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Preface

It is now close to a decade since the ex-
plosive growth in the development and ap-
plication of deep neural networks (DNNs)
came about, and their subsequent progress
has been little short of remarkable. True, this
progress has been helped considerably by
the deployment of special hardware in the
form of powerful GPUs; and their progress
followed from the realization that CNNs
constituted a crucial architectural base, to
which features such as ReLUs, pooling, fully
connected layers, unpooling and deconvolu-
tion could also be included. In fact, all these
techniques helped to breathe life into DNNs
and to extend their use dramatically, so
the initial near-exponential growth in their
use has been maintained without break for
the whole subsequent period. Not only has
the power of the approach been impressive
but its application has widened considerably
from the initial emphasis on rapid object lo-
cation and image segmentation—and even
semantic segmentation—to aspects pertain-
ing to video rather than mere image analysis.

It would be idle to assert that the whole
of the development of computer vision since
2012 has been due solely to the advent
of DNNs. Other important techniques such
as reinforcement learning, transfer learning,
self-supervision, linguistic description of im-
ages, label propagation, and applications
such as novelty and anomaly detection, im-
age inpainting and tracking have all played
a part and contributed to the widening and
maturing of computer vision. Nevertheless,
many such techniques and application ar-
eas have been stimulated, challenged, and

enhanced by the extremely rapid take-up of
DNNs.

It is the purpose of this volume to explore
the way computer vision has advanced since
these dramatic changes were instigated. In-
deed, we can validly ask where we are now,
and how solid is the deep neural and ma-
chine learning base on which computer vi-
sion has recently embarked. Has this been a
coherent movement or a blind opportunistic
rush forward in which workers have ignored
important possibilities, and can we see fur-
ther into the future and be sure that we are
advancing in the right direction? Or is this
a case where each worker can take his or her
own viewpoint and for any given application
merely attend to what appears to be neces-
sary, and if so, is anything lost by employing
a limited approach of this sort?

In fact, there are other highly pertinent
questions to be answered, such as the thorny
one of the extent to which a deep network
can only be as powerful as the dataset it
is trained on; this question will presum-
ably apply to any alternative learning-based
approach, whether describable as a DNN
or not. Employing reinforcement learning
or self-supervision or other approaches will
surely not affect this likely limitation. And
note that human beings are hardly examples
of how extensive training can in any way
be avoided; their transfer learning capabili-
ties will be a vital aspect of how efficient the
learning process can be made.

It is the aim of this volume not only to
present advanced vision methodologies but
also to elucidate the principles involved: i.e.,
it aims to be pedagogic, concentrating as

). 4%



xvi

much on helping the reader to understand
as on presenting the latest research. With this
in mind, Chapter 1 sets the scene for the re-
mainder of this volume. It starts by looking
closely at the legacy of earlier vision work,
covering in turn feature detection, object de-
tection, 3D vision and the advent of DNNs;
finally, tracking is taken as an important ap-
plication area which builds on the material
of the earlier sections and shows clearly how
deep networks can play a crucial role. This
chapter is necessarily quite long, as it has to
get from ground zero to a formidable attain-
ment level in relatively few pages; in addi-
tion, it has to set the scene for the important
developments and methodologies described
by eminent experts in the remaining chap-
ters.

As is made clear in Chapter 1, object de-
tection is one of the most challenging tasks in
computer vision. In particular, it has to over-
come problems such as scale-variance, occlu-
sion, variable lighting, complex backgrounds
and all the factors of variability associated
with the natural world. Chapter 2 describes
the various methods and approaches that
have been used in recent advances. These
include region-of-interest pooling, multitask
losses, region proposal networks, anchors,
cascaded detection and regression, multi-
scale feature representations, data augmen-
tation techniques, loss functions, and more.

Chapter 3 emphasizes that the recent suc-
cesses in computer vision have largely cen-
tered around the huge corpus of intricately
labeled data needed for training models. It
examines the methods that can be used to
learn recognition models from such data,
while requiring limited manual supervision.
Apart from reducing the amount of man-
ually labeled data required to learn recog-
nition models, it is necessary to reduce the
level of supervision from strong to weak—
at the same time permitting relevant queries
from an oracle. An overview is given of theo-
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retical frameworks and experimental results
that help to achieve this.

Chapter 4 tackles the computational prob-
lems of deep neural networks, which make
it difficult to deploy them on resource-
constrained hardware devices. It dis-
cusses model compression techniques and
hardware-aware neural architecture search
techniques with the aim of making deep
learning more efficient and making neural
networks smaller and faster. To achieve all
this, the chapter shows how to use param-
eter pruning to remove redundant weights,
low-rank factorization to reduce complex-
ity, weight quantization to reduce weight
precision and model size, and knowledge
distillation to transfer dark knowledge from
large models to smaller ones.

Chapter 5 discusses how deep generative
models attempt to recover the lower dimen-
sional structure of the target visual mod-
els. It shows how to leverage deep gener-
ative models to achieve more controllable
visual pattern synthesis via conditional im-
age generation. The key to achieving this
is “disentanglement” of the visual represen-
tation, where attempts are made to sepa-
rate different controlling factors in the hid-
den embedding space. Three case studies,
in style transfer, vision-language generation,
and face synthesis, are presented to illus-
trate how to achieve this in unsupervised or
weakly supervised settings.

Chapter 6 concentrates on a topical real-
world problem—that of face recognition.
It discusses state-of-the-art deep learning-
based methods that can be used even with
partial facial images. It shows (a) how the
necessary deep learning architectures are put
together; (b) how such models can be trained
and tested; (c) how fine tuning of pretrained
networks can be utilized for identifying ef-
ficient recognition cues with full and partial
facial data; (d) the degree of success achieved
by the recent developments in deep learning;
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(e) the current limitations of deep learning-
based techniques used in face recognition.
The chapter also presents some of the re-
maining challenges in this area.

Chapter 7 discusses the crucial ques-
tion of how to transfer learning from
one data domain to another. This involves
approaches based on differential geome-
try, sparse representation and deep neu-
ral networks. These fall into the two broad
classes—discriminative and generative ap-
proaches. The former involve training a
classifier model while employing additional
losses to make the source and target fea-
ture distributions similar. The latter utilize a
generative model to perform domain adap-
tation: typically, a cross-domain generative
adversarial network is trained for mapping
samples from source domain to target, and a
classifier model is trained on the transformed
target images. Such approaches are validated
on cross-domain recognition and semantic
segmentation tasks.

Chapter 8 returns to the domain adapta-
tion task, in the context of semantic segmen-
tation, where deep networks are plagued by
the need for huge amounts of labeled data
for training. The chapter starts by discussing
the different levels at which the adapta-
tion can be performed and the strategies for
achieving them. It then moves on to dis-
cuss the task of continual learning in se-
mantic segmentation. Although the latter is
a relatively new research field, interest in it
is rapidly growing, and many different sce-
narios have been introduced. These are de-
scribed in detail along with the approaches
needed to tackle them.

Following on from Chapter 1, Chapter 9
reemphasizes the importance of visual track-
ing as one of the prime, classical problems in
computer vision. The purpose of this chap-
ter is to give an overview of the development
of the field, starting from the Lucas-Kanade
and matched filter approaches and conclud-
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ing with deep learning-based approaches as
well as the transition to video segmentation.
The overview is limited to holistic models
for generic tracking in the image plane, and
a particular focus is given to discriminative
models, the MOSSE (minimum output sum
of squared errors) tracker, and DCFs (dis-
criminative correlation filters).

Chapter 10 takes the concept of visual ob-
ject tracking one stage further and concen-
trates on long-term tracking. To be success-
ful at this task, object tracking must address
significant challenges that relate to model
decay—that is, the worsening of the model
due to added bias, and target disappearance
and reappearance. The success of deep learn-
ing has strongly influenced visual object
tracking, as offline learning of Siamese track-
ers helps to eliminate model decay. How-
ever, to avoid the possibility of losing track
in cases where the appearance of the target
changes significantly, Siamese trackers can
benefit from built-in invariances and equiv-
ariances, allowing for appearance variations
without exacerbating model decay.

If computer vision is to be successful in
the dynamic world of videos and action, it
seems vital that human cognitive concepts
will be required, a message that is amply
confirmed by the following two chapters.
Chapter 11 outlines an action-centric frame-
work which spans multiple time scales and
levels of abstraction. The lower level de-
tails object characteristics which afford them-
selves to different actions; the mid-level
models individual actions, and higher levels
model activities. By emphasizing the use of
grasp characteristics, geometry, ontologies,
and physics-based constraints, over-training
on appearance characteristics is avoided. To
integrate signal-based perception with sym-
bolic knowledge, vectorized knowledge is
aligned with visual features. The chapter also
includes a discussion on action and activity
understanding.
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Chapter 12 considers the temporal event
segmentation problem. Cognitive science
research indicates how to design highly
effective computer vision algorithms for
spatio-temporal segmentation of events in
videos without the need for any annotated
data. First, an event segmentation theory
model permits event boundaries to be com-
puted: then, temporal segmentation using
a perceptual prediction framework, tempo-
ral segmentation along with event work-
ing models based on attention maps, and
spatio-temporal localization of events follow.
This approach gives state-of-the-art perfor-
mance in unsupervised temporal segmen-
tation and spatial-temporal action localiza-
tion with competitive performance on fully
supervised baselines that require extensive
amounts of annotation.

Anomaly detection techniques constitute
a fundamental resource in many applica-
tions such as medical image analysis, fraud
detection or video surveillance. These tech-
niques also represent an essential step for
artificial self-aware systems that can con-
tinually learn from new situations. Chapter
13 presents a semi-supervised method for
the detection of anomalies for this type of
self-aware agent. It leverages the message-
passing capability of generalized dynamic
Bayesian networks to provide anomalies at
different abstraction levels for diverse types
of time-series data. Consequently, detected
anomalies could be employed to enable the
system to evolve by integrating the new ac-
quired knowledge. A case study is proposed
for the description of the anomaly detection
method, which will use multisensory data
from a semi-autonomous vehicle performing
different tasks in a closed environment.

Model- and learning-based methods have
been the two dominant strategies for solv-
ing various image restoration problems in
low-level vision. Typically, those two kinds
of method have their respective merits
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and drawbacks; e.g., model-based methods
are flexible for handling different image
restoration problems but are usually time-
consuming with sophisticated priors for the
purpose of good performance; meanwhile,
learning-based methods show superior ef-
fectiveness and efficiency over traditional
model-based methods, largely due to the
end-to-end training, but generally lack the
flexibility to handle different image restora-
tion tasks. Chapter 14 introduces deep plug-
and-play methods and deep unfolding meth-
ods, which have shown great promise by
leveraging both learning-based and model-
based methods: the main idea of deep plug-
and-play methods is that a learning-based
denoiser can implicitly serve as the im-
age prior for model-based image restoration
methods, while the main idea of deep un-
folding methods is that, by unfolding the
model-based methods via variable splitting
algorithms, an end-to-end trainable, itera-
tive network can be obtained by replacing
the corresponding subproblems with neural
modules. Hence, deep plug-and-play meth-
ods and deep unfolding methods can in-
herit the flexibility of model-based meth-
ods, while maintaining the advantages of
learning-based methods.

Visual adversarial examples are images
and videos purposefully perturbed to mis-
lead machine learning models. Chapter 15
presents an overview of methods that craft
adversarial perturbations to generate visual
adversarial examples for image classifica-
tion, object detection, motion estimation and
video recognition tasks. The key properties
of an adversarial attack and the types of per-
turbation that an attack generates are first de-
fined; then the main design choices for meth-
ods that craft adversarial attacks for images
and videos are analyzed and the knowledge
they use of the target model is examined. Fi-
nally, defense mechanisms that increase the
robustness of machine learning models to
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adversarial attacks or to detect manipulated
input data are reviewed.

Together, these chapters provide the inter-
ested reader—whether student, researcher,
or practitioner—with both breadth and
depth with respect to advanced computer
vision methodology and state-of-the-art ap-
proaches.

Finally, we would like to extend our
thanks to all the authors for the huge degree
of commitment and dedication they have de-
voted to producing their chapters, thereby
contributing in no small way to making this
volume a successful venture for advancing
the subject in what is after all a rapidly
changing era. Lastly, we are especially in-

debted to Tim Pitts of Elsevier Science for
his constant advice and encouragement, not
only from the outset but also while we were
in the throes of putting together this volume.

Roy Davies
Royal Holloway, University of London,
London, United Kingdom

Matthew Turk

Toyota Technological Institute at Chicago,
Chicago, IL, United States

May 2021
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CHAPTER

1

The dramatically changing face of
computer vision
E.R. Davies

Royal Holloway, University of London, Egham, Surrey, United Kingdom

CHAPTER POINTS

e Studies of legacy methods in computer e Studies of the application of deep learning
vision, including low-level image methods to feature detection, object
processing operators, 2-D and 3-D object detection, location and recognition, object
detection, location and recognition, tracking, texture classification, and
tracking and segmentation. semantic segmentation of images.

e Examination of the development of deep e The impact of deep learning methods on
learning methods from artificial neural preexisting computer vision methodology.
networks, including the deep learning
explosion.

1.1 Introduction — computer vision and its origins

During the last three or four decades, computer vision has gradually emerged as a fully-
fledged subject with its own methodology and area of application. Indeed, it has so many
areas of application that it would be difficult to list them all. Amongst the most prominent
are object recognition, surveillance (including people counting and numberplate recognition),
robotic control (including automatic vehicle guidance), segmentation and interpretation of
medical images, automatic inspection and assembly in factory situations, fingerprint and
face recognition, interpretation of hand signals, and many more. To achieve all this, mea-
surements have to be made from a variety of image sources, including visible and infrared
channels, 3-D sensors, and a number of vital medical imaging devices such as CT and MRI
scanners. And the measurements have to include position, pose, distances between objects,
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2 1. The dramatically changing face of computer vision

movement, shape, texture, color, and many more aspects. With this plethora of activities and
of the methods used to achieve them, it will be difficult to encapsulate the overall situation
within the scope of a single chapter: hence the selection of material will necessarily be re-
stricted; nevertheless, we will aim to provide a sound base and a didactic approach to the
subject matter.

In the 2020s one can hardly introduce computer vision without acknowledging the enor-
mous advances made during the 2010s, and specifically the ‘deep learning explosion’, which
took place around 2012. This dramatically changed the shape of the subject and resulted in
advances and applications that are not only impressive but are also in many cases well be-
yond what people dreamed about even in 2010. As a result, this volume is aimed particularly
at these modern advanced developments: it is the role of this chapter to outline the legacy
methodology, to explore the new deep learning methods, and to show how the latter have
impacted and improved upon the earlier (legacy) approaches.

At this point it will be useful to consider the origins of computer vision, which can be
considered to have started life during the 1960s and 1970s, largely as an offshoot of image
processing. At that time it became practical to capture whole images and to store and process
them conveniently on digital computers. Initially, images tended to be captured in binary or
grey-scale form, though later it became possible to capture them in color. Early on, workers
dreamed of emulating the human eye by recognizing objects and interpreting scenes, but
with the less powerful computers then available, such dreams were restricted. In practice,
image processing was used to ‘tidy up’ images and to locate object features, while image
recognition was carried out using statistical pattern recognition techniques such as the nearest
neighbor algorithm. Another of the motivations underlying the development of computer
vision was Al and yet another was biological vision. Space will prevent further discussion of
these aspects here, except to remark that they sowed the seeds for artificial neural networks
and deep learning (for details, see Part F below).

Tidying up images is probably better described as preprocessing: this can include a num-
ber of functions, noise elimination being amongst the most important. It was soon discovered
that the use of smoothing algorithms, in which the mean value of the intensities in a window
around each input pixel is calculated and used to form a separate smoothed image, not only
results in reduced levels of noise but also affects the signals themselves (this process can
also be imagined as reducing the input bandwidth to exclude much of the noise, with the
additional effect of eliminating high spatial frequency components of the input signal). How-
ever, by applying median rather than mean filtering, this problem was largely overcome, as it
worked by eliminating the outliers at each end of the local intensity distribution—the median
being the value least influenced by noise.

Typical mean filtering kernels include the following, the second approximating more
closely to the ideal Gaussian form:

(1.1)
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Both of these are linear convolution kernels, which by definition are spatially invariant
over the image space. A general 3 x 3 convolution mask is given by

cd 3 2
¢S 0 cl (1.2)
c6 ¢7 8

where the local pixels are assigned labels 0-8. Next, we take the intensity values in a local
3 x 3 image neighborhood as

P4 P3 P2
PS5 PO Pl (1.3)
P6 P7 P8

If we now use a notation based approximately on C ++, we can write the complete con-
volution procedure in the form:

for all pixels in image do {
00=PO0xcO+ Plxcl+ P2xc2+ P3*xc3+ P4xc4
+ P5%c5+4 P6xc6+ PT7xcT+ P8xc8;
} (1.4)

So far we have concentrated on convolution masks, which are linear combinations of input
intensities: these contrast with nonlinear procedures such as thresholding, which cannot be
expressed as convolutions. In fact, thresholding is a very widely used technique, and can be
written in the form:

for all pixels in image do {
if (PO < thresh)A0 =1; else A0 =0;
} (1.5)

This procedure converts a grey scale image in P-space into a binary image in A-space. Here it
is used to identify dark objects by expressing them as 1s on a background of Os.

We end this section by presenting a complete procedure for median filtering within a 3 x 3
neighborhood:

for i =0; i <=255; i ++) hist[i]=0;
for all pixels in image do {
for ;m =0;m <=8;m + +) hist[P[m]] + +;
i =0; sum =0;
while (sum < 5){
sum = sum + hist[i];
i=i+1;
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00=i—-1;
for (m =0; m <=8, m + +) hist[P[m]] = 0;
| (1.6)

The notation P[0] is intended to denote PO, and so on for P[1] to P[8]. Note that the me-
dian operation is computation intensive, so time is saved by only reinitializing the particular
histogram elements that have actually been used.

An important point about the procedures covered by Eqgs. (1.4)-(1.6) is that they take their
input from one image space and output it to another image space—a process often described
as parallel processing—thereby eliminating problems relating to the order in which the indi-
vidual pixel computations are carried out.

Finally, the image smoothing algorithms given by Egs. (1.1)—(1.4) all use 3 x 3 convolution
kernels, though much larger kernels can obviously be used: indeed, they can alternatively
be implemented by first converting to the spatial frequency domain and then systematically
eliminating high spatial frequencies, albeit with an additional computational burden. On the
other hand, nonlinear operations such as median filtering cannot be tackled in this way.

For convenience, the remainder of this chapter has been split into a number of parts, as
follows:

Part A — Understanding low-level image processing perators

Part B — 2-D object location and recognition

Part C — 3-D object location and the importance of invariance
Part D — Tracking moving objects

Part E — Texture analysis

Part F — From artificial neural networks to deep learning methods
Part G — Summary.

Overall, the purpose of this chapter is to summarize vital parts of the early—or ‘legacy’—work
on computer vision, and to remind readers of their significance, so that they can more confi-
dently get to grips with recent advanced developments in the subject. However, the need to
make this sort of selection means that many other important topics have had to be excluded.

1.2 Part A — Understanding low-level image processing operators

1.2.1 The basics of edge detection

No imaging operation is more important or more widely used than edge detection. There
are important reasons for this, but ultimately, describing object shapes by their boundaries
and internal contours reduces the amount of data required to hold an N x N image from
O(N?) to O(N), thereby making subsequent storage and processing more efficient. Further-
more, there is much evidence that humans can recognize objects highly effectively, or even
with increased efficiency, from their boundaries: the quick responses humans can make from
2-D sketches and cartoons support this idea.

In the 1960s and 1970s, a considerable number of edge detection operators were developed,
many of them intuitively, which meant that their optimality was in question. A number of the
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operators applied 8 or 12 template masks to ensure that edges of different orientations could
be detected. Oddly, it was some time before it was fully realized that as edges are vectors, just
two masks should be sufficient to detect them. However, this did not immediately eliminate
the problem of deciding what mask coefficients should be used in edge detectors—even in
the case of 3 x 3 neighborhoods—and we next proceed to explore this further.

In what follows we initially assume that 8 masks are to be used, with angles differing by
45°. However, 4 of the masks differ from the others only in sign, which makes it unnecessary
to apply them separately. At this point, symmetry arguments lead to the following respective
masks for 0° and 45°:

—A 0 A 0 C D
-B 0 B -c 0 C (1.7)
—A 0 A -D —-C 0

It is clearly of great importance to design masks so that they give consistent responses in
different directions. To find how this affects the mask coefficients, we make use of the fact
that intensity gradients must follow the rules of vector addition. If the pixel intensity values
within a 3 x 3 neighborhood are

(1.8)

R XA
BN
~ ~ 0

the above masks will lead to the following estimates of gradient in the 0°, 90° and 45° direc-
tions:

go=A(c+i—a—g) +B(f—d
go=Ala+c—g—i)+Bb-h) (1.9)
gas=Cb+f—-—d—-—h)+D(c—g)

If vector addition is to be valid, we also have:

g4s = (80 + 890)/V/2 (1.10)

Equating coefficients of a, b, ..., i leads to the self-consistent pair of conditions:

C=B/V2
D = AV2

Next, notice the further requirement—that the 0° and 45° masks should give equal re-
sponses at 22.5°. In fact, a rather tedious algebraic manipulation (Davies, 1986) shows that

(1.11)

B/A= (13&-4) /7=2.055 (1.12)

If we approximate this value as 2 we immediately arrive at the Sobel operator masks

Sy=| -2 0 2 S,=| 0 0 0 (1.13)
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application of which yields maps of the g,, g, components of intensity gradient. As edges
are vectors, we can compute the local edge magnitude g and direction 6 using the standard
vector-based formulae:

g=|g+ gﬁ]]/z (1.14)

6 = arctan (g,/gx)

Notice that whole-image calculations of g and 6 will not be convolutions as they involve
nonlinear operations.

In summary, in Sections 1.1 and 1.2.1 we have described various categories of image pro-
cessing operator, including linear, nonlinear and convolution operators. Examples of (linear)
convolutions are mean and Gaussian smoothing and edge gradient component estimation.
Examples of nonlinear operations are thresholding, edge gradient and edge orientation com-
putations. Above all, it should be noted that the Sobel mask coefficients have been arrived at
in a principled (non ad hoc) way. In fact, they were designed to optimize accuracy of edge ori-
entation. Note also that, as we shall see later, orientation accuracy is of paramount importance
when edge information is passed to object location schemes such as the Hough transform.

1.2.2 The Canny operator

The aim of the Canny edge detector was to be far more accurate than basic edge detectors
such as the Sobel, and it caused quite a stir when it was published in 1986 (Canny, 1986). To
achieve such increases in accuracy, a number of processes are applied in turn:

1. The image is smoothed using a 2-D Gaussian to ensure that the intensity field is a mathe-
matically well-behaved function.

2. The image is differentiated using two 1-D derivative functions, such as those of the Sobel,
and the gradient magnitude field is computed.

3. Nonmaximum suppression is employed along the local edge normal direction to thin the
edges: this takes place in two stages (1) finding the two noncentral red points shown in
Fig. 1.1, which involves gradient magnitude interpolation between two pairs of pixels;
(2) performing quadratic interpolation between the intensity gradients at the three red
points to determine the position of the peak edge signal to subpixel precision.

4. ‘Hysteresis’ thresholding is performed: this involves applying two thresholds #; and 1,
(2 > 11) to the intensity gradient field; the result is ‘nonedge’ if g < #1, ‘edge’ if g > 1>, and
otherwise is only ‘edge’ if next to ‘edge’. (Note that the ‘'edge’ property can be propagated
from pixel to pixel under the above rules.)

As noted in item 3, quadratic interpolation can be used to locate the position of the gra-
dient magnitude peak. A few lines of algebra shows that, for the g-values gi, g2, g3 of
the three red points, the displacement of the peak from the central red point is equal to
(g3 — g1)secH/[2(2g2 — g1 — g3)]: here, sec 0 is the factor by which 6 increases the distance
between the outermost red points.
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light
end

FIGURE 1.1 Using quadratic interpolation to determine the exact position of the gradient magnitude peak.

1.2.3 Line segment detection

In Section 1.2.1 we saw the considerable advantage of edge detectors in requiring only two
masks to compute the magnitude and orientation of an edge feature. It is worth considering
whether the same vector approach might also be used in other cases. In fact, it is also pos-
sible to use a modified vector approach for detecting line segment features. This is seen by
considering the following pair of masks:

0 -1 0 -1 0 1
Li=A|l 1 0 1 Lb=B| 0 0 0 (1.15)
0 -1 0 1 0 -1

Clearly, two other masks of this form can be constructed, though they differ from the above
two only in sign and can be ignored. Thus, this set of masks contains just the number required
for a vectorial computation. In fact, if we are looking for dark bars on a light background, the
1 s can usefully denote the bars and the —1 s can represent the light background. (0 s can
be taken as ‘don’t care’ coefficients, as they will be ignored in any convolution.) Hence L;
represents a 0° bar and L, a 45° bar. (The term ‘bar” is used here to denote a line segment
of significant width.) Applying the same method as in Section 1.2.1 and defining the pixel
intensity values as in Eq. (1.8), we find

lo=A(d+ f—b—h)
lss=B(c+g—a—1i) (1.16)

However, in this instance there is insufficient information to determine the ratio of A to B,
so this must depend on the practicalities of the situation. In fact, given that this computation
is being carried outin a 3 x 3 neighborhood, it will not be surprising if the optimum bar width
for detection using the above masks is ~1.0; experimental tests (Davies, 1997) showed that
matching the masks to the bar width w (or vice versa) gave optimum orientation accuracy for
w ~ 1.4, which occurred when B/A = 0.86. This resulted in a maximum orientation error
~0.4°, which compares favorably with ~0.8° for the Sobel operator.
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We now proceed to use formulae similar to those in Section 1.2.1 for pseudo-vectorial com-
putation of the line strength coefficient / and line segment orientation 6:

172
1= +13)

1
0= 3 arctan (I45/ o)

(1.17)

Here we have been forced to include a factor of one half in front of the arctan: this is because
a line segment exhibits 180° rotation symmetry compared with the usual 360° for ordinary
angles.

Note that this is again a case in which optimization is aimed at achieving high orientation
accuracy rather than, for example, sensitivity of detection.

It is worth remarking here on two applications of line segment detection. One is the in-
spection of bulk wheat grains to locate small dark insects which approximate to dark bar-like
features: 7 x 7 masks devised on the above model have been used to achieve this (Davies
et al., 2003). Another is the location of artefacts such as telegraph wires in the sky, or wires
supporting film actors which can then be removed systematically.

1.2.4 Optimizing detection sensitivity

Optimization of detection sensitivity is a task that is well known in radar applications and
has been very effectively applied for this purpose since World War II. Essentially, efficient
detection of aircraft by radar systems involves optimization of the signal-to-noise-ratio (SNR).
Of course, in radar, detection is a 1-D problem whereas in imaging we need to optimally
detect 2-D objects against a background of noise. However, image noise is not necessarily
Gaussian white noise, as can normally be assumed in radar, though it is convenient to start
with that assumption.

In radar the signals can be regarded as positive peaks (or ‘bleeps’) against a background of
noise which is normally close to zero. Under these conditions there is a well-known theorem
that says that the optimum detection of a bleep of given shape is obtained using a ‘matched
filter” which has the same shape as the idealized input signal. The same applies in imaging,
and in that case the spatial matched filter has to have the same intensity profile as that of an
ideal form of the 2-D object to be detected.

We shall now outline the mathematical basis of this approach. First, we assume a set of
pixels at which signals are sampled, giving values S;. Next, we express the desired filter as an
n-element weighting template with coefficients w;. Finally, we assume that the noise levels at
each pixel are independent and are subject to local distributions with standard deviations N;.

Clearly, the total signal received from the weighting template will be

S=Y wi; (1.18)
i=1
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whereas the total noise received from the weighting template will be characterized by its
variance:

n
N?=Y"wiN} (1.19)
i=1

Hence the (power) SNR is

n 2 n
p*=S8?/N?= (Z wiSi) /Y wiN? (1.20)
i=1 i=1
For optimum SNR, we compute the derivative

802 Jow; = (1/N4) [N2 (25S;) — 82 <2wiNi2)]

- <ZS/N4) [sti _5s (wiN})] 1.21)
and then set 9p?/dw; = 0. This immediately gives:
Si N2
which can more simply be expressed as:
S.
w; X F (1.23)

i

though with no loss of generality, we can replace the proportionality sign by an equality.

Note that if N; is independent of i (i.e., the noise level does not vary over the image),
w; = S;: this proves the theorem mentioned above—that the spatial matched filter needs to
have the same intensity profile as that of the 2-D object to be detected.

1.2.5 Dealing with variations in the background intensity

Apart from the obvious difference in dimensionality, there is a further important way in
which vision differs from radar: for the latter, in the absence of a signal, the system output
hovers around, and averages to, zero. However, in vision, the background level will typically
vary with the ambient illumination and will also vary over the input image. Basically, the
solution to this problem is to employ zero-sum (or zero-mean) masks. Thus, for a mask such
as that in Eq. (1.2), we merely subtract the mean value ¢ of all the mask components from
each component to ensure that the overall mask is zero-mean.

To confirm that using the zero-mean strategy works, imagine applying an unmodified
mask to the image neighborhood shown in Eq. (1.3): let us assume we obtain a value K. Now
add B to the intensity of each pixel in the neighborhood: this willadd ), Bc; =B}, ¢; = Bn¢
to the value K; but if we make ¢ =0, we end up with the original mask output K.



10 1. The dramatically changing face of computer vision

Overall, we should note that the zero-mean strategy is only an approximation, as there
will be places in an image where the background varies between high and low level, so that
zero-mean cancellation cannot occur exactly (i.e., B cannot be regarded as constant over the
region of the mask). Nevertheless, assuming that the background variation occurs on a scale
significantly larger than that of the mask size, this should work adequately.

It should be remarked that the zero-mean approximation is already widely used—as in-
deed we have already seen from the edge and line-segment masks in Egs. (1.7) and (1.15). It
must also apply for other detectors we could devise, such as corner and hole detectors.

1.2.6 A theory combining the matched filter and zero-mean constructs

At first sight, the zero-mean construct is so simple that it might appear to integrate easily
with the matched filter formalism of Section 1.2.4. However, applying it reduces the number
of degrees of freedom of the matched filter by one, so a change is needed to the matched filter
formalism to ensure that the latter continues to be an ideal detector. To proceed, we represent
the zero-mean and matched filter cases as follows:

Wi)ym=Si — 8

(Wi)met = Si/N? (1.24)

Next, we combine these into the form
wi = (8; = §) /N? (1.25)

where we have avoided an impasse by trying a hypothetical (i.e., as yet unknown) type of
mean for S, which we call S. [Of course, if this hypothesis in the end results in a contradiction,
a fresh approach will naturally be required.] Applying the zero-mean condition } ; w; =0
now yields the following:

dowi=) Si/N}=> 8/N}=0 (1.26)
5 (1 /Nf) = s/} (1.27)
5= Z (S,- /N?) /Z (1 /N,?) (1.28)

From this, we deduce that S has to be a weighted mean, and in particular the noise-weighted
mean S . On the other hand, if the noise is uniform, S will revert to the usual unweighted
mean S. Also, if we do not apply the zero-mean condition (which we can achieve by setting
S=0), Eq. (1.25) reverts immediately to the standard matched filter condition.

The formula for § may seem to be unduly general, in that N; should normally be almost
independent of i. However, if an ideal profile were to be derived by averaging real object
profiles, then away from its center, the noise variance could be more substantial. Indeed, for
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large objects this would be a distinct limiting factor on such an approach. But for fairly small
objects and features, noise variance should not vary excessively and useful matched filter
profiles should be obtainable.

On a personal note, the main result proven in this section (cf. Egs. (1.25) and (1.28)) took
me so much time and effort to resolve the various issues that I was never convinced I would
solve it. Hence I came to think of it as “Davies’s last theorem’.

1.2.7 Mask design—other considerations

Although the matched filter formalism and the now fully integrated zero-mean condition
might seem to be sufficiently general to provide for unambiguous mask design, there are a
number of aspects that remain to be considered. For example, how large should the masks
be made? And how should they be optimally placed around any notable objects or features?
We shall take the following example of a fairly complex object feature to help us answer this.
Here region 2 is the object being detected, region 1 is the background, and M is the feature
mask region.

M

O©IET 1999.

On this model we have to calculate optimal values for the mask weighting factors w; and
wy and for the region areas A; and A;. We can write the total signal and noise power from a
template mask as:

S=w1A1S1 + wyA25

N? =wlA|N} + wiA;N? (1.29)
Thus, we obtain a power signal-to-noise-ratio (SNR):
52 AS A2Sy)?
o2 (w1 A1S1 + w2 A2S)) (130)

N2 wlAN? +w3AN3

It is easy to see that if both mask regions are increased in area by the same factor 5, p? will
also be increased by this factor. This makes it interesting to optimize the mask by adjusting the
relative values of A1, Az, leaving the total area A unchanged. Let us first eliminate w, using the
zero-mean condition (which is commonly applied to prevent changes in background intensity
level from affecting the result):

wiAy +wyAr =0 (1.31)
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Clearly, the power SNR no longer depends on the mask weights:

P’ = 157_22 - szil - Sz—)zz (1.32)
{/A1+ N5/Az
Next, because the total mask area A is predetermined, we have:
Ay=A— A (1.33)
Substituting for A, quickly leads to a simple optimization condition:
A1/Ay =Ni/N, (1.34)
Taking N; = N, we obtain an important result—the equal area rule (Davies, 1999):
Al=Ar=A/2 (1.35)
Finally, when the equal area rule applies, the zero-mean rule takes the form:
w)=—wy (1.36)

Note that many cases, such as those arising when the foreground and background have
different textures, can be modeled by taking N; # N. In that case the equal area rule does
not apply, but we can still use Eq. (1.34).

1.2.8 Corner detection

In Sections 1.2.1 and 1.2.3 we found that only two types of feature have vector (or pseudo-
vector) forms—edge and line segments. Hence, whereas these features can be detected using
just two component masks, all other features would be expected to require matching to many
more templates in order to cope with varying orientations. Corner detectors appear to fall
into this category, typical 3 x 3 corner templates being the following;:

—4 5 5 5 5 5
4 5 5 —4 5 —4 (1.37)
—4 —4 —4 -4 —4 —4

(Note that these masks have been adjusted to zero-mean form to eliminate the effects of vary-
ing lighting conditions.)

To overcome the evident problems of template matching—not the least amongst which is
the need to use limited numbers of digital masks to approximate the underlying analogue in-
tensity variations, which themselves vary markedly from instance to instance—many efforts
have been made to obtain a more principled approach. In particular, as edges depend on
the first derivatives of the image intensity field, it seemed logical to move to a second-order
derivative approach. One of the first such investigations was the Beaudet (1978) approach,
which employed the Laplacian and Hessian operators:

Laplacian = I,y + Iy

o 2
Hessian = Iy I,y — Ixy

(1.38)
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These were particularly attractive as they are defined in terms of the determinant and trace
of the symmetric matrix of second derivatives, and thus are invariant under rotation.

In fact, the Laplacian operator gives significant responses along lines and edges and hence
is not particularly suitable as a corner detector. On the other hand, Beaudet’s ‘DET’ (Hessian)
operator does not respond to lines and edges but gives significant signals in the vicinity of
corners and should therefore form a useful corner detector—though it responds with one
sign on one side of a corner and with the opposite sign on the other side of the corner: on
the corner itself it gives a null response. Furthermore, other workers criticized the specific
responses of the DET operator and found they needed quite complex analyzes to deduce the
presence and exact position of each corner (Dreschler and Nagel, 1981; Nagel, 1983).

However, Kitchen and Rosenfeld (1982) found they were able to overcome these problems
by estimating the rate of change of the gradient direction vector along the horizontal edge
tangent direction, and relating it to the horizontal curvature « of the intensity function 7. To
obtain a realistic indication of the strength of a corner they multiplied « by the magnitude of
the local intensity gradient g:

1/2

C=Kg=l((1x2+1§)
Ll = 2Ly Iy + Ly I
B 12412

(1.39)

Finally, they used the heuristic of nonmaximum suppression along the edge normal direction
to localize the corner positions further.

Interestingly, Nagel (1983) and Shah and Jain (1984) came to the view that the Kitchen
and Rosenfeld, Dreschler and Nagel, and Zuniga and Haralick (1983) corner detectors were
all essentially equivalent. This should not be overly surprising, since in the end the differ-
ent methods would be expected to reflect the same underlying physical phenomena (Davies,
1988c)—reflecting a second-order derivative formulation interpretable as a horizontal curva-
ture multiplied by an intensity gradient.

1.2.9 The Harris ‘interest point’ operator

At this point in Harris and Stephens (1988) developed an entirely new operator capable of
detecting corner-like features—based not on second-order but on first-order derivatives. As
we shall see below, this simplified the mathematics, including the difficulties of applying dig-
ital masks to intrinsically analogue functions. In fact, the new operator was able to perform
a second-order derivative function by applying first-order operations. It is intriguing how it
could acquire the relevant second-order derivative information in this way. To understand
this we need to examine its quite simple mathematical definition.

The Harris operator is defined in terms of the local components of intensity gradient I,
I, in an image. The definition requires a window region to be defined and averages (.) to be
taken over this whole window. We start by computing the following matrix:

A [ <<1§> (1:1y) } (1.40)

rn) (12)



14 1. The dramatically changing face of computer vision

a N

FIGURE 1.2 Geometry for calculating line and corner responses in a circular window. (a) straight edge, (b) general
corner. © IET 2005.

We then use the determinant and trace to estimate the corner signal:
C =det A/trace A (1.41)

(Again, as for the Beaudet operators, the significance of using only the determinant and trace
is that the resulting signal will be invariant to corner orientation.)

Before proceeding to analyze the form of C, note that if averaging were not undertaken,
det A would be identically equal to zero: clearly, it is only the smoothing intrinsic in the
averaging operation that permits the spread of first-derivative values and thereby allows the
result to depend partly on second derivatives.

To understand the operation of the detector in more detail, first consider its response for a
single edge (Fig. 1.2a). In fact:

detA =0 (1.42)

because I, is zero over the whole window region.
Next consider the situation in a corner region (Fig. 1.2b). Here:

2 in2 2
A=|: l,g?sin?0 lrg?sinf cos @ :| (143)

lrg%sin@cosO Ilrg?cos?O + 11 g2

where [1, I, are the lengths of the two edges bounding the corner, and g is the edge contrast,
assumed constant over the whole window. We now find (Davies, 2005):

det A =111, g*sin®6 (1.44)
and
trace A = (1) + l»)g> (1.45)
1112 2 .2
———g“sin“f 1.46
I+ lzg (1.46)

This may be interpreted as the product of (1) a strength factor A, which depends on the
edge lengths within the window, (2) a contrast factor g?, and (3) a shape factor sin%0, which
depends on the edge ‘sharpness’ 6. Clearly, C is zero for 6 =0 and 6 = 7, and is a maximum
for 6 = r /2—all these results being intuitively correct and appropriate.
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0 /2 x 32 2n 0 /2 T 32 2n
Z 0
(@ (b)

FIGURE 1.3 Problems with the centroidal profile descriptor. (a) shows a circular object with a minor defect on its
boundary; its centroidal profile appears beneath it. (b) shows the same object, this time with a gross defect: because
the centroid is shifted to C’, the whole of the centroidal profile is grossly distorted.

A good many of the properties of the operator can be determined from this formula, in-
cluding the fact that the peak signal occurs not at the corner itself but at the center of the
window used to compute the corner signal—though the shift is reduced as the sharpness of
the corner decreases.

1.3 Part B — 2-D object location and recognition

1.3.1 The centroidal profile approach to shape analysis

2-D objects are commonly characterized by their boundary shapes. In this section we exam-
ine what can be achieved by tracking around object boundaries and analyzing the resulting
shape profiles. Amongst the commonest type of profile used for this purpose is the centroidal
profile—in which the object boundary is mapped out using an (r, 8) polar plot, taking the
centroid C of the boundary as the origin of coordinates.

In the case of a circle of radius R, the centroidal profile is a straight line a distance R above
the 6-axis. Fig. 1.3 clarifies the situation and also shows two examples of broken circular ob-
jects. In case (a), the circle is only slightly distorted and thus its centroid C remains virtually
unchanged; hence, much of the centroidal plot remains at a distance R above the §-axis. How-
ever, in case (b), even the part of the boundary that is not broken or distorted is far from being
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a constant distance from the 6-axis: this means that the object is unrecognizable from its pro-
file, though in case (a) there is no difficulty in recognizing it as a slightly damaged circle. In
fact, we can trace the relative seriousness of the two cases as being due largely to the fact that
in case (b) the centroid has moved so much that even the unmodified part of the shape is not
instantly recognizable. Of course, we could attempt to rectify the situation by trying to move
the centroid back to its old position, but it would be difficult to do this reliably: in any case,
if the original shape turned out not to be a circle, a lot of processing would be wasted before
the true nature of the problem was revealed.

Overall, we can conclude that the centroidal profile approach is nonrobust, and is not to be
recommended. In fact, this does not mean that it should not be used in practice. For example,
on a cheese or biscuit conveyor, any object that is not instantly recognizable by its constant
R profile should immediately be rejected from the product line; then other objects can be
examined to be sure that their R values are acceptable and show an appropriate degree of
constancy.

Robustness and its importance

It is not an accident that the idea of robustness has arisen here. It is actually core
to much of the discussion on algorithm value and effectiveness that runs right through
computer vision. The underlying problem is that of variability of objects or indeed of any
entities that appear in computer images. This variability can arise simply from noise, or
from varying shapes of even the same types of object, or from variations in size or place-
ment, or from distortions due to poor manufacture, or cracks or breakage, or the fact that
objects can be viewed from a variety of positions and directions under various viewing
regimes—which tend to be most extreme for full perspective projection. In addition, one
object may be partly obscured by another or even only partly situated within a specific
image (giving effects that are not dissimilar to the result of breakage).

While noise is well known to affect accuracy of measurement, it might be thought
less likely to affect robustness. However, we need to distinguish the “usual’ sort of noise,
which we can typify as Gaussian noise, from spike or impulse noise. The latter are com-
monly described as outlying points or ‘outliers” on the noise distribution. (Note that we
have already seen that the median filter is significantly better than the mean filter at cop-
ing with outliers.) The subject of robust statistics studies the topics of inliers and outliers
and how best to cope with various types of noise. It underlies the optimization of ac-
curacy of measurement and reliability of interpretation in the presence of outliers and
gross disturbances to object appearance.

Next, it should be remarked that there are other types of boundary plot that can be used
instead of the centroidal profile. One is the (s, ¥) plot and another is the derived (s, «) profile.
Here,  is the boundary orientation angle, and «(s), which is equal to dy /ds, is the local
curvature function. Importantly, these formulations make no reference to the position of the
centroid, and its position need not be calculated or even estimated. In spite of this advantage,
all such boundary profile representations suffer from a significant further problem—that if
any part of the boundary is occluded, distorted or broken, comparison of the object shape
with templates of known shape is rendered quite difficult, because of the different boundary
lengths.
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In spite of these problems, when it can be employed, the centroidal profile method has
certain advantages, in that it contributes ease of measurement of circular radii, ease of identi-
fication of squares and other shapes with prominent corners, and straightforward orientation
measurement—particularly for shapes with prominent corners.

It now remains to find a method that can replace the centroidal profile method in instances
where gross distortions or occlusions can occur. For such a method we need to move on to
the following section which introduces the Hough transform approach.

1.3.2 Hough-based schemes for object detection

In Section 1.3.1 we explored how circular objects might be identified from their boundaries
using the centroidal profile approach to shape analysis. The approach was found to be non-
robust because of its incapability for coping with gross shape distortions and occlusions. In
this section we show that the Hough transform provides a simple but neat way of solving
this problem. The method used is to take each edge point in the image, move a distance R
inwards along the local edge normal, and accumulate a point in a separate image called the
parameter space: R is taken to be the expected radius of the circles to be located. The result
of this will be a preponderance of points (often called ‘votes’) around the locations of circle
centers. Indeed, to obtain accurate estimates of center locations, it is only necessary to find
significant peaks in parameter space.

The process is illustrated in Fig. 1.4, making it clear that the method ignores noncircular
parts of the boundary and only identifies genuine circle centers: thus the approach focuses
on data that correspond to the chosen model and is not confused by irrelevant data that
would otherwise lead to nonrobust solutions. Clearly, it relies on edge normal directions be-
ing estimated accurately. Fortunately, the Sobel operator is able to estimate edge orientation
to within ~1° and is straightforward to apply. In fact, Fig. 1.5 shows that the results can be
quite impressive.

A disadvantage of the approach as outlined above is that it requires R to be known in
advance. The general solution to this problem is to use a 3-D parameter space, with the
third dimension representing possible values of R, and then searching for the most signif-
icant peaks in this space. However, a simpler solution involves accumulating the results for

FIGURE 1.4 Robustness of the Hough transform when locating the center of a circular object. The circular part
of the boundary gives candidate center points that focus on the true center, whereas the irregular broken boundary
gives candidate center points at random positions. In this case the boundary is approximately that of the broken
biscuit shown in Fig. 1.5.
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FIGURE 1.5 Location of broken and overlapping biscuits, showing the robustness of the center location technique.
Accuracy is indicated by the black dots which are each within 1/2 pixel of the radial distance from the center. © IFS
1984.

@ (b)

FIGURE 1.6 Simultaneous detection of objects with different radii. (a) Detection of a lens cap and a wing nut when
radii are assumed to lie in the range 4-17 pixels; (b) hole detection in the same image when radii are assumed to fall
in the range —26 to —9 pixels (negative radii are used since holes are taken to be objects of negative contrast): clearly,
in this image a smaller range of negative radii could have been employed.

a range of likely values of R in the same 2-D parameter space—a procedure that results in
substantial savings in storage and computation (Davies, 1988a). Fig. 1.6 shows the result of
applying this strategy, which works with both positive and negative values of R. On the other
hand, note that the information on radial distance has been lost by accumulating all the votes
in a single parameter plane. Hence a further iteration of the procedure would be required to
identify the radius corresponding to each peak location.
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FIGURE 1.7 The geometry of two ellipse detection methods. (a) In the diameter-bisection method, a pair of points
is located for which the edge orientations are antiparallel. The midpoints of such pairs are accumulated and the
resulting peaks are taken to correspond to ellipse centers. (b) In the chord-tangent method, the tangents at P; and
P meet at T and the midpoint of P{P; is M. The center C of the ellipse lies on the line TM produced.

The Hough transform approach can also be used for ellipse detection: two simple meth-
ods for achieving this are presented in Fig. 1.7. Both of these embody an indirect approach in
which pairs of edge points are employed. Whereas the diameter-bisection method involves
considerably less computation than the chord-tangent method, it is more prone to false
detections—for example, when two ellipses lie near to each other in an image.

To prove the validity of the chord-tangent method, note that symmetry ensures that the
method works for circles: projective properties then ensure that it also works for ellipses, be-
cause under orthographic projection, straight lines project into straight lines, midpoints into
midpoints, tangents into tangents, and circles into ellipses; in addition, it is always possible
to find a viewpoint such that a circle can be projected into a given ellipse.

We now move on to the so-called generalized Hough transform (GHT), which employs a
more direct procedure for performing ellipse detection than the other two methods outlined
above.

To understand how the standard Hough technique is generalized so that it can detect ar-
bitrary shapes, we first need to select a localization point L within a template of the idealized
shape. Then, we need to arrange so that, instead of moving from an edge point a fixed dis-
tance R directly along the local edge normal to arrive at the center, as for circles, we move an
appropriate variable distance R in a variable direction ¢ so as to arrive at L: R and ¢ are now
functions of the local edge normal direction 6 (Fig. 1.8). Under these circumstances votes will
peak at the preselected object localization point L. The functions R () and¢ (6) can be stored
analytically in the computer algorithm, or for completely arbitrary shapes they may be stored
as lookup tables. In either case the scheme is beautifully simple in principle but an important
complication arises because we are going from an isotropic shape (a circle) to an anisotropic
shape which may be in a completely arbitrary orientation.

This means adding an extra dimension in parameter space (Ballard, 1981). Each edge point
then contributes a set of votes in each orientation plane in parameter space. Finally, the whole
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FIGURE 1.8 Computation of the generalized Hough transform.

FIGURE 1.9 Use of a PSF shape that takes into account all possible orientations of an ellipse. The PSF is positioned
by the grey construction lines so that it passes through the center of the ellipse (see the black dot).

of parameter space is searched for peaks, the highest points indicating both the locations of
objects and their orientations. Interestingly, ellipses can be detected by the GHT using a single
plane in parameter space, by applying a point spread function (PSF) to each edge point, which
takes all possible orientations of the ellipse into account: note that the PSF is applied at some
distance from the edge point, so that the center of the PSF can pass through the center of the
ellipse (Fig. 1.9). Lack of space prevents details of the computations from being presented
here (e.g., see Davies, 2017, Chapter 11).

1.3.3 Application of the Hough transform to line detection

The Hough transform (HT) can also be applied to line detection. Early on, it was found best
to avoid the usual slope-intercept equation, y = mx + ¢, because near-vertical lines require
near-infinite values of m and c. Instead, the ‘normal’ (9, p) form for the straight line (Fig. 1.10)
was employed:

p =xcosf + ysinf (1.47)

To apply the method using this form, the set of lines passing through each point P; is
represented as a set of sine curves in (6, p) space: e.g., for point P1(x1, y1) the sine curve has
equation:

p =x1cos6 + y; sinf (1.48)
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FIGURE 1.10 Normal (0, p) parametrization of a straight line.

After vote accumulation in (8, p) space, peaks indicate the presence of lines in the original
image.

A lot of work has been carried out (e.g., see Dudani and Luk, 1978) to limit the inaccuracies
involved in line location, which arise from several sources—noise, quantization, the effects
of line fragmentation, the effects of slight line curvature, and the difficulty of estimating the
exact peak positions in parameter space. In addition, the problem of longitudinal line local-
ization is important. For the last of these processes, Dudani and Luk (1978) developed the
method of “xy—grouping’, which involved carrying out connectivity analysis for each line.
Segments of a line would then be merged if they were separated by gaps of less than ~5 pix-
els. Finally, segments shorter than a certain minimum length (also typically ~5 pixels) would
be ignored as too insignificant to help with image interpretation.

Overall, we see that all the forms of the HT described above gain considerably by accu-
mulating evidence using a voting scheme. This is the source of the method’s high degree of
robustness. The computation processes used by the HT can be described as inductive rather
than deductive as the peaks lead to hypotheses about the presence of objects, that need in prin-
ciple to be confirmed by other evidence, whereas deduction would lead to immediate proof of
the presence of objects.

1.3.4 Using RANSAC for line detection

RANSAC is an alternative model-based search schema that can often be used instead of
the HT. In fact, it is highly effective when used for line detection, which is why the method is
introduced here. The strategy can be construed as a voting scheme, but it is used in a different
way from that in the HT. It operates by making a sequence of hypotheses about the target
objects, and determines the support for each of them by counting how many data points
agree with them within reasonable (e.g., £30) limits (see Fig. 1.11). As might be expected, for
any potential target object, only the hypotheses with the maximum support are retained at
each stage.

We next explain how RANSAC is used for line detection. As in the case of the HT, we start
by applying an edge detector and locating all the edge points in the image. As we shall see,
RANSAC operates best with a limited number of points, so it is useful to find the edge points
that are local maxima of the intensity gradient image. Next, to form a straight line hypothesis,
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FIGURE 1.11 The RANSAC technique. Here the + signs indicate data points to be fitted, and two instances of
pairs of data points (indicated by @ signs) leading to hypothesized lines are also shown. Each hypothesized line has
a region of influence of tolerance £ within which the support of maximal numbers of data points is sought. The line
with the most support is taken to lead to the best fit.

TABLE 1.1 Basic RANSAC algorithm for finding the line with greatest support.
This algorithm only returns one line: in fact it returns the specific line model that
has greatest support. Lines with less support are in the end ignored.

Mmax=0;
for all pairs of edge points do {
find equation of line defined by the two points i, j;
M=0;
for all N points in list do
if (point k is within threshold distance d of line) M ++;
if (M > Mmax) {

Mmax = M;
imax = i;
jmax =j;

// this records the hypothesis giving the maximum support so far
}
}

/* if Mmax > 0, (x[imax], y[imax]) and (x[jmax], y[jmax]) will be the coordinates of
the points defining the line having greatest support */

all that is necessary is to take any pair of edge points. For each hypothesis we run through the
list of N edge points finding how many points M support the hypothesis. Then we take more
hypotheses (more pairs of edge points) and at each stage retain only the one giving maximum
support M max. This process is shown in Table 1.1.

The algorithm in Table 1.1 corresponds to finding the center of the highest peak in pa-
rameter space, as in the case of the HT. To find all the lines in the image, the most obvious
strategy is the following: find the first line, then eliminate all the points that gave it support;
then find the next line and eliminate all the points that gave it support; and so on until all the
points have been eliminated from the list. The process may be written more compactly in the
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form:

repeat {
find line;
eliminate support;

}

until no data points remain;

As outlined above, RANSAC involves quite considerable computational load—amounting
to O(N3)—which should be compared with O(N) for the HT. Hence it is better to reduce
N in some way when using RANSAC. This explains why it is useful to concentrate on
the local maxima rather than employing the full list of edge points. However, an alterna-
tive is to employ repeated random sampling from the full list until sufficient hypotheses
have been tested to be confident that all significant lines have been detected. [Note that
these ideas reflect the original meaning of the term RANSAC, which stands for RANdom
SAmpling Consensus—“consensus” indicating that any hypothesis has to form a consen-
sus with the available support data (Fischler and Bolles, 1981).] Confidence that all sig-
nificant lines have been detected can be obtained by estimating the risk that a significant
line will be missed because no representative pair of points lying on the line was consid-
ered.

We are now in a position to consider results obtained by applying RANSAC to a partic-
ular case of straight line detection. In the test described, pairs of points were employed as
hypotheses, and all edge points were local maxima of the intensity gradient. The case shown
in Fig. 1.12 corresponds to detection of a block of wood in the shape of an icosahedron. Note
that one line on the right of Fig. 1.12(a) was missed because a lower limit had to be placed
on the level of support for each line: this was necessary because below this level of support
the number of chance collinearities rose dramatically even for the relatively small number
of edge points shown in Fig. 1.12(b), leading to a sharp rise in the number of false positive
lines. Overall, this example shows that RANSAC is a highly important contender for location
of straight lines in digital images. Not discussed here is the fact that RANSAC is useful for
obtaining robust fits to many other types of shape, in 2-D and in 3-D.

Finally, it should be mentioned that RANSAC is less influenced than the HT by aliasing
along straight lines. This is because HT peaks tend to be fragmented by aliasing, so the best
hypotheses can be difficult to obtain without drastic smoothing of the image. The reason
why RANSAC wins in this context is that it does not rely on individual hypotheses being
accurate: rather it relies on enough hypotheses easily being generatable, and by the same
token, discardable.

1.3.5 A graph-theoretic approach to object location

This section considers a commonly occurring situation involving considerable constraints—
objects appearing on a horizontal worktable or conveyor at a known distance from the
camera. It is also assumed (a) that objects are flat or can appear in only a restricted num-
ber of stances in three dimensions, (b) that objects are viewed from directly overhead, and
(c) that perspective distortions are small. In such situations the objects may in principle be
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FIGURE 1.12 Straight line location using the RANSAC technique. (a) shows an original grey-scale image with
various straight edges located using the RANSAC technique. (b) shows the edge points fed to RANSAC to obtain
(a): these were local maxima of the gradient image. In (a), three edges of the icosahedron have been missed. This is
because they are ‘roof” edges with low contrast and low intensity gradient. In fact, RANSAC also missed a fourth
edge because of a lower limit placed on the level of support (see text).

identified and located from very few point features. Since such features are taken to have no
structure of their own, it will be impossible to locate an object uniquely from a single feature,
although positive identification and location would be possible using two features if these
were distinguishable and if their distance apart were known. For truly indistinguishable
point features, an ambiguity remains for all objects not possessing 180° rotation symmetry.
Hence at least three point features are in general required to locate and identify objects at
known range. Clearly, noise and other artefacts such as occlusions modify this conclusion. In
fact, when matching a template of the points in an idealized object with the points present in
a real image, we find that:

1. a great many feature points may be present because of multiple instances of the chosen
type of object in the image

2. additional points may be present because of noise or clutter from irrelevant objects and
structure in the background

3. certain points that should be present are missing because of noise or occlusion, or because
of defects in the object being sought.

These problems mean that we should be attempting to match a subset of the points in the ide-
alized template to various subsets of the points in the image. If the point sets are considered
to constitute graphs with the point features as nodes, the task devolves into the mathemati-
cal problem of subgraph—subgraph isomorphism, i.e., finding which subgraphs in the image
graph are isomorphic to subgraphs of the idealized template graph. [Isomorphic means hav-
ing the same basic shape and structure.] Clearly, a point feature matching scheme will be
most successful if it finds the most likely interpretation by searching for solutions having the
greatest internal consistency—i.e., with the greatest number of point matches per object.
Unfortunately, the schema presented above is still too simplistic in many applications as it
is insufficiently robust against distortions. In particular, optical (e.g., perspective) distortions
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FIGURE 1.13 Matching problem for a general quadrilateral: (a) basic labeling of model (left) and image (right);
(b) match graph; (c) placement of votes in parameter space: small circles indicate hole positions, dots indicate indi-
vidual votes and the large dot shows the position of the main peak. © AVC 1988.
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may arise, or the objects themselves may be distorted, or by resting partly on other objects
they may not be quite in the assumed stance: hence distances between features may not be
exactly as expected. These factors mean that some tolerance has to be accepted in the dis-
tances between pairs of features. Clearly, distortions lay more strain on the point matching
technique and make it all the more necessary to seek solutions with the greatest possible in-
ternal consistency. Therefore, as many features as possible should be taken into account in
locating and identifying objects. The maximal clique approach is intended to achieve this.

As a start, as many features as possible are identified in the original image: typically, they
are numbered in order of appearance in a TV raster scan. The numbers then have to be
matched against the letters corresponding to the features on the idealized object. A systematic
way of achieving this is by constructing a match graph (or association graph) in which the nodes
represent feature assignments, and arcs joining nodes represent pairwise compatibilities be-
tween assignments. To find the best match it is then necessary to find regions of the match
graph where the cross-linkages are maximized. To achieve this, cligues are sought within the
match graph. A clique is a complete subgraph—i.e., one for which all pairs of nodes are con-
nected by arcs. However, the previous arguments indicate that if one clique is completely
included within another clique, it is likely that the larger clique represents a better match—
and indeed maximal cligues can be taken as leading to the most reliable matches between the
observed image and the object model.

Fig. 1.13(a) shows the situation for a general quadrilateral, the match graph being shown
in Fig. 1.13(b). In this case there are 16 possible feature assignments, 12 valid compatibilities
and 7 maximal cliques. If occlusion of a feature occurs, this will (taken on its own) reduce
the number of possible feature assignments and also the number of valid compatibilities: in
addition, the number of maximal cliques and the size of the largest maximal clique will be



26 1. The dramatically changing face of computer vision

A 1
o
° oB 02
C o’
D o o4
(a) o
o
o
[ J o °
o

(b) (o

FIGURE 1.14 Matching when one feature is occluded and another is added: (a) basic labeling of model (left) and
image (right); (b) match graph; (c) placement of votes in parameter space (notation as in Fig. 1.13).

reduced. On the other hand, noise or clutter can add erroneous features. If the latter are at
arbitrary distances from existing features, then the number of possible feature assignments
will be increased but there will not be any more compatibilities in the match graph, so the
latter will have only trivial additional complexity. However, if the extra features appear at al-
lowed distances from existing features, this will introduce extra compatibilities into the match
graph and make it more tedious to analyze. In the case shown in Fig. 1.14, both types of
complication—an occlusion and an additional feature—arise: there are now 8 pairwise as-
signments and 6 maximal cliques, rather fewer overall than in the original case of Fig. 1.13.
However, the important factor is that the largest maximal clique still indicates the most likely
interpretation of the image, so the technique is inherently highly robust.

Fig. 1.15(a) shows a pair of cream biscuits which are to be located from their “docker”
holes—this strategy being advantageous since it has the potential for highly accurate product
location prior to detailed inspection. The holes found by a simple template matching routine
are indicated in Fig. 1.15(a): the template used is rather small and, as a result, the routine is
fairly fast but fails to locate all holes; in addition, it can give false alarms. Hence an “intelli-
gent” algorithm must be used to analyze the hole location data. Analysis of the data in the
above example yields two nontrivial maximal cliques, each corresponding correctly to one of
the two biscuits in the image.

1.3.6 Using the generalized Hough transform (GHT) to save computation

In these examples, checking which subgraphs are maximal cliques is a simply-stated prob-
lem. Unfortunately, the execution time of an optimal maximal clique algorithm is bounded
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FIGURE 1.15 Location of cream sandwich biscuits; (a) two cream sandwich biscuits with crosses indicating the
result of applying a simple hole detection routine; (b) the two biscuits reliably located by the GHT from the hole data
in (a): the isolated small crosses indicate the positions of single votes. © AVC 1988.

not by a polynomial in M (for a match graph containing maximal cliques of up to M nodes)
but by a much faster varying function. Specifically, the task of finding maximal cliques is
known to be “NP-complete” and runs in exponential time. Thus, whatever the run-time may
be for values of M up to about 6, it will typically be 100 times slower for values of M up to
about 10, and 100 times slower again for M greater than ~14.

We shall now see how the GHT can be used as an alternative to the maximal clique ap-
proach. To apply the GHT, we first list all the features and then accumulate votes in parameter
space at every possible position of a localization point L consistent with each pair of features
(Fig. 1.16). To proceed it is necessary merely to use the interfeature distance as a lookup pa-
rameter in the GHT R-table. For indistinguishable point features this means that there must
be two entries for the position of L for each value of the interfeature distance. The procedure
is illustrated by the general quadrilateral example of Fig. 1.13: this leads to 7 peaks in param-
eter space, whose weights are 6,1, 1,1, 1, 1, 1 (see Fig. 1.13(c)). A similar situation applies
for Fig. 1.14. Close examination of Figs. 1.13 and 1.14 indicates that every peak in parameter
space corresponds to a maximal clique in the match graph. Indeed, there is a one-to-one rela-
tion between the two, so correct compatibilities all contribute both to a large maximal clique
and to a large peak in parameter space. This situation still applies even when occlusions occur
or additional features are present (see Fig. 1.14).

Finally, consider again the example of Fig. 1.15(a), this time obtaining a solution using the
GHT. Fig. 1.15(b) shows the positions of candidate object centers as found by the GHT. The
small isolated crosses indicate the positions of single votes, and those very close to the two
large crosses lead to voting peaks of weights 10 and 6 at these respective positions. Hence
object location is both accurate and robust, as required (Davies, 1988b).

We next compare the computational requirements of the maximal clique and GHT ap-
proaches to object location. For simplicity, imagine an image that contains just one wholly
visible example of an object possessing n features and that we are trying to recognize it by
seeking all possible pairwise compatibilities.
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FIGURE 1.16 Method for locating L from pairs of feature positions: each pair of feature points gives two possible
voting positions in parameter space, when objects have no symmetries. When symmetries are present, certain pairs
of features may give rise to up to 4 voting positions: this is confirmed on careful examination of Fig. 1.15(b).

