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Preface

It is now close to a decade since the ex-
plosive growth in the development and ap-
plication of deep neural networks (DNNs)
came about, and their subsequent progress
has been little short of remarkable. True, this
progress has been helped considerably by
the deployment of special hardware in the
form of powerful GPUs; and their progress
followed from the realization that CNNs
constituted a crucial architectural base, to
which features such as ReLUs, pooling, fully
connected layers, unpooling and deconvolu-
tion could also be included. In fact, all these
techniques helped to breathe life into DNNs
and to extend their use dramatically, so
the initial near-exponential growth in their
use has been maintained without break for
the whole subsequent period. Not only has
the power of the approach been impressive
but its application has widened considerably
from the initial emphasis on rapid object lo-
cation and image segmentation—and even
semantic segmentation—to aspects pertain-
ing to video rather than mere image analysis.

It would be idle to assert that the whole
of the development of computer vision since
2012 has been due solely to the advent
of DNNs. Other important techniques such
as reinforcement learning, transfer learning,
self-supervision, linguistic description of im-
ages, label propagation, and applications
such as novelty and anomaly detection, im-
age inpainting and tracking have all played
a part and contributed to the widening and
maturing of computer vision. Nevertheless,
many such techniques and application ar-
eas have been stimulated, challenged, and

enhanced by the extremely rapid take-up of
DNNs.

It is the purpose of this volume to explore
the way computer vision has advanced since
these dramatic changes were instigated. In-
deed, we can validly ask where we are now,
and how solid is the deep neural and ma-
chine learning base on which computer vi-
sion has recently embarked. Has this been a
coherent movement or a blind opportunistic
rush forward in which workers have ignored
important possibilities, and can we see fur-
ther into the future and be sure that we are
advancing in the right direction? Or is this
a case where each worker can take his or her
own viewpoint and for any given application
merely attend to what appears to be neces-
sary, and if so, is anything lost by employing
a limited approach of this sort?

In fact, there are other highly pertinent
questions to be answered, such as the thorny
one of the extent to which a deep network
can only be as powerful as the dataset it
is trained on; this question will presum-
ably apply to any alternative learning-based
approach, whether describable as a DNN
or not. Employing reinforcement learning
or self-supervision or other approaches will
surely not affect this likely limitation. And
note that human beings are hardly examples
of how extensive training can in any way
be avoided; their transfer learning capabili-
ties will be a vital aspect of how efficient the
learning process can be made.

It is the aim of this volume not only to
present advanced vision methodologies but
also to elucidate the principles involved: i.e.,
it aims to be pedagogic, concentrating as

xv
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much on helping the reader to understand
as on presenting the latest research. With this
in mind, Chapter 1 sets the scene for the re-
mainder of this volume. It starts by looking
closely at the legacy of earlier vision work,
covering in turn feature detection, object de-
tection, 3D vision and the advent of DNNs;
finally, tracking is taken as an important ap-
plication area which builds on the material
of the earlier sections and shows clearly how
deep networks can play a crucial role. This
chapter is necessarily quite long, as it has to
get from ground zero to a formidable attain-
ment level in relatively few pages; in addi-
tion, it has to set the scene for the important
developments and methodologies described
by eminent experts in the remaining chap-
ters.

As is made clear in Chapter 1, object de-
tection is one of the most challenging tasks in
computer vision. In particular, it has to over-
come problems such as scale-variance, occlu-
sion, variable lighting, complex backgrounds
and all the factors of variability associated
with the natural world. Chapter 2 describes
the various methods and approaches that
have been used in recent advances. These
include region-of-interest pooling, multitask
losses, region proposal networks, anchors,
cascaded detection and regression, multi-
scale feature representations, data augmen-
tation techniques, loss functions, and more.

Chapter 3 emphasizes that the recent suc-
cesses in computer vision have largely cen-
tered around the huge corpus of intricately
labeled data needed for training models. It
examines the methods that can be used to
learn recognition models from such data,
while requiring limited manual supervision.
Apart from reducing the amount of man-
ually labeled data required to learn recog-
nition models, it is necessary to reduce the
level of supervision from strong to weak—
at the same time permitting relevant queries
from an oracle. An overview is given of theo-

retical frameworks and experimental results
that help to achieve this.

Chapter 4 tackles the computational prob-
lems of deep neural networks, which make
it difficult to deploy them on resource-
constrained hardware devices. It dis-
cusses model compression techniques and
hardware-aware neural architecture search
techniques with the aim of making deep
learning more efficient and making neural
networks smaller and faster. To achieve all
this, the chapter shows how to use param-
eter pruning to remove redundant weights,
low-rank factorization to reduce complex-
ity, weight quantization to reduce weight
precision and model size, and knowledge
distillation to transfer dark knowledge from
large models to smaller ones.

Chapter 5 discusses how deep generative
models attempt to recover the lower dimen-
sional structure of the target visual mod-
els. It shows how to leverage deep gener-
ative models to achieve more controllable
visual pattern synthesis via conditional im-
age generation. The key to achieving this
is “disentanglement” of the visual represen-
tation, where attempts are made to sepa-
rate different controlling factors in the hid-
den embedding space. Three case studies,
in style transfer, vision-language generation,
and face synthesis, are presented to illus-
trate how to achieve this in unsupervised or
weakly supervised settings.

Chapter 6 concentrates on a topical real-
world problem—that of face recognition.
It discusses state-of-the-art deep learning-
based methods that can be used even with
partial facial images. It shows (a) how the
necessary deep learning architectures are put
together; (b) how such models can be trained
and tested; (c) how fine tuning of pretrained
networks can be utilized for identifying ef-
ficient recognition cues with full and partial
facial data; (d) the degree of success achieved
by the recent developments in deep learning;
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(e) the current limitations of deep learning-
based techniques used in face recognition.
The chapter also presents some of the re-
maining challenges in this area.

Chapter 7 discusses the crucial ques-
tion of how to transfer learning from
one data domain to another. This involves
approaches based on differential geome-
try, sparse representation and deep neu-
ral networks. These fall into the two broad
classes—discriminative and generative ap-
proaches. The former involve training a
classifier model while employing additional
losses to make the source and target fea-
ture distributions similar. The latter utilize a
generative model to perform domain adap-
tation: typically, a cross-domain generative
adversarial network is trained for mapping
samples from source domain to target, and a
classifier model is trained on the transformed
target images. Such approaches are validated
on cross-domain recognition and semantic
segmentation tasks.

Chapter 8 returns to the domain adapta-
tion task, in the context of semantic segmen-
tation, where deep networks are plagued by
the need for huge amounts of labeled data
for training. The chapter starts by discussing
the different levels at which the adapta-
tion can be performed and the strategies for
achieving them. It then moves on to dis-
cuss the task of continual learning in se-
mantic segmentation. Although the latter is
a relatively new research field, interest in it
is rapidly growing, and many different sce-
narios have been introduced. These are de-
scribed in detail along with the approaches
needed to tackle them.

Following on from Chapter 1, Chapter 9
reemphasizes the importance of visual track-
ing as one of the prime, classical problems in
computer vision. The purpose of this chap-
ter is to give an overview of the development
of the field, starting from the Lucas-Kanade
and matched filter approaches and conclud-

ing with deep learning-based approaches as
well as the transition to video segmentation.
The overview is limited to holistic models
for generic tracking in the image plane, and
a particular focus is given to discriminative
models, the MOSSE (minimum output sum
of squared errors) tracker, and DCFs (dis-
criminative correlation filters).

Chapter 10 takes the concept of visual ob-
ject tracking one stage further and concen-
trates on long-term tracking. To be success-
ful at this task, object tracking must address
significant challenges that relate to model
decay—that is, the worsening of the model
due to added bias, and target disappearance
and reappearance. The success of deep learn-
ing has strongly influenced visual object
tracking, as offline learning of Siamese track-
ers helps to eliminate model decay. How-
ever, to avoid the possibility of losing track
in cases where the appearance of the target
changes significantly, Siamese trackers can
benefit from built-in invariances and equiv-
ariances, allowing for appearance variations
without exacerbating model decay.

If computer vision is to be successful in
the dynamic world of videos and action, it
seems vital that human cognitive concepts
will be required, a message that is amply
confirmed by the following two chapters.
Chapter 11 outlines an action-centric frame-
work which spans multiple time scales and
levels of abstraction. The lower level de-
tails object characteristics which afford them-
selves to different actions; the mid-level
models individual actions, and higher levels
model activities. By emphasizing the use of
grasp characteristics, geometry, ontologies,
and physics-based constraints, over-training
on appearance characteristics is avoided. To
integrate signal-based perception with sym-
bolic knowledge, vectorized knowledge is
aligned with visual features. The chapter also
includes a discussion on action and activity
understanding.
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Chapter 12 considers the temporal event
segmentation problem. Cognitive science
research indicates how to design highly
effective computer vision algorithms for
spatio-temporal segmentation of events in
videos without the need for any annotated
data. First, an event segmentation theory
model permits event boundaries to be com-
puted: then, temporal segmentation using
a perceptual prediction framework, tempo-
ral segmentation along with event work-
ing models based on attention maps, and
spatio-temporal localization of events follow.
This approach gives state-of-the-art perfor-
mance in unsupervised temporal segmen-
tation and spatial-temporal action localiza-
tion with competitive performance on fully
supervised baselines that require extensive
amounts of annotation.

Anomaly detection techniques constitute
a fundamental resource in many applica-
tions such as medical image analysis, fraud
detection or video surveillance. These tech-
niques also represent an essential step for
artificial self-aware systems that can con-
tinually learn from new situations. Chapter
13 presents a semi-supervised method for
the detection of anomalies for this type of
self-aware agent. It leverages the message-
passing capability of generalized dynamic
Bayesian networks to provide anomalies at
different abstraction levels for diverse types
of time-series data. Consequently, detected
anomalies could be employed to enable the
system to evolve by integrating the new ac-
quired knowledge. A case study is proposed
for the description of the anomaly detection
method, which will use multisensory data
from a semi-autonomous vehicle performing
different tasks in a closed environment.

Model- and learning-based methods have
been the two dominant strategies for solv-
ing various image restoration problems in
low-level vision. Typically, those two kinds
of method have their respective merits

and drawbacks; e.g., model-based methods
are flexible for handling different image
restoration problems but are usually time-
consuming with sophisticated priors for the
purpose of good performance; meanwhile,
learning-based methods show superior ef-
fectiveness and efficiency over traditional
model-based methods, largely due to the
end-to-end training, but generally lack the
flexibility to handle different image restora-
tion tasks. Chapter 14 introduces deep plug-
and-play methods and deep unfolding meth-
ods, which have shown great promise by
leveraging both learning-based and model-
based methods: the main idea of deep plug-
and-play methods is that a learning-based
denoiser can implicitly serve as the im-
age prior for model-based image restoration
methods, while the main idea of deep un-
folding methods is that, by unfolding the
model-based methods via variable splitting
algorithms, an end-to-end trainable, itera-
tive network can be obtained by replacing
the corresponding subproblems with neural
modules. Hence, deep plug-and-play meth-
ods and deep unfolding methods can in-
herit the flexibility of model-based meth-
ods, while maintaining the advantages of
learning-based methods.

Visual adversarial examples are images
and videos purposefully perturbed to mis-
lead machine learning models. Chapter 15
presents an overview of methods that craft
adversarial perturbations to generate visual
adversarial examples for image classifica-
tion, object detection, motion estimation and
video recognition tasks. The key properties
of an adversarial attack and the types of per-
turbation that an attack generates are first de-
fined; then the main design choices for meth-
ods that craft adversarial attacks for images
and videos are analyzed and the knowledge
they use of the target model is examined. Fi-
nally, defense mechanisms that increase the
robustness of machine learning models to
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adversarial attacks or to detect manipulated
input data are reviewed.

Together, these chapters provide the inter-
ested reader—whether student, researcher,
or practitioner—with both breadth and
depth with respect to advanced computer
vision methodology and state-of-the-art ap-
proaches.

Finally, we would like to extend our
thanks to all the authors for the huge degree
of commitment and dedication they have de-
voted to producing their chapters, thereby
contributing in no small way to making this
volume a successful venture for advancing
the subject in what is after all a rapidly
changing era. Lastly, we are especially in-

debted to Tim Pitts of Elsevier Science for
his constant advice and encouragement, not
only from the outset but also while we were
in the throes of putting together this volume.

Roy Davies
Royal Holloway, University of London,

London, United Kingdom

Matthew Turk
Toyota Technological Institute at Chicago,

Chicago, IL, United States
May 2021
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C H A P T E R

1
The dramatically changing face of

computer vision
E.R. Davies

Royal Holloway, University of London, Egham, Surrey, United Kingdom

CHAPTER POINTS

• Studies of legacy methods in computer
vision, including low-level image
processing operators, 2-D and 3-D object
detection, location and recognition,
tracking and segmentation.

• Examination of the development of deep
learning methods from artificial neural
networks, including the deep learning
explosion.

• Studies of the application of deep learning
methods to feature detection, object
detection, location and recognition, object
tracking, texture classification, and
semantic segmentation of images.

• The impact of deep learning methods on
preexisting computer vision methodology.

1.1 Introduction – computer vision and its origins

During the last three or four decades, computer vision has gradually emerged as a fully-
fledged subject with its own methodology and area of application. Indeed, it has so many
areas of application that it would be difficult to list them all. Amongst the most prominent
are object recognition, surveillance (including people counting and numberplate recognition),
robotic control (including automatic vehicle guidance), segmentation and interpretation of
medical images, automatic inspection and assembly in factory situations, fingerprint and
face recognition, interpretation of hand signals, and many more. To achieve all this, mea-
surements have to be made from a variety of image sources, including visible and infrared
channels, 3-D sensors, and a number of vital medical imaging devices such as CT and MRI
scanners. And the measurements have to include position, pose, distances between objects,

Advanced Methods and Deep Learning in Computer Vision
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2 1. The dramatically changing face of computer vision

movement, shape, texture, color, and many more aspects. With this plethora of activities and
of the methods used to achieve them, it will be difficult to encapsulate the overall situation
within the scope of a single chapter: hence the selection of material will necessarily be re-
stricted; nevertheless, we will aim to provide a sound base and a didactic approach to the
subject matter.

In the 2020s one can hardly introduce computer vision without acknowledging the enor-
mous advances made during the 2010s, and specifically the ‘deep learning explosion’, which
took place around 2012. This dramatically changed the shape of the subject and resulted in
advances and applications that are not only impressive but are also in many cases well be-
yond what people dreamed about even in 2010. As a result, this volume is aimed particularly
at these modern advanced developments: it is the role of this chapter to outline the legacy
methodology, to explore the new deep learning methods, and to show how the latter have
impacted and improved upon the earlier (legacy) approaches.

At this point it will be useful to consider the origins of computer vision, which can be
considered to have started life during the 1960s and 1970s, largely as an offshoot of image
processing. At that time it became practical to capture whole images and to store and process
them conveniently on digital computers. Initially, images tended to be captured in binary or
grey-scale form, though later it became possible to capture them in color. Early on, workers
dreamed of emulating the human eye by recognizing objects and interpreting scenes, but
with the less powerful computers then available, such dreams were restricted. In practice,
image processing was used to ‘tidy up’ images and to locate object features, while image
recognition was carried out using statistical pattern recognition techniques such as the nearest
neighbor algorithm. Another of the motivations underlying the development of computer
vision was AI and yet another was biological vision. Space will prevent further discussion of
these aspects here, except to remark that they sowed the seeds for artificial neural networks
and deep learning (for details, see Part F below).

Tidying up images is probably better described as preprocessing: this can include a num-
ber of functions, noise elimination being amongst the most important. It was soon discovered
that the use of smoothing algorithms, in which the mean value of the intensities in a window
around each input pixel is calculated and used to form a separate smoothed image, not only
results in reduced levels of noise but also affects the signals themselves (this process can
also be imagined as reducing the input bandwidth to exclude much of the noise, with the
additional effect of eliminating high spatial frequency components of the input signal). How-
ever, by applying median rather than mean filtering, this problem was largely overcome, as it
worked by eliminating the outliers at each end of the local intensity distribution—the median
being the value least influenced by noise.

Typical mean filtering kernels include the following, the second approximating more
closely to the ideal Gaussian form:

1

9

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦ 1

16

⎡
⎣ 1 2 1

2 4 2
1 2 1

⎤
⎦ (1.1)
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Both of these are linear convolution kernels, which by definition are spatially invariant
over the image space. A general 3 × 3 convolution mask is given by⎡

⎣ c4 c3 c2
c5 c0 c1
c6 c7 c8

⎤
⎦ (1.2)

where the local pixels are assigned labels 0–8. Next, we take the intensity values in a local
3 × 3 image neighborhood as

P 4 P 3 P 2
P 5 P 0 P 1
P 6 P 7 P 8

(1.3)

If we now use a notation based approximately on C ++, we can write the complete con-
volution procedure in the form:

for all pixels in image do {
Q0 = P 0 ∗ c0 + P 1 ∗ c1 + P 2 ∗ c2 + P 3 ∗ c3 + P 4 ∗ c4

+ P 5 ∗ c5 + P 6 ∗ c6 + P 7 ∗ c7 + P 8 ∗ c8;
} (1.4)

So far we have concentrated on convolution masks, which are linear combinations of input
intensities: these contrast with nonlinear procedures such as thresholding, which cannot be
expressed as convolutions. In fact, thresholding is a very widely used technique, and can be
written in the form:

for all pixels in image do {
if (P 0 < thresh)A0 = 1; else A0 = 0;

} (1.5)

This procedure converts a grey scale image in P-space into a binary image in A-space. Here it
is used to identify dark objects by expressing them as 1s on a background of 0s.

We end this section by presenting a complete procedure for median filtering within a 3 × 3
neighborhood:

for (i = 0; i <= 255; i + +) hist[i] = 0;
for all pixels in image do {

for (m = 0;m <= 8;m + +) hist[P [m]] + +;
i = 0; sum = 0;
while (sum < 5){

sum = sum + hist[i];
i = i + l;

}
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Q0 = i − 1;
for (m = 0;m <= 8;m + +) hist[P [m]] = 0;

} (1.6)

The notation P[0] is intended to denote P0, and so on for P[1] to P[8]. Note that the me-
dian operation is computation intensive, so time is saved by only reinitializing the particular
histogram elements that have actually been used.

An important point about the procedures covered by Eqs. (1.4)–(1.6) is that they take their
input from one image space and output it to another image space—a process often described
as parallel processing—thereby eliminating problems relating to the order in which the indi-
vidual pixel computations are carried out.

Finally, the image smoothing algorithms given by Eqs. (1.1)–(1.4) all use 3 × 3 convolution
kernels, though much larger kernels can obviously be used: indeed, they can alternatively
be implemented by first converting to the spatial frequency domain and then systematically
eliminating high spatial frequencies, albeit with an additional computational burden. On the
other hand, nonlinear operations such as median filtering cannot be tackled in this way.

For convenience, the remainder of this chapter has been split into a number of parts, as
follows:

Part A – Understanding low-level image processing perators
Part B – 2-D object location and recognition
Part C – 3-D object location and the importance of invariance
Part D – Tracking moving objects
Part E – Texture analysis
Part F – From artificial neural networks to deep learning methods
Part G – Summary.

Overall, the purpose of this chapter is to summarize vital parts of the early—or ‘legacy’—work
on computer vision, and to remind readers of their significance, so that they can more confi-
dently get to grips with recent advanced developments in the subject. However, the need to
make this sort of selection means that many other important topics have had to be excluded.

1.2 Part A – Understanding low-level image processing operators

1.2.1 The basics of edge detection

No imaging operation is more important or more widely used than edge detection. There
are important reasons for this, but ultimately, describing object shapes by their boundaries
and internal contours reduces the amount of data required to hold an N × N image from
O(N2) to O(N ), thereby making subsequent storage and processing more efficient. Further-
more, there is much evidence that humans can recognize objects highly effectively, or even
with increased efficiency, from their boundaries: the quick responses humans can make from
2-D sketches and cartoons support this idea.

In the 1960s and 1970s, a considerable number of edge detection operators were developed,
many of them intuitively, which meant that their optimality was in question. A number of the
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operators applied 8 or 12 template masks to ensure that edges of different orientations could
be detected. Oddly, it was some time before it was fully realized that as edges are vectors, just
two masks should be sufficient to detect them. However, this did not immediately eliminate
the problem of deciding what mask coefficients should be used in edge detectors—even in
the case of 3 × 3 neighborhoods—and we next proceed to explore this further.

In what follows we initially assume that 8 masks are to be used, with angles differing by
45°. However, 4 of the masks differ from the others only in sign, which makes it unnecessary
to apply them separately. At this point, symmetry arguments lead to the following respective
masks for 0° and 45°: ⎡

⎣ −A 0 A

−B 0 B

−A 0 A

⎤
⎦

⎡
⎣ 0 C D

−C 0 C

−D −C 0

⎤
⎦ (1.7)

It is clearly of great importance to design masks so that they give consistent responses in
different directions. To find how this affects the mask coefficients, we make use of the fact
that intensity gradients must follow the rules of vector addition. If the pixel intensity values
within a 3 × 3 neighborhood are

a b c

d e f

g h i

(1.8)

the above masks will lead to the following estimates of gradient in the 0°, 90° and 45° direc-
tions:

g0 = A(c + i − a − g) + B(f − d)

g90 = A(a + c − g − i) + B(b − h)

g45 = C(b + f − d − h) + D(c − g)

(1.9)

If vector addition is to be valid, we also have:

g45 = (g0 + g90)/
√

2 (1.10)

Equating coefficients of a, b, . . . , i leads to the self-consistent pair of conditions:

C = B/
√

2
D = A

√
2

(1.11)

Next, notice the further requirement—that the 0° and 45° masks should give equal re-
sponses at 22.5°. In fact, a rather tedious algebraic manipulation (Davies, 1986) shows that

B/A =
(

13
√

2 − 4
)

/7 = 2.055 (1.12)

If we approximate this value as 2 we immediately arrive at the Sobel operator masks

Sx =
⎡
⎣ −1 0 1

−2 0 2
−1 0 1

⎤
⎦ Sy =

⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦ (1.13)
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application of which yields maps of the gx , gy components of intensity gradient. As edges
are vectors, we can compute the local edge magnitude g and direction θ using the standard
vector-based formulae:

g =
[
g2

x + g2
y

]1/2

θ = arctan
(
gy/gx

) (1.14)

Notice that whole-image calculations of g and θ will not be convolutions as they involve
nonlinear operations.

In summary, in Sections 1.1 and 1.2.1 we have described various categories of image pro-
cessing operator, including linear, nonlinear and convolution operators. Examples of (linear)
convolutions are mean and Gaussian smoothing and edge gradient component estimation.
Examples of nonlinear operations are thresholding, edge gradient and edge orientation com-
putations. Above all, it should be noted that the Sobel mask coefficients have been arrived at
in a principled (non ad hoc) way. In fact, they were designed to optimize accuracy of edge ori-
entation. Note also that, as we shall see later, orientation accuracy is of paramount importance
when edge information is passed to object location schemes such as the Hough transform.

1.2.2 The Canny operator

The aim of the Canny edge detector was to be far more accurate than basic edge detectors
such as the Sobel, and it caused quite a stir when it was published in 1986 (Canny, 1986). To
achieve such increases in accuracy, a number of processes are applied in turn:

1. The image is smoothed using a 2-D Gaussian to ensure that the intensity field is a mathe-
matically well-behaved function.

2. The image is differentiated using two 1-D derivative functions, such as those of the Sobel,
and the gradient magnitude field is computed.

3. Nonmaximum suppression is employed along the local edge normal direction to thin the
edges: this takes place in two stages (1) finding the two noncentral red points shown in
Fig. 1.1, which involves gradient magnitude interpolation between two pairs of pixels;
(2) performing quadratic interpolation between the intensity gradients at the three red
points to determine the position of the peak edge signal to subpixel precision.

4. ‘Hysteresis’ thresholding is performed: this involves applying two thresholds t1 and t2

(t2 > t1) to the intensity gradient field; the result is ‘nonedge’ if g < t1, ‘edge’ if g > t2, and
otherwise is only ‘edge’ if next to ‘edge’. (Note that the ‘edge’ property can be propagated
from pixel to pixel under the above rules.)

As noted in item 3, quadratic interpolation can be used to locate the position of the gra-
dient magnitude peak. A few lines of algebra shows that, for the g-values g1, g2, g3 of
the three red points, the displacement of the peak from the central red point is equal to
(g3 − g1) sec θ/ [2(2g2 − g1 − g3)]: here, sec θ is the factor by which θ increases the distance
between the outermost red points.
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FIGURE 1.1 Using quadratic interpolation to determine the exact position of the gradient magnitude peak.

1.2.3 Line segment detection

In Section 1.2.1 we saw the considerable advantage of edge detectors in requiring only two
masks to compute the magnitude and orientation of an edge feature. It is worth considering
whether the same vector approach might also be used in other cases. In fact, it is also pos-
sible to use a modified vector approach for detecting line segment features. This is seen by
considering the following pair of masks:

L1 = A

⎡
⎣ 0 −1 0

1 0 1
0 −1 0

⎤
⎦ L2 = B

⎡
⎣ −1 0 1

0 0 0
1 0 −1

⎤
⎦ (1.15)

Clearly, two other masks of this form can be constructed, though they differ from the above
two only in sign and can be ignored. Thus, this set of masks contains just the number required
for a vectorial computation. In fact, if we are looking for dark bars on a light background, the
1 s can usefully denote the bars and the −1 s can represent the light background. (0 s can
be taken as ‘don’t care’ coefficients, as they will be ignored in any convolution.) Hence L1
represents a 0° bar and L2 a 45° bar. (The term ‘bar’ is used here to denote a line segment
of significant width.) Applying the same method as in Section 1.2.1 and defining the pixel
intensity values as in Eq. (1.8), we find

l0 = A(d + f − b − h)

l45 = B(c + g − a − i)
(1.16)

However, in this instance there is insufficient information to determine the ratio of A to B,
so this must depend on the practicalities of the situation. In fact, given that this computation
is being carried out in a 3 × 3 neighborhood, it will not be surprising if the optimum bar width
for detection using the above masks is ∼1.0; experimental tests (Davies, 1997) showed that
matching the masks to the bar width w (or vice versa) gave optimum orientation accuracy for
w ≈ 1.4, which occurred when B/A ≈ 0.86. This resulted in a maximum orientation error
∼0.4°, which compares favorably with ∼0.8° for the Sobel operator.
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We now proceed to use formulae similar to those in Section 1.2.1 for pseudo-vectorial com-
putation of the line strength coefficient l and line segment orientation θ :

l =
[
l2
0 + l2

45

]1/2

θ = 1

2
arctan (l45/l0)

(1.17)

Here we have been forced to include a factor of one half in front of the arctan: this is because
a line segment exhibits 180° rotation symmetry compared with the usual 360° for ordinary
angles.

Note that this is again a case in which optimization is aimed at achieving high orientation
accuracy rather than, for example, sensitivity of detection.

It is worth remarking here on two applications of line segment detection. One is the in-
spection of bulk wheat grains to locate small dark insects which approximate to dark bar-like
features: 7 × 7 masks devised on the above model have been used to achieve this (Davies
et al., 2003). Another is the location of artefacts such as telegraph wires in the sky, or wires
supporting film actors which can then be removed systematically.

1.2.4 Optimizing detection sensitivity

Optimization of detection sensitivity is a task that is well known in radar applications and
has been very effectively applied for this purpose since World War II. Essentially, efficient
detection of aircraft by radar systems involves optimization of the signal-to-noise-ratio (SNR).
Of course, in radar, detection is a 1-D problem whereas in imaging we need to optimally
detect 2-D objects against a background of noise. However, image noise is not necessarily
Gaussian white noise, as can normally be assumed in radar, though it is convenient to start
with that assumption.

In radar the signals can be regarded as positive peaks (or ‘bleeps’) against a background of
noise which is normally close to zero. Under these conditions there is a well-known theorem
that says that the optimum detection of a bleep of given shape is obtained using a ‘matched
filter’ which has the same shape as the idealized input signal. The same applies in imaging,
and in that case the spatial matched filter has to have the same intensity profile as that of an
ideal form of the 2-D object to be detected.

We shall now outline the mathematical basis of this approach. First, we assume a set of
pixels at which signals are sampled, giving values Si . Next, we express the desired filter as an
n-element weighting template with coefficients wi . Finally, we assume that the noise levels at
each pixel are independent and are subject to local distributions with standard deviations Ni .

Clearly, the total signal received from the weighting template will be

S =
n∑

i=1

wiSi (1.18)
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whereas the total noise received from the weighting template will be characterized by its
variance:

N2 =
n∑

i=1

w2
i N

2
i (1.19)

Hence the (power) SNR is

ρ2 = S2/N2 =
(

n∑
i=1

wiSi

)2

/

n∑
i=1

w2
i N

2
i (1.20)

For optimum SNR, we compute the derivative

∂ρ2/∂wi =
(

1/N4
)[

N2 (2SSi) − S2
(

2wiN
2
i

)]
=

(
2S/N4

)[
N2Si − S

(
wiN

2
i

)]
(1.21)

and then set ∂ρ2/∂wi = 0. This immediately gives:

wi = Si

N2
i

× N2

S
(1.22)

which can more simply be expressed as:

wi ∝ Si

N2
i

(1.23)

though with no loss of generality, we can replace the proportionality sign by an equality.
Note that if Ni is independent of i (i.e., the noise level does not vary over the image),

wi = Si : this proves the theorem mentioned above—that the spatial matched filter needs to
have the same intensity profile as that of the 2-D object to be detected.

1.2.5 Dealing with variations in the background intensity

Apart from the obvious difference in dimensionality, there is a further important way in
which vision differs from radar: for the latter, in the absence of a signal, the system output
hovers around, and averages to, zero. However, in vision, the background level will typically
vary with the ambient illumination and will also vary over the input image. Basically, the
solution to this problem is to employ zero-sum (or zero-mean) masks. Thus, for a mask such
as that in Eq. (1.2), we merely subtract the mean value c̄ of all the mask components from
each component to ensure that the overall mask is zero-mean.

To confirm that using the zero-mean strategy works, imagine applying an unmodified
mask to the image neighborhood shown in Eq. (1.3): let us assume we obtain a value K . Now
add B to the intensity of each pixel in the neighborhood: this will add

∑
n Bci = B

∑
n ci = Bnc̄

to the value K ; but if we make c̄ = 0, we end up with the original mask output K .
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Overall, we should note that the zero-mean strategy is only an approximation, as there
will be places in an image where the background varies between high and low level, so that
zero-mean cancellation cannot occur exactly (i.e., B cannot be regarded as constant over the
region of the mask). Nevertheless, assuming that the background variation occurs on a scale
significantly larger than that of the mask size, this should work adequately.

It should be remarked that the zero-mean approximation is already widely used—as in-
deed we have already seen from the edge and line-segment masks in Eqs. (1.7) and (1.15). It
must also apply for other detectors we could devise, such as corner and hole detectors.

1.2.6 A theory combining the matched filter and zero-mean constructs

At first sight, the zero-mean construct is so simple that it might appear to integrate easily
with the matched filter formalism of Section 1.2.4. However, applying it reduces the number
of degrees of freedom of the matched filter by one, so a change is needed to the matched filter
formalism to ensure that the latter continues to be an ideal detector. To proceed, we represent
the zero-mean and matched filter cases as follows:

(wi)z-m = Si − S̄

(wi)m-f = Si/N
2
i

(1.24)

Next, we combine these into the form

wi =
(
Si − S̃

)
/N2

i (1.25)

where we have avoided an impasse by trying a hypothetical (i.e., as yet unknown) type of
mean for S, which we call S̃. [Of course, if this hypothesis in the end results in a contradiction,
a fresh approach will naturally be required.] Applying the zero-mean condition

∑
i wi = 0

now yields the following: ∑
i

wi =
∑

i

Si/N
2
i −

∑
i

S̃/N2
i = 0 (1.26)

∴ S̃
∑

i

(
1/N2

i

)
=

∑
i

Si/N
2
i (1.27)

∴ S̃ =
∑

i

(
Si/N

2
i

)
/
∑

i

(
1/N2

i

)
(1.28)

From this, we deduce that S̃ has to be a weighted mean, and in particular the noise-weighted
mean S̃. On the other hand, if the noise is uniform, S̃ will revert to the usual unweighted
mean S̄. Also, if we do not apply the zero-mean condition (which we can achieve by setting
S̃ = 0), Eq. (1.25) reverts immediately to the standard matched filter condition.

The formula for S̃ may seem to be unduly general, in that Ni should normally be almost
independent of i. However, if an ideal profile were to be derived by averaging real object
profiles, then away from its center, the noise variance could be more substantial. Indeed, for
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large objects this would be a distinct limiting factor on such an approach. But for fairly small
objects and features, noise variance should not vary excessively and useful matched filter
profiles should be obtainable.

On a personal note, the main result proven in this section (cf. Eqs. (1.25) and (1.28)) took
me so much time and effort to resolve the various issues that I was never convinced I would
solve it. Hence I came to think of it as ‘Davies’s last theorem’.

1.2.7 Mask design—other considerations

Although the matched filter formalism and the now fully integrated zero-mean condition
might seem to be sufficiently general to provide for unambiguous mask design, there are a
number of aspects that remain to be considered. For example, how large should the masks
be made? And how should they be optimally placed around any notable objects or features?
We shall take the following example of a fairly complex object feature to help us answer this.
Here region 2 is the object being detected, region 1 is the background, and M is the feature
mask region.

© IET 1999.

On this model we have to calculate optimal values for the mask weighting factors w1 and
w2 and for the region areas A1 and A2. We can write the total signal and noise power from a
template mask as:

S = w1A1S1 + w2A2S2

N2 = w2
1A1N

2
1 + w2

2A2N
2
2

(1.29)

Thus, we obtain a power signal-to-noise-ratio (SNR):

ρ2 = S2

N2
= (w1A1S1 + w2A2S2)

2

w2
1A1N

2
1 + w2

2A2N
2
2

(1.30)

It is easy to see that if both mask regions are increased in area by the same factor η, ρ2 will
also be increased by this factor. This makes it interesting to optimize the mask by adjusting the
relative values of A1, A2, leaving the total area A unchanged. Let us first eliminate w2 using the
zero-mean condition (which is commonly applied to prevent changes in background intensity
level from affecting the result):

w1A1 + w2A2 = 0 (1.31)
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Clearly, the power SNR no longer depends on the mask weights:

ρ2 = S2

N2
= (S1 − S2)

2

N2
1 /A1 + N2

2 /A2
(1.32)

Next, because the total mask area A is predetermined, we have:

A2 = A − A1 (1.33)

Substituting for A2 quickly leads to a simple optimization condition:

A1/A2 = N1/N2 (1.34)

Taking N1 = N2, we obtain an important result—the equal area rule (Davies, 1999):

A1 = A2 = A/2 (1.35)

Finally, when the equal area rule applies, the zero-mean rule takes the form:

w1 = −w2 (1.36)

Note that many cases, such as those arising when the foreground and background have
different textures, can be modeled by taking N1 �= N2. In that case the equal area rule does
not apply, but we can still use Eq. (1.34).

1.2.8 Corner detection

In Sections 1.2.1 and 1.2.3 we found that only two types of feature have vector (or pseudo-
vector) forms—edge and line segments. Hence, whereas these features can be detected using
just two component masks, all other features would be expected to require matching to many
more templates in order to cope with varying orientations. Corner detectors appear to fall
into this category, typical 3 × 3 corner templates being the following:⎡

⎣ −4 5 5
−4 5 5
−4 −4 −4

⎤
⎦

⎡
⎣ 5 5 5

−4 5 −4
−4 −4 −4

⎤
⎦ (1.37)

(Note that these masks have been adjusted to zero-mean form to eliminate the effects of vary-
ing lighting conditions.)

To overcome the evident problems of template matching—not the least amongst which is
the need to use limited numbers of digital masks to approximate the underlying analogue in-
tensity variations, which themselves vary markedly from instance to instance—many efforts
have been made to obtain a more principled approach. In particular, as edges depend on
the first derivatives of the image intensity field, it seemed logical to move to a second-order
derivative approach. One of the first such investigations was the Beaudet (1978) approach,
which employed the Laplacian and Hessian operators:

Laplacian = Ixx + Iyy

Hessian = IxxIyy − I 2
xy

(1.38)
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These were particularly attractive as they are defined in terms of the determinant and trace
of the symmetric matrix of second derivatives, and thus are invariant under rotation.

In fact, the Laplacian operator gives significant responses along lines and edges and hence
is not particularly suitable as a corner detector. On the other hand, Beaudet’s ‘DET’ (Hessian)
operator does not respond to lines and edges but gives significant signals in the vicinity of
corners and should therefore form a useful corner detector—though it responds with one
sign on one side of a corner and with the opposite sign on the other side of the corner: on
the corner itself it gives a null response. Furthermore, other workers criticized the specific
responses of the DET operator and found they needed quite complex analyzes to deduce the
presence and exact position of each corner (Dreschler and Nagel, 1981; Nagel, 1983).

However, Kitchen and Rosenfeld (1982) found they were able to overcome these problems
by estimating the rate of change of the gradient direction vector along the horizontal edge
tangent direction, and relating it to the horizontal curvature κ of the intensity function I . To
obtain a realistic indication of the strength of a corner they multiplied κ by the magnitude of
the local intensity gradient g:

C = κg = κ
(
I 2
x + I 2

y

)1/2

= IxxI
2
y − 2IxyIxIy + IyyI

2
x

I 2
x + I 2

y

(1.39)

Finally, they used the heuristic of nonmaximum suppression along the edge normal direction
to localize the corner positions further.

Interestingly, Nagel (1983) and Shah and Jain (1984) came to the view that the Kitchen
and Rosenfeld, Dreschler and Nagel, and Zuniga and Haralick (1983) corner detectors were
all essentially equivalent. This should not be overly surprising, since in the end the differ-
ent methods would be expected to reflect the same underlying physical phenomena (Davies,
1988c)—reflecting a second-order derivative formulation interpretable as a horizontal curva-
ture multiplied by an intensity gradient.

1.2.9 The Harris ‘interest point’ operator

At this point in Harris and Stephens (1988) developed an entirely new operator capable of
detecting corner-like features—based not on second-order but on first-order derivatives. As
we shall see below, this simplified the mathematics, including the difficulties of applying dig-
ital masks to intrinsically analogue functions. In fact, the new operator was able to perform
a second-order derivative function by applying first-order operations. It is intriguing how it
could acquire the relevant second-order derivative information in this way. To understand
this we need to examine its quite simple mathematical definition.

The Harris operator is defined in terms of the local components of intensity gradient Ix ,
Iy in an image. The definition requires a window region to be defined and averages 〈.〉 to be
taken over this whole window. We start by computing the following matrix:

� =
[ 〈

I 2
x

〉 〈
IxIy

〉
〈
IxIy

〉 〈
I 2
y

〉 ]
(1.40)
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FIGURE 1.2 Geometry for calculating line and corner responses in a circular window. (a) straight edge, (b) general
corner. © IET 2005.

We then use the determinant and trace to estimate the corner signal:

C = det�/ trace� (1.41)

(Again, as for the Beaudet operators, the significance of using only the determinant and trace
is that the resulting signal will be invariant to corner orientation.)

Before proceeding to analyze the form of C, note that if averaging were not undertaken,
det � would be identically equal to zero: clearly, it is only the smoothing intrinsic in the
averaging operation that permits the spread of first-derivative values and thereby allows the
result to depend partly on second derivatives.

To understand the operation of the detector in more detail, first consider its response for a
single edge (Fig. 1.2a). In fact:

det� = 0 (1.42)

because Ix is zero over the whole window region.
Next consider the situation in a corner region (Fig. 1.2b). Here:

� =
[

l2g
2 sin2 θ l2g

2 sin θ cos θ

l2g
2 sin θ cos θ l2g

2 cos2 θ + l1g
2

]
(1.43)

where l1, l2 are the lengths of the two edges bounding the corner, and g is the edge contrast,
assumed constant over the whole window. We now find (Davies, 2005):

det� = l1l2 g4 sin2 θ (1.44)

and

trace� = (l1 + l2)g
2 (1.45)

∴ C = l1l2

l1 + l2
g2 sin2 θ (1.46)

This may be interpreted as the product of (1) a strength factor λ, which depends on the
edge lengths within the window, (2) a contrast factor g2, and (3) a shape factor sin2θ , which
depends on the edge ‘sharpness’ θ . Clearly, C is zero for θ = 0 and θ = π , and is a maximum
for θ = π/2—all these results being intuitively correct and appropriate.
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FIGURE 1.3 Problems with the centroidal profile descriptor. (a) shows a circular object with a minor defect on its
boundary; its centroidal profile appears beneath it. (b) shows the same object, this time with a gross defect: because
the centroid is shifted to C´, the whole of the centroidal profile is grossly distorted.

A good many of the properties of the operator can be determined from this formula, in-
cluding the fact that the peak signal occurs not at the corner itself but at the center of the
window used to compute the corner signal—though the shift is reduced as the sharpness of
the corner decreases.

1.3 Part B – 2-D object location and recognition

1.3.1 The centroidal profile approach to shape analysis

2-D objects are commonly characterized by their boundary shapes. In this section we exam-
ine what can be achieved by tracking around object boundaries and analyzing the resulting
shape profiles. Amongst the commonest type of profile used for this purpose is the centroidal
profile—in which the object boundary is mapped out using an (r, θ) polar plot, taking the
centroid C of the boundary as the origin of coordinates.

In the case of a circle of radius R, the centroidal profile is a straight line a distance R above
the θ -axis. Fig. 1.3 clarifies the situation and also shows two examples of broken circular ob-
jects. In case (a), the circle is only slightly distorted and thus its centroid C remains virtually
unchanged; hence, much of the centroidal plot remains at a distance R above the θ -axis. How-
ever, in case (b), even the part of the boundary that is not broken or distorted is far from being
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a constant distance from the θ -axis: this means that the object is unrecognizable from its pro-
file, though in case (a) there is no difficulty in recognizing it as a slightly damaged circle. In
fact, we can trace the relative seriousness of the two cases as being due largely to the fact that
in case (b) the centroid has moved so much that even the unmodified part of the shape is not
instantly recognizable. Of course, we could attempt to rectify the situation by trying to move
the centroid back to its old position, but it would be difficult to do this reliably: in any case,
if the original shape turned out not to be a circle, a lot of processing would be wasted before
the true nature of the problem was revealed.

Overall, we can conclude that the centroidal profile approach is nonrobust, and is not to be
recommended. In fact, this does not mean that it should not be used in practice. For example,
on a cheese or biscuit conveyor, any object that is not instantly recognizable by its constant
R profile should immediately be rejected from the product line; then other objects can be
examined to be sure that their R values are acceptable and show an appropriate degree of
constancy.

Robustness and its importance
It is not an accident that the idea of robustness has arisen here. It is actually core

to much of the discussion on algorithm value and effectiveness that runs right through
computer vision. The underlying problem is that of variability of objects or indeed of any
entities that appear in computer images. This variability can arise simply from noise, or
from varying shapes of even the same types of object, or from variations in size or place-
ment, or from distortions due to poor manufacture, or cracks or breakage, or the fact that
objects can be viewed from a variety of positions and directions under various viewing
regimes—which tend to be most extreme for full perspective projection. In addition, one
object may be partly obscured by another or even only partly situated within a specific
image (giving effects that are not dissimilar to the result of breakage).

While noise is well known to affect accuracy of measurement, it might be thought
less likely to affect robustness. However, we need to distinguish the ‘usual’ sort of noise,
which we can typify as Gaussian noise, from spike or impulse noise. The latter are com-
monly described as outlying points or ‘outliers’ on the noise distribution. (Note that we
have already seen that the median filter is significantly better than the mean filter at cop-
ing with outliers.) The subject of robust statistics studies the topics of inliers and outliers
and how best to cope with various types of noise. It underlies the optimization of ac-
curacy of measurement and reliability of interpretation in the presence of outliers and
gross disturbances to object appearance.

Next, it should be remarked that there are other types of boundary plot that can be used
instead of the centroidal profile. One is the (s, ψ) plot and another is the derived (s, κ) profile.
Here, ψ is the boundary orientation angle, and κ(s), which is equal to dψ/ds, is the local
curvature function. Importantly, these formulations make no reference to the position of the
centroid, and its position need not be calculated or even estimated. In spite of this advantage,
all such boundary profile representations suffer from a significant further problem—that if
any part of the boundary is occluded, distorted or broken, comparison of the object shape
with templates of known shape is rendered quite difficult, because of the different boundary
lengths.
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In spite of these problems, when it can be employed, the centroidal profile method has
certain advantages, in that it contributes ease of measurement of circular radii, ease of identi-
fication of squares and other shapes with prominent corners, and straightforward orientation
measurement—particularly for shapes with prominent corners.

It now remains to find a method that can replace the centroidal profile method in instances
where gross distortions or occlusions can occur. For such a method we need to move on to
the following section which introduces the Hough transform approach.

1.3.2 Hough-based schemes for object detection

In Section 1.3.1 we explored how circular objects might be identified from their boundaries
using the centroidal profile approach to shape analysis. The approach was found to be non-
robust because of its incapability for coping with gross shape distortions and occlusions. In
this section we show that the Hough transform provides a simple but neat way of solving
this problem. The method used is to take each edge point in the image, move a distance R

inwards along the local edge normal, and accumulate a point in a separate image called the
parameter space: R is taken to be the expected radius of the circles to be located. The result
of this will be a preponderance of points (often called ‘votes’) around the locations of circle
centers. Indeed, to obtain accurate estimates of center locations, it is only necessary to find
significant peaks in parameter space.

The process is illustrated in Fig. 1.4, making it clear that the method ignores noncircular
parts of the boundary and only identifies genuine circle centers: thus the approach focuses
on data that correspond to the chosen model and is not confused by irrelevant data that
would otherwise lead to nonrobust solutions. Clearly, it relies on edge normal directions be-
ing estimated accurately. Fortunately, the Sobel operator is able to estimate edge orientation
to within ∼1° and is straightforward to apply. In fact, Fig. 1.5 shows that the results can be
quite impressive.

A disadvantage of the approach as outlined above is that it requires R to be known in
advance. The general solution to this problem is to use a 3-D parameter space, with the
third dimension representing possible values of R, and then searching for the most signif-
icant peaks in this space. However, a simpler solution involves accumulating the results for

FIGURE 1.4 Robustness of the Hough transform when locating the center of a circular object. The circular part
of the boundary gives candidate center points that focus on the true center, whereas the irregular broken boundary
gives candidate center points at random positions. In this case the boundary is approximately that of the broken
biscuit shown in Fig. 1.5.
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FIGURE 1.5 Location of broken and overlapping biscuits, showing the robustness of the center location technique.
Accuracy is indicated by the black dots which are each within 1/2 pixel of the radial distance from the center. © IFS
1984.

FIGURE 1.6 Simultaneous detection of objects with different radii. (a) Detection of a lens cap and a wing nut when
radii are assumed to lie in the range 4–17 pixels; (b) hole detection in the same image when radii are assumed to fall
in the range −26 to −9 pixels (negative radii are used since holes are taken to be objects of negative contrast): clearly,
in this image a smaller range of negative radii could have been employed.

a range of likely values of R in the same 2-D parameter space—a procedure that results in
substantial savings in storage and computation (Davies, 1988a). Fig. 1.6 shows the result of
applying this strategy, which works with both positive and negative values of R. On the other
hand, note that the information on radial distance has been lost by accumulating all the votes
in a single parameter plane. Hence a further iteration of the procedure would be required to
identify the radius corresponding to each peak location.
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FIGURE 1.7 The geometry of two ellipse detection methods. (a) In the diameter-bisection method, a pair of points
is located for which the edge orientations are antiparallel. The midpoints of such pairs are accumulated and the
resulting peaks are taken to correspond to ellipse centers. (b) In the chord–tangent method, the tangents at P1 and
P2 meet at T and the midpoint of P1P2 is M. The center C of the ellipse lies on the line TM produced.

The Hough transform approach can also be used for ellipse detection: two simple meth-
ods for achieving this are presented in Fig. 1.7. Both of these embody an indirect approach in
which pairs of edge points are employed. Whereas the diameter-bisection method involves
considerably less computation than the chord–tangent method, it is more prone to false
detections—for example, when two ellipses lie near to each other in an image.

To prove the validity of the chord–tangent method, note that symmetry ensures that the
method works for circles: projective properties then ensure that it also works for ellipses, be-
cause under orthographic projection, straight lines project into straight lines, midpoints into
midpoints, tangents into tangents, and circles into ellipses; in addition, it is always possible
to find a viewpoint such that a circle can be projected into a given ellipse.

We now move on to the so-called generalized Hough transform (GHT), which employs a
more direct procedure for performing ellipse detection than the other two methods outlined
above.

To understand how the standard Hough technique is generalized so that it can detect ar-
bitrary shapes, we first need to select a localization point L within a template of the idealized
shape. Then, we need to arrange so that, instead of moving from an edge point a fixed dis-
tance R directly along the local edge normal to arrive at the center, as for circles, we move an
appropriate variable distance R in a variable direction ϕ so as to arrive at L: R and ϕ are now
functions of the local edge normal direction θ (Fig. 1.8). Under these circumstances votes will
peak at the preselected object localization point L. The functions R (θ) andφ (θ) can be stored
analytically in the computer algorithm, or for completely arbitrary shapes they may be stored
as lookup tables. In either case the scheme is beautifully simple in principle but an important
complication arises because we are going from an isotropic shape (a circle) to an anisotropic
shape which may be in a completely arbitrary orientation.

This means adding an extra dimension in parameter space (Ballard, 1981). Each edge point
then contributes a set of votes in each orientation plane in parameter space. Finally, the whole
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FIGURE 1.8 Computation of the generalized Hough transform.

FIGURE 1.9 Use of a PSF shape that takes into account all possible orientations of an ellipse. The PSF is positioned
by the grey construction lines so that it passes through the center of the ellipse (see the black dot).

of parameter space is searched for peaks, the highest points indicating both the locations of
objects and their orientations. Interestingly, ellipses can be detected by the GHT using a single
plane in parameter space, by applying a point spread function (PSF) to each edge point, which
takes all possible orientations of the ellipse into account: note that the PSF is applied at some
distance from the edge point, so that the center of the PSF can pass through the center of the
ellipse (Fig. 1.9). Lack of space prevents details of the computations from being presented
here (e.g., see Davies, 2017, Chapter 11).

1.3.3 Application of the Hough transform to line detection

The Hough transform (HT) can also be applied to line detection. Early on, it was found best
to avoid the usual slope–intercept equation, y = mx + c, because near-vertical lines require
near-infinite values of m and c. Instead, the ‘normal’ (θ, ρ) form for the straight line (Fig. 1.10)
was employed:

ρ = x cos θ + y sin θ (1.47)

To apply the method using this form, the set of lines passing through each point Pi is
represented as a set of sine curves in (θ, ρ) space: e.g., for point P1(x1, y1) the sine curve has
equation:

ρ = x1 cos θ + y1 sin θ (1.48)
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FIGURE 1.10 Normal (θ, ρ) parametrization of a straight line.

After vote accumulation in (θ, ρ) space, peaks indicate the presence of lines in the original
image.

A lot of work has been carried out (e.g., see Dudani and Luk, 1978) to limit the inaccuracies
involved in line location, which arise from several sources—noise, quantization, the effects
of line fragmentation, the effects of slight line curvature, and the difficulty of estimating the
exact peak positions in parameter space. In addition, the problem of longitudinal line local-
ization is important. For the last of these processes, Dudani and Luk (1978) developed the
method of ‘xy–grouping’, which involved carrying out connectivity analysis for each line.
Segments of a line would then be merged if they were separated by gaps of less than ∼5 pix-
els. Finally, segments shorter than a certain minimum length (also typically ∼5 pixels) would
be ignored as too insignificant to help with image interpretation.

Overall, we see that all the forms of the HT described above gain considerably by accu-
mulating evidence using a voting scheme. This is the source of the method’s high degree of
robustness. The computation processes used by the HT can be described as inductive rather
than deductive as the peaks lead to hypotheses about the presence of objects, that need in prin-
ciple to be confirmed by other evidence, whereas deduction would lead to immediate proof of
the presence of objects.

1.3.4 Using RANSAC for line detection

RANSAC is an alternative model-based search schema that can often be used instead of
the HT. In fact, it is highly effective when used for line detection, which is why the method is
introduced here. The strategy can be construed as a voting scheme, but it is used in a different
way from that in the HT. It operates by making a sequence of hypotheses about the target
objects, and determines the support for each of them by counting how many data points
agree with them within reasonable (e.g., ±3σ ) limits (see Fig. 1.11). As might be expected, for
any potential target object, only the hypotheses with the maximum support are retained at
each stage.

We next explain how RANSAC is used for line detection. As in the case of the HT, we start
by applying an edge detector and locating all the edge points in the image. As we shall see,
RANSAC operates best with a limited number of points, so it is useful to find the edge points
that are local maxima of the intensity gradient image. Next, to form a straight line hypothesis,
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FIGURE 1.11 The RANSAC technique. Here the + signs indicate data points to be fitted, and two instances of
pairs of data points (indicated by ⊕ signs) leading to hypothesized lines are also shown. Each hypothesized line has
a region of influence of tolerance ±t within which the support of maximal numbers of data points is sought. The line
with the most support is taken to lead to the best fit.

TABLE 1.1 Basic RANSAC algorithm for finding the line with greatest support.
This algorithm only returns one line: in fact it returns the specific line model that
has greatest support. Lines with less support are in the end ignored.

Mmax=0;
for all pairs of edge points do {

find equation of line defined by the two points i, j;
M = 0;
for all N points in list do

if (point k is within threshold distance d of line) M ++;
if (M > Mmax) {

Mmax = M;
imax = i;
jmax = j;
// this records the hypothesis giving the maximum support so far

}
}
/* if Mmax > 0, (x[imax], y[imax]) and (x[jmax], y[jmax]) will be the coordinates of
the points defining the line having greatest support */

all that is necessary is to take any pair of edge points. For each hypothesis we run through the
list of N edge points finding how many points M support the hypothesis. Then we take more
hypotheses (more pairs of edge points) and at each stage retain only the one giving maximum
support Mmax. This process is shown in Table 1.1.

The algorithm in Table 1.1 corresponds to finding the center of the highest peak in pa-
rameter space, as in the case of the HT. To find all the lines in the image, the most obvious
strategy is the following: find the first line, then eliminate all the points that gave it support;
then find the next line and eliminate all the points that gave it support; and so on until all the
points have been eliminated from the list. The process may be written more compactly in the
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form:

repeat {
find line;
eliminate support;

}
until no data points remain;

As outlined above, RANSAC involves quite considerable computational load—amounting
to O(N3)—which should be compared with O(N ) for the HT. Hence it is better to reduce
N in some way when using RANSAC. This explains why it is useful to concentrate on
the local maxima rather than employing the full list of edge points. However, an alterna-
tive is to employ repeated random sampling from the full list until sufficient hypotheses
have been tested to be confident that all significant lines have been detected. [Note that
these ideas reflect the original meaning of the term RANSAC, which stands for RANdom
SAmpling Consensus—“consensus” indicating that any hypothesis has to form a consen-
sus with the available support data (Fischler and Bolles, 1981).] Confidence that all sig-
nificant lines have been detected can be obtained by estimating the risk that a significant
line will be missed because no representative pair of points lying on the line was consid-
ered.

We are now in a position to consider results obtained by applying RANSAC to a partic-
ular case of straight line detection. In the test described, pairs of points were employed as
hypotheses, and all edge points were local maxima of the intensity gradient. The case shown
in Fig. 1.12 corresponds to detection of a block of wood in the shape of an icosahedron. Note
that one line on the right of Fig. 1.12(a) was missed because a lower limit had to be placed
on the level of support for each line: this was necessary because below this level of support
the number of chance collinearities rose dramatically even for the relatively small number
of edge points shown in Fig. 1.12(b), leading to a sharp rise in the number of false positive
lines. Overall, this example shows that RANSAC is a highly important contender for location
of straight lines in digital images. Not discussed here is the fact that RANSAC is useful for
obtaining robust fits to many other types of shape, in 2-D and in 3-D.

Finally, it should be mentioned that RANSAC is less influenced than the HT by aliasing
along straight lines. This is because HT peaks tend to be fragmented by aliasing, so the best
hypotheses can be difficult to obtain without drastic smoothing of the image. The reason
why RANSAC wins in this context is that it does not rely on individual hypotheses being
accurate: rather it relies on enough hypotheses easily being generatable, and by the same
token, discardable.

1.3.5 A graph-theoretic approach to object location
This section considers a commonly occurring situation involving considerable constraints—

objects appearing on a horizontal worktable or conveyor at a known distance from the
camera. It is also assumed (a) that objects are flat or can appear in only a restricted num-
ber of stances in three dimensions, (b) that objects are viewed from directly overhead, and
(c) that perspective distortions are small. In such situations the objects may in principle be
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FIGURE 1.12 Straight line location using the RANSAC technique. (a) shows an original grey-scale image with
various straight edges located using the RANSAC technique. (b) shows the edge points fed to RANSAC to obtain
(a): these were local maxima of the gradient image. In (a), three edges of the icosahedron have been missed. This is
because they are ‘roof’ edges with low contrast and low intensity gradient. In fact, RANSAC also missed a fourth
edge because of a lower limit placed on the level of support (see text).

identified and located from very few point features. Since such features are taken to have no
structure of their own, it will be impossible to locate an object uniquely from a single feature,
although positive identification and location would be possible using two features if these
were distinguishable and if their distance apart were known. For truly indistinguishable
point features, an ambiguity remains for all objects not possessing 180° rotation symmetry.
Hence at least three point features are in general required to locate and identify objects at
known range. Clearly, noise and other artefacts such as occlusions modify this conclusion. In
fact, when matching a template of the points in an idealized object with the points present in
a real image, we find that:

1. a great many feature points may be present because of multiple instances of the chosen
type of object in the image

2. additional points may be present because of noise or clutter from irrelevant objects and
structure in the background

3. certain points that should be present are missing because of noise or occlusion, or because
of defects in the object being sought.

These problems mean that we should be attempting to match a subset of the points in the ide-
alized template to various subsets of the points in the image. If the point sets are considered
to constitute graphs with the point features as nodes, the task devolves into the mathemati-
cal problem of subgraph–subgraph isomorphism, i.e., finding which subgraphs in the image
graph are isomorphic to subgraphs of the idealized template graph. [Isomorphic means hav-
ing the same basic shape and structure.] Clearly, a point feature matching scheme will be
most successful if it finds the most likely interpretation by searching for solutions having the
greatest internal consistency—i.e., with the greatest number of point matches per object.

Unfortunately, the schema presented above is still too simplistic in many applications as it
is insufficiently robust against distortions. In particular, optical (e.g., perspective) distortions
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FIGURE 1.13 Matching problem for a general quadrilateral: (a) basic labeling of model (left) and image (right);
(b) match graph; (c) placement of votes in parameter space: small circles indicate hole positions, dots indicate indi-
vidual votes and the large dot shows the position of the main peak. © AVC 1988.

may arise, or the objects themselves may be distorted, or by resting partly on other objects
they may not be quite in the assumed stance: hence distances between features may not be
exactly as expected. These factors mean that some tolerance has to be accepted in the dis-
tances between pairs of features. Clearly, distortions lay more strain on the point matching
technique and make it all the more necessary to seek solutions with the greatest possible in-
ternal consistency. Therefore, as many features as possible should be taken into account in
locating and identifying objects. The maximal clique approach is intended to achieve this.

As a start, as many features as possible are identified in the original image: typically, they
are numbered in order of appearance in a TV raster scan. The numbers then have to be
matched against the letters corresponding to the features on the idealized object. A systematic
way of achieving this is by constructing a match graph (or association graph) in which the nodes
represent feature assignments, and arcs joining nodes represent pairwise compatibilities be-
tween assignments. To find the best match it is then necessary to find regions of the match
graph where the cross-linkages are maximized. To achieve this, cliques are sought within the
match graph. A clique is a complete subgraph—i.e., one for which all pairs of nodes are con-
nected by arcs. However, the previous arguments indicate that if one clique is completely
included within another clique, it is likely that the larger clique represents a better match—
and indeed maximal cliques can be taken as leading to the most reliable matches between the
observed image and the object model.

Fig. 1.13(a) shows the situation for a general quadrilateral, the match graph being shown
in Fig. 1.13(b). In this case there are 16 possible feature assignments, 12 valid compatibilities
and 7 maximal cliques. If occlusion of a feature occurs, this will (taken on its own) reduce
the number of possible feature assignments and also the number of valid compatibilities: in
addition, the number of maximal cliques and the size of the largest maximal clique will be
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FIGURE 1.14 Matching when one feature is occluded and another is added: (a) basic labeling of model (left) and
image (right); (b) match graph; (c) placement of votes in parameter space (notation as in Fig. 1.13).

reduced. On the other hand, noise or clutter can add erroneous features. If the latter are at
arbitrary distances from existing features, then the number of possible feature assignments
will be increased but there will not be any more compatibilities in the match graph, so the
latter will have only trivial additional complexity. However, if the extra features appear at al-
lowed distances from existing features, this will introduce extra compatibilities into the match
graph and make it more tedious to analyze. In the case shown in Fig. 1.14, both types of
complication—an occlusion and an additional feature—arise: there are now 8 pairwise as-
signments and 6 maximal cliques, rather fewer overall than in the original case of Fig. 1.13.
However, the important factor is that the largest maximal clique still indicates the most likely
interpretation of the image, so the technique is inherently highly robust.

Fig. 1.15(a) shows a pair of cream biscuits which are to be located from their “docker”
holes—this strategy being advantageous since it has the potential for highly accurate product
location prior to detailed inspection. The holes found by a simple template matching routine
are indicated in Fig. 1.15(a): the template used is rather small and, as a result, the routine is
fairly fast but fails to locate all holes; in addition, it can give false alarms. Hence an “intelli-
gent” algorithm must be used to analyze the hole location data. Analysis of the data in the
above example yields two nontrivial maximal cliques, each corresponding correctly to one of
the two biscuits in the image.

1.3.6 Using the generalized Hough transform (GHT) to save computation

In these examples, checking which subgraphs are maximal cliques is a simply-stated prob-
lem. Unfortunately, the execution time of an optimal maximal clique algorithm is bounded
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FIGURE 1.15 Location of cream sandwich biscuits; (a) two cream sandwich biscuits with crosses indicating the
result of applying a simple hole detection routine; (b) the two biscuits reliably located by the GHT from the hole data
in (a): the isolated small crosses indicate the positions of single votes. © AVC 1988.

not by a polynomial in M (for a match graph containing maximal cliques of up to M nodes)
but by a much faster varying function. Specifically, the task of finding maximal cliques is
known to be “NP-complete” and runs in exponential time. Thus, whatever the run-time may
be for values of M up to about 6, it will typically be 100 times slower for values of M up to
about 10, and 100 times slower again for M greater than ∼14.

We shall now see how the GHT can be used as an alternative to the maximal clique ap-
proach. To apply the GHT, we first list all the features and then accumulate votes in parameter
space at every possible position of a localization point L consistent with each pair of features
(Fig. 1.16). To proceed it is necessary merely to use the interfeature distance as a lookup pa-
rameter in the GHT R-table. For indistinguishable point features this means that there must
be two entries for the position of L for each value of the interfeature distance. The procedure
is illustrated by the general quadrilateral example of Fig. 1.13: this leads to 7 peaks in param-
eter space, whose weights are 6, 1, 1, 1, 1, 1, 1 (see Fig. 1.13(c)). A similar situation applies
for Fig. 1.14. Close examination of Figs. 1.13 and 1.14 indicates that every peak in parameter
space corresponds to a maximal clique in the match graph. Indeed, there is a one-to-one rela-
tion between the two, so correct compatibilities all contribute both to a large maximal clique
and to a large peak in parameter space. This situation still applies even when occlusions occur
or additional features are present (see Fig. 1.14).

Finally, consider again the example of Fig. 1.15(a), this time obtaining a solution using the
GHT. Fig. 1.15(b) shows the positions of candidate object centers as found by the GHT. The
small isolated crosses indicate the positions of single votes, and those very close to the two
large crosses lead to voting peaks of weights 10 and 6 at these respective positions. Hence
object location is both accurate and robust, as required (Davies, 1988b).

We next compare the computational requirements of the maximal clique and GHT ap-
proaches to object location. For simplicity, imagine an image that contains just one wholly
visible example of an object possessing n features and that we are trying to recognize it by
seeking all possible pairwise compatibilities.
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FIGURE 1.16 Method for locating L from pairs of feature positions: each pair of feature points gives two possible
voting positions in parameter space, when objects have no symmetries. When symmetries are present, certain pairs
of features may give rise to up to 4 voting positions: this is confirmed on careful examination of Fig. 1.15(b).

For an object possessing n features, the match graph contains n2 nodes (i.e., possible as-
signments), and there are n2

C2 = n2(n2 − 1)/2 possible pairwise compatibilities to be checked
in building the graph. The amount of computation at this stage of the analysis is O(n4). To this
must be added the cost of finding the maximal cliques. Since the problem is NP-complete, the
load rises at a rate which is close to being exponential in n2.

Now consider the cost of getting the GHT to find objects via pairwise compatibilities. As
has been seen, the total height of all the peaks in parameter space is equal to the number
of pairwise compatibilities in the match graph. Hence the computational load is of the same
order, O(n4). Next comes the problem of locating all the peaks in parameter space. For an
N × N image only N2 points have to be visited in parameter space and the computational
load is O(N2), though keeping a running record of the maximum location during voting can
reduce it considerably (Davies, 1988b).

1.3.7 Part-based approaches

Whereas the object location approaches described above tend to rely on objects follow-
ing quite well-defined geometric models, a totally distinct approach is to use methods such
as deformable models to locate and recognize them. The aim of such approaches is to take
account of variations in appearance resulting from changes in illumination, viewpoint, and
properties such as shape and color. This is particularly important when searching for faces or
pedestrians in road scenes, to take two important examples. Methods in this category include
rigid templates (Dalal and Triggs, 2005), bag-of-features (Zhang et al., 2007), deformable tem-
plates (e.g., Cootes and Taylor, 2001), and part-based models (e.g., Amit and Trouvé, 2007;
Leibe et al., 2008). Deformable parts models are trained using collections of parts arranged in
deformable configurations. This approach came to the fore in 2010 with the work of Felzen-
szwalb et al. (2010) when it was shown to lead to efficient, accurate, state-of-the-art results on
difficult data sets.

Deformable parts models (DPMs) are based on the idea that objects can be considered as
collections of parts. Thus, to detect objects such as faces, it should only be necessary to lo-
cate the parts and examine their interrelationships. This can be carried out by identifying
parts and their bounding boxes and then making proposals for combining them into larger
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bounding boxes representing objects. Basically, once object bounding boxes have been found,
these regions are protected from further analysis by nonmaximum suppression. In practice,
this means giving each potential bounding box a score, keeping the highest score and skip-
ping any that overlap an already existing bounding box by a critical percentage, e.g., 50%.
This highly successful approach achieved state-of-the-art results on the PASCAL VOC 2006,
2007, and 2008 benchmarks (Everingham et al., 2006; 2007; 2008) and “established itself as the
de-facto standard for generic object detection” (Mathias et al., 2014). Mathias et al. tested the
DPM approach very thoroughly and showed that it could achieve top performance for face
detection.

Interestingly, the DPM approach permitted the location of overtly 3-D objects—but with-
out their 3-D geometry having to be taken directly into account, this being achieved by
sufficiently varied training on the relevant types of object. Another welcome capability is
that the approach can also be very effective for locating articulated objects.

The DPM approach is highly significant as it formed the basis for deep learning approaches
with even higher performance ratings—as achieved by Bai et al. (2016) and other workers.
(See Part F for deep learning methods.)

1.4 Part C – 3-D object location and the importance of invariance

1.4.1 Introduction to 3-D vision

In the earlier parts of this chapter, it has generally been assumed that objects are essentially
flat and are viewed in such a way that there are only three degrees of freedom—namely,
the two associated with position, and a further one concerned with orientation. While this
approach was adequate for carrying out many useful visual tasks, it is inadequate for inter-
preting most outdoor or indoor scenes or even for helping with quite simple robot assembly
and inspection tasks. Indeed, over the past few decades a considerable amount of theory
has been developed and backed up by experiment, to find how scenes composed of real 3-D
objects can be understood in detail.

In general, this means attempting to interpret scenes in which objects may appear in totally
arbitrary positions and orientations—corresponding to six degrees of freedom. Interpreting
such scenes, and deducing the translation and orientation parameters of arbitrary sets of
objects, takes a substantial amount of computation—partly because of the inherent ambiguity
in inferring 3-D information from 2-D images. However, a variety of approaches is available
for proceeding with 3-D vision, and subtle combinations of them will often be needed to
successfully interpret 3-D scenes.

Before proceeding further, we present the imaging equation for a general point (X, Y , Z)
in a scene, under what is known as ‘perspective projection’; this yields the image point:

(x, y) = (f X/Z,f Y/Z) (1.49)

where f is the focal length of the lens being used.
We can now introduce the approach adopted by the human visual system—that of binoc-

ular vision. The camera system that is used for this purpose is depicted in Fig. 1.17. With
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FIGURE 1.17 Stereo imaging using two lenses. The axes of the optical systems are parallel, i.e., there is no ‘ver-
gence’ between the optical axes.

this geometry, a general point appears in the two images as (x1, y1) and (x2, y2). In general,
the two optical systems need not have parallel optical axes and will exhibit a nonzero ‘ver-
gence’ angle. However, the zero-vergence case is often employed and for simplicity is the
one considered here. Note that the two sets of coordinates corresponding to the general point
(X,Y,Z) in the scene will differ because the baseline b between the optical axes causes relative
displacement or ‘disparity’ of the points in the two images.

Next, with a suitable choice of Z-axis on the perpendicular bisector of the baseline b, we
obtain two equations:

x1 = (X + b/2) f/Z (1.50)

x2 = (X − b/2) f/Z (1.51)

Calculating the disparity D = x1 − x2 immediately permits the depth Z to be obtained:

Z = bf/ (x1 − x2) (1.52)

Whereas this seems to be an ideal way of proceeding with 3-D vision, there is a fundamental
problem—that of confirming that both points in a stereo pair actually correspond to the same
point in the original scene. Note also that to obtain high accuracy in the determination of
depth, a large baseline b is required: unfortunately, as b is increased, the correspondence
between the images decreases, so it becomes more difficult to find matching points: this is
because the two images become increasingly different and difficult to match.

The standard way of dealing with the stereo correspondence problem mentioned above is
the epipolar line approach illustrated in Fig. 1.18. To understand this technique, imagine that
we have located a distinctive point in the first image and that we are marking all possible
points in the object field which could have given rise to it. This will mark out a line of points
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FIGURE 1.18 Geometry of epipolar lines. A point P1 in one image plane may have arisen from any one of a line
of points in the scene, and may appear in the alternate image plane at any point on the so-called epipolar line E2.

at various depths in the scene and, when viewed in the second image plane, a locus of points
can be constructed in that plane. This locus (in the alternate image) is the epipolar line corre-
sponding to the original image point. If we now search along the epipolar line for a similarly
distinctive point in the second image, the chance of finding the correct match is significantly
enhanced. This method not only cuts down the amount of computation required to find cor-
responding points, but also significantly reduces the incidence of false alarms. In the simple
geometry of Fig. 1.17, all epipolar lines are parallel to the x-axis, although this only applies
for the case of zero vergence. Note that the correspondence problem is rendered considerably
more difficult by the fact that there will be points in the scene that give rise to points in one
image but not in the other: this may arise because of occlusion or gross distortion of one of the
points. Thus, it is necessary to search for consistent sets of solutions in the form of continuous
object surfaces in the scene.

The difficulties caused by the correspondence problem have led to a number of alternative
approaches. One of the most prominent has been ‘shape from shading’—mapping how the
surface orientation varies by analyzing the apparent brightness of the surface. While much
has been achieved by this approach, it involves assumptions about the reflectance and spec-
ularity of the surfaces and how these vary with the orientation of (a) the surface and (b)
the source of illumination. It also requires the application of complex iterative algorithms—a
topic that cannot be dealt with in detail here. Similarly, ‘photometric stereo’, which involves
illuminating scenes in turn by separate light sources and analyzing the resulting images, is
too complex to be considered in detail here.

Next, ‘shape from texture’ is an approach that also allows details of surface orientation
to be analyzed by examining the relative areas of textural elements. However, this is a spe-
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cialized method that is not very frequently applied. Another approach is that of ‘structured
lighting’—typically based on directing patterns of light stripes, or other arrangements of light
spots or grids, onto the object field—which has been exceedingly widely used for inspection
and assembly on factory lines, though it can hardly be said to be in wide use in other types of
application such as surveillance. Again, this has to be regarded as a specialized rather than a
general technique for gauging 3-D object shapes.

It should be remarked that all but the last of these approaches lead to the production of
surface orientation maps rather than measurement of depth per se, so computation of depth
and surface shape has to be deduced from the raw orientation measurements.

Overall, the methods described above employ various means for estimating depth at all
places in a scene, and hence are able to map out 3-D surfaces in a fair amount of detail. How-
ever, they do not give any clue as to what these surfaces represent. In some situations it may
be clear that certain planar surfaces are parts of the background, e.g., the floor and the walls
of a room, but in general individual objects will not be inherently identifiable. Indeed, objects
tend to merge with each other and with the background, so specific methods are needed to
segment the 3-D ‘space map’ and finally recognize the objects, giving detailed information on
their positions and orientations. Clearly, obtaining a depth map of a 3-D object is no closer to
identifying it than a boundary map such as a centroidal profile is to recognizing a 2-D object:
specific means must be devised to perform the identification. Unfortunately, this task is sig-
nificantly more difficult in 3-D than it is in 2-D. For example, whereas a Hough transform can
in principle be applied in both cases, in 3-D it is hugely more complicated and computation
intensive than in 2-D, as the number of free parameters will normally have increased from
3 to 6 for a static shape with no unknown shape parameters—there being 3 degrees of free-
dom for translation and 3 for rotation. Note also that the computational complexity normally
varies not with the number of degrees of freedom but with an exponent of this number.

One further point should be added: over the past few years, sensors have been devised
that provide RGB-D (color and depth) outputs: these provide depth information from op-
tical ‘time-of-flight’. LIDAR is well known but expensive and works better at long range,
whereas matrix-based time-of-flight cameras work better at short range and typically use
laser-generated light pulses that are a few nanoseconds apart. These types of advance help
to solve the stereo correspondence problem. However, they do not eliminate the problem of
interpreting 3-D surfaces, for which the large number of degrees of freedom to be wrestled
with by object identification algorithms remains problematic: on the contrary, they serve to
highlight this as the most substantial remaining problem.

Given that computational complexity is the primary source of these problems, it is natural
to examine each depth map for salient features and to interpret the scenes accordingly: once
we have object descriptions based on relatively few salient features rather than bulk surface
descriptions, there would appear to be hope of achieving rapid, reliable identifications. We
look into this possibility further in the following section.

1.4.2 Pose ambiguities under perspective projection

In this section we define weak and full perspective and aim to understand the perspective n-
point (PnP) problem—the problem of finding the pose of objects from n features under various
forms of perspective.
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FIGURE 1.19 Perspective inversion for an aeroplane. Here an aeroplane (a) is silhouetted against the sky and
appears as in (b). (c) shows the two planes P and Q in which the aeroplane could lie, relative to the direction D of
viewing: R is the reflection plane relating the planes P and Q.

Full perspective projection (FPP) is the underlying form of projection between an object
and its image, which leads for example to parallel lines no longer appearing parallel, and
most shapes appearing distorted—circles even appearing as ellipses. Weak perspective pro-
jection (WPP) is the form of perspective projection that occurs for distant objects, for which
�Z � Z. It can be regarded as the same as ‘scaled orthographic projection’—orthographic
projection being the type of projection that would occur if the object were projected orthogo-
nally by parallel rays onto the image plane; while scaling accounts for the reduced apparent
size of an object.

As WPP does not distort object shapes (e.g., the back of a wire cube appears the same
size and shape as its front), it is easier to use it to model the imaging process. However, this
form of projection is so simple that it can lead to ambiguity when flat objects are viewed.
This is demonstrated in Fig. 1.19, which illustrates that a 2-D view of a distant aeroplane
can correspond to one of two orientations, as only the cosine of the plane’s orientation α is
determined from the single view. Interestingly, when α is nonzero, FPP adds an additional
distortion to the aeroplane’s shape, and the true orientation can then be identified.

Table 1.2 indicates the full extent of this situation, when flat objects are detected via one
or more of their features. This table reflects the overall PnP problem mentioned above. In the
coplanar case (in which all n features of an object are coplanar), we see from the table that
WPP never gives an unambiguous interpretation, whereas FPP does—though only when n

is greater than 3. The reason why n has to be greater than 3 for FPP to give an unambiguous
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TABLE 1.2 Ambiguities when estimating pose from point
features. This table summarizes the numbers of solutions that
will be obtained when estimating the pose of a rigid object
from point features located in a single image. It is assumed
that n point features are detected and identified correctly and
in the correct order. The columns WPP and FPP signify weak
perspective projection and full perspective projection respec-
tively. The upper half of the table applies when all n points
are coplanar; the lower half of the table applies when the
n points are noncoplanar. Note that when n ≤ 3, the results
strictly apply only in the coplanar case. However, the top two
lines in the lower half of the table are retained for easy com-
parison.

Arrangement of the points n WPP FPP
≤ 2 ∞ ∞
3 2 4

coplanar 4 2 1
5 2 1
≥ 6 2 1

≤ 2 ∞ ∞
3 2 4

noncoplanar 4 1 2
5 1 2
≥ 6 1 1

result is that it involves so many parameters that 3 features are insufficient to resolve the sit-
uation; however, when 4 or more features are present, the complete situation can be resolved
and the ambiguity eliminated. But why can’t WPP achieve this too? The reason is that un-
der WPP the location of any additional features (above 3) can be deduced from the first 3,
so they can give no additional information: hence WPP cannot lead to the ambiguity being
eliminated.

Note that when n is 1 or 2, there is at least one rotational degree of freedom, so there are an
infinite number of solutions. At this point we have dealt with all the possibilities in the upper
half of the table, where coplanar objects are involved. We next turn to the noncoplanar case,
dealt with in the lower half of the table. Instances where n ≤ 3 have already been dealt with
in the upper half of the table, so the noncoplanar case only involves instances where n > 3.

Let us now consider what happens when 4 features are viewed under WPP. Taking two
of the features with each of the other two in turn, we can generate two planes. When the 3
features on each of these planes are viewed they will generate two solutions with different
values of α, and there can only be one consistent solution. This completes our understanding
of the WPP entries in Table 1.2, and in particular the noncoplanar cases. The situation is well
illustrated in Fig. 1.20(a–c). Note, however, the salutary situation shown in Fig. 1.20(d) show-
ing how an object possessing a special symmetry may be subject to a remanent ambiguity.

To fully understand the situation in which more than 3 noncoplanar points are viewed
under FPP, we need to consider the fact that there are 11 camera calibration parameters (see
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FIGURE 1.20 Determination of pose for 4 points viewed under weak perspective projection. (a) shows an object
containing four noncoplanar points, as seen under weak perspective projection. (b) shows a side view of the object. If
the first three points (connected by nonarrowed grey lines) were viewed alone, perspective inversion would give rise
to a second interpretation (c). However, the fourth point gives additional information about the pose which permits
only one overall interpretation. This would not be the case for an object containing an additional symmetry as in (d),
since its reflection would be identical to the original view (not shown).

Section 1.4.10) that need to be determined from 12 linear homogeneous equations, which
means that at least 6 noncoplanar points (involving 2 × 6 image coordinates) will in general be
needed to compute all 11 parameters. Thus, although FPP makes the situation more complex,
it also provides more information by which, eventually, to resolve the ambiguity.

Finally, it should be emphasized that the above discussion assumes that the correspon-
dences between object and image features are all known, i.e., that n point features are detected
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and identified correctly and in the correct order. If this is not so, the number of possible solu-
tions could increase substantially, considering the number of possible permutations of quite
small numbers of points. One way of limiting this problem is to note that coplanar points
viewed under weak or full perspective projection always appear in the same cyclic order:
this is not trivial to check given the possible distortions of an object, though if a convex poly-
gon can be drawn through the points, the cyclic order around its boundary will not change on
projection, because planar convexity is an invariant of projection. However, for noncoplanar
points, the pattern of the perceived points can reorder itself almost randomly: this means that
a considerably greater number of permutations of the points will have to be considered for
noncoplanar points than for coplanar points. Another consideration is that the feature points
being used for object recognition should not be collinear or in any special pattern and should
be describable as being in general position: otherwise there is a risk that some ambiguities will
not be eliminated as indicated in Table 1.2 (ultimately because noninvertible equations arise
when attempting to determine the camera calibration parameters).

1.4.3 Invariants as an aid to 3-D recognition

Invariants are important for object recognition in both 2-D and 3-D. The basic idea of an in-
variant is to find some parameter or parameters that do not vary between different instances
or positions of an object and to use them to facilitate object identification. As we shall see,
perspective makes the issue far harder in the general 3-D case.

Let us first consider a flat object being viewed from directly overhead by a camera whose
optical axis is normal to the plane on which the object is lying. Consider two point features on
the object such as corners or small holes. If we measure the interfeature distance in an image,
it will act as an invariant, in that:

1. it has a value independent of the translation and orientation parameters of the object;
2. it will be unchanged for different objects of the same type;
3. it will in general be different from the corresponding parameters of other objects that lie

on the object plane.

Thus, measurement of distance provides a certain lookup or indexing quality which will
ideally identify the object uniquely, though further analysis will be required to fully locate
it and ascertain its orientation. Hence inter-feature distance has all the requirements of a 2-
D invariant. Of course, we are here ignoring imprecision in measurement, due to inadequate
spatial resolution, noise, lens distortions, and so on; in addition, the effects of partial occlusion
or breakage are being ignored. Obviously, there is a limit to what can be achieved with a single
invariant measure. In particular, it is not able to cope with object scale variations. Moving the
camera closer to the object plane and refocusing totally changes the situation and all values
of the distance invariant residing in the object indexing table must be changed and the old
values ignored. However, a little thought shows that this last problem can be overcome. All
we need to do is to take ratios of distances. This requires a minimum of 3 point features to be
identified in the image and 2 inter-feature distances measured. If we call these 2 distances d1
and d2, then the ratio d1/d2 will act as a scale-independent invariant, i.e., we will be able to
identify objects using a single indexing operation whatever their 2-D translation, orientation,
or apparent size or scale.
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FIGURE 1.21 Perspective transformation of four collinear points. This figure shows four collinear points (P1, P2,
P3, P4) and a transformation of them (Q1, Q2, Q3, Q4) similar to that produced by an imaging system with optical
center C. Such a transformation is called a perspective transformation.

Overall, the main motivation for using invariants is to obtain mathematical measures of
object feature configurations which are independent of the viewpoint or coordinate system
used: indeed, in view of the obvious complexities involved in perspective projection, view-
point independence is a crucial factor in 3-D object recognition and requires use of perspective
invariants.

1.4.4 Cross ratios: the ‘ratio of ratios’ concept

It would be most useful if we could extend the above ideas to aid the identification of
objects when observed under general 3-D transformations. Indeed, an obvious question is
whether finding ratios of ratios of distances will lead to invariants providing suitable gener-
alizations. The answer is that ratios of ratios do provide useful further invariants, as we shall
now see.

To identify suitable ratios of ratios of distances, we start by examining a set of 4 collinear
points on an object. Fig. 1.21 shows such a set of 4 points (P1, P2, P3, P4) and a transformation
of them (Q1, Q2, Q3, Q4) such as that produced by an imaging system with optical center
C (c, d). Choice of a suitable pair of oblique axes permits the coordinates of the two sets of
points to be expressed respectively as:

(x1,0), (x2,0), (x3,0), (x4,0)
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(0, y1), (0, y2), (0, y3), (0, y4)

Taking points Pi, Qi, (i = 1, . . . ,4) we can write the ratio CQi : PQi both as c
−xi

and as d−yi

yi
.

Equating these quantities immediately gives:

c

xi

+ d

yi

= 1 (1.53)

After straightforward manipulation of all 4 versions of this relation, and taking suitable
differences to eliminate all absolute positions, we eventually obtain the formula:(

x2 − x4

x3 − x4

)
/

(
x2 − x1

x3 − x1

)
=

(
y2 − y4

y3 − y4

)
/

(
y2 − y1

y3 − y1

)
(1.54)

This confirms that a parameter can be constructed that is invariant to perspective trans-
formations. In particular, 4 collinear points viewed from any perspective viewpoint yield the
same value of the cross ratio, defined as:

C (P1,P2,P3,P4) = (x3 − x1) (x2 − x4)

(x2 − x1) (x3 − x4)
(1.55)

In what follows, we shall write this particular cross ratio as κ . Note that there are 4! = 24
possible ways in which 4 collinear points can be ordered on a straight line, and hence there
could be 24 cross ratio values for any object. However, they are not all distinct, and in fact
there are only 6 different values: it is easily shown that these are κ , 1 − κ , κ/(κ − 1) and their
inverses. Interestingly, numbering the points in reverse (which would correspond to viewing
the line from the other side) leaves the cross ratio unchanged. Nevertheless, it is inconvenient
that the same invariant has 6 different manifestations, as this implies that 6 different index
values have to be looked up before the class of an object can be identified. On the other hand,
if points are labeled in order along each line rather than randomly, it is possible to circumvent
this situation.

So far we have been able to produce only one projective invariant, and this corresponds
to the rather simple case of 4 collinear points. The usefulness of this measure is augmented
considerably when it is noted that 4 collinear points, taken in conjunction with another point,
define a ‘pencil’ of concurrent coplanar lines passing through the latter point. Clearly, we can
assign a unique cross ratio to this pencil of lines, equal to the cross ratio of the collinear points
on any line passing through them. In fact, by considering the angles between the various lines
and applying the sine rule 4 times leads to the formula:

C (P1,P2,P3,P4) = sinα13 sinα24

sinα12 sinα34
(1.56)

Thus, the cross ratio depends only on the angles of the pencil of lines.
We can extend this concept to 4 concurrent planes since the concurrent lines can be pro-

jected into 4 concurrent planes once a separate concurrency axis has been defined. As there
are infinitely many such axes, there are infinitely many ways in which sets of planes can be
chosen. Thus, the original simple result on collinear points can be extended to a much more
general case.
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Finally, note that we started by trying to generalize the case of 4 collinear points, but what
we achieved was first to find a dual situation in which points become lines also described by
a cross ratio, and then to find an extension in which planes are described by a cross ratio. We
now return to the case of 4 collinear points, and see how we can extend it in other ways.

1.4.5 Invariants for noncollinear points

First, imagine that not all the points are collinear: specifically, let us assume that one point
is not collinear with the other 3. If this is the case, then there is not enough information to
calculate a cross ratio. However, if a further coplanar point is available, we can draw an
imaginary line between the noncollinear points to intersect the line through the other 3 points:
this will then permit a cross ratio to be computed (Fig. 1.22(a)). Nevertheless, this is some
way from a general solution to the characterization of a set of noncollinear points. We might
enquire how many point features in general position on a plane will be required to calculate
an invariant. In fact, the answer is 5, since the fact that we can form a cross ratio from the
angles between 4 lines immediately means that forming a pencil of 4 lines from 5 points
defines a cross ratio invariant (Fig. 1.22(b)).

While the value of this cross ratio provides a necessary condition for a match between two
sets of 5 general coplanar points, it could be a fortuitous match, as the condition depends only
on the relative directions between the various points and the reference point, i.e., any of the
nonreference points is only defined to the extent that it lies on a given line. Clearly, two cross
ratios formed by taking two reference points will define the directions of all the remaining
points uniquely (Fig. 1.22(c)). Interestingly, while at least 5 cross ratios could result from this
sort of procedure, it turns out that there are only two functionally independent cross ratios—
essentially because the position of any point is defined once its direction relative to two other
points is known.

Note that Fig. 1.22 misses out one further interesting case—the situation of two points and
two lines. Constructing a line joining the two points and producing it until it meets the two
lines, we get 4 points on a single line; thus the configuration is characterized by a single cross
ratio. Notice also that the two lines can be extended until they join, and further lines can be
constructed from the join to meet the two points: this gives a pencil of lines characterized by
a single cross ratio: the latter must have the same value as that computed for the 4 collinear
points.

Next, we consider the problem of finding the ground plane in practical situations—e.g.,
that of egomotion including vehicle guidance. Suppose a set of 4 collinear points can be ob-
served from one frame to the next. If they are on a single plane, then the cross ratio will
remain constant, but if one is elevated above the ground plane (as in the case of a bump on
the road) then the cross ratio will vary over time. Taking a larger number of points, it should
be possible to deduce by a process of elimination which are on the ground plane and which
are not: note that all this is possible without any calibration of the camera, this being a ma-
jor advantage of making use of projective invariants. Note that there is a potential problem
regarding irrelevant planes, such as the vertical faces of buildings. The cross ratio test is so
resistant to viewpoint and pose that it merely ascertains whether the points being tested are
coplanar. But by using a large enough number of independent sets of points, one plane can
be discriminated from another.
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FIGURE 1.22 Calculation of invariants for a set of noncollinear points. (a) shows how the addition of a fifth point
to a set of four points, one of which is not collinear with the rest, permits the cross ratio to be calculated. (b) shows
how the calculation can be extended to any set of noncollinear points; also shown is an additional (grey) point which
a single cross ratio fails to distinguish from other points on the same line. (c) shows how any failure to identify a
point uniquely can be overcome by calculating the cross ratio of a second pencil generated from the five original
points.
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FIGURE 1.23 Position of the vanishing point. In this figure, parallel lines on the arches appear to converge to a
vanishing point V outside the image. In general, vanishing points can lie at any distance and may even be situated
at infinity.

1.4.6 Vanishing point detection

In this section we consider vanishing points (VPs) and how they can be detected. First, it is
useful to understand that the simple cue of a VP gives the human brain a deep understanding
of an image and in no small way helps it to globally interpret what is going on in the image:
it therefore provides a potential short cut for machines to get started on interpretation. This is
valuable in the situation of real 3-D images embodying all the complexities of full perspective
projection: hence it is no surprise that much effort has been applied to the detection and use
of VPs.

It is usual to carry out VP detection in two stages: first, we locate all the straight lines in
the image; next, we find which of the lines pass through common points—the latter being
interpreted as VPs. Finding the lines using a Hough transform should be straightforward,
though texture edges will sometimes prevent lines from being located accurately and consis-
tently. Basically, locating the VPs requires a second Hough transform in which whole lines
are accumulated in parameter space, leading to well defined peaks (the VPs) where multiple
lines overlap. In practice, the lines of votes will have to be extended to cover all possible VP
locations. This procedure is adequate when the VPs appear within the original image space,
but it often happens that they will be outside the original image (Fig. 1.23) and may even
be situated at infinity. This means that an image-like parameter space cannot be used suc-
cessfully, even if it is extended beyond the original image space. Another problem is that for
distant VPs, the peaks in parameter space will be spread out over a considerable distance, so
detection sensitivity will be poor and accuracy of location will be low.
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Fortunately, Magee and Aggarwal (1984) found an improved representation for locating
VPs. They constructed a unit sphere G, called a Gaussian sphere, around the center of projec-
tion of the camera, and used G instead of an extended image plane as a parameter space. In
this representation VPs appear at finite distances even in cases where they would otherwise
appear to be at infinity. For this method to work, there has to be a one-to-one correspon-
dence between points in the two representations, and this is clearly valid (note that the back
half of the Gaussian sphere is not used). However, the Gaussian sphere representation is not
without problems: in particular, many irrelevant votes will be cast from lines that are not par-
allel in real 3-D space (often, only a small subset of the lines in the image will pass through
VPs). To solve this problem, pairs of lines are considered in turn, and their crossing points are
only accumulated as votes if the lines of each pair are judged likely to originate from parallel
lines in 3-D space (e.g., they should have compatible gradients in the image). This procedure
drastically limits both the number of votes recorded in parameter space and the number of
irrelevant peaks. Nevertheless, the overall cost is still substantial, being proportional to the
number of pairs of lines. Thus, if there are N lines, the number of pairs is NC2 = 1

2N(N − 1),
so the result is O(N2).

The above procedure is important as it provides a highly reliable means for performing
the search for VPs, and for largely discriminating against isolated lines and image clutter.
Note that for a moving robot or other system, the correspondences between the VPs seen
in successive images will lead to considerably greater certainty in the interpretation of each
image.

1.4.7 More on vanishing points

One advantage of the cross ratio invariant is that it can turn up in many situations and
on each occasion provide yet another neat result. An interesting example is when a road
or pavement has flagstones whose boundaries are well demarcated and easily measurable.
They can then be used to estimate the position of the vanishing point on the ground plane.
Imagine viewing the flagstones obliquely from above, with the camera or the eyes aligned
horizontally. Then we have the geometry of Fig. 1.24, where the points O, H1, H2 lie on the
ground plane while O, V1, V2, V3 are in the image plane.

If we take C as a center of projection, the cross ratio formed from the points O, V1, V2,
V3 must have the same value as that formed from the points O, H1, H2, and infinity in the
horizontal direction. Supposing that OH1 and H1H2 have known lengths a and b, equating
the cross ratio values gives:

y1(y3 − y2)

y2(y3 − y1)
= x1

x2
= a

a + b
(1.57)

[Note that, in Fig. 1.24, the y values are measured from O rather than from V3.] This allows
us to estimate y3. Taking a = b (as is likely to be the case with flagstones) we find that:

y3 = y1y2

2y1 − y2
(1.58)

Having found y3, we have calculated the direction of the vanishing point, whether or not
the ground plane on which it lies is actually horizontal, and whether or not the camera axis is
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FIGURE 1.24 Geometry for finding the vanishing line from a known pair of spacings. C is the center of projec-
tion. VL is the vanishing line direction, which is parallel to the ground plane OH1H2. Although the camera plane
OV1V2V3 is drawn perpendicular to the ground plane, this is not necessary for successful operation of the algorithm
(see text).

horizontal. Notice that this proof does not actually assume that points V1, V2, V3 are vertically
above the origin, or that line OH1H2 is horizontal, just that these points lie along two coplanar
straight lines, and that C is in the same plane.

1.4.8 Summary: the value of invariants

Sections 1.4.2–1.4.6 have aimed to give some insight into the important subject of invari-
ants and their application in image recognition. The subject takes off when ratios of ratios
of distances are considered, and this idea leads in a natural way to the cross ratio invariant.
While its original manifestation lies in its application to recognition of the spacings of points
on a line, it generalizes immediately to angular spacings for pencils of lines, and also to an-
gular separations of concurrent planes. A further extension of the idea is the development
of invariants which can describe sets of noncollinear points, and two cross ratios suffice to
characterize a set of 5 noncollinear points on a plane.

Many other theorems and types of invariant exist, but space prevents more than a mention
being made here. As an extension to the point and line examples discussed above, invariants
have been produced which cover conics; a conic and two coplanar nontangent lines; a conic
and two coplanar points; two coplanar conics. Overall, the value of invariants lies in making
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computationally efficient checks of whether points or other features might belong to specific
objects. In addition, they achieve this without the necessity for camera calibration or know-
ing the viewpoint of the camera (though there is an implicit assumption that the camera is
Euclidean).

1.4.9 Image transformations for camera calibration

When images are obtained from 3-D scenes, the exact position and orientation of the cam-
era sensing device is often unknown and there is a need for it to be related to some global
frame of reference. This is especially important if accurate measurements of objects are to be
made from their images, e.g., in inspection applications. On the other hand, it may sometimes
be possible to dispense with such detailed information—as in the case of a stationary security
system for detecting intruders, or a system for counting cars on a motorway. There are also
more complicated cases, such as those in which cameras can be rotated or moved on a robot
arm, or the objects being examined can move freely in space. In such cases, ‘extrinsic’ as well
as ‘intrinsic’ camera calibration becomes a central issue (for full explanations of these terms,
see Section 1.4.11).

Before we can consider camera calibration, we need to understand in some detail the trans-
formations that can occur between the original world points and the formation of the final
image. In particular, we consider rotations and translations of object points relative to a global
frame. After a rotation through an angle θ about the Z-axis (Fig. 1.25), the coordinates of a
general point (X, Y ) change to:

X′ = X cos θ − Y sin θ (1.59)

Y ′ = X sin θ + Y cos θ (1.60)

We now generalize this result to 3-D and express it as a matrix for a rotation θ about the
Z-axis:

Z(θ) =
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ (1.61)

Similar matrices apply for rotations of ψ about the X-axis and ϕ about the Y -axis. Applying
sequences of such rotations, we obtain the following general result expressing an arbitrary 3-
D rotation R: ⎡

⎣ X′
Y ′
Z′

⎤
⎦ =

⎡
⎣ R11 R12 R13

R21 R22 R23
R31 R32 R33

⎤
⎦

⎡
⎣ X

Y

Z

⎤
⎦ (1.62)

Note that the rotation matrix R is not completely general: it is orthogonal and thus has the
property that R−1 = RT.
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FIGURE 1.25 Effect of a rotation θ about the origin.

In contrast with rotation, translation through a distance (T1, T2, T3) is given by:

⎡
⎣ X′

Y ′
Z′

⎤
⎦ =

⎡
⎣ X

Y

Z

⎤
⎦ +

⎡
⎣ T1

T2
T3

⎤
⎦ (1.63)

which is not expressible in terms of a multiplicative 3 × 3 matrix. To combine rotations and
translations into a common multiplicative formulation, we have to use homogeneous coordi-
nates. To achieve this the matrices must be augmented to 4 × 4, and the required transforma-
tion has to take the form:⎡

⎢⎢⎣
X′
Y ′
Z′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

R11 R12 R13 T1
R21 R22 R23 T2
R31 R32 R33 T3

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎦ (1.64)

This form is sufficiently general to include scaling in object size, and shearing and skewing
types of transformation.

In all the cases discussed above it will be observed that the bottom row of the generalized
displacement matrix is redundant. In fact, we can put this row to good use in certain other
types of transformation. Of particular interest in this context is the case of perspective projec-
tion. Following Section 1.4.1, the equations for projection of object points into image points
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are:

x = f X/Z (1.65)
y = f Y/Z (1.66)
z = f (1.67)

To include perspective projection in the above formalism, we need to examine the homo-
geneous coordinates transformation:⎡

⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/f 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X

Y

Z

Z/f

⎤
⎥⎥⎦ (1.68)

The key to understanding this transformation is to notice that dividing by the fourth coor-
dinate gives the required values of the transformed Cartesian coordinates (f X/Z,f Y/Z,f ).

Let us now review this result. First, we have found a 4 × 4 matrix transformation which
operates on 4-D homogeneous coordinates. These do not correspond directly to real coor-
dinates, but real 3-D coordinates can be calculated from them by dividing the first 3 by the
fourth homogeneous coordinate. Thus, there is an arbitrariness in the homogeneous coordi-
nates in that they can all be multiplied by the same constant factor without producing any
change in the final interpretation.

The advantage to be gained from use of homogeneous coordinates is the convenience of
having a single multiplicative matrix for any transformation, in spite of the fact that perspec-
tive transformations are intrinsically nonlinear: thus a quite complex nonlinear transforma-
tion can be reduced to a more straightforward linear transformation. This eases computer
calculation of object coordinate transformations, and other computations such as those for
camera calibration (see below). We may also note that almost every transformation can be
inverted by inverting the corresponding homogeneous transformation matrix. The exception
is the perspective transformation, for which the fixed value of z leads merely to Z being un-
known, and X, Y only being known relative to the value of Z (hence the need for binocular
vision or other means of discerning depth in a scene).

1.4.10 Camera calibration

The above discussion has shown how homogeneous coordinate systems are used to help
provide a convenient linear 4 × 4 matrix representation for 3-D transformations including
rigid body translations and rotations, and nonrigid operations including scaling, skewing
and perspective projection. In this last case, it was implicitly assumed that the camera and
world coordinate systems are identical, since the image coordinates were expressed in the
same frame of reference. However, in general the objects viewed by the camera will have
positions which may be known in world coordinates, but which will not a priori be known
in camera coordinates, since the camera will in general be mounted in a somewhat arbi-
trary position and will point in a somewhat arbitrary direction. Thus, the camera system will
have to be calibrated before the images can be used for practical applications such as robot
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pick-and-place. A useful approach is to assume a general transformation between the world
coordinates and the image seen by the camera under perspective projection, and to locate in
the image various calibration points which have been placed in known positions in the scene.
If enough such points are available, it should be possible to compute the transformation pa-
rameters, and then all image points can be interpreted accurately until recalibration becomes
necessary.

In what follows, we will find that there are two types of camera calibration: the first is that
of extrinsic calibration, in which the position and pose of the camera are determined relative
to the world coordinates, via its external parameters; the second is that of intrinsic calibration,
in which the image (and pixel) locations are determined in relation to the camera’s inter-
nal parameters. Important factors to be discussed are the numbers of extrinsic and intrinsic
parameters and their geometric significance.

To proceed, we need to set up the mathematical formulation in a general way, using the
general homogeneous transformation G, which takes the form:⎡

⎢⎢⎣
XH
YH
ZH
H

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

G11 G12 G13 G14
G21 G22 G23 G24
G31 G32 G33 G34
G41 G42 G43 G44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎦ (1.69)

Note that the final Cartesian coordinates appearing in the image are (x, y, z) = (x, y, f ),
and these are calculated from the first 3 homogeneous coordinates by dividing by the fourth:

x = XH/H = (G11X + G12Y + G13Z + G14)/(G41X + G42Y + G43Z + G44) (1.70)
y = YH/H = (G21X + G22Y + G23Z + G24)/(G41X + G42Y + G43Z + G44) (1.71)
z = ZH/H = (G31X + G32Y + G33Z + G34)/(G41X + G42Y + G43Z + G44) (1.72)

However, as we know z, there is no point in determining parameters G31, G32, G33, G34. Ac-
cordingly, we proceed to develop the means for finding the other parameters. In fact, because
only the ratios of the homogeneous coordinates are meaningful, only the ratios of the Gij

values need be computed, and it is usual to take G44 as unity: this leaves only 11 parameters
to be determined. Multiplying out the first two equations and rearranging gives:

G11X + G12Y + G13Z + G14 − x(G41X + G42Y + G43Z) = x (1.73)
G21X + G22Y + G23Z + G24 − y(G41X + G42Y + G43Z) = y (1.74)

Noting that a single world point (X,Y,Z) which is known to correspond to image point (x, y)
gives us two equations of the above form: it requires a minimum of 6 such points to provide
values for all 11 Gij parameters. An important factor is that the world points used for the
calculation should lead to independent equations: thus it is important that they should not be
coplanar. More precisely, there must be at least 6 points, no 4 of which are coplanar. However,
further points are useful in that they lead to overdetermination of the parameters and increase
the accuracy with which the latter can be computed. There is no reason why the additional
points should not be coplanar with existing points: indeed, a common arrangement is to set
up a cube so that 3 of its faces are visible, each face having a pattern of squares with 30–40
easily discerned corner features.
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Least squares analysis can be used to perform the computation of the 11 parameters. First,
the 2n equations (for n points) have to be expressed in matrix form:

Ag = ξ (1.75)

where A is a 2n × 11 matrix of coefficients, which multiplies the G-matrix, now in the form:

g = (G11G12G13G14G21G22G23G24G41G42G43)
T (1.76)

and ξ is a 2n-element column vector of image coordinates. The pseudo-inverse solution is:

g = A†ξ (1.77)

where

A† = (ATA)−1AT (1.78)

1.4.11 Intrinsic and extrinsic parameters

At this point it is useful to look in more detail at the general transformation leading to
camera calibration. When we are calibrating the camera, we are actually trying to bring the
camera and world coordinate systems into coincidence. The first step is to move the origin
of the world coordinates to the origin of the camera coordinate system. The second step is
to rotate the world coordinate system until its axes are coincident with those of the camera
coordinate system. The third step is to move the image plane laterally until there is complete
agreement between the two coordinate systems (this step is required since it is not known
initially which point in the world coordinate system corresponds to the principal point in the
image).

