vs. 8-bit pixel images. 8-bit images have a larger quantization space 

Image Set 4: Comparative Volume Renderings of Entire Genome A Feature Space 
for Bandits Scene, Representing Each n-Bit Feature Component for the Volume 
Coordinates x, y, and z
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(Top) 256 × 256 × 256 8-bit pixel value volume renderings of genome A features for the Bandits image, (Bottom) 
32 × 32 × 32 5-bit pixel value volume renderings. Notice the dynamic range quantization space reduction in 5-bit pixel 
images vs. 8-bit pixel images. 8-bit images have a larger quantization space
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