For an object possessing n features, the match graph contains n? nodes (i.e., possible as-

signments), and there are " Cy=n*(n? —1)/2 possible pairwise compatibilities to be checked
in building the graph. The amount of computation at this stage of the analysis is O(n*). To this
must be added the cost of finding the maximal cliques. Since the problem is NP-complete, the
load rises at a rate which is close to being exponential in n?.

Now consider the cost of getting the GHT to find objects via pairwise compatibilities. As
has been seen, the total height of all the peaks in parameter space is equal to the number
of pairwise compatibilities in the match graph. Hence the computational load is of the same
order, O(n*). Next comes the problem of locating all the peaks in parameter space. For an
N x N image only N? points have to be visited in parameter space and the computational
load is O(N?), though keeping a running record of the maximum location during voting can
reduce it considerably (Davies, 1988b).

1.3.7 Part-based approaches

Whereas the object location approaches described above tend to rely on objects follow-
ing quite well-defined geometric models, a totally distinct approach is to use methods such
as deformable models to locate and recognize them. The aim of such approaches is to take
account of variations in appearance resulting from changes in illumination, viewpoint, and
properties such as shape and color. This is particularly important when searching for faces or
pedestrians in road scenes, to take two important examples. Methods in this category include
rigid templates (Dalal and Triggs, 2005), bag-of-features (Zhang et al., 2007), deformable tem-
plates (e.g., Cootes and Taylor, 2001), and part-based models (e.g., Amit and Trouvé, 2007;
Leibe et al., 2008). Deformable parts models are trained using collections of parts arranged in
deformable configurations. This approach came to the fore in 2010 with the work of Felzen-
szwalb et al. (2010) when it was shown to lead to efficient, accurate, state-of-the-art results on
difficult data sets.

Deformable parts models (DPMs) are based on the idea that objects can be considered as
collections of parts. Thus, to detect objects such as faces, it should only be necessary to lo-
cate the parts and examine their interrelationships. This can be carried out by identifying
parts and their bounding boxes and then making proposals for combining them into larger
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bounding boxes representing objects. Basically, once object bounding boxes have been found,
these regions are protected from further analysis by nonmaximum suppression. In practice,
this means giving each potential bounding box a score, keeping the highest score and skip-
ping any that overlap an already existing bounding box by a critical percentage, e.g., 50%.
This highly successful approach achieved state-of-the-art results on the PASCAL VOC 2006,
2007, and 2008 benchmarks (Everingham et al., 2006; 2007; 2008) and “established itself as the
de-facto standard for generic object detection” (Mathias et al., 2014). Mathias et al. tested the
DPM approach very thoroughly and showed that it could achieve top performance for face
detection.

Interestingly, the DPM approach permitted the location of overtly 3-D objects—but with-
out their 3-D geometry having to be taken directly into account, this being achieved by
sufficiently varied training on the relevant types of object. Another welcome capability is
that the approach can also be very effective for locating articulated objects.

The DPM approach is highly significant as it formed the basis for deep learning approaches
with even higher performance ratings—as achieved by Bai et al. (2016) and other workers.
(See Part F for deep learning methods.)

1.4 Part C - 3-D object location and the importance of invariance

1.4.1 Introduction to 3-D vision

In the earlier parts of this chapter, it has generally been assumed that objects are essentially
flat and are viewed in such a way that there are only three degrees of freedom—namely,
the two associated with position, and a further one concerned with orientation. While this
approach was adequate for carrying out many useful visual tasks, it is inadequate for inter-
preting most outdoor or indoor scenes or even for helping with quite simple robot assembly
and inspection tasks. Indeed, over the past few decades a considerable amount of theory
has been developed and backed up by experiment, to find how scenes composed of real 3-D
objects can be understood in detail.

In general, this means attempting to interpret scenes in which objects may appear in totally
arbitrary positions and orientations—corresponding to six degrees of freedom. Interpreting
such scenes, and deducing the translation and orientation parameters of arbitrary sets of
objects, takes a substantial amount of computation—partly because of the inherent ambiguity
in inferring 3-D information from 2-D images. However, a variety of approaches is available
for proceeding with 3-D vision, and subtle combinations of them will often be needed to
successfully interpret 3-D scenes.

Before proceeding further, we present the imaging equation for a general point (X, ¥, Z)
in a scene, under what is known as ‘perspective projection’; this yields the image point:

. N=(fX/Z,fY/Z) (1.49)

where f is the focal length of the lens being used.
We can now introduce the approach adopted by the human visual system—that of binoc-
ular vision. The camera system that is used for this purpose is depicted in Fig. 1.17. With
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FIGURE 1.17 Stereo imaging using two lenses. The axes of the optical systems are parallel, i.e., there is no ‘ver-
gence’ between the optical axes.

this geometry, a general point appears in the two images as (x1, y1) and (x2, y2). In general,
the two optical systems need not have parallel optical axes and will exhibit a nonzero ‘ver-
gence’ angle. However, the zero-vergence case is often employed and for simplicity is the
one considered here. Note that the two sets of coordinates corresponding to the general point
(X,7, Z) in the scene will differ because the baseline b between the optical axes causes relative
displacement or ‘disparity” of the points in the two images.

Next, with a suitable choice of Z-axis on the perpendicular bisector of the baseline b, we
obtain two equations:

x1=(X+b/2) f/Z (1.50)

xo=(X—b/2) f/Z (1.51)
Calculating the disparity D = x| — x immediately permits the depth Z to be obtained:

Z =bf/(x1 —x2) (1.52)

Whereas this seems to be an ideal way of proceeding with 3-D vision, there is a fundamental
problem—that of confirming that both points in a stereo pair actually correspond to the same
point in the original scene. Note also that to obtain high accuracy in the determination of
depth, a large baseline b is required: unfortunately, as b is increased, the correspondence
between the images decreases, so it becomes more difficult to find matching points: this is
because the two images become increasingly different and difficult to match.

The standard way of dealing with the stereo correspondence problem mentioned above is
the epipolar line approach illustrated in Fig. 1.18. To understand this technique, imagine that
we have located a distinctive point in the first image and that we are marking all possible
points in the object field which could have given rise to it. This will mark out a line of points
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FIGURE 1.18 Geometry of epipolar lines. A point P} in one image plane may have arisen from any one of a line
of points in the scene, and may appear in the alternate image plane at any point on the so-called epipolar line E,.

at various depths in the scene and, when viewed in the second image plane, a locus of points
can be constructed in that plane. This locus (in the alternate image) is the epipolar line corre-
sponding to the original image point. If we now search along the epipolar line for a similarly
distinctive point in the second image, the chance of finding the correct match is significantly
enhanced. This method not only cuts down the amount of computation required to find cor-
responding points, but also significantly reduces the incidence of false alarms. In the simple
geometry of Fig. 1.17, all epipolar lines are parallel to the x-axis, although this only applies
for the case of zero vergence. Note that the correspondence problem is rendered considerably
more difficult by the fact that there will be points in the scene that give rise to points in one
image but not in the other: this may arise because of occlusion or gross distortion of one of the
points. Thus, it is necessary to search for consistent sets of solutions in the form of continuous
object surfaces in the scene.

The difficulties caused by the correspondence problem have led to a number of alternative
approaches. One of the most prominent has been ‘shape from shading’—mapping how the
surface orientation varies by analyzing the apparent brightness of the surface. While much
has been achieved by this approach, it involves assumptions about the reflectance and spec-
ularity of the surfaces and how these vary with the orientation of (a) the surface and (b)
the source of illumination. It also requires the application of complex iterative algorithms—a
topic that cannot be dealt with in detail here. Similarly, ‘photometric stereo’, which involves
illuminating scenes in turn by separate light sources and analyzing the resulting images, is
too complex to be considered in detail here.

Next, ‘shape from texture’ is an approach that also allows details of surface orientation
to be analyzed by examining the relative areas of textural elements. However, this is a spe-
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cialized method that is not very frequently applied. Another approach is that of ‘structured
lighting’—typically based on directing patterns of light stripes, or other arrangements of light
spots or grids, onto the object field—which has been exceedingly widely used for inspection
and assembly on factory lines, though it can hardly be said to be in wide use in other types of
application such as surveillance. Again, this has to be regarded as a specialized rather than a
general technique for gauging 3-D object shapes.

It should be remarked that all but the last of these approaches lead to the production of
surface orientation maps rather than measurement of depth per se, so computation of depth
and surface shape has to be deduced from the raw orientation measurements.

Overall, the methods described above employ various means for estimating depth at all
places in a scene, and hence are able to map out 3-D surfaces in a fair amount of detail. How-
ever, they do not give any clue as to what these surfaces represent. In some situations it may
be clear that certain planar surfaces are parts of the background, e.g., the floor and the walls
of a room, but in general individual objects will not be inherently identifiable. Indeed, objects
tend to merge with each other and with the background, so specific methods are needed to
segment the 3-D ‘space map’ and finally recognize the objects, giving detailed information on
their positions and orientations. Clearly, obtaining a depth map of a 3-D object is no closer to
identifying it than a boundary map such as a centroidal profile is to recognizing a 2-D object:
specific means must be devised to perform the identification. Unfortunately, this task is sig-
nificantly more difficult in 3-D than it is in 2-D. For example, whereas a Hough transform can
in principle be applied in both cases, in 3-D it is hugely more complicated and computation
intensive than in 2-D, as the number of free parameters will normally have increased from
3 to 6 for a static shape with no unknown shape parameters—there being 3 degrees of free-
dom for translation and 3 for rotation. Note also that the computational complexity normally
varies not with the number of degrees of freedom but with an exponent of this number.

One further point should be added: over the past few years, sensors have been devised
that provide RGB-D (color and depth) outputs: these provide depth information from op-
tical ‘time-of-flight’. LIDAR is well known but expensive and works better at long range,
whereas matrix-based time-of-flight cameras work better at short range and typically use
laser-generated light pulses that are a few nanoseconds apart. These types of advance help
to solve the stereo correspondence problem. However, they do not eliminate the problem of
interpreting 3-D surfaces, for which the large number of degrees of freedom to be wrestled
with by object identification algorithms remains problematic: on the contrary, they serve to
highlight this as the most substantial remaining problem.

Given that computational complexity is the primary source of these problem:s, it is natural
to examine each depth map for salient features and to interpret the scenes accordingly: once
we have object descriptions based on relatively few salient features rather than bulk surface
descriptions, there would appear to be hope of achieving rapid, reliable identifications. We
look into this possibility further in the following section.

1.4.2 Pose ambiguities under perspective projection

In this section we define weak and full perspective and aim to understand the perspective n-
point (PnP) problem—the problem of finding the pose of objects from n features under various
forms of perspective.
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FIGURE 1.19 Perspective inversion for an aeroplane. Here an aeroplane (a) is silhouetted against the sky and
appears as in (b). (c) shows the two planes P and Q in which the aeroplane could lie, relative to the direction D of
viewing: R is the reflection plane relating the planes P and Q.

Full perspective projection (FPP) is the underlying form of projection between an object
and its image, which leads for example to parallel lines no longer appearing parallel, and
most shapes appearing distorted—circles even appearing as ellipses. Weak perspective pro-
jection (WPP) is the form of perspective projection that occurs for distant objects, for which
AZ « Z. It can be regarded as the same as ‘scaled orthographic projection"—orthographic
projection being the type of projection that would occur if the object were projected orthogo-
nally by parallel rays onto the image plane; while scaling accounts for the reduced apparent
size of an object.

As WPP does not distort object shapes (e.g., the back of a wire cube appears the same
size and shape as its front), it is easier to use it to model the imaging process. However, this
form of projection is so simple that it can lead to ambiguity when flat objects are viewed.
This is demonstrated in Fig. 1.19, which illustrates that a 2-D view of a distant aeroplane
can correspond to one of two orientations, as only the cosine of the plane’s orientation « is
determined from the single view. Interestingly, when « is nonzero, FPP adds an additional
distortion to the aeroplane’s shape, and the true orientation can then be identified.

Table 1.2 indicates the full extent of this situation, when flat objects are detected via one
or more of their features. This table reflects the overall PnP problem mentioned above. In the
coplanar case (in which all n features of an object are coplanar), we see from the table that
WPP never gives an unambiguous interpretation, whereas FPP does—though only when n
is greater than 3. The reason why n has to be greater than 3 for FPP to give an unambiguous
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TABLE 1.2 Ambiguities when estimating pose from point
features. This table summarizes the numbers of solutions that
will be obtained when estimating the pose of a rigid object
from point features located in a single image. It is assumed
that n point features are detected and identified correctly and
in the correct order. The columns WPP and FPP signify weak
perspective projection and full perspective projection respec-
tively. The upper half of the table applies when all n points
are coplanar; the lower half of the table applies when the
n points are noncoplanar. Note that when n < 3, the results
strictly apply only in the coplanar case. However, the top two
lines in the lower half of the table are retained for easy com-

parison.

Arrangement of the points n WPP FPP
<2 00 00
3 2 4

coplanar 4 2 1
5 2 1
>6 2 1
<2 00 o0
3 2 4

noncoplanar 4 1 2
5 1 2
>6 1 1

result is that it involves so many parameters that 3 features are insufficient to resolve the sit-
uation; however, when 4 or more features are present, the complete situation can be resolved
and the ambiguity eliminated. But why can’t WPP achieve this too? The reason is that un-
der WPP the location of any additional features (above 3) can be deduced from the first 3,
so they can give no additional information: hence WPP cannot lead to the ambiguity being
eliminated.

Note that when n is 1 or 2, there is at least one rotational degree of freedom, so there are an
infinite number of solutions. At this point we have dealt with all the possibilities in the upper
half of the table, where coplanar objects are involved. We next turn to the noncoplanar case,
dealt with in the lower half of the table. Instances where n < 3 have already been dealt with
in the upper half of the table, so the noncoplanar case only involves instances where n > 3.

Let us now consider what happens when 4 features are viewed under WPP. Taking two
of the features with each of the other two in turn, we can generate two planes. When the 3
features on each of these planes are viewed they will generate two solutions with different
values of «, and there can only be one consistent solution. This completes our understanding
of the WPP entries in Table 1.2, and in particular the noncoplanar cases. The situation is well
illustrated in Fig. 1.20(a—c). Note, however, the salutary situation shown in Fig. 1.20(d) show-
ing how an object possessing a special symmetry may be subject to a remanent ambiguity.

To fully understand the situation in which more than 3 noncoplanar points are viewed
under FPP, we need to consider the fact that there are 11 camera calibration parameters (see
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FIGURE 1.20 Determination of pose for 4 points viewed under weak perspective projection. (a) shows an object
containing four noncoplanar points, as seen under weak perspective projection. (b) shows a side view of the object. If
the first three points (connected by nonarrowed grey lines) were viewed alone, perspective inversion would give rise
to a second interpretation (c). However, the fourth point gives additional information about the pose which permits
only one overall interpretation. This would not be the case for an object containing an additional symmetry as in (d),
since its reflection would be identical to the original view (not shown).

Section 1.4.10) that need to be determined from 12 linear homogeneous equations, which
means that at least 6 noncoplanar points (involving 2 x 6 image coordinates) will in general be
needed to compute all 11 parameters. Thus, although FPP makes the situation more complex,
it also provides more information by which, eventually, to resolve the ambiguity.

Finally, it should be emphasized that the above discussion assumes that the correspon-
dences between object and image features are all known, i.e., that n point features are detected
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and identified correctly and in the correct order. If this is not so, the number of possible solu-
tions could increase substantially, considering the number of possible permutations of quite
small numbers of points. One way of limiting this problem is to note that coplanar points
viewed under weak or full perspective projection always appear in the same cyclic order:
this is not trivial to check given the possible distortions of an object, though if a convex poly-
gon can be drawn through the points, the cyclic order around its boundary will not change on
projection, because planar convexity is an invariant of projection. However, for noncoplanar
points, the pattern of the perceived points can reorder itself almost randomly: this means that
a considerably greater number of permutations of the points will have to be considered for
noncoplanar points than for coplanar points. Another consideration is that the feature points
being used for object recognition should not be collinear or in any special pattern and should
be describable as being in general position: otherwise there is a risk that some ambiguities will
not be eliminated as indicated in Table 1.2 (ultimately because noninvertible equations arise
when attempting to determine the camera calibration parameters).

1.4.3 Invariants as an aid to 3-D recognition

Invariants are important for object recognition in both 2-D and 3-D. The basic idea of an in-
variant is to find some parameter or parameters that do not vary between different instances
or positions of an object and to use them to facilitate object identification. As we shall see,
perspective makes the issue far harder in the general 3-D case.

Let us first consider a flat object being viewed from directly overhead by a camera whose
optical axis is normal to the plane on which the object is lying. Consider two point features on
the object such as corners or small holes. If we measure the interfeature distance in an image,
it will act as an invariant, in that:

1. it has a value independent of the translation and orientation parameters of the object;

2. it will be unchanged for different objects of the same type;

3. it will in general be different from the corresponding parameters of other objects that lie
on the object plane.

Thus, measurement of distance provides a certain lookup or indexing quality which will
ideally identify the object uniquely, though further analysis will be required to fully locate
it and ascertain its orientation. Hence inter-feature distance has all the requirements of a 2-
D invariant. Of course, we are here ignoring imprecision in measurement, due to inadequate
spatial resolution, noise, lens distortions, and so on; in addition, the effects of partial occlusion
or breakage are being ignored. Obviously, there is a limit to what can be achieved with a single
invariant measure. In particular, it is not able to cope with object scale variations. Moving the
camera closer to the object plane and refocusing totally changes the situation and all values
of the distance invariant residing in the object indexing table must be changed and the old
values ignored. However, a little thought shows that this last problem can be overcome. All
we need to do is to take ratios of distances. This requires a minimum of 3 point features to be
identified in the image and 2 inter-feature distances measured. If we call these 2 distances d;
and d,, then the ratio d; /d, will act as a scale-independent invariant, i.e., we will be able to
identify objects using a single indexing operation whatever their 2-D translation, orientation,
or apparent size or scale.
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FIGURE 1.21 Perspective transformation of four collinear points. This figure shows four collinear points (P, P,
P3, P4) and a transformation of them (Q;, Qz, Q3, Q4) similar to that produced by an imaging system with optical
center C. Such a transformation is called a perspective transformation.

Overall, the main motivation for using invariants is to obtain mathematical measures of
object feature configurations which are independent of the viewpoint or coordinate system
used: indeed, in view of the obvious complexities involved in perspective projection, view-
point independence is a crucial factor in 3-D object recognition and requires use of perspective
invariants.

1.4.4 Cross ratios: the ‘ratio of ratios’ concept

It would be most useful if we could extend the above ideas to aid the identification of
objects when observed under general 3-D transformations. Indeed, an obvious question is
whether finding ratios of ratios of distances will lead to invariants providing suitable gener-
alizations. The answer is that ratios of ratios do provide useful further invariants, as we shall
now see.

To identify suitable ratios of ratios of distances, we start by examining a set of 4 collinear
points on an object. Fig. 1.21 shows such a set of 4 points (P1, P2, P3, P4) and a transformation
of them (Qg, Q, Q3, Q4) such as that produced by an imaging system with optical center
C (c, d). Choice of a suitable pair of oblique axes permits the coordinates of the two sets of
points to be expressed respectively as:

(x1,0), (x2,0), (x3,0), (x4,0)



38 1. The dramatically changing face of computer vision

0, y1), (0, y2), (0, y3), (0, y4)
Taking points Pi, Qi, (i =1, ..., 4) we can write the ratio CQ;: PQ; both as —Lx, and as %
Equating these quantities immediately gives:

d
L4 (1.53)
Xi Vi
After straightforward manipulation of all 4 versions of this relation, and taking suitable
differences to eliminate all absolute positions, we eventually obtain the formula:

X2 — X4 X2 — X Y2 — 4 y2—=MN
X3 — X4 X3 — X Y3 — Y4 y3— )
This confirms that a parameter can be constructed that is invariant to perspective trans-

formations. In particular, 4 collinear points viewed from any perspective viewpoint yield the
same value of the cross ratio, defined as:

C(Py.P>.Ps, Py) = (x3 —x1) (X2 — X4) (1.55)

(x2 —x1) (x3 — x4)

In what follows, we shall write this particular cross ratio as «. Note that there are 4! = 24
possible ways in which 4 collinear points can be ordered on a straight line, and hence there
could be 24 cross ratio values for any object. However, they are not all distinct, and in fact
there are only 6 different values: it is easily shown that these are «, 1 — «, k/(x — 1) and their
inverses. Interestingly, numbering the points in reverse (which would correspond to viewing
the line from the other side) leaves the cross ratio unchanged. Nevertheless, it is inconvenient
that the same invariant has 6 different manifestations, as this implies that 6 different index
values have to be looked up before the class of an object can be identified. On the other hand,
if points are labeled in order along each line rather than randomly, it is possible to circumvent
this situation.

So far we have been able to produce only one projective invariant, and this corresponds
to the rather simple case of 4 collinear points. The usefulness of this measure is augmented
considerably when it is noted that 4 collinear points, taken in conjunction with another point,
define a “pencil” of concurrent coplanar lines passing through the latter point. Clearly, we can
assign a unique cross ratio to this pencil of lines, equal to the cross ratio of the collinear points
on any line passing through them. In fact, by considering the angles between the various lines
and applying the sine rule 4 times leads to the formula:

C(P), Py, Py, Py) = -3 210 (1.56)
SIN 12 SIN X34
Thus, the cross ratio depends only on the angles of the pencil of lines.

We can extend this concept to 4 concurrent planes since the concurrent lines can be pro-
jected into 4 concurrent planes once a separate concurrency axis has been defined. As there
are infinitely many such axes, there are infinitely many ways in which sets of planes can be
chosen. Thus, the original simple result on collinear points can be extended to a much more
general case.
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Finally, note that we started by trying to generalize the case of 4 collinear points, but what
we achieved was first to find a dual situation in which points become lines also described by
a cross ratio, and then to find an extension in which planes are described by a cross ratio. We
now return to the case of 4 collinear points, and see how we can extend it in other ways.

1.4.5 Invariants for noncollinear points

First, imagine that not all the points are collinear: specifically, let us assume that one point
is not collinear with the other 3. If this is the case, then there is not enough information to
calculate a cross ratio. However, if a further coplanar point is available, we can draw an
imaginary line between the noncollinear points to intersect the line through the other 3 points:
this will then permit a cross ratio to be computed (Fig. 1.22(a)). Nevertheless, this is some
way from a general solution to the characterization of a set of noncollinear points. We might
enquire how many point features in general position on a plane will be required to calculate
an invariant. In fact, the answer is 5, since the fact that we can form a cross ratio from the
angles between 4 lines immediately means that forming a pencil of 4 lines from 5 points
defines a cross ratio invariant (Fig. 1.22(b)).

While the value of this cross ratio provides a necessary condition for a match between two
sets of 5 general coplanar points, it could be a fortuitous match, as the condition depends only
on the relative directions between the various points and the reference point, i.e., any of the
nonreference points is only defined to the extent that it lies on a given line. Clearly, two cross
ratios formed by taking two reference points will define the directions of all the remaining
points uniquely (Fig. 1.22(c)). Interestingly, while at least 5 cross ratios could result from this
sort of procedure, it turns out that there are only two functionally independent cross ratios—
essentially because the position of any point is defined once its direction relative to two other
points is known.

Note that Fig. 1.22 misses out one further interesting case—the situation of two points and
two lines. Constructing a line joining the two points and producing it until it meets the two
lines, we get 4 points on a single line; thus the configuration is characterized by a single cross
ratio. Notice also that the two lines can be extended until they join, and further lines can be
constructed from the join to meet the two points: this gives a pencil of lines characterized by
a single cross ratio: the latter must have the same value as that computed for the 4 collinear
points.

Next, we consider the problem of finding the ground plane in practical situations—e.g.,
that of egomotion including vehicle guidance. Suppose a set of 4 collinear points can be ob-
served from one frame to the next. If they are on a single plane, then the cross ratio will
remain constant, but if one is elevated above the ground plane (as in the case of a bump on
the road) then the cross ratio will vary over time. Taking a larger number of points, it should
be possible to deduce by a process of elimination which are on the ground plane and which
are not: note that all this is possible without any calibration of the camera, this being a ma-
jor advantage of making use of projective invariants. Note that there is a potential problem
regarding irrelevant planes, such as the vertical faces of buildings. The cross ratio test is so
resistant to viewpoint and pose that it merely ascertains whether the points being tested are
coplanar. But by using a large enough number of independent sets of points, one plane can
be discriminated from another.
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FIGURE 1.22 Calculation of invariants for a set of noncollinear points. (a) shows how the addition of a fifth point
to a set of four points, one of which is not collinear with the rest, permits the cross ratio to be calculated. (b) shows
how the calculation can be extended to any set of noncollinear points; also shown is an additional (grey) point which
a single cross ratio fails to distinguish from other points on the same line. (c) shows how any failure to identify a
point uniquely can be overcome by calculating the cross ratio of a second pencil generated from the five original
points.
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FIGURE 1.23 Position of the vanishing point. In this figure, parallel lines on the arches appear to converge to a
vanishing point V outside the image. In general, vanishing points can lie at any distance and may even be situated
at infinity.

1.4.6 Vanishing point detection

In this section we consider vanishing points (VPs) and how they can be detected. First, it is
useful to understand that the simple cue of a VP gives the human brain a deep understanding
of an image and in no small way helps it to globally interpret what is going on in the image:
it therefore provides a potential short cut for machines to get started on interpretation. This is
valuable in the situation of real 3-D images embodying all the complexities of full perspective
projection: hence it is no surprise that much effort has been applied to the detection and use
of VPs.

It is usual to carry out VP detection in two stages: first, we locate all the straight lines in
the image; next, we find which of the lines pass through common points—the latter being
interpreted as VPs. Finding the lines using a Hough transform should be straightforward,
though texture edges will sometimes prevent lines from being located accurately and consis-
tently. Basically, locating the VPs requires a second Hough transform in which whole lines
are accumulated in parameter space, leading to well defined peaks (the VPs) where multiple
lines overlap. In practice, the lines of votes will have to be extended to cover all possible VP
locations. This procedure is adequate when the VPs appear within the original image space,
but it often happens that they will be outside the original image (Fig. 1.23) and may even
be situated at infinity. This means that an image-like parameter space cannot be used suc-
cessfully, even if it is extended beyond the original image space. Another problem is that for
distant VPs, the peaks in parameter space will be spread out over a considerable distance, so
detection sensitivity will be poor and accuracy of location will be low.
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Fortunately, Magee and Aggarwal (1984) found an improved representation for locating
VPs. They constructed a unit sphere G, called a Gaussian sphere, around the center of projec-
tion of the camera, and used G instead of an extended image plane as a parameter space. In
this representation VPs appear at finite distances even in cases where they would otherwise
appear to be at infinity. For this method to work, there has to be a one-to-one correspon-
dence between points in the two representations, and this is clearly valid (note that the back
half of the Gaussian sphere is not used). However, the Gaussian sphere representation is not
without problems: in particular, many irrelevant votes will be cast from lines that are not par-
allel in real 3-D space (often, only a small subset of the lines in the image will pass through
VPs). To solve this problem, pairs of lines are considered in turn, and their crossing points are
only accumulated as votes if the lines of each pair are judged likely to originate from parallel
lines in 3-D space (e.g., they should have compatible gradients in the image). This procedure
drastically limits both the number of votes recorded in parameter space and the number of
irrelevant peaks. Nevertheless, the overall cost is still substantial, being proportional to the
number of pairs of lines. Thus, if there are N lines, the number of pairs is NCy, = %N (N -1,
so the result is O(N?).

The above procedure is important as it provides a highly reliable means for performing
the search for VPs, and for largely discriminating against isolated lines and image clutter.
Note that for a moving robot or other system, the correspondences between the VPs seen
in successive images will lead to considerably greater certainty in the interpretation of each
image.

1.4.7 More on vanishing points

One advantage of the cross ratio invariant is that it can turn up in many situations and
on each occasion provide yet another neat result. An interesting example is when a road
or pavement has flagstones whose boundaries are well demarcated and easily measurable.
They can then be used to estimate the position of the vanishing point on the ground plane.
Imagine viewing the flagstones obliquely from above, with the camera or the eyes aligned
horizontally. Then we have the geometry of Fig. 1.24, where the points O, H;, H; lie on the
ground plane while O, Vi, V,, V3 are in the image plane.

If we take C as a center of projection, the cross ratio formed from the points O, Vi, V,
V3 must have the same value as that formed from the points O, H;, Hp, and infinity in the
horizontal direction. Supposing that OH; and H;H; have known lengths a and b, equating
the cross ratio values gives:

nOs=y) _x_ _a (1.57)

w3 —y1) x2 a+b

[Note that, in Fig. 1.24, the y values are measured from O rather than from V3.] This allows
us to estimate y3. Taking a = b (as is likely to be the case with flagstones) we find that:

y1y2

=2 7c 1.58
T -, (1.58)

Having found y3, we have calculated the direction of the vanishing point, whether or not
the ground plane on which it lies is actually horizontal, and whether or not the camera axis is
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FIGURE 1.24 Geometry for finding the vanishing line from a known pair of spacings. C is the center of projec-
tion. VL is the vanishing line direction, which is parallel to the ground plane OH|Hj. Although the camera plane
OV V, V3 is drawn perpendicular to the ground plane, this is not necessary for successful operation of the algorithm
(see text).

horizontal. Notice that this proof does not actually assume that points Vi, V,, V3 are vertically
above the origin, or that line OHH, is horizontal, just that these points lie along two coplanar
straight lines, and that C is in the same plane.

1.4.8 Summary: the value of invariants

Sections 1.4.2-1.4.6 have aimed to give some insight into the important subject of invari-
ants and their application in image recognition. The subject takes off when ratios of ratios
of distances are considered, and this idea leads in a natural way to the cross ratio invariant.
While its original manifestation lies in its application to recognition of the spacings of points
on a line, it generalizes immediately to angular spacings for pencils of lines, and also to an-
gular separations of concurrent planes. A further extension of the idea is the development
of invariants which can describe sets of noncollinear points, and two cross ratios suffice to
characterize a set of 5 noncollinear points on a plane.

Many other theorems and types of invariant exist, but space prevents more than a mention
being made here. As an extension to the point and line examples discussed above, invariants
have been produced which cover conics; a conic and two coplanar nontangent lines; a conic
and two coplanar points; two coplanar conics. Overall, the value of invariants lies in making
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computationally efficient checks of whether points or other features might belong to specific
objects. In addition, they achieve this without the necessity for camera calibration or know-
ing the viewpoint of the camera (though there is an implicit assumption that the camera is
Euclidean).

1.4.9 Image transformations for camera calibration

When images are obtained from 3-D scenes, the exact position and orientation of the cam-
era sensing device is often unknown and there is a need for it to be related to some global
frame of reference. This is especially important if accurate measurements of objects are to be
made from their images, e.g., in inspection applications. On the other hand, it may sometimes
be possible to dispense with such detailed information—as in the case of a stationary security
system for detecting intruders, or a system for counting cars on a motorway. There are also
more complicated cases, such as those in which cameras can be rotated or moved on a robot
arm, or the objects being examined can move freely in space. In such cases, ‘extrinsic’ as well
as ‘intrinsic’ camera calibration becomes a central issue (for full explanations of these terms,
see Section 1.4.11).

Before we can consider camera calibration, we need to understand in some detail the trans-
formations that can occur between the original world points and the formation of the final
image. In particular, we consider rotations and translations of object points relative to a global
frame. After a rotation through an angle 6 about the Z-axis (Fig. 1.25), the coordinates of a
general point (X, Y) change to:

X' = Xcosf — Ysinf (1.59)

Y = Xsinf + Y cos6 (1.60)

We now generalize this result to 3-D and express it as a matrix for a rotation 6 about the
Z-axis:

cosf® —sinf O
Z@®)=| sinf cosf O (1.61)
0 0 1

Similar matrices apply for rotations of ¥ about the X-axis and ¢ about the Y-axis. Applying
sequences of such rotations, we obtain the following general result expressing an arbitrary 3-
D rotation R:

X' Rii Ri2 Ri3 X
Y |=| Ry Rxn Rxn Y (1.62)
z R31 Ry R33 z

Note that the rotation matrix R is not completely general: it is orthogonal and thus has the
property that R~! =RT.
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FIGURE 1.25 Effect of a rotation 6 about the origin.

In contrast with rotation, translation through a distance (71, T, 73) is given by:

X' X T
Y |=| v |+| n» (1.63)
7 z T

which is not expressible in terms of a multiplicative 3 x 3 matrix. To combine rotations and
translations into a common multiplicative formulation, we have to use homogeneous coordi-
nates. To achieve this the matrices must be augmented to 4 x 4, and the required transforma-
tion has to take the form:

X' Rii R Rz T X
Y | | Ri Rn Rn D Y
Z |T| Ry R Rn T3 || z (1.64)
1 0 0 0 1 1

This form is sufficiently general to include scaling in object size, and shearing and skewing
types of transformation.

In all the cases discussed above it will be observed that the bottom row of the generalized
displacement matrix is redundant. In fact, we can put this row to good use in certain other
types of transformation. Of particular interest in this context is the case of perspective projec-
tion. Following Section 1.4.1, the equations for projection of object points into image points
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are:
x=fX/Z (1.65)
y=fY/Z (1.66)
z=f (1.67)

To include perspective projection in the above formalism, we need to examine the homo-
geneous coordinates transformation:

10 0 0 X X
01 0 0 Y Y
00 1 0 z |7 z (1.68)
0 0 1/f 0 1 Z/f

The key to understanding this transformation is to notice that dividing by the fourth coor-
dinate gives the required values of the transformed Cartesian coordinates (fX/Z, fY/Z, f).

Let us now review this result. First, we have found a 4 x 4 matrix transformation which
operates on 4-D homogeneous coordinates. These do not correspond directly to real coor-
dinates, but real 3-D coordinates can be calculated from them by dividing the first 3 by the
fourth homogeneous coordinate. Thus, there is an arbitrariness in the homogeneous coordi-
nates in that they can all be multiplied by the same constant factor without producing any
change in the final interpretation.

The advantage to be gained from use of homogeneous coordinates is the convenience of
having a single multiplicative matrix for any transformation, in spite of the fact that perspec-
tive transformations are intrinsically nonlinear: thus a quite complex nonlinear transforma-
tion can be reduced to a more straightforward linear transformation. This eases computer
calculation of object coordinate transformations, and other computations such as those for
camera calibration (see below). We may also note that almost every transformation can be
inverted by inverting the corresponding homogeneous transformation matrix. The exception
is the perspective transformation, for which the fixed value of z leads merely to Z being un-
known, and X, Y only being known relative to the value of Z (hence the need for binocular
vision or other means of discerning depth in a scene).

1.4.10 Camera calibration

The above discussion has shown how homogeneous coordinate systems are used to help
provide a convenient linear 4 x 4 matrix representation for 3-D transformations including
rigid body translations and rotations, and nonrigid operations including scaling, skewing
and perspective projection. In this last case, it was implicitly assumed that the camera and
world coordinate systems are identical, since the image coordinates were expressed in the
same frame of reference. However, in general the objects viewed by the camera will have
positions which may be known in world coordinates, but which will not a priori be known
in camera coordinates, since the camera will in general be mounted in a somewhat arbi-
trary position and will point in a somewhat arbitrary direction. Thus, the camera system will
have to be calibrated before the images can be used for practical applications such as robot
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pick-and-place. A useful approach is to assume a general transformation between the world
coordinates and the image seen by the camera under perspective projection, and to locate in
the image various calibration points which have been placed in known positions in the scene.
If enough such points are available, it should be possible to compute the transformation pa-
rameters, and then all image points can be interpreted accurately until recalibration becomes
necessary.

In what follows, we will find that there are two types of camera calibration: the first is that
of extrinsic calibration, in which the position and pose of the camera are determined relative
to the world coordinates, via its external parameters; the second is that of intrinsic calibration,
in which the image (and pixel) locations are determined in relation to the camera’s inter-
nal parameters. Important factors to be discussed are the numbers of extrinsic and intrinsic
parameters and their geometric significance.

To proceed, we need to set up the mathematical formulation in a general way, using the
general homogeneous transformation G, which takes the form:

Xu G Gnn Giz Gu X

Yu |_| Gu G G Gn Y (1.69)
Zy G31 Gz G33 Gxu z '

H Ga1 Ga Gaz Gy 1

Note that the final Cartesian coordinates appearing in the image are (x, y, z) = (x, y, f),
and these are calculated from the first 3 homogeneous coordinates by dividing by the fourth:

x=Xu/H=(GuX+GnY+G13Z+G14)/(Ga1 X +GpY + G43Z + G44) (1.70)
y=Yu/H =(G21X +GnY +Gi3Z + G24)/(G41 X + Ga2Y + G43Z + Gu4) (1.71)
2=7Zn/H=(G31X+GnY +G3Z+G34) /(G X +G2Y +G3Z + Gas) (1.72)

However, as we know z, there is no point in determining parameters G3i, G32, G33, G34. Ac-
cordingly, we proceed to develop the means for finding the other parameters. In fact, because
only the ratios of the homogeneous coordinates are meaningful, only the ratios of the G; j
values need be computed, and it is usual to take G44 as unity: this leaves only 11 parameters
to be determined. Multiplying out the first two equations and rearranging gives:

GuX+GpY+Gi3Z+G14—x(GuX+GpY +GpZ)=x (1.73)
G X +GnY +G3Z+Gu—y(GuX+GpY +Gy3Z)=y (1.74)

Noting that a single world point (X, Y, Z) which is known to correspond to image point (x, y)
gives us two equations of the above form: it requires a minimum of 6 such points to provide
values for all 11 G;; parameters. An important factor is that the world points used for the
calculation should lead to independent equations: thus it is important that they should not be
coplanar. More precisely, there must be at least 6 points, no 4 of which are coplanar. However,
further points are useful in that they lead to overdetermination of the parameters and increase
the accuracy with which the latter can be computed. There is no reason why the additional
points should not be coplanar with existing points: indeed, a common arrangement is to set
up a cube so that 3 of its faces are visible, each face having a pattern of squares with 3040
easily discerned corner features.
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Least squares analysis can be used to perform the computation of the 11 parameters. First,
the 2n equations (for n points) have to be expressed in matrix form:

Ag=¢ (1.75)
where A is a 2n x 11 matrix of coefficients, which multiplies the G-matrix, now in the form:
g=(G11612G13G14G21G22G23G24G41GnGy3)T (1.76)
and £ is a 2n-element column vector of image coordinates. The pseudo-inverse solution is:
g=A"¢ (1.77)

where

AT = (ATA)!AT (1.78)

1.4.11 Intrinsic and extrinsic parameters

At this point it is useful to look in more detail at the general transformation leading to
camera calibration. When we are calibrating the camera, we are actually trying to bring the
camera and world coordinate systems into coincidence. The first step is to move the origin
of the world coordinates to the origin of the camera coordinate system. The second step is
to rotate the world coordinate system until its axes are coincident with those of the camera
coordinate system. The third step is to move the image plane laterally until there is complete
agreement between the two coordinate systems (this step is required since it is not known
initially which point in the world coordinate system corresponds to the principal point in the
image).

There is an important point to be borne in mind during this process. If the camera coordi-
nates are given by C, then the translation T required in the first step will be —C. Similarly, the
rotations that are required will be the inverses of those which correspond to the actual camera
orientations. The reason for these reversals is that (for example) rotating an object (here the
camera) forwards gives the same effect as rotating the axes backwards. Thus, all operations
have to be carried out with the reverse arguments to those indicated above in Section 1.4.1.
The complete transformation for camera calibration is hence:

G =PLRT
1 0 0 0 1 0 0 g Rii Rip Riz O 1 0 0 T
1 01 0O 0 01 0 n Ryt Ry Ry3 O 01 0 T (1.79)
“1 00 1 0 0 0 1 1 R31 Ry Rizz O 0 01 T3 )
0 0 1/f O 0 0 0 1 0 0 0 1 0 0 0 1

where matrix P takes account of the perspective transformation required to form the image. In
fact, it is usual to group together the transformations P and L and call them internal camera
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transformations which include the intrinsic camera parameters, while R and T are taken to-
gether as external camera transformations corresponding to extrinsic camera parameters. Hence

00 ] fre
Ginternal = PL = 2 01 n (1.80)
00 1 13 00 1/f

0 0 1/f n/f

In the matrix for Gjpternal We have assumed that the initial translation matrix T moves the
camera’s center of projection to the correct position, so that the value of #3 can be made equal
to zero, leaving us with a 3 x 3 matrix.

Although the above treatment gives a good indication of the underlying meaning of G, it is
not general because we have not so far included scaling and skew parameters in the internal
matrix. In fact the generalized form of Ginternal is:

st bion
Ginternal = | b2 2 & (1.81)
0 0 1/f

Potentially, Ginternal should include transforms for correcting (1) scaling errors, (2) transla-
tion errors, (3) sensor skewing errors, (4) sensor shearing errors, (5) unknown sensor orien-
tation within the image plane. Clearly, translation errors are corrected by adjusting 7 and #,.
All the other adjustments are concerned with the values of the 2 x 2 submatrix containing
parameters sy, 52, by, b.

However, note that application of this matrix performs rotation within the image plane
immediately after rotation has been performed in the world coordinates by Gexternal, and it is
virtually impossible to separate the two rotations. This explains why we now have a total of
6 external and 6 internal parameters totaling 12 rather than the expected 11 parameters. As a
result it is better to exclude item 5 in the above list of internal transforms and to subsume it
into the external parameters. Since the rotational component in Ginternal has been excluded,
by and b, must now be equal, and the internal parameters will be: s1, s2, b, 11, 1. Note that
the factor 1/ f provides a scaling which cannot be separated from the other scaling factors
during camera calibration, without specific (i.e., separate) measurement of f. Thus, we have
a total of 6 parameters from Geyternal and 5 parameters from Gipternal: this totals 11 and equals
the number cited in the previous section.

1.4.12 Multiple view vision

During the 1990s a considerable advance in 3-D vision was made by examining what could
be learnt from uncalibrated cameras using multiple views. At first sight, considering the ef-
forts made in earlier sections of this chapter to understand exactly how cameras should be
calibrated, this may seem nonsensical. Nevertheless, there are considerable potential advan-
tages in examining multiple views—not least, many thousands of videotapes are available
from uncalibrated cameras, including those used for surveillance and those produced in the
film industry. In such cases, as much must be made of the available material as possible.
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However, the need is deeper than this. Many situations exist in which the camera parame-
ters might vary because of thermal variations, or because the zoom or focus setting has been
adjusted: and it is impracticable to keep recalibrating a camera using accurately made test
objects. Finally, if multiple cameras are used, each will have to be calibrated separately, and
the results compared to minimize the combined error: it is far better to examine the system as
a whole, and to calibrate it on the real scenes that are being viewed.

In fact, we have already met some aspects of these aspirations, in the form of invariants
that are obtained in sequence by a single camera. For example, if a series of 4 collinear points
are viewed and their cross ratio is checked, it will be found to be constant as the camera
moves forward, changes orientation or views the points increasingly obliquely—so long as
they all remain within the field of view. For this purpose, all that is required to perform
the recognition and maintain awareness of the object is an uncalibrated but distortion-free
camera.

To understand how image interpretation can be carried out more generally, using multi-
ple views—whether from the same camera moved to a variety of places, or multiple cameras
with overlapping views of the world—we need to go back to basics and make a more general
attack on concepts such as binocular vision and epipolar constraints. In particular, two im-
portant matrices will be called into play—the ‘essential’ matrix and the ‘fundamental’ matrix.
We start with the essential matrix and then generalize the idea to the fundamental matrix. But
first we need to look at the geometry of two cameras with general views of the world.

1.4.13 Generalized epipolar geometry

In Section 1.4.1, we considered the stereo correspondence problem, and had already sim-
plified the task by choosing two cameras whose image planes were not only parallel but in the
same plane. This made the geometry of depth perception especially simple, but suppressed
possibilities allowed for in the human visual system (HVS), of having a nonzero vergence
angle between the two images.

Here we generalize the situation to cover the possibility of disparity coupled with sub-
stantial vergence. Fig. 1.26 shows the revised geometry. Note first that observation of a real
point P in the scene leads to points P; and P; in the two images; that Py could correspond to
any point on the epipolar line E; in image 2; and similarly, that point P, could correspond to
any point on the epipolar line E; in image 1. Indeed, the so-called epipolar plane of P is the
plane containing P and the projection points C; and C; of the two cameras: the epipolar lines
(see Section 1.4.1) are thus the straight lines in which this plane cuts the two image planes.
Furthermore, the line joining C; and C; cuts the image planes in the so-called epipoles e and
e;: these can be regarded as the images of the alternate camera projection points. Note that
all epipolar planes pass through points C;, C; and ey, e;: this means that all epipolar lines in
the two images pass through the respective epipoles.

1.4.14 The essential matrix

In this section we start with the vectors Py, P;, from Cy, C;, to P, and also the vector C from
C; to C,. Vector subtraction gives:

P,=P, —C (1.82)
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FIGURE 1.26 Generalized imaging of a scene from two viewpoints. In this case there is substantial vergence. All
epipolar lines in the left image pass through epipole e;: of these, only E; is shown. Similar comments apply for the
right image.

We also know that Py, P> and C are coplanar, the condition of coplanarity being;:
P,.CxP; =0 (1.83)

To progress, we need to relate the vectors P; and P> when these are expressed relative to
their own frames of reference. If we take these vectors as having been defined in the C; frame
of reference, we now reexpress P; in its own (C;) frame of reference, by applying a translation
C and a rotation of coordinates expressed as the orthogonal matrix R. This leads to:

" =RP,=R(P; —C) (1.84)
so that:

P, =R 'P, = R'P, (1.85)
Substituting in the coplanarity condition gives:

(RTP,).C x Py =0 (1.86)

At this point it is useful to replace the vector product notation by using a skew-symmetric
matrix Cy to denote C x, where:

0 -C. G
Cx=| c. 0 -—C (1.87)
-Cc, C. 0
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At the same time we observe the correct matrix formulation of all the vectors by transposing
appropriately. We now find that:

(RTP)TC.Pi =0 (1.88)

PSLRC, P =0 (1.89)
Finally, we obtain the ‘essential matrix” formulation:
P)LEP; =0 (1.90)
where the essential matrix has been found to be:
E = RCy (1.91)

Eq. (1.90) is actually the desired result: it expresses the relation between the observed posi-
tions of the same point in the two camera frames of reference. Furthermore, it immediately
leads to formulae for the epipolar lines. To see this, first note that in the C; camera frame:

p1=(fi/Z)P; (1.92)

while in the C; camera frame (and expressed in terms of that frame of reference):

ph = (f2/Z2)P) (1.93)

Eliminating P; and P}, and dropping the prime (as within the respective image planes the
numbers 1 and 2 are sufficient to specify the coordinates unambiguously), we find:

pEp1 =0 (1.94)

as Zi1, Z1 and f1, f» can be canceled from this matrix equation.
Now note that writing p1 E =11 and 1, = Ep; leads to the following relations:

pil; =0 (1.95)

pil=0 (1.96)

This means that I, = Ep; and 1| = ETp2 are the epipolar lines corresponding to p; and p;
respectively.

1.4.15 The fundamental matrix

Notice that in the last part of the essential matrix calculation, we implicitly assumed that
the cameras are correctly calibrated. Specifically, p; and p; are corrected (calibrated) image
coordinates. However, there is a need to work with uncalibrated images, using the raw pixel
measurements—for all the reasons given in Section 1.4.12. Applying the camera intrinsic
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matrices G, G, to the calibrated image coordinates (Section 1.4.10), we get the raw image
coordinates:

q1 =Gip1 (1.97)

q2 = Gap2 (1.98)

In fact, we here need to go in the reverse direction, so we use the inverse equations:

pi=G'q (1.99)

P2=G'q (1.100)

Substituting for p; and p, in Eq. (1.94) we find the desired equation linking the raw pixel
coordinates:

03 (G;H)TEG'q1 =0 (1.101)
which can be expressed as:
Q@ Fqi=0 (1.102)
where
F=(G;H'EG! (1.103)

F is defined as the ‘fundamental matrix’. Because it contains all the information that would be
needed to calibrate the cameras, it contains more free parameters than the essential matrix.
However, in other respects the two matrices are intended to convey the same basic infor-
mation, as is confirmed by the resemblance between the two formulations—Egs. (1.90) and
(1.102).

1.4.16 Properties of the essential and fundamental matrices

Next we consider the composition of the essential and fundamental matrices. In particular,
note that C is a factor of E and also, indirectly, of F. In fact, they are homogeneous in Cy, so
the scale of C will make no difference to the two matrix formulations (Egs. (1.90) and (1.102)),
only the direction of C being important: indeed, the scales of both E and F are immaterial,
and as a result only the relative values of their coefficients are of importance. This means that
there are at most only 8 independent coefficients in E and F. In fact, in the case of F there
are only 7, as C is skew-symmetric, and this ensures that it has rank 2 rather than rank 3—a
property that is passed on to F. The same argument applies for E, but the lower complexity
of E means that it has only 5 free parameters. In the latter case it is easy to see what they
are: they arise from the original 3 translation (C) and 3 rotation (R) parameters, less the one
parameter corresponding to scale.

In this context, note that if C arises from a translation of a single camera, the same essential
matrix will result whatever the scale of C: only the direction of C actually matters, and the
same epipolar lines will result from continued motion in the same direction. In fact, in this
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case we can interpret the epipoles as foci of expansion or contraction. This underlines the
power of this formulation: specifically, it treats motion and displacement a single entity.

Finally, we should try to understand why there are 7 free parameters in the fundamental
matrix. The solution is relatively simple. Each epipole requires 2 parameters to specify it. In
addition, 3 parameters are needed to map any 3 epipolar lines from one image to the other.
But why do just 3 epipolar lines have to be mapped? This is because the family of epipolar
lines is a pencil whose orientations are related by cross ratios, so once 3 epipolar lines have
been specified, the mapping of any other can be deduced.

1.4.17 Estimating the fundamental matrix

In the previous section we showed that the fundamental matrix has 7 free parameters. This
means that it ought to be possible to estimate it by identifying the same 7 features in the two
images. However, while this is mathematically possible in principle, and a suitable nonlinear
algorithm has been devised by Faugeras et al. (1992) to implement it, it has been shown that
the computation can be numerically unstable. Essentially, noise acts as an additional variable
boosting the effective number of degrees of freedom in the problem to 8. However, a linear
algorithm called the 8-point algorithm has been devised to overcome the problem. Curiously,
this algorithm had been proposed many years earlier by Longuet-Higgins (1981) to estimate
the essential matrix, but it came into its own when Hartley (1995) showed how to control the
errors by first normalizing the values. In addition, by using more than 8 points, increased
accuracy can be attained, but then a suitable algorithm must be found that can cope with
the now overdetermined parameters. Principal component analysis can be used for this, an
appropriate procedure being singular value decomposition (SVD).

1.4.18 Improved methods of triangulation

For some years it was known that there were difficulties in finding accurate numerical so-
lutions of the fundamental matrix, the lack of robustness being due to least squares analysis
not coping well when data is corrupted by noise. This problem arises whenever the noise
contains outliers. In particular, outliers can arise when noise prevents corresponding lines of
sight from meeting in the 3-D scene (i.e., when the two lines of sight are skew). The obvious
and widely tested solution to this problem is to choose the mid-point of the common per-
pendicular to the two lines of sight as the point of intersection. However, this method does
not give optimal results, ultimately because the concepts ‘common perpendicular’ and ‘mid-
point” are not mathematically valid for FPP. In fact, Kanatani (1996) was able to define a new
way of determining the optimal correction—by taking the intersection as the point where
the total amount of displacement on the two image planes is a minimum. Though Hartley
and Sturm’s (1994) idea was similar, it was found that Kanatani’s method was several or-
ders of magnitude faster and did not suffer from the epipole singularities arising with the
Hartley-Sturm method (Torr and Zisserman, 1997). Subsequently, as late as 2019, interesting
improvements to the method are still emerging. In particular, Lee and Civera (2019) proposed
a modified mid-point method—’the generalized weighted midpoint’ method—in which the
two starting points are not assumed to lie on the common perpendicular. They showed that,
although their method is not theoretically optimal in the sense of minimizing geometric or
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algebraic errors, it outperforms existing methods in terms of speed, simplicity and combined
2-D, 3-D and parallax accuracy.

Fathy et al. (2011) clarified the overall situation as follows: the 8-point algorithm is a one-
step method which is normally applied after outlier removal to obtain an initial estimate of
the fundamental matrix: this is then iteratively refined to produce a more accurate solution.

1.4.19 The achievements and limitations of multiple view vision

The last few sections have discussed the transformations required for camera calibration
and have outlined how calibration can be achieved. The camera parameters have been clas-
sified as ‘internal” and ‘external’, thereby simplifying the conceptual problem and throwing
light on the origins of errors in the system. It has been shown that a minimum of 6 points
is required to perform calibration in the general case where 11 transformation parameters
are involved. Nevertheless, it is normally important to increase the number of points used
for calibration as far as possible, since substantial gains in accuracy can be obtained via the
resulting averaging process.

Section 1.4.12 introduced multiple view vision. This important topic was seen to rest on
generalized epipolar geometry, and led to the essential and fundamental matrix formulations,
which relate the observed positions of any point in two camera frames of reference. The im-
portance of the 8-point algorithm for estimating either of these matrices—and particularly
the fundamental matrix, which is relevant when the cameras are uncalibrated—was stressed.
In addition, the need for accuracy and robustness in estimating the fundamental matrix is
still a research issue, though great strides have been made in recent years (see Section 1.4.18)
regarding the outlier removal phase of fundamental matrix estimation.

1.5 Part D — Tracking moving objects

1.5.1 Tracking — the basic concept

In recent years, many algorithms have been devised for interpreting single images and
identifying a high proportion of the objects within them: following this success, attention
turned to the analysis of image sequences and videos. In fact, if the images in any sequence
were simply regarded as sets of separate images or ‘frames’, this new task could already
be regarded as solved; it therefore became just as relevant to interpret image sequences as
entities in their own right. Thus, algorithms were needed for identifying and tracking moving
objects through any sequence.

We could tackle this task by identifying objects in all the frames, and then computing
tracks showing how the objects have moved between frames. This could be implemented by
the following algorithm:

for all frames in sequence

find and identify all the objects
link the objects between frames
list all the objects and their tracks.
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This procedure demands that all objects be detected and recognized, in which case linking
them to form tracks would involve linking only objects in the same recognition class (e.g.,
cars). However, it would be further facilitated if all objects in the same class could be iden-
tified individually (e.g., car 1, car 2, etc.), though if some such objects were very similar, it is
possible that some confusion would arise when linking them.

This rather exacting procedure could be simplified if objects were characterized by their
motion parameters. In fact, tracking information should permit significant savings to be made
in computation. Hence we arrive at an alternative strategy:

detect all objects in the first frame
find how these objects have moved in each successive frame
list all the objects and their tracks.

This simplified procedure requires that objects be detected (rather than recognized) in the
first frame. In addition, there is no need to actually recognize them in subsequent frames, as
they should be uniquely identifiable from their relative closeness.

A further saving in effort can in principle be made by avoiding the first stage—that of
detecting all objects in the first frame. All we need to do is to study the motions themselves
and identify anything that moves as an object. Perhaps the simplest way of approaching this
would be to take differences between adjacent frames, in which case any changes should
indicate the locations of moving objects. However, this approach tends to locate only limited
sections of target outlines: for example, it will ignore the bulk of any object of homogeneous
intensity—in accordance with the well-known differencing formula —A7.v. The simplest way
out of this difficulty is to model the background; then, by subtracting each frame from the
background model, we should be able to locate any moving objects. (Naturally, this will work
best if the background remains stationary.)

Though attractive, this idea is not trivial to apply in practice. One of the main problems is
that a scene containing a series of moving objects will result in the background model varying
continually as moving objects pass over it: a paradigm example is that of a road scene along
which vehicles are traveling. In that case, minor changes in the deduced background will
have to be eliminated by some sort of averaging process. Note that the deduced background
will also have to be updated as time goes on because of changes in ambient illumination and
varying weather conditions. So the question is, how to carry out this updating, at the same
time compensating for objects that have passed by. Temporal frame averaging is a poor way
of achieving this, but some studies (Lo and Velastin, 2001; Cucchiara et al., 2003) showed that
temporal median filtering can be quite effective, as it is capable of eliminating the effects of
outlying intensity values, such as those due to vehicles moving against the stationary back-
ground.

One problem with this approach is that finding the temporal median requires the storage
of a great many frames—a criticism that does not apply for normal averaging, which can
conveniently be carried out by applying a temporally weighted running average. However,
Davies (2017) has shown that by implementing the temporal median iteratively, this problem
can be solved, and that this solution is also able to update the background model to offset
the effects of varying background illumination. Furthermore, he found that an even better
approach is to use a ‘restrained” median filter, in which extreme intensities and colors in a
restricted band relative to the previous iterative approximation are ignored. In a road scene,
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FIGURE 1.27 Background subtraction using a temporal median filter. Note the plethora of stationary shadows
that are completely ignored during the process of background subtraction. In (a) the ‘ghost’ of the bus (from its
past position) still appears, but in (b) it has started to merge back into the background: the problem is considerably
reduced in (c) and (d), which uses a ‘restrained” temporal median filter. Overall, foreground object fragmentation
and false shapes (including the effects of moving shadows) are the worst problems. The lines of black graphics dots
demarcate the relevant road region: almost all of the fluttering vegetation lies outside this region.

this prevents vehicles that are temporarily stationary from excessively distorting the deduced
background levels (see Figs. 1.27 and 1.28).

Note that with these types of approach, there is no a priori reason why intensities due to
vehicles or other objects should be greater or less than the true background: both possibilities
clearly exist. Hence, subtracting the current frame from the background model is liable to
break any moving object into several parts, which will subsequently have to be recombined
using methods such as morphological processing. Fortunately, this technique can also help
to eliminate noise: the effects of fluttering vegetation, such as moving leaves or branches, can
also be very successfully suppressed in this way—as may be seen from Figs. 1.27 and 1.28.

Interestingly, whereas the above approach can successfully identify vehicles in road scenes,
it regards their shadows as parts of the objects, as it does not involve any high-level reasoning.
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FIGURE 1.28 (a) and (b) show the difficulty of interpreting the immediate results of background subtraction.
These two frames show clearly the noise problems that arise during background subtraction: the white pixels indicate
where the current frame fails to closely match the background model. Morphological operations (erosions followed
by dilations) are used to largely eliminate the noise and to integrate the vehicle shapes as far as possible, as shown by
the white graphics outlines in Fig. 1.27. Note that the latter contain not only the vehicle shapes but also the shadows
that move with them.

This effect is illustrated in Figs. 1.27 and 1.28. In fact, shadow detection has been widely
studied and Horprasert et al. (1999) demonstrated a useful principle for implementing it:
this involved noting that shadows have similar chromaticity, but lower brightness, than the
background model.

1.5.2 Alternatives to background subtraction

While the background subtraction method described above is intrinsically simple, surpris-
ingly effective, and very fast running, it is also limited in (a) taking the background to be
basically unchanging—albeit coping (by temporal averaging and morphological processing)
with moving entities in the background, and (b) not using proper models of the foreground
objects. A more rigorous approach would be to regard the distributions of intensities and col-
ors for any pixel as the superposition of several distributions corresponding to two or three
component sources. Here what is important is that each of the component distributions could
be quite narrow and well defined. This means that if each is known from ongoing training,
any current intensity I can be checked to determine whether it is likely to correspond to back-
ground or to a new foreground object.

This makes Gaussian mixture models (GMMs) useful for representing the true background
and foreground intensity ranges. In fact, the number of components at any pixel is initially
unknown: indeed, a large proportion of pixels will have only a single component, but the
number of components required in practice commonly lies in the range 3 to 5. However,
determining the GMMs necessitates application of the expectation maximization (EM) al-
gorithm and is computationally burdensome. In fact, while it is usual to use this rigorous
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approach to initialize the background generation process, many workers use simpler, more
efficient techniques for updating it, so that the ongoing process can proceed in real time.

Unfortunately, the GMM approach fails when the background has very high frequency
variations. Essentially, this is because the algorithm has to cope with rapidly varying dis-
tributions, which can change dramatically over very short periods of time, so the statistics
become too poorly defined. To tackle this problem, Elgammal et al. (2000) moved away from
the parametric approach of the GMM. Their nonparametric method involves taking a kernel
smoothing function (typically a Gaussian) and for each pixel, applying it to the N samples
of I for frames appearing during the period Ar prior to the current time . This approach is
able to rapidly adapt to jumps from one intensity value to another, while at the same time
obtaining the local variances at each pixel. Thus, its value lies in its capability to forget old
intensities and to reflect local variances rather than random intensity jumps. In addition, as
it does not employ the EM algorithm, it is able to run highly efficiently in real time and to
be capable of sensitive detection of foreground objects coupled with low false alarm rates. To
achieve all this, it uses separate Gaussian kernel functions for each color channel, and then
uses the chromaticity-based method mentioned earlier for suppressing shadows.

So far, we have seen that background subtraction has the advantages of being straight-
forward to apply, fast running and highly effective—even to the extent of being able (with
suitable algorithmic adjustments) to cope with slowly varying background illumination; to
eliminate shadows in the background and the foreground; to suppress ‘ghosts” arising from
temporarily stationary vehicles; and to suppress the effects of fluttering vegetation. On the
downside, it relies on the background being static, which in turn means that it requires the
use of fixed cameras. In addition, there is no guarantee that all parts of the foreground objects
will have different intensities from the background—a factor that can fragment objects and
leads to the need for morphological processing, itself a somewhat ad hoc solution.

A further problem that arises with tracking based on background subtraction is that fore-
ground objects can be partially or completely occluded by other objects: this happens par-
ticularly when pedestrians are being viewed in crowded precincts. At best this can lead to
fragmented tracks, and at worst to wrongly connected tracks. Note also that the motion of
some objects may cease altogether. Clearly, carefully thought-out methods are needed for
solving these problems. The traditional way of dealing with broken tracks was to employ
predictive filters such as the Kalman filter, but these are of limited use as they are essentially
aimed at assessing the probabilities of connecting pairs of tracklets, based on single unimodal
Gaussian densities.

Overall, these criticisms and problems require temporal differencing to be backed up by
template correlation matching, so that it is known that the same object is still being dealt
with. As noted by Lipton et al. (1998), temporal differencing (or related methods such as
background subtraction) can be used to detect moving objects, and correlation matching can
be used (a) to accurately locate the objects and (b) to help train the correlation template; at
each stage the template with the best correlation is used for both (a) and (b). In fact, using the
best correlation template is useful even when one object partially occludes another. Further-
more, it is particularly useful when a particular object becomes stationary, as there is then no
uncertainty of its identity or location.

Stalder et al. (2009) developed an alternative object tracking strategy which they described
as ‘tracking by detection’. The aim was to enable the tracker to adapt to any changes in the
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appearance of an object by updating the object model. However, this leads to the so-called
‘template update problem’, wherein there is a trade-off between adaptivity and stability
(specifically, the tracker could end up with a totally distorted, nonviable version of the object
profile—a process called ‘drifting”). This difficulty is overcome by reformulating tracking as a
semisupervised learning problem in which both labeled and unlabeled data can be used during
tracking. To make this work, semisupervised boosting is used, each unlabeled sample in the
local search region being assigned a pseudo-label y; and an importance weight A; (labeled
samples have label y; and importance 1). After initial detection, leading to a prior Hp, the
object classifier H is built, taking account of positive samples from the object and negative
ones from the surrounding background: typically, the local maximum of the confidence dis-
tribution is taken to indicate the new object position and the class is updated. Thus, we get a
sequence of object locations, starting with the first (which resulted from the initial detection),
and then proceeding to many further tracked positions. However, in principle the boosting
equations can also lead to the prior either vanishing or dominating too much—corresponding
respectively to drifting or zero adaptation. But in general drifting is limited as the tracker is
not able to get too far away from the prior.