There is an important point to be borne in mind during this process. If the camera coordi-
nates are given by C, then the translation T required in the first step will be −C. Similarly, the
rotations that are required will be the inverses of those which correspond to the actual camera
orientations. The reason for these reversals is that (for example) rotating an object (here the
camera) forwards gives the same effect as rotating the axes backwards. Thus, all operations
have to be carried out with the reverse arguments to those indicated above in Section 1.4.1.
The complete transformation for camera calibration is hence:

G = PLRT

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/f 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 T1
0 1 0 T2
0 0 1 T3
0 0 0 1

⎤
⎥⎥⎦ (1.79)

where matrix P takes account of the perspective transformation required to form the image. In
fact, it is usual to group together the transformations P and L and call them internal camera
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transformations which include the intrinsic camera parameters, while R and T are taken to-
gether as external camera transformations corresponding to extrinsic camera parameters. Hence

Ginternal = PL =

⎡
⎢⎢⎣

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 1/f t3/f

⎤
⎥⎥⎦ →

⎡
⎣ 1 0 t1

0 1 t2
0 0 1/f

⎤
⎦ (1.80)

In the matrix for Ginternal we have assumed that the initial translation matrix T moves the
camera’s center of projection to the correct position, so that the value of t3 can be made equal
to zero, leaving us with a 3 × 3 matrix.

Although the above treatment gives a good indication of the underlying meaning of G, it is
not general because we have not so far included scaling and skew parameters in the internal
matrix. In fact the generalized form of Ginternal is:

Ginternal =
⎡
⎣ s1 b1 t1

b2 s2 t2
0 0 1/f

⎤
⎦ (1.81)

Potentially, Ginternal should include transforms for correcting (1) scaling errors, (2) transla-
tion errors, (3) sensor skewing errors, (4) sensor shearing errors, (5) unknown sensor orien-
tation within the image plane. Clearly, translation errors are corrected by adjusting t1 and t2.
All the other adjustments are concerned with the values of the 2 × 2 submatrix containing
parameters s1, s2, b1, b2.

However, note that application of this matrix performs rotation within the image plane
immediately after rotation has been performed in the world coordinates by Gexternal, and it is
virtually impossible to separate the two rotations. This explains why we now have a total of
6 external and 6 internal parameters totaling 12 rather than the expected 11 parameters. As a
result it is better to exclude item 5 in the above list of internal transforms and to subsume it
into the external parameters. Since the rotational component in Ginternal has been excluded,
b1 and b2 must now be equal, and the internal parameters will be: s1, s2, b, t1, t2. Note that
the factor 1/f provides a scaling which cannot be separated from the other scaling factors
during camera calibration, without specific (i.e., separate) measurement of f . Thus, we have
a total of 6 parameters from Gexternal and 5 parameters from Ginternal: this totals 11 and equals
the number cited in the previous section.

1.4.12 Multiple view vision

During the 1990s a considerable advance in 3-D vision was made by examining what could
be learnt from uncalibrated cameras using multiple views. At first sight, considering the ef-
forts made in earlier sections of this chapter to understand exactly how cameras should be
calibrated, this may seem nonsensical. Nevertheless, there are considerable potential advan-
tages in examining multiple views—not least, many thousands of videotapes are available
from uncalibrated cameras, including those used for surveillance and those produced in the
film industry. In such cases, as much must be made of the available material as possible.
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However, the need is deeper than this. Many situations exist in which the camera parame-
ters might vary because of thermal variations, or because the zoom or focus setting has been
adjusted: and it is impracticable to keep recalibrating a camera using accurately made test
objects. Finally, if multiple cameras are used, each will have to be calibrated separately, and
the results compared to minimize the combined error: it is far better to examine the system as
a whole, and to calibrate it on the real scenes that are being viewed.

In fact, we have already met some aspects of these aspirations, in the form of invariants
that are obtained in sequence by a single camera. For example, if a series of 4 collinear points
are viewed and their cross ratio is checked, it will be found to be constant as the camera
moves forward, changes orientation or views the points increasingly obliquely—so long as
they all remain within the field of view. For this purpose, all that is required to perform
the recognition and maintain awareness of the object is an uncalibrated but distortion-free
camera.

To understand how image interpretation can be carried out more generally, using multi-
ple views—whether from the same camera moved to a variety of places, or multiple cameras
with overlapping views of the world—we need to go back to basics and make a more general
attack on concepts such as binocular vision and epipolar constraints. In particular, two im-
portant matrices will be called into play—the ‘essential’ matrix and the ‘fundamental’ matrix.
We start with the essential matrix and then generalize the idea to the fundamental matrix. But
first we need to look at the geometry of two cameras with general views of the world.

1.4.13 Generalized epipolar geometry

In Section 1.4.1, we considered the stereo correspondence problem, and had already sim-
plified the task by choosing two cameras whose image planes were not only parallel but in the
same plane. This made the geometry of depth perception especially simple, but suppressed
possibilities allowed for in the human visual system (HVS), of having a nonzero vergence
angle between the two images.

Here we generalize the situation to cover the possibility of disparity coupled with sub-
stantial vergence. Fig. 1.26 shows the revised geometry. Note first that observation of a real
point P in the scene leads to points P1 and P2 in the two images; that P1 could correspond to
any point on the epipolar line E2 in image 2; and similarly, that point P2 could correspond to
any point on the epipolar line E1 in image 1. Indeed, the so-called epipolar plane of P is the
plane containing P and the projection points C1 and C2 of the two cameras: the epipolar lines
(see Section 1.4.1) are thus the straight lines in which this plane cuts the two image planes.
Furthermore, the line joining C1 and C2 cuts the image planes in the so-called epipoles e1 and
e2: these can be regarded as the images of the alternate camera projection points. Note that
all epipolar planes pass through points C1, C2 and e1, e2: this means that all epipolar lines in
the two images pass through the respective epipoles.

1.4.14 The essential matrix

In this section we start with the vectors P1, P2, from C1, C2 to P, and also the vector C from
C1 to C2. Vector subtraction gives:

P2 = P1 − C (1.82)
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FIGURE 1.26 Generalized imaging of a scene from two viewpoints. In this case there is substantial vergence. All
epipolar lines in the left image pass through epipole e1: of these, only E1 is shown. Similar comments apply for the
right image.

We also know that P1, P2 and C are coplanar, the condition of coplanarity being:

P2.C × P1 = 0 (1.83)

To progress, we need to relate the vectors P1 and P2 when these are expressed relative to
their own frames of reference. If we take these vectors as having been defined in the C1 frame
of reference, we now reexpress P2 in its own (C2) frame of reference, by applying a translation
C and a rotation of coordinates expressed as the orthogonal matrix R. This leads to:

P′
2 = RP2 = R(P1 − C) (1.84)

so that:

P2 = R−1P′
2 = RTP′

2 (1.85)

Substituting in the coplanarity condition gives:

(RTP′
2).C × P1 = 0 (1.86)

At this point it is useful to replace the vector product notation by using a skew-symmetric
matrix C× to denote C ×, where:

C× =
⎡
⎣ 0 −Cz Cy

Cz 0 −Cx

−Cy Cx 0

⎤
⎦ (1.87)
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At the same time we observe the correct matrix formulation of all the vectors by transposing
appropriately. We now find that:

(RTP′
2)

TC×P1 = 0 (1.88)

∴ P′T
2 RC×P1 = 0 (1.89)

Finally, we obtain the ‘essential matrix’ formulation:

P′T
2 EP1 = 0 (1.90)

where the essential matrix has been found to be:

E = RC× (1.91)

Eq. (1.90) is actually the desired result: it expresses the relation between the observed posi-
tions of the same point in the two camera frames of reference. Furthermore, it immediately
leads to formulae for the epipolar lines. To see this, first note that in the C1 camera frame:

p1 = (f1/Z1)P1 (1.92)

while in the C2 camera frame (and expressed in terms of that frame of reference):

p′
2 = (f2/Z2)P′

2 (1.93)

Eliminating P1 and P′
2, and dropping the prime (as within the respective image planes the

numbers 1 and 2 are sufficient to specify the coordinates unambiguously), we find:

pT
2 Ep1 = 0 (1.94)

as Z1, Z1 and f1, f2 can be canceled from this matrix equation.
Now note that writing pT

2 E = lT
1 and l2 = Ep1 leads to the following relations:

pT
1 l1 = 0 (1.95)

pT
2 l2 = 0 (1.96)

This means that l2 = Ep1 and l1 = ETp2 are the epipolar lines corresponding to p1 and p2
respectively.

1.4.15 The fundamental matrix

Notice that in the last part of the essential matrix calculation, we implicitly assumed that
the cameras are correctly calibrated. Specifically, p1 and p2 are corrected (calibrated) image
coordinates. However, there is a need to work with uncalibrated images, using the raw pixel
measurements—for all the reasons given in Section 1.4.12. Applying the camera intrinsic
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matrices G1, G2 to the calibrated image coordinates (Section 1.4.10), we get the raw image
coordinates:

q1 = G1p1 (1.97)

q2 = G2p2 (1.98)

In fact, we here need to go in the reverse direction, so we use the inverse equations:

p1 = G−1
1 q1 (1.99)

p2 = G−1
2 q2 (1.100)

Substituting for p1 and p2 in Eq. (1.94) we find the desired equation linking the raw pixel
coordinates:

qT
2 (G−1

2 )TEG−1
1 q1 = 0 (1.101)

which can be expressed as:

qT
2 Fq1 = 0 (1.102)

where

F = (G−1
2 )TEG−1

1 (1.103)

F is defined as the ‘fundamental matrix’. Because it contains all the information that would be
needed to calibrate the cameras, it contains more free parameters than the essential matrix.
However, in other respects the two matrices are intended to convey the same basic infor-
mation, as is confirmed by the resemblance between the two formulations—Eqs. (1.90) and
(1.102).

1.4.16 Properties of the essential and fundamental matrices

Next we consider the composition of the essential and fundamental matrices. In particular,
note that C× is a factor of E and also, indirectly, of F . In fact, they are homogeneous in C×, so
the scale of C will make no difference to the two matrix formulations (Eqs. (1.90) and (1.102)),
only the direction of C being important: indeed, the scales of both E and F are immaterial,
and as a result only the relative values of their coefficients are of importance. This means that
there are at most only 8 independent coefficients in E and F . In fact, in the case of F there
are only 7, as C× is skew-symmetric, and this ensures that it has rank 2 rather than rank 3—a
property that is passed on to F . The same argument applies for E, but the lower complexity
of E means that it has only 5 free parameters. In the latter case it is easy to see what they
are: they arise from the original 3 translation (C) and 3 rotation (R) parameters, less the one
parameter corresponding to scale.

In this context, note that if C arises from a translation of a single camera, the same essential
matrix will result whatever the scale of C: only the direction of C actually matters, and the
same epipolar lines will result from continued motion in the same direction. In fact, in this
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case we can interpret the epipoles as foci of expansion or contraction. This underlines the
power of this formulation: specifically, it treats motion and displacement a single entity.

Finally, we should try to understand why there are 7 free parameters in the fundamental
matrix. The solution is relatively simple. Each epipole requires 2 parameters to specify it. In
addition, 3 parameters are needed to map any 3 epipolar lines from one image to the other.
But why do just 3 epipolar lines have to be mapped? This is because the family of epipolar
lines is a pencil whose orientations are related by cross ratios, so once 3 epipolar lines have
been specified, the mapping of any other can be deduced.

1.4.17 Estimating the fundamental matrix

In the previous section we showed that the fundamental matrix has 7 free parameters. This
means that it ought to be possible to estimate it by identifying the same 7 features in the two
images. However, while this is mathematically possible in principle, and a suitable nonlinear
algorithm has been devised by Faugeras et al. (1992) to implement it, it has been shown that
the computation can be numerically unstable. Essentially, noise acts as an additional variable
boosting the effective number of degrees of freedom in the problem to 8. However, a linear
algorithm called the 8-point algorithm has been devised to overcome the problem. Curiously,
this algorithm had been proposed many years earlier by Longuet-Higgins (1981) to estimate
the essential matrix, but it came into its own when Hartley (1995) showed how to control the
errors by first normalizing the values. In addition, by using more than 8 points, increased
accuracy can be attained, but then a suitable algorithm must be found that can cope with
the now overdetermined parameters. Principal component analysis can be used for this, an
appropriate procedure being singular value decomposition (SVD).

1.4.18 Improved methods of triangulation

For some years it was known that there were difficulties in finding accurate numerical so-
lutions of the fundamental matrix, the lack of robustness being due to least squares analysis
not coping well when data is corrupted by noise. This problem arises whenever the noise
contains outliers. In particular, outliers can arise when noise prevents corresponding lines of
sight from meeting in the 3-D scene (i.e., when the two lines of sight are skew). The obvious
and widely tested solution to this problem is to choose the mid-point of the common per-
pendicular to the two lines of sight as the point of intersection. However, this method does
not give optimal results, ultimately because the concepts ‘common perpendicular’ and ‘mid-
point’ are not mathematically valid for FPP. In fact, Kanatani (1996) was able to define a new
way of determining the optimal correction—by taking the intersection as the point where
the total amount of displacement on the two image planes is a minimum. Though Hartley
and Sturm’s (1994) idea was similar, it was found that Kanatani’s method was several or-
ders of magnitude faster and did not suffer from the epipole singularities arising with the
Hartley-Sturm method (Torr and Zisserman, 1997). Subsequently, as late as 2019, interesting
improvements to the method are still emerging. In particular, Lee and Civera (2019) proposed
a modified mid-point method—‘the generalized weighted midpoint’ method—in which the
two starting points are not assumed to lie on the common perpendicular. They showed that,
although their method is not theoretically optimal in the sense of minimizing geometric or
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algebraic errors, it outperforms existing methods in terms of speed, simplicity and combined
2-D, 3-D and parallax accuracy.

Fathy et al. (2011) clarified the overall situation as follows: the 8-point algorithm is a one-
step method which is normally applied after outlier removal to obtain an initial estimate of
the fundamental matrix: this is then iteratively refined to produce a more accurate solution.

1.4.19 The achievements and limitations of multiple view vision

The last few sections have discussed the transformations required for camera calibration
and have outlined how calibration can be achieved. The camera parameters have been clas-
sified as ‘internal’ and ‘external’, thereby simplifying the conceptual problem and throwing
light on the origins of errors in the system. It has been shown that a minimum of 6 points
is required to perform calibration in the general case where 11 transformation parameters
are involved. Nevertheless, it is normally important to increase the number of points used
for calibration as far as possible, since substantial gains in accuracy can be obtained via the
resulting averaging process.

Section 1.4.12 introduced multiple view vision. This important topic was seen to rest on
generalized epipolar geometry, and led to the essential and fundamental matrix formulations,
which relate the observed positions of any point in two camera frames of reference. The im-
portance of the 8-point algorithm for estimating either of these matrices—and particularly
the fundamental matrix, which is relevant when the cameras are uncalibrated—was stressed.
In addition, the need for accuracy and robustness in estimating the fundamental matrix is
still a research issue, though great strides have been made in recent years (see Section 1.4.18)
regarding the outlier removal phase of fundamental matrix estimation.

1.5 Part D – Tracking moving objects

1.5.1 Tracking – the basic concept

In recent years, many algorithms have been devised for interpreting single images and
identifying a high proportion of the objects within them: following this success, attention
turned to the analysis of image sequences and videos. In fact, if the images in any sequence
were simply regarded as sets of separate images or ‘frames’, this new task could already
be regarded as solved; it therefore became just as relevant to interpret image sequences as
entities in their own right. Thus, algorithms were needed for identifying and tracking moving
objects through any sequence.

We could tackle this task by identifying objects in all the frames, and then computing
tracks showing how the objects have moved between frames. This could be implemented by
the following algorithm:

for all frames in sequence
find and identify all the objects

link the objects between frames
list all the objects and their tracks.
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This procedure demands that all objects be detected and recognized, in which case linking
them to form tracks would involve linking only objects in the same recognition class (e.g.,
cars). However, it would be further facilitated if all objects in the same class could be iden-
tified individually (e.g., car 1, car 2, etc.), though if some such objects were very similar, it is
possible that some confusion would arise when linking them.

This rather exacting procedure could be simplified if objects were characterized by their
motion parameters. In fact, tracking information should permit significant savings to be made
in computation. Hence we arrive at an alternative strategy:

detect all objects in the first frame
find how these objects have moved in each successive frame
list all the objects and their tracks.

This simplified procedure requires that objects be detected (rather than recognized) in the
first frame. In addition, there is no need to actually recognize them in subsequent frames, as
they should be uniquely identifiable from their relative closeness.

A further saving in effort can in principle be made by avoiding the first stage—that of
detecting all objects in the first frame. All we need to do is to study the motions themselves
and identify anything that moves as an object. Perhaps the simplest way of approaching this
would be to take differences between adjacent frames, in which case any changes should
indicate the locations of moving objects. However, this approach tends to locate only limited
sections of target outlines: for example, it will ignore the bulk of any object of homogeneous
intensity—in accordance with the well-known differencing formula −�I.v. The simplest way
out of this difficulty is to model the background; then, by subtracting each frame from the
background model, we should be able to locate any moving objects. (Naturally, this will work
best if the background remains stationary.)

Though attractive, this idea is not trivial to apply in practice. One of the main problems is
that a scene containing a series of moving objects will result in the background model varying
continually as moving objects pass over it: a paradigm example is that of a road scene along
which vehicles are traveling. In that case, minor changes in the deduced background will
have to be eliminated by some sort of averaging process. Note that the deduced background
will also have to be updated as time goes on because of changes in ambient illumination and
varying weather conditions. So the question is, how to carry out this updating, at the same
time compensating for objects that have passed by. Temporal frame averaging is a poor way
of achieving this, but some studies (Lo and Velastin, 2001; Cucchiara et al., 2003) showed that
temporal median filtering can be quite effective, as it is capable of eliminating the effects of
outlying intensity values, such as those due to vehicles moving against the stationary back-
ground.

One problem with this approach is that finding the temporal median requires the storage
of a great many frames—a criticism that does not apply for normal averaging, which can
conveniently be carried out by applying a temporally weighted running average. However,
Davies (2017) has shown that by implementing the temporal median iteratively, this problem
can be solved, and that this solution is also able to update the background model to offset
the effects of varying background illumination. Furthermore, he found that an even better
approach is to use a ‘restrained’ median filter, in which extreme intensities and colors in a
restricted band relative to the previous iterative approximation are ignored. In a road scene,
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FIGURE 1.27 Background subtraction using a temporal median filter. Note the plethora of stationary shadows
that are completely ignored during the process of background subtraction. In (a) the ‘ghost’ of the bus (from its
past position) still appears, but in (b) it has started to merge back into the background: the problem is considerably
reduced in (c) and (d), which uses a ‘restrained’ temporal median filter. Overall, foreground object fragmentation
and false shapes (including the effects of moving shadows) are the worst problems. The lines of black graphics dots
demarcate the relevant road region: almost all of the fluttering vegetation lies outside this region.

this prevents vehicles that are temporarily stationary from excessively distorting the deduced
background levels (see Figs. 1.27 and 1.28).

Note that with these types of approach, there is no a priori reason why intensities due to
vehicles or other objects should be greater or less than the true background: both possibilities
clearly exist. Hence, subtracting the current frame from the background model is liable to
break any moving object into several parts, which will subsequently have to be recombined
using methods such as morphological processing. Fortunately, this technique can also help
to eliminate noise: the effects of fluttering vegetation, such as moving leaves or branches, can
also be very successfully suppressed in this way—as may be seen from Figs. 1.27 and 1.28.

Interestingly, whereas the above approach can successfully identify vehicles in road scenes,
it regards their shadows as parts of the objects, as it does not involve any high-level reasoning.
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FIGURE 1.28 (a) and (b) show the difficulty of interpreting the immediate results of background subtraction.
These two frames show clearly the noise problems that arise during background subtraction: the white pixels indicate
where the current frame fails to closely match the background model. Morphological operations (erosions followed
by dilations) are used to largely eliminate the noise and to integrate the vehicle shapes as far as possible, as shown by
the white graphics outlines in Fig. 1.27. Note that the latter contain not only the vehicle shapes but also the shadows
that move with them.

This effect is illustrated in Figs. 1.27 and 1.28. In fact, shadow detection has been widely
studied and Horprasert et al. (1999) demonstrated a useful principle for implementing it:
this involved noting that shadows have similar chromaticity, but lower brightness, than the
background model.

1.5.2 Alternatives to background subtraction

While the background subtraction method described above is intrinsically simple, surpris-
ingly effective, and very fast running, it is also limited in (a) taking the background to be
basically unchanging—albeit coping (by temporal averaging and morphological processing)
with moving entities in the background, and (b) not using proper models of the foreground
objects. A more rigorous approach would be to regard the distributions of intensities and col-
ors for any pixel as the superposition of several distributions corresponding to two or three
component sources. Here what is important is that each of the component distributions could
be quite narrow and well defined. This means that if each is known from ongoing training,
any current intensity I can be checked to determine whether it is likely to correspond to back-
ground or to a new foreground object.

This makes Gaussian mixture models (GMMs) useful for representing the true background
and foreground intensity ranges. In fact, the number of components at any pixel is initially
unknown: indeed, a large proportion of pixels will have only a single component, but the
number of components required in practice commonly lies in the range 3 to 5. However,
determining the GMMs necessitates application of the expectation maximization (EM) al-
gorithm and is computationally burdensome. In fact, while it is usual to use this rigorous
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approach to initialize the background generation process, many workers use simpler, more
efficient techniques for updating it, so that the ongoing process can proceed in real time.

Unfortunately, the GMM approach fails when the background has very high frequency
variations. Essentially, this is because the algorithm has to cope with rapidly varying dis-
tributions, which can change dramatically over very short periods of time, so the statistics
become too poorly defined. To tackle this problem, Elgammal et al. (2000) moved away from
the parametric approach of the GMM. Their nonparametric method involves taking a kernel
smoothing function (typically a Gaussian) and for each pixel, applying it to the N samples
of I for frames appearing during the period �t prior to the current time t . This approach is
able to rapidly adapt to jumps from one intensity value to another, while at the same time
obtaining the local variances at each pixel. Thus, its value lies in its capability to forget old
intensities and to reflect local variances rather than random intensity jumps. In addition, as
it does not employ the EM algorithm, it is able to run highly efficiently in real time and to
be capable of sensitive detection of foreground objects coupled with low false alarm rates. To
achieve all this, it uses separate Gaussian kernel functions for each color channel, and then
uses the chromaticity-based method mentioned earlier for suppressing shadows.

So far, we have seen that background subtraction has the advantages of being straight-
forward to apply, fast running and highly effective—even to the extent of being able (with
suitable algorithmic adjustments) to cope with slowly varying background illumination; to
eliminate shadows in the background and the foreground; to suppress ‘ghosts’ arising from
temporarily stationary vehicles; and to suppress the effects of fluttering vegetation. On the
downside, it relies on the background being static, which in turn means that it requires the
use of fixed cameras. In addition, there is no guarantee that all parts of the foreground objects
will have different intensities from the background—a factor that can fragment objects and
leads to the need for morphological processing, itself a somewhat ad hoc solution.

A further problem that arises with tracking based on background subtraction is that fore-
ground objects can be partially or completely occluded by other objects: this happens par-
ticularly when pedestrians are being viewed in crowded precincts. At best this can lead to
fragmented tracks, and at worst to wrongly connected tracks. Note also that the motion of
some objects may cease altogether. Clearly, carefully thought-out methods are needed for
solving these problems. The traditional way of dealing with broken tracks was to employ
predictive filters such as the Kalman filter, but these are of limited use as they are essentially
aimed at assessing the probabilities of connecting pairs of tracklets, based on single unimodal
Gaussian densities.

Overall, these criticisms and problems require temporal differencing to be backed up by
template correlation matching, so that it is known that the same object is still being dealt
with. As noted by Lipton et al. (1998), temporal differencing (or related methods such as
background subtraction) can be used to detect moving objects, and correlation matching can
be used (a) to accurately locate the objects and (b) to help train the correlation template; at
each stage the template with the best correlation is used for both (a) and (b). In fact, using the
best correlation template is useful even when one object partially occludes another. Further-
more, it is particularly useful when a particular object becomes stationary, as there is then no
uncertainty of its identity or location.

Stalder et al. (2009) developed an alternative object tracking strategy which they described
as ‘tracking by detection’. The aim was to enable the tracker to adapt to any changes in the
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appearance of an object by updating the object model. However, this leads to the so-called
‘template update problem’, wherein there is a trade-off between adaptivity and stability
(specifically, the tracker could end up with a totally distorted, nonviable version of the object
profile—a process called ‘drifting’). This difficulty is overcome by reformulating tracking as a
semisupervised learning problem in which both labeled and unlabeled data can be used during
tracking. To make this work, semisupervised boosting is used, each unlabeled sample in the
local search region being assigned a pseudo-label yi and an importance weight λi (labeled
samples have label yi and importance 1). After initial detection, leading to a prior HP, the
object classifier H is built, taking account of positive samples from the object and negative
ones from the surrounding background: typically, the local maximum of the confidence dis-
tribution is taken to indicate the new object position and the class is updated. Thus, we get a
sequence of object locations, starting with the first (which resulted from the initial detection),
and then proceeding to many further tracked positions. However, in principle the boosting
equations can also lead to the prior either vanishing or dominating too much—corresponding
respectively to drifting or zero adaptation. But in general drifting is limited as the tracker is
not able to get too far away from the prior.

Problems with the above tracking strategy include (a) taking partial occlusions or ap-
parently permissible changes in appearance as unallowed drift; and (b) jumping to similar
objects (for example, a face detector might jump from one person’s face to another). Clearly,
tracking by detection is mainly applicable for single target tracking, but when multiple target
tracking is required, the three processes, detection, tracking and recognition, must all be taken
into account. In particular, recognition has to be taken as distinguishing similar objects in a
scene.

Stalder et al.’s (2009) multiple target classifier system proved highly successful for tracking
multiple objects. It limited drifting by careful use of supervised updates and the avoidance
of feedback loops, thereby preventing the accumulation of small errors which could lead to
drift. This was achieved by making the tracker the dominant element in the approach, so that
its information flow either went (in a loop) back to itself or (eventually) to the previous rec-
ognizer. This system permitted tracking with a moving camera and was also reliable enough
to permit long-term tracking over times of ∼24 hours.

Another aspect of multiple target tracking is the capability for reidentification of objects
that are temporarily hidden from view (e.g., temporarily occluded or outside the field of view
of the camera). This involves identification matching and is only permitted if the degree of
match achieved is significantly higher than for any other potential matches. Reidentification
can fail if the degree of match becomes too different during the relevant temporal gap. Again,
Stalder et al.’s system also performed well in these respects.

Kalal et al. (2011) developed a powerful tracking system aimed particularly at eliminating
run-time drift errors and problems that occur when tracked objects disappear from view.
Their approach was neatly described as ‘tracking-learning-detection’. The key aspect of this
method is that learning is carried out by a ‘P-expert’ which estimates missed detections, an
‘N-expert’ which estimates false alarms, and the means of updating both experts by learning.
By keeping tracking and detection separate, they claimed that neither the tracking nor the
detection capabilities are compromised, and present strong evidence for the success of their
approach—in particular, by scoring an average of 81% accuracy on many datasets, thereby
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significantly outperforming five earlier approaches, none of which achieved better than 22%
accuracy.

Whereas Kalal et al.’s (2011) work only tracked single objects, Wu et al. (2012) showed how
to carry out coupling detection and data association for multiple objects to ensure that com-
plete tracks would be determined. This approach employed network flow data association
and relied on an earlier paper by Castañón (1990) entitled “Efficient algorithm for finding
the k best paths through a trellis”. This title shows that the method relies heavily on exten-
sive analysis of graphs: while interesting, space does not permit a full discussion of these
techniques to be included here. Suffice it to say that tracking multiple objects is a difficult
problem that becomes even more difficult as the number of targets increases and the whole
scene fills up with objects and tracks. Thus, in this respect, Wu et al.’s (2012) work can be
regarded as more thoroughgoing than that of Stalder et al. (2009). We will study more recent
developments on this topic in Part F, Section 1.7.7, after introducing deep learning methods.

1.6 Part E – Texture analysis

1.6.1 Introduction

We have already considered several core aspects of image analysis, including in particu-
lar feature detection, object recognition and segmentation. Here we go on to consider texture
analysis. To proceed, we start by defining a texture as the characteristic variation in intensity
which should allow us to recognize and describe a textured region and to outline its bound-
aries (Fig. 1.29). Typically, a texture is the intensity pattern that results when light is reflected
from a surface having a certain degree of roughness. Clearly, a smooth, uniformly lit surface
will exhibit no texture, while a piece of cloth or a sandy beach will have characteristic textures
of their own.

Broadly speaking, textures vary in their degrees of randomness and regularity, and in the
latter case they may have high or low directionalities. For example, pieces of cloth generally
exhibit high degrees of regularity and directionality, while the intensity pattern emanating
from the surface of a sandy beach may appear highly random, with negligible directionality.
Another factor is the scale of the perceived particle size for the surface, which will be small for
sand and much larger for a tray of peas. In fact, the tiny elements composing a textured sur-
face are often called textural elements or texels. These considerations lead us to characterize
textures in the following ways:

1. The texels will have various sizes and degrees of uniformity.
2. The texels will be orientated in various directions.
3. The texels will be spaced at varying distances in different directions.
4. The contrast will have various magnitudes and variations.
5. Various amounts of background may be visible between texels.
6. The variations composing the texture may each have varying degrees of regularity vis-à-

vis randomness.

The significant number of parameters required to characterize a texture are bound to make
texture analysis quite complicated: and of course, many of the parameters will have a high
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FIGURE 1.29 A variety of textures. These textures demonstrate the wide variety of familiar textures which are
easily recognized from their characteristic intensity patterns.

degree of variability, so texture analysis tends to result in statistical descriptions of textures.
The following section indicates some of the ways in which this process has been tackled.

1.6.2 Basic approaches to texture analysis

In Section 1.6.1 we defined texture as the characteristic variation in intensity of a region in
an image which should allow us to recognize it, describe it and outline its boundaries. In view
of the statistical nature of textures, this prompts us to characterize a texture by the variance
in intensity values taken over the region of the texture. However, such an approach will not
give a rich enough description of the texture for most purposes: it will also be unsuitable in
cases where the texels are well defined, or where there is a high degree of periodicity in the
texture. On the other hand, for highly periodic textures such as arise with many textiles, it is
natural to consider the use of Fourier analysis. Unfortunately, though this approach was long
ago tested rigorously, the results were not encouraging.

Autocorrelation is another obvious approach to texture analysis, since it should show up
both local intensity variations and also the repeatability of the texture (see Fig. 1.30). An
early study was carried out by Kaizer (1955). He examined by how many pixels an image
has to be shifted before the autocorrelation function drops to 1/e of its initial value, and
produced a subjective measure of coarseness on this basis. However, Rosenfeld and Troy
(1970a,b) showed that autocorrelation is not a satisfactory measure of coarseness. In addition,
autocorrelation is not a good discriminator of isotropy in natural textures. Hence workers
were quick to take up the co-occurrence matrix approach introduced by Haralick et al. (1973).

The grey-level co-occurrence matrix approach is based on studies of the statistics of pixel
intensity distributions. As hinted above, single pixel statistics do not provide rich enough
descriptions of textures for practical applications. Thus, it is natural to consider second order
statistics obtained by considering pairs of pixels with specific spatial relations to each other.
Hence, co-occurrence matrices are used, which express the relative frequencies P (i, j|d , θ )
with which two pixels having relative polar coordinates (d , θ ) appear with intensities i, j . The
co-occurrence matrices provide raw numerical data on the texture, though this data must be



1.6. Part E – Texture analysis 63

FIGURE 1.30 Use of autocorrelation function for texture analysis. This diagram shows the possible 1-D profile
of the autocorrelation function for a piece of material in which the weave is subject to significant spatial variation:
notice that the periodicity of the autocorrelation function is damped down over quite a short distance.

condensed to relatively few numbers before it can be used to classify the texture. The early
paper by Haralick et al. (1973) gave fourteen such measures, and these were used successfully
for classification of many types of material (including, for example, wood, corn, grass and
water).

Unfortunately, the amount of data in the co-occurrence matrices is liable to be many times
more than in the original image—a situation which is exacerbated in more complex cases by
the number of values of d and θ that are required to accurately represent the texture. In addi-
tion, the number of grey levels is typically ∼256, and the amount of matrix data varies as the
square of this number. Finally, co-occurrence matrices merely provide a new representation:
they do not themselves solve the recognition problem. As a result of these factors, the 1980s
saw a highly significant diversification of methods for the analysis of textures. Of these, Laws’
approach (1979; 1980a; 1980b) is important in that it has led to other developments which pro-
vide a systematic, adaptive means of tackling texture analysis. This approach is covered in
the following section.

1.6.3 Laws’ texture energy approach

In 1979 and 1980 Laws presented his novel texture energy approach to texture analysis
(Laws, 1979, 1980a,b). This involved the application of simple filters to digital images. The
basic filters he used were common Gaussian, edge detector and Laplacian-type filters, and
were designed to highlight points of high ‘texture energy’ in the image. By identifying these
high energy points, smoothing the various filtered images, and pooling the information from
them, he was able to characterize textures highly efficiently. As remarked earlier, Laws’ ap-
proach has strongly influenced much subsequent work and it is therefore worth considering
it here in some detail.

The Laws’ masks are constructed by convolving together just three basic 1 × 3 masks:

L3 = [1 2 1] (1.104)

E3 = [−1 0 1] (1.105)

S3 = [−1 2 − 1] (1.106)
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TABLE 1.3 The nine 3 × 3 Laws masks.

L3TL3 L3TE3 L3TS3
1 2 1
2 4 2
1 2 1

−1 0 1
−2 0 2
−1 0 1

−1 2 −1
−2 4 −2
−1 2 −1

E3TL3 E3TE3 E3TS3
−1 −2 −1
0 0 0
1 2 1

1 0 −1
0 0 0

−1 0 1

1 −2 1
0 0 0

−1 2 −1

S3TL3 S3TE3 S3TS3
−1 −2 −1
2 4 2

−1 −2 −1

1 0 −1
−2 0 2
1 0 −1

1 −2 1
−2 4 −2
1 −2 1

The initial letters of these masks indicate Local averaging, Edge detection and Spot detection.
In fact, these basic masks span the entire 1 × 3 subspace and form a complete set. Similarly,
the 1 × 5 masks obtained by convolving pairs of these 1 × 3 masks together form a complete
set, only the following five being distinct:

L5 = [1 4 6 4 1] (1.107)
E5 = [−1 − 2 0 2 1] (1.108)
S5 = [−1 0 2 0 − 1] (1.109)
R5 = [1 − 4 6 − 4 1] (1.110)

W5 = [−1 2 0 − 2 1] (1.111)

(Here the initial letters are as before, with the addition of Ripple detection and Wave detec-
tion.) We can also use matrix multiplication to combine the 1 × 3 and a similar set of 3 × 1
masks to obtain nine 3 × 3 masks—for example:⎡

⎣ 1
2
1

⎤
⎦[ −1 2 −1

] =
⎡
⎣ −1 2 −1

−2 4 −2
−1 2 −1

⎤
⎦ (1.112)

Again, the resulting set of masks forms a complete set (Table 1.3): note that two of these
masks are identical to the Sobel operator masks. The corresponding 5 × 5 masks are entirely
similar but are not considered in detail here as all relevant principles are covered by the 3 ×
3 masks.

All such sets of masks include one whose components do not average to zero. This one is
less useful for texture analysis since it will give results dependent more on image intensity
than on texture. The remainder is sensitive to edge points, spots, lines and combinations of
these.

Having produced images that indicate local edginess, etc., the next stage is to deduce the
local magnitudes of these quantities. These magnitudes are then smoothed over a region
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FIGURE 1.31 Basic form for a Laws’ texture classifier. Here I is the incoming image, M represents the microfeature
calculation, E the energy calculation, S the smoothing, and C the final classification.

rather greater than the basic filter mask size (e.g., Laws used a 15 × 15 smoothing window
after applying his 3 × 3 masks): the effect of this is to smooth over the gaps between the
texture edges and other micro-features. At this point the image has been transformed into
a vector image, each component of which represents energy of a different type. While Laws
(1980b) used both squared magnitudes and absolute magnitudes to estimate texture energy,
the former corresponding to true energy and giving a better response, the latter are useful in
requiring less computation:

E(l,m) =
l+p∑

i=l−p

m+p∑
j=m−p

|F(i, j)| (1.113)

F (i, j ) being the local magnitude of a typical microfeature which is smoothed at a general
scan position (l, m) in a (2p + 1) × (2p + 1) window.

A further stage is required to combine the various energies in a number of different ways,
providing several outputs which can be fed into a classifier to decide upon the particular type
of texture at each pixel location (Fig. 1.31): if necessary, principal component analysis is used
to help select a suitable set of intermediate outputs.

Laws’ method resulted in excellent classification accuracy quoted at (for example) 87%
compared with 72% for the co-occurrence matrix method, when applied to a composite tex-
ture image of grass, raffia, sand, wool, pigskin, leather, water and wood (Laws, 1980b). He
also found that the histogram equalization normally applied to images to eliminate first-order
differences in texture field grey-scale distributions led to little improvement. In an indepen-
dent research study, Pietikäinen et al. (1983) confirmed that Laws’ texture energy measures
are more powerful than measures based on pairs of pixels (notably, co-occurrence matrices).
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1.6.4 Ade’s eigenfilter approach

In 1983 Ade investigated the theory underlying the Laws’ approach, and developed a re-
vised rationale in terms of eigenfilters. He took all possible pairs of pixels within a 3 × 3
window, and characterized the image intensity data by a 9 × 9 covariance matrix. He then
determined the eigenvectors required to diagonalize this matrix. These correspond to filter
masks similar to the Laws’ masks, i.e., use of these ‘eigenfilter’ masks produces images which
are principal component images for the given texture. Furthermore, each eigenvalue gives
that part of the variance of the original image that can be extracted by the corresponding
filter. Essentially, the variances give an exhaustive description of a given texture in terms of
the texture of the images from which the covariance matrix was originally derived. Clearly,
the filters that give rise to low variances can be taken to be relatively unimportant for texture
recognition.

It will be useful to illustrate the technique for a 3 × 3 window. Here we follow Ade (1983)
in numbering the pixels within a 3 × 3 window in scan order:

1 2 3
4 5 6
7 8 9

This leads to a 9 × 9 covariance matrix for describing relationships between pixel intensi-
ties within a 3 × 3 window, as stated above. At this point we recall that we are describing a
texture, and assuming that its properties are not synchronous with the pixel tessellation, we
would expect various coefficients of the covariance matrix C to be equal. In fact, there are only
12 distinct spatial relationships between pixels if we disregard translations of whole pairs—or
13 if we include the null vector in the set (see Table 1.4). Thus, the covariance matrix, whose
components include the 13 parameters a–m, takes the form:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b f c d k g m h

b a b e c d l g m

f b a j e c i l g

c e j a b f c d k

d c e b a b e c d

k d c f b a j e c

g l i c e j a b f

m g l d c e b a b

h m g k d c f b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.114)

TABLE 1.4 Spatial relationships between pixels in a
3 × 3 window.

a b c d e f g h i j k l m

9 6 6 4 4 3 3 1 1 2 2 2 2
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Table 1.4 shows the number of occurrences of the spatial relationships between pixels in
a 3 × 3 window. Note that a is the diagonal element of the covariance matrix C, and that all
others appear twice as many times in C as indicated in the table.

C is symmetric, and the eigenvalues of a real symmetric covariance matrix are real and
positive, and the eigenvectors are mutually orthogonal. In addition, the eigenfilters thus
produced reflect the proper structure of the texture being studied and are ideally suited to
characterizing it. For example, for a texture with a prominent highly directional pattern, there
will be one or more high energy eigenvalues with eigenfilters having strong directionality in
the corresponding direction.

1.6.5 Appraisal of the Laws and Ade approaches

At this point, it is useful to compare the Laws and Ade approaches more carefully. In
the Laws approach standard filters are used, texture energy images are produced, and then
principal component analysis may be applied to lead to recognition; whereas in the Ade
approach, special filters (the eigenfilters) are applied, incorporating the results of principal
component analysis, following which texture energy measures are calculated and a suitable
number of these are applied for recognition.

The Ade approach is superior to the extent that it permits low-value energy components
to be eliminated early on, thereby saving computation. For example, in Ade’s application, the
first five of the nine components contain 99.1% of the total texture energy, so the remainder
can be ignored; in addition, it would appear that another two of the components containing
respectively 1.9% and 0.7% of the energy could also be ignored, with little loss of recognition
accuracy. However, in some applications textures could vary continually, and it may well
be inadvisable to fine-tune a method to the particular data pertaining at any one time. [For
example, these remarks apply (1) to textiles, for which the degree of stretch will vary contin-
uously during manufacture, (2) to raw food products such as beans, whose sizes will vary
with the source of supply, and (3) to processed food products such as cakes, for which the
crumbliness will vary with cooking temperature and water vapor content.]

In Unser (1986) developed a more general version of the Ade technique. In this approach
not only is performance optimized for texture classification but also it is optimized for dis-
crimination between two textures by simultaneous diagonalization of two covariance matri-
ces. The method was developed further by Unser and Eden (1989; 1990): this work makes
a careful analysis of the use of nonlinear detectors. As a result, two levels of nonlinearity
are employed, one immediately after the linear filters and designed (by employing a specific
Gaussian texture model) to feed the smoothing stage with genuine variance or other suitable
measures, and the other after the spatial smoothing stage to counteract the effect of the earlier
filter, and aiming to provide a feature value that is in the same units as the input signal. In
practical terms this means having the capability for providing an r.m.s. texture signal from
each of the linear filter channels.

Overall, the originally intuitive Laws approach emerged during the 1980s as a serious
alternative to the co-occurrence matrix approach. It is as well to note that alternative meth-
ods that are potentially superior have also been devised—see for example the forced-choice
method of Vistnes (1989) for finding edges between different textures, which apparently
has considerably better accuracy than the Laws approach. Vistnes’s (1989) investigation con-
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cludes that the Laws approach is limited by (a) the small scale of the masks which can miss
larger-scale textural structures, and (b) the fact that the texture energy smoothing operation
blurs the texture feature values across the edge. The latter finding (or the even worse situa-
tion where a third class of texture appears to be located in the region of the border between
two textures) has also been noted by Hsiao and Sawchuk (1989a,b) who applied an improved
technique for feature smoothing; they also used probabilistic relaxation for enforcing spatial
organization on the resulting data.

1.6.6 More recent developments

Over the 2000s, a trend to scale and rotation invariant texture analysis took place. In partic-
ular, the paper by Janney and Geers (2010) described an ‘invariant features of local textures’
approach, using a strictly circular 1-D array of sampling positions around any given position.
The method employs Haar wavelets, and as a result is computationally efficient. It is applied
at multiple scales in order to achieve scale invariance; in addition, intensity normalization is
used to make the method illumination as well as scale and rotation invariant. Also of note
is a book by Mirmehdi et al. (2008) on this rather specialist subject. The latter is an edited
volume containing contributions by various researchers and summarizing the position prior
to 2010. Later developments on this topic will be deferred to Part F, Sections 1.7.8 and 1.7.9,
after introducing deep learning methods.

1.7 Part F – From artificial neural networks to deep learning methods

1.7.1 Introduction: how ANNs metamorphosed into CNNs

The original aim of designing artificial neural networks (ANNs) was to emulate what is
known to happen in the human visual system. In fact, vision appeared to happen so straight-
forwardly in the human brain—whole scenes being analyzed ‘at a glance’ with no apparent
effort—that it seemed worthwhile attempting it in computerized systems. Clearly, an ANN
designed to emulate the human visual system should consist of a number of layers, each mod-
ifying the data, first locally and then by larger and larger sets of neurons until tasks such as
recognition and scene analysis are achieved. However, in the early days, use of ANNs tended
to be restricted to very few layers: indeed, a working maximum depth consisted of one input
layer, three hidden layers and one output layer—though it was later found that many basic
tasks could be tackled using a 3-layer network with a single hidden layer.

One of the reasons for the restriction to few layers was the credit assignment problem,
which meant that it became trickier to train many layers ‘through’ others; at the same time,
more layers meant more neurons to be trained and more computation being required to
complete the task. ANNs therefore tended to be called on to carry out only the classical recog-
nition process, and to be fed by standard feature detectors applied in previous nonlearning
layers. Thus, the standard paradigm was that of an image preprocessor followed by a trained
classifier. As very good feature detectors could be designed by hand, this did not cause any
obvious problems. However, as time went on, there was pressure to do full-scale analysis of
real scenes, which could contain images of many types of object in many positions and poses.
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Thus, there was a growing need to move to much more complex multilayer recognition sys-
tems for which the early types of ANN were inadequate. It also became desirable to train
the preprocessing system itself, so that it closely matched the requirements of the following
object analysis system; clearly, it was becoming necessary to produce integrated multilayer
neural networks.

In fact, by in the late 1990s ANNs were suffering because other methods such as support-
vector machines (SVMs) were challenging their position. In addition, there was no scien-
tifically based rationale for determining how many neurons or layers would be needed, or
indeed how ANNs were working internally. As a result, workers who might be in a position
to use them did not know how reliable they would be, or have the confidence to employ them
in real applications, so they started falling out of favor.

An important reason for this was that their architecture and training gave poor spatial in-
variance across images. In particular, the neurons were individually trained: each neuron saw
different training data from the other neurons in its layer; in addition, the weights needed to
be initialized randomly. These factors prevented the same decision from being made about
any object wherever it appears in an image. However, a variant on the standard ANN archi-
tecture was being developed by a few groups of workers, and during the late 2000s this came
to the forefront, and led to the ‘deep’ learning type of network (a deep network is one with
more than three nonlinear hidden layers—rather beyond the scope of regular ANNs).

The new type of architecture was the Convolutional Neural Network (CNN). In several
ways this was a less demanding architecture, as (a) each CNN neuron does not have to be
connected to all the outputs from the previous layer of neurons; (b) neurons have the same
weight parameters across the whole of any layer. Nevertheless, CNNs still use supervised
learning and they still train the network by backpropagation.

Importantly, constraining neurons to have the same weight parameters across any whole
layer vastly reduced the total number of parameters in the whole network and made it far eas-
ier to train; in addition, increased numbers of layers could be employed. Giving neurons local
connectivity improved the situation further. Note that if the neurons and weights are identical
across a whole layer, the resulting mathematical operation is by definition a convolution—
hence the term Convolutional Neural Network.

Another feature of CNNs is that they use ReLU rather than sigmoidal output functions.
‘ReLU’ means Rectified Linear Unit, and is defined by max(0, x), where x is the output value
of the immediately preceding convolution layer. This is valuable in being less computation
intensive than the old sigmoid function, and at the same time it distorts the larger signals less.
In fact, the ReLU function avoids the saturation problems that ANNs are subject to (a neuron
giving an output close to the limits (±1) of the tanh function tends to get stuck at the same
value because there is no gradient to guide the backpropagation algorithm away from it).

CNNs also incorporate pooling—i.e., taking all the outputs from a locality and deriving a
single output from them: usually, this takes the form of a sum or maximum operation on all
the inputs, maximum pooling being more common than the sum (or averaging) operation.
Pooling is generally carried out in 2 × 2 or 3 × 3 windows, the former being more common.
These options aimed to modify the data minimally, so as to remove much of the redundancy
in a particular layer of the network, while at the same time retaining the most useful data.

Note that several convolutional layers can be placed immediately after one another, mak-
ing them equivalent to a single larger convolution—a factor that can be useful for allowing
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larger features to be implemented in the same CNN. Overall, CNNs provide a reasonable al-
ternative to ANNs. In addition, they seem better adapted to the idea of moving steadily from
local to global operations on images, and looking for larger and larger features or objects in
the process.

Although proceeding through the network takes us from local to more global operations, it
is also common for the first few layers of a CNN to look for specific low-level features: hence
these will typically have sizes matching those for the particular type of image. Further on in
the network it is common for pooling operations to be applied, thereby reducing the sizes
of subsequent layers. After several stages of convolution and pooling, the network will have
narrowed down considerably, so it is possible to make the final few layers fully-connected—
i.e., in any layer each neuron is connected to all the outputs of the previous layer. At that
stage there are likely to be relatively few outputs, and those that remain will be dictated by
whatever parameters need to be supplied by the network: these may include classifications
and associated parameters such as absolute or relative positions.

1.7.2 Parameters for defining CNN architectures

When analyzing CNN architectures, there are a number of points that deserve attention.
In particular, several quantities and terms need to be defined—width W , height H , depth N ,
stride S, ‘zero-padding’ width P and receptive field R. In fact, the width and height are merely
the dimensions of the input image, or else the dimensions of a specific layer of the neural
network. The depth N of the network or of a specific block in it is the number of layers it
contains.

The width W and height H of a layer are the numbers of neurons it has in each dimension.
The stride S is the distance between adjacent neurons in the output field measured in units
corresponding to the distance between adjacent neurons in the input field: stride S can be
defined along the width and height dimensions but is usually the same for each. If S = 1,
adjoining layers have the same dimensions (but see below how the size of the receptive field
R can modify this). Note that increasing the stride S can be useful, as this saves memory and
computation. In principle, it achieves a similar effect to pooling. However, pooling involves
some averaging, while increasing the stride merely decreases the number of samples taken.

Ri is the width of the receptive field for each neuron in level i, i.e., the number of inputs
for all neurons in that level. Zero-padding is the addition of P ‘virtual’ neurons providing
static inputs at each end of the width dimension: these are given fixed weights of zero, the
idea being to ensure that all neurons in the same layer have equal numbers of inputs, thereby
facilitating programming. However, it also ensures that successive convolutions don’t lead to
smaller and smaller active widths; in particular, when S = 1, it permits us to make the widths
of adjacent layers exactly equal (i.e., Wi + 1 = Wi). A simple formula connects several of these
quantities:

Wi+1 = (Wi + 2Pi − Ri)/Si + 1 (1.115)

where the suffices pertain to the layer i inputs and the outputs feeding layer i + 1. It is worth
underlining the null situation Wi+1 = Wi that applies when Si = 1, Ri = 1 and Pi = 0. Overall,
the purpose of padding is to allow for end-effects at the extremes of each layer, by ensuring
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that the number of zeros is adjusted to accommodate the desired stride and receptive field
values.

Finally, an important point must be made about the definition of the depth of a number
of layers of a CNN. The earlier discussion has implied that a number of adjacent layers of
a CNN are normally accessed one after another in sequence—as would indeed be the case
if larger and larger convolutions were implemented one after another in an effort to detect
larger and larger features or even objects. However, there is another possibility—that the
various layers are fed in parallel from a given starting point in the network, for example the
input image. This possibility arises typically when an image is to be searched for a variety
of different features, such as lines, edges or corners, and the results fed in parallel to a more
holistic detector. This strategy was adopted in the LeNet architecture, which LeCun et al.
(1998) developed to identify handwritten numerals and zip codes.

1.7.3 Krizhevsky et al.’s AlexNet architecture

AlexNet was designed specifically to target the ImageNet Challenge, (ImageNet Large-
Scale Visual Recognition Object Challenge (ILSVRC), 2012) which took place in 2012. The
AlexNet designers (Krizhevsky et al., 2012) forced the by then quite old schema based on
CNNs into shape as a winning approach. To achieve this they had to radically improve the
CNN architecture, and this necessarily gave rise to a very large software machine; they then
had to speed it up dramatically with the aid of GPUs—by no means a small task as it meant
reoptimizing the software to match the hardware; finally, they had to find how to feed the
software system with a very large training set—again no mean task, as an unprecedentedly
large number of parameters had to be trained rigorously, and several innovations were re-
quired in order to achieve this.

The CNN architecture had 10 hidden layers (counting C, F and S layers)—only 4 more than
LeNet. However, these numbers are misleading as the depths of the various layers in AlexNet
sum to 11,176 compared with 258 for LeNet. Similarly, AlexNet contains ∼650,000 neurons
compared with 6,508 for LeNet, while the number of trainable parameters is some 60 million
compared with 60,000 for LeNet. And when we look at the size of the input image, we find
that AlexNet takes a color image of size 224 × 224, whereas LeNet could only manage a bi-
level 32 × 32 input image. So overall, AlexNet is larger than LeNet by a factor between 100
and 1000, depending on which factors should be regarded as the most relevant. However, the
real change wrought by AlexNet was the possibility of working with huge numbers of layers
and managing the credit assignment problem in spite of this—while still using the backprop-
agation algorithm for training. At the time, this was unprecedented, but it was made possible
partly by the already reduced number of parameters required by CNNs, because all the neu-
rons in any given layer of neurons have identical parameters; it was also made possible by
employing exceptionally large training sets. However, one prominent feature of the AlexNet
architecture is the horizontal split right across the network, above which a single GPU is used
for implementation—and similarly below. In principle, this should make the operation of the
architecture unduly complex, but in practice it turned out to be practicable. But because of
this complexity it will be far easier for us to concentrate on the ZFNet architecture of Zeiler
and Fergus (2014), as this is essentially a tidied up, slightly improved version of AlexNet im-
plemented on a single GPU (Fig. 1.32): in particular, it had eight rather than seven hidden
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FIGURE 1.32 Schematic of the ZFNet architecture. This schematic is very similar to that for AlexNet. Notice that
AlexNet contains 7 hidden layers whereas ZFNet contains 8 hidden layers (these figures count S layers as parts of
the corresponding C layers). Also, note that ZFNet is implemented using only a single GPU and its architecture is
unsplit.

layers [these figures count S layers as parts of the corresponding C layers]. Note also that
ZFNet incorporated a more gradual initial narrowing down of the layer dimensions (n × n)
than AlexNet (layer C1 being 110 × 110 rather than 55 × 55). On the other hand, both architec-
tures used ‘overlapping pooling’—in this case a combination of 3 × 3 pooling and 2 × 2 stride
mapping. Notice that the dimensions (n × n) of the layers start at 224 × 224 and gradually
fall to 1 × 1. Interestingly, almost all the trainable parameters are in layers F7 and F8 (F6 and
F7 for AlexNet), only 1000 connections being left for the final softmax (nonneural) classifier.

In Fig. 1.32, S1, S2 and S3 are shown in blue to the right of C1, C2 and C5 respectively;
n × n indicates the dimensions in the case of a 2-D image format; r × r is the size of a 2-D
neuron input field (a single number indicates abstract 1-D data); s × s is the 2-D stride. N is
the depth within an individual layer: its approximate size is indicated by the vertical scale in
the figure.

Very shortly before AlexNet was completed, a new technique called ‘dropout’ was intro-
duced by Hinton et al. (2012): see also Hinton (2002). The purpose of this was to limit the
incidence of overtraining. This was achieved by randomly setting a proportion (typically as
high as 50%) of the weights to zero for each training pattern; this rather surprising technique
appeared to work well: it did so by preventing hidden layers from relying too much on the
specific data fed to them. Krizhevsky et al. (2012) included this feature in AlexNet. To apply
it, the output of each neuron is randomly set to zero with probability 0.5. This is done before
the forward pass of the input data, and the affected neurons do not contribute to the ensuing
backpropagation. On the next forward pass, a different set of neuron outputs is set to zero
with probability 0.5, and again the affected neurons do not contribute to backpropagation;
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and similarly for later passes. During testing, an alternate procedure occurs, with all neuron
outputs being multiplied by 0.5. In fact, multiplying all neuron outputs by 0.5 is an approxi-
mation to taking the geometric mean of all the local neuron output probability distributions
and relies on the geometric mean being not too far from the arithmetic mean. Dropout was
incorporated into the first two layers of AlexNet, and significantly reduced the amount of
overfitting (overtraining because of too little training data).

AlexNet was trained using the 1.2 million images available from the ImageNet ILSVRC
challenge, this number being a subset of the full 15 million in the ImageNet database. In fact,
ILSVRC-2010 was the only subset for which test labels were available, there being about 1000
images in each of 1000 categories. However, it was found that these images were far too few to
specify a CNN of the complexity required to perform accurate classification of this immense
task. Therefore, means were required for expanding the dataset sufficiently to train AlexNet
and achieve classification error rates in the 10% to 20% bracket.

Two main means of augmenting the dataset were considered and implemented. One was
to apply realistic translations and reflections to the images in order to generate more images
of the same type. The transformations even extended to extracting five 224 × 224 patches
and their horizontal reflections from the initial 256 × 256 ImageNet images, giving a total of
ten patches per image. Another was to alter the intensities and colors of the input images.
To make this exercise more rigorous, it was carried out by first using principal component
analysis (PCA) to identify color principal components for the ImageNet dataset, and then
to generate random magnitudes by which to multiply the eigenvalues, thereby producing
viable variants of the original images. Together, these two approaches were able to validly
generalize, and multiply the size of, the original dataset by a factor of ∼2000—the principle
being to generate natural changes in position, intensity and color.

At this stage it ought to be emphasized that the aim of the challenge was to find the best
vision machine (giving the lowest classification error rates) that is able to recognize an ex-
ample of a flea, a dog, a car or other common object in any position in an image and in any
reasonable pose. Furthermore, the machine should prioritize its classifications to give at least
the top five most probable interpretations. Then each machine can be rated not only on the
accuracy of its top classification but also on whether the object classified appears within the
machine’s top-5 classifications. AlexNet was able to achieve a winning top-5 error-rating of
15.3%, compared with 26.2% for the runner up. Another first was the dramatic drop to below
20% error rate for such an exercise, which spelt a new lease of life for neural networks, and
brought them sharply into the limelight.

Note that all this was achieved not merely by designing a winning architecture and gen-
erating the right dataset to train it adequately, but also it was necessary to bring the training
time down to realizable levels. In this respect GPU implementation proved to be crucial. Even
with a pair of GPUs, the training time took approximately a week, working 24 hours a day,
to manage the task. Without GPUs it would have taken some 50 times longer—most proba-
bly, about a year—so the machine would have had to be submitted to a later challenge! [A
commonly accepted figure is that a GPU has a speed advantage ∼50 relative to a typical host
CPU.]

Finally, it should be noted that GPUs provide a very good implementation because of their
intrinsic parallelism and thus their capability for handling large data sets in fewer cycles.
Note that each layer of a CNN is completely homogeneous and is therefore well adapted for
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parallel processing. Note also that GPUs are well adapted to working in parallel as they are
able to read from and write to each other’s memories directly, avoiding the need to move data
through the host CPU memory.

1.7.4 Simonyan and Zisserman’s VGGNet architecture

In the continued absence of knowledge about the form of an ideal architecture, Simonyan
and Zisserman (2015) set out to determine the effect of further increases in depth. To achieve
this, they significantly reduced the number of parameters in the basic network by limiting the
maximum neuron input field to 3 × 3. In fact, they restricted the convolution input field and
stride to 3 × 3 and 1 × 1 respectively, and set both the input field and the stride of each sub-
sampling layer to 2 × 2. In addition, they arranged for the systematic and rapid convergence
of the successive layers from 224 × 224 down to 7 × 7 in 5 stages, followed by a transition
to 1 × 1 in a single fully-connected stage; this was followed two further fully-connected lay-
ers and then a final softmax output layer (Fig. 1.33). All the hidden layers included a ReLU
nonlinearity stage (not shown in the figure). Apart from the N ‘channels’, the 5 convolutional
layers C1–C5 respectively contained 2, 2, 3, 3, 3 identical sublayers (not marked in Fig. 1.33).
Finally, it should be remarked that, for reasons of experimentation, Simonyan and Zisserman
devised 6 variations on the VGGNet architecture, with 11 to 19 weighted hidden layers: here
we only cover configuration D (with 16 weighted hidden layers), for which the numbers of
identical sublayers in layers C1–C5 are as listed above, and layers F6, F7 and F8 each con-
tain 1 weighted sub-layer. The number of weighted layers obviously strongly influences the
number of parameters.

As mentioned above, Simonyan and Zisserman saved on the basic number of parameters
by restricting the convolution input field to 3 × 3. This meant that larger convolutions had to
be produced by applying several 3 × 3 convolutions in sequence. Clearly, a 5 × 5 input field
would necessitate applying two 3 × 3 convolutions, and a 7 × 7 field would require three 3 ×
3 convolutions. In the latter case, this would reduce the total number of parameters from 72 =
49 to 3 times 32 = 27. In fact, not only did this way of implementing a 7×7 convolution reduce
the number of parameters, but also it forced an additional regularization on the convolution,
as a ReLU nonlinearity was interposed between each of the 3 × 3 component convolutions.
It is also relevant that both the input and output of each 3-layer 3 × 3 convolution stack can
have N channels, in which case it will contain a total of 27N2 parameters, and it is that figure
which should be compared with 49N2 parameters.

In spite of its increased depth, VGGNet contains only about 2.4 times as many parameters
as AlexNet; also, it is much simpler and doesn’t split the architecture to fit it to a 2-GPU
system. On the contrary, it immediately obtains a speedup of 3.75 times over a single GPU
when using an off-the-shelf 4-GPU system.

Details of the training methodology are similar to those for AlexNet: see the original paper
by Simonyan and Zisserman (2015). However, these authors include one interesting inno-
vation: that is to use ‘scale jittering’ while training—i.e., to augment the training set using
objects over a wide range of scales. In fact, random scaling was applied over an image scale
factor of 2.

The outcome was that VGGNet achieved top-5 test error results of 7.0% using a single
net, compared with 7.9% for GoogLeNet (Szegedy et al., 2014). In fact, GoogLeNet achieved
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FIGURE 1.33 Architecture of VGGNet. This architecture shows a more recent optimization of the standard type
of CNN network. Unlike the schematic in Fig. 1.32, this one is arranged to show the relative sizes of the convolution
layers, which range from image size down to 1 × 1. Note that the convolution layers all have unit stride, and that
their input fields are limited to a maximum size of 3 × 3: the subsampling layers all have 2 × 2 input fields and 2 × 2
strides.

a figure of 6.7%, but only by employing 7 nets. Thus, VGGNet achieved second place in
the ILSVRC-2014 challenge. However, after submission the authors managed to decrease the
error rate to 6.8% using an ensemble of 2 models—substantially the same performance as for
GoogLeNet, but with significantly fewer nets. Interestingly, all this was achieved even though
the VGGNet architecture did not depart from the classical LeNet architecture of LeCun et al.
(1989), the main improvement being the significantly increased depth of the network.

In spite of being placed second in the ILSVRC-2014 challenge, VGGNet has proved more
versatile and adaptable to different datasets, and is a preferred choice in the vision commu-
nity for extracting features from images. This seems to be because VGGNet actually provides
more robust features even though it turned out to have slightly weaker classification perfor-
mance on a specific dataset. As we shall see in the next section, VGGNet was the network
chosen by Noh et al. (2015) for their work on deconvolution networks.

1.7.5 Noh et al.’s DeconvNet architecture

Inspired by the work of Zeiler and Fergus, Noh et al. (2015) produced a ‘learning de-
convolution network’ (DeconvNet) that learnt from training how to deconvolve the sets of
convolution coefficients in each layer of a CNN. Before examining their network in detail, it is
important to understand the motivation they had for designing it. Their purpose was to pro-
duce a ‘semantic segmentation’ network. In fact, image segmentation is aimed at determining
the boundaries between the various objects appearing in an image: semantic segmentation
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FIGURE 1.34 Schematic of Noh et al.’s Learning deconvolution network. This network contains two networks
back to back. On the left is a standard CNN network, and on the right is the corresponding DNN ‘deconvolution’
network that seems to operate in reverse. The CNN network (on the left) has no output (e.g., softmax) classifier,
as the ultimate purpose is not to classify objects but to present a map of where they are on a pixel-by-pixel basis
throughout the area of the image. Deconv layers D5 down to D1 are intended to progressively unpick layers C5–C1.
Similarly, unpooling layers U5 down to U1 are intended to progressively unpick pooling layers S5–S1. To achieve
this, the position parameters from the maxpooling layers have to be fed to corresponding locations in corresponding
unpooling layers (i.e., locations from Si should be fed to Ui).

goes further and also classifies all the objects—thereby giving a relevant meaning to each
region in the image.

The DeconvNet architecture is shown in Fig. 1.34: note that its initial CNN section is bor-
rowed from layers C1–F7 of VGGNet, though it excludes layer F8 and the Output softmax
layer. It will be useful to provide a rationale for this. First, an upflowing CNN is needed
for identifying objects in the input image. Second, if objects are to be located in particular
parts of an image, another CNN is needed to point to the positions, and this necessarily has
to follow the identification process. Undertaking both tasks in one enormous unconstrained
CNN would be prohibitive of memory and training, so the two networks have to be linked
closely together. The means of connecting them together are to provide feedforward paths
from the pooling units to later unpooling units. So the very means by which the CNN out-
put was generalized to eliminate the effects of sample variations has led to the second CNN
being augmented to yield the required location maps. Crucially, we also see that the overall
single upflowing data-path makes it obvious why the ReLU units must now all point in the
same direction. (Remember that they have now all been turned to face forwards again.) It is
also clear that with such a huge network, training will have to be carried out carefully, and it
would appear obvious that the originally upflowing (object detection) section should initially
be trained on its own.

Overall, the system works by mirroring the input CNN by including a deconvolution net-
work (DNN) after it. The operation may be summarized as follows: unpooling layer Ui is
nonlinear and redirects (unpools) the Ci maximum signals; then deconvolution layer Di op-
erates linearly on the data, and therefore has to sum the overlapping inputs, weighted as
necessary. However, rather than constructing suitable combination rules to define what hap-
pens with the overlapping output windows of each Di layer – and doing this in some very
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approximate way (such as ‘transposed’ versions of the convolution filters) – the deconvo-
lution layers are trained as normal parts of the overall network. While this is a rigorous
approach, it substantially increases the burden involved in training the network.

It is also useful to have a mental model of the whole process occurring in the DNN. First,
each unpooling layer recovers the information from the corresponding pooling layer and re-
constitutes the dimensions the dataspace had before pooling. However, it only populates it
sparsely, with the local maximum values in appropriate positions. The purpose of the fol-
lowing deconvolutional layer is to reconstruct a dense map in its dataspace. So, whereas the
CNN reduces the size of the activations, the following DNN enlarges the activations and
makes them dense again. Nevertheless, the situation is not completely unraveled, as only the
maximum values are reinserted. As Noh et al. (2015) say in their paper, “unpooling captures
example-specific structures by tracing the original locations with strong activations back to im-
age space”, whereas “learned filters in the deconvolutional layers tend to capture class-specific
shapes”. What this means is that the deconvolutional layers rebuild the example shapes to
correspond more accurately to what would be expected for objects of the specific classes.

In spite of this assurance, the network has to be trained appropriately. However, the sur-
mise given above about training in two stages has been improved by Noh et al. as follows:
to beat the problem of the space of semantic segmentation being extremely large, the net-
work is first trained on easy examples, and then trained on more challenging examples: this
amounts to a sort of bootstrapping approach. More precisely, the first of the training processes
involves limiting the variations in object size and location by centering and cropping them in
their bounding boxes; the second stage involves ensuring that the more challenging objects
are adequately overlapped with ground-truth segmentations: to achieve this, the widely used
intersection over union (IoU) measure is used, and is taken to be acceptable only if it is at least
0.5. In fact, the first stage uses a ‘tight’ bounding box, and this is extended by a factor 1.2 and
further expanded into a square in order to include sufficient local context around each object.
In this first stage, the box is rated according to the object located at its center, other pixels
being labeled as background. However, in the second stage this simplification is not applied
and all relevant class labels are used for annotation.

Next, we look at another closely related method—that of Badrinarayanan et al. (2015),
which uses much less memory and has several other advantages.

1.7.6 Badrinarayanan et al.’s SegNet architecture

The SegNet architecture strongly resembles that of DeconvNet (Fig. 1.34) and is also aimed
at semantic segmentation. However, its authors demonstrated the need for returning to a sig-
nificantly simpler architecture in order to make it more easily trainable (Badrinarayanan et al.,
2015). Basically, it was identical to DeconvNet (Fig. 1.34) but with F6 and F7 excluded. In addi-
tion, it was clear to the authors that use of max-pooling and subsampling reduce feature map
resolution and thereby reduce location accuracy in the final segmented images. Nevertheless,
they start by eliminating the fully connected layers of VGGNet, retain the encoding–decoding
(CNN–DNN) structure of DeconvNet, and also retain max-pooling and unpooling. In fact, it
is the move away from using fully-connected layers that helps SegNet the most, as this dras-
tically reduces the number of parameters to be learnt, and thereby also drastically reduces
the training requirements of the method. Accordingly, the whole network can be considered
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as a single rather than a dual network and trained efficiently ‘end-to-end’. Furthermore, the
authors identified a far more efficient way to store object location information: they do so
by storing only the max-pooling indices, viz. the locations of the maximum feature values
in each pooling window in each encoder feature map. As a result only 2 bits of information
are needed for each 2 × 2 pooling window (cf. Fig. 1.33). This means that even for the initial
CNN (encoder) layers, it is not necessary to store the feature maps themselves: what has to
be stored is the object location information. By this means the encoder storage requirement
is reduced from 134M (corresponding to layers C1–F7 of VGGNet) down to 14.7M. The total
storage for SegNet is rated at twice this, as the same amount of information has to be saved
in the decoder layers. However, the same applies to other deconvnets, so in all cases the total
amount of data has to be doubled relative to the contents of the initial CNN encoder.

The smaller size of SegNet makes end-to-end training possible, and thereby far more
suitable for real-time applications. The authors acknowledge that larger networks can work
better—though at the cost of far more complex training procedures, increased memory and
considerably increased inference time. Furthermore, it is difficult to assess their true perfor-
mance. Basically, the decoders have to be trained via very large and cumbersome encoders,
and the latter are general-purpose rather than being targeted at specific applications. In the
majority of instances, such networks have been based on a VGGNet front end, typically
containing all 13 sublayers of C1–C5, together with a variable (very small) number of fully-
connected layers.

These considerations make it no surprise that Badrinarayanan et al. successfully applied
SegNet to the CamVid dataset (Brostow et al., 2009) by training it end-to-end for optimum
adaptation. They found it outperformed seven conventional (nonneural) methods, includ-
ing local label descriptors and superparsing (Yang et al., 2012; Tighe and Lazebnik, 2013),
obtaining scores averaging to 80.1%, in comparison with 51.2% and 62.0% respectively; the
11 categories to be recognized were building, tree, sky, vehicle, sign, road, pedestrian, fence,
pole, pavement, and cyclist, and the accuracies attained for these ranged from 52.9% (cyclist)
to 94.7% (pavement). Their success with this task may be judged from the results of their
online demo [http://mi.eng.cam.ac.uk/projects/segnet/ (website accessed 7 October 2016).]
which was used to generate the pictures in Fig. 1.35: in fact, this demo placed pixels in twelve
categories, including road markings in addition to the eleven listed above.

They also did a careful comparison of SegNet with other semantic segmentation networks,
including FCN (so-called ‘fully convolutional networks’) and DeconvNet. FCN and Decon-
vNet have the same encoder size (134M); note that FCN reduces the decoder size down to
0.5M, though DeconvNet continues with a 134M decoder. Class averages for the three meth-
ods are 59.1%, 62.2% and 69.6%. Even though SegNet is numerically the worst of the three,
its accuracy is still competitive and it has the distinct advantage of being more adaptable
by virtue of being trained end-to-end. In fact, it is also easily the fastest running, being ∼2.2
times faster than FCN and ∼3.3 times faster than DeconvNet, albeit on different sized images.

Overall, the authors state that architectures “which store the encoder network feature maps
in full perform best but consume more memory during inference time”, which also means
that they run more slowly. On the other hand, SegNet is more efficient since it only stores the
max-pooling indices; in addition, it has competitive accuracy, and its capability for end-to-
end training on currently relevant data make it significantly more adaptable.

http://mi.eng.cam.ac.uk/projects/segnet/
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FIGURE 1.35 Two road scenes taken from a front passenger seat. In each case the image on the left is the original,
and the image on the right is the segmentation produced by SegNet. The key indicates the 12 possible meanings
assigned by SegNet. While location accuracy is not perfect, the assigned meanings are generally reasonable, given
the limited number of allowed interpretations and the variety of objects within the fields of view. These pictures
were processed using the online demo at http://mi.eng.cam.ac.uk/projects/segnet/ (Badrinarayanan et al., 2015).

1.7.7 Application of deep learning to object tracking

We now return to the subject of tracking moving objects. This is an area in which great
gains have been made by the application of deep learning: in fact, deep learning has led to
radical improvements over the conventional approaches discussed earlier. We start by taking
the paper by Held et al. (2016) as an interesting example.

Held et al. (2016) sought to produce a single-target tracker which would operate in real
time, and devised a neural-based way of achieving this at speeds of up to 100 fps. This
speed was achieved only for the test version of the network, and reflected very considerable
amounts of off-line training. The high test speed is the result of employing a relatively simple
architecture in which pairs of frames are fed to a trained neural network, which immediately

http://mi.eng.cam.ac.uk/projects/segnet/
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(i.e., in a single feedforward pass) gives an output image in which the target bounding box is
marked.

When testing, the tracker is initialized with a ground-truth bounding box containing the
target object, the bounding box being updated after the analysis of each successive pair of
frames. However, before detailed examination, each frame is cropped at a size and location
sufficiently large to capture the target object for any motion it may reasonably make (typically,
this means cropping at double the size of the bounding box): this procedure also permits
useful contextual information to be included. The trained neural network then searches the
two (t − 1 and t) cropped images to find the best match for the position of the moving object.
Repetition of the process thus permits the target object to be tracked throughout the video
sequence.

For this to be successful, the trained network must contain huge amounts of information
about different possible displacements of each pair of images. This is entirely possible using
a pair of networks each containing N convolution layers (often called a ‘Siamese ConvNet’),
which are fed to a set of M fully-connected layers (Held et al. used N = 5 and M = 3); the final
output contained the necessary output bounding box information. To obtain all the required
information, the neural network was trained using all permissible shifts and crops of the
incoming frames. In fact, the network was trained not only on videos but also on pairs of
images, the reason being to teach the network to track a more diverse set of objects, thereby
helping to prevent overfitting to the objects in the video data.

As a result of careful training, the tracker was found to be invariant to background motion,
out of plane rotations, deformations, lighting changes and minor occlusions. Moreover, the
additional training on labeled images helped to provide it with a generic relationship between
an object’s appearance and motion, enabling it to be able to track objects not appearing in the
training set—as well as the capability to perform this task at the unprecedented speed of 100
fps.

The cost of this capability came at the expense of large amounts of training time due to
excessive amounts of data augmentation. This was one of the problems that drove Bertinetto
et al. (2016) to devise a tracking architecture using a fully convolutional (FC) Siamese net-
work which they called SiamFC. They started with a system having two parallel inputs, one
providing an exemplar image and the other providing a search image. The idea is to search
the input image for matches with the exemplar image using a suitable similarity operator.
In fact, they used correlation for this purpose and a correlation layer was used to generate a
score map, which was presented at the output of the network. It was found useful to arrange
for the output score map to have reduced dimensionality, from which hits could be related
back to the input image by multiplying by the network stride. The latter was taken to be 8, a
figure which arises as there are three successive applications of a 2 × 2 stride, in layers C1, S1
and S2 (see Fig. 1.36): to fully understand the overall effect, note that each 2 × 2 stride divides
the intrinsic image size by 2 × 2.

A Siamese network is one containing two parallel flows, each having the same intrinsic
structure. This is natural for the above architecture as the two flows carry exactly the same
type of data, albeit the sizes of the images will obviously be different. A fully convolutional
network is used for each of the flows as the intention is to achieve translational invariance,
so that the signal from any object will not vary with its position in the image. ‘Fully convolu-
tional’ means that no variation in the convolution parameters is permitted over the whole of
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FIGURE 1.36 Fully convolutional Siamese tracker. This figure shows the architecture of the FC Siamese tracker
devised by Bertinetto et al. (2016). Top: the FC branch containing the search flow; middle: the branch containing the
exemplar flow; bottom: details of the two branches, including no. of channels N , image size n × n, neuron input
field r × r , and stride s × s (N , r and s are identical for the two flows). Note that, as in the case of AlexNet,
this architecture uses overlapping pooling in subsampling layers S1 and S2, for both of which r × r = 3 × 3 and
s × s = 2 × 2.

the image space: note that this means that ‘padding’ of the outer reaches of the network
(typically with zeros) is not allowed, and in practice this means that—unlike the case of
AlexNet—the output spaces of successive layers will be curtailed wherever the neuron in-
put fields are larger than 1 × 1 (see Fig. 1.36). It should be added that the point of including
the two fully convolutional networks is to obtain sufficient information on the target and
exemplar objects, while ignoring noise, shape variations and irrelevant artefacts such as back-
ground detail.

Correlation is carried out using a standard sliding-window computation. The overall sys-
tem is shown in Fig. 1.36, the two fully convolutional flow networks being adapted from
those in Krizhevsky et al.’s (2012) AlexNet architecture: in particular, the fully connected
layers have been discarded as they are not fully convolutional and therefore do not permit
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position invariance. (The purpose of AlexNet was to classify any input image according to
the class of the target object appearing within it, object localization information being totally
eliminated.)

In Bertinetto et al.’s work, the exemplar image is taken as the initial appearance of the
target object and is not updated; neither is a memory of past appearances maintained; nor are
predictions of the positions of object bounding boxes computed. Indeed, the main aim was
to achieve a simple, reliable tracker for single target objects. However, Bertinetto et al. found
that upsampling the score map by a factor 16 using bicubic interpolation (i.e., from 17 × 17 to
272 × 272) resulted in more accurate localization. Also, they searched for the object over five
scales, from ∼0.95 to 1.05, in order to cope with scale variations.

Next, we consider the size of the output image space. The correlation layer is a convolution
between images of size 22 × 22 and 6 × 6, leading to a potential maximum output image size
of 27 × 27 down to a viable image size of 17 × 17 (these figures arise because 22 + 6 − 1 = 27
and 22 − 6 + 1 = 17). Note that the maximum output image size (27 × 27) would not capture
objects that are just outside the search space, whereas the minimum (17 × 17) would take
full account of objects that are completely within the search space; between these limits there
would be some chance of detecting partially visible objects. However, SiamFC was aimed at
being as successful as possible at detecting fully visible objects.

Finally, an interesting point concerns the calculation of the effects of a 2 × 2 stride when
the previous image has an odd number size (as happens for all three cases in SiamFC). In that
case the stride takes into account the first and last pixels in each row and column. Given this,
the successive image sizes quoted in Fig. 1.36 all correspond exactly and logically to those
given by Bertinetto et al. (2016).

Feichtenhofer et al. (2017) set out to devise a deep learning architecture that learns de-
tection and tracking together in tandem. Their architecture makes use of an object detector
and a tracker: in fact, the idea is to carry out detection and tracking simultaneously us-
ing a ConvNet, optimized by a combined detection and tracking based loss. Convolutional
cross-correlation between the feature responses of adjacent frames is carried out to estimate
the local displacement at different feature scales. (Here, correlation is restricted to a small
neighborhood, with maximum displacement d = 8, to avoid large output dimensionality: this
reflects the limitation already noted for the Held et al. (2016) target tracker.) Correlation maps
are computed for all positions on a feature map, and region of interest (RoI) pooling (Dai et
al., 2016) is applied to these feature maps for track regression. The above approach allows
multiple objects to be tracked simultaneously, and the architecture can be trained end-to-end
taking input frames from raw videos. Overall, the approach led to significantly improved
performance, at the 80% level, relative to previous state-of-the-art methods when run on the
ImageNet (2015) VID validation set.

Note that the RoI pooling approach takes fully convolutional design as far as possible, in
order to maintain translational invariance, and only the last convolutional layer is modified
to deviate from this: this strategy permits the computation of position-sensitive score maps,
from which multiple object tracklets can be extracted. However, as the details of the overall
architecture depend closely on those of R-FCN (Dai et al., 2016), ResNet-101 (He et al., 2016),
Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015), available space prevents a
full description from being presented here.
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FIGURE 1.37 Andrearczyk and Whelan’s T-CNN architecture. This is designed to capture the texture of the whole
input image, and to output a vector showing the most probable texture. The numbers under the labels indicate the
sizes of the feature spaces being handled by convolution layers C1–C3 and the numbers of feature maps in the
corresponding layers. Both of the pooling layers (S1, S2) reduce the image size by a factor 2 × 2. The energy layer
E3 is a special form of pooling layer which averages the energies over the whole of each feature map, producing 384
outputs—one for each feature map of C3.

1.7.8 Application of deep learning to texture classification

As we have seen in the immediately preceding sections, deep learning has become a major
factor in the design of vision algorithms. This applies no less in the case of texture analysis,
which was introduced in Sections 1.6.1–1.6.6. Fig. 1.31 shows the architecture of the Laws tex-
ture classifier discussed in Section 1.6.3. This sort of classifier is often described as employing
a set of ‘filter banks’ to extract the input information. However, the previous section shows
that the CNN approaches can also be described in this way, so it is not surprising that CNNs
(and ANNs) have also been applied to texture analysis. Early on, it was common to train
such networks using sets of input images each consisting of a single texture (typically from
the Brodatz database). However, this approach is restricted to treating the whole input image
as a single region and classifying it accordingly: segmentation of an image into regions with
different textures is beyond the capabilities of a simple architecture trained in this way.

Andrearczyk and Whelan (2016) described a basic CNN architecture (T-CNN-3) for clas-
sifying textures, which is illustrated in Fig. 1.37. It has some similarity to ZFNet though it
contains fewer convolution layers: this does not prevent it from coping with textures because
texture features can mostly be described using quite small windows. Note also that the final
convolution layer is followed by a pooling layer which averages the texture energy over the
whole feature map. Nevertheless, as a considerable number N of feature maps are computed
by different parallel layers of the final convolution layer, the result is a vector of N energy
values. These are fed to a final texture classifier yielding a single class for any single input
texture image.
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In fact, Andrearczyk and Whelan (2016) went further than this and devised a hybrid type
of texture analyzer (TS-CNN-3) employing both the above approach and one permitting ob-
ject shapes to be analyzed, the latter acting in a similar way to AlexNet’s object recognition
system for nontextured images. The overall architecture is shown in Fig. 1.38. An important
aspect of this architecture is the concatenation layer M combining the outputs of the texture
and shape parts of the system. But it is also important to notice that relevant texture informa-
tion is mainly derived from relatively small low-level features, whereas shape information is
a more global property which requires the input of higher level features. This is why texture
information is derived from the output of convolution layer C3, whereas shape information is
obtained from the pooled output of C5. (Interestingly, because E3 averages the texture energy
over the whole of each C3 feature layer, no spatial or shape information remains in the tex-
ture channel after E3.) Finally, the output layers F6, F7 and O are used to combine the shape
and texture outputs: clearly, there is enough information available in these layers to relate the
textures to particular locations in the input image and to present the outputs in terms of the
probabilities that the textures used in training actually appear in the input image. However,
what this network does not do is to produce an output image map showing the most proba-
ble segmentation of the image into various texture regions. It would be good to achieve this,
and in principle it ought to be possible by incorporating the encoder–decoder architecture of
SegNet (see Section 1.7.6). The main obstacle here is the lack of suitably large texture datasets
(comparable with ImageNet): in fact, the underlying problem is that architectures such as
SegNet are so deep that they require a much greater amount of training using much larger
numbers of training patterns.

The lack of a large texture dataset is a serious factor standing in the way of further progress
in texture analysis, whatever training methods and architectures are being devised. In fact,
it will be clear that if such a dataset were available, AlexNet (and other nets such as VG-
GNet) could be trained to perform texture analysis over whole images without any changes
being made to its architecture. As remarked by Liu et al. (2019) “The recent success of deep
learning in image classification and object recognition is inseparable from the availability of
large-scale annotated image datasets such as ImageNet. However, deep learning based tex-
ture analysis has not kept pace with the rapid progress witnessed in other fields, partially
due to the unavailability of a large-scale texture database.”

These statements are serious, because (a) CNN-based architectures are already amongst
the most widely used means of performing texture analysis—a trend that seems hardly likely
to decrease in the foreseeable future; and (b) the same training restrictions (and need for large
texture datasets) must also apply to whatever methods are to be used for analysing textured
images. It should also be remembered that the statistical nature of textures implies that, in
general, training-based procedures will be preferable to hand-crafted algorithms.

Finally, we consider the performance of Andrearczyk and Whelan’s two architectures.
When trained on ImageNet, which is an object dataset, they found that T-CNN-3 performed
less well than AlexNet (51.2% compared with 57.1%): this is not surprising as AlexNet is
a much larger network containing 60.9 million trainable parameters, compared to the 23.4
million of T-CNN-3. On the other hand, when training with texture-orientated datasets such
as ImageNet-T and KTH-TIPS-2b (Russakovsky et al., 2015; Hayman et al., 2004), T-CNN-
3 showed significant improvement over AlexNet (respective accuracies of 71.1% compared
with 66.3%, and 48.7% compared with 47.6%). These results correspond to training from
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FIGURE 1.38 Andrearczyk and Whelan’s TS-CNN architecture. This is designed to capture texture and shape
information for the whole input image, and to output a vector showing the most probable set of textures. The first
row of numbers under the labels indicates the sizes of the feature spaces being handled by the convolution layers
C1–C5; the second row of numbers indicates the numbers of feature maps in the corresponding layers. All three
pooling layers (S1, S2, S5) reduce the image size by a factor 2 × 2, so the image fed to the merger point M has size 6 ×
6. At M, the texture and the shape outputs are concatenated, thereby producing a total of 384 × (1 + 62) outputs—all
of which are joined to all the inputs of F6, forming a fully connected network. As in Fig. 1.37, the energy layer E3 is a
pooling layer which averages the energies over the whole of each feature map, producing 384 outputs, one for each
feature map of C3.

scratch on a single database. However, it is also possible to pretrain on one database and
fine-tune on another. When this was attempted—specifically, pretraining on ImageNet and
fine-tuning on KTH-TIPS-2b—T-CNN-3 performed more accurately than AlexNet (73.2%
compared with 71.5%). A further improvement was obtained by using the hybrid TS-CNN-3
architecture, an accuracy of 74.0% then being achieved. Some of this improvement was clearly
due to the larger number of trainable parameters of TS-CNN-3 (62.5 million). Nevertheless,
when tests were made with architectures with comparable numbers of parameters—e.g., a
combination of AlexNet and T-CNN-3, and a combination of VGG-M (Chatfield et al., 2014)
with FV-CNN (Cimpoi et al., 2015)—TS-CNN-3 remained superior. In fact, the hallmark of the
new TS-CNN-3 texture + shape architecture is that it is highly efficient in its use of training
parameters, and by separating texture analysis from shape analysis it achieves more accurate
results when processing textured images.

It has been useful to describe the work of Andrearczyk and Whelan (2016) in some de-
tail, as this reveals a good many insights into the application of deep networks to texture
analysis—including a number of the subtleties that are involved. Whereas the approach aims
at an architecture with relatively modest numbers of training parameters, the less restricted
approach of Cimpoi et al. (2015; 2016) appears to be more powerful: it systematically uses
global pooling of the CNNs before the level of the fully connected layers and thereby captures
valuable sets of texture descriptors. (More precisely, it pools local features densely, removing
global spatial information, in order to extract dense convolutional features.) Indeed, Cimpoi
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et al.’s, 2016 paper was able to develop a vocabulary of forty-seven texture attributes that
describe a wide range of texture patterns. In fact, the work of Cimpoi et al. (2015; 2016) has
been influential in its near-perfect classification accuracy. However, Liu et al. (2019) state that
performance is ‘saturated’ (meaning that it has leveled off, in the vicinity of 100%) “because
the datasets are not large enough to allow fine-tuning to obtain improved results”—reflecting
the points made earlier about available texture datasets. It should be remarked that Cimpoi
et al.’s best results were obtained using the VGG-VD (Very Deep) architecture of Simonyan
and Zisserman (2015) containing 19 CNN layers, thereby partly explaining why saturation
became a possibility.

One other point raised by Liu at al. (2019) in their review of the development of texture
representations is that there is a growing tension between the need for huge image datasets
and the corresponding human need for compact, efficient representations. The latter need
is increasingly being seen on mobile and embedded platforms with restricted resources—as
previously observed by Andrearczyk and Whelan (2016) and Szegedy et al. (2014).

1.7.9 Texture analysis in the world of deep learning

Part E started by exploring the meaning of texture—essentially by asking “What is a tex-
ture and how is a texture formed?” Typically, a texture starts with a surface that exhibits
local roughness or structure, which is then projected to form a textured image. Such an im-
age exhibits both regularity and randomness, though directionality and orientation can also
be important parameters. However, the essential feature of randomness means that textures
have to be characterized by statistical techniques and recognized using statistical classifica-
tion procedures. Techniques that have been used for this purpose include autocorrelation,
co-occurrence matrices, texture energy measures, fractal-based measures, Markov random
fields, and so on. These aim both to analyze and to model the textures. Indeed, workers in this
area have had to spend much time striving to achieve ever-improved models of the textures
they are working with in order to better describe, recognize and segment them. However,
over less than a decade, DNNs suddenly came into their own, and as we have seen, this led
to a further period of rapid development of techniques for texture analysis—taking us even
further away from the intuitive approaches of the 1970s.

1.8 Part G – Summary

Parts A–E of this chapter outlined three highly relevant legacy topics on feature detection
and object detection, in both 2-D and 3-D. They presented the underlying theory that had be-
come familiar and widely used throughout the subject before the deep learning explosion of
2012. Part F went on to impart an understanding of what this explosion entailed and, in par-
ticular, not only how all object features and the objects themselves could be learnt from many,
many training examples, but also how semantic segmentation could be achieved with end-
to-end training of complete convolutional networks. The fact that such networks can learn all
features and objects and seemingly don’t need legacy methods to back them up is salutary. In
fact, semantic segmentation of static scenes is not the only relevant story, but as Section 1.7.7
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has demonstrated, a not dissimilar process has been repeated with impressive effect for the
tracking of multiple moving objects. Indeed, it was pointed out (Feichtenhofer et al., 2017)
that much of what had been achieved in complex ways by hard application of principles has
now been achieved in less theoretically intensive ways by deep learning methods; and these
have the power to progress performance to even greater heights when even more efforts are
applied. In retrospect, it also seems that workers found themselves up against a metaphori-
cal brick wall regarding how to specify sufficiently accurately the nature of the ‘soft’ data in
the real (nonidealized) images they wanted to process: and the lack of practicable modeling
structures made it problematic to find suitable ways forward; hence it became necessary to at
least trial the alternative of deep learning.

At this point it will be useful to summarize quite what it was that enabled the deep learn-
ing explosion. In fact, it was a combination of a set of disparate factors. In particular, we can
point to: (1) use of CNNs with much lower connectivity than was the case for the old ANN
architectures; (2) deployment of ReLUs in place of sigmoidal output functions; (3) applica-
tion of the ‘dropout’ procedure to limit the incidence of overtraining; (4) the use of vastly
increased amounts of image data for training; (5) extraction of even more image patches from
images to further enhance the amount of data available for training; (6) application of GPUs
for performing the training with enormously increased speed (it being commonly accepted
that a GPU has a speed advantage ∼50 relative to a typical host CPU). It must also be remem-
bered that all these changes were brought to bear more or less simultaneously in 2012.

We now cut the discussion short, as the following chapters provide many further insights
into what is actually a quite complex and fast-moving situation.
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CHAPTER POINTS

• This chapter introduces the problem of
object detection in computer vision.

• This chapter reviews some advanced object
detectors based on deep neural networks
and some techniques that have become
important in the detection literature in
recent years.

2.1 Introduction

Object detection is one of the most fundamental and challenging problems of computer
vision. It generalizes the more commonly studied problem of object classification. Given an
image, object recognition aims to answer the question of “what”. What are the objects in the
image? For example, the image of Fig. 2.1 includes a person and a boat. Beyond “what”, object
detection also aims to answer the question of “where”. What regions of the image contain the
object? This is illustrated in Fig. 2.1(b), where bounding boxes are used to demarcate the
region of each object.

Object detection has many practical applications. For example, autonomous vehicles rely
on object detection to localize objects, understand the surrounding environment, and help
make safe decisions. In medical imaging, object detectors can help locate lesions in medical
scans, alleviating the burden of radiologists and other medical specialists. However, object
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FIGURE 2.1 The difference between object classification and object detection.

detection is also an upstream task in computer vision, supporting many other downstream
tasks, like visual question answering, captioning, visual navigation, robot grasping, pose es-
timation, etc. For example, object detection can not only help a robot accurately grasp objects
in the physical world, but also enable it to understand the semantics of that object, how it re-
lates to the other objects in the scene, and how it can play a part in solving a task, either alone
or in a team of robots. Hence, the advancement of object detection will benefit many other
domains of computer vision and enable more effective computer vision systems in general.

An object detector faces many challenges. For example, it is required to accurately de-
tect objects of multiple categories, scales, aspect ratios, etc, sometimes under severe lighting
conditions, occlusion, and background distractors. This makes it challenging to develop de-
tectors robust enough to work well under most conditions, a necessary condition to mimic
the human visual system.

Due to the importance of the problem, there is a long history of research in object detection
(Sung and Poggio, 1998; Rowley et al., 1996; Papageorgiou et al., 1998). Early work focused on
the detection of specific objects, namely faces and humans, of importance for many applica-
tions. The Viola-Jones (VJ) detector (Viola and Jones, 2001, 2004) was a milestone among these
works. It was the first real-time object detector for unconstrained environments and much
faster than all other competitive detectors at the time. The idea was to formulate the detector
as a cascade of classifiers, which reject object hypotheses stage by stage, using very simple
Haar wavelet features. By adding more features in later stages, the cascade can form a pow-
erful detector. However, because most hypotheses can be rejected with simple features (early
stages) the average computation is small. Although wavelet features are fast, they are not very
accurate. Later works proposed the histogram of oriented gradients (HOG) (Dalal and Triggs,
2005), as an important improvement of the scale-invariant feature transform (SIFT) feature
(Lowe, 1999, 2004). HOG has shown very impressive performance, originally on human de-
tection, and was later widely adopted in various object detection problems. A breakthrough
on the detection of general object was the introduction of the deformable part-based model
(DPM) (Felzenszwalb et al., 2010). This built on HOG features, representing each object as a
combination of a root model and deformable parts, where the configurations of part filters
were latent variables, learned automatically. DPM was the winner of the Pascal VOC object
detection challenge (Everingham et al., 2010), which addresses the detection of 20 object cat-
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egories such as desk, bus, human, or bike, in 2007, 2008 and 2009. This made it the default
framework for object detection research before the introduction of deep learning.

In recent years, it has been shown that learned feature representations extracted by deep
convolutional neural networks (CNN) are vastly superior to even the best handcrafted fea-
tures, like SIFT, HOG, and Haar wavelets. Although the vanilla CNN feature representations
have strong classification performance, their application to object detection requires nontriv-
ial extensions. Unlike classification, object detection requires the solution of two tasks. First,
the detector must solve the recognition problem, distinguishing foreground objects from back-
ground and assigning them the proper object class labels. Second, the detector must solve the
localization problem, assigning accurate bounding boxes to different objects. In this chapter,
we review CNN-based object detection frameworks proposed in the past few years. These
can be split into two major groups: two-stage object detectors, such as the R-CNN (Girshick
et al., 2014), SPP-Net (He et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et
al., 2017), MS-CNN (Cai et al., 2016), FPN (Lin et al., 2017a), and Cascade R-CNN (Cai and
Vasconcelos, 2021), and single-stage object detectors, including YOLO (Redmon et al., 2016),
SSD (Liu et al., 2016) and RetinaNet (Lin et al., 2017b).

2.2 Preliminaries

Most modern object detectors implement a combination of classification and bounding
box regression. Classification attempts to predict the class of the object in a image region,
bounding box regression attempts to determine the region, by predicting the tightest box that
contains the object. Consider a ground truth object of bounding box g associated with class
label y, and a detection hypothesis x of bounding box b. Since b usually includes an object
and some amount of background, it can be difficult to determine if the detection is correct.
This is usually addressed by the intersection over union (IoU) metric

IoU(b,g) = b ∩ g
b ∪ g

. (2.1)

If the IoU is above a threshold u, x is considered an example of the class of the object of
bounding box g and denoted a “positive” example. Thus, the class label of a hypothesis x is
a function of u,

yu =
{

y, IoU(b,g) ≥ u

0, otherwise. (2.2)

If the IoU does not exceed the threshold for any object, x is assigned to the background and
denoted a “negative” example.

Although there is no need to define positive/negative examples for the bounding box
regression task, an IoU threshold u is also required to select the set of samples

G = {
(gi ,bi )|IoU(bi ,gi ) ≥ u

}
(2.3)

used to train the regressor. While the IoU thresholds used for the two tasks do not have to be
identical, this is usual in practice. Hence, the IoU threshold u defines the quality of a detector.
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FIGURE 2.2 Examples of increasing qualities. The numbers are the IoU of (2.1) between two bounding boxes,
indicating how well they are overlapped with each other.

Large thresholds encourage detected bounding boxes to be tightly aligned with their ground
truth counterparts. Small thresholds reward detectors that produce loose bounding boxes, of
small overlap with the ground truth. Some examples of hypotheses of increasing quality are
shown in Fig. 2.2.

2.3 R-CNN

The R-CNN (Girshick et al., 2014) (Regions with CNN features) was a pioneering effort
on the use of deep neural networks for general object detection. It was the first work to out-
perform DPM-style methods by leveraging powerful CNN feature representations. It also
demonstrated that CNN features pretrained for classification on ImageNet (Russakovsky et
al., 2015) could be successfully finetuned to other downstream tasks, e.g., detection, segmen-
tation, etc.

2.3.1 System design

The R-CNN consists of three modules, shown in Fig. 2.3. Since CNN computations are
expensive, the first step is to generate category-independent region proposals, using Selective
Search (van de Sande et al., 2011). These proposals define the set of candidate detections
available to the detector, reducing the number of detection hypotheses from the order of
millions to thousands. The second step is feature extraction from each proposal region, using
a CNN trained for recognition, e.g., AlexNet (Krizhevsky et al., 2012) or VGG-Net (Simonyan
and Zisserman, 2014). The detected proposals, of arbitrary scales and sizes, are first cropped
and warped to the size of the network input. The resized images are then forwarded through
the CNN and the output of the penultimate network layer is used as feature representation
for each proposal. Finally, the third module, implemented with class specific linear SVMs,
produces class predictions for the proposals. For better localization, additional bounding-box
regressors are applied to refine the bounding boxes of detected objects.

2.3.2 Training

The CNN used for feature extraction is pretrained on the ImageNet (Russakovsky et al.,
2015) classification task, and finetuned to the warped proposal regions used in the detection
task. Finetuning is a K +1-way classification problem, with K object categories and one back-
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FIGURE 2.3 System overview of R-CNN.

FIGURE 2.4 The pipeline comparison of R-CNN (top) and SPP-Net (bottom).

ground class (e.g., K = 20 for the VOC dataset (Everingham et al., 2010) and K = 80 for the
COCO dataset (Lin et al., 2014)). Since CNNs are data hungry, it is not sufficient to use the
ground truth only as positive examples. The solution is to use all proposals with IoU above
0.5 with the nearest ground-truth box as positives, and the remainder as negatives. During
training, it is important to keep a balanced ratio between positives and negatives. In practice,
positives and negatives are sampled uniformly from the sample pool with a ratio of 1:3 in
each training batch. Finetuning minimizes the cross-entropy loss

Lcls

(
h(x), y

) = − loghy(x) (2.4)

where x is the proposal to classify, y the class label, and h(x) the classifier. After finetuning,
the category-specific linear SVM classifiers and bounding box regressors are trained on the
proposal features generated by the CNN. This multistage training procedure of feature ex-
traction, CNN fine-tuning with cross-entropy loss, SVM training, and fitting bounding-box
regressors, is slow, tedious and inelegant.

2.4 SPP-Net

While the R-CNN significantly boosted general object detection performance, it is a com-
plex detector, since the expensive CNN computation is repeated for the thousands of propos-
als derived from each single image. As a result, it can take more than 30 seconds to run the
R-CNN detector on each image. Since the proposals extracted from an image share most pix-
els, most of these computations are redundant. This redundancy was reduced by the SPP-Net
(He et al., 2014), which shared computation among proposals.

Different from the R-CNN pipeline, which crops proposals before CNN computation, as
shown in Fig. 2.4 (top), the SPP-Net forwards the whole image through the convolutional
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FIGURE 2.5 The pipeline of SPP-Net for object detection.

layers of the network. Spatial pyramid pooling (Lazebnik et al., 2006) is then used to extract
the fixed-length features of the cropped feature maps associated with each proposal. These
fixed-length features are finally input to a set of fully connected layers for final prediction,
as shown in Fig. 2.4 (bottom). This simple change enables the sharing of the expensive CNN
computations among proposals, and the whole image is processed only once. The impor-
tant operation is the spatial pyramid pooling (SPM), operation of Fig. 2.5, which maps the
instance-wise features of arbitrary scale and size into a fixed-length vector. This was the first
showing that features from of a convolutional feature map can be pooled over a spatial re-
gion to produce an instance-wise feature representation with good properties for instance
recognition. This inspired latter works, such as the Fast R-CNN.

2.5 Fast R-CNN

The SPP-Net inherits the tedious multistage training procedure of R-CNN. This is signifi-
cantly simplified in the Fast R-CNN. In this approach, the extraction of features, fine-tuning
of the network to a new task, instance-wise classification and bounding-box regression are all
integrated into a unified framework, enabling easy to use deep learning based object detec-
tion.

2.5.1 Architecture

The pipeline of the Fast R-CNN is shown in Fig. 2.6. Similar to the SPP-Net, the Fast
R-CNN forwards the whole image through the convolutional layers of a CNN to generate
feature maps. Next, a region of interest (RoI) pooling layer is used to extract a vector of fixed-
length features for each object proposal. Finally, two fully connected (FC) layers are used to
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FIGURE 2.6 Pipeline of Fast R-CNN.

make the final predictions: classification probabilities for K + 1 classes and regression of four
bounding box coordinates. Unlike the R-CNN and the SPP-Net, the Fast R-CNN is trained
end-to-end with a multitask loss, avoiding the tedious multistage training procedure.

2.5.2 RoI pooling

The RoI pooling operation is a simpler version of the spatial pyramid pooling of Fig. 2.5.
Instead of pooling a RoI with height and width (h,w) to different spatial resolutions (1 × 1,
2 × 2 and 4 × 4) and concatenating them together, as in SPP, RoI pooling uses a single H × W

resolution, e.g., 7 × 7. Given a RoI window of size h × w, RoI pooling divides it into H × W

subwindows, each of size h/H × w/W . Max-pooling is then used inside each subwindow to
extract the largest feature value. This process is applied independently to each feature map
channel. Although RoI pooling is simpler than SPM, it can still effectively extract a powerful
feature representation for proposals of arbitrary size and scale from the precomputed convo-
lutional feature maps. This is the critical requirement for object detection.

2.5.3 Multitask loss

The Fast R-CNN is trained with two learning tasks: classification and bounding box regres-
sion. These are jointly optimized during training with recourse to a multitask loss function

L = Lcls

(
h(x), y

) + λ[y ≥ 1]Lloc

(
f (x,b),g

)
, (2.5)

where λ controls the balance between the two requirements. [y ≥ 1] equals to 1 when y ≥ 1
and 0 otherwise, meaning that there is no bounding box regression loss for background class.

Classification

The classifier is a function h(x) that assigns an image patch x to one of K + 1 classes, where
class 0 contains background and the remaining classes the objects to detect. h(x) is a K + 1-
dimensional estimate of the posterior distribution over classes, i.e., hk(x) = p(y = k|x), where
y is the class label. Lcls is the cross-entropy loss of (2.4).



100 2. Advanced methods for robust object detection

Bounding box regression

A bounding box b = (bx, by, bw, bh) contains the four coordinates of an image patch x.
Bounding box regression aims to regress a candidate bounding box b into a target bounding
box g, using a regressor f (x,b). The regression loss function is

Lloc(a,b) =
∑

i∈{x,y,w,h}
smoothL1(ai − bi), (2.6)

where

smoothL1(x) =
{

0.5x2, |x| < 1,

|x| − 0.5, otherwise,
(2.7)

is the smooth L1 loss function. It is a combination of L1 and L2 losses, which behaves as L1
loss when |x| < 1 and L2 loss otherwise. It fixes the nonsmooth behavior of L1 loss, i.e., the
gradient is −1 when x is negative and +1 otherwise. The smooth L1 loss could enable more
stable learning behavior.

To encourage invariance to scale and location, smoothL1 operates on the distance vector
� = (δx, δy, δw, δh) defined by

δx = (gx − bx)/bw, δy = (gy − by)/bh

δw = log(gw/bw), δh = log(gh/bh).
(2.8)

Since bounding box regression usually performs minor adjustments on b, the numerical val-
ues of (2.8) can be very small. This usually makes the regression loss much smaller than the
classification loss. To improve the effectiveness of multitask learning, � is normalized by its
mean and variance, e.g., δx is replaced by

δ′
x = δx − μx

σx

. (2.9)

2.5.4 Finetuning strategy

Sampling

Both the R-CNN and SPP-Net sample RoIs. This could lead to very inefficient training,
since RoIs are extracted from different images and each image requires a full CNN forward
computation. To avoid the problem, the Fast R-CNN first samples N images, from which it
then samples R RoIs per image. By choosing N � R it is possible to only require CNN compu-
tations for a small number (N ) of images. However, this raises the concern that the sampled
RoIs are correlated, which could slow down training convergence. In practice, however, this
strategy has been found to work well (Girshick, 2015; Ren et al., 2017). The RoIs are sampled
from each image so as to produce 25% positive and 75% negative training examples.

Back-propagation through RoI pooling

Another important improvement of the Fast R-CNN over the SPP-net was the backpropa-
gation of the gradient through the RoI pooling layer. In the absence of this, the convolutional
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FIGURE 2.7 The architecture of Faster R-CNN.

layers below the RoI pooling layer will not be finetuned to the detection task, as is the case for
the SPP-net. Since, in RoI pooling, each output feature is the max-pooling of the correspond-
ing subwindow on the feature map, the back-propagation computations reduce to those of
the max-pooling operation. Namely, the output gradient is only back-propagated to the po-
sition of largest max feature value in the subwindow. This strategy is applied to every RoI
feature of every region proposal.

2.6 Faster R-CNN

The SPP-Net and Fast R-CNN significantly improved the running speed of the R-CNN,
from about 30 to about 2 seconds per image. They made the generic proposal detection stage,
which relied on low-level features, like pixels and edge, and ran on a CPU, the speed bottle-
neck. For example, the selective search proposal detector requires about 2 seconds per image.
The Faster R-CNN addressed this problem, by introducing a region proposal network (RPN)
that runs GPUs and shares feature computations with the Fast R-CNN network.

2.6.1 Architecture

As shown in Fig. 2.7, the Faster R-CNN consists of two modules: a region proposal network
(RPN) that proposes regions and is fully convolutional, and the Fast R-CNN detector that
classifies these proposals. Unlike the R-CNN and Fast R-CNN frameworks, the entire system



102 2. Advanced methods for robust object detection

FIGURE 2.8 The illustration of Region Proposal Network.

is a single, unified and end-to-end network for object detection. Since the RPN shares most of
its computations with the Fast R-CNN network, the RPN adds little additional computational
cost. This allows the Faster R-CNN to eliminate the proposal generation time and runs in real-
time on a modern GPU.

2.6.2 Region proposal networks

Region proposals are detected by sliding a small network over the convolutional feature
map, as shown in Fig. 2.8. This small network is implemented with a 256-dim 3 × 3 convolu-
tional layer, a ReLU layer and two fully-connected sibling output layers. Similar to the final
output layers of Fast R-CNN, the first output layer is for binary (foreground v.s. background)
classification, and the second one for bounding box regression. This produces an “objectness”
score and 4 coordinates for a given anchor. According to the objectness score, the top 300 pro-
posals are generated by RPN, and will be used in the later Fast R-CNN stage.

Anchors

Each sliding-window location should, in principle, generate a single prediction, since each
location on the feature map corresponds to a single location on the input image. However,
the RPN simultaneously predicts k region proposals per each sliding-window location, to
account for different object sizes and aspect ratios. This is possible with the concept of anchors.
At a single location, a proposal prediction is associated with an anchor, which is centered at
the center of the sliding window and has its own scale and aspect ratio. A common practice
is to use k = 9 anchors, of 3 different scales and 3 different aspect ratios, per single sliding
window location. Each anchor produces a 6-dim proposal, with four dimensions encoding
coordinates for bounding box regression and the remaining two foreground and background
class probabilities.
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Training

The loss function of the RPN is the same as (2.5). Anchor bounding boxes are required to
regress to the associated ground truth boxes. To balance the learning, anchors are sampled
during training so that there is a ratio of 1:1 between positive and negative anchors. Note that
the ratio here is different the ratio of 1:3 in the training of Fast R-CNN in Section 2.5, because
the task of RPN is to detect proposals as many as possible. With a higher ratio of positives,
the model will be encouraged to detect more positives. With the top 300 proposals generated
by RPN, the training of the Fast R-CNN detector remains as above. The convolutional feature
computations are shared between the RPN and the Fast R-CNN, and the whole network can
be trained end-to-end by standard backpropagation and stochastic gradient descent (SGD).

2.7 Cascade R-CNN

The detection problem is difficult, partly due to the fact that there are many “close” false
positives, corresponding to “close but not correct” bounding boxes. An effective detector
must find all true positives in an image, while suppressing these close false positives. The
quality of a detection hypothesis is defined by its IoU with the ground truth, and the quality
of a detector as the IoU threshold used to train it.

High quality detection

The challenge is that, no matter the choice of IoU threshold u, the detection setting is highly
adversarial. When u is high, positives contain little background but it is difficult to assemble
large positive training sets. When u is low, richer and more diverse positive training sets are
possible, but the trained detector has little incentive to reject close false positives. In general,
it is very difficult to guarantee that a single classifier performs uniformly well over all IoU
levels. Furthermore, since at inference time the majority of the hypotheses produced by pro-
posal detectors (such as the RPN or selective search) have low quality, the object detector at
the top of the network must be discriminant for lower quality hypotheses. A standard com-
promise between these conflicting requirements is to settle on u = 0.5, which is used in almost
all modern object detectors. This, however, is a relatively low threshold, making it difficult to
train detectors that can effectively reject close false positives.

In general, the detector will only achieve high quality if presented with high quality pro-
posals. This, however, cannot be guaranteed by simply increasing the threshold u during
training. On the contrary, forcing a high value of u usually degrades detection performance.
This problem, i.e., that training a detector with higher threshold leads to poorer performance,
is referred as the paradox of high-quality detection. It has two causes. First, object proposal mech-
anisms tend to produce hypotheses distributions heavily imbalanced towards low quality. As
a result, the use of larger IoU thresholds during training exponentially reduces the number
of positive training examples. This is particularly problematic for neural networks, which
are very example intensive, making the “high u” training strategy very prone to overfitting.
Second, there is a mismatch between the quality of the detector and that of the hypotheses
available at inference time. Since high quality detectors are only optimal for high quality hy-
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FIGURE 2.9 Cascade R-CNN is the multistage extension of Faster R-CNN. “I” is input image, “conv” backbone
convolutions, “pool” region-wise feature extraction, “H” network head, “B” bounding box, and “C” classification.
“B0” is proposals in all architectures.

potheses, detection performance can degrade substantially for hypotheses of lower quality.
The Cascade R-CNN addresses this problem, so as to enable object detectors of high quality.

2.7.1 Architecture

The Cascade R-CNN (Cai and Vasconcelos, 2021) is a multistage extension of the Faster R-
CNN, as shown in Fig. 2.9. Rather than a single detector, it uses a cascade of detector stages,
which are sequentially more selective against close false positives. The IoU thresholds are
typically 0.5, 0.6 and 0.7 for the different detection heads. The cascade of R-CNN stages is
trained sequentially, using the output of one stage to train the next. This leverages the ob-
servation that the output IoU of a bounding box regressor is almost always better than its
input IoU. As a result, the output of a detector trained with a certain IoU threshold is a good
hypothesis distribution to train the detector of the next higher IoU threshold. By adjusting
bounding boxes, each stage aims to find a good set of close false positives for training the
next stage. The main outcome of this resampling is that the quality of the detection hypothe-
ses increases gradually from one stage to the next. As a result, the sequence of detectors
addresses the two problems underlying the paradox of high-quality detection. First, because
the resampling operation guarantees the availability of a large number of examples for the
training of all detectors in the sequence, it is possible to train detectors of high IoU without
overfitting. Second, the use of the same cascade procedure at inference time produces a set
of hypotheses of progressively higher quality, well matched to the increasing quality of the
detector stages. This enables higher detection accuracies.

2.7.2 Cascaded bounding box regression

Since it is difficult for a single regressor to perform uniformly well over all quality levels,
the regression task is decomposed into a sequence of simpler steps in the Cascade R-CNN.
This consists of a cascade of specialized regressors

f (x,b) = fT ◦ fT −1 ◦ · · · ◦ f1(x,b), (2.10)
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FIGURE 2.10 Distribution of the distance vector � of (2.8) (without normalization) at different cascade stages.
Top: plot of (δx , δy). Bottom: plot of (δw, δh). Red dots are outliers for the increasing IoU thresholds of later stages,
and the statistics shown are obtained after outlier removal.

where T is the total number of cascade stages. The key point is that each regressor ft is
optimized for the bounding box distribution {bt } generated by the previous regressor, rather
than the initial distribution {b1}. In this way, the hypotheses are improved progressively. The
efficacy of cascade regression is illustrated in Fig. 2.10, which presents the distribution of the
regression distance vector � = (δx, δy, δw, δh) of (2.8) at different cascade stages. Note that
most hypotheses become closer to the ground truth as they progress through the cascade.

2.7.3 Cascaded detection

It is difficult to train a high quality detector directly. The Cascade R-CNN addresses the
problem by leveraging cascade regression as a resampling mechanism. Starting from exam-
ples {(xi ,bi )}, cascade regression is used to successively resample an example distribution
{(x′

i ,b′
i )} of higher IoU. This enables the sets of positive examples of the successive stages to

keep a roughly constant size, as the detector quality u is increased.
At each stage t , the R-CNN head includes a classifier ht and a regressor ft optimized for

the corresponding IoU threshold ut , where ut > ut−1. These are learned with loss

L
(
xt , g

) = Lcls

(
ht

(
xt

)
, yt

) + λ
[
yt ≥ 1

]
Lloc

(
ft

(
xt ,bt

)
,g

)
, (2.11)
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FIGURE 2.11 (a) Image pyramid: features are computed on each image scale independently. (b) Single feature
map: object detection operates on only single scale feature map in CNN. (c) Feature pyramid: a pyramid of features
for multiscale detection but with a single scale of image input. (d) Feature Pyramid Network (FPN): FPN adds
top-down connections to feature pyramid of (c), enabling more scale-invariant semantic feature representation at
different scales.

where bt = ft−1(xt−1,bt−1), g is the ground truth object for xt , λ = 1 the trade-off coefficient, yt

the label of xt under the ut criterion, according to (2.2), and [·] the indicator function. Note that
the use of [·] implies that the IoU threshold u of bounding box regression is identical to that
used for classification. This cascaded learning has two important consequences for detector
training. First, the potential for overfitting at large IoU thresholds u is reduced, since positive
examples become plentiful at all stages. Second, detectors of deeper stages are optimal for
higher IoU thresholds. This simultaneous improvement of hypotheses and detector quality
enables the Cascade R-CNN to beat the paradox of high quality detection. At inference, the
same cascade is applied. The quality of the hypotheses is improved sequentially, and higher
quality detectors are only required to operate on higher quality hypotheses, for which they
are optimal.

2.8 Multiscale feature representation

Recognizing objects at various scales is a fundamental challenge in computer vision.
A classical solution in the literature is to rely on image pyramids, such as those shown in
Fig. 2.11(a), where the original image is resized to different scales from which features are
extracted (Viola and Jones, 2004; Felzenszwalb et al., 2010; Dollár et al., 2014). By applying a
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FIGURE 2.12 In natural images, objects can appear at very different scales, as illustrated by the yellow bounding
boxes. A single receptive field of a fixed-size filter (shown in the shaded area) cannot match this variability.

fixed scale detector to all the pyramid feature representations it is then possible to detect ob-
jects at different scales, without loss of accuracy. Small (large) objects are detected in the large
(small) resolution channels of the feature pyramid. Nevertheless, building a pyramid of CNN
features is computationally expensive, making this solution impractical for most real appli-
cations. The design of effective CNN feature representations of various scales is an important
research direction for object detection.

Despite the great success of deep learning based object detectors (Girshick et al., 2014;
Girshick, 2015; He et al., 2014; Ren et al., 2017), there has been limited progress towards the
detection of objects at multiple scales. As discussed above, R-CNN, SPP-Net and Fast R-CNN
sample object proposals at multiple scales, using a preliminary attention stage, e.g., Selective
Search (van de Sande et al., 2011), and then warp these proposals to a fixed size supported
by the CNN. This pushes the scale invariance problem to the attention stage, which is not
trained jointly with the CNN. The Faster R-CNN (Ren et al., 2017) addresses the issue of
joint training, using the RPN to generate proposals of multiple scales. However, as shown
in (Fig. 2.11(b)), this is done by sliding a fixed set of filters over a single set of convolutional
feature maps. This creates an inconsistency between objects of variable size and filters of fixed
receptive field. As shown in Fig. 2.12, a fixed receptive field cannot cover the multiple scales
at which objects appear in natural scenes. As a result, detection performance is compromised,
in particular for small objects like that in the center of Fig. 2.12, which are quite difficult to
detect. Several networks have been proposed to extend the two-stage detector architecture by
introducing multiscale extensions of the RPN.

2.8.1 MS-CNN

The MS-CNN was proposed to address the problem of multiscale object detection. It
pursues an alternative strategy to the expensive computation of image pyramids, leverag-
ing the fact that deep neural networks already compute a feature hierarchy layer by layer.
Given that higher-level layers are subsampled, this hierarchy even has a multiscale pyra-
midal structure. Hence, the inconsistency between the sizes of objects and receptive fields
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FIGURE 2.13 The feature pyramid architecture of the MS-CNN. The cuboids are the output tensors of the net-
work (except the input image). h × w is the filter size, c the number of classes, and b the number of bounding box
coordinates.

can be addressed by simply adding output layers at multiple stages of the network, as
shown in Fig. 2.11(c). In this way, the MS-CNN implements several detectors that specialize
in different scale ranges. While detectors based on lower network layers, such as “conv-3,”
have smaller receptive fields and are better matched to detect small objects, those based on
higher layers, such as “conv-5,” are best suited for the detection of large objects. The com-
plementary detectors at the outputs of different layers are combined into a strong multiscale
detector.

2.8.1.1 Architecture
The detailed architecture of the MS-CNN proposal network is shown in Fig. 2.13. The

network detects objects through several detection branches, which are merged into a final
set of proposals. It has a standard CNN trunk, depicted in the center of the figure, and a
set of output branches, which emanate from different layers of the trunk. These branches
consist of a single detection layer. Note that a buffer convolutional layer is introduced on the
branch that emanates after layer “conv4-3”. Since this branch is close to the lower layers of
the trunk network, it affects their gradients more than the other detection branches. This can
lead to some instability during learning. The buffer convolution prevents the gradients of the
detection branch from being back-propagated directly to the trunk layers.

During training, the parameters W of the multiscale proposal network are learned from
a set of training samples S = {(Xi, Yi)}Ni=1, where Xi is a training image patch, and Yi =
(yi, bi) the combination of its class label yi ∈ {0,1,2, · · · ,K} and bounding box coordinates
bi = (bx

i , b
y
i , bw

i , bh
i ). This is achieved with a multitask loss

L(W) =
M∑

m=1

∑
i∈Sm

αmlm(Xi,Yi |W), (2.12)
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where M is the number of detection branches, lm the multitask loss combining classification
and bounding box regression of (2.5), αm the weight of loss lm, and S = {S1, S2, · · · , SM}, where
Sm contains the examples of scale m. Note that only a subset Sm of the training samples,
selected by scale, contributes to the loss of detection layer m.

2.8.2 FPN

Although the feature pyramid of Fig. 2.11(c) improves the representation of different
object scales, it introduces a large semantic gap between these representations. While high-
resolution maps contain information about features of low-level semantics, such as edges,
corners, etc., low-resolution maps convey semantically rich information, such as object cate-
gory. Hence, high-resolution (low-resolution) maps are mostly informative of object location
(identity). By asking all feature representations to contribute to the localization and classifi-
cation tasks, the architecture of Fig. 2.11(c) can have suboptimal detection performance.

To reduce these semantic gaps, the feature pyramid network (FPN) adds a top-down con-
nection from the high-level (semantically richer) feature maps to the low-level (semantically
poorest) feature maps, as shown in Fig. 2.11(d). This ensures that the feature pyramid has
strong semantics at all pyramid levels. Like Fig. 2.11(c), the FPN is an in-network pyramid
and thus efficient, but the top-down connections increase its representation power.

2.8.2.1 Architecture
The major difference between the FPN and standard bottom-up classification networks,

like the ResNet (He et al., 2016), is the addition of a top-down pathway, to enable semantically
rich feature pyramids. This is implemented with a simple set of building blocks, shown in
Fig. 2.14.

Bottom-up pathway

A standard feed-forward network is naturally a bottom-up pyramid, due to the use of
downsampling operations like pooling, convolution with stride of 2, etc. In general, the
resolution of feature maps is reduced by 2 times at every network stage, where a stage is
defined as a sequence of layers with the same resolution. The FPN builds on the ResNet, ex-
tracting the bottom-up pyramid from the activations of the last layer of each ResNet stage.
Specifically, the outputs of layers conv2, conv3, conv4, and conv5 of the ResNet, denoted as
{C2,C3,C4,C5}, are used to create a pyramid of stride {4,8,16,32} pixels with respect to the
input image.

Top-down pathway and lateral connections

The goal of the FPN is to enrich the semantics of the low-level feature maps. A simple
way to do this is to add the high-level feature maps, of strong semantics, to the low-level
ones. Since higher level feature maps have lower resolution, they are first upsampled spa-
tially by a factor of two, using nearest neighbor sampling. Before the summation, the lower
layer feature maps are fed to a 1 × 1 lateral convolutional layer, in order to ensure that
both feature maps have the same channel dimensions. The feature maps are then summed
element-wise and a 3 × 3 convolution is applied to generate the final feature map, so as to
avoid potential aliasing due to the upsampling operation. There are no nonlinearities in these
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FIGURE 2.14 FPN building block.

extra layers. The procedure is iterated from the top to the bottom of the pyramid, i.e., layers
{C2,C3,C4,C5}, to produce the final FPN pyramid of layers {P2,P3,P4,P5}, each containing
256 channel dimensions. Each layer Pi corresponds to layer Ci of the same resolution. To en-
sure that all FPN pyramid levels possess the same semantics, the classification and bounding
box regression layers are shared across different levels, to produce the final predictions for all
scales.

Since two-stage object detectors, such as those discussed above, require RoI pooling to
extract the instance-wise features processed by the second stage, they are not fully convolu-
tional, which complicates their hardware implementation. Although accurate, these detectors
can only achieve speeds of 10–20 frames per second (fps) on modern GPUs. Higher detection
speeds usually require more hardware friendly architectures, typically fully convolutional
and containing a single-stage. A number of such architectures have been proposed in the lit-
erature, including YOLO (Redmon et al., 2016), SSD (Liu et al., 2016), and RetinaNet (Lin et
al., 2017b). Single-stage detectors usually trade-off accuracy for speed.

2.9 YOLO

You only look once (YOLO) (Redmon et al., 2016) was one of the first and is still the
most popular single-stage object detector. It gained popularity mainly due to its high speed,
more than 50 fps on a modern GPU. However, its accuracy is significantly lower than the
state of the art for two-stage detectors. The first version of YOLO did not use anchors, as
in Faster R-CNN, which were only introduced in later versions. Its computations are il-
lustrated in Fig. 2.15. The input image is divided into S × S cells, and B predictions are
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FIGURE 2.15 Detection system of YOLO.

made per cell x. A cell is considered responsible for an object if and only if the center of
the ground truth bounding box of the object is located inside it. Each prediction consists of
four bounding box coordinates x, y, w and h and an objectness score p(o = 1|x). The latter
reflects the confidence that the predicted box includes an object and is ideally equal to the
IoU between the predicted box and the object ground truth box. If no object exists in the
cell, the objectness score should be 0. The confidence prediction for class k is then defined
as

p(y = k|x) = p(y = k|o = 1,x)p(o = 1|x), (2.13)

where p(y = k|o = 1,x) is the class conditional probability of class k appearing in cell x given
that the cell contains an object. However, a single set of C class conditional probabilities is
shared by the B predictions of the cell, i.e., all predictions in a cell have the same class con-
ditional probabilities. A typical implementation of YOLO, for the detection of the 20 object
classes of the Pascal VOC dataset (Everingham et al., 2010), uses S = 7, B = 2 and C = 20, for
a total of 7 × 7 × 30 predictions.

Backbone design

One of the reasons behind YOLO’s efficiency is its backbone network, called DarkNet. This
is inspired by the GoogLeNet (Szegedy et al., 2015) architecture, containing 24 convolutional
layers followed by 2 fully connected layers, implemented with a combination of 1×1 channel
reduction and 3 × 3 convolutional layers, whose implementation is optimized in modern
GPUs.
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FIGURE 2.16 Detection system of SSD.

2.10 SSD

SSD (Liu et al., 2016) is another popular single-stage object detector. It is as fast as YOLO
but has much higher accuracy, especially for small objects. The major differences are the use
of the multiscale feature pyramid of Fig. 2.11(c) and RPN anchors.

2.10.1 Architecture

The backbone network is a standard image classification network (without the final classi-
fication layer), e.g., the VGG-Net (Simonyan and Zisserman, 2014). Some auxiliary layers are
added to this backbone network to produce detection predictions. The overall architecture is
shown in Fig. 2.16.

Multiscale detection

Similarly to the MS-CNN, SSD uses the hierarchical feature representations of Fig. 2.11(c)
for multiscale detection. As shown in Fig. 2.16, detections are generated from the feature maps
of layers Conv4_3, Conv6, Conv7, Conv8_2, Conv9_2, Conv10_2 and Conv11_2, which have dif-
ferent resolutions. For the reasons discussed above, this enables the detection of more objects
and higher accuracy for the detection of small objects. Similar to the RPN (Ren et al., 2017),
the SSD predictor applied to each convolution feature map is composed of an additional 3×3
convolution layer, whose outputs are class scores and bounding box offsets relative to anchor
positions.

Anchor boxes

Similar to the RPN, there are k anchors at a given location, and c class scores and 4 coor-
dinate offsets are predicted per anchor. Hence, a feature map of h × w resolution produces
(c + 4) × k × h × w outputs. This is equivalent to applying RPN on multiple feature maps
and helps understand why single-stage detectors are in general less accurate than two-stage
detectors: they are similar to the proposal generation stage of the latter. When comparing the
SSD to the RPN implemented by the MS-CNN, the main difference is that the RPN is class-
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agnostic, i.e., c = 2, while the SSD is class-specific, making c + 1 class predictions, e.g., c = 21
for the VOC dataset (Everingham et al., 2010).

2.10.2 Training

SSD uses a multitask loss function similar to (2.5), combining classification and bounding
box regression terms. For more accurate detection, it also uses hard negative mining and
strong data augmentation during training.

Hard negative mining

A difficulty of object detection is that most negative samples, e.g., sky, are easy to classify.
If too many simple negatives are included in the training, the detector will underperform for
hard negatives (negatives that are visually similar to positives). This problem is more serious
for single-stage detectors, which lack the effective resampling implemented by the second
stage. Hard negative mining is a sampling mechanism, widely used in object detection prior
to the emergence of deep learning (Viola and Jones, 2004; Felzenszwalb et al., 2010; Dollár et
al., 2014), designed to combat this problem. To create the pool of negatives, SSD sorts negative
samples by higher to lower confidence scores (higher meaning that the example is harder to
classify), and selects the top ones needed to achieve a ratio of 1:3 between positives and neg-
atives, similar to the sampling of Fast R-CNN. This makes the detector more discriminative
of hard negative samples.

Data augmentation

Insufficiency of training data is another problem for deep learning based object detection,
which can be addressed by data augmentation. In SSD training, each image is randomly aug-
mented by either 1) keeping the original image; 2) cropping a patch of minimum IoU with
the object in {0.1,0.3,0.5,0.7,0.9}; or 3) cropping a random patch. The size (aspect ratio) of
the random patch is chosen randomly to be in [0.1,1] of the original image size (in { 1

2 ,2}).
After cropping, the patch is resized to the fixed square size (e.g., 512 × 512) with randomly
horizontal flipping, to be forwarded to the network. Beyond spatial augmentation, some aug-
mentations are also applied in the color space.

2.11 RetinaNet

While hard negative sampling addresses the imbalance between easy, e.g., sky, and hard
negatives, it is only mildly effective for deep learning detectors. The RetinaNet (Lin et al.,
2017b) instead proposes a generalization of the cross-entropy loss, denoted as the focal loss,
that downweighs easy negatives and emphasizes hard ones.

2.11.1 Focal loss

The cross entropy (CE) loss for binary classification is
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FIGURE 2.17 Focal Loss visualizations of different γ . Setting γ > 0 downweighs the losses of well-classified exam-
ples (pt > 0.5), putting more focus on hard misclassified examples.

CE(p,y) =
{

− log(p) if y = 1

− log(1 − p) otherwise,
(2.14)

where y ∈ {±1} is the ground-truth label and p = p(y = 1|x) ∈ [0,1] the probability for class
y = 1. Define pt as

pt =
{

p if y = 1

1 − p otherwise.
(2.15)

This can be expressed as CE(p,y) = CE(pt ) = − log(pt ) and is plotted in Fig. 2.17 (top blue
curve, with γ = 0). It can be observed that a sample easily classified (e.g., with pt 	 0.5)
still has nontrivial loss magnitude. When the majority of the training samples are easy, they
dominate the overall loss, overwhelming the contributions of hard samples.

The Focal Loss generalizes the CE loss by inserting a modulating factor (1 − pt )
γ of tunable

parameter γ ≥ 0,

FL(pt ) = −(1 − pt)
γ log(pt ). (2.16)

This factor changes the loss as shown in Fig. 2.17. While for small pt (hard examples) the loss
does not change much, it decays to zero much faster for large pt (easy examples), especially
for large values of γ . Hence, easy samples contribute less to the overall loss. For example,
when γ = 2, an easy example with pt = 0.9 will have a 100-times lower contribution under
the focal than under the cross-entropy loss. The downweighing rate is controlled by the hy-
perparameter γ , with larger γ inducing heavier downweighing, as shown in Fig. 2.17. In
practice, it has been found that γ = 2 tends to work best.

In general, the focal loss is balanced by another hyperparameter α,

FL(pt ) = −αt (1 − pt)
γ log(pt ). (2.17)
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TABLE 2.1 Performances of the advanced object detectors on COCO.

backbone speed (fps) epoch AP AP50 AP75 APS APM APL

YOLOv3 DarkNet-53 48.1 273 33.4 56.3 35.2 19.5 36.4 43.6
SSD512 VGG16 30.7 24 29.4 49.3 31.0 11.7 34.1 44.9
RetinaNet ResNet-50 24.4 36 38.7 58.0 41.5 23.3 42.3 50.3
Faster R-CNN ResNet-50 9.6 36 38.4 58.7 41.3 20.7 42.7 53.1
FPN ResNet-50 26.3 36 40.2 61.0 43.8 24.2 43.5 52.0
Cascade R-CNN ResNet-50 21.8 36 43.6 61.6 47.4 26.2 47.1 56.9

When this loss is used, the problem of overwhelming easy negatives can be circumvented
during training.

2.12 Detection performances

We finish by briefly comparing the performances of some of the object detectors discussed
above. The R-CNN, SPP-Net, and Fast R-CNN are not included in this comparison since they
are now obsolete and rarely used in practice. Table 2.1 presents a summary of the perfor-
mance of the remaining methods on the COCO dataset (Lin et al., 2014), in terms of speed,
training epochs, and Average Precision (AP). In COCO, AP is averaged over 10 IoU thresh-
olds of 0.50:0.05:0.95, and AP50 (at threshold 0.5), AP75 (at threshold 0.75) APS (for small
objects), APM (for medium objects) and APL (for large objects) provide more performance
details. Note that the more comprehensive metric of AP, averaged over IoU thresholds of
0.50:0.05:0.95, rewards detectors with better localization than the traditional metric of AP50 at
IoU threshold of 0.5. It is clear that single-stage detectors (YOLO and SSD) are faster but much
less accurate than their two-stage counterparts (Faster R-CNN, FPN and Cascade R-CNN).
Among the two-stage detectors, speeds are comparable but the Cascade R-CNN achieves the
highest accuracies. Comparisons of this type can be found in object detection papers and al-
low practitioners to choose the detector with the trade-off between complexity and accuracy
most suited for a given application.

2.13 Conclusion

In this chapter, we have reviewed recent advances in deep learning based object detec-
tion. Broadly speaking, existing methods can be divided into two categories, single-stage
and two-stage. Single-stage methods are faster but less accurate. Two stage-methods com-
bine a proposal network, which is similar to a single-stage detector but class-insensitive, and
a second stage that classifies objects into different classes and refines their bounding boxes.
Many contributions have been made through the years to improve on the performance of
the pioneering R-CNN (Girshick et al., 2014), both in terms of speed and accuracy. These in-
clude concepts that have become important in the detection literature, such as RoI pooling,
multitask losses, the RPN, anchors, cascaded detection and regression, multiscale feature rep-
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resentations, data augmentation techniques, loss functions, etc. While, as shown in Table 2.1,
these contributions have enabled substantial performance improvements, object detectors are
still far from perfect. A large literature also exists in topics not covered in this review, such
as instance segmentation, domain adaptation, or low complexity deep learning architectures,
among several others. Finally, object detection is frequently used as a preliminary stage of
many other vision tasks, including pose estimation, image and video captioning, or visual
question answering, among others. In summary, while current object detectors are orders of
magnitude more effective than those of just a decade ago, much research remains to be done
in this problem of fundamental importance for computer vision.
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CHAPTER POINTS

• Reducing supervision for computer vision
models is important for scalability and
adaptability.

• We review different methods that have
been proposed for learning with limited
supervision, and provide results that
justify the methods.

• We specifically focus on active learning for
recognition, weakly supervised learning
for event localization, domain adaptation
for semantic segmentation, and
reinforcement learning for subgoal
discovery in training robots for dynamical
tasks.

3.1 Introduction

The recent successes in computer vision have been mostly around using a huge corpus of
intricately labeled data for training recognition models. But, in real-world cases, acquiring
such large datasets will require a lot of manual annotation, which may be strenuous, out
of budget, or even prone to errors. However, a lot of real data that are generated daily can
be acquired at low to no annotation cost. Such data can be unlabeled or contain tag/meta-
data information, termed as weak annotation. Our goal is to develop methods that can learn
recognition models from such data involving limited manual supervision. In this chapter,
we will look into two dimensions of learning with limited supervision – first, reducing the
number of manually labeled data required to learn recognition models, and second, reducing

c This work was done when the author was at UC Riverside.
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the level of supervision from strong to weak which can be mined from the web, easily queried
from an oracle, or imposed as rule-based labels derived from domain knowledge.

In the first dimension of learning with limited supervision, we show that context informa-
tion, often present in natural data, can be used to reduce the number of annotations required.
In the second dimension – reducing the level of supervision – we use weak labels instead of
dense strong labels, for learning dense prediction tasks. We discuss frameworks to learn using
weak labels for action detection in videos and domain adaptation of semantic segmentation
models on images. All of these tasks discussed are static in nature. Continuing in the direc-
tion of learning from weak labels, we explore sequential decision-making problems, where
the next input depends on the current output. We look into the problem of learning robotics
tasks with a small set of expert human demonstrations via decomposing the complex task
into subgoals. Detailed explanation of these approaches follows.

3.2 Context-aware active learning

In recent years, due to advances in technology, a huge amount of visual and text data are
generated daily, which are mostly unlabeled for the purpose of learning machine learning
models. Also, machine learning algorithms are becoming more commonplace in human life.
A large proportion of these algorithms are based on supervised learning which requires a
large quantity of data to be labeled. Moreover, these models need to be updated over time
as new data becomes available in order to dynamically adapt to the different semantic con-
cepts which may drift with time. Manually labeling this continuous flow of data is not only a
tedious task for humans but also prone to incorrect labeling. In such a scenario, it is maybe ad-
vantageous to label only the informative data points, and not label the data points carrying
redundant information. This intuition is supported in works (Lapedriza et al., 2013) which
show that not all data points carry the same amount of information, and choosing the most
informative ones may even lead to better performance than labeling all the data points in the
unlabeled dataset. Active Learning, which has been studied in the literature for the last few
decades has shown immense potential in choosing the informative data points and reducing
the manual labeling effort.

3.2.1 Active learning

Active Learning (Settles, 2012) has been proposed as a solution to the problem of reducing
the amount of manual labeling, without compromising recognition performance. A pictorial
overview of active learning is given in Fig. 3.1. Given a large unlabeled dataset, active learn-
ing methods first choose a small random subset of data and query the human expert to obtain
their labels. These data points are used to learn a prediction model for the task at hand. This
is the initial model. The next job is to choose only a small subset of data points from the
unlabeled set, to get the maximum amount of information possible. Informativeness utility
scores are defined on these unlabeled samples based on the uncertainty of the current model,
data density, etc. These scores are used to choose the samples to label. Generally, active learn-
ing methods are iterative with human-in-the-loop, i.e., computing the informativeness scores,
querying the human to obtain labels, followed by updating the model with the new labeled
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FIGURE 3.1 This figure presents a pictorial overview of the iterative process in Active Learning. It starts with
choosing a few samples from an unlabeled set to query the oracle for manual labeling. The labeled set is then used
to update the prediction model, which is further used to compute the informativeness measure of the remaining
unlabeled samples and in turn select a small subset to annotate.

data points, and again computing the informativeness scores of the unlabeled data points,
as shown in Fig. 3.1. This loop continues either until the annotation budget is exhausted, or
forever, in case of continuous learning where concepts may drift over time and a constant
update of the model is required.
Notations Before looking into the details of each of these steps, let us formalize the notations
to be used hereafter. Consider a classification task with c categories. We learn a model which
given a data point feature x predicts a probability mass function (pmf) pθ(y|x) over the c

categories, which is parameterized by θ , which we need to learn. θ can be a single vector
for linear models or a group of matrices for deep neural networks. To learn that, we have a
labeled set of tuples L = {(xi , yi)

l
i=1} and an unlabeled set U = {(xj )

u
j=1}.

Informativeness measures

Most active learning approaches formulate a utility score for each unlabeled sample, based
on which they are chosen for manual labeling. The entropy of the predictions is one of the
most common informativeness measures used in the literature (Settles, 2012; Li and Guo,
2014; Paul et al., 2016). Given a data point x, the entropy can be represented as follows:

H(x) =
c∑

i=1

−pθ(y = i|x) logpθ(y = i|x) (3.1)

A higher value of entropy signifies that the classifier is uncertain about the prediction and
thus should be chosen for manual labeling.

Expected change in model parameter gradients (Settles, 2012) is another utility score which
measures the amount of change in gradients possible in the model when a sample x is in-
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cluded in the training set. It is calculated as

G(x) =
c∑

i=1

pθ(y = i|x)||∇θ l
(
L∪ (x, i)

)||2 (3.2)

where l(., .) is the loss function used to learn the classification model. A higher amount of
expected gradient change would signify a high amount of information carried in the data
point. Expected model output change (Käding et al., 2016) and expected error rate (Cuong et
al., 2013; Li and Guo, 2013) are also similar measures used in the literature.

Data density (Li and Guo, 2013), which considers the density of the data points in the
feature space, is another important measure for active learning. It can be defined as follows:

D(x) = 1

|nei(x)|
∑

xi∈nei(x)

1 − dist (x,xi ) (3.3)

where nei(x) are the neighboring data points of x. A higher value of D(x) would signify that
the data points around x are very close to each other and thus obtaining the label of x would
be beneficial to get an understanding of the surrounding data points as well. Note that this
measure is generally used in conjunction with other measures discussed above. Given these
measures, active learning methods choose the data points for manual annotation as discussed
next.

Selecting informative samples

Selecting informative samples in active learning depends on the application and annota-
tion budget at hand. There are two possible ways of choosing informative samples – serial
where one data point is chosen at a time or batch-mode, where multiple data points are chosen
at a time. After choosing the samples, the model is updated and the new scores are obtained
on the unlabeled data points. Thus, in scenarios where computation is restricted, batch-mode
may turn out to be better, but the serial method may result in better performance.

Most active learning methods consider that the unlabeled dataset is fixed, which may not
be the case in general. Data can be streaming, i.e., appear in small batches. In that case, we
have to select either a certain prespecified portion for manual labeling which is generally
designed based on the annotation budget per batch. A more difficult but useful scenario is
when the total budget for labeling is specified and the algorithm needs to decide on its own
to choose the suitable subset to label for each batch of streaming data. It is interesting to
note that most of the methods discussed above define informativeness measures indepen-
dently for the samples without considering the interrelationships that may occur between
data points. Moreover, these methods consider active learning of one task at a time, and they
cannot sample for multiple recognition tasks at once. These are addressed below.

3.2.2 Context in active learning

In this section we discuss how relationships between data points can be useful in further
reducing the supervision required to learn recognition tasks. We also discuss how we can
devise active learning for multiple recognition tasks simultaneously.
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FIGURE 3.2 A sequence of a video stream from Oh et al. (2011) shows three new unlabeled activities – person
getting out of a car (a1) at T + 0 s, person opening a car trunk (a2) at T + 7 s, and person carrying an object (a3) at
T + 12 s. These activities are spatio-temporally correlated, and this can provide contextual information for a holistic
understanding.

Context in learning

Relationships between data points often occur in the real-world. Such relationships are of-
ten termed as context in the literature. For example, consider the relationship between scenes
and objects. It is unlikely to find a ‘cow’ in a ‘bedroom’, but, the probability of finding ‘bed’
and ‘lamp’ in the same scene may be high. Thus gaining information about a scene can help in
the enhanced prediction of objects and vice versa. Similarly, events/activities in videos may
be spatiotemporally correlated as shown in Fig. 3.2. Note in the figure that without knowl-
edge about activity a2 and a3, it is hard to predict whether activity a1 is a person getting out of
the car or getting in the car. The relationships with the other activities help to understand that
particular activity. Relationships also occur between documents via hyperlinks or citations.
Several works have shown that in many applications such as activity recognition (Yao and
Fei-Fei, 2010; Wang et al., 2013), object recognition (Galleguillos et al., 2008; Choi et al., 2010),
text classification (Sen and Getoor, 2003; Settles and Craven, 2008), etc, the relationships be-
tween data points can be exploited to get better recognition performance. In many of these
works, Probabilistic Graphical Models (Koller and Friedman, 2009), Structural Support Vec-
tor Machines (SVM) (Cristianini and Ricci, 2008), etc are used for a holistic understanding.
Even in the era of deep learning, Conditional Random Fields (Koller and Friedman, 2009) are
used for better scene understanding.

Context for query selection: motivation

Keeping in mind the global understanding that is offered by utilizing context in data, an
interesting direction is to look at whether context can also be useful for the purpose of re-
ducing the number of labeled samples. The motivation behind this is that in the presence of
context, as the predictions are correlated, can we gather information about a large number
of unlabeled data points while labeling only a few of them. As discussed previously, unlike
methods in the literature that do not consider the contextual information in the informative-
ness measures, context-aware active learning takes into account the context to reduce the
number of annotations.

Although there have been some works that consider relationships between data points in
active learning (Bilgic and Getoor, 2009; Mac Aodha et al., 2014; Hasan and Roy-Chowdhury,
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FIGURE 3.3 This figure presents the flow of the proposed framework. 1. A small set of labeled data is used to
obtain the initial relationship (R) and the classification model (C). 2. As a new unlabeled batch of data becomes
available sequentially over time, we first extract features from the raw data. Then the current C and R models are
used to construct a graph from the data to represent the relationships between them. Then inference on the graph
is used to obtain the node and edge probabilities, which are used to choose the informative samples for manual
labeling. The newly labeled instances are then used to update the models C and R.

2015; Hu et al., 2013), they do not consider the flow of beliefs between data points to have
a joint understanding of their predictions, which may be helpful for choosing the most in-
formative ones. Moreover, most of them are problem-specific algorithms and deal with the
active learning of a single recognition task. A general approach for active learning that con-
siders the interrelationships between data points, and which can be used across a variety of
application domains, is necessary. Joint learning of tasks such as scene-object (Yao et al., 2012;
Wang et al., 2016a) or activity-object (Jain et al., 2015; Koppula et al., 2013) classification may
be required to be learned actively, to reduce the manual labeling effort. In such scenarios, it is
challenging to choose the informative samples for manual labeling as they may belong to dif-
ferent recognition tasks. We next present a framework for such context-aware active learning,
including jointly for multiple tasks.

Context for query selection: overview

Given an unlabeled set, we describe a framework (Paul et al., 2017) that chooses a small
informative subset of data points for manual annotation while exploiting the context informa-
tion, i.e., the structural relationships between them. The flow of the framework is pictorially
presented in Fig. 3.3. The framework starts with a small set of labeled data and uses it to build
the classification (C) and relationship (R) models. R represents the underlying relationship
between the data points via categorical cooccurrence probabilities. Note that the classifica-
tion models may contain multiple classifiers for multiple recognition tasks. After learning the
initial models, given a new batch of unlabeled samples, the goal is to select a subset of infor-
mative samples for manual labeling which can be used to update the current classification
and relationship models.

As new batches of data become available, the samples in the batches are separated into
different sets based on the recognition task to which they belong, followed by feature extrac-
tion. Using the current classifiers, a probability mass function over the possible categories is
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obtained for each unlabeled sample. It is used along with R to construct a graph whose nodes
represent the samples. A message-passing algorithm is used to infer on the graph to obtain
the beliefs of each node and the edges of the graphs. An information-theoretic objective func-
tion is derived, which utilizes the beliefs to select the informative nodes for manual labeling.
The submodular nature of this optimization function allows us to achieve this in a computa-
tionally efficient manner. The newly labeled nodes are used to update the models C and R. It
may be noted that the number of samples selected per batch is nonuniform, dependent on the
information content of each batch.

3.2.3 Framework for context-aware active learning

In this section, we present a framework to utilize contextual information, specifically, cooc-
currence based relationships between data points, in an active learning framework to reduce
the number of manual annotations to learn recognition models.

Data representation

Consider that the unlabeled data points have some underlying structure, i.e., relationships
among them. We take a probabilistic graphical model approach to build a graph whose nodes
represent the unlabeled samples and edges represent the relationships between them and
help as pathways for the flow of information between the nodes. The nodes are represented
using node potentials, which are probability mass function (pmf) predictions from the cur-
rent prediction models (single or multiple for joint tasks). The edges are represented using
edge potentials which are represented as a matrix with cooccurrence frequencies between
categories, which is represented as relationship model R. The computation of the cooccur-
rence frequency is dependent on the application at hand and will be discussed subsequently.
Note that this framework can be applied to any application containing relationships which
can be modeled as edge potentials.

We construct a graph G = (V ,E) with the instances in U . Each node in V = {v1, . . . , vN }
represents each data point. The edges E = {(i, j)|vi and vj are linked} represent the relation-
ships between the data points. The node and edge potentials are assigned using the current
classification model C and relationship model R. A message-passing algorithm can be used
to infer the node and edge beliefs which are the marginal node probabilities and the pair-wise
joint distribution of the edges respectively. Loopy Belief Propagation (LBP) (Ugm, 2007) can
be used for this purpose.

Selection of informative samples

Using the node and edge probabilities, the goal is to choose a small subset V l∗ ⊂ V for
manual labeling, which will improve the current models C and R. We wish to select a subset
of the nodes such that the joint entropy of all the nodes H(V ) is minimized. The joint entropy
of all the nodes in the graph can be approximated as follows:

H(V ) ≈
∑
vi∈V

H(vi) −
∑

(i,j)∈E

I (vj ;vi) (3.4)
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Note that the joint entropy of the graph can only be approximated for a cyclic graph in gen-
eral, but the above expression is an exact representation for acyclic graphs. Consider we have
two disjoint vertex subgraphs with vertex V l and V nl and edges divided accordingly into El

and Enl . Then using Eq. (3.4), the entropy of the graph can be expressed as follows:

H(V ) ≈ H
(
V l

) + H
(
V nl

) −
∑

(i,j)∈E

vi∈V l,vj ∈V nl

I (vj ;vi) (3.5)

If we choose V l for manual annotation, it can be shown that the first and last terms of the
above equation become zero, which will be the reduction in entropy. Thus we need to choose
the optimal subset V l∗ such that the entropy is minimized by the maximum extent. Thus, the
optimization problem can be formulated as follows:

V l∗ = arg max
V l

s.t.|V l |=K

[
H

(
V l

) −
∑

(i,j)∈E

vi∈V l,vj ∈V nl

I (vj ;vi)

]
(3.6)

The above optimization problem is NP-Hard and difficult to solve. Heuristics techniques
such as Branch and Bound can be used to efficiently search for a solution. This method of
optimization is necessary when there is a strict requirement for budget constraints per batch
of data, and we addressed this problem in one of our works (Hasan et al., 2018). However,
each batch of data may contain a nonuniform amount of information, and choosing the same
number of budget-constrained samples (i.e., K) from each batch may not be a good idea
in general. Instead, the number of samples could be determined based on the information
content of each batch. With this motivation, we can modify the above optimization problem
to be unconstrained with a cardinality regularizer as follows:

V l∗ = arg min
V l

[ ∑
(i,j)∈E

vi∈V l,vj ∈V nl

I (vj ;vi) − H
(
V l

) + λ|V l |
]

(3.7)

where λ is a positive trade-off parameter. The objective function in Eq. (3.7) can be proved
to be submodular which makes the optimization problem simpler compared to Eq. (3.6).
Submodular Function Minimization (SFM) often arises in fields of machine learning, game
theory, information theory, etc. Detailed description may be found here (McCormick, 2005).
There exist some algorithms which can be used to solve SFM in polynomial time. The popu-
lar Fujishige-Wolfe Min Norm Point algorithm (Fujishige et al., 2006) can be used to solve the
optimization problem.

Model update

After the chosen samples are labeled by a human annotator, we perform inference on the
graph, conditioned on the acquired labels to update the beliefs of the nodes and then we
apply the concept of weak teacher (Zhang and Chaudhuri, 2015), which does not involve the
human. We choose those nodes having the confidence in classification greater than ε, with
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FIGURE 3.4 The semantic context graphs for three tasks discussed in Section 3.2.4 – joint scene-object recognition
where we utilize the context present between scene and objects in an image, document recognition where the context
relationship information is shared via citations/weblinks, and activity recognition where action sequences share
spatio-temporal relationships.

the corresponding label, to be in the labeled set L. ε should be high enough to avoid incorrect
labeling. The classification model C is updated by retraining the classifier using L. Model R
is comprised of only the cooccurrence matrix ψ and it is incremented using the new labeled
instances.

3.2.4 Applications

In this section, we discuss a few applications where context-aware active learning can be
utilized to reduce the manual labeling effort. We primarily discuss three different applica-
tions – joint scene-object classification, activity recognition, and document classification. As
shown in Fig. 3.4, the applications have data that share relationships among them. We use
linear classifiers such as Support Vector Machine (SVM) (Chang and Lin, 2011) as a baseline
classifier in all the applications discussed next. In active learning, methods are generally com-
pared against the full-set performance, i.e., the performance obtained when all the data points
(except the test set) are labeled and used for training. We also compare with other popular
active learning methods in literature, i.e., Batch Rank (Chakraborty et al., 2015), BvSB (Li et
al., 2012), Entropy (Settles, 2012; Holub et al., 2008), Density-Based Sampling (DENS) (Settles,
2012), Expected Gradient Length (GRL) (Settles and Craven, 2008) and Random Sampling.

Scene-object classification

Scene and objects tend to cooccur in images. Although scene and object classifiers are sep-
arate, their joint understanding can be beneficial (Yao et al., 2012), which can be exploited
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in an active learning framework to reduce manual labeling. This is a special feature of our
framework, as it can actively learn with multiple recognition tasks at once. The SUN dataset
(Choi et al., 2010; Xiao et al., 2010) is good for experimenting with this framework as they
have annotations for both the entire scene as well as the objects in the scene. We extract fea-
tures from pretrained networks VGG-net (Zhou et al., 2014) and Alex-net (Krizhevsky et al.,
2012) for scenes and objects respectively. We use selective search used in the RCNN pipeline
to obtain object proposals. As shown in Fig. 3.4, in joint scene-object recognition, we repre-
sent each image as a graph with a single scene node and multiple object nodes corresponding
to the different object proposals in the image. The graph is considered to be fully connected
with two different types of edges – scene-object and object-object. The edge potential for the
scene-object links is computed as the cooccurrence frequency of a scene category with an ob-
ject category; and for the object-object links, the edge potential is the cooccurrence frequency
between object categories in an image.

In the case of scene classification, the context-aware active learning method requires only
35% manual annotation to reach almost the full-set performance. The other methods in the lit-
erature require about 60% manual annotation to obtain similar performance. For object recog-
nition, the context-aware active learning method requires 45% manual annotation whereas
the methods in the literature need 65% annotation to reach almost the full-set performance.
Our work (Bappy et al., 2016) on model adaptation of scene-object recognition showcases
results specific to this application.

Document classification

Documents are generally interlinked by citations and hyperlinks, which may be exploited
using our active learning approach to reduce manual labeling effort. We use the CORA
dataset (Sen et al., 2008) for our experiments on document classification. It consists of 2708
scientific publications divided into seven categories. There are a total of 5429 links (citations)
between the publications. The publications are represented using a dictionary of 1433 unique
words and the feature vectors ∈ {0,1}1433 indicate the absence or presence of these words. As
shown in Fig. 3.4, in document classification, we represent all the documents as the nodes
of a graph which are linked if one document cites another document. We consider the edge
potential to be the cooccurrence frequency that a publication of category i cited a publication
of category j .

For document classification, the context-aware active learning method requires only 33%
manual annotation to reach almost the full-set performance (Paul et al., 2017). The other meth-
ods in the literature require about 50% manual annotation to obtain similar performance. This
shows that using the context information helps in reducing the amount of manual annotation
by utilizing information which is readily available with the data points.

Activity classification

Activities are generally spatiotemporally related which can be exploited to reduce the
number of instances chosen for manual labeling. We use the VIRAT dataset (Oh et al., 2011) on
human activity for our experiments on activity classification. The dataset consists of 11 videos
segmented into 329 activity sequences. We extracted features using the pretrained model of
3D convolutional networks (Tran et al., 2015). We extract the features for 16 frames at a time
with a temporal stride of 8 and then apply max pooling along the temporal dimension to ob-
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FIGURE 3.5 An example run of our proposed active learning framework on a part of an activity sequence from
VIRAT dataset (Oh et al., 2011). Circles are activity nodes along with their class probability distribution. Edges have
different thicknesses based on the pairwise mutual information. The node labels are – getting out of the vehicle
(GOV), opening vehicle trunk (OVT), unloading from the vehicle (UOV), closing vehicle trunk (CVT), and getting
into the vehicle (GIV). Inference on the graph (top) gives us marginal probability distribution of the nodes and edges.
We use these distributions to compute entropy and mutual information. Relative mutual information is shown by
the thickness of the edges, whereas entropy of the nodes is plotted below the top CRF. Eq. (3.14) exploits entropy and
mutual information criteria in order to select the most informative nodes (2-OVT, 3-UOV, and 7-OVT). We condition
upon these nodes (filled) and perform inference again, which provides us more accurate recognition and a system
with lower entropy (bottom plot).

tain a single vector for each activity. We consider that there exists a link between two activities
if they occurred within a certain spatio-temporal distance. We consider the edge potential to
be the spatio-temporal cooccurrence between the two activities.

In the case of activity classification, the context-aware active learning method requires only
about 18% manual annotation to reach almost the full-set performance. The other methods
in the literature require about 40% manual annotation to obtain similar performance. Note
that although we utilize the relationships between the action categories for this experiment,
we can also utilize the context information imparted by the objects in the activities, which
are especially important in human-object interaction related activities. Fig. 3.5 provides an
example visualizing the working of the context-aware active learning method. As can be
seen, gaining knowledge about some of the nodes helps to reduce the entropy of the other
nodes, thus reducing manual annotation cost.

3.3 Weakly supervised event localization

Temporal activity localization is a core problem in computer vision, where given a long
video, the algorithm needs to temporally localize the portions of the videos corresponding
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FIGURE 3.6 This figure presents the train-test protocol of weakly supervised action localization. The training set
consists of videos with their video-level activity tags and NOT the temporal annotation. Whereas, while testing, the
network not only estimates the labels of the activities in the video but also temporally locates their occurrence.

to different event categories of interest (Aggarwal and Ryoo, 2011). Its recent success (Xu et
al., 2017; Zhao et al., 2017b) has evolved around a fully supervised setting, which considers
the availability of frame-wise activity labels. However, acquiring such precise frame-wise
information requires enormous manual labor. This may not scale efficiently with a growing
set of cameras and activity categories. On the other hand, it is much easier for a person to
provide a few categorical labels which encapsulate the content of a video. Moreover, videos
available on the web are often accompanied by tags that provide semantic discrimination.
Such video-level labels are generally termed as weak labels, which may be utilized to learn
models with the ability to classify and localize activities in videos, as presented in Fig. 3.6.

In computer vision, researchers have utilized weak labels to learn models for several tasks
including semantic segmentation (Hartmann et al., 2012; Khoreva et al., 2017; Yan et al.,
2017), visual tracking (Zhong et al., 2014), reconstruction (Tulyakov et al., 2017; Kanazawa
et al., 2016), video summarization (Panda et al., 2017), learning robotic manipulations (Singh
et al., 2017), video captioning (Shen et al., 2017), object boundaries (Khoreva et al., 2016),
place recognition (Arandjelovic et al., 2016), and so on. The weakly supervised localization
problem is analogous to weak object detection in images, where object category labels are
provided at the image level. There have been several works in this domain mostly utilizing
the techniques of Multiple Instance Learning (MIL) (Zhou, 2004) due to their close relation in
terms of the structure of information available for training. The positive and negative bags
required for MIL are generated by state-of-the-art region proposal techniques (Li et al., 2016;
Jie et al., 2017). In spite of its similarities, temporal localization using weak labels is a much
more challenging task compared to weakly-supervised object detection. The key reason is
the additional variation in content as well as the length along the temporal axis in videos.
Few works in the literature (Bojanowski et al., 2015; Huang et al., 2016) have considered the
availability of temporal order of activities, apart from the video-level labels during training.
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FIGURE 3.7 This figure presents the proposed framework for weakly-supervised activity localization and classifi-
cation. Given a video, we extract features from two streams – RGB and Optical Flow. After concatenating the feature
vectors from the two streams, we learn a few layers specific to the task of weak localization and finally project to the
category space to obtain a T × C matrix where T and C are the number of time steps and categories respectively. We
utilize two loss functions to learn the network parameters – Cross-entropy loss on the temporally pooled predictions,
and CoActivity Loss obtained using a pair of videos containing at least one category in common.

We next formally present the weakly supervised temporal localization task, followed by a
solution to it.
Problem statement Consider that we have a training set of n videos X = {xi}ni=1 with variable
temporal duration denoted by L = {li}ni=1 (after feature extraction) and activity label set A =
{ai}ni=1, where ai = {aj

i }mi

j=1 are the mi(≥ 1) labels for the ith video. We also define the set of
activity categories as S = ⋃n

i=1 ai = {αi}Ci=1. During test time, given a video x, we need to
predict a set xdet = {(sj , ej , cj ,pj )}n(x)

j=1 , where n(x) is the number of detections for x. sj , ej are
the start time and end time of the j th detection, cj represents its predicted activity category
with confidence pj . Fig. 3.7 presents an overview of a framework for weakly supervised
temporal event localization, the details of which are progressively discussed next.

3.3.1 Network architecture

We focus particularly on two-stream networks, as they encapsulate the information from
both the appearance features in the RGB stream and motion features in the Optical Flow
stream. We utilize two networks – UntrimmedNets (Wang et al., 2017) pretrained on Imagenet
and I3D (Carreira and Zisserman, 2017) for feature extraction. Please note that the rest of our
framework is agnostic to the features used. The number of frames to send as input to these
networks depends on its architecture. The RGB stream of UntrimmedNets takes 1 frame as
input, whereas its Flow stream takes five frames for every feature vector. In the case of the
I3D network, both the RGB and the Flow stream take in 16 frames for every feature vector.

Natural videos may have large variations in length, from a few seconds to more than an
hour. In the weakly-supervised setting, we have information about the labels for the video
as a whole, thus requiring it to process the entire video at once. This may be problematic for
very long videos due to GPU memory constraints. As a solution to this problem, we send the
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entire video as input, if its length is less than the predefined length T determined by the GPU
bandwidth. However, if the length of the video is greater than T , we randomly extract from
it a clip of length T with contiguous frames and assign all the labels of the entire video to
the extracted video clip. It may be noted that although this may introduce some errors in the
labels, this way of sampling does have the advantages of data augmentation and performs
well in practice.

After extracting the video features from the two-stream networks, we obtain a matrix of
dimension Xi ∈R

T ×2F , where T is the number of time steps of the video and F are the feature
dimension of RGB and Flow streams, which are concatenated to obtain the features of dimen-
sion 2F . We then pass these features through a fully-connected layer with ReLU nonlinearity
and dropout, followed by a classification layer to finally obtain a matrix of categorical predic-
tions A ∈ R

T ×C , where C is the number of categories.

3.3.2 k-max multiple instance learning

The weakly-supervised activity localization and classification problem as described above
can be directly mapped to the problem of Multiple Instance Learning (MIL) (Zhou, 2004).
In MIL, individual samples are grouped into two bags, namely positive and negative bags.
A positive bag contains at least one positive instance and a negative bag contains no positive
instance. Using these bags as training data, we need to learn a model, which will be able to
distinguish each instance to be positive or negative, besides classifying a bag. In our case, we
consider the entire video as a bag of instances, where each instance is represented by a feature
vector at a certain time instant. In order to compute the loss for each bag, i.e., video in our
case, we need to represent each video using a single confidence score per category.

For a given video, we compute the activation score corresponding to a particular category
as the average of k-max activation over the temporal dimension for that category. As the num-
ber of videos in a bag varies widely, we set k proportional to the number of elements in the
bag. Thereafter, a softmax nonlinearity is applied to obtain the probability mass function over
all the categories, which allows one to compute a vector of predictions pi over the categories.
We need to compare this pmf with the ground truth distribution of labels for each video in
order to compute the MIL loss (MILL). As each video can have multiple activities occurring
in it, we represent the label vector for a video with ones at the temporal positions if that ac-
tivity occurs in the video, else zero. We then normalize this ground truth vector in order to
convert it to a legitimate pmf. The MILL is then the cross-entropy between the predicted pmf
pi and ground-truth, which can then be represented as follows,

LMILL = 1

n

n∑
i=1

C∑
j=1

−y
j
i log

(
p

j
i

)
(3.8)

where yi = [y1
i , . . . , yC

i ]T is the normalized ground truth vector representing the weak labels.

3.3.3 Coactivity similarity

The CoActivity Similarity Loss (CASL) enforces constraints to learn better network pa-
rameters for activity localization. The Weakly supervised Temporal Activity Localization and
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Classification (W-TALC) problem motivates us to identify the correlations between videos of
similar categories. Before discussing in more detail, let us define category-specific sets for the
j th category as, Sj = {xi |∃ ak

i ∈ ai , s.t. ak
i = αj }, i.e., the set Sj contains all the videos of the

training set, which has activity αj as one of its labels. Ideally, we may want the following
properties in the learned feature representations Xi discussed in Section 3.3.1.

• A video pair belonging to the set Sj (for any j ∈ {1, . . . ,C}) should have similar feature
representations in the portions of the video where the activity αj occurs.

• For the same video pair, the feature representation of the portion where αj occurs in one
video should be different from that of the other video where αj does not occur.

These properties are not directly enforced in the MILL. Thus, we introduce CoActivity Simi-
larity Loss to embed the desired properties in the learned feature representations. As we do
not have frame-wise labels, we use the category-wise activations A to identify the required
activity portions. The loss function is designed in a way that helps to learn simultaneously
the feature representation as well as the label space projection. We first normalize the per-
video category-wise activations scores along the temporal axis using softmax nonlinearity to
obtain Â at time t and category j as Âi[j, t] = exp(Ai[t, j ])/∑li

t ′=1 exp(Ai[t ′, j ]) where t indi-
cates the time instants and j ∈ {1, . . . ,C}. We refer to these as attention, as they attend to the
portions of the video where the activity of a certain category occurs. A high value of attention
for a particular category indicates its high occurrence-probability of that category. In order
to formulate the loss function, let us first define the category-wise feature vectors of regions
with high and low attention as follows:

H f
j
i = XiÂi[:, j ]

Lf
j
i = 1

li − 1
Xi

(
1 − Âi[:, j ]) (3.9)

where H f
j
i ,

L f
j
i ∈R

2048 represents the high and low attention region aggregated feature rep-
resentations respectively of video i for category j . In order to enforce the two properties
discussed above, we use the ranking hinge loss. Given a pair of videos xm,xn ∈ Sj , the loss
function may be represented as follows:

Lmn
j = 1

2

{
max

(
0, d
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m,H f

j
n
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] + δ
)

+max
(
0, d

[
H f

j
m,H f

j
n

] − d
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m,H f

j
n

] + δ
)}

(3.10)

where d[] is the cosine distance and δ is the margin parameter and we set it to 0.5 in our
experiments. The two terms in the loss function are equivalent in meaning, and they represent
that the high attention region features in both the videos should be more similar than the high
attention region feature in one video and the low attention region feature in the other video.
The total loss for the entire training set is computed for every pair of videos having at least
one category in common. The two loss functions in Eq. (3.8) and (3.10) can be optimized
jointly to learn the network parameters.
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Localization After learning the weights of the network, we use them to localize the events in
a video during test time. Given a video, we obtain the category-wise confidence scores A. For
every category, we obtain a threshold, which is the middle point between the maximum and
minimum activations for that category, and use that to threshold the activations to obtain the
localizations.

3.3.4 Applications

In this section, we understand the efficacy of the proposed framework for activity localiza-
tion and classification from weakly labeled videos. We first discuss the datasets, followed by
the implementation details, quantitative, and some qualitative results.

Datasets

We perform experimental analysis on two datasets namely ActivityNet v1.2 (Heilbron et
al., 2015) and Thumos14 (Idrees et al., 2017). These two datasets contain untrimmed videos
with frame-wise labels of activities occurring in the video. However, as our algorithm is
weakly-supervised, we use only the activity tags associated with the videos. The ActivityNet
v1.2 dataset has 4819 videos for training, 2383 videos for validation, which we use for testing.
The number of categories involved is 100, with an average of 1.5 temporal activity segments
per video. The Thumos14 dataset has 200 validation videos, which we use for training, and
212 test videos divided into 20 categories. Among these videos, 200 validation videos and 213
test videos have temporal annotations belonging to 20 categories. Although this is a smaller
dataset than ActivityNet1.2, the temporal labels are very precise and have an average of 15.5
temporal activity segments per video. This dataset has several videos where multiple activi-
ties occur, thus making it even more challenging. The length of the videos also varies widely
from a few seconds to more than an hour. The lower number of videos makes it challenging
to efficiently learn the weakly-supervised network.

Activity localization

To compare the performance of activity localization, Mean Average Precision (mAP) at
different Intersection over Union (IoU) thresholds between the predicted and the ground
truth localization is used. For Thumos14, we discuss the average mAP for IoU thresholds
∈ {0.1,0.2,0.3,0.4,0.5}. The results are presented in Table 3.1. The table is divided into three
rows: (a) methods using strong supervison, i.e., using temporal annotations for every action
that appears in the videos, (b) methods using weak supervision in literature, and finally (c) re-
sults of the method proposed in Paul et al. (2018). So, even with weak labels, which are much
easier to acquire, our algorithm in Paul et al. (2018) is able to perform close to methods with
strong labels, which involves a huge amount of manual labeling cost. It is important to note
that although the Kinetics pretrained I3D features (I3DF) have some knowledge about activ-
ities, using only MILL as in Wang et al. (2017) along with I3DF performs much worse than
combining it with CASL, viz. 33.1 vs 39.8. In the case of ActivityNet v1.2, our method per-
forms on average 18, whereas methods utilizing strong supervision such as SSN perform 24.8.
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TABLE 3.1 Detection performance comparisons on Thumos14. UNTF & I3DF are
abbreviations for UntrimmedNet features (ImageNet pretrained features) and I3D fea-
tures respectively.

Supervision Methods Avg. IoU 0.1:0.1:0.5

Strong
R-C3D (Xu et al., 2017) 43.1
SSN (Zhao et al., 2017b) 47.4

Weak
UntrimmedNets (Wang et al., 2017) 29.0
STPN (UNTF) (Nguyen et al., 2018) 30.9
STPN (I3DF) (Nguyen et al., 2018) 34.9

Weak (Paul et al., 2018)
MILL+CASL+UNTF 33.8
MILL+CASL+I3DF 39.8

TABLE 3.2 Classification performance comparisons on Thumos14. UNTF & I3DF are
abbreviations for UntrimmedNet features (ImageNet pretrained features) and I3D features
respectively.

Supervision Methods Thumos14 ActivityNet-1.2
Strong TSN (Wang et al., 2016b) 72.0 86.3

Weak
UntrimmedNets (Wang et al., 2017) 82.2 91.3
MILL+CASL (Paul et al., 2018) 85.6 93.2

Activity classification

We now present the performance of our framework for activity classification. We use
mean average precision (mAP) to compute the classification performance from the predicted
videos-level scores p after applying softmax. The results are presented in Table 3.2. It shows
that the proposed method (Paul et al., 2018) performs significantly better than other state-
of-the-art approaches video classification methods. This can be partially attributed to the
features used, but most importantly to the way learning is considered in weakly supervised
localization techniques, which ignore the background regions while classifying the videos
with their content activity.

Qualitative results

We present a few interesting example localizations with ground truths in Fig. 3.8. The
figure has two examples from Thumos14 and two from the ActivityNet1.2 dataset. To test
how the proposed framework performs on videos outside the aforementioned datasets, we
tested the learned networks on randomly collected videos from YouTube. We present two
such example detections in Fig. 3.8, using the model trained on Thumos14.

The first example in Fig. 3.8 is quite challenging as the localization should precisely be the
portions of the video, where Golf Swing occurs, which has very similar features in the RGB
domain to portions of the video where the player prepares for the swing. In spite of this, our
model is able to localize the relevant portions of Golf Swing, potentially based on the flow
features. In the second example from Thumos14, the detections of Cricket Shot and Cricket
Bowl appear to be correlated in time. This is because Cricket Shot and Bowl are two activities
that generally cooccur in videos. To have fine-grained localization for such activities, videos
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FIGURE 3.8 This figure presents some detection results for qualitative analysis on Thumos14, ActivityNet1.2, and
a couple of random videos from YouTube.

that have only one of these activities are required. However, in the Thumos14 dataset, very
few training examples contain only one of these two activities, which explains the behavior
noted in the figure.

In the third example, which is from ActivityNet1.2, although ‘Playing Polo’ occurs in the
first portion of the video, it is absent in the ground truth. However, our model is able to lo-
calize those activity segments as well. The same discussion is also applicable to the fourth
example, where ‘Bagpiping’ occurs in the frames in a sparse manner, and our model’s re-
sponse is aligned with its occurrence, but the ground truth annotations are for almost the
entire video. These two examples are motivations behind weakly-supervised localization be-
cause obtaining precise unanimous ground truths from multiple labelers is difficult, costly,
and sometimes even infeasible.

The fifth example is on a randomly selected video from YouTube. It has a person, who
is juggling balls in an outdoor environment. But, most of the examples in Thumos14 of the
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same category are indoors, with the person taking up a significant portion of the frames
spatially. Despite such differences in data, our model is able to localize some portions of the
activity. However, the model also predicts some portions of the video to be ‘Soccer Juggling’,
which may be because its training samples in Thumos14 contains a combination of feet, hand,
and head, and a subset of such movements are present in ‘Juggling Balls’. Moreover, it is
interesting to note that the first two frames show some maneuver of a ball with feet and it is
detected as ‘Soccer Juggling’ as well.

3.4 Domain adaptation of semantic segmentation using weak labels

Semantic segmentation is a task where given an input image, we need to learn a model, to
predict the category of every pixel in the image. In current state-of-the-art methods (Chen
et al., 2016; Zhao et al., 2017a), the model is generally a convolutional neural networks,
which learns using pixel-level annotations. However, the segmentation model learned on
one dataset, say the source, may not generalize well to images from a different distribution,
the target, due to the domain gap between them. Thus, the model needs to be adapted to
the images originating from the target distribution. But as annotations may be expensive on
the target side, we want to adapt the model from source to target with minimal or even no
annotation cost.

Unsupervised domain adaptation (UDA) methods for semantic segmentation have been
developed to tackle the issue of domain gap, requiring no annotation cost on the target im-
ages. Methods in the literature aim to adapt a model learned on the source domain with
pixel-wise ground truth annotations, e.g., from a simulator that requires the least annota-
tion effort, to the target domain that does not have any form of annotations. These UDA
methods in the literature for semantic segmentation are developed mainly using two mech-
anisms: pseudo-label self-training and distribution alignment between the source and target
domains. For the first mechanism, pixel-wise pseudo-labels are generated via strategies such
as confidence scores (Li et al., 2019; Hung et al., 2018) or self-paced learning (Zou et al., 2018),
but such pseudo-labels are specific to the target domain and do not consider the alignment
between domains. For the second mechanism, numerous spaces could be considered to op-
erate the alignment procedure, such as pixel (Hoffman et al., 2018; Murez et al., 2018), feature
(Hoffman et al., 2016; Zhang et al., 2017), output (Tsai et al., 2018; Chen et al., 2018), and patch
(Tsai et al., 2019) spaces. However, the alignment performed by these methods is agnostic to
the category, which may be problematic as the domain gap may vary across categories.

The issue of lacking annotations in the target domain can be alleviated, by introducing
the concept of utilizing weak labels on the target dataset for adaptation. Such weak labels
can be used for category-wise alignment between the source and target domain, and also
to enforce constraints on the categories present in an image. There can be multiple forms of
weak label – image-level labels, point labels, which we explore in this text, as well as other
forms of weak label such as pixel density of certain categories, object counts, etc, which is
quite easy to acquire from an annotator. It is important to note that our weak labels could be
estimated from the model prediction in the UDA setting, or provided by the human oracle in
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FIGURE 3.9 This figure presents how we can use image-level weak annotations for domain adaptation in two
different ways – either estimated, i.e., pseudo-weak labels (Unsupervised Domain Adaptation, UDA) or acquired
from a human oracle (Weakly-supervised Domain Adaptation (WDA)).

the weakly-supervised domain adaptation (WDA) paradigm as shown in Fig. 3.9. The target
annotation cost in UDA is zero, and in the WDA case is very low, as we will see subsequently.

The literature in domain adaptation for semantic segmentation models has been only
around unsupervised methods (UDA), and it can be summarized under three categories –
pixel-level adaptation (Hoffman et al., 2018; Murez et al., 2018; Wu et al., 2018), which aims
at aligning the input image space, pseudo-label training (Zou et al., 2018; Sadat Saleh et al.,
2018; Lian et al., 2019), which aims at labeling the unlabeled target data using the source
model and using it for adaptation, and feature or output space adaptation (Tsai et al., 2018;
Chen et al., 2018; Tsai et al., 2019; Du et al., 2019), which aims at aligning the output space
between the source and target domains. The performance of these methods is quite low com-
pared to methods with strong supervision. In the text below we present our method (Paul et
al., 2020) which can be used for both unsupervised and weakly-supervised domain adapta-
tion, and bridging the performance gap with minimal or no annotation cost. We start with
the formal problem definition.
Problem definition We have two domains – source and target. The goal is to adapt a segmen-
tation model learned on the source domain to the target domain. In the source domain, we
have images and pixel-wise labels denoted as Is = {Xi

s, Y
i
s }Ns

i=1. Our target dataset contains
images and only image-level labels as It = {Xi

t , y
i
t }Nt

i=1. Xs,Xt ∈ R
H×W×3, Ys ∈ B

H×W×C are
pixel-wise one-hot vectors, yt ∈ B

C is a multihot vector representing the categories present in
the image and C is the number of categories, for both the source and target datasets. Note
that in a one-hot vector, only one of the element of the vector is 1, and remaining are zero,
while in multihot vectors, multiple elements of the vector can be 1. Such image-level labels yt

are termed as weak labels, as they are a much weaker form of label compared to pixel-wise
labels. We can either estimate them, in which case we call them pseudo-weak labels (Unsu-
pervised Domain Adaptation, UDA), or acquire them from a human oracle and call them
oracle-weak labels (Weakly-supervised Domain Adaptation, WDA). We will further discuss
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FIGURE 3.10 The proposed architecture consists of the segmentation network G and the weak label module. We
compute the pixel-wise segmentation loss Ls for the source images and image classification loss Lc using the weak
labels yt for the target images. Note that the weak labels can be estimated as pseudo-weak labels or provided by
a human oracle. We then use the output prediction A, convert it to an attention map σ(A) and pool category-wise
features FC . Next, these features are aligned between source and target domains using the category-wise alignment
loss LC

adv
guided by the category-wise discriminators DC learned via the domain classification loss LC

d
.

the details of acquiring weak labels in Section 3.4.4. Given such data, the problem is to adapt
a segmentation model G learned on the source dataset Is to the target dataset It .

3.4.1 Weak labels for category classification

We use the weak labels yt and learn to predict the categories present/absent in the target
images. We first feed the target images Xt through G to obtain the predictions At ∈R

H ′×W ′×C

and then apply a global pooling layer to obtain a single vector of predictions for each cate-
gory:

pc
t = σs

[
1

k
log

1

H ′W ′
∑
h′,w′

expkA
(h′,w′,c)
t

]
, (3.11)

where σs is the sigmoid function such that pt represents the probability that a particular cate-
gory appears in an image. Note that Eq. (3.11) is a smooth approximation of the max function.
The higher the value of k, the better it approximates to max. We set k = 1 as we do not want
the network to focus only on the maximum value of the prediction, which may be noisy, but
also on other predictions that may have high values. Using pt and the weak labels yt , we can
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compute the category-wise binary cross-entropy loss:

Lc(Xt ;G) =
C∑

c=1

−yc
t log

(
pc

t

) − (
1 − yc

t

)
log

(
1 − pc

t

)
. (3.12)

This is shown at the bottom stream of Fig. 3.10. This loss function Lc helps to identify the
categories which are absent/present in a particular image and enforces the segmentation
network G to pay attention to those objects/stuff that are partially identified when the source
model is used directly on the target images.

3.4.2 Weak labels for feature alignment

The classification loss using weak labels introduced in (3.12) regularizes the network fo-
cusing on certain categories. However, distribution alignment across the source and target
domains is not considered yet. As discussed in the previous section, methods in the litera-
ture either align feature space (Hoffman et al., 2016) or output space (Tsai et al., 2018) across
domains. However, such alignment is agnostic to the category, so it may align features of
categories that are not present in certain images. Moreover, features belonging to different
categories may have different domain gaps. Thus, performing category-wise alignment could
be beneficial but has not been widely studied in UDA for semantic segmentation. To alleviate
these issues, we use image-level weak labels to perform category-wise alignment in the fea-
ture space. Specifically, we obtain the category-wise features for each image via an attention
map, i.e., segmentation prediction, guided by our classification module using weak labels,
and then align these features between the source and target domains. We next discuss the
category-wise feature pooling mechanism followed by the adversarial alignment technique.

Category-wise feature pooling. Given the last layer features F ∈ R
H ′×W ′×2048 and the seg-

mentation prediction A ∈R
H ′×W ′×C , we obtain the category-wise features for the cth category

as a 2048-dimensional vector by using the prediction as an attention over the features as fol-
lows:

Fc =
∑
h′,w′

σ(A)(h
′,w′,c)F (h′,w′), (3.13)

where σ(A) is a tensor of dimension H ′ × W ′ × C, with each channel along the category
dimension representing the category-wise attention obtained by the softmax operation σ over
the spatial dimensions. As a result, σ(A)(h

′,w′,c) is a scalar and F (h′,w′) is a 2048-dimensional
vector, while Fc is the summed feature of F (h′,w′) weighted by σ(A)(h

′,w′,c) over the spatial
map H ′ × W ′. Note that we drop the subscripts s, t for source and target, as we employ the
same operation to obtain the category-wise features for both domains. We next present the
mechanism to align these features across domains. Note that we will use Fc to denote the
pooled feature for the cth category and FC to denote the set of pooled features for all the
categories. Category-wise feature pooling is shown in the middle of Fig. 3.10.

Category-wise feature alignment. To learn the segmentation network G such that the
source and target category-wise features are aligned, we use an adversarial loss while us-
ing category-specific discriminators DC = {Dc}Cc=1. The reason for using category-specific
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discriminators is to ensure that the feature distribution for each category could be aligned
independently, which avoids the noisy distribution modeling from a mixture of categories.
In practice, we train C distinct category-specific discriminators, to distinguish between
category-wise features drawn from the source and target images. The loss function to train
the discriminators DC is as follows:

LC
d

(
FC

s ,FC
t ;DC

) =
C∑

c=1

−yc
s logDc

(
Fc

s

) − yc
t log

(
1 − Dc

(
Fc

t

))
. (3.14)

Note that, while training the discriminators, we only compute the loss for those categories
which are present in the particular image via the weak labels ys, yt ∈ B

C that indicate whether
a category occurs in an image or not. Then, the adversarial loss for the target images to train
the segmentation network G can be expressed as follows:

LC
adv

(
FC

t ;G,DC
) =

C∑
c=1

−yc
t logDc

(
Fc

t

)
. (3.15)

Similarly, we use the target weak labels yt to align only those categories present in the target
image. By minimizing LC

adv , the segmentation network tries to fool the discriminator by max-
imizing the probability of the target category-wise feature being considered as drawn from
the source distribution. These loss functions in (3.14) and (3.15) are obtained in the right of
the middle box in Fig. 3.10.

3.4.3 Network optimization

Discriminator training. We learn a set of C distinct discriminators for each category c. We use
the source and target images to train the discriminators, which learn to distinguish between
the category-wise features drawn from either the source or the target domain. The optimiza-
tion problem to train the discriminator can be expressed as: minDC LC

d (FC
s ,FC

t ). Note that
each discriminator is trained only with features pooled specific to that particular category.
Therefore, given an image, we update only those discriminators corresponding to those cate-
gories which are present in the image.

Segmentation network training. We train the segmentation network with the pixel-wise
cross-entropy loss Ls on the source images, image classification loss Lc and adversarial loss
LC

adv on the target images. We combine these loss functions to learn G as follows:

min
G

Ls(Xs) + λcLc(Xt ) + λdLC
adv

(
FC

t

)
. (3.16)

We follow the standard GAN training procedure (Goodfellow et al., 2014) to alternatively
update G and DC . Note that, computing LC

adv involves the category-wise discriminators DC .
Therefore, we fix DC and backpropagate gradients only for the segmentation network G.
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3.4.4 Acquiring weak labels

In the above sections, we have proposed a mechanism to utilize image-level weak labels
of the target images and adapt the segmentation model between source and target domains.
In this section, we explain two methods to obtain such image-level weak labels.

Pseudo-weak labels (UDA). One way of obtaining weak labels is to directly estimate them
using the data we have, i.e., source images/labels and target images, which is the unsuper-
vised domain adaptation (UDA) setting. In this work, we utilize the baseline model (Tsai et
al., 2018) to adapt a model learned from the source to the target domain, and then obtain the
weak labels of the target images as follows:

yc
t =

{
1, if pc

t > T ,

0, otherwise
(3.17)

where pc
t is the probability for category c as computed in (3.11) and T is a threshold, which

we set to 0.2 in all the experiments unless specified otherwise. In practice, we compute the
weak labels online during training and avoid any additional inference step. Specifically, we
forward a target image, obtain the weak labels using (3.17), and then compute the loss func-
tions in (3.16). As the weak labels obtained in this manner do not require human supervision,
adaptation using such labels is unsupervised.

Oracle-weak labels (WDA). In this form, we obtain the weak labels by querying a human
oracle to provide a list of the categories that occur in the target image. As we use supervision
from an oracle on the target images, we refer to this as weakly-supervised domain adaptation
(WDA). It is worth mentioning that the WDA setting could be practically useful, as collecting
such human annotated weak labels is much easier than pixel-wise annotations. Also, there
has not been any prior research involving this setting for domain adaptation.

To show that our method can use different forms of oracle-weak labels, we further
introduce the point supervision as in Bearman et al. (2016), which only increases effort
by a small amount compared to the image-level supervision. In this scenario, we ran-
domly obtain one pixel coordinate of each category that belongs in the image, i.e., the
set of tuples {(hc,wc, c)|∀yc

t = 1}. For an image, we compute the loss as follows: Lpoint =
−∑

∀yc
t =1 yc

t log(O
(hc,wc,c)
t ), where Ot ∈ R

H×W×C is the output prediction of target after pixel-
wise softmax.

3.4.5 Applications

In this section, we perform an evaluation of our domain adaptation framework for se-
mantic segmentation where the source is a dataset made of simulated street scene images
(GTA5 (Richter et al., 2016)) and the target is made of real-world images (Cityscapes (Cordts
et al., 2016)). We use the Intersection-over-Union (IoU) ratio as the metric. For the segmenta-
tion network G, we use the DeepLab-v2 framework (Chen et al., 2016) with the ResNet-101
(He et al., 2016) architecture. We extract features Fs , Ft before the Atrous Spatial Pyramid
Pooling (ASPP) layer. For the category-wise discriminators DC = {Dc}Cc=1, we use C sepa-
rate networks, where each consists of three fully-connected layers, having number of nodes
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{2048,2048,1} with ReLU activation. Fig. 3.11 presents the results obtained from the literature
and our methods for the variety of annotations we use.

State-of-the-art methods

When we look at the state-of-the-art methods in the literature, all of them are unsuper-
vised, i.e., requiring no annotation cost on the target side. In such a setting, the performance
levels obtained is quite low. For example, in the current setting mentioned above, i.e., with
GTA5 as the source and Cityscapes as the target, the performance obtained by state-of-the-art
methods is 45.4 (Chang et al., 2019), 46.5 (Tsai et al., 2019) and 47.2 (Li et al., 2019). Note that
this percentage is higher than the performance obtained by the model trained on the source
and applied directly on the target, which is only 36.6. However, it is much lower than the per-
formance obtained when all the target images are labeled with pixel-level annotations, which
is 64.4, but requiring about 90 minutes of annotation time per image.

Unsupervised domain adaptation (UDA)

In comparison to the methods in the literature, when we use a basic method (Tsai et al.,
2018) to align just the output space, we obtain performance of 41.4. Then, when we use the
classification loss as in Eq. (3.12), we obtain a performance of only 46.7. On top of this, when
we include the category-wise alignment loss as in Eq. (3.15), we obtain a performance of 48.2.
Note that in this method, we use the pseudo-weak labels, which are estimated by the network
itself as in Eq. (3.17).

Weakly-supervised domain adaptation (WDA)

We use two different types of annotation in the WDA and they are discussed as follows.
Note that other forms of weak supervision can be count of the objects, very coarse estimate
of area coverage of the categories, scribbles, and so on.
Image-level supervision When we use the image-level annotations from the user and learn the
segmentation network using only the classification loss in Eq. (3.12), we obtain a performance
of 52. On top of this, when we include the category-wise domain alignment loss, we obtain
a performance of 53. Note that there exists no work in the literature which uses oracle-weak
labels from humans to perform WDA. From the results, it is interesting to note that the major
boost in performance using WDA compared to UDA occurs for categories such as truck, bus,
train, and motorbike. One reason is that those categories are most underrepresented in both
the source and the target datasets. Thus, they are not predicted in most of the target images,
but using the oracle-weak labels helps to identify them better.
Point supervision We introduce another interesting setting of point supervision as in Bear-
man et al. (2016), which adds only a slight increase of annotation time compared to that for
image-level supervision. We follow (Bearman et al., 2016) and randomly sample one pixel per
category in each target image as the supervision. Note that, all the details and the modules
are the same during training in this setting. In this setting with one point labeled per category
per image, we obtain a performance of 56.4. When we increase the number of annotations to
three or five point labeled per category per image, we obtain performance of 58.4 and 59.4
respectively. Note that the annotation cost required to obtain these annotations is quite low as
shown in Fig. 3.11, but yet they are able to obtain comparable performance as with pixel-wise
annotations which incur a huge amount of annotation cost.
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FIGURE 3.11 Performance comparison on GTA5→Cityscapes with different levels of supervision on target im-
ages: no target labels (“No Adapt.” and “UDA”), weak image labels (30 seconds), one point labels (45 seconds), and
fully-supervised setting with all pixels labeled (“All Labeled”) that takes 1.5 hours per image according to Cordts et
al. (2016).

3.4.6 Output space visualization

We present some visualizations of the segmentation prediction probability for each cate-
gory in Fig. 3.12. Before using any weak labels (third row), the probabilities may be low, even
though there is a category present in that image. However, based on these initial predictions,
our model can estimate the categories and then enforce their presence/absence explicitly
in the proposed classification loss and alignment loss. The fourth row in Fig. 3.12 shows
that such pseudo-weak labels help the network discover object/stuff regions towards better
segmentation. For example, the fourth and fifth column shows that, although the original pre-
diction probabilities are quite low, results using pseudo-weak labels are estimated correctly.
Moreover, the last row shows that the predictions can be further improved when we have
oracle-weak labels.

3.5 Weakly-supervised reinforcement learning for dynamical tasks

Until now in this chapter, we primarily looked into static problems in the light of limited
supervision. However, in real-world scenarios, we may have to build a system that inter-
acts with the environment to achieve a task and thus to be dynamic in nature as its current
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FIGURE 3.12 Visualizations of category-wise segmentation prediction probability before and after using the
pseudo-weak labels on GTA5→Cityscapes. Before adaptation, the network only highlights the areas partially with
low probability, while using the pseudo-weak labels helps the adapted model obtain much better segments, and is
closer to the model using oracle-weak labels.

action determines the data point it is going to receive next. Similar to static tasks such as
classification, localization, and segmentation, learning dynamic tasks are also quite challeng-
ing in nature. Reinforcement Learning (RL) using Deep Neural Networks (DNNs) has shown
tremendous success in several such dynamical tasks such as playing games (Mnih et al., 2015;
Silver et al., 2016), solving complex robotics tasks (Levine et al., 2016; Duan et al., 2016), etc.
However, with sparse rewards, these algorithms often require a huge number of interactions
with the environment, which is costly in real-world applications such as self-driving cars
(Bojarski et al., 2016), and manipulations using real robots (Levine et al., 2016). Manually de-
signed dense reward functions could mitigate such issues; however, in general, it is difficult
to design detailed reward functions for complex real-world tasks.

Imitation Learning (IL) using demos generated by an expert can potentially be used to
learn the policies faster (Argall et al., 2009). But, the performance of IL algorithms (Ross et
al., 2011) is not only dependent on the performance of the expert providing the demos, but
also on the state-space distribution represented by the demos, especially in the case of high
dimensional states. In order to avoid such dependencies on the expert, some methods in the
literature (Sun et al., 2017; Cheng et al., 2018) take the path of combining RL and IL. However,
these methods assume access to the expert value function, which may become impractical in
real-world scenarios.

Keeping the shortcomings of the methods in the literature in mind, we present a strategy
(Paul et al., 2019) that starts with IL and then switches to RL. In the IL step, our framework
performs supervised pretraining which aims at learning a policy that best describes the ex-
pert demonstrations. However, due to the limited availability of expert demos, the policy
trained with IL will have errors, which can then be alleviated using RL. However, note that
the reward function in RL is still sparse, making it difficult to learn. With this in mind, we
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FIGURE 3.13 (a) This shows an overview of our proposed framework to train the policy network along with
subgoal based reward function with out-of-set augmentation. (b) An example state-partition with two independent
demos in black and red. Note that the terminal state is shown as a separate state partition because we assume it to
be indicated by the environment and not learned.

present a method that uses the human demos to divide the entire task into smaller subgoals
and use that as a reward function in the RL step.

Given a set of demos, humans can quickly identify waypoints, which need to be completed
in order to achieve the goal. We tend to break down the entire complex task into subgoals and
try to achieve them in the best order possible. Prior knowledge of humans helps to achieve
tasks much faster (Andreas et al., 2017; Dubey et al., 2018) than using only the demos for
learning. The human psychology of divide-and-conquer has been crucial in several appli-
cations and it serves as a motivation behind our algorithm which learns to partition the
state-space into subgoals using expert demos. The learned subgoals provide a discrete re-
ward signal, unlike value-based continuous reward (Ng et al., 1999; Sun et al., 2018), which
can be erroneous, especially with a limited number of demos in long time horizon tasks. As
the expert demos set may not contain all the states where the agent may visit during explo-
ration in the RL step, we augment the subgoal predictor via one-class classification to deal
with such underrepresented states. We perform experiments on three goal-oriented tasks on
MuJoCo (Todorov, 2014) with sparse terminal-only reward, which state-of-the-art RL, IL, or
their combinations are not able to solve.
Problem definition Consider a standard RL setting where an agent interacts with an environ-
ment which can be modeled by a Markov Decision Process (MDP) M = (S,A,P, r, γ,P0),
where S is the set of states, A is the set of actions, r is a scalar reward function, γ ∈ [0,1]
is the discount factor and P0 is the initial state distribution. Our goal is to learn a policy
πθ (a|s), with a ∈ A, which optimizes the expected discounted reward Eτ [∑∞

t=0 γ t r(st ,at )],
where τ = (. . . , st ,at , rt , . . . ) and s0 ∼ P0, at ∼ πθ (a|st ) and st+1 ∼ P(st+1|st ,at ).

With sparse rewards, optimizing the expected discounted reward using RL may be dif-
ficult. In such cases, it may be beneficial to use a set of state-action demonstrations D =
{{(st i ,a

∗
t i )}ni

t=1}nd

i=1 generated by an expert to guide the learning process. nd is the number of
demos in the dataset and ni is the length of the ith demo. We propose a methodology to effi-
ciently use D by discovering subgoals from these demos and use them to develop an extrinsic
reward function.
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Subgoal definition

Consider that the state-space S is partitioned into sets of states as – {S1,S2, . . . ,Sng }, s.t.,
S = ∪ng

i=1Si and ∩ng

i=1Si = ∅, ng being the number of subgoals specified by the user. For each
(s,a, s′), we say that the particular action takes the agent from one subgoal to another iff
s ∈ Si , s′ ∈ Sj for some i, j ∈ G = {1,2, . . . , ng} and i �= j .

Let’s assume that there is an ordering in which groups of states appear in the demos as
shown in Fig. 3.13(b). However, the states within these groups of states may appear in any
random order in the demos. These groups of states are not defined a priori and our algorithm
aims at estimating these partitions. Note that such orderings are natural in several real-world
applications where a certain subgoal can only be reached after completing one or more pre-
vious subgoals. We may consider that states in the demos of D appear in increasing order of
subgoal indices, i.e., achieving subgoal j is harder than achieving subgoal i (i < j). This gives
us a natural way of defining an extrinsic reward function, which would help towards faster
policy search. Also, all the demos in D should start from the initial state distribution and end
at the terminal states.

3.5.1 Learning subgoal prediction

We use D to partition the state-space into ng subgoals, with ng being a hyperparameter.
We learn a neural network to approximate πφ(g|s), which given a state s ∈ S predicts a prob-
ability mass function (pmf) over the possible subgoal partitions g ∈ G. The order in which the
subgoals occur in the demos, i.e., S1 < S2 < · · · < Sng , which can be derived from our assump-
tion mentioned above, acts as a supervisory signal. The framework to learn πφ(g|s) is iterative
and alternated between the learning step and the inference/correction step as explained next.
Learning step In this step, we consider that we have a set of tuples (s, g), which we use
to learn the function πφ . This can be posed as a multiclass classification problem with ng

categories. We optimize the following cross-entropy loss function,

π∗
φ = arg min

πφ

1

N

nd∑
i=1

ni∑
t=1

ng∑
k=1

−1{gti = k} logπφ(g = k|st i ) (3.18)

where 1 is the indicator function and N is the number of states in the dataset D. To begin
with, we do not have any labels g, and thus we consider equipartition of all the subgoals in G

along each demo. That is, given a demo of states {s1i , s2i , . . . , sni i} for some i ∈ {1,2, . . . , nd},
the initial equi-partition subgoals are,

gti = j, ∀
⌊

(j − 1)

ng

ni

⌋
< t <=

⌊
j

ng

ni

⌋
, j ∈ G (3.19)

Using this initial labeling scheme, similar states across demos may have different labels, but
the network is expected to converge at the Maximum Likelihood Estimate (MLE) of the entire
dataset. We also optimize CASL (Paul et al., 2018) presented in Section 3.3.3, for stable learn-
ing as the initial labels can be erroneous. In the next iteration of the learning step, we use the
inferred subgoal labels, which we obtain as follows.
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Inference step Although the equipartition labels in Eq. (3.19) may have similar states across
different demos mapped to dissimilar subgoals, the learned network modeling πφ maps sim-
ilar states to the same subgoal. But, Eq. (3.18), and thus the predictions of πφ do not account
for the natural temporal ordering of the subgoals. Even when using architectures such as Re-
current Neural Networks (RNN), it may be better to impose such temporal order constraints
explicitly rather than relying on the network to learn them. We inject such order constraints
using Dynamic Time Warping (DTW).

Formally, for the ith demo in D, we obtain the following set: {(st i ,πφ(g|st i )}ni

t=1, where
πφ is a vector representing the pmf over the subgoals G. However, as the predictions do
not consider temporal ordering, the constraint that subgoal j occurs after subgoal i, for i <

j , is not preserved. To impose such constraints, we use DTW between the two sequences
{e1, e2, . . . , eng }, which are the standard basis vectors in the ng dimensional Euclidean space
and {πφ(g|s1i ),πφ(g|s2i ), . . . ,πφ(g|sni i)}. We use the l1-norm of the difference between two
vectors as the similarity measure in DTW. In this process, we obtain a subgoal assignment for
each state in the demos, which become the new labels for training in the learning step.

We then invoke the learning step using the new labels (instead of Eq. (3.19)), followed
by the inference step to obtain the next subgoal labels. We continue this process until the
number of subgoal labels changed between iterations is less than a certain threshold. This
method is presented in Algorithm 1, where the superscript k represents the iteration number
in learning-inference alternates.
Reward using subgoals The ordering of the subgoals, as discussed before, provides a natural
way of designing a reward function as follows:

r ′(s, a, s′) = γ ∗ arg max
j∈G

πφ

(
g = j |s′) − arg max

k∈G

πφ(g = k|s) (3.20)

where the agent in state s takes action a and reaches state s′. The augmented reward
function would become r + r ′. Considering that we have a function of the form Φφ(s) =
arg maxj∈G πφ(g = j |s), and without loss of generality that G = {0,1, . . . , ng − 1}, so that for
the initial state Φφ(s0) = 0, it follows from Ng et al. (1999) that every optimal policy in
M′ = (S,A,P, r + r ′, γ,P0), will also be optimal in M, the original MDP. However, the new
reward function may help to learn the task faster.

Algorithm 1 Learning subgoal prediction.
Input: Expert demo set D
Output: subgoal predictor πφ(g|s)
k ← 0
Obtain gk for each s ∈D using Eq. (3.19)
repeat

Optimize Eq. (3.18) to obtain πk
φ

Predict pmf of G for each s ∈D using πk
φ

Obtain new subgoals gk+1 using the pmf in DTW
done = True, if |gk − gk+1| < ε, else False
k ← k + 1

until done is True
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FIGURE 3.14 This figure presents the three environments we use – (a) Ball-in-Maze Game (BiMGame) (b) Ant
locomotion in an open environment with an end goal (AntTarget) (c) Ant locomotion in a maze with an end goal
(AntMaze).

3.5.2 Supervised pretraining

As discussed previously, an initial way to utilize the demos is by pretraining the policy net-
work πθ using the demo set D in a supervised learning framework. We pretrain the network
by optimizing the following:

θ∗ = arg min
θ

nd∑
i=1

ni∑
t=1

l
(
πθ (a|st i ),a

∗
t i

) + λ||θ ||2F (3.21)

where l is the loss function which can be cross-entropy or regression loss depending on
discrete or continuous actions. Note that the continuous actions comprise of (μ, σ ) which
are parameters of a Gaussian distribution. The second part of Eq. (3.21) is the l2 regulariza-
tion loss. The policy obtained after optimizing Eq. (3.21) possesses the ability to take actions
with low error rates at the states sampled from the distribution induced by the demo set D.
However, as shown in Ross et al. (2011), a small error at the beginning would compound
quadratically with time as the agent starts visiting states which are not sampled from the
distribution of D. Algorithms like DAgger can be used to fine-tune the policy by querying
expert actions at states visited after executing the learned policy. This query to the expert is
often very costly and even may not be feasible in some applications. More importantly, as
DAgger aims to mimic the expert, it can only reach its performance and not improve on it.
For this reason, we fine-tune the policy using RL with the extrinsic reward function obtained
after identifying the subgoals.

3.5.3 Applications

In this section, we present three challenging dynamical tasks: we use our framework to
solve them and compare these with other state-of-the-art methods in the literature.
Tasks We perform experiments on three challenging environments as shown in Fig. 3.14. The
first environment is the Ball-in-Maze Game (BiMGame) introduced in van Baar et al. (2018),
where the task is to move a ball from the outermost to the innermost ring using a set of five
discrete actions – clock-wise and anticlockwise rotation by 1◦ along the two principal dimen-
sions of the board and “no-op” where the current orientation of the board is maintained. The
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FIGURE 3.15 (a) This figure presents the learned subgoals for the three tasks which are color-coded. Note that for
(b) and (c), multiple subgoals are assigned the same color, but they can be distinguished by their spatial locations.

states are images of size 84 × 84. The second environment is AntTarget which involves the
Ant (Schulman et al., 2015). The task is to reach the center of a circle of radius 5 m with the
Ant being initialized on a 45◦ arc of the circle. The state and action are continuous with 41
and 8 dimensions respectively. The third environment, AntMaze, uses the same Ant, but in
a U-shaped maze used in Held et al. (2017). The Ant is initialized on one end of the maze
with the goal being the other end indicated as red in Fig. 3.14(c). For all tasks, we use sparse
terminal-only reward, i.e., +1 only after reaching the goal state and 0 otherwise. Standard RL
methods such as A3C (Mnih et al., 2016) are not able to solve these tasks with such sparse
rewards.
Visualization We visualize the subgoals discovered by our algorithm and plot it on the x–y
plane in Fig. 3.15. As can be seen in BiMGame, with 4 subgoals, our method is able to discover
the bottle-neck regions of the board as different subgoals. For AntTarget and AntMaze, the
path to the goal is more or less equally divided into subgoals. This shows that our method of
subgoal discovery can work for both environments with and without bottle-neck regions.
Comparison with baselines We primarily compare our method with other RL methods which
utilize demo or expert information – AggreVaTeD (Sun et al., 2017) and value-based reward
shaping (Ng et al., 1999), equivalent to the K = ∞ in THOR (Sun et al., 2018). The compar-
isons are in Fig. 3.16. As may be observed, none of the baselines show any sign of learning for
the tasks, except for ValueReward, which performs comparably with the proposed method
for AntTarget only. Our method, on the other hand, is able to learn and solve the tasks consis-
tently over multiple runs. The expert cumulative rewards are also drawn as straight lines in
the plots and imitation learning methods like DAgger (Ross et al., 2011) can only reach that
mark. Our method is able to surpass the expert for all the tasks. In fact, for AntMaze, even
with a rather suboptimal expert (an average cumulative reward of only 0.0002), our algorithm
achieves about 0.012 cumulative reward at 100 million steps.

The poor performance of the ValueReward and AggreVaTeD can be attributed to the im-
perfect value function learned with a limited number of demos. Specifically, with an increase
in the demo length, the variations in cumulative reward in the initial set of states are quite
high. This introduces a considerable amount of error in the estimated value function in the
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FIGURE 3.16 This figure shows the comparison of our proposed method with the baselines. Some lines may not
be visible as they overlap. For tasks (a) and (c) our method clearly outperforms others. For task (b), although value
reward initially performs better, our method eventually achieves the same performance. For a fair comparison, we
do not use the out-of-set augmentation to generate these plots. Note that as some of the algorithms do not learn at
all, thus accumulating zero reward, such lines overlap with the x-axis of the plots and are not visible.

initial states, which in turn traps the agent in some local optima when such value functions
are used to guide the learning process.
Discussions Here are the key points which can be inferred from the results: First, the method
to discover subgoals works both for tasks with inherent bottlenecks (e.g. BiMGame) and with-
out any bottlenecks (e.g. AntTarget and AntMaze), but with temporal order between groups
of states in the expert demos, which occurs in many applications. Second, discrete rewards
using subgoals perform much better than value function based continuous rewards. This may
be because the value functions learned from the limited number of demos may be erroneous,
whereas segmenting the demos based on temporal ordering may still work well.

3.6 Conclusions

The widely-heralded successes of machine learning have been largely driven by the avail-
ability of large volumes of labeled data used to train the learning-based systems. This is
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simply unrealistic as these tools are deployed in real-life applications. We cannot assume that
all scenarios likely to be encountered during the operation of a system have been seen during
the training phase, and the expertise to provide labels just may not be available. While cats
and dogs can be labeled by anyone, the same cannot be said when trying to obtain training
data for different species of birds or vegetation types or medical diagnosis. Thus, learning
with limited to no supervision is extremely critical.