Problems with the above tracking strategy include (a) taking partial occlusions or ap-
parently permissible changes in appearance as unallowed drift; and (b) jumping to similar
objects (for example, a face detector might jump from one person’s face to another). Clearly,
tracking by detection is mainly applicable for single target tracking, but when multiple target
tracking is required, the three processes, detection, tracking and recognition, must all be taken
into account. In particular, recognition has to be taken as distinguishing similar objects in a
scene.

Stalder et al.’s (2009) multiple target classifier system proved highly successful for tracking
multiple objects. It limited drifting by careful use of supervised updates and the avoidance
of feedback loops, thereby preventing the accumulation of small errors which could lead to
drift. This was achieved by making the tracker the dominant element in the approach, so that
its information flow either went (in a loop) back to itself or (eventually) to the previous rec-
ognizer. This system permitted tracking with a moving camera and was also reliable enough
to permit long-term tracking over times of ~24 hours.

Another aspect of multiple target tracking is the capability for reidentification of objects
that are temporarily hidden from view (e.g., temporarily occluded or outside the field of view
of the camera). This involves identification matching and is only permitted if the degree of
match achieved is significantly higher than for any other potential matches. Reidentification
can fail if the degree of match becomes too different during the relevant temporal gap. Again,
Stalder et al.’s system also performed well in these respects.

Kalal et al. (2011) developed a powerful tracking system aimed particularly at eliminating
run-time drift errors and problems that occur when tracked objects disappear from view.
Their approach was neatly described as ‘tracking-learning-detection’. The key aspect of this
method is that learning is carried out by a ‘P-expert” which estimates missed detections, an
‘N-expert” which estimates false alarms, and the means of updating both experts by learning.
By keeping tracking and detection separate, they claimed that neither the tracking nor the
detection capabilities are compromised, and present strong evidence for the success of their
approach—in particular, by scoring an average of 81% accuracy on many datasets, thereby
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significantly outperforming five earlier approaches, none of which achieved better than 22%
accuracy.

Whereas Kalal et al.’s (2011) work only tracked single objects, Wu et al. (2012) showed how
to carry out coupling detection and data association for multiple objects to ensure that com-
plete tracks would be determined. This approach employed network flow data association
and relied on an earlier paper by Castafién (1990) entitled “Efficient algorithm for finding
the k best paths through a trellis”. This title shows that the method relies heavily on exten-
sive analysis of graphs: while interesting, space does not permit a full discussion of these
techniques to be included here. Suffice it to say that tracking multiple objects is a difficult
problem that becomes even more difficult as the number of targets increases and the whole
scene fills up with objects and tracks. Thus, in this respect, Wu et al.’s (2012) work can be
regarded as more thoroughgoing than that of Stalder et al. (2009). We will study more recent
developments on this topic in Part F, Section 1.7.7, after introducing deep learning methods.

1.6 Part E — Texture analysis

1.6.1 Introduction

We have already considered several core aspects of image analysis, including in particu-
lar feature detection, object recognition and segmentation. Here we go on to consider texture
analysis. To proceed, we start by defining a texture as the characteristic variation in intensity
which should allow us to recognize and describe a textured region and to outline its bound-
aries (Fig. 1.29). Typically, a texture is the intensity pattern that results when light is reflected
from a surface having a certain degree of roughness. Clearly, a smooth, uniformly lit surface
will exhibit no texture, while a piece of cloth or a sandy beach will have characteristic textures
of their own.

Broadly speaking, textures vary in their degrees of randomness and regularity, and in the
latter case they may have high or low directionalities. For example, pieces of cloth generally
exhibit high degrees of regularity and directionality, while the intensity pattern emanating
from the surface of a sandy beach may appear highly random, with negligible directionality.
Another factor is the scale of the perceived particle size for the surface, which will be small for
sand and much larger for a tray of peas. In fact, the tiny elements composing a textured sur-
face are often called textural elements or texels. These considerations lead us to characterize
textures in the following ways:

. The texels will have various sizes and degrees of uniformity.

. The texels will be orientated in various directions.

. The texels will be spaced at varying distances in different directions.

The contrast will have various magnitudes and variations.

Various amounts of background may be visible between texels.

. The variations composing the texture may each have varying degrees of regularity vis-a-
vis randomness.

The significant number of parameters required to characterize a texture are bound to make
texture analysis quite complicated: and of course, many of the parameters will have a high
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FIGURE 1.29 A variety of textures. These textures demonstrate the wide variety of familiar textures which are
easily recognized from their characteristic intensity patterns.

degree of variability, so texture analysis tends to result in statistical descriptions of textures.
The following section indicates some of the ways in which this process has been tackled.

1.6.2 Basic approaches to texture analysis

In Section 1.6.1 we defined texture as the characteristic variation in intensity of a region in
an image which should allow us to recognize it, describe it and outline its boundaries. In view
of the statistical nature of textures, this prompts us to characterize a texture by the variance
in intensity values taken over the region of the texture. However, such an approach will not
give a rich enough description of the texture for most purposes: it will also be unsuitable in
cases where the texels are well defined, or where there is a high degree of periodicity in the
texture. On the other hand, for highly periodic textures such as arise with many textiles, it is
natural to consider the use of Fourier analysis. Unfortunately, though this approach was long
ago tested rigorously, the results were not encouraging.

Autocorrelation is another obvious approach to texture analysis, since it should show up
both local intensity variations and also the repeatability of the texture (see Fig. 1.30). An
early study was carried out by Kaizer (1955). He examined by how many pixels an image
has to be shifted before the autocorrelation function drops to 1/e of its initial value, and
produced a subjective measure of coarseness on this basis. However, Rosenfeld and Troy
(1970a,b) showed that autocorrelation is not a satisfactory measure of coarseness. In addition,
autocorrelation is not a good discriminator of isotropy in natural textures. Hence workers
were quick to take up the co-occurrence matrix approach introduced by Haralick et al. (1973).

The grey-level co-occurrence matrix approach is based on studies of the statistics of pixel
intensity distributions. As hinted above, single pixel statistics do not provide rich enough
descriptions of textures for practical applications. Thus, it is natural to consider second order
statistics obtained by considering pairs of pixels with specific spatial relations to each other.
Hence, co-occurrence matrices are used, which express the relative frequencies P(i, j |d, 6)
with which two pixels having relative polar coordinates (d, 8) appear with intensities i, j. The
co-occurrence matrices provide raw numerical data on the texture, though this data must be
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FIGURE 1.30 Use of autocorrelation function for texture analysis. This diagram shows the possible 1-D profile
of the autocorrelation function for a piece of material in which the weave is subject to significant spatial variation:
notice that the periodicity of the autocorrelation function is damped down over quite a short distance.

condensed to relatively few numbers before it can be used to classify the texture. The early
paper by Haralick et al. (1973) gave fourteen such measures, and these were used successfully
for classification of many types of material (including, for example, wood, corn, grass and
water).

Unfortunately, the amount of data in the co-occurrence matrices is liable to be many times
more than in the original image—a situation which is exacerbated in more complex cases by
the number of values of d and 6 that are required to accurately represent the texture. In addi-
tion, the number of grey levels is typically ~256, and the amount of matrix data varies as the
square of this number. Finally, co-occurrence matrices merely provide a new representation:
they do not themselves solve the recognition problem. As a result of these factors, the 1980s
saw a highly significant diversification of methods for the analysis of textures. Of these, Laws’
approach (1979; 1980a; 1980b) is important in that it has led to other developments which pro-
vide a systematic, adaptive means of tackling texture analysis. This approach is covered in
the following section.

1.6.3 Laws’ texture energy approach

In 1979 and 1980 Laws presented his novel texture energy approach to texture analysis
(Laws, 1979, 1980a,b). This involved the application of simple filters to digital images. The
basic filters he used were common Gaussian, edge detector and Laplacian-type filters, and
were designed to highlight points of high ‘texture energy’ in the image. By identifying these
high energy points, smoothing the various filtered images, and pooling the information from
them, he was able to characterize textures highly efficiently. As remarked earlier, Laws’ ap-
proach has strongly influenced much subsequent work and it is therefore worth considering
it here in some detail.

The Laws’ masks are constructed by convolving together just three basic 1 x 3 masks:

3=[1 2 1] (1.104)
E3=[-1 0 1] (1.105)
S3=[-1 2 —1] (1.106)
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TABLE 1.3 The nine 3 x 3 Laws masks.

L3TL3 L3TE3 L3Ts3
1 2 1 -1 0 1 -1 2 -1
2 4 2 -2 0 2 -2 4 -2
1 2 1 -1 0 1 -1 2 -1
E3TL3 E3TE3 E3TS3
-1 -2 -1 1 0 -1 1 -2 1
0 0 0 0 0
1 2 1 -1 0 1 -1 2 -1
s3TL3 s3TE3 s3Ts3
-1 =2 -1 1 0 -1 1 =2 1
2 4 2 -2 0 2 -2 4 =2
-1 -2 -1 1 0 -1 1 -2 1

The initial letters of these masks indicate Local averaging, Edge detection and Spot detection.
In fact, these basic masks span the entire 1 x 3 subspace and form a complete set. Similarly,
the 1 x 5 masks obtained by convolving pairs of these 1 x 3 masks together form a complete
set, only the following five being distinct:

LS=[1 4 6 4 1] (1.107)
ES=[-1 —-2 0 2 1] (1.108)
S5=[-1 0 2 0 —1] (1.109)
R5=[1 —4 6 —4 1] (1.110)
W5=[-1 2 0 -2 1] (1.111)

(Here the initial letters are as before, with the addition of Ripple detection and Wave detec-
tion.) We can also use matrix multiplication to combine the 1 x 3 and a similar set of 3 x 1
masks to obtain nine 3 x 3 masks—for example:

1 -1 2 -1
2 [[-1 2 -1]=| -2 4 =2 (1.112)
1 -1 2 -1

Again, the resulting set of masks forms a complete set (Table 1.3): note that two of these
masks are identical to the Sobel operator masks. The corresponding 5 x 5 masks are entirely
similar but are not considered in detail here as all relevant principles are covered by the 3 x
3 masks.

All such sets of masks include one whose components do not average to zero. This one is
less useful for texture analysis since it will give results dependent more on image intensity
than on texture. The remainder is sensitive to edge points, spots, lines and combinations of
these.

Having produced images that indicate local edginess, etc., the next stage is to deduce the
local magnitudes of these quantities. These magnitudes are then smoothed over a region
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FIGURE 1.31 Basic form for a Laws’ texture classifier. Here [ is the incoming image, M represents the microfeature
calculation, E the energy calculation, S the smoothing, and C the final classification.

rather greater than the basic filter mask size (e.g., Laws used a 15 x 15 smoothing window
after applying his 3 x 3 masks): the effect of this is to smooth over the gaps between the
texture edges and other micro-features. At this point the image has been transformed into
a vector image, each component of which represents energy of a different type. While Laws
(1980b) used both squared magnitudes and absolute magnitudes to estimate texture energy,
the former corresponding to true energy and giving a better response, the latter are useful in
requiring less computation:

I+p m+p
E(,my= Y Y IFG.)I (1.113)
i=l—p j=m—p

F(i, j) being the local magnitude of a typical microfeature which is smoothed at a general
scan position (I, m)ina 2p + 1) x (2p + 1) window.

A further stage is required to combine the various energies in a number of different ways,
providing several outputs which can be fed into a classifier to decide upon the particular type
of texture at each pixel location (Fig. 1.31): if necessary, principal component analysis is used
to help select a suitable set of intermediate outputs.

Laws’” method resulted in excellent classification accuracy quoted at (for example) 87%
compared with 72% for the co-occurrence matrix method, when applied to a composite tex-
ture image of grass, raffia, sand, wool, pigskin, leather, water and wood (Laws, 1980b). He
also found that the histogram equalization normally applied to images to eliminate first-order
differences in texture field grey-scale distributions led to little improvement. In an indepen-
dent research study, Pietikdinen et al. (1983) confirmed that Laws’ texture energy measures
are more powerful than measures based on pairs of pixels (notably, co-occurrence matrices).
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1.6.4 Ade’s eigenfilter approach

In 1983 Ade investigated the theory underlying the Laws’ approach, and developed a re-
vised rationale in terms of eigenfilters. He took all possible pairs of pixels within a 3 x 3
window, and characterized the image intensity data by a 9 x 9 covariance matrix. He then
determined the eigenvectors required to diagonalize this matrix. These correspond to filter
masks similar to the Laws’ masks, i.e., use of these “eigenfilter’ masks produces images which
are principal component images for the given texture. Furthermore, each eigenvalue gives
that part of the variance of the original image that can be extracted by the corresponding
filter. Essentially, the variances give an exhaustive description of a given texture in terms of
the texture of the images from which the covariance matrix was originally derived. Clearly,
the filters that give rise to low variances can be taken to be relatively unimportant for texture
recognition.

It will be useful to illustrate the technique for a 3 x 3 window. Here we follow Ade (1983)
in numbering the pixels within a 3 x 3 window in scan order:

1(2]3
5|6
71819

This leads to a 9 x 9 covariance matrix for describing relationships between pixel intensi-
ties within a 3 x 3 window, as stated above. At this point we recall that we are describing a
texture, and assuming that its properties are not synchronous with the pixel tessellation, we
would expect various coefficients of the covariance matrix C to be equal. In fact, there are only
12 distinct spatial relationships between pixels if we disregard translations of whole pairs—or
13 if we include the null vector in the set (see Table 1.4). Thus, the covariance matrix, whose
components include the 13 parameters a—m, takes the form:

(1.114)
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TABLE 1.4 Spatial relationships between pixels in a
3 x 3 window.

a b ¢ d e f g h i j k I m
9 6 6 4 4 3 3 1 1 2 2 2 2
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Table 1.4 shows the number of occurrences of the spatial relationships between pixels in
a 3 x 3 window. Note that a is the diagonal element of the covariance matrix C, and that all
others appear twice as many times in C as indicated in the table.

C is symmetric, and the eigenvalues of a real symmetric covariance matrix are real and
positive, and the eigenvectors are mutually orthogonal. In addition, the eigenfilters thus
produced reflect the proper structure of the texture being studied and are ideally suited to
characterizing it. For example, for a texture with a prominent highly directional pattern, there
will be one or more high energy eigenvalues with eigenfilters having strong directionality in
the corresponding direction.

1.6.5 Appraisal of the Laws and Ade approaches

At this point, it is useful to compare the Laws and Ade approaches more carefully. In
the Laws approach standard filters are used, texture energy images are produced, and then
principal component analysis may be applied to lead to recognition; whereas in the Ade
approach, special filters (the eigenfilters) are applied, incorporating the results of principal
component analysis, following which texture energy measures are calculated and a suitable
number of these are applied for recognition.

The Ade approach is superior to the extent that it permits low-value energy components
to be eliminated early on, thereby saving computation. For example, in Ade’s application, the
first five of the nine components contain 99.1% of the total texture energy, so the remainder
can be ignored; in addition, it would appear that another two of the components containing
respectively 1.9% and 0.7% of the energy could also be ignored, with little loss of recognition
accuracy. However, in some applications textures could vary continually, and it may well
be inadvisable to fine-tune a method to the particular data pertaining at any one time. [For
example, these remarks apply (1) to textiles, for which the degree of stretch will vary contin-
uously during manufacture, (2) to raw food products such as beans, whose sizes will vary
with the source of supply, and (3) to processed food products such as cakes, for which the
crumbliness will vary with cooking temperature and water vapor content.]

In Unser (1986) developed a more general version of the Ade technique. In this approach
not only is performance optimized for texture classification but also it is optimized for dis-
crimination between two textures by simultaneous diagonalization of two covariance matri-
ces. The method was developed further by Unser and Eden (1989; 1990): this work makes
a careful analysis of the use of nonlinear detectors. As a result, two levels of nonlinearity
are employed, one immediately after the linear filters and designed (by employing a specific
Gaussian texture model) to feed the smoothing stage with genuine variance or other suitable
measures, and the other after the spatial smoothing stage to counteract the effect of the earlier
filter, and aiming to provide a feature value that is in the same units as the input signal. In
practical terms this means having the capability for providing an r.m.s. texture signal from
each of the linear filter channels.

Overall, the originally intuitive Laws approach emerged during the 1980s as a serious
alternative to the co-occurrence matrix approach. It is as well to note that alternative meth-
ods that are potentially superior have also been devised—see for example the forced-choice
method of Vistnes (1989) for finding edges between different textures, which apparently
has considerably better accuracy than the Laws approach. Vistnes’s (1989) investigation con-
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cludes that the Laws approach is limited by (a) the small scale of the masks which can miss
larger-scale textural structures, and (b) the fact that the texture energy smoothing operation
blurs the texture feature values across the edge. The latter finding (or the even worse situa-
tion where a third class of texture appears to be located in the region of the border between
two textures) has also been noted by Hsiao and Sawchuk (1989a,b) who applied an improved
technique for feature smoothing; they also used probabilistic relaxation for enforcing spatial
organization on the resulting data.

1.6.6 More recent developments

Over the 2000s, a trend to scale and rotation invariant texture analysis took place. In partic-
ular, the paper by Janney and Geers (2010) described an ‘invariant features of local textures’
approach, using a strictly circular 1-D array of sampling positions around any given position.
The method employs Haar wavelets, and as a result is computationally efficient. It is applied
at multiple scales in order to achieve scale invariance; in addition, intensity normalization is
used to make the method illumination as well as scale and rotation invariant. Also of note
is a book by Mirmehdi et al. (2008) on this rather specialist subject. The latter is an edited
volume containing contributions by various researchers and summarizing the position prior
to 2010. Later developments on this topic will be deferred to Part F, Sections 1.7.8 and 1.7.9,
after introducing deep learning methods.

1.7 Part F — From artificial neural networks to deep learning methods

1.7.1 Introduction: how ANNs metamorphosed into CNNs

The original aim of designing artificial neural networks (ANNSs) was to emulate what is
known to happen in the human visual system. In fact, vision appeared to happen so straight-
forwardly in the human brain—whole scenes being analyzed ‘at a glance” with no apparent
effort—that it seemed worthwhile attempting it in computerized systems. Clearly, an ANN
designed to emulate the human visual system should consist of a number of layers, each mod-
ifying the data, first locally and then by larger and larger sets of neurons until tasks such as
recognition and scene analysis are achieved. However, in the early days, use of ANNs tended
to be restricted to very few layers: indeed, a working maximum depth consisted of one input
layer, three hidden layers and one output layer—though it was later found that many basic
tasks could be tackled using a 3-layer network with a single hidden layer.

One of the reasons for the restriction to few layers was the credit assignment problem,
which meant that it became trickier to train many layers ‘through’ others; at the same time,
more layers meant more neurons to be trained and more computation being required to
complete the task. ANNs therefore tended to be called on to carry out only the classical recog-
nition process, and to be fed by standard feature detectors applied in previous nonlearning
layers. Thus, the standard paradigm was that of an image preprocessor followed by a trained
classifier. As very good feature detectors could be designed by hand, this did not cause any
obvious problems. However, as time went on, there was pressure to do full-scale analysis of
real scenes, which could contain images of many types of object in many positions and poses.
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Thus, there was a growing need to move to much more complex multilayer recognition sys-
tems for which the early types of ANN were inadequate. It also became desirable to train
the preprocessing system itself, so that it closely matched the requirements of the following
object analysis system; clearly, it was becoming necessary to produce integrated multilayer
neural networks.

In fact, by in the late 1990s ANNs were suffering because other methods such as support-
vector machines (SVMs) were challenging their position. In addition, there was no scien-
tifically based rationale for determining how many neurons or layers would be needed, or
indeed how ANNs were working internally. As a result, workers who might be in a position
to use them did not know how reliable they would be, or have the confidence to employ them
in real applications, so they started falling out of favor.

An important reason for this was that their architecture and training gave poor spatial in-
variance across images. In particular, the neurons were individually trained: each neuron saw
different training data from the other neurons in its layer; in addition, the weights needed to
be initialized randomly. These factors prevented the same decision from being made about
any object wherever it appears in an image. However, a variant on the standard ANN archi-
tecture was being developed by a few groups of workers, and during the late 2000s this came
to the forefront, and led to the ‘deep” learning type of network (a deep network is one with
more than three nonlinear hidden layers—rather beyond the scope of regular ANNs).

The new type of architecture was the Convolutional Neural Network (CNN). In several
ways this was a less demanding architecture, as (a) each CNN neuron does not have to be
connected to all the outputs from the previous layer of neurons; (b) neurons have the same
weight parameters across the whole of any layer. Nevertheless, CNNs still use supervised
learning and they still train the network by backpropagation.

Importantly, constraining neurons to have the same weight parameters across any whole
layer vastly reduced the total number of parameters in the whole network and made it far eas-
ier to train; in addition, increased numbers of layers could be employed. Giving neurons local
connectivity improved the situation further. Note that if the neurons and weights are identical
across a whole layer, the resulting mathematical operation is by definition a convolution—
hence the term Convolutional Neural Network.

Another feature of CNNs is that they use ReLU rather than sigmoidal output functions.
‘ReLU’ means Rectified Linear Unit, and is defined by max(0, x), where x is the output value
of the immediately preceding convolution layer. This is valuable in being less computation
intensive than the old sigmoid function, and at the same time it distorts the larger signals less.
In fact, the ReLU function avoids the saturation problems that ANNs are subject to (a neuron
giving an output close to the limits (£1) of the tanh function tends to get stuck at the same
value because there is no gradient to guide the backpropagation algorithm away from it).

CNN:s also incorporate pooling—i.e., taking all the outputs from a locality and deriving a
single output from them: usually, this takes the form of a sum or maximum operation on all
the inputs, maximum pooling being more common than the sum (or averaging) operation.
Pooling is generally carried outin 2 x 2 or 3 x 3 windows, the former being more common.
These options aimed to modify the data minimally, so as to remove much of the redundancy
in a particular layer of the network, while at the same time retaining the most useful data.

Note that several convolutional layers can be placed immediately after one another, mak-
ing them equivalent to a single larger convolution—a factor that can be useful for allowing
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larger features to be implemented in the same CNN. Overall, CNNs provide a reasonable al-
ternative to ANNSs. In addition, they seem better adapted to the idea of moving steadily from
local to global operations on images, and looking for larger and larger features or objects in
the process.

Although proceeding through the network takes us from local to more global operations, it
is also common for the first few layers of a CNN to look for specific low-level features: hence
these will typically have sizes matching those for the particular type of image. Further on in
the network it is common for pooling operations to be applied, thereby reducing the sizes
of subsequent layers. After several stages of convolution and pooling, the network will have
narrowed down considerably, so it is possible to make the final few layers fully-connected—
i.e., in any layer each neuron is connected to all the outputs of the previous layer. At that
stage there are likely to be relatively few outputs, and those that remain will be dictated by
whatever parameters need to be supplied by the network: these may include classifications
and associated parameters such as absolute or relative positions.

1.7.2 Parameters for defining CNN architectures

When analyzing CNN architectures, there are a number of points that deserve attention.
In particular, several quantities and terms need to be defined—width W, height H, depth N,
stride S, ‘zero-padding’ width P and receptive field R. In fact, the width and height are merely
the dimensions of the input image, or else the dimensions of a specific layer of the neural
network. The depth N of the network or of a specific block in it is the number of layers it
contains.

The width W and height H of a layer are the numbers of neurons it has in each dimension.
The stride S is the distance between adjacent neurons in the output field measured in units
corresponding to the distance between adjacent neurons in the input field: stride S can be
defined along the width and height dimensions but is usually the same for each. If § =1,
adjoining layers have the same dimensions (but see below how the size of the receptive field
R can modify this). Note that increasing the stride S can be useful, as this saves memory and
computation. In principle, it achieves a similar effect to pooling. However, pooling involves
some averaging, while increasing the stride merely decreases the number of samples taken.

R; is the width of the receptive field for each neuron in level i, i.e., the number of inputs
for all neurons in that level. Zero-padding is the addition of P ‘virtual’ neurons providing
static inputs at each end of the width dimension: these are given fixed weights of zero, the
idea being to ensure that all neurons in the same layer have equal numbers of inputs, thereby
facilitating programming. However, it also ensures that successive convolutions don’t lead to
smaller and smaller active widths; in particular, when § = 1, it permits us to make the widths
of adjacent layers exactly equal (i.e., W; 41 = W;). A simple formula connects several of these
quantities:

Wip1=W; +2P, —R)/Si +1 (1.115)

where the suffices pertain to the layer i inputs and the outputs feeding layer i + 1. It is worth
underlining the null situation W, = W; that applies when S; =1, R; = 1 and P; = 0. Overall,
the purpose of padding is to allow for end-effects at the extremes of each layer, by ensuring
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that the number of zeros is adjusted to accommodate the desired stride and receptive field
values.

Finally, an important point must be made about the definition of the depth of a number
of layers of a CNN. The earlier discussion has implied that a number of adjacent layers of
a CNN are normally accessed one after another in sequence—as would indeed be the case
if larger and larger convolutions were implemented one after another in an effort to detect
larger and larger features or even objects. However, there is another possibility—that the
various layers are fed in parallel from a given starting point in the network, for example the
input image. This possibility arises typically when an image is to be searched for a variety
of different features, such as lines, edges or corners, and the results fed in parallel to a more
holistic detector. This strategy was adopted in the LeNet architecture, which LeCun et al.
(1998) developed to identify handwritten numerals and zip codes.

1.7.3 Krizhevsky et al.’s AlexNet architecture

AlexNet was designed specifically to target the ImageNet Challenge, (ImageNet Large-
Scale Visual Recognition Object Challenge (ILSVRC), 2012) which took place in 2012. The
AlexNet designers (Krizhevsky et al., 2012) forced the by then quite old schema based on
CNN:ss into shape as a winning approach. To achieve this they had to radically improve the
CNN architecture, and this necessarily gave rise to a very large software machine; they then
had to speed it up dramatically with the aid of GPUs—by no means a small task as it meant
reoptimizing the software to match the hardware; finally, they had to find how to feed the
software system with a very large training set—again no mean task, as an unprecedentedly
large number of parameters had to be trained rigorously, and several innovations were re-
quired in order to achieve this.

The CNN architecture had 10 hidden layers (counting C, F and S layers)—only 4 more than
LeNet. However, these numbers are misleading as the depths of the various layers in AlexNet
sum to 11,176 compared with 258 for LeNet. Similarly, AlexNet contains ~650,000 neurons
compared with 6,508 for LeNet, while the number of trainable parameters is some 60 million
compared with 60,000 for LeNet. And when we look at the size of the input image, we find
that AlexNet takes a color image of size 224 x 224, whereas LeNet could only manage a bi-
level 32 x 32 input image. So overall, AlexNet is larger than LeNet by a factor between 100
and 1000, depending on which factors should be regarded as the most relevant. However, the
real change wrought by AlexNet was the possibility of working with huge numbers of layers
and managing the credit assignment problem in spite of this—while still using the backprop-
agation algorithm for training. At the time, this was unprecedented, but it was made possible
partly by the already reduced number of parameters required by CNNs, because all the neu-
rons in any given layer of neurons have identical parameters; it was also made possible by
employing exceptionally large training sets. However, one prominent feature of the AlexNet
architecture is the horizontal split right across the network, above which a single GPU is used
for implementation—and similarly below. In principle, this should make the operation of the
architecture unduly complex, but in practice it turned out to be practicable. But because of
this complexity it will be far easier for us to concentrate on the ZFNet architecture of Zeiler
and Fergus (2014), as this is essentially a tidied up, slightly improved version of AlexNet im-
plemented on a single GPU (Fig. 1.32): in particular, it had eight rather than seven hidden
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FIGURE 1.32 Schematic of the ZFNet architecture. This schematic is very similar to that for AlexNet. Notice that
AlexNet contains 7 hidden layers whereas ZFNet contains 8 hidden layers (these figures count S layers as parts of
the corresponding C layers). Also, note that ZFNet is implemented using only a single GPU and its architecture is
unsplit.

layers [these figures count S layers as parts of the corresponding C layers]. Note also that
ZFNet incorporated a more gradual initial narrowing down of the layer dimensions (n x n)
than AlexNet (layer C1 being 110 x 110 rather than 55 x 55). On the other hand, both architec-
tures used ‘overlapping pooling’—in this case a combination of 3 x 3 pooling and 2 x 2 stride
mapping. Notice that the dimensions (n x n) of the layers start at 224 x 224 and gradually
fall to 1 x 1. Interestingly, almost all the trainable parameters are in layers F7 and F8 (F6 and
F7 for AlexNet), only 1000 connections being left for the final softmax (nonneural) classifier.

In Fig. 1.32, 51, S2 and S3 are shown in blue to the right of C1, C2 and C5 respectively;
n x n indicates the dimensions in the case of a 2-D image format; r x r is the size of a 2-D
neuron input field (a single number indicates abstract 1-D data); s x s is the 2-D stride. N is
the depth within an individual layer: its approximate size is indicated by the vertical scale in
the figure.

Very shortly before AlexNet was completed, a new technique called ‘dropout” was intro-
duced by Hinton et al. (2012): see also Hinton (2002). The purpose of this was to limit the
incidence of overtraining. This was achieved by randomly setting a proportion (typically as
high as 50%) of the weights to zero for each training pattern; this rather surprising technique
appeared to work well: it did so by preventing hidden layers from relying too much on the
specific data fed to them. Krizhevsky et al. (2012) included this feature in AlexNet. To apply
it, the output of each neuron is randomly set to zero with probability 0.5. This is done before
the forward pass of the input data, and the affected neurons do not contribute to the ensuing
backpropagation. On the next forward pass, a different set of neuron outputs is set to zero
with probability 0.5, and again the affected neurons do not contribute to backpropagation;
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and similarly for later passes. During testing, an alternate procedure occurs, with all neuron
outputs being multiplied by 0.5. In fact, multiplying all neuron outputs by 0.5 is an approxi-
mation to taking the geometric mean of all the local neuron output probability distributions
and relies on the geometric mean being not too far from the arithmetic mean. Dropout was
incorporated into the first two layers of AlexNet, and significantly reduced the amount of
overfitting (overtraining because of too little training data).

AlexNet was trained using the 1.2 million images available from the ImageNet ILSVRC
challenge, this number being a subset of the full 15 million in the ImageNet database. In fact,
ILSVRC-2010 was the only subset for which test labels were available, there being about 1000
images in each of 1000 categories. However, it was found that these images were far too few to
specify a CNN of the complexity required to perform accurate classification of this immense
task. Therefore, means were required for expanding the dataset sufficiently to train AlexNet
and achieve classification error rates in the 10% to 20% bracket.

Two main means of augmenting the dataset were considered and implemented. One was
to apply realistic translations and reflections to the images in order to generate more images
of the same type. The transformations even extended to extracting five 224 x 224 patches
and their horizontal reflections from the initial 256 x 256 ImageNet images, giving a total of
ten patches per image. Another was to alter the intensities and colors of the input images.
To make this exercise more rigorous, it was carried out by first using principal component
analysis (PCA) to identify color principal components for the ImageNet dataset, and then
to generate random magnitudes by which to multiply the eigenvalues, thereby producing
viable variants of the original images. Together, these two approaches were able to validly
generalize, and multiply the size of, the original dataset by a factor of ~2000—the principle
being to generate natural changes in position, intensity and color.

At this stage it ought to be emphasized that the aim of the challenge was to find the best
vision machine (giving the lowest classification error rates) that is able to recognize an ex-
ample of a flea, a dog, a car or other common object in any position in an image and in any
reasonable pose. Furthermore, the machine should prioritize its classifications to give at least
the top five most probable interpretations. Then each machine can be rated not only on the
accuracy of its top classification but also on whether the object classified appears within the
machine’s top-5 classifications. AlexNet was able to achieve a winning top-5 error-rating of
15.3%, compared with 26.2% for the runner up. Another first was the dramatic drop to below
20% error rate for such an exercise, which spelt a new lease of life for neural networks, and
brought them sharply into the limelight.

Note that all this was achieved not merely by designing a winning architecture and gen-
erating the right dataset to train it adequately, but also it was necessary to bring the training
time down to realizable levels. In this respect GPU implementation proved to be crucial. Even
with a pair of GPUs, the training time took approximately a week, working 24 hours a day,
to manage the task. Without GPUs it would have taken some 50 times longer—most proba-
bly, about a year—so the machine would have had to be submitted to a later challenge! [A
commonly accepted figure is that a GPU has a speed advantage ~50 relative to a typical host
CPU.]

Finally, it should be noted that GPUs provide a very good implementation because of their
intrinsic parallelism and thus their capability for handling large data sets in fewer cycles.
Note that each layer of a CNN is completely homogeneous and is therefore well adapted for
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parallel processing. Note also that GPUs are well adapted to working in parallel as they are
able to read from and write to each other’s memories directly, avoiding the need to move data
through the host CPU memory.

1.7.4 Simonyan and Zisserman’s VGGNet architecture

In the continued absence of knowledge about the form of an ideal architecture, Simonyan
and Zisserman (2015) set out to determine the effect of further increases in depth. To achieve
this, they significantly reduced the number of parameters in the basic network by limiting the
maximum neuron input field to 3 x 3. In fact, they restricted the convolution input field and
stride to 3 x 3 and 1 x 1 respectively, and set both the input field and the stride of each sub-
sampling layer to 2 x 2. In addition, they arranged for the systematic and rapid convergence
of the successive layers from 224 x 224 down to 7 x 7 in 5 stages, followed by a transition
to 1 x 1 in a single fully-connected stage; this was followed two further fully-connected lay-
ers and then a final softmax output layer (Fig. 1.33). All the hidden layers included a ReLU
nonlinearity stage (not shown in the figure). Apart from the N ‘channels’, the 5 convolutional
layers C1-C5 respectively contained 2, 2, 3, 3, 3 identical sublayers (not marked in Fig. 1.33).
Finally, it should be remarked that, for reasons of experimentation, Simonyan and Zisserman
devised 6 variations on the VGGNet architecture, with 11 to 19 weighted hidden layers: here
we only cover configuration D (with 16 weighted hidden layers), for which the numbers of
identical sublayers in layers C1-C5 are as listed above, and layers F6, F7 and F8 each con-
tain 1 weighted sub-layer. The number of weighted layers obviously strongly influences the
number of parameters.

As mentioned above, Simonyan and Zisserman saved on the basic number of parameters
by restricting the convolution input field to 3 x 3. This meant that larger convolutions had to
be produced by applying several 3 x 3 convolutions in sequence. Clearly, a 5 x 5 input field
would necessitate applying two 3 x 3 convolutions, and a 7 x 7 field would require three 3 x
3 convolutions. In the latter case, this would reduce the total number of parameters from 72 =
49 to 3 times 32 = 27. In fact, not only did this way of implementing a 7 x 7 convolution reduce
the number of parameters, but also it forced an additional regularization on the convolution,
as a ReLU nonlinearity was interposed between each of the 3 x 3 component convolutions.
It is also relevant that both the input and output of each 3-layer 3 x 3 convolution stack can
have N channels, in which case it will contain a total of 27N? parameters, and it is that figure
which should be compared with 49N? parameters.

In spite of its increased depth, VGGNet contains only about 2.4 times as many parameters
as AlexNet; also, it is much simpler and doesn’t split the architecture to fit it to a 2-GPU
system. On the contrary, it immediately obtains a speedup of 3.75 times over a single GPU
when using an off-the-shelf 4-GPU system.

Details of the training methodology are similar to those for AlexNet: see the original paper
by Simonyan and Zisserman (2015). However, these authors include one interesting inno-
vation: that is to use ‘scale jittering” while training—i.e., to augment the training set using
objects over a wide range of scales. In fact, random scaling was applied over an image scale
factor of 2.

The outcome was that VGGNet achieved top-5 test error results of 7.0% using a single
net, compared with 7.9% for GoogLeNet (Szegedy et al., 2014). In fact, GoogLeNet achieved
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FIGURE 1.33 Architecture of VGGNet. This architecture shows a more recent optimization of the standard type
of CNN network. Unlike the schematic in Fig. 1.32, this one is arranged to show the relative sizes of the convolution
layers, which range from image size down to 1 x 1. Note that the convolution layers all have unit stride, and that
their input fields are limited to a maximum size of 3 x 3: the subsampling layers all have 2 x 2 input fields and 2 x 2
strides.

a figure of 6.7%, but only by employing 7 nets. Thus, VGGNet achieved second place in
the ILSVRC-2014 challenge. However, after submission the authors managed to decrease the
error rate to 6.8% using an ensemble of 2 models—substantially the same performance as for
GooglLeNet, but with significantly fewer nets. Interestingly, all this was achieved even though
the VGGNet architecture did not depart from the classical LeNet architecture of LeCun et al.
(1989), the main improvement being the significantly increased depth of the network.

In spite of being placed second in the ILSVRC-2014 challenge, VGGNet has proved more
versatile and adaptable to different datasets, and is a preferred choice in the vision commu-
nity for extracting features from images. This seems to be because VGGNet actually provides
more robust features even though it turned out to have slightly weaker classification perfor-
mance on a specific dataset. As we shall see in the next section, VGGNet was the network
chosen by Noh et al. (2015) for their work on deconvolution networks.

1.7.5 Noh et al.’s DeconvNet architecture

Inspired by the work of Zeiler and Fergus, Noh et al. (2015) produced a ‘learning de-
convolution network” (DeconvNet) that learnt from training how to deconvolve the sets of
convolution coefficients in each layer of a CNN. Before examining their network in detail, it is
important to understand the motivation they had for designing it. Their purpose was to pro-
duce a ‘semantic segmentation’ network. In fact, image segmentation is aimed at determining
the boundaries between the various objects appearing in an image: semantic segmentation
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FIGURE 1.34 Schematic of Noh et al.’s Learning deconvolution network. This network contains two networks
back to back. On the left is a standard CNN network, and on the right is the corresponding DNN ‘deconvolution’
network that seems to operate in reverse. The CNN network (on the left) has no output (e.g., softmax) classifier,
as the ultimate purpose is not to classify objects but to present a map of where they are on a pixel-by-pixel basis
throughout the area of the image. Deconv layers D5 down to D1 are intended to progressively unpick layers C5-C1.
Similarly, unpooling layers U5 down to Ul are intended to progressively unpick pooling layers S5-S1. To achieve
this, the position parameters from the maxpooling layers have to be fed to corresponding locations in corresponding
unpooling layers (i.e., locations from Si should be fed to Ui).

goes further and also classifies all the objects—thereby giving a relevant meaning to each
region in the image.

The DeconvNet architecture is shown in Fig. 1.34: note that its initial CNN section is bor-
rowed from layers C1-F7 of VGGNet, though it excludes layer F8 and the Output softmax
layer. It will be useful to provide a rationale for this. First, an upflowing CNN is needed
for identifying objects in the input image. Second, if objects are to be located in particular
parts of an image, another CNN is needed to point to the positions, and this necessarily has
to follow the identification process. Undertaking both tasks in one enormous unconstrained
CNN would be prohibitive of memory and training, so the two networks have to be linked
closely together. The means of connecting them together are to provide feedforward paths
from the pooling units to later unpooling units. So the very means by which the CNN out-
put was generalized to eliminate the effects of sample variations has led to the second CNN
being augmented to yield the required location maps. Crucially, we also see that the overall
single upflowing data-path makes it obvious why the ReLU units must now all point in the
same direction. (Remember that they have now all been turned to face forwards again.) It is
also clear that with such a huge network, training will have to be carried out carefully, and it
would appear obvious that the originally upflowing (object detection) section should initially
be trained on its own.

Overall, the system works by mirroring the input CNN by including a deconvolution net-
work (DNN) after it. The operation may be summarized as follows: unpooling layer Ui is
nonlinear and redirects (unpools) the Ci maximum signals; then deconvolution layer Di op-
erates linearly on the data, and therefore has to sum the overlapping inputs, weighted as
necessary. However, rather than constructing suitable combination rules to define what hap-
pens with the overlapping output windows of each Di layer — and doing this in some very
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approximate way (such as ‘transposed’ versions of the convolution filters) — the deconvo-
lution layers are trained as normal parts of the overall network. While this is a rigorous
approach, it substantially increases the burden involved in training the network.

It is also useful to have a mental model of the whole process occurring in the DNN. First,
each unpooling layer recovers the information from the corresponding pooling layer and re-
constitutes the dimensions the dataspace had before pooling. However, it only populates it
sparsely, with the local maximum values in appropriate positions. The purpose of the fol-
lowing deconvolutional layer is to reconstruct a dense map in its dataspace. So, whereas the
CNN reduces the size of the activations, the following DNN enlarges the activations and
makes them dense again. Nevertheless, the situation is not completely unraveled, as only the
maximum values are reinserted. As Noh et al. (2015) say in their paper, “unpooling captures
example-specific structures by tracing the original locations with strong activations back to im-
age space”, whereas “learned filters in the deconvolutional layers tend to capture class-specific
shapes”. What this means is that the deconvolutional layers rebuild the example shapes to
correspond more accurately to what would be expected for objects of the specific classes.

In spite of this assurance, the network has to be trained appropriately. However, the sur-
mise given above about training in two stages has been improved by Noh et al. as follows:
to beat the problem of the space of semantic segmentation being extremely large, the net-
work is first trained on easy examples, and then trained on more challenging examples: this
amounts to a sort of bootstrapping approach. More precisely, the first of the training processes
involves limiting the variations in object size and location by centering and cropping them in
their bounding boxes; the second stage involves ensuring that the more challenging objects
are adequately overlapped with ground-truth segmentations: to achieve this, the widely used
intersection over union (IoU) measure is used, and is taken to be acceptable only if it is at least
0.5. In fact, the first stage uses a ‘tight’ bounding box, and this is extended by a factor 1.2 and
further expanded into a square in order to include sufficient local context around each object.
In this first stage, the box is rated according to the object located at its center, other pixels
being labeled as background. However, in the second stage this simplification is not applied
and all relevant class labels are used for annotation.

Next, we look at another closely related method—that of Badrinarayanan et al. (2015),
which uses much less memory and has several other advantages.

1.7.6 Badrinarayanan et al.’s SegNet architecture

The SegNet architecture strongly resembles that of DeconvNet (Fig. 1.34) and is also aimed
at semantic segmentation. However, its authors demonstrated the need for returning to a sig-
nificantly simpler architecture in order to make it more easily trainable (Badrinarayanan et al.,
2015). Basically, it was identical to DeconvNet (Fig. 1.34) but with F6 and F7 excluded. In addi-
tion, it was clear to the authors that use of max-pooling and subsampling reduce feature map
resolution and thereby reduce location accuracy in the final segmented images. Nevertheless,
they start by eliminating the fully connected layers of VGGNet, retain the encoding—decoding
(CNN-DNN) structure of DeconvNet, and also retain max-pooling and unpooling. In fact, it
is the move away from using fully-connected layers that helps SegNet the most, as this dras-
tically reduces the number of parameters to be learnt, and thereby also drastically reduces
the training requirements of the method. Accordingly, the whole network can be considered
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as a single rather than a dual network and trained efficiently ‘end-to-end’. Furthermore, the
authors identified a far more efficient way to store object location information: they do so
by storing only the max-pooling indices, viz. the locations of the maximum feature values
in each pooling window in each encoder feature map. As a result only 2 bits of information
are needed for each 2 x 2 pooling window (cf. Fig. 1.33). This means that even for the initial
CNN (encoder) layers, it is not necessary to store the feature maps themselves: what has to
be stored is the object location information. By this means the encoder storage requirement
is reduced from 134M (corresponding to layers C1-F7 of VGGNet) down to 14.7M. The total
storage for SegNet is rated at twice this, as the same amount of information has to be saved
in the decoder layers. However, the same applies to other deconvnets, so in all cases the total
amount of data has to be doubled relative to the contents of the initial CNN encoder.

The smaller size of SegNet makes end-to-end training possible, and thereby far more
suitable for real-time applications. The authors acknowledge that larger networks can work
better—though at the cost of far more complex training procedures, increased memory and
considerably increased inference time. Furthermore, it is difficult to assess their true perfor-
mance. Basically, the decoders have to be trained via very large and cumbersome encoders,
and the latter are general-purpose rather than being targeted at specific applications. In the
majority of instances, such networks have been based on a VGGNet front end, typically
containing all 13 sublayers of C1-C5, together with a variable (very small) number of fully-
connected layers.

These considerations make it no surprise that Badrinarayanan et al. successfully applied
SegNet to the CamVid dataset (Brostow et al., 2009) by training it end-to-end for optimum
adaptation. They found it outperformed seven conventional (nonneural) methods, includ-
ing local label descriptors and superparsing (Yang et al., 2012; Tighe and Lazebnik, 2013),
obtaining scores averaging to 80.1%, in comparison with 51.2% and 62.0% respectively; the
11 categories to be recognized were building, tree, sky, vehicle, sign, road, pedestrian, fence,
pole, pavement, and cyclist, and the accuracies attained for these ranged from 52.9% (cyclist)
to 94.7% (pavement). Their success with this task may be judged from the results of their
online demo [http://mi.eng.cam.ac.uk/projects/segnet/ (website accessed 7 October 2016).]
which was used to generate the pictures in Fig. 1.35: in fact, this demo placed pixels in twelve
categories, including road markings in addition to the eleven listed above.

They also did a careful comparison of SegNet with other semantic segmentation networks,
including FCN (so-called ‘fully convolutional networks’) and DeconvNet. FCN and Decon-
vNet have the same encoder size (134M); note that FCN reduces the decoder size down to
0.5M, though DeconvNet continues with a 134M decoder. Class averages for the three meth-
ods are 59.1%, 62.2% and 69.6%. Even though SegNet is numerically the worst of the three,
its accuracy is still competitive and it has the distinct advantage of being more adaptable
by virtue of being trained end-to-end. In fact, it is also easily the fastest running, being ~2.2
times faster than FCN and ~3.3 times faster than DeconvNet, albeit on different sized images.

Overall, the authors state that architectures “which store the encoder network feature maps
in full perform best but consume more memory during inference time”, which also means
that they run more slowly. On the other hand, SegNet is more efficient since it only stores the
max-pooling indices; in addition, it has competitive accuracy, and its capability for end-to-
end training on currently relevant data make it significantly more adaptable.
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sky  building  pole road road pavement tree sign fence  vehicle pedestrian  bike
marking

FIGURE 1.35 Two road scenes taken from a front passenger seat. In each case the image on the left is the original,
and the image on the right is the segmentation produced by SegNet. The key indicates the 12 possible meanings
assigned by SegNet. While location accuracy is not perfect, the assigned meanings are generally reasonable, given
the limited number of allowed interpretations and the variety of objects within the fields of view. These pictures
were processed using the online demo at http://mi.eng.cam.ac.uk/projects/segnet/ (Badrinarayanan et al., 2015).

1.7.7 Application of deep learning to object tracking

We now return to the subject of tracking moving objects. This is an area in which great
gains have been made by the application of deep learning: in fact, deep learning has led to
radical improvements over the conventional approaches discussed earlier. We start by taking
the paper by Held et al. (2016) as an interesting example.

Held et al. (2016) sought to produce a single-target tracker which would operate in real
time, and devised a neural-based way of achieving this at speeds of up to 100 fps. This
speed was achieved only for the test version of the network, and reflected very considerable
amounts of off-line training. The high test speed is the result of employing a relatively simple
architecture in which pairs of frames are fed to a trained neural network, which immediately
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(i.e., in a single feedforward pass) gives an output image in which the target bounding box is
marked.

When testing, the tracker is initialized with a ground-truth bounding box containing the
target object, the bounding box being updated after the analysis of each successive pair of
frames. However, before detailed examination, each frame is cropped at a size and location
sufficiently large to capture the target object for any motion it may reasonably make (typically,
this means cropping at double the size of the bounding box): this procedure also permits
useful contextual information to be included. The trained neural network then searches the
two (r — 1 and r) cropped images to find the best match for the position of the moving object.
Repetition of the process thus permits the target object to be tracked throughout the video
sequence.

For this to be successful, the trained network must contain huge amounts of information
about different possible displacements of each pair of images. This is entirely possible using
a pair of networks each containing N convolution layers (often called a ‘Siamese ConvNet’),
which are fed to a set of M fully-connected layers (Held et al. used N =5 and M = 3); the final
output contained the necessary output bounding box information. To obtain all the required
information, the neural network was trained using all permissible shifts and crops of the
incoming frames. In fact, the network was trained not only on videos but also on pairs of
images, the reason being to teach the network to track a more diverse set of objects, thereby
helping to prevent overfitting to the objects in the video data.

As a result of careful training, the tracker was found to be invariant to background motion,
out of plane rotations, deformations, lighting changes and minor occlusions. Moreover, the
additional training on labeled images helped to provide it with a generic relationship between
an object’s appearance and motion, enabling it to be able to track objects not appearing in the
training set—as well as the capability to perform this task at the unprecedented speed of 100
fps.

The cost of this capability came at the expense of large amounts of training time due to
excessive amounts of data augmentation. This was one of the problems that drove Bertinetto
et al. (2016) to devise a tracking architecture using a fully convolutional (FC) Siamese net-
work which they called SiamFC. They started with a system having two parallel inputs, one
providing an exemplar image and the other providing a search image. The idea is to search
the input image for matches with the exemplar image using a suitable similarity operator.
In fact, they used correlation for this purpose and a correlation layer was used to generate a
score map, which was presented at the output of the network. It was found useful to arrange
for the output score map to have reduced dimensionality, from which hits could be related
back to the input image by multiplying by the network stride. The latter was taken to be 8, a
figure which arises as there are three successive applications of a 2 x 2 stride, in layers C1, S1
and S2 (see Fig. 1.36): to fully understand the overall effect, note that each 2 x 2 stride divides
the intrinsic image size by 2 x 2.

A Siamese network is one containing two parallel flows, each having the same intrinsic
structure. This is natural for the above architecture as the two flows carry exactly the same
type of data, albeit the sizes of the images will obviously be different. A fully convolutional
network is used for each of the flows as the intention is to achieve translational invariance,
so that the signal from any object will not vary with its position in the image. ‘Fully convolu-
tional” means that no variation in the convolution parameters is permitted over the whole of
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FIGURE 1.36 Fully convolutional Siamese tracker. This figure shows the architecture of the FC Siamese tracker
devised by Bertinetto et al. (2016). Top: the FC branch containing the search flow; middle: the branch containing the
exemplar flow; bottom: details of the two branches, including no. of channels N, image size n x n, neuron input
field r x r, and stride s x s (N, r and s are identical for the two flows). Note that, as in the case of AlexNet,
this architecture uses overlapping pooling in subsampling layers S1 and S2, for both of which r x r =3 x 3 and
SXSs=2x2.

the image space: note that this means that ‘padding’ of the outer reaches of the network
(typically with zeros) is not allowed, and in practice this means that—unlike the case of
AlexNet—the output spaces of successive layers will be curtailed wherever the neuron in-
put fields are larger than 1 x 1 (see Fig. 1.36). It should be added that the point of including
the two fully convolutional networks is to obtain sufficient information on the target and
exemplar objects, while ignoring noise, shape variations and irrelevant artefacts such as back-
ground detail.

Correlation is carried out using a standard sliding-window computation. The overall sys-
tem is shown in Fig. 1.36, the two fully convolutional flow networks being adapted from
those in Krizhevsky et al.’s (2012) AlexNet architecture: in particular, the fully connected
layers have been discarded as they are not fully convolutional and therefore do not permit
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position invariance. (The purpose of AlexNet was to classify any input image according to
the class of the target object appearing within it, object localization information being totally
eliminated.)

In Bertinetto et al.’s work, the exemplar image is taken as the initial appearance of the
target object and is not updated; neither is a memory of past appearances maintained; nor are
predictions of the positions of object bounding boxes computed. Indeed, the main aim was
to achieve a simple, reliable tracker for single target objects. However, Bertinetto et al. found
that upsampling the score map by a factor 16 using bicubic interpolation (i.e., from 17 x 17 to
272 x 272) resulted in more accurate localization. Also, they searched for the object over five
scales, from ~0.95 to 1.05, in order to cope with scale variations.

Next, we consider the size of the output image space. The correlation layer is a convolution
between images of size 22 x 22 and 6 x 6, leading to a potential maximum output image size
of 27 x 27 down to a viable image size of 17 x 17 (these figures arise because 22 46 — 1 =27
and 22 — 6 4+ 1 = 17). Note that the maximum output image size (27 x 27) would not capture
objects that are just outside the search space, whereas the minimum (17 x 17) would take
full account of objects that are completely within the search space; between these limits there
would be some chance of detecting partially visible objects. However, SiamFC was aimed at
being as successful as possible at detecting fully visible objects.

Finally, an interesting point concerns the calculation of the effects of a 2 x 2 stride when
the previous image has an odd number size (as happens for all three cases in SiamFC). In that
case the stride takes into account the first and last pixels in each row and column. Given this,
the successive image sizes quoted in Fig. 1.36 all correspond exactly and logically to those
given by Bertinetto et al. (2016).

Feichtenhofer et al. (2017) set out to devise a deep learning architecture that learns de-
tection and tracking together in tandem. Their architecture makes use of an object detector
and a tracker: in fact, the idea is to carry out detection and tracking simultaneously us-
ing a ConvNet, optimized by a combined detection and tracking based loss. Convolutional
cross-correlation between the feature responses of adjacent frames is carried out to estimate
the local displacement at different feature scales. (Here, correlation is restricted to a small
neighborhood, with maximum displacement d = 8, to avoid large output dimensionality: this
reflects the limitation already noted for the Held et al. (2016) target tracker.) Correlation maps
are computed for all positions on a feature map, and region of interest (Rol) pooling (Dai et
al., 2016) is applied to these feature maps for track regression. The above approach allows
multiple objects to be tracked simultaneously, and the architecture can be trained end-to-end
taking input frames from raw videos. Overall, the approach led to significantly improved
performance, at the 80% level, relative to previous state-of-the-art methods when run on the
ImageNet (2015) VID validation set.

Note that the Rol pooling approach takes fully convolutional design as far as possible, in
order to maintain translational invariance, and only the last convolutional layer is modified
to deviate from this: this strategy permits the computation of position-sensitive score maps,
from which multiple object tracklets can be extracted. However, as the details of the overall
architecture depend closely on those of R-FCN (Dai et al., 2016), ResNet-101 (He et al., 2016),
Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015), available space prevents a
full description from being presented here.



1.7. Part F — From artificial neural networks to deep learning methods 83

—>[|]->|:|]->|]:|-> > E—

Image C1 C2 C3 F4 F5 Output
S1 S2 E3
227% 552 27% 132 1 1 1
3 9 256 384 4096 4096 1000

FIGURE 1.37 Andrearczyk and Whelan’s T-CNN architecture. This is designed to capture the texture of the whole
input image, and to output a vector showing the most probable texture. The numbers under the labels indicate the
sizes of the feature spaces being handled by convolution layers C1-C3 and the numbers of feature maps in the
corresponding layers. Both of the pooling layers (S1, S2) reduce the image size by a factor 2 x 2. The energy layer
E3 is a special form of pooling layer which averages the energies over the whole of each feature map, producing 384
outputs—one for each feature map of C3.

1.7.8 Application of deep learning to texture classification

As we have seen in the immediately preceding sections, deep learning has become a major
factor in the design of vision algorithms. This applies no less in the case of texture analysis,
which was introduced in Sections 1.6.1-1.6.6. Fig. 1.31 shows the architecture of the Laws tex-
ture classifier discussed in Section 1.6.3. This sort of classifier is often described as employing
a set of ‘filter banks’ to extract the input information. However, the previous section shows
that the CNN approaches can also be described in this way, so it is not surprising that CNNs
(and ANNSs) have also been applied to texture analysis. Early on, it was common to train
such networks using sets of input images each consisting of a single texture (typically from
the Brodatz database). However, this approach is restricted to treating the whole input image
as a single region and classifying it accordingly: segmentation of an image into regions with
different textures is beyond the capabilities of a simple architecture trained in this way.

Andrearczyk and Whelan (2016) described a basic CNN architecture (T-CNN-3) for clas-
sifying textures, which is illustrated in Fig. 1.37. It has some similarity to ZFNet though it
contains fewer convolution layers: this does not prevent it from coping with textures because
texture features can mostly be described using quite small windows. Note also that the final
convolution layer is followed by a pooling layer which averages the texture energy over the
whole feature map. Nevertheless, as a considerable number N of feature maps are computed
by different parallel layers of the final convolution layer, the result is a vector of N energy
values. These are fed to a final texture classifier yielding a single class for any single input
texture image.
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In fact, Andrearczyk and Whelan (2016) went further than this and devised a hybrid type
of texture analyzer (TS-CNN-3) employing both the above approach and one permitting ob-
ject shapes to be analyzed, the latter acting in a similar way to AlexNet’s object recognition
system for nontextured images. The overall architecture is shown in Fig. 1.38. An important
aspect of this architecture is the concatenation layer M combining the outputs of the texture
and shape parts of the system. But it is also important to notice that relevant texture informa-
tion is mainly derived from relatively small low-level features, whereas shape information is
a more global property which requires the input of higher level features. This is why texture
information is derived from the output of convolution layer C3, whereas shape information is
obtained from the pooled output of C5. (Interestingly, because E3 averages the texture energy
over the whole of each C3 feature layer, no spatial or shape information remains in the tex-
ture channel after E3.) Finally, the output layers F6, F7 and O are used to combine the shape
and texture outputs: clearly, there is enough information available in these layers to relate the
textures to particular locations in the input image and to present the outputs in terms of the
probabilities that the textures used in training actually appear in the input image. However,
what this network does not do is to produce an output image map showing the most proba-
ble segmentation of the image into various texture regions. It would be good to achieve this,
and in principle it ought to be possible by incorporating the encoder-decoder architecture of
SegNet (see Section 1.7.6). The main obstacle here is the lack of suitably large texture datasets
(comparable with ImageNet): in fact, the underlying problem is that architectures such as
SegNet are so deep that they require a much greater amount of training using much larger
numbers of training patterns.

The lack of a large texture dataset is a serious factor standing in the way of further progress
in texture analysis, whatever training methods and architectures are being devised. In fact,
it will be clear that if such a dataset were available, AlexNet (and other nets such as VG-
GNet) could be trained to perform texture analysis over whole images without any changes
being made to its architecture. As remarked by Liu et al. (2019) “The recent success of deep
learning in image classification and object recognition is inseparable from the availability of
large-scale annotated image datasets such as ImageNet. However, deep learning based tex-
ture analysis has not kept pace with the rapid progress witnessed in other fields, partially
due to the unavailability of a large-scale texture database.”

These statements are serious, because (a) CNN-based architectures are already amongst
the most widely used means of performing texture analysis—a trend that seems hardly likely
to decrease in the foreseeable future; and (b) the same training restrictions (and need for large
texture datasets) must also apply to whatever methods are to be used for analysing textured
images. It should also be remembered that the statistical nature of textures implies that, in
general, training-based procedures will be preferable to hand-crafted algorithms.

Finally, we consider the performance of Andrearczyk and Whelan’s two architectures.
When trained on ImageNet, which is an object dataset, they found that T-CNN-3 performed
less well than AlexNet (51.2% compared with 57.1%): this is not surprising as AlexNet is
a much larger network containing 60.9 million trainable parameters, compared to the 23.4
million of T-CNN-3. On the other hand, when training with texture-orientated datasets such
as ImageNet-T and KTH-TIPS-2b (Russakovsky et al., 2015; Hayman et al., 2004), T-CNN-
3 showed significant improvement over AlexNet (respective accuracies of 71.1% compared
with 66.3%, and 48.7% compared with 47.6%). These results correspond to training from
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FIGURE 1.38 Andrearczyk and Whelan’s TS-CNN architecture. This is designed to capture texture and shape
information for the whole input image, and to output a vector showing the most probable set of textures. The first
row of numbers under the labels indicates the sizes of the feature spaces being handled by the convolution layers
C1-C5; the second row of numbers indicates the numbers of feature maps in the corresponding layers. All three
pooling layers (S1, S2, S5) reduce the image size by a factor 2 x 2, so the image fed to the merger point M has size 6 x
6. At M, the texture and the shape outputs are concatenated, thereby producing a total of 384 x (1 4 6%) outputs—all
of which are joined to all the inputs of F6, forming a fully connected network. As in Fig. 1.37, the energy layer E3 is a
pooling layer which averages the energies over the whole of each feature map, producing 384 outputs, one for each
feature map of C3.

scratch on a single database. However, it is also possible to pretrain on one database and
fine-tune on another. When this was attempted—specifically, pretraining on ImageNet and
fine-tuning on KTH-TIPS-2b—T-CNN-3 performed more accurately than AlexNet (73.2%
compared with 71.5%). A further improvement was obtained by using the hybrid TS-CNN-3
architecture, an accuracy of 74.0% then being achieved. Some of this improvement was clearly
due to the larger number of trainable parameters of TS-CNN-3 (62.5 million). Nevertheless,
when tests were made with architectures with comparable numbers of parameters—e.g., a
combination of AlexNet and T-CNN-3, and a combination of VGG-M (Chatfield et al., 2014)
with FV-CNN (Cimpoi et al., 2015)—TS-CNN-3 remained superior. In fact, the hallmark of the
new TS-CNN-3 texture + shape architecture is that it is highly efficient in its use of training
parameters, and by separating texture analysis from shape analysis it achieves more accurate
results when processing textured images.

It has been useful to describe the work of Andrearczyk and Whelan (2016) in some de-
tail, as this reveals a good many insights into the application of deep networks to texture
analysis—including a number of the subtleties that are involved. Whereas the approach aims
at an architecture with relatively modest numbers of training parameters, the less restricted
approach of Cimpoi et al. (2015; 2016) appears to be more powerful: it systematically uses
global pooling of the CNNs before the level of the fully connected layers and thereby captures
valuable sets of texture descriptors. (More precisely, it pools local features densely, removing
global spatial information, in order to extract dense convolutional features.) Indeed, Cimpoi
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et al.’s, 2016 paper was able to develop a vocabulary of forty-seven texture attributes that
describe a wide range of texture patterns. In fact, the work of Cimpoi et al. (2015; 2016) has
been influential in its near-perfect classification accuracy. However, Liu et al. (2019) state that
performance is ‘saturated’ (meaning that it has leveled off, in the vicinity of 100%) “because
the datasets are not large enough to allow fine-tuning to obtain improved results”—reflecting
the points made earlier about available texture datasets. It should be remarked that Cimpoi
et al.’s best results were obtained using the VGG-VD (Very Deep) architecture of Simonyan
and Zisserman (2015) containing 19 CNN layers, thereby partly explaining why saturation
became a possibility.

One other point raised by Liu at al. (2019) in their review of the development of texture
representations is that there is a growing tension between the need for huge image datasets
and the corresponding human need for compact, efficient representations. The latter need
is increasingly being seen on mobile and embedded platforms with restricted resources—as
previously observed by Andrearczyk and Whelan (2016) and Szegedy et al. (2014).