This chapter provides an overview of machine learning with limited supervision for ap-
plications in computer vision and robotics. Supervision can be of different forms and depend
on the application domain. Hence, we review a host of different methods. The first approach
is related to active learning, where we show how contextual information available in the data
sources can be used to predict many of the labels, which may otherwise need to be provided
manually. Next, we consider situations where detailed labels are not available, but textual de-
scriptions accompanying a video can be used as a form of weak supervision. Here, the goal
would be to learn how to localize the relevant video segment from these descriptions. Both
of these are in a single application domain. In the next section, we considered the problem of
semantic segmentation in an image and how learned models in one domain can be adapted
to another with minimal or even no additional supervision. Finally, we considered the prob-
lem of how to train a robot for certain tasks from limited demonstration examples using a
combination of imitation and reinforcement learning, through the identification of subgoals.
Overall, we have explored different learning paradigms and demonstrated them in multiple
problem settings in computer vision and robotics.

The future of machine learning should focus on how to learn with limited amounts of
data. Researchers and practitioners should consider different settings for this purpose. Few
examples are provided below. Can we learn from vast quantities of data that is uploaded on
social media but are error-prone and incomplete? Can we transfer learned models in easy-to-
label domains with coarse classification to domains that require significant expertise to label
(e.g., labeling birds and trees are easy, but fine-grained labeling of species of birds and trees
requires significant knowledge that few people may have)? Can we adapt learned models to
unseen conditions that may be safety critical (e.g., can an autonomous driving system identify
a dangerous condition on a road that it may have never encountered)? Can machine learning
be used in applications where there are large volumes of data, e.g., medicine, but supervision
is coarse and very expensive (maybe impossible) to obtain?

This chapter has touched upon some methods that take a step in the direction of solving
these problems. There is a huge amount of work to be done still. Although it may seem that
learning methods are able to best human performance in many cases, they are largely in
controlled settings. The ability to reason through and identify general principles that can be
transferred across application scenarios remains elusive. They provide a very rich tapestry of
problems for researchers to work on.
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C H A P T E R

4
Efficient methods for deep learning✩

Han Cai, Ji Lin, and Song Han
Massachusetts Institute of Technology, Cambridge, MA, United States

CHAPTER POINTS

• We first introduce various model
compression approaches, such as pruning,
factorization, quantization, and efficient
model design.

• To reduce the design cost, we then describe
neural architecture search, automated
pruning and quantization, which can
outperform the manual design with
minimal human efforts.

• Finally, we describe the once-for-all
technique to efficiently handle many
hardware platforms and efficiency
constraints without repeating the costly
search and retraining phases.

4.1 Model compression

Compressing an existing deep neural network is an effective way to improve the inference
efficiency. Compression methods include parameter pruning to remove the redundant weights,
low-rank factorization to reduce the complexity, weight quantization to reduce the weight pre-
cision and model size, and knowledge distillation to transfer the dark knowledge from large
models to smaller ones. Finally, we discuss automated methods to automatically find a good
compression policy without human effort.

4.1.1 Parameter pruning

Deep neural networks are usually overparameterized. Pruning removes the redundant
elements in neural networks (Fig. 4.1) to reduce the model size and computation.

✩ All student authors have contributed equally to this work and are listed in the alphabetical order.
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FIGURE 4.1 Synapses and neurons before and after pruning (Han et al., 2015b).

FIGURE 4.2 Different granularities for weight pruning (figure modified from Mao et al. (2017)).

Notations

We analyze the convolutional layers in deep neural networks, which are the most com-
putationally expensive components. In a single convolutional layer, the weights compose a
4-dimensional tensor of shape n × c × kh × kw, where n is the number of filters (i.e., out-
put channels), c is the number of channels (i.e., input channels), and kh, kw is the kernel
size (usually symmetric, i.e., kh = kw). One layer’s weights can be viewed as multiple filters
(3-dimensional tensors of shape c × kh × kw), each corresponding to an output channels; or
viewed as multiple channels (3-dimensional tensors of shape n× kh × kw), each corresponding
to an input channel. Each kh × kw tensor is a kernel; there are n × c kernels in a convolutional
layer.

Granularity

Pruning can be performed at different granularities (Mao et al., 2017) (Fig. 4.2).
Fine-grained pruning removes individual elements from the weight tensor. An early ap-

proach was Optimal Brain Damage (LeCun et al., 1989) and Optimal Brain Surgeon (Hassibi
and Stork, 1993), which reduced the number of connections based on the Hessian of the
loss function. Han et al. (2015b) proposed a three-step method, train-prune-retrain, to prune
the redundant connections in a deep neural network. It reduced the number of parameters
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of AlexNet by a factor of 9×, and VGG-16 by 13×, with no loss of accuracy. Srinivas and
Babu (2015) proposed a data-free pruning method to remove the redundant neurons. In fine-
grained pruning, the set of weights to be pruned can be chosen arbitrarily, it can achieve
a very high compression ratio on CNN (Han et al., 2015b), RNN (Giles and Omlin, 1994),
LSTM (Han et al., 2017), Transformers (Cheong and Daniel, 2019), etc., without hurting accu-
racy.

Pattern-based pruning is a special kind of fine-grained pruning which has better hardware
acceleration with compiler optimization (Ma et al., 2020; Tan et al., 2020b; Niu et al., 2020).
Taking 3 × 3 convolutions as an example, pattern-based pruning assigns a fixed set of masks
to each of the 3 × 3 kernels. The number of the masks is usually limited (4–6) to ensure hard-
ware efficiency. Each mask template has a fixed number of pruned elements for each kernel (5
pruned out of 9 in Fig. 4.2). The pattern is determined by heuristics (Ma et al., 2020) or cluster-
ing from pretrained weights (Niu et al., 2020). Despite the intra-kernel fine-grained pruning
pattern, pattern-based pruning can be accelerated with compiler optimization by reordering
the computation loops, reducing the control-flow overhead.

Coarse-grained pruning or structured pruning removes a regular tensor block for better hard-
ware efficiency. Depending on the block size, entire vectors (Mao et al., 2017), kernels (Mao
et al., 2017; Niu et al., 2020), or channels (He et al., 2017; Wen et al., 2016; Li et al., 2016b;
Molchanov et al., 2016) are removed (Fig. 4.2). Coarse-grained pruning like channel pruning
can bring direct hardware acceleration on GPUs using standard deep learning libraries, but it
usually comes at noticeable accuracy drop compared with fine-grained sparsity, as indicated
by Li et al. (2016b). Pruning using a smaller granularity usually brings a smaller accuracy
drop at the same compression rate (Mao et al., 2017).

Hardware acceleration

Generally speaking, more regular pruning schemes are more hardware friendly, making
it easier for inference acceleration on existing hardware such as GPUs; while more irregular
pruning schemes better preserve the accuracy at the same compression rate. With specialized
hardware accelerators (Han et al., 2016; Chen et al., 2016; Han et al., 2017; Chen et al., 2019a;
Zhang et al., 2016a; Yu et al., 2017) and compiler-based optimization techniques (Ma et al.,
2020; Niu et al., 2020), it is also possible to gain a considerable acceleration speed for more
irregular pruning methods.

Importance criteria

After choosing a pruning granularity, determining which weights should be pruned is
also essential to the pruned model’s performance. There have been several importance crite-
ria heuristics to estimate the importance of each weights after the model is trained; the less
important weights are pruned according to the criteria. The most straightforward heuristic is
based on the magnitudes, i.e., absolute values, of the weights (Han et al., 2015b,a):

Importance = |w|,
where the weights of larger magnitude are considered more important. It also extends to
coarse-grained pruning like channel pruning, where the tensor norm is used as the criterion:

Importance = ||W||2.



162 4. Efficient methods for deep learning

FIGURE 4.3 Three-Step training pipeline with iterative pruning (Han et al., 2015b).

Other criteria include second-order derivatives (i.e., the Hessian of the loss function) (LeCun
et al., 1989; Hassibi and Stork, 1993), loss-approximating Taylor expansion (Molchanov et al.,
2017), output sensitivity (Engelbrecht, 2001), etc..

Recently, Frankle and Carbin proposed Lottery Ticket Hypothesis (Frankle and Carbin,
2018) to find a sparse subnetwork within the dense, randomly-initialized deep networks be-
fore training, which can be trained to achieve the same accuracy. Experiments show that the
method can find sparse subnetworks with less than 10–20% of the weights while reaching the
same level of accuracy on MNIST (LeCun et al., 2010) and CIFAR (Krizhevsky and Hinton,
2009). It was later scaled up to larger-scale setting (e.g., ResNet-50 and Inception-v3 on Ima-
geNet), where the sparse subnetwork can be found at the early phase of training (Frankle et
al., 2020) instead of on initialization.

Training methods

Directly removing the weights in deep neural networks will significantly hurt the accuracy
at a large compression ratio. Therefore, some training/fine-tuning is needed to recover the
performance loss. Fine-tuning can be done after pruning to recover the performance drop (He
et al., 2017). It can be extended to iterative pruning (Han et al., 2015b,a) (Fig. 4.3), where mul-
tiple iterations of pruning and fine-tuning are performed to further boost the accuracy. To
avoid incorrect pruning of weights, dynamic pruning (Guo et al., 2016) incorporates connec-
tion splicing into the whole process and provides continual network maintenance. Runtime
pruning (Lin et al., 2017) chooses the pruning ratio according to each input sample, assigning
a more aggressive pruning strategy for easier samples, which further improves the accuracy-
computation trade-off.

Another implementation trains compact DNNs using sparsity constraints. The sparsity
constraints are usually implemented using L0, L1, or L2-norm regularization applied to the
weights, which are added to the training loss for joint optimization. Han et al. (2015b) applied
L1/L2 regularization to each individual weights during training. Lebedev and Lempitsky
(2016) applied group sparsity constraints on convolutional filters to achieve structured spar-
sity.
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4.1.2 Low-rank factorization

Low-rank factorization uses matrix/tensor decomposition to reduce the complexity of con-
volutional or fully-connected layers in deep neural networks. The idea of using low-rank
filters to accelerate convolution has long been investigated in signal processing area.

The most widely used decomposition is Truncated SVD (Golub and Van Loan, 1996), which
is effective for accelerating fully connected layers (Xue et al., 2013; Denton et al., 2014; Gir-
shick, 2015). Given a fully connected layer with weight W ∈ R

m×k , the SVD is defined as
W = USV T, where U ∈ R

m×m, S ∈ R
m×k , V ∈ R

k×k . S is a diagonal matrix with the singular
values on the diagonal. If the weight falls in a low-rank structure, it can be approximated by
keeping only the t largest entries of S, t << min(m, k). The computation Wx can be reduced
from O(mk) to O(mt + tk) for each sample.

For 4D convolutional weights, Jaderberg et al. (2014) proposed to factorize k × k ker-
nels into 1 × k and k × 1 kernels; this approach was also adopted in the Inception-V3 de-
sign (Szegedy and Vanhoucke, 2016). Zhang et al. (2016b) proposed to factorize a convolution
weight of n× c × k × k into n′ × c × k × k and n×n′ × 1 × 1, where n′ << n. Canonical Polyadic
(CP) decomposition can be used to decompose higher dimensional kernels like convolutional
weights (Lebedev et al., 2014). This approach computes a low-rank CP-decomposition of the
4D convolution kernel tensor into the sum of a small number of rank-one tensors. At infer-
ence time, the original convolution is replaced with a sequence of four convolutional layers
with smaller kernels. Kim et al. (2015) used Tucker Decomposition (known as the higher or-
der extension of SVD) to factorize the convolutional kernels, getting higher compression ratio
compared to using SVD.

4.1.3 Quantization

Network quantization compresses the network by reducing the bits per weight required
to represent the deep network. The quantized network can also have a faster inference speed
with hardware support.

Rounding schemes

To quantize a weight of full precision (32-bit float-point value) into a lower precision,
rounding is performed to map the float-point value into one of the quantization buckets.

Early work (Han et al., 2015a; Gong et al., 2014; Wu et al., 2016) applied k-means clustering
to find the shared weights for each layer of a trained network; all the weights that fall into the
same cluster will share the same weight. Specifically, when partitioning n original weights
W = {w1,w2, ...,wn} into k clusters C = {c1, c2, ..., ck}, n >> k, we minimize the within-cluster
sum of squares (WCSS):

arg min
C

k∑
i=1

∑
w∈ci

|w − ci |2 (4.1)

k-means clustering based quantization can be combined with pruning and Huffman coding
to perform model compression (Han et al., 2015a) (Fig. 4.4). It can compress the model size of
VGG-16 by 49 × with no loss of accuracy.
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FIGURE 4.4 The three stage compression pipeline: pruning, quantization and Huffman coding (Han et al., 2015a).

Linear/uniform (Vanhoucke et al., 2011; Jacob et al., 2017) quantization directly rounds the
float-point value into the nearest quantized values after range truncation; the gradient is
propagated using the STE approximation (Bengio et al., 2013). Suppose the clipping range
is [a, b], and the number of quantization levels is n, the forward process of quantizing float-
point value x into quantized value q is:

clamp(r, a, b) = min
(
max(x, a), b

)
, (4.2)

s(a, b,n) = b − a

n − 1
, (4.3)

q = round
(

clamp(r, a, b) − a

s(a, b,n)

)
s(a, b,n) + a. (4.4)

The back-propagation gradient is computed using:

∂L
∂q

= ∂L
∂x

. (4.5)

Apart from using the truncation value a, b, some work (Zhou et al., 2016) uses activation
functions like tanh to map the range of the weights into [−1, 1], making quantization easier.

Bit precision

We can trade-off the model size and model accuracy by using different bit precisions.
A lower bit precision can lead to a smaller model size, but it may come at the cost of accuracy
reduction. Full-precision networks use FP32 for both weights and activations. Half-precision
networks use FP16 to reduce the model size by half. INT8 quantization for both weights and
activations (Jacob et al., 2017) is widely used for integer-arithmetic-only inference, which can
be accelerated on GPUs, CPUs, smartphones, etc..

Lower precisions include Ternary Weight Networks (Li et al., 2016a), where the weights
are quantized to {−1,0,+1} or {−E,0,+E} (E is the mean of the absolute weight value, but is
not trained). Trained Ternary Quantization (Zhu et al., 2016) uses two learnable full-precision
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scaling coefficients W
p
l , Wn

l for each layer l, and quantizes the weights to {−Wn
l ,0,+WP

l }. It
can quantize AlexNet on ImageNet with no loss of accuracy.

The extreme case for low-bit quantization is binary weight neural networks (e.g., Bina-
ryConnect (Courbariaux et al., 2015), BinaryNet (Courbariaux and Bengio, 2016), XNOR
(Rastegari et al., 2016), etc.), where the weights are represented using only 1 bit. The binary
weights or activations are usually directly learned during network training using certain for-
ward and backward rules. For example, BinaryConnect (Courbariaux et al., 2015) discusses
both deterministic binarization:

wb = sign(w) =
{

+1 if x ≥ 0,

−1 otherwise,
(4.6)

and stochastic binarization:

wb =
{

+1 with probability p = σ(w),

−1 with probability 1 − p,
(4.7)

where σ is the “hard sigmoid” function:

σ(x) = max

(
0,min

(
1,

x + 1

2

))
. (4.8)

This is a piece-wise linear approximation to a standard sigmoid function.

Quantization schemes

For quantization of higher precisions (e.g., INT8), it is possible to perform post-training
quantization, where the weights and activations are quantized after the full-precision model
training. The quantization range for activations is determined by computing the distribution
on the training set, and Batch Normalization (Ioffe and Szegedy, 2015) layers are folded. Ap-
plying post-training INT8 quantization usually leads to minor or no loss of accuracy.1 Recent
work (Banner et al., 2019) studied the post-training quantization of INT4 models.

Quantization-ware training can reduce the quantization accuracy loss by emulating inference-
time quantization during training time (Jacob et al., 2017). The forward pass during training
is consistent with testing time, which helps on-device deployment. During training, the “fake
quantization operator” is injected into the convolutional layers, and the Batch Normaliza-
tion (Ioffe and Szegedy, 2015) layers are folded.

Both post-training quantization and quantization-aware training require access to the
training data to get a good quantization performance, which is not always feasible on some
privacy-sensitive applications. Data-free quantization aims to reduce the bit precisions with no
access to the training data. Nagel et al. (2019) proposed to perform INT8 quantization in a
data-free manner equalizing the weight ranges in the network. ZeroQ (Cai et al., 2020b) op-
timizes for a Distilled Dataset to match the statistics of batch normalization across different
layers of the network for data-free quantization.

1 https://www.tensorflow.org/lite/performance/post_training_quantization.

https://www.tensorflow.org/lite/performance/post_training_quantization
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Low-bit training

Apart from inference, training with quantized weights, activations, and gradients can re-
duce the cost of deep learning training. Training with mixed 16-bit and 32-bit floating-point
types in a model has been widely supported by deep learning frameworks like TensorFlow,
PyTorch, TensorCores, etc. With techniques like loss scaling, such mixed-precision training
can reduce the memory consumption and improve training speed with no loss of accuracy.
DoReFa-Net uses 1-bit weights, 2-bit activations, and 6-bit gradients for faster training and
inference, which can obtain comparable accuracy compared to FP32 AlexNet (Krizhevsky et
al., 2012) on ImageNet (Deng et al., 2009). The work in Lin et al. (2015) stochastically binarizes
the weights to reduce the time on floating-point multiplication in training.

Hardware support for low-precision acceleration

Quantized models can reduce the model size and storage for deployment, but they require
hardware support on low-precision arithmetic for inference acceleration. INT8 quantization is
supported on mobile ARM CPUs (e.g., Qualcomm Hexagon, ARM Neon), x86 CPUs, NVIDIA
GPUs with TensorRT, Xilinx FPGAs with DNNDK, etc.. Binary quantized network can also be
accelerated with bit operations. Lower bit precisions (e.g., ternary, INT4) are less supported on
existing hardware. NVIDIA’s Turing architecture supports INT4 inference,2 which brings an
additional 59% speedup compared to INT8. There are efforts designing specialized hardware
accelerators for accelerating low-bit quantized models (Zhang et al., 2015; Sharify et al., 2018),
which achieve superior energy efficiency compared to full-precision models.

Recently, hardware support for mixed-precision quantization reveals a new opportunity for
improving accuracy vs. cost trade-off. NVIDIA’s Turing Tensor Core supports 1-bit, 4-bit, 8-
bit and 16-bit arithmetic operations; Imagination launched a flexible neural network IP that
supports per-layer bit-width adjustment for both weights and activations. Recent specialized
hardware accelerator design also enables mixed-precision support: hardware based on bit-
serial multiplier units (Judd et al., 2016; Umuroglu et al., 2018) supports multiplications of 1
to 8 bits in a temporal manner; BitFusion (Sharma et al., 2018) supports multiplications of 2,
4, 8 and 16 bits in a spatial manner.

4.1.4 Knowledge distillation

Knowledge distillation (KD) (Buciluǎ et al., 2006; Hinton et al., 2015) can transfer the “dark
knowledge” learned in a large model (denoted as the teacher) to a smaller model (denoted
as the student) to improve the performance of the smaller one. The small model is either a
compressed model or a shallower/narrower model. (Buciluǎ et al., 2006) achieves the goal
by training the student network to match output logits; (Hinton et al., 2015) introduced the
idea of temperature in the softmax output and trained the student to mimic the softened
distribution of the teacher model’s Softmax output. KD shows promising results in various
image classification tasks despite the simple implementation.

Apart from the final output logits, the intermediate activations also contain useful infor-
mation. FitNet (Romero et al., 2014) trains the student to mimic the full feature map of the

2 https://developer.nvidia.com/blog/int4-for-ai-inference/.

https://developer.nvidia.com/blog/int4-for-ai-inference/
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FIGURE 4.5 Overview of AutoML for Model Compression (AMC) engine. Left: AMC replaces human and makes
model compression fully automated while performing better than human. Right: Form AMC as a reinforcement
learning problem (He et al., 2018).

teacher model through regression. Attention Transfer (AT) (Zagoruyko and Komodakis, 2016)
transfers the attention map of the activation from teacher to student, using the summation of
the feature map across the channel dimension. Both methods require the intermediate ac-
tivation to share the same spatial resolution, which limits the choice of the student model
architecture.

KD-based methods are also applicable to other applications beyond classification, like
object detection (Chen et al., 2017), semantic segmentation (Liu et al., 2019a), language mod-
eling (Sanh et al., 2019), image synthesis (Li et al., 2020), etc..

4.1.5 Automated model compression

Model compression methods can improve the efficiency of the deployed models. How-
ever, the performance of model compression is largely affected by the hyperparameters. For
example, different layers in deep networks have different capacities and sensitivities (e.g., the
first layer in CNN is usually very sensitive to pruning). Therefore, we should apply different
pruning ratios for different layers of the network to achieve optimal performance. The design
space is so large that human heuristics will usually be suboptimal, and manual model com-
pression is time-consuming. To this end, automated model compression is proposed to find
good compression policy without human effort.

Automated pruning

Conventional model pruning techniques rely on hand-crafted features and require do-
main experts to explore the large design space trading off among model size, speed, and
accuracy: this is usually suboptimal and time-consuming. AutoML for Model Compression
(AMC) (He et al., 2018) leverages reinforcement learning to efficiently sample the design
space and find the optimal pruning policy for a given network (Fig. 4.5). We process a pre-
trained network (e.g., MobileNet-V1) in a layer-by-layer manner. Our reinforcement learning
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FIGURE 4.6 AMC can prune the model to a lower density compared with human experts without losing accuracy.
(Human expert: 3.4× compression on ResNet50. AMC: 5× compression on ResNet50.)

FIGURE 4.7 The pruning policy (sparsity ratio) given by AMC agent for ResNet-50. With 4 stages of iterative
pruning, AMC finds very salient sparsity pattern across layers: peaks are 1 × 1 convolution, crests are 3 × 3 convo-
lution. The reinforcement learning agent automatically learns that 3 × 3 convolution has more redundancy than
1 × 1 convolution and can be pruned more.

agent (DDPG (Lillicrap et al., 2015)) receives the embedding st from a layer t , and outputs a
sparsity ratio at . After the layer is compressed with at , it moves to the next layer Lt+1. The
accuracy of the pruned model with all layers compressed is evaluated. Finally, as a function
of accuracy and MACs (Multiply-Accumulate Operations), reward R is returned to the rein-
forcement learning agent.

On fine-grained pruning of ResNet-50 (He et al., 2016), AMC can outperform human ex-
perts in a fully automated manner: it pushes the expert-tuned compression ratio of ResNet-50
on ImageNet from 3.4 × to 5 × (see Fig. 4.6) without loss of performance. AMC can also find
pruning patterns similar to human heuristics. The density of each layer during each stage is
displayed in Fig. 4.7. The peaks and crests show that the RL agent automatically learns to
prune 3 × 3 convolutional layers with larger sparsity, since they generally have larger redun-
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FIGURE 4.8 (a) Comparing the accuracy and MACs trade-off among AMC, human expert, and unpruned
MobileNet-v1. AMC strictly dominates human expert in the Pareto optimal curve. (b) Comparing the accuracy and
latency trade-off among AMC, NetAdapt, and unpruned MobileNet-V1. AMC significantly improves the Pareto
curve of MobileNet-V1. Reinforcement-learning based AMC surpasses heuristic-based NetAdapt on the Pareto curve
(inference time both measured on Google Pixel 1).

dancy; whereas it prunes more compact 1 × 1 convolutions with lower sparsity. The density
statistics of each block are provided in Fig. 4.6. We can find that the density distribution of
AMC is quite different from the human expert’s result, shown in Table 3.8 of (Han, 2017),
suggesting that AMC can fully explore the design space and allocate sparsity in a better way.

AMC is hardware-aware: it can improve not only the computation (i.e., MACs) but also
the actual latency tested on device (Fig. 4.8(b)). We use a highly compact network MobileNet-
V1 (Howard et al., 2017) as an example to measure how much we can improve its inference
speed. Previous attempts using hand-crafted policy to prune MobileNet-V1 led to significant
accuracy degradation (Li et al., 2016b): pruning MobileNet-V1 to 75.5% original parameters
results in 67.2% top-1 accuracy,3 which is even worse than the original 0.75 MobileNet-V1
(61.9% parameters with 68.4% top-1 accuracy). However, AMC pruning policy significantly
improves the pruning quality on ImageNet, achieving better Pareto curve on accuracy vs.
computation trade-off (i.e., getting better accuracy at the same computation). As illustrated in
Fig. 4.8(a), the human expert’s hand-crafted policy achieves slightly worse performance than
that of the original MobileNet-V1 under 2× MACs reduction. AMC also outperforms another
heuristic-based policy (Yang et al., 2018) trading off accuracy and latency.

A recent work MetaPruning (Liu et al., 2019b) first trains a PruningNet, a kind of meta net-
work, which is able to generate weight parameters for any pruned structure given the target
network, and then use it to search for the best pruning policy under different constraints.

Automated quantization

Mixed-precision quantization also requires extensive effort deciding the optimal bit-width
for each layer to achieve the best accuracy-performance trade-off. Hardware-Aware Auto-

3 http://machinethink.net/blog/compressing-deep-neural-nets/.

http://machinethink.net/blog/compressing-deep-neural-nets/
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FIGURE 4.9 An overview of HAQ framework. It leverages the reinforcement learning to automatically search
over the huge quantization design space with hardware in the loop. The agent proposes an optimal bitwidth alloca-
tion policy given the amount of computation resources (i.e., latency, power, and model size). The RL agent integrates
the hardware accelerator into the exploration loop so that it can obtain direct feedback from the hardware, instead
of relying on indirect proxy signals (Wang et al., 2018).

mated Quantization (HAQ) (Wang et al., 2018) (Fig. 4.9) is proposed to automate the process.
HAQ leverages the reinforcement learning to automatically determine the quantization pol-
icy. It takes the hardware accelerator’s feedback in the design loop, rather than relying on
proxy signals such as MACs and model size. Compared with conventional methods, HAQ
is fully automated and can specialize the quantization policy for different neural network
architectures and hardware architectures.

HAQ uses quite as different quantization policy for edge and cloud accelerators. The quan-
tization policy of MobileNet-V1 on the BISMO accelerator (Umuroglu et al., 2018) (both edge
and cloud configuration) is plotted in Fig. 4.10. On the edge accelerator, the RL agent allocates
less activation bits to the depthwise convolutions, which echoes that the depthwise convolu-
tions are memory bounded and that the activations dominate the memory access. On the
cloud accelerator, our agent allocates more bits to the depthwise convolutions and allocates
less bits to the pointwise convolutions, as the cloud device has more memory bandwidth and
high parallelism, so the network appears to be computation bounded.

4.2 Efficient neural network architectures

In addition to compressing an existing deep neural network, another widely adopted ap-
proach to improve efficiency is to design new neural network architectures. A CNN model
typically consists of convolution layers, pooling layers, and fully-connected layers, where
most of the computation comes from the convolution layers. For example, in ResNet-50 (He
et al., 2016), more than 99% of the multiply-accumulate operations (MACs) are from convo-
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FIGURE 4.10 Quantization policy under latency constraints for MobileNet-V1 (Wang et al., 2018).

lution layers. Therefore, designing efficient convolution layers is the core of building efficient
CNN architectures.

This section first describes the standard convolution layer and then describes three ef-
ficient variants of the standard convolution layer. Next, we present three representative
manually design efficient CNN architectures, including SqueezeNet (Iandola et al., 2016),
MobileNets (Howard et al., 2017; Sandler et al., 2018), and ShuffleNets (Ma et al., 2018; Zhang
et al., 2017). Finally, we describe automated methods for designing efficient CNN architec-
tures.

4.2.1 Standard convolution layer

A standard convolution layer is parameterized by convolution kernel K of size Oc × Ic ×
K × K where Oc is the number of output channels, Ic is the number of input channels, K

is the spatial dimension of the kernel (Fig. 4.11a). Here for simplicity, we assume that the
convolution kernel’s width and height are the same. It is also possible to have asymmetric
convolution kernels (Szegedy and Vanhoucke, 2016).

Given input feature map Fi of size Ic ×H ×W , the output feature map Fo of size Oc ×H ×W

is computed as follows4:

Fo[n,h,w] =
∑
m,i,j

K[n,m, i, j ] × Fi
[
m,h + i − �K/2�,w + j − �K/2�]. (4.9)

4 Assuming the stride is 1 and zero-padding is applied to preserve the spatial dimension of the feature map.
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FIGURE 4.11 Illustration of the standard convolution and three commonly used efficient variants.

In the following discussions, we use Fo = ConvK×K(Fi;K) to represent a standard convolu-
tion layer with kernel size K . According to Eq. (4.9), the computational cost of a standard
convolution is

#MACs(ConvK×K) = H × W × Oc × Ic × K × K, (4.10)

while the number of parameters is given as

#Params(ConvK×K) = Oc × Ic × K × K. (4.11)

4.2.2 Efficient convolution layers

1 × 1 (pointwise) convolution

1 × 1 convolution (also called pointwise convolution) is a special kind of standard convo-
lution layer, where the kernel size K is 1 (Fig. 4.11d). According to Eq. (4.10) and Eq. (4.11),
replacing a K × K standard convolution layer with a 1 × 1 convolution layer will reduce the
number of MACs (#MACs) and the number of parameters (#Params) by K2 times. In practice,
as the 1×1 convolution itself cannot aggregate spatial information, it is combined with other
convolution layers to form CNN architectures. For example, a 1 × 1 convolution is usually
used to reduce/increase the channel dimension of the feature map in CNN.

Group convolution

Different from a 1 × 1 convolution, which reduces the cost by decreasing the kernel size
dimension, group convolution reduces the cost by decreasing the channel dimension. Specifi-
cally, the input feature map Fi is split into G groups along the channel dimension (Fig. 4.11b):

split(Fi) = (
Fi[0 : c, :, :],Fi[c : 2c, :, :], · · · ,Fi[Ic − c : Ic, :, :]

)
, where c = Ic/G.
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FIGURE 4.12 SqueezeNet Architecture (Iandola et al., 2016).

Then each group is fed to a standard K × K convolution of size Oc

G
× Ic

G
× K × K . Finally,

the outputs are concatenated along the channel dimension. Compared to a standard K × K

convolution, #MACs and #Params are reduced by G× in a group convolution.

Depthwise convolution

The number of groups G is an adjustable hyperparameter in group convolutions. A larger
G leads to lower computational cost and fewer parameters. An extreme case is that G equals
the number of input channels Ic. In that case, the group convolution layer is called a depth-
wise convolution (Fig. 4.11 c). #MACs and #Params of a depthwise convolution are

#MACs(DWConvK×K) = H × W × Oc × K × K, (4.12)

#Params(DWConvK×K) = Oc × K × K, (4.13)

where Oc = Ic.

4.2.3 Manually designed efficient CNN models

SqueezeNet (Fig. 4.12)

SqueezeNet (Iandola et al., 2016) targets extremely compact model sizes for mobile ap-
plications. It has only 1.2 million parameters but achieved an accuracy similar to AlexNet
(Table 4.1). SqueezeNet has 26 convolution layers and no fully-connected layer. The last fea-
ture map goes through a global average pooling and forms a 1000-dimension vector to feed
the softmax layer. SqueezeNet has eight Fire modules. Each fire module contains a squeeze
layer with 1 × 1 convolution and a pair of 1 × 1 and 3 × 3 convolutions. The SqueezeNet
caffemodel achieved a top-1 accuracy of 57.4% and a top-5 accuracy of 80.5% on ImageNet
2012 (Deng et al., 2009). SqueezeNet is widely used in mobile applications in which model
size is a large constraint.

MobileNets (Fig. 4.13)

MobileNetV1 (Howard et al., 2017) is based on a building block called depthwise sepa-
rable convolution (Fig. 4.13a), which consists of a 3 × 3 depthwise convolution layer and
a 1×1 convolution layer. The input image first goes through a 3×3 standard convolution
layer with stride 2, then 13 depthwise separable convolution blocks. Finally, the feature map
goes through a global average pooling and forms a 1280-dimension vector fed to the final
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TABLE 4.1 Summarized results of manually designed CNN architectures on ImageNet.

Network #Params #MACs
ImageNet

Top-1 Acc Top-5 Acc
AlexNet (Krizhevsky et al., 2012) 60M 720M 57.2% 80.3%
GoogleNet (Szegedy et al., 2015) 6.8M 1550M 69.8% 89.5%
VGG-16 (Simonyan and Zisserman, 2014) 138M 15300M 71.5% –
ResNet-50 (He et al., 2016) 25.5M 4100M 76.1% 92.9%

SqueezeNet (Iandola et al., 2016) 1.2M 1700M 57.4% 80.5%

MobileNetV1 (Howard et al., 2017) 4.2M 569M 70.6% 89.5%
MobileNetV2 (Sandler et al., 2018) 3.4M 300M 72.0% –
MobileNetV2-1.4 (Sandler et al., 2018) 6.9M 585M 74.7% –

ShuffleNetV1-1.5x (Zhang et al., 2017) 3.4M 292M 71.5% –
ShuffleNetV2-1.5x (Ma et al., 2018) 3.5M 299M 72.6% –
ShuffleNetV2-2x (Ma et al., 2018) 7.4M 591M 74.9% –

FIGURE 4.13 (a) Building block of MobileNetV1 (Howard et al., 2017). It consists of a 3 × 3 depthwise convolution
layer and a 1×1 convolution layer. (b) Building blocks of MobileNetV2 (Sandler et al., 2018). Each block consists of a
3 × 3 depthwise convolution layer and two 1 × 1 convolution layers. When the stride is 1, the block will have a skip
connection.

fully-connected layer with 1000 output units. With 569M MACs and 4.2M parameters, Mo-
bileNetV1 achieves 70.6% top-1 accuracy on ImageNet 2012 (Table 4.1).

MobileNetV2 (Sandler et al., 2018), an improved version of MobileNetV1, also uses 3 × 3
depthwise convolution and 1 × 1 convolution to compose its building blocks. Unlike Mo-
bileNetV1, the building block in MobileNetV2 has three layers, including a 3 × 3 depthwise
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FIGURE 4.14 Illustration of the channel shuffle operation (Zhang et al., 2017).

convolution layer and two 1 × 1 convolution layers (Fig. 4.13b). The intuition is that the capac-
ity of depthwise convolution is much lower than the standard convolution, and thus needs
more channels to improve its capacity. From a cost perspective, the #MACs and #Params
of a depthwise convolution only grow linearly (rather than quadratically as for a standard
convolution) as the number of channels increases. Thus, even with a large channel number,
the cost of a depthwise convolution layer is still moderate. Therefore, in MobileNetV2, the
input feature map first goes through a 1×1 convolution to increase the channel dimension
by a factor called expand ratio. Then the expanded feature map is fed to a 3 × 3 depthwise
convolution, followed by another 1 × 1 convolution to reduce the channel dimension back
to the original value. This structure is called inverted bottleneck and the block is called mobile
inverted bottleneck block. Apart from the mobile inverted bottleneck block, MobileNetV2 has
another two improvements over MobileNetV1. First, MobileNetV2 has skip connections5 for
blocks in which the stride is 1. Second, the activation function of the last 1 × 1 convolution in
each block is removed. Combining these improvements, MobileNetV2 achieves 72.0% top-1
accuracy on ImageNet 2012 with only 300M MACs and 3.4M parameters (Table 4.1).

ShuffleNets

Similar to MobileNets, ShuffleNetV1 utilizes 3×3 depthwise convolution rather than stan-
dard convolution. Besides, ShuffleNetV1 introduces two new operations, pointwise group
convolution and channel shuffle. The pointwise group convolution’s motivation is to reduce
the computational cost of 1 × 1 convolution layers. However, it has a side effect: a group
cannot see information from other groups. This will significantly hurt accuracy. The chan-
nel shuffle operation is thus introduced to address this side effect by exchanging feature
maps between different groups. An illustration of the channel shuffle operation is provided in
Fig. 4.14. After shuffling, each group will contain information from all groups. On ImageNet
2012, ShuffleNetV1 achieves 71.5% top-1 accuracy with 292M MACs (Table 4.1).

In ShuffleNetV2, the input feature map is divided into two groups at the beginning of each
building block. One group goes through the convolution branch that consists of a 3×3 depth-

5 With a skip connection, output = F(input) + input . Without a skip connection, output = F(input).
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wise convolution layer and two 1 × 1 convolution layers. The other group goes through a skip
connection when the stride is 1 and goes through a 3 × 3 depthwise separable convolution
when the stride is 2. In the end, the outputs are concatenated along the channel dimension,
followed by a channel shuffle operation to exchange information between groups. With 299M
MACs, ShuffleNetV2 achieves 72.6% top-1 accuracy on ImageNet 2012 (Table 4.1).

4.2.4 Neural architecture search

The success of the aforementioned efficient CNN models relies on hand-crafted neural
network architectures that require domain experts to explore the large design space, trading
off among model size, latency, energy, and accuracy. This is not only time-consuming but also
suboptimal. Thus, there is a growing interest in developing automated methods to tackle this
challenge.

Neural Architecture Search (NAS) refers to using machine learning techniques to auto-
matically design neural network architectures. In the conventional NAS formulation (Zoph
and Le, 2016), designing neural network architectures is modeled as a sequence generation
problem, where an auto-regressive RNN controller is introduced to generate neural network
architectures. This RNN controller is trained by repeatedly sampling neural network archi-
tectures, evaluating the sampled neural network architectures, and updating the controller
based on the feedback. To find a good neural network architecture in the vast search space,
this process typically has to train and evaluate tens of thousands of neural networks (e.g.,
12,800 in (Zoph et al., 2017)) on the target task, leading to prohibitive computational cost
(104 GPU hours). To address this challenge, many techniques are proposed that try to improve
different components of NAS, including search space, search algorithm, and performance
evaluation strategy.

Search space

All the NAS methods need a predefined search space that contains basic network ele-
ments and how they connect with each other. For example, the typical basic elements of
CNN models consist of (1) convolutions (Zoph et al., 2017; Real et al., 2018): standard con-
volutions (1 × 1, 3 × 3, 5 × 5), asymmetric convolutions (1 × 3 and 3 × 1, 1 × 7 and 7 × 1),
depthwise-separable convolutions (3 × 3, 5 × 5), dilated convolutions (3×3); (2) poolings:
average pooling (3 × 3), max pooling (3×3); (3) activation functions (Ramachandran et al.,
2017). Then these basic elements are stacked sequentially (Baker et al., 2016) with identity
connections (Zoph and Le, 2016). The full network-level search space grows exponentially
as the network deepens (Fig. 4.15(a)). When the depth is 20, this search space contains more
than 1036 different neural network architectures in Zoph et al. (2017).

Instead of directly searching on such an exponentially large space, restricting the search
space is a very effective approach for improving the search speed. Specifically, Zoph et al.
(2017); Zhong et al. (2017) propose to search for basic building cells (Fig. 4.15(b)) that can
be stacked to construct neural networks, rather than the entire neural network architecture.
As such, the architecture complexity is independent of the network depth, and the learned
cells are transferable across different datasets. This enables NAS to search on a small proxy
dataset (e.g., CIFAR-10), and then transfer to another large-scale dataset (e.g., ImageNet) by
adapting the number of cells. Within the cell, the complexity is further reduced by supporting
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FIGURE 4.15 NAS search space (Deng et al., 2020): (a) network-level search space (Zoph and Le, 2016); (b) cell-
level search space (Zoph et al., 2017); (c) an example of learned cell structure (Liu et al., 2017); (d) three-level
hierarchical search space (Liu et al., 2018a).

hierarchical topologies (Liu et al., 2018a), or increasing the number of elements (blocks) in a
progressive (simple to complex) manner (Liu et al., 2017).

Search algorithm

NAS methods usually have two stages at each search step: (1) the generator produces an
architecture, and then (2) the evaluator trains the network and obtains the performance. As
getting the performance of a sampled neural network architecture involves training a neural
network, which is very expensive, search algorithms that affect the sample efficiency play an
important role in improving the search speed of NAS. Most of the search algorithms used in
NAS fall into five categories: random search, reinforcement learning (RL), evolutionary algo-
rithms, Bayesian optimization, and gradient-based methods. Among them, RL, evolutionary
algorithms, and gradient-based methods provide the most competitive results.

RL-based methods model the architecture generation process as a Markov Decision Pro-
cess, treat the validation accuracy of the sampled architecture as the reward and update the
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architecture generation model using RL algorithms, including Q-learning (Baker et al., 2016;
Zhong et al., 2017), REINFORCE (Zoph and Le, 2016), PPO (Zoph et al., 2017), etc. Instead
of training an architecture generation model, evolutionary methods (Real et al., 2018; Liu et
al., 2018a) maintain a population of neural network architectures. This population is updated
through mutation and recombination. While both RL-based methods and evolutionary meth-
ods optimize neural network architectures in the discrete space, DARTS (Liu et al., 2018b)
proposes continuous relaxation of the architecture representation:

y =
∑

i

αioi(x), where αi ≥ 0,
∑

i

αi = 1, (4.14)

where {αi} denote architecture parameters, {oi} denote candidate operations, x is the input,
and y is the output. Such continuous relaxation allows neural network architectures to be
optimized in the continuous space using gradient descent, which greatly improves the search
efficiency. Apart from the above techniques, the search efficiency of NAS can be improved
by exploring the architecture space with network transformation operations, starting from an
existing network, and reusing the weights (Cai et al., 2018a,b; Elsken et al., 2018).

Performance evaluation

To guide the search process, NAS methods need to get the performances (typically ac-
curacy on the validation set) of sampled neural architectures. The trivial approach to get
these performances is to train sampled neural network architectures on the training data and
measure their accuracy on the validation set. However, this would result in excessive com-
putational cost (Zoph and Le, 2016; Zoph et al., 2017; Real et al., 2018). This motivates many
techniques that aim at speeding up the performance evaluation step.

Alternatively, the evaluation step can be accelerated using Hypernetwork (Brock et al.,
2017), which can directly generate weights of a neural architecture without training it.
Though the model’s accuracy will degrade significantly using the generated weights, this
accuracy can be used as a proxy metric to select neural architectures. As such, only a single
Hypernetwork needs to be trained, which greatly saves the search cost. Similarly, One-shot
NAS methods (Pham et al., 2018; Liu et al., 2018b; Cai et al., 2019) focus on training a single
supernet, from which small subnetworks directly inherit weights without training cost.

Auto-designed vs. human-designed

Fig. 4.16 reports the summarized results of auto-design CNN models and human-design
CNN models on ImageNet. NAS not only saves engineer labor costs but also provides better
CNN models over human-designed CNNs. Apart from ImageNet classification, auto-design
CNN models have outperformed manually designed CNN models on object detection (Zoph
et al., 2017; Chen et al., 2019b; Ghiasi et al., 2019; Tan et al., 2020a) and semantic segmentation
(Liu et al., 2019; Chen et al., 2018).

4.2.5 Hardware-aware neural architecture search

While NAS has shown promising results, achieving significant MACs reduction with-
out sacrificing accuracy, in real-world applications, we care about the real hardware effi-
ciency (e.g., latency, energy) rather than #MACs. Unfortunately, MAC-efficiency does not
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FIGURE 4.16 Summarized results of auto-design CNN models and human-design CNN models on ImageNet
(Cai et al., 2020a).

directly translate to real hardware efficiency. Fig. 4.17 shows the comparison between auto-
designed CNN models (NASNet-A and AmoebaNet-A) and human-designed CNN models
(MobileNetV2-1.4). Although NASNet-A and AmoebaNet-A have fewer MACs than Mo-
bileNetV2-1.4, they actually run slower than MobileNetV2-1.4 on hardware. It is because
#MACs only reflect the computation complexity of convolution operations. Other factors like
data access cost, parallelism, and cost of element-wise operations that significantly affect real
hardware efficiency are not taken into consideration.

This problem motivates hardware-aware NAS techniques (Tan et al., 2018; Cai et al., 2019;
Wu et al., 2019) that directly incorporate hardware feedback into the architecture search pro-
cess. An example of the hardware-aware NAS framework is shown in Fig. 4.18. Besides
accuracy, each sampled neural network architecture is measured on the target hardware to
collect its latency information. A multiobjective reward is defined based on accuracy ACC

and latency LAT :

reward = ACC ×
(

LAT

T

)ω

, (4.15)

where T is the target latency and ω is a hyperparameter.

Latency prediction

Measuring the latency on-device is accurate but not ideal for scalable neural architecture
search. There are two reasons: (i) Slow speed. As suggested in TensorFlow-Lite,6 we need to

6 https://www.tensorflow.org/lite.

https://www.tensorflow.org/lite
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FIGURE 4.17 #MACs does not reflect real hardware efficiency. NASNet-A and AmoebaNet-A (auto-designed
CNN models) have fewer MACs than MobileNetV2-1.4 (human-designed CNN model). However, they run slower
than MobileNetV2-1.4 on Google Pixel1.

FIGURE 4.18 An example of the hardware-aware NAS framework (Tan et al., 2018).

average hundreds of runs to produce a precise measurement, approximately 20 seconds. This
is far more slower than a single forward / backward execution. (ii) High cost. A lot of mobile
devices and software engineering work are required to build an automatic pipeline to gather
the latency from a mobile farm.

Instead of direct measurement, an economical solution is to build a prediction model to
estimate the latency (Cai et al., 2019). In practice, this is implemented by sampling neural
network architectures from the candidate space and profiling their latency on the target hard-
ware platform. The collected data is then used to build the latency prediction model. For
hardware platforms that sequentially execute operations, like mobile and FPGA, a simple la-
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FIGURE 4.19 Predicted latency v.s. real latency on Google Pixel 1 (Cai et al., 2019).

FIGURE 4.20 Making latency differentiable by introducing latency loss (Cai et al., 2019).

tency lookup table that maps each operation to its estimated latency is sufficient to provide
very accurate latency predictions (Fig. 4.19). Another benefit of this approach is that it al-
lows modeling the latency of a neural network as a regularization loss (Fig. 4.20), enabling
trade-off between accuracy and latency to be optimized in a differentiable manner.

Specialized models for different hardware

Given the high cost of building a new neural network model, it is common to deploy the
same model for all hardware platforms. However, it is suboptimal, as different hardware plat-
forms have different properties, such as the number of arithmetic units, memory bandwidth,
cache size, etc. Using hardware-aware NAS techniques, it is possible to have a specialized
neural network architecture for each target hardware.

Fig. 4.21 demonstrates the detailed architectures of specialized CNN models on GPU and
Mobile. We notice that the architecture shows different preferences when targeting different



182 4. Efficient methods for deep learning

FIGURE 4.21 Efficient models optimized for different hardware. “MBConv3” and “MBConv6” denote mobile
inverted bottleneck block with an expand ratio of 3 and 6 respectively. Insights: GPU prefers shallow and wide
model with early pooling; Mobile prefers deep and narrow model with late pooling. Pooling layers prefer large and
wide kernel. Early layers prefer small kernel. Late layers prefer large kernel (Cai et al., 2019).

TABLE 4.2 Hardware prefers specialized models (Cai et al., 2019). With a similar accuracy, the special-
ized model (ProxylessNAS-Mobile) reduces the latency by 1.8 × compared to the nonspecialized CNN
model (MobileNetV2-1.4). Besides, models optimized for GPU do not run fast on Mobile, and vice versa.

Network ImageNet Top-1 (%) GPU latency Mobile latency
MobileNetV2-1.4 (Sandler et al., 2018) 74.7 – 143 ms

ProxylessNAS-GPU (Cai et al., 2019) 75.1 5.1 ms 124 ms
ProxylessNAS-Mobile (Cai et al., 2019) 74.6 7.2 ms 78 ms

platforms: (i) The GPU model is shallower and wider, especially in the early stages where
the feature map has higher resolution; (ii) The GPU model prefers large MBConv operations
(e.g., 7 × 7 MBConv6), while the Mobile model would go for smaller MBConv operations.
This is because GPU has much higher parallelism than Mobile so it can take advantage of
large MBConv operations. Another interesting observation is that the searched models on
all platforms prefer larger MBConv operations in the first block within each stage where the
feature map is downsampled. This might be because larger MBConv operations are beneficial
for the network to preserve more information when downsampling.

Table 4.2 shows the summarized results of specialized models on GPU and Mobile. An
interesting observation is that models optimized for GPU do not run fast on Mobile, and vice
versa. Therefore, it is essential to learn specialized neural networks for different hardware
architectures to achieve the best efficiency on different hardware.

Handling many hardware platforms and efficiency constraints

Although specialized CNN models are superior to nonspecialized counterparts, design-
ing specialized CNNs for every scenario is still difficult, either with human-based methods
or hardware-aware NAS, since such methods need to repeat the network design process and
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FIGURE 4.22 Left: a single once-for-all network is trained to support versatile architectural configurations in-
cluding depth, width, kernel size, and resolution. Given a deployment scenario, a specialized subnetwork is directly
selected from the once-for-all network without training. Middle: this approach reduces the cost of specialized deep
learning deployment from O(N) to O(1). Right: once-for-all network followed by model selection can derive many
accuracy-latency trade-offs by training only once, compared to conventional methods that require repeated training
(Cai et al., 2020a).

retrain the designed network from scratch for each case. Their total cost grows linearly as the
number of deployment scenarios increases, which will result in excessive energy consump-
tion and CO2 emission (Strubell et al., 2019). It makes them unable to handle the vast number
of hardware devices (23.14 billion IoT devices till 20187) and highly dynamic deployment
environments (different battery conditions, different latency requirements, etc.).

To tackle this challenge, one promising solution is to build a once-for-all (OFA) network
(Cai et al., 2020a; Yu et al., 2020) that can be directly deployed under diverse architectural con-
figurations, amortizing the training cost. The inference is performed by selecting only part of
the OFA network. It flexibly supports different depths, widths, kernel sizes, and resolutions
without retraining. An example of OFA is illustrated in Fig. 4.22 (left). Specifically, the model
training stage is decoupled from the neural architecture search stage. In the model training
stage, the focus is to improve the accuracy of all subnetworks derived by selecting different
parts of the OFA network. A subset of subnetworks is sampled in the model specialization
stage to train an accuracy predictor and latency predictors. Given the target hardware and
constraint, a predictor-guided architecture search (Liu et al., 2018) is conducted to get a spe-
cialized subnetwork, and the cost is negligible.8 As such, the total cost of specialized neural
network design is reduced from O(N) to O(1) (Fig. 4.22 middle).

Table 4.3 reports the comparison between OFA and state-of-the-art hardware-aware NAS
methods on the mobile phone (Pixel1). The cost of OFA is constant while others are lin-
ear to the number of deployment scenarios (N ). With N = 40, the total CO2 emissions of
OFA are 16 × less than ProxylessNAS, 19× less than FBNet, and 1,300 × less than Mnas-
Net.

Fig. 4.23 summarizes the results of OFA under different MACs and Pixel1 latency con-
straints. An interesting observation is that training the searched neural architectures from

7 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/.
8 https://github.com/mit-han-lab/once-for-all/blob/master/tutorial/ofa.ipynb.

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://github.com/mit-han-lab/once-for-all/blob/master/tutorial/ofa.ipynb
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TABLE 4.3 Summarized results on Pixel1 phone (Cai et al., 2020a). The first group corresponds to human-designed CNN models. The second
group corresponds to conventional NAS. The third group corresponds to hardware-aware NAS. The final group corresponds to OFA. “#75” indicates
that the specialized subnetworks are fine-tuned for 75 epochs after grabbing weights from the OFA network. “CO2e” denotes CO2 emission which is
calculated based on (Strubell et al., 2019). AWS cost is calculated based on the price of Amazon AWS on-demand P3.16x large instances.

Network
ImageNet

MACs
Mobile Search cost Training cost Total cost (N = 40)

Top1 (%) latency (GPU hours) (GPU hours) GPU hours CO2e (lbs) AWS cost
MobileNetV2 (Sandler et al., 2018) 72.0 300M 66 ms 0 150N 6k 1.7k $18.4k
MobileNetV2 #1200 73.5 300M 66 ms 0 1200N 48k 13.6k $146.9k

NASNet-A (Zoph et al., 2017) 74.0 564M – 48,000N – 1920k 544.5k $5875.2k
DARTS (Liu et al., 2018b) 73.1 595M – 96N 250N 14k 4.0k $42.8k

MnasNet (Tan et al., 2018) 74.0 317M 70 ms 40,000N – 1600k 453.8k $4896.0k
FBNet-C (Wu et al., 2019) 74.9 375M – 216N 360N 23k 6.5k $70.4k
ProxylessNAS (Cai et al., 2019) 74.6 320M 71 ms 200N 300N 20k 5.7k $61.2k
SinglePathNAS (Guo et al., 2019) 74.7 328M – 288 + 24N 384N 17k 4.8k $52.0k
AutoSlim (Yu and Autoslim, 2019) 74.2 305M 63 ms 180 300N 12k 3.4k $36.7k
MobileNetV3-Large (Howard et al., 2019) 75.2 219M 58 ms – 180N 7.2k 1.8k $22.2k

OFA 76.0 230M 58 ms 40 1200 1.2k 0.34k $3.7k
OFA #75 76.9 230M 58 ms 40 1200 + 75N 4.2k 1.2k $13.0k
OFALarge #75 80.0 595M – 40 1200 + 75N 4.2k 1.2k $13.0k
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FIGURE 4.23 Training the search neural architectures from scratch cannot achieve the same accuracy as OFA (Cai
et al., 2020a).

scratch cannot reach the same level of accuracy as OFA, suggesting that not only neural ar-
chitectures but also pretrained weights contribute to the superior performances of OFA.

4.3 Conclusion

Over the past few years, deep neural networks have achieved unprecedented success in
the field of artificial intelligence; however, their superior performance comes at the cost of
high computational complexity. This limits their applications on many edge devices, where
the hardware resources are tightly constrained by the form factor, battery, and heat dissipa-
tion.

This chapter offers a systematic overview of efficient deep learning to enable both re-
searchers and practitioners to get started in this field quickly. We first introduce various
model compression approaches that have become the industry standards, such as pruning,
factorization, quantization, and efficient model design. To reduce the design cost of these
handcrafted solutions, we then describe many recent efforts on neural architecture search,
automated pruning, and quantization, which can outperform the manual design with mini-
mal human efforts. Finally, we describe the once-for-all technique to efficiently handle many
hardware platforms and efficiency constraints without repeating the costly search and re-
training phases.
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Towards controllable visual pattern modeling
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CHAPTER POINTS

• A visual pattern is a discernible visual
regularity, which repeats in a predictable
manner.

• Pattern recognition, discovery and
synthesis are three fundamental tasks in
visual pattern analysis.

• Pattern synthesis is the most
comprehensive visual modeling task.

• Learning disentangled representation is the
key to more controllable visual pattern
synthesis.

• Unsupervised learning of disentangled
representations requires appropriate
inductive biases.

• More controllable pattern synthesis leads
to more explainable pattern analysis.

5.1 Introduction

Visual perception is a challenging task, since natural scenes are composed by an over-
whelming number of visual patterns, which often follow either a stochastic, or deterministic
process, or a combination of both. By definition, a visual pattern is a discernible visual regu-
larity in the world, whose compositional elements as a whole, repeat in a predictable manner.
There are three fundamental tasks in visual pattern analysis, i.e., pattern recognition, pattern
discovery, and pattern synthesis. Discerning different visual patterns corresponds to the task
of pattern recognition.1 The fact that visual patterns repeat themselves in the world is the

1 Here we refer to pattern recognition in a narrow sense of differentiating different visual patterns. It may also be
used in a wide sense to cover all pattern analysis tasks.
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FIGURE 5.1 Examples to show that to recognize an image, we may only need a handful of discriminative visual
features (a.k.a. atomic visual patterns). Even by only looking at the visual characteristics in local image regions, we
can well recognize the semantic categories of the images.

FIGURE 5.2 Examples of unsupervised object discovery from a video sequence, using the technologies proposed
in Zhao et al. (2013). The figures are by courtesy of Zhao et al. (2013).

basis for various pattern discovery methods. Pattern synthesis refers to the task of generat-
ing new instance of a visual pattern. This entails a process of modeling and characterizing
the underneath processes which govern (and hence can predict) the variations of the visual
pattern.

From the modeling and learning perspective, the minimal information needed to fulfill
the above three fundamental tasks are different. Specifically, for pattern recognition, we only
need to identify the most distinctive visual features2 of a pattern to differentiate it from other
visual patterns. In other words, successfully performing pattern recognition (e.g., classifica-
tion) tasks does not require the feature representations to be comprehensive in describing
every single detail of the pattern. This is one of the reasons that most state-of-the-art pat-
tern recognition methods, if not all of them, adopted a discriminative modeling approach. To
better illustrate this, we show several example images in Fig. 5.1. Obviously, even only by
looking at visual characteristics from some local regions in the image, we can already reliably
recognize the semantic category of these images, even for the image with artistic style.

Modeling patterns for the task of visual pattern discovery is a little more demanding, as
the task is designed to discover and localize repetitively occurred visual patterns from a col-
lection of images and videos, without a priori information about them (Yuan, 2011; Zhao et
al., 2013). The unsupervised nature of the pattern discovery tasks necessitates a modeling
approach that can establish relatively generic representations and a metric space, where per-
ceptual grouping could be conducted to identify meaningful semantic visual patterns.

2 Indeed, a visual feature can also be regarded as an atomic visual pattern.
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Some existing works have also attacked the problem of pattern discovery in a weakly su-
pervised problem (Liu et al., 2010). Often only a limited number of examples are provided,
sometimes even just at frame level indicating a frame contains a pattern or not without spec-
ifying where the pattern is located. Beyond modeling the visual characteristics of the visual
patterns, spatial, temporal and/or spatiotemporal contextual information were proven to
be effective in helping with the visual pattern discovery tasks. An effective model for vi-
sual pattern discovery necessitates a feature representation that seeks a trade-off between a
comprehensive description of a pattern and yet being sufficiently discriminative, such that
the patterns can be effectively grouped and differentiated from the background. Therefore,
existing approaches for pattern discovery could either be generative (Zhao et al., 2013) or
discriminative (Weng et al., 2018), or a combination of both.

Pattern synthesis requires a comprehensive modeling of the target visual patterns, as ulti-
mately the model needs to capture every single details along with the variations of the visual
patterns. A learning-based approach to the problem of pattern synthesis often takes a gen-
erative modeling approach. While there has been tremendous success made in generative
modeling, either using traditional statistical methods (Zhu et al., 1998; Van de Wouwer et
al., 1999; Zhu, 2003; Guo et al., 2003), or more recent deep learning approaches (Kingma and
Welling, 2014; Goodfellow et al., 2014), the generation processes (or sampling from the mod-
els) is often driven by a random process, where controlling how the generated visual samples
look like is difficult, if not impossible.

In this chapter, we focus our discussion on how we may achieve more controllable visual
pattern synthesis by using deep learning-based conditional image generation. Here control-
lable means that there is a way we may specifically set the value of a certain parameter or
subset of parameters to control the variation of the generated samples of the visual patterns
along certain semantic, physical and/or geometric dimensions (a.k.a., factors), such as facial
expression, color and poses. We achieve such controllability through deep conditional image
generation with an encoder-decoder structure, where a probabilistic space is defined over a
disentangled vector embedding to drive the generation of samples of target visual patterns.
Learning such a disentangled representation is challenging, which remains an active research.

While many previous works have claimed to learn disentangled representation in a un-
supervised way, Locatello et al. (2019) manifest that unsupervised learning of disentangled
representation is theoretically impossible without inductive biases on both the models and
the datasets. We will devote our discussions to how such inductive biases may be introduced
in a supervised, semisupervised and selfsupervised fashion in real computer vision appli-
cations to learn disentangled representation for controllable visual pattern synthesis. The
applications we explore include image/video style transfer, texts to image generation and
face synthesis. Nevertheless, we hope that the insights learnt from these explorations would
be transformative in solving other problems in different applications as well.

The remainder of the chapter will be organized as follows: in Section 5.2, we present a
brief review of the historical development of visual pattern learning. Then the fundamentals
of traditional statistical learning based generative models and deep generative models are
elaborated in Section 5.3 and Section 5.4 respectively. Next, in Section 5.5, we will introduce
how to leverage deep generative models for visual pattern learning and synthesis under the
conditional image generation framework. Accordingly, in Section 5.6, we will use three case
studies with different supervision levels to illustrate how inductive bias could be introduced
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to learn disentangled representations for controllable visual pattern synthesis, along with
analysis on results, putting them along their literature. Finally, we draw conclusions with
potential future explorations in Section 5.7.

5.2 Visual pattern learning: a brief review

The early research of visual pattern learning can trace back several decades. And the main
stream adopts the Bayesian framework and has developed many explicit models for visual
pattern modeling. Among them, the pioneering works (Grenander, 1976; Cooper, 1979; Fu,
1982) may be the earliest to use statistical models for visual pattern modeling. In the late 1980s
and early 1990s, image models grow popular and indispensable. Early models assume local
and piece-wise smoothness in natural images and many different works have been proposed.
For instance, physically-based models are proposed in the works (Blake and Zisserman, 1987;
Terzopoulos, 1983), and the regularization theory is used in Poggio et al. (1985). In the work
(Mumford and Shah, 1989), this problem is formulated as an energy function and solved by
energy minimization.

Then the above concepts soon start convergence to the statistical descriptive models be-
cause of two influential works. One is Markov random field (MRF) modeling (Besag, 1974;
Cross and Jain, 1983). It considers texture pattern to follow a stochastic, possibly periodic,
two-dimensional image field, and explores Markov random fields as texture models. A tex-
ture model is defined as a mathematical procedure capable of producing and describing a
texture image. Another one is the work (Geman and Geman, 1984), which makes an anal-
ogy between images and statistical mechanics systems and formulates pattern modeling as a
Gibbs distribution and sampling problem under the Bayesian framework. More specifically,
the pixel values and the presence and orientation of edges are regarded as states of atoms
or molecules in a lattice-like physical system. And the assignment of an energy function in
the physical system determines a Gibbs distribution. Because of the Gibbs distribution, MRF
equivalence, it can be also viewed as a MRF image model. However, these works have two
limitations: 1) Markov random field models are based on pair cliques, so it cannot charac-
terize natural images very well. 2) Gibbs sampling is very time-consuming, making it less
applicable in real systems. There are also some other probability models proposed for visual
pattern representation learning, such as deformable templates for face (Yuille, 1991), eyes
(Xie et al., 1994) and objects (Shackleton, 1994). Compared to homogeneous MRF models,
deformable templates are inhomogeneous.

To tackle the computational complexity of the above descriptive models, generative mod-
els emerge and postulate hidden variables as the causes for the complicated dependencies in
raw signals. A simple illustration figure is shown in Fig. 5.3. Take human as an example, it
often has of one head (denoted as “h”), one body (denoted as “b”), two arms and two legs
(denoted as “al , ar , ll , lr”). The descriptive model considers the joint distribution of five pieces
p(h,b, al, ar , ll, lr ) without understanding the hidden concept of “human”. In contrast, gener-
ative models regard the five pieces to be conditional dependent under a hidden variable h for
the human, then formulate them with a conditional probability model p(h,b, al, ar , ll, lr |d).
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FIGURE 5.3 A simple illustration of difference between descriptive models and generative models in terms of
the desk object. Compared to descriptive models, generative models introduce hidden variables to model the strong
dependency within the observed images.

Typical generative models include sparse coding (Roweis and Ghahramani, 1999; Hoyer
and Hyvärinen, 2002; Manat and Zhang, 1993), wavelet image representation (Do and Vet-
terli, 2003; Lu et al., 1992), principle component analysis (PCA) (Kambhatla and Leen, 1997;
Kong et al., 2005), independent component analysis (ICA) (Hyvärinen, 1999; Hyvärinen and
Oja, 2000) and the random college model (Lee et al., 2001). Such models assume an image can
be represented by a series of bases. In this way, the representation dimension can be greatly re-
duced by projecting the original image space to the hidden space. Therefore, the computation
cost becomes less intensive. In the literature, generative models are often inseparable from
descriptive models, as the hidden variables are often characterized by a descriptive model.
For instance, the sparse coding scheme is a two-layer generative model and assumes that the
image bases are independent and identically distributed hidden variables. And the hidden
layer in the hidden Markov models for speech and motion modeling is a Markov chain.

Recently, benefiting from large scale datasets and high-end computation devices, deep
learning has achieved great success in many artificial intelligence tasks, like visual recog-
nition (Szegedy et al., 2015; He et al., 2016) and object detection (Girshick, 2015; Ren et al.,
2015). Similarly, many deep neural networks based generative models have been proposed,
including pixel CNN (Van den Oord et al., 2016), variational auto-encoder (VAE) (Doersch,
2016), and generative adversarial networks (Goodfellow et al., 2014). Essentially, in order to
generate high-quality images, such deep models must learn to memorize the visual patterns
and underlying structures in their weight space. To some extent, better generation quality
is equivalent to better pattern learning. In the following parts, we will briefly introduce the
fundamentals of classical generative models and deep generative models.

5.3 Classical generative models

From the mathematical perspective (Hua, 2020), classic generative models are statistical
models which target modeling the joint probability distribution p(X,z|Θ), where X is an ob-
served multivariate variable, z is the aforementioned hidden variable, and Θ are the param-
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eters of the model to optimize. The hidden variable Z could represent different confounders.
For example, if Z are the class labels, generative models can also be used for classification
tasks. But the modeling objectives of generative models are different from discriminative mod-
els, which directly model the conditional distribution p(Z|X,Θ).

As it is the case for any statistical models, learning and inference are two fundamental prob-
lems to be addressed in generative models. Learning refers to the process of estimating the
parameters of these generative models from the data. When the data is complete where X

and Z are both observed as a sample pair, parameter estimation is often formalized as a
standard Maximum Likelihood estimation problem. A more common setting in real world
applications is to estimate the parameters from incomplete data, where only X is observed
and the target variable Z is not observed in the data sample. This is a problem of maxi-
mum likelihood with incomplete data. Such a problem is often approached by the seminal
Expectation-Maximization (EM) algorithm (Dempster et al., 1977), where an E-step and a M-
step are iteratively conducted to maximize the looklihood of the incomplete data. From the
perspective of optimization, such an iterative process can be regarded as a surrogate opti-
mization process.

The E-Step, by definition, computes the expectation of the data likelihood over the distri-
bution of the hidden or target variables. This is done by first conducting an inference step, i.e.,
calculating the posterior probability p(Z|X,Θc) given the current parameter setting Θc. Then
we have

E(Θ|Θc) =
∫

Z

p(X,Z|Θ)p(Z|X,Θc)dZ. (5.1)

Then the M-Step maximizes E(Θ|Θc) to obtain updated parameters

Θnew
c = arg max

Θ
E(Θ|Θc). (5.2)

These two steps iterate until convergence. This iteration represents a surrogate maximiza-
tion process of L(X|Θ), which is monotonically nondecreasing. Since it is obviously upper
bounded, the process is guaranteed to converge. Ghahramani (Ghahramani and Beal, 2001)
derived a Bayesian EM algorithm by leveraging probabilistic variational analysis. Indeed, the
M-Step does not need to fully solve the maximization problem. Instead it only needs to find
a new parameter Θnew

c , which has higher E(Θnew
c |Θc) than E(Θc|Θc). This is also referred to

the generalized EM algorithm.
The inference of the posterior probability p(Z|X,Θc) would have a closed-form solution

under limited cases. For example, when the prior distribution p(Z) and likelihood distri-
bution p(X|Z) are conjugated, then the posterior would take the same form as the prior.
Such conjugate priors are common when the distributions are confined to the conjugate-
exponential family (Ghahramani and Beal, 2001). However, for more general distributions,
it is often intractable to calculate the posterior in closed-form.

When closed-form inference is intractable, one can often resort to numerical solution, such
as using Markov chain Monte Carlo (MCMC) methods, e.g., the Gibbs sampling, to produce
samples from this distribution and then compute the integral in Eq. (5.1) numerically. Hinton
et al. (Hinton, 2002) presented a method, namely contrastive divergence to use one step sam-
pling to replace the full MCMC sampling. It could significantly speed up the learning process
with a certain guarantee of convergence.
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FIGURE 5.4 The simple illustration of the typical deep generative model “auto-encoder”, which first encodes the
input image into a hidden latent code, then reconstruct the original image from the latent code with the decoder.

5.4 Deep generative models

Following a similar methodology, deep generative models also aim to model the distri-
bution of X with the hidden variables Z. But different from the above traditional generative
methods which often use a handcrafted model like wavelet and sparse coding, deep neu-
ral networks are utilized instead, whose learning capacity is demonstrated to be much more
powerful.

Auto-encoder

We start our discussion with the vanilla auto-encoders (Wang et al., 2016), though strictly
speaking, they are not typical generative models, because it facilitates the understanding
of other deep generative models. As shown in Fig. 5.4, it usually consists of two parts: an
encoder and a decoder part. Both of them are stacked by a series of fully connected or con-
volutional layers. The encoder continually reduces the dimensionality to a smaller latent
representation z (code), and the decoder then reconstructs the input image from the latent
representation to the original resolution symmetrically. Need to note that the goal of auto-
encoder is not simply to reconstruct the original images with a trivial identity function, but to
learn the underlying visual patterns so that we can even generate some new unseen images
from the learned latent space. To achieve this goal, a lot of auto-encoder variants have been
proposed. The first typical one is the undercomplete auto-encoder (Zhai et al., 2018), which
requires the dimension of latent code to be significantly smaller than that of the input. In this
way, the latent code should be informative enough to represent the input image, otherwise the
reconstruction loss will be very large. The second popular variant is denoising auto-encoder
(Vincent et al., 2008), which delibrately adds some noises into the training dataset so that
the auto-encoder needs to learn how to denoise. Instead of changing the training dataset, the
third variant sparse auto-encoder (Ng et al., 2011) imposes a sparsity constraint on its loss
and encourages the number of active units in the code layer to be minimal and learn a sparse
representation of the dataset.

Variational auto-encoder

Though the above auto-encoders can successfully map the training image to an embed-
ding space, there is no explicit probabilistic model associated with the embedding space.
Therefore, randomly sampling from this embedding space can not guarantee that we mean-
ingfully sample from the image space when feeding the sampled code to the decoder. To
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address this problem, variational auto-encoder (VAE) (Doersch, 2016) forces the learned la-
tent distribution to follow a Gaussian distribution P(z). Then the goal of VAE is to maximize
the probability (maximum likelihood) of each X in the training set under the entire generative
process:

P(X) =
∫

P(X|z; θ)P (z)dz (5.3)

Solving the above integral over z is a nontrivial problem. In practice, for most z, P(X|z) will
be nearly zero and hence contribute almost nothing to the estimation P(x). Therefore, the
key idea behind the VAE is to attempt to sample values of z that are likely to have produced
X and compute P(x) just from those. To this end, it introduces a new function Q(z|X) that
takes a value of X and produces a distribution over z values that are likely to generate X.
Considering the space of z values under Q may be much smaller than that under the prior
P(z), computing Ez∼QP(X|z) is relatively easier.

As one of the corner-stone of variational Bayesian methods, the KL divergence between
P(z|X) and Q(z) is first studied to derive the final optimization objective.

D
[
Q(z)‖P(z|X)

] = Ez∼Q

[
logQ(z) − logP(z|X)

]
. (5.4)

By applying Bayes rule to P(z|X), both P(X) and P(X|z) can be taken into this equation:

D
[
Q(z)‖P(z|X)

] = Ez∼Q

[
logQ(z) − logP(X|z) − logP(z)

] + logP(X). (5.5)

Since logP(X) does not depend on z, it can be taken out of the expectation. By reorganizing
the terms on both sides, we can get:

logP(X) −D
[
Q(z)‖P(z|X)

] = Ez∼Q

[
logP(X|z)] −D

[
Q(z)‖P(z)

]
. (5.6)

In fact, Q can be any distribution, not just a distribution which does a good job mapping X to
the z’s that can produce X. As P(X) is the final inferring goal, it makes sense to construct a Q

which depends on X and makes D[Q(z)‖|P(z|X)] small:

logP(X) −D
[
Q(z|X)‖P(z|X)

] = Ez∼Q

[
logP(X|z)] −D

[
Q(z|X)‖P(z)

]
. (5.7)

This equation is the core of VAE. Specifically, the left side consists of the objective logP(X)

we want to optimize plus an error term, which makes Q produce z’s that can reproduce
a given X. This error term will become small if Q is modeled with a high-capacity deep
network. And the right hand side is something that can be optimized via stochastic gradient
descent given the right choice of Q. In fact, the right hand side of Eq. (5.7) takes a form which
looks like an autoencoder, i.e., Q is “encoding” X into z, and P reconstructs X from z.

To optimize the right side with stochastic gradient descent, the usual form of Q(z|X) is set
to Q(z|X) = N (z|μ(X;ϑ),Σ(X;ϑ)), where μ and Σ are arbitrary deterministic functions with
parameters ϑ that can be learned from data. In practice, μ and Σ are again implemented via
neural networks, and Σ is constrained to be a diagonal matrix. And the gradient of the first
term on the right side is estimated by sampling different values of X from the dataset D and
one important “reparameterization trick” as shown in Fig. 5.5.
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FIGURE 5.5 The reparameterization trick used in variational auto-encoder to approximate the stochastic gradient
during training.

FIGURE 5.6 The adversarial training of generative adversarial networks: the discriminator network tries to clas-
sify the input image to be real or generated by the generator network, while the generator network tries to generate
more realistic images to fool the discriminator network.

At the test time, if we want to generate new samples, VAE randomly samples z ∼ N (0, I )

and input it into the decoder. That is, the encoder including the multiplication and addition
operations are all removed. For more theoretical and derivation details, we encourage the
readers to read the tutorial (Doersch, 2016).

Generative adversarial network

In recent years, another influential work is the generative adversarial networks (GAN)
proposed in the pioneering work (Goodfellow et al., 2014). Compared to previous generative
models, its key idea is introducing an auxiliary discriminator network to help the learning of
the target generative network. Another key idea is the adversary training strategy as shown
in Fig. 5.6, i.e., the discriminator network learns to discriminate whether a sample is from the
real data distribution or generated by the generative network, while the generative network
tries to generate more realistic images to fool the discriminator network. Therefore, these two
networks compete with each other in a zero-sum game.

Mathematically, this can be viewed as a min-max optimization problem with the value
function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata(x)

[
logD(x)

] + Ez∼pz(z)

[
log

(
1 − D

(
G(z)

))]
(5.8)

where D(x) represents the probability that x comes from the real data distribution rather
than the generated data distribution G(z). Similar to VAE, pz(z) is a prior distribution to be
sampled from, which can be specified as a normal distribution. During training and inference,
a random z will be sampled and fed into G to generate an image. In practice, G and D are
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FIGURE 5.7 The ideal training evolution of generative adversarial networks. The green line is the real data distri-
bution, the blue line is the data distribution of the generative network, and the red dashed line is the discrimination
boundary of the discriminator network. In the ideal case (last column) where the generative network can perfectly
match the real distribution, the discriminator network cannot distinguish the real and generated data distribution.

trained in an alternative way, i.e., training G while fixing D, then training D while fixing
G. After training, the discriminator network will be discarded and only G will be used for
generating new images.

Essentially, G is trying to match the real data distribution during the learning process as
shown in Fig. 5.7. In the ideal case where G can exactly simulate the real data distribution, D

will be unable to discriminate a generated image to be real/fake, i.e., it will predict an image
to be real/fake with a random guessing probability 0.5.

Despite the great success of GANs, training a good GAN model is shown to be not that
easy. To improve the quality and stability, plenty of variants (Mirza and Osindero, 2014; Chen
et al., 2016; Metz et al., 2016; Arjovsky et al., 2017; Bao et al., 2017) have also been proposed.
A more comprehensive summarization can be found in Wang et al. (2019).

5.5 Deep conditional image generation

The above generative models are for unconditional image generation, i.e., the new images
are generated by random codes sampled from the prior distribution without other condi-
tional requirements. In other words, visual pattern synthesis is conducted in an uncontrolled
way. In contrast, we focus on how to achieve more controllable visual pattern synthesis in
this chapter under the conditional image generation framework.

Different from unconditional image generation, conditional image generation (Isola et al.,
2017; Zhu et al., 2017; Chen et al., 2017a, 2020a) imposes extra input conditions into the gen-
eration process. It has a broad scope and covers a large variety of computer vision problems,
such as edge-to-image translation (Isola et al., 2017), style transfer (Gatys et al., 2015; Chen et
al., 2018), image colorization (He et al., 2018), controllable image processing (Fan et al., 2018,
2019; Chen et al., 2020a), image restoration (Wan et al., 2020a,b), semantic synthesis (Tan et
al., 2020b) and face synthesis and editing (Tan et al., 2020a).

As shown in Fig. 5.8, given the input condition like text description, attribute vectors
and images, the conditional generative models aim to generate an output image that satis-
fies the conditional requirements in a controllable way. But similar to unconditional image
generation, learning and modeling the intrinsic visual patterns is still the essential factor
that determines the generation quality. By more efficient modeling of the visual patterns,
conditional image generation is essentially a process of constrained pattern sampling and
recompositing.
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FIGURE 5.8 Illustration of typical conditional image generation framework. Given input conditions like text de-
scription, attributes or images, the conditional generative model needs to generate an output image that satisfies the
conditional requirement.

However, compositing natural images involves a lot of visual confounders, such as pose,
lighting and shape. In order to encourage the generative model to learn the underlying pat-
tern better, “disentangling” in a hidden embedding space is a key design principle and widely
used in many existing conditional image generation methods (Yan et al., 2016; Chen et al.,
2017b; Bao et al., 2018; Ma et al., 2018). But achieving disentanglement is a nontrivial problem.
In fact, Locatello et al. (2019) show that it is theoretically impossible to achieve unsupervised
disentanglement without inductive biases on both the models and the datasets. Therefore, it
often requires some dedicated network design and training recipe in a supervised, semisu-
pervised or selfsupervised way.

5.6 Disentanglement for controllable synthesis

We present three cases studies on how we may introduce inductive bias in learning disen-
tangled representations in deep conditional image generation for controllable visual pattern
synthesis. The applications we explore include style transfer (Section 5.6.1), vision-language
image generation (Section 5.6.2) and identity preserving face synthesis (Section 5.6.3).

5.6.1 Disentangle visual content and style

Style transfer (Gatys et al., 2015; Johnson et al., 2016; Chen et al., 2020c) is a typical con-
ditional image generation task. As shown in Fig. 5.9, it aims to migrate the style from one
style image to another content image while keeping the original semantic structure of the
content image. The core problem behind this task is modeling the visual patterns of the style
image and separating the content and style of the content image. And then style transfer is to
resample the learned style pattern under the content structure constraint.

Since the pioneering work of Gatys et al. (2015), style transfer adopting convolutional neu-
ral networks (CNN) has ignited a renewed interest in both academia and industry. In the
work (Gatys et al., 2015), Gatys et al. innovatively apply a pretrained CNN network to de-
compose an image into content components and style components. Specifically, they regard
the correlation matrices (Gram-matrices) of feature responses in different layers as the hier-
archical style representation. By further representing the content structure of one image with
its high-level feature response, they model style transfer as an optimization problem, i.e.,
search for an image that has similar feature Gram-matrices as the style image and similar
high-level content feature as the content image. This optimization based method can produce
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FIGURE 5.9 Illustration of style transfer. It aims to render one content image with the visual style from another
style image while keeping the original content structure. The figures are by courtesy of Chen et al. (2020b).

very impressive stylization results and is much better than traditional methods. However, it
is very time-consuming due to the optimization process, thus imposing a big limitation on
real applications.

To speedup, many feed-forward based methods (Johnson et al., 2016; Ulyanov et al., 2016)
have been proposed to use a feed-forward network to approximate the above optimization
procedure. And the stylization results can be obtained by directly feeding the content image
into the feed-forward network, hence it is faster than the optimization based methods by
several magnitudes. However, such feed-forward networks are trained in a black-box way,
and the content and style (visual patterns) components are highly coupled in the learned
networks. This not only prevents us from learning an explicit representation for either style
or content, but also makes such networks only able to capture a specific style at a time.

Therefore, Chen et al. (2017b) designed a new disentangled network structure to learn an
explicit representation for each style in a supervised way, which naturally supports multiple-
style transfer. It is motivated by the “texton” concept in classical texture synthesis and we
propose to use a series of filter banks to represent different style images. All the channels in
one filter bank can be regarded as the bases of style elements within one style image, such as
texture pattern and strokes. And the stylization process is then conducted by convolving the
corresponding filter banks with the content feature maps, which is analogous to the convolu-
tion operation between the texton and Delta function in the image space for texture synthesis
(as shown in Fig. 5.11).

Two-branch design

The detailed disentanglement framework is illustrated in Fig. 5.10. Basically, it consists
of three parts: one shared encoder E , the stylebank layer K and one shared decoder D. To
force the network to decouple the content and style in an explicit way, we build two learning
branches: the reconstruction branch E → D and the stylizing branch E → K → D. Given an
input content image I , it is first transformed into the feature space (F ) by using the encoder
subnetwork. Then for the reconstruction branch, F is directly passed to D to produce an im-
age (O = D(F )) that should be as close as the input I . In parallel, when transferring the style
i to I , we convolve the corresponding filter bank Ki with F and then feed the transformed
feature F̃i (F̃i = F ⊗ Ki) into D to produce the stylization result Oi = D(F̃i). The above two
branches are trained in an alternative way, and different loss functions are designed accord-
ingly. In details, the simple MSE (Mean Square Error) loss between the input image I and O
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FIGURE 5.10 The disentangled style transfer framework proposed in Chen et al. (2017b), which consists of one
reconstruction branch (below) and one stylizing branch (top). The content is designed to be encoded in the encoder
and decoder part, and the style is represented by a set of filterbanks in the Stylebank layer. The figures are by courtesy
of Chen et al. (2017b).

FIGURE 5.11 The process of texture synthesis can be viewed as the convolution operation between the texton
image and a delta function in the image space, which motivates us to perform style transfer in the feature space by
convolving the content feature with the corresponding style filterbank.

is adopted as the identity mapping loss LI for the reconstruction branch:

LI(I,O) = ‖O − I‖2. (5.9)

For the stylizing branch, following the objective function in Johnson et al. (2016), a content
loss Lc, a style loss Ls and a variation regularization loss Ltv(Oi) are used as the stylization
loss LK:

LK(I,Si,Oi) = αLc(Oi, I) + βLs(Oi,Si) + γLtv(Oi) (5.10)

where I, Si, Oi are the input content image, style image and stylization result (for the i-th style)
respectively. Ltv(Oi) is a total variation regularizer used in Johnson et al. (2016) to encourage
smoothness. And Lc and Ls use the same definition as in Gatys et al. (2015):

Lc(O, I) =
∑
l∈{lc}

∥∥F l(O) − F l(I )
∥∥2

Ls(O,S) =
∑
l∈{ls }

∥∥G
(
F l(O)

) − G
(
F l(S)

)∥∥2

where G(X) = XXT

(5.11)

Here Fl and G are the l-th layer feature map of a pretrained VGG-16 network and the corre-
sponding Gram matrix computed from F . {lc}, {ls} are VGG-16 layers used to compute the
content loss and the style loss. Since the reconstruction branch is designed to recover the
original content image, it guarantees no style information is absorbed into the encoder E and



204 5. Deep conditional image generation

FIGURE 5.12 The stylization results of multiple different styles, which are trained in one single network simulta-
neously. It shows that different styles are well decoupled (one stylization result only consists of its own style patterns)
and learned into their corresponding filterbanks. The figures are by courtesy of Chen et al. (2017b).

FIGURE 5.13 Style elements reconstruction for two representative patches in an examplar stylization image. The
figures are by courtesy of Chen et al. (2017b).

decoder D. Simultaneously, to achieve the stylization goal in the stylizing branch, all the style
information is forced to be learned into the intermediate stylebank layer. In this way, the
content and style are explicitly decoupled.

Multistyle transfer results

Thanks to the above decoupled two-branch design, one style is encoded in one specific
set of convolutional filters and multiple styles can be learned in one network simultaneously.
This is more friendly to real applications than previous single-style methods that usually
train one independent network for each style. During inference, to apply one specific style,
the corresponding filterbank is chosen and applied. As shown in Fig. 5.12, different styles are
decoupled very well and the corresponding stylization results only consist of their own style
patterns.

Style elements reconstruction

To better understand how the stylebank layer represents the visual pattern of each style
image, the style elements from a learned filter bank are reconstructed in an examplar styliza-
tion image shown in Fig. 5.13. Specifically, two kinds of patches in the stylization result are
selected: stroke patch (red box) and texture patch (green box).



5.6. Disentanglement for controllable synthesis 205

FIGURE 5.14 Visualizing the learned style elements: for each case, the left one is the style image, and the right two
are the stylization results by feeding two different noise images. The figures are by courtesy of Chen et al. (2020c).

First, all other regions except the corresponding positions of the selected patches are
masked out as shown in (c, d), and the feature distribution of these patches are visualized
in (e). It can be observed that such feature responses are sparsely distributed and some peak
responses occur in individual channels.

Then, only nonzero feature channels and the corresponding filter bank channels are con-
sidered in the feature transformation operation. The transformed features are finally passed
to the decoder to obtain the reconstructed style elements (g), which are visually similar to the
original style patches in (i) and the stylization patch in (j). By such analysis, we can hypoth-
esize that the different weighted combinations of the filter bank channels can constitute the
diverse style elements in one style image, which are similar to the dictionaries/bases in the
representation learning literature.

To further study how many different style elements are learned for each style image, a large
noise image is used to approximate the content patch distribution and let the network render
different content patches with different style elements. It can be seen from Fig. 5.14 that the
stylization network has learned a set of representative style elements for each style image.

Importance of the two-branch design

To demonstrate no style information absorbed in the auto-encoder and the importance of
the two-branch design, another ablation experiment is conducted by removing the recon-
struction branch during the training stage. And given one input image, only the encoder and
decoder are used to output the reconstruction result. As shown in Fig. 5.15, without the recon-
struction branch during the training stage, the decoded image (middle) fails to reconstruct the
original input image (left) and seems to carry some style information. By comparison, when
the reconstruction branch is used, the decoded image reconstructs the input image perfectly
and has very close appearance to the input image. That is to say, the proposed two-branch
design forces all the content information to be only covered in the encoder and decoder part,
and the style information to be learned in the intermediate stylebank layer.

Benefits of disentanglement

The disentanglement of content and style can bring many additional advantages. The first
is fast incremental learning. Specifically, to enable a new style, we do not need to retrain the
whole network, which is often time-consuming. Instead, given a learned multistyle network,
we only need to retrain a new filter bank for the newly added style while keeping the encoder
and decoder part fixed. This process converges very fast since only the new style bank part
needs to be trained. Empirically, it often only takes several minutes, which is tens of times
faster than retraining the whole network. As shown in Fig. 5.16, incremental learning can
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FIGURE 5.15 The reconstruction result of the encoder and decoder with (right) and without (middle) the recon-
struction branch during the training stage. Obviously, involving the reconstruction branch helps guarantee no style
information to be absorbed in the encoder and decoder part and almost perfect reconstruction. The figures are by
courtesy of Chen et al. (2017b).

FIGURE 5.16 The disentanglement enables fast incremental learning for new styles. For each case, the left and
right are the stylization results of incremental training and fresh training respectively. The figures are by courtesy of
Chen et al. (2017b).

FIGURE 5.17 Stylization results by linear combination of two style filter banks. By adopting different fusing
weights, we change the proportion of each style accordingly. The figures are by courtesy of Chen et al. (2017b).

obtain comparable stylization results to those from fresh training, which retrains the whole
network with the new styles.

The second advantage is enabling style fusion in two different ways: linear fusion and
region-specific fusion. For linear fusion, since different styles are encoded into different filter
banks {K1

i , ...,Km
i }, we can linearly fuse multiple styles by linearly fusing filter banks in the

StyleBank layer. Then the fused filter bank is used to convolve with the content feature F:

F̃ =
(∑m

i=1
wi ∗ Ki

)
⊗ F

∑m

i=1
wi = 1, (5.12)

where m is the number of styles, Ki is the filter bank of style i. F̃ is then fed to the decoder to
get the final stylization result. Fig. 5.17 shows such linear fusion results of two different styles
with variant fusion weight wi .

For region-specific style fusion, suppose that the image is decomposed into n disjoint re-
gions in the feature space, and Mi denotes every region mask, then the feature maps can be
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FIGURE 5.18 Region-specific style fusion results with two paintings by applying different filterbanks onto differ-
ent image regions. The left two paintings are from Picasso and Van Goph respectively, while the right two are both
from Van Goph. The figures are by courtesy of Chen et al. (2020c).

FIGURE 5.19 The simple illustration figure to show the general idea of FusedGAN, which fuses an unconditional
GAN and a conditional GAN and trains them in a semisupervised way. The figures are by courtesy of Bodla et al.
(2018).

described as F = ∑m
i=1(Mi × F) and region-specific style fusion can be formulated as:

F̃ =
∑m

i=1
Ki ⊗ (Mi × F), (5.13)

Fig. 5.18 shows such two region-specific style fusion results. The left case borrows styles from
two famous paintings of Picasso and Van Goph, while the right two styles are both from Van
Goph.

5.6.2 Disentangle structure and style

Different from the above style transfer task, where the semantic content structure and style
elements are directly specified by the input content and style image, it is more difficult to
achieve fine-grained disentanglement in general image synthesis. For example, in the classi-
cal text-to-image method StackGAN (Zhang et al., 2017), we can control only over the styles
by feeding the text descriptions but cannot achieve the fine-grained controllability upon both
structure and styles. Here, the structures mainly denote the semantic shape and posture, and
the styles denote the fine-grained visual patterns/textures.

To address the above limitation, Bodla et al. (2018) design a new cascaded generative
model FusedGAN to achieve the disentanglement of structure and style in a semisupervised
way. The general idea of FusedGAN is shown in Fig. 5.19, which basically combines an un-
conditional GAN to produce the structure prior and another conditional GAN to match the
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FIGURE 5.20 The disentangled learning framework for FusedGAN, where blue and orange blocks are the uncon-
ditional and conditional image generation pipelines respectively. The figures are by courtesy of Bodla et al. (2018).

style condition from the text description. The underlying motivation is that, when human
beings want to paint a picture about one object like a bird, the most intuitive way is to first
sketch the outline of the bird with a specific posture and shape (structure), then add the fine-
grained texture details (style).

Disentanglement by sharing the structure prior

Based on the above motivation, an end-to-end disentangled learning framework is de-
signed in Fig. 5.20, where the blue and orange blocks correspond to the unconditional and
conditional image generation branches respectively. In details, the unconditional branch con-
sists of a generator network G1 and a discriminator network Du, which are trained in a similar
adversarial way as other GAN models. In order to provide the structure prior for the condi-
tional generation branch, G1 is split into two modules: Gs and Gu. Gs takes a random noise
vector z as the input, and generates a structure prior Ms after a series of convolution and
unsampling operations. Then the structure prior Ms is fed into Gu to generate the final image
after another series of convolution and upsampling operations.

Different from the traditional conditional generation framework, which often takes one
condition and one random noise vector as inputs, the conditional generator network Gc in
FusedGAN instead takes the structure prior Ms and the condition vector My as inputs. That
is to say, the unconditional generation branch and the conditional generation branch share
the same structure prior Ms . To encourage the disentanglement of the structure and style, the
unconditional and the conditional generation branch adopt different training datasets, i.e., an
unlabeled dataset for G1 and a dataset labeled with conditional descriptions for Gc. Accord-
ing to different tasks, the condition vector My may have different formats. For example, in
the text-to-image task, the original text description is first encoded into an embedding repre-
sentation y and then fed into an encoder E to generate a new condition tensor My as shown
in Fig. 5.20. Note that, in order to generate diverse results, conditional augmentation is per-
formed to sample latent vector ĉ from an independent Gaussian distribution N(μ(y),Σ(y))

around the text embedding, and ĉ is then spatially repeated to match the spatial dimension
of Ms to produce My .
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FIGURE 5.21 Synthesized results of FusedGAN. The left part are the synthesis results of different styles (rows)
and structures (column), and the right part are the style interpolation results of different styles under a fixed struc-
ture. The figures are by courtesy of Bodla et al. (2018).

To guide the learning of the unconditional and conditional generation branch, the discrim-
inator Du takes the generated image xuf of Gu or the real image xr as input and discriminate
whether it is real or fake, while the discriminator Dc takes the generated image xcf of Gc or the
real image xr and the corresponding condition as inputs to ensure that Gc generates images
that match the condition. In the training stage, these two pipelines are trained end-to-end
in an alternative way. And the model parameters are updated by optimizing the combined
GAN and CGAN objectives, i.e.,

LGu = logDu

(
Gu(z)

)
, LDu = logDu(x), LDc = logDc(x, y),

LGc = logDc

(
Gc(My,Ms), y

) + λDKL

(
N

(
μ(y),Σ(y)

)‖N(0, I )
) (5.14)

where z is the sampled noise vector from a normal distribution N(0, I ). To summarize, the
key disentanglement design in this work is sharing the structure prior but training the two
branches with different objectives.

During inference, to generate a conditional image, a random sample z is first drawn and
passed through Gs to generate the structure prior Ms . Ms then takes two paths, one through
the generator Gu to produce an unconditional image xuf . In the second path, the input text
description is fed into the encoder E and draws a sample from the Gaussian around the
text embedding. The output of E and Ms are concatenated together and passed through Gc

to generate the conditional image xcf . That is to say, in one inference step, two images are
synthesized: xcf the conditional image and xuf the unconditional image, a byproduct of the
model which helps to analyze and better understand the proposed model and the results.

Synthesis results

To verify whether the structure and style are well decoupled, some synthesis results are
presented in Fig. 5.21. In the left part, the last row displays the unconditional generation
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FIGURE 5.22 Synthesized results of various styles by FusedGAN via varying different amount of fine-grained
details. The figures are by courtesy of Bodla et al. (2018).

results, and other rows show the conditional generation results by using the same structure
prior. It can be seen that Ms is able to successfully capture and transfer significant amount
of information about the bird structure into the conditional synthesis results of various text
descriptions. By using a constant structure prior, it is also easy to conduct style interpolation
between various styles. To achieve this, two text-samples t1 and t2 are taken into E to draw
two samples from their respective Gaussian distributions. Then eight uniform samples are
picked by linear interpolation between them, such that the first sample corresponds to t1
and last one corresponds to t2. As shown in the right part of Fig. 5.21, very smooth style
interpolation effects can be achieved in a controllable way.

Fig. 5.22 further shows the synthesized results of different styles by varying different
amount of fine-grained details. In details, a particular texture description is first fed into E

and five samples are then drawn from the Gaussian distribution around the text embedding.
By using the same structure prior, each text description can drive synthesis results of different
fine-grained details. For example, for the second row in the left part, though all the birds are
red with black wing, they have varying amount of black on their wings and the length of the
tail.

5.6.3 Disentangle identity and attributes

The third representative work (Bao et al., 2018) is about the typical conditional image
generation task “identity-preserving face synthesis”. Given one input image Iid of a certain
subject identity and one input image Ia to extract the attributes, this task aims to generate a
new high-quality face image I ′ that has the same identity as Iid and the same attributes as Ia .
Here, the attributes include but are not limited to pose, emotion, skin color, illustration and
background. This is a very challenging task, especially when the face identity is not presented
in the training set, and the underlying challenge is how to disentangle the identity-related vi-
sual patterns (e.g., nose and eye shape) and attribute-related visual patterns (e.g., skin color,
mouth shape under different emotions).

To solve this problem, many related methods have been proposed, such as TP-GAN
(Huang et al., 2017) and FF-GAN (Yin et al., 2017) that can synthesize the frontal view of
a given face image, and DR-GAN (Tran et al., 2017) that can synthesize different face poses.
However, they often rely on full annotation of attributes and the supported attribute types
are also limited. By comparison, another work CVAEGAN (Bao et al., 2017) can support a
variety of attribute changes, but it is not able to synthesize a face with an identity outside the
training dataset.
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FIGURE 5.23 The overall framework for identity-preserving face synthesis, which disentangles identity and at-
tributes from the input face images. The new face I ′ is generated by recombining the identity information of Iid and
the attribute information of Ia . The figures are by courtesy of Bao et al. (2018).

To enable a large variety of attribute changes and open-set identities, Bao et al. (2018)
design a new disentangled face synthesis framework as shown in Fig. 5.23. It contains five
subnetworks: the identity encoder network E, the attributes encoder network A, the gener-
ative synthesis network G, the auxiliary classification network C and discriminator network
D. The function of the identity encoder network E and the attribute network A is to extract
the identity vector f E(Iid) from Iid and the attribute vector f A(Ia) from Ia respectively. By
recombining f E(Iid) and f A(Ia), the network G then generates a new image I ′ that follows
the identity of Iid and attributes of Ia . The auxiliary network C and D are only used during
training. Specifically, C is used to ensure that I ′ have the same identity as Iid and D encour-
ages G to generate higher quality images by distinguishing the generated image and real
images in an adversarial training manner.

Disentanglement

Though the above framework is designed in a disentangled way, training it is not a triv-
ial problem. Because most existing face datasets only have the identity annotation but no
attribute annotation. In fact, annotating some attributes precisely is sometimes even impossi-
ble, such as the illustration and the background. This work enforces the disentanglement by
extracting the identity representation in a supervised way and attribute representation in an
unsupervised way.

In details, to extract the identity representation, E is formulated as a face recognition net-
work and trained via softmax loss on a labeled face dataset {Ii, yi}, where yi is the identity
label of image Ii . During training, to discriminate different individuals, E is encouraged to
learn similar feature representation for images with the same identity and dissimilar feature
representation for images with different identities. Therefore, the feature response of the last
pooling layer of E is adopted as the identity vector of Iid .

To obtain the attribute representation, a simple and effective training strategy is designed
by leveraging a reconstruction loss and a KL divergence loss. Specifically, during training,
Iid and Ia are randomly selected to be the same image or different images. In both cases, the
result image I ′ is required to reconstruct the attribute image Ia , but with different loss weight.
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Formally, the reconstruction loss is

LGR =

⎧⎪⎨
⎪⎩

1

2
||Ia − I ′||2 if Is = Ia,

λ

2
||Ia − I ′||2 otherwise,

(5.15)

where λ is the reconstruction loss weight for the case Is 	= Ia . Specifically, when the identity
image Iid is the same as the attribute image Ia , the synthesized image I ′ must be the same
as Iid or Ia . Since there are many face images Ia for each identity in the training set, their
identity vector is almost the same for these images and the only possible difference would
be the attribute vector. Therefore, by requiring the reconstructed images to be same as these
different face images, it forces the attribute encoder network A to learn different attribute
representations accordingly. When the identity image Iid and the attribute image Ia are dif-
ferent, though it is difficult to accurately predict what the reconstructed result should look
like, we can expect the reconstruction to be approximately similar to the attribute image I a ,
such as the background, overall illumination, and pose. Therefore, a raw pixel reconstruction
loss with a relatively small weight (λ = 0.1) is adopted to maintain the attributes.

Besides the above reconstruction loss, a KL divergence loss is further used to regularize
the attribute vector with an appropriate prior P(z) ∼ N(0,1). It constrains the attribute vector
not to contain much identity information and helps the attribute encoder network learn better
representation. Given the input attribute face image, the network A will output the mean μ

and covariance of the latent vector. Then the KL divergence loss is defined as:

LKL = 1

2

(
μT μ + sum

(
exp(ε) − ε − 1

))
. (5.16)

During training, the reparameterization trick is used to sample the attribute vector by using
z = μ + r 
 exp(ε), where r ∼ N(0, I ) is a random vector and 
 represents the element-wise
multiplication.

Asymmetric training

After extracting the identity vector f I (Iid) and attribute vector f A(Ia), they are concate-
nated in the latent space (z′ = [f I (Iid),f A(Ia)]) and then fed into the network G to synthesize
a new face image. Similar to general GANs, the generative network G plays a two-player
minmax game with the discriminator network D, i.e., D tries to distinguish real training data
from synthesized data while G tries to fool the network D. Concretely, network D tries to
minimize the loss function

LD = −EIa∼Pr

[
logD(Ia)

] −Ez∼Pz

[
log(1 − D

(
G(z)

)]
. (5.17)

However, if the network G directly attempts to maximize LD as the traditional GAN, the
training process will be unstable. This is because the distributions of “real” and “fake” images
may not overlap with each other in practice, especially at the early training stage. There-
fore, the discriminator network D can separate them perfectly and cause gradient vanishing.
To address this problem, the pairwise feature matching loss is used for the generator as in
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CVAE-GAN. In details, assuming f D(·) to be the features of the intermediate layers of D, the
pairwise feature matching loss is defined as:

LGD = 1

2
||f D

(
I ′) − f D(Ia)||22. (5.18)

That is to say, it encourages the features of the real and fake images as close as possible. By
default, the output feature of the last fully connected layer of D is utilized as f D .

Similarly, in order to achieve the identity-preserving goal (I ′ has the same identity as Iid ), a
similar pairwise feature matching loss is used to encourage I ′ and Iid to have similar feature
representations in the face classification network C:

LGC = 1

2
||f C

(
I ′) − f C(Iid)||22. (5.19)

Here the input of the last FC layer of network C is used as the feature f C . In practice, network
C and network E share the parameters and are initialized by a pretrained face classification
network to speedup the convergence.

Unsupervised learning strategy

Synthesizing face images of identities that do not appear in the training set is challenging,
which requires the generative network to cover both intraperson and interperson variations.
Considering existing public datasets with labeled identities often has a limited size and does
not contain extreme poses or illuminations, one million face images with large variation and
diversity are collected from flicker and Google. Then an unsupervised training process is
conducted to help the learnt generator generalize to unseen identities. In details, the collected
unlabeled images can be used either as the identity image Iid or the attribute image Ia . When
used as the attribute image Ia , the whole training process remains unchanged. When used as
the identity image Iid , since it does not have a class label, they are not involved in the learning
of E and C (fixed). Empirically, we find these unlabeled data can increase intraclass and
interclass variation of the face distributions, hence improving the diversity of the synthesized
faces, such as larger changes in poses and expressions.

Synthesis results

To demonstrate the effectiveness of the above disentangled face synthesis framework,
Fig. 5.24 and Fig. 5.25 show the synthesis results that use the images whose identities appear
and do not appear in the training set respectively. It can be seen that the trained network can
disentangle the identity and attributes components and learn corresponding visual patterns
very well, for both the close-set and open-set settings.

The disentanglement also enables continuous attribute change in the generated images
by tuning the latent vector, which is called “attribute morphing”. Specifically, given a pair
of images Ia1 and Ia2, the attribute network A is first used to extract their attribute vector
za1 and za2 respectively, and then a series of attribute vectors z can be obtained by linear
interpolation, i.e., z = αza1 + (1−α)za2, α ∈ [0,1]. Fig. 5.26 presents the results of face attribute
morphing, which can gradually change the pose, emotion, or lighting by selecting a proper
pair of attribute images.
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FIGURE 5.24 Identity-preserving face synthesis results by using the images whose identities appear in the train-
ing dataset. It can be seen that the proposed method can disentangle the identity-related and attribute-related visual
patterns well and then recomposite them in the final results. The figures are by courtesy of Bao et al. (2018).

FIGURE 5.25 Identity-preserving face synthesis results by using the images whose identities do not appear in the
training dataset, which demonstrates the strong generalization ability of the learned identity disentanglement. The
figures are by courtesy of Bao et al. (2018).

Application of synthesis

Deep network based face verification systems have been widely used in surveillance and
access control. Given two faces, a pretrained face classification DNN model will be first used
to extract their features. Then the two faces are regarded as the same identity if the feature
distance is smaller than a threshold. However, recent research shows deep neural networks
are vulnerable to adversarial examples, which fool the network to some specific targets by
adding some imperceptible perturbations onto the clean images. In details, supposing two
faces I 1 and I 2 have different identities, we can find imperceptible perturbations r , such that
I 1 + r will be regarded as the same person as I 2 by using the above face verification system.
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FIGURE 5.26 Face morphing results using unseen identities between two attributes in terms of pose, emotion,
and lighting change respectively. The figures are by courtesy of Bao et al. (2018).

FIGURE 5.27 Application to adversarial example detection in face verification systems. (a) is the source image,
(b) is the adversarial example which aims to mislead the verification network to the identity shown in (c). (d), (e)
and (f) are the reconstruction results from our framework. It shows that although the adversarial example shares a
similar appearance with the source image, their reconstruction results have different appearances. The figures are by
courtesy of Bao et al. (2018).

TABLE 5.1 Adversarial examples detection accu-
racy at different thresholds.

Threshold 1.0 0.8 0.6 0.4
acc 76.73% 82.58% 87.18% 92.41%

This process is often formulated as an optimization problem:

min‖r‖2
2

s.t.‖f C(I1 + r) − f C(I2)‖2
2 < τ,

(5.20)

where f C is the extracted feature from the pretrained network, and τ is the predefined thresh-
old.

In Fig. 5.27, (a) and (c) are the two inputs I1 and I2, and (b) is the generated adversarial
example I1 + r . Since the adversarial examples have similar identity features with other faces,
if we reconstruct the image from the feature using the proposed framework, it will generate
an image of the other person in (e). Obviously, the adversarial example and its reconstruction
clearly have different identities. Based on this observation, the above synthesis framework
can be used to identify the adversarial samples by comparing the identity of the original
faces and the reconstruction results.
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Taking the LFW dataset as an example, for each of the 3000 pairs of different identities,
two adversarial examples are generated by performing adversarial attacks with each other,
thus producing total 6000 adversarial examples. Here, four different thresholds τ are used:
[0.4,0.6,0.8,1]. At the same time, we have 6000 source images and their reconstruction. Then
the LBP feature of the input and its reconstruction image is extracted and concatenated to-
gether. Finally, a linear SVM is trained as a binary classifier. The results are shown in Table 5.1,
92.41% detection accuracy can be obtained if the feature distance is required to be smaller
than 0.4.

5.7 Conclusion and discussions

Learning and modeling visual patterns is a fundamental building block for visual intelli-
gence. Through the unconditional or conditional image generation framework, deep genera-
tive models attempts to recover the lower dimensional structure of the target visual models
in an embedding space. In this chapter, we discussed how to leverage deep generative mod-
els to achieve more controllable visual pattern synthesis via conditional image generation.
And we argue that the key to achieve such controllable pattern synthesis is disentanglement
of the visual representation, where different controlling factors are encouraged to be sepa-
rated in the hidden embedding space. Then three different case studies are used to illustrate
how to achieve the disentanglement for pattern synthesis in unsupervised or weakly super-
vised setting, by introducing inductive bias, from the network design and training strategy
perspectives.

In classical generative models, often the various confounding factors are explicitly mod-
eled as interacting random processes. This kind of explicit modeling has not been well ex-
plored in deep generative models. It may be beneficial to explore how we may introduce
such explicit and structured representations in learning deep generative models, which may
lead to more explainable deep models.
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CHAPTER POINTS

• Methods and practical techniques for deep
learning based model definition, training,
and testing.

• Examples of using deep learning based
models for full and partial face recognition.

• Highlights of the present state of the art in
face recognition as well as the challenges in
deep learning assisted face recognition.

6.1 Introduction

Face recognition is one of the most exciting and prominent applications of deep learning
applied in the domain of visual computing. Not only can it showcase the power of deep
learning but also it can highlight some of the concerns of using a methodology whereby a
black-box approach is utilized for solving problems whose solutions have real-life conse-
quences.

Computer-based face recognition is still riddled with many challenges compared to the
face recognition ability of humans. For a human, seeing someone for a brief moment is often
enough to learn sufficient about the face of that individual (Young and Burton, 2018). This
is because the brain memorizes important details relating to the person. In fact, it seems that
when a familiar face is presented within various contexts, the brain compares the ‘before’ and
‘after’ images, without the use of any significant new information. Conversely, the variability
of the appearance of a face has a greater effect on the ability of a machine to identify the
person from the face.

There are many machine learning algorithms within computer vision specific to face-
related functions. These algorithms are either unsupervised techniques, which are not ex-

Advanced Methods and Deep Learning in Computer Vision
https://doi.org/10.1016/B978-0-12-822109-9.00015-1 Copyright © 2022 Elsevier Inc. All rights reserved.221

https://doi.org/10.1016/B978-0-12-822109-9.00015-1


222 6. Deep face recognition using full and partial face images

plicitly programmed, or supervised, which are based on the idea that someone can select
a portion of data with known labels (provided by the operator) or fed to an algorithm as
a training set. For example, Principal Component Analysis (PCA), was introduced in 1905
and is an unsupervised machine learning model widely used for reducing dimensionality in
complex data and image compression (Jolliffe, 2002). It has also been a common technique
for coding faces in a dataset into the “face space”. In 1991, the Eigenface algorithm was ap-
plied to construct face recognition algorithms (Turk and Pentland, 1991). Eigenfaces extract
the most important details in the data in the form of eigenvectors corresponding to the largest
eigenvalues, representing the variations in the face space. Essentially, in the area of face recog-
nition, the concept of an average face is interesting, and in some ways, it appears to be at the
core of human face recognition. Attempts to use the average face as a tool for computer-based
face recognition are not uncommon in the published literature, e.g., authors (Elmahmudi and
Ugail, 2019a). Also, commonly used is the Local Binary Patterns (LBP) technique, which is a
simple yet powerful approach to texture classification. This divides an image into different
regions to extract features from each region separately. These features are subsequently used
for aiding classification in face recognition tasks (Kas et al., 2020).

In conventional computing, a given algorithm is a group of explicitly programmed com-
mands utilized by a machine to work out a problem. Machine learning approaches permit
algorithms to be trained by using input data and to utilize statistical analysis to infer values
that fall within a particular domain. For this reason, machine learning enables computers to
build models from example data in order to automate a decision-making process, based on
data input.

Deep learning (LeCun et al., 2015) is a mechanism by which a machine algorithm can learn
by example. It aims to obtain an optimal configuration to a model so that the desired outputs
can be obtained from a set of input data. It has been widely used for solving challenging
problems in image processing and analysis. As a result, deep learning has probably become
the standard de facto technique for use in modern face recognition systems.

Prior to deep learning, a high proportion of face recognition algorithms have utilized im-
age processing techniques such as filtering, histograms and feature coding, containing only
two or three layers of computation. There was a significant drawback in such methods,
mainly because they can only solve one aspect of the face recognition problem at the expense
of the others. For example, while a Gabor filtering method (Dora et al., 2017) can enhance face
recognition under varying lighting conditions, that same method can perform poorly in the
presence of facial expressions and pose variations. As a result, researchers struggled to come
up with a coherent and integral method to solve the bulk of the issues that have plagued face
recognition.

However, much of that changed in 2012, when it was decisively demonstrated that deep
learning can take care of many of the problems faced by computer-assisted face recognition
at the time. At that stage, the AlexNet deep learning model won the ImageNet competition,
demonstrating that it was consistently ahead of the game on image recognition. Since then,
deep learning has been on an upward trajectory and has stayed ahead of the curve in showing
that it can match human performance in face recognition. For example, in 2014, DeepFace on
the Labelled Faces in the Wild (LFW) dataset has shown, it can achieve human-level accuracy,
the exact figures being 97.35% for DeepFace and 97.533% for humans (Taigman et al., 2014).
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6.1.1 Deep learning models

Deep learning seeks to emulate and learn complex arrangements in datasets using multiple
learning layers of processing units (neurons). This is motivated by the structure and functions
of the human nervous system. Deep learning models learn patterns in very complex data via
a series of repeated or multiple artificial neurons by manipulating the parameters associated
with the neuron to produce the desired output. Thus, a deep learning model is composed
of a neural network with multiple hidden layers. This is intended to emulate human deci-
sion making when solving complex recognition problems. In practical terms, deep learning
usually take the form of Convolutional Neural Networks (CNNs) (LeCun et al., 2015).

6.1.1.1 The structure of a CNN

Essentially, a CNN is a collection of individual perceptrons (artificial neurons) forming a
network of neurons connected together to achieve parallel signal processing across a wide
network structure. Adjustable weights are used to control the interaction between the per-
ceptron units. A key component of a CNN is the hidden layers which are placed between
the input and output of the network. The hidden layers help in assigning nonlinear weights
to the input and direct them to the output. i.e., they help to apply nonlinear mathematical
functions; to specific parts of the network to produce a desired final output. For example, in
the case of a face recognition task, one hidden layer can be tuned to identify the colors in the
input image, another can be tuned to identify the physical features, and so on. Together, the
network can then recognize and classify a face in the input image.

A typical CNN is comprised of multiple layers that fall into three broad categories. They
are the convolution layers (CONV), subsampling layers (POOL), and fully connected layers
(FC). Usually, a combination of these layers is arranged in a specific manner with the sole goal
of transforming the input of the network into a useful representation that gives an output
prediction, as shown in Fig. 6.1.

The convolution layer derives its name from the mathematical (convolution) operator. This
layer computes the scalar product between the weights of neurons and a small region of the
input volume. The neurons are arranged as a stack of 2-dimensional filters or kernels that ex-
tend the depth of the input volume. Hence, they are 3D structured. During the forward pass,
each kernel is convolved across the width and height of the input volume to produce a 2D
feature map, as shown in Fig. 6.2. Thus, these feature maps are the outputs of the convolution
operation at each spatial operation. In comparison to the feed-forward neural network, these
filters represent neurons which activate when they come across visual features such as edges.
As discussed earlier, CNNs use local connectivity to reduce complexity. Hence each neuron
is connected to a local region whose spatial dimension is defined by the filter size known as
the receptive field of the neuron and its depth is equal to the depth of the input volume.

Hence, for a 256 × 256 × 3 input image, if the receptive field is 3 × 3, each neuron in the
CONV layer will have a total of 3 × 3 × 3 = 27 connections, and 1 bias parameter. Obviously,
the connectivity is spatially local but full along the input depth. Subsequently, the size of
the feature map (i.e., the output) is computed using three hyperparameters – depth, zero
padding, and stride. Depth refers to the number of filters deployed. The greater the number
of filters, the greater the amount of information retrieved, since each filter learns to look for
a specific feature. Stride defines a pattern used to slide the filter across the input, i.e., S = 1
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FIGURE 6.1 The structure of a CNN. It comprises of multiple layers which include convolution layers, pool-
ing layers, and fully connected layers.

means that the filter has to move one pixel at a time along with the input. Zero padding
defines the number of zero pixels placed around the input volume in order to keep the spatial
size of the output volume constant. One can compute the spatial size of the output using:

I − F + 2P

S
+ 1 = 0, (6.1)

where I is the spatial size of the input, F is the filter size, P is the number of zero paddings
and S is the stride (Dumoulin and Visin, 2018). Hence, if applied to input images of size
224 × 224 × 3 and assuming the neurons have a receptive field of 3 × 3 in size, depth K = 64,
a single stride S = 1, and zero padding P = 1, one obtains (224 − 3 + 2)/1 + 1 = 224. This
means that the output volume of this particular CONV layer will have size 224 × 224 × 64.
Consequently, there will be 224 × 224 × 64 = 3211264 neurons, each having 3 × 3 × 3 = 27
weights and 1 bias. Interestingly, rather than having 3,211,264 × 27 weights and 32,112,64
biases, the concept of weight sharing makes all the neurons on one slice share the same weight
and bias. Hence, the number of weights and biases is drastically reduced to 1,728 and 64,
respectively.

As mentioned earlier, in neural networks, the activation function plays a significant role in
introducing nonlinearity to the output of a neuron. Introducing this nonlinearity makes the
neural network a universal function approximator, thereby, giving it the ability to cope with
various types of relationships. The most effective and commonly used activation function
for CNNs is the rectified linear unit (ReLU). This involves the element-wise application of
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FIGURE 6.2 Description of convolution operation. During the forward pass, each kernel is convolved
across the width and height of the input volume to produce a 2D feature map.

a zero threshold function, f (x) = max(0, x), where x is the input of the neuron. Compared
to other activation functions, CNNs with ReLUs train several times faster. This is because
the ReLU function and its gradient can be efficiently computed. Note, the activation layer
does not introduce additional parameters to its input. Furthermore, it does not change the
dimension of the input. In the architecture, activation layers are placed after every CONV
layer. Additionally, networks with more than one fully connected (FC) layer also deploy it –
with the exception of the last FC layer.

Pooling layers are usually inserted between successive CONV layers. Their primary func-
tion is to consistently reduce the number of parameters and consequently decrease the com-
putational complexity of the network by reducing the spatial size of the feature maps. Hence,
they summarize the output of the neighboring neurons. For every 2D slice of the feature map,
the most common type of pooling operation (Gholamalinezhad and Khosravi, 2020), called
Max Pooling, usually takes the maximum of each 2 × 2 region, thus discarding 75% of the
activations as shown in Fig. 6.3.

Thus, the pooling operation does not introduce new parameters. Rather, it leads to shrink-
age of the first and second dimensions of the feature map. The operation takes two parame-
ters, the stride S and the spatial dimension F . Hence the pooling operation reduces a feature
map from W1 × H1 × D to W2 × H2 × D dimensions. Here W2 and H2 are computed using:

W2 = W1 − F

S + 1
, H2 = H1 − F

S + 1
. (6.2)
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FIGURE 6.3 Pooling layer in action. Pooling layers help reduce the number of parameters and consequently
decrease the computational complexity of the network.

Interestingly, this operation introduces translational invariance with respect to elastic dis-
tortions. The fully connected layer has neurons that have full connection to the activation
of the previous layer and unlike the CONV and POOL layers, the FC layer is 2D. They are
typically configured to output the predicted label/classes of the network. Hence the FC is
usually the last layer of the network. In the work that won the 2012 ImageNet Large Scale Vi-
sual Recognition Competition (ILSVRC) (Krizhevsky et al., 2012), 3 FC layers were used, and
since then this has been a typical arrangement. Intuitively, flattening the 3D feature maps at
the end of the computation gives us an avenue for interpreting the learned spatially invariant
features.

The most usual arrangement used by researchers starts with the image input layer and
ends with an FC (decision) layer, in between these two are repeated stacks of CONV-ReLU
layers followed by POOL layers, then a few FC-ReLU layers. This layered pattern can be
described mathematically as:

INPUT =⇒ NM(CONV =⇒ ReLU) =⇒ POOL =⇒ K(FC =⇒ ReLU) =⇒ FC, (6.3)

where N , M , and K are positive real-valued parameters. Usually, the number of CONV-ReLU
layers that appear before POOL is within the range 0 < N < 4, and the combinations of vari-
ables M and K are usually greater than 1.

6.1.1.2 Methods of training CNNs
Generally, there are three ways of deploying CNNs – training a network from scratch, fine-

tuning an existing model, or using off-the-shelf CNN features. The latter two approaches are
referred to as transfer learning. Since training CNNs from scratch, using the backpropagation
algorithm involves the automatic learning of millions of parameters, this approach requires
an enormous amount of data. More so, the data-hungry nature of CNNs consequently de-
mands large computational power. Furthermore, the procedure involves the adjustment of
several hyperparameters. Thus, an entire network is rarely trained from scratch.

Fine tuning involves transferring the weights of the first n layers learned from a base net-
work to a target network, and then continuing the backpropagation using the new dataset.
Hence, the target network is trained using the new dataset for a specific task, usually different
from that of the base network. Fine tuning is normally used when the new dataset is moder-
ately large (tens to hundreds of thousands) and very different from the dataset used to train
the base network. Using the weights of the old network to initialize helps the backpropaga-
tion algorithm, thereby leading to relatively fast automatic learning of more specific features.
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In situations where the dataset is rather small, say a few hundreds, even fine tuning
the weights may result in overfitting. However, since CNNs efficiently learn generic image
features, it is possible to directly use a trained network as a fixed feature extractor. Hence, fea-
tures from new data are extracted by projecting them on to activations of a specific layer of the
pretrained network. After that, the learned representations are fed into simple classifiers to
solve the task at hand. This approach, known as off-the-shelf feature extraction, has been used
by researchers to achieve promising results (Weiss et al., 2016; Day and Khoshgoftaar, 2017).

Similarly, data augmentation is the simplest way to combat the overfitting problem en-
countered by deep neural networks. This technique works by artificially enlarging the size
of the dataset through various methods such as changing the image orientation by flipping
(which produces the mirrored image) and rotating the original images, which subsequently
results in a new image. This ensures that the learning algorithm infers features from data with
different orientations.

6.1.1.3 Datasets for deep face recognition experimentation

There are a number of face datasets that can be utilized for training and testing the deep
face recognition models. Here, we provide details of some of them.

The LFW Dataset: The Labelled Faces in the Wild (LFW) (Huang et al., 2008) is a large
dataset of face pictures, which is designed for testing the capability of face recognition in
simulated uncontrolled scenarios. All the images have been collected from the Internet and
consist of a spectrum of variations in expression, pose, age, illumination, and resolution. The
LFW database contains images of 5749 subjects with a combined total of some 13000 images.
The images themselves in the dataset have variable and significant background clutter.

The YouTube Faces Database: The YouTube Faces DB (He et al., 2018), is composed of face
videos with varying lighting, pose and age conditions. The database is specifically designed
to study and analyze face recognition algorithms in videos. It contains over 3000 videos of
over 1500 individuals. The videos have been downloaded from YouTube. The database has
been put together by closely following the LFW as a benchmark.

The FEI Dataset (Thomaz and Giraldi, 2010) contains 200 images of Brazilian students and
staff with an equal number of males and females. For each subject, there are 14 images, the
total number of images in the dataset being 2800. The resolution of the images is 640 pixels by
480 pixels, and all the images are in color taken against a homogeneous white background.
The subjects are between the ages of 19 and 40 years and the dataset contains images display-
ing variations in facial expressions and pose.

6.2 Components of deep face recognition

There are essentially three parts to a modern deep learning based face recognition system.
They are face detection by which a face is successfully identified within the image, face pro-
cessing by which the face is cropped and often normalized, and face recognition by which
a deep learning algorithm is used to classify or match the face. This process is described in
Fig. 6.4.
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FIGURE 6.4 Components of deep face recognition.

Though deep learning can be efficiently utilized to solve most of the object recognition
problems, for face recognition problems, we still have to resort to a face processing step in
order to extract the face from the scene to ensure that the problems of facial pose, illumination,
facial expressions, and occlusion are minimized.

Thus, in symbolic terms, a deep face recognition system can be described as:

M
[
F(Ii),F (Ij )

]
, (6.4)

where Ii and Ij are two face images that are compared, F are the deep features from the
CNN model, and M defines the matching criteria. Following, a usually very long process of
training with massive datasets and also with the supervision of appropriate loss functions,
the optimal layers from which features are to be extracted and compared are determined.
The matching process itself can be undertaken using distance measures such as Euclidean
distance, Cosine Similarity (CS) and Support Vector Machines (SVMs).

Thus, today, most of the face recognition in practice is undertaken with the aid of a deep
learning model, and as mentioned earlier, there are many to choose from. In what follows, we
discuss some examples to further explain the process of deep learning-based face recognition
and the challenges one needs to be vigilant about.

The prominent part of any deep learning-based face recognition system is the deep features
that are derived from a trained CNN model (Liu et al., 2017). A number of model architectures
are available for a user to choose from. These include the AlexNet (Krizhevsky et al., 2012),
GoogleNet (Szegedy et al., 2015), ResNet (He et al., 2015), and VGGNet (Parkhi et al., 2015).

6.2.1 An example of a trained CNN model for face recognition

As discussed in the previous chapters, generally speaking, there are several ways one can
deploy CNNs. These include training a network from scratch or fine-tuning an existing model
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or using off-the-shelf CNN features from a pretrained model. The latter is referred to as trans-
fer learning.

It is important to highlight that training a CNN from scratch requires an enormous amount
of data, which is often a challenging task, e.g., it took millions of faces and hundreds of hours
of computing time to train the FaceNet model (Schroff et al., 2015) from scratch. On the other
hand, fine-tuning involves transferring the weights of the first few layers learned from a base
network to a target network. The target network can then be trained using a new dataset.

A good example of a pretrained CNN model within the context of face recognition is the
VGG-F model (Chatfield et al., 2016), which was developed by the Oxford Visual Geometry
Group. This model has been trained on a large dataset of 2.6 million face images of more than
2.6 thousand individuals. The architecture of VGG-F consists of 38 layers starting from the
input layer up to the output layer. As a fixed criterion, the input is normally a color image of
224 × 224 dimensions and, as the preprocessing step, an average is normally computed from
the input image.

In general, the VGG-F contains thirteen convolutional layers, each layer having a special
set of hybrid parameters. Each group of convolutional layers contains 5 Max-Pooling layers
and 15 Rectified Linear Units (ReLUs). After these, there are three FC layers, namely FC6,
FC7, and FC8. The first two have 4096 channels, while FC8 has 2622 channels which are
used to classify the 2622 identities. The last layer is a Softmax classifier whose function is to
provide the probability of an image belonging to given class. The architecture of the VGG-F
is represented in Fig. 6.5.

FIGURE 6.5 Architecture of the VGG-F model. The model contains 13 convolutional layers, each layer hav-
ing a special set of hybrid parameters.

Here, we show how the pretrained VGG-F model for feature extraction can be utilized for
facial feature coding and how the cosine similarity measure or linear SVM measures can be
used for classification for efficient face recognition from partial faces.

6.2.1.1 Feature extraction
Given an input image, X0, it can be represented as a tensor X0 ∈ RH WD, where H is the

image height, W is the width, and D represents the color channels. A pretrained layer L of
the CNN can be expressed as a series of functions, gL = f1 −→ f2 −→ ... −→ fL.

Let X1,X1, ...,Xn be the outputs of each layer in the network. Then, the output of the ith
intermediate layer can be computed from the function fi and the learned weights wi such
that Xi = fi(X(i−1) : wi).

As we know, CNNs learn features through the training stage and use such features to clas-
sify images later. Each convolutional (conv) layer learns different features. For example, one
layer may learn about entities such as edges and colors of an image while further complex
features may be learnt in the deeper layers. For example, a result of the conv layer involves
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numerous 2D arrays which are called channels. In the VGG-F, there are 37 layers, 13 of which
are convolutions, and the remaining layers are mixed between the ReLU, pooling, fully con-
nected, and the Softmax. However, after applying the conv5_3 layer with 512 filters of size
3 × 3, the features can be extracted for classification. By examining the activations of that
layer, one can obtain the main features, as shown in Fig. 6.6, where a sample of the features is
presented.

FIGURE 6.6 Feature visualization from a VGG-F layer. Visualization obtained from the conv5_3 layer for
an input of a face image.

To decide the best layer within the VGG-F model to utilize for facial feature extractions, one
must conduct a number of trial and error experiments. Tests of this nature suggest that layers
34 through to 37 are typically most effective, e.g., Elmahmudi and Ugail (2019b). Often, the
best results are derived from the layer 34. It is noteworthy that this layer is the fully connected
layer and is placed at the end of the CNN, which means the extracted features represent the
whole face.

The features from layer 34 are the results that arise from the fully connected layer FC7
after applying ReLU6, which gives a vector of 4096 dimensions. The reason for suggesting
that layer 34 is the best layer is inferred as a result of undertaking a number of face recog-
nition tests using the full frontal face image for both training and testing, which shows that
recognition rate can reach up to 100%.

6.2.1.2 Feature classification
One of the objectives of the classification is to build a brief model of the distribution of class

labels in terms of the predicted features. There are several techniques for such a classification,
namely decision trees, k-nearest neighbors (kNN) and SVM.

The SVM is a supervised machine learning algorithm, which can be used for both binary
classification and multiclassification problems. The SVM focuses on identifying the “mar-
gins” via hyperplanes to separate the data into classes. Maximizing the margin reduces the
upper bound on the expected generalization error by creating the largest possible distance
between the separating hyperplanes. It is clear that the SVM is geared to solve binary classi-
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fication problems. It is common for researchers to use the linear SVM to solve the multiclass
classification problem based on One-vs.-One (OVO) approach, also known as pairwise clas-
sification. The OVO decomposition constructs n(n−1)

2 binary classifiers for n classes. Then, for
a final decision, the Error Correcting Codes (ECC) combination approach decides how the
various classifiers can be combined.

Consider that we have a training dataset (xi, yi), we can use the linear SVM such that:

min
1

2
|w|2 + C

N∑
i

max
(
0,1 − yiw

T xi

)
, w ∈ Rd, (6.5)

where w is a weight vector, N is a number of classes and C is a trade-off parameter between
the error and the margin.

Furthermore, one can also utilize the Cosine Similarity (CS) for classification. The CS is a
measure between two nonzero vectors. It uses the inner product space to measure the cosine
of the angle between those two vectors. The Euclidean dot product formula can be used to
compute the cosine similarity such that:

a.b = |a||b| cos θ, (6.6)

where a and b are two vectors, and θ is an angle between them. By using the magnitude
or length, which is the same as the Euclidean norm or the Euclidean length of vector x =
[x1, x2, x3, ..., xn], the similarity S is computed using the formulation:

|x| =
√

x2
1 + x2

2 + ... + x2
n, (6.7)

S = cos θ = A.B

|A||B| =
∑N

i AiBi√∑N
i A2

i

√∑N
i B2

i

, (6.8)

where A and B are two vectors.
For classification one can compute the CS to find the minimum “distance” between the test

face image, testim and training images, trainingn
im by using Eq. (6.9), such that:

Mcs = min
(
CS

(
testim, trainingn

im

))
, (6.9)

where im is an image number, n is total images in the training set.

6.3 Face recognition using full face images

As far as deep learning is concerned, a well trained CNN model often provides excellent
recognition for full frontal faces. In this section, we show how a typical pretrained model can
be utilized for the task of face matching and verification.

The FaceNet model (Schroff et al., 2015) is a pretrained deep learning architecture inspired
by GoogLeNet models for efficient face recognition. For the task of face recognition, it uses
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pictures of a list of people in a dataset along with data from a new person or people to be
recognized. A key element of the FaceNet architecture is the generation of an embedding of a
given dimension from a face image of predefined size. The input image is fed through a deep
CNN architecture which has a fully connected layer at the end. This results in an embedding
of 128 features which may or may not be visually understandable to a human. Then, for
the recognition task, the network can calculate the distance between the individual features
of each of the embeddings. Metrics such as the squared error or the absolute error can be
utilized to compute the distance between the embeddings.

FIGURE 6.7 The general architecture of FaceNet model. A key aspect of the FaceNet model is the ability
to classify a given face image using an embedding of 128 deep features.

Common FaceNet models use two types of architecture. They are the Zeiler and Fergus
architecture (Zeiler and Fergus, 2014) and the GoogLeNet style Inception model (Szegedy et
al., 2015). The essential idea in the training of the FaceNet is the “triplet loss” to capture the
similarities and differences between classes of faces in a 128-dimensional embedding. Hence,
given an embedding E(x) from an image to a feature set Rn, FaceNet looks into the squared
L2 distance between face images, this value being small for images of the same identity and
large for different identities.

Fig. 6.7 shows the general architecture of the FaceNet model. An important element of the
model is the triplet loss function. Often in common deep learning models, the loss function
tries to map all faces of the same identity to a single point in Rn. The triplet loss function
attempts to discriminate each pair of faces from one person to all the others, thus enforcing
strong discrimination between faces. Thus, the triplet loss function chosen in this model en-
sures that an image of a specific person is closer to all other images of that person than any
other image in the dataset. This idea is illustrated in Fig. 6.8. The training process assumes
that we pick a random image – the anchor – from the dataset. We would want to ensure that
the distance of that image from another image of the same identity – the positive image – is
closer to that of the images not belonging to the same person.

The FaceNet model was trained using around 100 million face samples with over 8 million
identities. Through experimentation, it has been found that the optimal embedding for a
faces is of dimensionality 128, meaning that a given face is classified using 128 feature points
extracted from it. Experiments were also conducted on varying the training data, and it was
found that after a certain point the number of training samples does not add value to the
level of accuracy, i.e., while 10s of millions of samples can improve the accuracy, adding 100s
of millions to the sample has diminishing returns in the accuracy of recognition obtained.

6.3.1 Similarity matching using the FaceNet model

One of the main benefits of the FaceNet model is that it can achieve very high classification
accuracy using a simpler embedding comprising of only 128 features. Experiments done on
faces on both the LFW dataset and the YouTube Faces DB show the recognition is very high:
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FIGURE 6.8 Description of how triplet loss based training is utilized by FaceNet. The triplet loss func-
tion attempts to discriminate each pair of faces from one person to all the others, thus enforcing strong discrimination
between faces.

i.e., on the LFW dataset, the recognition accuracy of 98.87% is achieved while on the YouTube
Faces DB a recognition accuracy of 95.18% is achieved. It is also crucial to highlight that
both the datasets contain faces taken in varying lighting, pose, occlusion and age conditions.
Despite this, the performance on recognition tasks by FaceNet is impressive.

Fig. 6.9 describes how the FaceNet model can be used to see the degree of similarity be-
tween faces. In this example, the 128 deep features for each face are computed using the
FaceNet model. Then the cosine similarity measure described earlier can be used to compute
the distance between the deep face features for each face against the face image in the center.
The results show that the degree of accuracy for face matching, in this case, appears to be
excellent. Note that in experiments involving the FaceNet model, a similarity match of 75%
or higher between two faces is usually considered to be an identity match.

6.4 Deep face recognition using partial face data

Based on the many works that have been undertaken in the field of face recognition using
deep learning, it is clear that many of the state of the art algorithms provide human-level ac-
curacy for face recognition when the query images are full frontal. For example, the FaceNet
model discussed above provides an impressive level of accuracy for face recognition using
frontal facial images. However, in many practical scenarios, the full face may not be avail-
able either as a probe or as a comparison image in a dataset. Here, we discuss how deep
learning based methods can be taken further forward in that such models can be trained to
successfully recognize faces even with partial information. Achieving this would provide the
potential for deep learning models to surpass human-level face recognition.
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FIGURE 6.9 An example of similarity matching. The cosine similarity measure is utilized for matching faces
of the Queen using the 128 deep features of the FaceNet model. The central image is used for matching.

FIGURE 6.10 An example of partial faces from the LFW dataset. For experiments on partial face recogni-
tion one can consider half face, 3/4 face and key parts of the face such as the eyes, nose, mouth, and forehead.

In this section, we discuss how deep face recognition using partial faces can be undertaken.
The work described here is predominately based on the deep learning based face recognition
work reported in Elmahmudi and Ugail (2019b).

The approach here is to utilize features extracted from a pretrained model and using a stan-
dard classifier to see how the various parts of the face (see Fig. 6.10), are embedded within the
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FIGURE 6.11 Results for partial face recognition using VGG-F features. Recognition rates (%) using
images from the LFW dataset, based on parts of the face using both the SVM and CS classifiers.

model during the training phase. This can then be utilized for face recognition and matching
tasks. In this particular case, we have utilized the standard VGG-F model for feature training
and extraction. The various parts of the face considered here include the eyes, nose, mouth,
top and bottom half of the face, left half of the face, 3/4 face, and the full face. Thus, all the
extracted features from the VGG-F model can be passed onto both the classifiers, in this case,
SVM and CS. Faces within the VGG-F can be enrolled with (W) or without (Wo) various parts
of the face to see the variations in results.

For example, the classification capacity of SVM and CS can be verified using faces with and
without parts in the training (SVM-Wo and CS-Wo) and “with” parts in training (SVM-W and
CS-W). In order to investigate the recognition rates for each facial part, each classifier can be
applied separately. In the case of “without” facial parts, it is clear that, in general, CS-Wo
outperforms SVM-Wo for most of the regions of the face. The results of these experiments are
shown in Figs. 6.11 and 6.12. From these figures, we can observe that the recognition rates for
the right cheek, mouth, forehead, and the nose are low, with about 1% for both the classifiers.
In contrast, the rate of recognition increases significantly for facial parts such as the eyes,
and reach 40% using CS-Wo. We also notice that as we increase the proportion of the face,
the recognition rate also improved significantly, with the best recognition rate of near 100%
for the 3/4 face and full face. It is also noteworthy that for all the tests carried out in these
experiments, the CS measures appeared to outperform the SVM measures.

From the results presented in Figs. 6.11 and 6.12 for the partial facial experiments using the
FEI dataset, the highest recognition rate (as far as partial face is concerned) reported is for the
3/4 face using SVM-Wo. Under this experimental condition, the training set did not consist
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FIGURE 6.12 Results for partial face recognition using VGG-F features. The results of the recognition
task (%) when some parts of the face (cheeks and facial-part with no eyes and no nose) are removed from the training
sets. The tested classifiers include linear SVM, kernel SVM and CS.

of various facial parts. Also, in the case of CS-Wo, the right half of the face, the top half and
the 3/4 face produces high recognition rates. However, the worst recognition observations
are for the smaller and perhaps, less significant parts of the face, such as cheek, mouth and
nose. When applying the same methodology to the uncontrolled LFW dataset and training
with larger proportions of the face, a slight decrease in the recognition rates is observed when
compared with the FEI dataset, which was between 76% to 99% for SVM-Wo and 83% to 99%
for the CS-W classifier. According to the results obtained for smaller regions of the face, the
worst recognition rate is observed for the cheeks, mouth, forehead and nose. However, the
eyes do appear to hold more information.

Similarly, when the individual parts of the face are added to the training sets, the output
results in a dramatic improvement to the rate of recognition. For example, the recognition rate
for the right cheek improved from 0% to 15% when using the FEI dataset. It is also noteworthy
that the eyes still have the highest recognition rate when considering other individual parts
of the face using the FEI and LFW datasets, although the combined eyes and nose features
report around 90% recognition when using the controlled FEI dataset. However, in the case
of the uncontrolled LFW dataset, this percentage drops slightly. Furthermore, we notice that
in general, better recognition results are achieved by using the CS measure.

Thus, an important point to highlight here in this case is that the CS measure, in general,
appears to be a better classifier, compared to both Linear and NonLinear SVMs. SVMs require
complete retraining when new data is added, which subsequently introduces computational
issues. However, in the case of the CS classifier, this is not an issue. Nevertheless, in the testing
stage, the CS classifier is more computationally intensive, but given the greater degree of
accuracy, it makes better logical sense to employ the CS classifier over SVMs.
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6.5 Specific model training for full and partial faces

In this section, we discuss how one can train specific deep learning models for efficient
face recognition using full or partial faces. Here we show how an experimental framework
can be built to train specific CNNs corresponding to a specific parts of the face. In designing
systems of this nature, it is important to bear in mind the level of training data utilized, the
model complexities and the amount of training time required to create a given model.

Let’s suppose we are building a deep learning model that is fine tuned for identifying indi-
viduals simply from the images of their eyes. We will start with the base VGG-16 architecture
(Parkhi et al., 2015) which is similar to VGG-F discussed earlier. This model consists of 13
convolutional layers (CONVs) with the same filters of size 3 × 3. These layers themselves are
divided as follows. The first two layers have depths of size 64. There are two layers which
have a depth of size 128, three layers with a depth of size 256 and six layers with a depth
of size 512. Following these layers, there are three FC layers, of which two layers contain
4096 units while the last layer has 1000 units. The structure of VGG-16 is thought to be par-
ticularly neat in that it can efficiently manage the number of hyperparameters. Specifically,
the arrangement of layers has been well thought out so that the number of hyperparameters
is minimized. This arrangement is structured as follows. The size of the CONV filters is of
3 × 3 and there are 2 × 2 masks for padding and max-pool layers with stride 2. This suggests
that for training for a specific part of the face we should adopt a two-stage strategy. In the
first stage, the first model will be constructed and trained on a dataset of eye images only.
In the second stage, the generated model will be used for building the comprehensive model
by utilizing the same structure as the VGG network using fine tuning (Yosinski et al., 2014).
Fig. 6.13 shows a flow diagram for training the model.

FIGURE 6.13 Proposed procedure for model training for specific parts of the face. The training process
can be composed of two stages where weights for the specific part of the face are generated which are then used to
produce the final shape of the model.

The process of fine tuning for machine learning algorithms is a procedure whereby the cho-
sen CNN model, already trained for a given job and/or data type, is utilized for performing
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FIGURE 6.14 Proposed CNN model architecture for face recognition using specific parts of the face.
This model is derived from the standard VGG-16.

a similar task. This is done by replacing an output layer, which was originally trained for rec-
ognizing previous classes, with one which can recognize a new number of classes for a new
task. An advantage of using fine tuning is the reduction of computational time during the
training phase. In fact, the first layers already have the capability of dealing with a new task,
and training will utilize the last layers, without the need for training from scratch. Another
advantage is improved performance because the pretrained models are typically trained on
large datasets.

6.5.1 Suggested architecture of the model

As discussed above, the proposed model for training for specific parts of the face is in-
spired by the VGG-16 model (Parkhi et al., 2015) and requires an input image with a prefixed
size (224, 224, 3). The model has 5 convolutional blocks, each containing a number of convo-
lutional layers followed by nonlinear activation functions, as shown in Fig. 6.14.

As can be inferred from Fig. 6.14, the proposed CNN model for partial faces is archi-
tecturally similar to the VVG-F model with 5 convolutional layers and 3 FC layers. These
convolutional layers are designed to integrate various max pooling layers to create efficient
feature maps. A crucial aspect the proposed arrangement of convolutional and FC layers is
to reduce the number of trainable parameters (as defined by Eq. (6.1)) to keep the length of
training time reasonable while keeping the accuracy of the network within the acceptable
limits.

6.5.2 Training phase

Training a CNN model is a procedure to minimize the variations between the ground truth
labels and the predicted outputs from within a training dataset. This is achieved by locating
learnable parameters (kernels and weights) within the convolutional and fully connected lay-
ers. In the model suggested here, the weights of filters are initialized by using a Gaussian and
standard deviation (Bishop, 2006) and the biases are initialized to zero. To evaluate the perfor-
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mance of the model through feed-forward propagation, the most common loss function for a
multi class classification problem, called cross-entropy function, can be used (Busoniu et al.,
2011). The value of the loss function identifies how well or poorly a model performs after ev-
ery iteration of the optimization. In addition, based on the error gradient in the current state
of the model, all learnable parameters will be updated during the optimization, e.g., using
gradient descent along with backpropagation. The learning rate is another hyperparameter
which has the role of controlling how fast the CNN model learns using data presented to it.
The value of this parameter is positive and in the range 0 to 1.

The last two hyperparameters in the model signify the number of epochs the model must
pass through – which indicates the number of times the learning method sees the training
dataset. It also signifies the batch size required to complete an epoch – the suggested batch
size is 64. As for actual training, it is useful to follow a two-stage process. In the first stage,
the model is trained using around 20 epochs with a batch size of 64. After that, the resulting
weights from the model are saved. These weights are then utilized to initialize the weights
for the second part of the training. During phase two, around 50 epochs of training are under-
taken. These epochs are divided into ten parts with 5 epochs in each part. Thus, the weights
from the previous training are used to initialize the new weights and train the model for
five epochs. The resulting new weights will be used for the next training run. This procedure
is continued until the selected training loss and validation criteria are reached. During the
process, training loss of a small value (i.e., approximately < 0.02) and a higher validation
accuracy (i.e., > 85%) must be aimed for.

As far as training data is concerned, sufficient face images with sufficient identities must be
available. A typical figure suggested is 70,000 images corresponding to a specific part of the
face with 200 identities. Such a dataset can be split into two groups, i.e., 70% for training and
30% validation. Finally, the training set is used to train the model, and the loss is computed
by forward propagation while updating the learnable parameters through backpropagation.

6.6 Discussion and conclusions

In this chapter, we have broadly discussed the present state of the art in face recognition
using deep learning methods and techniques. We have shown how deep learning methods
can be utilized for identity and facial similarity matching – using both full frontal faces and
partial facial data. We have shown how off-the-shelf features from well trained deep learning
models can be used to efficiently craft accurate face recognition systems. We have also shown
how to train specific models based on the various model architectures, trainable layers and
weights from well known deep models that are used for image processing and analysis.

For example, we have explored the question that surrounds the idea of face recognition us-
ing facial features. We have explored them by showing key examples to test the performance
of machine learning using the full, and parts of, the face in recognition tasks. In particular,
we have shown how deep face recognition performs when parts, such as the eyes, mouth,
nose and cheek are presented as learning and recognition cues. We have also shown that face
recognition systems can follow a number of approaches. For instance, we have shown how
to implement state of the art CNN along with the pretrained models (such as the VGG-F)
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through which key facial features can be extracted. Well known classifiers such as the Cosine
Similarity measure and Linear Support Vector machines can then be utilized to test the recog-
nition rates. Similarly, training specific models taking into consideration specific parts of the
face such as the mouth, nose, eyes, forehead and their combinations for designing efficient
face recognition systems from partial faces can be applied.

It is clear that, with the advances in deep learning methods and techniques, face recogni-
tion has immensely benefited (Guo and Zhang, 2019). In this sense, many of the problems
previously thought unsolvable are now considered to be straightforward. For example, given
two well lit frontal photos of an individual, confirming an identity match between them, us-
ing deep facial features, is now considered to be a solved problem. However, in general, the
subject of face recognition is still a current issue, with a number of challenging and unsolved
problems. For example, the issue of computer-based face recognition using partial facial data
as probes is still largely an unexplored area with key research challenges. Given that humans
and computers perform face recognition and authentication inherently differently, it is in-
triguing to understand how a computer will react to various parts of the face when they are
presented for the challenge of face recognition.

Computer assisted face recognition, starting from the 1960s, has come a long way. How-
ever, there are many challenges and hurdles still to be overcome. These challenges include,
for example, recognizing faces in poor illumination, pose variations, partial faces, inverted
faces, aged faces and faces from long distances. The question of accuracy on facial similarity
measures using deep learning techniques is largely unanswered. For example, the question
of similarity between faces related through kinship, siblings and identical twins has not yet
been answered satisfactorily. Furthermore, the question of bias in training data and how deep
learning systems should be made transparent and explainable are also pressing questions that
require to be answered satisfactorily.
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CHAPTER POINTS

• Unsupervised domain adaptation using
shallow and deep features.

• Interpolation between source and target
domains using manifolds and dictionaries.

• Generative adversarial networks for
mediating the domain shift.

7.1 Introduction

With the availability of web-scale data obtained from different devices and varied acqui-
sition conditions, we are often faced with scenarios where the data used to train a classifier
has some properties that are different from what is presented during testing. Instances like
this arise very naturally in object recognition applications where the training and testing data
are captured under different lighting conditions, in speech processing where a speaker model
trained in a noise-free indoor setting needs to be deployed in more realistic outdoor environ-
ments, or in multimedia indexing where tagged Flickr photos or YouTube videos are readily
available from which a user would want to automatically index his/her own photo/video
collection harvested with a consumer camera. Domain adaptation (DA) refers to the class of
techniques aimed to learn representations from a low-resource dataset by transferring knowl-
edge from a related, yet shifted, resource-rich dataset. Shifts between datasets can exist in the
form of changes in illumination, lighting, texture patterns, or any such biases inherent to the
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dataset. To transfer knowledge across domain-shifted data distributions, a domain-invariant
feature representation is sought that effectively phases out biases contributing to the domain
shift.

Transfer learning (TL) (Pan et al., 2010) is a related approach that addresses the data set
bias issue. The primary difference between TL and DA is due to what properties of data are
preserved across training and testing conditions. While TL deals with the case where the
conditional distribution of data labels is changing (i.e., tasks in the two domains are differ-
ent) while the marginal distribution of data is preserved, DA addresses the opposite scenario
(Daume and Marcu, 2006), where the data distributions vary between the two domains but
the task remains the same. Although we often see practitioners applying TL and DA methods
interchangeably to both these settings, in this chapter, we will focus on DA since it applies
naturally to computer vision applications such as object recognition, where one is interested
in preserving the identity of objects across variations in viewpoint, illumination, among oth-
ers.

There are two broad categories of DA techniques depending on whether the target domain
test data has either partial labels (semisupervised) or is completely unlabeled (unsupervised).
While semisupervised DA often uses correspondence from labeled target data to learn do-
main transformation (Daume and Marcu, 2006; Saenko et al., 2010), unsupervised DA uses
strategies that assume (i) certain class of transformations between the domains (Wang and
Mahadevan, 2009), (ii) the availability of discriminative features that are common to or in-
variant across both domains (namely ‘domain invariants’) (Blitzer et al., 2008; Mansour et
al., 2009), or (iii) a latent space where the difference in distribution of source and target data
is minimal (Blitzer et al., 2011). In addition to adapting between a single source and a sin-
gle target domain, there have been studies on multidomain adaptation (e.g. Mansour et al.,
2009) that consider more than one domain in source and/or target. While some of these ap-
proaches pursue ‘representation adaptation’ by learning a domain shifting transformation,
others (Duan et al., 2009; 2012) advocate a ‘classifier’-oriented approach that attempts to
obtain target classifiers by manipulating or reoptimizing classifiers trained on the source do-
main. In the rest of the chapter, we focus mainly on the unsupervised setting.

Since 2011, a significant amount of research has been done to address the challenge of
unsupervised domain adaptation. Methods based differential geometry (Gopalan et al., 2011;
2014; Gong et al., 2012; Ho and Gopalan, 2014), sparse dictionaries (Lu et al., 2015; Nguyen et
al., 2012; 2015; Shekhar et al., 2013; Xu et al., 2015) and more recently, Generative Adversarial
Networks (GANs) (Sankaranarayanan et al., 2018; Shi and Sha, 2012) have been developed. In
this chapter, we present some typical examples from the three approaches mentioned above.
For more detailed expositions of domain adaptation research, the reader is referred to Patel
et al. (2015).

7.2 Unsupervised domain adaptation using manifolds

In the spirit of adapting ‘gradually between extremes’, Gopalan et al. (2014) presented
an approach for unsupervised DA by constructing a smooth path between source and tar-
get domains using intermediate data representations that convey relevant information about
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the domain shift. Thus, without making assumptions on domain invariant properties, this
work presented the first unsupervised DA framework for object recognition by computing
an adaptation path of certain statistical characteristics from the source domain(s) to the tar-
get domain(s). A special case of this framework, presented in Gopalan et al. (2011), used
a linear generative subspace as the representation of a domain. More specifically, principal
component analysis (PCA) is applied to each of the domains, followed by representing the
subspaces as points on a Grassmann manifold. Then the geodesic between these points is
used as a statistically meaningful path to represent the domain shift. By sampling points
along the geodesic, intermediate cross-domain data representations are obtained with which
a discriminative classifier is trained to perform recognition. This work subsequently studied
other special cases of this framework such as domain representation in a high-dimensional
Reproducing Kernel Hilbert Space (RKHS) using kernel methods, and a low-dimensional
manifold representation using Laplacian Eigenmaps. Interestingly, this framework also ac-
commodates semisupervised and multidomain adaptation settings, and has been further
enhanced by simulating fine-grained domains blended with gradually varying proportions
of source and target samples, as well as by applying boosting to a pool of intermediate repre-
sentations yielded by different parameter choices.

Since the publication of Gopalan et al. (2011), there have been other related studies such
as Gong et al. (2012); Zheng et al. (2012), that discussed alternative sampling strategies along
the geodesic, and Shi and Sha (2012) that proposed an information-theoretic approach for
jointly learning domain shift features and classifiers. Multisource adaptation that could ac-
commodate different feature types across domains was addressed in Duan et al. (2012) using a
data-dependent regularization mechanism, and robustness to noise or outliers was addressed
in a low-rank reconstruction approach by Jhuo et al. (2012). More discussions and compara-
tive evaluations against many of these notable contributions are included in Patel et al. (2015).

7.2.1 Unsupervised domain adaptation using product manifolds

An application of Unsupervised Domain Adaptation (UDA) is unconstrained face recog-
nition which is a very challenging problem due to appearance variations between the probe
and gallery images caused by multiple factors such as blur, expression, illumination, pose
and resolution. As a result, face classifiers trained with the assumption that the training and
testing data are drawn from similar distributions usually have very poor performance, espe-
cially when applied to uncontrolled environments. For instance, face recognition algorithms
trained on samples from a source domain containing sharp, well-illuminated face images do
not perform well when used on a target domain containing blurred, poorly illuminated face
images (Vageeswaran et al., 2013). These algorithms’ performance further degrades when
only a limited number of images per subject is available due to the cost and other challenges
in data acquisition.

While there have been several studies addressing prespecified facial variations across
source and target domains (Zhao et al., 2003), such as the nine points of light study for illumi-
nation (Lee et al., 2005), analyzing domain shifts caused by multiple, unknown factors have
not received much attention. Domain adaptation is a recent paradigm for addressing such
transformations in a broader setting, where given labeled data from the source domain and
few (or no) labeled data from target domain, unsupervised and semisupervised approaches
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have been devised to account for variations in data across domains (Saenko et al., 2010; Ben-
David et al., 2010; Gopalan et al., 2011). Most of these techniques address domain shifts in a
statistical sense as models causing variations in data are not known. This limits their appli-
cation to the particular problem of face recognition where there is a rich literature on models
for pose, lighting, blur, expression and aging. As a result, it is important to understand do-
main shifts with respect to the underlying constraints pertaining to models that generate the
observed data. Such an analysis would necessitate the study of geometrical properties of the
image space induced by these models.

Many traditional approaches, however, often either ignore the geometric structures of the
space or naively treat the space as Euclidean (Lui, 2012). While nonlinear manifold learning
algorithms such as ISOMAP (Tenenbaum et al., 2000) or Locally Linear Embedding (LLE)
(Roweis and Saul, 2000) offer alternatives, they require large amounts of training data to es-
timate the underlying nonlinear manifold structure of the data. Such a requirement on data
may not always be satisfied in many real-world applications. One possible solution for han-
dling facial variations due to multiple factors is by employing a mathematical framework
called multilinear algebra – the algebra of higher-order tensors. As matrices represent linear
operators over a vector space, their generalization, tensors, define multilinear operators over
a set of vector spaces (Vasilescu and Terzopoulos, 2002). While there have been studies using
multilinear algebraic framework for face recognition (Vasilescu and Terzopoulos, 2002; 2007),
such approaches ignore the curved geometry of the image space and resort to a Euclidean
treatment. Attempts to incorporate nonlinear geometrical structures into the tensor comput-
ing framework have been reported in Lui and Beveridge (2010); Park and Savvides (2011a;
2011b), but they again need large training data.

A domain adaptive solution for face recognition using the tensor geometry corresponding
to models explaining facial variations, with as few as a single image per subject in the source
domain, is presented in Ho and Gopalan (2014). Instead of finding linear transformations
representing the shift across domains as in Saenko et al. (2010); Kulis et al. (2011), we propose
a model-driven approach to construct a latent domain where multifactor facial variations
across the source and target domains can be captured together. One main advantage of such
an approach is even if data within the source domain and/or the target domain is heteroge-
neous, for instance when the domain shift is due to blurring and both source and target data
contain a mix of sharp and blurred faces, the process of accounting for domain shift remains
unaltered unlike other techniques that expect the domains to be more or less homogeneous
(Saenko et al., 2010; Kulis et al., 2011; Gopalan et al., 2011). Furthermore, the proposed method
overcomes the data requirement constraint for modeling domain variations by synthesizing
multiple face images under different illumination, blur and 2D alignment from a single in-
put image on the source or target domain, and uses them to formulate a multidimensional
tensor unlike other methods like (Lui and Beveridge, 2010) that places more stringent data-
requirement constraints. The tensor obtained from the set of synthesized images can then be
represented on a product manifold by performing Higher-Order Singular Value Decompo-
sition (HOSVD) and mapping each orthogonal factored matrix to a point on a Grassmann
manifold. The order of the tensors is the number of factors used in the synthesis process. We
then recognize the target domain face labels by performing computations pertaining to the
tensor geometry for cases where the source domain either contains only one image per sub-
ject or has multiple images per subject. This work also addresses the problem of image set
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matching which is relevant to video-based face recognition where multiple frames in a video
provide evidence related to the facial identity.

Manifold-based approaches appear to have fallen out of favor due to superior performance
from methods based on Generative Adversarial Networks.

7.3 Unsupervised domain adaptation using dictionaries

Sparse and redundant signal representations have drawn much interest in vision, signal
and image processing (Bruckstein et al., 2009; Elad et al., 2010; Rubinstein et al., 2010; Wright
et al., 2010; Bo et al., 2011). This is partly because signals and images of interest can be sparsely
represented or compressible given an appropriate dictionary. In particular, we say a signal
y ∈ Rn is sparsely represented by a dictionary D ∈ RnxK when it can be well approximated by a
linear combination of a few columns of D as y ≈ Dx, where x ∈ RK is the sparse representation
vector and D is a dictionary that contains a set of basics (atoms) as its columns. Finding a
sparse representation vector entails solving the following optimization problem

x̂ = arg min
x

‖x‖0 s.t.‖y − Dx‖2 ≤ ε (7.1)

where ε is an error tolerance, ‖x‖0 is the �0-sparsity measure that counts the number of
nonzero elements in the vector x, and ‖y − Dx‖2 is the mean squared error resulted from the
sparse approximation. Solving (7.1) is NP-hard and can be approximated by various methods
(Chen et al., 2001; Patil et al. 1993; Tropp, 2004). Instead of using a predetermined dictionary,
one can directly learn a dictionary from the data. Indeed, it has been observed that learning a
dictionary directly from the training data rather than using a predetermined dictionary (e.g.
wavelet) usually leads to a more compact representation and hence can provide better results
in many image processing applications such as restoration and classification (Elad et al., 2010;
Rubinstein et al., 2010; Wright et al., 2010; Olshausen and Field, 1996; Mairal et al., 2009, 2011).

Several algorithms have been developed for the task of learning a dictionary. Two of the
most well-known algorithms are the method of optimal directions (MOD) (Engan et al., 1999)
and the K-SVD algorithm (Aharon et al., 2006). Given a set of N signals Y = [y1,y2, . . . ,yN],
the goal of KSVD and MOD algorithms is to find a dictionary D and a sparse matrix X that
minimize the following representation error

(D, X) = arg min
D,X

‖Y − DX‖2
F s.t.‖xi‖ ≤ T0,∀i = 1, . . . ,N (7.2)

where xi represents the ith column of X, ‖A‖F denotes the Frobenius norm of A, and T0 de-
notes the sparsity level. Both MOD and KSVD are iterative methods that alternate between
sparse-coding and dictionary update steps. First, a dictionary D with �2-normalized columns
is initialized. Then, the main iteration is composed of the following two stages:

• Sparse coding: In this step, D is fixed and the following optimization problem is solved to
compute the representation vector xi for each example yi

min
xi

‖yi − Dxi‖2
2 s.t.‖xi‖0 ≤ T0, ∀i = 1, . . . , N (7.3)
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FIGURE 7.1 Overview of generalized domain adaptive dictionary (Shekhar et al., 2013).

• Dictionary update: This is where both MOD and KSVD algorithms differ. The MOD al-
gorithm updates all the atoms simultaneously by solving an optimization problem whose
solution is given by D = YX+, where X+ denotes the Moore-Penrose pseudo-inverse. Even
though the MOD algorithm is very effective and usually converges in a few iterations,
it suffers from the high complexity of the matrix inversion as discussed in Aharon et
al. (2006). In the case of KSVD, the dictionary update is performed atom-by-atom in an
efficient way rather than using a matrix inversion. It has been observed that the KSVD
algorithm requires fewer iterations to converge than the MOD method.

7.3.1 Generalized domain adaptive dictionary learning

When the target data has a different distribution than the source data, the learned sparse
representation may not be optimal. This section investigates if it is possible to optimally rep-
resent both source and target by a common dictionary. Specifically, we describe a technique
that jointly learns projections of data in the two domains, and a latent dictionary that can
succinctly represent both the domains in the projected low-dimensional space as shown in
Fig. 7.1. An efficient optimization technique is presented, which can be easily extended to
multiple domains. The learned dictionary can then be used for classification. The proposed
approach does not require any explicit correspondence between the source and target do-
mains, and shows good results even when there are only a few labels available in the target
domain. Various recognition experiments show that the method performs on par or better
than competitive methods.

Consider a special case, where we have data from two domains, Y1 ∈ RdxN1 and Y2 ∈ RdxN2 .
We wish to learn a shared K-atoms dictionary, D ∈ RnxK and mappings P1 ∈ Rnxd, P2 ∈ Rnxd

onto a common low-dimensional space, which will minimize the representation error in the
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projected space. Formally, we desire to minimize the following cost function:

C1(D,P1,P2,X1,X2) = ‖P1Y1 − DX1‖2
F + ‖P2Y2 − DX2‖2

F (7.4)

subject to sparsity constraints on X1 and X2. We further assume that rows of the projection
matrices, P1 and P2 are orthogonal and normalized to unit-norm. This prevents the solution
from becoming degenerate.

Regularization: While bringing the data from two domains to a shared subspace, the
transformations should not lose too much information available in the original domains. To
facilitate this, we add a PCA-like regularization term that preserves energy in the original
signal, given as:

C2(P1,P2) = ∥∥Y1 − PT
1 P1Y1

∥∥2
F + ∥∥Y2 − PT

2 P2Y2
∥∥2

F (7.5)

We can rewrite the parameters as follows:

P̃ = [P1,P2], Ỹ =
(

Y1

0

) (
0

Y2

)
and X̃ = [X1,X2] (7.6)

Using the new notations, the overall optimization can be rewritten as:{
D∗, P̃∗, X̃∗ } = arg min

D,P̃,X̃
C1(D, P̃, X̃) + λC2(P̃) s.t. PiPT

i = I, i = 1,2 and‖x̃j‖0 ≤ T0, ∀j (7.7)

Handling multiple domains: The above formulation can be extended so that it can handle
multiple domains. For M domain problem, we simply construct matrices (Ỹ, P̃, X̃) as:

P̃ = [P1,P2, . . . ,PM], Ỹ =
⎛
⎜⎝

Y1 · · · 0
...

. . .
...

0 · · · YM

⎞
⎟⎠ ,andX̃ = [X1,X2, . . . ,XM] (7.8)

Optimization: We minimize the objective function in Eq. (7.7) by alternating between op-
timizing P̃ and (D, X̃). Specifically, when P̃ is fixed, the optimization becomes a standard
dictionary learning problem where KSVD and MOD algorithms are effective. When (D, X̃)
are fixed, we can minimize Eq. (7.7) using manifold optimization techniques (Wen and Yin,
2013). Alternatively, we can derive the optimal form of (Pi, D) and convert the objective func-
tion to a simpler form before optimization as done in Shekhar et al. (2013).

Classification: Once the shared dictionary among multiple domains is learned, our ap-
proach will carry out the classification using the following procedure. First, we project the test
sample to the latent space using the learned transformation Pi, perform sparse coding, then
compute the reconstruction error for each domain transformation. The class corresponding to
the smallest error will be the final class prediction. The procedure can be written as follows:

x̂i
te = arg min

x
‖Piy − Dx‖2

F s.t.‖x‖0 ≤ T0, ∀i (7.9)

Output class = arg min
i=1,...,C

∥∥Piy − Dx̂i
te
∥∥

2 (7.10)
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FIGURE 7.2 Pose alignment results (Shekhar et al., 2013) (a) Examples of pose-aligned images using the proposed
method. Synthesis in various conditions demonstrates the robustness of the method. (b) First few components of the
learned projection matrices for the two poses.

The error term in Eq. (7.10) is called residual error, which is a measure of unfitness of the test
sample to a particular class.

Experiments: We use the Multipie dataset (Gross et al., 2010) – a comprehensive face
dataset of 337 subjects, having images taken across 15 poses, 20 illuminations, 6 expressions
and 4 different sessions. For the purpose of our experiment, we used 129 subjects common
to Session 1 and 2. The experiment was done on 5 poses, ranging from frontal to 75o. Frontal
faces were taken as the source domain, while different off-frontal poses were taken as target
domains. Dictionaries were trained using illuminations {1, 4, 7, 12, 17} from the source and
the target poses, in Session 1 per subject. All the illumination images from Session 2, for the
target pose, were taken as probe images.

We first consider the problem of pose alignment using the proposed dictionary learning
framework. Pose alignment is challenging due to the highly nonlinear changes induced by 3-
D rotation of face. Images at the extreme pose of 60o were taken as the target pose. A shared
discriminative dictionary was learned using the approach described in this section. Given
the probe image, it was projected on the latent subspace and reconstructed using the dictio-
nary. The reconstruction was back-projected onto the source pose domain, to give the aligned
image. Fig. 7.2(a) shows the synthesized images for various conditions. We can draw some
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TABLE 7.1 Comparison of the proposed method with other algorithms for
face recognition across pose (Shekhar et al., 2013).

Method
Probe pose

Average
15° 30° 45° 60° 75°

PCA 15.3 5.3 6.5 3.6 2.6 6.7
PLS (Sharma and Jacobs, 2011) 39.3 40.5 41.6 41.1 38.7 40.2
LDA 98.0 94.2 91.7 84.9 79.0 89.5
CCA (Sharma and Jacobs, 2011) 92.1 89.7 88.0 86.1 83.0 83.5
GMLDA (Sharma et al., 2012) 99.7 99.2 98.6 94.9 95.4 97.6
FDDL (Yang et al., 2011) 96.8 90.6 94.4 91.4 90.5 92.7
SDDL (Shekhar et al., 2013) 98.4 98.2 98.9 99.1 98.8 98.7

useful insights about the method from this figure. Firstly, it can be seen that there is an op-
timal dictionary size, K = 5, where the best alignment is achieved. Further, by learning a
discriminative dictionary, the identity of the subject is retained. For K = 7, the alignment is
not good, as the learned dictionary is not able to successfully correlate the two domains when
there are more atoms in the dictionary. Dictionary with K = 3 has a higher reconstruction er-
ror, hence the result is not optimal. We chose K = 5 for additional experiments with noisy
images. It can be seen from rows 2 and 3 that the proposed method is robust even at high lev-
els of noise and missing pixels. Moreover, denoised and in-painted synthesized images are
produced as shown in rows 2 and 3 of Fig. 7.2(a), respectively. This shows the effectiveness
of our method. Moreover, the learned projection matrices (Fig. 7.2(b)) show that our method
can learn the internal structure of the two domains. As a result, it is able to learn a robust
common dictionary.

We also conducted recognition experiment using the set-up described above. Table 7.1
shows that our method compares favorably with other multiview recognition algorithms
(Sharma et al., 2012) and gives the best performance on average. The dictionary learning
algorithm, FDDL (Yang et al., 2011) is not optimal here as it cannot efficiently represent the
nonlinear changes introduced by the pose variation.

7.3.2 Joint hierarchical domain adaptation and feature learning

Complex visual data contain discriminative structures that are difficult to be fully cap-
tured by any single feature descriptor. While recent work on domain adaptation focuses on
adapting a single hand-crafted feature, it is important to perform adaptation on a hierarchy
of features to exploit visual data’s richness. This section discusses an approach for domain
adaptation based on a sparse and hierarchical network (DASH-N). Our method jointly learns
a hierarchy of features together with transformations that rectify the mismatch between dif-
ferent domains. The building block of DASH-N is the latent sparse representation. It employs
a dimensionality reduction step to prevent the data dimension from increasing too fast as one
traverses deeper into the hierarchy. Experimental results show that this method compares fa-
vorably with competing state-of-the-art sparse learning methods. In addition, it is shown that
a multilayer DASH-N performs better than a single-layer DASH-N.

Latent sparse representation: From the observation that signals often lie on a low di-
mensional manifold, previous section performs dictionary learning and sparse coding in a
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FIGURE 7.3 Overview of DASH-N algorithm (Nguyen et al., 2015). First, images are divided into small overlap-
ping patches. These patches are vectorized while maintaining their spatial arrangements. (a) Performing contrast-
normalization and dimensionality reduction using PS for source images and PT for target images. The feedbacks
between PS and PT indicate that these two transformations are learned jointly. (b) Obtaining sparse codes using the
common dictionary D1. (c) Performing max pooling. The process then repeats for layer 2 (d & e), except that the in-
put is the sparse codes from layer 1 instead of pixel intensities. At the final stage, spatial pyramid with max pooling
is used to create image descriptors. Classification is done using linear support vector machine at the final layer.

low-dimensional latent space. To facilitate further discussion, we define the latent sparse rep-
resentation and its corresponding optimization as follows:

L(Y,P,D,X) = ‖PY − DX‖2
F + α

∥∥Y − PTPY
∥∥2

F + β‖X‖1

s.t. PPT = I,and‖di‖2 = 1,∀i ∈ [1,K] (7.11)

where P ∈ Rpxd is a linear transformation that brings the data to a low-dimensional feature
space (p < d). Note that the dictionary is now in the low-dimensional space D ∈ RpxK.
The first term of the cost function promotes the sparsity of signals in the reduced space.
The second term is the amount of energy discarded by the transformation P, or the differ-
ence between low-dimensional approximations and the original signals. The minimization
of the second term encourages the learned transformation to preserve the useful informa-
tion present in the original signals. Besides the computational advantage, (Nguyen et al.,
2012) shows that this optimization can better recover the underlying sparse representation
than traditional dictionary learning methods. This formulation is attractive since it allows the
transformation of the data into another domain to handle better different sources of variation
such as illumination and geometric articulation.

We propose a method to perform hierarchical domain adaptation jointly with feature learn-
ing. Fig. 7.3 shows an overview of the proposed method. The network contains multiple
layers, each of which includes 3 sublayers as illustrated in Fig. 7.3. The first sublayer per-
forms contrast-normalization and dimensionality reduction on the input data. Sparse coding
is carried out in the second sublayer. In the final sublayer, adjacent features are max-pooled
together to produce a new feature. The output from one layer becomes the input to the next
layer. For the simplicity of notation, we consider a single source domain. The extension of
DASH-N to multiple source domains can be done using the procedure in Eq. (7.8).

Let YS ∈ RdxNS and YT ∈ RdxNT be the input data at each layer from the source domain
and target domain, respectively. Note that there are NS, d-dimensional samples in the source
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domain and NT, d-dimensional samples in the target domain. Note that we assume source
and target data have the same dimension d for simplicity of our discussion. However, our
formulation can also accommodate the scenario where data dimensions are different across
domains. Given YS and YT, in each layer of DASH-N, we learn a joint latent sparse represen-
tation by minimizing the following cost function with respect to (PS, PT, D, XS, XT):

L(YS,PS,D,XS, α,β) + λL(YT,PT,D,XT, α,β) s.t. PSPT
S = PTPT

T = I,‖di‖2 = 1,∀i ∈ [1,K]
(7.12)

where (α, β, λ) are the nonnegative constants, D ∈ RpxK is the common dictionary, PS ∈ Rpxd

and PT ∈ Rpxd are the transformations to the latent domain, XS ∈ RKxNS and XT ∈ RKxNT are
the sparse codes of the source and the target domains, respectively. As can be seen from
the above formulation, two domains are forced to share a common dictionary in the latent
domain. Together with the sparsity constraint, the common D provides a coupling effect that
promotes the discovery of common structures between the two domains. For simplicity, in
what follows, we provide a detailed discussion on a two-layer DASH-N network. Extension
of DASH-N to multiple layers is straightforward.

Layer 1: We perform dense sampling on each training image to get a set of overlapping
patches. These patches are then contrast normalized. If f is a vector corresponding to a patch,
then the contrast-normalization can be written as follows:

f̂ = f√‖f‖2 + ε
(7.13)

where ε is a small constant. We set the value of ε equal to 0.1 as it is found to work well in our
experiments. To make the computation more efficient, only a random subset of patches from
each image is used for learning the latent sparse representation. We found that setting this
number to 150 for images of maximum size of 150x150 provides a good trade-off between
accuracy and computational efficiency. After learning the dictionary D1 and the transforma-
tions (P1

S, P1
T) the sparse codes (X1

S, X1
T) are computed for all sampled patches by solving the

following optimization problem:

min
X1∗

∥∥P1∗Y1∗ − D1 X1∗
∥∥2

2 + β1
∥∥X1∗

∥∥
1 (7.14)

where ∗ indicates that the above problem can either correspond to source data or target data.
Each column of Y1 is the vectorized pixel values inside a patch. A fast implementation of the
LARS algorithm is used for solving this optimization problem (Mairal et al., 2009). Spatial
max pooling is used to aggregate the sparse codes over each 4x4 neighborhood as this pool-
ing method is particularly well-suited for the separation of sparse features (Boureau, 2012;
Boureau et al., 2010).

Layer 2: In this layer, we perform similar computations except that the input is the sparse
codes from layer 1 instead of image pixels. The features obtained from the previous layer
are aggregated by concatenation over each 4x4 neighborhood and contrast-normalized. This
results in a new representation that is more robust to occlusion and illumination. Similar
to layer 1, we also randomly sample 150 normalized feature vectors f̂ from each image for
training. �1 optimization is again employed to compute the sparse codes of the normalized
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features f̂. At the end of layer 2, the sparse codes are then aggregated using max-pooling in
a multilevel patch decomposition (i.e. spatial pyramid max pooling). At level 0 of the spatial
pyramid, a single feature vector is obtained by performing max-pooling over the whole im-
age. At level 1, the image is divided into four quadrants and max-pooling is applied to each
quadrant, yielding 4 feature vectors. Similarly, for level 2, we obtain 9 feature vectors, and so
on. In this section, max-pooling using a three-level spatial pyramid is used. As a result, the
final feature vector returned by the second layer for each image is a result of concatenating
14 feature vectors from the spatial pyramid.

Optimization: This section describes the procedure for optimization the objective function
in Eq. (7.12). First, let us define

KS = YT
S YS,KT = YT

TYT,K =
(

KS 0
0

√
λKT

)
,KS = VSΛSVT

S ,KT = VTΛTVT
T (7.15)

to be the Gram matrix of source data, target data, and their block diagonal concatenation,
respectively. It can be shown that the optimal solution of (7.12) takes the following form:

D = [
AT

S KS,
√

λ AT
TKT

]
B,PS = (YSAS)

T,PT = (YTAT)T (7.16)

For some AS ∈ RNSxp, AT ∈ RNTxp, and B ∈ R(NS+NT)xK. We can substitute these forms into the
objective function in Eq. (7.12) and optimize it with respect to (AS, AT,B) instead. Notice that
rows of each transformation live in the column subspace of the data from its own domain. In
contrast, columns of the dictionary are jointly created by the data of both source and target.
When (B, X) are fixed, we can solve for (AS, AT) by first solving the following constrained
optimization:

min
G

tr
(
GTHG

)
s.t. GT

S GS = GT
TGT = I,G = [GS,

√
λGT] (7.17)

where

H = Λ0.5VTK
(
(I − BX)(I − BX)T − αI

)
KVΛ0.5 (7.18)

Then the solutions of (AS,AT) are given by

AS = VSΛ
−0.5
S GS,AT = VTΛ−0.5

T GT (7.19)

When (AS, AT) are fixed, we can solve for (B, X) using standard sparse coding procedure:

‖Z − DX‖2
F + β

(‖XS‖1 + λ‖XT‖1
)

s.t. Z = [ASKS,
√

λATKT],X = [XS,
√

λXT],B = Z+D (7.20)

Here Z+ denotes the Moore-Penrose pseudo-inverse of the matrix Z.
Experiments. The proposed algorithm is evaluated in the context of object recognition

using a recent domain adaptation dataset (Saenko et al., 2010), containing 31 classes, with
the addition of images from the Caltech-256 dataset (Griffin et al., 2007). Domain shifts are
caused by variations in factors such as pose, lighting, resolution, etc., between images in dif-
ferent domains. Furthermore, to better assess the ability to adapt to a wide range of domains,
experimental results are also reported on new images obtained by performing halftoning and
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TABLE 7.2 Recognition rates of different approaches on four domains (C: Caltech, A: Amazon, D: DSLR, W:
Webcam). 10 common classes are used. Red color denotes the best recognition rates. Blue color denotes the second best
recognition rates.

Method C→ A C→ D A→ C A→ W W→ C W→ A D→ A D→W
Metric (Saenko et al., 2010) 33.7 35.0 27.3 36.0 21.7 32.3 30.3 55.6
SGF (Gopalan et al., 2011) 40.2 36.6 37.7 37.9 29.2 38.2 39.2 69.5
GFK (PLS+PCA) (Gong et
al., 2012)

46.1 55.0 39.6 56.9 32.8 46.2 46.2 80.2

SDDL (Shekhar et al., 2013) 49.5 76.7 27.4 72.0 29.7 49.4 48.9 72.6
HMP (Manjunath and
Chellappa, 1993)

67.7 70.2 51.7 70.0 46.8 61.5 64.7 76.0

DASH-N (1stlayer)
(Nguyen et al., 2015)

60.3 79.6 52.2 74.1 45.3 68.7 65.9 76.3

DASH-N (Nguyen et al.,
2015)

71.6 81.4 54.6 75.5 50.2 70.4 68.9 77.1

edge detection algorithms on images from the datasets in Saenko et al. (2010); Griffin et al.
(2007).

The recognition results of different algorithms on 8 pairs of source-target domains are
shown in Table 7.2. It can be seen that DASH-N outperforms all compared methods in 7 out
of 8 pairs of source-target domains. For pairs such as Caltech-Amazon, Webcam-Amazon, or
DSLR-Amazon, we achieve more than 20% improvements over the next best algorithm with-
out feature learning used in the comparison (from 49:5% to 71:6%, 49:4% to 70:4%, and 48:9%
to 68:9%, respectively). It is worth noting that while we employ a generative approach for
learning the feature, our method consistently achieves better performance than (Shekhar et
al., 2013), which uses discriminative training together with nonlinear kernels. It is also clear
from the table that the multilayer DASH-N outperforms the single-layer DASH-N. In the case
of adapting from Caltech to Amazon, the performance gain, based on a combination of fea-
tures obtained from both layers rather than just features from the first layer, is more than 10%
(from 60:3% to 71:6%).

7.3.3 Incremental dictionary learning for unsupervised domain adaptation

This section discusses an incremental dictionary learning method where some target data
called supportive samples are selected to assist adaptation, as shown in Fig. 7.4. The in-
cremental nature of this approach enables users to choose different numbers of supportive
samples according to their budget, or until when the performance is satisfactory. Supportive
samples are close to the source domain and have two properties: first, their predicted class
labels are reliable and can be used for building more discriminative classification models;
second, they act as a bridge to connect the two domains and reduce the domain mismatch.
Theoretical analysis shows that both properties are important for adaptation, enabling the
idea of adding supportive samples to the source domain. A stopping criterion is designed
to guarantee that the domain mismatch decreases monotonically during adaptation. Exper-
imental results on several widely used visual datasets show that the proposed approach
performs better than many state-of-the-art sparse learning methods.
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FIGURE 7.4 Overview of incremental dictionary learning for domain adaptation. The source dictionaries are
adapted to the target domain using a set of supportive samples. The iterative procedure guarantees that the do-
main mismatch decreases monotonically.

Given the dictionary D(k), we want to select a subset of target samples as supportive sam-
ples. We have two constraints on this selection. First, the supportive samples selected in the
previous iterations should be excluded as we want to add new data for adaptation. Second,
we select equal number of supportive samples for each class to ensure class balance during
adaptation (Gong et al., 2013). With these two constraints, we select the most confident sam-
ples that minimize the reconstruction error when represented by D(k). Then we update the
augmented source domain by adding supportive samples and retrain the dictionary. After
that, the stopping criterion is checked to see whether adding new supportive samples will
reduce the domain dissimilarity. An overview of the proposed approach is shown in Fig. 7.4.
The algorithm consists of the following main components:

Confidence matrix update: We use XS = X(0), and XT to denote the data from source and
target domains. Let L = [1, . . . ,C] represent the existing label set. Let D(0) = [D(0)

1 | · · · | D(0)
C ]

denote the original dictionary trained on source domain where D(0)
j denote the subdictionary

that corresponds to class j. Let P ∈ RNtxC denote a confidence matrix whose elements pij ∈
[0,1] represents the probability that a target sample xt

i belongs to class j. In the (k + 1)th

iteration, we update the confidence matrix P(k+1) using the current class-specific dictionaries
D(k) = [D(k)

1 | · · · | D(k)
C ].

p(k+1)
ij =

⎧⎨
⎩

2−0.5 σ exp (−e(k+1)
ij /2σ 2)∑C

l=1 2−0.5 σ exp (−e(k+1)

il /2σ 2)
if j = argmaxl p(k+1)

il

0 otherwise
(7.21)

where σ 2 is the normalization parameter and eij denotes the reconstruction error of target

sample xt
i using D(k)

j :

e(k+1)
ij = ∥∥xt

i − D(k)
j .Z(k+1)

ij

∥∥2
2 (7.22)
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Here, Z(k+1)
ij is the sparse code. We put a constraint p(k+1)

ij 
= 0 only when j is the most likely
class that sample i belongs to. This constraint guarantees that a sample cannot be selected as
a supportive sample for multiple classes.

Supportive sample selection: We select new supportive samples using W(k+1) by solving
the following optimization:

W(k+1)
j = arg max

Wj
tr
(
WjP

(k+1)
j

)
(7.23)

s.t. W(k+1)
j .

k∑
l=1

W(l)
j = 0,

∥∥W(k+1)
j

∥∥
0 = Q, j = 1, . . . ,C (7.24)

where Wj ∈ RNtxNt are diagonal matrices containing jth-column of W on the diagonal. That
is, Wj = diag([w1j,w2j, . . . ]). Similarly, Pj = diag([p1j,p2j, . . . ]). Q is the number of support-
ive samples for each class. The objective function Eq. (7.23) maximizes the confidence of the
selected supportive samples. The first constraint requires that the supportive samples in the
(k + 1)th iteration are disjoint from the previously chosen ones which ensures that we keep
adding new supportive samples to the source domain. The second constraint ensures that the
number of supportive samples for each class is balanced. The solution to Eq. (7.23) is to find
the corresponding Q supportive samples that maximize the confidence with the constraint
that old supportive samples are excluded.

Augmented source domain update: After selecting the supportive samples, we update the
augmented source data by adding weighted supportive samples to the previous source data:

X(k+1)
j = [

X(k)
j | XtW(k+1)

j P(k+1)
j

]
, k = 1, . . . ,C (7.25)

Since the supportive samples’ labels may have errors, each selected supportive sample is
weighted by its confidence. The weights indicate the reliability of the supportive samples’
labels and highly confident supportive samples will contribute more to the model.

Dictionary update: The dictionary is updated by solving the following optimization prob-
lem:

D(k+1)
j = arg min

Dj,Zj

∥∥X(k+1)
j − DjZj

∥∥2
F + λ‖Zj‖1, j = 1, . . . ,C (7.26)

We solve Eq. (7.26) using the online dictionary learning method (Mairal et al., 2009). The dic-
tionary obtained in the previous iteration is used as the initial dictionary in the next iteration.
In this way, the computational cost is relatively low.

Stopping criterion: One trivial stopping criterion is to stop when there are no new sup-
portive samples for one of the classes. But our goal is to guarantee that the adaptation process
monotonically reduces the domain divergence. In this way, the classification error bound in
the target domain will decrease as stated in Ben-David et al. (2010); Smetana et al. (2009). So,
we design in the next section a domain similarity measure and we only perform adaptation
when the domain similarity increases after each iteration. It can be shown that when adding
supportive samples to the source domain, the similarity between the source and target do-
mains will increase. Readers are referred to Lu et al. (2015) for more details on proving this
property.



258 7. Unsupervised domain adaptation using shallow and deep representations

FIGURE 7.5 The change in domain similarity when the supportive samples are added to the source domain. In
our experiments, we only continue our adaptation as long as the similarity value goes up, which is represented by
the solid lines before the slash symbols. A: Amazon, C: Caltech, W:Webcam, D: Dslr.

Experiments. We use Office+Caltech dataset containing images from four domains: Ama-
zon (A), Webcam (W), DSLR (D), and Caltech (C). This leads to a total of 12 domain pairs for
testing. 10 common classes are selected in all domains. For each class, A, C, D and W have
about 100, 100, 15 and 30 images, respectively. We follow the protocol used in Gong et al.
(2013) to generate the source and target domain data. DeCAF features (Donahue et al., 2014)
are used in our experiment. We compare two nonadaptation (NA) methods, and five state-of-
the-art unsupervised DA methods: SVM and Dictionary Learning Based Classification (DLC)
are the two NA methods, Subspace Interpolation via Dictionary Learning (SIDL) (Ni et al.,
2013), Geodesic Flow Kernel (GFK) (Gong et al., 2012), Transfer Joint Matching (TJM) (Long et
al., 2014), Landmarks (Gong et al., 2012) and DA-NBNN (Tommasi and Caputo, 2013) are the
unsupervised DA methods. DLC is implemented using the online dictionary learning method
as Mairal et al. (2009) and is also used as the initial dictionary in the proposed approach.

We also compare in change of domain similarity in Fig. 7.5 with classification results in Ta-
ble 7.3 and find that the accuracy likely increases when the domain similarity value continues
to go up as more supportive samples are added to the source domain.

We showed that dictionary learning is an effective approach in addressing domain shifts
under unsupervised setting. The general idea is to project data representations from multi-
ple domains to the same latent space where their distributions are more similar. Instead of
doing this transformation on one semantic level, we also showed the benefits of hierarchical
dictionary learning for gradual adaptation on multiple semantic levels. Finally, we demon-
strate the benefits of incrementally adding selective support samples to the source domain
are guaranteed to increase the domain similarity, which generally leads to better classifica-
tion performance.

Dictionary-based approaches appear to have fallen out of favor due to superior perfor-
mance from methods based on Generative Adversarial Networks.

7.4 Unsupervised domain adaptation using deep networks

Deep neural networks are a powerful class of machine learning models for extracting
meaningful representations from images. Despite their success in achieving state-of-the-art
performance in several visual recognition tasks (Ren et al., 2015; He et al., 2016; 2017), neural
networks suffer from domain shift i.e., the performance of neural networks drops signifi-
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TABLE 7.3 Recognition accuracies on 12 pairs of cross-domain unsupervised object recognition. A: Amazon, C: Caltech, W:Webcam, D: Dslr.

Method A→C A→D A→W C→A C→D C→W W→A W→D W→C D→A D→C D→W

NA
SVM 85.0 87.9 79.0 91.4 89.8 80.0 75.7 99.4 72.0 87.1 78.8 98.6
DLC 85.3 82.1 75.6 91.3 87.9 78.6 78.4 98.7 76.0 88.1 81.6 99.3

DA

GFK (Gong et al.,
2012)

77.3 84.7 81.0 88.5 86.0 80.3 81.8 100 73.9 85.8 76.0 97.3

SIDL (Ni et al., 2013) 84.5 81.5 74.2 90.9 89.8 78.3 75.1 100 71.1 87.9 80.1 99.3
TJM (Long et al., 2014) 80.1 84.7 75.2 89.0 85.3 76.9 84.8 100 78.0 87.4 77.4 98.6
DA-NBNN (Tommasi
and Caputo, 2013)

83.4 80.9 76.6 89.6 87.9 80.3 88.0 100 82.4 91.3 86.1 98.0

Landmarks (Gong et
al., 2013)

84.7 86.0 82.4 92.4 92.3 84.1 84.0 98.7 71.7 77.0 74.4 95.2

Online dictionary (Lu
et al., 2015)

86.7 92.4 88.5 93.3 88.5 95.6 92.8 100 88.7 93.1 89.1 99.3
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FIGURE 7.6 Domain adaptation using deep networks. Source and target feature spaces are aligned using a distri-
butional distance minimization objective.

cantly when the test distribution is different from the training distribution. To alleviate the
issue of domain shift, additional loss functions are used in the training objective to prevent
the source and target feature spaces from drifting.

The framework for deep domain adaptation is shown in Fig. 7.6. The source and the target
feature distributions are first obtained by passing the corresponding images through a fea-
ture network F. Their feature distributions look dissimilar due to the domain shift. During
domain adaptation, distributional distance between these feature spaces is minimized, while
simultaneously training a classifier model on the labeled source data.

Several discriminative and generative approaches have been proposed for the domain
adaptation problem (Ganin et al., 2016; Long et al., 2016; 2017, Hoffman et al., 2018; Sankara-
narayanan et al., 2018b). In discriminative approaches, an additional loss function is typically
used along with the classification objective to prevent the feature space drift. These functions
typically take the form of a distributional distance minimization between source and target
feature spaces (Ganin et al., 2016; Long et al., 2016; 2017). In generative approaches, a genera-
tive model (typically a Generative Adversarial Network) is trained to model the distribution
of source and target images. This knowledge about the learnt distributions is then used to
induce domain invariance during training (Hoffman et al., 2018; Sankaranarayanan et al.,
2018b).

7.4.1 Discriminative approaches for domain adaptation

Let F denote a deep neural network for extracting feature representations from images.
The network F is typically a convolutional network that acts on input images and returns a
vector as output. Let C denote a classification network that takes the feature representation
as input and returns the classification logits. Let (xs, ys) denote input-output pairs of source
domain and (xt ) denote the target inputs.
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FIGURE 7.7 Domain adversarial training.

To train a classifier model in the source domain, we minimize a cross-entropy loss given
by

Lcls = E
[−ys log

(
C

(
F

(
xs

)))]
(7.27)

The resulting classifier would perform poorly on target domain due to the domain shift.
The feature space drift is minimized using a domain adversarial loss that measures how dif-
ferent the source and target feature representations are. To implement the domain adversarial
loss, we utilize an additional network called a discriminator (D) as shown in Fig. 7.7 The dis-
criminator network takes as input the feature representations obtained from the F network
and predicts if the features come from the source or the target domain. If there is sufficient
mismatch between source and target features, the discriminator will obtain low loss value.
The feature network is then trained adversarially to maximize the discriminator’s loss. The
training will converge when the discriminator fails at its task i.e., when both source and target
feature distributions are indistinguishable.

To accomplish the above objective, the discriminator network maximizes the following
loss function:

Ldisc = log
[
D

(
F

(
xs

))] + log
[
1 − D

(
F

(
xt

))]
(7.28)

During training, the models are optimized using a combination of classification loss and
domain adversarial loss:

min
F, C

max
D

[Lcls + λ Ldisc] (7.29)

The term λ controls the weight given to the domain adversarial term in the objective. It is a
hyper-parameter that needs to be tuned while training the algorithm. The resulting algorithm
is called Domain Adversarial Training (Ganin et al., 2016).
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TABLE 7.4 Domain adaptation performance (in %) on Office-31 dataset.
A: Amazon, D: DSLR, W: Webcam.

Method A → W D → W W → D

Source only 64.2 96.1 97.8
DDC (Tzeng et al., 2014) 61.8 95.0 98.5
DAN (Long et al., 2015) 68.5 96.0 99.0
Domain Adversarial (Ganin et al., 2016) 73.0 96.4 99.2

The networks F, C and D are typically implemented as neural networks. In particular,
the F network is a deep convolutional network (such as Resnet), and C and D networks are
multilayer perceptrons. In Ganin et al. (2016), the adversarial loss is implemented using a
gradient reversal layer in which the gradients coming from the discriminator network with
Ldisc loss is modulated with a −λ factor before updating the feature network. Note that the
feature network is also updated using the classification loss. All networks are optimized using
stochastic gradient descent.

The performance of domain adversarial adaptation in comparison with other deep adap-
tation methods are shown in Table 7.4 for the Office-31 dataset, which has three domains –
Amazon (A), DSLR (D) and Webcam (W). The task is to perform classification of 31 object
categories. In Table 7.4, we observe that domain adversarial adaptation achieves signifi-
cant gains in performance compared to source only baseline, i.e., baseline models which
are trained only on source domain without any adaptation. Additionally, the model also
performs better than Deep Domain Confusion (Tzeng et al., 2014) and Deep Adaptation Net-
works (Long et al., 2015), two other discriminative adaptation techniques.

Other distance measures: While domain adversarial training is a popular choice for dis-
criminative adaptation, other distance measures can also be used for measuring distributional
mismatch between the source and the target distributions. Two such distance measures are
Maximum Mean Discrepancy (MMD) and Wasserstein distance. In MMD, distributional dis-
tance is computed as distances between mean embeddings represented using a kernel from a
Reproducing Kernel Hilbert Space (RKHS). Adaptation is then performed by minimizing the
MMD between source and target feature distributions (Long et al., 2015; 2016).

In Wasserstein-based adaptation, Wasserstein distance between source and target feature
distributions are used as a choice of distance measure. Dual form of Wasserstein distance is
computed using a discriminator function. Adaptation is performed by minimizing the dual
of Wasserstein distance between source and target feature maps (Shen et al., 2018). These
approaches perform on-par with adversarial adaptation.

Pseudo-labeling approaches: Different from adversarial approaches, in pseudo-labeling
/ self-training (Saito et al., 2017a; Zou et al., 2018; 2019), pseudo-labels are generated on the
unlabeled target samples using the current estimate of the model. Since pseudo-labels are
typically noisy, most confident pseudo-labels are picked using some measures of confidence
scores. One such measure is consistency across an ensemble of classifier models (Saito et al.,
2017a). The mined pseudo-labels are then used to retrain the model to improve the predictive
power on the target domain. This process is repeated iteratively until convergence. These
techniques can also be used in combination with adversarial adaptation.
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Regularization-based approaches: In regularization-based approaches, networks are
trained with an additional regularization term along with the cross-entropy loss for the source
domain. One common regularization function is entropy minimization (Vu et al., 2019) in
which entropy of the target logits are minimized. This enforces target samples to produce
high confidence predictions. Other forms of regularization include adversarial dropout reg-
ularization (Saito et al., 2017b) and maximum classifier discrepancy (Saito et al., 2018) in
which feature network is trained to minimize the discrepancy in logits arising from different
classifier models that are trained in combination.

Extension to multisource daptation: In multisource adaptation, the objective is to adapt
from multiple source distributions to the target distribution. Multisource adaptation is a very
useful setting in practice as real-world datasets typically contain a mixture of multiple la-
tent domains. The domain adversarial training objective can be extended to the multisource
setting using a k-way domain classifier as done in Xu et al. (2018). In Yang et al. (2020), a
curriculum-based weighting mechanism is used for selecting the best source domain sam-
ples to adapt for the given target domain. In cases where domain labels are available, latent
domain discovery can be used for mining the unknown domain labels for multiway adver-
sarial adaptation (Mancini et al., 2018).

7.4.2 Generative approaches for domain adaptation

In generative approaches, the objective is to use generative models to estimate source and
target distributions. The learnt generative models are then used in the adaptation process to
learn domain-invariant representations. Deep neural networks can be a popular choice for
learning the generative models due to their high expressive power. Three popular choices
of deep generative models are Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014), Variational Autoencoders (VAEs) (Kingma and Welling, 2013) and normalizing flows
(Papamakarios et al., 2019). GANs have been extensively used for domain adaptation as they
have been very successful in generating high fidelity samples.

Generative adversarial networks

Let {xi}i=1:N be samples corresponding to the input distribution. The objective of GANs
(Goodfellow et al., 2014) is to train a model that enables generating samples that resemble
the input distribution. To do this, GANs train a model G that maps samples from latent space
to the space of input images. The latent space is typically modeled using a known tractable
distribution such as multivariate isotropic Gaussian. Once the model G is trained, we can
synthesize samples by sampling from the latent distribution and passing it through the gen-
erative model G.

To train the generator G, we utilize a second model called the discriminator (D) or the critic
network. The objective of the discriminator is to discriminate if the samples come from real
or generated distribution. This is posed as a binary classification problem, with real samples
treated as one class while the generated samples are treated as the second class. The generator
model G is then trained to make the discriminator fail at this task. Both models G and D are
implemented using deep neural networks as shown in Fig. 7.8. The objective of GANs can
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FIGURE 7.8 GAN framework.

then be written as

min
G

max
D

[
Ex ∼ pdata

log D(x) + Ez ∼ pz log
(
1 − D

(
G(z)

))]
(7.30)

The term inside the parathesis is the negative of the binary classification loss for classifying
samples as being drawn from the real distribution pdata or the generated distribution G(pz).
While the discriminator D maximizes the objective, the generator minimizes it leading to a 2-
player minimax game. The overall objective is to find the saddle point of this 2-player game.
At convergence, the generator network synthesizes realistic samples and discriminator are
maximally confused between the real and the generated distribution.

Training GANs are extremely challenging due to the min-max nature of the training ob-
jective. Several stabilization tricks are used in practice to make the GANs converge to good
solutions (Liu et al., 2020). Some of these tricks include use of Wasserstein (Arjovsky et al.,
2017) or hinge-loss based objective (Miyato et al., 2018), using spectral normalization in net-
work architecture (Miyato et al., 2018), regularization techniques such as weight decay (Liu
et al., 2020), gradient penalty (Gulrajani et al., 2017) and feature matching losses (Liu et al.,
2020).

Conditional image synthesis: In the previous section, we focused on unconditional image
synthesis where the objective was simply to generate images that resemble the input distribu-
tion. In conditional image synthesis, we are interested in generating samples conditioned on
some variables of interest. One example is class-conditional synthesis where we are required
to generate samples belonging to one specific class. When the conditioning variable is itself
an image, the task is called image-to-image translation. Here, we are interested in transform-
ing an image belonging to one domain to a different one. In conditional image synthesis, the
conditioning variable is used as input in addition to the latent vector.

In domain adaptation, image-to-image translation models are a popular choice of gener-
ative models. Since, we are interested in unsupervised domain adaptation, we use unpaired
image-to-image translation models in which source and target images do not have any corre-



7.4. Unsupervised domain adaptation using deep networks 265

FIGURE 7.9 (a) CycleGAN framework, (b) Adversarial and cycle consistency loss for the forward model, (c) Ad-
versarial and cycle-consistency losses for the reverse model.

spondences. The idea is to translate source domain images to look like target, and then train
a classifier on the translated source domain samples using source labels as ground truth. The
trained classifier can then be used for making test-time predictions on the target domain.

CycleGAN: CycleGAN is a popular model for unpaired image-to-image translation. Let X
and Y denote two domains between which we need to train the image translation models. In
CycleGAN, we use two models – a forward model G which translates images from a domain
X to domain Y, and a reverse model F which translates images from domain Y to domain X. A
discriminator network DX is used to obtain adversarial loss to ensure that samples produced
by F are indistinguishable from real distribution X. Similarly, a second discriminator DY en-
courages samples produced by G to be indistinguishable from the domain Y. Fig. 7.9 shows
an overview of CycleGAN framework.

While the discriminator losses encourage realism in generated samples, there is no term
in the objective to enforce content preservation. That is, there is no way to prevent a sample
from one domain (e.g. Cat) to map to a different semantic class in the other domain (e.g.
Dog). To prevent this, a cycle-consistent term is used in the objective. The idea is to ensure
that applying both forward and reverse maps to the same sample produces back the input,
i.e., F(G(x)) ≈ x and G(F(y)) ≈ y. L1 loss is typically used for cycle consistency.

Lcyc(G, F ) = Ex∼pdata(x)

[‖ F
(
G(x)

) − x ‖] + Ex∼pdata(y)

[‖ G
(
F(y)

) − y ‖] (7.31)

The CycleGAN model is trained using a combination of adversarial losses and cycle-
consistency losses.

L = Ladv1 + Ladv2 + λ Lcyc (7.32)

In Fig. 7.10, we depict the results of training CycleGAN on the following datasets: paintings,
Horse to zebra, winter to summer and aerial photos to google maps. We observe that images
are translated from one domain to another while preserving the content. The reconstruction
F(G(x)) well approximates the input sample x, which shows the importance of cycle consis-
tency term in preserving the content. In addition, the generated samples are realistic, which
shows the effectiveness of the adversarial losses.

CycleGAN based domain adaptation: In the previous section, we discussed the Cycle-
GAN model and how it can be used for unpaired image-to-image translation. Now, we show
how these models can be used for unsupervised domain adaptation (Hoffman et al., 2018).
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FIGURE 7.10 CycleGAN results. Input images are shown in the left panel, while the translation of the forward
model and back-translation is shown in the middle and right panel respectively.

First, a CycleGAN model is trained to translate between the source and the target domains.
Then, a task model (classifier / segmentation model) is trained on the translated source im-
ages using source labels as ground truth. For the task model to train well, an additional
discriminator loss is used on the feature maps of translated source images and true target
images. This ensures that the feature distribution of translated source images and target im-
ages is aligned. The training framework of this approach, also known as CyCADA (Hoffman
et al., 2018), is shown in Fig. 7.11.

Distributional distance minimization with generative models: An alternative approach
to generative domain adaptation is by utilizing GANs for guiding distributional distance
minimization. Recall from Section 7.4.1 that domain adaptation is posed as a distributional
distance minimization problem between source and target feature distributions. Instead of
directly performing distance minimization in the feature space, the idea is to project the fea-
ture back into pixel-space using GANs and perform distributional distance minimization in
this projected image space (Fig. 7.12). The authors of Sankaranarayanan et al. (2018b) called
this approach “Generate to Adapt”.

Projecting features back into image space has two main benefits: First, the capacity of the
discriminator network is effectively increased due to the projection step. Second, the projec-
tion step helps preserve semantic content in the generated features. That is, it prevents target
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FIGURE 7.11 Framework of CyCADA.

FIGURE 7.12 Framework of Generate to Adapt.

TABLE 7.5 Domain adaptation performance using generative approaches on Digits dataset.
Classification accuracy in % is reported. MN – MNIST, US – USPS, SV – SVHN.

Method MS → US US → MN SV → MN

Source only 79.1 57.1 60.3
CoGAN (Liu and Tuzel, 2016) 61.8 95.0 98.5
PixelDA (Bousmalis et al., 2017) 73.0 96.4 99.2
CyCADA (Hoffman et al., 2018) 95.6 96.5 90.4
Generate to Adapt (Sankaranarayanan et al., 2018b) 92.8 95.3 92.4
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TABLE 7.6 Semantic segmentation performance on GTA-5 - > Cityscapes adaptation. IoU scores for each category and mean IoU scores (mIoU)
are reported.
Method Road Side-

walk
Bldg. Wall Fence Pole T.

Light
T.
Sign

Veg Ter-
rain

Sky Per-
son

Rider Car Truck Bus Train M.
Bike

Bike mIoU

Source
only

73.5 21.3 72.3 18.9 14.3 12.5 15.1 5.3 77.2 17.4 64.3 43.7 12.8 75.4 24.8 7.8 0.0 4.9 1.8 29.6

Cy-
CADA

79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

Generate
to Adapt

88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1

Target
only

96.5 74.6 86.1 37.1 33.2 30.2 39.7 51.6 87.3 52.6 90.4 60.1 31.7 88.4 54.9 52.3 34.7 33.6 59.1 57.6
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TABLE 7.7 A comparison of manifold, dictionary, and deep learning approaches for un-
supervised domain adaptation.

Source Target Manifolds
(2012)

Dictionaries
(2015)

Deep
features
(2017)

Deep
features and
GANs (2018)

Webcam Dslr 71.2 99.5 99.8
Dslr Webcam 68.8 72 98.2 97.9
Amazon Webcam 55.6 72 62.4 86.5
Amazon Dslr 64 87.7
Dslr Amazon 48.9 52 72.8
Webcam Amazon 49.4 48.4 71.4

features from one class to be mapped to a different class as the reconstruction network pro-
vides supervisory signal in preserving the semantic content.

The framework of Generate to Adapt is shown in Fig. 7.12. Features of source and target
images are extracted using a feature network F. The obtained features are then passed through
two streams: The first stream is a classification branch that is trained using cross-entropy loss
on the source domain. The second steam is the distance minimization branch. In this stream,
the source and the target features are first inverted back into image space using a generator
network G. The generated samples are then passed through a discriminator network that
discriminates if the samples come from real (source) or fake (target) domain. In addition,
it also performs class label prediction on the source reconstructions using source labels as
ground truth. This helps obtain class consistency in the reconstructed samples.

The feature network F is then trained adversarially to make the target reconstructions look
like source. This happens only when the source and target feature distributions overlap. Ad-
ditionally, the signal obtained from stream 1 helps features obtain class consistent predictions.

Results: In Table 7.5, we show the results of generative approaches on cross-domain classi-
fication tasks using digits dataset. Three datasets are used for this purpose: MNIST, USPS and
SVHN. In each of the adaptation setting, we observe that source only baseline achieves low
performance. Both CyCADA and Generate to Adapt achieve significant performance gains
compared to the baseline model. In addition, they also outperform CoGAN and PixelDA, two
other GAN-based adaptation approaches.

In Table 7.6, we report the performance on cross-domain semantic segmentation task. The
source domain is GTA-5, which is a synthetic dataset of street scenes, while the target domain
is the real dataset – Cityscapes. We use VGG-based FCN architecture for the feature network
(Sankaranarayanan et al., 2018b). Intersection of Union (IoU) scores for each semantic class
along with the mean IoU (mIoU) scores is reported. We observe that both CyCADA and
Generate to Adapt achieve significant IoU gains compared to the source only baseline model.
However, there is a huge gap compared to the target-only model, which is the oracle model
trained using true target labels.

Table 7.7 given below provides a comparison among manifold, dictionary, and GAN-based
approaches for unsupervised domain adaptation on the Office dataset. GAN-based methods
are providing the best performance.
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7.5 Summary

In this chapter, we discussed approaches based on differential geometry, sparse representa-
tion and deep neural networks for domain adaptation. Two broad classes of techniques were
presented: discriminative and generative approaches. In discriminative approaches, we train
a classifier model while employing additional losses to make the source and target feature
distributions similar. A distributional distance minimization objective is used for this task.
In generative approaches, we utilize a generative model to perform domain adaptation. One
approach is to train intermediate dictionaries and a cross-domain GAN for mapping samples
from source domain to target and training a classifier model on the transformed target im-
ages. The second approach takes a distributional distance minimization formulation and uses
GANs to guide the distributional distance minimization. All these approaches are validated
on cross-domain recognition and semantic segmentation tasks.
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CHAPTER POINTS

• The domain adaptation task for semantic
segmentation is formally introduced and
the different levels at which adaptation can
be performed are presented.

• Wide review of domain adaptation
techniques for semantic segmentation.

• First review of the recent advancements in
continual learning for semantic
segmentation.

8.1 Introduction

The standard supervised learning setting assumes the availability of a large training set
containing data with the same statistical properties as the target data labeled according to
the problem at hand. This learning setup has been used to design a huge number of machine
learning strategies, from simple linear classifiers to advanced deep learning methods and has
allowed to obtain a robust theoretical framework.