1.7.9 Texture analysis in the world of deep learning

Part E started by exploring the meaning of texture—essentially by asking “What is a tex-
ture and how is a texture formed?” Typically, a texture starts with a surface that exhibits
local roughness or structure, which is then projected to form a textured image. Such an im-
age exhibits both regularity and randomness, though directionality and orientation can also
be important parameters. However, the essential feature of randomness means that textures
have to be characterized by statistical techniques and recognized using statistical classifica-
tion procedures. Techniques that have been used for this purpose include autocorrelation,
co-occurrence matrices, texture energy measures, fractal-based measures, Markov random
fields, and so on. These aim both to analyze and to model the textures. Indeed, workers in this
area have had to spend much time striving to achieve ever-improved models of the textures
they are working with in order to better describe, recognize and segment them. However,
over less than a decade, DNNs suddenly came into their own, and as we have seen, this led
to a further period of rapid development of techniques for texture analysis—taking us even
further away from the intuitive approaches of the 1970s.

1.8 Part G — Summary

Parts A-E of this chapter outlined three highly relevant legacy topics on feature detection
and object detection, in both 2-D and 3-D. They presented the underlying theory that had be-
come familiar and widely used throughout the subject before the deep learning explosion of
2012. Part F went on to impart an understanding of what this explosion entailed and, in par-
ticular, not only how all object features and the objects themselves could be learnt from many,
many training examples, but also how semantic segmentation could be achieved with end-
to-end training of complete convolutional networks. The fact that such networks can learn all
features and objects and seemingly don’t need legacy methods to back them up is salutary. In
fact, semantic segmentation of static scenes is not the only relevant story, but as Section 1.7.7
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has demonstrated, a not dissimilar process has been repeated with impressive effect for the
tracking of multiple moving objects. Indeed, it was pointed out (Feichtenhofer et al., 2017)
that much of what had been achieved in complex ways by hard application of principles has
now been achieved in less theoretically intensive ways by deep learning methods; and these
have the power to progress performance to even greater heights when even more efforts are
applied. In retrospect, it also seems that workers found themselves up against a metaphori-
cal brick wall regarding how to specify sufficiently accurately the nature of the ‘soft’ data in
the real (nonidealized) images they wanted to process: and the lack of practicable modeling
structures made it problematic to find suitable ways forward; hence it became necessary to at
least trial the alternative of deep learning.

At this point it will be useful to summarize quite what it was that enabled the deep learn-
ing explosion. In fact, it was a combination of a set of disparate factors. In particular, we can
point to: (1) use of CNNs with much lower connectivity than was the case for the old ANN
architectures; (2) deployment of ReLUs in place of sigmoidal output functions; (3) applica-
tion of the ‘dropout’ procedure to limit the incidence of overtraining; (4) the use of vastly
increased amounts of image data for training; (5) extraction of even more image patches from
images to further enhance the amount of data available for training; (6) application of GPUs
for performing the training with enormously increased speed (it being commonly accepted
that a GPU has a speed advantage ~50 relative to a typical host CPU). It must also be remem-
bered that all these changes were brought to bear more or less simultaneously in 2012.

We now cut the discussion short, as the following chapters provide many further insights
into what is actually a quite complex and fast-moving situation.
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CHAPTER POINTS

e  This chapter introduces the problem of
object detection in computer vision.

e  This chapter reviews some advanced object
detectors based on deep neural networks
and some techniques that have become
important in the detection literature in
recent years.

2.1 Introduction

Object detection is one of the most fundamental and challenging problems of computer
vision. It generalizes the more commonly studied problem of object classification. Given an
image, object recognition aims to answer the question of “what”. What are the objects in the
image? For example, the image of Fig. 2.1 includes a person and a boat. Beyond “what”, object
detection also aims to answer the question of “where”. What regions of the image contain the
object? This is illustrated in Fig. 2.1(b), where bounding boxes are used to demarcate the
region of each object.

Object detection has many practical applications. For example, autonomous vehicles rely
on object detection to localize objects, understand the surrounding environment, and help
make safe decisions. In medical imaging, object detectors can help locate lesions in medical
scans, alleviating the burden of radiologists and other medical specialists. However, object
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FIGURE 2.1 The difference between object classification and object detection.

detection is also an upstream task in computer vision, supporting many other downstream
tasks, like visual question answering, captioning, visual navigation, robot grasping, pose es-
timation, etc. For example, object detection can not only help a robot accurately grasp objects
in the physical world, but also enable it to understand the semantics of that object, how it re-
lates to the other objects in the scene, and how it can play a part in solving a task, either alone
or in a team of robots. Hence, the advancement of object detection will benefit many other
domains of computer vision and enable more effective computer vision systems in general.

An object detector faces many challenges. For example, it is required to accurately de-
tect objects of multiple categories, scales, aspect ratios, etc, sometimes under severe lighting
conditions, occlusion, and background distractors. This makes it challenging to develop de-
tectors robust enough to work well under most conditions, a necessary condition to mimic
the human visual system.

Due to the importance of the problem, there is a long history of research in object detection
(Sung and Poggio, 1998; Rowley et al., 1996; Papageorgiou et al., 1998). Early work focused on
the detection of specific objects, namely faces and humans, of importance for many applica-
tions. The Viola-Jones (V]) detector (Viola and Jones, 2001, 2004) was a milestone among these
works. It was the first real-time object detector for unconstrained environments and much
faster than all other competitive detectors at the time. The idea was to formulate the detector
as a cascade of classifiers, which reject object hypotheses stage by stage, using very simple
Haar wavelet features. By adding more features in later stages, the cascade can form a pow-
erful detector. However, because most hypotheses can be rejected with simple features (early
stages) the average computation is small. Although wavelet features are fast, they are not very
accurate. Later works proposed the histogram of oriented gradients (HOG) (Dalal and Triggs,
2005), as an important improvement of the scale-invariant feature transform (SIFT) feature
(Lowe, 1999, 2004). HOG has shown very impressive performance, originally on human de-
tection, and was later widely adopted in various object detection problems. A breakthrough
on the detection of general object was the introduction of the deformable part-based model
(DPM) (Felzenszwalb et al., 2010). This built on HOG features, representing each object as a
combination of a root model and deformable parts, where the configurations of part filters
were latent variables, learned automatically. DPM was the winner of the Pascal VOC object
detection challenge (Everingham et al., 2010), which addresses the detection of 20 object cat-
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egories such as desk, bus, human, or bike, in 2007, 2008 and 2009. This made it the default
framework for object detection research before the introduction of deep learning.

In recent years, it has been shown that learned feature representations extracted by deep
convolutional neural networks (CNN) are vastly superior to even the best handcrafted fea-
tures, like SIFT, HOG, and Haar wavelets. Although the vanilla CNN feature representations
have strong classification performance, their application to object detection requires nontriv-
ial extensions. Unlike classification, object detection requires the solution of two tasks. First,
the detector must solve the recognition problem, distinguishing foreground objects from back-
ground and assigning them the proper object class labels. Second, the detector must solve the
localization problem, assigning accurate bounding boxes to different objects. In this chapter,
we review CNN-based object detection frameworks proposed in the past few years. These
can be split into two major groups: two-stage object detectors, such as the R-CNN (Girshick
et al., 2014), SPP-Net (He et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et
al., 2017), MS-CNN (Cai et al., 2016), FPN (Lin et al., 2017a), and Cascade R-CNN (Cai and
Vasconcelos, 2021), and single-stage object detectors, including YOLO (Redmon et al., 2016),
SSD (Liu et al., 2016) and RetinaNet (Lin et al., 2017b).

2.2 Preliminaries

Most modern object detectors implement a combination of classification and bounding
box regression. Classification attempts to predict the class of the object in a image region,
bounding box regression attempts to determine the region, by predicting the tightest box that
contains the object. Consider a ground truth object of bounding box g associated with class
label y, and a detection hypothesis x of bounding box b. Since b usually includes an object
and some amount of background, it can be difficult to determine if the detection is correct.
This is usually addressed by the intersection over union (IoU) metric

bNng

IoU(b,g) = bUg 2.1)

If the IoU is above a threshold u, x is considered an example of the class of the object of

bounding box g and denoted a “positive” example. Thus, the class label of a hypothesis x is
a function of u,

|y, IoUM,g)>u
Yu _{ 0, otherwise. (2.2)

If the IoU does not exceed the threshold for any object, x is assigned to the background and
denoted a “negative” example.

Although there is no need to define positive/negative examples for the bounding box
regression task, an IoU threshold u is also required to select the set of samples

G ={(g;. b)|IoU(b;, gi) > u} (2.3)

used to train the regressor. While the IoU thresholds used for the two tasks do not have to be
identical, this is usual in practice. Hence, the IoU threshold u defines the quality of a detector.
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FIGURE 2.2 Examples of increasing qualities. The numbers are the IoU of (2.1) between two bounding boxes,
indicating how well they are overlapped with each other.

Large thresholds encourage detected bounding boxes to be tightly aligned with their ground
truth counterparts. Small thresholds reward detectors that produce loose bounding boxes, of
small overlap with the ground truth. Some examples of hypotheses of increasing quality are
shown in Fig. 2.2.

2.3 R-CNN

The R-CNN (Girshick et al., 2014) (Regions with CNN features) was a pioneering effort
on the use of deep neural networks for general object detection. It was the first work to out-
perform DPM-style methods by leveraging powerful CNN feature representations. It also
demonstrated that CNN features pretrained for classification on ImageNet (Russakovsky et
al., 2015) could be successfully finetuned to other downstream tasks, e.g., detection, segmen-
tation, etc.

2.3.1 System design

The R-CNN consists of three modules, shown in Fig. 2.3. Since CNN computations are
expensive, the first step is to generate category-independent region proposals, using Selective
Search (van de Sande et al., 2011). These proposals define the set of candidate detections
available to the detector, reducing the number of detection hypotheses from the order of
millions to thousands. The second step is feature extraction from each proposal region, using
a CNN trained for recognition, e.g., AlexNet (Krizhevsky et al., 2012) or VGG-Net (Simonyan
and Zisserman, 2014). The detected proposals, of arbitrary scales and sizes, are first cropped
and warped to the size of the network input. The resized images are then forwarded through
the CNN and the output of the penultimate network layer is used as feature representation
for each proposal. Finally, the third module, implemented with class specific linear SVMs,
produces class predictions for the proposals. For better localization, additional bounding-box
regressors are applied to refine the bounding boxes of detected objects.

2.3.2 Training

The CNN used for feature extraction is pretrained on the ImageNet (Russakovsky et al.,
2015) classification task, and finetuned to the warped proposal regions used in the detection
task. Finetuning is a K 4 1-way classification problem, with K object categories and one back-
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FIGURE 2.4 The pipeline comparison of R-CNN (top) and SPP-Net (bottom).

ground class (e.g., K = 20 for the VOC dataset (Everingham et al., 2010) and K = 80 for the
COCO dataset (Lin et al., 2014)). Since CNNs are data hungry, it is not sufficient to use the
ground truth only as positive examples. The solution is to use all proposals with ToU above
0.5 with the nearest ground-truth box as positives, and the remainder as negatives. During
training, it is important to keep a balanced ratio between positives and negatives. In practice,
positives and negatives are sampled uniformly from the sample pool with a ratio of 1:3 in
each training batch. Finetuning minimizes the cross-entropy loss

Leis (h (), y) = loghy (x) (2.4)

where x is the proposal to classify, y the class label, and A (x) the classifier. After finetuning,
the category-specific linear SVM classifiers and bounding box regressors are trained on the
proposal features generated by the CNN. This multistage training procedure of feature ex-
traction, CNN fine-tuning with cross-entropy loss, SVM training, and fitting bounding-box
regressors, is slow, tedious and inelegant.

2.4 SPP-Net

While the R-CNN significantly boosted general object detection performance, it is a com-
plex detector, since the expensive CNN computation is repeated for the thousands of propos-
als derived from each single image. As a result, it can take more than 30 seconds to run the
R-CNN detector on each image. Since the proposals extracted from an image share most pix-
els, most of these computations are redundant. This redundancy was reduced by the SPP-Net
(He et al., 2014), which shared computation among proposals.

Different from the R-CNN pipeline, which crops proposals before CNN computation, as
shown in Fig. 2.4 (top), the SPP-Net forwards the whole image through the convolutional
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FIGURE 2.5 The pipeline of SPP-Net for object detection.

layers of the network. Spatial pyramid pooling (Lazebnik et al., 2006) is then used to extract
the fixed-length features of the cropped feature maps associated with each proposal. These
fixed-length features are finally input to a set of fully connected layers for final prediction,
as shown in Fig. 2.4 (bottom). This simple change enables the sharing of the expensive CNN
computations among proposals, and the whole image is processed only once. The impor-
tant operation is the spatial pyramid pooling (SPM), operation of Fig. 2.5, which maps the
instance-wise features of arbitrary scale and size into a fixed-length vector. This was the first
showing that features from of a convolutional feature map can be pooled over a spatial re-
gion to produce an instance-wise feature representation with good properties for instance
recognition. This inspired latter works, such as the Fast R-CNN.

2.5 Fast R-CNN

The SPP-Net inherits the tedious multistage training procedure of R-CNN. This is signifi-
cantly simplified in the Fast R-CNN. In this approach, the extraction of features, fine-tuning
of the network to a new task, instance-wise classification and bounding-box regression are all
integrated into a unified framework, enabling easy to use deep learning based object detec-
tion.

2.5.1 Architecture

The pipeline of the Fast R-CNN is shown in Fig. 2.6. Similar to the SPP-Net, the Fast
R-CNN forwards the whole image through the convolutional layers of a CNN to generate
feature maps. Next, a region of interest (Rol) pooling layer is used to extract a vector of fixed-
length features for each object proposal. Finally, two fully connected (FC) layers are used to
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FIGURE 2.6 Pipeline of Fast R-CNN.

make the final predictions: classification probabilities for K + 1 classes and regression of four
bounding box coordinates. Unlike the R-CNN and the SPP-Net, the Fast R-CNN is trained
end-to-end with a multitask loss, avoiding the tedious multistage training procedure.

2.5.2 Rol pooling

The Rol pooling operation is a simpler version of the spatial pyramid pooling of Fig. 2.5.
Instead of pooling a Rol with height and width (&, w) to different spatial resolutions (1 x 1,
2 x 2 and 4 x 4) and concatenating them together, as in SPP, Rol pooling uses a single H x W
resolution, e.g., 7 x 7. Given a Rol window of size & x w, Rol pooling divides it into H x W
subwindows, each of size h/H x w/W. Max-pooling is then used inside each subwindow to
extract the largest feature value. This process is applied independently to each feature map
channel. Although Rol pooling is simpler than SPM, it can still effectively extract a powerful
feature representation for proposals of arbitrary size and scale from the precomputed convo-
lutional feature maps. This is the critical requirement for object detection.

2.5.3 Multitask loss

The Fast R-CNN is trained with two learning tasks: classification and bounding box regres-
sion. These are jointly optimized during training with recourse to a multitask loss function

L = LCIS (h(x)v y) + )"[y Z l]Ll()C(f(xv b), g)v (25)

where A controls the balance between the two requirements. [y > 1] equals to 1 when y > 1
and 0 otherwise, meaning that there is no bounding box regression loss for background class.

Classification

The classifier is a function A (x) that assigns an image patch x to one of K + 1 classes, where
class 0 contains background and the remaining classes the objects to detect. A(x) isa K + 1-
dimensional estimate of the posterior distribution over classes, i.e., hx(x) = p(y = k|x), where
y is the class label. L is the cross-entropy loss of (2.4).
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Bounding box regression

A bounding box b = (by, by, by, by) contains the four coordinates of an image patch x.
Bounding box regression aims to regress a candidate bounding box b into a target bounding
box g, using a regressor f(x, b). The regression loss function is

Liec(@b)= Y smoothr,(ai — b, (2.6)
ie{x,y,w,h}

where

0.5x2,  |x| <1,

smoothr, (x) = { |x| — 0.5, otherwise,

(2.7)
is the smooth L loss function. It is a combination of L; and L, losses, which behaves as L
loss when |x| < 1 and L, loss otherwise. It fixes the nonsmooth behavior of L loss, i.e., the
gradient is —1 when x is negative and +1 otherwise. The smooth L; loss could enable more
stable learning behavior.

To encourage invariance to scale and location, smoothy, operates on the distance vector
A = (84, 8y, 8w, 8,) defined by

8y = (gx — bx)/bw, 8y =1(gy —by)/bp

5 = log(gu/bu). 8 = log(gh/bn). 28)

Since bounding box regression usually performs minor adjustments on b, the numerical val-
ues of (2.8) can be very small. This usually makes the regression loss much smaller than the
classification loss. To improve the effectiveness of multitask learning, A is normalized by its
mean and variance, e.g., 8, is replaced by

Ox — Mx

/
8, =
Ox

(2.9)

2.5.4 Finetuning strategy

Sampling

Both the R-CNN and SPP-Net sample Rols. This could lead to very inefficient training,
since Rols are extracted from different images and each image requires a full CNN forward
computation. To avoid the problem, the Fast R-CNN first samples N images, from which it
then samples R Rols per image. By choosing N <« R itis possible to only require CNN compu-
tations for a small number (N) of images. However, this raises the concern that the sampled
Rols are correlated, which could slow down training convergence. In practice, however, this
strategy has been found to work well (Girshick, 2015; Ren et al., 2017). The Rols are sampled
from each image so as to produce 25% positive and 75% negative training examples.

Back-propagation through Rol pooling

Another important improvement of the Fast R-CNN over the SPP-net was the backpropa-
gation of the gradient through the Rol pooling layer. In the absence of this, the convolutional
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FIGURE 2.7 The architecture of Faster R-CNN.

layers below the Rol pooling layer will not be finetuned to the detection task, as is the case for
the SPP-net. Since, in Rol pooling, each output feature is the max-pooling of the correspond-
ing subwindow on the feature map, the back-propagation computations reduce to those of
the max-pooling operation. Namely, the output gradient is only back-propagated to the po-
sition of largest max feature value in the subwindow. This strategy is applied to every Rol
feature of every region proposal.

2.6 Faster R-CNN

The SPP-Net and Fast R-CNN significantly improved the running speed of the R-CNN,
from about 30 to about 2 seconds per image. They made the generic proposal detection stage,
which relied on low-level features, like pixels and edge, and ran on a CPU, the speed bottle-
neck. For example, the selective search proposal detector requires about 2 seconds per image.
The Faster R-CNN addressed this problem, by introducing a region proposal network (RPN)
that runs GPUs and shares feature computations with the Fast R-CNN network.

2.6.1 Architecture

As shown in Fig. 2.7, the Faster R-CNN consists of two modules: a region proposal network
(RPN) that proposes regions and is fully convolutional, and the Fast R-CNN detector that
classifies these proposals. Unlike the R-CNN and Fast R-CNN frameworks, the entire system
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FIGURE 2.8 The illustration of Region Proposal Network.

is a single, unified and end-to-end network for object detection. Since the RPN shares most of
its computations with the Fast R-CNN network, the RPN adds little additional computational
cost. This allows the Faster R-CNN to eliminate the proposal generation time and runs in real-
time on a modern GPU.

2.6.2 Region proposal networks

Region proposals are detected by sliding a small network over the convolutional feature
map, as shown in Fig. 2.8. This small network is implemented with a 256-dim 3 x 3 convolu-
tional layer, a ReLU layer and two fully-connected sibling output layers. Similar to the final
output layers of Fast R-CNN, the first output layer is for binary (foreground v.s. background)
classification, and the second one for bounding box regression. This produces an “objectness”
score and 4 coordinates for a given anchor. According to the objectness score, the top 300 pro-
posals are generated by RPN, and will be used in the later Fast R-CNN stage.

Anchors

Each sliding-window location should, in principle, generate a single prediction, since each
location on the feature map corresponds to a single location on the input image. However,
the RPN simultaneously predicts k region proposals per each sliding-window location, to
account for different object sizes and aspect ratios. This is possible with the concept of anchors.
At a single location, a proposal prediction is associated with an anchor, which is centered at
the center of the sliding window and has its own scale and aspect ratio. A common practice
is to use k = 9 anchors, of 3 different scales and 3 different aspect ratios, per single sliding
window location. Each anchor produces a 6-dim proposal, with four dimensions encoding
coordinates for bounding box regression and the remaining two foreground and background
class probabilities.
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Training

The loss function of the RPN is the same as (2.5). Anchor bounding boxes are required to
regress to the associated ground truth boxes. To balance the learning, anchors are sampled
during training so that there is a ratio of 1:1 between positive and negative anchors. Note that
the ratio here is different the ratio of 1:3 in the training of Fast R-CNN in Section 2.5, because
the task of RPN is to detect proposals as many as possible. With a higher ratio of positives,
the model will be encouraged to detect more positives. With the top 300 proposals generated
by RPN, the training of the Fast R-CNN detector remains as above. The convolutional feature
computations are shared between the RPN and the Fast R-CNN, and the whole network can
be trained end-to-end by standard backpropagation and stochastic gradient descent (SGD).

2.7 Cascade R-CNN

The detection problem is difficult, partly due to the fact that there are many “close” false
positives, corresponding to “close but not correct” bounding boxes. An effective detector
must find all true positives in an image, while suppressing these close false positives. The
quality of a detection hypothesis is defined by its IoU with the ground truth, and the quality
of a detector as the IoU threshold used to train it.

High quality detection

The challenge is that, no matter the choice of IoU threshold u, the detection setting is highly
adversarial. When u is high, positives contain little background but it is difficult to assemble
large positive training sets. When u is low, richer and more diverse positive training sets are
possible, but the trained detector has little incentive to reject close false positives. In general,
it is very difficult to guarantee that a single classifier performs uniformly well over all IoU
levels. Furthermore, since at inference time the majority of the hypotheses produced by pro-
posal detectors (such as the RPN or selective search) have low quality, the object detector at
the top of the network must be discriminant for lower quality hypotheses. A standard com-
promise between these conflicting requirements is to settle on u = 0.5, which is used in almost
all modern object detectors. This, however, is a relatively low threshold, making it difficult to
train detectors that can effectively reject close false positives.

In general, the detector will only achieve high quality if presented with high quality pro-
posals. This, however, cannot be guaranteed by simply increasing the threshold u during
training. On the contrary, forcing a high value of u usually degrades detection performance.
This problem, i.e., that training a detector with higher threshold leads to poorer performance,
is referred as the paradox of high-quality detection. It has two causes. First, object proposal mech-
anisms tend to produce hypotheses distributions heavily imbalanced towards low quality. As
a result, the use of larger IoU thresholds during training exponentially reduces the number
of positive training examples. This is particularly problematic for neural networks, which
are very example intensive, making the “high u” training strategy very prone to overfitting.
Second, there is a mismatch between the quality of the detector and that of the hypotheses
available at inference time. Since high quality detectors are only optimal for high quality hy-
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(a) Faster R-CNN (b) Cascade R-CNN

FIGURE 2.9 Cascade R-CNN is the multistage extension of Faster R-CNN. “1” is input image, “conv” backbone
convolutions, “pool” region-wise feature extraction, “H” network head, “B” bounding box, and “C” classification.
“B0” is proposals in all architectures.

potheses, detection performance can degrade substantially for hypotheses of lower quality.
The Cascade R-CNN addresses this problem, so as to enable object detectors of high quality.

2.7.1 Architecture

The Cascade R-CNN (Cai and Vasconcelos, 2021) is a multistage extension of the Faster R-
CNN, as shown in Fig. 2.9. Rather than a single detector, it uses a cascade of detector stages,
which are sequentially more selective against close false positives. The IoU thresholds are
typically 0.5, 0.6 and 0.7 for the different detection heads. The cascade of R-CNN stages is
trained sequentially, using the output of one stage to train the next. This leverages the ob-
servation that the output IoU of a bounding box regressor is almost always better than its
input IoU. As a result, the output of a detector trained with a certain IoU threshold is a good
hypothesis distribution to train the detector of the next higher IoU threshold. By adjusting
bounding boxes, each stage aims to find a good set of close false positives for training the
next stage. The main outcome of this resampling is that the quality of the detection hypothe-
ses increases gradually from one stage to the next. As a result, the sequence of detectors
addresses the two problems underlying the paradox of high-quality detection. First, because
the resampling operation guarantees the availability of a large number of examples for the
training of all detectors in the sequence, it is possible to train detectors of high IoU without
overfitting. Second, the use of the same cascade procedure at inference time produces a set
of hypotheses of progressively higher quality, well matched to the increasing quality of the
detector stages. This enables higher detection accuracies.

2.7.2 Cascaded bounding box regression

Since it is difficult for a single regressor to perform uniformly well over all quality levels,
the regression task is decomposed into a sequence of simpler steps in the Cascade R-CNN.
This consists of a cascade of specialized regressors

fOb)= fro fr-1o---o fi(x,b), (2.10)
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FIGURE 2.10 Distribution of the distance vector A of (2.8) (without normalization) at different cascade stages.
Top: plot of (8x, 8y). Bottom: plot of (8, 8;,). Red dots are outliers for the increasing IoU thresholds of later stages,
and the statistics shown are obtained after outlier removal.

where T is the total number of cascade stages. The key point is that each regressor f; is
optimized for the bounding box distribution {b’} generated by the previous regressor, rather
than the initial distribution {b'}. In this way, the hypotheses are improved progressively. The
efficacy of cascade regression is illustrated in Fig. 2.10, which presents the distribution of the
regression distance vector A = (8, 8y, 8w, 8,) of (2.8) at different cascade stages. Note that
most hypotheses become closer to the ground truth as they progress through the cascade.

2.7.3 Cascaded detection

It is difficult to train a high quality detector directly. The Cascade R-CNN addresses the
problem by leveraging cascade regression as a resampling mechanism. Starting from exam-
ples {(x;,b;)}, cascade regression is used to successively resample an example distribution
{(x., b))} of higher IoU. This enables the sets of positive examples of the successive stages to
keep a roughly constant size, as the detector quality u is increased.

At each stage ¢, the R-CNN head includes a classifier #; and a regressor f; optimized for
the corresponding IoU threshold u’, where u’ > u’~!. These are learned with loss

L(X', g) = Las(he(X'), ") + A[y" = 1]Lioc(fi (X', b"), 8), (2.11)
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FIGURE 2.11 (a) Image pyramid: features are computed on each image scale independently. (b) Single feature
map: object detection operates on only single scale feature map in CNN. (c) Feature pyramid: a pyramid of features
for multiscale detection but with a single scale of image input. (d) Feature Pyramid Network (FPN): FPN adds
top-down connections to feature pyramid of (c), enabling more scale-invariant semantic feature representation at
different scales.

whereb’ = f,_1(x~1, b’ -, g is the ground truth object for x’, » = 1 the trade-off coefficient, y’
the label of x' under the u’ criterion, according to (2.2), and [-] the indicator function. Note that
the use of [-] implies that the IoU threshold « of bounding box regression is identical to that
used for classification. This cascaded learning has two important consequences for detector
training. First, the potential for overfitting at large IoU thresholds u is reduced, since positive
examples become plentiful at all stages. Second, detectors of deeper stages are optimal for
higher IoU thresholds. This simultaneous improvement of hypotheses and detector quality
enables the Cascade R-CNN to beat the paradox of high quality detection. At inference, the
same cascade is applied. The quality of the hypotheses is improved sequentially, and higher
quality detectors are only required to operate on higher quality hypotheses, for which they
are optimal.

2.8 Multiscale feature representation

Recognizing objects at various scales is a fundamental challenge in computer vision.
A classical solution in the literature is to rely on image pyramids, such as those shown in
Fig. 2.11(a), where the original image is resized to different scales from which features are
extracted (Viola and Jones, 2004; Felzenszwalb et al., 2010; Dollér et al., 2014). By applying a
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FIGURE 2.12 In natural images, objects can appear at very different scales, as illustrated by the yellow bounding
boxes. A single receptive field of a fixed-size filter (shown in the shaded area) cannot match this variability.

fixed scale detector to all the pyramid feature representations it is then possible to detect ob-
jects at different scales, without loss of accuracy. Small (large) objects are detected in the large
(small) resolution channels of the feature pyramid. Nevertheless, building a pyramid of CNN
features is computationally expensive, making this solution impractical for most real appli-
cations. The design of effective CNN feature representations of various scales is an important
research direction for object detection.

Despite the great success of deep learning based object detectors (Girshick et al., 2014;
Girshick, 2015; He et al., 2014; Ren et al., 2017), there has been limited progress towards the
detection of objects at multiple scales. As discussed above, R-CNN, SPP-Net and Fast R-CNN
sample object proposals at multiple scales, using a preliminary attention stage, e.g., Selective
Search (van de Sande et al., 2011), and then warp these proposals to a fixed size supported
by the CNN. This pushes the scale invariance problem to the attention stage, which is not
trained jointly with the CNN. The Faster R-CNN (Ren et al., 2017) addresses the issue of
joint training, using the RPN to generate proposals of multiple scales. However, as shown
in (Fig. 2.11(b)), this is done by sliding a fixed set of filters over a single set of convolutional
feature maps. This creates an inconsistency between objects of variable size and filters of fixed
receptive field. As shown in Fig. 2.12, a fixed receptive field cannot cover the multiple scales
at which objects appear in natural scenes. As a result, detection performance is compromised,
in particular for small objects like that in the center of Fig. 2.12, which are quite difficult to
detect. Several networks have been proposed to extend the two-stage detector architecture by
introducing multiscale extensions of the RPN.

2.8.1 MS-CNN

The MS-CNN was proposed to address the problem of multiscale object detection. It
pursues an alternative strategy to the expensive computation of image pyramids, leverag-
ing the fact that deep neural networks already compute a feature hierarchy layer by layer.
Given that higher-level layers are subsampled, this hierarchy even has a multiscale pyra-
midal structure. Hence, the inconsistency between the sizes of objects and receptive fields
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FIGURE 2.13 The feature pyramid architecture of the MS-CNN. The cuboids are the output tensors of the net-
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coordinates.

can be addressed by simply adding output layers at multiple stages of the network, as
shown in Fig. 2.11(c). In this way, the MS-CNN implements several detectors that specialize
in different scale ranges. While detectors based on lower network layers, such as “conv-3,”
have smaller receptive fields and are better matched to detect small objects, those based on
higher layers, such as “conv-5,” are best suited for the detection of large objects. The com-
plementary detectors at the outputs of different layers are combined into a strong multiscale
detector.

2.8.1.1 Architecture

The detailed architecture of the MS-CNN proposal network is shown in Fig. 2.13. The
network detects objects through several detection branches, which are merged into a final
set of proposals. It has a standard CNN trunk, depicted in the center of the figure, and a
set of output branches, which emanate from different layers of the trunk. These branches
consist of a single detection layer. Note that a buffer convolutional layer is introduced on the
branch that emanates after layer “conv4-3”. Since this branch is close to the lower layers of
the trunk network, it affects their gradients more than the other detection branches. This can
lead to some instability during learning. The buffer convolution prevents the gradients of the
detection branch from being back-propagated directly to the trunk layers.

During training, the parameters W of the multiscale proposal network are learned from
a set of training samples § = {(X;, Y,-)}f.V: » Where X; is a training image patch, and Y; =
(yi, bi) the combination of its class label y; € {0,1,2,---, K} and bounding box coordinates
bi = (b}, biy b, bf‘). This is achieved with a multitask loss

M
LW) = Z Z oaml™(X;, Yi[W), (2.12)

m=1ieS"
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where M is the number of detection branches, /" the multitask loss combining classification
and bounding box regression of (2.5), «;,, the weight of loss I”*, and § = {S 162 ... SM} where
S§™ contains the examples of scale m. Note that only a subset $™ of the training samples,
selected by scale, contributes to the loss of detection layer m.

2.8.2 FPN

Although the feature pyramid of Fig. 2.11(c) improves the representation of different
object scales, it introduces a large semantic gap between these representations. While high-
resolution maps contain information about features of low-level semantics, such as edges,
corners, etc., low-resolution maps convey semantically rich information, such as object cate-
gory. Hence, high-resolution (low-resolution) maps are mostly informative of object location
(identity). By asking all feature representations to contribute to the localization and classifi-
cation tasks, the architecture of Fig. 2.11(c) can have suboptimal detection performance.

To reduce these semantic gaps, the feature pyramid network (FPN) adds a top-down con-
nection from the high-level (semantically richer) feature maps to the low-level (semantically
poorest) feature maps, as shown in Fig. 2.11(d). This ensures that the feature pyramid has
strong semantics at all pyramid levels. Like Fig. 2.11(c), the FPN is an in-network pyramid
and thus efficient, but the top-down connections increase its representation power.

2.8.2.1 Architecture

The major difference between the FPN and standard bottom-up classification networks,
like the ResNet (He et al., 2016), is the addition of a top-down pathway, to enable semantically
rich feature pyramids. This is implemented with a simple set of building blocks, shown in
Fig. 2.14.

Bottom-up pathway

A standard feed-forward network is naturally a bottom-up pyramid, due to the use of
downsampling operations like pooling, convolution with stride of 2, etc. In general, the
resolution of feature maps is reduced by 2 times at every network stage, where a stage is
defined as a sequence of layers with the same resolution. The FPN builds on the ResNet, ex-
tracting the bottom-up pyramid from the activations of the last layer of each ResNet stage.
Specifically, the outputs of layers conv2, conv3, conv4, and conv5 of the ResNet, denoted as
{C2, C3, C4, Cs}, are used to create a pyramid of stride {4, 8, 16, 32} pixels with respect to the
input image.

Top-down pathway and lateral connections

The goal of the FPN is to enrich the semantics of the low-level feature maps. A simple
way to do this is to add the high-level feature maps, of strong semantics, to the low-level
ones. Since higher level feature maps have lower resolution, they are first upsampled spa-
tially by a factor of two, using nearest neighbor sampling. Before the summation, the lower
layer feature maps are fed to a 1 x 1 lateral convolutional layer, in order to ensure that
both feature maps have the same channel dimensions. The feature maps are then summed
element-wise and a 3 x 3 convolution is applied to generate the final feature map, so as to
avoid potential aliasing due to the upsampling operation. There are no nonlinearities in these
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FIGURE 2.14 FPN building block.

extra layers. The procedure is iterated from the top to the bottom of the pyramid, i.e., layers
{C2, C3, C4, Cs}, to produce the final FPN pyramid of layers { P>, P3, P4, Ps}, each containing
256 channel dimensions. Each layer P; corresponds to layer C; of the same resolution. To en-
sure that all FPN pyramid levels possess the same semantics, the classification and bounding
box regression layers are shared across different levels, to produce the final predictions for all
scales.

Since two-stage object detectors, such as those discussed above, require Rol pooling to
extract the instance-wise features processed by the second stage, they are not fully convolu-
tional, which complicates their hardware implementation. Although accurate, these detectors
can only achieve speeds of 10-20 frames per second (fps) on modern GPUs. Higher detection
speeds usually require more hardware friendly architectures, typically fully convolutional
and containing a single-stage. A number of such architectures have been proposed in the lit-
erature, including YOLO (Redmon et al., 2016), SSD (Liu et al., 2016), and RetinaNet (Lin et
al., 2017b). Single-stage detectors usually trade-off accuracy for speed.

2.9 YOLO

You only look once (YOLO) (Redmon et al.,, 2016) was one of the first and is still the
most popular single-stage object detector. It gained popularity mainly due to its high speed,
more than 50 fps on a modern GPU. However, its accuracy is significantly lower than the
state of the art for two-stage detectors. The first version of YOLO did not use anchors, as
in Faster R-CNN, which were only introduced in later versions. Its computations are il-
lustrated in Fig. 2.15. The input image is divided into S x S cells, and B predictions are
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made per cell x. A cell is considered responsible for an object if and only if the center of
the ground truth bounding box of the object is located inside it. Each prediction consists of
four bounding box coordinates x, y, w and % and an objectness score p(o = 1|x). The latter
reflects the confidence that the predicted box includes an object and is ideally equal to the
IoU between the predicted box and the object ground truth box. If no object exists in the
cell, the objectness score should be 0. The confidence prediction for class k is then defined
as

p(y=k|x)=p(y=klo=1,x)p(o=1|x), (2.13)

where p(y =k|o =1, x) is the class conditional probability of class k appearing in cell x given
that the cell contains an object. However, a single set of C class conditional probabilities is
shared by the B predictions of the cell, i.e., all predictions in a cell have the same class con-
ditional probabilities. A typical implementation of YOLO, for the detection of the 20 object
classes of the Pascal VOC dataset (Everingham et al., 2010), uses S =7, B =2 and C = 20, for
a total of 7 x 7 x 30 predictions.

Backbone design

One of the reasons behind YOLO's efficiency is its backbone network, called DarkNet. This
is inspired by the GoogLeNet (Szegedy et al., 2015) architecture, containing 24 convolutional
layers followed by 2 fully connected layers, implemented with a combination of 1 x 1 channel

reduction and 3 x 3 convolutional layers, whose implementation is optimized in modern
GPUs.
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2.10 SSD

SSD (Liu et al., 2016) is another popular single-stage object detector. It is as fast as YOLO
but has much higher accuracy, especially for small objects. The major differences are the use
of the multiscale feature pyramid of Fig. 2.11(c) and RPN anchors.

2.10.1 Architecture

The backbone network is a standard image classification network (without the final classi-
fication layer), e.g., the VGG-Net (Simonyan and Zisserman, 2014). Some auxiliary layers are
added to this backbone network to produce detection predictions. The overall architecture is
shown in Fig. 2.16.

Multiscale detection

Similarly to the MS-CNN, SSD uses the hierarchical feature representations of Fig. 2.11(c)
for multiscale detection. As shown in Fig. 2.16, detections are generated from the feature maps
of layers Conv4_3, Conv6, Conv7, Conv8_2, Conv9_2, Convl0_2 and Convll_2, which have dif-
ferent resolutions. For the reasons discussed above, this enables the detection of more objects
and higher accuracy for the detection of small objects. Similar to the RPN (Ren et al., 2017),
the SSD predictor applied to each convolution feature map is composed of an additional 3 x 3
convolution layer, whose outputs are class scores and bounding box offsets relative to anchor
positions.

Anchor boxes

Similar to the RPN, there are k anchors at a given location, and ¢ class scores and 4 coor-
dinate offsets are predicted per anchor. Hence, a feature map of # x w resolution produces
(¢ +4) x k x h x w outputs. This is equivalent to applying RPN on multiple feature maps
and helps understand why single-stage detectors are in general less accurate than two-stage
detectors: they are similar to the proposal generation stage of the latter. When comparing the
SSD to the RPN implemented by the MS-CNN, the main difference is that the RPN is class-
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agnostic, i.e., ¢ =2, while the SSD is class-specific, making c¢ + 1 class predictions, e.g., c =21
for the VOC dataset (Everingham et al., 2010).

2.10.2 Training

SSD uses a multitask loss function similar to (2.5), combining classification and bounding
box regression terms. For more accurate detection, it also uses hard negative mining and
strong data augmentation during training.

Hard negative mining

A difficulty of object detection is that most negative samples, e.g., sky, are easy to classify.
If too many simple negatives are included in the training, the detector will underperform for
hard negatives (negatives that are visually similar to positives). This problem is more serious
for single-stage detectors, which lack the effective resampling implemented by the second
stage. Hard negative mining is a sampling mechanism, widely used in object detection prior
to the emergence of deep learning (Viola and Jones, 2004; Felzenszwalb et al., 2010; Dollar et
al., 2014), designed to combat this problem. To create the pool of negatives, SSD sorts negative
samples by higher to lower confidence scores (higher meaning that the example is harder to
classify), and selects the top ones needed to achieve a ratio of 1:3 between positives and neg-
atives, similar to the sampling of Fast R-CNN. This makes the detector more discriminative
of hard negative samples.

Data augmentation

Insufficiency of training data is another problem for deep learning based object detection,
which can be addressed by data augmentation. In SSD training, each image is randomly aug-
mented by either 1) keeping the original image; 2) cropping a patch of minimum IoU with
the object in {0.1,0.3,0.5,0.7,0.9}; or 3) cropping a random patch. The size (aspect ratio) of
the random patch is chosen randomly to be in [0.1, 1] of the original image size (in {1, 2}).
After cropping, the patch is resized to the fixed square size (e.g., 512 x 512) with randomly
horizontal flipping, to be forwarded to the network. Beyond spatial augmentation, some aug-
mentations are also applied in the color space.

2.11 RetinalNet

While hard negative sampling addresses the imbalance between easy, e.g., sky, and hard
negatives, it is only mildly effective for deep learning detectors. The RetinaNet (Lin et al.,
2017b) instead proposes a generalization of the cross-entropy loss, denoted as the focal loss,
that downweighs easy negatives and emphasizes hard ones.

2.11.1 Focal loss

The cross entropy (CE) loss for binary classification is
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CE(p;) = —log(p:)

FL(p:) = —(1 — pr)” log(ps)

[6)]
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FIGURE 2.17 Focal Loss visualizations of different y. Setting y > 0 downweighs the losses of well-classified exam-
ples (p; > 0.5), putting more focus on hard misclassified examples.

—log(p) ify=1

) (2.14)
—log(l1 — p) otherwise,

CE(p,y)={

where y € {£1} is the ground-truth label and p = p(y = 1]x) € [0, 1] the probability for class
y = 1. Define p; as

ify=1
p=1\" o (2.15)
1 —p otherwise.

This can be expressed as CE(p, y) = CE(p;) = —log(p;) and is plotted in Fig. 2.17 (top blue
curve, with y = 0). It can be observed that a sample easily classified (e.g., with p; > 0.5)
still has nontrivial loss magnitude. When the majority of the training samples are easy, they
dominate the overall loss, overwhelming the contributions of hard samples.

The Focal Loss generalizes the CE loss by inserting a modulating factor (1 — p;)” of tunable
parameter y > 0,

FL(pr)=—(1— p)?log(ps). (2.16)

This factor changes the loss as shown in Fig. 2.17. While for small p, (hard examples) the loss
does not change much, it decays to zero much faster for large p, (easy examples), especially
for large values of y. Hence, easy samples contribute less to the overall loss. For example,
when y =2, an easy example with p; = 0.9 will have a 100-times lower contribution under
the focal than under the cross-entropy loss. The downweighing rate is controlled by the hy-
perparameter y, with larger y inducing heavier downweighing, as shown in Fig. 2.17. In
practice, it has been found that y = 2 tends to work best.
In general, the focal loss is balanced by another hyperparameter o,

FL(py) =—a,(1 - p)? log(py). (2.17)
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TABLE 2.1 Performances of the advanced object detectors on COCO.
backbone speed (fps) epoch AP APsg AP7;5 APg APy APg

YOLOv3 DarkNet-53 48.1 273 33.4 56.3 35.2 19.5 36.4 43.6
SSD512 VGG16 30.7 24 294 49.3 31.0 11.7 34.1 449
RetinaNet ResNet-50 244 36 38.7 58.0 415 23.3 42.3 50.3
Faster R-CNN ResNet-50 9.6 36 38.4 58.7 41.3 20.7 427 53.1
FPN ResNet-50 26.3 36 40.2 61.0 43.8 24.2 435 52.0
Cascade R-CNN  ResNet-50 21.8 36 43.6 61.6 474 26.2 47.1 56.9

When this loss is used, the problem of overwhelming easy negatives can be circumvented
during training.

2.12 Detection performances

We finish by briefly comparing the performances of some of the object detectors discussed
above. The R-CNN, SPP-Net, and Fast R-CNN are not included in this comparison since they
are now obsolete and rarely used in practice. Table 2.1 presents a summary of the perfor-
mance of the remaining methods on the COCO dataset (Lin et al., 2014), in terms of speed,
training epochs, and Average Precision (AP). In COCO, AP is averaged over 10 IoU thresh-
olds of 0.50:0.05:0.95, and APsq (at threshold 0.5), AP75 (at threshold 0.75) APg (for small
objects), APy (for medium objects) and AP, (for large objects) provide more performance
details. Note that the more comprehensive metric of AP, averaged over IoU thresholds of
0.50:0.05:0.95, rewards detectors with better localization than the traditional metric of AP5q at
IoU threshold of 0.5. It is clear that single-stage detectors (YOLO and SSD) are faster but much
less accurate than their two-stage counterparts (Faster R-CNN, FPN and Cascade R-CNN).
Among the two-stage detectors, speeds are comparable but the Cascade R-CNN achieves the
highest accuracies. Comparisons of this type can be found in object detection papers and al-
low practitioners to choose the detector with the trade-off between complexity and accuracy
most suited for a given application.

2.13 Conclusion

In this chapter, we have reviewed recent advances in deep learning based object detec-
tion. Broadly speaking, existing methods can be divided into two categories, single-stage
and two-stage. Single-stage methods are faster but less accurate. Two stage-methods com-
bine a proposal network, which is similar to a single-stage detector but class-insensitive, and
a second stage that classifies objects into different classes and refines their bounding boxes.
Many contributions have been made through the years to improve on the performance of
the pioneering R-CNN (Girshick et al., 2014), both in terms of speed and accuracy. These in-
clude concepts that have become important in the detection literature, such as Rol pooling,
multitask losses, the RPN, anchors, cascaded detection and regression, multiscale feature rep-
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resentations, data augmentation techniques, loss functions, etc. While, as shown in Table 2.1,
these contributions have enabled substantial performance improvements, object detectors are
still far from perfect. A large literature also exists in topics not covered in this review, such
as instance segmentation, domain adaptation, or low complexity deep learning architectures,
among several others. Finally, object detection is frequently used as a preliminary stage of
many other vision tasks, including pose estimation, image and video captioning, or visual
question answering, among others. In summary, while current object detectors are orders of
magnitude more effective than those of just a decade ago, much research remains to be done
in this problem of fundamental importance for computer vision.
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CHAPTER POINTS

e Reducing supervision for computer vision e  We specifically focus on active learning for
models is important for scalability and recognition, weakly supervised learning
adaptability. for event localization, domain adaptation

e  We review different methods that have for semantic segmentation, and

been proposed for learning with limited
supervision, and provide results that
justify the methods.

reinforcement learning for subgoal
discovery in training robots for dynamical
tasks.

3.1 Introduction

The recent successes in computer vision have been mostly around using a huge corpus of
intricately labeled data for training recognition models. But, in real-world cases, acquiring
such large datasets will require a lot of manual annotation, which may be strenuous, out
of budget, or even prone to errors. However, a lot of real data that are generated daily can
be acquired at low to no annotation cost. Such data can be unlabeled or contain tag/meta-
data information, termed as weak annotation. Our goal is to develop methods that can learn
recognition models from such data involving limited manual supervision. In this chapter,
we will look into two dimensions of learning with limited supervision — first, reducing the
number of manually labeled data required to learn recognition models, and second, reducing
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the level of supervision from strong to weak which can be mined from the web, easily queried
from an oracle, or imposed as rule-based labels derived from domain knowledge.

In the first dimension of learning with limited supervision, we show that context informa-
tion, often present in natural data, can be used to reduce the number of annotations required.
In the second dimension — reducing the level of supervision — we use weak labels instead of
dense strong labels, for learning dense prediction tasks. We discuss frameworks to learn using
weak labels for action detection in videos and domain adaptation of semantic segmentation
models on images. All of these tasks discussed are static in nature. Continuing in the direc-
tion of learning from weak labels, we explore sequential decision-making problems, where
the next input depends on the current output. We look into the problem of learning robotics
tasks with a small set of expert human demonstrations via decomposing the complex task
into subgoals. Detailed explanation of these approaches follows.

3.2 Context-aware active learning

In recent years, due to advances in technology, a huge amount of visual and text data are
generated daily, which are mostly unlabeled for the purpose of learning machine learning
models. Also, machine learning algorithms are becoming more commonplace in human life.
A large proportion of these algorithms are based on supervised learning which requires a
large quantity of data to be labeled. Moreover, these models need to be updated over time
as new data becomes available in order to dynamically adapt to the different semantic con-
cepts which may drift with time. Manually labeling this continuous flow of data is not only a
tedious task for humans but also prone to incorrect labeling. In such a scenario, it is maybe ad-
vantageous to label only the informative data points, and not label the data points carrying
redundant information. This intuition is supported in works (Lapedriza et al., 2013) which
show that not all data points carry the same amount of information, and choosing the most
informative ones may even lead to better performance than labeling all the data points in the
unlabeled dataset. Active Learning, which has been studied in the literature for the last few
decades has shown immense potential in choosing the informative data points and reducing
the manual labeling effort.

3.2.1 Active learning

Active Learning (Settles, 2012) has been proposed as a solution to the problem of reducing
the amount of manual labeling, without compromising recognition performance. A pictorial
overview of active learning is given in Fig. 3.1. Given a large unlabeled dataset, active learn-
ing methods first choose a small random subset of data and query the human expert to obtain
their labels. These data points are used to learn a prediction model for the task at hand. This
is the initial model. The next job is to choose only a small subset of data points from the
unlabeled set, to get the maximum amount of information possible. Informativeness utility
scores are defined on these unlabeled samples based on the uncertainty of the current model,
data density, etc. These scores are used to choose the samples to label. Generally, active learn-
ing methods are iterative with human-in-the-loop, i.e., computing the informativeness scores,
querying the human to obtain labels, followed by updating the model with the new labeled
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FIGURE 3.1 This figure presents a pictorial overview of the iterative process in Active Learning. It starts with
choosing a few samples from an unlabeled set to query the oracle for manual labeling. The labeled set is then used
to update the prediction model, which is further used to compute the informativeness measure of the remaining
unlabeled samples and in turn select a small subset to annotate.

data points, and again computing the informativeness scores of the unlabeled data points,
as shown in Fig. 3.1. This loop continues either until the annotation budget is exhausted, or
forever, in case of continuous learning where concepts may drift over time and a constant
update of the model is required.

Notations Before looking into the details of each of these steps, let us formalize the notations
to be used hereafter. Consider a classification task with ¢ categories. We learn a model which
given a data point feature x predicts a probability mass function (pmf) pg(y|x) over the c
categories, which is parameterized by 6, which we need to learn. 6 can be a single vector
for linear models or a group of matrices for deep neural networks. To learn that, we have a
labeled set of tuples £ = {(x;., )’i)f'zl} and an unlabeled set I/ = {(xj)‘;:l 1.

Informativeness measures

Most active learning approaches formulate a utility score for each unlabeled sample, based
on which they are chosen for manual labeling. The entropy of the predictions is one of the
most common informativeness measures used in the literature (Settles, 2012; Li and Guo,
2014; Paul et al., 2016). Given a data point x, the entropy can be represented as follows:

c

H(x) =Y —po(y =ilx)log ps(y =ilx) (3.1)

i=1

A higher value of entropy signifies that the classifier is uncertain about the prediction and
thus should be chosen for manual labeling.

Expected change in model parameter gradients (Settles, 2012) is another utility score which
measures the amount of change in gradients possible in the model when a sample x is in-
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cluded in the training set. It is calculated as

G(x)=Zpe(y=i|x)llvel(£U(x,i))llz (3.2)

i=1

where [(.,.) is the loss function used to learn the classification model. A higher amount of
expected gradient change would signify a high amount of information carried in the data
point. Expected model output change (Kading et al., 2016) and expected error rate (Cuong et
al., 2013; Li and Guo, 2013) are also similar measures used in the literature.

Data density (Li and Guo, 2013), which considers the density of the data points in the
feature space, is another important measure for active learning. It can be defined as follows:

1
D(x) = PPRE Z 1 —dist(x, x;) (3.3)
X;€nei(x)
where nei(x) are the neighboring data points of x. A higher value of D(x) would signify that
the data points around x are very close to each other and thus obtaining the label of x would
be beneficial to get an understanding of the surrounding data points as well. Note that this
measure is generally used in conjunction with other measures discussed above. Given these
measures, active learning methods choose the data points for manual annotation as discussed

next.

Selecting informative samples

Selecting informative samples in active learning depends on the application and annota-
tion budget at hand. There are two possible ways of choosing informative samples — serial
where one data point is chosen at a time or batch-mode, where multiple data points are chosen
at a time. After choosing the samples, the model is updated and the new scores are obtained
on the unlabeled data points. Thus, in scenarios where computation is restricted, batch-mode
may turn out to be better, but the serial method may result in better performance.

Most active learning methods consider that the unlabeled dataset is fixed, which may not
be the case in general. Data can be streaming, i.e., appear in small batches. In that case, we
have to select either a certain prespecified portion for manual labeling which is generally
designed based on the annotation budget per batch. A more difficult but useful scenario is
when the total budget for labeling is specified and the algorithm needs to decide on its own
to choose the suitable subset to label for each batch of streaming data. It is interesting to
note that most of the methods discussed above define informativeness measures indepen-
dently for the samples without considering the interrelationships that may occur between
data points. Moreover, these methods consider active learning of one task at a time, and they
cannot sample for multiple recognition tasks at once. These are addressed below.

3.2.2 Context in active learning

In this section we discuss how relationships between data points can be useful in further
reducing the supervision required to learn recognition tasks. We also discuss how we can
devise active learning for multiple recognition tasks simultaneously.
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FIGURE 3.2 A sequence of a video stream from Oh et al. (2011) shows three new unlabeled activities — person
getting out of a car (a;) at T + 0 s, person opening a car trunk (ap) at T 4+ 7 s, and person carrying an object (a3) at
T + 12 s. These activities are spatio-temporally correlated, and this can provide contextual information for a holistic
understanding.

Context in learning

Relationships between data points often occur in the real-world. Such relationships are of-
ten termed as context in the literature. For example, consider the relationship between scenes
and objects. It is unlikely to find a ‘cow’ in a ‘bedroom’, but, the probability of finding ‘bed’
and ‘lamp’ in the same scene may be high. Thus gaining information about a scene can help in
the enhanced prediction of objects and vice versa. Similarly, events/activities in videos may
be spatiotemporally correlated as shown in Fig. 3.2. Note in the figure that without knowl-
edge about activity a; and a3, it is hard to predict whether activity a; is a person getting out of
the car or getting in the car. The relationships with the other activities help to understand that
particular activity. Relationships also occur between documents via hyperlinks or citations.
Several works have shown that in many applications such as activity recognition (Yao and
Fei-Fei, 2010; Wang et al., 2013), object recognition (Galleguillos et al., 2008; Choi et al., 2010),
text classification (Sen and Getoor, 2003; Settles and Craven, 2008), etc, the relationships be-
tween data points can be exploited to get better recognition performance. In many of these
works, Probabilistic Graphical Models (Koller and Friedman, 2009), Structural Support Vec-
tor Machines (SVM) (Cristianini and Ricci, 2008), etc are used for a holistic understanding.
Even in the era of deep learning, Conditional Random Fields (Koller and Friedman, 2009) are
used for better scene understanding.

Context for query selection: motivation

Keeping in mind the global understanding that is offered by utilizing context in data, an
interesting direction is to look at whether context can also be useful for the purpose of re-
ducing the number of labeled samples. The motivation behind this is that in the presence of
context, as the predictions are correlated, can we gather information about a large number
of unlabeled data points while labeling only a few of them. As discussed previously, unlike
methods in the literature that do not consider the contextual information in the informative-
ness measures, context-aware active learning takes into account the context to reduce the
number of annotations.

Although there have been some works that consider relationships between data points in
active learning (Bilgic and Getoor, 2009; Mac Aodha et al., 2014; Hasan and Roy-Chowdhury,
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FIGURE 3.3 This figure presents the flow of the proposed framework. 1. A small set of labeled data is used to
obtain the initial relationship (R) and the classification model (C). 2. As a new unlabeled batch of data becomes
available sequentially over time, we first extract features from the raw data. Then the current C and R models are
used to construct a graph from the data to represent the relationships between them. Then inference on the graph
is used to obtain the node and edge probabilities, which are used to choose the informative samples for manual
labeling. The newly labeled instances are then used to update the models C and R.

2015; Hu et al., 2013), they do not consider the flow of beliefs between data points to have
a joint understanding of their predictions, which may be helpful for choosing the most in-
formative ones. Moreover, most of them are problem-specific algorithms and deal with the
active learning of a single recognition task. A general approach for active learning that con-
siders the interrelationships between data points, and which can be used across a variety of
application domains, is necessary. Joint learning of tasks such as scene-object (Yao et al., 2012;
Wang et al., 2016a) or activity-object (Jain et al., 2015; Koppula et al., 2013) classification may
be required to be learned actively, to reduce the manual labeling effort. In such scenarios, it is
challenging to choose the informative samples for manual labeling as they may belong to dif-
ferent recognition tasks. We next present a framework for such context-aware active learning,
including jointly for multiple tasks.

Context for query selection: overview

Given an unlabeled set, we describe a framework (Paul et al., 2017) that chooses a small
informative subset of data points for manual annotation while exploiting the context informa-
tion, i.e., the structural relationships between them. The flow of the framework is pictorially
presented in Fig. 3.3. The framework starts with a small set of labeled data and uses it to build
the classification (C) and relationship (R) models. R represents the underlying relationship
between the data points via categorical cooccurrence probabilities. Note that the classifica-
tion models may contain multiple classifiers for multiple recognition tasks. After learning the
initial models, given a new batch of unlabeled samples, the goal is to select a subset of infor-
mative samples for manual labeling which can be used to update the current classification
and relationship models.

As new batches of data become available, the samples in the batches are separated into
different sets based on the recognition task to which they belong, followed by feature extrac-
tion. Using the current classifiers, a probability mass function over the possible categories is
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obtained for each unlabeled sample. It is used along with R to construct a graph whose nodes
represent the samples. A message-passing algorithm is used to infer on the graph to obtain
the beliefs of each node and the edges of the graphs. An information-theoretic objective func-
tion is derived, which utilizes the beliefs to select the informative nodes for manual labeling.
The submodular nature of this optimization function allows us to achieve this in a computa-
tionally efficient manner. The newly labeled nodes are used to update the models C and R. It
may be noted that the number of samples selected per batch is nonuniform, dependent on the
information content of each batch.

3.2.3 Framework for context-aware active learning

In this section, we present a framework to utilize contextual information, specifically, cooc-
currence based relationships between data points, in an active learning framework to reduce
the number of manual annotations to learn recognition models.

Data representation

Consider that the unlabeled data points have some underlying structure, i.e., relationships
among them. We take a probabilistic graphical model approach to build a graph whose nodes
represent the unlabeled samples and edges represent the relationships between them and
help as pathways for the flow of information between the nodes. The nodes are represented
using node potentials, which are probability mass function (pmf) predictions from the cur-
rent prediction models (single or multiple for joint tasks). The edges are represented using
edge potentials which are represented as a matrix with cooccurrence frequencies between
categories, which is represented as relationship model R. The computation of the cooccur-
rence frequency is dependent on the application at hand and will be discussed subsequently.
Note that this framework can be applied to any application containing relationships which
can be modeled as edge potentials.

We construct a graph G = (V, E) with the instances in /. Each node in V = {v1, ..., vy}
represents each data point. The edges E = {(i, j)|v; and v; are linked} represent the relation-
ships between the data points. The node and edge potentials are assigned using the current
classification model C and relationship model R. A message-passing algorithm can be used
to infer the node and edge beliefs which are the marginal node probabilities and the pair-wise
joint distribution of the edges respectively. Loopy Belief Propagation (LBP) (Ugm, 2007) can
be used for this purpose.

Selection of informative samples

Using the node and edge probabilities, the goal is to choose a small subset V* C V for
manual labeling, which will improve the current models C and R. We wish to select a subset
of the nodes such that the joint entropy of all the nodes H (V) is minimized. The joint entropy
of all the nodes in the graph can be approximated as follows:

HV)~Y H@)— Y Ijv) (3.4)

vieV (i,j)eE
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Note that the joint entropy of the graph can only be approximated for a cyclic graph in gen-
eral, but the above expression is an exact representation for acyclic graphs. Consider we have
two disjoint vertex subgraphs with vertex V! and V" and edges divided accordingly into E’
and E™. Then using Eq. (3.4), the entropy of the graph can be expressed as follows:

HWV)~H(V')+H(V") - Z 1(vj; v;) (3.5)
(i.j)eE
v,—eV’,vjEV”’

If we choose V! for manual annotation, it can be shown that the first and last terms of the
above equation become zero, which will be the reduction in entropy. Thus we need to choose
the optimal subset V/* such that the entropy is minimized by the maximum extent. Thus, the
optimization problem can be formulated as follows:

v* = argmax [H(Vl) — Z I(vj; v,-)i| (3.6)
v/ (i,j)€E
S't"v |:K viEVl,ijV”l

The above optimization problem is NP-Hard and difficult to solve. Heuristics techniques
such as Branch and Bound can be used to efficiently search for a solution. This method of
optimization is necessary when there is a strict requirement for budget constraints per batch
of data, and we addressed this problem in one of our works (Hasan et al., 2018). However,
each batch of data may contain a nonuniform amount of information, and choosing the same
number of budget-constrained samples (i.e., K) from each batch may not be a good idea
in general. Instead, the number of samples could be determined based on the information
content of each batch. With this motivation, we can modify the above optimization problem
to be unconstrained with a cardinality regularizer as follows:

V’*zargmm[ > I(Uj;vi)—H(V’)+,\|v’|] (3.7)
v (i,j)eE
U,‘EVI,UjEVn[

where A is a positive trade-off parameter. The objective function in Eq. (3.7) can be proved
to be submodular which makes the optimization problem simpler compared to Eq. (3.6).
Submodular Function Minimization (SFM) often arises in fields of machine learning, game
theory, information theory, etc. Detailed description may be found here (McCormick, 2005).
There exist some algorithms which can be used to solve SEM in polynomial time. The popu-
lar Fujishige-Wolfe Min Norm Point algorithm (Fujishige et al., 2006) can be used to solve the
optimization problem.

Model update

After the chosen samples are labeled by a human annotator, we perform inference on the
graph, conditioned on the acquired labels to update the beliefs of the nodes and then we
apply the concept of weak teacher (Zhang and Chaudhuri, 2015), which does not involve the
human. We choose those nodes having the confidence in classification greater than ¢, with
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FIGURE 3.4 The semantic context graphs for three tasks discussed in Section 3.2.4 —joint scene-object recognition
where we utilize the context present between scene and objects in an image, document recognition where the context
relationship information is shared via citations/weblinks, and activity recognition where action sequences share
spatio-temporal relationships.

the corresponding label, to be in the labeled set L. € should be high enough to avoid incorrect
labeling. The classification model C is updated by retraining the classifier using £. Model R
is comprised of only the cooccurrence matrix ¥ and it is incremented using the new labeled
instances.

3.2.4 Applications

In this section, we discuss a few applications where context-aware active learning can be
utilized to reduce the manual labeling effort. We primarily discuss three different applica-
tions — joint scene-object classification, activity recognition, and document classification. As
shown in Fig. 3.4, the applications have data that share relationships among them. We use
linear classifiers such as Support Vector Machine (SVM) (Chang and Lin, 2011) as a baseline
classifier in all the applications discussed next. In active learning, methods are generally com-
pared against the full-set performance, i.e., the performance obtained when all the data points
(except the test set) are labeled and used for training. We also compare with other popular
active learning methods in literature, i.e., Batch Rank (Chakraborty et al., 2015), BvSB (Li et
al., 2012), Entropy (Settles, 2012; Holub et al., 2008), Density-Based Sampling (DENS) (Settles,
2012), Expected Gradient Length (GRL) (Settles and Craven, 2008) and Random Sampling.

Scene-object classification

Scene and objects tend to cooccur in images. Although scene and object classifiers are sep-
arate, their joint understanding can be beneficial (Yao et al., 2012), which can be exploited
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in an active learning framework to reduce manual labeling. This is a special feature of our
framework, as it can actively learn with multiple recognition tasks at once. The SUN dataset
(Choi et al., 2010; Xiao et al., 2010) is good for experimenting with this framework as they
have annotations for both the entire scene as well as the objects in the scene. We extract fea-
tures from pretrained networks VGG-net (Zhou et al., 2014) and Alex-net (Krizhevsky et al.,
2012) for scenes and objects respectively. We use selective search used in the RCNN pipeline
to obtain object proposals. As shown in Fig. 3.4, in joint scene-object recognition, we repre-
sent each image as a graph with a single scene node and multiple object nodes corresponding
to the different object proposals in the image. The graph is considered to be fully connected
with two different types of edges — scene-object and object-object. The edge potential for the
scene-object links is computed as the cooccurrence frequency of a scene category with an ob-
ject category; and for the object-object links, the edge potential is the cooccurrence frequency
between object categories in an image.

In the case of scene classification, the context-aware active learning method requires only
35% manual annotation to reach almost the full-set performance. The other methods in the lit-
erature require about 60% manual annotation to obtain similar performance. For object recog-
nition, the context-aware active learning method requires 45% manual annotation whereas
the methods in the literature need 65% annotation to reach almost the full-set performance.
Our work (Bappy et al.,, 2016) on model adaptation of scene-object recognition showcases
results specific to this application.

Document classification

Documents are generally interlinked by citations and hyperlinks, which may be exploited
using our active learning approach to reduce manual labeling effort. We use the CORA
dataset (Sen et al., 2008) for our experiments on document classification. It consists of 2708
scientific publications divided into seven categories. There are a total of 5429 links (citations)
between the publications. The publications are represented using a dictionary of 1433 unique
words and the feature vectors € {0, 1}!*33 indicate the absence or presence of these words. As
shown in Fig. 3.4, in document classification, we represent all the documents as the nodes
of a graph which are linked if one document cites another document. We consider the edge
potential to be the cooccurrence frequency that a publication of category i cited a publication
of category j.

For document classification, the context-aware active learning method requires only 33%
manual annotation to reach almost the full-set performance (Paul et al., 2017). The other meth-
ods in the literature require about 50% manual annotation to obtain similar performance. This
shows that using the context information helps in reducing the amount of manual annotation
by utilizing information which is readily available with the data points.

Activity classification

Activities are generally spatiotemporally related which can be exploited to reduce the
number of instances chosen for manual labeling. We use the VIRAT dataset (Oh et al., 2011) on
human activity for our experiments on activity classification. The dataset consists of 11 videos
segmented into 329 activity sequences. We extracted features using the pretrained model of
3D convolutional networks (Tran et al., 2015). We extract the features for 16 frames at a time
with a temporal stride of 8 and then apply max pooling along the temporal dimension to ob-
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FIGURE 3.5 An example run of our proposed active learning framework on a part of an activity sequence from
VIRAT dataset (Oh et al., 2011). Circles are activity nodes along with their class probability distribution. Edges have
different thicknesses based on the pairwise mutual information. The node labels are — getting out of the vehicle
(GOV), opening vehicle trunk (OVT), unloading from the vehicle (UOV), closing vehicle trunk (CVT), and getting
into the vehicle (GIV). Inference on the graph (top) gives us marginal probability distribution of the nodes and edges.
We use these distributions to compute entropy and mutual information. Relative mutual information is shown by
the thickness of the edges, whereas entropy of the nodes is plotted below the top CRF. Eq. (3.14) exploits entropy and
mutual information criteria in order to select the most informative nodes (2-OVT, 3-UOV, and 7-OVT). We condition
upon these nodes (filled) and perform inference again, which provides us more accurate recognition and a system
with lower entropy (bottom plot).

tain a single vector for each activity. We consider that there exists a link between two activities
if they occurred within a certain spatio-temporal distance. We consider the edge potential to
be the spatio-temporal cooccurrence between the two activities.

In the case of activity classification, the context-aware active learning method requires only
about 18% manual annotation to reach almost the full-set performance. The other methods
in the literature require about 40% manual annotation to obtain similar performance. Note
that although we utilize the relationships between the action categories for this experiment,
we can also utilize the context information imparted by the objects in the activities, which
are especially important in human-object interaction related activities. Fig. 3.5 provides an
example visualizing the working of the context-aware active learning method. As can be
seen, gaining knowledge about some of the nodes helps to reduce the entropy of the other
nodes, thus reducing manual annotation cost.

3.3 Weakly supervised event localization

Temporal activity localization is a core problem in computer vision, where given a long
video, the algorithm needs to temporally localize the portions of the videos corresponding
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FIGURE 3.6 This figure presents the train-test protocol of weakly supervised action localization. The training set
consists of videos with their video-level activity tags and NOT the temporal annotation. Whereas, while testing, the
network not only estimates the labels of the activities in the video but also temporally locates their occurrence.

to different event categories of interest (Aggarwal and Ryoo, 2011). Its recent success (Xu et
al., 2017; Zhao et al., 2017b) has evolved around a fully supervised setting, which considers
the availability of frame-wise activity labels. However, acquiring such precise frame-wise
information requires enormous manual labor. This may not scale efficiently with a growing
set of cameras and activity categories. On the other hand, it is much easier for a person to
provide a few categorical labels which encapsulate the content of a video. Moreover, videos
available on the web are often accompanied by tags that provide semantic discrimination.
Such video-level labels are generally termed as weak labels, which may be utilized to learn
models with the ability to classify and localize activities in videos, as presented in Fig. 3.6.
In computer vision, researchers have utilized weak labels to learn models for several tasks
including semantic segmentation (Hartmann et al., 2012; Khoreva et al., 2017; Yan et al,,
2017), visual tracking (Zhong et al., 2014), reconstruction (Tulyakov et al., 2017; Kanazawa
et al.,, 2016), video summarization (Panda et al., 2017), learning robotic manipulations (Singh
et al., 2017), video captioning (Shen et al., 2017), object boundaries (Khoreva et al., 2016),
place recognition (Arandjelovic et al., 2016), and so on. The weakly supervised localization
problem is analogous to weak object detection in images, where object category labels are
provided at the image level. There have been several works in this domain mostly utilizing
the techniques of Multiple Instance Learning (MIL) (Zhou, 2004) due to their close relation in
terms of the structure of information available for training. The positive and negative bags
required for MIL are generated by state-of-the-art region proposal techniques (Li et al., 2016;
Jie et al., 2017). In spite of its similarities, temporal localization using weak labels is a much
more challenging task compared to weakly-supervised object detection. The key reason is
the additional variation in content as well as the length along the temporal axis in videos.
Few works in the literature (Bojanowski et al., 2015; Huang et al., 2016) have considered the
availability of temporal order of activities, apart from the video-level labels during training.
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FIGURE 3.7 This figure presents the proposed framework for weakly-supervised activity localization and classifi-
cation. Given a video, we extract features from two streams — RGB and Optical Flow. After concatenating the feature
vectors from the two streams, we learn a few layers specific to the task of weak localization and finally project to the
category space to obtain a T x C matrix where T and C are the number of time steps and categories respectively. We
utilize two loss functions to learn the network parameters — Cross-entropy loss on the temporally pooled predictions,
and CoActivity Loss obtained using a pair of videos containing at least one category in common.

We next formally present the weakly supervised temporal localization task, followed by a
solution to it.

Problem statement Consider that we have a training set of n videos X' = {x;}!_, with variable
temporal duration denoted by L = {/;}_, (after feature extraction) and activity label set A =

are the m;(> 1) labels for the i’ video. We also define the set of

activity categories as S = [JI_, @; = {0} . During test time, given a video x, we need to

{ai}!_,, where a; = {a] }7;1
predict a set xqer = {(5}, ¢, c;, pj)}?(:xl), where 7n(x) is the number of detections for x. 5, e; are
the start time and end time of the j'* detection, c; represents its predicted activity category
with confidence p;. Fig. 3.7 presents an overview of a framework for weakly supervised
temporal event localization, the details of which are progressively discussed next.

3.3.1 Network architecture

We focus particularly on two-stream networks, as they encapsulate the information from
both the appearance features in the RGB stream and motion features in the Optical Flow
stream. We utilize two networks — UntrimmedNets (Wang et al., 2017) pretrained on Imagenet
and I3D (Carreira and Zisserman, 2017) for feature extraction. Please note that the rest of our
framework is agnostic to the features used. The number of frames to send as input to these
networks depends on its architecture. The RGB stream of UntrimmedNets takes 1 frame as
input, whereas its Flow stream takes five frames for every feature vector. In the case of the
I3D network, both the RGB and the Flow stream take in 16 frames for every feature vector.

Natural videos may have large variations in length, from a few seconds to more than an
hour. In the weakly-supervised setting, we have information about the labels for the video
as a whole, thus requiring it to process the entire video at once. This may be problematic for
very long videos due to GPU memory constraints. As a solution to this problem, we send the
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entire video as input, if its length is less than the predefined length 7' determined by the GPU
bandwidth. However, if the length of the video is greater than T, we randomly extract from
it a clip of length T with contiguous frames and assign all the labels of the entire video to
the extracted video clip. It may be noted that although this may introduce some errors in the
labels, this way of sampling does have the advantages of data augmentation and performs
well in practice.

After extracting the video features from the two-stream networks, we obtain a matrix of
dimension X; € RT*2F 'where T is the number of time steps of the video and F are the feature
dimension of RGB and Flow streams, which are concatenated to obtain the features of dimen-
sion 2F. We then pass these features through a fully-connected layer with ReLU nonlinearity
and dropout, followed by a classification layer to finally obtain a matrix of categorical predic-
tions A € RT*€, where C is the number of categories.

3.3.2 k-max multiple instance learning

The weakly-supervised activity localization and classification problem as described above
can be directly mapped to the problem of Multiple Instance Learning (MIL) (Zhou, 2004).
In MIL, individual samples are grouped into two bags, namely positive and negative bags.
A positive bag contains at least one positive instance and a negative bag contains no positive
instance. Using these bags as training data, we need to learn a model, which will be able to
distinguish each instance to be positive or negative, besides classifying a bag. In our case, we
consider the entire video as a bag of instances, where each instance is represented by a feature
vector at a certain time instant. In order to compute the loss for each bag, i.e., video in our
case, we need to represent each video using a single confidence score per category.

For a given video, we compute the activation score corresponding to a particular category
as the average of k-max activation over the temporal dimension for that category. As the num-
ber of videos in a bag varies widely, we set k proportional to the number of elements in the
bag. Thereafter, a softmax nonlinearity is applied to obtain the probability mass function over
all the categories, which allows one to compute a vector of predictions p; over the categories.
We need to compare this pmf with the ground truth distribution of labels for each video in
order to compute the MIL loss (MILL). As each video can have multiple activities occurring
in it, we represent the label vector for a video with ones at the temporal positions if that ac-
tivity occurs in the video, else zero. We then normalize this ground truth vector in order to
convert it to a legitimate pmf. The MILL is then the cross-entropy between the predicted pmf
p; and ground-truth, which can then be represented as follows,

LyiLe = ZZ [ log(p}) (3.8)

11]1

where y; = yl.l, e yic 17 is the normalized ground truth vector representing the weak labels.

3.3.3 Coactivity similarity

The CoActivity Similarity Loss (CASL) enforces constraints to learn better network pa-
rameters for activity localization. The Weakly supervised Temporal Activity Localization and
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Classification (W-TALC) problem motivates us to identify the correlations between videos of
similar categories. Before discussing in more detail, let us define category-specific sets for the
j’h category as, S; = {x; |3 af €a;,s.t. af =}, i.e., the set §; contains all the videos of the
training set, which has activity «; as one of its labels. Ideally, we may want the following
properties in the learned feature representations X; discussed in Section 3.3.1.

* A video pair belonging to the set S; (for any j € {1,..., C}) should have similar feature
representations in the portions of the video where the activity «; occurs.

¢ For the same video pair, the feature representation of the portion where «; occurs in one
video should be different from that of the other video where «; does not occur.

These properties are not directly enforced in the MILL. Thus, we introduce CoActivity Simi-
larity Loss to embed the desired properties in the learned feature representations. As we do
not have frame-wise labels, we use the category-wise activations A to identify the required
activity portions. The loss function is designed in a way that helps to learn simultaneously
the feature representation as well as the label space projection. We first normalize the per-
video category-wise activations scores along the temporal axis using softmax nonlinearity to
obtain A at time  and category j as Ailj. 11 =exp(Ailt, j1)/ Z?’:l exp(A;[t, j]) where ¢ indi-
cates the time instants and j € {1, ..., C}. We refer to these as attention, as they attend to the
portions of the video where the activity of a certain category occurs. A high value of attention
for a particular category indicates its high occurrence-probability of that category. In order
to formulate the loss function, let us first define the category-wise feature vectors of regions
with high and low attention as follows:

Hf,j =X, Al j]
. 1 A
Pl = Xi(1- AL ) (3.9)
where # f/.L f/ ¢ R2™8 represents the high and low attention region aggregated feature rep-

resentations respectively of video i for category j. In order to enforce the two properties
discussed above, we use the ranking hinge loss. Given a pair of videos x,, x, € S;, the loss
function may be represented as follows:

1 . . . .
oy = 2 {max(0.d[" f7,." f7] = d[" £ " f7] +9)
+max(0,d[? £, 7 f2] = a[F £, £1]+5)) (3.10)

where d[] is the cosine distance and § is the margin parameter and we set it to 0.5 in our
experiments. The two terms in the loss function are equivalent in meaning, and they represent
that the high attention region features in both the videos should be more similar than the high
attention region feature in one video and the low attention region feature in the other video.
The total loss for the entire training set is computed for every pair of videos having at least
one category in common. The two loss functions in Eq. (3.8) and (3.10) can be optimized
jointly to learn the network parameters.
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Localization After learning the weights of the network, we use them to localize the events in
a video during test time. Given a video, we obtain the category-wise confidence scores .A. For
every category, we obtain a threshold, which is the middle point between the maximum and
minimum activations for that category, and use that to threshold the activations to obtain the
localizations.

3.3.4 Applications

In this section, we understand the efficacy of the proposed framework for activity localiza-
tion and classification from weakly labeled videos. We first discuss the datasets, followed by
the implementation details, quantitative, and some qualitative results.

Datasets

We perform experimental analysis on two datasets namely ActivityNet v1.2 (Heilbron et
al., 2015) and Thumos14 (Idrees et al., 2017). These two datasets contain untrimmed videos
with frame-wise labels of activities occurring in the video. However, as our algorithm is
weakly-supervised, we use only the activity tags associated with the videos. The ActivityNet
v1.2 dataset has 4819 videos for training, 2383 videos for validation, which we use for testing.
The number of categories involved is 100, with an average of 1.5 temporal activity segments
per video. The Thumos14 dataset has 200 validation videos, which we use for training, and
212 test videos divided into 20 categories. Among these videos, 200 validation videos and 213
test videos have temporal annotations belonging to 20 categories. Although this is a smaller
dataset than ActivityNet1.2, the temporal labels are very precise and have an average of 15.5
temporal activity segments per video. This dataset has several videos where multiple activi-
ties occur, thus making it even more challenging. The length of the videos also varies widely
from a few seconds to more than an hour. The lower number of videos makes it challenging
to efficiently learn the weakly-supervised network.

Activity localization

To compare the performance of activity localization, Mean Average Precision (mAP) at
different Intersection over Union (IoU) thresholds between the predicted and the ground
truth localization is used. For Thumos14, we discuss the average mAP for IoU thresholds
€{0.1,0.2,0.3,0.4,0.5}. The results are presented in Table 3.1. The table is divided into three
rows: (a) methods using strong supervison, i.e., using temporal annotations for every action
that appears in the videos, (b) methods using weak supervision in literature, and finally (c) re-
sults of the method proposed in Paul et al. (2018). So, even with weak labels, which are much
easier to acquire, our algorithm in Paul et al. (2018) is able to perform close to methods with
strong labels, which involves a huge amount of manual labeling cost. It is important to note
that although the Kinetics pretrained I3D features (I3DF) have some knowledge about activ-
ities, using only MILL as in Wang et al. (2017) along with I3DF performs much worse than
combining it with CASL, viz. 33.1 vs 39.8. In the case of ActivityNet v1.2, our method per-
forms on average 18, whereas methods utilizing strong supervision such as SSN perform 24.8.
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TABLE 3.1 Detection performance comparisons on Thumos14. UNTF & I3DF are
abbreviations for UntrimmedNet features (ImageNet pretrained features) and I3D fea-
tures respectively.

Supervision Methods Avg. IoU 0.1:0.1:0.5
Stron R-C3D (Xu et al., 2017) 43.1
J SSN (Zhao et al., 2017b) 474
UntrimmedNets (Wang et al., 2017) 29.0
Weak STPN (UNTF) (Nguyen et al., 2018) 30.9
STPN (I3DF) (Nguyen et al., 2018) 349
MILL+CASL+UNTF 33.8

Weak (Paul et al., 2018
eak (Pauletal, 2018) /111 CASLAI3DF 39.8

TABLE 3.2 Classification performance comparisons on Thumos14. UNTF & I3DF are
abbreviations for UntrimmedNet features (ImageNet pretrained features) and I3D features

respectively.

Supervision = Methods Thumos14 ActivityNet-1.2

Strong TSN (Wang et al., 2016b) 72.0 86.3

Weak UntrimmedNets (Wang et al., 2017) 82.2 91.3
MILL+CASL (Paul et al., 2018) 85.6 93.2

Activity classification

We now present the performance of our framework for activity classification. We use
mean average precision (mAP) to compute the classification performance from the predicted
videos-level scores p after applying softmax. The results are presented in Table 3.2. It shows
that the proposed method (Paul et al., 2018) performs significantly better than other state-
of-the-art approaches video classification methods. This can be partially attributed to the
features used, but most importantly to the way learning is considered in weakly supervised
localization techniques, which ignore the background regions while classifying the videos
with their content activity.

Qualitative results

We present a few interesting example localizations with ground truths in Fig. 3.8. The
figure has two examples from Thumos14 and two from the ActivityNetl.2 dataset. To test
how the proposed framework performs on videos outside the aforementioned datasets, we
tested the learned networks on randomly collected videos from YouTube. We present two
such example detections in Fig. 3.8, using the model trained on Thumos14.

The first example in Fig. 3.8 is quite challenging as the localization should precisely be the
portions of the video, where Golf Swing occurs, which has very similar features in the RGB
domain to portions of the video where the player prepares for the swing. In spite of this, our
model is able to localize the relevant portions of Golf Swing, potentially based on the flow
features. In the second example from Thumos14, the detections of Cricket Shot and Cricket
Bowl appear to be correlated in time. This is because Cricket Shot and Bowl are two activities
that generally cooccur in videos. To have fine-grained localization for such activities, videos
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FIGURE 3.8 This figure presents some detection results for qualitative analysis on Thumos14, ActivityNet1.2, and
a couple of random videos from YouTube.

that have only one of these activities are required. However, in the Thumos14 dataset, very
few training examples contain only one of these two activities, which explains the behavior
noted in the figure.

In the third example, which is from ActivityNetl1.2, although ‘Playing Polo” occurs in the
first portion of the video, it is absent in the ground truth. However, our model is able to lo-
calize those activity segments as well. The same discussion is also applicable to the fourth
example, where ‘Bagpiping’ occurs in the frames in a sparse manner, and our model’s re-
sponse is aligned with its occurrence, but the ground truth annotations are for almost the
entire video. These two examples are motivations behind weakly-supervised localization be-
cause obtaining precise unanimous ground truths from multiple labelers is difficult, costly,
and sometimes even infeasible.

The fifth example is on a randomly selected video from YouTube. It has a person, who
is juggling balls in an outdoor environment. But, most of the examples in Thumos14 of the
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same category are indoors, with the person taking up a significant portion of the frames
spatially. Despite such differences in data, our model is able to localize some portions of the
activity. However, the model also predicts some portions of the video to be ‘Soccer Juggling’,
which may be because its training samples in Thumos14 contains a combination of feet, hand,
and head, and a subset of such movements are present in ‘Juggling Balls’. Moreover, it is
interesting to note that the first two frames show some maneuver of a ball with feet and it is
detected as ‘Soccer Juggling” as well.

3.4 Domain adaptation of semantic segmentation using weak labels

Semantic segmentation is a task where given an input image, we need to learn a model, to
predict the category of every pixel in the image. In current state-of-the-art methods (Chen
et al., 2016; Zhao et al., 2017a), the model is generally a convolutional neural networks,
which learns using pixel-level annotations. However, the segmentation model learned on
one dataset, say the source, may not generalize well to images from a different distribution,
the target, due to the domain gap between them. Thus, the model needs to be adapted to
the images originating from the target distribution. But as annotations may be expensive on
the target side, we want to adapt the model from source to target with minimal or even no
annotation cost.

Unsupervised domain adaptation (UDA) methods for semantic segmentation have been
developed to tackle the issue of domain gap, requiring no annotation cost on the target im-
ages. Methods in the literature aim to adapt a model learned on the source domain with
pixel-wise ground truth annotations, e.g., from a simulator that requires the least annota-
tion effort, to the target domain that does not have any form of annotations. These UDA
methods in the literature for semantic segmentation are developed mainly using two mech-
anisms: pseudo-label self-training and distribution alignment between the source and target
domains. For the first mechanism, pixel-wise pseudo-labels are generated via strategies such
as confidence scores (Li et al., 2019; Hung et al., 2018) or self-paced learning (Zou et al., 2018),
but such pseudo-labels are specific to the target domain and do not consider the alignment
between domains. For the second mechanism, numerous spaces could be considered to op-
erate the alignment procedure, such as pixel (Hoffman et al., 2018; Murez et al., 2018), feature
(Hoffman et al., 2016; Zhang et al., 2017), output (Tsai et al., 2018; Chen et al., 2018), and patch
(Tsai et al., 2019) spaces. However, the alignment performed by these methods is agnostic to
the category, which may be problematic as the domain gap may vary across categories.

The issue of lacking annotations in the target domain can be alleviated, by introducing
the concept of utilizing weak labels on the target dataset for adaptation. Such weak labels
can be used for category-wise alignment between the source and target domain, and also
to enforce constraints on the categories present in an image. There can be multiple forms of
weak label — image-level labels, point labels, which we explore in this text, as well as other
forms of weak label such as pixel density of certain categories, object counts, etc, which is
quite easy to acquire from an annotator. It is important to note that our weak labels could be
estimated from the model prediction in the UDA setting, or provided by the human oracle in
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FIGURE 3.9 This figure presents how we can use image-level weak annotations for domain adaptation in two
different ways — either estimated, i.e., pseudo-weak labels (Unsupervised Domain Adaptation, UDA) or acquired
from a human oracle (Weakly-supervised Domain Adaptation (WDA)).

the weakly-supervised domain adaptation (WDA) paradigm as shown in Fig. 3.9. The target
annotation cost in UDA is zero, and in the WDA case is very low, as we will see subsequently.

The literature in domain adaptation for semantic segmentation models has been only
around unsupervised methods (UDA), and it can be summarized under three categories —
pixel-level adaptation (Hoffman et al., 2018; Murez et al., 2018; Wu et al., 2018), which aims
at aligning the input image space, pseudo-label training (Zou et al., 2018; Sadat Saleh et al.,
2018; Lian et al., 2019), which aims at labeling the unlabeled target data using the source
model and using it for adaptation, and feature or output space adaptation (Tsai et al., 2018;
Chen et al., 2018; Tsai et al., 2019; Du et al., 2019), which aims at aligning the output space
between the source and target domains. The performance of these methods is quite low com-
pared to methods with strong supervision. In the text below we present our method (Paul et
al., 2020) which can be used for both unsupervised and weakly-supervised domain adapta-
tion, and bridging the performance gap with minimal or no annotation cost. We start with
the formal problem definition.

Problem definition We have two domains — source and target. The goal is to adapt a segmen-
tation model learned on the source domain to the target domain. In the source domain, we
N
in

have images and pixel-wise labels denoted as Z, = {X!, ¥/};*,. Our target dataset contains

images and only image-level labels as Z, = {X/, yf}fvz’l. Xy, X, € REXW3 'y e BHXWXC 4re
pixel-wise one-hot vectors, y, € B¢ is a multihot vector representing the categories present in
the image and C is the number of categories, for both the source and target datasets. Note
that in a one-hot vector, only one of the element of the vector is 1, and remaining are zero,
while in multihot vectors, multiple elements of the vector can be 1. Such image-level labels y,
are termed as weak labels, as they are a much weaker form of label compared to pixel-wise
labels. We can either estimate them, in which case we call them pseudo-weak labels (Unsu-
pervised Domain Adaptation, UDA), or acquire them from a human oracle and call them

oracle-weak labels (Weakly-supervised Domain Adaptation, WDA). We will further discuss
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FIGURE 3.10 The proposed architecture consists of the segmentation network G and the weak label module. We
compute the pixel-wise segmentation loss L for the source images and image classification loss L. using the weak
labels y; for the target images. Note that the weak labels can be estimated as pseudo-weak labels or provided by
a human oracle. We then use the output prediction A, convert it to an attention map o (A) and pool category-wise
features €. Next, these features are aligned between source and target domains using the category-wise alignment

loss La 4 8uided by the category-wise discriminators D€ learned via the domain classification loss Eg.

the details of acquiring weak labels in Section 3.4.4. Given such data, the problem is to adapt
a segmentation model G learned on the source dataset Z; to the target dataset Z;.

3.4.1 Weak labels for category classification

We use the weak labels y; and learn to predict the categories present/absent in the target
images. We first feed the target images X, through G to obtain the predictions A, € R¥ *W'xC
and then apply a global pooling layer to obtain a single vector of predictions for each cate-

gory:

1 ' w'0)
pe =gs[%1 8 Z expkA! (3.11)

where oy is the sigmoid function such that p; represents the probability that a particular cate-
gory appears in an image. Note that Eq. (3.11) is a smooth approximation of the max function.
The higher the value of k, the better it approximates to max. We set k = 1 as we do not want
the network to focus only on the maximum value of the prediction, which may be noisy, but
also on other predictions that may have high values. Using p; and the weak labels y;, we can
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compute the category-wise binary cross-entropy loss:

C
Lo(Xi;G) =) —yflog(pf) — (1 yf)log(1 — pf). (3.12)

c=1

This is shown at the bottom stream of Fig. 3.10. This loss function L. helps to identify the
categories which are absent/present in a particular image and enforces the segmentation
network G to pay attention to those objects/stuff that are partially identified when the source
model is used directly on the target images.

3.4.2 Weak labels for feature alignment

The classification loss using weak labels introduced in (3.12) regularizes the network fo-
cusing on certain categories. However, distribution alignment across the source and target
domains is not considered yet. As discussed in the previous section, methods in the litera-
ture either align feature space (Hoffman et al., 2016) or output space (Tsai et al., 2018) across
domains. However, such alignment is agnostic to the category, so it may align features of
categories that are not present in certain images. Moreover, features belonging to different
categories may have different domain gaps. Thus, performing category-wise alignment could
be beneficial but has not been widely studied in UDA for semantic segmentation. To alleviate
these issues, we use image-level weak labels to perform category-wise alignment in the fea-
ture space. Specifically, we obtain the category-wise features for each image via an attention
map, i.e., segmentation prediction, guided by our classification module using weak labels,
and then align these features between the source and target domains. We next discuss the
category-wise feature pooling mechanism followed by the adversarial alignment technique.

Category-wise feature pooling. Given the last layer features F € R *W'*2048 and the seg-
mentation prediction A € RF'*W'xC e obtain the category-wise features for the ¢’ category
as a 2048-dimensional vector by using the prediction as an attention over the features as fol-
lows:

Fe=Y ot ptad, (3.13)

! ’
h,w

where o (A) is a tensor of dimension H' x W' x C, with each channel along the category
dimension representing the category-wise attention obtained by the softmax operation o over
the spatial dimensions. As a result, o (A)"*"9) is a scalar and F""*" is a 2048-dimensional
vector, while F¢ is the summed feature of F**") weighted by o (A)**"9) over the spatial
map H' x W'. Note that we drop the subscripts s, ¢ for source and target, as we employ the
same operation to obtain the category-wise features for both domains. We next present the
mechanism to align these features across domains. Note that we will use F¢ to denote the
pooled feature for the ¢ category and F€ to denote the set of pooled features for all the
categories. Category-wise feature pooling is shown in the middle of Fig. 3.10.

Category-wise feature alignment. To learn the segmentation network G such that the
source and target category-wise features are aligned, we use an adversarial loss while us-
ing category-specific discriminators D¢ = {D}C_,. The reason for using category-specific
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discriminators is to ensure that the feature distribution for each category could be aligned
independently, which avoids the noisy distribution modeling from a mixture of categories.
In practice, we train C distinct category-specific discriminators, to distinguish between
category-wise features drawn from the source and target images. The loss function to train
the discriminators D€ is as follows:

C
LG(FEFLiDC) =) =y log D°(FY) — yf log(1 — D°(FY)). (3.14)

c=1

Note that, while training the discriminators, we only compute the loss for those categories
which are present in the particular image via the weak labels yy, y; € BC that indicate whether
a category occurs in an image or not. Then, the adversarial loss for the target images to train
the segmentation network G can be expressed as follows:

C
LSy (FF1 G, D) =" —yflog D (FY). (3.15)
c=1

Similarly, we use the target weak labels y, to align only those categories present in the target
image. By minimizing £, , the segmentation network tries to fool the discriminator by max-
imizing the probability of the target category-wise feature being considered as drawn from
the source distribution. These loss functions in (3.14) and (3.15) are obtained in the right of
the middle box in Fig. 3.10.

3.4.3 Network optimization

Discriminator training. We learn a set of C distinct discriminators for each category c¢. We use
the source and target images to train the discriminators, which learn to distinguish between
the category-wise features drawn from either the source or the target domain. The optimiza-
tion problem to train the discriminator can be expressed as: minyc £5(FE, FE). Note that
each discriminator is trained only with features pooled specific to that particular category.
Therefore, given an image, we update only those discriminators corresponding to those cate-
gories which are present in the image.

Segmentation network training. We train the segmentation network with the pixel-wise
cross-entropy loss £; on the source images, image classification loss £, and adversarial loss
LS, on the target images. We combine these loss functions to learn G as follows:

min £s(Xs) + AeLe(X0) +haLig, (FF)- (3.16)

adv

We follow the standard GAN training procedure (Goodfellow et al., 2014) to alternatively

update G and D€. Note that, computing £, involves the category-wise discriminators D¢.

Therefore, we fix D¢ and backpropagate gradients only for the segmentation network G.
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3.4.4 Acquiring weak labels

In the above sections, we have proposed a mechanism to utilize image-level weak labels
of the target images and adapt the segmentation model between source and target domains.
In this section, we explain two methods to obtain such image-level weak labels.

Pseudo-weak labels (UDA). One way of obtaining weak labels is to directly estimate them
using the data we have, i.e., source images/labels and target images, which is the unsuper-
vised domain adaptation (UDA) setting. In this work, we utilize the baseline model (Tsai et
al., 2018) to adapt a model learned from the source to the target domain, and then obtain the
weak labels of the target images as follows:

1, ifpf>T,
0, otherwise

c

Yr = (3.17)

where pf is the probability for category ¢ as computed in (3.11) and T is a threshold, which
we set to 0.2 in all the experiments unless specified otherwise. In practice, we compute the
weak labels online during training and avoid any additional inference step. Specifically, we
forward a target image, obtain the weak labels using (3.17), and then compute the loss func-
tions in (3.16). As the weak labels obtained in this manner do not require human supervision,
adaptation using such labels is unsupervised.

Oracle-weak labels (WDA). In this form, we obtain the weak labels by querying a human
oracle to provide a list of the categories that occur in the target image. As we use supervision
from an oracle on the target images, we refer to this as weakly-supervised domain adaptation
(WDA). It is worth mentioning that the WDA setting could be practically useful, as collecting
such human annotated weak labels is much easier than pixel-wise annotations. Also, there
has not been any prior research involving this setting for domain adaptation.

To show that our method can use different forms of oracle-weak labels, we further
introduce the point supervision as in Bearman et al. (2016), which only increases effort
by a small amount compared to the image-level supervision. In this scenario, we ran-
domly obtain one pixel coordinate of each category that belongs in the image, i.e., the
set of tuples {(h, w’, c)|Vy; = 1}. For an image, we compute the loss as follows: L i =

— Z\'/yf:l yf log(O,(hc’wc’C)), where 0, € R¥*WxC ig the output prediction of target after pixel-
wise softmax.

3.4.5 Applications

In this section, we perform an evaluation of our domain adaptation framework for se-
mantic segmentation where the source is a dataset made of simulated street scene images
(GTAS5 (Richter et al., 2016)) and the target is made of real-world images (Cityscapes (Cordts
et al., 2016)). We use the Intersection-over-Union (IoU) ratio as the metric. For the segmenta-
tion network G, we use the DeepLab-v2 framework (Chen et al., 2016) with the ResNet-101
(He et al.,, 2016) architecture. We extract features Fy, F; before the Atrous Spatial Pyramid
Pooling (ASPP) layer. For the category-wise discriminators D¢ = {D}C_,, we use C sepa-
rate networks, where each consists of three fully-connected layers, having number of nodes
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{2048, 2048, 1} with ReLU activation. Fig. 3.11 presents the results obtained from the literature
and our methods for the variety of annotations we use.

State-of-the-art methods

When we look at the state-of-the-art methods in the literature, all of them are unsuper-
vised, i.e., requiring no annotation cost on the target side. In such a setting, the performance
levels obtained is quite low. For example, in the current setting mentioned above, i.e., with
GTADS as the source and Cityscapes as the target, the performance obtained by state-of-the-art
methods is 45.4 (Chang et al., 2019), 46.5 (Tsai et al., 2019) and 47.2 (Li et al., 2019). Note that
this percentage is higher than the performance obtained by the model trained on the source
and applied directly on the target, which is only 36.6. However, it is much lower than the per-
formance obtained when all the target images are labeled with pixel-level annotations, which
is 64.4, but requiring about 90 minutes of annotation time per image.

Unsupervised domain adaptation (UDA)

In comparison to the methods in the literature, when we use a basic method (Tsai et al.,
2018) to align just the output space, we obtain performance of 41.4. Then, when we use the
classification loss as in Eq. (3.12), we obtain a performance of only 46.7. On top of this, when
we include the category-wise alignment loss as in Eq. (3.15), we obtain a performance of 48.2.
Note that in this method, we use the pseudo-weak labels, which are estimated by the network
itself as in Eq. (3.17).

Weakly-supervised domain adaptation (WDA)

We use two different types of annotation in the WDA and they are discussed as follows.
Note that other forms of weak supervision can be count of the objects, very coarse estimate
of area coverage of the categories, scribbles, and so on.

Image-level supervision When we use the image-level annotations from the user and learn the
segmentation network using only the classification loss in Eq. (3.12), we obtain a performance
of 52. On top of this, when we include the category-wise domain alignment loss, we obtain
a performance of 53. Note that there exists no work in the literature which uses oracle-weak
labels from humans to perform WDA. From the results, it is interesting to note that the major
boost in performance using WDA compared to UDA occurs for categories such as truck, bus,
train, and motorbike. One reason is that those categories are most underrepresented in both
the source and the target datasets. Thus, they are not predicted in most of the target images,
but using the oracle-weak labels helps to identify them better.

Point supervision We introduce another interesting setting of point supervision as in Bear-
man et al. (2016), which adds only a slight increase of annotation time compared to that for
image-level supervision. We follow (Bearman et al., 2016) and randomly sample one pixel per
category in each target image as the supervision. Note that, all the details and the modules
are the same during training in this setting. In this setting with one point labeled per category
per image, we obtain a performance of 56.4. When we increase the number of annotations to
three or five point labeled per category per image, we obtain performance of 58.4 and 59.4
respectively. Note that the annotation cost required to obtain these annotations is quite low as
shown in Fig. 3.11, but yet they are able to obtain comparable performance as with pixel-wise
annotations which incur a huge amount of annotation cost.
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FIGURE 3.11 Performance comparison on GTA5— Cityscapes with different levels of supervision on target im-
ages: no target labels (“No Adapt.” and “UDA”), weak image labels (30 seconds), one point labels (45 seconds), and
fully-supervised setting with all pixels labeled (“All Labeled”) that takes 1.5 hours per image according to Cordts et
al. (2016).

3.4.6 Output space visualization

We present some visualizations of the segmentation prediction probability for each cate-
gory in Fig. 3.12. Before using any weak labels (third row), the probabilities may be low, even
though there is a category present in that image. However, based on these initial predictions,
our model can estimate the categories and then enforce their presence/absence explicitly
in the proposed classification loss and alignment loss. The fourth row in Fig. 3.12 shows
that such pseudo-weak labels help the network discover object/stuff regions towards better
segmentation. For example, the fourth and fifth column shows that, although the original pre-
diction probabilities are quite low, results using pseudo-weak labels are estimated correctly.
Moreover, the last row shows that the predictions can be further improved when we have
oracle-weak labels.

3.5 Weakly-supervised reinforcement learning for dynamical tasks

Until now in this chapter, we primarily looked into static problems in the light of limited
supervision. However, in real-world scenarios, we may have to build a system that inter-
acts with the environment to achieve a task and thus to be dynamic in nature as its current
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FIGURE 3.12 Visualizations of category-wise segmentation prediction probability before and after using the
pseudo-weak labels on GTA5— Cityscapes. Before adaptation, the network only highlights the areas partially with
low probability, while using the pseudo-weak labels helps the adapted model obtain much better segments, and is
closer to the model using oracle-weak labels.

action determines the data point it is going to receive next. Similar to static tasks such as
classification, localization, and segmentation, learning dynamic tasks are also quite challeng-
ing in nature. Reinforcement Learning (RL) using Deep Neural Networks (DNNs) has shown
tremendous success in several such dynamical tasks such as playing games (Mnih et al., 2015;
Silver et al., 2016), solving complex robotics tasks (Levine et al., 2016; Duan et al., 2016), etc.
However, with sparse rewards, these algorithms often require a huge number of interactions
with the environment, which is costly in real-world applications such as self-driving cars
(Bojarski et al., 2016), and manipulations using real robots (Levine et al., 2016). Manually de-
signed dense reward functions could mitigate such issues; however, in general, it is difficult
to design detailed reward functions for complex real-world tasks.

Imitation Learning (IL) using demos generated by an expert can potentially be used to
learn the policies faster (Argall et al., 2009). But, the performance of IL algorithms (Ross et
al., 2011) is not only dependent on the performance of the expert providing the demos, but
also on the state-space distribution represented by the demos, especially in the case of high
dimensional states. In order to avoid such dependencies on the expert, some methods in the
literature (Sun et al., 2017; Cheng et al., 2018) take the path of combining RL and IL. However,
these methods assume access to the expert value function, which may become impractical in
real-world scenarios.

Keeping the shortcomings of the methods in the literature in mind, we present a strategy
(Paul et al., 2019) that starts with IL and then switches to RL. In the IL step, our framework
performs supervised pretraining which aims at learning a policy that best describes the ex-
pert demonstrations. However, due to the limited availability of expert demos, the policy
trained with IL will have errors, which can then be alleviated using RL. However, note that
the reward function in RL is still sparse, making it difficult to learn. With this in mind, we
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FIGURE 3.13 (a) This shows an overview of our proposed framework to train the policy network along with
subgoal based reward function with out-of-set augmentation. (b) An example state-partition with two independent
demos in black and red. Note that the terminal state is shown as a separate state partition because we assume it to
be indicated by the environment and not learned.

present a method that uses the human demos to divide the entire task into smaller subgoals
and use that as a reward function in the RL step.

Given a set of demos, humans can quickly identify waypoints, which need to be completed
in order to achieve the goal. We tend to break down the entire complex task into subgoals and
try to achieve them in the best order possible. Prior knowledge of humans helps to achieve
tasks much faster (Andreas et al., 2017; Dubey et al., 2018) than using only the demos for
learning. The human psychology of divide-and-conquer has been crucial in several appli-
cations and it serves as a motivation behind our algorithm which learns to partition the
state-space into subgoals using expert demos. The learned subgoals provide a discrete re-
ward signal, unlike value-based continuous reward (Ng et al., 1999; Sun et al., 2018), which
can be erroneous, especially with a limited number of demos in long time horizon tasks. As
the expert demos set may not contain all the states where the agent may visit during explo-
ration in the RL step, we augment the subgoal predictor via one-class classification to deal
with such underrepresented states. We perform experiments on three goal-oriented tasks on
MuJoCo (Todorov, 2014) with sparse terminal-only reward, which state-of-the-art RL, IL, or
their combinations are not able to solve.

Problem definition Consider a standard RL setting where an agent interacts with an environ-
ment which can be modeled by a Markov Decision Process (MDP) M = (S, A, P, r, v, Po),
where S is the set of states, A is the set of actions, r is a scalar reward function, y € [0, 1]
is the discount factor and Py is the initial state distribution. Our goal is to learn a policy
mg(als), with a € A, which optimizes the expected discounted reward E [ ;2 y'r(s;, a;)],
where t = (..., 8;,a;,r;,...) and so ~ Py, a; ~ mg(als;) and s;41 ~ P(s;4118¢, ar).

With sparse rewards, optimizing the expected discounted reward using RL may be dif-
ficult. In such cases, it may be beneficial to use a set of state-action demonstrations D =
{{(sri, @)} )i, generated by an expert to guide the learning process. ng is the number of
demos in the dataset and n; is the length of the i"" demo. We propose a methodology to effi-
ciently use D by discovering subgoals from these demos and use them to develop an extrinsic
reward function.
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Subgoal definition

Consider that the state-space S is partitioned into sets of states as — {Si, Sz, ..., S b st
S= U?i 1Si and ﬁ?i 1Si =4, ng being the number of subgoals specified by the user. For each
(s,a,s’), we say that the particular action takes the agent from one subgoal to another iff
seS;,s'eS;forsomei, jeG={1,2,...,n,}and i # j.

Let’s assume that there is an ordering in which groups of states appear in the demos as
shown in Fig. 3.13(b). However, the states within these groups of states may appear in any
random order in the demos. These groups of states are not defined a priori and our algorithm
aims at estimating these partitions. Note that such orderings are natural in several real-world
applications where a certain subgoal can only be reached after completing one or more pre-
vious subgoals. We may consider that states in the demos of D appear in increasing order of
subgoal indices, i.e., achieving subgoal j is harder than achieving subgoal i (i < j). This gives
us a natural way of defining an extrinsic reward function, which would help towards faster
policy search. Also, all the demos in D should start from the initial state distribution and end
at the terminal states.

3.5.1 Learning subgoal prediction

We use D to partition the state-space into ng subgoals, with n, being a hyperparameter.
We learn a neural network to approximate 74 (g|s), which given a state s € S predicts a prob-
ability mass function (pmf) over the possible subgoal partitions g € G. The order in which the
subgoals occur in the demos, i.e., §| <& < -+ < Sy, which can be derived from our assump-
tion mentioned above, acts as a supervisory signal. The framework to learn 4 (g|s) is iterative
and alternated between the learning step and the inference/correction step as explained next.

Learning step In this step, we consider that we have a set of tuples (s, g), which we use
to learn the function 7. This can be posed as a multiclass classification problem with n,
categories. We optimize the following cross-entropy loss function,

ng n; ng

1
my = argﬂg]m < D3> g =k} logmy (g =klsii) (3.18)
i=1t=1 k=1

where 1 is the indicator function and N is the number of states in the dataset D. To begin
with, we do not have any labels g, and thus we consider equipartition of all the subgoals in G

along each demo. That is, given a demo of states {s1;, $2;, ..., Sp;;} for some i € {1,2,...,ng4},
the initial equi-partition subgoals are,
1 .
gi=j, V L(J )niJ <t<= {LniJ, jeG (3.19)
ng ng

Using this initial labeling scheme, similar states across demos may have different labels, but
the network is expected to converge at the Maximum Likelihood Estimate (MLE) of the entire
dataset. We also optimize CASL (Paul et al., 2018) presented in Section 3.3.3, for stable learn-
ing as the initial labels can be erroneous. In the next iteration of the learning step, we use the
inferred subgoal labels, which we obtain as follows.
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Inference step  Although the equipartition labels in Eq. (3.19) may have similar states across
different demos mapped to dissimilar subgoals, the learned network modeling 74 maps sim-
ilar states to the same subgoal. But, Eq. (3.18), and thus the predictions of 74 do not account
for the natural temporal ordering of the subgoals. Even when using architectures such as Re-
current Neural Networks (RNN), it may be better to impose such temporal order constraints
explicitly rather than relying on the network to learn them. We inject such order constraints
using Dynamic Time Warping (DTW).

Formally, for the i"" demo in D, we obtain the following set: {(s;;, n¢(g|sn-)}:11, where
m¢ is a vector representing the pmf over the subgoals G. However, as the predictions do
not consider temporal ordering, the constraint that subgoal j occurs after subgoal i, for i <
Jj, is not preserved. To impose such constraints, we use DTW between the two sequences
{e1,e2,...,e,,}, which are the standard basis vectors in the n, dimensional Euclidean space
and {mg(gls1i), Ty(gls2i), ..., wy(glsn;i)}. We use the I1-norm of the difference between two
vectors as the similarity measure in DTW. In this process, we obtain a subgoal assignment for
each state in the demos, which become the new labels for training in the learning step.

We then invoke the learning step using the new labels (instead of Eq. (3.19)), followed
by the inference step to obtain the next subgoal labels. We continue this process until the
number of subgoal labels changed between iterations is less than a certain threshold. This
method is presented in Algorithm 1, where the superscript k represents the iteration number
in learning-inference alternates.

Reward using subgoals The ordering of the subgoals, as discussed before, provides a natural
way of designing a reward function as follows:

r'(s,a,s’) =y xargmaxmy(g = jls') — argmax 7y (g = k|s) (3.20)
jeG keG

where the agent in state s takes action a and reaches state s’. The augmented reward
function would become r + r’. Considering that we have a function of the form ®4(s) =
argmax ;e (g = jls), and without loss of generality that G = {0, 1,...,n, — 1}, so that for
the initial state ®4(sg) = 0, it follows from Ng et al. (1999) that every optimal policy in
M =(S, A, P,r+r',y, Py, will also be optimal in M, the original MDP. However, the new
reward function may help to learn the task faster.

Algorithm 1 Learning subgoal prediction.

Input: Expert demo set D
Output: subgoal predictor my(g|s)
k<0
Obtain g for each s € D using Eq. (3.19)
repeat
Optimize Eq. (3.18) to obtain 7
Predict pmf of G for each s € D using n(];

Obtain new subgoals g“*! using the pmf in DTW
done = True, if |g¥ — g¥*!| < ¢, else False
k<—k+1

until done is True
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(a) BiMGame (b) AntTarget (c) AntMaze

FIGURE 3.14 This figure presents the three environments we use — (a) Ball-in-Maze Game (BiMGame) (b) Ant
locomotion in an open environment with an end goal (AntTarget) (c) Ant locomotion in a maze with an end goal
(AntMaze).

3.5.2 Supervised pretraining

As discussed previously, an initial way to utilize the demos is by pretraining the policy net-
work 7y using the demo set D in a supervised learning framework. We pretrain the network
by optimizing the following:

ng nj

0% =argmin Y > " I(mo(alsy). af;) + Al0][7 (3.21)
6

i=11t=1

where [ is the loss function which can be cross-entropy or regression loss depending on
discrete or continuous actions. Note that the continuous actions comprise of (i, o) which
are parameters of a Gaussian distribution. The second part of Eq. (3.21) is the I, regulariza-
tion loss. The policy obtained after optimizing Eq. (3.21) possesses the ability to take actions
with low error rates at the states sampled from the distribution induced by the demo set D.
However, as shown in Ross et al. (2011), a small error at the beginning would compound
quadratically with time as the agent starts visiting states which are not sampled from the
distribution of D. Algorithms like DAgger can be used to fine-tune the policy by querying
expert actions at states visited after executing the learned policy. This query to the expert is
often very costly and even may not be feasible in some applications. More importantly, as
DAgger aims to mimic the expert, it can only reach its performance and not improve on it.
For this reason, we fine-tune the policy using RL with the extrinsic reward function obtained
after identifying the subgoals.

3.5.3 Applications

In this section, we present three challenging dynamical tasks: we use our framework to
solve them and compare these with other state-of-the-art methods in the literature.

Tasks We perform experiments on three challenging environments as shown in Fig. 3.14. The
first environment is the Ball-in-Maze Game (BiMGame) introduced in van Baar et al. (2018),
where the task is to move a ball from the outermost to the innermost ring using a set of five
discrete actions — clock-wise and anticlockwise rotation by 1° along the two principal dimen-
sions of the board and “no-op” where the current orientation of the board is maintained. The
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FIGURE 3.15 (a) This figure presents the learned subgoals for the three tasks which are color-coded. Note that for
(b) and (c), multiple subgoals are assigned the same color, but they can be distinguished by their spatial locations.

states are images of size 84 x 84. The second environment is AntTarget which involves the
Ant (Schulman et al., 2015). The task is to reach the center of a circle of radius 5 m with the
Ant being initialized on a 45° arc of the circle. The state and action are continuous with 41
and 8 dimensions respectively. The third environment, AntMaze, uses the same Ant, but in
a U-shaped maze used in Held et al. (2017). The Ant is initialized on one end of the maze
with the goal being the other end indicated as red in Fig. 3.14(c). For all tasks, we use sparse
terminal-only reward, i.e., +1 only after reaching the goal state and 0 otherwise. Standard RL
methods such as A3C (Mnih et al., 2016) are not able to solve these tasks with such sparse
rewards.

Visualization We visualize the subgoals discovered by our algorithm and plot it on the x—y
plane in Fig. 3.15. As can be seen in BiMGame, with 4 subgoals, our method is able to discover
the bottle-neck regions of the board as different subgoals. For AntTarget and AntMaze, the
path to the goal is more or less equally divided into subgoals. This shows that our method of
subgoal discovery can work for both environments with and without bottle-neck regions.

Comparison with baselines We primarily compare our method with other RL methods which
utilize demo or expert information — AggreVaTeD (Sun et al., 2017) and value-based reward
shaping (Ng et al., 1999), equivalent to the K = oo in THOR (Sun et al., 2018). The compar-
isons are in Fig. 3.16. As may be observed, none of the baselines show any sign of learning for
the tasks, except for ValueReward, which performs comparably with the proposed method
for AntTarget only. Our method, on the other hand, is able to learn and solve the tasks consis-
tently over multiple runs. The expert cumulative rewards are also drawn as straight lines in
the plots and imitation learning methods like DAgger (Ross et al., 2011) can only reach that
mark. Our method is able to surpass the expert for all the tasks. In fact, for AntMaze, even
with a rather suboptimal expert (an average cumulative reward of only 0.0002), our algorithm
achieves about 0.012 cumulative reward at 100 million steps.

The poor performance of the ValueReward and AggreVaTeD can be attributed to the im-
perfect value function learned with a limited number of demos. Specifically, with an increase
in the demo length, the variations in cumulative reward in the initial set of states are quite
high. This introduces a considerable amount of error in the estimated value function in the
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FIGURE 3.16 This figure shows the comparison of our proposed method with the baselines. Some lines may not
be visible as they overlap. For tasks (a) and (c) our method clearly outperforms others. For task (b), although value
reward initially performs better, our method eventually achieves the same performance. For a fair comparison, we
do not use the out-of-set augmentation to generate these plots. Note that as some of the algorithms do not learn at
all, thus accumulating zero reward, such lines overlap with the x-axis of the plots and are not visible.

initial states, which in turn traps the agent in some local optima when such value functions
are used to guide the learning process.

Discussions Here are the key points which can be inferred from the results: First, the method
to discover subgoals works both for tasks with inherent bottlenecks (e.g. BIMGame) and with-
out any bottlenecks (e.g. AntTarget and AntMaze), but with temporal order between groups
of states in the expert demos, which occurs in many applications. Second, discrete rewards
using subgoals perform much better than value function based continuous rewards. This may
be because the value functions learned from the limited number of demos may be erroneous,
whereas segmenting the demos based on temporal ordering may still work well.

3.6 Conclusions

The widely-heralded successes of machine learning have been largely driven by the avail-
ability of large volumes of labeled data used to train the learning-based systems. This is
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simply unrealistic as these tools are deployed in real-life applications. We cannot assume that
all scenarios likely to be encountered during the operation of a system have been seen during
the training phase, and the expertise to provide labels just may not be available. While cats
and dogs can be labeled by anyone, the same cannot be said when trying to obtain training
data for different species of birds or vegetation types or medical diagnosis. Thus, learning
with limited to no supervision is extremely critical.

This chapter provides an overview of machine learning with limited supervision for ap-
plications in computer vision and robotics. Supervision can be of different forms and depend
on the application domain. Hence, we review a host of different methods. The first approach
is related to active learning, where we show how contextual information available in the data
sources can be used to predict many of the labels, which may otherwise need to be provided
manually. Next, we consider situations where detailed labels are not available, but textual de-
scriptions accompanying a video can be used as a form of weak supervision. Here, the goal
would be to learn how to localize the relevant video segment from these descriptions. Both
of these are in a single application domain. In the next section, we considered the problem of
semantic segmentation in an image and how learned models in one domain can be adapted
to another with minimal or even no additional supervision. Finally, we considered the prob-
lem of how to train a robot for certain tasks from limited demonstration examples using a
combination of imitation and reinforcement learning, through the identification of subgoals.
Overall, we have explored different learning paradigms and demonstrated them in multiple
problem settings in computer vision and robotics.

The future of machine learning should focus on how to learn with limited amounts of
data. Researchers and practitioners should consider different settings for this purpose. Few
examples are provided below. Can we learn from vast quantities of data that is uploaded on
social media but are error-prone and incomplete? Can we transfer learned models in easy-to-
label domains with coarse classification to domains that require significant expertise to label
(e.g., labeling birds and trees are easy, but fine-grained labeling of species of birds and trees
requires significant knowledge that few people may have)? Can we adapt learned models to
unseen conditions that may be safety critical (e.g., can an autonomous driving system identify
a dangerous condition on a road that it may have never encountered)? Can machine learning
be used in applications where there are large volumes of data, e.g., medicine, but supervision
is coarse and very expensive (maybe impossible) to obtain?

This chapter has touched upon some methods that take a step in the direction of solving
these problems. There is a huge amount of work to be done still. Although it may seem that
learning methods are able to best human performance in many cases, they are largely in
controlled settings. The ability to reason through and identify general principles that can be
transferred across application scenarios remains elusive. They provide a very rich tapestry of
problems for researchers to work on.
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4

Efficient methods for deep learning™
Han Cai, Ji Lin, and Song Han

Massachusetts Institute of Technology, Cambridge, MA, United States

CHAPTER POINTS

e  We first introduce various model e  Finally, we describe the once-for-all
compression approaches, such as pruning, technique to efficiently handle many
factorization, quantization, and efficient hardware platforms and efficiency
model design. constraints without repeating the costly

e  To reduce the design cost, we then describe search and retraining phases.

neural architecture search, automated
pruning and quantization, which can
outperform the manual design with
minimal human efforts.

4.1 Model compression

Compressing an existing deep neural network is an effective way to improve the inference
efficiency. Compression methods include parameter pruning to remove the redundant weights,
low-rank factorization to reduce the complexity, weight quantization to reduce the weight pre-
cision and model size, and knowledge distillation to transfer the dark knowledge from large
models to smaller ones. Finally, we discuss automated methods to automatically find a good
compression policy without human effort.

4.1.1 Parameter pruning
Deep neural networks are usually overparameterized. Pruning removes the redundant

elements in neural networks (Fig. 4.1) to reduce the model size and computation.

* All student authors have contributed equally to this work and are listed in the alphabetical order.
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FIGURE 4.1 Synapses and neurons before and after pruning (Han et al., 2015b).
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FIGURE 4.2 Different granularities for weight pruning (figure modified from Mao et al. (2017)).

Notations

We analyze the convolutional layers in deep neural networks, which are the most com-
putationally expensive components. In a single convolutional layer, the weights compose a
4-dimensional tensor of shape n x ¢ x kj X ky, where n is the number of filters (i.e., out-
put channels), ¢ is the number of channels (i.e., input channels), and &, ky, is the kernel
size (usually symmetric, i.e., k;, = ky,). One layer’s weights can be viewed as multiple filters
(3-dimensional tensors of shape ¢ x k;, X ky,), each corresponding to an output channels; or
viewed as multiple channels (3-dimensional tensors of shape n x k;, x ky,), each corresponding
to an input channel. Each k;, x k,, tensor is a kernel; there are n x ¢ kernels in a convolutional
layer.

Granularity

Pruning can be performed at different granularities (Mao et al., 2017) (Fig. 4.2).

Fine-grained pruning removes individual elements from the weight tensor. An early ap-
proach was Optimal Brain Damage (LeCun et al., 1989) and Optimal Brain Surgeon (Hassibi
and Stork, 1993), which reduced the number of connections based on the Hessian of the
loss function. Han et al. (2015b) proposed a three-step method, train-prune-retrain, to prune
the redundant connections in a deep neural network. It reduced the number of parameters
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of AlexNet by a factor of 9x, and VGG-16 by 13x, with no loss of accuracy. Srinivas and
Babu (2015) proposed a data-free pruning method to remove the redundant neurons. In fine-
grained pruning, the set of weights to be pruned can be chosen arbitrarily, it can achieve
a very high compression ratio on CNN (Han et al., 2015b), RNN (Giles and Omlin, 1994),
LSTM (Han et al., 2017), Transformers (Cheong and Daniel, 2019), efc., without hurting accu-
racy.

Pattern-based pruning is a special kind of fine-grained pruning which has better hardware
acceleration with compiler optimization (Ma et al., 2020; Tan et al., 2020b; Niu et al., 2020).
Taking 3 x 3 convolutions as an example, pattern-based pruning assigns a fixed set of masks
to each of the 3 x 3 kernels. The number of the masks is usually limited (4—6) to ensure hard-
ware efficiency. Each mask template has a fixed number of pruned elements for each kernel (5
pruned out of 9 in Fig. 4.2). The pattern is determined by heuristics (Ma et al., 2020) or cluster-
ing from pretrained weights (Niu et al., 2020). Despite the intra-kernel fine-grained pruning
pattern, pattern-based pruning can be accelerated with compiler optimization by reordering
the computation loops, reducing the control-flow overhead.

Coarse-grained pruning or structured pruning removes a regular tensor block for better hard-
ware efficiency. Depending on the block size, entire vectors (Mao et al., 2017), kernels (Mao
et al., 2017; Niu et al., 2020), or channels (He et al., 2017; Wen et al., 2016; Li et al., 2016b;
Molchanov et al., 2016) are removed (Fig. 4.2). Coarse-grained pruning like channel pruning
can bring direct hardware acceleration on GPUs using standard deep learning libraries, but it
usually comes at noticeable accuracy drop compared with fine-grained sparsity, as indicated
by Li et al. (2016b). Pruning using a smaller granularity usually brings a smaller accuracy
drop at the same compression rate (Mao et al., 2017).

Hardware acceleration

Generally speaking, more regular pruning schemes are more hardware friendly, making
it easier for inference acceleration on existing hardware such as GPUs; while more irregular
pruning schemes better preserve the accuracy at the same compression rate. With specialized
hardware accelerators (Han et al., 2016; Chen et al., 2016; Han et al., 2017; Chen et al., 2019a;
Zhang et al., 2016a; Yu et al., 2017) and compiler-based optimization techniques (Ma et al.,
2020; Niu et al., 2020), it is also possible to gain a considerable acceleration speed for more
irregular pruning methods.

Importance criteria

After choosing a pruning granularity, determining which weights should be pruned is
also essential to the pruned model’s performance. There have been several importance crite-
ria heuristics to estimate the importance of each weights after the model is trained; the less
important weights are pruned according to the criteria. The most straightforward heuristic is
based on the magnitudes, i.e., absolute values, of the weights (Han et al., 2015b,a):

Importance = |w],

where the weights of larger magnitude are considered more important. It also extends to
coarse-grained pruning like channel pruning, where the tensor norm is used as the criterion:

Importance = [|[W|]>.
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FIGURE 4.3 Three-Step training pipeline with iterative pruning (Han et al., 2015b).

Other criteria include second-order derivatives (i.e., the Hessian of the loss function) (LeCun
et al., 1989; Hassibi and Stork, 1993), loss-approximating Taylor expansion (Molchanov et al.,
2017), output sensitivity (Engelbrecht, 2001), etc..

Recently, Frankle and Carbin proposed Lottery Ticket Hypothesis (Frankle and Carbin,
2018) to find a sparse subnetwork within the dense, randomly-initialized deep networks be-
fore training, which can be trained to achieve the same accuracy. Experiments show that the
method can find sparse subnetworks with less than 10-20% of the weights while reaching the
same level of accuracy on MNIST (LeCun et al., 2010) and CIFAR (Krizhevsky and Hinton,
2009). It was later scaled up to larger-scale setting (e.g., ResNet-50 and Inception-v3 on Ima-
geNet), where the sparse subnetwork can be found at the early phase of training (Frankle et
al., 2020) instead of on initialization.

Training methods

Directly removing the weights in deep neural networks will significantly hurt the accuracy
at a large compression ratio. Therefore, some training/fine-tuning is needed to recover the
performance loss. Fine-tuning can be done after pruning to recover the performance drop (He
et al., 2017). It can be extended to iterative pruning (Han et al., 2015b,a) (Fig. 4.3), where mul-
tiple iterations of pruning and fine-tuning are performed to further boost the accuracy. To
avoid incorrect pruning of weights, dynamic pruning (Guo et al., 2016) incorporates connec-
tion splicing into the whole process and provides continual network maintenance. Runtime
pruning (Lin et al., 2017) chooses the pruning ratio according to each input sample, assigning
a more aggressive pruning strategy for easier samples, which further improves the accuracy-
computation trade-off.

Another implementation trains compact DNNs using sparsity constraints. The sparsity
constraints are usually implemented using Lo, L, or Ly-norm regularization applied to the
weights, which are added to the training loss for joint optimization. Han et al. (2015b) applied
L1/L> regularization to each individual weights during training. Lebedev and Lempitsky
(2016) applied group sparsity constraints on convolutional filters to achieve structured spar-

sity.
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4.1.2 Low-rank factorization

Low-rank factorization uses matrix/tensor decomposition to reduce the complexity of con-
volutional or fully-connected layers in deep neural networks. The idea of using low-rank
filters to accelerate convolution has long been investigated in signal processing area.

The most widely used decomposition is Truncated SVD (Golub and Van Loan, 1996), which
is effective for accelerating fully connected layers (Xue et al., 2013; Denton et al., 2014; Gir-
shick, 2015). Given a fully connected layer with weight W € R"*¥, the SVD is defined as
W =USVT, where U e R">™m, § c R"*k v c Rk*k g iga diagonal matrix with the singular
values on the diagonal. If the weight falls in a low-rank structure, it can be approximated by
keeping only the ¢ largest entries of S, t << min(m, k). The computation Wx can be reduced
from O (mk) to O (mt + tk) for each sample.

For 4D convolutional weights, Jaderberg et al. (2014) proposed to factorize k x k ker-
nels into 1 x k and k x 1 kernels; this approach was also adopted in the Inception-V3 de-
sign (Szegedy and Vanhoucke, 2016). Zhang et al. (2016b) proposed to factorize a convolution
weightofn x ¢ x k x kinton’ x ¢ x k x kand n x n’ x 1 x 1, where n’ << n. Canonical Polyadic
(CP) decomposition can be used to decompose higher dimensional kernels like convolutional
weights (Lebedev et al., 2014). This approach computes a low-rank CP-decomposition of the
4D convolution kernel tensor into the sum of a small number of rank-one tensors. At infer-
ence time, the original convolution is replaced with a sequence of four convolutional layers
with smaller kernels. Kim et al. (2015) used Tucker Decomposition (known as the higher or-
der extension of SVD) to factorize the convolutional kernels, getting higher compression ratio
compared to using SVD.