When moving to practical applications, however, some limitations of this setup arise. First
of all, a large amount of training data for the considered setting and problem is typically
not available. While very large generic datasets are publicly available, the acquisition and
labeling of a large amount of data for a specific setting is typically too expensive and time con-
suming for most companies developing machine learning systems. This raised the need for
domain adaptation techniques able to transfer the learned knowledge from a generic source
dataset to the target data of the problem at hand. These can be either partially supervised,
i.e., a small amount of labeled data for the target set is available, or unsupervised, when no
labeling information or even no data at all, is available for the target domain.
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Another common limitation is that the labeling data may only partially or not exactly
match the target problem (i.e., the so-called weakly supervised learning problem). Many re-
cent research strategies aim at exploiting labeling data belonging to a different but related
problem or to a set of classes different from the target one. Related to this, in many cases the
target problem may not even be completely defined at the starting point with new classes
or new tasks being added at run-time. Continual learning strategies deal with these settings
aiming at progressively learning the new tasks or classes without retraining from scratch the
machine learning model.

This general discussion applies to many learning models and target problems, but becomes
very relevant when a huge amount of data and a large computational effort for training are
needed. In particular, this is the case of image and video understanding problems, which
are nowadays typically solved with complex deep learning models. For this reason, transfer
learning for this kind of problem has been widely studied and many solutions have been
proposed especially in the image classification field, which is the simplest and most classical
global-level image understanding problem.

In this chapter, instead, we focus on the more challenging semantic segmentation task
where, in spite of an image-level classification, a dense pixel-level labeling is performed. This
problem is more demanding but also particularly interesting since the labeling operation is
highly time-consuming (much more than in image classification), thus making the construc-
tion of large training sets more difficult. Even if a huge number of strategies can be exploited
for this task, nowadays most methods exploit deep learning strategies and, in particular, Con-
volutional Neural Networks (CNNs) with an auto-encoder structure; in this chapter we will
focus on this architecture.

We start by dealing with the Unsupervised (or partially supervised) Domain Adaptation
(UDA) task. In the standard setting, the task remains the same while there is a shift in the
statistical properties of the data when moving from the source to the target domain set. We
will formally introduce the problem in Section 8.2.1, considering also more advanced config-
urations where both the domain and the task can change. The adaptation of the deep learning
network to the target domain can be done at different stages of the deep network, i.e., (1) at
the input level by translating the images to a new domain more similar to the target one, (2) at
the feature level by constructing a feature space where the various classes are better separated
making the description more robust to the change of domain, and finally (3) at the output
level by enforcing a coherence between the output probability spaces when using data from
the two domains. These targets can be achieved using different strategies such as adversarial
learning, generative networks for domain translation, self-teaching, entropy minimization,
and many others. Section 8.2.3 will present in detail the most successful strategies.

In the second part of this chapter, we will analyze Continual Learning (CL) strategies,
which are designed to handle changes of tasks over time. Such changes are typically rep-
resented by an expansion of the label set, by adding new labels or by splitting the existing
ones into more refined subclasses. One of the main targets is the capability to adapt the net-
work to the new setting using only data concerning the new tasks and without retraining
the model from scratch. However, this is highly nontrivial due to the so-called catastrophic
forgetting phenomenon, i.e., a machine learning model tends to forget knowledge about pre-
vious tasks when it learns new ones. We will start by formally introducing this problem in
Section 8.3.1 together with the wide range of experimental scenarios that can be considered.
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Then, in Section 8.3.3 we will show how it can be tackled by means of knowledge preser-
vation strategies, especially based on the knowledge distillation framework. Other strategies
are based on parameter freezing or slowing down the learning in some parts of the network,
on trying to regenerate past (and no longer available) data of the previous classes using gen-
erative networks or exploiting web-crawled data.

8.1.1 Problem formulation

In this section we provide a formal definition of the Transfer Learning problem and we
introduce some notation that we will use in the rest of the chapter. Let us define a domain
D = {X ,P (X)}, where X is the space of input data and P(X) is the probability distribution
function over that input data. A task T over the domain D is a combination of a label space Y
with the predictive function f (·) modeling the conditional probability distribution P(Y |X).
Thus, any supervised machine learning problem can be generally attributed to the search for
a function h : X → Y which better approximates the unknown underlying f (·), by examining
a set of labeled training samples drawn from the joint distribution P(X,Y ) over X ×Y .

Let us assume that the input data domain D is not unique, e.g., there exist separate source
DS and target DT domains (e.g., in classical UDA) or the domain is split into multiple pieces
D(t), t = 1, ..., Tmax available for training at separate times (e.g., in classical CL). Furthermore,
over these domains different tasks may need to be solved, e.g., two different tasks TS and
TT could have been respectively chosen for the source and target domains or there can be a
sequence of tasks T (t), t = 1, ..., Tmax to be solved at different stages t of the learning process.
Then, transfer learning is defined as seeking for an improved predictive function fT (·) over
the target domain (or over multiple target domains), relying on useful information extracted
from source task TS on DS , in case DS �= DT or TS �= TT .

Notice how domain adaptation and continual learning can be viewed as two special cases
of transfer learning; in the first case, the source and target domain are different while the task
is the same, while in the second case the macro-domain is the same (but is made available in
separate portions) and the task changes.

8.2 Unsupervised domain adaptation

Over the past few years, deep learning has had a groundbreaking impact on the computer
vision field. Before the deep learning revolution, semantic segmentation was a very chal-
lenging task and even sophisticated algorithms were achieving only mediocre performance;
nowadays, with the advent of deep neural networks we can obtain remarkable results, pro-
vided that enough computational resources are available. Nonetheless, the potential stored
in deep learning models can be fully unleashed only when sufficiently plentiful and carefully
labeled training data is available. The complexity enclosed in the millions of learnable param-
eters of state-of-the-art deep learning models easily leads to overfitting of the training data,
rather than to an enhanced model performance, and this has to be counteracted by using
huge datasets for training. A major example of the central role played by the availability of
large amounts of training data is the ImageNet large-scale dataset (Deng et al., 2009), whose
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contribution in the early development and expansion of deep neural networks for image clas-
sification is certainly very relevant.

Unfortunately, the collection and annotation of data samples is often extremely expensive,
time consuming and error-prone, since it requires a large amount of human supervision in the
process. The excessive cost may prevent from gathering enough data to address a new task
or to move in a new environment, thus posing a serious threat to the remarkable advance
brought by deep learning approaches. Therefore, it may be extremely beneficial to rely on
previously built datasets, whenever they share similar properties to the target data. In this
way, already available samples can be efficiently exploited to address the current task, since
they belong to a domain correlated to the target one.

Even though the transferring of information from related domains appears quite appeal-
ing and fairly straightforward, in practice the process requires careful handling. Deep neural
networks typically lack generalization skills; in other words, even a small change in data dis-
tribution between training and test statistical distributions might cause a severe drop of per-
formance. For this reason, the simple application of a pretrained model in a new environment
is likely to fail, as domain-specific attributes are usually captured alongside domain-invariant
ones, thus preventing an effective knowledge transfer. In this scenario, Domain Adaptation
comes in handy, as it allows to handle the statistical gap between source and target represen-
tations. The ultimate goal of the adaptation effort is to learn a prediction model on a selected
task working optimally on both source and target domains, while supervision largely (or
solely) comes from the label-abundant source domain. To this end, an efficient transfer of
knowledge learned in the source domain to the target one is crucial to eventually reach an
overall good performance. Particularly interesting is the Unsupervised Domain Adaptation
(UDA) setting, in which target annotations are totally missing. This is an extremely favor-
able, yet challenging, scenario, as data from the target domain no longer requires expensive
labeling.

Recently, the domain adaptation task has been very actively studied in the context of deep
learning applied to visual tasks. While deep convolutional frameworks have proven to be
capable of learning visual features useful to solve multiple related problems (e.g. image classi-
fication, object detection, semantic segmentation), the transferability of those representations
typically shows to decrease when moving to deeper network layers (Long et al., 2015).

Early works on domain adaptation for deep networks mainly focused on the image clas-
sification task. In many approaches a layer-wise measure of statistical domain discrepancy
is jointly estimated and minimized, thus promoting the extraction of domain-invariant fea-
ture representations, while discrimination ability is guaranteed by a task-specific loss. Later,
adversarial domain adaptation strategies have proven to be extremely successful, in which
schemes the domain discrepancy is expressed in the form of a learnable discriminator and
its minimization is performed in an adversarial manner. More details on adversarial learn-
ing and its use in domain adaptation will be provided in Section 8.2.3.1. This has effectively
opened the door to domain adaptation solutions apt to solve the semantic segmentation task,
where the inherent higher complexity in terms of network representations needed for pixel-
wise classification calls for more advanced solutions.
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FIGURE 8.1 Different settings for domain adaptation, according to how source and target class sets are related.

8.2.1 Domain adaptation problem formulation

Domain Adaptation (DA) is a special case of transfer learning, called Transductive Transfer
Learning, in which the source and target tasks coincide (TS = TT ), whereas the discrep-
ancy lies in the domain difference (DS �= DT ). In addition, domain adaptation is commonly
intended in a homogeneous fashion, when the domain shift happens at a statistical level
(P(XS,YS) �= P(XT ,YT )) rather than being due to distinct input spaces (XS and XT belong to
the same semantic domain, e.g., urban scene images) (Wang and Deng, 2018).

Recently, some researches have considered more challenging scenarios than the standard
homogeneous DA, allowing for separate sets of semantic classes in the source and target
domains (CS and CT ). Depending on how the source CS and target CT sets are related, it is
possible to identify multiple DA scenarios (Fig. 8.1):

• Closed Set DA: it corresponds to the homogeneous case, where semantic classes are com-
pletely shared between source and target domains (CS = CT ).

• Partial DA: in this setup there exist some source classes that do not appear in the target
domain (CS ⊃ CT ).

• Open Set DA: conversely to partial DA, here the presence of some target private classes is
admitted, for which no training examples in the source domain are available (CS ⊂ CT ).

• Open-Partial Set DA: the source and target domains include separate sets of semantic classes
(Saito et al., 2020), with a subset of those in common (CS �= CT , CS ∩ CT �= ∅). However,
elements belonging to the class subset exclusive to the target domain have only to be ac-
knowledged as not part of the shared classes.

• Boundless DA: this setup is very similar to the open set one, but objects of target private
classes must be explicitly classified rather than only be associated to a general unknown
target class. This setting has been recently introduced (Bucher et al., 2020) and it represents
the most ambitious one, since it admits complete unawareness beforehand about semantic
content of target data.
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In the following sections, the focus will be placed on the standard most-diffused closed set
adaptation, as, up to now, this is by far the most explored setup.

According to the degree of annotations availability in the target domain, the adaptation
problem is subject to a further categorization, ranging from the full or partially annotated
supervised or semisupervised settings to the completely label deprived unsupervised scenario. In
particular, Unsupervised Domain Adaptation (UDA) will be discussed, as it has recently wit-
nessed an increase in popularity, especially in relation to the semantic segmentation task, and
it involves many practical applications. More specifically, it is assumed that a set of labeled
source data {xs

i , y
s
i } drawn accordingly to the source joint distribution over XS × YS is pro-

vided, paired with a set of unlabeled samples {xt
i }, retrieved from a distinct target marginal

distribution over XT . The objective is to discover a predictive function correctly modeling the
task input-label relation in the target domain, while knowledge on the chosen task can be
extracted only from source labeled samples.

Furthermore, for standard domain adaptation techniques to work, source and target do-
mains should be somehow related, meaning that they should share task-relevant content,
while low-level attributes may differ. This scenario is commonly referred to as one-step DA,
as knowledge transferring happens directly across source and target data without intermedi-
ate stages.

8.2.2 Adaptation focus

As previously discussed, behind the performance degradation suffered by deep prediction
models applied on new target environments lies the covariate shift phenomenon affecting
source and target input data samples. For this reason, most of domain adaptation research
builds upon bridging the statistical gap between domain distributions, in order for the pre-
diction model to yield satisfactory results whenever those distributions are matched.

Various strategies have been explored to achieve the statistical matching, which will be
thoroughly discussed in Section 8.2.3. A more general categorization of domain adaptation
techniques, however, can be inferred, according to where in the employed semantic segmen-
tation model the statistical discrepancy happens to be addressed. In particular, different data
representations could be subject to adaptation, from the bare images prior to classification
up to intermediate and output network activations (Fig. 8.2). In the following, a description
of the main ideas behind adaptation approaches will be provided, grouped by where the
adaptation effort is focused.

8.2.2.1 Input level adaptation
A first strategy is to perform adaptation at the input level, directly on images before they

are fed to the segmentation network (as shown in the leftmost part of Fig. 8.2). The idea is
to force data samples from either domain to reach an uniform visual appearance, meaning
that they not only have to carry high-level semantic similarity, but their low-level statistical
discrepancy should be matched as well. This because low-level domain dependent attributes,
even though they do not define the semantic content of the input image, can still be captured
by the prediction model, thus leading to incorrect predictions when a domain change alters
them. A clear example of this is the synthetic to real adaptation; although it may be quite re-
alistic, synthetic data can mimic real-word properties up to a certain extent. Thus, it is usually
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FIGURE 8.2 General scheme of an auto-encoder network for semantic segmentation highlighting the different
network stages on which domain adaptation strategies can be applied, from the input image space up to intermediate
or output network activations.

possible to find synthetic peculiar traits, however small, which can undermine the efficacy of
a model trained on synthetic data in a real-world environment.

The common approach to address domain adaptation at the input level is to map the
data to a new image space, where the projected source (or target) samples carry an en-
hanced perceptual resemblance to target (or source) ones. This is normally achieved with
the help of style-transfer techniques, whose objective is turned into matching source and tar-
get marginal distributions in the image space. By feeding in input supervised data from the
new domain-invariant space to the segmentation network, the predictor should now able to
retain consistent results across domains.

An upside of this approach is its complete independence with respect to the segmentation
network currently in use that does not require any modification. This, however, comes with
a cost, which is that, in its vanilla scheme without any extra regularizing factors, marginal
alignment may be performed without the class-conditional distributions being simultane-
ously matched. In other words, it may be possible to end up with domain invariant repre-
sentations, which yet lack the semantic coherence with the original data crucial to solve the
segmentation task. To get past this problem, multiple solutions have been proposed to achieve
semantically consistent image translations, for example through image reconstruction con-
straints or additional loss components enforcing the coherence of segmentation predictions.

8.2.2.2 Feature level adaptation

An alternative approach is to focus the adaptation on feature representations, pursuing
a distribution alignment of network latent embeddings, which are normally retrieved from
the encoder output in the commonly employed auto-encoder architecture (even if adapta-
tion at other network stages has also been employed). The primary objective is to build a
domain invariant latent space, in which features extracted either from source or target input
images observe the same distribution. In the end, learning solely from supervision on source
representations should result in a good performance also on the target domain, as shared
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classification in the adapted latent space should be jointly effective on both source and target
representations when distributed alike.

In the context of semantic segmentation, the feature space retains significant complexity
due to its high-dimensionality, which is necessary for the prediction model to simultane-
ously capture global semantic clues, while attaining pixel-level accuracy. In addition, as for
the input level adaptation, a semantically unaware alignment of marginal distributions (e.g.,
standard adversarial adaptation) does not guarantee that the joint input-label distributions
are matching, since no information can be derived from unlabeled target samples about the
target joint distribution. For these reasons, many feature level adaptation techniques that
have been successfully devised for image classification do not easily extend to the dense seg-
mentation task, and in general require careful tuning and further regularization.

8.2.2.3 Output level adaptation
Finally, the last class of domain adaptation techniques exploits a cross-domain distribution

alignment over the network output, i.e., typically the output per-class probability space. Not
only prediction probability maps have proven to retain sufficient complexity and richness
of semantic information, but they also span a low-dimensional space over which statistical
alignment happens to be achieved much more effectively, for example by the domain adver-
sarial strategy. In addition, source knowledge can be indirectly translated over the unlabeled
target domain by resorting to some form of self-taught supervision extracted from target
prediction maps, whose careful introduction in the learning process to support the standard
source supervision may result in an effective cross-domain adaptation of the network per-
formance. Source priors derived from label distribution have proven to provide an useful
regularization to the learning process as well, since they usually identify high-level semantic
properties shared across domains.

8.2.3 Unsupervised domain adaptation techniques

In the following sections the most relevant approaches to address the Unsupervised Do-
main Adaptation in semantic segmentation will be discussed. For each set of techniques,
some works whose proposed adaptation solutions can be associated to that class will be
presented. However, it should be stressed that most of the domain adaptation frameworks
recently introduced resort to a combination of multiple techniques to improve performance.

8.2.3.1 Domain adversarial adaptation
Adversarial learning has been originally introduced for image generation (Goodfellow et

al., 2014). The main objective behind the generative task is to retrieve an unknown probabil-
ity distribution modeling data from the employed training set. The adversarial strategy has
proven extremely effective in solving this problem, since no explicit expression of the under-
lying target data distribution has to be found, and, more importantly, no specific learning
objective to train the generative model is required. The learning process builds upon a min-
max game, where a generator network is progressively guided by a discriminator network to
produce realistic samples. In Goodfellow et al. (2014), the discriminator is a binary classifier
whose goal is to discern between the original training data and the data produced by the gen-
erator. The generator is instead a generative model that takes in input random noise (or some
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FIGURE 8.3 Training of a generative adversarial network. Update step of the discriminator (top) and of the gen-
erator (bottom).

conditioning data in more recent variations of the approach) and produces data (i.e., images
in the setting of interest) resembling the ones in the training set. It aims at constantly improv-
ing the realism of its output samples to fool the discriminative action of its opponent, and
this is achieved by using a loss function whose minimization in turn maximizes the errors
of the discriminator. The model is trained by alternating a discriminator training step, aim-
ing at maximizing its accuracy, and a generator optimization phase with the opposite target
(see Fig. 8.3). If correctly carried out, the adversarial competition should result in a statistical
distribution of generated data that fully matches the training set one, meaning that original
and generated data should be statistically indistinguishable. In addition, the discriminator
should be able to both capture and express a measure of statistical discrepancy in the form of
a structured learnable loss. Therefore, the objective function can be thought as being jointly
learned and optimized in the adversarial process, allowing it to adapt to the specific context.

Adversarial learning has been successfully extended to the domain adaptation task. The
real-fake discriminator is now turned into a domain classifier that is used to drive the adap-
tation process. Its discriminative action is, in fact, focused on capturing the statistical discrep-
ancy between representations from separate domains, which is responsible for the perfor-
mance degradation and thus has to be reduced in order to achieve an effective adaptation.
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FIGURE 8.4 Graphical representation of the standard adversarial adaptation strategy. A domain discrimination
captures the statistical discrepancy between source and target representations (e.g., segmentation network’s output
or features maps computed from one or the other domain). Its supervisory signal is then exploited to perform domain
alignment.

FIGURE 8.5 Graphical representation of an output adversarial adaptation strategy, where domain alignment is
performed indirectly by bridging the distribution gap between source annotation maps and network predictions
from either source or target domains.

There are two possible targets for the domain classifier. The first is to discriminate between
internal or output representations extracted from data in either source or target domains
(Fig. 8.4). This allows to introduce additional loss terms enforcing the construction of fea-
ture or output spaces that are more domain invariant. Alternatively, it is possible to use the
discriminator to distinguish between the output of the network (that can correspond both to
inputs from the source and from the target domain) and the ground truth segmentations (that
in the unsupervised setting are only present in the source domain). Since in the adversarial
model there is no need to have ground truth data matching the provided samples, this allows
to use also the target domain images for which no ground truth is available and to enforce
that their predicted segmentation maps have statistical properties similar to the ground truth
ones (Fig. 8.5). Using these strategies, the standard supervision from the annotated source
data is joined by a supervisory signal from the domain discriminator, which pushes the pre-
diction network towards domain invariance, in turn mitigating the intrinsic bias towards the
supervised source domain.

In the wake of the success of adversarial domain adaptation for image classification (Ganin
and Lempitsky, 2015; Ganin et al., 2016), the adversarial strategy has been introduced also in
the context of semantic segmentation to achieve domain alignment over latent feature em-
beddings (Hoffman et al., 2016). Yet, as previously discussed, the global domain alignment
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of marginal distributions provided by the vanilla domain adversarial scheme may end up in
incorrect semantic knowledge transfer across domains, with class-conditional distributions
neglected in the learning process. For this reason, to reach an effective adversarial adaptation
when dealing with the semantic segmentation task, additional modules should be embedded
in the adaptation pipeline.

A possible solution is to integrate adversarial feature alignment in a generative approach
(see Section 8.2.3.2), as done in several works (Li et al., 2019; Hoffman et al., 2018; Chen et al.,
2019c; Toldo et al., 2020). Here the goal is to strengthen the image space adaptation, so that
the attribute transferring to match visual appearances of images from different domains is ex-
tended inside the feature space. An alternative is to perform category-wise adaptation (Chen
et al., 2017; Du et al., 2019). The idea is to resort to class-wise adversarial learning, by intro-
ducing multiple per-class distinct feature discriminators, that, in principle, should provide a
semantically consistent knowledge transfer, which is absent in the standard global adapta-
tion. Finally, with a different perspective it is possible to rely on a reconstruction constraint
to enforce domain invariance over latent feature embeddings (Sankaranarayanan et al., 2018;
Murez et al., 2018; Zhu et al., 2018). Adversarial learning in this case is applied over the recon-
struction image-level space, to guarantee that feature representations can be projected back
to either source or target image spaces without distinction.

As previously observed, the semantic segmentation task entails a quite complex feature
space, due to the high dimensionality of its representations. Thus, to bypass the complexity
encompassed in feature space adaptation, a research direction has been to focus the adapta-
tion effort to the segmentation output space (Tsai et al., 2018; Chen et al., 2018; Chang et al.,
2019; Luo et al., 2019; Yang et al., 2020a; Biasetton et al., 2019; Michieli et al., 2020; Spadotto
et al., 2020). The low-dimensional output representations, in fact, have been shown to retain
enough semantic information for a successful adaptation. In this new output level adversar-
ial scheme, a domain discriminator learns to discover the domain from which segmentation
maps are originated. Simultaneously, the segmentation network plays the generative role
by providing cross-domain statistically close predictions to fool the discerning action of the
domain classifier. While the common solution has been to align source and target output rep-
resentations (Tsai et al., 2018; Chen et al., 2018; Chang et al., 2019; Luo et al., 2019; Yang et
al., 2020a), some works have revisited the standard approach by seeking for an indirect do-
main alignment (Biasetton et al., 2019; Michieli et al., 2020; Spadotto et al., 2020), by forcing
predictions from either domain to be distributed as ground-truth source labels (as depicted
in Fig. 8.5).

Recently, new approaches (Vu et al., 2019b,a; Tsai et al., 2019) have been built upon the
extraction of meaningful patterns from the segmentation output space. The intention is to
provide the domain discriminator with a more functional and significant understanding of
source and target representations, allowing it to yield a more effective guidance in the adap-
tation process. This is done by manually extracting some meaningful information from both
source and target data (e.g., entropy maps over segmentation predictions (Vu et al., 2019b,a))
to be fed to the discriminator network. In turn, by focusing on meaningful semantic clues
from data representations, the adversarial alignment over activations of the segmentation
network should be enhanced.
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8.2.3.2 Generative-based adaptation

Image-to-image translation is a class of generative techniques whose main objective is to
learn a suitable function to project images from one domain to another. In other words, the
idea is to discover the joint distribution of image data from separate domains. The image-
to-image translation task can be effectively exploited in domain adaptation. What could be
achieved is, in fact, the transferring of visual attributes from the target domain to the source
one, while preserving source semantic information. By doing so, the covariate shift phe-
nomena at the root of the classifier performance drop is mitigated. In this direction, several
works have resorted to an input-level adaptation strategy based on image translation be-
tween source and target domains. What all these works have in common, is the search for
domain invariance of visual appearance of images from different domains. This ultimately
allows to exploit target-like supervision from translated, yet still annotated, source images.

A common approach shared by a multitude of works (Hoffman et al., 2018; Chen et al.,
2019c; Toldo et al., 2020; Zhou et al., 2020; Li et al., 2019; Murez et al., 2018; Qin et al., 2019; Li et
al., 2018; Yang et al., 2020b; Gong et al., 2019) is to exploit the successful CycleGAN (Zhu et al.,
2017) model to perform unsupervised image-to-image translation (Fig. 8.6). The framework
proposed by Zhu et al. (2017) concurrently learns in adversarial manner the conditional image
translations in both the source-to-target and target-to-source directions. The two adversarial
generative modules are further tied by a cycle-consistency constraint, driving each of them
to learn the inverse projection of the other. The purpose of the reconstruction requirement is
to preserve geometry and layout of the input scene, but in turn does not guarantee that the
semantic content of an input image is preserved in the translation.

To tackle this issue, the lack of semantic consistency in the vanilla translation scheme is
counteracted by taking advantage of the semantic prediction capability of the segmentation
network (Hoffman et al., 2018; Chen et al., 2019c; Toldo et al., 2020; Zhou et al., 2020; Li
et al., 2019). In particular, the semantic predictor can be exploited to detect and thus dis-
courage any perturbation of the semantic output which may happen during the translation
provided by the CycleGAN’s generators. This is generally done by enforcing consistent pre-
diction maps over original and translated versions of the same image. An alternative solution
could be, instead, to achieve semantic awareness in the image-to-image translation based
adaptation by acting directly over the adversarial translation modules. This, for example, has
been performed with a soft gradient-sensitive loss (Li et al., 2018) and a phase consistency
constraint (Yang et al., 2020b), both providing a regularizing effect over the standard adver-
sarial learning. Finally, it is possible to focus on the target-to-source translation rather than
the more commonly used source-to-target one. This has proved to decrease the bias towards
the source domain (Yang et al., 2020a). As opposed to the standard generative adaptation, the
image-level domain invariance is in this case achieved inside the source image domain, where
pseudo-labeling allows to exploit the translated source-like target images in the supervised
training.

As an alternative to the CycleGAN-based adaptation, style transfer techniques have also
been explored to achieve domain invariance of low-level image attributes. Behind these meth-
ods lies the principle that any image can be disentangled into its content and style represen-
tations. While the style of an image is related to low-level domain-specific traits, its content
indicates domain-invariant high-level semantic properties. Therefore, joining source content
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FIGURE 8.6 Overview of the generative-based adaptation approach built upon cycle-consistent image-to-image
translation. In particular, source translated input images are exploited as a form of target-like artificial supervision
during the learning process.

with target style should provide target-distributed training data, still preserving source se-
mantic annotations. Once more, target supervised training can be performed thanks to the
new generated target supervision. A common approach for style transfer is to resort to con-
tent and style decomposition in the latent space (Chang et al., 2019; Pizzati et al., 2020). Then,
source to target translation becomes combining the extracted source content representations
to random target style ones, with the mixed representations to be reprojected into the image
space. To avoid the complexity involved in GAN’s image generation (specially high resolu-
tion images are challenging to be obtained), different types of style transfer techniques have
also been explored, ranging from neural or photo-realistic style transfer (Zhang et al., 2018;
Dundar et al., 2018) to feature renormalization (Choi et al., 2019; Wu et al., 2019) and low-level
frequency spectrum manipulation (Yang and Soatto, 2020).

8.2.3.3 Classifier discrepancy
As mentioned in Section 8.2.3.1, feature level adversarial adaptation in its standard design

involves an additional domain classifier, whose discriminative action over feature representa-
tions from source and target domains provides an effective supervisory signal to the learning
process, pushing the segmentation network towards domain invariance within the latent
space it spans. A separate task-specific objective is instead responsible for the prediction net-
work to learn the actual task with source supervision, i.e., the standard cross-entropy loss for
semantic segmentation.

Despite being fairly effective, the standard adversarial adaptation lacks semantic aware-
ness (Saito et al., 2018a,b). A proper adversarial alignment, in fact, entails a match of marginal
distributions of source and target data, which is typically not followed by a class-conditional
statistical alignment as well. This because category-level joint distributions necessarily re-
main unknown to the domain classifier, as complete lack of supervision in the target domain
implies that no information about semantic content of target data is available. The result is
that features may be moved near class boundaries, where classification uncertainty could
lead to incorrect predictions. Even worse, a class-agnostic transfer of target features might
incorrectly align them to source representations of a different semantic class in the domain
invariant latent space, which means negative transfer has been introduced.
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Aiming at overcoming those issues, Saito et al. (2018a) completely redesign the original do-
main adversarial approach. In particular, they provide the task-specific dense classifier (i.e.,
the encoder network) with the discriminative role that was before assigned to an external do-
main discriminator. By perturbing the classifier using dropout, it is possible to detect where
predictions are more uncertain, which happens to be strongly related to the distance of fea-
ture representations from decision boundaries. In this novel adversarial scheme, the dense
classifier is trained to improve its sensitivity to semantic variations on target representations.
By acting against it, the feature extractor (i.e., encoder) aims at providing categorical certainty
to the target features it computes. This should effectively remove task-unrelated information
enclosed in target representations, which is responsible for highly variable predictions, ulti-
mately pushing them far from decision boundaries.

A downside of the classifier discrepancy strategy in its primary scheme is the inherent
noise sensitivity acquired by the decoder (Saito et al., 2018a), which is crucial for it to cap-
ture the proximity of target samples to the classification boundaries, yet it negatively affects
the accuracy of the whole segmentation network, requiring, in fact, an extra training stage to
correctly learn the segmentation task. On this regard, the original scheme could be improved
by replacing the dropout strategy to retrieve multiple predictions over the same feature rep-
resentation with a couple of distinct decoders, which are simultaneously trained to provide
correct, yet distinct, dense classifications (Saito et al., 2018b). This should effectively improve
the accuracy of the decoder section of the prediction model, at the cost of an extra module to
be learned within the training process.

Following a different path, the original adversarial learning scheme could be modi-
fied, opting for a non-stochastic virtual dropout mechanism to discover minimum distance
dropout masks causing maximum prediction divergence (Lee et al., 2019b). By doing so, the
original dropout-based solution to get distinct predictions from a single classifier is retained,
while the aforementioned noise susceptibility problem is simultaneously solved.

The cotraining principle based on multiple predictors to estimate the current adaptation
performance has further been investigated (Luo et al., 2019). In particular, the detection of
inconsistent predictions can be exploited to focus the discriminator effort (now in a standard
domain adversarial framework) towards less adapted regions of the input image, i.e., those
affected by the highest uncertainty. This has proved to ultimately lead towards a more effec-
tive domain alignment of source and target representations.

8.2.3.4 Self-supervised learning
Due to the similarity between the two tasks, multiple techniques for unsupervised domain

adaptation have been borrowed from the semi-supervised learning (SSL) field. Indeed, UDA
can be thought as an extension of the SSL problem, since in both cases part of the training data
is unlabeled. However, the original lack of annotations of SSL within the unlabeled training
set is joined by a statistical shift in UDA between source and target data, which demands for
an extra effort to be addressed.

Self-training

In this direction, a first class of adaptation techniques (Zou et al., 2018, 2019; Li et al., 2019;
Biasetton et al., 2019; Michieli et al., 2020; Spadotto et al., 2020; Choi et al., 2019; Chen et al.,
2019a; Yang and Soatto, 2020; Zhou et al., 2020) have resorted to self-training. This approach,
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commonly employed in semi-supervised learning (Grandvalet and Bengio, 2005), revolves
around the creation of pseudo-labels from highly confident network predictions inferred on
unlabeled target data. A form of self-taught supervision is therefore available on the target
domain, to be exploited in conjunction with the standard supervision from source labeled
data.

As opposed to other adaptation approaches described in previous sections, such as the
most successful adversarial ones, feature-level cross-domain alignment is implicitly pursued
through target self-supervised learning, as source supervision is indirectly transferred to the
target domain by pseudo-labels. Self-training pushes network probability outputs to reach a
peaked distribution, which translates into predictions displaying a more confident behavior.
A key issue, however, lies in the self-referential nature of this technique, which could lead
to catastrophic error propagation if not properly handled. Over-confident incorrect predic-
tions on uncertain pixels, in fact, may result undetected, since any form of supervision on
unlabeled target data is missing. In turn, those prediction mistakes could be reinforced by the
self-teaching strategy, causing a progressive deviation from the correct solution. To cope with
this issue, most of self-training based adaptation approaches apply some filtering strategies
to the pseudo-labeling process, so that prediction errors inherently affecting target segmen-
tation maps are largely discarded.

A common approach towards a self-training based adaptation involves offline techniques
for pseudo-label computation (Zou et al., 2018, 2019; Li et al., 2019), with the confidence
threshold updated multiple times during the adaptation process by looking at the whole
available training set. In particular, an iterative self-training optimization procedure is fol-
lowed, which alternates steps of task supervised learning on both source original and target
artificial annotations and pseudo-labeling to generate a self-taught target supervision. Thus,
during an entire training stage, artificial target annotations are kept fixed. This offline strat-
egy allows for a stable learning process, at the price of the extra computational burden due
to multiple steps of pseudo-annotation on the whole target dataset.

In a different direction, the self-training strategy could be tied to an output level adversar-
ial adaptation (Biasetton et al., 2019; Michieli et al., 2020; Spadotto et al., 2020). In particular,
the output map from a fully convolutional output-level domain discriminator can be re-
garded as an accurate measure of prediction reliability on target data, thus providing useful
information to refine target pseudo-labels. Thus, the quality of artificial annotations is pro-
gressively improved throughout the training process, being computed over single batches of
target images rather than on the whole dataset, leading to an overall rather effective adapta-
tion.

As an alternative, pseudo-label reliability can be enhanced by resorting to a form of pre-
diction ensembling (Choi et al., 2019; Chen et al., 2019a; Yang and Soatto, 2020; Zhou et al.,
2020). For example, it is possible to exploit an additional network to produce self-guidance
over the unlabeled samples (Choi et al., 2019; Zhou et al., 2020). This is done by introducing
a teacher network in addition to the original one, which plays the role of a student. Then, the
teacher model, whose weights are averaged over the student ones from past training steps, is
exploited to guide the learning process of the student network, by yielding target predictions
the student network is compelled to emulate. The supervisory action provided by the teacher
network leads to more accurate target predictions, on top of which less noisy pseudo-labeling
can be performed. The result is a more effective self-training adaptation.
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Entropy minimization

Adopted from the semisupervised learning field as well, entropy minimization has been
recently introduced to UDA (Vu et al., 2019b). The intuition behind this approach is that
source predictions are more inclined to show a confident behavior, which is revealed by a
low entropy level in probability outputs. Conversely, the segmentation output maps from
target inputs are likely to display more uncertainty (high entropy), with the noise pattern
widely spread and not just limited to regions close to semantic boundaries. Thus, by mir-
roring the over-confident source behavior in the uncertain target domain, the segmentation
network should, in principle, bridge the performance gap that exists between domains. More
precisely, the effect of entropy minimization is to avoid classification boundaries in the latent
space crossing high density regions, while, at the same time, target representations are well
clustered far from those decision boundaries.

The original entropy minimization strategy (Vu et al., 2019b) works at the pixel-level, with
each single spatial unit independently contributing to the overall objective. However, to over-
come some inherent limitations of this approach, further arrangements have been introduced
(Vu et al., 2019b; Chen et al., 2019a; Yang and Soatto, 2020). A possible solution is to pursue
a global distribution alignment of entropy behavior by means of a domain adversarial ap-
proach, where the domain discriminator is provided with entropy maps rather than directly
with output probability maps as in the standard Scheme 8.2.3.1 (Vu et al., 2019b). By doing
so, structural information enclosed in entropy maps is leveraged, thus leading to a more ef-
fectively domain statistical adaptation. In addition, it should be remarked that the entropy
minimization objective in its original form (Vu et al., 2019b) leads to rapidly exploding gra-
dients when moving from high to low uncertainty regions, which could seriously hinder the
learning process. On this regard, a solution could be to modify the standard objective, for
example, with a quadratic loss with analogous purposes to the original one, but improved
gradient signal properties (Chen et al., 2019a). This strategy, together with category-wise
weighting factors to balance the contribution of different semantic classes, has proved to
greatly enhance adaptation process.

Entropy minimization has been used together with feature space shaping techniques in
a couple of recent works (Toldo et al., 2021; Barbato et al., 2021). Toldo et al. (2021), besides
using entropy minimization, forces internal feature representations to be clustered, sparse
and orthogonal (if belonging to different classes) in both source and target domains to im-
prove feature-level adaptation. Another recent work (Barbato et al., 2021) further introduces
a norm alignment constraint to aid a class-wise feature orthogonality objective in promoting
disjoint sets of active feature channels between distinct semantic categories, while driving
target embeddings towards the highly confident (i.e., associated with high values of feature
norm) source distribution.

8.2.3.5 Multitasking

The last class of adaptation techniques to be discussed regards multitasking (Lee et al.,
2019a; Vu et al., 2019a; Chen et al., 2019b; Watanabe et al., 2018). A regularizing action is pro-
vided by solving multiple related tasks (e.g., many approaches focus on depth regression) in
addition to the semantic segmentation one. The goal is to implicitly extract domain invariant
and semantically meaningful representations from images, as they should be more suitable
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to simultaneously address the related tasks. Depth regression is usually tackled in combina-
tion with semantic segmentation, to regularize an input level adaptation process based on
source to target image translation (Section 8.2.3.2). Multitask adaptation has also shown to
be effectively integrated with other adaptation approaches. For example, it can be exploited
to enhance the maximum classifier strategy (Section 8.2.3.3), where instead of a single dense
classifier two separate decoder modules are employed to obtain both depth and segmenta-
tion maps (Watanabe et al., 2018). It is possible to combine multitasking with an adversarial
entropy minimization technique (Section 8.2.3.4) (Vu et al., 2019a), by fusing self-information
maps with depth prediction ones before feeding them to a domain discriminator. By doing
so, the detection capability of the domain discriminator in identifying domain discrepancy
over source and target representations is boosted, thus providing, in the end, a more robust
statistical alignment.

8.3 Continual learning

Recently, deep learning techniques have evolved rapidly to tackle a wide variety of tasks
considered extremely challenging beforehand, in particular in the computer vision field,
where deep learning models are able to achieve human-like performance in many tasks. Deep
learning techniques have matured along the way and the transition from academic research
to various practical and industrial applications has begun to be successful. However, practical
applications soon raised the need for techniques able to improve the learned knowledge over
time in order to accomplish new tasks without forgetting previous knowledge. This repre-
sents the building paradigm of continual learning in its essence. In other words, when deep
learning models are deployed into the real-world, we would like to have the possibility of
improving the capability of the models with new experiences or labels, without retraining
them from scratch.

In general, the main issue of these computational models is that they are prone to catas-
trophic forgetting (McClelland et al., 1995; McCloskey and Cohen, 1989), i.e., training a model
with new information interferes with previously learned knowledge and typically greatly
degrades the performance. Deep learning models, in particular, assume that all the data sam-
ples are available during the training phase and, therefore, they require that the training is
performed on the entire dataset in order to adapt to changes in the data distribution. When
trained on sequential tasks with samples progressively available over time, the performance
significantly decreases on previously learned tasks as the network parameters are optimized
for the new task without accounting for the old ones, if no ad-hoc provisions are employed
(Kemker et al., 2018; Parisi et al., 2019).

Continual learning (also called incremental learning, lifelong learning or never ending
learning), then, is the set of techniques designed to face this challenging scenario in which
a sequence of tasks comes in succession. Despite being a long-standing problem in computa-
tional models (McCloskey and Cohen, 1989), in deep learning it has been tackled with some
successes only recently.

To further prove its relevance, it is worthwhile to consider an analogy between machine
learning and human learning. Indeed, humans encounter a continual stream of learning tasks
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and are able to generalize to similar unseen tasks (Thrun and Pratt, 2012). To understand the
brain mechanisms and to translate them into computational models, many connectionist and
biologically-inspired attempts have been made throughout the years (Grossberg, 2013; Ditzler
et al., 2015).

Recently, the problem has been actively investigated in some image-level visual tasks (i.e.,
with one or few labels per each image) such as image classification (Rebuffi et al., 2017; Li and
Hoiem, 2017; Castro et al., 2018) and object detection (Shmelkov et al., 2017). In dense labeling
tasks such as semantic segmentation, the problem has been faced only recently (Ozdemir and
Goksel, 2019; Tasar et al., 2019; Michieli and Zanuttigh, 2019, 2021b; Cermelli et al., 2020;
Klingner et al., 2020; Douillard et al., 2021) due to the inherent increased complexity.

Before digging into the definition of continual learning and exploring its application to
dense labeling tasks, we point out some general reviews on the topic, not directly dealing with
semantic segmentation. We refer to (French, 1999) for catastrophic forgetting in connectionist
models, while Parisi et al. (2019) is the first review to critically compare recent works about
the phenomenon in deep learning models. In De Lange et al. (2019) many approaches are
compared into a common framework and in Lesort et al. (2020) the challenges of continual
learning are described with a special focus on robotics.

8.3.1 Continual learning problem formulation

Continual learning (CL) could be regarded as a particular case of transfer learning, where
the data domain distribution changes at every incremental step and the model should per-
form well on all the distributions. It is also strongly connected to the domain adaptation
problem but, in this case, the focus is devoted toward both the input data and the annota-
tions, whose distributions change over time and their number may be increased as well (i.e.,
more classes to be distinguished).

On the other hand, we remark that the focus of domain adaptation discussed in the pre-
vious section was devoted toward the input domain distributions where, typically, a single
domain shift is performed. Hybrid approaches combining UDA and CL are emerging to over-
come the need for multiple changes in domains and tasks (Busto and Gall, 2017; Zhuo et al.,
2019; Kundu et al., 2020).

Due to the intrinsic variety of challenges in continual learning and their respective diffi-
culties, most of the approaches relax the general setup of continual learning to an easier one
of incremental task learning. In the latter scenario, tasks are received one at the time and
training is performed on the available training data.

Hence, this represents a mitigation of the true continual learning system, which is more
likely to be encountered in practice (De Lange et al., 2019). For instance, in class-incremental
learning, the learned model is updated to recognize new classes whilst preserving knowledge
about previous ones. An overview of this setup is reported in Fig. 8.7. In more formal terms,
we consider the t-th incremental step (with t = 1,2, ..., Tmax) and we are given the previous
model Mt−1 and two sets of data

{
X (t),Y(t)

}
randomly drawn from the distribution D(t),

which is an observation (or subset) of the complete domain D. Here, X (t) denotes a set of
data samples for step t and Y(t) denotes the corresponding ground truth annotations (i.e.,
a single label for the image classification problem or a dense labeling map for the semantic
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FIGURE 8.7 Graphical representation of the class-incremental continual learning framework. The model is up-
dated to recognize new classes over time without forgetting previously learned ones.

segmentation problem). In the considered class-incremental setup, we assume that each step
corresponds to a different learning task.

To mimic what happens in many real world scenarios and to reduce the need for storage or
privacy limitations, most of the frameworks do not store any sample of data

{
X (s),Y(s)

}
for

any step s preceding the current step t . Hence, the problem becomes even more challenging as
the goal is to control an objective function comprising of all seen tasks without having access
to previous samples. More formally, the empirical risk minimization framework translates
into the research of the optimal parameters θ∗ by optimizing:

argminθ

T∑
t=0

E(
X (t),Y (t)

) [
L

(
Mt

(
X (t); θ

)
,Y(t)

)]
(8.1)

with model’s parameters θ , loss function L, T incremental tasks seen so far, and Mt the model
function at step t . We remark, however, that this objective function cannot be optimized di-
rectly as old samples may not be present at all or may be very limited (depending on the
continual learning scenario, see Section 8.3.2). We refer to the case in which all samples are
available from the beginning as joint training, representing an upper bound of the perfor-
mance of a continual learning system (i.e., a single stage of training with all samples).

Furthermore, it is useful to gain insight of the problem in terms of marginal output and
input distributions, i.e., P(Y(t)) and P(X (t)) respectively, of a generic step t . In general,
task incremental learning considers that P(Y(t+1)) �= P(Y(t)) due to P(X (t+1)) �= P(X (t)) and
that the task output spaces differ over time, i.e.,

{
Y(t)

} �= {
Y(t+1)

}
. Continuing our analogy

to the UDA scenario, we could bring task incremental learning back to UDA considering
P(Y(t+1)) �= P(Y(t)) due to P(X (t+1)) �= P(X (t)), but

{
Y(t)

} = {
Y(t+1)

}
, with the number of

incremental steps Tmax = 1 and a typically sudden change in the data domain distribution,
while changes are in general more gradual in continual learning (De Lange et al., 2019; Hsu
et al., 2018).
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Finally, we remark that ideal continual learning setups consider infinite and continuous
stream of training data and at each step the system receives some new samples drawn non-
i.i.d. from the current distribution D(t) that could itself experience sudden or gradual changes
with no notification. This is what methods developed in the future should aim to tackle and
realize.

8.3.2 Continual learning setups in semantic segmentation

Despite being a quite recent field, continual learning in semantic segmentation already
comes in different flavors. In particular, existing works differ in the consideration of the do-
main distributions D(t) and of the data sampling

{
X (t),Y(t)

}
. The different choices emerge

from different target applications. Let us denote with S(t−1) the previous label set, which is
expanded with a set of new classes C(t) at step t , yielding a new label set S(t) = S(t−1) ∪ C(t).
As typically assumed in task incremental settings, the sets of new labels discovered at each
step are disjoint, except for a special background or void class which behavior and meaning
depends on the selected scenario. There are many possible scenarios and one of the key dif-
ferences lies in the way the background class is considered, which is typical of many semantic
segmentation benchmarks. Previous approaches proposed four main different scenarios:

1. Sequential masked. This setup reflects the simplest idea on continual semantic segmenta-
tion; i.e., each learning step contains a unique set of images, whose pixels belong either to
novel classes or to a void class, which is not predicted by the model and it is masked out
from both the results and the training procedure. This setup has been used in Tasar et al.
(2019); Klingner et al. (2020).

2. Sequential. This setup has been proposed in Michieli and Zanuttigh (2019, 2021b). Each
learning step contains a unique set of images, whose pixels belong to classes seen either in
the current or in the previous learning steps. At each step, labels for pixels of both novel
classes and old ones are present; however, the specific occurrence of a particular old class
is highly correlated to the set of classes being added. For example, if the set of all old
classes is S(t−1) = {

chair, airplane
}

and the set of classes being added is C(t) = {
dining table

}
,

then it is reasonable to expect that
{
X (t),Y(t)

}
contains some images with the chair class,

that typically appears together with the dining table, while the class airplane is extremely
unlikely to occur.

3. Disjoint. This setup has been proposed in Cermelli et al. (2020); Michieli and Zanuttigh
(2021b). At each learning step, the unique set of images is identical to the sequential setup.
The difference with respect to the sequential setup lies in the set of labels. At each step, only
labels for pixels of novel classes are present, while the old ones are labeled as background
in the segmentation maps (this causes the background class to change distribution at each
step).

4. Overlapped. This setup moves from the work of Shmelkov et al. (2017) for object detec-
tion and has been addressed in Cermelli et al. (2020); Douillard et al. (2021); Michieli and
Zanuttigh (2021a) for semantic segmentation. In this setup, each training step contains all
the images that have at least one pixel of a novel set of classes, with only the classes of
the set annotated and the rest set to background. Differently from the other settings, in this
scenario images may contain pixels of classes that will be learned in the future, but labeled
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FIGURE 8.8 Overview of the different setups for class-incremental continual learning in semantic segmentation.
The black class represents the background class and the white one represents the void/unlabeled.

as background in the current step; for this reason, as in the previous setting, the background
class changes distribution at every incremental step.

A few examples of the different semantic map annotations are given in Fig. 8.8. Although
being subcategories of the same problem they lead to substantially different setups requiring
different strategies to be tackled.

This articulated scenario is getting even more articulated as there exist many different
ways of sampling the sets C(t) of unseen classes and of selecting its cardinality |C(t)|, leading
to completely different experiments. For instance, let us consider one of the most widely used
benchmarks for semantic segmentation, i.e., the Pascal VOC2012 dataset (Everingham et al.,
2010), which is composed by 21 semantic classes (background included). Regarding the first
aspect, one possibility is to sort the classes using a pre-defined order provided by the dataset
(e.g., the alphabetical ordering for VOC2012) as done in (Shmelkov et al., 2017; Michieli and
Zanuttigh, 2019, 2021b; Cermelli et al., 2020; Douillard et al., 2021; Michieli and Zanuttigh,
2021a). Another possibility is to sort the classes based on their occurrence inside the dataset
(Michieli and Zanuttigh, 2021b), to reflect the idea that, in real world application, it is more
likely to start from common classes and introduce rarer ones later. With respect to the second
aspect, one may add a single class, a batch of classes or multiple classes sequentially one after
the other (Michieli and Zanuttigh, 2019, 2021b; Cermelli et al., 2020; Douillard et al., 2021;
Michieli and Zanuttigh, 2021a). All these possibilities open up a very variegate picture, which
is being explored only recently, hence many research directions remain still unexplored.
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8.3.3 Incremental learning techniques

In this section we are going to review the main methods to tackle task-incremental seman-
tic segmentation grouped by employed technique. We will also refer the interested reader to
some relevant works in task incremental image classification, this related field being more
explored and mature with respect to semantic segmentation.

8.3.3.1 Knowledge distillation

The first family of approaches we present is the most commonly employed one thanks to
its simplicity and efficacy; i.e., knowledge distillation. This technique was originally proposed
by Bucilua et al. (2006) and Hinton et al. (2015) to preserve the output of a complex ensemble
of networks when adopting a simpler network for more efficient deployment. The idea was
adapted to maintain unchanged the responses of the network on the old tasks whilst updating
it with new training samples typically associated to new tasks. This is typically performed
applying a constraint (e.g., a loss function) in order to mimic the responses of the previous
model in the current one. Its main effect is to act as a powerful regularization term during the
learning process of the current classes, often leading to better performance on both previous
and current classes (by preserving the capability of recognizing the former set and avoiding
the overestimation of the latter set).

Knowledge distillation has been explored in different setups and it is somehow a prereq-
uisite for successful task incremental learning algorithms. In sparse tasks, many algorithms
use knowledge distillation in different flavors: Shmelkov et al. (2017) propose an end-to-end
learning framework where the representation and the classifier are learned jointly without
storing any of the original training samples. Li and Hoiem (2017) distill previous knowledge
directly from the last trained model. Dhar et al. (2019) introduce an attention distillation loss
as an information preserving penalty for the classifiers’ attention maps. Zhou et al. (2019)
distill knowledge from all previous model snapshots, of which a pruned version is saved.

These techniques have been found to be extremely effective and reliable also in dense
tasks. Ozdemir and Goksel (2019) extend the image classification model of Li and Hoiem
(2017) to segmentation simply constructing a knowledge distillation loss as the cross en-
tropy between previous and current model’s output probabilities. The authors also devise
a strategy to select relevant samples of old data for rehearsal, that improve performances, but
violate the assumption used in many scenarios of avoiding previous data storage. Tasar et al.
(2019) apply knowledge distillation via cross entropy between previous and current model’s
output probabilities for each class, as the model predicts binary segmentation maps for each
class separately. Michieli and Zanuttigh (2019) evaluate on a standard semantic segmentation
benchmark and propose to apply knowledge distillation not only at the output level but also
at the intermediate feature space to preserve the geometrical relationships of the extracted
features. The work is extended in Michieli and Zanuttigh (2021b) that introduces and com-
pares many knowledge distillation techniques. In particular, distillation on the output layer is
enriched by temperature scaling (i.e., rescaling softmax probabilities by a so-called tempera-
ture factor) to consider also the uncertainty of the estimations of previous models. Distillation
on intermediate feature level is extended to multiple decoding stages and a scheme inspired
by Similarity-Preserving Knowledge Distillation (Tung and Mori, 2019) is also proposed. Cer-
melli et al. (2020) propose a revisited distillation loss on the output level which accounts for
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the fact that a previous model could have already seen previous classes labeled as background
(i.e., in the overlapped setup). Klingner et al. (2020) propose a masked and weighted distilla-
tion loss on the output level to improve the accuracy on small or under-represented classes
within the dataset. Finally, Douillard et al. (2021) applies a matching distillation to retain both
long-range and short-range statistics at different feature levels and at different scales between
the old and current model.

8.3.3.2 Parameter freezing

One of the major achievements of the early connectionist works is that they identified one
main strategy to address catastrophic forgetting: i.e., by freezing part of the network weights
(Rebuffi et al., 2017). This technique has been applied by a large number of contemporary ap-
proaches as a regularization attempt to prevent knowledge degradation caused by upcoming
tasks. For instance, Shmelkov et al. (2017) experiment on freezing either all the layers (except
for the last) or part of them. Mańdziuk and Shastri (2002) tries to identify and freeze a com-
pact subset of features (nodes) in the hidden layers, that are crucial for the current task, thus
preventing forgetting in the future. Similarly, Kirkpatrick et al. (2017) remember old tasks by
slowing down the learning process on the relevant weights for those tasks. Jung et al. (2016)
try to maintain the performance on old tasks by freezing the final layer and discouraging the
change of shared weights in feature extraction layers.

Also in the dense labeling task, parameter freezing has been proposed as a way to pre-
vent forgetting. Michieli and Zanuttigh (2019) propose to freeze all the layers of the encoder
in order to preserve unaltered the feature extraction capabilities and only train the decoding
parameters. Michieli and Zanuttigh (2021b) exploit the idea of freezing only the first couple
of layers of the encoder, to preserve the most task-agnostic part of the feature extractor. How-
ever, the choice of which layers to freeze remains an open question and there is an intrinsic
trade-off between the capability of efficiently learning new tasks and the preservation of the
acquired knowledge. A first attempt of automatic selection of which layers to freeze has been
recently introduced by Nguyen et al. (2020) checking the most plastic layers of the network.

8.3.3.3 Geometrical feature-level regularization

The analysis of the latent space organization is becoming crucial towards understanding
and improvement of deep neural networks (Bengio et al., 2013; Girshick et al., 2014; Xian et
al., 2016; Peng et al., 2019). Recently, some attention has been devoted to latent regularization
in continual image classification (Achille et al., 2018; Javed and White, 2019) and in unsu-
pervised domain adaptation (Toldo et al., 2021; Barbato et al., 2021). The key idea of these
approaches is to disentangle the intermediate feature space in different ways, to space apart
features of different classes. In continual learning this can reduce the overlap when future
classes are introduced in the model.

The only work exploiting this idea in dense tasks is Michieli and Zanuttigh (2021a), where
the latent space is constrained to reduce forgetting whilst improving the recognition of novel
classes. The framework is driven by three main components: first, prototype matching en-
forces latent space consistency on old classes, constraining the encoder to produce similar
latent representation for previously seen classes in the subsequent steps; second, feature
sparsification allows to make room in the latent space to accommodate novel classes; third,
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contrastive learning is employed to cluster features according to their semantics while tearing
apart those of different classes.

8.3.3.4 New directions

Other novel ideas have been proposed in the continual learning literature both for dense
and sparse tasks. Here, we present and discuss some of the most promising research direc-
tions.

Weights Initialization has been employed in Cermelli et al. (2020) to deal with the atypical
behavior of the background class in the disjoint and overlapped scenarios. The authors initial-
ize the classifier’s parameters for the novel classes in such a way that the probability of the
background is uniformly spread among the novel classes, preventing the model to be biased
toward the background class when dealing with unseen classes.

Generative Replay methods train generative models on the current data distribution; af-
terwards, it is possible to sample data from past experience when learning on new data. By
learning on actual data mixed with artificially generated past data, they try to preserve past
knowledge while learning the new task. The generative model is generally a GAN (Goodfel-
low et al., 2014) as in Wu et al. (2018) and Shin et al. (2017) or an auto-encoder as in Draelos et
al. (2017) and Kamra et al. (2017). Notice that only the weak classification labeling is available
for generated data and some pseudo-labels need to be estimated for segmentation.

Webly-based Learning models (Hou et al., 2018; Modolo and Ferrari, 2017), i.e., models
that learn from samples acquired via web searches, could be an extremely powerful tool to
retrieve faithful past examples using as queries the label names of the old classes to pre-
serve. Also in this case, only weak classification labels are available and some pseudo-labeling
scheme need to be introduced.

8.4 Conclusion

Semantic image segmentation is an active research field aiming at detailed and accurate
scene understanding. Being a dense labeling task, it brings additional complexity with respect
to classical image classification problems. To solve this task many deep learning models have
been proposed, however such architectures require large labeled training datasets and show
bad adaptation capabilities to unseen domains or unseen tasks. To tackle these two aspects, a
large research activity has been conducted on both domain adaptation and continual learning
in the past few years. In this chapter, we discuss domain adaptation in its unsupervised form
(i.e., when no labeled data of the target domain is used for training) applied to the dense
semantic segmentation task. Then, we showed that continual learning can be achieved in this
task in various possible ways.

The algorithms developed so far are able to greatly alleviate the degradation even if they
still need to acquire greater maturity before being applied in delicate real-world scenarios
(such as in autonomous driving). Indeed, there still remain many challenges to address as
regards both the adaptation of complex deep learning architectures across different tasks and
domains and their ability to learn new concepts over time without forgetting previous knowl-
edge.
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In addition, many ancillary closely related problems are emerging in response to the prac-
tical application to real-world use cases. Future directions should include, for instance, the
generalization from or to multiple data distributions, open-set UDA (i.e., recognizing in the
target domain classes never seen in the source one), and continual UDA (i.e., the continual
adaptation process to unseen domains and unseen tasks).
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Visual tracking

Tracking in scenes containing multiple
moving objects
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CHAPTER POINTS

• Visual object tracking.

• Discriminative tracking approaches.

• Correlation filters.

• Deep features.

• Deep learning of tracking.

• Video object segmentation.

• Discriminative segmentation.

9.1 Introduction

Tracking is a highly ambiguous term, and even for visual tracking, many different in-
terpretations exist. Therefore, this chapter starts with a thorough definition of the problem
addressed to delineate this chapter from other interpretations and to make all assumptions
explicit.

9.1.1 Problem definition

In this chapter, we will consider the problem of generic visual tracking, in the sense as de-
fined in the visual object tracking (VOT) challenges 2013–2020 (Kristan et al., 2013, 2015a,b,
2016, 2017, 2019,b, 2020), which also coincides with the online tracking benchmark (OTB)
definition (Wu et al., 2013). The tracking is performed in the image domain and no prior
knowledge about object classes is available: generic means class agnostic.
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The problem is formulated in the 2D image plane, in contrast to 3D tracking approaches
(Garon and Lalonde, 2017). Also, only a single object (target) is considered in contrast to
the multiple object tracking case (Dendorfer et al., 2020) that requires association of targets
through the sequence. However, focusing on tracking a single object does not imply that
no other moving objects, socalled distractors, exist in the sequences. The tracking task thus
requires not to mix up the target with any of the distractors even if they partly occlude the
target. It is assumed that the target is at least partly visible throughout the sequence such
that no redetection is required. The sequence might originate from a moving camera, which
excludes simple background modeling (Stauffer and Grimson, 2000) for detecting the target.

The tracking target is provided by a single annotation in the first frame of an image se-
quence in the form of a bounding-box (or a segmentation mask – see Section 9.5). The task is
then to predict the bounding-box (or segmentation mask) that contains the same object in all
subsequent frames. Bounding-boxes can be defined in many different coordinates; the exact
format does not matter as long as it is consistently used. In the VOT challenge, the upper left
corner (x, y) and the width w and height h are used (origin in the upper left). Thus, we get
the formal task definition:

input: a video (image sequence) and one annotated bounding-box
(x0, y0,w0, h0) for the initial frame in the sequence

output: prediction of bounding-boxes (xk, yk,wk,hk) for all frames k > 0
requirement: the prediction of the bounding-box for frame K may only use data from frames

k ≤ K .

This task definition formulates a one-shot learning problem, as one annotated training
sample for the present sequence is provided. The goal of this learning problem is to train
a detector that predicts the best fitting bounding-box in the subsequent frame, also called
tracking-by-detection. Typically, the best fitting bounding-box is classified as the target, all
others as background. However, it is also possible to use regression methods to determine
the bounding-box parameters.

9.1.2 Challenges in tracking

The main difficulty in tracking by detection is that the object of interest might change
appearance in the course of the sequence: It might

• rotate in the image plane
• change scale by moving in depth
• change aspect by out-of-plane rotations / changes in viewpoint
• be articulated
• suffer from motion blur
• undergo changes of illumination
• be partly occluded.

These changes might make the detector fail and lose the target, particularly in the presence of
cluttered background and distractors. Therefore, modern tracking approaches usually adapt
the detector model using its own predictions from previous frames; see Fig. 9.1.
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FIGURE 9.1 Adaptive tracking model. Block diagram of an adaptive tracking model. After initial training
(left), the model adapts using its own predictions as training samples (right).

This adaptive process establishes a bootstrapping procedure, i.e., a recursive self-improve-
ment that proceeds without external input other than the single initial annotation. One key
problem of this process is to balance the previous model against the update information. If
the model is too rigid, it will lose the target under appearance changes, if the model is too
flexible, it will drift away from the target (Matthews et al., 2004; Wang et al., 2016).

9.1.3 Motivation of the setting

The drift problem is largely reduced if the class of the object of interest is known. However,
as pointed out in Section 9.1.1, we aim at generic, i.e. class agnostic, models. The main mo-
tivation for this choice is the open-world assumption, which, in contrast to the closed-world
assumption, does not infer the incorrectness of a statement from its absence (Reiter, 1978),
or, translated to detection, does not infer the nonexistence of an object from the absence of a
corresponding detector response.
There are two issues with the closed-world assumption in context of visual detectors:

• The visual appearance of objects is characterized by a high intra-class variability, e.g., cars
and bicycles in traffic scenarios.

• The set of objects is continuously growing, e.g., e-bikes and hover-boards appear in traffic
scenarios.

If an object is not detected due to the former reason, it means that the detector failed to model
the variety of appearance of the object. This might be caused by limitations in the training set
or by infinite possible variations of appearance. If an object is not detected due to the latter
reason, it means that the object class is not represented in the training set at all. However, just
because the data set fails to cover a certain class, does not mean that this class is irrelevant
to the detector. Designing a system based on the premise that classes not present at training
time are neglected is ethically problematic, e.g. in traffic safety applications.

Traffic safety systems are often based on other sensors than vision: Lidar, radar, ultrasound,
etc. However, visual sensors will always be of central interest as they establish an approach
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to human-centered sensing. This happens in several ways: Systems should adapt to the envi-
ronment that is shaped for humans – and since vision is humans’ dominating sense involved
in about 80% of our perception, learning, cognition, and activities (Ripley and Politzer, 2010),
they need visual sensors. There are many examples for such environments, for instance, in
the traffic scenario the highway code defines many signs and symbols that guide the driver
visually. Also systems that share their workspace with humans for interaction and collabora-
tion need visual capabilities. The appearance is a strong cue for behavior as well as intentions
and humans use this actively by communicating in terms of, e.g., gestures. Finally, in order to
be capable to predict human actions, their perception needs to be predicted as well – which
is mostly based on vision.

9.1.4 Historical development

Many of the older approaches to visual tracking go back to problems within augmented
reality, where visualization and sensing are combined into the same coordinate system to
generate a mixed reality environment. Tracking is important here for two purposes: the rela-
tive head pose in the scene (Neumann et al., 1999) and the pose of moving objects (Neumann
and Park, 1998).

Some major steps in the history of visual tracking as well as key works of the author are

1981: Lucas-Kanade algorithm (Lucas and Kanade, 1981)
1984: Phase-only matched filter (Horner and Gianino, 1984)
1994: “Tracking is a solved problem” (from the presentation of Shi and Tomasi, 1994)
1998: Phase only matched filters and equivariances (Felsberg, 1998)
2004: “Lucas-Kanade 20 Years On: A Unifying Framework” (Baker and Matthews, 2004)
2007: MATRIS project: L1-tracker and covariance (Skoglund and Felsberg, 2007)
2013: New tracking challenges OTB (Wu et al., 2013), VOT (Kristan et al., 2013), and a gen-

erative holistic tracker (Felsberg, 2013)
2014: Discriminative tracker (DSST) winner in VOT2014 (Danelljan et al., 2014a; Kristan et

al., 2015a)
2018: Discriminative holistic trackers dominate VOT2018 with 75% (Kristan et al., 2019)
2020: Siamese trackers and segmentation methods gain importance (Kristan et al., 2020).

In the subsequent sections, several major developments during this period of 40 years are de-
scribed in some detail, with a particular focus on discriminative and learning-based methods.

9.2 Template-based methods

Before looking deeper into the learning-based methods, we will briefly discuss relevant
methods that build entirely on the initial annotated bounding-box, often called the template.
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FIGURE 9.2 Template-based methods. Block diagrams of template-based method; generative (left), see Sec-
tion 9.2.3, and discriminative (right), see Sections 9.2.4 and 9.3.1.

9.2.1 The basics

In general, we can divide the template-based methods into generative and discriminative
methods. These methods are conceptually sketched in the block diagrams in Fig. 9.2.

The generative approach is the most frequently used template-based approach. Here, the
model is basically the prototypical image patch, usually the template itself. The localization
of the object in subsequent frames is obtained by matching the model to candidate positions
in the frames. The matching requires a distance measure between image patches, for instance
the L2-norm (least-squares) or the L1-norm of the pixel-wise difference.

The search can be done exhaustively, which works for highly efficient L1-methods
(Skoglund and Felsberg, 2006), using heuristics to reduce the search window (e.g. dynamic
models), or by means of iterative methods. The most dominating approach during the ini-
tial years was based on the L2-norm and the iterative approach, the method by Lucas and
Kanade (1981). Methods based on this approach have been extensively studied in the review
article by Baker and Matthews (2004) and we will restrict the discussion to the basic case in
the end of Section 9.9.

Instead, we will focus more on the discriminative approach, where the model is dual to
the initial template. In its most basic case, duality is understood in terms of the scalar product
in a vector space. Let us assume d vectors vk that span a d-dimensional vector space. These
vectors are not assumed to be normalized or orthogonal. The dual basis is spanned by the d

vectors ṽk , such that

〈vk|ṽl〉 =
{

1 if k = l

0 if k �= l
for k, l ∈ {1, . . . , d}, (9.1)

where 〈|〉 denotes the scalar product. Note that in the case of an orthonormal basis {ek}k=1...d

the basis vectors are dual to themselves ẽk = ek .
If we now rewrite vector vk = ∑d

l=1 aklel with coefficients akl , we immediately see that the
d ×d matrix A with coefficients akl has rank d and its inverse exists. Without loss of generality
we can assume {ek}k=1...d to be the canonical basis of Rd and thus vk, k = 1, . . . , d are the rows
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of A. If we now apply a cyclic shift to the rows of A and multiply with A−1, we will no longer
get the identity matrix, but a cyclic shift of the identity matrix: we have successfully “tracked”
our basis vector vk .

This concept can be applied to any vector space, including the one of functions or signals.
Thus, the idea of the phase-only matched filter (Horner and Gianino, 1984) is to use the dual
of the template for determining a distinctive score. This score attends its maximum if the
bounding-box is located at the template and will be close to zero in the vicinity.

9.2.2 Performance measures

In the process of tracking, we locate the bounding-box based on some score function; we
will get back to segmentation masks further down in this section. To measure how successful
the localization was, the predicted bounding-box needs to be compared to the ground truth
bounding-box. In both, the VOT-challenge (Kristan et al., 2013) and the OTB (Wu et al., 2013),
the intersection-overunion (Everingham et al., 2010), or historically more correct, Jaccard in-
dex J (Jaccard, 1912) has been chosen:

J = |RG ∩ RP|
|RG ∪ RP| = |RG ∩ RP|

|RG| + |RP| − |RG ∩ RP| =
( |RG| + |RP|

|RG ∩ RP| − 1

)−1

, (9.2)

where RG is the ground truth region, RP is the predicted region, and |R| is the area of the
region R. If the two regions do not overlap we obtain J = 0 and if the two regions perfectly
coincide we obtain J = 1. If half of the predicted region overlaps with half of the ground
truth region (a typical performance of many trackers) we obtain J = 1

3 . Note that the Jaccard
index is a biased measure that tends to prefer systematic overestimation of the bounding-box
size (Häger et al., 2018).

The Jaccard index measures the tracking accuracy per frame and this perframe accuracy
can be accumulated in several ways. OTB suggests to calculate two curves, the precision
curve and the success curve, see Fig. 9.3. Both are calculated similar to the ROC-curve by
setting thresholds and computing the ratio of frames that pass that threshold. The precision
curve is obtained by thresholding the box-center distance from 0 to a maximum distance and
the success curve is obtained by thresholding the Jaccard index from 0 to 1. The integral under
the curve is then an integral measure of performace. Alternatively, particular thresholds can
be used, e.g. 20 pixels distance or 50% overlap (Everingham et al., 2010).

In either case, a complete tracking failure leads to a decrease of the performance measure
and cannot be distinguished from systematically poor accuracy: accuracy and robustness are
strongly correlated under these measures (Kristan et al., 2016b). Therefore, the VOT challenge
uses two measures that attempt to decorrelate these two effects: the accuracy measure and the
robustness measure. The former measures the average Jaccard index if tracking succeeds and
the latter measures the frequency of tracking failures (Kristan et al., 2013). This conditional
treatment requires restarts of tracking, either by detecting failures and restarting the tracking
using the ground truth, or by starting multiple tracking attempts from several anchor points
in the sequence, about every 50th frame (Kristan et al., 2020). The performance is accumulated
per sequence length and then averaged, where the performance is weighted by the respective
sequence length.
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FIGURE 9.3 Tracking evaluation in OTB. Precision plot (left) and success plot (right). The ranking can be
done by the precision at the location error threshold 20, the success rate at the overlap threshold 0.5, or by the area
under the curve (AUC) of the success plot.

The separate treatment of accuracy and robustness places tracking methods into a two-
dimensional plot, commonly with increasing robustness on the horizontal axis and increasing
accuracy on the vertical axis. Depending on the tracking application, engineers can choose a
more robust or more accurate method. However, the average scores do not disclose whether
a method has average accuracy throughout the track or initially high accuracy that decays
rapidly. For many applications it would be interesting to know what accuracy can be expected
after a certain sequence length. This is achieved by means of the expected average overlap
curve, measuring the average overlap as a function of the sequence length. The final score of
the VOT challenge is obtained by integrating this curve over the range of typical sequence
lengths (Kristan et al., 2016).

In its most recent edition (Kristan et al., 2020), the VOT challenge also offers to compute
the accuracy measures on segmentation masks instead of bounding boxes. This became nec-
essary as tracking methods achieved a level of accuracy similar to that of the annotations
by the bounding-box. In contrast to the Jaccard index for bounding-boxes, which can be com-
puted as a function of the bounding-box parameters, the Jaccard index of segmentation masks
requires counting the pixels in the masks and in their intersection.

9.2.3 Normalized cross correlation

One of the oldest methods to predict the position of the bounding-box is template match-
ing. The matching is performed by means of a generative model m, which is obtained from
the patch inside the bounding-box in the initial frame. During matching, the model m is com-
pared to candidate patches p in each subsequent frame. The respectively most similar patch
determines the position of the bounding-box in that frame, see Fig. 9.2 left.

The model might be the raw image patch in the initial bounding-box, but it is more com-
mon to assume that the model m has a zero DC-component, i.e., to subtract the mean of the
template. The absolute intensity in the image often depends on other factors than the ob-
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ject, e.g. illumination, shadows, exposure time, etc., and removing the DC component makes
the matching more robust under these variations. In photometric cases, e.g. thermal infrared
sequences, m might be chosen to include an absolute DC-level, though.

To further improve robustness, also the intensity dynamics is commonly normalized by
means of the variances in the template m and the candidate patch p:

σ 2
m = 1

|R|
∑
x,y

m(x, y)2 (9.3)

σ 2
p = 1

|R|
∑
x,y

p(x, y)2 −
(

1

|R|
∑
x,y

p(x, y)

)2

, (9.4)

where |R| is the region area of the patch.
The candidate patches are commonly chosen by a sliding window over the next frame f or

a part of it px,y(r, s) = f (x + r, y + s). The matching score is computed by the scalar product
between the template and the patch. This combination of sliding window and scalar product
results in the correlation of m and f

c(x, y) = 〈px,y |m〉 =
∑
r,s

px,y(r, s)m(r, s) = (9.5)

=
∑
r,s

f (x + r, y + s)m(r, s)
def= (f � m)(x, y). (9.6)

Note that p does not require any DC-compensation, because m is DC-free and thus the scalar
product does not contain any contribution from the mean of p.

The subsequent division by the product of standard deviations results in the normalized
cross correlation (NCC)

cn(x, y) = σ−1
m σ−1

px,y
c(x, y), (9.7)

where σpx,y is still computed in the sliding window, which makes it a function of (x, y).
The correlation c(x, y) itself, i.e. without the normalization by σpx,y , can be efficiently com-

puted in the Fourier domain (Bracewell, 1995)

C(u, v) ∝ F(u, v) ◦ M̄(u, v), (9.8)

where capital letters denote the Fourier transforms of the respective signals in lower-case
letters and M̄ is complex conjugate of M . The frequency coordinates are denoted by (u, v)

and ◦ is the point-wise product. The position (x̃, ỹ) with the maximum normalized cross
correlation (9.7) is then used as a prediction of the bounding-box position.

Normalized cross correlation is not only used with a fixed template, but also with an adap-
tive template. The only change to the procedure above is that the template from the first frame
is only used to initialize the model m. After the first frame, the located bounding-box is used
to update the model with the patch in that bounding-box:

m ← (1 − λ)m + λpx̃,ỹ , (9.9)
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where λ ∈ (0,1) denotes the update factor. If this factor is chosen too large, the model will
suffer from drift (Matthews et al., 2004; Wang et al., 2016), and if it is chosen too small, the
model will not adapt sufficiently to appearance changes.

Note that in both the static and the adaptive case, the solution of (9.7) is identical to the
least-squares problem of the normalized patches:

min
x,y

‖σ−1
px,y

px,y − σ−1
m m‖2 = ‖σ−1

px,y
px,y‖2 + ‖σ−1

m m‖2︸ ︷︷ ︸
constant

−2 max
x,y

cn(x, y). (9.10)

If the least-squares problem is solved iteratively by gradient descent, we obtain the Lucas-
Kanade method KLT (Lucas and Kanade, 1981). This method is completely local, i.e., it starts
from the previous location (or a location predicted by some dynamic model) and locates the
closest local minima. In contrast, the normalized cross correlation locates the global maxi-
mum in the whole frame f .

9.2.4 Phase-only matched filter

If we reconsider the computation in the Fourier domain (9.8), one could get the idea to
choose M as

M(u,v) = F(u, v)

|F |2(u, v)
(9.11)

such that

C(u, v) = F(u, v) ◦ F̄ (u, v)

|F |2(u, v)
= 1 and c(x, y) = δ(x, y). (9.12)

A shift of f with (x0, y0) leads to a modulation in the Fourier domain (shift theorem) and thus
a shifted Dirac in the spatial domain. Thus, we made a transition to a discriminative model
as the filter does not represent the appearance of the template and the output score map aims
to be 1 for the correct displacement and 0 for incorrect displacements.

To obtain an ideal score map requires that the whole image is noise-free and shifted
together with the patch containing the target. In practice, this is hardly the case and the
estimated score map is replaced with a target score map located at the maximum score to
compute the new model, see Fig. 9.2 right. The target score map is no longer a Dirac because
the power spectrum |F |2(u, v) changes between the initial frame and the subsequent ones.
For symmetry reasons, the denominator in (9.11) needs to be changed to |F ||F ′| where F ′ is
the Fourier transform of the current frame. The resulting filter m is strictly speaking nonlinear
and is also known as the symmetric phase-only matched filter (SPOMF) (Chen et al., 1994).

The name phase-only matched filter (POMF) goes back to (Horner and Gianino, 1984)
where the nonlinearity is avoided by omitting |F ′| in the denominator. Thus the effective
matching is a correlation of the new frame with a model m, that has a constant amplitude
spectrum

M(u,v) = F(u, v)

|F |(u, v)
. (9.13)
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This filter will no longer result in a Dirac response (unless the frame has a constant amplitude
spectrum). In terms of a discriminative filter, one can consider the POMF being regularized by
the amplitude spectrum of the current frame. Each Fourier coefficient of C(u, v) is effectively
multiplied by the corresponding coefficient of the magnitude spectrum |F |(u, v). Thus, the
output is not a Dirac, but a smooth response where the shape is obtained from inverse Fourier
transform of the magnitude spectrum of f ′. This regularization is made explicit in the MOSSE
filter, see Section 9.3.1 below.

9.3 Online-learning-based methods

This section takes some ideas from the previous section, the regularization of the response
and the incremental model update, to define the concepts of discriminative correlation filters.

9.3.1 The MOSSE filter

Revisiting the POMF, we observed that it comes with an implicit regularization of the
response. If this regularization is made explicit in terms of a target response function c, we
arrive at the concept of the Minimum Output Sum of Squared Error (MOSSE) filter (Bolme et
al., 2010):

min
m

∑
x,y

(∑
r,s

px,y(r, s)m(r, s) − c(x, y)

)2

= min
m

‖f � m − c‖2. (9.14)

Note that although we use the same notation f as for the whole frame, we will only use a
local search window. Thus, we obtain an approach that is neither purely local, like the KLT,
nor fully global, like the NCC. Typically the search window is two to three times the size of
the bounding-box in both dimensions.

The MOSSE filter is computed in closed form using the equivalent formulation in the
Fourier domain:

m̃ = arg min
m

‖f � m − c‖2 (9.15)

= arg min
m

‖F ◦F{m} − C‖2 (9.16)

= F−1
{

arg min
M

‖F ◦ M̄ − C‖2
}
. (9.17)

This final expression has the solution (for a derivation, see the appendix in Bolme et al. (2010))

m̃ = F−1
{

C̄ ◦ F

F̄ ◦ F

}
. (9.18)

Note that the equivalence is only obtained for infinite domains. In practice, the extracted
patch is of finite size and the Fourier transform leads to an implicit periodic repetition. In
order to reduce the effects of discontinuities at the patch border, a Hann-window (cosine-
window in Bolme et al. (2010)) is applied to the patch.
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Note further the similarity to (9.11) except for C. As explained for the POMF, we effectively
apply a point-wise regularizing function C(u, v) and if we choose C = |F ′|, we obtain the
POMF. For the MOSSE filter, however, the most common choice for the target score map c is
a Gaussian function (not normalized) at (x0, y0) with fixed width

c(x, y) = exp

(
− (x − x0)

2 + (y − y0)
2

2σ 2

)
. (9.19)

This regularized matched filter is usually updated during a sequence of frames, similar to the
update of the NCC (9.9), see also Fig. 9.1. In each step, the target score map c(x, y) is located
at the maximum score from the previous model, see Fig. 9.2 right.

The MOSSE update equation is obtained by first considering the minimization problem
for multiple annotated frames (ft , ct ):

min
m

∑
t

‖ft � m − ct‖2. (9.20)

In the Fourier domain this gives due to linearity

m̃ = arg min
m

∑
t

‖ft � m − ct‖2 (9.21)

= F−1
{

arg min
M

∑
t

‖Ft ◦ M̄ − Ct‖2
}
. (9.22)

With the solution

m̃ = F−1
{∑

t C̄t ◦ Ft∑
t F̄t ◦ Ft

}
. (9.23)

If we now assume that the pairs (ft , ct ) arrive incrementally, we only need to keep numerator
and denominator separated to sequentialize the update:

At = C̄t ◦ Ft + At−1, A0 = 0 (9.24)

and

Bt = F̄t ◦ Ft + Bt−1, B0 = 0 (9.25)

such that the filter after time step t is obtained as

m̃t = F−1
{

At

Bt

}
. (9.26)

However, for a growing number of frames, the expressions for At and Bt are subject to un-
bounded growth, which we want to avoid for numerical reasons. Also, we would prefer the
model to successively reduce the influence of very old samples. Both effects are achieved by
introducing a forgetting factor 1 − η, where 0 < η < 1, into the update equations:

At = ηC̄t ◦ Ft + (1 − η)At−1, A1 = C̄1 ◦ F1 (9.27)
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Bt = ηF̄t ◦ Ft + (1 − η)Bt−1, B1 = F̄1 ◦ F1. (9.28)

Note that similar to the updated NCC, the filter with time index t is applied to frame t + 1.
In addition to unbounded growth in the expressions, a denominator close to zero can cause

numerical issues. This problem has been addressed by regularization of the filter coefficients
with penalizing their L2-norm (Henriques et al., 2012). This leads to the following ridge-
regression problem:

min
M

∑
t

‖Ft ◦ M̄ − Ct‖2 + λ‖M‖2. (9.29)

The solution is a minor modification of (9.23):

m̃ = F−1
{ ∑

t C̄t ◦ Ft

λ + ∑
t F̄t ◦ Ft

}
(9.30)

and for the incremental case we only change (9.26) to

m̃t = F−1
{

At

λ + Bt

}
(9.31)

and keep (9.27) and (9.28) unchanged.

9.3.2 Discriminative correlation filters

The MOSSE filter defined in the previous section acts directly on the image data. The
derivations also assume that the image data is scalar-valued (single-channel) and the gen-
eralization to color images (multichannel) is nontrivial. Furthermore, we might want to use
multiple features extracted from the image instead of, or in addition to, the pure image data.
Also in this case, multichannel input data needs to be processed, which leads to a generaliza-
tion of the (regularized) MOSSE filter: the discriminative correlation filter (DCF).

Note that for the definition of the DCF, we change notation to symbols commonly used in
machine learning. Compared to the signal processing inspired notation in the MOSSE filter,
we apply the following mappings: f �→ x for the input data, m �→ f for the filter, and c �→ y

for the target outputs (Danelljan et al., 2015). For input data with d channels, we reformulate
(9.29) as the minimization of the objective

εt (f ) =
t∑

k=1

αk‖Sf (xk) − yk‖2 + λ

d∑
l=1

‖f l‖2 (9.32)

where we define the score function

Sf (x) =
d∑

l=1

xl � f l (9.33)



9.3. Online-learning-based methods 317

as the multichannel correlation between input and the filters. Note that the samples (xk, yk)

are weighted by αk ≥ 0, which is a further generalization compared to the previously intro-
duced forgetting factor (1 − η).

The solution to the minimization of (9.32) is obtained by plugging in the score function
(9.33) and Parseval’s theorem such that

min
f n

εt (f ) = min
f n

t∑
k=1

αk

∥∥∥∥∥
d∑

l=1

xl
k � f l − yk

∥∥∥∥∥
2

+ λ

d∑
l=1

‖f l‖2 (9.34)

= min
Fn

t∑
k=1

αk

∥∥∥∥∥
d∑

l=1

Xl
k ◦ F̄ l − Yk

∥∥∥∥∥
2

+ λ

d∑
l=1

‖F l‖2 (9.35)

for all n = 1 . . . d . The necessary condition for a minimum is that the partial derivatives with
respect to all components of Fn and for all n vanish

0 = ∂εt

∂F n
=

t∑
k=1

2αk

(
d∑

l=1

Xl
k ◦ F̄ l − Yk

)
X̄n

k + 2λF̄ n for allu,v,n (9.36)

0 = X∗diag(α)XF̄ − X∗diag(α)Y + λF̄ (9.37)

F̄ = (
X∗diag(α)X + λI

)−1X∗diag(α)Y (9.38)

where the second equality is a reformulation in matrix notation. The matrix X collects the
Fourier coefficients Xl

k(u, v), l = 1 . . . d as row vectors, X∗ is its conjugate transpose, diag(α) is
the diagonal matrix with entries αk , F̄ collects the Fourier coefficients F̄ l(u, v), l = 1 . . . d as a
column vector, and Y is the column vector containing all Yk . The original formulation can be
found in Danelljan et al. (2015).

The solution (9.38) has several special cases. The regularized MOSSE filter with incremen-
tal update is the special case for d = 1 and αk establishing a geometric sequence η(1 − η)t−k .
Another special case is obtained if we only consider one single sample. In that case, X is a row
vector and XX∗ is a scalar, so that

(
X∗X + λI

)−1X∗Y = X∗Y
XX∗ + λ

(9.39)

and

F̃ n = Ȳ ◦ Xn

λ + ∑d
l=1 X̄l ◦ Xl

, n = 1 . . . d. (9.40)

If we revisit this solution for multiple samples, the inversion trick in (9.39) only applies
if X∗diag(α)X is of rank one. Without this trick, an efficient incremental update becomes im-
possible as we would have to invert a d × d matrix for each coefficient and each frame. There
exists a generalization of the inversion trick, known as the Sherman-Morrison-Woodbury
formula, and it has been applied to multichannel DCFs (Lukežič et al., 2018), but empirical
results seem to indicate that a rank-one approximation works sufficiently well (Danelljan et
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al., 2017). In this appoximation, we simply reuse the modified update Eqs. (9.27) and (9.28)

An
t = ηȲt ◦ Xn

t + (1 − η)An
t−1, An

1 = Ȳ1 ◦ Xn
1 , n = 1 . . . d (9.41)

Bt = η

d∑
l=1

X̄l
t ◦ Xl

t + (1 − η)Bt−1, B1 =
d∑

l=1

X̄l
1 ◦ Xl

1. (9.42)

Similar to (9.31), we compute the (vector-valued) filter as

f̃ n
t = F−1

{
An

t

λ + Bt

}
, n = 1 . . . d. (9.43)

9.3.3 Suitable features for DCFs

With the transition from single channel MOSSE filters to DCFs, we now have the freedom
to choose which features are used for the input feature map x. There are three major trade-offs
to consider regarding the feature selection: the first one regarding d , the number of channels
in x, the second one regarding the spatial resolution or the number of Fourier coefficients,
and the third one regarding the size of the temporal window in case that other αk than those
from a geometric sequence are to be used.

The number of free parameters of the DCF scales with the size of the feature map, d and the
spatial resolution, as can be seen in (9.36). A larger number of parameters requires more com-
putations, as does a larger time-window, the inner dimension in (9.38). Furthermore, more
free parameters also require stronger regularization, as the number of original input dimen-
sions, i.e., the input image frame, is independent of the size of the feature map x.

Whereas the size of the temporal window and the spatial resolution will be reconsidered in
later sections of this chapter, we will focus on the number of channels in this section. The focus
here is on hand-crafted features: learned features and deep features will also be considered
later. Thus the problem addressed in this section is: select as few hand-crafted dense features
as possible to obtain a high-performance DCF tracker.

Since the DCF approach is based on tracking by detection, we ground the feature selection
on experience from the object detection literature. Whereas pure image values might be useful
in special cases, e.g. photometric data such as thermal IR, the structure and shape in images is
usually much better represented using histograms of oriented gradients (HOG) as proposed
for person detection (Dalal and Triggs, 2005). HOG features are a special choice to represent
orientation data (Felsberg, 2018) as are dense SIFT features (Lowe, 2004).

A majority of recent tracking methods using hand-crafted features rely on HOG features,
and we are not aware of any systematic evaluations of alternative settings, e.g. based on
generalized formulations (Felsberg, 2018). Also, features more commonly used for texture
analysis, such as binary local patterns (Pietikäinen and Zhao, 2015), are rarely seen in tracking
methods, presumably due to the relative low share of textured objects in benchmark datasets.
Thus we also stick to HOG features for the purpose of this chapter and refer for details to the
original work, alternatively (Felsberg, 2018).

All features discussed so far ignore the color information in the image frames. Again,
from the object detection literature, we learn that color names (CNs) are particularly useful
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(Khan et al., 2012). The color name descriptor is computed by a learned soft-assignment from
Lab color-space to eleven color names in English language (Van De Weijer et al., 2009). The
learning is performed on weakly labeled Google images using probabilistic latent semantic
analysis (pLSA-bg):

P(w|d) = P(w|z)P (z|d), (9.44)

where d denotes the color distribution in Lab space, w is one of the eleven color names, and
z is a latent variable. The color names are represented by an 11-D soft-assignment vector, i.e.,
all components are between 0 and 1 and the vector is normalized.

CN features have successfully been used in various tracking methods and have shown to
be superior to many other color representations, in particular pure RGB-values (Danelljan
et al., 2014b). Pure RGB-values are however commonly used in combination with shallow
and deep features from deep networks, see Section 9.4.1. CN features are relatively sparse
and going from three to eleven dimensions leads to a significant growth of free parameters.
Based on previous arguments, feature compression methods based on, e.g., online PCA have
proven to be very useful (Danelljan et al., 2014b) and lead to powerful DCFs based on HOG
and CN features.

9.3.4 Scale space tracking

The DCF trackers introduced above still suffer from one fundamental weakness: if the
target object moves in depth, e.g. closer to the camera, it will change its size in the image
plane. Thus, the bounding-box size should be modified and not only its position in the current
frame: we want to track the object at (continuously) varying scale. Obviously, the appearance
of the object also changes with scale or depth, but there is a close relation between scale
and appearance, which allows us to connect the appearance models across scale: scale space
(Koenderink, 1984).

The key idea of scale space is to introduce a third (scale) axis to the image that controls the
amount of blur, e.g. caused by the limited depth-of-field of a camera (Felsberg et al., 2005).
Blurring is usually modeled by lowpass-filtering, i.e. the reduction of high frequency com-
ponents. At some scale s0, frequencies over half the Nyquist frequency π/2 are sufficiently
attenuated to allow down-sampling with a factor 2 without significant aliasing. At scale 2s0
we can then down-sample the image with a factor 4 and so on, eventually building a scale
pyramid, see Fig. 9.4, left.

The useful side-effect of this pyramid is that the reduced spatial resolution in the pyra-
mid corresponds to the reduced size in the image plane due to the increased distance from
the object to the camera. Thus, we can simulate the effect of increasing depth by moving to
larger scales in the pyramid and in this way, we can include scale estimation in the tracking
(Danelljan et al., 2017). For this process, we have three options:

1. A multiresolution translation filter is applied. All relevant scales are computed in parallel
and the best score is selected.

2. A joint scale space filter is applied. The DCF is computed in 3D instead of 2D and the third
coordinate determines the object size.

3. Discriminative scale space tracking is applied. A 1D DCF is applied along the scale dimen-
sion to determine the object size.
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FIGURE 9.4 Scale space tracking. Scale pyramid (left) and scale tracking (right). The scale axis corresponds to
the spatial coordinates in the translation case.

As shown in a comparison, the first two approaches are not only slower than the third one,
but do not even improve accuracy (Danelljan et al., 2017). Thus we will only describe the
third one in this section.

The basic assumption is that scale changes slower than position. Consequently, we can
separate position and scale tracking by first estimating the translation at constant scale with
a DCF as previously introduced, and secondly estimating the change of scale. The scales that
are supposed to produce low scores have to be generated explicitly by the scale pyramid
of the region inside the bounding box, see Fig. 9.4 right, in contrast to the translation case
where the displaced windows are obtained by shifted bounding-boxes. The corresponding
feature vectors are then arranged to form a feature map over the scale coordinate and using
a Hann-window.
The pseudo-code for discriminative scale space tracking reads:

• Input:
• Image It

• Previous target position pt−1 and scale st−1

• Translation model At−1,trans, Bt−1,trans
• Scale model At−1,scale, Bt−1,scale

• Output:
• Estimated target position pt and scale st
• Updated translation model At,trans, Bt,trans
• Updated scale model At,scale, Bt,scale

• Translation estimation:
1. Extract sample xt,trans from It at pt−1 and st−1

2. Compute correlation scores yt,trans using (9.33) with ft−1,trans according to (9.43)
3. Set pt , to the target position that maximizes yt,trans
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• Scale estimation:
4. Extract sample zt,scale from It at pt and st−1
5. Compute correlation scores yt,scale using (9.33) with ft−1,scale according to (9.43)
6. Set st to the target scale that maximizes yt,scale

• Model update:
7. Extract samples xt,trans and xt,scale from It at pt and st
8. Update the translation model At,trans, Bt,trans using (9.41) and (9.42)
9. Update the scale model At,scale, Bt,scale using (9.41) and (9.42).

Note: The scaling of the window content makes the problem with the periodic extension
apparent, as the Hann window is not scaled in this process.

9.3.5 Spatial and temporal weighting

Despite the use of a Hann-window, the implicit periodic extension of the patch caused by
the Fourier transform reduces the discriminative power of the filter. Features that are charac-
teristic for the object of interest reappear in the vicinity of the patch and generate side-lobes
in the score function. A naive attempt to counter those side-lobes using an increased search
windows fails, because a large part of the considered patch now consists of background pix-
els. The filter tends to associate those background pixels with the peak in the target function,
i.e., it learns high coefficients at these locations, and the tracker will stick to the background
instead of following with the object (Danelljan et al., 2015).

To counter this effect, adding a spatial regularization to (9.32), which penalizes filter coef-
ficients outside the bounding-box, has been proposed (Danelljan et al., 2015):

εt (f ) =
t∑

k=1

αk‖Sf (xk) − yk‖2 +
d∑

l=1

‖w · f l‖2. (9.45)

However, the required point-wise multiplication of w and f in the spatial domain becomes
a convolution in the Fourier domain and the major advantage of DCFs, the efficient compu-
tation in the Fourier domain, is lost. One option is to alternate between spatial and Fourier
domain (Galoogahi et al., 2015), the other is to choose a weight function w that has only a few
nonzero Fourier coefficients. In the latter case, the convolution in the Fourier domain is no
problem as the computational effort is only marginally increased; see Danelljan et al. (2015).

The number of computations is greatly reduced by replacing the complex Hadamard
(point-wise) products in (9.38) with real matrix products. We start from the system of equa-
tions (

X∗diag(α)X + λI
)
F̄ = X∗diag(α)Y (9.46)

and map X to D, F̄ to F̃ , and Y to Ỹ , the respective real representations. The Fourier transform
of a real-valued function is Hermitian symmetric, i.e., P(−u,−v) = P̄ (u, v), and the isometric
mapping

(
P(u, v),P (−u,−v)

) → ((
P(u, v) + P(−u,−v)

)
/
√

2,
(
P(u, v) − P(−u,−v)

)
/i

√
2
)

(9.47)
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leads to the same solution, but using real instead of complex matrices. If we further generalize
λI as WTW , representing the sparse convolution induced by the spatial weights, we obtain

(
t∑

k=1

αkDT
k Dk + WTW

)
F̃ =

t∑
k=1

αkDT
k Ỹk. (9.48)

We solve this system using the Gauss-Seidel method, i.e., we decompose the LHS into a lower
triangular and strictly upper triangular part

(
t∑

k=1

αkDT
k Dk + WTW

)
F̃ = (Lt + Ut )F̃ =

t∑
k=1

αkDT
k Ỹk (9.49)

and compute the solution by iterations

Lt F̃(j) =
t∑

k=1

αkDT
k Ỹk − Ut F̃(j−1). (9.50)

In particular, for w with few nonzero Fourier coefficients, this method converges rapidly and
results in filters with small coefficients in the vicinity. Note further that this method avoids
the approximative solution in (9.42) and the restriction of αk to a geometric sequence.

This gained freedom to choose αk has been used to systematically down-weight samples
that result from the tracker temporarily drifting off the target (Danelljan et al., 2016a). The
weights αk are set by redeterminating the importance of each frame during later samples.
This procedure helps in ambiguous cases (e.g. partial occlusions) and allows us to use all
available information.

The weights are initialized from prior information, e.g. how old the sample is. Typically
prior sample weights ρk induced by a forgetting factor 1 − η, see (9.9), are used. We then
optimize over the joint loss

min
f,α

εt (f,α) + 1

μ

t∑
k=1

α2
k

ρk

(9.51)

s.t. αk ≥ 0 , k = 1, . . . , t (9.52)
t∑

k=1

αk = 1 (9.53)

by repeatedly updating f using the Gauss-Seidel iteration (9.50) and α using quadratic pro-
gramming.

An even more efficient way to make optimal use of all available frames will be introduced
in section 9.4.2, based on deep features.
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9.4 Deep learning-based methods

DCF trackers are powerful methods if the previously introduced concepts of regulariza-
tion, scale-adaptation, and multichannel score functions are applied. However, the bottleneck
for further improvement is the predetermined layer of hand-crafted features. In this section,
the transition to deep features, adaptive features, and finally end-to-end learning of DCFs is
described.

9.4.1 Deep features in DCFs

The selection of hand-crafted features described in Section 9.3.3 has been inspired by re-
sults from object detection. When looking at the development of deep networks and relevant
backbones, major progress was first achieved on image classification. Early deep network-
based object detection methods often used region proposals (Girshick et al., 2016), which are
less suitable as features for a DCF. Therefore, early attempts to integrate deep appearance
features into DCFs (Danelljan et al., 2016b) applied backbones from image classification, e.g.
imagenet-vgg-m-2048 / CNN-M-2048 (Chatfield et al., 2014), rather than detection networks.

When considering a backbone network for generating a feature map as input to a DCF, the
obvious question is which layer to use. Candidates are the convolutional layers, e.g. layers
one to five in imagenet-vgg-m-2048. The shallowest layers are characterized by high spatial
resolution and few channels (e.g. 109 × 109, 96 channels for layer one in imagenet-vgg-m-
2048) and the deepest layers by low spatial resolution and many channels (e.g. 13 × 13, 512
channels for layer five in imagenet-vgg-m-2048). In general, deeper layers trade off a higher
number of channels for a lower spatial resolution, a necessary consequence from the spatio-
featural uncertainty relation (Felsberg, 2009).

Whereas more feature channels enable more discriminative power, the reduced spatial
resolution might lead to degraded accuracy. In terms of the VOT-criteria on robustness and
accuracy, it is assumed that a DCF based on shallow features will be characterized by high
accuracy and low robustness, whereas a DCF based on deep features will be characterized
by low accuracy and high robustness. This is also implicitly confirmed by the experiments
with imagenet-vgg-m-2048, where layer one and five are local maxima of OTB-50 overlap
precision (Danelljan et al., 2016b), a measure that integrates accuracy and robustness (Wu et
al., 2013).

In order to make use of both the high spatial accuracy of shallow features and the ro-
bustness of deep features, one would like to fuse both feature maps. However, the different
spatial resolutions will require either to upsample the deep features, which is computation-
ally infeasible, or to downsample the shallow features, which will diminish the positive effect
regarding accuracy. The ideal case would be if both or all feature maps were continuous func-
tions and no sampling was required at all. But how to represent a continuous feature map in
a digital computer?

The solution comes with isometric transformations from continuous signals to discrete
spectra such as the Fourier series or other series expansions (Danelljan et al., 2016): the C-
COT tracker. To keep the presentation simple, we will focus on Fourier series with a finite
number of coefficients, but the method generalizes to all isometric transformations. We start
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by revisiting the calculation of the score map using correlations of the feature map and a
set of filters (9.33). If we assume this correlation being performed in the continuous domain,
between a continuous feature map and a set of continuous filters

Sf (x) =
d∑

l=1

f l � Jl

{
xl

}
, (9.54)

where Jl{xl} is the hypothetical mapping of the discrete feature map xl to the continuous
domain, we can easily fuse feature maps with different spatial resolutions.

If we now move the whole setting to the Fourier domain, which we will do anyway in
order to compute the efficient solutions (9.43), the continuous correlation will become a point-
wise product of discrete coefficients. A periodic continuous function has infinitely many
discrete Fourier coefficients, but we also know that truncating the sequence of coefficients
will lead to an optimal approximation in the L2-sense (note that this is a specific property of
the Fourier series though). Approximating the score map in L2-optimal way perfectly fits the
MOSSE-idea of minimal L2-error of the output.

In conclusion this means that using the solution (9.50) (or a more efficient formulation us-
ing the conjugate gradient method), we already have all tools at hand to fuse multiresolution
feature maps – in contrast to the ADMM-based approach (Galoogahi et al., 2015) that switches
between spatial and Fourier domain. In addition to the fusion of layers one and five and the
raw input data (224 × 224, RGB), the continuous model enables subpixel localization during
inference and learning, which improves results, even beyond upsampling to the highest res-
olution. Note in this context that the target function y is known analytically, see (9.19), so the
Fourier coefficients can be computed accurately. Note further that this approach can also be
used for feature point tracking as an alternative to the KLT (Lucas and Kanade, 1981).

Once moving to multiple layer appearance features, one can integrate other modalities
than appearance features. A previously ignored feature type in DCF-trackers is motion fea-
tures, which can now be fused with appearance features (Danelljan et al., 2019a). The appear-
ance features applied in this work are taken from the imagenet-vgg-verydeep-16 / ConvNet
C network (Simonyan and Zisserman, 2015), with 13 convolutional layers, and the deep mo-
tion features (Chéron et al., 2015), computed from a three-channel input (optical flow vector
and its magnitude) and consisting of five convolutional layers. For tracking, fusing appear-
ance layers four (128 channels, stride 2) and 13 (512 channels, stride 16) and motion layer five
(384 channels, stride 16) gives the best results (Danelljan et al., 2019a).

9.4.2 Adaptive deep features

The approach to integrate multiple feature maps for DCF-trackers leads to a significant
improvement of the results compared to earlier methods, both using hand-crafted features
and single layer deep features, but leads also to many parameters in the filter model. The
large number of parameters is problematic in two regards: First, the computational effort
scales with the number of parameters. Secondly, the amount of training data is limited and
the number of parameters easily grows beyond the dimensionality of the input, leading to
overfitting.
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More concretely, it has been found that the C-COT tracker using the imagenet-vgg-m-2048
features has as many as 800,000 parameters in online learning (Danelljan et al., 2017). To
address the resulting complexity and training data scarcity issues, the ECO tracker, based
on efficient correlation operators, suggests to discriminatively learn a mapping to a lower-
dimensional feature space (Danelljan et al., 2017). This is achieved by jointly minimizing the
classification error, leading to 80% reduction in the number of model parameters.

The key idea is to introduce some projection operator P that maps the d continuous feature
channels in (9.54) to c � d dimensions before computing the score. Note that this operator is
unaffected by the Fourier transform. Including a regularizer for the L2-norm of all coefficients
of the operator P , we therefore reformulate (9.45) as

εt (f ) =
t∑

k=1

αk

∥∥∥∥∥
c∑

l=1

f l � pT
l J {xk} − yk

∥∥∥∥∥
2

+
c∑

l=1

‖w · f l‖2 + λ‖P ‖2
F, (9.55)

where pl are the column vectors in P and the last term is the Frobenius norm. This loss is
minimized using the Gauss-Newton method, derived by linearization of the residuals. For
further details, the reader is referred to the original publication (Danelljan et al., 2017).

Even though the ratio of parameters and amount of training data is improved, the required
diversity in the training data will still require a fairly large sample set, which leads to a sig-
nificant computational burden. Furthermore, the memory size is limited, which leads to a
limited time horizon for the online learning, and discarding old samples leads to overfitting
to the recent appearance.

In order to avoid this overfitting, the sum over all samples from k = 1 to t in (9.55) is
replaced with the expectation over the joint distribution p(x, y):

εt (f ) = Ep(x,y)

{∥∥∥∥∥
c∑

l=1

f l � pT
l J {x} − y

∥∥∥∥∥
2}

+
c∑

l=1

‖w · f l‖2 + λ‖P ‖2
F. (9.56)

Using the original sum implicitly means to assume that the t samples are drawn from p(x, y)

and are sufficiently many to approximate p(x, y) accurately, which might both be wrong as-
sumptions.

In order to achieve a compact and diverse representation of the training data, the ECO-
tracker models p(x, y) as a mixture of Gaussian models. The combination of the two im-
provements over C-COT does not only improve speed, but also improves performance by
13.3% (Danelljan et al., 2017).

The approach applied in the C-COT and ECO trackers is not limited to imagenet-vgg-m-
2048 features, but somehow surprisingly, using more powerful backbones such as GoogLeNet
(Szegedy et al., 2015) or ResNet-50 (He et al., 2016) does not improve the performance further
(Bhat et al., 2018). To efficiently unveil the power of deep tracking, the feature maps must
not be combined at the level of the tracker input as done in (9.54). Instead, it is more effi-
cient to train deep and shallow models independently, and with different widths of the target
function, and to apply a weighted fusion of the separately trained trackers.