4.1.3 Quantization

Network quantization compresses the network by reducing the bits per weight required
to represent the deep network. The quantized network can also have a faster inference speed
with hardware support.

Rounding schemes

To quantize a weight of full precision (32-bit float-point value) into a lower precision,
rounding is performed to map the float-point value into one of the quantization buckets.

Early work (Han et al., 2015a; Gong et al., 2014; Wu et al., 2016) applied k-means clustering
to find the shared weights for each layer of a trained network; all the weights that fall into the
same cluster will share the same weight. Specifically, when partitioning » original weights
W = {wi, wy, ..., w,} into k clusters C = {cy, c2, ..., ¢k}, n >> k, we minimize the within-cluster
sum of squares (WCSS):

k
arg min lw — ¢;|? 4.1)
ninY> Y e

i=1 wec;

k-means clustering based quantization can be combined with pruning and Huffman coding
to perform model compression (Han et al., 2015a) (Fig. 4.4). It can compress the model size of
VGG-16 by 49 x with no loss of accuracy.
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FIGURE 4.4 The three stage compression pipeline: pruning, quantization and Huffman coding (Han et al., 2015a).

Linear/uniform (Vanhoucke et al., 2011; Jacob et al., 2017) quantization directly rounds the
float-point value into the nearest quantized values after range truncation; the gradient is
propagated using the STE approximation (Bengio et al., 2013). Suppose the clipping range
is [a, b], and the number of quantization levels is n, the forward process of quantizing float-
point value x into quantized value ¢ is:

clamp(r, a, b) = min(max(x, a), b), 4.2)
b—
s(a,b,m) = ——, (43)
n—1
1 b) —
q= round(C amp(r, 4, b) a)s(a, b,n) +a. (4.4)
s(a,b,n)
The back-propagation gradient is computed using:
0 0
oL _aL 45)
dqg  0x

Apart from using the truncation value a, b, some work (Zhou et al., 2016) uses activation
functions like tanh to map the range of the weights into [—1, 1], making quantization easier.

Bit precision

We can trade-off the model size and model accuracy by using different bit precisions.
A lower bit precision can lead to a smaller model size, but it may come at the cost of accuracy
reduction. Full-precision networks use FP32 for both weights and activations. Half-precision
networks use FP16 to reduce the model size by half. INTS quantization for both weights and
activations (Jacob et al., 2017) is widely used for integer-arithmetic-only inference, which can
be accelerated on GPUs, CPUs, smartphones, efc..

Lower precisions include Ternary Weight Networks (Li et al., 2016a), where the weights
are quantized to {—1,0, +1} or {—E, 0, +E} (E is the mean of the absolute weight value, but is
not trained). Trained Ternary Quantization (Zhu et al., 2016) uses two learnable full-precision
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scaling coefficients Wlp , W} for each layer /, and quantizes the weights to {—-W}', 0, +W1P 1 It
can quantize AlexNet on ImageNet with no loss of accuracy.

The extreme case for low-bit quantization is binary weight neural networks (e.g., Bina-
ryConnect (Courbariaux et al., 2015), BinaryNet (Courbariaux and Bengio, 2016), XNOR
(Rastegari et al., 2016), efc.), where the weights are represented using only 1 bit. The binary
weights or activations are usually directly learned during network training using certain for-
ward and backward rules. For example, BinaryConnect (Courbariaux et al., 2015) discusses
both deterministic binarization:

wp = sign(w) = {+l if x 20, (4.6)

—1 otherwise,

and stochastic binarization:

+1 with probability p = o (w),
wp =
b —1 with probability 1 — p,

where o is the “hard sigmoid” function:

o(x) =max<0, min(l, xzi>) (4.8)

This is a piece-wise linear approximation to a standard sigmoid function.

Quantization schemes

For quantization of higher precisions (e.g., INT8), it is possible to perform post-training
quantization, where the weights and activations are quantized after the full-precision model
training. The quantization range for activations is determined by computing the distribution
on the training set, and Batch Normalization (Ioffe and Szegedy, 2015) layers are folded. Ap-
plying post-training INT8 quantization usually leads to minor or no loss of accuracy.! Recent
work (Banner et al., 2019) studied the post-training quantization of INT4 models.

Quantization-ware training can reduce the quantization accuracy loss by emulating inference-
time quantization during training time (Jacob et al., 2017). The forward pass during training
is consistent with testing time, which helps on-device deployment. During training, the “fake
quantization operator” is injected into the convolutional layers, and the Batch Normaliza-
tion (loffe and Szegedy, 2015) layers are folded.

Both post-training quantization and quantization-aware training require access to the
training data to get a good quantization performance, which is not always feasible on some
privacy-sensitive applications. Data-free quantization aims to reduce the bit precisions with no
access to the training data. Nagel et al. (2019) proposed to perform INT8 quantization in a
data-free manner equalizing the weight ranges in the network. ZeroQ (Cai et al., 2020b) op-
timizes for a Distilled Dataset to match the statistics of batch normalization across different
layers of the network for data-free quantization.

1 https:/ /www.tensorflow.org/lite / performance/post_training_quantization.
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Low-bit training

Apart from inference, training with quantized weights, activations, and gradients can re-
duce the cost of deep learning training. Training with mixed 16-bit and 32-bit floating-point
types in a model has been widely supported by deep learning frameworks like TensorFlow,
PyTorch, TensorCores, etc. With techniques like loss scaling, such mixed-precision training
can reduce the memory consumption and improve training speed with no loss of accuracy.
DoReFa-Net uses 1-bit weights, 2-bit activations, and 6-bit gradients for faster training and
inference, which can obtain comparable accuracy compared to FP32 AlexNet (Krizhevsky et
al., 2012) on ImageNet (Deng et al., 2009). The work in Lin et al. (2015) stochastically binarizes
the weights to reduce the time on floating-point multiplication in training.

Hardware support for low-precision acceleration

Quantized models can reduce the model size and storage for deployment, but they require
hardware support on low-precision arithmetic for inference acceleration. INT8 quantization is
supported on mobile ARM CPUs (e.g., Qualcomm Hexagon, ARM Neon), x86 CPUs, NVIDIA
GPUs with TensorRT, Xilinx FPGAs with DNNDK, etc.. Binary quantized network can also be
accelerated with bit operations. Lower bit precisions (e.g., ternary, INT4) are less supported on
existing hardware. NVIDIA’s Turing architecture supports INT4 inference,” which brings an
additional 59% speedup compared to INTS8. There are efforts designing specialized hardware
accelerators for accelerating low-bit quantized models (Zhang et al., 2015; Sharify et al., 2018),
which achieve superior energy efficiency compared to full-precision models.

Recently, hardware support for mixed-precision quantization reveals a new opportunity for
improving accuracy vs. cost trade-off. NVIDIA’s Turing Tensor Core supports 1-bit, 4-bit, 8-
bit and 16-bit arithmetic operations; Imagination launched a flexible neural network IP that
supports per-layer bit-width adjustment for both weights and activations. Recent specialized
hardware accelerator design also enables mixed-precision support: hardware based on bit-
serial multiplier units (Judd et al., 2016; Umuroglu et al., 2018) supports multiplications of 1
to 8 bits in a temporal manner; BitFusion (Sharma et al., 2018) supports multiplications of 2,
4, 8 and 16 bits in a spatial manner.

4.1.4 Knowledge distillation

Knowledge distillation (KD) (Bucilud et al., 2006; Hinton et al., 2015) can transfer the “dark
knowledge” learned in a large model (denoted as the teacher) to a smaller model (denoted
as the student) to improve the performance of the smaller one. The small model is either a
compressed model or a shallower/narrower model. (Bucilud et al., 2006) achieves the goal
by training the student network to match output logits; (Hinton et al., 2015) introduced the
idea of temperature in the softmax output and trained the student to mimic the softened
distribution of the teacher model’s Softmax output. KD shows promising results in various
image classification tasks despite the simple implementation.

Apart from the final output logits, the intermediate activations also contain useful infor-
mation. FitNet (Romero et al., 2014) trains the student to mimic the full feature map of the

2 https:/ /developer.nvidia.com/blog/int4-for-ai-inference/.
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FIGURE 4.5 Overview of AutoML for Model Compression (AMC) engine. Left: AMC replaces human and makes
model compression fully automated while performing better than human. Right: Form AMC as a reinforcement
learning problem (He et al., 2018).

teacher model through regression. Attention Transfer (AT) (Zagoruyko and Komodakis, 2016)
transfers the attention map of the activation from teacher to student, using the summation of
the feature map across the channel dimension. Both methods require the intermediate ac-
tivation to share the same spatial resolution, which limits the choice of the student model
architecture.

KD-based methods are also applicable to other applications beyond classification, like
object detection (Chen et al., 2017), semantic segmentation (Liu et al., 2019a), language mod-
eling (Sanh et al., 2019), image synthesis (Li et al., 2020), efc..

4.1.5 Automated model compression

Model compression methods can improve the efficiency of the deployed models. How-
ever, the performance of model compression is largely affected by the hyperparameters. For
example, different layers in deep networks have different capacities and sensitivities (e.g., the
first layer in CNN is usually very sensitive to pruning). Therefore, we should apply different
pruning ratios for different layers of the network to achieve optimal performance. The design
space is so large that human heuristics will usually be suboptimal, and manual model com-
pression is time-consuming. To this end, automated model compression is proposed to find
good compression policy without human effort.

Automated pruning

Conventional model pruning techniques rely on hand-crafted features and require do-
main experts to explore the large design space trading off among model size, speed, and
accuracy: this is usually suboptimal and time-consuming. AutoML for Model Compression
(AMC) (He et al., 2018) leverages reinforcement learning to efficiently sample the design
space and find the optimal pruning policy for a given network (Fig. 4.5). We process a pre-
trained network (e.g., MobileNet-V1) in a layer-by-layer manner. Our reinforcement learning
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Density

FIGURE 4.6 AMC can prune the model to a lower density compared with human experts without losing accuracy.
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FIGURE 4.7 The pruning policy (sparsity ratio) given by AMC agent for ResNet-50. With 4 stages of iterative
pruning, AMC finds very salient sparsity pattern across layers: peaks are 1 x 1 convolution, crests are 3 x 3 convo-
lution. The reinforcement learning agent automatically learns that 3 x 3 convolution has more redundancy than
1 x 1 convolution and can be pruned more.

agent (DDPG (Lillicrap et al., 2015)) receives the embedding s; from a layer ¢, and outputs a
sparsity ratio a;. After the layer is compressed with a,, it moves to the next layer L,,. The
accuracy of the pruned model with all layers compressed is evaluated. Finally, as a function
of accuracy and MACs (Multiply-Accumulate Operations), reward R is returned to the rein-
forcement learning agent.

On fine-grained pruning of ResNet-50 (He et al., 2016), AMC can outperform human ex-
perts in a fully automated manner: it pushes the expert-tuned compression ratio of ResNet-50
on ImageNet from 3.4 x to 5 x (see Fig. 4.6) without loss of performance. AMC can also find
pruning patterns similar to human heuristics. The density of each layer during each stage is
displayed in Fig. 4.7. The peaks and crests show that the RL agent automatically learns to
prune 3 x 3 convolutional layers with larger sparsity, since they generally have larger redun-
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FIGURE 4.8 (a) Comparing the accuracy and MACs trade-off among AMC, human expert, and unpruned
MobileNet-v1. AMC strictly dominates human expert in the Pareto optimal curve. (b) Comparing the accuracy and
latency trade-off among AMC, NetAdapt, and unpruned MobileNet-V1. AMC significantly improves the Pareto
curve of MobileNet-V1. Reinforcement-learning based AMC surpasses heuristic-based NetAdapt on the Pareto curve
(inference time both measured on Google Pixel 1).

dancy; whereas it prunes more compact 1 x 1 convolutions with lower sparsity. The density
statistics of each block are provided in Fig. 4.6. We can find that the density distribution of
AMC is quite different from the human expert’s result, shown in Table 3.8 of (Han, 2017),
suggesting that AMC can fully explore the design space and allocate sparsity in a better way.

AMC is hardware-aware: it can improve not only the computation (i.e., MACs) but also
the actual latency tested on device (Fig. 4.8(b)). We use a highly compact network MobileNet-
V1 (Howard et al., 2017) as an example to measure how much we can improve its inference
speed. Previous attempts using hand-crafted policy to prune MobileNet-V1 led to significant
accuracy degradation (Li et al., 2016b): pruning MobileNet-V1 to 75.5% original parameters
results in 67.2% top-1 accuracy,” which is even worse than the original 0.75 MobileNet-V1
(61.9% parameters with 68.4% top-1 accuracy). However, AMC pruning policy significantly
improves the pruning quality on ImageNet, achieving better Pareto curve on accuracy vs.
computation trade-off (i.e., getting better accuracy at the same computation). As illustrated in
Fig. 4.8(a), the human expert’s hand-crafted policy achieves slightly worse performance than
that of the original MobileNet-V1 under 2x MACs reduction. AMC also outperforms another
heuristic-based policy (Yang et al., 2018) trading off accuracy and latency.

A recent work MetaPruning (Liu et al., 2019b) first trains a PruningNet, a kind of meta net-
work, which is able to generate weight parameters for any pruned structure given the target
network, and then use it to search for the best pruning policy under different constraints.

Automated quantization

Mixed-precision quantization also requires extensive effort deciding the optimal bit-width
for each layer to achieve the best accuracy-performance trade-off. Hardware-Aware Auto-

3 http:/ /machinethink.net/blog/compressing-deep-neural-nets/.
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FIGURE 4.9 An overview of HAQ framework. It leverages the reinforcement learning to automatically search
over the huge quantization design space with hardware in the loop. The agent proposes an optimal bitwidth alloca-
tion policy given the amount of computation resources (i.e., latency, power, and model size). The RL agent integrates
the hardware accelerator into the exploration loop so that it can obtain direct feedback from the hardware, instead
of relying on indirect proxy signals (Wang et al., 2018).

mated Quantization (HAQ) (Wang et al., 2018) (Fig. 4.9) is proposed to automate the process.
HAQ leverages the reinforcement learning to automatically determine the quantization pol-
icy. It takes the hardware accelerator’s feedback in the design loop, rather than relying on
proxy signals such as MACs and model size. Compared with conventional methods, HAQ
is fully automated and can specialize the quantization policy for different neural network
architectures and hardware architectures.

HAQ uses quite as different quantization policy for edge and cloud accelerators. The quan-
tization policy of MobileNet-V1 on the BISMO accelerator (Umuroglu et al., 2018) (both edge
and cloud configuration) is plotted in Fig. 4.10. On the edge accelerator, the RL agent allocates
less activation bits to the depthwise convolutions, which echoes that the depthwise convolu-
tions are memory bounded and that the activations dominate the memory access. On the
cloud accelerator, our agent allocates more bits to the depthwise convolutions and allocates
less bits to the pointwise convolutions, as the cloud device has more memory bandwidth and
high parallelism, so the network appears to be computation bounded.

4.2 Efficient neural network architectures

In addition to compressing an existing deep neural network, another widely adopted ap-
proach to improve efficiency is to design new neural network architectures. A CNN model
typically consists of convolution layers, pooling layers, and fully-connected layers, where
most of the computation comes from the convolution layers. For example, in ResNet-50 (He
et al., 2016), more than 99% of the multiply-accumulate operations (MACs) are from convo-
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FIGURE 4.10 Quantization policy under latency constraints for MobileNet-V1 (Wang et al., 2018).

lution layers. Therefore, designing efficient convolution layers is the core of building efficient
CNN architectures.

This section first describes the standard convolution layer and then describes three ef-
ficient variants of the standard convolution layer. Next, we present three representative
manually design efficient CNN architectures, including SqueezeNet (Iandola et al., 2016),
MobileNets (Howard et al., 2017; Sandler et al., 2018), and ShuffleNets (Ma et al., 2018; Zhang
et al., 2017). Finally, we describe automated methods for designing efficient CNN architec-
tures.

4.2.1 Standard convolution layer

A standard convolution layer is parameterized by convolution kernel K of size O, x I x
K x K where O, is the number of output channels, I. is the number of input channels, K
is the spatial dimension of the kernel (Fig. 4.11a). Here for simplicity, we assume that the
convolution kernel’s width and height are the same. It is also possible to have asymmetric
convolution kernels (Szegedy and Vanhoucke, 2016).

Given input feature map Fj of size I. x H x W, the output feature map F, of size O, x H x W
is computed as follows*:

Foln, h, w] = Z Kln,m,i, j1x Fi[m,h+i — |K/2),w+ j — | K/2]]. (4.9)

m,i,j

4 Assuming the stride is 1 and zero-padding is applied to preserve the spatial dimension of the feature map.
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FIGURE 4.11 Ilustration of the standard convolution and three commonly used efficient variants.

In the following discussions, we use F, = Convg x g (Fi; K) to represent a standard convolu-
tion layer with kernel size K. According to Eq. (4.9), the computational cost of a standard
convolution is

#MACs(Convgxg)=H xW x O, x I, x K x K, (4.10)

while the number of parameters is given as

#Params(Convg«x) = O x I x K x K. (4.11)

4.2.2 Efficient convolution layers

1 x 1 (pointwise) convolution

1 x 1 convolution (also called pointwise convolution) is a special kind of standard convo-
lution layer, where the kernel size K is 1 (Fig. 4.11d). According to Eq. (4.10) and Eq. (4.11),
replacing a K x K standard convolution layer with a 1 x 1 convolution layer will reduce the
number of MACs (#MACs) and the number of parameters (#Params) by K2 times. In practice,
as the 1x1 convolution itself cannot aggregate spatial information, it is combined with other
convolution layers to form CNN architectures. For example, a 1 x 1 convolution is usually
used to reduce/increase the channel dimension of the feature map in CNN.

Group convolution

Different from a 1 x 1 convolution, which reduces the cost by decreasing the kernel size
dimension, group convolution reduces the cost by decreasing the channel dimension. Specifi-
cally, the input feature map F; is split into G groups along the channel dimension (Fig. 4.11b):

split(F;) = (Fi[O :c,:,:,File:2¢,:,:, -+ Kl —c: I, :, :]), wherec=1./G.
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FIGURE 4.12 SqueezeNet Architecture (landola et al., 2016).

Then each group is fed to a standard K x K convolution of size % X %‘ x K x K. Finally,
the outputs are concatenated along the channel dimension. Compared to a standard K x K

convolution, #MACs and #Params are reduced by G x in a group convolution.

Depthwise convolution

The number of groups G is an adjustable hyperparameter in group convolutions. A larger
G leads to lower computational cost and fewer parameters. An extreme case is that G equals
the number of input channels I... In that case, the group convolution layer is called a depth-
wise convolution (Fig. 4.11 c). #MACs and #Params of a depthwise convolution are

#MACs(DWConvgxg)=H x W x O. x K x K, (4.12)
#Params(DWConvgxg) =0, x K x K, (4.13)

where O, = I..

4.2.3 Manually designed efficient CNN models
SqueezeNet (Fig. 4.12)

SqueezeNet (Iandola et al., 2016) targets extremely compact model sizes for mobile ap-
plications. It has only 1.2 million parameters but achieved an accuracy similar to AlexNet
(Table 4.1). SqueezeNet has 26 convolution layers and no fully-connected layer. The last fea-
ture map goes through a global average pooling and forms a 1000-dimension vector to feed
the softmax layer. SqueezeNet has eight Fire modules. Each fire module contains a squeeze
layer with 1 x 1 convolution and a pair of 1 x 1 and 3 x 3 convolutions. The SqueezeNet
caffemodel achieved a top-1 accuracy of 57.4% and a top-5 accuracy of 80.5% on ImageNet
2012 (Deng et al., 2009). SqueezeNet is widely used in mobile applications in which model
size is a large constraint.

MobileNets (Fig. 4.13)

MobileNetV1 (Howard et al., 2017) is based on a building block called depthwise sepa-
rable convolution (Fig. 4.13a), which consists of a 3 x 3 depthwise convolution layer and
a 1x1 convolution layer. The input image first goes through a 3x3 standard convolution
layer with stride 2, then 13 depthwise separable convolution blocks. Finally, the feature map
goes through a global average pooling and forms a 1280-dimension vector fed to the final
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TABLE 4.1 Summarized results of manually designed CNN architectures on ImageNet.

ImageNet
k #P #MA
Networ arams MACs Top-1Acc . Top-5 Acc
AlexNet (Krizhevsky et al., 2012) 60M 720M 57.2% 80.3%
GoogleNet (Szegedy et al., 2015) 6.8M 1550M 69.8% 89.5%
VGG-16 (Simonyan and Zisserman, 2014) 138M 15300M 71.5% -
ResNet-50 (He et al., 2016) 25.5M 4100M 76.1% 92.9%
SqueezeNet (Iandola et al., 2016) 1.2M 1700M 57.4% 80.5%
MobileNetV1 (Howard et al., 2017) 42M 569M 70.6% 89.5%
MobileNetV2 (Sandler et al., 2018) 3.4M 300M 72.0% -
MobileNetV2-1.4 (Sandler et al., 2018) 6.9M 585M 74.7% -
ShuffleNetV1-1.5x (Zhang et al., 2017) 3.4M 292M 71.5% -
ShuffleNetV2-1.5x (Ma et al., 2018) 3.5M 299M 72.6% -
ShuffleNetV2-2x (Ma et al., 2018) 7.4M 591M 74.9% -
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FIGURE 4.13 (a) Building block of MobileNetV1 (Howard et al., 2017). It consists of a 3 x 3 depthwise convolution
layer and a 1x1 convolution layer. (b) Building blocks of MobileNetV2 (Sandler et al., 2018). Each block consists of a
3 x 3 depthwise convolution layer and two 1 x 1 convolution layers. When the stride is 1, the block will have a skip
connection.

fully-connected layer with 1000 output units. With 569M MACs and 4.2M parameters, Mo-
bileNetV1 achieves 70.6% top-1 accuracy on ImageNet 2012 (Table 4.1).

MobileNetV2 (Sandler et al., 2018), an improved version of MobileNetV1, also uses 3 x 3
depthwise convolution and 1 x 1 convolution to compose its building blocks. Unlike Mo-
bileNetV1, the building block in MobileNetV2 has three layers, including a 3 x 3 depthwise
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FIGURE 4.14 Ilustration of the channel shuffle operation (Zhang et al., 2017).

convolution layer and two 1 x 1 convolution layers (Fig. 4.13b). The intuition is that the capac-
ity of depthwise convolution is much lower than the standard convolution, and thus needs
more channels to improve its capacity. From a cost perspective, the #MACs and #Params
of a depthwise convolution only grow linearly (rather than quadratically as for a standard
convolution) as the number of channels increases. Thus, even with a large channel number,
the cost of a depthwise convolution layer is still moderate. Therefore, in MobileNetV2, the
input feature map first goes through a 1x1 convolution to increase the channel dimension
by a factor called expand ratio. Then the expanded feature map is fed to a 3 x 3 depthwise
convolution, followed by another 1 x 1 convolution to reduce the channel dimension back
to the original value. This structure is called inverted bottleneck and the block is called mobile
inverted bottleneck block. Apart from the mobile inverted bottleneck block, MobileNetV2 has
another two improvements over MobileNetV1. First, MobileNetV2 has skip connections® for
blocks in which the stride is 1. Second, the activation function of the last 1 x 1 convolution in
each block is removed. Combining these improvements, MobileNetV2 achieves 72.0% top-1
accuracy on ImageNet 2012 with only 300M MACs and 3.4M parameters (Table 4.1).

ShuffleNets

Similar to MobileNets, ShuffleNetV1 utilizes 3x3 depthwise convolution rather than stan-
dard convolution. Besides, ShuffleNetV1 introduces two new operations, pointwise group
convolution and channel shuffle. The pointwise group convolution’s motivation is to reduce
the computational cost of 1 x 1 convolution layers. However, it has a side effect: a group
cannot see information from other groups. This will significantly hurt accuracy. The chan-
nel shuffle operation is thus introduced to address this side effect by exchanging feature
maps between different groups. An illustration of the channel shuffle operation is provided in
Fig. 4.14. After shuffling, each group will contain information from all groups. On ImageNet
2012, ShuffleNetV1 achieves 71.5% top-1 accuracy with 292M MACs (Table 4.1).

In ShuffleNetV2, the input feature map is divided into two groups at the beginning of each
building block. One group goes through the convolution branch that consists of a 3 x 3 depth-

5 With a skip connection, output = F (input) + input. Without a skip connection, output = F(input).
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wise convolution layer and two 1 x 1 convolution layers. The other group goes through a skip
connection when the stride is 1 and goes through a 3 x 3 depthwise separable convolution
when the stride is 2. In the end, the outputs are concatenated along the channel dimension,
followed by a channel shuffle operation to exchange information between groups. With 299M
MAC:s, ShuffleNetV2 achieves 72.6% top-1 accuracy on ImageNet 2012 (Table 4.1).

4.2.4 Neural architecture search

The success of the aforementioned efficient CNN models relies on hand-crafted neural
network architectures that require domain experts to explore the large design space, trading
off among model size, latency, energy, and accuracy. This is not only time-consuming but also
suboptimal. Thus, there is a growing interest in developing automated methods to tackle this
challenge.

Neural Architecture Search (NAS) refers to using machine learning techniques to auto-
matically design neural network architectures. In the conventional NAS formulation (Zoph
and Le, 2016), designing neural network architectures is modeled as a sequence generation
problem, where an auto-regressive RNN controller is introduced to generate neural network
architectures. This RNN controller is trained by repeatedly sampling neural network archi-
tectures, evaluating the sampled neural network architectures, and updating the controller
based on the feedback. To find a good neural network architecture in the vast search space,
this process typically has to train and evaluate tens of thousands of neural networks (e.g.,
12,800 in (Zoph et al., 2017)) on the target task, leading to prohibitive computational cost
(10* GPU hours). To address this challenge, many techniques are proposed that try to improve
different components of NAS, including search space, search algorithm, and performance
evaluation strategy.

Search space

All the NAS methods need a predefined search space that contains basic network ele-
ments and how they connect with each other. For example, the typical basic elements of
CNN models consist of (1) convolutions (Zoph et al., 2017; Real et al., 2018): standard con-
volutions (1 x 1, 3 x 3,5 x 5), asymmetric convolutions (1 x 3and 3 x 1,1 x 7and 7 x 1),
depthwise-separable convolutions (3 x 3, 5 x 5), dilated convolutions (3x3); (2) poolings:
average pooling (3 x 3), max pooling (3x3); (3) activation functions (Ramachandran et al.,
2017). Then these basic elements are stacked sequentially (Baker et al., 2016) with identity
connections (Zoph and Le, 2016). The full network-level search space grows exponentially
as the network deepens (Fig. 4.15(a)). When the depth is 20, this search space contains more
than 10°® different neural network architectures in Zoph et al. (2017).

Instead of directly searching on such an exponentially large space, restricting the search
space is a very effective approach for improving the search speed. Specifically, Zoph et al.
(2017); Zhong et al. (2017) propose to search for basic building cells (Fig. 4.15(b)) that can
be stacked to construct neural networks, rather than the entire neural network architecture.
As such, the architecture complexity is independent of the network depth, and the learned
cells are transferable across different datasets. This enables NAS to search on a small proxy
dataset (e.g., CIFAR-10), and then transfer to another large-scale dataset (e.g., ImageNet) by
adapting the number of cells. Within the cell, the complexity is further reduced by supporting
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FIGURE 4.15 NAS search space (Deng et al., 2020): (a) network-level search space (Zoph and Le, 2016); (b) cell-
level search space (Zoph et al., 2017); (c) an example of learned cell structure (Liu et al., 2017); (d) three-level
hierarchical search space (Liu et al., 2018a).

hierarchical topologies (Liu et al., 2018a), or increasing the number of elements (blocks) in a
progressive (simple to complex) manner (Liu et al., 2017).

Search algorithm

NAS methods usually have two stages at each search step: (1) the generator produces an
architecture, and then (2) the evaluator trains the network and obtains the performance. As
getting the performance of a sampled neural network architecture involves training a neural
network, which is very expensive, search algorithms that affect the sample efficiency play an
important role in improving the search speed of NAS. Most of the search algorithms used in
NAS fall into five categories: random search, reinforcement learning (RL), evolutionary algo-
rithms, Bayesian optimization, and gradient-based methods. Among them, RL, evolutionary
algorithms, and gradient-based methods provide the most competitive results.

RL-based methods model the architecture generation process as a Markov Decision Pro-
cess, treat the validation accuracy of the sampled architecture as the reward and update the
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architecture generation model using RL algorithms, including Q-learning (Baker et al., 2016;
Zhong et al., 2017), REINFORCE (Zoph and Le, 2016), PPO (Zoph et al., 2017), etc. Instead
of training an architecture generation model, evolutionary methods (Real et al., 2018; Liu et
al., 2018a) maintain a population of neural network architectures. This population is updated
through mutation and recombination. While both RL-based methods and evolutionary meth-
ods optimize neural network architectures in the discrete space, DARTS (Liu et al., 2018b)
proposes continuous relaxation of the architecture representation:

y= Zaioi (x), wherea; >0, Zai =1, (4.14)
p ,

1

where {o;} denote architecture parameters, {o;} denote candidate operations, x is the input,
and y is the output. Such continuous relaxation allows neural network architectures to be
optimized in the continuous space using gradient descent, which greatly improves the search
efficiency. Apart from the above techniques, the search efficiency of NAS can be improved
by exploring the architecture space with network transformation operations, starting from an
existing network, and reusing the weights (Cai et al., 2018a,b; Elsken et al., 2018).

Performance evaluation

To guide the search process, NAS methods need to get the performances (typically ac-
curacy on the validation set) of sampled neural architectures. The trivial approach to get
these performances is to train sampled neural network architectures on the training data and
measure their accuracy on the validation set. However, this would result in excessive com-
putational cost (Zoph and Le, 2016; Zoph et al., 2017; Real et al., 2018). This motivates many
techniques that aim at speeding up the performance evaluation step.

Alternatively, the evaluation step can be accelerated using Hypernetwork (Brock et al.,
2017), which can directly generate weights of a neural architecture without training it.
Though the model’s accuracy will degrade significantly using the generated weights, this
accuracy can be used as a proxy metric to select neural architectures. As such, only a single
Hypernetwork needs to be trained, which greatly saves the search cost. Similarly, One-shot
NAS methods (Pham et al., 2018; Liu et al., 2018b; Cai et al., 2019) focus on training a single
supernet, from which small subnetworks directly inherit weights without training cost.

Auto-designed vs. human-designed

Fig. 4.16 reports the summarized results of auto-design CNN models and human-design
CNN models on ImageNet. NAS not only saves engineer labor costs but also provides better
CNN models over human-designed CNNs. Apart from ImageNet classification, auto-design
CNN models have outperformed manually designed CNN models on object detection (Zoph
etal., 2017; Chen et al., 2019b; Ghiasi et al., 2019; Tan et al., 2020a) and semantic segmentation
(Liu et al., 2019; Chen et al., 2018).

4.2.5 Hardware-aware neural architecture search

While NAS has shown promising results, achieving significant MACs reduction with-
out sacrificing accuracy, in real-world applications, we care about the real hardware effi-
ciency (e.g., latency, energy) rather than #MACs. Unfortunately, MAC-efficiency does not
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FIGURE 4.16 Summarized results of auto-design CNN models and human-design CNN models on ImageNet
(Cai et al., 2020a).

directly translate to real hardware efficiency. Fig. 4.17 shows the comparison between auto-
designed CNN models (NASNet-A and AmoebaNet-A) and human-designed CNN models
(MobileNetV2-1.4). Although NASNet-A and AmoebaNet-A have fewer MACs than Mo-
bileNetV2-1.4, they actually run slower than MobileNetV2-1.4 on hardware. It is because
#MAC:s only reflect the computation complexity of convolution operations. Other factors like
data access cost, parallelism, and cost of element-wise operations that significantly affect real
hardware efficiency are not taken into consideration.

This problem motivates hardware-aware NAS techniques (Tan et al., 2018; Cai et al., 2019;
Wu et al., 2019) that directly incorporate hardware feedback into the architecture search pro-
cess. An example of the hardware-aware NAS framework is shown in Fig. 4.18. Besides
accuracy, each sampled neural network architecture is measured on the target hardware to
collect its latency information. A multiobjective reward is defined based on accuracy ACC
and latency LAT:

)Lz)

LAT

reward = ACC x ( (4.15)

where T is the target latency and w is a hyperparameter.

Latency prediction

Measuring the latency on-device is accurate but not ideal for scalable neural architecture
search. There are two reasons: (i) Slow speed. As suggested in TensorFlow-Lite,® we need to

6 https:/ /www.tensorflow.org/ lite.
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FIGURE 4.18 An example of the hardware-aware NAS framework (Tan et al., 2018).

average hundreds of runs to produce a precise measurement, approximately 20 seconds. This
is far more slower than a single forward / backward execution. (ii) High cost. A lot of mobile
devices and software engineering work are required to build an automatic pipeline to gather
the latency from a mobile farm.

Instead of direct measurement, an economical solution is to build a prediction model to
estimate the latency (Cai et al., 2019). In practice, this is implemented by sampling neural
network architectures from the candidate space and profiling their latency on the target hard-
ware platform. The collected data is then used to build the latency prediction model. For
hardware platforms that sequentially execute operations, like mobile and FPGA, a simple la-
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FIGURE 4.19 Predicted latency v.s. real latency on Google Pixel 1 (Cai et al., 2019).
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FIGURE 4.20 Making latency differentiable by introducing latency loss (Cai et al., 2019).

tency lookup table that maps each operation to its estimated latency is sufficient to provide
very accurate latency predictions (Fig. 4.19). Another benefit of this approach is that it al-
lows modeling the latency of a neural network as a regularization loss (Fig. 4.20), enabling
trade-off between accuracy and latency to be optimized in a differentiable manner.

Specialized models for different hardware

Given the high cost of building a new neural network model, it is common to deploy the
same model for all hardware platforms. However, it is suboptimal, as different hardware plat-
forms have different properties, such as the number of arithmetic units, memory bandwidth,
cache size, etc. Using hardware-aware NAS techniques, it is possible to have a specialized
neural network architecture for each target hardware.

Fig. 4.21 demonstrates the detailed architectures of specialized CNN models on GPU and
Mobile. We notice that the architecture shows different preferences when targeting different
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FIGURE 4.21 Efficient models optimized for different hardware. “MBConv3” and “MBConv6” denote mobile
inverted bottleneck block with an expand ratio of 3 and 6 respectively. Insights: GPU prefers shallow and wide
model with early pooling; Mobile prefers deep and narrow model with late pooling. Pooling layers prefer large and
wide kernel. Early layers prefer small kernel. Late layers prefer large kernel (Cai et al., 2019).

TABLE 4.2 Hardware prefers specialized models (Cai et al., 2019). With a similar accuracy, the special-
ized model (ProxylessNAS-Mobile) reduces the latency by 1.8 x compared to the nonspecialized CNN
model (MobileNetV2-1.4). Besides, models optimized for GPU do not run fast on Mobile, and vice versa.

Network ImageNet Top-1 (%) GPU latency Mobile latency
MobileNetV2-1.4 (Sandler et al., 2018) 747 - 143 ms
ProxylessNAS-GPU (Cai et al., 2019) 75.1 5.1 ms 124 ms
ProxylessNAS-Mobile (Cai et al., 2019) 74.6 7.2 ms 78 ms

platforms: (i) The GPU model is shallower and wider, especially in the early stages where
the feature map has higher resolution; (ii) The GPU model prefers large MBConv operations
(e.g., 7 x 7 MBConv6), while the Mobile model would go for smaller MBConv operations.
This is because GPU has much higher parallelism than Mobile so it can take advantage of
large MBConv operations. Another interesting observation is that the searched models on
all platforms prefer larger MBConv operations in the first block within each stage where the
feature map is downsampled. This might be because larger MBConv operations are beneficial
for the network to preserve more information when downsampling.

Table 4.2 shows the summarized results of specialized models on GPU and Mobile. An
interesting observation is that models optimized for GPU do not run fast on Mobile, and vice
versa. Therefore, it is essential to learn specialized neural networks for different hardware
architectures to achieve the best efficiency on different hardware.

Handling many hardware platforms and efficiency constraints

Although specialized CNN models are superior to nonspecialized counterparts, design-
ing specialized CNNs for every scenario is still difficult, either with human-based methods
or hardware-aware NAS, since such methods need to repeat the network design process and
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FIGURE 4.22 Left: a single once-for-all network is trained to support versatile architectural configurations in-
cluding depth, width, kernel size, and resolution. Given a deployment scenario, a specialized subnetwork is directly
selected from the once-for-all network without training. Middle: this approach reduces the cost of specialized deep
learning deployment from O(N) to O(1). Right: once-for-all network followed by model selection can derive many
accuracy-latency trade-offs by training only once, compared to conventional methods that require repeated training
(Cai et al., 2020a).

retrain the designed network from scratch for each case. Their total cost grows linearly as the
number of deployment scenarios increases, which will result in excessive energy consump-
tion and C 0, emission (Strubell et al., 2019). It makes them unable to handle the vast number
of hardware devices (23.14 billion IoT devices till 2018”) and highly dynamic deployment
environments (different battery conditions, different latency requirements, etc.).

To tackle this challenge, one promising solution is to build a once-for-all (OFA) network
(Caietal., 2020a; Yu et al., 2020) that can be directly deployed under diverse architectural con-
figurations, amortizing the training cost. The inference is performed by selecting only part of
the OFA network. It flexibly supports different depths, widths, kernel sizes, and resolutions
without retraining. An example of OFA is illustrated in Fig. 4.22 (left). Specifically, the model
training stage is decoupled from the neural architecture search stage. In the model training
stage, the focus is to improve the accuracy of all subnetworks derived by selecting different
parts of the OFA network. A subset of subnetworks is sampled in the model specialization
stage to train an accuracy predictor and latency predictors. Given the target hardware and
constraint, a predictor-guided architecture search (Liu et al., 2018) is conducted to get a spe-
cialized subnetwork, and the cost is negligible.® As such, the total cost of specialized neural
network design is reduced from O(N) to O(1) (Fig. 4.22 middle).

Table 4.3 reports the comparison between OFA and state-of-the-art hardware-aware NAS
methods on the mobile phone (Pixell). The cost of OFA is constant while others are lin-
ear to the number of deployment scenarios (N). With N = 40, the total C O, emissions of
OFA are 16 x less than ProxylessNAS, 19x less than FBNet, and 1,300 x less than Mnas-
Net.

Fig. 4.23 summarizes the results of OFA under different MACs and Pixell latency con-
straints. An interesting observation is that training the searched neural architectures from

7 https:/ /www.statista.com/statistics /471264 /iot-number-of-connected-devices-worldwide/.
8 https:/ /github.com/mit-han-lab/once-for-all/blob /master/tutorial / ofa.ipynb.
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TABLE 4.3 Summarized results on Pixell phone (Cai et al., 2020a). The first group corresponds to human-designed CNN models. The second
group corresponds to conventional NAS. The third group corresponds to hardware-aware NAS. The final group corresponds to OFA. “#75” indicates
that the specialized subnetworks are fine-tuned for 75 epochs after grabbing weights from the OFA network. “C Oe” denotes C Oy emission which is
calculated based on (Strubell et al., 2019). AWS cost is calculated based on the price of Amazon AWS on-demand P3.16x large instances.

Network ImageNet MAGCs Mobile  Search cost  Training cost Total cost (N = 40)

Top1 (%) latency (GPUhours) (GPUhours) GPUhours COje(lbs) AWS cost
MobileNetV2 (Sandler et al., 2018) 72.0 300M 66 ms 0 150N 6k 1.7k $18.4k
MobileNetV2 #1200 73.5 300M 66 ms 0 1200N 48k 13.6k $146.9k
NASNet-A (Zoph et al., 2017) 74.0 564M - 48,000N - 1920k 544.5k $5875.2k
DARTS (Liu et al., 2018b) 73.1 595M - 96N 250N 14k 4.0k $42.8k
MnasNet (Tan et al., 2018) 74.0 317M 70 ms 40,000N - 1600k 453.8k $4896.0k
FBNet-C (Wu et al., 2019) 74.9 375M - 216N 360N 23k 6.5k $70.4k
ProxylessNAS (Cai et al., 2019) 74.6 320M 71 ms 200N 300N 20k 5.7k $61.2k
SinglePathNAS (Guo et al., 2019) 74.7 328M - 288 + 24N 384N 17k 4.8k $52.0k
AutoSlim (Yu and Autoslim, 2019) 74.2 305M 63 ms 180 300N 12k 3.4k $36.7k
MobileNetV3-Large (Howard et al., 2019) 75.2 219M 58 ms - 180N 7.2k 1.8k $22.2k
OFA 76.0 230M 58 ms 40 1200 1.2k 0.34k $3.7k
OFA #75 76.9 230M 58 ms 40 1200 + 75N 4.2k 1.2k $13.0k

OFALarge #75 80.0 595M - 40 1200 + 75N 42k 1.2k $13.0k
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FIGURE 4.23 Training the search neural architectures from scratch cannot achieve the same accuracy as OFA (Cai
etal., 2020a).

scratch cannot reach the same level of accuracy as OFA, suggesting that not only neural ar-
chitectures but also pretrained weights contribute to the superior performances of OFA.

4.3 Conclusion

Over the past few years, deep neural networks have achieved unprecedented success in
the field of artificial intelligence; however, their superior performance comes at the cost of
high computational complexity. This limits their applications on many edge devices, where
the hardware resources are tightly constrained by the form factor, battery, and heat dissipa-
tion.

This chapter offers a systematic overview of efficient deep learning to enable both re-
searchers and practitioners to get started in this field quickly. We first introduce various
model compression approaches that have become the industry standards, such as pruning,
factorization, quantization, and efficient model design. To reduce the design cost of these
handcrafted solutions, we then describe many recent efforts on neural architecture search,
automated pruning, and quantization, which can outperform the manual design with mini-
mal human efforts. Finally, we describe the once-for-all technique to efficiently handle many
hardware platforms and efficiency constraints without repeating the costly search and re-
training phases.
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Deep conditional image generation
Towards controllable visual pattern modeling
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CHAPTER POINTS

e Avisual pattern is a discernible visual e Learning disentangled representation is the
regularity, which repeats in a predictable key to more controllable visual pattern
manner. synthesis.

e Pattern recognition, discovery and e Unsupervised learning of disentangled
synthesis are three fundamental tasks in representations requires appropriate
visual pattern analysis. inductive biases.

e  Pattern synthesis is the most e  More controllable pattern synthesis leads
comprehensive visual modeling task. to more explainable pattern analysis.

5.1 Introduction

Visual perception is a challenging task, since natural scenes are composed by an over-
whelming number of visual patterns, which often follow either a stochastic, or deterministic
process, or a combination of both. By definition, a visual pattern is a discernible visual regu-
larity in the world, whose compositional elements as a whole, repeat in a predictable manner.
There are three fundamental tasks in visual pattern analysis, i.e., pattern recognition, pattern
discovery, and pattern synthesis. Discerning different visual patterns corresponds to the task
of pattern recognition.! The fact that visual patterns repeat themselves in the world is the

1 Here we refer to pattern recognition in a narrow sense of differentiating different visual patterns. It may also be
used in a wide sense to cover all pattern analysis tasks.
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FIGURE 5.1 Examples to show that to recognize an image, we may only need a handful of discriminative visual
features (a.k.a. atomic visual patterns). Even by only looking at the visual characteristics in local image regions, we
can well recognize the semantic categories of the images.

ultanc

FIGURE 5.2 Examples of unsupervised object discovery from a video sequence, using the technologies proposed
in Zhao et al. (2013). The figures are by courtesy of Zhao et al. (2013).

basis for various pattern discovery methods. Pattern synthesis refers to the task of generat-
ing new instance of a visual pattern. This entails a process of modeling and characterizing
the underneath processes which govern (and hence can predict) the variations of the visual
pattern.

From the modeling and learning perspective, the minimal information needed to fulfill
the above three fundamental tasks are different. Specifically, for pattern recognition, we only
need to identify the most distinctive visual features” of a pattern to differentiate it from other
visual patterns. In other words, successfully performing pattern recognition (e.g., classifica-
tion) tasks does not require the feature representations to be comprehensive in describing
every single detail of the pattern. This is one of the reasons that most state-of-the-art pat-
tern recognition methods, if not all of them, adopted a discriminative modeling approach. To
better illustrate this, we show several example images in Fig. 5.1. Obviously, even only by
looking at visual characteristics from some local regions in the image, we can already reliably
recognize the semantic category of these images, even for the image with artistic style.

Modeling patterns for the task of visual pattern discovery is a little more demanding, as
the task is designed to discover and localize repetitively occurred visual patterns from a col-
lection of images and videos, without a priori information about them (Yuan, 2011; Zhao et
al., 2013). The unsupervised nature of the pattern discovery tasks necessitates a modeling
approach that can establish relatively generic representations and a metric space, where per-
ceptual grouping could be conducted to identify meaningful semantic visual patterns.

2 Indeed, a visual feature can also be regarded as an atomic visual pattern.
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Some existing works have also attacked the problem of pattern discovery in a weakly su-
pervised problem (Liu et al., 2010). Often only a limited number of examples are provided,
sometimes even just at frame level indicating a frame contains a pattern or not without spec-
ifying where the pattern is located. Beyond modeling the visual characteristics of the visual
patterns, spatial, temporal and/or spatiotemporal contextual information were proven to
be effective in helping with the visual pattern discovery tasks. An effective model for vi-
sual pattern discovery necessitates a feature representation that seeks a trade-off between a
comprehensive description of a pattern and yet being sufficiently discriminative, such that
the patterns can be effectively grouped and differentiated from the background. Therefore,
existing approaches for pattern discovery could either be generative (Zhao et al., 2013) or
discriminative (Weng et al., 2018), or a combination of both.

Pattern synthesis requires a comprehensive modeling of the target visual patterns, as ulti-
mately the model needs to capture every single details along with the variations of the visual
patterns. A learning-based approach to the problem of pattern synthesis often takes a gen-
erative modeling approach. While there has been tremendous success made in generative
modeling, either using traditional statistical methods (Zhu et al., 1998; Van de Wouwer et
al.,, 1999; Zhu, 2003; Guo et al., 2003), or more recent deep learning approaches (Kingma and
Welling, 2014; Goodfellow et al., 2014), the generation processes (or sampling from the mod-
els) is often driven by a random process, where controlling how the generated visual samples
look like is difficult, if not impossible.

In this chapter, we focus our discussion on how we may achieve more controllable visual
pattern synthesis by using deep learning-based conditional image generation. Here control-
lable means that there is a way we may specifically set the value of a certain parameter or
subset of parameters to control the variation of the generated samples of the visual patterns
along certain semantic, physical and/or geometric dimensions (a.k.a., factors), such as facial
expression, color and poses. We achieve such controllability through deep conditional image
generation with an encoder-decoder structure, where a probabilistic space is defined over a
disentangled vector embedding to drive the generation of samples of target visual patterns.
Learning such a disentangled representation is challenging, which remains an active research.

While many previous works have claimed to learn disentangled representation in a un-
supervised way, Locatello et al. (2019) manifest that unsupervised learning of disentangled
representation is theoretically impossible without inductive biases on both the models and
the datasets. We will devote our discussions to how such inductive biases may be introduced
in a supervised, semisupervised and selfsupervised fashion in real computer vision appli-
cations to learn disentangled representation for controllable visual pattern synthesis. The
applications we explore include image/video style transfer, texts to image generation and
face synthesis. Nevertheless, we hope that the insights learnt from these explorations would
be transformative in solving other problems in different applications as well.

The remainder of the chapter will be organized as follows: in Section 5.2, we present a
brief review of the historical development of visual pattern learning. Then the fundamentals
of traditional statistical learning based generative models and deep generative models are
elaborated in Section 5.3 and Section 5.4 respectively. Next, in Section 5.5, we will introduce
how to leverage deep generative models for visual pattern learning and synthesis under the
conditional image generation framework. Accordingly, in Section 5.6, we will use three case
studies with different supervision levels to illustrate how inductive bias could be introduced
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to learn disentangled representations for controllable visual pattern synthesis, along with

analysis on results, putting them along their literature. Finally, we draw conclusions with
potential future explorations in Section 5.7.

5.2 Visual pattern learning: a brief review

The early research of visual pattern learning can trace back several decades. And the main
stream adopts the Bayesian framework and has developed many explicit models for visual
pattern modeling. Among them, the pioneering works (Grenander, 1976; Cooper, 1979; Fu,
1982) may be the earliest to use statistical models for visual pattern modeling. In the late 1980s
and early 1990s, image models grow popular and indispensable. Early models assume local
and piece-wise smoothness in natural images and many different works have been proposed.
For instance, physically-based models are proposed in the works (Blake and Zisserman, 1987;
Terzopoulos, 1983), and the regularization theory is used in Poggio et al. (1985). In the work
(Mumford and Shah, 1989), this problem is formulated as an energy function and solved by
energy minimization.

Then the above concepts soon start convergence to the statistical descriptive models be-
cause of two influential works. One is Markov random field (MRF) modeling (Besag, 1974;
Cross and Jain, 1983). It considers texture pattern to follow a stochastic, possibly periodic,
two-dimensional image field, and explores Markov random fields as texture models. A tex-
ture model is defined as a mathematical procedure capable of producing and describing a
texture image. Another one is the work (Geman and Geman, 1984), which makes an anal-
ogy between images and statistical mechanics systems and formulates pattern modeling as a
Gibbs distribution and sampling problem under the Bayesian framework. More specifically,
the pixel values and the presence and orientation of edges are regarded as states of atoms
or molecules in a lattice-like physical system. And the assignment of an energy function in
the physical system determines a Gibbs distribution. Because of the Gibbs distribution, MRF
equivalence, it can be also viewed as a MRF image model. However, these works have two
limitations: 1) Markov random field models are based on pair cliques, so it cannot charac-
terize natural images very well. 2) Gibbs sampling is very time-consuming, making it less
applicable in real systems. There are also some other probability models proposed for visual
pattern representation learning, such as deformable templates for face (Yuille, 1991), eyes
(Xie et al., 1994) and objects (Shackleton, 1994). Compared to homogeneous MRF models,
deformable templates are inhomogeneous.

To tackle the computational complexity of the above descriptive models, generative mod-
els emerge and postulate hidden variables as the causes for the complicated dependencies in
raw signals. A simple illustration figure is shown in Fig. 5.3. Take human as an example, it
often has of one head (denoted as “1”), one body (denoted as “b”), two arms and two legs
(denoted as “ay, a,, 11, I”). The descriptive model considers the joint distribution of five pieces
p(h,b,ay, a1, 1) without understanding the hidden concept of “human”. In contrast, gener-
ative models regard the five pieces to be conditional dependent under a hidden variable % for
the human, then formulate them with a conditional probability model p(k, b, a;, ar, 11, I/ |d).
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FIGURE 5.3 A simple illustration of difference between descriptive models and generative models in terms of
the desk object. Compared to descriptive models, generative models introduce hidden variables to model the strong
dependency within the observed images.

Typical generative models include sparse coding (Roweis and Ghahramani, 1999; Hoyer
and Hyvirinen, 2002; Manat and Zhang, 1993), wavelet image representation (Do and Vet-
terli, 2003; Lu et al., 1992), principle component analysis (PCA) (Kambhatla and Leen, 1997;
Kong et al., 2005), independent component analysis (ICA) (Hyvérinen, 1999; Hyvarinen and
Oja, 2000) and the random college model (Lee et al., 2001). Such models assume an image can
be represented by a series of bases. In this way, the representation dimension can be greatly re-
duced by projecting the original image space to the hidden space. Therefore, the computation
cost becomes less intensive. In the literature, generative models are often inseparable from
descriptive models, as the hidden variables are often characterized by a descriptive model.
For instance, the sparse coding scheme is a two-layer generative model and assumes that the
image bases are independent and identically distributed hidden variables. And the hidden
layer in the hidden Markov models for speech and motion modeling is a Markov chain.

Recently, benefiting from large scale datasets and high-end computation devices, deep
learning has achieved great success in many artificial intelligence tasks, like visual recog-
nition (Szegedy et al., 2015; He et al., 2016) and object detection (Girshick, 2015; Ren et al.,
2015). Similarly, many deep neural networks based generative models have been proposed,
including pixel CNN (Van den Oord et al., 2016), variational auto-encoder (VAE) (Doersch,
2016), and generative adversarial networks (Goodfellow et al., 2014). Essentially, in order to
generate high-quality images, such deep models must learn to memorize the visual patterns
and underlying structures in their weight space. To some extent, better generation quality
is equivalent to better pattern learning. In the following parts, we will briefly introduce the
fundamentals of classical generative models and deep generative models.

5.3 Classical generative models

From the mathematical perspective (Hua, 2020), classic generative models are statistical
models which target modeling the joint probability distribution p(X, z|®), where X is an ob-
served multivariate variable, z is the aforementioned hidden variable, and @ are the param-
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eters of the model to optimize. The hidden variable Z could represent different confounders.
For example, if Z are the class labels, generative models can also be used for classification
tasks. But the modeling objectives of generative models are different from discriminative mod-
els, which directly model the conditional distribution p(Z|X, ©).

As it is the case for any statistical models, learning and inference are two fundamental prob-
lems to be addressed in generative models. Learning refers to the process of estimating the
parameters of these generative models from the data. When the data is complete where X
and Z are both observed as a sample pair, parameter estimation is often formalized as a
standard Maximum Likelihood estimation problem. A more common setting in real world
applications is to estimate the parameters from incomplete data, where only X is observed
and the target variable Z is not observed in the data sample. This is a problem of maxi-
mum likelihood with incomplete data. Such a problem is often approached by the seminal
Expectation-Maximization (EM) algorithm (Dempster et al., 1977), where an E-step and a M-
step are iteratively conducted to maximize the looklihood of the incomplete data. From the
perspective of optimization, such an iterative process can be regarded as a surrogate opti-
mization process.

The E-Step, by definition, computes the expectation of the data likelihood over the distri-
bution of the hidden or target variables. This is done by first conducting an inference step, i.e.,
calculating the posterior probability p(Z|X, ®.) given the current parameter setting ®.. Then
we have

E((~)|(~)C)=/p(X,Z|(~))p(Z|X, O.dZ. (5.1)
V4

Then the M-Step maximizes E(®|6,) to obtain updated parameters

O =arg m@axE(@|@C). (5.2)

These two steps iterate until convergence. This iteration represents a surrogate maximiza-
tion process of £(X|®), which is monotonically nondecreasing. Since it is obviously upper
bounded, the process is guaranteed to converge. Ghahramani (Ghahramani and Beal, 2001)
derived a Bayesian EM algorithm by leveraging probabilistic variational analysis. Indeed, the
M-Step does not need to fully solve the maximization problem. Instead it only needs to find
a new parameter ®/”, which has higher E(®/¢"|©.) than E(©.|6.). This is also referred to
the generalized EM algorithm.

The inference of the posterior probability p(Z|X, ©.) would have a closed-form solution
under limited cases. For example, when the prior distribution p(Z) and likelihood distri-
bution p(X|Z) are conjugated, then the posterior would take the same form as the prior.
Such conjugate priors are common when the distributions are confined to the conjugate-
exponential family (Ghahramani and Beal, 2001). However, for more general distributions,
it is often intractable to calculate the posterior in closed-form.

When closed-form inference is intractable, one can often resort to numerical solution, such
as using Markov chain Monte Carlo (MCMC) methods, e.g., the Gibbs sampling, to produce
samples from this distribution and then compute the integral in Eq. (5.1) numerically. Hinton
et al. (Hinton, 2002) presented a method, namely contrastive divergence to use one step sam-
pling to replace the full MCMC sampling. It could significantly speed up the learning process
with a certain guarantee of convergence.
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FIGURE 5.4 The simple illustration of the typical deep generative model “auto-encoder”, which first encodes the
input image into a hidden latent code, then reconstruct the original image from the latent code with the decoder.

5.4 Deep generative models

Following a similar methodology, deep generative models also aim to model the distri-
bution of X with the hidden variables Z. But different from the above traditional generative
methods which often use a handcrafted model like wavelet and sparse coding, deep neu-
ral networks are utilized instead, whose learning capacity is demonstrated to be much more
powerful.

Auto-encoder

We start our discussion with the vanilla auto-encoders (Wang et al., 2016), though strictly
speaking, they are not typical generative models, because it facilitates the understanding
of other deep generative models. As shown in Fig. 5.4, it usually consists of two parts: an
encoder and a decoder part. Both of them are stacked by a series of fully connected or con-
volutional layers. The encoder continually reduces the dimensionality to a smaller latent
representation z (code), and the decoder then reconstructs the input image from the latent
representation to the original resolution symmetrically. Need to note that the goal of auto-
encoder is not simply to reconstruct the original images with a trivial identity function, but to
learn the underlying visual patterns so that we can even generate some new unseen images
from the learned latent space. To achieve this goal, a lot of auto-encoder variants have been
proposed. The first typical one is the undercomplete auto-encoder (Zhai et al., 2018), which
requires the dimension of latent code to be significantly smaller than that of the input. In this
way, the latent code should be informative enough to represent the input image, otherwise the
reconstruction loss will be very large. The second popular variant is denoising auto-encoder
(Vincent et al., 2008), which delibrately adds some noises into the training dataset so that
the auto-encoder needs to learn how to denoise. Instead of changing the training dataset, the
third variant sparse auto-encoder (Ng et al., 2011) imposes a sparsity constraint on its loss
and encourages the number of active units in the code layer to be minimal and learn a sparse
representation of the dataset.

Variational auto-encoder

Though the above auto-encoders can successfully map the training image to an embed-
ding space, there is no explicit probabilistic model associated with the embedding space.
Therefore, randomly sampling from this embedding space can not guarantee that we mean-
ingfully sample from the image space when feeding the sampled code to the decoder. To
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address this problem, variational auto-encoder (VAE) (Doersch, 2016) forces the learned la-
tent distribution to follow a Gaussian distribution P(z). Then the goal of VAE is to maximize
the probability (maximum likelihood) of each X in the training set under the entire generative
process:

P(X):fP(X|z;9)P(z)dz (5.3)

Solving the above integral over z is a nontrivial problem. In practice, for most z, P(X|z) will
be nearly zero and hence contribute almost nothing to the estimation P(x). Therefore, the
key idea behind the VAE is to attempt to sample values of z that are likely to have produced
X and compute P(x) just from those. To this end, it introduces a new function Q(z|X) that
takes a value of X and produces a distribution over z values that are likely to generate X.
Considering the space of z values under Q may be much smaller than that under the prior
P(z), computing E;~ o P(X|z) is relatively easier.

As one of the corner-stone of variational Bayesian methods, the KL divergence between
P(z|X) and Q(z) is first studied to derive the final optimization objective.

D[Q@IIPEIX)] = Ec~g[log O(z) —log P(z]X)]. (5:4)
By applying Bayes rule to P(z|X), both P(X) and P(X|z) can be taken into this equation:
D[Q@)IIP(z|X)] = E;~p[log Q(z) — log P(X|z) — log P(z)] + log P(X). (5.5)

Since log P(X) does not depend on z, it can be taken out of the expectation. By reorganizing
the terms on both sides, we can get:

log P(X) = D[Q()IP(z|X)] = E.~g[log P(X|2)] = D[Q()IIP(2)]. (5.6)

In fact, Q can be any distribution, not just a distribution which does a good job mapping X to
the z’s that can produce X. As P(X) is the final inferring goal, it makes sense to construct a Q
which depends on X and makes D[Q(z)|||P(z|X)] small:

log P(X) — D[ Q@|X) || P(z1X)] = Ez~o[log P(X|2)] = D[ QIX) | P(2)]. (5.7)

This equation is the core of VAE. Specifically, the left side consists of the objective log P(X)
we want to optimize plus an error term, which makes Q produce z’s that can reproduce
a given X. This error term will become small if Q is modeled with a high-capacity deep
network. And the right hand side is something that can be optimized via stochastic gradient
descent given the right choice of Q. In fact, the right hand side of Eq. (5.7) takes a form which
looks like an autoencoder, i.e., Q is “encoding” X into z, and P reconstructs X from z.

To optimize the right side with stochastic gradient descent, the usual form of Q(z|X) is set
to Q(z|X) = N (z|u(X; ), X (X; 9)), where u and X are arbitrary deterministic functions with
parameters ¢ that can be learned from data. In practice, u and X' are again implemented via
neural networks, and X is constrained to be a diagonal matrix. And the gradient of the first
term on the right side is estimated by sampling different values of X from the dataset D and
one important “reparameterization trick” as shown in Fig. 5.5.
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FIGURE 5.5 The reparameterization trick used in variational auto-encoder to approximate the stochastic gradient
during training.

Real images I
noise aGenerated images j

FIGURE 5.6 The adversarial training of generative adversarial networks: the discriminator network tries to clas-
sify the input image to be real or generated by the generator network, while the generator network tries to generate
more realistic images to fool the discriminator network.

At the test time, if we want to generate new samples, VAE randomly samples z ~ N (0, 1)
and input it into the decoder. That is, the encoder including the multiplication and addition
operations are all removed. For more theoretical and derivation details, we encourage the
readers to read the tutorial (Doersch, 2016).

Generative adversarial network

In recent years, another influential work is the generative adversarial networks (GAN)
proposed in the pioneering work (Goodfellow et al., 2014). Compared to previous generative
models, its key idea is introducing an auxiliary discriminator network to help the learning of
the target generative network. Another key idea is the adversary training strategy as shown
in Fig. 5.6, i.e., the discriminator network learns to discriminate whether a sample is from the
real data distribution or generated by the generative network, while the generative network
tries to generate more realistic images to fool the discriminator network. Therefore, these two
networks compete with each other in a zero-sum game.

Mathematically, this can be viewed as a min-max optimization problem with the value
function V (G, D):

min MaxV (G, D) = Eu 0102 D00)] 4 Eev oo b1 - DGQ))] (58)

where D(x) represents the probability that x comes from the real data distribution rather
than the generated data distribution G(z). Similar to VAE, p(z) is a prior distribution to be
sampled from, which can be specified as a normal distribution. During training and inference,
a random z will be sampled and fed into G to generate an image. In practice, G and D are
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FIGURE 5.7 The ideal training evolution of generative adversarial networks. The green line is the real data distri-
bution, the blue line is the data distribution of the generative network, and the red dashed line is the discrimination
boundary of the discriminator network. In the ideal case (last column) where the generative network can perfectly
match the real distribution, the discriminator network cannot distinguish the real and generated data distribution.

trained in an alternative way;, i.e., training G while fixing D, then training D while fixing
G. After training, the discriminator network will be discarded and only G will be used for
generating new images.

Essentially, G is trying to match the real data distribution during the learning process as
shown in Fig. 5.7. In the ideal case where G can exactly simulate the real data distribution, D
will be unable to discriminate a generated image to be real/fake, i.e., it will predict an image
to be real/fake with a random guessing probability 0.5.

Despite the great success of GANS, training a good GAN model is shown to be not that
easy. To improve the quality and stability, plenty of variants (Mirza and Osindero, 2014; Chen
et al., 2016; Metz et al., 2016; Arjovsky et al., 2017; Bao et al., 2017) have also been proposed.
A more comprehensive summarization can be found in Wang et al. (2019).

5.5 Deep conditional image generation

The above generative models are for unconditional image generation, i.e., the new images
are generated by random codes sampled from the prior distribution without other condi-
tional requirements. In other words, visual pattern synthesis is conducted in an uncontrolled
way. In contrast, we focus on how to achieve more controllable visual pattern synthesis in
this chapter under the conditional image generation framework.

Different from unconditional image generation, conditional image generation (Isola et al.,
2017; Zhu et al., 2017; Chen et al., 2017a, 2020a) imposes extra input conditions into the gen-
eration process. It has a broad scope and covers a large variety of computer vision problems,
such as edge-to-image translation (Isola et al., 2017), style transfer (Gatys et al., 2015; Chen et
al., 2018), image colorization (He et al., 2018), controllable image processing (Fan et al., 2018,
2019; Chen et al., 2020a), image restoration (Wan et al., 2020a,b), semantic synthesis (Tan et
al., 2020b) and face synthesis and editing (Tan et al., 2020a).

As shown in Fig. 5.8, given the input condition like text description, attribute vectors
and images, the conditional generative models aim to generate an output image that satis-
fies the conditional requirements in a controllable way. But similar to unconditional image
generation, learning and modeling the intrinsic visual patterns is still the essential factor
that determines the generation quality. By more efficient modeling of the visual patterns,
conditional image generation is essentially a process of constrained pattern sampling and
recompositing.
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FIGURE 5.8 Illustration of typical conditional image generation framework. Given input conditions like text de-
scription, attributes or images, the conditional generative model needs to generate an output image that satisfies the
conditional requirement.

However, compositing natural images involves a lot of visual confounders, such as pose,
lighting and shape. In order to encourage the generative model to learn the underlying pat-
tern better, “disentangling” in a hidden embedding space is a key design principle and widely
used in many existing conditional image generation methods (Yan et al., 2016; Chen et al.,
2017b; Bao et al., 2018; Ma et al., 2018). But achieving disentanglement is a nontrivial problem.
In fact, Locatello et al. (2019) show that it is theoretically impossible to achieve unsupervised
disentanglement without inductive biases on both the models and the datasets. Therefore, it
often requires some dedicated network design and training recipe in a supervised, semisu-
pervised or selfsupervised way.

5.6 Disentanglement for controllable synthesis

We present three cases studies on how we may introduce inductive bias in learning disen-
tangled representations in deep conditional image generation for controllable visual pattern
synthesis. The applications we explore include style transfer (Section 5.6.1), vision-language
image generation (Section 5.6.2) and identity preserving face synthesis (Section 5.6.3).

5.6.1 Disentangle visual content and style

Style transfer (Gatys et al., 2015; Johnson et al., 2016; Chen et al., 2020c) is a typical con-
ditional image generation task. As shown in Fig. 5.9, it aims to migrate the style from one
style image to another content image while keeping the original semantic structure of the
content image. The core problem behind this task is modeling the visual patterns of the style
image and separating the content and style of the content image. And then style transfer is to
resample the learned style pattern under the content structure constraint.

Since the pioneering work of Gatys et al. (2015), style transfer adopting convolutional neu-
ral networks (CNN) has ignited a renewed interest in both academia and industry. In the
work (Gatys et al., 2015), Gatys et al. innovatively apply a pretrained CNN network to de-
compose an image into content components and style components. Specifically, they regard
the correlation matrices (Gram-matrices) of feature responses in different layers as the hier-
archical style representation. By further representing the content structure of one image with
its high-level feature response, they model style transfer as an optimization problem, i.e.,
search for an image that has similar feature Gram-matrices as the style image and similar
high-level content feature as the content image. This optimization based method can produce
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content image style image stylized image

FIGURE 5.9 Illustration of style transfer. It aims to render one content image with the visual style from another
style image while keeping the original content structure. The figures are by courtesy of Chen et al. (2020b).

very impressive stylization results and is much better than traditional methods. However, it
is very time-consuming due to the optimization process, thus imposing a big limitation on
real applications.

To speedup, many feed-forward based methods (Johnson et al., 2016; Ulyanov et al., 2016)
have been proposed to use a feed-forward network to approximate the above optimization
procedure. And the stylization results can be obtained by directly feeding the content image
into the feed-forward network, hence it is faster than the optimization based methods by
several magnitudes. However, such feed-forward networks are trained in a black-box way,
and the content and style (visual patterns) components are highly coupled in the learned
networks. This not only prevents us from learning an explicit representation for either style
or content, but also makes such networks only able to capture a specific style at a time.

Therefore, Chen et al. (2017b) designed a new disentangled network structure to learn an
explicit representation for each style in a supervised way, which naturally supports multiple-
style transfer. It is motivated by the “texton” concept in classical texture synthesis and we
propose to use a series of filter banks to represent different style images. All the channels in
one filter bank can be regarded as the bases of style elements within one style image, such as
texture pattern and strokes. And the stylization process is then conducted by convolving the
corresponding filter banks with the content feature maps, which is analogous to the convolu-
tion operation between the texton and Delta function in the image space for texture synthesis
(as shown in Fig. 5.11).

Two-branch design

The detailed disentanglement framework is illustrated in Fig. 5.10. Basically, it consists
of three parts: one shared encoder &, the stylebank layer K and one shared decoder D. To
force the network to decouple the content and style in an explicit way, we build two learning
branches: the reconstruction branch £ — D and the stylizing branch £ — I — D. Given an
input content image I, it is first transformed into the feature space (F) by using the encoder
subnetwork. Then for the reconstruction branch, F is directly passed to D to produce an im-
age (O = D(F)) that should be as close as the input I. In parallel, when transferring the style
i to I, we convolve the corresponding filter bank C; with F' and then feed the transformed
feature F; (E = F ® K;) into D to produce the stylization result O; = D(E). The above two
branches are trained in an alternative way, and different loss functions are designed accord-
ingly. In details, the simple MSE (Mean Square Error) loss between the input image I and O
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FIGURE 5.10 The disentangled style transfer framework proposed in Chen et al. (2017b), which consists of one
reconstruction branch (below) and one stylizing branch (top). The content is designed to be encoded in the encoder

and decoder part, and the style is represented by a set of filterbanks in the Stylebank layer. The figures are by courtesy
of Chen et al. (2017Db).

FIGURE 5.11 The process of texture synthesis can be viewed as the convolution operation between the texton
image and a delta function in the image space, which motivates us to perform style transfer in the feature space by
convolving the content feature with the corresponding style filterbank.

is adopted as the identity mapping loss L7 for the reconstruction branch:
L1(,0)=[0—1I|. (5.9)

For the stylizing branch, following the objective function in Johnson et al. (2016), a content
loss L., a style loss L, and a variation regularization loss £L;,(0;) are used as the stylization
loss Lx:

Lic(1,Si, 0) =aLlc (0, ) + BLs (O, Si) + v L1,(O;) (5.10)

where I, S;, O; are the input content image, style image and stylization result (for the i-th style)
respectively. £;,(0;) is a total variation regularizer used in Johnson et al. (2016) to encourage
smoothness. And L. and L, use the same definition as in Gatys et al. (2015):

£.0.n=Y"|F'©0)-F |
le{lc}

L(0.5)=>_|G(F'(0)) - G(F(S))
lefls}
where G(X)=Xxx"

|2 (5.11)

Here F! and G are the [-th layer feature map of a pretrained VGG-16 network and the corre-
sponding Gram matrix computed from F. {I.}, {I/;} are VGG-16 layers used to compute the
content loss and the style loss. Since the reconstruction branch is designed to recover the
original content image, it guarantees no style information is absorbed into the encoder £ and
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FIGURE 5.12 The stylization results of multiple different styles, which are trained in one single network simulta-
neously. It shows that different styles are well decoupled (one stylization result only consists of its own style patterns)
and learned into their corresponding filterbanks. The figures are by courtesy of Chen et al. (2017b).
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FIGURE 5.13 Style elements reconstruction for two representative patches in an examplar stylization image. The
figures are by courtesy of Chen et al. (2017b).

decoder D. Simultaneously, to achieve the stylization goal in the stylizing branch, all the style
information is forced to be learned into the intermediate stylebank layer. In this way, the
content and style are explicitly decoupled.

Multistyle transfer results

Thanks to the above decoupled two-branch design, one style is encoded in one specific
set of convolutional filters and multiple styles can be learned in one network simultaneously.
This is more friendly to real applications than previous single-style methods that usually
train one independent network for each style. During inference, to apply one specific style,
the corresponding filterbank is chosen and applied. As shown in Fig. 5.12, different styles are
decoupled very well and the corresponding stylization results only consist of their own style
patterns.

Style elements reconstruction

To better understand how the stylebank layer represents the visual pattern of each style
image, the style elements from a learned filter bank are reconstructed in an examplar styliza-
tion image shown in Fig. 5.13. Specifically, two kinds of patches in the stylization result are
selected: stroke patch (red box) and texture patch (green box).
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FIGURE 5.14 Visualizing the learned style elements: for each case, the left one is the style image, and the right two
are the stylization results by feeding two different noise images. The figures are by courtesy of Chen et al. (2020c).

First, all other regions except the corresponding positions of the selected patches are
masked out as shown in (c, d), and the feature distribution of these patches are visualized
in (e). It can be observed that such feature responses are sparsely distributed and some peak
responses occur in individual channels.

Then, only nonzero feature channels and the corresponding filter bank channels are con-
sidered in the feature transformation operation. The transformed features are finally passed
to the decoder to obtain the reconstructed style elements (g), which are visually similar to the
original style patches in (i) and the stylization patch in (j). By such analysis, we can hypoth-
esize that the different weighted combinations of the filter bank channels can constitute the
diverse style elements in one style image, which are similar to the dictionaries/bases in the
representation learning literature.

To further study how many different style elements are learned for each style image, a large
noise image is used to approximate the content patch distribution and let the network render
different content patches with different style elements. It can be seen from Fig. 5.14 that the
stylization network has learned a set of representative style elements for each style image.

Importance of the two-branch design

To demonstrate no style information absorbed in the auto-encoder and the importance of
the two-branch design, another ablation experiment is conducted by removing the recon-
struction branch during the training stage. And given one input image, only the encoder and
decoder are used to output the reconstruction result. As shown in Fig. 5.15, without the recon-
struction branch during the training stage, the decoded image (middle) fails to reconstruct the
original input image (left) and seems to carry some style information. By comparison, when
the reconstruction branch is used, the decoded image reconstructs the input image perfectly
and has very close appearance to the input image. That is to say, the proposed two-branch
design forces all the content information to be only covered in the encoder and decoder part,
and the style information to be learned in the intermediate stylebank layer.

Benefits of disentanglement

The disentanglement of content and style can bring many additional advantages. The first
is fast incremental learning. Specifically, to enable a new style, we do not need to retrain the
whole network, which is often time-consuming. Instead, given a learned multistyle network,
we only need to retrain a new filter bank for the newly added style while keeping the encoder
and decoder part fixed. This process converges very fast since only the new style bank part
needs to be trained. Empirically, it often only takes several minutes, which is tens of times
faster than retraining the whole network. As shown in Fig. 5.16, incremental learning can
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FIGURE 5.15 The reconstruction result of the encoder and decoder with (right) and without (middle) the recon-
struction branch during the training stage. Obviously, involving the reconstruction branch helps guarantee no style
information to be absorbed in the encoder and decoder part and almost perfect reconstruction. The figures are by
courtesy of Chen et al. (2017b).

FIGURE 5.16 The disentanglement enables fast incremental learning for new styles. For each case, the left and
right are the stylization results of incremental training and fresh training respectively. The figures are by courtesy of
Chen et al. (2017b).

FIGURE 5.17 Stylization results by linear combination of two style filter banks. By adopting different fusing
weights, we change the proportion of each style accordingly. The figures are by courtesy of Chen et al. (2017b).

obtain comparable stylization results to those from fresh training, which retrains the whole
network with the new styles.

The second advantage is enabling style fusion in two different ways: linear fusion and
region-specific fusion. For linear fusion, since different styles are encoded into different filter
banks {K!, ..., K"}, we can linearly fuse multiple styles by linearly fusing filter banks in the
StyleBank layer. Then the fused filter bank is used to convolve with the content feature F:

F= (Z;":l w; *K,-> ®F > wi=1, (5.12)

where m is the number of styles, K; is the filter bank of style i. F is then fed to the decoder to
get the final stylization result. Fig. 5.17 shows such linear fusion results of two different styles
with variant fusion weight w;.

For region-specific style fusion, suppose that the image is decomposed into n disjoint re-
gions in the feature space, and M; denotes every region mask, then the feature maps can be
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FIGURE 5.18 Region-specific style fusion results with two paintings by applying different filterbanks onto differ-
ent image regions. The left two paintings are from Picasso and Van Goph respectively, while the right two are both
from Van Goph. The figures are by courtesy of Chen et al. (2020c).
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FIGURE 5.19 The simple illustration figure to show the general idea of Fused GAN, which fuses an unconditional
GAN and a conditional GAN and trains them in a semisupervised way. The figures are by courtesy of Bodla et al.
(2018).

described as F =) """, (M; x F) and region-specific style fusion can be formulated as:
F=Y" K®M;xP), (513)

Fig. 5.18 shows such two region-specific style fusion results. The left case borrows styles from
two famous paintings of Picasso and Van Goph, while the right two styles are both from Van
Goph.

5.6.2 Disentangle structure and style

Different from the above style transfer task, where the semantic content structure and style
elements are directly specified by the input content and style image, it is more difficult to
achieve fine-grained disentanglement in general image synthesis. For example, in the classi-
cal text-to-image method StackGAN (Zhang et al., 2017), we can control only over the styles
by feeding the text descriptions but cannot achieve the fine-grained controllability upon both
structure and styles. Here, the structures mainly denote the semantic shape and posture, and
the styles denote the fine-grained visual patterns/textures.

To address the above limitation, Bodla et al. (2018) design a new cascaded generative
model FusedGAN to achieve the disentanglement of structure and style in a semisupervised
way. The general idea of FusedGAN is shown in Fig. 5.19, which basically combines an un-
conditional GAN to produce the structure prior and another conditional GAN to match the
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FIGURE 5.20 The disentangled learning framework for FusedGAN, where blue and orange blocks are the uncon-
ditional and conditional image generation pipelines respectively. The figures are by courtesy of Bodla et al. (2018).

style condition from the text description. The underlying motivation is that, when human
beings want to paint a picture about one object like a bird, the most intuitive way is to first
sketch the outline of the bird with a specific posture and shape (structure), then add the fine-
grained texture details (style).

Disentanglement by sharing the structure prior

Based on the above motivation, an end-to-end disentangled learning framework is de-
signed in Fig. 5.20, where the blue and orange blocks correspond to the unconditional and
conditional image generation branches respectively. In details, the unconditional branch con-
sists of a generator network G and a discriminator network D,,, which are trained in a similar
adversarial way as other GAN models. In order to provide the structure prior for the condi-
tional generation branch, G is split into two modules: G, and G,. G takes a random noise
vector z as the input, and generates a structure prior My after a series of convolution and
unsampling operations. Then the structure prior M; is fed into G, to generate the final image
after another series of convolution and upsampling operations.

Different from the traditional conditional generation framework, which often takes one
condition and one random noise vector as inputs, the conditional generator network G, in
FusedGAN instead takes the structure prior My and the condition vector M, as inputs. That
is to say, the unconditional generation branch and the conditional generation branch share
the same structure prior M;. To encourage the disentanglement of the structure and style, the
unconditional and the conditional generation branch adopt different training datasets, i.e., an
unlabeled dataset for G| and a dataset labeled with conditional descriptions for G.. Accord-
ing to different tasks, the condition vector M, may have different formats. For example, in
the text-to-image task, the original text description is first encoded into an embedding repre-
sentation y and then fed into an encoder E to generate a new condition tensor M, as shown
in Fig. 5.20. Note that, in order to generate diverse results, conditional augmentation is per-
formed to sample latent vector ¢ from an independent Gaussian distribution N (u(y), X (y))
around the text embedding, and ¢ is then spatially repeated to match the spatial dimension
of M; to produce M,.
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This bird has a bright
yellow body, with brown on
its crown and wings.

This bird is completely red
with black wings anc pointy
beak.

This bird has wings that
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feathers covering most of
its body except for on its
black tail.

Structure

FIGURE 5.21 Synthesized results of FusedGAN. The left part are the synthesis results of different styles (rows)
and structures (column), and the right part are the style interpolation results of different styles under a fixed struc-
ture. The figures are by courtesy of Bodla et al. (2018).

To guide the learning of the unconditional and conditional generation branch, the discrim-
inator D, takes the generated image x, s of G, or the real image x, as input and discriminate
whether it is real or fake, while the discriminator D, takes the generated image x.r of G or the
real image x, and the corresponding condition as inputs to ensure that G. generates images
that match the condition. In the training stage, these two pipelines are trained end-to-end
in an alternative way. And the model parameters are updated by optimizing the combined
GAN and CGAN objectives, i.e.,

Lg, =log D, (Gu(z)), Lp,=logD,(x), Lp. =logD.(x,y),

5.14
LG, =log De(Ge(My, My), y) + ADk (N (1(y), Z()IN (O, 1)) 619

where z is the sampled noise vector from a normal distribution N (0, 7). To summarize, the
key disentanglement design in this work is sharing the structure prior but training the two
branches with different objectives.

During inference, to generate a conditional image, a random sample z is first drawn and
passed through G, to generate the structure prior M. M, then takes two paths, one through
the generator G, to produce an unconditional image x,¢. In the second path, the input text
description is fed into the encoder E and draws a sample from the Gaussian around the
text embedding. The output of E and M, are concatenated together and passed through G.
to generate the conditional image x.¢. That is to say, in one inference step, two images are
synthesized: x.s the conditional image and x,s the unconditional image, a byproduct of the
model which helps to analyze and better understand the proposed model and the results.

Synthesis results

To verify whether the structure and style are well decoupled, some synthesis results are
presented in Fig. 5.21. In the left part, the last row displays the unconditional generation
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FIGURE 5.22 Synthesized results of various styles by FusedGAN via varying different amount of fine-grained
details. The figures are by courtesy of Bodla et al. (2018).

results, and other rows show the conditional generation results by using the same structure
prior. It can be seen that M, is able to successfully capture and transfer significant amount
of information about the bird structure into the conditional synthesis results of various text
descriptions. By using a constant structure prior, it is also easy to conduct style interpolation
between various styles. To achieve this, two text-samples #; and #, are taken into E to draw
two samples from their respective Gaussian distributions. Then eight uniform samples are
picked by linear interpolation between them, such that the first sample corresponds to 7
and last one corresponds to #;. As shown in the right part of Fig. 5.21, very smooth style
interpolation effects can be achieved in a controllable way.

Fig. 5.22 further shows the synthesized results of different styles by varying different
amount of fine-grained details. In details, a particular texture description is first fed into E
and five samples are then drawn from the Gaussian distribution around the text embedding.
By using the same structure prior, each text description can drive synthesis results of different
fine-grained details. For example, for the second row in the left part, though all the birds are
red with black wing, they have varying amount of black on their wings and the length of the
tail.

5.6.3 Disentangle identity and attributes

The third representative work (Bao et al., 2018) is about the typical conditional image
generation task “identity-preserving face synthesis”. Given one input image I;4 of a certain
subject identity and one input image I, to extract the attributes, this task aims to generate a
new high-quality face image /' that has the same identity as /;; and the same attributes as I,,.
Here, the attributes include but are not limited to pose, emotion, skin color, illustration and
background. This is a very challenging task, especially when the face identity is not presented
in the training set, and the underlying challenge is how to disentangle the identity-related vi-
sual patterns (e.g., nose and eye shape) and attribute-related visual patterns (e.g., skin color,
mouth shape under different emotions).

To solve this problem, many related methods have been proposed, such as TP-GAN
(Huang et al., 2017) and FE-GAN (Yin et al., 2017) that can synthesize the frontal view of
a given face image, and DR-GAN (Tran et al., 2017) that can synthesize different face poses.
However, they often rely on full annotation of attributes and the supported attribute types
are also limited. By comparison, another work CVAEGAN (Bao et al., 2017) can support a
variety of attribute changes, but it is not able to synthesize a face with an identity outside the
training dataset.
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FIGURE 5.23 The overall framework for identity-preserving face synthesis, which disentangles identity and at-
tributes from the input face images. The new face I’ is generated by recombining the identity information of /;; and
the attribute information of I,. The figures are by courtesy of Bao et al. (2018).

To enable a large variety of attribute changes and open-set identities, Bao et al. (2018)
design a new disentangled face synthesis framework as shown in Fig. 5.23. It contains five
subnetworks: the identity encoder network E, the attributes encoder network A, the gener-
ative synthesis network G, the auxiliary classification network C and discriminator network
D. The function of the identity encoder network E and the attribute network A is to extract
the identity vector fg(liz) from I;4 and the attribute vector f 4(I,) from I, respectively. By
recombining f (lig) and f 4 (1), the network G then generates a new image I’ that follows
the identity of I;; and attributes of I,. The auxiliary network C and D are only used during
training. Specifically, C is used to ensure that I’ have the same identity as /;4 and D encour-
ages G to generate higher quality images by distinguishing the generated image and real
images in an adversarial training manner.

Disentanglement

Though the above framework is designed in a disentangled way, training it is not a triv-
ial problem. Because most existing face datasets only have the identity annotation but no
attribute annotation. In fact, annotating some attributes precisely is sometimes even impossi-
ble, such as the illustration and the background. This work enforces the disentanglement by
extracting the identity representation in a supervised way and attribute representation in an
unsupervised way.

In details, to extract the identity representation, E is formulated as a face recognition net-
work and trained via softmax loss on a labeled face dataset {/;, y;}, where y; is the identity
label of image I;. During training, to discriminate different individuals, E is encouraged to
learn similar feature representation for images with the same identity and dissimilar feature
representation for images with different identities. Therefore, the feature response of the last
pooling layer of E is adopted as the identity vector of I;4.

To obtain the attribute representation, a simple and effective training strategy is designed
by leveraging a reconstruction loss and a KL divergence loss. Specifically, during training,
Iig and I, are randomly selected to be the same image or different images. In both cases, the
resultimage I’ is required to reconstruct the attribute image 1,, but with different loss weight.
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Formally, the reconstruction loss is

1 .
Sa =117 if Iy =1,

Lor = (5.15)

5||1a —I'l>  otherwise,

where 1 is the reconstruction loss weight for the case I, # I,. Specifically, when the identity
image I;4 is the same as the attribute image 1,, the synthesized image I’ must be the same
as Iiq or I,. Since there are many face images I, for each identity in the training set, their
identity vector is almost the same for these images and the only possible difference would
be the attribute vector. Therefore, by requiring the reconstructed images to be same as these
different face images, it forces the attribute encoder network A to learn different attribute
representations accordingly. When the identity image I;4 and the attribute image I, are dif-
ferent, though it is difficult to accurately predict what the reconstructed result should look
like, we can expect the reconstruction to be approximately similar to the attribute image 7¢,
such as the background, overall illumination, and pose. Therefore, a raw pixel reconstruction
loss with a relatively small weight (1 = 0.1) is adopted to maintain the attributes.

Besides the above reconstruction loss, a KL divergence loss is further used to regularize
the attribute vector with an appropriate prior P(z) ~ N(0, 1). It constrains the attribute vector
not to contain much identity information and helps the attribute encoder network learn better
representation. Given the input attribute face image, the network A will output the mean u
and covariance of the latent vector. Then the K L divergence loss is defined as:

1
Lkl = E(uru—i—sum(exp(e)—e— 1)). (5.16)
During training, the reparameterization trick is used to sample the attribute vector by using
Z=p+r Qexp(e), where r ~ N(0, I) is a random vector and O represents the element-wise
multiplication.

Asymmetric training

After extracting the identity vector f;(l;4) and attribute vector f 4(I,), they are concate-
nated in the latent space (z' = [ f ; (liq), f 4(14)]) and then fed into the network G to synthesize
a new face image. Similar to general GANSs, the generative network G plays a two-player
minmax game with the discriminator network D, i.e., D tries to distinguish real training data
from synthesized data while G tries to fool the network D. Concretely, network D tries to
minimize the loss function

Lp=—Ep~p,[logD(.)] — Eznp,[log(l — D(G(2))]. (5.17)

However, if the network G directly attempts to maximize £p as the traditional GAN, the
training process will be unstable. This is because the distributions of “real” and “fake” images
may not overlap with each other in practice, especially at the early training stage. There-
fore, the discriminator network D can separate them perfectly and cause gradient vanishing.
To address this problem, the pairwise feature matching loss is used for the generator as in
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CVAE-GAN. In details, assuming f p(-) to be the features of the intermediate layers of D, the
pairwise feature matching loss is defined as:

1
Lop =1 p(I') - FpUIl5 (5.18)

That is to say, it encourages the features of the real and fake images as close as possible. By
default, the output feature of the last fully connected layer of D is utilized as fp.

Similarly, in order to achieve the identity-preserving goal (I’ has the same identity as I;4), a
similar pairwise feature matching loss is used to encourage I’ and ;4 to have similar feature
representations in the face classification network C:

1
Loc=5l1fc(l') - Feialls. (5.19)

Here the input of the last FC layer of network C is used as the feature f . In practice, network
C and network E share the parameters and are initialized by a pretrained face classification
network to speedup the convergence.

Unsupervised learning strategy

Synthesizing face images of identities that do not appear in the training set is challenging,
which requires the generative network to cover both intraperson and interperson variations.
Considering existing public datasets with labeled identities often has a limited size and does
not contain extreme poses or illuminations, one million face images with large variation and
diversity are collected from flicker and Google. Then an unsupervised training process is
conducted to help the learnt generator generalize to unseen identities. In details, the collected
unlabeled images can be used either as the identity image I;4 or the attribute image I,. When
used as the attribute image 1,, the whole training process remains unchanged. When used as
the identity image I;4, since it does not have a class label, they are not involved in the learning
of E and C (fixed). Empirically, we find these unlabeled data can increase intraclass and
interclass variation of the face distributions, hence improving the diversity of the synthesized
faces, such as larger changes in poses and expressions.

Synthesis results

To demonstrate the effectiveness of the above disentangled face synthesis framework,
Fig. 5.24 and Fig. 5.25 show the synthesis results that use the images whose identities appear
and do not appear in the training set respectively. It can be seen that the trained network can
disentangle the identity and attributes components and learn corresponding visual patterns
very well, for both the close-set and open-set settings.

The disentanglement also enables continuous attribute change in the generated images
by tuning the latent vector, which is called “attribute morphing”. Specifically, given a pair
of images 1,1 and I, the attribute network A is first used to extract their attribute vector
Zqa1 and z,» respectively, and then a series of attribute vectors z can be obtained by linear
interpolation, i.e., z = azq1 + (1 —)z42, @ € [0, 1]. Fig. 5.26 presents the results of face attribute
morphing, which can gradually change the pose, emotion, or lighting by selecting a proper
pair of attribute images.
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FIGURE 5.24 Identity-preserving face synthesis results by using the images whose identities appear in the train-
ing dataset. It can be seen that the proposed method can disentangle the identity-related and attribute-related visual
patterns well and then recomposite them in the final results. The figures are by courtesy of Bao et al. (2018).
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FIGURE 5.25 Identity-preserving face synthesis results by using the images whose identities do not appear in the
training dataset, which demonstrates the strong generalization ability of the learned identity disentanglement. The
figures are by courtesy of Bao et al. (2018).

Application of synthesis

Deep network based face verification systems have been widely used in surveillance and
access control. Given two faces, a pretrained face classification DNN model will be first used
to extract their features. Then the two faces are regarded as the same identity if the feature
distance is smaller than a threshold. However, recent research shows deep neural networks
are vulnerable to adversarial examples, which fool the network to some specific targets by
adding some imperceptible perturbations onto the clean images. In details, supposing two
faces I1 and I have different identities, we can find imperceptible perturbations r, such that
I + r will be regarded as the same person as I, by using the above face verification system.
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FIGURE 5.26 Face morphing results using unseen identities between two attributes in terms of pose, emotion,
and lighting change respectively. The figures are by courtesy of Bao et al. (2018).

(2) (b

FIGURE 5.27 Application to adversarial example detection in face verification systems. (a) is the source image,
(b) is the adversarial example which aims to mislead the verification network to the identity shown in (c). (d), (e)
and (f) are the reconstruction results from our framework. It shows that although the adversarial example shares a
similar appearance with the source image, their reconstruction results have different appearances. The figures are by
courtesy of Bao et al. (2018).

TABLE 5.1 Adversarial examples detection accu-
racy at different thresholds.

Threshold 1.0 0.8 0.6 0.4
acc 76.73%  82.58%  87.18%  92.41%

This process is often formulated as an optimization problem:

. 2
min||r |5

(5.20)
st fei+r) = fe); <t

where f ¢ is the extracted feature from the pretrained network, and  is the predefined thresh-
old.

In Fig. 5.27, (a) and (c) are the two inputs I; and I, and (b) is the generated adversarial
example 11 +r. Since the adversarial examples have similar identity features with other faces,
if we reconstruct the image from the feature using the proposed framework, it will generate
an image of the other person in (e). Obviously, the adversarial example and its reconstruction
clearly have different identities. Based on this observation, the above synthesis framework
can be used to identify the adversarial samples by comparing the identity of the original
faces and the reconstruction results.
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Taking the LFW dataset as an example, for each of the 3000 pairs of different identities,
two adversarial examples are generated by performing adversarial attacks with each other,
thus producing total 6000 adversarial examples. Here, four different thresholds t are used:
[0.4,0.6,0.8, 1]. At the same time, we have 6000 source images and their reconstruction. Then
the LBP feature of the input and its reconstruction image is extracted and concatenated to-
gether. Finally, a linear SVM is trained as a binary classifier. The results are shown in Table 5.1,
92.41% detection accuracy can be obtained if the feature distance is required to be smaller
than 0.4.

5.7 Conclusion and discussions

Learning and modeling visual patterns is a fundamental building block for visual intelli-
gence. Through the unconditional or conditional image generation framework, deep genera-
tive models attempts to recover the lower dimensional structure of the target visual models
in an embedding space. In this chapter, we discussed how to leverage deep generative mod-
els to achieve more controllable visual pattern synthesis via conditional image generation.
And we argue that the key to achieve such controllable pattern synthesis is disentanglement
of the visual representation, where different controlling factors are encouraged to be sepa-
rated in the hidden embedding space. Then three different case studies are used to illustrate
how to achieve the disentanglement for pattern synthesis in unsupervised or weakly super-
vised setting, by introducing inductive bias, from the network design and training strategy
perspectives.

In classical generative models, often the various confounding factors are explicitly mod-
eled as interacting random processes. This kind of explicit modeling has not been well ex-
plored in deep generative models. It may be beneficial to explore how we may introduce
such explicit and structured representations in learning deep generative models, which may
lead to more explainable deep models.
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Deep face recognition using full and
partial face images
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CHAPTER POINTS

e  Methods and practical techniques for deep e Highlights of the present state of the art in
learning based model definition, training, face recognition as well as the challenges in
and testing. deep learning assisted face recognition.

e Examples of using deep learning based
models for full and partial face recognition.

6.1 Introduction

Face recognition is one of the most exciting and prominent applications of deep learning
applied in the domain of visual computing. Not only can it showcase the power of deep
learning but also it can highlight some of the concerns of using a methodology whereby a
black-box approach is utilized for solving problems whose solutions have real-life conse-
quences.

Computer-based face recognition is still riddled with many challenges compared to the
face recognition ability of humans. For a human, seeing someone for a brief moment is often
enough to learn sufficient about the face of that individual (Young and Burton, 2018). This
is because the brain memorizes important details relating to the person. In fact, it seems that
when a familiar face is presented within various contexts, the brain compares the ‘before” and
‘after’ images, without the use of any significant new information. Conversely, the variability
of the appearance of a face has a greater effect on the ability of a machine to identify the
person from the face.

There are many machine learning algorithms within computer vision specific to face-
related functions. These algorithms are either unsupervised techniques, which are not ex-
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plicitly programmed, or supervised, which are based on the idea that someone can select
a portion of data with known labels (provided by the operator) or fed to an algorithm as
a training set. For example, Principal Component Analysis (PCA), was introduced in 1905
and is an unsupervised machine learning model widely used for reducing dimensionality in
complex data and image compression (Jolliffe, 2002). It has also been a common technique
for coding faces in a dataset into the “face space”. In 1991, the Eigenface algorithm was ap-
plied to construct face recognition algorithms (Turk and Pentland, 1991). Eigenfaces extract
the most important details in the data in the form of eigenvectors corresponding to the largest
eigenvalues, representing the variations in the face space. Essentially, in the area of face recog-
nition, the concept of an average face is interesting, and in some ways, it appears to be at the
core of human face recognition. Attempts to use the average face as a tool for computer-based
face recognition are not uncommon in the published literature, e.g., authors (Elmahmudi and
Ugail, 2019a). Also, commonly used is the Local Binary Patterns (LBP) technique, which is a
simple yet powerful approach to texture classification. This divides an image into different
regions to extract features from each region separately. These features are subsequently used
for aiding classification in face recognition tasks (Kas et al., 2020).

In conventional computing, a given algorithm is a group of explicitly programmed com-
mands utilized by a machine to work out a problem. Machine learning approaches permit
algorithms to be trained by using input data and to utilize statistical analysis to infer values
that fall within a particular domain. For this reason, machine learning enables computers to
build models from example data in order to automate a decision-making process, based on
data input.

Deep learning (LeCun et al., 2015) is a mechanism by which a machine algorithm can learn
by example. It aims to obtain an optimal configuration to a model so that the desired outputs
can be obtained from a set of input data. It has been widely used for solving challenging
problems in image processing and analysis. As a result, deep learning has probably become
the standard de facto technique for use in modern face recognition systems.

Prior to deep learning, a high proportion of face recognition algorithms have utilized im-
age processing techniques such as filtering, histograms and feature coding, containing only
two or three layers of computation. There was a significant drawback in such methods,
mainly because they can only solve one aspect of the face recognition problem at the expense
of the others. For example, while a Gabor filtering method (Dora et al., 2017) can enhance face
recognition under varying lighting conditions, that same method can perform poorly in the
presence of facial expressions and pose variations. As a result, researchers struggled to come
up with a coherent and integral method to solve the bulk of the issues that have plagued face
recognition.

However, much of that changed in 2012, when it was decisively demonstrated that deep
learning can take care of many of the problems faced by computer-assisted face recognition
at the time. At that stage, the AlexNet deep learning model won the ImageNet competition,
demonstrating that it was consistently ahead of the game on image recognition. Since then,
deep learning has been on an upward trajectory and has stayed ahead of the curve in showing
that it can match human performance in face recognition. For example, in 2014, DeepFace on
the Labelled Faces in the Wild (LFW) dataset has shown, it can achieve human-level accuracy,
the exact figures being 97.35% for DeepFace and 97.533% for humans (Taigman et al., 2014).
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6.1.1 Deep learning models

Deep learning seeks to emulate and learn complex arrangements in datasets using multiple
learning layers of processing units (neurons). This is motivated by the structure and functions
of the human nervous system. Deep learning models learn patterns in very complex data via
a series of repeated or multiple artificial neurons by manipulating the parameters associated
with the neuron to produce the desired output. Thus, a deep learning model is composed
of a neural network with multiple hidden layers. This is intended to emulate human deci-
sion making when solving complex recognition problems. In practical terms, deep learning
usually take the form of Convolutional Neural Networks (CNNs) (LeCun et al., 2015).

6.1.1.1 The structure of a CNN

Essentially, a CNN is a collection of individual perceptrons (artificial neurons) forming a
network of neurons connected together to achieve parallel signal processing across a wide
network structure. Adjustable weights are used to control the interaction between the per-
ceptron units. A key component of a CNN is the hidden layers which are placed between
the input and output of the network. The hidden layers help in assigning nonlinear weights
to the input and direct them to the output. i.e., they help to apply nonlinear mathematical
functions; to specific parts of the network to produce a desired final output. For example, in
the case of a face recognition task, one hidden layer can be tuned to identify the colors in the
input image, another can be tuned to identify the physical features, and so on. Together, the
network can then recognize and classify a face in the input image.

A typical CNN is comprised of multiple layers that fall into three broad categories. They
are the convolution layers (CONV), subsampling layers (POOL), and fully connected layers
(FC). Usually, a combination of these layers is arranged in a specific manner with the sole goal
of transforming the input of the network into a useful representation that gives an output
prediction, as shown in Fig. 6.1.

The convolution layer derives its name from the mathematical (convolution) operator. This
layer computes the scalar product between the weights of neurons and a small region of the
input volume. The neurons are arranged as a stack of 2-dimensional filters or kernels that ex-
tend the depth of the input volume. Hence, they are 3D structured. During the forward pass,
each kernel is convolved across the width and height of the input volume to produce a 2D
feature map, as shown in Fig. 6.2. Thus, these feature maps are the outputs of the convolution
operation at each spatial operation. In comparison to the feed-forward neural network, these
filters represent neurons which activate when they come across visual features such as edges.
As discussed earlier, CNNs use local connectivity to reduce complexity. Hence each neuron
is connected to a local region whose spatial dimension is defined by the filter size known as
the receptive field of the neuron and its depth is equal to the depth of the input volume.

Hence, for a 256 x 256 x 3 input image, if the receptive field is 3 x 3, each neuron in the
CONYV layer will have a total of 3 x 3 x 3 =27 connections, and 1 bias parameter. Obviously,
the connectivity is spatially local but full along the input depth. Subsequently, the size of
the feature map (i.e., the output) is computed using three hyperparameters — depth, zero
padding, and stride. Depth refers to the number of filters deployed. The greater the number
of filters, the greater the amount of information retrieved, since each filter learns to look for
a specific feature. Stride defines a pattern used to slide the filter across the input, i.e.,, S =1
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FIGURE 6.1 The structure of a CNN. It comprises of multiple layers which include convolution layers, pool-
ing layers, and fully connected layers.

means that the filter has to move one pixel at a time along with the input. Zero padding
defines the number of zero pixels placed around the input volume in order to keep the spatial
size of the output volume constant. One can compute the spatial size of the output using;:

I-F+2P

1=0, 6.1
T+ 6.)

where I is the spatial size of the input, F is the filter size, P is the number of zero paddings
and S is the stride (Dumoulin and Visin, 2018). Hence, if applied to input images of size
224 x 224 x 3 and assuming the neurons have a receptive field of 3 x 3 in size, depth K = 64,
a single stride § = 1, and zero padding P = 1, one obtains (224 — 3 + 2)/1 4+ 1 = 224. This
means that the output volume of this particular CONV layer will have size 224 x 224 x 64.
Consequently, there will be 224 x 224 x 64 = 3211264 neurons, each having 3 x 3 x 3 =27
weights and 1 bias. Interestingly, rather than having 3,211,264 x 27 weights and 32, 112, 64
biases, the concept of weight sharing makes all the neurons on one slice share the same weight
and bias. Hence, the number of weights and biases is drastically reduced to 1,728 and 64,
respectively.

As mentioned earlier, in neural networks, the activation function plays a significant role in
introducing nonlinearity to the output of a neuron. Introducing this nonlinearity makes the
neural network a universal function approximator, thereby, giving it the ability to cope with
various types of relationships. The most effective and commonly used activation function
for CNNs is the rectified linear unit (ReLU). This involves the element-wise application of
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FIGURE 6.2 Description of convolution operation. During the forward pass, each kernel is convolved
across the width and height of the input volume to produce a 2D feature map.

a zero threshold function, f(x) = max(0, x), where x is the input of the neuron. Compared
to other activation functions, CNNs with ReLUs train several times faster. This is because
the ReLU function and its gradient can be efficiently computed. Note, the activation layer
does not introduce additional parameters to its input. Furthermore, it does not change the
dimension of the input. In the architecture, activation layers are placed after every CONV
layer. Additionally, networks with more than one fully connected (FC) layer also deploy it —
with the exception of the last FC layer.

Pooling layers are usually inserted between successive CONV layers. Their primary func-
tion is to consistently reduce the number of parameters and consequently decrease the com-
putational complexity of the network by reducing the spatial size of the feature maps. Hence,
they summarize the output of the neighboring neurons. For every 2D slice of the feature map,
the most common type of pooling operation (Gholamalinezhad and Khosravi, 2020), called
Max Pooling, usually takes the maximum of each 2 x 2 region, thus discarding 75% of the
activations as shown in Fig. 6.3.

Thus, the pooling operation does not introduce new parameters. Rather, it leads to shrink-
age of the first and second dimensions of the feature map. The operation takes two parame-
ters, the stride S and the spatial dimension F. Hence the pooling operation reduces a feature
map from Wi x H; x D to W x H, x D dimensions. Here W, and H, are computed using:

Wi —F
S +1

_H—F

W .
2 S+1

, Hy (6.2)
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FIGURE 6.3 Pooling layer in action. Pooling layers help reduce the number of parameters and consequently
decrease the computational complexity of the network.

Interestingly, this operation introduces translational invariance with respect to elastic dis-
tortions. The fully connected layer has neurons that have full connection to the activation
of the previous layer and unlike the CONV and POOL layers, the FC layer is 2D. They are
typically configured to output the predicted label/classes of the network. Hence the FC is
usually the last layer of the network. In the work that won the 2012 ImageNet Large Scale Vi-
sual Recognition Competition (ILSVRC) (Krizhevsky et al., 2012), 3 FC layers were used, and
since then this has been a typical arrangement. Intuitively, flattening the 3D feature maps at
the end of the computation gives us an avenue for interpreting the learned spatially invariant
features.

The most usual arrangement used by researchers starts with the image input layer and
ends with an FC (decision) layer, in between these two are repeated stacks of CONV-ReLU
layers followed by POOL layers, then a few FC-ReLU layers. This layered pattern can be
described mathematically as:

INPUT = NM(CONV = ReLU) = POOL =— K(FC = RelLU) = FC, (6.3)

where N, M, and K are positive real-valued parameters. Usually, the number of CONV-ReLU
layers that appear before POOL is within the range 0 < N < 4, and the combinations of vari-
ables M and K are usually greater than 1.

6.1.1.2 Methods of training CNNs

Generally, there are three ways of deploying CNNs — training a network from scratch, fine-
tuning an existing model, or using off-the-shelf CNN features. The latter two approaches are
referred to as transfer learning. Since training CNNs from scratch, using the backpropagation
algorithm involves the automatic learning of millions of parameters, this approach requires
an enormous amount of data. More so, the data-hungry nature of CNNs consequently de-
mands large computational power. Furthermore, the procedure involves the adjustment of
several hyperparameters. Thus, an entire network is rarely trained from scratch.

Fine tuning involves transferring the weights of the first n layers learned from a base net-
work to a target network, and then continuing the backpropagation using the new dataset.
Hence, the target network is trained using the new dataset for a specific task, usually different
from that of the base network. Fine tuning is normally used when the new dataset is moder-
ately large (tens to hundreds of thousands) and very different from the dataset used to train
the base network. Using the weights of the old network to initialize helps the backpropaga-
tion algorithm, thereby leading to relatively fast automatic learning of more specific features.
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In situations where the dataset is rather small, say a few hundreds, even fine tuning
the weights may result in overfitting. However, since CNNs efficiently learn generic image
features, it is possible to directly use a trained network as a fixed feature extractor. Hence, fea-
tures from new data are extracted by projecting them on to activations of a specific layer of the
pretrained network. After that, the learned representations are fed into simple classifiers to
solve the task at hand. This approach, known as off-the-shelf feature extraction, has been used
by researchers to achieve promising results (Weiss et al., 2016; Day and Khoshgoftaar, 2017).

Similarly, data augmentation is the simplest way to combat the overfitting problem en-
countered by deep neural networks. This technique works by artificially enlarging the size
of the dataset through various methods such as changing the image orientation by flipping
(which produces the mirrored image) and rotating the original images, which subsequently
results in a new image. This ensures that the learning algorithm infers features from data with
different orientations.

6.1.1.3 Datasets for deep face recognition experimentation

There are a number of face datasets that can be utilized for training and testing the deep
face recognition models. Here, we provide details of some of them.

The LFW Dataset: The Labelled Faces in the Wild (LFW) (Huang et al., 2008) is a large
dataset of face pictures, which is designed for testing the capability of face recognition in
simulated uncontrolled scenarios. All the images have been collected from the Internet and
consist of a spectrum of variations in expression, pose, age, illumination, and resolution. The
LFW database contains images of 5749 subjects with a combined total of some 13000 images.
The images themselves in the dataset have variable and significant background clutter.

The YouTube Faces Database: The YouTube Faces DB (He et al., 2018), is composed of face
videos with varying lighting, pose and age conditions. The database is specifically designed
to study and analyze face recognition algorithms in videos. It contains over 3000 videos of
over 1500 individuals. The videos have been downloaded from YouTube. The database has
been put together by closely following the LFW as a benchmark.

The FEI Dataset (Thomaz and Giraldi, 2010) contains 200 images of Brazilian students and
staff with an equal number of males and females. For each subject, there are 14 images, the
total number of images in the dataset being 2800. The resolution of the images is 640 pixels by
480 pixels, and all the images are in color taken against a homogeneous white background.
The subjects are between the ages of 19 and 40 years and the dataset contains images display-
ing variations in facial expressions and pose.

6.2 Components of deep face recognition

There are essentially three parts to a modern deep learning based face recognition system.
They are face detection by which a face is successfully identified within the image, face pro-
cessing by which the face is cropped and often normalized, and face recognition by which
a deep learning algorithm is used to classify or match the face. This process is described in
Fig. 6.4.
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FIGURE 6.4 Components of deep face recognition.

Though deep learning can be efficiently utilized to solve most of the object recognition
problems, for face recognition problems, we still have to resort to a face processing step in
order to extract the face from the scene to ensure that the problems of facial pose, illumination,
facial expressions, and occlusion are minimized.

Thus, in symbolic terms, a deep face recognition system can be described as:

M[F (). F))], (6-4)

where I; and /; are two face images that are compared, F are the deep features from the
CNN model, and M defines the matching criteria. Following, a usually very long process of
training with massive datasets and also with the supervision of appropriate loss functions,
the optimal layers from which features are to be extracted and compared are determined.
The matching process itself can be undertaken using distance measures such as Euclidean
distance, Cosine Similarity (CS) and Support Vector Machines (SVMs).

Thus, today, most of the face recognition in practice is undertaken with the aid of a deep
learning model, and as mentioned earlier, there are many to choose from. In what follows, we
discuss some examples to further explain the process of deep learning-based face recognition
and the challenges one needs to be vigilant about.

The prominent part of any deep learning-based face recognition system is the deep features
that are derived from a trained CNN model (Liu et al., 2017). A number of model architectures
are available for a user to choose from. These include the AlexNet (Krizhevsky et al., 2012),
GoogleNet (Szegedy et al., 2015), ResNet (He et al., 2015), and VGGNet (Parkhi et al., 2015).

6.2.1 An example of a trained CNN model for face recognition

As discussed in the previous chapters, generally speaking, there are several ways one can
deploy CNNSs. These include training a network from scratch or fine-tuning an existing model
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or using off-the-shelf CNN features from a pretrained model. The latter is referred to as trans-
fer learning.

It is important to highlight that training a CNN from scratch requires an enormous amount
of data, which is often a challenging task, e.g., it took millions of faces and hundreds of hours
of computing time to train the FaceNet model (Schroff et al., 2015) from scratch. On the other
hand, fine-tuning involves transferring the weights of the first few layers learned from a base
network to a target network. The target network can then be trained using a new dataset.

A good example of a pretrained CNN model within the context of face recognition is the
VGG-F model (Chatfield et al., 2016), which was developed by the Oxford Visual Geometry
Group. This model has been trained on a large dataset of 2.6 million face images of more than
2.6 thousand individuals. The architecture of VGG-F consists of 38 layers starting from the
input layer up to the output layer. As a fixed criterion, the input is normally a color image of
224 x 224 dimensions and, as the preprocessing step, an average is normally computed from
the input image.

In general, the VGG-F contains thirteen convolutional layers, each layer having a special
set of hybrid parameters. Each group of convolutional layers contains 5 Max-Pooling layers
and 15 Rectified Linear Units (ReLUs). After these, there are three FC layers, namely FC6,
FC7, and FC8. The first two have 4096 channels, while FC8 has 2622 channels which are
used to classify the 2622 identities. The last layer is a Softmax classifier whose function is to
provide the probability of an image belonging to given class. The architecture of the VGG-F
is represented in Fig. 6.5.
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FIGURE 6.5 Architecture of the VGG-F model. The model contains 13 convolutional layers, each layer hav-
ing a special set of hybrid parameters.

Here, we show how the pretrained VGG-F model for feature extraction can be utilized for
facial feature coding and how the cosine similarity measure or linear SVM measures can be
used for classification for efficient face recognition from partial faces.

6.2.1.1 Feature extraction

Given an input image, Xy, it can be represented as a tensor X € RHWD, where H is the
image height, W is the width, and D represents the color channels. A pretrained layer L of
the CNN can be expressed as a series of functions, g, = fi — f» — ... — fL.

Let X1, X1, ..., X,, be the outputs of each layer in the network. Then, the output of the ith
intermediate layer can be computed from the function f; and the learned weights w; such
that X; = fi(X¢—1) : wi).

As we know, CNNSs learn features through the training stage and use such features to clas-
sify images later. Each convolutional (conv) layer learns different features. For example, one
layer may learn about entities such as edges and colors of an image while further complex
features may be learnt in the deeper layers. For example, a result of the conv layer involves
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numerous 2D arrays which are called channels. In the VGG-F, there are 37 layers, 13 of which
are convolutions, and the remaining layers are mixed between the ReLU, pooling, fully con-
nected, and the Softmax. However, after applying the conv5_3 layer with 512 filters of size
3 x 3, the features can be extracted for classification. By examining the activations of that
layer, one can obtain the main features, as shown in Fig. 6.6, where a sample of the features is

presented.

FIGURE 6.6 Feature visualization from a VGG-F layer. Visualization obtained from the conv5_3 layer for
an input of a face image.

To decide the best layer within the VGG-F model to utilize for facial feature extractions, one
must conduct a number of trial and error experiments. Tests of this nature suggest that layers
34 through to 37 are typically most effective, e.g., Elmahmudi and Ugail (2019b). Often, the
best results are derived from the layer 34. It is noteworthy that this layer is the fully connected
layer and is placed at the end of the CNN, which means the extracted features represent the
whole face.

The features from layer 34 are the results that arise from the fully connected layer FC7
after applying ReLU6, which gives a vector of 4096 dimensions. The reason for suggesting
that layer 34 is the best layer is inferred as a result of undertaking a number of face recog-
nition tests using the full frontal face image for both training and testing, which shows that
recognition rate can reach up to 100%.

6.2.1.2 Feature classification

One of the objectives of the classification is to build a brief model of the distribution of class
labels in terms of the predicted features. There are several techniques for such a classification,
namely decision trees, k-nearest neighbors (kNN) and SVM.

The SVM is a supervised machine learning algorithm, which can be used for both binary
classification and multiclassification problems. The SVM focuses on identifying the “mar-
gins” via hyperplanes to separate the data into classes. Maximizing the margin reduces the
upper bound on the expected generalization error by creating the largest possible distance
between the separating hyperplanes. It is clear that the SVM is geared to solve binary classi-
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fication problems. It is common for researchers to use the linear SVM to solve the multiclass
classification problem based on One-vs.-One (OVO) approach, also known as pairwise clas-
sification. The OVO decomposition constructs ”(”2—*1) binary classifiers for n classes. Then, for
a final decision, the Error Correcting Codes (ECC) combination approach decides how the
various classifiers can be combined.

Consider that we have a training dataset (x;, y;), we can use the linear SVM such that:
| N
min—|w|2+CZmax(0,1—y,~wa,'), w e RY, (6.5)
2 i

where w is a weight vector, N is a number of classes and C is a trade-off parameter between
the error and the margin.

Furthermore, one can also utilize the Cosine Similarity (CS) for classification. The CS is a
measure between two nonzero vectors. It uses the inner product space to measure the cosine
of the angle between those two vectors. The Euclidean dot product formula can be used to
compute the cosine similarity such that:

a.b =|a||b|cosH, (6.6)

where a and b are two vectors, and 6 is an angle between them. By using the magnitude
or length, which is the same as the Euclidean norm or the Euclidean length of vector x =
[x1, X2, X3, ..., X, ], the similarity S is computed using the formulation:

|x|=\/xf+x§+...+x,2l, (6.7)

A.B N A;B;
S =cosh = = 2i Aibi (6.8)
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where A and B are two vectors.

For classification one can compute the CS to find the minimum “distance” between the test
face image, test;, and training images, training, by using Eq. (6.9), such that:

Mes = min(CS(testim, training,,)), (6.9)

where im is an image number, n is total images in the training set.

6.3 Face recognition using full face images

As far as deep learning is concerned, a well trained CNN model often provides excellent
recognition for full frontal faces. In this section, we show how a typical pretrained model can
be utilized for the task of face matching and verification.

The FaceNet model (Schroff et al., 2015) is a pretrained deep learning architecture inspired
by GoogLeNet models for efficient face recognition. For the task of face recognition, it uses
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pictures of a list of people in a dataset along with data from a new person or people to be
recognized. A key element of the FaceNet architecture is the generation of an embedding of a
given dimension from a face image of predefined size. The input image is fed through a deep
CNN architecture which has a fully connected layer at the end. This results in an embedding
of 128 features which may or may not be visually understandable to a human. Then, for
the recognition task, the network can calculate the distance between the individual features
of each of the embeddings. Metrics such as the squared error or the absolute error can be
utilized to compute the distance between the embeddings.
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FIGURE 6.7 The general architecture of FaceNet model. A key aspect of the FaceNet model is the ability
to classify a given face image using an embedding of 128 deep features.

Common FaceNet models use two types of architecture. They are the Zeiler and Fergus
architecture (Zeiler and Fergus, 2014) and the GoogLeNet style Inception model (Szegedy et
al., 2015). The essential idea in the training of the FaceNet is the “triplet loss” to capture the
similarities and differences between classes of faces in a 128-dimensional embedding. Hence,
given an embedding E(x) from an image to a feature set R", FaceNet looks into the squared
L, distance between face images, this value being small for images of the same identity and
large for different identities.

Fig. 6.7 shows the general architecture of the FaceNet model. An important element of the
model is the triplet loss function. Often in common deep learning models, the loss function
tries to map all faces of the same identity to a single point in R". The triplet loss function
attempts to discriminate each pair of faces from one person to all the others, thus enforcing
strong discrimination between faces. Thus, the triplet loss function chosen in this model en-
sures that an image of a specific person is closer to all other images of that person than any
other image in the dataset. This idea is illustrated in Fig. 6.8. The training process assumes
that we pick a random image — the anchor — from the dataset. We would want to ensure that
the distance of that image from another image of the same identity — the positive image — is
closer to that of the images not belonging to the same person.

The FaceNet model was trained using around 100 million face samples with over 8 million
identities. Through experimentation, it has been found that the optimal embedding for a
faces is of dimensionality 128, meaning that a given face is classified using 128 feature points
extracted from it. Experiments were also conducted on varying the training data, and it was
found that after a certain point the number of training samples does not add value to the
level of accuracy, i.e., while 10s of millions of samples can improve the accuracy, adding 100s
of millions to the sample has diminishing returns in the accuracy of recognition obtained.

6.3.1 Similarity matching using the FaceNet model

One of the main benefits of the FaceNet model is that it can achieve very high classification
accuracy using a simpler embedding comprising of only 128 features. Experiments done on
faces on both the LFW dataset and the YouTube Faces DB show the recognition is very high:
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FIGURE 6.8 Description of how triplet loss based training is utilized by FaceNet. The triplet loss func-
tion attempts to discriminate each pair of faces from one person to all the others, thus enforcing strong discrimination
between faces.

i.e., on the LFW dataset, the recognition accuracy of 98.87% is achieved while on the YouTube
Faces DB a recognition accuracy of 95.18% is achieved. It is also crucial to highlight that
both the datasets contain faces taken in varying lighting, pose, occlusion and age conditions.
Despite this, the performance on recognition tasks by FaceNet is impressive.

Fig. 6.9 describes how the FaceNet model can be used to see the degree of similarity be-
tween faces. In this example, the 128 deep features for each face are computed using the
FaceNet model. Then the cosine similarity measure described earlier can be used to compute
the distance between the deep face features for each face against the face image in the center.
The results show that the degree of accuracy for face matching, in this case, appears to be
excellent. Note that in experiments involving the FaceNet model, a similarity match of 75%
or higher between two faces is usually considered to be an identity match.

6.4 Deep face recognition using partial face data

Based on the many works that have been undertaken in the field of face recognition using
deep learning, it is clear that many of the state of the art algorithms provide human-level ac-
curacy for face recognition when the query images are full frontal. For example, the FaceNet
model discussed above provides an impressive level of accuracy for face recognition using
frontal facial images. However, in many practical scenarios, the full face may not be avail-
able either as a probe or as a comparison image in a dataset. Here, we discuss how deep
learning based methods can be taken further forward in that such models can be trained to
successfully recognize faces even with partial information. Achieving this would provide the
potential for deep learning models to surpass human-level face recognition.
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FIGURE 6.9 An example of similarity matching. The cosine similarity measure is utilized for matching faces
of the Queen using the 128 deep features of the FaceNet model. The central image is used for matching.

FIGURE 6.10 An example of partial faces from the LFW dataset. For experiments on partial face recogni-
tion one can consider half face, 3/4 face and key parts of the face such as the eyes, nose, mouth, and forehead.

In this section, we discuss how deep face recognition using partial faces can be undertaken.
The work described here is predominately based on the deep learning based face recognition
work reported in Elmahmudi and Ugail (2019b).

The approach here is to utilize features extracted from a pretrained model and using a stan-
dard classifier to see how the various parts of the face (see Fig. 6.10), are embedded within the
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FIGURE 6.11 Results for partial face recognition using VGG-F features. Recognition rates (%) using
images from the LFW dataset, based on parts of the face using both the SVM and CS classifiers.

model during the training phase. This can then be utilized for face recognition and matching
tasks. In this particular case, we have utilized the standard VGG-F model for feature training
and extraction. The various parts of the face considered here include the eyes, nose, mouth,
top and bottom half of the face, left half of the face, 3/4 face, and the full face. Thus, all the
extracted features from the VGG-F model can be passed onto both the classifiers, in this case,
SVM and CS. Faces within the VGG-F can be enrolled with (W) or without (Wo) various parts
of the face to see the variations in results.

For example, the classification capacity of SVM and CS can be verified using faces with and
without parts in the training (SVM-Wo and CS-Wo) and “with” parts in training (SVM-W and
CS-W). In order to investigate the recognition rates for each facial part, each classifier can be
applied separately. In the case of “without” facial parts, it is clear that, in general, CS-Wo
outperforms SVM-Wo for most of the regions of the face. The results of these experiments are
shown in Figs. 6.11 and 6.12. From these figures, we can observe that the recognition rates for
the right cheek, mouth, forehead, and the nose are low, with about 1% for both the classifiers.
In contrast, the rate of recognition increases significantly for facial parts such as the eyes,
and reach 40% using CS-Wo. We also notice that as we increase the proportion of the face,
the recognition rate also improved significantly, with the best recognition rate of near 100%
for the 3/4 face and full face. It is also noteworthy that for all the tests carried out in these
experiments, the CS measures appeared to outperform the SVM measures.

From the results presented in Figs. 6.11 and 6.12 for the partial facial experiments using the
FEI dataset, the highest recognition rate (as far as partial face is concerned) reported is for the
3/4 face using SVM-Wo. Under this experimental condition, the training set did not consist
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FIGURE 6.12 Results for partial face recognition using VGG-F features. The results of the recognition
task (%) when some parts of the face (cheeks and facial-part with no eyes and no nose) are removed from the training
sets. The tested classifiers include linear SVM, kernel SVM and CS.

of various facial parts. Also, in the case of CS-Wo, the right half of the face, the top half and
the 3/4 face produces high recognition rates. However, the worst recognition observations
are for the smaller and perhaps, less significant parts of the face, such as cheek, mouth and
nose. When applying the same methodology to the uncontrolled LFW dataset and training
with larger proportions of the face, a slight decrease in the recognition rates is observed when
compared with the FEI dataset, which was between 76% to 99% for SVM-Wo and 83% to 99%
for the CS-W classifier. According to the results obtained for smaller regions of the face, the
worst recognition rate is observed for the cheeks, mouth, forehead and nose. However, the
eyes do appear to hold more information.

Similarly, when the individual parts of the face are added to the training sets, the output
results in a dramatic improvement to the rate of recognition. For example, the recognition rate
for the right cheek improved from 0% to 15% when using the FEI dataset. It is also noteworthy
that the eyes still have the highest recognition rate when considering other individual parts
of the face using the FEI and LFW datasets, although the combined eyes and nose features
report around 90% recognition when using the controlled FEI dataset. However, in the case
of the uncontrolled LFW dataset, this percentage drops slightly. Furthermore, we notice that
in general, better recognition results are achieved by using the CS measure.

Thus, an important point to highlight here in this case is that the CS measure, in general,
appears to be a better classifier, compared to both Linear and NonLinear SVMs. SVMs require
complete retraining when new data is added, which subsequently introduces computational
issues. However, in the case of the CS classifier, this is not an issue. Nevertheless, in the testing
stage, the CS classifier is more computationally intensive, but given the greater degree of
accuracy, it makes better logical sense to employ the CS classifier over SVMs.
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6.5 Specific model training for full and partial faces

In this section, we discuss how one can train specific deep learning models for efficient
face recognition using full or partial faces. Here we show how an experimental framework
can be built to train specific CNNs corresponding to a specific parts of the face. In designing
systems of this nature, it is important to bear in mind the level of training data utilized, the
model complexities and the amount of training time required to create a given model.

Let’s suppose we are building a deep learning model that is fine tuned for identifying indi-
viduals simply from the images of their eyes. We will start with the base VGG-16 architecture
(Parkhi et al., 2015) which is similar to VGG-F discussed earlier. This model consists of 13
convolutional layers (CONVs) with the same filters of size 3 x 3. These layers themselves are
divided as follows. The first two layers have depths of size 64. There are two layers which
have a depth of size 128, three layers with a depth of size 256 and six layers with a depth
of size 512. Following these layers, there are three FC layers, of which two layers contain
4096 units while the last layer has 1000 units. The structure of VGG-16 is thought to be par-
ticularly neat in that it can efficiently manage the number of hyperparameters. Specifically,
the arrangement of layers has been well thought out so that the number of hyperparameters
is minimized. This arrangement is structured as follows. The size of the CONYV filters is of
3 x 3 and there are 2 x 2 masks for padding and max-pool layers with stride 2. This suggests
that for training for a specific part of the face we should adopt a two-stage strategy. In the
first stage, the first model will be constructed and trained on a dataset of eye images only.
In the second stage, the generated model will be used for building the comprehensive model
by utilizing the same structure as the VGG network using fine tuning (Yosinski et al., 2014).
Fig. 6.13 shows a flow diagram for training the model.

Stage 1

Model Specific Data

e e = Training the CNN - Updated Weights

Stage 2

Weights from Stage 1 .
Fine Tuning - Final Model

+ Other Face Data

FIGURE 6.13 Proposed procedure for model training for specific parts of the face. The training process
can be composed of two stages where weights for the specific part of the face are generated which are then used to
produce the final shape of the model.