As observed in section 9.4.1, predictions based on a deep feature map, ŷd = Sf (xd), are
characterized by high robustness, but inferior localization, and predictions based on a shal-
low feature map, ŷs = Sf (xs), are characterized by accurate localization, but easily drop the
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target under appearance changes. The two predictions can be combined in various ways, but
already the adaptively weighted sum

ŷβ(p) = βdŷd(p) + βsŷs(p) (9.57)

results in a significant improvement over the ECO tracker. In each time step, the adaptive
weights are computed by solving the quadratic programming problem

min
ξ,β

− ξ + μ
(
β2

d + β2
s
)

(9.58)

s.t. βd + βs = 1 , βd ≥ 0 , βs ≥ 0 (9.59)

ŷβ

(
p∗) − ξ�

(
p∗ − p

) ≥ ŷβ(p) , ∀p, (9.60)

where p∗ is a candidate target state (e.g. position) that is sampled from local maxima in ŷd
and ŷs, μ is a regularization parameter, and �(p) = 1 − exp(−4|p|2/s) with s being the target
size.

9.4.3 End-to-end learning DCFs

The approaches described in the previous section introduce feature adaptation in DCF-
trackers with a deep backbone. The backbone is trained offline on image classification data,
the tracker is trained online using the current sequence, and the adaptation procedure is an
engineered optimization problem. If we want to aim at a learning approach to connect the
backbone with the tracker instead, we need to make use of tracking-specific training data.
The main difference between adaptation and learning is the data used for the optimization:
In contrast to adaptation, learning attempts to generalize from training data to the test data
during inference.

The key problem addressed by the adaptive combination of score maps in (9.57) is to gener-
ate uni-modal score functions with a maximum centered inside the bounding box. To combine
the score functions from shallow and deep features is a well-working heuristic for this pur-
pose, but a machine learning approach would directly address the objective itself. Thus the
task is to learn, using the tracking training data, a predictor for the accuracy measure, the
Jaccard index. Instead of picking all local maxima and optimizing the weights, the Jaccard
index prediction allows to pick the candidate bounding box with the largest overlap.

This idea of overlap maximization is used in the ATOM-tracker (Danelljan et al., 2019b),
which combines an online learned classifier (similar to a DCF) with a Jaccard index regressor
that is trained on annotated tracking data, see Fig. 9.5. Obviously, the regressor network has
to take into account the specific target given in the initial (reference) frame. This is achieved
by modulating the coefficient vector of the current frame with the corresponding vector from
the reference frame before feeding it into the predictor.

The two branches, for the reference frame and current frame, are very similar in structure.
The main difference is that the test branch for the current frame does not have access to a
bounding box, but uses the initial estimate from the DCF-like classifier instead. The whole
regressor is trained end-to-end, where the classifier is not trained using the back-propagated
loss, but using the MOSSE criterion for the target score function. Thus the classifier acts like
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FIGURE 9.5 ATOM-tracker. The ATOM-tracker consists of a classification branch and a regression branch for
the Jaccard index (intersection over union).

a fixed input to the regressor network, which has a two-branch architecture that resembles
a Siamese tracker (Zhu et al., 2018). For the detailed network model of the Jaccard index
regressor we refer to the paper by Danelljan et al. (2019b) or the code repository (https://
github.com/visionml/pytracking).

The classifier is basically similar to the one in the ECO tracker, with a first layer that reduces
the number of feature channels to 64 (projection operator) and a second layer with a 4 ×
4 kernel. Due to the limited size of the spatial kernel, the online optimization is no longer
performed in the Fourier domain but directly in the spatial domain. One advantage of this
change is that a nonlinear activation function can be added to the output of the convolution,
in this case a parametric exponential linear unit.

In the further development of the ATOM-tracker, which can be seen as a merger of DCF-
like approaches and Siamese trackers, e.g. Zhu et al. (2018), the MOSSE-objective is dropped
and the loss is learned from data instead (Bhat et al., 2019). This method, DiMP, can be consid-
ered as the next step of discriminative learning, where the discriminative power is no longer
identified with the L2-distance to the target score function, but with some data-dependent
distance function. This also increases the flexibility regarding the representation of the track-
ing output: instead of the parametric bounding-box one can easily move on to segmentation
masks.

9.5 The transition from tracking to segmentation

The parametric bounding-box model implicitly enforces the formulation of the target func-
tion in terms of a Gaussian function centered at the ground truth position and scale. Besides
the bias mentioned in Section 9.2.2, the bounding-box also suffers from its inherent inaccu-
racy for objects with a shape that deviates from a rectangle. This is already a problem during
annotation, where overall accuracy is improved by annotating segmentation masks and au-
tomatic fitting of bounding-boxes (Vojíř and Matas, 2017; Kristan et al., 2016).

https://github.com/visionml/pytracking
https://github.com/visionml/pytracking


328 9. Visual tracking

9.5.1 Video object segmentation

Since 2020 the VOT challenge evaluates the Jaccard index on ground-truth segmentation
masks instead of bounding-boxes (Kristan et al., 2020). This means that visual object tracking
became similar to video object segmentation (VOS) for the single instance case (Perazzi et al.,
2016). The task in VOS is to classify each pixel in a frame of a video either as background or
as part of the target object. VOS methods are trained offline on annotated video sequences
and evaluated on test sequences with partly new (unseen) object classes.

Similar to the VOT challenge, the evaluation of VOS methods makes use of the Jaccard
index, see Section 9.2.2. However, two predictions might have exactly the same Jaccard index
but completely different shapes, which can only be addressed by means of a contour measure.
In the DAVIS-challenge (Perazzi et al., 2016), the F-measure of the contour is used for this
purpose, defined as

F = 2
P · R
P + R

, (9.61)

where P is the precision and R is the recall. For contours, precision is computed as the rate
of predicted contour pixels that are truly contour pixels and recall is computed as the rate of
true contour pixels that are predicted contour pixels. Commonly the F-measure is computed
approximately using morphological operators (Perazzi et al., 2016).

In the semisupervised case (Perazzi et al., 2016), the first frame of the test sequence is
annotated with a segmentation mask, similar to the VOT2020 challenge. The VOS method
thus needs to adapt to that single annotated sample, solving a one-shot learning problem. In
the unsupervised case (Perazzi et al., 2016), no annotation is provided, but it is assumed that
the target object is implicitly determined by its motion compared to the background. Finally,
there is also a multiinstance semisupervised case, where multiple objects are annotated in the
initial frame (Perazzi et al., 2017). This problem is also closely related to the video instance
segmentation (VIS) problem, where, similar to detection in still images, all known objects
need to be segmented throughout the sequence (Yang et al., 2019).

For the remainder of this chapter, we will focus on the semisupervised VOS problem for
the single instance case, as this is closest to the VOT problem with segmentation mask an-
notation. In a certain way, one can consider this transition to segmentation masks as the
end-point of bounding-box tracking, similar to the ATOM-tracker terminating the series of
Fourier-based DCFs, and the DiMP tracker terminating the series of MOSSE-based DCFs.
Before looking into discriminative VOS methods, we first consider a generative approach to
clarify the difference in the case of VOS methods.

9.5.2 A generative VOS method

Even though the VOS field is quite young, many different deep learning approaches have
emerged. We do not intend to give a review of deep learning methods for VOS here and re-
fer to recent review papers on this topic, e.g. Yao et al. (2019). Many approaches, however,
perform extensive fine-tuning of the network using the first frame annotation of the test se-
quences. This is not appropriate for practical application as it means that videos can never be
processed on the fly, but instead with a delay of at best some minutes.
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One approach that avoids this brute-force online fine-tuning is based on a generative
appearance model (AGAME) (Johnander et al., 2019). This approach estimates instead the
parameters of a Gaussian mixture model (GMM) and draws deep features from

p(x) =
K∑

k=1

p(z = k)p(x|z = k), (9.62)

where p(x|z = k) = N (x|μμμk,ΣΣΣk). A uniform prior 1/K over components k is assumed and the
components are either from the background or the foreground. Each of these two classes is
divided into a main mode and a mode of hard cases, i.e., we obtain four components in total.

The GMM parameters θ , i.e., means μμμk and variances ΣΣΣk , are initialized from the initial
frame. During the bootstrapping, i.e., the subsequent frames I i , when only estimates of the
class memberships are available, soft-assignments for the background, object, and the respec-
tive hard cases,

αi
0 = 1 − ŷ

(
I i, θ i−1,Φ

)
(9.63)

αi
1 = ŷ

(
I i, θ i−1,Φ

)
(9.64)

αi
2 = max

(
0, αi

0 − p
(
zi = 0|xi ,μμμi

0,ΣΣΣ
i
0

))
(9.65)

αi
3 = max

(
0, αi

1 − p
(
zi = 1|xi ,μμμi

1,ΣΣΣ
i
1

))
, (9.66)

are used for the updates. Here, Φ denotes the parameters of the fusion and prediction net-
works.

The coarse predictions ŷ are computed fusing the mask propagation output and the com-
ponent score (log-probabilities lnp(z = k)p(x|z = k))

si
k = − ln |ΣΣΣi−1

k | + (xi −μμμi−1
k )T(ΣΣΣi−1

k )−1(xi −μμμi−1
k )

2
, (9.67)

resulting in the assignments for components 0 and 1. The likelihoods in the cases 2 and 3 are
computed using the soft-max of the respective scores. The four soft-assignments are used to
compute mean- and variance-updates as weighted first and second moments. The updates
are then fed into a moving average similar to (9.9).

During inference, the predictions are refined by an upsampling module to achieve full
resolution. The level of performance of the AGAME algorithm renders it useful for the semi-
automatic annotation in the RGBT challenge of VOT2019 after additional consistency checks
(Berg et al., 2019).

9.5.3 A discriminative VOS method

The likelihoods in cases 2 and 3 in the previous section “provide a discriminative mask
encoding” (Johnander et al., 2019), which immediately leads to the question whether one can
replace the GMM with a discriminative model, a dedicated target model similar to the one in
the ATOM-tracker. Similar to the GMM in AGAME, this target model is supposed to adapt to
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the target appearance by a suitable update in order to maximize foreground-background sep-
arability. Focusing on the discriminative power instead of the whole distribution is expected
to lead to a more light-weight and faster algorithm compared to AGAME.

This is confirmed in the discriminative VOS approach FRTM (Robinson et al., 2020), which
also replaces the mask propagation used in AGAME with spatio-temporal consistency. The
target model resembling the ATOM-tracker

s = D(x;w) = w2 ∗ (w1 ∗ x) (9.68)

is trained online using a weighted MOSSE-criterion

LD(w) =
∑

k

γk

∥∥vk ◦ (yk − U
(
D(xk)

)∥∥2 +
∑
j

λj‖wj‖2, (9.69)

where vk is a balancing weight to increase the importance of small target objects, U performs
bilinear upsampling, and γk are weights for controlling the impact of different samples in the
dataset.

The online training uses, similar to tracking approaches, a temporal window. Data from
this window is kept in a memory M .
The pseudo-code for the target model learning reads

1. Initialize memory M , train the discriminative target model D

2. Extract features x from next frame
3. Apply the target model and generate the coarse score map s

4. Enhance s to target mask y with the refinement network
5. Update M with a new sample (x, y, γ )

6. Reoptimize the discriminative target model with M every eighth frame
7. Return to step 2.

The refinement model used in step 4 is trained offline during the VOS training phase. The
roles of the coarse score map s and the refined mask y are similar to AGAME, but AGAME
uses a coarse prediction for the model update whereas FRTM uses the refined prediction for
training, employing bilinear upsampling. FRTM becomes highly efficient by those changes
and enables real-time VOS algorithms.

Similar to the transition from ATOM to DiMP, where the loss is generalized, the VOS target
model can also be optimized with respect to a representation other than the coarse segmen-
tation prediction. Assume that the target model (9.68) produces some feature map instead
of the coarse segmentation map and that the refined segmentation is obtained by a decoder
instead of an upsampling module. In this case, the loss for the target model can be computed
in the feature map domain by encoding the segmentation mask and computing the weighted
L2-error between the encoded segmentation and the target model output (Bhat et al., 2020).

This approach to learn what to learn connects VOS learning to metric learning. Other in-
teresting questions are the generalization to unsupervised VOS, VOS with multiple instances,
and VIS.
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9.6 Conclusions

The development from simple template matching to video segmentation described in this
chapter is one of the cornerstones for many applications in computer vision: video analysis,
visual surveillance, remote sensing, augmented reality (AR), visual robotic control, and au-
tonomous vehicles are just a few major application areas of the developed methods. Most of
these applications require real-time processing, robust models, and accurate predictions.

For instance, AR requires video real-time processing with low latency in order to reduce
AR-sickness. Marker-less methods for AR rely heavily on visual tracking (Chandaria et al.,
2007). The alignment of camera pose and virtual pose can also be used to control unmanned
areal vehicles. For instance, virtual leashing can be implemented using a DCF tracker on RGB
footage from a drone (Häger et al., 2016).

The input data discussed in this chapter was mostly restricted to RGB sequences, but simi-
lar methods can be applied to other spectral ranges or depth data as well. For instance, safety
systems in trains based on thermal infrared cameras can mitigate consequences of collisions
with large animals, people, and obstacles on the track (Berg et al., 2015). In this work, the
anomaly detection on the track is performed using a MOSSE-based filter. Also, car safety sys-
tems that, e.g., detect pedestrians with IR cameras (Källhammer et al., 2007) and RGB cameras
benefit from the progress in combined RGB and thermal tracking (Kristan et al., 2019b).

The methodology of DCFs is not only applicable to tracking and anomaly detection, but
can be generalized further in the spirit of scale-space tracking. For instance, visual naviga-
tion of a vessel in coastal regions can achieve GPS-accuracy (Grelsson et al., 2020). Here, the
efficiency of Fourier-transform DCF-implementations is used to match a (segment of a) hori-
zon line with a huge number of model horizons sampled from a digital elevation model – in
real-time.

With the shift of VOS and VIS methods to real-time processing, new application areas and
new functionalities in existing application areas arise. For instance, AR systems can exploit
the alignment of segmented objects to further improve accuracy and latency. Autonomous
cars and advanced driver assistance systems already make frequent use of frame-wise seman-
tic segmentation, but the performance might further increase with powerful VIS algorithms.
Vessel navigation needs no longer relies on a separate horizon extraction, but can integrate
the horizon analysis into the matching.

Obviously, potential misuse and ethically problematic applications also benefit from the
technical development: Massive surveillance of people by authorities or companies is already
existing cases. Similarly, VOS methods can be used to falsify videos or to produce deep fakes.
Finally, many military applications could be thought of – in particular using IR-images. The
openness of research and availability of open-source implementations is the key to scientific
progress, but unfortunately also to misuse and spurious applications.
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10.1 Introduction

The advent of Deep Learning has in the past decade transformed Computer Vision, from
object recognition, semantic segmentation and 3D surface reconstruction to video under-
standing. Being one of the oldest Computer Vision challenges, video object tracking has also
enjoyed great progress in the Deep Learning era, albeit at a delayed pace for reasons that
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we will describe later in this chapter. The impact of Deep Learning on video object track-
ing has not just been quantitative, that is improving accuracies in standardized benchmarks.
Importantly, the improvement has also been qualitative, generalizing video object tracking
from few-second long videos, better known as short-term tracking (Section 10.2) to videos
spanning several dozens minutes, better known as long-term tracking (Section 10.3).

Visual object tracking, in its most general form, can be described as learning the model fφ

parameterized by φ, which attempts to predict the future location of a target object given an
initial target definition, that is

fφ : Y1 ×X1 ×Xt −→ Yt . (10.1)

Yt denotes the space of all possible predictions, be they in the form of a bounding box or
a segmentation mask. Xt denotes the space of all possible input frames at time t . The only
ground truth given to the model is the location of the object at the first frame.

Often, tracker models rely on their own intermediate predictions yi, i < t , to update the
model parameters φ. In that case the model parameters also change through time and are
better represented with φt . As we will see later, however, it is important to remember that
even if the intermediate predictions yi are used as the target variables to update the models
with supervised learning algorithms, these variables are not the same as the true location of
the object, yi �= y∗

i .
To optimize any visual object tracker, the most common framework is empirical risk mini-

mization. Specifically, a loss function is defined by the respective model of choice

L = L
(
φt ;x1:t , y∗

1 , y1:t−1
)

(10.2)

minimized with (stochastic) gradient descent or variants,

arg min
φt

L ⇒ φt+1 = φt − ε
∂L
∂φ

. (10.3)

Optionally, the loss function is augmented by a regularization function Ω(φ) that penalizes
weights according to predetermined design principles, for instance, penalizing overfitting or
nonsparse solutions.

While the basic formulation of trackers is always the same, a recent division of trackers is
into short-term and long-term visual object trackers. According to the definition of Kristan et
al. (2016), short-term tracking does not require tracker methods to perform redetection of the
target. That is, it is assumed the target object does not disappear and reappear from the frame.
In contrast, in long-term visual object tracking the target object may disappear and reappear
at the frame at any moment. Perhaps more importantly, long-term tracking concerns itself
with complex and long videos, where the object might undergo severe appearance distur-
bances. These disturbances may be due to changes caused by the object itself, e.g., the pose
of the target object changes significantly and constantly, thus altering the appearance of the
object as well, since the tracker has in its availability only the target appearance at the first
frame. These disturbances can also be due to changes in the environment, for instance in the
way the scene is illuminated or due to occlusions by other objects in the scene. These distur-
bances appear also in short-term tracking, naturally, and at first sight, addressing them looks
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like a straightforward extension for longer videos. However, as we shall see next, these dis-
turbances have further indirect effects that are unique in long-term tracking simply due to the
longer durations, effects that are often gradual, cumulative and may even prove catastrophic
to the models at hand.

10.1.1 Challenges in video object tracking

Intuitively, visual object tracking appears to be a rather straightforward problem. After all,
humans can easily follow objects persistently, no matter the object, its appearance and the
settings it appears in. In fact, tracking is one of the hardest and most elusive problems of
computer vision and applied machine learning. This is largely because it is a severely under-
constrained problem: there exist almost no constraints on the types of objects or variations
throughout the video in the general case.

Next, we identify and describe three types of challenges in visual object tracking: visual,
learning, and engineering challenges. It is important to emphasize that these challenges are
rarely – if ever – found in isolation.

10.1.1.1 Visual challenges in tracking
We identify two types of visual modeling challenges: intrinsic visual challenges caused by

changes of the target object itself, and extrinsic visual challenges caused by changes in the
tracking environment.

Starting from the intrinsic visual challenges, extensive studies (Smeulders et al., 2014; Wu
et al., 2015) have grouped the object specific variations: scale variation, shape deformation, in-
plane rotation, out-of-plane rotation. The scale variation occurs either when the object changes
size or when the camera moves closer or further away from the target object. Shape defor-
mation is typically observed when the target object is nonrigid and changes shape over time.
In-plane rotations are the rotations of either the target object or the camera that are on the
plane perpendicular to the axis between the camera and the target object. An example of an
in-plane rotation is when pedestrians are recorded from a birds-eye view, e.g., a drone, and
the pedestrians change directions. Out-of-plane rotations, in contrast, are all other rotations
taking place in the 3d space, for instance when tracking a person dancing.

In the extrinsic visual challenges that are caused by the environment, we find illumination
variation, occlusion, target disappearance and reappearance and background variation. Illumination
variation happens when the degree of illumination on the target changes throughout the
sequence, leading to possible very different appearance and even color distributions. For in-
stance, a car navigating through roads and then tunnels will change in color because of the
decrease in contrast. Partial or complete occlusion is caused by other objects in the scene,
which can be moving or static. Interestingly, occlusion is a type of variation unlike others, in
the sense that it about the absence of information and cannot easily be learned explicitly. Sim-
ilar to occlusion, the disappearance and reappearance of the target happen when the target
exits the frame and becomes again visible at a random future point, possibly with different
exit and entry points, e.g., a car exiting from the left side and reentering from the right side
of the frame. Although short-term tracking oftentimes assumes no target disappearance and
reappearance (Kristan et al., 2016), in long-term tracking no such assumption can be made.
Last, background variation is often a challenge because from a statistical perspective, it offers
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ample opportunity of discovering random visual patterns that may temporarily be confused
with target object patterns. This can be particularly problematic with models that rely on
heavy model updating.

10.1.1.2 Learning challenges in tracking
In the general case, visual object tracking does not place any constraints on the types or

appearances of objects. One video might be about a car cruising the highway, while another
video might be about following an octopus that deforms in any way imaginable. If the video
is from a biomedical recording, the tracked object might not even have the regular appear-
ance, shape or motion patterns of everyday objects. In principle, the tracker model must be
able to follow all these objects throughout the sequences without any further guidance other
than the definition of the target by the user in the first frame. This brings us to the following
learning challenge: unlike standard machine learning tasks like object classification, detec-
tion or segmentation, in visual object tracking the target objects that are being modeled are
arbitrary and cannot be defined in advance. That is, in visual object tracking we cannot have
training examples from the tracked object, for it would not be tracking anymore but object de-
tection. This is unlike most machine learning problems, where usually there are training and
test sets containing different data samples from the same object categories. Seen otherwise, vi-
sual object tracking is akin to the recently popular few-shot and one-shot learning paradigms
(Bertinetto et al., 2016a), which are to among the hardest settings for machine learning.

Visual object tracking is primarily modeled by supervised learning methodologies. How-
ever, due to the very absence of sufficient positive samples to learn robust models with good
generalization, typically tracker models rely on data augmentation at the first frame and
model updating in future frames. For model updating, the predictions of the model are used
as pseudo-positives, which gradually lead to adding bias to the tracker models. We will discuss
model decay in further detail later in the chapter, as it is perhaps the single most difficult
challenge when it comes to long-term object tracking.

Visual object tracking is as much about localizing the target object as is about separating it
from the background. However, the scenes in which objects appear can change dramatically
over the duration of the video. What makes things harder is when there exist multiple objects
with similar or even identical appearance, for instance when tracking an athlete during a
soccer match, or a particular person in a marching band. During tracking, the background can
be wildly different from one sequence to another and even more variable through time also.
This brings us to the second learning challenge: in visual object tracking the model must learn
how to model the positive samples, that is the target object, and ignore the negative samples,
that is the background (Bhat et al., 2019). The background may be significantly different from
what has been observed in previous videos. In fact, the background might constantly change
over time within one video and be highly distracting or even confusing. In that sense, visual
object tracking is also similar to anomaly detection, where the machine learning model is
exposed only, or mostly, to positive examples and must learn to discriminate them from all
other possible negative examples.

Last, a critical learning challenge is the tuning of hyperparameters. Unlike other computer
vision and machine learning problems, visual object tracking often refers to scenarios where
the inputs are nonstationary and not available in advance. As a result, hyperparameters that
are optimal for one video might be grossly suboptimal for others. In fact, a frequent hap-
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penstance is that by making small changes in tracker models, the performance improves in
several videos but drops in others. Model selection and hyperparameter tuning is often criti-
cal to make sure the final tracker model is robust and generalizes.

10.1.1.3 Engineering challenges in tracking
Besides the challenges associated with the visual appearance of the target and background,

and with the machine learning models, in visual object tracking there exist engineering chal-
lenges that relate to the way recording the video sequences or tuning the tracker model are
carried out.

An engineering challenge that often causes a tracker to fail is fast motion, where the speed
of the target object is higher than the frame rate. Fast motion is a problem with tracker models
that rely on search radii around their previous predictions to constrain their search. Typically,
the search radius is taken to be large enough according to what is expected in the available
video sequences. However, it can happen that the target object moves so fast that it is located
outside the search radius in the following frame. In that case the tracker will simply fail no
matter how accurate its model is. Failure due to fast motion can be particularly problematic
with models that perform frequent model updates, as they will use de facto misclassiffied
patches to update the tracker model.

Another challenge associated with the fast motion of the target is motion blur. When the
target object moves very fast, the camera sensor receives appearances of the target object
at multiple time stamps. This results in an averaging effect that blurs the image and, quite
importantly, obscures the target appearance. As a result, the tracker model is likely to miss
the target because certain high frequency details that are necessary for precisely representing
the target object suddenly disappear.

In the recent years visual object trackers have attempted to address the aforementioned
challenges with the power of deep neural networks and large training sets. Next, we will
examine the main deep learning approaches for doing so.

10.2 Short-term visual object tracking

Before explaining the emergence of long-term tracking in the recent years, we first give a
short introduction to short-term tracking that was the predominant paradigm for a long time.
Short-term tracking methods primarily focus on visual instances of short episodes, typically
ranging from 10–20 seconds. The primary goal in short-term tracking is to locate the target
with most precision for as long as possible, until the target is lost. In general, short-term
trackers do not integrate a recovery mechanism that can retrace the target once it is lost by
the tracker, mostly for reasons of computational efficiency.

Short-term trackers are judged on basically two grounds: (i) how well the target can be
localized, and (ii) how fast can the inference be done. A general consensus (Kristan et al.,
2017) is to evaluate short-term trackers with a focus on either solely their accuracy, or the
accuracy given real-time performance, in which case inference speed must meet a minimum
threshold. Such a constraint depends on the hardware design and can vary across different
evaluation protocols. When real-time constraints are not required, several variants of short-
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term tracking exist, including tracking on RGB images only (Smeulders et al., 2014), using
RGB-D images (Zheng et al., 2017), or even augmenting the RGB data with thermal imagery
(Li et al., 2019b).

From a methodological point of view, there are several different ways in which the short-
term tracking methods can be categorized. In view of the revolution brought by deep learning
and the fact that most state-of-the-art trackers nowadays rely on deep neural architectures
in one way or the other, we will divide trackers in two families: shallow (early) and deep
trackers. For the shallow trackers, categorization is based on the seminal review paper of
Smeulders et al. (2014).

10.2.1 Shallow trackers

Shallow trackers comprise the majority of tracking methods relying on standard computer
vision methods before the advent of deep learning. The different categories are:

Tracking using matching. This group of models detects the location of the target through
matching the template built from the previous frames with different candidate regions of the
search image. Several early trackers using traditional computer vision methods fall under this
category. Examples include methods based on normalized cross-correlation (NCC) matching
(Briechle and Hanebeck, 2001), Lucas-Kanade Tracker (KLT) (Baker and Matthews, 2004),
Kalman Appearance Tracker (KAT) (Nguyen and Smeulders, 2004), Mean-shift Tracker (MST)
(Comaniciu et al., 2000) and Locally Orderless Tracking (LOT) method (Oron et al., 2015).
These methods differ mostly in how the different candidate regions are sampled and how
each of them is matched with the template image. For example, NCC uses intensity values in
the template for matching, and performs uniform sampling over the search image.

Tracking using matching with extended appearance models. The idea for this class of trackers is
to maintain an extended model of the target’s appearance over the previous frames. Gener-
ally, such models are slow in performance, especially because at every frame, the candidate
samples are matched with the template image as well as the frames stored in the appear-
ance model. An example of this approach is the Incremental Visual Tracking (IVT) (Ross et
al., 2008), where eigenimages of the target are computed by incremental PCA over the tar-
get’s intensity-value template. These are stored in a leaking memory where the old images
are slowly forgotten. Other examples of this group are Tracking on the Affine Group (TAG)
(Kwon et al., 2009) and Tracking by Sampling Trackers (TST) (Kwon and Lee, 2011).

Tracking using matching with constraints. This category of trackers reduces the representation
of the target to a sparse representation. Sparse optimization is performed to identify the right
candidate sample in the search frames. Such methods primarily focus on scenarios where the
appearance changes rapidly over time, and the appearance model needs to quickly adapt.
To prevent the model from drifting while the frequent updates are made, these methods use
additional constraints on top of the traditional tracking by matching.

Tracking using discriminative classification. The trackers in this group provide a different
view to the problem – they build the model on the distinction of the target foreground against
the background. Also referred to as tracking-by-detection, these methods build a classifier
to distinguish target pixels from the background pixels, and update the classifier based on
new samples coming in. The old, yet popular tracker from this category is the Foreground-
Background Tracker (Nguyen and Smeulders, 2006) that uses feature vectors to differentiate
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FIGURE 10.1 Schematic representation of a correlation filter learning using a CNN encoding function. Credit:
(Fiaz et al., 2019).

the target region against the local background. Other similar methods include Hough-Based
Tracking (Godec et al., 2013) and Tracking, Learning and Detection method (Kalal et al., 2010).

Tracking using discriminative classification with constraints. For tracking methods based on
discriminative classification, it is important that the samples from the target and local back-
ground are properly sampled, otherwise it can adversely affect the performance of the track-
ers. This class of methods integrates the labeling procedure into the learning process itself. An
example of such a strategy includes Structured Output Tracking with Kernels (STR), where
new training data is sampled from the surroundings of the target’s position in the previous
frame. While training, the model enforces the constraint that the confidence associated with
the sample at the original position stays the maximum.

10.2.2 Deep trackers

Deep learning-based trackers, referred here as deep trackers, have many advantages over
their shallow, mostly handcrafted, counterparts. This is due to their potential to encode
multilevel information and exhibit more invariance and equivariance to target appearance
variations. There are several ways to categorize deep trackers. Several works tend to sepa-
rate them as Siamese-based and discriminative trackers. In the following, we use the recent
survey paper (Fiaz et al., 2019) to group different trackers into the following two primary
groups.

10.2.2.1 Correlation filter-based tracking
Correlation filter-based tracking (CFT) methods perform identification-related computa-

tion in the frequency domain to manage the cost associated with tracking. These are based on
a tracking-by-detection paradigm, and an example of constructing the correlation filter with
deep learning is shown in Fig. 10.1. A target patch is cropped from the template image and
used to initialize the correlation filters at the beginning of tracking. For effective representa-
tion of the target, feature maps are constructed using appropriate extraction methods. Early
methods computed the response map using elementwise multiplication between adaptive
learning filter and extracted features, and by using a Discrete Fourier Transform (DFT). Deep
learning allows to encode these features such that after cross-correlation, the confidence is
directly obtained in the spatial domain. The maximum confidence score estimates the new
target position. At the outcome, the target appearance at the newly predicted location is up-
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dated by extracting features and updating correlation filters. CFT methods based on various
techniques exist in the tracking literature, and these can be described as follows.

Basic correlation filtering (CFT). The basic underlying feature of this class of trackers is that
they use kernelized correlation filters in some form in their structure. While the early shallow
trackers used conventional features such as the HOG, color names, and so on, the deep track-
ers use recurrent neural networks or convolutional networks to learn these kernels. Ma et al.
(2015) proposed the first such tracker that exploited rich convolutional features using convo-
lutional filters, as demonstrated in Fig. 10.1. It computes independent adaptive correlation
filters for each CNN featere, and response maps are computed. Improved variants of this in-
clude Hierarchical Correlation Feature-based Tracker (Ma et al., 2015), Hedge Deep Tracking
(Qi et al., 2016) and Multitask Correlation Particle Filter (Zhang et al., 2017), among others.

Regularized correlation filtering (R-CFT). Correlation filter trackers face several limitations,
such as the need for the same filter and patch sizes, sensitivity of learning to the negative
samples, and response maps being less accurate when moving away from the centre of the
frame. RCFTs overcome this issue through the use of regularization over the learning pro-
cess of the filter. For example, Spatially Regularized DCF (SRDCF) (Danelljan et al., 2015)
uses spatial regularization, and during the tracking, the regularization component weakens
the background information thereby making the tracker less sensitive to surrounding noise.
Another example is the STRCF (Li et al., 2018b), which uses an additional temporal regu-
larization in SRDCF to avoid abrupt predictions, and only allows smooth transitions in the
tracking trajectory. A more recent example of this class is ECO (Danelljan et al., 2017), which
regularizes through the construction of a smaller set of fibers to efficiently capture target rep-
resentation using matrix factorization.

Siamese-based correlation. A Siamese network joins two inputs and produces a single output.
With the twin subnetworks, it can learn the deep representations for the template as well as
the search image. This class of trackers combine Siamese networks with CFTs. Siamese Fully
Convolutional (SiamFC) networks (Bertinetto et al., 2016b) utilize a convolutional embedding
and a correlation layer to integrate the deep features that are obtained from the template as
well as those from the candidate image. Other improved variants of such methods include
SiamRPN (Li et al., 2018a) and SiamRPN++ (Li et al., 2019a) trackers that improve the preci-
sion of tracking by matching through the use of region-proposal networks. A recent improved
version is the Discriminative Model Prediction (DiMP) (Bhat et al., 2019) tracker, which con-
tinuously adapts the template representation to learn an improved correlation filter from the
previous frames.

Part-based correlation filtering. Unlike other CFTs, this category of trackers learns the target
representation in parts. Such trackers track individually several parts of the image, and each
part can have a different correlation filter. The output response maps are aggregated to con-
struct a final response, from which the new location of the target is estimated using methods
such as particle filtering.

Fusion-based correlation filter trackers. The performance of trackers can be improved for cer-
tain application problems through fusing information from complementary domains. This
can include combining visual, thermal and depth information from images, or even combin-
ing low-level and high-level features of a deep network. For example, the deep feature fusion
technique by Wang et al. (2017) uses a combination of local detection network (LDN) and
global detection network (GDN). LDN employs VGG-16 and fuses information from differ-
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ent parts of the network to generate the response map. If LDN fails to detect, GDN comes
into action, parameters of which are rarely updated.

10.2.2.2 Noncorrelation filter-based tracking
Noncorrelation filter-based tracking (NCFT) methods do not employ correlation filters and

can be based on concepts of patch learning, sparsity, superpixel, graphs, part-based matching
or Siamese matching.

Patch learning. Such trackers extract information independently from different parts of the
image. Most such trackers comprise combinations of shared layers and domain-specific lay-
ers. While the shared layers exploit generic target representation from all the sequences, the
domain specific layer is responsible for identification of the target using binary classifica-
tion for a sequence. Example deep trackers from this category are Structure Aware Networks
(SANet) (Fan and Ling, 2017) and Convolutional Networks without Training (CNT) (Zhang
et al., 2016). SANet combines convolutional and recurrent features using a skip concatena-
tion strategy to encode the rich information. CNT employs a hierarchical structure with two
feed-forward layers of convolutional network to accurately generate a representation of the
target. The lower layer captures local features, and a global representation of target is formed
by stacking a simple cell feature map which encodes local as well as geometric layout infor-
mation.

Siamese-based. Siamese networks have also been used in a noncorrelation filtering context,
where the goal is to learn embeddings that can yield similarities between given patches. In
general, the template and search regions are fed to a set of convolutional layers that are shared
between the two subnetworks of the Siamese model, and the deep features from the two are
then fused into a set of sequential fully-connected layers. Examples are SINT (Tao et al., 2016)
and GOTURN (Held et al., 2016). For more accurate localization, the output boxes from SINT
are refined using four ridge bounding box regressions trained over the bounding box from
the initial frame. Siamese trackers including correlation-based ones will be detailed in length
later, as they are particularly apt for long-term tracking.

Graph-based. Graph learning methods, in general, are used to predict the labels of unlabeled
vertices in a graph. Some recent trackers, such as Tree Structure CNN (TCNN) (Nam et al.,
2016), build spatial or temporal graphs to identify accurate tracking trajectories. There exist
methods which use both the information and they construct spatiotemporal graphs for track-
ing. To further model higher-order complex relationships, Structure Aware Tracker (Du et
al., 2016) constructs hypergraphs in the temporal dimension. The hypergraph is constructed
using candidate parts as nodes, and the hyperedges denote relationships among the parts.

All in all, short-term tracking has fostered very broad and diverse research, as can be seen
by the variety of tracker methods. What is common and interesting among most of the short-
term trackers is their uninterrupted focus on maximizing localization accuracy in the short
duration of the videos, placing longer-term performance as a secondary requirement.

10.3 Long-term visual object tracking

Fueled by the availability of standard datasets (Kristan et al., 2020; Wu et al., 2015; Smeul-
ders et al., 2014), tracking has made great progress over the last few years. These datasets
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have mainly been designed to tackle challenges encountered in short-term tracking. For ex-
ample, the average lengths of videos in ALOV (Smeulders et al., 2014) and OTB (Wu et al.,
2015) are only about 10 seconds and 20 seconds, respectively. The rationale behind designing
these datasets was to select hard moments such as changes in illumination conditions, abrupt
motion, clutter, large deformations, sudden occlusions, among others.

However, with longer videos there exist additional challenges and requirements other than
the trivial one that the model must perform predictions for longer times. Earlier, we examined
various tracking challenges and grouped them into ones about modeling visual appearance,
learning and engineering challenges. All challenges that exist for short-term trackers also
exist for long-term trackers. Among all the challenges there exist two, that is model decay
and target disappearance and reappearance, which have a special place in long-term track-
ing. While these two challenges are not unique to long-term tracking, their consequences are
much more pronounced in a nontrivial manner in trackers that operate on longer sequences.

10.3.1 Long-term model decay

In general, performing well on tracking datasets has often been interpreted as overcoming
all major challenges of tracking. In practice, however, additional and different problems oc-
cur when the duration of tracking is longer, e.g., half an hour. When considering the practical
applications of tracking, long durations are much more frequent than short videos, as in hu-
man interactions, sports, ego-documents and TV shows. However, too many model updates
can eventually decay the inherent tracker model and the target might get lost. While the de-
cay might not be noticeable in short-term videos, the accumulated effect is very prominent in
long-term cases.

We motivate this by a synthetic experiment, illustrated in Fig. 10.2. To demonstrate the
severe effects of model decay on long videos, a sample video is chosen randomly from the
OTB50 dataset (Wu et al., 2015), and extended artificially in the following periodic manner:

x′ = [x1, ..., xT −1, xT , xT , xT −1, ..., x2, x1, x1, x2, ..., xT , ...]. (10.4)

The extended video ensures that any differences in tracking accuracy observed in the later
parts of the long sequence will be caused solely due to increased video length and not because
of additional visual challenges. In the figure we see the predictions of ECO (Danelljan et
al., 2017) – one of the most successful nonSiamese trackers that relies on frequent updates
– for 3 different frames observed in 3 different repetitions of the original video. We see that
the tracker predictions become less and less accurate over time for increasing repetitions,
although the frames are exactly identical. The reason is model decay, which is caused by the
gradual but erroneous and heavy updating. The tracker drift caused by model decay has been
a long known phenomenon (Smeulders et al., 2014), but, in the context of short-term tracking,
this issue has not been very relevant. For long-term tracking, model decay is more often than
not catastrophic, even when small mistakes are made at each model update, as shown by
Gavves et al. (2020).

To develop circumventing measures against it for long-term tracking, a theoretical under-
standing is needed that can provide a mathematical definition to the underlying mechanism.
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FIGURE 10.2 Predictions from ECO (Danelljan et al., 2017) on an artificially extended video created from OTB50
data (red box: tracker prediction, yellow box: ground truth prediction). Model decay is prevalent here although the
appearance variation remains intact. Due to the heavy updating involved, model decay is noticeable from the very
early stages, even for clearly visible target objects moving slowly. Credit: (Gavves et al., 2020).

Extending on the mathematical definition of trackers, assuming that we update the model
parameters at every frame, we have that

φt+1 = arg min
φ

L(x1:t , y1:t ) (10.5)

yt+1 = f (xt+1;φt+1), (10.6)

where f is the φ-parameterized tracker model that minimizes the tracker loss L over the
dataset D = [x1:t , y1:t ] at the timestep t +1. The dataset is composed of frames x1:t = [x1, ..., xt ],
and the tracker model f returns as output the bounding box predictions y1:t = [y1, ..., yt ]. To
reduce notation clutter, we use fi,t to refer to the output of the tracker model with parameters
φt applied on frame xi . In the simplest form, the model parameters are updated by taking
small steps towards the gradient direction of the loss surface, namely using gradient descent
approach (or its variants),

∂φ

∂t
= −η∇φLt ⇒ (10.7)

φt+1 = φt − η∇φLt . (10.8)

Central to the tracking learning problem, therefore, is the gradient of the tracking loss with re-
spect to the model parameters. Extending on ∇φL and using the expectation over t timesteps,
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E[·] = 1
t

∑t
i=1[·], we have

∇φLt = ∇φE
[
(yi − fi,t )

2] (10.9)
= 2E[ft∇φft ] − 2E[yt∇φft ], . (10.10)

To go from Eq. (10.9) to (10.10) we rely on that the bounding box coordinates yi predicted in
previous frames, become input variables with constant values. Thus, they are independent of
φ and E[∇φy2

i ] = 0. This is a strong assumption, given that in practice yi are determined by
the model with parameters φ.

By substituting Eq. (10.10) in (10.8), the model parameters update can be described as

φt+1 − φt = −2η
[
E[fi,t∇φfi,t ] −E[yi∇φfi,t ]

]
. (10.11)

An interesting but often overlooked reality is that while tracking is casted as a supervised
learning problem, there is only one data sample in the learning dataset that is definitely cor-
rect. This one and only correct sample is the pair (x1, y

∗
1 ) defined by the user in the first frame,

where y∗
1 represents the coordinates of the user specified bounding box describing the object.

While all other bounding boxes yi ∀ i > 1 are used for retraining and fine-tuning the tracker,
there is no guarantee that the bounding boxes yi are indeed correct or even good enough
for learning. In fact, had the predictions yi been good enough for retraining the tracker, the
tracker would not need to be retrained.

Based on the argument presented above, it is reasonable to expect that the predictions,
which also serve as future training samples for the retraining of the tracker, are noisy mea-
surements of the true bounding box coordinates y∗

i . Assuming Gaussian noise with variance
σ 2

i , we can state:

yi = y∗
i + δi, and δi ∼ N

(
0, σ 2

i

)
, (10.12)

Through substituting Eq. (10.12) in (10.11) and some rearrangement of terms, we have

φt+1 − φt = −2η
[
E[fi,t∇φfi,t ] −E

[(
y∗
i + δi

)∇φfi,t

]]
(10.13)

= −2ηE
[(

fi,t − y∗
i

) · ∇φfi,t

]
︸ ︷︷ ︸

Perfect parameter update

+2ηE[δi · ∇φfi,t ]︸ ︷︷ ︸
Parameter bias

. (10.14)

It is easy to recognize the two components in the parameter update of the tracker. The first
term in Eq. (10.14) corresponds to the perfect model update component, as it corrects the
error made by the model prediction fi,t as compared to the perfect box y∗

i . The second term
corresponds to the parameter bias component, as this term depends directly on the error
made by past predictions δi . If δi = 0, then there would be no error, and the parameter updates
would also be perfect.

Model dynamics. Having computed the effect of the past errors on the parameter updates
of the tracker, we can next examine the effect on the model dynamics ∂f

∂t
over time. Specif-

ically, after updating the parameters, the relation between the past fi,t and the next model
fi,t+1 is

∂f

∂t
∝ fi,t+1 − fi,t = ∂f

∂φ

∂φ

∂t
⇒ (10.15)
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fi,t+1 = fi,t + ∂f

∂φ

∂φ

∂t
. (10.16)

As ∂φ
∂t

∝ φt+1 − φt , combining Eq. (10.16) and (10.14) we have that

fi,t+1 = fi,t −2ηE
[(

fi,t − y∗
i

) · ‖∇φfi,t‖2]︸ ︷︷ ︸
Perfect model update

(10.17)

+2ηE
[
δi,t · ‖∇φfi,t‖2]︸ ︷︷ ︸

Model decay

From Eq. (10.17), we make the following observation. Due to the continuous updates, the
tracker model offshoots its predictions by a quantity that is linearly proportional to past er-
rors. We refer to this quantity as model decay.

Long-term tracking & model decay. As the model dynamics in Eq. (10.17) are recursive,
it is implied that the bias term accumulates and in fact, worsens over time. For as long as
the cumulative model decay is small enough, usually in the early iterations, the model dy-
namics is sufficiently accurate. The early errors δi, are small not only because the tracker is
still accurate, but also because the number of summands t is small. This is the reason why
model decay is not a problem, and often goes even unnoticed, in short videos. However, in
longer videos where t and the number of summands grow, the δi,t errors grow as well and
the cumulative model decay becomes noticeable.

10.3.2 Target disappearance and reappearance

By assuming that the target is always present short-term trackers can always return their
most likely prediction, regardless of whether the likelihood of the prediction is high or low.
The learned classifier of such a short-term tracker, therefore, does not require a minimum
likelihood score before declaring that a certain location contains the target object. In turn, this
means that the learned classifier does not need to calibrate its confidence.

In longer video sequences, however, the target is likely to disappear and reappear from the
frame, often multiple times. As a consequence, any long-term tracker must be able to model
absence of the target from the frame. While this sounds like a small difference, in reality it can
have important theoretical and practical modeling repercussions. For one, the tracker model
must balance between expecting that the target object might not be visible due to disappear-
ance or due to severe appearance changes. What is more, in case the model relies on updates
to account for appearance changes of the target object, the similarity function of the model
will change dynamically with time. This means that one cannot fix a predetermined mini-
mum detection threshold. Instead, the threshold must either be determined dynamically, or
the model must calibrate its predictions such that the minimum detection threshold remains
valid. Last, in the presence of long-term model decay adapting the threshold dynamically can
be hard without directly affecting the accuracy of the tracker and the added bias to the model,
especially in the case of online updates.
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10.3.3 Long-term trackers

Long-term trackers must not only address the common tracking challenges faced by short-
term trackers, but additionally handle long-term decay as well as target disappearance and
target reappearance. In theory, model decay is inevitable when online learning is added to
short-term trackers. Addressing long-term decay receives the most attention due to the fun-
damental and catastrophic nature of the challenge. We identify three families of approaches
for long-term tracking, organized by way of learning and updating the tracker model given
long-term decay: offline learning, online learning and hybrid learning.

10.3.3.1 Offline learning with Siamese trackers

At the core of all tracking algorithms is the model function fφ : Y1 × X1 × Xt → Yt from
Eq. (10.1), by which the image of the target is matched to the incoming frames. The tracker
model returns predictions y1:t , which hopefully should be as close as possible to the true
locations y∗

1:t . The matching function for tracking ideally provides good matching even if the
target in the video is occluded, changes its scale, rotates in and out-of-plane or, undergoes
uneven illumination, camera motion and other disturbing factors (Smeulders et al., 2014; Wu
et al., 2015).

As we discussed earlier, to address these tracking challenges models often rely on online
updates using the model predictions as ground truth. This, in turn, leads to model decay
that is especially prevalent in the case of long and challenging videos, effectively because
we assume that the model predictions are equivalent to the ground-truth predictions during
the updates, y1:(t−1) ≡ y∗

1:(t−1). By this assumption we acknowledge the following peculiar
paradox, which we coin the tracking paradox. On one hand, if the model is so accurate so that
to assume ŷ1:(t−1) ≡ y1:(t−1), then the model requires no further retraining. In other words, by
retraining there is no additional benefit as the model predictions are already perfect. On the
other hand, if the model is not as accurate as per the assumption, by setting ŷ1:(t−1) ≡ y1:(t−1)

we only gain temporary improvements in accuracy but gradually make the model worse and
worse, and set it to fail eventually.

To break the paradox, we could define a tracker model that relies on no model updating.
In this case, the tracker model must be able to locate the target simply by the information it
has available prior to tracking, that is only the bounding box in the first frame. This is clearly
challenging, as in complex videos there exist severe challenges that the tracker model must
be impervious to, as discussed in Section 10.1.1. In combination with online updates, the tra-
ditional way to address these challenges is by modeling each of these distortions explicitly
by introducing affine transformations (Lucas and Kanade, 1981), probabilistic matching (Co-
maniciu et al., 2000), eigenimages (Ross et al., 2008), illumination invariants (Nguyen and
Smeulders, 2006), occlusion detection (Pan and Hu, 2007), and so on. Unfortunately, mod-
eling explicitly single challenges – while ignoring all others – yields trackers that may be
optimal for that one type of distortion but suboptimal for many others, thus resulting in
worse performance.

Rather than explicitly modeling all possible distortions with the tracker model f , another
possibility is to cast tracking as an image matching problem, where the query image is al-
ways the target at the first frame. Because the query remains fixed and does not alter due to
online updates using imperfect predictions for supervision, the model is guaranteed to work
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consistently and robustly for any length of time. The model definition of the tracker becomes

yt+1 = arg min
y

f
(
hφ(z), hφ

(
xt [y])). (10.18)

In this definition z is the patch of the target object in the first frame, xt [y]) corresponds to
the patch in the t-th frame that corresponds to the y bounding box coordinates, hφ are the
convolutional neural networks that compute the representations from z and xt [y]), and f

is the similarity matching function of the tracker. There are no constraints in the types of
convolutional neural networks hφ , although in practice some work better than others (Tao et
al., 2016; Li et al., 2019a). While for simplicity we use the same parameters φ for both neural
networks, the parameters do not have to be shared (Li et al., 2019a).

In the case of tracking by target matching the critical component is the matching function,
which must be robust against all undesirable tracking challenges. Traditionally, this matching
function is learned online given the specific target z. An alternative is to learn the match-
ing function externally in an offline manner, specifically by comparing object appearances
recorded at different time stamps, that is (xi, xj , y

∗
ij ), where y∗

ij = +1 if xi and xj depict the
same object and −1 otherwise. The matching function f can be implemented by a multilayer
perceptron (fully connected layer), and trained to minimize the contrastive loss (Tao et al.,
2016)

arg min
φ

1

2
y∗
ij d

2
ij + 1

2

(
1 − y∗

ij

)
max

(
0, ε − d2

ij

)
(10.19)

dij = ∥∥hφ(xi) − hφ(xj )
∥∥2 (10.20)

or by the cosine similarity to minimize the logistic loss (Bertinetto et al., 2016b)

arg min
φ

log
(
1 + exp

(−y∗
ij hφ(xi)

T hφ(xj )
))

. (10.21)

At the heart of it, for both losses the distances, either the euclidean norm or the cosine
similarity, are inner products. Considering that in the minimization of the search in Eq. (10.18)
we iterate over bounding box locations that are densely packed on top of the feature maps,
the iterative inner products can be more compactly written as convolutions, that is

yt+1 = arg min
y

hφ(z) ∗ hφ

(
xt [y]). (10.22)

Eq. (10.22) allows for using fully convolutional Siamese networks (Bertinetto et al., 2016b)
with great efficiency.

Visual object trackers that track by a target matching paradigm using Siamese deep neural
networks are called Siamese trackers – see Fig. 10.3 for a graphical pipeline. Siamese trackers
have two branches of convolutional neural networks. The first branch is the template branch,
which convolves the target patch to as determined in the first frame. The output is a template
with which every future frame can be further convolved to localize the target. The second
branch is the candidate branch, processsing the new frames in the video sequences and trying
to match the appearance of the target.
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FIGURE 10.3 The Siamese tracker comprises two branches, each modeled by a convolutional neural network.
The first branch always contains the target object patch at t = 0. The second branch analyzes any other frame in the
video. The representations by the two branches are then compared with a similarity function. The similarity function
is learned externally and offline, using tracked objects from different datasets. Although the similarity function has
not seen the future targets, it can still match their appearance accurately for performing tracking by matching. Figure
inspired by Bertinetto et al. (2016b); Tao et al. (2016).

Search region. As with short-term trackers, instead of searching for the target in the whole
frame one can restrict the model to search for the next locations of the target within a prede-
fined radius ρ. Setting a search region helps with improving the computational efficiency of
the tracker algorithm, as the tracker must only analyze a much smaller image area. Limiting
search into a certain region can also reduce the chances of false positives that could acciden-
tally fire when examining the whole image.

The radius r0 is a hyperparameter that is depends on the maximum velocity of the target.
As in most cases we cannot know the maximum velocity of the target. Therefore, if we choose
to set a search region, we must do so cautiously. If the target moves faster than r0/
t , where

t is the interval between any two frames (inverse of the recording speed in frames per
second), the target will be outside the search region and the tracker will definitely miss the
target. If the radius r0 is set such that r0 = max(H,W), where H and W are the height and the
width of the frame, then the tracker will process the whole frame.

In determining the size of the search region, one must balance between improving preci-
sion and worsening recall. By setting a small search region the precision may be improved
by avoiding excess false positives in the background. However, a small search region may
also hurt recall as all locations outside the search region are automatically labeled as nega-
tives; these will be false negatives when the target lines outside the search region. A similar
argument can be made for large search regions.1

1 Precision is computed as the ratio of true positives over true positives and false positives. Recall is computed as
the ratio of true positives over the sum of true positives and false negatives.
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Advantages of Siamese trackers. Siamese networks present themselves with certain ad-
vantages. By and large, the most important advantage is avoiding any model decay due to
the absence of model updates throughout the video. The reason is that although prediction
errors δi occur, the model is never updated, so ∇φfi,t = 0, see Section 10.3.1. This means that
the modeler does not need to worry about the model collapsing and not recovering again.
This makes Siamese trackers ideal for long-term tracking.

Comparing Siamese trackers on convolutional neural networks (Tao et al., 2016) with fully
convolutional Siamese trackers (Bertinetto et al., 2016b), the former tend to have considerably
higher accuracies and better robustness at the cost of higher computational costs. The reason
is that convolutional neural networks with fully connected layers can be aggressively pre-
trained on image databases like ImageNet (Russakovsky et al., 2015) and, thus, complement
the Siamese model with strong object priors. In contrast, due to the absence of fully connected
layers, fully convolutional neural networks have the benefit of considerably higher efficiency
and real-time performance but lower discriminative power (Valmadre et al., 2018).

By solely relying on a pretrained similarity function trained in an end-to-end manner,
Siamese trackers require only offline and no online learning at all. This means we can de-
sign our offline learning to learn any type of invariants we want our tracker to have. We can
do this by simply providing during training to the similarity function examples of variations
that we want to match together. What is more, since the training is offline we can leverage
very large datasets and improve accuracy without increasing the computational or memory
cost.

Another advantage of Siamese trackers is that the similarity function can be trained to
combine feature maps from different layers optimally. The feature maps from different lay-
ers capture different types of cues, with earlier layers capturing low-level geometric patterns
like edges or corners, and later layers capturing higher-level semantic patterns that look like
faces or types of objects. As a consequence, Siamese trackers inherently use both low-level
geometric and high-level semantic information when determining a match, thus being able
to perform fine-grained search on the new frames. This property is particularly important in
case of confusing backgrounds when objects may look visually similar but have different se-
mantics; daunting for models that can only use data from the same sequence to disambiguate
objects.

A peculiar property of Siamese trackers is that they ignore time during tracking, if no
search region is defined and the search is done in the whole frame. The reason is that in
the algorithm there is no component that depends on the time variable: the target object
appearance is defined in the first, frame, the similarity matching model is learned offline
and used throughout the whole process without alterations during intermediate frames and
predictions, and for each new frame the search region is also independent of the previous
target location. While this property may seem counter-intuitive, it does not impede tracking
if the similarity matching function can match appearances near-perfectly between different
views of the same object. What is more, by setting the whole frame as a search region, even if
the target is missed in one frame, the model still has the opportunity to relocalize the target
in the follow-up frames.

Failure cases. Siamese trackers are becoming more and more popular for their favorable
properties of good accuracy and remarkable robustness against model drift. However, their
very design inherits them with some vices that challenges them in certain scenarios.



354 10. Long-term deep object tracking

The most obvious disadvantage of bare Siamese trackers is confusion in the presence of
multiple similar objects. This confusion is particularly noticeable when the objects are not
just similar but identical, for instance when attempting to track a single person in a marching
band. While tracking one particular person in a marching band is perhaps hard even for
a human, the Siamese tracker is inherently unable to distinguish between objects that are
identical or nearly identical. The reason is that bare Siamese trackers do not incorporate a
motion modeling component.

Another challenge for Siamese trackers is the complete absence of model updates. Even
if we assume that the similarity function is perfect, there are cases where the target object
changes appearance either by itself (e.g., a pedestrian changing their clothes) or due to the
environment (e.g., significant illumination changes that would alter the appearance of the
target). In this case, the similarity function puts more emphasis on the shape of the candidate
object that should mostly be similar to the shape of the original target, as well as on the seman-
tics of the object, which do not change. This is not a bad property, given that convolutional
neural networks have shown great generalization power in object recognition. Indeed, due to
this generalization Siamese trackers like (Tao et al., 2016) have shown robustness against the
common tracking challenges (Valmadre et al., 2018). That said, this generalization increases
the chances of confusion in the presence of multiple similar objects.

Last, as Siamese trackers rely on convolutional neural networks, they face the same chal-
lenges that convolutional neural networks have. Specifically, standard convolutional neural
networks are not strictly invariant or equivariant to scale and rotations, be it in-plane or out-
of-plane rotations. To account for scale and rotation variations, standard Siamese networks
rely on heavy pretraining, data augmentation, or postprocessing strategies such as repeating
search over multiple scales or rotations. These approaches are costly and work only for as
long as the variations are sufficiently represented in the data and its augmentations thereof.

10.3.4 Representation invariance and equivariance

The input data are always affected by noise and, therefore, no two data points are ever
precisely alike. For instance, no two images are ever precisely identical as the object might
have changed location, the object might have changed its appearance or pose, the illumina-
tion in the scene might be different, and so on. Some of these variations are irrelevant to the
predictive task at hand, that is object identification and localization in the case of visual ob-
ject tracking. For instance, how the object is illuminated and whether it lies under a shadow
is irrelevant; the tracker must be able to localize the target object regardless. Some of these
variations, however, can be relevant. For instance, the change in the scale of an object in the
frame is irrelevant to the identification of the object but might be relevant in inferring that
the object is moving towards the camera or far away from it. And certainly, acknowledging
different variations of the same object are, in fact, critical to ensure generalization.

Representations are invariant to certain variations when they are not influenced by the
presence of these variations. Being invariant to illumination, for instance, means that the rep-
resentation will be largely the same under changes in illumination. Representations are equiv-
ariant to certain variations when the representations change proportionally to the amount of
variation. Being invariant to rotation, for instance, means that a π/4 rotation will have twice



10.3. Long-term visual object tracking 355

the effect to the representation over a π/8 rotation, loosely speaking. Next, we describe how
modern visual object trackers include invariances and equivariances in their representations.

10.3.4.1 Invariance in tracking

In Siamese trackers, the similarity matching function is of paramount importance. The rea-
son is that the tracker relies solely on the similarity function to compare two arbitrary patches
and declare whether they depict the same target object or not, irrespective of any possible
changes in appearance. It is expected, however, that in the duration of the video the target
may suffer from severe disturbances and alterations in its appearance. These disturbances
can either be caused by the object itself, e.g., a person changing their clothes or a car rotating
at a different angle than what was observed in the first frame; or, they can be caused by the
environment, e.g., an occlusion by another object, change in the lighting or a shadow from a
nearby object. The similarity function must be able to recognize that the object is the same
despite all such disturbances. That is, the similarity function must learn to be invariant to all
such disturbances commonly found in tracking, as we described them in Section 10.1.1.

Building invariances can either be accomplished by designing them in the method or by
having them learned from data. In the former case, the method is hard coded to ignore cer-
tain transformations on the visual inputs, for instance, how rotation (Gupta et al., 2021) or
scale (Sosnovik et al., 2021) changes affect the visual appearance. In the latter case, the method
observes the different variations on big data sets and learns to ignore those variations that are
irrelevant to the matching. The advantage of hard-coding invariances is that one can learn the
invariances with much smaller datasets. In contrast, learning invariances require much larger
datasets. The reason is that the model must pick up all possible appearance variations that
relate to these invariances and generalize, thereafter.

Hard-coding invariances can result in smaller models, depending on the mathematical
model of the invariance. What is more, if the mathematical model of the invariance makes no
or few assumptions, the invariances are more precisely recognized in the data. On the other
hand, learning invariances require no explicit mathematical modeling of said invariances.
This is much better suited when different variations are entangled with each other, which is
usually the case with tracking data. Also, because no explicit mathematical model is required,
implementing models that learn invariances are typically simpler and one needs only to focus
on collecting sufficiently large and sufficiently diverse data.

Bare Siamese trackers (Tao et al., 2016; Bertinetto et al., 2016b) opt for the latter option and
effectively learn from data to ignore invariances that are irrelevant to the identification of
the target object. For instance, for the case of illumination changes or deformations, Siamese
trackers learn to predict whether any two patches depict the same object or not after training
on many examples of objects that underwent changes to their illumination or deformations.
This means that Siamese trackers must rely on large-scale datasets to learn to match.

Using large datasets online is not possible for tracking. To learn such invariances, therefore,
Siamese trackers must learn the similarity function offline and externally. Offline training
means that the training does not take place at the same time as the tracking. External training
means that the training does not use the target data that the user would define in the first
frame of the video, since the tracker algorithm cannot have access to such data. The similarity
function, therefore, must be learned from external data and before the tracker is deployed.
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Offline and external learning comes in stark contrast with the design philosophy of most
traditional trackers, whose similarity function is typically learned online. Online learning
for a tracker means that the tracker uses only the appearance of the target at the first frame
(single positive sample), the predictions of the tracker throughout the video (pseudo-positive
samples), as well as the appearance of the background (negative samples) and potentially
other appearances from different videos (negative samples).

To learn invariances from data, a large set of videos of moving objects from different cate-
gories is required. These tracked objects must, furthermore, be annotated with their locations
throughout the video. To create the dataset, thereafter, one must simply collect all possible
combinations of patches (xi, xj ) at time steps i and j . The pairs (xi, xj ) must undergo the
variations that one wants to model to learn to recognize or learn to ignore. In other words,
the videos should be diverse and not contain similar objects and scenarios, otherwise, the
model will not be able to generalize.

An important point is that during training there must be absolutely no overlap between
the videos used for the external training and any of the tracking videos. Namely, one must
not involve in the external learning any of the actual tracking targets, since in that case the
model would essentially learn an object detector. Instead, in the external learning the model
should focus on learning the generic set of disturbances and variations, and not object-specific
patterns. Once the matching function has been learned on the external data, it is not adapted
anymore and is applied on previously unseen targets and videos as is.

Siamese tracking is reminiscent of the instance search (Tao et al., 2014, 2015; Philbin et
al., 2007; Tolias et al., 2015) paradigm, where a given patch in the query image is searched
for in a pile of images. Introducing matching learning (Tao et al., 2015) allows for accurate
instance search of generic objects even when the search object is visible under a completely
different view than the target image. In tracking, the learning of the matching function is
performed entirely from tracking examples. After learning, the matching function is capable
of comparing patches from different viewpoints for new objects, or, even for new object types
that the function has not seen before.

10.3.4.2 Equivariance in tracking
First, we give a brief introduction to equivariant models. Then, we describe popular types

of equivariance that are built-in Siamese trackers. For a more general overview on equivari-
ance, we refer the interested reader to (Weiler et al., 2018).

The property of equivariance requires functions to commute with the actions of a sym-
metry group acting on its domain and codomain. For any given transformation group G, a
mapping function h : X −→ Y is equivariant if it satisfies

h
(
ρX

g (x)
) = ρY

g

(
h(x)

)
g ∈ G,x ∈ X, (10.23)

where ρ
(·)
g denotes a group action in the respective space. For invariance, ρY

g will be an iden-
tity mapping.

For clarity, we give translation equivariance as an example in Fig. 10.4. In this example, h

stands for the convolutional neural network function and ψg denotes the translation group.
Example actions from this group include for example, moving one pixel left, or one towards
right, or an action comprising shift of several pixels. In this manner, an infinite number of
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FIGURE 10.4 Schematic representation of patch-wise translation equivariance in CNNs arising from translational
weight tying, so that a translation ρX

t of the input image x leads to a corresponding translation ρY
t (f (x)) of the feature

maps h(x). Here h(·) and ρt (·) denote the neural network encoding function and translation function respectively.
Adapted from Worrall et al. (2017).

actions can be defined within the translation group. Making the network equivariant to trans-
lations leads to reduced sample complexity and facilitates generalization of the model against
translational variations.

It is important to note that there are several other transformations beyond translation that
can be built in the model to improve robustness, if the effects of these transformations are
present in the data and the task. Examples include rotations, reflections and scale change. For
generalization over any of these transformations, equivariance needs to be enforced on the
respective transformation group.

10.3.4.3 Translation equivariance

In image recognition in general, and visual object tracking in specific, translation variations
of the object are irrelevant to the category of the object but relevant to the location of the object.
A tracking model must be translation equivariant (Li et al., 2019a), so that it can accurately
return the location of the target object in any future frame.

Fortunately, translation equivariance is almost seamlessly integrated into all tracker mod-
els that rely on convolutional neural networks, due to the nature of the convolution that
is translation equivariant to the shift operator (Bronstein et al., 2017). In practice, however,
and especially in the context of visual object tracking, translation equivariance may not be
perfectly built in due to limiting assumptions. Convolutional neural networks are precisely
translation equivariant when there is no image padding at the image borders, as noted by Li
et al. (2019a). If there is image padding at the borders, however, the output of the convolu-
tion is not precisely equal under shift. This becomes particularly relevant when introducing
bigger depth to the convolutional neural network used to implement the Siamese matching
function. Due to the increasing effective receptive field (Simonyan and Zisserman, 2014), fea-
tures in deeper layers will effectively depend on the pixel inputs near the image borders, and
thus the model stops being truly translation equivariant. As a result, the model for the simi-
larity function is spatially biased to return as most confident predictions patches that are near
the center of the image. For a demonstration see Fig. 10.5, in which Li et al. (2019a) place the
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FIGURE 10.5 Above: when not adding any random shift (shift: 0) in the location of the bounding box during
learning, the model tends to predict center locations, implying that, strictly speaking, translation equivariance is
absent. Adding noise to the ground bounding box (shift: 16 or 32) helps with spreading predictions more uniformly.
Below: Adding some noise to the ground truth predictions brings back strict translation equivariance, benefitting
visibly tracking accuracy. Credit: (Li et al., 2019a).

targets at random locations sampled in the range of (0,m), where 0 is the center of the patch
(that is, the center of the target object during training of the Siamese similarity function) and
m = 0,16,32 is the maximum displacement of the target in the patch. For m = 0 the target is
always centered in the patch, showing that the tracker will have a tendency to predict center
locations regardless of the actual location of the target.

Introducing a spatial bias to the tracker model is not desirable, as the target might be
anywhere on the image frame. Perhaps more importantly, the biggest consequence of this
spatial bias is that conventional Siamese trackers cannot make use of very deep convolutional
neural networks. However, very deep convolutional neural networks, such as ResNet neural
networks (He et al., 2016), have time and again been shown to be critical in improving object
recognition accuracy.

As translation equivariance is not precisely implemented in deep neural networks due to
imperfect assumptions, Li et al. (2019a) propose a practical solution of spatially aware sampling.
Specifically, in the creation of the training set for training the Siamese similarity function, they
propose to add noise to the location of the target object so that it is not centered anymore.
By doing so, the spatial bias is reduced, see Fig. 10.5, and deeper neural networks like a
ResNet-50, can be used. The use of deeper networks in turn leads to remarkable accuracy
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FIGURE 10.6 Example demonstrating rotation nonequivariance in regular CNN models used in object tracking,
ρθ (h(·)) �= h(ρθ (·)). Here h(·) and ρθ (·) denote the neural network encoding function and rotation transform, respec-
tively. Credit: (Gupta et al., 2021).

improvements. For further details regarding the precise architecture, we refer the interested
reader to the original publication.

As a closing note, it is important to illuminate why deeper networks were successful in
object classification but not visual object tracking. In image and object classification strict
translation equivariance is not necessarily needed, because the purpose is not to predict the
precise location of the object. Therefore, spatial bias is not as hurtful for as long as the model
learns to recognize the object category successfully. In contrast, in visual object tracking the
very task is to predict the location of the object accurately, for which spatial bias is hurtful.

10.3.4.4 Rotation equivariance

Rotation is among the most prevailing, yet still unresolved, hard challenges encountered
in visual object tracking. It can commonly occur in real-life scenarios, especially when the
camera records from the top, as in drones, where either the object or the camera itself are
rotating. Egocentric videos are another example, where objects can undergo severe in-plane
rotations frequently.

Deep learning-based tracking algorithms rely on deep convolutional neural networks that
are – in theory – translation equivariant, but not designed to tackle in-plane rotations. The
implication is that the model may perform well on object orientations that are represented in
the training set but fail on other previously unseen orientations, as in Fig. 10.6.

Similar to Section 10.3.4.3, a straightforward approach to enforce learning of rotated vari-
ants is to use training datasets where in-plane rotations occur naturally or through data
augmentation. However, as highlighted by Laptev et al. (2016), there are several limita-
tions of data augmentation strategies. First, such procedures would require learning separate
representations for different rotated variants of the data. Second, the more variations are con-
sidered, the more flexible the tracker model needs to be to capture them all. This means a
significant increase in training data and computational budget. Further, such an approach
would make the model invariant to rotations but not equivariant to them. Thus, predictions
will be unreliable when the target is surrounded by similar objects undergoing different ro-
tations, e.g., tracking a fish in a school of fishes.
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An alternative is to build in rotation equivariance to the neural network with the use
of group-equivariant CNNs (Cohen and Welling, 2016), and use steerable filters (Weiler et
al., 2018) to make the Siamese trackers equivariant to rotations. This way of incorporating
rotation equivariance induces a built-in sharing of weights among the different groups of
rotations and adds an internal notion of rotation in the model.

Steerable filters. Steerable filters allow for efficiently computing responses for an arbitrary
number of discrete filter rotations Λ. What is more, they also exhibit strong expressive power
as well. A filter Ψ is rotationally steerable if its rotation by an arbitrary angle θ can be ex-
pressed in terms of a fixed set of atomic functions (Freeman et al., 1991; Weiler et al., 2018).
Gupta et al. (2021) define the basis of steerable functions using circular harmonics ψjk

ψjk(r,ω) = τj (r)e
ikω, (10.24)

where ω ∈ (−π,π] and j = 1,2, . . . , J allows to control the radial part of the basis functions.
Further, the term (r,ω) refers to transformed version of (x1, x2) in polar coordinates and k ∈
Z denotes the angular frequency. The benefit of circular harmonics is that one can simply
express rotations on ψjk as a multiplication with a complex exponential,

ρθψjk(x) = e−ikθψjk(x), (10.25)

where θ ∈ (−π,π]. Note that for clarity purpose, we express ψjk(·) as ψjk(x). Each learnt filter
is then constructed as a linear combination of the elementary filters,

Ψ (x) =
J∑

j=1

K∑
k=0

wjkψjk(x), (10.26)

with weights wjk ∈ C. For rotation by θ , the composed filter can be steered through phase
manipulation of the elementary filters,

ρθΨ (x) =
J∑

j=1

K∑
k=0

wjke
−ikθψjk(x). (10.27)

A single orientation of the filter can be obtained by taking real part of Ψ , denoted as Re Ψ (x).
Siamese trackers have two branches of convolutional neural networks. The two branches

in standard Siamese trackers receive a single input, that is either the target patch at the first
frame or every new frame in the sequence. To have a rotationally equivariant Siamese tracker,
the convolutional neural networks in both branches use rotationally equivariant steerable
filters.

Rotation equivariant input. Focusing on the template branch, Gupta et al. (2021) modify
the template head to contain multiple rotated variants of the first frame defined by the set Z,
where Z = {z1, z2, . . . , zΛ}. Each rotated input I , comprises C channels, where each channel is
represented by Ic and c ∈ {1,2, . . . ,C}. This input is convolved with Ĉ rotated filters ρθΨ

(1)

ĉc
,

where ĉ ∈ {1,2, . . . , Ĉ}. Based on Eq. (10.27), the resultant features obtained before applying
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nonlinear activation will be

y
(1)

c̃
(x, θ) = Re

C∑
c=1

J∑
j=1

Kj∑
k=0

wĉcjke
−ikθ (Ic ∗ ψjk)(x), (10.28)

where the filters are rotated variants at equidistant orientations θ represented by the set
Θ = {0,Λ, . . . ,2π Λ−1

Λ
}. The bias terms β

(1)

ĉ
and nonlinearity σ are then applied to obtain the

feature map at the first layer ζ
(1)

ĉ
.

Note that it is only needed to rotate the inputs on one of the two branches, as the rotations
in the convolutions in Eq. (10.28) are relative. Rotating the input in the template branch makes
sense, as this can be done once at the first frame.

Note also that in theory, instead of taking all possible rotation versions Z of the template
target, it is also possible to first compute the feature h(z) of the original target, then rotate
h(z). In practice, however, the spatial resolution of h(z) is very low, typically 6 × 6 or 7 × 7
pixels. As a result, there will be artifacts at the corners and edges because of the crudeness
of the transformation. Rather, it is better to first rotate the whole frame (not just the target)
centering about the target, then crop and compute h(z). Since this is only performed on the
target branch only, this step can be precomputed and only contribute a negligible additional
cost.

Rotation equivariant convolutions. Feature maps resulting from Eq. (10.28) are processed
further using group convolutions, generalizing spatial convolutions over a wider set of trans-
formation groups. Similar to the first layer, steerable filters are defined on the group as

y
(l)

ĉ
(x, θ) =Re

C∑
c=1

∑
ω∈Ω

∑
j,k

wĉcjk,θ−φe−ikθ
(
h(l−1)

c (·,ω) ∗ ψjk

)
(x), (10.29)

where h
(l−1)
c denotes the cth channel of the feature map at the (l − 1)th layer, now replaced

with h. The additional index θ − ω introduced in Eq. (10.29) for the weight tensor facilitates
the group convolution operation along the rotation dimension. It involves transforming the
functions on the group by rotating them spatially.

Rotation equivariant pooling. The output of the last group convolutional layer is further
processed through pooling over the rotation dimension. Unlike the conventional classifica-
tion tasks, pooling is not performed along the spatial dimension. The reason is that we want
to preserve the rotation equivariance.

Rotation equivariant Siamese trackers. From the two branches we obtain two sets of
feature maps, {h(z)} and h(x), where {h(z)} is the set containing feature maps at Λ orienta-
tions. Next, {h(z)} and h(x) are convolved to obtain {f (z, x)}, a set of Λ heatmaps, where
fi(z, x) = h(zi) ∗ h(x) for all zi ∈ Z. Next, {f (z, x)} is processed with a global max pooling op-
eration to obtain the final output heatmap f (Z,x), where Z is a set of z values for the multiple
orientations of the template. The global max pooling operation identifies the maximum value
in {f (z, x)} and selects the feature map that contains it.

The aforementioned modules are all the necessary building blocks for the rotation equiv-
ariant Siamese tracker. All convolutional and pooling layers must be replaced by their rota-
tion equivariant counterparts. One must first identify the precision of the tracker in terms
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of discriminating between different orientations of the rotational degree of freedom. With
Λ rotation groups, the tracker would be perfectly equivariant to angles defined by the set
Ω = {(i − 1) · 360/Λ}Λi=1. To generate h(z, x), Λ group convolutions are performed to gener-
ate Λ different heatmaps. Last, global max-pooling is performed over the feature maps to
generate h(Z,x), which is then processed to localize the target.

The final tracker is equivariant to in-plane rotations only, as out-of-plane rotations require
knowledge of the 3D scene. An additional side-benefit of rotation equivariant Siamese track-
ers, compared to rotation invariant models, is that they can be used to compute the relative
orientation changes to the target in an unsupervised way. What is more, they can be used
to place additional regularizations and constraints to maintain rotational motion consistency.
For further details regarding the construction of rotation equivariant Siamese trackers, we
refer the interested reader to Gupta et al. (2021).

10.3.4.5 Scale equivariance
Another type of variations that is often found in video object tracking is scale variations.

Measuring scale precisely is crucial when the camera zooms its lens or when the target moves
into depth. As noted by Sosnovik et al. (2021), scale is also important in distinguishing among
different objects in tracking, especially when many objects in the video have a similar appear-
ance like videos of sports games or crowds. In such circumstances, space-scale equivariance
provides a more discriminative representation, which is essential to differentiate among sev-
eral similar candidates. Importantly, scale-space equivariance helps with maintaining better
stability in the size of the predicted bounding boxes, even if the scale changes in the video are
modest.

The common way to implement scale into a tracker is to train the network on a large
dataset where scale variations occur naturally. As noted by Laptev et al. (2016) and moti-
vated in the previous subsection, however, such training procedures may lead to learning
groups of rescaled duplicates of almost the same filters, which renders interscale similarity
estimation unreliable. Scale-equivariant models have an internal notion of scale and built-in
weight sharing among different filter scales. Thus, scale equivariance aims to produce the
same representation for all sizes.

Scale equivariant convolutions. Given a function ρs : R → R, a scale transformation is
defined as follows:

Ls[f ](t) = f
(
ρ−1

s t
)
, ∀s ≥ 0 (10.30)

where cases with ρs > 1 are referred to as upscaling and with ρs < 1 as downscaling. Standard
convolutional layers and convolutional networks are translation equivariant but not scale-
equivariant (Sosnovik et al., 2020).

To build scale-equivariant convolutional networks, Sosnovik et al. (2020) start with choos-
ing a complete basis of functions defined on multiple scales of the following form, choosing
the center of the function to be the point (0,0) in coordinates (u, v):

ψσnm(u, v) = A
1

σ 2
Hn

(
u

σ

)
Hm

(
v

σ

)
e
− u2+v2

2σ2 (10.31)

Different from steerable filters, here Hn is a Hermite polynomial of the n-th order, and A is a
constant used for normalization. A basis of N functions is possible by iterating over increasing
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pairs of n and m. For a complete and fixed basis the number of functions N is set equal to the
number of pixels in the original filter with a chosen set of equidistant scales σ :

Ψσ = {ψσ00, ψσ01, ψσ10, ψσ11 . . . }. (10.32)

In the end, the convolutions are learned as weighted combinations of ψσi using trainable
weights w:

κσ =
∑

i

Ψσiwi. (10.33)

As a result the final kernels are defined on multiple scales and no image interpolation is
needed. Given a function of scale and translation f (s, t), the scale convolution with a kernel
κσ (s, t) is equal to

[f �H κσ ](s, t) =
∑
s′

[
f

(
s′, ·) � κs·σ

(
s−1s′, ·)](t), (10.34)

where �H denotes scale equivariant convolution. The output of this convolution is a stack of
features each of which corresponds to a different scale.

Scale equivariant pooling and padding. To capture correlations between different scales
and to transform a three-dimensional signal into a two-dimensional one, global max pooling
must be applied along the scale axis. This operation does not eliminate the scale-equivariant
properties of the network. In practice, Sosnovik et al. (2021) recommend to additionally in-
corporate scale equivariant pooling in places where conventional CNNs have spatial max
pooling or strides.

Padding is shown to degrade the localization prowess of convolutional trackers (Li et al.,
2019a; Zhang and Peng, 2019), as discussed also in Section 10.3.4.3. Scale equivariant convo-
lutions, however, rely on large receptive fields that consequently yield smaller feature maps.
Thus, for scale equivariant trackers with very deep models padding is necessary. To ensure
that strict translation equivariance is not affected while still obtaining favorable results, Sos-
novik et al. (2021) use circular padding during training and zero padding at inference time.

Scale equivariant Siamese trackers. The convolutional operation that results in the
heatmap of a tracker is nonparametric. Both the input and the kernel come from neural net-
works. Thus, the approach described in Eq. (10.34) is not suitable for this case. Given two
functions f1, f2 of scale and translation the nonparametric scale convolution is defined as
follows:

[f1 �H f2](s, t) = Ls−1

[
Ls[f1] � f2

]
(t) (10.35)

Here Ls is rescaling implemented as bicubic interpolation. Although it is a relatively slow
operation, it is used only once in the tracker and it does not heavily affect the inference time.

The aforementioned modules are all the necessary building blocks for the scale equivari-
ant Siamese tracker. Specifically, one must first identify to what degree objects change in size
in this domain, and then accordingly select a set of scales σ1, σ2, . . . σN . This is a domain-
specific hyperparameter. For the networks represented by h(x) and h(z), all convolutional
layers need to be replaced with scale-convolutional layers. The basis for these layers is based
on the chosen scales σ1, σ2, . . . σN . Optionally, scale-pooling can be included to additionally
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capture interscale correlations between all scales. The parameteric scale equivariant convo-
lution needs to be replaced by the nonparametric one from Eq. (10.35) to obtain the final
prediction map.

The obtained tracker produces a heatmap f (z, x) defined on scale and translation Each
position is assigned a vector of features that encodes both the measure of similarity and the
scale relation between the candidate and the template. If additional scale-pooling is included,
then all the scale information is aggregated in the similarity score. As the overall structure of
the tracker does not change, and the training and inference procedures also do not change, the
additional computational cost by introducing scale equivariance is small. For further details
regarding the construction of rotation equivariant Siamese trackers, we refer the interested
reader to Sosnovik et al. (2021).

10.3.4.6 Efficiency of Siamese trackers
The first Siamese tracker by Tao et al. (2016) relied on the fast RCNN (Girshick, 2015) archi-

tecture and the region-of-interest pooling to perform the local template matching. Despite the
speed improvements that the region-of-interest pooling provides, searching over boxes is still
a computationally expensive procedure. Bertinetto et al. (2016b) note that search over convo-
lutional feature maps may as well be described as a convolution itself, relying on the idea
of fully convolutional neural networks (Long et al., 2015). This simple change made Siamese
tracking much more efficient and comparable with previous alternatives.

As searching over all possible locations in the image is expensive, Li et al. (2018a) propose
to introduce the region proposal network from Ren et al. (2015) to their Siamese tracker. The
region proposal network learns to regress on the location and scale box coordinates that are
likely to contain the target. Therefore, the Siamese tracker can focus on the relevant regions
only for search. To further reduce computations, Li et al. (2019a) propose depth-wise convolu-
tions rather than regular convolutions, obtaining tenfold fewer parameters and considerable
computational improvements.

10.3.4.7 Hybrid learning with Siamese trackers
Siamese trackers have shown great benefits in predicting the target locations accurately,

especially in long sequences, due to not suffering from model decay. This is possible by rely-
ing solely on offline training and not including any online learning component. Ignoring all
future appearances of the target and having no online learning, however, is counter-intuitive.
Online learning is needed to address scenarios where the appearance of the target changes to
a significant degree, such that relying solely on the first frame is not adequate. For instance,
imagine the case of a pedestrian taking off their jacket. An online component is also critical
in the case multiple similar objects are present in the frame and the model must specialize, a
scenario that is challenging for bare Siamese trackers. In that case, online learning can help
guide the tracker model to discriminate the target object from all other similar objects in the
scene.

To make sure that the online learning does not have a detrimental effect to the tracker
model due to model decay, model updates must be cautiously performed. There are two
aspects to consider when designing model update mechanisms. The first aspect is when and
how frequently a model update should be performed. The more frequent the model updates
are, the more likely it is that the tracker model will become more and more biased with time,
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as shown by Gavves et al. (2020). The second aspect is which part of the model should be
updated to ensure the incurred bias is either small or has a minimal effect in the long term
to the template matching. The updates can be either directly on the similarity function of the
Siamese tracker (Bhat et al., 2019) or on auxiliary networks that complement the similarity
function (Tao et al., 2017).

To introduce an online learning component, many approaches propose a metalearning
strategy. With a metalearning strategy, the tracker model is initially trained in an offline man-
ner to optimize the parameter weights on seen data. Then, at inference time the metalearner
model predicts new parameter weights that are optimal for the new data point.

Bhat et al. (2019) propose a metalearning component that predicts new parameter weights
that discriminate between the target and the background. The proposed model follows the
standard Siamese architecture for the similarity function. Unlike standard Siamese trackers
though, the last convolutional layer in the template branch is followed by a model initializer
and a model optimizer module. The model initializer provides an initial estimate of the model
weights, using only the target appearance. These weights are then further processed by the
model optimizer module, which uses both the target and the background to derive the final
weight parameters. To avoid any potential overfitting, the model optimizer contains very few
trainable parameters. In the end, the model is trained both offline and online.

In the offline training phase, the model is trained using pairs of sets (Mtrain,Mtest). Each
set contains N frames, M = {Ij , bj }j , where bj are the target bounding boxes available dur-
ing training. To construct the Mtrain and Mtest, a random segment is sampled per training
sequence and then divided in two. The model predictor then receives as inputs the convolu-
tional feature maps computed from Mtrain to predict the parameter weights. Then, to ensure
good generalization, these parameter weights are used to make tracking predictions only
on Mtest. In the online training phase, the initial target appearance is perturbed using data
augmentation techniques to generate novel training samples for the training set. This set is
complemented with new patches of the target whenever the target is predicted with sufficient
confidence. The online learning is effectively similar in nature to the offline one, but done at
regular intervals every 20 frames.

Continuing on the same line of work, Danelljan et al. (2020) propose to incorporate
probabilistic learning to Bhat et al. (2019). To achieve this, the model learns to minimize
the KL divergence between its output pθ(y|x) with the ground truth distribution p(y|yi).
The probabilistic output of the model is defined as an energy-based distribution, pθ(y|x) =

1
Zθ

exp(sθ (y, x)), where Zθ = ∫
y

exp(sθ (y, x)). The ground truth distribution p(y|yi) is esti-
mated empirically as a Gaussian p(y|yi) N (yi, σ

2), where σ 2 is the empirical variance esti-
mated by a small data sample.

Differently, (Tao et al., 2017; Gavves et al., 2020) approach the problem focusing on when
the tracker should perform an update. The idea is that although Siamese trackers can benefit
from model updates, they have to be cautious so as not to bias permanently the similarity
function. As seen in (10.14), an accurate estimation of model bias would require computing
the term E[δi∇φfi,t ]. However, the state parameters φt+1 are not known beforehand, and re-
detecting the target in the earlier frames for every model update step (to obtain fi,t ) would be
computationally prohibitive. To this end, a cascaded neural network is proposed to determine
whether to perform a model update. First, a Siamese tracker is used to estimate the similarity
map after convolving the template feature map with the feature map from every new frame.
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The Siamese similarity function is followed by a decay recognition network, implemented by
an LSTM-based binary classifier. The LSTM classifier receives as inputs the previous K simi-
larity maps returned by the Siamese tracker. To make sure that the LSTM itself is not biased,
it is trained also offline. When the LSTM classifier returns a positive prediction, the model
weights are updated. Additionally, instead of relying on a search region to speed up search,
the model performs global search every T frames, such that the Siamese tracker does not lose
the target in case it lies out of the search region. It is important to emphasize that in that model
the global search is done at regular intervals, to disassociate model updates from the model
predictions. If the updates would depend on the model predictions, that would create a de-
pendency of updates on the model behavior, leading to self-fulfilling updates and eventually
model decay.

Similarly, Dai et al. (2020) propose an offline-trained metaupdater, which aims to solve the
problem of whether the tracker model should be updated or not. The metaupdater relies
on the sequence of (i) bounding box geometries, (ii) confidence scores, (iii) and appearance
changes over time. During training, the tracker relies on the metaupdater to decide whether
its weight parameters should be updated or not. The parameters of the metaupdater are then
optimized so as to make correct tracking predictions in the future sequences.

Designing hybrid tracker models that learn both offline and online, while fundamentally
avoiding – or minimizing – model decay is still an open research question.

10.3.4.8 Online learning beyond Siamese trackers
Before Siamese trackers, there were also a few important attempts in modeling trackers

in long video sequences. In their seminal work, Kalal et al. (2012) propose to decompose
long-term tracking into a tracking, learning and detection modeling task. The tracker is re-
sponsible for estimating the motion of the object from one frame to the other. The assumption
of the tracker component is that frame-to-frame motion is limited and the object is visible.
The detector treats each frame independently so as to recover any mistakes performed by
the tracker. The false positives and false negatives returned by the tracker and the predic-
tor are then monitored and corrected by the learning component. The learning relies on a
pair of experts. The P-expert identifies only false negatives and the N-experts identifies only
false positives. While both experts can make errors themselves, they are kept independent to
ensure that their individual errors are mutually compensated. The proposed tracker is par-
ticularly apt in long-term tracking, because of the self-correction mechanism deployed by the
independent detector and learning components.

Pernici and Del Bimbo (2013) also propose a tracker that is well suited for long-term
tracking. To achieve this, the tracker relies on oversampling of local invariant SIFT (Lowe,
2004) representations, which are used as the training samples passed to a pair of nearest
neighbor discriminative classifiers. The first, target object classifier attempts to model the ap-
pearance of the target object, by comparing appearance and shape with other neighboring
patches. The second, context classifier attempts to model the appearance of the spatiotempo-
ral background. The tracker further relies on random search when the object is absent for a
consecutive amount of frames. An important component of the tracker is geometric matching
based on RANSAC-like voting. When the number of matches is smaller than expected, the
object is presumably occluded. The model is updated in every successful detection, unless
there is occlusion.



10.4. Discussion 367

Compared to Siamese trackers, these earlier methods did not learn an offline similarity
function and had to rely on sophisticated mechanisms to make sure model drift was con-
tained. That said, the type of cues used of these approaches bears certain similarities to
Siamese trackers. By relying on convolutional neural architectures, similar to Tao et al. (2016);
Bertinetto et al. (2016b) take into account both appearance and weak geometric cues in deter-
mining the similarity of the target object with candidate locations in new frames, like Kalal
et al. (2012); Pernici and Del Bimbo (2013). What is more, both Tao et al. (2017); Kalal et al.
(2012) rely on full image search to minimize false negatives.

10.3.5 Datasets and benchmarks

Tracking benchmarks (Smeulders et al., 2014; Wu et al., 2015; Kristan et al., 2016; Liang et
al., 2015; Li et al., 2016; Mueller et al., 2016; Valmadre et al., 2018) have played a huge role in
the advancement of the field, enabling the objective comparison of different techniques and
driving impressive progress in recent years. These benchmarks have focused on the problem
of short-term tracking according to the definition of Kristan et al. (2016), which does not
require methods to perform redetection. This implies that the object is always present in the
video frame. However, existing benchmarks are also short-term in the literal sense that the
average video length does not exceed 20–30 seconds. The short length of video durations has
several consequences in the evaluation of long-term tracking algorithms.

One consequence is that with short videos for tracking, the adverse effects of model de-
cay are not easily noticeable simply because not enough model updates are performed. Even
with moderately long sequences, short-term trackers more often than not tend to become so
biased so that they miss the target entirely and, perhaps more importantly, without the abil-
ity to recover (Gavves et al., 2020). Moreover, as the target objects rarely exit the frame, it is
not possible to evaluate whether algorithms handle well cases of object disappearance and
reappearance. Last, with longer sequences the metrics for what comprises a successful tracker
may not be the same as for shorter sequences. For instance, having pixel-perfect localization
of the target object in short videos may yield very high scor es for some of the metrics. How-
ever, this pixel-perfect localization becomes less important if the tracker misses the target
completely soon after.

For this reason, new datasets, benchmarks and types of evaluation are required specifi-
cally for long-term tracking (Fan et al., 2019; Valmadre et al., 2018; Mueller et al., 2016; Huang
et al., 2019; Mueller et al., 2018), where the videos are typically much longer, in the range
of several minutes up to half an hour, and the target objects frequently appear and disap-
pear.

10.4 Discussion

Visual object tracking is one of the oldest tasks in computer vision. In long sequences
model decay and target disappearance and reappearance pose significant challenges to short-
term tracker models. The success of deep learning has influenced visual object tracking,
especially in the context of long-term sequences. The reason is that with the deep Siamese
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tracker design one can relay all appearance comparisons to an offline learning of a similarity
function and avoid model decay. Although Siamese trackers are impervious to model decay,
this comes at the cost of possibly missing the target object in cases where appearance of the
target changes significantly compared to the first frame. To address this problem, Siamese
trackers with built-in invariances and equivariances, as well as hybrid Siamese trackers that
rely on both offline and online learning, are proposed. These Siamese tracker variants can
account for large variations in the appearance of the target object, while still exhibiting lit-
tle model decay. All considering, Siamese trackers perform well and are recommended in
long-term visual object tracking.
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CHAPTER POINTS

• An action-centric framework for scene and
activity interpretation.

• Studies on object affordances and
functionalities and their use in the context
of action recognition and robot learning.

• Studies on activity recognition as an
interplay between cognition and
perception.

• The merging of vision and language
through embedding spaces.

• Discussion on the future of action and
activity understanding through the lens of
the action-centric framework.

11.1 Introduction

The purpose of Computer Vision (CV) is to produce interpretations of images and video
which are of use to humans. Action is important to model because it is a primary means
through which others and ourselves interact with our environment, and it is largely through
interaction that the environment becomes meaningful. Because of the centrality of action in
what humans find meaningful in their environment, humans structure their environments
around action. So to fully understand human environments requires an understanding of
their relation to actual and possible action. Most contemporary CV methods are not action
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based in their approach – in this chapter we present methods and frameworks which in mod-
eling the observed scene employ an action based or functional interpretation.

The centering of action in perception aligns with embodied cognition theories (Varela et al.,
1993; Barsalou, 2008), which argue that many aspects of cognition take their origin in motor
behavior and action. In a computational approach we can leverage action based representa-
tion at multiple time scales for a hierarchical approach to scene understanding. At the early
hierarchical levels are static components, the objects, humans, and simple movements of the
limbs. These are then combined into increasingly more complex notions that involve inter-
actions between scene components. Temporally actions chain together in structured ways to
constitute activities.

The use of action based representations in computational perception approaches is chal-
lenging. The classic approach to CV is to recognize scene constituents based purely on their
appearance. However, the aspects of the scene related to action are often semantic and rela-
tional rather than appearance based in nature. To better model interactions, more complicated
architectures are required that not only model visual appearance but which leverage a more
cognitive understanding of the intermediate semantic and relational structure of action in the
input.

Classic end-to-end visual learning becomes intractable with larger input state spaces, as
are found with video and action of increasing duration. This is because the variability in
visual appearance increases, presenting challenges both in data and in modeling. In order to
scale, a more cognitive approach which models not the appearance but the action structure
of the activity is necessary.

A primary advantage of the action based approach to scene interpretation is general-
ization, i.e., the ability to recognize scene quantities beyond those visually observed in the
training set. For example, if we can recognize what makes an object usable for cutting, this
will allow us to recognize new kinds of cutting tools, such as an Alaskan ulu, although this
object has not been in our training set. Similarly, if we can interpret an observed human ac-
tivity by understanding the interaction of constituents and by understanding the underlying
goal, we can be more robust. Individual constituents may be difficult to recognize because of
occlusions, size, unfavorable viewing angles or variability in visual appearance and move-
ments, but reasoning about the cognitive plausibility of the activity can allow the recovering
from classification errors. Furthermore, action modeling provides the potential to predict far
into the future.

This chapter presents CV learning-based approaches and concepts centered on action. We
now outline in brief the contents of the rest of this chapter.

Section 11.2 covers affordances – a variety of action-based object description. Affordances
have been of great interest to Robot Vision. But also classic, nonembodied CV can benefit from
the use of affordances. They reflect how the different objects in a scene can be used, and they
are an essential component for action understanding. They carry information on the possible
cooccurrences of observed objects, humans, and other scene constituents. Section 11.2 covers
the best known CV works on the topic, which include early studies that reason about af-
fordances via geometric measurements, studies that learn affordance maps using algorithms
for object detection and semantic segmentation on depth and geometric feature maps, and
studies that combine affordances with other constituents for action recognition.
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Section 11.3 is devoted primarily to our own work on understanding manipulation activ-
ities. We argue that activity interpretation should be implemented as a continuous interplay
between reasoning and perception processes. Activities are modeled hierarchically. At the
lower level are modules for objects, actions, spatial relations, etc, which are merged at the
higher level via a grammatical formulation. The grammar and selected modules supporting
an action-driven understanding are described.

Section 11.4 focuses on methods that can achieve a tighter integration of appearance and
semantic and relational constraints. We consider the integration within the context of the
task of Zero-Shot Learning. We cover first simple methods involving engineered attributes,
and proceed through more sophisticated approaches involving merging language and vision
through shared embedding spaces, capturing semantic and relational information.

This is followed by a discussion on how these concepts could be applied to action and
activity understanding in Section 11.5, and Conclusions in Section 11.6.

11.2 Affordances of objects

Psychologist James Gibson coined the term “affordance” (Gibson, 1977), referring to the
action possibilities that an object presents based on humans’ (or animals’) physical capabili-
ties. For instance, a knife affords “cutting,” “stabbing,” “poking,” “slicing,” “throwing,” etc.
(to a human). The notion of affordance has recently received great interest in the cognitive
science and neuroscience literature, strengthened by brain imaging evidence that showed
that observing tools activate motor areas of the brain (for a review see Martin, 2007). The
concept has been studied in different areas, including developmental psychology, industrial
design, sport science, and human computer interaction, and there have been many interpreta-
tions and discussions on its meaning. Most distinguish between “affordance” and “function,”
with the former meaning properties of objects and the latter referring to the role that an ob-
ject plays in satisfying some purpose. For example the handle of a cup affords “grasping,”
and its interior “containing,” while an electricity plug supports the function to “powering
kitchen appliances,” or “charging devices,” and a water faucet supports the function of “get-
ting drinking water.” However, a formal definition does not exist.

In this section, we first motivate the use of affordances in CV (Sec. 11.2.1). Then different
works from the literature are discussed: Sec. 11.2.2 is about the earlier approaches, which se-
lected geometric features computed from 3D data to classify affordances of chairs or everyday
objects. Sec. 11.2.3 describes works on learning affordances of objects and their parts using CV
recognition algorithms applied to depth data or geometric feature maps. Sec. 11.2.4 describes
approaches using affordances together with other detectors for scene and action recognition,
and approaches that learn affordances for embodied agents. Sec. 11.2.5 concludes with sug-
gestions for future work.

11.2.1 Why would computer vision be interested in affordances?

Looking at objects and scene surfaces from the viewpoint of affordances provides infor-
mation for visual scene interpretation that is complimentary to the classic cues and aids in
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robustness and generalizability of learned representations. This information is about the “ac-
tionability” that the scene presents at multiple spatial and temporal scales relating to objects,
groups of objects, and the complete spatio-temporal scene. Therefore affordances provide in-
formation and constraints for scene understanding both in the present and in projecting into
the future – thus aiding recognition in addition to prediction, as detailed next.

Models of affordances learned over some objects are transferable to novel object categories.
I.e., if our recognition modules can recognize an affordance, they can detect it in objects never
seen before, even in a stone that has the right properties. This is because how an object is
used depends on physical properties such as its shape, size, material, and weight (Hermans
et al., 2011), and we can design processes that pick up these physical properties from images,
depth maps, and other modalities, independent of previously encountered object categories.
In contrast, classifying objects in images in a conventional end-to-end fashion does not give
insight into how visual features such as affordances relate to the object.

Affordances provide valuable information to visual object understanding, such as in un-
derstanding the “valid functionality” of objects (Hassanin et al., 2018) – e.g., an inverted cup
cannot be used to pour into, or similarly a broken chair cannot be used for sitting (Grabner
et al., 2011). Another example is the subcategorization of the classical visual object categories,
such as differentiating between chairs for different uses (Stark and Bowyer, 1991).

Since affordances represent the possible actions that can be performed with an object, they
carry valuable information for predicting future actions (Koppula and Saxena, 2015; Qi et al.,
2018) – because actions relate to each other over time. For example, a bread knife as a whole
presents affordances (“graspable”, “cut with”) allowing the action of “slicing bread,” and
slicing bread is part of the activity “preparing the bread basket” – an activity consisting of
multiple actions extended through time with temporal dependencies. Knowledge of the pos-
sibility of “slicing bread” informs possible subsequent actions such as putting the basket on
the table. To summarize, affordances and functionalities at the object level also contain infor-
mation about possible object interactions, spatio-temporal relations, and activities at longer
temporal scales. Modeling these relations to get explicit or implicit relations at multiple time
scales and semantic levels of abstraction has value for the task of activity understanding.

The concept of affordances has been central to Robot Vision and to research along the Ac-
tive Vision Paradigm (Bajcsy, 1988). The latter advocates that the vision of systems should
not be considered a passive process. Biological systems “move their eyes to select what they
see” in an active process. Similarly, artificial embodied systems should be able to change the
viewpoint of their cameras in order to select what information to gather from their environ-
ment, as different viewpoints present different information. Going further, the paradigm also
suggests that embodied systems should avoid employing heavy general-purpose vision pro-
cesses for all purposes, and only process the information necessary to solve the task at hand
(Fermüller and Aloimonos, 1995). Therefore, when a robot or artificial system interacts with
objects, often it is more effective to compute what an object can be used for – i.e., compute
its affordance and how it can be used – rather than to classify the object according to our
language representations. Thus, while the advantages of affordances discussed in this sec-
tion apply to the classic passive CV formulation, where there is no agent interacting with the
environment, a great portion of the research on affordances focuses on Robot Vision.
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11.2.2 Early affordance work

Affordances relate to actions. As a consequence they are also grounded in action related
physical quantities. For example, an object to sit on or an object to pour into have certain phys-
ical quantities, e.g., a certain shape, size, or certain material, etc. All of the earlier approaches
utilized such explicit physically meaningful representations in affordance recognition mod-
ules.

The first studies used shape and geometry. Stark and Bowyer (1991) proposed the
first affordance-based approach to object recognition using 3D CAD models as input.
A knowledge-graph, similar to a decision tree, was created to classify chairs and subcate-
gories of chairs (e.g., conventional chair, balance chair, high chair, lounge chair), where the
leaves of this graph were procedures for classification of geometric features. These features
included relative orientation between surfaces, object dimension, stability, and proximity of
surfaces.

Grabner et al. (2011) detected surfaces that afford “sitting,” by checking the geometry of
a 3D human skeleton model in a sitting pose against the object’s geometry. Their features
include distance and the intersection of the human’s mesh with the object’s mesh. The de-
tector was evaluated on Google Warehouse models as well as real 3D data collected with a
time of flight camera. For best performance the method was combined with an image based
classifier. Similarly, Gupta et al. (2011) modeled affordances in 3D indoor scenes by detecting
the regions of the space which allow a human to use it for one of three functions: “laying
down,” “sitting upright,” and “sitting reclined.” Like Gupta et al. (2011), they also used con-
straints based on the occupied 3D space and the contact with a human skeleton. However,
their method can take as input images, from which it first derives 3D geometry via learning-
based regression methods such as Hedau et al. (2009); Lee et al. (2010).

Hermans et al. (2011) learned the affordances of everyday objects via intermediate rep-
resentations that encode visual and physical characteristics. Visual characteristics included
color, discrete shape, and texture, and physical characteristics included weight and size. Stan-
dard classifiers were used in the pipeline, and the approach was demonstrated on seven
affordance classes in the robotics domain.

11.2.3 Affordance detection, classification, and segmentation

The problem of recognizing affordances associated with objects and scene surfaces is con-
ceptually similar to the problem of object recognition. A number of recent approaches have
used tools from object detection, classification, segmentation, and semantic labeling for affor-
dance localization and recognition. However, these techniques usually were not applied to
images, but instead either to RGBD data or to feature maps computed from depth data. This
section discusses a few such approaches.

11.2.3.1 Affordance detection from geometric features
This section describes the work of Myers et al. (2015), the first approach applying modern

machine learning tools on geometric features. The section details the approach to affordance
detection and discusses computational implications.

The focus of the study were tools used in everyday workspaces, and specifically the detec-
tion of tool parts associated with different affordances. A dataset (the RGB-D Part Affordance
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Dataset) of 105 kitchen, workshop and garden tools was collected. Objects were put on a re-
volving turntable and recorded with a Kinect camera from a full 360◦ field of view, about
300 frames for each object, out of which 10,000 RGB-D images were annotated at the pixel
level. Fig. 11.1 shows example objects for five of the seven affordances, along with the anno-
tation for one of the objects. It should be noted that affordance is associated with surfaces, for
example the inner surface of a cup is “contain” while the outer surface is “wrap-grasp.”