The process of fine tuning for machine learning algorithms is a procedure whereby the cho-
sen CNN model, already trained for a given job and/or data type, is utilized for performing
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FIGURE 6.14 Proposed CNN model architecture for face recognition using specific parts of the face.
This model is derived from the standard VGG-16.

a similar task. This is done by replacing an output layer, which was originally trained for rec-
ognizing previous classes, with one which can recognize a new number of classes for a new
task. An advantage of using fine tuning is the reduction of computational time during the
training phase. In fact, the first layers already have the capability of dealing with a new task,
and training will utilize the last layers, without the need for training from scratch. Another
advantage is improved performance because the pretrained models are typically trained on
large datasets.

6.5.1 Suggested architecture of the model

As discussed above, the proposed model for training for specific parts of the face is in-
spired by the VGG-16 model (Parkhi et al., 2015) and requires an input image with a prefixed
size (224, 224, 3). The model has 5 convolutional blocks, each containing a number of convo-
lutional layers followed by nonlinear activation functions, as shown in Fig. 6.14.

As can be inferred from Fig. 6.14, the proposed CNN model for partial faces is archi-
tecturally similar to the VVG-F model with 5 convolutional layers and 3 FC layers. These
convolutional layers are designed to integrate various max pooling layers to create efficient
feature maps. A crucial aspect the proposed arrangement of convolutional and FC layers is
to reduce the number of trainable parameters (as defined by Eq. (6.1)) to keep the length of
training time reasonable while keeping the accuracy of the network within the acceptable
limits.

6.5.2 Training phase

Training a CNN model is a procedure to minimize the variations between the ground truth
labels and the predicted outputs from within a training dataset. This is achieved by locating
learnable parameters (kernels and weights) within the convolutional and fully connected lay-
ers. In the model suggested here, the weights of filters are initialized by using a Gaussian and
standard deviation (Bishop, 2006) and the biases are initialized to zero. To evaluate the perfor-
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mance of the model through feed-forward propagation, the most common loss function for a
multi class classification problem, called cross-entropy function, can be used (Busoniu et al.,
2011). The value of the loss function identifies how well or poorly a model performs after ev-
ery iteration of the optimization. In addition, based on the error gradient in the current state
of the model, all learnable parameters will be updated during the optimization, e.g., using
gradient descent along with backpropagation. The learning rate is another hyperparameter
which has the role of controlling how fast the CNN model learns using data presented to it.
The value of this parameter is positive and in the range 0 to 1.

The last two hyperparameters in the model signify the number of epochs the model must
pass through — which indicates the number of times the learning method sees the training
dataset. It also signifies the batch size required to complete an epoch — the suggested batch
size is 64. As for actual training, it is useful to follow a two-stage process. In the first stage,
the model is trained using around 20 epochs with a batch size of 64. After that, the resulting
weights from the model are saved. These weights are then utilized to initialize the weights
for the second part of the training. During phase two, around 50 epochs of training are under-
taken. These epochs are divided into ten parts with 5 epochs in each part. Thus, the weights
from the previous training are used to initialize the new weights and train the model for
five epochs. The resulting new weights will be used for the next training run. This procedure
is continued until the selected training loss and validation criteria are reached. During the
process, training loss of a small value (i.e., approximately < 0.02) and a higher validation
accuracy (i.e., > 85%) must be aimed for.

As far as training data is concerned, sufficient face images with sufficient identities must be
available. A typical figure suggested is 70, 000 images corresponding to a specific part of the
face with 200 identities. Such a dataset can be split into two groups, i.e., 70% for training and
30% validation. Finally, the training set is used to train the model, and the loss is computed
by forward propagation while updating the learnable parameters through backpropagation.

6.6 Discussion and conclusions

In this chapter, we have broadly discussed the present state of the art in face recognition
using deep learning methods and techniques. We have shown how deep learning methods
can be utilized for identity and facial similarity matching — using both full frontal faces and
partial facial data. We have shown how off-the-shelf features from well trained deep learning
models can be used to efficiently craft accurate face recognition systems. We have also shown
how to train specific models based on the various model architectures, trainable layers and
weights from well known deep models that are used for image processing and analysis.

For example, we have explored the question that surrounds the idea of face recognition us-
ing facial features. We have explored them by showing key examples to test the performance
of machine learning using the full, and parts of, the face in recognition tasks. In particular,
we have shown how deep face recognition performs when parts, such as the eyes, mouth,
nose and cheek are presented as learning and recognition cues. We have also shown that face
recognition systems can follow a number of approaches. For instance, we have shown how
to implement state of the art CNN along with the pretrained models (such as the VGG-F)
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through which key facial features can be extracted. Well known classifiers such as the Cosine
Similarity measure and Linear Support Vector machines can then be utilized to test the recog-
nition rates. Similarly, training specific models taking into consideration specific parts of the
face such as the mouth, nose, eyes, forehead and their combinations for designing efficient
face recognition systems from partial faces can be applied.

It is clear that, with the advances in deep learning methods and techniques, face recogni-
tion has immensely benefited (Guo and Zhang, 2019). In this sense, many of the problems
previously thought unsolvable are now considered to be straightforward. For example, given
two well lit frontal photos of an individual, confirming an identity match between them, us-
ing deep facial features, is now considered to be a solved problem. However, in general, the
subject of face recognition is still a current issue, with a number of challenging and unsolved
problems. For example, the issue of computer-based face recognition using partial facial data
as probes is still largely an unexplored area with key research challenges. Given that humans
and computers perform face recognition and authentication inherently differently, it is in-
triguing to understand how a computer will react to various parts of the face when they are
presented for the challenge of face recognition.

Computer assisted face recognition, starting from the 1960s, has come a long way. How-
ever, there are many challenges and hurdles still to be overcome. These challenges include,
for example, recognizing faces in poor illumination, pose variations, partial faces, inverted
faces, aged faces and faces from long distances. The question of accuracy on facial similarity
measures using deep learning techniques is largely unanswered. For example, the question
of similarity between faces related through kinship, siblings and identical twins has not yet
been answered satisfactorily. Furthermore, the question of bias in training data and how deep
learning systems should be made transparent and explainable are also pressing questions that
require to be answered satisfactorily.
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7.1 Introduction

With the availability of web-scale data obtained from different devices and varied acqui-
sition conditions, we are often faced with scenarios where the data used to train a classifier
has some properties that are different from what is presented during testing. Instances like
this arise very naturally in object recognition applications where the training and testing data
are captured under different lighting conditions, in speech processing where a speaker model
trained in a noise-free indoor setting needs to be deployed in more realistic outdoor environ-
ments, or in multimedia indexing where tagged Flickr photos or YouTube videos are readily
available from which a user would want to automatically index his/her own photo/video
collection harvested with a consumer camera. Domain adaptation (DA) refers to the class of
techniques aimed to learn representations from a low-resource dataset by transferring knowl-
edge from a related, yet shifted, resource-rich dataset. Shifts between datasets can exist in the
form of changes in illumination, lighting, texture patterns, or any such biases inherent to the
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dataset. To transfer knowledge across domain-shifted data distributions, a domain-invariant
feature representation is sought that effectively phases out biases contributing to the domain
shift.

Transfer learning (TL) (Pan et al., 2010) is a related approach that addresses the data set
bias issue. The primary difference between TL and DA is due to what properties of data are
preserved across training and testing conditions. While TL deals with the case where the
conditional distribution of data labels is changing (i.e., tasks in the two domains are differ-
ent) while the marginal distribution of data is preserved, DA addresses the opposite scenario
(Daume and Marcu, 2006), where the data distributions vary between the two domains but
the task remains the same. Although we often see practitioners applying TL and DA methods
interchangeably to both these settings, in this chapter, we will focus on DA since it applies
naturally to computer vision applications such as object recognition, where one is interested
in preserving the identity of objects across variations in viewpoint, illumination, among oth-
ers.

There are two broad categories of DA techniques depending on whether the target domain
test data has either partial labels (semisupervised) or is completely unlabeled (unsupervised).
While semisupervised DA often uses correspondence from labeled target data to learn do-
main transformation (Daume and Marcu, 2006; Saenko et al., 2010), unsupervised DA uses
strategies that assume (i) certain class of transformations between the domains (Wang and
Mahadevan, 2009), (ii) the availability of discriminative features that are common to or in-
variant across both domains (namely ‘domain invariants’) (Blitzer et al., 2008; Mansour et
al., 2009), or (iii) a latent space where the difference in distribution of source and target data
is minimal (Blitzer et al., 2011). In addition to adapting between a single source and a sin-
gle target domain, there have been studies on multidomain adaptation (e.g. Mansour et al.,
2009) that consider more than one domain in source and/or target. While some of these ap-
proaches pursue ‘representation adaptation” by learning a domain shifting transformation,
others (Duan et al., 2009; 2012) advocate a ‘classifier’-oriented approach that attempts to
obtain target classifiers by manipulating or reoptimizing classifiers trained on the source do-
main. In the rest of the chapter, we focus mainly on the unsupervised setting.

Since 2011, a significant amount of research has been done to address the challenge of
unsupervised domain adaptation. Methods based differential geometry (Gopalan et al., 2011;
2014; Gong et al., 2012; Ho and Gopalan, 2014), sparse dictionaries (Lu et al., 2015; Nguyen et
al., 2012; 2015; Shekhar et al., 2013; Xu et al., 2015) and more recently, Generative Adversarial
Networks (GANSs) (Sankaranarayanan et al., 2018; Shi and Sha, 2012) have been developed. In
this chapter, we present some typical examples from the three approaches mentioned above.
For more detailed expositions of domain adaptation research, the reader is referred to Patel
et al. (2015).

7.2 Unsupervised domain adaptation using manifolds

In the spirit of adapting ‘gradually between extremes’, Gopalan et al. (2014) presented
an approach for unsupervised DA by constructing a smooth path between source and tar-
get domains using intermediate data representations that convey relevant information about
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the domain shift. Thus, without making assumptions on domain invariant properties, this
work presented the first unsupervised DA framework for object recognition by computing
an adaptation path of certain statistical characteristics from the source domain(s) to the tar-
get domain(s). A special case of this framework, presented in Gopalan et al. (2011), used
a linear generative subspace as the representation of a domain. More specifically, principal
component analysis (PCA) is applied to each of the domains, followed by representing the
subspaces as points on a Grassmann manifold. Then the geodesic between these points is
used as a statistically meaningful path to represent the domain shift. By sampling points
along the geodesic, intermediate cross-domain data representations are obtained with which
a discriminative classifier is trained to perform recognition. This work subsequently studied
other special cases of this framework such as domain representation in a high-dimensional
Reproducing Kernel Hilbert Space (RKHS) using kernel methods, and a low-dimensional
manifold representation using Laplacian Eigenmaps. Interestingly, this framework also ac-
commodates semisupervised and multidomain adaptation settings, and has been further
enhanced by simulating fine-grained domains blended with gradually varying proportions
of source and target samples, as well as by applying boosting to a pool of intermediate repre-
sentations yielded by different parameter choices.

Since the publication of Gopalan et al. (2011), there have been other related studies such
as Gong et al. (2012); Zheng et al. (2012), that discussed alternative sampling strategies along
the geodesic, and Shi and Sha (2012) that proposed an information-theoretic approach for
jointly learning domain shift features and classifiers. Multisource adaptation that could ac-
commodate different feature types across domains was addressed in Duan et al. (2012) using a
data-dependent regularization mechanism, and robustness to noise or outliers was addressed
in a low-rank reconstruction approach by Jhuo et al. (2012). More discussions and compara-
tive evaluations against many of these notable contributions are included in Patel et al. (2015).

7.2.1 Unsupervised domain adaptation using product manifolds

An application of Unsupervised Domain Adaptation (UDA) is unconstrained face recog-
nition which is a very challenging problem due to appearance variations between the probe
and gallery images caused by multiple factors such as blur, expression, illumination, pose
and resolution. As a result, face classifiers trained with the assumption that the training and
testing data are drawn from similar distributions usually have very poor performance, espe-
cially when applied to uncontrolled environments. For instance, face recognition algorithms
trained on samples from a source domain containing sharp, well-illuminated face images do
not perform well when used on a target domain containing blurred, poorly illuminated face
images (Vageeswaran et al., 2013). These algorithms’ performance further degrades when
only a limited number of images per subject is available due to the cost and other challenges
in data acquisition.

While there have been several studies addressing prespecified facial variations across
source and target domains (Zhao et al., 2003), such as the nine points of light study for illumi-
nation (Lee et al., 2005), analyzing domain shifts caused by multiple, unknown factors have
not received much attention. Domain adaptation is a recent paradigm for addressing such
transformations in a broader setting, where given labeled data from the source domain and
few (or no) labeled data from target domain, unsupervised and semisupervised approaches
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have been devised to account for variations in data across domains (Saenko et al., 2010; Ben-
David et al., 2010; Gopalan et al., 2011). Most of these techniques address domain shifts in a
statistical sense as models causing variations in data are not known. This limits their appli-
cation to the particular problem of face recognition where there is a rich literature on models
for pose, lighting, blur, expression and aging. As a result, it is important to understand do-
main shifts with respect to the underlying constraints pertaining to models that generate the
observed data. Such an analysis would necessitate the study of geometrical properties of the
image space induced by these models.

Many traditional approaches, however, often either ignore the geometric structures of the
space or naively treat the space as Euclidean (Lui, 2012). While nonlinear manifold learning
algorithms such as ISOMAP (Tenenbaum et al., 2000) or Locally Linear Embedding (LLE)
(Roweis and Saul, 2000) offer alternatives, they require large amounts of training data to es-
timate the underlying nonlinear manifold structure of the data. Such a requirement on data
may not always be satisfied in many real-world applications. One possible solution for han-
dling facial variations due to multiple factors is by employing a mathematical framework
called multilinear algebra — the algebra of higher-order tensors. As matrices represent linear
operators over a vector space, their generalization, tensors, define multilinear operators over
a set of vector spaces (Vasilescu and Terzopoulos, 2002). While there have been studies using
multilinear algebraic framework for face recognition (Vasilescu and Terzopoulos, 2002; 2007),
such approaches ignore the curved geometry of the image space and resort to a Euclidean
treatment. Attempts to incorporate nonlinear geometrical structures into the tensor comput-
ing framework have been reported in Lui and Beveridge (2010); Park and Savvides (2011a;
2011b), but they again need large training data.

A domain adaptive solution for face recognition using the tensor geometry corresponding
to models explaining facial variations, with as few as a single image per subject in the source
domain, is presented in Ho and Gopalan (2014). Instead of finding linear transformations
representing the shift across domains as in Saenko et al. (2010); Kulis et al. (2011), we propose
a model-driven approach to construct a latent domain where multifactor facial variations
across the source and target domains can be captured together. One main advantage of such
an approach is even if data within the source domain and/or the target domain is heteroge-
neous, for instance when the domain shift is due to blurring and both source and target data
contain a mix of sharp and blurred faces, the process of accounting for domain shift remains
unaltered unlike other techniques that expect the domains to be more or less homogeneous
(Saenko et al., 2010; Kulis et al., 2011; Gopalan et al., 2011). Furthermore, the proposed method
overcomes the data requirement constraint for modeling domain variations by synthesizing
multiple face images under different illumination, blur and 2D alignment from a single in-
put image on the source or target domain, and uses them to formulate a multidimensional
tensor unlike other methods like (Lui and Beveridge, 2010) that places more stringent data-
requirement constraints. The tensor obtained from the set of synthesized images can then be
represented on a product manifold by performing Higher-Order Singular Value Decompo-
sition (HOSVD) and mapping each orthogonal factored matrix to a point on a Grassmann
manifold. The order of the tensors is the number of factors used in the synthesis process. We
then recognize the target domain face labels by performing computations pertaining to the
tensor geometry for cases where the source domain either contains only one image per sub-
ject or has multiple images per subject. This work also addresses the problem of image set
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matching which is relevant to video-based face recognition where multiple frames in a video
provide evidence related to the facial identity.

Manifold-based approaches appear to have fallen out of favor due to superior performance
from methods based on Generative Adversarial Networks.

7.3 Unsupervised domain adaptation using dictionaries

Sparse and redundant signal representations have drawn much interest in vision, signal
and image processing (Bruckstein et al., 2009; Elad et al., 2010; Rubinstein et al., 2010; Wright
etal., 2010; Bo etal., 2011). This is partly because signals and images of interest can be sparsely
represented or compressible given an appropriate dictionary. In particular, we say a signal
y € R"is sparsely represented by a dictionary D € R™K when it can be well approximated by a
linear combination of a few columns of D as y &~ Dx, where x € RK is the sparse representation
vector and D is a dictionary that contains a set of basics (atoms) as its columns. Finding a
sparse representation vector entails solving the following optimization problem

X =argmin ||X|lo s.t.|ly — Dxl|l2 <€ (7.1)
X

where € is an error tolerance, [|x||o is the Jo-sparsity measure that counts the number of
nonzero elements in the vector x, and ||y — Dx||» is the mean squared error resulted from the
sparse approximation. Solving (7.1) is NP-hard and can be approximated by various methods
(Chen et al., 2001; Patil et al. 1993; Tropp, 2004). Instead of using a predetermined dictionary,
one can directly learn a dictionary from the data. Indeed, it has been observed that learning a
dictionary directly from the training data rather than using a predetermined dictionary (e.g.
wavelet) usually leads to a more compact representation and hence can provide better results
in many image processing applications such as restoration and classification (Elad et al., 2010;
Rubinstein et al., 2010; Wright et al., 2010; Olshausen and Field, 1996; Mairal et al., 2009, 2011).

Several algorithms have been developed for the task of learning a dictionary. Two of the
most well-known algorithms are the method of optimal directions (MOD) (Engan et al., 1999)
and the K-SVD algorithm (Aharon et al., 2006). Given a set of N signals Y = [y1,y2, ..., NI
the goal of KSVD and MOD algorithms is to find a dictionary D and a sparse matrix X that
minimize the following representation error

(D, X) = arg%n;(l IY — DX|I s.t.lIxill < To,¥i=1,..., N (7.2)

where x; represents the ith column of X, ||A|r denotes the Frobenius norm of A, and T, de-
notes the sparsity level. Both MOD and KSVD are iterative methods that alternate between
sparse-coding and dictionary update steps. First, a dictionary D with £>-normalized columns
is initialized. Then, the main iteration is composed of the following two stages:

* Sparse coding: In this step, D is fixed and the following optimization problem is solved to
compute the representation vector x; for each example y;

min [ly; — Dxill3 s.t.Ixilo <To, Vi=1,...,N (7.3)
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FIGURE 7.1 Overview of generalized domain adaptive dictionary (Shekhar et al., 2013).

¢ Dictionary update: This is where both MOD and KSVD algorithms differ. The MOD al-
gorithm updates all the atoms simultaneously by solving an optimization problem whose
solution is given by D = YX*, where X* denotes the Moore-Penrose pseudo-inverse. Even
though the MOD algorithm is very effective and usually converges in a few iterations,
it suffers from the high complexity of the matrix inversion as discussed in Aharon et
al. (2006). In the case of KSVD, the dictionary update is performed atom-by-atom in an
efficient way rather than using a matrix inversion. It has been observed that the KSVD
algorithm requires fewer iterations to converge than the MOD method.

7.3.1 Generalized domain adaptive dictionary learning

When the target data has a different distribution than the source data, the learned sparse
representation may not be optimal. This section investigates if it is possible to optimally rep-
resent both source and target by a common dictionary. Specifically, we describe a technique
that jointly learns projections of data in the two domains, and a latent dictionary that can
succinctly represent both the domains in the projected low-dimensional space as shown in
Fig. 7.1. An efficient optimization technique is presented, which can be easily extended to
multiple domains. The learned dictionary can then be used for classification. The proposed
approach does not require any explicit correspondence between the source and target do-
mains, and shows good results even when there are only a few labels available in the target
domain. Various recognition experiments show that the method performs on par or better
than competitive methods.

Consider a special case, where we have data from two domains, Y; € RINI and Y, € RNz,
We wish to learn a shared K-atoms dictionary, D € R™K and mappings P; € R™¢, P, € R™d
onto a common low-dimensional space, which will minimize the representation error in the
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projected space. Formally, we desire to minimize the following cost function:
C1(D. Py, P2, X1, X2) = [IP1Y1 = DX [ + [P2Y2 — DXall 7 (74)

subject to sparsity constraints on X; and X,. We further assume that rows of the projection
matrices, P; and P, are orthogonal and normalized to unit-norm. This prevents the solution
from becoming degenerate.

Regularization: While bringing the data from two domains to a shared subspace, the
transformations should not lose too much information available in the original domains. To
facilitate this, we add a PCA-like regularization term that preserves energy in the original
signal, given as:

Ca(P1,Py) = Y1 = PP Yy [} + | Y2 = PIP Y2 7 (7.5)

We can rewrite the parameters as follows:

- - Y 0 °
P=[P, P, Y= and X=[X;,Xa] (7.6)
0/ \Y>
Using the new notations, the overall optimization can be rewritten as:

{D*,P*,X* } =arg min C;(D,P,X) +1Co(P)s.t. PiPf =Li=1,2and|Xllo <To, ¥j (7.7)
D,P, X

Handling multiple domains: The above formulation can be extended so that it can handle
multiple domains. For M domain problem, we simply construct matrices (Y, P, X) as:

Y, - 0
ﬁZ[Pl,Pz,...,PM],Yz ,al’ld)N(:[Xl,Xz,...,XM] (7.8)
0 - Yum

Optimization: We minimize the objective function in Eq. (7.7) by alternating between op-
timizing P and (D, X). Specifically, when P is fixed, the optimization becomes a standard
dictionary learning problem where KSVD and MOD algorithms are effective. When (D, X)
are fixed, we can minimize Eq. (7.7) using manifold optimization techniques (Wen and Yin,
2013). Alternatively, we can derive the optimal form of (P;, D) and convert the objective func-
tion to a simpler form before optimization as done in Shekhar et al. (2013).

Classification: Once the shared dictionary among multiple domains is learned, our ap-
proach will carry out the classification using the following procedure. First, we project the test
sample to the latent space using the learned transformation P;, perform sparse coding, then
compute the reconstruction error for each domain transformation. The class corresponding to
the smallest error will be the final class prediction. The procedure can be written as follows:

%, = argmin || Piy — Dx||% s.t.[[x[lo < To. Vi (7.9)
X

Output class =arg_min |Piy — D&, (7.10)

.....
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FIGURE 7.2 Pose alignment results (Shekhar et al., 2013) (a) Examples of pose-aligned images using the proposed
method. Synthesis in various conditions demonstrates the robustness of the method. (b) First few components of the
learned projection matrices for the two poses.

The error term in Eq. (7.10) is called residual error, which is a measure of unfitness of the test
sample to a particular class.

Experiments: We use the Multipie dataset (Gross et al., 2010) — a comprehensive face
dataset of 337 subjects, having images taken across 15 poses, 20 illuminations, 6 expressions
and 4 different sessions. For the purpose of our experiment, we used 129 subjects common
to Session 1 and 2. The experiment was done on 5 poses, ranging from frontal to 75°. Frontal
faces were taken as the source domain, while different off-frontal poses were taken as target
domains. Dictionaries were trained using illuminations {1, 4, 7, 12, 17} from the source and
the target poses, in Session 1 per subject. All the illumination images from Session 2, for the
target pose, were taken as probe images.

We first consider the problem of pose alignment using the proposed dictionary learning
framework. Pose alignment is challenging due to the highly nonlinear changes induced by 3-
D rotation of face. Images at the extreme pose of 60° were taken as the target pose. A shared
discriminative dictionary was learned using the approach described in this section. Given
the probe image, it was projected on the latent subspace and reconstructed using the dictio-
nary. The reconstruction was back-projected onto the source pose domain, to give the aligned
image. Fig. 7.2(a) shows the synthesized images for various conditions. We can draw some
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TABLE 7.1 Comparison of the proposed method with other algorithms for
face recognition across pose (Shekhar et al., 2013).

Method Probe pose Average
15° 30° 45° 60° 75°

PCA 153 53 6.5 3.6 2.6 6.7

PLS (Sharma and Jacobs, 2011) 39.3 405 416 411 387 402

LDA 98.0 942 917 849 79.0 895

CCA (Sharma and Jacobs, 2011) 921 89.7 88.0 86.1 830 835
GMLDA (Sharma et al., 2012) 99.7 992 986 949 954 976
FDDL (Yang et al., 2011) 96.8 906 944 914 905 927
SDDL (Shekhar et al., 2013) 984 982 989 991 988 98.7

useful insights about the method from this figure. Firstly, it can be seen that there is an op-
timal dictionary size, K = 5, where the best alignment is achieved. Further, by learning a
discriminative dictionary, the identity of the subject is retained. For K = 7, the alignment is
not good, as the learned dictionary is not able to successfully correlate the two domains when
there are more atoms in the dictionary. Dictionary with K = 3 has a higher reconstruction er-
ror, hence the result is not optimal. We chose K = 5 for additional experiments with noisy
images. It can be seen from rows 2 and 3 that the proposed method is robust even at high lev-
els of noise and missing pixels. Moreover, denoised and in-painted synthesized images are
produced as shown in rows 2 and 3 of Fig. 7.2(a), respectively. This shows the effectiveness
of our method. Moreover, the learned projection matrices (Fig. 7.2(b)) show that our method
can learn the internal structure of the two domains. As a result, it is able to learn a robust
common dictionary.

We also conducted recognition experiment using the set-up described above. Table 7.1
shows that our method compares favorably with other multiview recognition algorithms
(Sharma et al., 2012) and gives the best performance on average. The dictionary learning
algorithm, FDDL (Yang et al., 2011) is not optimal here as it cannot efficiently represent the
nonlinear changes introduced by the pose variation.

7.3.2 Joint hierarchical domain adaptation and feature learning

Complex visual data contain discriminative structures that are difficult to be fully cap-
tured by any single feature descriptor. While recent work on domain adaptation focuses on
adapting a single hand-crafted feature, it is important to perform adaptation on a hierarchy
of features to exploit visual data’s richness. This section discusses an approach for domain
adaptation based on a sparse and hierarchical network (DASH-N). Our method jointly learns
a hierarchy of features together with transformations that rectify the mismatch between dif-
ferent domains. The building block of DASH-N is the latent sparse representation. It employs
a dimensionality reduction step to prevent the data dimension from increasing too fast as one
traverses deeper into the hierarchy. Experimental results show that this method compares fa-
vorably with competing state-of-the-art sparse learning methods. In addition, it is shown that
a multilayer DASH-N performs better than a single-layer DASH-N.

Latent sparse representation: From the observation that signals often lie on a low di-
mensional manifold, previous section performs dictionary learning and sparse coding in a
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FIGURE 7.3 Overview of DASH-N algorithm (Nguyen et al., 2015). First, images are divided into small overlap-
ping patches. These patches are vectorized while maintaining their spatial arrangements. (a) Performing contrast-
normalization and dimensionality reduction using Pg for source images and P for target images. The feedbacks
between Pg and Pt indicate that these two transformations are learned jointly. (b) Obtaining sparse codes using the
common dictionary Dj. (c) Performing max pooling. The process then repeats for layer 2 (d & e), except that the in-
put is the sparse codes from layer 1 instead of pixel intensities. At the final stage, spatial pyramid with max pooling
is used to create image descriptors. Classification is done using linear support vector machine at the final layer.

low-dimensional latent space. To facilitate further discussion, we define the latent sparse rep-
resentation and its corresponding optimization as follows:

L(Y,P,D,X) = [[PY — DX||3 + | Y = PTPY||7 + BIXIIs
s.t. PPT =1, and|di|l» = 1,Vie [1,K] (7.11)

where P € RPY is a linear transformation that brings the data to a low-dimensional feature
space (p < d). Note that the dictionary is now in the low-dimensional space D € RP*X.
The first term of the cost function promotes the sparsity of signals in the reduced space.
The second term is the amount of energy discarded by the transformation P, or the differ-
ence between low-dimensional approximations and the original signals. The minimization
of the second term encourages the learned transformation to preserve the useful informa-
tion present in the original signals. Besides the computational advantage, (Nguyen et al.,
2012) shows that this optimization can better recover the underlying sparse representation
than traditional dictionary learning methods. This formulation is attractive since it allows the
transformation of the data into another domain to handle better different sources of variation
such as illumination and geometric articulation.

We propose a method to perform hierarchical domain adaptation jointly with feature learn-
ing. Fig. 7.3 shows an overview of the proposed method. The network contains multiple
layers, each of which includes 3 sublayers as illustrated in Fig. 7.3. The first sublayer per-
forms contrast-normalization and dimensionality reduction on the input data. Sparse coding
is carried out in the second sublayer. In the final sublayer, adjacent features are max-pooled
together to produce a new feature. The output from one layer becomes the input to the next
layer. For the simplicity of notation, we consider a single source domain. The extension of
DASH-N to multiple source domains can be done using the procedure in Eq. (7.8).

Let Ys € R™Ns and Y1 € R™NT be the input data at each layer from the source domain
and target domain, respectively. Note that there are Ns, d-dimensional samples in the source
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domain and Nr, d-dimensional samples in the target domain. Note that we assume source
and target data have the same dimension d for simplicity of our discussion. However, our
formulation can also accommodate the scenario where data dimensions are different across
domains. Given Ys and Yr, in each layer of DASH-N, we learn a joint latent sparse represen-
tation by minimizing the following cost function with respect to (Ps, Pt, D, Xs, X1):

L(Ys, Ps, D, Xs, &, ) + AL(Yt, P1, D, X7, @, B) 5.t. PsPL = PrPr =1, ||dilla = 1, Vi € [1,K]
(7.12)

where («, 8, 1) are the nonnegative constants, D € RPXK js the common dictionary, Ps € RPxd
and Pt € RPX are the transformations to the latent domain, Xg € RKFNs and X € RENT gre
the sparse codes of the source and the target domains, respectively. As can be seen from
the above formulation, two domains are forced to share a common dictionary in the latent
domain. Together with the sparsity constraint, the common D provides a coupling effect that
promotes the discovery of common structures between the two domains. For simplicity, in
what follows, we provide a detailed discussion on a two-layer DASH-N network. Extension
of DASH-N to multiple layers is straightforward.

Layer 1: We perform dense sampling on each training image to get a set of overlapping
patches. These patches are then contrast normalized. If f is a vector corresponding to a patch,
then the contrast-normalization can be written as follows:

f

VIfIZ +e

where € is a small constant. We set the value of € equal to 0.1 as it is found to work well in our
experiments. To make the computation more efficient, only a random subset of patches from
each image is used for learning the latent sparse representation. We found that setting this
number to 150 for images of maximum size of 150x150 provides a good trade-off between
accuracy and computational efficiency. After learning the dictionary D; and the transforma-
tions (Pg, PL) the sparse codes (X4, X}) are computed for all sampled patches by solving the
following optimization problem:

f= (7.13)

min [P1Y! Dy XU+ 41 X1, 719

*

where * indicates that the above problem can either correspond to source data or target data.
Each column of Y] is the vectorized pixel values inside a patch. A fast implementation of the
LARS algorithm is used for solving this optimization problem (Mairal et al., 2009). Spatial
max pooling is used to aggregate the sparse codes over each 4x4 neighborhood as this pool-
ing method is particularly well-suited for the separation of sparse features (Boureau, 2012;
Boureau et al., 2010).

Layer 2: In this layer, we perform similar computations except that the input is the sparse
codes from layer 1 instead of image pixels. The features obtained from the previous layer
are aggregated by concatenation over each 4x4 neighborhood and contrast-normalized. This
results in a new representation that is more robust to occlusion and illumination. Similar

to layer 1, we also randomly sample 150 normalized feature vectors f from each image for
training. £; optimization is again employed to compute the sparse codes of the normalized
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features f. At the end of layer 2, the sparse codes are then aggregated using max-pooling in
a multilevel patch decomposition (i.e. spatial pyramid max pooling). At level 0 of the spatial
pyramid, a single feature vector is obtained by performing max-pooling over the whole im-
age. At level 1, the image is divided into four quadrants and max-pooling is applied to each
quadrant, yielding 4 feature vectors. Similarly, for level 2, we obtain 9 feature vectors, and so
on. In this section, max-pooling using a three-level spatial pyramid is used. As a result, the
final feature vector returned by the second layer for each image is a result of concatenating
14 feature vectors from the spatial pyramid.

Optimization: This section describes the procedure for optimization the objective function
in Eq. (7.12). First, let us define

K. 0
Ks=YaYs, Kr = YIY1, K= ( oS JAKe ) ,Ks =VsAsVe, Kr = VrArVi (7.15)

to be the Gram matrix of source data, target data, and their block diagonal concatenation,
respectively. It can be shown that the optimal solution of (7.12) takes the following form:

D = [AgKs, v A{Kr]B, Ps = (YsAs)', Pr = (YrAD)' (7.16)

For some Ag € RNs*P | A1 € RNTXP and B € RINstNDXK We can substitute these forms into the
objective function in Eq. (7.12) and optimize it with respect to (As, Ar, B) instead. Notice that
rows of each transformation live in the column subspace of the data from its own domain. In
contrast, columns of the dictionary are jointly created by the data of both source and target.
When (B, X) are fixed, we can solve for (As, Ar) by first solving the following constrained
optimization:

min tr(GTHG) s.t. G{Gs = G1G1 =1, G = [Gs, VAGr] (7.17)

where
H= A%VTK(I-BX)I - BX)" — al)KVA®? (7.18)
Then the solutions of (As, A1) are given by

Ag = VsAS_O‘SGs, AT = VTAEO'SGT (7.19)
When (As, At) are fixed, we can solve for (B, X) using standard sparse coding procedure:
1Z = DXIE + B(IXsll1 +AIX1]1) s.t. Z=[AsKs. VAATK], X = [Xs, V3X1] B=Z"D (7.20)

Here Z* denotes the Moore-Penrose pseudo-inverse of the matrix Z.

Experiments. The proposed algorithm is evaluated in the context of object recognition
using a recent domain adaptation dataset (Saenko et al., 2010), containing 31 classes, with
the addition of images from the Caltech-256 dataset (Griffin et al., 2007). Domain shifts are
caused by variations in factors such as pose, lighting, resolution, etc., between images in dif-
ferent domains. Furthermore, to better assess the ability to adapt to a wide range of domains,
experimental results are also reported on new images obtained by performing halftoning and
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TABLE 7.2 Recognition rates of different approaches on four domains (C: Caltech, A: Amazon, D: DSLR, W:
Webcam). 10 common classes are used. Red color denotes the best recognition rates. Blue color denotes the second best
recognition rates.

Method C-A C-D A-C A-W W-C WA D-A D->W
Metric (Saenko et al., 2010) 33.7 35.0 27.3 36.0 21.7 323 30.3 55.6
SGF (Gopalan et al., 2011) 40.2 36.6 377 379 29.2 38.2 39.2 69.5
GFK (PLS+PCA) (Gong et 46.1 55.0 39.6 56.9 32.8 46.2 46.2 80.2
al., 2012)

SDDL (Shekhar et al., 2013) ~ 49.5 76.7 274 72.0 29.7 49.4 489 72.6
HMP (Manjunath and 67.7 70.2 51.7 70.0 46.8 61.5 64.7 76.0
Chellappa, 1993)

DASH-N (1tlayer) 60.3 79.6 52.2 74.1 453 68.7 65.9 76.3
(Nguyen et al., 2015)

DASH-N (Nguyen et al., 71.6 81.4 54.6 75.5 50.2 70.4 68.9 771
2015)

edge detection algorithms on images from the datasets in Saenko et al. (2010); Griffin et al.
(2007).

The recognition results of different algorithms on 8 pairs of source-target domains are
shown in Table 7.2. It can be seen that DASH-N outperforms all compared methods in 7 out
of 8 pairs of source-target domains. For pairs such as Caltech-Amazon, Webcam-Amazon, or
DSLR-Amazon, we achieve more than 20% improvements over the next best algorithm with-
out feature learning used in the comparison (from 49:5% to 71:6%, 49:4% to 70:4%, and 48:9%
to 68:9%, respectively). It is worth noting that while we employ a generative approach for
learning the feature, our method consistently achieves better performance than (Shekhar et
al., 2013), which uses discriminative training together with nonlinear kernels. It is also clear
from the table that the multilayer DASH-N outperforms the single-layer DASH-N. In the case
of adapting from Caltech to Amazon, the performance gain, based on a combination of fea-
tures obtained from both layers rather than just features from the first layer, is more than 10%
(from 60:3% to 71:6%).

7.3.3 Incremental dictionary learning for unsupervised domain adaptation

This section discusses an incremental dictionary learning method where some target data
called supportive samples are selected to assist adaptation, as shown in Fig. 7.4. The in-
cremental nature of this approach enables users to choose different numbers of supportive
samples according to their budget, or until when the performance is satisfactory. Supportive
samples are close to the source domain and have two properties: first, their predicted class
labels are reliable and can be used for building more discriminative classification models;
second, they act as a bridge to connect the two domains and reduce the domain mismatch.
Theoretical analysis shows that both properties are important for adaptation, enabling the
idea of adding supportive samples to the source domain. A stopping criterion is designed
to guarantee that the domain mismatch decreases monotonically during adaptation. Exper-
imental results on several widely used visual datasets show that the proposed approach
performs better than many state-of-the-art sparse learning methods.
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FIGURE 7.4 Overview of incremental dictionary learning for domain adaptation. The source dictionaries are
adapted to the target domain using a set of supportive samples. The iterative procedure guarantees that the do-
main mismatch decreases monotonically.

Given the dictionary D, we want to select a subset of target samples as supportive sam-
ples. We have two constraints on this selection. First, the supportive samples selected in the
previous iterations should be excluded as we want to add new data for adaptation. Second,
we select equal number of supportive samples for each class to ensure class balance during
adaptation (Gong et al., 2013). With these two constraints, we select the most confident sam-
ples that minimize the reconstruction error when represented by D®. Then we update the
augmented source domain by adding supportive samples and retrain the dictionary. After
that, the stopping criterion is checked to see whether adding new supportive samples will
reduce the domain dissimilarity. An overview of the proposed approach is shown in Fig. 7.4.
The algorithm consists of the following main components:

Confidence matrix update: We use Xg = X© and X7 to denote the data from source and
target domains. Let L =1, ..., C] represent the existing label set. Let DO = [Dgo) [ -] Dg) )]
denote the original dictionary trained on source domain where D].(O) denote the subdictionary

that corresponds to class j. Let P € RN*C denote a confidence matrix whose elements pij €
[0, 1] represents the probability that a target sample x! belongs to class j. In the (k + Hth
iteration, we update the confidence matrix P&+ using the current class-specific dictionaries
D& — [ng) - |D8<)]'

-0.5 _ok+D 2
| et
pi]- = Y1279 0 exp (—ey 7 /20%)

0 otherwise

D

ire k
if j = argmax pi(1 + (7.21)

where o2 is the normalization parameter and ejj denotes the reconstruction error of target
sample x! using D®:
1 )

e = |xt - DN .Zf+ V|2 (7.22)
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Here, Zi(ij) is the sparse code. We put a constraint pi(ij) # 0 only when j is the most likely
class that sample i belongs to. This constraint guarantees that a sample cannot be selected as
a supportive sample for multiple classes.

Supportive sample selection: We select new supportive samples using WD by solving
the following optimization:

w;k“’ = argmax tr(Wij(kH)) (7.23)
]

k
k 1 k .
st WY Wl =0, WiV =Q, j=1.....C (7.24)
1=1

where Wj € RNeNe are diagonal matrices containing j-column of W on the diagonal. That
is, W = diag([wj, wyj, ... ]). Similarly, P; = diag([pij, p2j, - - -]). Q is the number of support-
ive samples for each class. The objective function Eq. (7.23) maximizes the confidence of the
selected supportive samples. The first constraint requires that the supportive samples in the
(k + )" iteration are disjoint from the previously chosen ones which ensures that we keep
adding new supportive samples to the source domain. The second constraint ensures that the
number of supportive samples for each class is balanced. The solution to Eq. (7.23) is to find
the corresponding Q supportive samples that maximize the confidence with the constraint
that old supportive samples are excluded.

Augmented source domain update: After selecting the supportive samples, we update the
augmented source data by adding weighted supportive samples to the previous source data:

k+1) _ ry () tyg &kt D pk+1) _
XEED =[x XWEPED] k=1, C (7.25)

Since the supportive samples’ labels may have errors, each selected supportive sample is
weighted by its confidence. The weights indicate the reliability of the supportive samples’
labels and highly confident supportive samples will contribute more to the model.

Dictionary update: The dictionary is updated by solving the following optimization prob-
lem:

. 2 .
DY = arg min [ X[V ~DZ [+ 1IZl. j=1.....C (7.26)
1)

We solve Eq. (7.26) using the online dictionary learning method (Mairal et al., 2009). The dic-
tionary obtained in the previous iteration is used as the initial dictionary in the next iteration.
In this way, the computational cost is relatively low.

Stopping criterion: One trivial stopping criterion is to stop when there are no new sup-
portive samples for one of the classes. But our goal is to guarantee that the adaptation process
monotonically reduces the domain divergence. In this way, the classification error bound in
the target domain will decrease as stated in Ben-David et al. (2010); Smetana et al. (2009). So,
we design in the next section a domain similarity measure and we only perform adaptation
when the domain similarity increases after each iteration. It can be shown that when adding
supportive samples to the source domain, the similarity between the source and target do-
mains will increase. Readers are referred to Lu et al. (2015) for more details on proving this

property.
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(a) A as source domain (b) C as source domain (c) W as source domain (d) D as source domain
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FIGURE 7.5 The change in domain similarity when the supportive samples are added to the source domain. In
our experiments, we only continue our adaptation as long as the similarity value goes up, which is represented by
the solid lines before the slash symbols. A: Amazon, C: Caltech, W:Webcam, D: Dslr.

Experiments. We use Office+Caltech dataset containing images from four domains: Ama-
zon (A), Webcam (W), DSLR (D), and Caltech (C). This leads to a total of 12 domain pairs for
testing. 10 common classes are selected in all domains. For each class, A, C, D and W have
about 100, 100, 15 and 30 images, respectively. We follow the protocol used in Gong et al.
(2013) to generate the source and target domain data. DeCAF features (Donahue et al., 2014)
are used in our experiment. We compare two nonadaptation (NA) methods, and five state-of-
the-art unsupervised DA methods: SVM and Dictionary Learning Based Classification (DLC)
are the two NA methods, Subspace Interpolation via Dictionary Learning (SIDL) (Ni et al.,
2013), Geodesic Flow Kernel (GFK) (Gong et al., 2012), Transfer Joint Matching (TJM) (Long et
al., 2014), Landmarks (Gong et al., 2012) and DA-NBNN (Tommasi and Caputo, 2013) are the
unsupervised DA methods. DLC is implemented using the online dictionary learning method
as Mairal et al. (2009) and is also used as the initial dictionary in the proposed approach.

We also compare in change of domain similarity in Fig. 7.5 with classification results in Ta-
ble 7.3 and find that the accuracy likely increases when the domain similarity value continues
to go up as more supportive samples are added to the source domain.

We showed that dictionary learning is an effective approach in addressing domain shifts
under unsupervised setting. The general idea is to project data representations from multi-
ple domains to the same latent space where their distributions are more similar. Instead of
doing this transformation on one semantic level, we also showed the benefits of hierarchical
dictionary learning for gradual adaptation on multiple semantic levels. Finally, we demon-
strate the benefits of incrementally adding selective support samples to the source domain
are guaranteed to increase the domain similarity, which generally leads to better classifica-
tion performance.

Dictionary-based approaches appear to have fallen out of favor due to superior perfor-
mance from methods based on Generative Adversarial Networks.

7.4 Unsupervised domain adaptation using deep networks

Deep neural networks are a powerful class of machine learning models for extracting
meaningful representations from images. Despite their success in achieving state-of-the-art
performance in several visual recognition tasks (Ren et al., 2015; He et al., 2016; 2017), neural
networks suffer from domain shift i.e., the performance of neural networks drops signifi-



TABLE 7.3 Recognition accuracies on 12 pairs of cross-domain unsupervised object recognition. A: Amazon, C: Caltech, W:Webcam, D: Dslr.

Method A-C A-D A->W C->A C-»D C->W WA WD W-C D—-A D->C D->W
NA SVM 85.0 87.9 79.0 91.4 89.8 80.0 75.7 99.4 72.0 87.1 78.8 98.6

DLC 85.3 82.1 75.6 91.3 87.9 78.6 78.4 98.7 76.0 88.1 81.6 99.3

GFK (Gong et al., 77.3 84.7 81.0 88.5 86.0 80.3 81.8 100 73.9 85.8 76.0 97.3

2012)

SIDL (Ni et al., 2013) 84.5 815 742 90.9 89.8 783 75.1 100 711 87.9 80.1 99.3

TIM (Long et al., 2014) ~ 80.1 84.7 75.2 89.0 85.3 76.9 84.8 100 78.0 87.4 774 98.6

DA-NBNN (Tommasi ~ 83.4 80.9 76.6 89.6 87.9 80.3 88.0 100 824 91.3 86.1 98.0
DA

and Caputo, 2013)

Landmarks (Gong et 84.7 86.0 824 924 923 84.1 84.0 98.7 717 77.0 744 95.2

al., 2013)

Online dictionary (Lu  86.7 924 88.5 93.3 88.5 95.6 92.8 100 88.7 93.1 89.1 99.3

etal., 2015)
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FIGURE 7.6 Domain adaptation using deep networks. Source and target feature spaces are aligned using a distri-
butional distance minimization objective.

cantly when the test distribution is different from the training distribution. To alleviate the
issue of domain shift, additional loss functions are used in the training objective to prevent
the source and target feature spaces from drifting.

The framework for deep domain adaptation is shown in Fig. 7.6. The source and the target
feature distributions are first obtained by passing the corresponding images through a fea-
ture network F. Their feature distributions look dissimilar due to the domain shift. During
domain adaptation, distributional distance between these feature spaces is minimized, while
simultaneously training a classifier model on the labeled source data.

Several discriminative and generative approaches have been proposed for the domain
adaptation problem (Ganin et al., 2016; Long et al., 2016; 2017, Hoffman et al., 2018; Sankara-
narayanan et al., 2018b). In discriminative approaches, an additional loss function is typically
used along with the classification objective to prevent the feature space drift. These functions
typically take the form of a distributional distance minimization between source and target
feature spaces (Ganin et al., 2016; Long et al., 2016; 2017). In generative approaches, a genera-
tive model (typically a Generative Adversarial Network) is trained to model the distribution
of source and target images. This knowledge about the learnt distributions is then used to
induce domain invariance during training (Hoffman et al., 2018; Sankaranarayanan et al.,
2018b).

7.4.1 Discriminative approaches for domain adaptation

Let F denote a deep neural network for extracting feature representations from images.
The network F is typically a convolutional network that acts on input images and returns a
vector as output. Let C denote a classification network that takes the feature representation
as input and returns the classification logits. Let (x*, y*) denote input-output pairs of source
domain and (x") denote the target inputs.
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FIGURE 7.7 Domain adversarial training.

To train a classifier model in the source domain, we minimize a cross-entropy loss given

by
Las = E [—y* log( C(F(x*)))] (7.27)

The resulting classifier would perform poorly on target domain due to the domain shift.
The feature space drift is minimized using a domain adversarial loss that measures how dif-
ferent the source and target feature representations are. To implement the domain adversarial
loss, we utilize an additional network called a discriminator (D) as shown in Fig. 7.7 The dis-
criminator network takes as input the feature representations obtained from the F network
and predicts if the features come from the source or the target domain. If there is sufficient
mismatch between source and target features, the discriminator will obtain low loss value.
The feature network is then trained adversarially to maximize the discriminator’s loss. The
training will converge when the discriminator fails at its task i.e., when both source and target
feature distributions are indistinguishable.

To accomplish the above objective, the discriminator network maximizes the following
loss function:

Lagise =1log[ D(F(x*))] +log[1 — D(F(x"))] (7.28)

During training, the models are optimized using a combination of classification loss and
domain adversarial loss:

min max [L¢s + A Lgise] (7.29)
F.C D
The term A controls the weight given to the domain adversarial term in the objective. It is a

hyper-parameter that needs to be tuned while training the algorithm. The resulting algorithm
is called Domain Adversarial Training (Ganin et al., 2016).
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TABLE 7.4 Domain adaptation performance (in %) on Office-31 dataset.
A: Amazon, D: DSLR, W: Webcam.

Method A->W D—->Ww W—D
Source only 64.2 96.1 97.8
DDC (Tzeng et al., 2014) 61.8 95.0 98.5
DAN (Long et al., 2015) 68.5 96.0 99.0
Domain Adversarial (Ganin et al., 2016)  73.0 96.4 99.2

The networks F, C and D are typically implemented as neural networks. In particular,
the F network is a deep convolutional network (such as Resnet), and C and D networks are
multilayer perceptrons. In Ganin et al. (2016), the adversarial loss is implemented using a
gradient reversal layer in which the gradients coming from the discriminator network with
Lgisc loss is modulated with a —A factor before updating the feature network. Note that the
feature network is also updated using the classification loss. All networks are optimized using
stochastic gradient descent.

The performance of domain adversarial adaptation in comparison with other deep adap-
tation methods are shown in Table 7.4 for the Office-31 dataset, which has three domains —
Amazon (A), DSLR (D) and Webcam (W). The task is to perform classification of 31 object
categories. In Table 7.4, we observe that domain adversarial adaptation achieves signifi-
cant gains in performance compared to source only baseline, i.e., baseline models which
are trained only on source domain without any adaptation. Additionally, the model also
performs better than Deep Domain Confusion (Tzeng et al., 2014) and Deep Adaptation Net-
works (Long et al., 2015), two other discriminative adaptation techniques.

Other distance measures: While domain adversarial training is a popular choice for dis-
criminative adaptation, other distance measures can also be used for measuring distributional
mismatch between the source and the target distributions. Two such distance measures are
Maximum Mean Discrepancy (MMD) and Wasserstein distance. In MMD, distributional dis-
tance is computed as distances between mean embeddings represented using a kernel from a
Reproducing Kernel Hilbert Space (RKHS). Adaptation is then performed by minimizing the
MMD between source and target feature distributions (Long et al., 2015; 2016).

In Wasserstein-based adaptation, Wasserstein distance between source and target feature
distributions are used as a choice of distance measure. Dual form of Wasserstein distance is
computed using a discriminator function. Adaptation is performed by minimizing the dual
of Wasserstein distance between source and target feature maps (Shen et al., 2018). These
approaches perform on-par with adversarial adaptation.

Pseudo-labeling approaches: Different from adversarial approaches, in pseudo-labeling
/ self-training (Saito et al., 2017a; Zou et al., 2018; 2019), pseudo-labels are generated on the
unlabeled target samples using the current estimate of the model. Since pseudo-labels are
typically noisy, most confident pseudo-labels are picked using some measures of confidence
scores. One such measure is consistency across an ensemble of classifier models (Saito et al.,
2017a). The mined pseudo-labels are then used to retrain the model to improve the predictive
power on the target domain. This process is repeated iteratively until convergence. These
techniques can also be used in combination with adversarial adaptation.
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Regularization-based approaches: In regularization-based approaches, networks are
trained with an additional regularization term along with the cross-entropy loss for the source
domain. One common regularization function is entropy minimization (Vu et al., 2019) in
which entropy of the target logits are minimized. This enforces target samples to produce
high confidence predictions. Other forms of regularization include adversarial dropout reg-
ularization (Saito et al., 2017b) and maximum classifier discrepancy (Saito et al., 2018) in
which feature network is trained to minimize the discrepancy in logits arising from different
classifier models that are trained in combination.

Extension to multisource daptation: In multisource adaptation, the objective is to adapt
from multiple source distributions to the target distribution. Multisource adaptation is a very
useful setting in practice as real-world datasets typically contain a mixture of multiple la-
tent domains. The domain adversarial training objective can be extended to the multisource
setting using a k-way domain classifier as done in Xu et al. (2018). In Yang et al. (2020), a
curriculum-based weighting mechanism is used for selecting the best source domain sam-
ples to adapt for the given target domain. In cases where domain labels are available, latent
domain discovery can be used for mining the unknown domain labels for multiway adver-
sarial adaptation (Mancini et al., 2018).

7.4.2 Generative approaches for domain adaptation

In generative approaches, the objective is to use generative models to estimate source and
target distributions. The learnt generative models are then used in the adaptation process to
learn domain-invariant representations. Deep neural networks can be a popular choice for
learning the generative models due to their high expressive power. Three popular choices
of deep generative models are Generative Adversarial Networks (GANSs) (Goodfellow et al.,
2014), Variational Autoencoders (VAEs) (Kingma and Welling, 2013) and normalizing flows
(Papamakarios et al., 2019). GANs have been extensively used for domain adaptation as they
have been very successful in generating high fidelity samples.

Generative adversarial networks

Let {x;};=1.n be samples corresponding to the input distribution. The objective of GANs
(Goodfellow et al., 2014) is to train a model that enables generating samples that resemble
the input distribution. To do this, GANs train a model G that maps samples from latent space
to the space of input images. The latent space is typically modeled using a known tractable
distribution such as multivariate isotropic Gaussian. Once the model G is trained, we can
synthesize samples by sampling from the latent distribution and passing it through the gen-
erative model G.

To train the generator G, we utilize a second model called the discriminator (D) or the critic
network. The objective of the discriminator is to discriminate if the samples come from real
or generated distribution. This is posed as a binary classification problem, with real samples
treated as one class while the generated samples are treated as the second class. The generator
model G is then trained to make the discriminator fail at this task. Both models G and D are
implemented using deep neural networks as shown in Fig. 7.8. The objective of GANs can



264 7. Unsupervised domain adaptation using shallow and deep representations

Discriminator| =ss) Real / fake

™
Generator q ﬂ

REeacIor D, 1) Generated samples

FIGURE 7.8 GAN framework.

then be written as

rnGin max [Ex ~ paae 108 D(X) + E; ~ p, log (1 - D(G(z)))] (7.30)
The term inside the parathesis is the negative of the binary classification loss for classifying
samples as being drawn from the real distribution p44;, or the generated distribution G(p;).
While the discriminator D maximizes the objective, the generator minimizes it leading to a 2-
player minimax game. The overall objective is to find the saddle point of this 2-player game.
At convergence, the generator network synthesizes realistic samples and discriminator are
maximally confused between the real and the generated distribution.

Training GANSs are extremely challenging due to the min-max nature of the training ob-
jective. Several stabilization tricks are used in practice to make the GANs converge to good
solutions (Liu et al., 2020). Some of these tricks include use of Wasserstein (Arjovsky et al.,
2017) or hinge-loss based objective (Miyato et al., 2018), using spectral normalization in net-
work architecture (Miyato et al., 2018), regularization techniques such as weight decay (Liu
et al., 2020), gradient penalty (Gulrajani et al., 2017) and feature matching losses (Liu et al.,
2020).

Conditional image synthesis: In the previous section, we focused on unconditional image
synthesis where the objective was simply to generate images that resemble the input distribu-
tion. In conditional image synthesis, we are interested in generating samples conditioned on
some variables of interest. One example is class-conditional synthesis where we are required
to generate samples belonging to one specific class. When the conditioning variable is itself
an image, the task is called image-to-image translation. Here, we are interested in transform-
ing an image belonging to one domain to a different one. In conditional image synthesis, the
conditioning variable is used as input in addition to the latent vector.

In domain adaptation, image-to-image translation models are a popular choice of gener-
ative models. Since, we are interested in unsupervised domain adaptation, we use unpaired
image-to-image translation models in which source and target images do not have any corre-
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FIGURE 7.9 (a) CycleGAN framework, (b) Adversarial and cycle consistency loss for the forward model, (c) Ad-
versarial and cycle-consistency losses for the reverse model.

spondences. The idea is to translate source domain images to look like target, and then train
a classifier on the translated source domain samples using source labels as ground truth. The
trained classifier can then be used for making test-time predictions on the target domain.

CycleGAN: CycleGAN is a popular model for unpaired image-to-image translation. Let X
and Y denote two domains between which we need to train the image translation models. In
CycleGAN, we use two models — a forward model G which translates images from a domain
X to domain Y, and a reverse model F which translates images from domain Y to domain X. A
discriminator network Dy is used to obtain adversarial loss to ensure that samples produced
by F are indistinguishable from real distribution X. Similarly, a second discriminator Dy en-
courages samples produced by G to be indistinguishable from the domain Y. Fig. 7.9 shows
an overview of CycleGAN framework.

While the discriminator losses encourage realism in generated samples, there is no term
in the objective to enforce content preservation. That is, there is no way to prevent a sample
from one domain (e.g. Cat) to map to a different semantic class in the other domain (e.g.
Dog). To prevent this, a cycle-consistent term is used in the objective. The idea is to ensure
that applying both forward and reverse maps to the same sample produces back the input,
ie, F(G(x)) ~xand G(F(y)) ~ y.Llloss is typically used for cycle consistency.

Leye(G, F) = Exvpiuo [l F(G®) =x 1l] + Ex~pgaran [ G(F»)) =y II] (7.31)

The CycleGAN model is trained using a combination of adversarial losses and cycle-
consistency losses.

L = Lagvi + Laav2 + A Lcyc (732)

In Fig. 7.10, we depict the results of training CycleGAN on the following datasets: paintings,
Horse to zebra, winter to summer and aerial photos to google maps. We observe that images
are translated from one domain to another while preserving the content. The reconstruction
F(G(x)) well approximates the input sample x, which shows the importance of cycle consis-
tency term in preserving the content. In addition, the generated samples are realistic, which
shows the effectiveness of the adversarial losses.

CycleGAN based domain adaptation: In the previous section, we discussed the Cycle-
GAN model and how it can be used for unpaired image-to-image translation. Now, we show
how these models can be used for unsupervised domain adaptation (Hoffman et al., 2018).
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FIGURE 7.10 CycleGAN results. Input images are shown in the left panel, while the translation of the forward
model and back-translation is shown in the middle and right panel respectively.

First, a CycleGAN model is trained to translate between the source and the target domains.
Then, a task model (classifier / segmentation model) is trained on the translated source im-
ages using source labels as ground truth. For the task model to train well, an additional
discriminator loss is used on the feature maps of translated source images and true target
images. This ensures that the feature distribution of translated source images and target im-
ages is aligned. The training framework of this approach, also known as CyCADA (Hoffman
et al., 2018), is shown in Fig. 7.11.

Distributional distance minimization with generative models: An alternative approach
to generative domain adaptation is by utilizing GANs for guiding distributional distance
minimization. Recall from Section 7.4.1 that domain adaptation is posed as a distributional
distance minimization problem between source and target feature distributions. Instead of
directly performing distance minimization in the feature space, the idea is to project the fea-
ture back into pixel-space using GANs and perform distributional distance minimization in
this projected image space (Fig. 7.12). The authors of Sankaranarayanan et al. (2018b) called
this approach “Generate to Adapt”.

Projecting features back into image space has two main benefits: First, the capacity of the
discriminator network is effectively increased due to the projection step. Second, the projec-
tion step helps preserve semantic content in the generated features. That is, it prevents target
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TABLE 7.5 Domain adaptation performance using generative approaches on Digits dataset.

Classification accuracy in % is reported. MN — MNIST, US — USPS, SV — SVHN.

Method MS—-US US— MN SV —> MN
Source only 79.1 57.1 60.3
CoGAN (Liu and Tuzel, 2016) 61.8 95.0 98.5
PixelDA (Bousmalis et al., 2017) 73.0 96.4 99.2
CyCADA (Hoffman et al., 2018) 95.6 96.5 90.4
Generate to Adapt (Sankaranarayanan et al., 2018b) ~ 92.8 95.3 924




TABLE 7.6 Semantic segmentation performance on GTA-5 - > Cityscapes adaptation. IoU scores for each category and mean IoU scores (mloU)
are reported.

Method Road Side- Bldg. Wall Fence Pole T. T. Veg  Ter- Sky Per- Rider Car Truck Bus  Train M. Bike mloU
walk Light Sign rain son Bike

Source 735 213 723 189 143 125 151 53 772 174 643 437 128 754 248 738 0.0 49 18 29.6
only

Cy- 791 331 779 234 173 321 333 318 815 267 690 628 147 745 209 256 69 188 204 395
CADA

Generate 880 305 786 252 235 167 235 116 787 272 719 513 195 804 198 183 09 208 184 371
to Adapt

Target 9%.5 746 8.1 371 332 302 397 516 873 526 904 601 317 884 549 523 347 336 591 576
only
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TABLE 7.7 A comparison of manifold, dictionary, and deep learning approaches for un-
supervised domain adaptation.

Source Target Manifolds Dictionaries Deep Deep
(2012) (2015) features features and
(2017) GAN s (2018)
Webcam  Dslr 71.2 99.5 99.8
Dslr Webcam  68.8 72 98.2 97.9
Amazon Webcam 55.6 72 62.4 86.5
Amazon  Dslr 64 87.7
Dslr Amazon 489 52 72.8
Webcam  Amazon 494 48.4 71.4

features from one class to be mapped to a different class as the reconstruction network pro-
vides supervisory signal in preserving the semantic content.

The framework of Generate to Adapt is shown in Fig. 7.12. Features of source and target
images are extracted using a feature network F. The obtained features are then passed through
two streams: The first stream is a classification branch that is trained using cross-entropy loss
on the source domain. The second steam is the distance minimization branch. In this stream,
the source and the target features are first inverted back into image space using a generator
network G. The generated samples are then passed through a discriminator network that
discriminates if the samples come from real (source) or fake (target) domain. In addition,
it also performs class label prediction on the source reconstructions using source labels as
ground truth. This helps obtain class consistency in the reconstructed samples.

The feature network F is then trained adversarially to make the target reconstructions look
like source. This happens only when the source and target feature distributions overlap. Ad-
ditionally, the signal obtained from stream 1 helps features obtain class consistent predictions.

Results: In Table 7.5, we show the results of generative approaches on cross-domain classi-
fication tasks using digits dataset. Three datasets are used for this purpose: MNIST, USPS and
SVHN. In each of the adaptation setting, we observe that source only baseline achieves low
performance. Both CyCADA and Generate to Adapt achieve significant performance gains
compared to the baseline model. In addition, they also outperform CoGAN and PixelDA, two
other GAN-based adaptation approaches.

In Table 7.6, we report the performance on cross-domain semantic segmentation task. The
source domain is GTA-5, which is a synthetic dataset of street scenes, while the target domain
is the real dataset — Cityscapes. We use VGG-based FCN architecture for the feature network
(Sankaranarayanan et al., 2018b). Intersection of Union (IoU) scores for each semantic class
along with the mean IoU (mloU) scores is reported. We observe that both CyCADA and
Generate to Adapt achieve significant IoU gains compared to the source only baseline model.
However, there is a huge gap compared to the target-only model, which is the oracle model
trained using true target labels.

Table 7.7 given below provides a comparison among manifold, dictionary, and GAN-based
approaches for unsupervised domain adaptation on the Office dataset. GAN-based methods
are providing the best performance.
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7.5 Summary

In this chapter, we discussed approaches based on differential geometry, sparse representa-
tion and deep neural networks for domain adaptation. Two broad classes of techniques were
presented: discriminative and generative approaches. In discriminative approaches, we train
a classifier model while employing additional losses to make the source and target feature
distributions similar. A distributional distance minimization objective is used for this task.
In generative approaches, we utilize a generative model to perform domain adaptation. One
approach is to train intermediate dictionaries and a cross-domain GAN for mapping samples
from source domain to target and training a classifier model on the transformed target im-
ages. The second approach takes a distributional distance minimization formulation and uses
GAN:Ss to guide the distributional distance minimization. All these approaches are validated
on cross-domain recognition and semantic segmentation tasks.
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