FIGURE 11.1 Sample objects from the RGB-D Part Affordance Dataset, and an example of a full frame image with
hand-labeled ground truth (at the lower right). The ground truth labels include rankings for multiple affordances
(from Myers et al., 2015).

From the raw depth data, shape features were computed patchwise, specifically, the sur-
face normal, principal curvature, shape index, and the HoG-Depth descriptor (histogram of
depth gradients). Using these features as input, two classification approaches were proposed:
first, a Structured Random Forest (SRF), which creates point-wise classification; and second
the S-HMP (Superpixel Hierarchical Matching Pursuit) algorithm (Bo et al., 2013). The latter
works by first oversegmenting the RGB-D image into superpixels. Then, using a dictionary
learning technique, the shape features are sparsely encoded at multiple scales per superpixel.
Finally, the features are max-pooled over the superpixels and classified via an SVM. Example
results are shown in Fig. 11.2 for both the S-HMP and the SRF method, where the gray value
encodes the probability for the affordance assignment.

There are two computational aspects to the approach discussed above, that deserve spe-
cial attention. First, sometimes overlooked, the assignment of affordances to object surfaces
in general may not be unique. The same object part may be used for multiple purposes. As-
signing affordances is thus a multiclass labeling problem. In Myers et al. (2015) this issue was
addressed by having multiple annotators rank how close other affordances were with respect
to the essential affordance, from which an ordinal scale for affordance assignment at testing
was derived.

Second, a main advantage of the approach is its good generalization to new objects and
surfaces. Referring to Fig. 11.2 (Bottom), one can see that the bottom of a cup is classified with
the affordance “Pounding” and the edge of a spatula with the affordance “Cutting.” This is
because the shape of these objects indicates these properties. However, shape by itself would
not be sufficient for classification in a practical system. One would have to add additional
properties, the most obvious is material. This would allow to decide that a paper cup cannot
be used for pounding, or an object with a soft edge cannot be used for cutting.
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FIGURE 11.2 (Top) Results of affordance detection across three input RGB-D frames using the S-HMP and the SRF
method over a cluttered sequence for the target affordances “contain” and “wrap-grasp”. Brighter means higher
probability of the target affordance. (from Myers et al., 2015) (Bottom) Demonstration of the generalization of the
method for new objects for the SRF-method: the bottom of the cup was detected with high probability for “Pound-
ing” and the edge of the spatula with high probability for “Cutting.”

11.2.3.2 Semantic segmentation, and classification from images

Many of the works that followed Myers et al. (2015) employed neural network approaches
using geometric feature maps as input. Affordance detection at pixel level, thus became a
semantic labeling problem. However, different from Myers et al. (2015), these approaches
often used 2D images as input. In a preprocessing step, depth maps or feature maps were
regressed via neural networks. Furthermore, some considered natural images with multiple
objects, and employed object detection algorithms to localize the objects, before assigning
affordances.

For example, Nguyen et al. (2017) created a dataset with ten object categories and nine
affordance categories from the household and workshop domain. It consists of both RGB-D
scans and natural images (a subset of ImageNet (Russakovsky et al., 2015)) – for the latter
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depth maps were created using the CNN approach of Liu et al. (2015). The images were an-
notated with bounding boxes and affordances at the pixel level. The paper’s method first
applied an object detector, then within each region computed affordances using a modified
VGG-16 network trained for semantic labeling, and finally the affordance values were post-
processed with a CRF.

Srikantha and Gall (2016) used the dataset of Koppula and Saxena (2014), which features
rich contextual information in terms of human-object interactions, and curated it with pixel-
level affordance annotations. The work explored different levels of supervision for semantic
segmentation, using a deep convolutional neural network within an expectation maximiza-
tion framework to take advantage of weakly labeled data like image level annotations or
keypoint annotations, as well as human pose as context.

Roy and Todorovic (2016) worked with the indoor scenes from the NYU dataset (Silberman
et al., 2012). Their approach first infers the depth map, surface normals, and coarse-level
semantic segmentation using a multiscale CNN as mid-level cues, which are then jointly fed
as inputs to another multiscale CNN for prediction of the affordance maps.

Ye et al. (2017) designed a method for localizing and recognizing functional areas in indoor
scenes. An ontology, as shown in Fig. 11.3 (Left), was defined to categorize image regions ac-
cording to their affordance or functionality. Categories include: “open with spherical grasp”
(such as a door knob), “open with wrap grasp or drag to open” (such as an oven door), “turn
on electricity” (such as light switch), etc., as shown in the second last column of the figure.
The dataset has 500 images featuring kitchens from the SUN dataset (Xiao et al., 2010), which
were curated. The method first runs a CCN-based detector trained to detect the region and
then a classifier based on a VGG architecture. Fig. 11.3 (Right) shows example results.

FIGURE 11.3 (Left) Functionality Ontology (Right) Sample detection results (from Ye et al., 2017).
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11.2.4 Affordance in the context of action recognition and robot learning

In this section we highlight a few approaches that used affordances in conjunction with
other quantities for scene and action understanding. We then discuss approaches that ad-
dressed the learning of affordances by robots.

11.2.4.1 Action recognition
Affordances encode features of the possible interactions a human can have with the en-

vironment. Thus, naturally they provide a glue between different quantities in the scene in
space-time, such as between different objects, or between objects and actions. A number of
studies have built on this idea, and used affordance relationships as a context for activity and
action recognition and prediction. These methods employed various models to encode rela-
tions between the different quantities involved, including CRFs, MRFs, And-Or-Graphs, and
probabilistic state automata.

Kjellström et al. (2011) investigated the problem of learning action-object interactions from
demonstration, which they define as affordances. Hand actions were classified in the context
of the manipulated objects using a CRF that gets as input object and hand features. Objects
were modeled using hand-crafted features, and actions were modeled by the hand’s global
velocity, orientation, and joint angles, which were computed from the output of a 3D hand
reconstruction and tracking method.

Koppula et al. (2013) considered the problem of learning sequences of subactivties per-
formed by humans and their interactions with objects. They jointly modeled the human
activities and object affordances in a Markov Random Field where the nodes represent ob-
jects and subactivities, and the edges represent the relationships between object affordances,
their relations with subactivities, and their evolution over time. Affordance-subactivity rela-
tions were computed from relative geometric features between the object and the human’s
skeletal joints, and affordance relations between objects from spatial relations. The descrip-
tion was demonstrated for a PR2 robot in performing assistive tasks. In Koppula and Saxena
(2015), Koppula and Saxena added to the Markov Model also possible future states in order
to predict the next action.

Qi et al. (2017) used a Spatial-Temporal And-Or Graph (ST-AOG) to represent the struc-
ture of activities and predict future actions in RGBD video input. Their model is hierarchical:
subactivities are modeled by the human action, the objects, and their affordances in spatial
graphs, and a stochastic grammar defined over the subactivities encodes the activity. Dutta
and Zielinska (2017) also considered the problem of predicting the next action based on ob-
ject affordances and human interaction. They employed spatio-temporal based probabilistic
state automata to model the interactions. In addition to the action class, they also computed
the possible action trajectory. Depending on where an object is relative to the human it has
different affordances, and depending on the affordance, its orientation and distance to the
possible action trajectories were encoded as heatmaps.

11.2.4.2 Affordance learning in robot vision
Affordance has been a central concept in the field of neurorobotics, which aims to under-

stand the cognition of a system whose body is embedded in the environment. In this research,
robots acquire increasingly more complex skills using perception and interaction with the en-
vironment. Through interaction robots learn affordances, and build upon these hierarchically



382 11. Learning for action-based scene understanding

an understanding of actions, activities and the environment. This research in developmental
robotics was enabled by the development of robotic platforms, best known among them, the
humanoid robot, iCub (Metta et al., 2008).

In Fitzpatrick et al. (2003) the authors discussed three broad stages in the development of
a robot: first learning a body image, second learning the interactions with external objects,
and third learning to interpret object-object interactions. Affordances are central to the latter
two stages. The humanoid robot through pushing and pulling actions in different directions
learned to interact, and by observing affected objects’ movements learned affordances, such
as whether a spherical object is rollable and a cuboid is slide-able. Finally, the robot also
learned to mimick an observed action.

Similarly, the authors of Montesano et al. (2008) defined the three main stages in the archi-
tecture of a developing humanoid robot as sensory–motor coordination, world interaction,
and imitation. Affordances play a central role for world interactions. In this approach, the
system started with basic vision and motor skills from which more complex vision and mo-
tor skill were acquired using clustering algorithms. Then, during interaction, effects were
observed using perception, such as the changes in object position, velocity, and tactile sens-
ing. A Bayesian network was used to learn affordances, which in this case were encoded as
probabilistic relations between actions and percepts (object features and effects). The system
was demonstrated to imitate the actions of humans by performing movements with similar
effect.

Ugur et al. (2011) also demonstrated a robot learning object affordances through interac-
tion and self-observation. In a first step the robot discovered commonalities in its action-effect
experience by discovering effect categories. Building upon these, in a second step, affordance
predictors for different behaviors were obtained by learning the mapping from the object
features to the effect categories. Ugur and Piater (2016) went a step further and studied mech-
anisms that produce hierarchical structuring of affordance learning tasks. Guided by intrinsic
motivation, the robot started with easy tasks, and building on its knowledge of interactions
progressively learned more complex tasks by selecting to explore the object and action most
different from previously explored ones. For the experiments the robot could compute the
visual features of object dimension, surface patch shape, and surface normals, and its actions
were poking from three different directions and stacking. In earlier stages it explored the pok-
ing actions to observe their effects on single objects. Building upon these, it then explored in
a second stage the stacking of two objects and resulting effects.

11.2.5 Discussion on affordance learning

This section discussed approaches to affordance learning, many of which fall into the do-
main of Robot Vision and have been conducted with few examples and limited amounts of
data. So far, deep learning approaches have not been much used for affordance understand-
ing. The major reason is the lack of large annotated datasets in this domain, necessary for
deep learning.

However, we expect that as research shifts away from supervised to unsupervised and
self-supervised approaches, we will see learning approaches building on the concept of af-
fordances and observed interactions between humans and objects. This will be facilitated by
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datasets, such as the EPIC Kitchens dataset, which features a variety of manipulation actions
in natural scenes (Damen et al., 2018).

Affordances and functionalities at the object level also encode information about possible
object interactions, spatio-temporal relations and possible activities at longer temporal scales.
We have discussed in Section 11.2.4 approaches using affordances for action modeling. How-
ever, in future work, we could model these relations to get explicit or implicit relations at
longer time scales for the problem of activity understanding, the topic of Section 11.3.

Finally, when creating mappings from perception to action for robot learning, we may
ground them in affordances. Humans can learn manipulation actions using their perception
only. When we see somebody performing actions with a tool unfamiliar to us we can under-
stand the tool’s affordance and perform the same action. Similarly, we could approach robot
motor learning using perception and action in a tight loop, grounding them in affordances,
something that has not yet been done. The robot would learn the task by observing the ac-
tion and affordances and issuing commands (based on its existing skill set constrained by
affordances) to generate the action approximating the observed one, and then adapt gradu-
ally to improve performance. The suggested research tasks then amount to developing self-
supervised learning and reinforcement-learning approaches grounded in affordance-based
representations.

11.3 Functional parsing of manipulation actions

This section describes work – largely from our group – on the interpretation of manipula-
tion activities. Inspired by the embodied cognition paradigm (Varela et al., 1993), this work
considers the understanding of human activities a process that involves perception, cogni-
tion, and the motor system. The major components are a formalism to combine the different
modalities, and CV modules for obtaining semantically meaningful descriptors of action.

11.3.1 The active interplay between cognition and perception

Understanding human actions and activities is the most challenging task currently studied
in CV. It is not a task of vision only. Humans can understand what others are doing, because
they have models of actions and activities. They understand the goals of actions, and this
allows them to interpret their observations despite the large variations in which actions can
be executed and variations in visual conditions. Knowledge of some form comes into the
interpretation process quite early.

We observe that human behavior is active and exploratory. We continuously shift our gaze
to different locations in the scene. We recognize objects and actions and this in turn leads us
to fixate at new locations. In this process, perception continuously interacts with cognition at
different levels of abstraction: to guide attention, to make predictions, to constrain the search
space for recognition, and to reason over what is being perceived. We call this interaction
between perception and higher level processes the Cognitive Dialogue (Aloimonos and Fer-
müller, 2015), as it amounts to an iteration of questions and answers, with the cognitive or
linguistic processes asking questions about the what and where of quantities in the scene,
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and the visual processes performing localization, detection, recognition, and reconstruction.
A possible simple way to selecting the next question would be by using information-theoretic
criteria (Yu et al., 2011).

The reasoning can be implemented through knowledge-based engineering (Aditya et al.,
2018) or the use of language. There has been much interest in CV to introduce additional
higher-level knowledge about image relationships into the interpretation process. While
many studies get this additional information from captions or accompanying text, others (as
discussed in Section 11.4) use advanced language processing to obtain additional high level
information. In current research, most commonly, the Word2vec space (Mikolov et al., 2013)
(see Sec. 11.4.3) is used as language representation, which encodes similarity about linguistic
concepts. Alternatively, one could use older, hand-crafted resources encoding lexical seman-
tics, for example the Word-Net database (Miller et al., 1990), which relates words through
synonymy (words having the same meaning, like “argue” and “contend”) and hypernymy
(“is–a” relationships, as between “car” and “vehicle”), among many others. Verbnet (Schuler,
2005), which organizes verb classes, is particularly interesting for action understanding.

11.3.2 Grammars of action

Various mechanisms have been used to encode relationships between the different seman-
tic concepts, that is between actors, objects, verbs, spatio-temporal relations, and attributes.
Section 11.2, discussed the use of and-or-graphs and Markov models. Others include Markov
Logic Networks (Tran and Davis, 2008), and planning tools (Guha et al., 2013). In this section
we describe work on grammars, which can capture the composition of observed activities as
sequences of scene constituents, and their recursive structure.

The main motivation for the use of grammars originates from the idea that actions ob-
served in a video have syntactic structure. By considering the goal of actions, the video can
be broken into meaningful segments, and these segments together can be organized in the
form of a simple grammar. Thus, interpreting the action that is taking place in a video is like
understanding a sentence that we read or hear. To parse the video into the primitive actions
that constitute complex tasks, the segments of the video are mapped to particular symbols
involving objects, tools, movement, and spatial relations. Importantly, the action grammar
temporally segments a video at contact, that is, when the hand touches or releases an object,
or objects merge or separate. At these points in time a new subaction starts. In applying the
grammar for the analysis of a video, a parse tree is produced, which we call the activity tree.
Fig. 11.4 illustrates the concept. From a video recording of a person performing the activity
“cutting a plank,” a graph is created, in which nodes of hands, objects, and tools merge into
a common node, whenever they touch, or nodes split when the objects and hands separate.
Referring to the figure, to compute the quantities involved, different processes (shown in the
four subareas of the video frames) extract the human’s body, the hands, objects, and geomet-
ric relations.

We now discuss several grammar approaches in Section 11.3.2.1, and then discuss in Sec-
tion 11.3.2.2 whether such grammar representations are sufficiently expressive to capture
action and activity structure, and sufficiently parsimonious to be preferred over other rep-
resentations.
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FIGURE 11.4 Illustration of activity description. The camera monitored a person cutting a plank. Four parallel
processes computed essential components: (left up) detection of the hand and classification of the grasp type, (right
up) gross motion via skeleton fitting, (left down) segmentation of the object, (right down) 3D shape description of
the scene.

11.3.2.1 Different implementations of the grammar

The descriptions are based on context-free grammars, originally introduced in Pastra and
Aloimonos (2012). Summers-Stay et al. (2012) implemented the idea for parsing assembly ac-
tions from RGBD video using only one symbol for all actions, and Yang et al. (2014) enhanced
the description introducing grasp into the description and differentiating hand-to-object con-
tact and object-to-object contact. The grammar describes actions at a level of abstraction that
is useful for both video interpretation and robot execution. In Yang et al. (2015b) this was
demonstrated with some examples. By automatically parsing videos that feature cooking in-
structions from the Youcook dataset (Das et al., 2013), actions were parsed, which then were
performed by a Baxter robot equipped with the necessary motion capabilities.

Abstract descriptions of actions/verbs are necessary to achieve generalization, and per-
form what is called in the current terminology, few-shot learning or zero-shot learning (see
Section 11.4). The basic action grammar reduces the description of actions to only the se-
quence of “touching relations,” that is when the hand touches an object, two objects touch,
the hand releases an object, or two objects or pieces of a single object separate (Dessalene et
al., 2021).
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Wörgötter et al. explore this concept to formulate an ontology (Wörgötter et al., 2013)
considering one-handed actions. At the first level, actions are categorized according to the se-
quence of relations that the hand and one or two objects can have, into six classes, which are:
rearrange, destroy, break, take-down, hide, construct. From there they iterate possible actions,
and they come up with about 30 fundamental manipulations. Yang et al. (2013) proposed a
related concept. They metaclassified actions according to the consequence an action has on
an object, that is, what happens geometrically or topologically to an object. They proposed
six categories – divide an object, merge two parts, transfer an object, deform an object, object
appears, object disappears from the scene – and they also provided algorithms that combine
tracking with segmentation to detect topological changes to detect the essential events in
video.

11.3.2.2 Are grammars expressive and parsimonious descriptions?

An important question is whether the grammatical representations actually are sufficiently
rich to allow for classification of many activities. The authors of Wörgötter et al. (2020)
performed psychophysical and computational experiments to answer this question. They de-
scribed, as above, actions by the sequence of contacts, using five quantities: the hand, the
ground, and three objects. In addition they considered ten spatial relations, i.e., above, below,
between, etc., to differentiate between altogether 35 different configurations or actions. A sub-
set of ten of these actions (put, shake, stir, take, uncover, chop, cut, hide, lay, and push) was
performed in a virtual environment, but instead of the actual objects, cubes were used. Ex-
periments found that humans can recognize these actions, and so can their algorithms. Even
more, the description was found to be very powerful for prediction; subjects on average only
required 56% of the action duration to recognize the action. Thus, it appears that a description
relying only on contact and spatial relations is very powerful for visual recognition.

11.3.3 Modules for action understanding

Individual vision processes are required to recognize discrete components, which then can
be combined in higher level reasoning processes – such as the grammars from Section 11.3.2
– to achieve activity recognition and prediction. The descriptors which we discuss in this
section differ from those heavily covered in the literature (for an evaluation of successful
concepts in current approaches see Sigurdsson et al. (2017)). Specifically, in Section 11.3.3.1
we discuss representations of grasp, and in Section 11.3.3.2 we discuss explicit representation
of geometry.

11.3.3.1 Grasping: an essential feature for action understanding

The grasp type provides crucial information about actions. As a motivational example,
consider the two scenes in Fig. 11.5 from the VOC challenge (Everingham et al., 2010). Stan-
dard CV systems have object and human detectors to recognize the bicycle and the cyclist and
pose detectors to confirm that these two cyclists are riding a bike. But humans can tell that
the cyclist on the left side is not racing (since his hands are in a “Rest or Extension” grasp),
whereas the one on the right is intent on racing (since the hands firmly hold the handlebar in
a “Power Cylindrical” grasp).
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FIGURE 11.5 (Left) Rest or Extension on the handlebar vs. (Right) Firm power cylindrical grasp of the handlebar
(from Yang et al., 2015a).

FIGURE 11.6 Basic classification (Cutkosky, 1989) of active grasps with examples. At the highest level, grasps are
categorized into power and precision grips. Power grips are used when an object is held with force, and can be clas-
sified as cylindrical, spherical, and hook. Precision grips provide fine movement and accuracy, and are subdivided
into pinch, tripod, and lumbrical.

We cover here two papers, the first employs a basic ontology of grasps types in action
understanding tasks, the second studies subtle changes in grasp for differentiating between
similar manipulation actions, and develops learning approaches for online action prediction
and regression of associated finger forces.

The recognition of grasp type provides essential information for a more detailed analy-
sis of action. (See Fig. 11.6.) Researchers in several areas, including robotics, developmental
medicine, and biomechanics, have developed grasping taxonomies that represent a hierarchy
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of the most common hand postures used for object grasping, with each taxonomy based on
the needs of the tasks in the field. In Yang et al. (2015a) a basic classification of the main func-
tional grasps (Cutkosky, 1989) in manipulation tasks was used and then demonstrated as a
useful feature in two tasks: for segmentation of activities involving fine motor actions, and
for characterizing action intention, i.e., whether the task is casual, or requires skills or forces.

Cognitive studies showed that an actor’s intention shapes his/her movement kinematics
during movement execution (Ansuini et al., 2015). For example, when subjects grasped a bot-
tle for pouring, the middle and the ring fingers were more extended than when they grasped
the bottle with the intent of displacing, throwing, or passing it. Inspired by these findings,
in Fermüller et al. (2018), the authors developed a recurrent neural network architecture that
monitors hands for predicting actions. Specifically, they considered sets of actions with the
same object, such as “squeezing”, “flipping”, “washing”, “wiping” and “scratching” with
a sponge (see Fig. 11.7). They analyzed the system, which predicted in real-time the ongo-
ing action to determine at what point in time the classification became accurate, and they
also performed a psychophysical experiment, evaluating human performance on the same
task. At 10 frames after the contact of the hand with the object, the system and the humans
started understanding the action (75% classification accuracy for the sponge actions), and at
25 frames the judgment was very good (95% accuracy for the sponge actions). The visual ar-
chitecture was an RNN using as input tracked image patches around the hand from which
VGG-16 features (Simonyan and Zisserman, 2014) were computed.

FIGURE 11.7 Examples demonstrating that early movements are strong indicators of the intended manipulation
actions. Early prediction of action significantly reduces the delay in real-time interaction, which is fundamentally
important for a proactive system.
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In addition the paper also demonstrated association of vision with forces. Data was
recorded from subjects that performed the same action with both hands. Sensors on the
fingers of one hand recorded the forces, and the other hand was recorded visually. A re-
current neural network was trained to regress from vision to forces. It was then shown that
using as input video only, when the visual classifier was combined with regressed forces, im-
proved performance could be achieved. The concept appears promising. As shown, learning
the mapping from vision to forces creates a bi-modal space that can aid visual recognition.
Furthermore, there are immediate implications for robotics. Currently robots rely on haptic
devices or force and torque sensors to learn tasks. If we can predict the forces exerted by the
human demonstrator visually, it would allow us to teach robots much more efficiently.

11.3.3.2 Geometry to robustify

The use of geometry is important because it provides robust information for scene descrip-
tion and additional information for recognition. Geometry is computed using reconstruction
processes, which are low-level (requiring only the image features and knowledge of camera
positions), but no machine learning or training data is required. With the advent of cheap
RGB-D sensors more than a decade ago, reconstructing scene geometry has become much
easier and more accurate, and thus these sensors have become the standard vision sensors
in robotics. Their use facilitates computing accurately and fast the distances to control the
robot’s movement, as well as computing the geometry and shape of objects to aid scene in-
terpretation. This section discusses three geometric methods: accurate tracking of nonrigid
object transformations and detection of topological changes; computation of pairwise spa-
tial relations of objects over time; and computation of object symmetry and its use for better
foreground-background segmentation.

Building on an efficient point cloud library (Zampogiannis et al., 2018), Zampogiannis et
al. (2019) developed a technique for accurately tracking nonrigid object transformations and
detecting the topological changes, that is, contacts and separations of body parts and objects
needed for the grammatical description (see Section 11.3.2). The gist of the method lies in
a warp field estimation that considers forward and backward warps between consecutive
frames to detect regions of the deformed geometry that undergo topological changes.

Activity descriptions can also profit from descriptors of spatial relations between objects.
In Zampogiannis et al. (2015), the authors introduced a representation for manipulation ac-
tions based on the evolution of the spatial relations between objects in the scene. The method
was implemented by tracking objects in RGBD video, and reasoning over the spatial relations
of observed object pairs. The resulting descriptor amounts to a sequence of spatial relation
predicates (e.g., in, left, right, front, behind, below, above, touch), and this descriptor was
shown to be sufficiently expressive for distinguishing between four different actions.

Another concept is to exploit general knowledge of object shape properties. For example,
symmetry detection can help with segmentation both in 2D (Teo et al., 2015) and 3D (Ecins et
al., 2016). Imagine looking at a cluttered scene. Since most objects we work with are symmet-
ric, either bilateral or rotational, we can “fill in the back of the object” that is not visible, and
this aids the segmentation and recognition.
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11.3.4 Discussion on activity understanding

Activity Understanding is a very challenging problem. End-to-end solutions do not scale
well because of the large variations in appearance at high levels of abstraction and temporal
extension.

We discussed hierarchical approaches, and we detailed one higher level description – ac-
tion grammars. Action grammars can segment activities at times of contact and capture the
recursive structure of action sequences, similar to that found in language. We described
experiments demonstrating the expressive power of action grammars. We also described
processes at the lower level, which have not received much attention in CV, but which are es-
sential for supporting an action-based approach. These include affordances, grasp-type and
the use of geometry to aid temporal and spatial segmentation and descriptions of spatial
relations.

In this section we emphasized the necessity to utilize meaningful action-based representa-
tions at different levels of the hierarchy. To elaborate further, it is very important that these
representations need to be robust, because of the many challenges involved in activity under-
standing. We can achieve robustness in part through the use of geometry – geometry does not
require memorization, and can be estimated from low-level measurements. Thus, we should
introduce geometry into the pipeline whenever possible before starting with recognition. Be-
yond geometry, any concept that provides universally true information is meaningful for
activity understanding. We may model physical laws. We may include model ontologies to
aid generalization, for example by grouping verbs according to the effect they have on objects
(Yang et al., 2013). We also may include processes that model causality; actions constrain each
other causally, some combinations are not possible physically. These representations capture
more knowledge and better constraints for activity interpretation.

The integration of vision and cognition or language is hard. This is because of the semantic
gap, i.e., the disparity between the symbolic or linguistic representations and the visual rep-
resentations based on signals. We want an integration of the two which is not brittle. Thus,
we need to avoid setting thresholds or converting to purely symbolic representation too early
within the pipeline. This is because if vision fails to return the right quantities, then impreci-
sions compound through further abstraction, resulting in failed reasoning. The next research
challenge is to study learning approaches that relate perception with higher-level reasoning
for a deeper integration. Section 11.4 covers deep learning approaches useful for such inte-
gration. Currently such approaches are primarily constrained to object recognition, and to an
extent to action recognition. Activity understanding would benefit from these methods.

11.4 Functional scene understanding through deep learning with language and
vision

Here we consider the merging of vision and language and associated representations –
the merging of “signal” and “symbol”. The merging of multiple representations is important
due to the suitability of different representations for capturing different characteristics of the
world. Here we seek to allow information from lower level representations of appearance
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and information from higher level representations of relations and semantics to complement
each other.

Systems involving symbolic and continuous representations often have hard boundaries,
below which the system is continuous, and above which the system is symbolic. Precisely
where this boundary is set varies, but generally does not fall below the level of abstraction
reflected in human language as language is a primary source of symbolically represented
world knowledge.

Symbolic representation is more important for action and activity understanding than for
other CV tasks such as object detection as the nature of this task is more abstract and less
appearance based. Action has temporal structure at multiple scales, and is structured around
satisfaction of conditions – the defining characteristics of action are semantic and relational.

Many computer vision tasks can benefit from the integration of vision and language. How-
ever, one task which is ideal for the study of the integration of the two is Zero Shot Learning
(ZSL) – this is because unlike other tasks it cannot be solved without the introduction of
nonvisual knowledge such as is reflected in language.

ZSL is a task with two sets: a training set, and a test set. The categories of these sets break
into “seen” and “unseen” categories. The training set consists of only “seen” categories, while
the test set contains “unseen” categories as well as, optionally, “seen” categories. To illustrate,
there could be a ZSL task which includes “run” and “stand” in seen categories, and “walk”
in unseen categories. The task would then be to learn to visually recognize and properly cate-
gorize walking, when walking has never previously been visually encountered, but running
and standing have been visually encountered.

There are multiple approaches to ZSL. Early work on ZSL focuses on attributes – visually
recognizable characteristics with differential class (e.g., object classes or action classes) asso-
ciations. Attributes are generalizable in that attribute detectors trained only on the seen set
are able to detect attributes in samples from both the seen and unseen set.

More recent work on ZSL tends to focus on semantic embedding spaces. These are Euclidean
vector spaces where semantic categories, such as reflected in language, are associated with
vectors – or points in space. These vector representations of words are of significantly lower
dimension than naive 1-hot encodings (vectors where each dimension corresponds to a class,
and all but 1 dimension have 0 values), and have the quality that words which are similar in
semantics are associated with similar vectors nearby in the embedding space.

With semantic embedding spaces, symbolic representations are vectorized in such a way
that the semantic relations of the symbol categories are preserved. This allows for integration
of symbolic semantics into deep architectures, whose internal representations consist of vec-
tors. This integration amounts to properly aligning the visual vector representations with the
vectorized symbolic representations.

Different ZSL methods use different shared embeddings – some embed visual features into
the semantic space, some embed the semantic space into the visual feature space, and some
embed both into a third shared space. Once both visual and semantic representations lie in
the same space, categorizing visual input is a matter of finding the nearest semantic label in
this space.

State-of-the-art contemporary ZSL methods often rely on CNNs for visual features and
produce shared embedding spaces with pretrained semantic embedding spaces such as
word2vec (Mandal et al., 2019; Xian et al., 2018). Some shared embedding based ZSL meth-



392 11. Learning for action-based scene understanding

ods structure and train their models in an end-to-end fashion, which is more challenging, but
provides dividends in performance (Zhang et al., 2017).

The remainder of this section is structured as follows: In Section 11.4.1 we detail a simple
use of attributes for ZSL; in Section 11.4.1 we detail a more nuanced relative attribute formula-
tion; in Section 11.4.2 we cover the use of shared semantic spaces in ZSL; in Section 11.4.3 we
cover basic approaches to semantic vector space construction; in Section 11.4.4 we cover the
incorporation of knowledge in the form of graphs for ZSL action classification.

11.4.1 Attributes in zero-shot learning

The use of attributes – including action centric attributes such as affordances covered in
Section 11.2 – in recognition allows the construction of classifiers which are humanly inter-
pretable and specifiable. Attributes mitigate the issue of opacity through use of an explicit
predefined mid-level representation below the level of class categories.

Use of attributes allows an easy mechanism through which to learn visual representations
from the available training data and to transfer those representations onto the classes for
which no training data is available. Attributes are general in that they have presence across
multiple class categories, and through taking multiple attributes with different distributions
across classes allow representation of select classes.

The use of attributes in ZSL is as follows: Attribute detectors are trained over the seen
set and associated attribute labels. These detectors are generalizable across both the seen and
unseen set. Due to the different class coverage (e.g., object or action class) of different attribute
categories, different combinations of attributes can represent different classes – class detectors
can then be instantiated on top of attribute detectors. This instantiation follows a specification
of which attributes are associated with which classes. When given a specification for unseen
categories, detectors can be built even though no visual samples of the unseen categories
have been encountered.

Conventional use of attributes in computer vision is binary: an attribute is represented as
either present, or absent. This limits the representational power of attribute representations.
However, binary representations can be generalized to scalar representations where each at-
tribute is associated with a scalar degree rather than a binary category. This is both more
flexible representationally, and allows the inclusion of attributes which do not so cleanly fall
into a binary categorization. For example, while an attribute of “indoors / outdoors” often is
clearly binary, an attribute of “moving fast / moving slow” has a more even distribution over
gradations in visual input.

Parikh and Grauman (2011) presents one approach to generalizing binary attributes to
scalar attributes. A challenge in generalizing from binary to scalar attributes is inconsistency
in annotations, as different annotators may have different understandings of what different
attributes’ degrees correspond to in the scalar representation. They resolve this challenge by
requesting that annotators not assign scalar values to attributes, but rank images in terms of
attribute degree. After images are ranked, scalar attribute values can be derived from their
annotated relative attribute degrees.

For binary attributes, attribute detectors can be trained using conventional classifiers, but
producing scalar attributes requires other methods. Parikh and Grauman (2011) train a rank-
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ing function over images for attributes over the seen set, and use that ranking function in the
production of a scalar value.

Relative attribute representations allow for greater flexibility in class specifications. With
consideration to the attribute of “moving fast / moving slow” one can specify that an unseen
category “running” is faster than the seen category of “walking”, or that the unseen category
of “standing” is slower than the seen category of “walking”. This is done without a need to
define either a binary specification or intuit a scalar value with which to describe the unseen
categories.

11.4.2 Shared embedding spaces

The generalization of binary attributes to scalar attributes increases their representational
power. However, the increased representational power came at the cost of increased difficulty
in annotating attributes and specifying classes. Relative Attributes (Parikh and Grauman,
2011) introduced one solution to these challenges.

Attributes can also be abstracted away. It need not be the case that visual representations
move through humanly understandable attributes. Abstracting attributes away has a couple
advantages:

• Avoid the imprecision introduced by passing through engineered, rather than learned, rep-
resentations.

• Avoid the overhead and imprecision of annotating attributes.

The question is then how to construct a system such that training for classification of seen
classes results in a classifier which works not only for seen classes, but for unseen classes as
well, without leveraging an engineered mid-level representation which allows the specifica-
tion of unseen classes in terms of that mid-level representation.

One approach that can be used is to define unseen classes in terms of their similarity re-
lations to seen classes, where these relations are learned from text corpora. Extensive work
exists in Natural Language Processing (NLP) producing semantic vector spaces which represent
similarity relations among words – word2vec (Mikolov et al., 2013) is one popular example.
The intuition is that terms in these spaces are located in proximity to other terms with which
they share semantic similarity. Trained semantic spaces are publicly available – these can be
taken and used without a need to produce them from scratch. See Section 11.4.3 for details on
construction of such spaces.

Terms with semantic similarity often share similarity in the visual space as well – e.g.,
“jogging” is both semantically and visually part way between “running” and “walking”.
And so, it is often the case that if the visual similarity to known categories can be determined,
then the semantic similarity relations can be established as well. Then, from these semantic
relations we can infer semantic categories of visual inputs.

To illustrate: Consider a set of seen classes including “running” and “walking”, and a set
of unseen classes including “jogging”, a semantic vector space capturing semantic proximity
between these categories, and a computer vision architecture, such as a CNN, which produces
visual feature representations of input. Then, consider an input sample of unknown class. Say
that the visual representation of this input as produced by the CNN is part way between the
visual representation for “running” and for “walking”. We then go to the semantic language
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space and see that the label that is located part way between “running” and “walking” is
jogging and assign this label to the input.

Most often, comparing similarities between samples of unknown class and known classes
is not done in the visual space. It is more common to map the input into the semantic space
and perform comparisons to known classes there. This requires embedding one space into
another.

The mechanism of embedding one space into another can be as simple as a linear trans-
formation applied over one space, which is then trained over a similarity loss between
two spaces. DeViSe (Frome et al., 2013) is a good example of an architecture using this
method. This involves two pretrained representations – visual features taken from, for in-
stance, a CNN trained over classification, and word vectors in an embedding space, which
may be produced through means discussed in Section 11.4.3.

One method of embedding visual features into the semantic space of the word vectors is
then illustrated in Fig. 11.8. A layer of nodes is appended to the top of the pretrained CNN
features, and then trained. The loss that this layer is trained over is the similarity (e.g., cosine
similarity) between the output of this layer, and the vectors in the semantic embedding space
corresponding to the labels of the visual input. This learns a simple linear mapping from
visual feature vectors onto text derived semantic features.

More sophisticated mappings than linear translations are often used. Using multiple lay-
ers of neurons, in conjunction with nonlinear activations, produce nonlinear mappings (e.g.,
Kato et al., 2018 use such a method). Kodirov et al. (2017) use an autoencoder with semantic
constraints to produce the embedding, and find that the constraint of visual reconstruction
leads to better generalization to unseen classes in ZSL.

FIGURE 11.8 A simple approach to embedding visual representations into a semantic space, as is used by meth-
ods such as DeViSe (Frome et al., 2013). Two pretrained models are used: 1) pretrained visual features, such as
produced by a CNN trained over a visual task, and 2) a semantic vector space as produced through methods dis-
cussed in Section 11.4.3. A simple linear transformation is produced through appending a layer of nodes on top of
the visual features, and training them w.r.t. their similarity to the semantic word vector of the labels corresponding
to visual input. Once this linear transformation is learned, it constitutes a mapping from the space of visual features
into the semantic vector space.

Once both visual input and semantic representations are placed in the same space, then
determining the class of novel visual input is as simple as representing visual input in that
space and then finding the nearest semantic label in that same space.
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11.4.3 Construction of semantic vector spaces

11.4.3.1 word2vec
Here we wish to construct a vector space into which words are embedded in such a way

that their semantics are captured spatially. The end results are a space where, for example,
vectors for “jog”, “run”, and “walk” are located in proximity, with “jog” being placed in the
middle of the three.

How can a word’s semantics be defined? One answer is through the interactions that word
has with other words in text corpora – semantics of words can be defined in relation to other
words. How do we model words’ relations to other words? One simple approach is cooccur-
rence – if two words occur in proximity, they are taken to be related. The more frequently
that they cooccur together, the more strongly they are related. This is the principle on which
methods embedding words into vector spaces such as word2vec are based.

We start from the simplest vector representation for words – a 1-hot encoding, where each
vector position corresponds to one word in a vocabulary V . This is a high-dimensional, in-
efficient representation, where there are no meaningful spatial relations among words. We
can embed words into a lower dimensional space with said desirable properties through the
solving of one of two related tasks:

1. Predicting a target word based on context
2. Predicting context based on a target word

Here “context” C is defined as the set of terms “nearby” the target term. These are defined
as the other terms present in an n-gram associated with the target term, without consideration
for word order.

Each of these tasks can be solved using simple architectures, and the solving of these tasks
produce in the process lower dimensional representations which can then be taken and used
for other tasks.

A method – Continuous Bag Of Words (CBOW) – for solving Task 1 (Mikolov et al., 2013)
is shown in Fig. 11.9(a). Input consists of multiple words of context, each represented as a
1-hot vector of dimension |V |. These vectors are summed to produce a vector of size |V |.
This is fed through a single layer of N neurons, where N is the dimension of the embedding
space. On top of this we have one more layer, of size |V |, whose job it is to predict, in 1-hot
representation, the word associated with the context consisting of the terms fed as input to
the first layer.

A method – Skip Gram – for solving Task 2 (Mikolov et al., 2013) is shown in Fig. 11.9(b).
Input consists of a single term, represented as a 1-hot vector of dimension |V |. This is fed into
a single layer of dimension N , where N is the dimension of the embedding space. On top of
this layer we have an output layer, consisting of |C| sets of |V | nodes, each associated with
one term of context C in the n-gram associated with the input term.

Both architectures are trained through serially feeding in n-grams extracted from large text
corpora, and applying a soft-max loss to the final layer to enforce alignment with expected
terms.

After these architectures are trained, the hidden layer then constitutes a mapping of V

from a 1-hot representation of size |V | to an embedded representation of size N where terms
are spatially located in proximity to terms with similar semantics.
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FIGURE 11.9 (a) The Continuous Bag Of Words method to solving the task of predicting a target word based on
that words context (Mikolov et al., 2013). |C| input vectors of context are fed through two layers, the first a hidden
layer of size N , the second an output layer of size V . Loss is computed w.r.t. the word W . After training the output
layer can be discarded, and the hidden layer used as a translation from 1-hot word encodings into an embedded
space of size N . (b) Skip Gram method to solving the task of predicting the context of a term (Mikolov et al., 2013).
Word W is fed through two network layers, the first a hidden layer of size N , the second an output layer of size V .
Loss is computed w.r.t. |C| words of context. After training, the output layer can be discarded, and the hidden layer
used as a translation from 1-hot word encodings into an embedded space of size N .

11.4.4 Shared embedding spaces and graphical models

ZSL of action can benefit from additional structure beyond what simple mapping into a
shared embedding space can provide. Additional structure can be represented in the form of
graphs. Multiple works (Ghosh et al., 2020a,b; Kato et al., 2018; Yan et al., 2018) employ graphs
for the purpose of recognition of actions, processing these through use of a Graph Convolu-
tional Network (GCN) to produce vector representations of action categories suitable for ZSL.

Ghosh et al. (2020a) evaluate 3 different graphical representations, the last of which is
applicable to Few-Shot Learning rather than ZSL due to its use of visual features from a
small number of samples. Kato et al. (2018) construct a graph based on Subject Verb Object
triplets derived from knowledge corpora. All of these are processed through a GCN.

Throughout (Ghosh et al., 2020a) sentence2vec (Pagliardini et al., 2017) is used rather than
word2vec, as authors find that action categories are better represented through phrases than
through single words which can be confounded by multiple meanings. The first graph is
composed of nodes taking values of sentence2vec embeddings of action category phrases.
These nodes are linked together based on cosine similarity between vector representations –
the top N closest neighbors per node are given edges. The second graph associates verbs and
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nouns – derived from Part-Of-Speech tagging of phrases describing actions – with each action
class, incorporating nouns as a strong connection between seen and unseen categories. The
third graph incorporates visual representations derived from a small number of samples of
the unseen categories – this graph is thus applicable to Few-Shot Learning, rather than ZSL.
The reason for the incorporation of visual representations is that categories which are simi-
lar in the semantic space may nevertheless have distinct visual appearances – authors give
the example of “pommel horse” and “horse walking”, which have similar word embedding
representations but dissimilar visual appearances.

Kato et al. (2018) construct a graph consisting of three types of nodes: noun nodes, object
nodes, and action nodes. Action nodes are linked to the verbs and nouns which the associated
action involves.

Values of graph nodes are generally initialized with values derived from semantic vector
spaces – this is important as it establishes the initial relations which the GCN iterates over.
This iteration incorporates relations defined by the edges in the graph, and allows informa-
tion to transfer from node-to-node along edges. E.g., in Kato et al. (2018) action nodes, which
are initially set to zero vectors, acquire a representation determined by the vectors of neigh-
boring noun and verb nodes, which have been initialized with semantic vectors.

Like previously detailed methods, these methods learn a mapping from visual features
(taken from a CNN pretrained on a separate task) into a shared embedding space – though
here that space is shared with representations produced by the GCN. In Kato et al. (2018)
that mapping is produced through two layers of neurons with sigmoid activations, resulting
in a nonlinear mapping from the visual features into the shared semantic space. Similar to
previous work, these layers are trained through applying a loss measuring the similarity
between the visual features after embedding, and the vectors associated with the labels of the
input as produced by the GCN.

The mapping from pretrained visual features onto the GCN produced action vectors can
then be trained over the seen training set. To obtain action predictions when applying the net-
work to novel actions during testing, nearest neighbor can be performed between the visual
features and the action vectors.

11.5 Future directions

Here we discuss implications and future work implied by the action based framework
outlined in the rest of this chapter. Action has implications for tasks and datasets – it enables
conceptual modeling conductive to generalization and longer term temporal prediction. Ac-
tion benefits from modeling of concepts beyond those from conventional CV. As CV progresses
the scalability of fully supervised methods becomes an increasing issue, and action based
methods help mitigate this issue while benefiting from semi- and unsupervised paradigms. Fi-
nally action helps enable an integration of cognition and symbolic modeling into perception,
including across multiple perceptual modalities.

Tasks and datasets: Activities span long time spans. Thus when seeking solutions to visual
activity understanding, we face problems much more challenging than those we encounter
in current action recognition tasks. Objects, actions, affordances, and other scene constituents
relate to each other semantically over multiple time scales, and we need to find ways to
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model these relations. We think that this capability is not well demonstrated with the task of
recognizing actions. Instead, we should pick tasks that demonstrate generalization and a con-
ceptual understanding of action (as opposed to a purely appearance based understanding).
Such tasks include zero-shot learning and the prediction of future actions, and translation
from one viewpoint to another (e.g., from first person to third person). Today’s CV research
is largely driven by the collection of new datasets and definition of new challenges – exist-
ing datasets do not sufficiently cover long term and conceptual modeling of activities. The
datasets ideally should have recordings from multiple views, because this opens possibilities
for interesting research, for example, to solve the challenge of transferring knowledge be-
tween the first person and the third person view. Lastly, most datasets feature indoor scenes.
It will be interesting to collect outdoor scenes and analyze them, as discussed above, by look-
ing at the relations between affordances, interactions and long-term relations. We could also
attempt an action-based analysis on data from the autonomous driving domain.

Concepts for long-term activity understanding: Activity understanding requires action-
based concepts at multiple time scales. We discussed in this chapter such quantities at the
single image and short-term time scales, including affordances, hand grasps, geometric re-
lations, and we emphasized the use of geometric reconstruction processes because of their
robustness (see discussion in Section 11.3.4). The next step will be to add further constraints
and include robust constraints for modeling temporal-relations at longer scales. We could
make use of ontologies in categorizing objects and actions. On verbs we can impose classifi-
cations based on action effects (Yang et al., 2013), ergonomic principles, or force and location
related constraints. Longer-term relations include causal relations, and constraints on possi-
ble and impossible action sequences. We can also model physics constraints, and use physics
engines – but in order to integrate these into deep architectures we need to include these
constraints into vector spaces that relate perception to cognition (Section 11.4).

Reducing supervision: Early approaches on integrating language with vision (see Sec-
tions 11.4.1 and 11.4.4) have relied heavily on supervision. For example, visual attribute recog-
nition or object recognition has been implemented via supervised learning. Graph-based
models using shared embeddings for ZSL need to incorporate in advance the categories of the
“unseen” set which they may encounter during test time. Naturally, evolving approaches will
find their way into the action-based framework, including unsupervised and self-supervised
learning, transfer learning, metalearning, and eventually never-ending learning (Mitchell et
al., 2015). For example, in constructing visual ontologies, we don’t want to rely fully on su-
pervised visual learning of metaverb classes. One solution to such modeling is dictionary
learning (Zheng et al., 2016), but so far these approaches have been limited to simple actions.
We will need methods that scale to more complex human manipulation actions. Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs) have been shown suc-
cessful in modeling fine-grained action images and videos. We could, for example, use VAEs
to learn the underlying distribution of data into a discretized latent space that encodes the
metacategories.

Involving the whole brain: Humans’ understanding of the world is grounded in our
motoric cognition and all our senses. Similarly, our models should include other sensory
modalities like auditory, tactile, or proprioception signals in addition to modeling of vision
and cognition representations. Different modalities provide complementary information, and
because of this allow for different ways of organizing concepts. In addition to questions of
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learning with different modalities, we also need methods for accessing stored concepts when
given perception from any modality. Studying the integration of diverse modalities will also
benefit from studying memory. A framework known as Vector Symbolic Architectures (VSA)
(Plate, 1995; Eliasmith, 2013), which includes Hyperdimensional (HD) Computing (methods
making use of very high dimensional vector spaces) (Pentti, 2009), has been proposed as a
theoretical model for artificial intelligence. HD Computing combines advantages of neural-
based AI approaches with systematic compositionality and rule-like behavior from classical
symbolic AI (Levy and Gayler, 2008). In this framework concepts are encoded into vector
spaces, and algebraic operations are defined on these vector spaces. These operations include
the addition of related concepts and the binding of vectors of different origin – for example
this could be sound and vision, or vision and motor (Mitrokhin et al., 2019). These operations
maintain the separability of one modality from the other. We may build on this framework
and integrate it with neural network approaches. The goal will be to retain an explicit mem-
ory encoding different perception modalities, while maintaining the capability of recalling
information from any modality.

11.6 Conclusions

The purpose of Computer Vision is to produce interpretations which are of use to humans.
Action is central to our understanding of the world, yet is underutilized in contemporary
CV. This chapter covered scene and activity understanding that has the concept of action
and interaction at its center. We covered action based approaches to scene understanding in-
volving modeling at multiple temporal scales, starting from object interpretation in terms of
affordances at the instantaneous level, up to basic actions, then up to full activities at the
longer temporal scale. We described the well developed area of affordance learning, and
described works on activity understanding combining cognitive and linguistic approaches
with humanly interpretable modules essential in characterizing activities and segmenting
video temporally. We discussed methods for the integration of visual representations with
knowledge, both engineered and derived from text corpora. We covered the integration of
vision, centered on action, with graphical constraints, and discussed future directions includ-
ing creating new challenges and datasets, adding concepts for encoding long-term relations,
adapting semi- and unsupervised learning approaches, and incorporating memory as a cen-
tral component to the action-based framework.
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CHAPTERPOINTS

• We can use cognitive science theories in
event segmentation to design highly
effective computer vision algorithms for
Spatio-temporal segmentation of events in
videos that do not require any labeled data.

• We discuss three perceptual prediction
models from EST in three progressive
versions: temporal segmentation using
perceptual prediction framework, temporal
segmentation along with event working
models based on attention maps, and
finally spatial and temporal localization of
events.

• The approaches can learn robust event
representations from only a single-pass
through an unlabeled streaming video.

• They show state-of-the-art performance in
unsupervised temporal segmentation and
spatial-temporal action localization while
offering competitive performance with
fully supervised baselines that require
extensive amounts of annotation.
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12.1 Introduction

How do we detect and segment events? How do we represent events? How do we per-
ceive events? And, more importantly, what is an event? In computer vision research, the
terms “actions”, “activities”, and “events” are often conflated. Most works lump these terms
to represent “some activity happening” in the scene involving objects and actors labeled with
a phrase, i.e., jumping, chopping an onion, changing tires, cooking a meal, and so on. There is
no clear distinction among activity recognition, action recognition, or event recognition in ex-
isting computer vision literature. There is also not much clarity into the nature of events. On
the contrary, event perception is a mature field of cognitive science research (Radvansky and
Zacks, 2014; Shipley and Zacks, 2008; Richmond and Zacks, 2017). We will start by summa-
rizing some of the cognitive science findings that we use as inspiration to build the solutions
outlined in this chapter. Ideally, one should read the references cited and not just rely on our
summary, which is just a brief introduction to a much richer body of work. We will highlight
some ideas that we use to construct computer vision solutions to perform self-supervised
temporal event segmentation.

Events are the central units of our experiences. The brain receives a continuous stream
of sensory input, both from the outside world and inside the body, and segments them into
discrete units or packet representations called events. Each event is indicative of key moments
in the input sensory stream. Hence, an event is defined as “a segment of time at a given location
that is perceived by an observer to have a beginning and an end” (Zacks and Tversky, 2001). Note
that this definition of events makes it distinct from activities. For example, cooking is an
activity, but “cooking a meal” is an event. Just like a story, the latter has a beginning, a middle,
and an end. Events can be of different types and duration, depending on the agent and acted
upon environments. Some events are short, e.g., making a bed. Some events are extended,
e.g., a cricket match. Events involving animate agents, such as humans and animals, are often
goal-directed. While the goal of these events may not always be immediately visible to the
observer, it exists as the purpose that guides the event. There are also events that do not
involve animate agents nor have goals, such as natural events.

There is substantial support for the notion that the human cognition uses “structured repre-
sentations of events, called event models, to capture information about the Spatio-temporal framework,
entities and objects, and other salient features of a situation” (Richmond and Zacks, 2017). These
event models are a compositional representation of the event and its constituent elements
and have partonomies, i.e., hierarchies formed by the “part of” relation. Fig. 12.1 shows an
example of a “make sandwich” event and its hierarchical structure. At the lowest level of
the hierarchy are elementary actions, such as “carry knife” and “open lid”. These actions are
part of longer activity units, such as “cut bun”, which are in turn part of the “make sand-
wich” event. This partonomy is analogous to that for objects, which can also be described as
a composition of individual parts.

Just like for objects parts, that have boundaries, events have segmentation boundaries at
multiple timescales. Event segmentation and the grouping of the segments into a hierar-
chy is a continuous activity that happens simultaneously at multiple timescales. Evidence
from neuroscience experiments (Zacks et al., 2001a) indicates that the posterior temporal,
parietal cortex, and lateral frontal cortex become active during event boundaries. Some exper-
iments (Kurby and Zacks, 2008) show that event segmentation plays a significant role in the
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FIGURE 12.1 The events hierarchy consists of multiple levels of segmentation. The higher-level event “Make
Sandwich” can be segmented into lower-level events “Cut Bun”, “Smear Butter”, and “Put Topping”. Each lower-
level event can be further segmented into its constituent events at a lower level. The event “Make Sandwich” can
be part of an even higher level event “Have Breakfast”. This compositional relationship between events forms “the
events hierarchy”. Images are from the Breakfast Actions Dataset (Kuehne et al., 2014).

core functions of cognitive control and memory encoding. However, the process of event seg-
mentation does not require conscious attention. Event segmentation can be processed purely
with bottom-up, signal-based features extracted from motion and appearance. This conclu-
sion was based on a movie experiment by Zacks et al. (2001a), Zacks and Magliano (2011).
A set of participants were shown movie clips of events and were asked to mark the bound-
aries of events using a clicker as they watched. A different set of participants were asked to
do the same but were shown the movie in reverse! The boundaries marked by both groups
of participants were remarkably similar. Reversing movie direction prevents viewers from
relying on familiar schemas to interpret events, making high-level information – such as goal
attainments – difficult to identify (Hard et al., 2006). This is evidence for the claim that high-
level information about the event is not necessary to segment events. It also challenges us to
design computer vision systems that do not need prior training labels for event segmentation,
i.e., to design unsupervised event segmentation algorithms in a continual online manner.

In this chapter, we consider the event segmentation problem, i.e., how do we mark the
temporal boundaries (when one event ends, and another begins Zacks et al., 2001b) of the
event and spatially locate them in the image. Building the event model and the partonomic
hierarchy is a separate process that we do not consider here. First, we will introduce the Event
Segmentation Theory (EST) model based on the perceptual prediction model to compute the
event boundaries proposed by Zacks et al. (2014). Then we present our computer vision
solution based on the perceptual prediction model from EST in three progressive versions:
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temporal segmentation using a perceptual prediction framework, temporal segmentation
along with event working models based on attention maps, and finally spatial and tempo-
ral localization of events. We end with a discussion of other solutions for event segmentation
in the literature and how they relate to ours.

12.2 The event segmentation theory from cognitive science

Event Segmentation Theory (EST), developed by Zacks et al. (2007) based on cognitive
neuroscience experiments, posits that humans maintain a stable representation of “what is
happening now” that is updated based on transient increases in the perceptual prediction error.
This representation of the current event is called the working event model and is used to an-
ticipate the next incoming sensory input. This process of making predictions to anticipate the
next input is the key element of this theory; predictions play a central role in building event
representations.

Our brains are constantly making predictions of what features our senses expect to see
next. When we observe someone cooking, we continuously make predictions. These predic-
tions are made at different temporal granularities. We predict the trajectory of motion at fine
temporal scales to anticipate hand location in the next frame. And, at coarse scales to antic-
ipate what utensils could be used next. Indeed, there is a definition of artificial intelligence
that puts the ability to make predictions as the central feature (Hawkins and Blakeslee, 2004).
The extent to which an agent can be considered intelligent is determined by the temporal win-
dow and spatial extent to which it can predict with precision. Thus, a small insect can make
predictions of its immediate surrounding and its near future. Humans, armed with high-level
scientific reasoning and logic, can predict events over much larger space and longer temporal
windows. The content of the prediction depends on the task at hand. In our current case, it is
about making predictions about aspects of a visual event.

The error in the prediction drives the segmentation process to group events into discrete
time intervals. As depicted in Fig. 12.2, EST is a continual perceptual process that segments
a continuous stream of multimodal sensory input into a discrete and coherent set of events,
which can be further segmented to form a hierarchy of events at multiple timescales. The
process of event segmentation does not require conscious attention. Instead, it emerges as a
side effect of the ongoing perceptual prediction process.

As sensory inputs are perceived, a perceptual processing unit receives, filters, and encodes
the incoming features to useful higher-level representations. Computationally, the perceptual
processing unit could be represented by a deep learning stack to process and extract features.
A key component of the perceptual processing in EST is that the encoded features are condi-
tioned upon on the representations from the working event model. This conditioning makes
the feature representations robust to small variations from one instant to another. The work-
ing event model guides the perceptual processing to extract relevant features for the event
being observed. Working event models are very specific and limited in capacity; they get
updated at event boundaries.

The perceptual processing unit sends the extracted features (conditioned on the working
event model) to a prediction unit to anticipate future perceptual features. Any mismatch in
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FIGURE 12.2 Information flow, according to the Event Segmentation Theory (EST), adapted from Zacks et al.
(2007). The letter acronyms refer to the different brain regions where these activities are happening, as discovered
by cognitive neuroscience experiments. The “Perceptual Processing” unit uses “Sensory Inputs” to extract higher-
level features relevant to the predictive task. The extracted features are used to predict future perceptual features
and compared to the actual future perceptual features. The “Error Detection” module computes the prediction error,
which generates a reset signal (denoted by �) at high prediction errors. The reset signal updates the “Event Model”
by accepting input from the “Sensory Inputs” and “Perceptual Processing” blocks.

the predicted and actual features for the next time instance is monitored continuously and
is termed the prediction error. The prediction error is a measure of the quality of predictions
and hence an indicator of the suitability of the working event model. A transient increase
in the prediction error is an indicator of an event boundary, i.e., the current event could be
changing. A new event model is needed to make future predictions. Thus, the prediction error
works as a gating mechanism to update the working model with an updated representation
of the new event. This update of the working event model involves integrating sensory input
and prior expectations from long-term memory about the next event. This long-term event
memory is referred to as a event schemata, which encodes a more stable representation of the
event compared to the working event model. Event schemata store sequential information in
terms of distinctive physical features about objects and actors, likely next events, and actors’
goals, all of which are learned from past occurrences of the event. The changes in the event
schemata happen at a slower learning rate than the working event memory.

The prediction quality depends on the accuracy of the working event model in represent-
ing what is being perceived. Typically, the working model is a good fit, and the prediction
error is low. However, from time to time, the current observations can become less pre-
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dictable, resulting in an increase in the prediction error and the need for an update in the
working event model. In the EST framework, this update is mediated via a gating mecha-
nism, a function of the error signal. When the error signal increases, the working event model
is updated based on the sensory signal and the event schemata information until the error
reduces. Thus, the overall system operates mostly at a stable state with low prediction errors
and transient periods of high errors signaling the event boundaries.

12.3 Version 1: single-pass temporal segmentation using prediction

The event segmentation theory offers us a mechanism for temporal segmentation of events,
i.e., breaking a video into parts, without the need for training labels and in a continual, online
manner. In this section, we demonstrate the power of EST using a simple incarnation of the
EST that outperforms more complex state-of-the-art supervised approaches with only a single
pass through the video.

Computationally, we implement the EST framework using well-known deep learning
components. The perceptual prediction block is implemented as an encoder module, based
on convolutional neural networks (CNNs) (LeCun et al., 1995). A Long Short-Term Memory
(LSTM) cell (Hochreiter and Schmidhuber, 1997) is used to aggregate the features temporally
and predict future perceptual features. The LSTM’s inner cell structure offers an ideal imple-
mentation alternative for perceptual feature prediction for two reasons. First, the LSTM’s
recurrent nature allows us to integrate over past frames to predict the future perceptual
frames. Second, the hidden state of the LSTM acts as an internal event model that can be
used to condition the extracted features on a stable event representation built from previous
frames. An adaptive learning mechanism provides a simple and practical method for im-
plementing the gating mechanism used to update the event model based on the perceptual
prediction error.

In Aakur and Sarkar (2019), we focused on building representations for the working event
model and did not implement the event schemata block. We begin with a discussion on frame
encoding and feature extraction, in Section 12.3.1, followed by an explanation of how we uti-
lize a recurrent cell to compute a stable representation of previous frames (Section 12.3.2). We
also briefly discuss the role of the reconstruction layer in converting the predicted represen-
tation to future perceptual features in Section 12.3.3. We introduce the gating mechanism and
adaptive learning functions for boundary detection in Sections 12.3.5 and 12.3.6. Algorithm 1
shows the pseudocode for the perceptual prediction framework.

At the core of the approach, illustrated in Fig. 12.3, is a predictive processing platform that
encodes a visual input It into a higher-level abstraction I ′

t using an encoder network. The
abstracted feature is used as a prior for predicting the feature I ′

t+1 at time t + 1. The future
prediction module, LSTM, combines the extracted features with a stable representation (hid-
den state) of the event based on previous frames to predict a future perceptual representation.
The reconstruction or decoder network transforms the predicted representation into actual
features (same dimensions as It+1), which are used to detect the event boundaries between
successive activities in streaming, input video.
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Algorithm 1 Temporal Event Segmentation Model. The input is an untrimmed/streaming
video I, which is a set of frames {I1, ..., It , It+1, ...IT }. The output is a set of event boundaries
{b1, b2, ...bT −1}.
Input: Video frames {I1, ..., It , It+1, ...IT } ∈R

T xCxWxH

Output: Event boundary values B = {b1, b2, ...bT −1}
1: procedure lstm(ht−1, I

′
t )

2: it ← σ(WiI
′
t + Whiht−1 + bi) � Input gate

3: ft ← σ(Wf I ′
t + Whf ht−1 + bf ) � Forget gate

4: ot ← σ(WoI
′
t + Whoht−1 + bo) � Output gate

5: gt ← φ(WgI
′
t + Whght−1 + bg)

6: mt ← ft · mt−1 + it · gt

7: ht ← ot · φ(mt )

8: return ht

9: end procedure

10: procedure gate(EP (t))
11: Pq(t) = Pq(t − 1) + 1

n
(EP (t) − Pq(t − 1)) � Running average

12: if EP (t)
Pq (t−1)

> ψe then
13: Pq(t − 1) ← Pq(t)

14: return T rue

15: else
16: Pq(t − 1) ← Pq(t)

17: return False

18: end if
19: end procedure

20: procedure Segment(It , It+1, ht−1) � Main segmentation layer
21: I ′

t ← encoder(I ′
t ) � Basic CNN encoder

22: I ′
t+1 ← encoder(I ′

t+1) � Basic CNN encoder
23: ht ← lstm(ht−1, I

′
t )

24: yt+1 ← decoder(ht ) � Single dense layer
25: EP (t) ← ∑n

i=1 ||I ′
t+1 − y′

t+1||2�1
26: bt ← gate(EP (t))

27: return ht , bt

28: end procedure

29: ht ← 0
30: for {It , It+1} ∈ {I1, I2}, {I2, I3}, ..., {IT −1, IT } do
31: ht , bt ← segment(It , It+1, ht )

32: B.append(bt )

33: end for
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FIGURE 12.3 Version 1 – Single-pass Temporal Segmentation using Perceptual Prediction: The model archi-
tecture is a stripped down version of the blocks proposed for the EST. It consists of four essential components: an
encoder network, a predicting unit, a decoding network, an error detection and boundary decision unit.

12.3.1 Feature extraction and encoding

We encode the input frame at each time step into abstracted, higher-level visual features
and use the features as a basis for perceptual processing rather than the raw input at the pixel
level (for reduced network complexity) or higher-level semantics (which require training data
in the form of labels). An optimized encoder only extracts features relevant to the task being
solved, in this case, prediction. The encoding process entails learning a function g(I (t),ωe)

that transforms an input frame It from pixel space into a higher dimensional feature space I ′
t .

The transformation function g(I (t),ωe) extracts relevant spatial features into a condensed
vector representation using a set of learnable parameters ωe. In practice, a pretrained back-
bone architecture can be used here for encoding raw pixels to useful features. In this work,
we use a VGG16 (Simonyan and Zisserman, 2014) CNN model pretrained on ImageNet (Rus-
sakovsky et al., 2015) as the transformation function g(·). The pretrained weights are used to
provide good initialization parameters but are further finetuned using the prediction error.

12.3.2 Recurrent prediction for feature forecasting

Given the perceptual features at time t (I ′
t ), the next step is the prediction of the percep-

tual features at time t + 1. The predicted features are a function of the extracted features I ′
t ,

and an internal, working model of the current event. The internal model modulates the in-
put sensory signal at every frame, similar to the conditioning of the perceptual processing
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unit on the event model in Section 12.2. Formally, this can be defined by a generative model
P(I ′

t+1|ωp, It ), where ωp is the set of hidden parameters characterizing the internal state of
the current observed event.

To capture the temporal dependencies among intra-event frames and inter-event frames,
we use a Long Short Term Memory Network (LSTM) (Hochreiter and Schmidhuber, 1997).
The LSTM model is mathematically expressed in Algorithm 1, where σ is a nonlinear acti-
vation function, the dot-operator (·) represents Hadamard (element-wise) multiplication, φ is
the hyperbolic tangent function (tanh) and Wx and bx represent the trained weights and biases
for each of the gates. Collectively, {Whi,Whf ,Who,Whg} and their respective biases constitute
the learnable parameters ωp.

The LSTM cell, formally defined in Algorithm 1, consists of three main gates; the input gate
it , forget gate ft and output gate ot . The forget and input (combined with gt memory layer)
gates work together to update the internal event model as specified by their learnable pa-
rameters. The output gate processes the input signal by conditioning frame-wise perceptual
input on the current event’s internal memory. It is worth noting that other recurrent models,
such as a Gated Recurrent Unit (GRU), could also be used.

The event state ht is a representation of the event observed at time instant t and hence
is more sensitive to the observed input I ′(t) than the event layer, which is more persistent
across events. The event layer is a gated layer, which receives input from the encoder and
the recurrent event model. However, the inputs to the event layer are modulated by a self-
supervised gating signal (Section 12.3.5), which is indicative of the quality of predictions
made by the recurrent model. The gating allows for updating the weights quickly but also
maintains a coherent state within the event.

12.3.3 Feature reconstruction

The goal of the perceptual processing unit (or rather the reconstruction network) is to
reconstruct the predicted feature y′

t+1 given a source prediction ht , which maximizes the prob-
ability

p
(
y′
t+1|ht

) ∝ p
(
ht |y′

t+1

)
p
(
y′
t+1

)
(12.1)

where the first term is the likelihood and the second is the feature prior model. However, we
model log p(y′

t+1|ht ) as a log-linear model f (·) conditioned upon the weights of the recurrent
model ωp and the observed feature I ′

t and characterized by

log p
(
y′
t+1|ht

) =
t∑

n=1

f
(
ωp, I ′

t

) + log Z(ht ) (12.2)

where Z(ht ) is a normalization constant that does not depend on the weights ωp and is used
to provide a more concrete estimate of the probability to account for uncertainty. In practice,
it is ignored as the predictive learning provides necessary regularization. The reconstruction
model completes the generative process for forecasting the feature at time t + 1 and helps
construct the self-supervised learning setting to identify event boundaries.
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12.3.4 Self-supervised loss function

One distinctive property of features within the same event is that they are predictable
given previous perceptual inputs and a stable event model. We rely on this property to detect
event boundaries. Therefore, we can define a prediction error function that receives, as input,
the model’s prediction y′

t , and the actual future sensory features I ′
t as targets. The resulting

error, termed as the perceptual prediction error, is calculated as shown in Eq. (12.3).

EP (t) =
n∑

i=1

‖I ′
t − y′

t‖2
�1

(12.3)

The perceptual prediction error is reasonably indicative of the relevance of the recurrent
model’s internal state to the actual event being observed. When the event changes by cross-
ing an event boundary, the internal model becomes unusable, leading to incorrect predictions.
The prediction quality increases after updating the internal model with a newer representa-
tion capable of predicting future features. Fig. 12.4 illustrates an instance of this effect. The
minimization of the perceptual prediction error serves as the objective function for training
the network.

12.3.5 Error gating
According to the Event Segmentation Theory, the perceptual features can become highly

unpredictable at event boundaries since the working event model will need to be updated to
process the new event. For example, in Fig. 12.4, we can see that the visual representation of
the features learned by the encoder network for the activities take bowl and crack eggs are closer
together than the features between the activities take bowl and spoon flour. At event boundaries,
the diverging feature space becomes inexplicable by the recurrent internal model, causing a
transient increase in the perceptual prediction error. We see that the perceptual prediction
error (second plot from the bottom) matches well with the ground truth segmentation (second
from the top) for the video “Make Pancake”. As illustrated, the error rates are higher at the
event boundaries and lower within the “in-event” frames.

To model the prediction error and identify event boundaries, we can use a low pass filter
to maintain a running average of the perceptual prediction error made over the last n input
time steps. An n value of 5 is used here based on the average human perception response
time (≈ 200 ms) (Thorpe et al., 1996). We maintain a running average of the prediction error,
called the prediction quality and given by

Pq(t) = Pq(t − 1) + 1

n

(
EP (t) − Pq(t − 1)

)
(12.4)

where Pq is the prediction quality and EP (t) is the prediction error from Eq. (12.3). A gating
signal, G(t), is triggered when the current prediction error exceeds the average prediction
quality metric by at least 50%. Formally, we can define the gating function as

G(t) =
{

1,
EP (t)

Pq(t−1)
> ψe

0, otherwise
(12.5)



12.3. Version 1: single-pass temporal segmentation using prediction 415

FIGURE 12.4 A visualization of the predictive learning process in the Event Segmentation Theory is shown here.
The current sensory inputs are abstracted into features of lower variability that are conducive to prediction. A work-
ing event model is constructed and is used to continuously predict the features observed at the next time step.
Predictions are compared continuously to observed features, and the resulting prediction error serves as an indi-
cator of the suitability of the event model. A gating mechanism, a function of the prediction error, modulates the
learning process, and provides cues for event segmentation. � refers to predicted event boundaries. The features
were visualized using T-SNE (van der Maaten and Hinton, 2008) for presentation. Reproduced with permission
from Aakur and Sarkar (2019).

where EP (t) is the perceptual prediction error at time t , G(t) is the value of the gating signal
at time t , Pq(t − 1) is the average prediction quality metric at time t and Ψe is the prediction
error threshold for boundary detection. For optimal prediction, the perceptual prediction er-
ror would be very high at the event boundary frames and very low at all within-event frames.
Ψe is a hyperparameter which can be used to set the timescale at which we will be detecting
event boundaries.

12.3.6 Adaptive learning for plasticity

Learning a robust event representation is at the core of event segmentation approaches
using predictive learning. An event representation is considered to be robust when the per-
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ceptual prediction error is low for intra-event frames and high at inter-event frames. If the
learned event representations overfit to intra-event observations, then minor perturbations
in the raw pixel space can increase the prediction error. This would negate the underlying
assumption that transient errors indicate a change in the observed event. Additionally, the
event representation must be stable across events with varying temporal duration to avoid
catastrophic forgetting, i.e., the condition where the predictions do not capture intra-event
variations in long event sequences. Hence, it is necessary to ensure that the model does not
overfit to short-term perceptual features while maintaining a robust event representation rep-
resenting the entire event.

To allow for some plasticity and avoid catastrophic forgetting in the network, we use adap-
tive learning. Adaptive learning is similar to the learning rate schedule, a commonly used
technique for training deep neural networks. However, instead of using predetermined in-
tervals for changing the learning rates, we use the prediction error to modulate the learning
rate. The learning rate can be tuned to control the propagation of the error back to the learn-
able parameters.

For example, when the perceptual prediction rate is lower than the average prediction
rate, the predictor model is considered a good, stable representation of the current event.
Propagating the prediction error when there is a good representation of the event can lead
to overfitting of the predictor model to that particular event and does not help generalize.
Hence, lower learning rates are used for time steps when there are negligible prediction error
and a relatively higher (by a magnitude of 100) for higher prediction error.

Intuitively, this adaptive learning rate allows the model to adapt much quicker to new
events (at event boundaries where there are likely to be higher errors) and learn to maintain
the internal representation for within-event frames. Formally, the learning rate is defined as
the result of the adaptive learning rule described as a function of the perceptual prediction
error defined in Section 12.3.4 and is defined as

λlearn =

⎧⎪⎨
⎪⎩


−
t λinit , EP (t) > μe


+
t λinit , EP (t) < μe

λinit , otherwise
(12.6)

where 
−
t , 
+

t and λinit refer to the scaling of the learning rate in the negative direction, posi-
tive direction and the initial learning rate respectively and μe = 1

t2−t1

∫ t2
t1

EP dEP . The learning
rate is adjusted based on the quality of the predictions characterized by the perceptual pre-
diction error between a temporal sequence between times t1 and t2, typically defined by the
gating signal.

12.3.7 Results

12.3.7.1 Datasets
We evaluate and analyze the performance of the perceptual prediction framework on three

large, publicly available datasets – Breakfast Actions (Kuehne et al., 2014), INRIA Instruc-
tional Videos dataset (Alayrac et al., 2016) and the 50 Salads dataset (Stein and McKenna,
2013). Each dataset offers a different challenge to the approach allowing us to evaluate its
performance on various challenging conditions.



12.3. Version 1: single-pass temporal segmentation using prediction 417

Breakfast actions dataset is a large collection of 1712 videos of 10 breakfast activities per-
formed by 52 actors. Each activity consists of multiple subactivities that possess visual and
temporal variations according to the subject’s preferences and style. Varying qualities of vi-
sual data and complexities such as occlusions and viewpoints increase the complexity of the
temporal segmentation task.
INRIA instructional videos dataset contains 150 videos of 5 different activities collected from
YouTube. Each of the videos is, on average, 2 minutes long and has around 47 subactivities.
A “background” class denotes a sequence where there does not exist a clear subactivity that
is visually discriminable. This offers a considerable challenge for approaches that are not
explicitly trained for such visual features.
50 Salads dataset is a multimodal dataset collected in the cooking domain. The dataset con-
tains over four (4) hours of annotated data of 25 people preparing two mixed salads each.
It provides data in different modalities such as RGB frames, depth maps, and accelerometer
data for devices attached to different items such as knives, spoons, and bottles, to name a few.
The annotations of activities are provided at different levels of granularities – high, low, and
eval. We use the “eval” granularity following evaluation protocols in prior works (Lea et al.,
2016, 2017).

12.3.7.2 Evaluation metrics

We use two commonly used evaluation metrics for analyzing the performance of this ap-
proach. We use the same evaluation protocol and code as in Alayrac et al. (2016); Sener and
Yao (2018). We utilize the Hungarian matching algorithm to obtain the one-to-one mappings
between the predicted segments and the ground truth to evaluate the performance due to the
unsupervised nature of the predictive approach. We use the mean over frames (MoF) to eval-
uate the network’s ability to temporally localize the subactivities. We evaluate the divergence
of the predicted segments from the ground truth segmentation using the Jaccard index (In-
tersection over Union or IoU). We also use the F1 score to evaluate the quality of the temporal
segmentation. The evaluation protocol for the recognition task in Section 12.3.7.4.1 is the unit
level accuracy for the 48 classes as seen in Table 3 from Kuehne et al. (2014) and compared in
Kuehne et al. (2014); Aakur et al. (2019); de Souza et al. (2016); Huang et al. (2016).

12.3.7.3 Ablative studies

We evaluate different variations of our framework to compare the effectiveness of each
component. We varied the prediction history n, and the prediction error threshold Ψ . Increas-
ing frame window tends to merge frames and smaller clusters near the event boundaries to
the prior activity class due to a transient increase in error. This results in a higher IoU and
a lower MoF. Low error threshold results in oversegmentation as boundary detection be-
comes sensitive to small changes. The number of predicted clusters decreases as the window
size and threshold increases. We also trained four models (Fig. 12.5), with different predic-
tor units. We trained two recurrent neural networks (RNN) as the predictor units with and
without adaptive learning (AL) described in Section 12.3.6 indicated as RNN + No AL and
RNN + AL, respectively. We also trained LSTM without adaptive learning (LSTM + No AL)
to compare against our main model (LSTM + AL). We use RNNs as a possible alternative due
to the short-term future predictions (1 frame ahead) required.
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FIGURE 12.5 Ablative Studies: Illustrative comparison of variations in the model architecture, using RNNs and
LSTMs with and without adaptive learning on the INRIA Instructional Videos Dataset on a video with ground truth
Change Tire. It can be seen that complex visual scenes with activities of shorter duration pose a significant challenge
to the framework and cause fragmentation and oversegmentation. However, the use of adaptive learning helps
alleviate this to some extent. Note: Temporal segmentation timelines are shown without the background class for
better visualization.

12.3.7.4 Quantitative evaluation
Breakfast actions dataset We evaluate the performance of our full model LSTM + AL on the
breakfast actions dataset and compare against fully supervised, weakly supervised, and un-
supervised approaches. We show the performance of the SVM (Kuehne et al., 2014) approach
to highlight the importance of temporal modeling. As shown in Table 12.1, the perceptual pre-
diction approach outperformed all other unsupervised and all weakly supervised approaches
and some fully supervised approaches.

TABLE 12.1 Segmentation Results on the Breakfast Action
dataset. MoF refers to the Mean over Frames metric and IoU is the
Intersection over Union metric.

Supervision Approach MoF IoU

Full

SVM (Kuehne et al., 2014) 15.8 –
HTK(64) (Kuehne et al., 2016) 56.3 –

ED-TCN (Lea et al., 2017) 43.3 42.0
TCFPN (Ding and Xu, 2018) 52.0 54.9
GRU (Richard et al., 2017) 60.6 –

Weak

OCDC (Bojanowski et al., 2014) 8.9 23.4
ECTC (Huang et al., 2016) 27.7 –

Fine2Coarse (Richard and Gall, 2016) 33.3 47.3
TCFPN + ISBA (Ding and Xu, 2018) 38.4 40.6

None
KNN+GMM (Sener and Yao, 2018) 34.6 47.1

Ours (LSTM + AL) 42.9 46.9

It should be noted that the other unsupervised approach (Sener and Yao, 2018) requires
the number of clusters (from ground truth) to achieve the reported performance. In contrast,
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our approach does not require such knowledge and is done in a streaming fashion. Addition-
ally, the weakly supervised methods (Huang et al., 2016; Richard and Gall, 2016; Ding and
Xu, 2018) require both the number of actions and an ordered list of sub-activities as input.
ECTC (Huang et al., 2016) is based on discriminative clustering, while OCDC (Bojanowski et
al., 2014) and Fine2Coarse (Richard and Gall, 2016) are also RNN-based methods.
50 Salads dataset We also evaluate our approach on the 50 Salads dataset, using only the vi-
sual features as input. We report the Mean of Frames (MoF) metric for a fair comparison. As
can be seen from Table 12.2, the predictive approach significantly outperforms the other un-
supervised approach, improving by 6.6% on the MoF metric. We also show the performance
of the frame-based classification approaches VGG and IDT (Lea et al., 2016) to demonstrate
the effectiveness of temporal modeling.

TABLE 12.2 Segmentation Results on the 50 Salads dataset,
at granularity ‘Eval’. **Models were intentionally reported
without temporal constraints for ablative studies.

Supervision Approach MoF

Full

VGG** (Lea et al., 2016) 7.6%
IDT** (Lea et al., 2016) 54.3%

S-CNN + LSTM (Lea et al., 2016) 66.6%
TDRN (Lei and Todorovic, 2018) 68.1%
ST-CNN + Seg (Lea et al., 2016) 72.0%

TCN (Lea et al., 2017) 73.4%

None
LSTM + KNN (Bhatnagar et al., 2017) 54.0%

Ours (LSTM + AL) 60.6%

It should be noted that the fully supervised approaches require significantly more training
data – both in the form of labels as well as training epochs. Additionally, the TCN ap-
proach (Lea et al., 2017) uses accelerometer data to achieve the state-of-the-art performance
of 73.4%
INRIA instructional videos dataset: Finally, we evaluate our approach on the INRIA In-
structional Videos dataset, which posed a significant challenge in the form of high amounts
of background (noise) data. We report the F1 score for a fair comparison to the other state-
of-the-art approaches. As can be seen from Table 12.3, the predictive model outperforms the
other unsupervised approach (Sener and Yao, 2018) by 7.5%, the weakly supervised approach
(Bojanowski et al., 2014) by 7.9% and has a competitive performance to the fully supervised
approaches (Malmaud et al., 2015; Alayrac et al., 2016; Sener and Yao, 2018).

We also evaluate the performance of the models with and without adaptive learning. The
effectiveness of LSTMs in capturing long-term temporal dependencies is significant, as can be
seen in Table 12.3, primarily due to the long duration of activities in the dataset. Additionally,
adaptive learning has a significant improvement in the segmentation framework, improv-
ing the performance by 9% and 11% for the RNN-based model and the LSTM-based model,
respectively, indicating reduced overfitting of the model to the visual data.
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TABLE 12.3 Segmentation Results on the INRIA Instructional
Videos dataset. We report F1 score for fair comparison.

Supervision Approach F1

Full
HMM + Text (Malmaud et al., 2015) 22.9%

Discriminative Clustering (Alayrac et al., 2016) 41.4%
KNN+GMM (Sener and Yao, 2018) + GT 69.2%

Weak
OCDC + Text Features (Bojanowski et al., 2014) 28.9%

OCDC (Bojanowski et al., 2014) 31.8%

None

KNN+GMM (Sener and Yao, 2018) 32.2%
Ours (RNN + No AL) 25.9%

Ours (RNN + AL) 29.4%
Ours (LSTM + No AL) 36.4%

Ours (LSTM + AL) 39.7%

TABLE 12.4 Activity recognition results on Breakfast Actions
dataset. HCF and AL refer to handcrafted features and Adaptive
Learning, respectively.

Approach Precision
HCF + HMM (Kuehne et al., 2014) 14.90%

HCF + CFG + HMM (Kuehne et al., 2014) 31.8%
RNN + ECTC (Huang et al., 2016) 35.6%

RNN + ECTC (Cosine) (Huang et al., 2016) 36.7%
HCF + Pattern Theory (de Souza et al., 2016) 38.6%

HCF + Pattern Theory + ConceptNet (Aakur et al., 2019) 42.9%
VGG16 + LSTM 33.54%

VGG16 + LSTM + Predictive Features(AL) 37.87%

12.3.7.4.1 Improved features for action recognition

To evaluate the network’s ability to learn highly discriminative features for recognition,
we evaluated the performance of the predictive approach in a recognition task. We pretrain
the model for temporal segmentation using the Breakfast Actions dataset and use the hid-
den layer of the LSTM as input to a fully connected layer to minimize a cross-entropy loss
for training. We also trained another network with the same structure – VGG16 + LSTM –
without pretraining to show the usefulness of the learned features using self-supervision.

As can be seen from Table 12.4, using self-supervision to pretrain the network before the
recognition task improves the recognition performance of the network and has yielded com-
parable performance to the other state-of-the-art approaches. It improves the recognition
accuracy by 4.3% over the network without predictive pretraining.

12.3.7.5 Qualitative evaluation
Through the predictive, self-supervised framework, we can learn the sequence of vi-

sual features in streaming video. We visualize the model’s segmentation performance on
the Breakfast Actions Dataset in Fig. 12.6. It can be seen that the predictive framework
has high temporal coherence and does not suffer from oversegmentation, especially when
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the segments are long. Long activity sequences allow the model to learn from observation
by providing more “intra-event” samples. Additionally, weakly supervised approaches like
OCDC (Bojanowski et al., 2014) and ECTC (Huang et al., 2016) suffer from oversegmentation
and intra-class fragmentation. This could arguably be attributed to the fact that they tend to
enforce semantics in the form of a weak ordering of activities in the video regardless of the
changes in visual features. Fully supervised approaches – such as HTK (Kuehne et al., 2016) –
perform better, especially due to their ability to assign semantics to visual features. However,
they are also affected by unbalanced data and dataset shift, as can be seen in Fig. 12.6 where
the background class was segmented into other classes.

FIGURE 12.6 Illustration of the segmentation performance of main model on the Breakfast Actions Dataset on
a video with ground truth Make Cereals. The predictive approach does not show the tendency to oversegment and
provides coherent segmentation. The approach, however, shows a tendency to take longer to detect boundaries for
visually similar activities.

We also qualitatively evaluate the impact of adaptive learning and long term temporal
memory in Fig. 12.5, where the performance of the alternative methods described in Sec-
tion 12.2. It can be seen that the use of adaptive learning during training prevents the model
from overfitting to any single class’s intra-event frames and helps generalize to other classes
regardless of the amount of training data. It is not to say that the problem of unbalanced data
is alleviated, but adaptive learning does help to some extent.

12.4 Version 2: segmentation using attention-based event models

The simple perceptual prediction framework, introduced in Section 12.3, uses a global rep-
resentation of input video frames for perceptual prediction. It does not attend or rather focus
on relevant spatial areas for both perception and prediction and as such may not capture
fine-grained event representations. This is essentially strengthening the pathway proposed in
the EST (Fig. 12.2) for the event models to influence the perceptual processing of the current
sensory input. In our earlier model, this pathway was weakly implemented via the memory
structure in the LSTM. In this section, we show that the framework can be enhanced with the
idea of spatial attention to help focus on relevant spatial regions for a more fine-grained seg-
mentation approach that can handle very long video sequences, without significant training
needs. The full architecture is shown in detail in Fig. 12.7 and formally expressed in Algo-
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rithm 2. The spatial attention mechanism helps the network to learn an attention function
between the internal current event model in the recurrent memory and the input at each time
step. The resulting attention map can be used to localize the event within each processed
frame spatially.

Algorithm 2 Temporal Event Segmentation Model with Attention-based Spatial Event
Localization. The input is an untrimmed/streaming video I, which is a set of frames
{I1, ..., It , It+1, ...IT }. The output is a set of event boundaries {b1, b2, ...bT −1}.
Input: Video frames {I1, ..., It , It+1, ...IT } ∈R

T xCxWxH

Output: Event boundary values B = {b1, b2, ...bT −1}
1: procedure Attention(I ′

t , ht−1) � Attention block
2: at ← linear(tanh(linear(ht−1) + linear(I ′

t )))

3: At ← sof tmax(at )

4: I ′′
t ← At 	 I ′

t

5: return I ′′
t

6: end procedure

7: procedure Segment(It , It+1, ht−1, yt−1) � Main segmentation layer
8: I ′

t ← encoder(It ) � Basic CNN encoder
9: I ′

t+1 ← encoder(It+1) � Basic CNN encoder
10: I ′′

t ← Attention(I ′
t , ht−1)

11: ht ← lstm(ht−1, linear(concat (I ′′
t , yt−1)))

12: yt ← decoder(ht ) � Single dense layer
13: et ← ||(I ′

t+1 − yt )
	2 	 (I ′

t+1 − I ′
t )

	2||2 � Motion weighted loss
14: bt ← gate(et )

15: return ht , bt , yt

16: end procedure

17: ht ← 0
18: yt−1 ← 0
19: for {It , It+1} ∈ {I1, I2}, {I2, I3}, ..., {IT −1, IT } do
20: ht , bt , yt ← segment(It , It+1, ht , yt−1)

21: B.append(bt )

22: end for

12.4.1 Feature extraction

The feature extraction process in this architecture differs from the previous perceptual
framework. We need to maintain the spatial arrangement of feature vectors for the atten-
tion mechanism to work. In this architecture, the encoder outputs a grid of feature vectors
with the same spatial resolution as the resulting attention map. In other words, the attention
mechanism dictates the value of attention assigned to each of the encoded feature vectors.
We only use convolution operations in the encoder since kernels (weights) maintain feature
maps’ spatial configuration.



12.4. Version 2: segmentation using attention-based event models 423

The raw input images are transformed from pixel space into a higher-level feature space
using an encoder (CNN) model. This encoded feature representation allows the network to
extract features of higher importance to the task being learned. The encoder network trans-
forms an input image with dimensions W × H × D to output features with dimensions
N × N × M , where N × N are the spatial dimensions and M is the feature vector length.

12.4.2 Attention unit

Attention units have successfully been applied in supervised tasks such as image caption-
ing (Xu et al., 2015) and for various natural language processing tasks such as translation and
language modeling (Vaswani et al., 2017; Bahdanau et al., 2014; Luong et al., 2015; Devlin et
al., 2018; Yang et al., 2019). Attention, in auto-regressive language models, is used to expose
different temporal – or spatial – segments of the input to the decoding recurrent cell at every
time step using fully supervised architectures. We use attention in a slightly different form,
where the LSTM is decoded only once (per input frame) to predict future features and uses
attention-weighted input to do so. Unlike (Xu et al., 2015; Vaswani et al., 2017; Bahdanau et
al., 2014; Luong et al., 2015; Devlin et al., 2018; Yang et al., 2019), the attention weights and
biases are trained using unsupervised loss functions.

In this framework, we utilize Bahdanau attention (Bahdanau et al., 2014) to spatially lo-
calize the event in each processed frame. The attention unit receives as an input the encoded
features and outputs a set of attention weights (At ) with dimensions N × N × 1. The hidden
feature vectors (ht−1) from the prediction layer of the previous time step are used to calculate
the output attention weights (expressed visually in Fig. 12.7), as

At = γ
(
FC

(
tanh

(
FC(ht−1) + FC

(
I ′
t

)) ) )
(12.7)

where FC represents a single fully connected neural network layer and γ represents a soft-
max function. The weights (At ) are then multiplied by the encoded input feature vectors (I ′

t )
to generate the masked feature vectors (I ′′

t ). Some visualization of the resulting spatial atten-
tion masks is shown in Fig. 12.8. The attention mask is extracted from At , linearly scaled and
resized, then overlayed on the raw input image (It ).

12.4.3 Motion weighted loss function

The prediction loss we discussed in Section 12.3.4 applies an L2 loss function over the
prediction of the whole frame. In this section, we introduce a motion weighted loss function
which extracts motion related features from the feature vectors. The motion weighted loss
acts upon the encoded frames in feature space rather than raw pixel space and is calculated
using a continuous mask applied to the prediction loss. This modification aims to increase
the prediction loss at moving features while reducing the loss of static/background features.
Fig. 12.8 shows a comparison between prediction and motion weighted loss for an event with
the bird moving in and out of a nest. The motion weighted loss is defined formally as

et = ||(I ′
t+1 − yt

)	2 	 (
I ′
t+1 − I ′

t

)	2||2 (12.8)
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FIGURE 12.7 Version 2: Temporal Segmentation using Attention-based Event Models: The self-learning per-
ceptual prediction algorithm’s architecture enhanced with an attention mechanism that offers a stronger way for the
event model to influence the current sensory input. Input frames from each time instant are encoded into high-level
features using a deep-learning stack, followed by an attention overlay based on inputs from previous time instants,
which is input to an LSTM. The training loss is composed based on the predicted and computed features from the
current and next frames.

where 	 denotes Hadamard (element-wise) operation. Note that the motion-weighted vector
(the second term) is computed at the feature level and not at the pixel level and hence is more
robust to minor changes due to sensor noise.

12.4.4 Results

In this section, we will look into the results of processing videos spanning over several days
to flag spatial locations and temporal boundaries of events. Unlike other datasets, events in
such extended videos only take place over a few frames, while the rest of the video contains
no significant events or motion (background activities). We modify the perceptual prediction
framework to include an attention mechanism for spatial localization, and we also mask the
prediction loss function to extract motion related features. We begin by defining the wildlife
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FIGURE 12.8 Plots of the prediction and motion-weighted losses before, during, and after an activity: (top) feature
prediction loss over the frames, (bottom) motion weighted feature prediction loss over the frames. Errors for some
selected frames are shown for both plots, overlaid with the corresponding attention map.

extended video dataset used for testing the modified approach, followed by an explanation
of the evaluation metrics used to quantify performance. We discuss the model variations
evaluated and conclude by presenting quantitative and qualitative results.

12.4.4.1 Dataset
We analyze the performance of our model on a wildlife monitoring dataset. The dataset

consists of 10 days (254 hours) of continuous monitoring of a nest of the Kagu, a flightless
bird of New Caledonia. The labels include four unique bird activities, {feeding the chick,
incubation/brooding, nest building while sitting on the nest, nest building around the nest}.
Start and end times for each instance of these activities are provided with the annotations. We
modified the annotations to include the “walk-in” and “walk-out” events representing the
transitioning events from an empty nest to incubation and vice versa. Our approach can flag
the nest building (on and around the nest), feeding the chick, walk in and out events. Other
events based on climate, time of day, lighting conditions are ignored by our segmentation
network. Fig. 12.9 shows a selection of images from the dataset.

12.4.4.2 Evaluation metrics
We provide quantitative results, in the form of receiver operating characteristic (ROC)

charts, for both frame level (Fig. 12.10) and activity level (Figs. 12.11 and 12.12) event seg-
mentation. Frame window size (φ) is defined as the maximum joining window size between
events; a high φ value can cause separate detected events to merge, which decreases the over-
all performance.
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FIGURE 12.9 Samples of images from the Kagu bird wildlife monitoring dataset.

12.4.4.2.1 Frame level

The recall value in frame-level ROC is calculated as the ratio of true positive frames (event
present) to the number of positive frames in the annotations dataset, while the false positive
rate is expressed as the ratio of the false positive frames to the total number of negative frames
(event not present) in the annotation dataset. The threshold value (ψ) is varied to obtain a
single ROC line while varying the frame window size (φ) results in a different ROC line.

12.4.4.2.2 Activity level

The Hungarian matching (Munkres assignment) algorithm is utilized to achieve a one-
to-one mapping between the ground truth labeled events and the detected events. Recall is
defined as the ratio of the number of correctly detected events (overlapping frames) to the
total number of ground-truth events. For the activity level ROC chart, the recall values are
plotted against the false positive rate per minute, defined as the ratio of the total number of
false-positive detected events to the total duration of the dataset in minutes. The false-positive
rate per minute evaluation metric is also used in the ActEV TRECVID challenge (ActEV, 2019)
to quantify activity detection systems’ performance. Frame window size value (φ) is varied
to obtain a single ROC line while varying the threshold value (ψ) results in a different ROC
line.

12.4.4.3 Ablative studies

Different variations of our framework have been evaluated to quantify the effect of in-
dividual components on the overall performance. In our experiments, we tested the base
model, which trains the perceptual prediction framework – including an attention unit – us-
ing the prediction loss function for backpropagation of the error signal. We refer to the base
model as LSTM+ATTN. We also experimented with the effect of removing the attention unit
from the model architecture, on the overall segmentation performance; results of this vari-
ation are reported under the model name LSTM. Further testing includes using the motion
weighted loss for backpropagation of the error signal. We refer to the motion weighted model
as LSTM+ATTN+MW. Each of the models has been tested extensively; results are reported
in Sections 12.4.4.4 and 12.4.4.5, as well as visually expressed in Figs. 12.10, 12.11, 12.12, 12.13
and 12.14.
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FIGURE 12.10 Frame-level event segmentation ROCs when activities are detected based on simple thresholding
of the prediction and motion weighted loss signals. Plots are shown for different ablation studies.

FIGURE 12.11 Activity-level event segmentation ROCs when activities are detected based on simple thresholding
of the prediction and motion weighted loss signals. Plots are shown for different ablation studies.

FIGURE 12.12 Activity-level event segmentation ROCs when activities are detected based on adaptive thresh-
olding of the prediction and motion weighted loss signals. Plots are shown for different ablation studies.

12.4.4.4 Quantitative evaluation
We trained three different models, LSTM, LSTM+ATTN, and LSTM+ATTN+MW, for

frame level and activity level event segmentation. Simple and adaptive gating functions were
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applied to prediction and motion weighted loss signals (Section 12.4.3) for frame level and
activity level experiments. We present ROC curves for each model in Figs. 12.10, 12.11 and
12.12 by varying parameters such as the threshold value ψ and the frame window size φ.

It is to be noted that thresholding a loss signal does not necessarily imply that the model
was trained to minimize this particular signal. In other words, the loss functions used for
backpropagating the error to the models’ learnable parameters are identified only in the
model name (Section 12.4.4.3); however, thresholding experiments have been conducted on
different types of loss signals, regardless of the backpropagating loss function used for train-
ing.

The best performing model, for frame level segmentation, (LSTM+ATTN, ψ = 1000) is
capable of achieving {40%, 60%, 80%} frame recalls value at {5%, 10%, 20%} frame false
positive rate respectively. Activity level segmentation can recall {80%, 90%, 95%} of the ac-
tivities at {0.02, 0.1, 0.2} activity false positive rate per minute, respectively, for the model
(LSTM+ATTN, φ = 0.0021) as presented in Fig. 12.12. A 0.02 false positive activity rate per
minute can also be interpreted as one false activity detection every 50 minutes of training (for
a recall of 80% of the groundtruth activities).

Comparing the results shown in Figs. 12.11 and 12.12 indicates a significant increase in the
overall performance when using an adaptive threshold for loss signal gating. The efficacy of
adaptive thresholding is evident when applied to activity level event segmentation. Results
have also shown that the model can effectively generate attention maps (Section 12.4.4.5)
without impacting the segmentation performance.

12.4.4.5 Qualitative evaluation
Samples of the qualitative attention results are presented in Figs. 12.13 and 12.14. The at-

tention mask, extracted from the model, has been trained to track the event, in all processed
frames, without supervision. Our results show that the events are tracked and localized in
various lighting (shadows, day/night) and occlusion conditions. Attention has also learned
to indefinitely focus on the bird regardless of its motion state (stationary/Nonstationary),
which indicates that the model has acquired a high-level temporal understanding of the
events in the scene and learned the underlying structure of the bird in an unsupervised
manner. Supplementary results1 display a timelapse of attention weighted frames during
illumination changes and moving shadows. Fig. 12.8 summarizes the visualization of the
prediction loss signal, motion weighted loss signal, and attention mask during a walk in and
out event.

12.5 Version 3: spatio-temporal localization using prediction loss map

Finally, we show that the framework from the previous section can be further enhanced to
localize the event in the images, i.e., mark using bounding boxes where the event is happen-
ing. The attention-maps results in Section 12.4 only generate a heat map over the grid size
defined by the encoder’s output spatial resolution. In other words, the attention map acts as

1 Available at https://ramyamounir.github.io/projects/EventSegmentation.

https://ramyamounir.github.io/projects/EventSegmentation
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FIGURE 12.13 Samples of Bahdanau attention weights visualized on input images.

a pointer as to where the action is happening; however, it does not generate an accurate mask
nor a bounding box. To generate a bounding box, we use a region proposal network and
prediction loss map to filter these proposals using a spatio-temporal energy minimization
function. The following description is from Aakur and Sarkar (2020).
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FIGURE 12.14 Samples of Bahdanau attention weights visualized on input images.

We start by extracting relevant features (Section 12.5.1) from the raw frames in pixel space.
The extracted features will be used as an input to the region proposal network and the pre-
diction modules (Section 12.5.2). An energy function combines the prediction loss and the
proposed regions (bounding boxes) to extract action tubes (Section 12.5.4) that are consistent
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FIGURE 12.15 Version 3: Spatio-Temporal Localization using Prediction Loss Map: This approach envelopes
Version 2 with a component that localizes the dominant action based on prediction error. It has four core components:
(i) feature extraction and spatial region proposal, (ii) a future prediction framework, (iii) a spatial-temporal error
detection module, and (iv) the error-based action localization process.

spatially and temporally. Fig. 12.15 shows the four components of the architecture: (i) feature
extraction and spatial region proposal, (ii) a self-supervised future prediction framework,
(iii) a spatial-temporal error detection module, and (iv) the error-based action localization
process.

12.5.1 Feature extraction

Similar to previous approaches, a CNN encoder is used to extract relevant features. How-
ever, the extracted features in this approach are used as an input for the spatial region pro-
posal network and the prediction stack. The region proposal is essentially a set of bounding
boxes identifying possible areas of action and associated objects for each frame. A pretrained
CNN is used for extracting the features and generating proposals.

We use class-agnostic proposals (i.e., the object category is ignored, and only feature-based
localizations are taken into account) for two primary reasons. First, we do not want to make
any assumptions on the actor’s characteristics, such as label, role, and affordance. Second, de-
spite significant progress in object detection, there can be many missed detections, especially
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when the object (or actor) performs actions that can transform their physical appearance. It
is to be noted that these considerations can result in a large number of region proposals that
require careful and robust selection but can yield higher chances of correct localization.

12.5.2 Hierarchical prediction stack

Similar to the approaches mentioned above, this framework learns a predictive function
on the high-level features extracted by the encoder. A Long Short-Term Memory (LSTM) net-
work is used to predict the next set of feature vectors, in a temporal sequence, given the
encoded input and an internal model of the current event. The internal model effectively cap-
tures the spatial-temporal dynamics of the observed event. Similar to the previous attention
model, the LSTM processes a set of feature vectors each time step, not a single feature vector.
The spatial resolution of the feature maps is determined by the last convolution layer of the
encoder.

The choice of an LSTM network is not arbitrary; while other approaches such as convo-
lutional decoders (Jia et al., 2016) and mixture-of-network models (Vondrick et al., 2016) are
viable alternatives for future prediction, we propose the use of recurrent networks for the
following reasons. First, we want to model the temporal dynamics across all frames of the
observed action (or event). Second, LSTMs can allow for multiple possible futures and hence
will not average the outcomes of these possible futures, as can be the case with other predic-
tion models. Imagine a sequence of frames Ia = (I 1

a , I 2
a , . . . I n

a ) corresponding to the activity
a. Given the complex nature of videos such as those in instructional or sports domains, the
next set of frames can be followed by frames of activity b or c with equal probability, given
by Ib = (I 1

b , I 2
b , . . . Im

b ) and Ic = (I 1
c , I 2

c , . . . I k
c ) respectively. Using a fully connected or convolu-

tional prediction unit is likely to result in the prediction of features that tend to be the average
of the two activities a and b, i.e., I k

avg = 1
2 (I k

b + I k
c ) for the time k. This is not a desirable out-

come because the predicted features can either be an unlikely outcome or, more probably,
be outside the plausible manifold of representations. The use of recurrent networks such as
RNNs and LSTMs allows for multiple futures that can be possible at time t + 1, conditioned
upon the observation of frames until time t . Third, since we work with error-based localiza-
tion, using LSTMs can ensure that the learning process aggregates the spatial-temporal error
across time and can yield progressively better predictions, especially for actions of longer
duration.

In contrast to the previous approaches, the prediction unit here consists of a stack of
LSTMs. The output of one LSTM is used as the input to another LSTM. Each LSTM in the
stack has its own parameters, defining a different internal model of the event based on its
position in the hierarchy. This modification allows for modeling both spatial and temporal
dependencies since each higher-level LSTM acts as a progressive decoder framework that
captures the temporal dependencies captured by the lower-level LSTMs. The first LSTM cap-
tures the spatial dependency that is propagated up the prediction stack.

The updated hidden state of the first (bottom) LSTM layer (h1
t ) depends on the current

observation f S
t , the previous hidden state (h1

t−1) and memory state (m1
t−1). Each of the higher-

level LSTMs at level l takes the output of the bottom LSTM’s output hl−1
t and memory state

ml−1
t and can be defined as (hl

t ,m
l
t ) = LST M(hl

t−1, h
l−1
t ,ml−1

t ). Note this is different from a
typical hierarchical LSTM model (Song et al., 2017) in that the higher LSTMs are impacted by



12.5. Version 3: spatio-temporal localization using prediction loss map 433

the output of the lower level LSTMs at current time step, as opposed to that from the previous
time step. Collectively, the event model We is described by the learnable parameters and their
respective biases from the hierarchical LSTM stack.

Hence, the top layer of the prediction stack acts as the decoder whose goal is to predict
the next feature f S

t+1 given all previous predictions f̂ S
1 , f̂ S

2 , . . . f̂ S
t , an event model We and the

current observation f S
t . We model this prediction function as a log-linear model characterized

by

log p
(
f̂ s

t+1|hl
t

) =
t∑

n=1

f
(
We,f

S
t

) + log Z(ht ) (12.9)

where hl
t is the hidden state of the lth level LSTM at time t and Z(ht ) is a normalization con-

stant. The LSTM prediction stack acts as a generative process for anticipating future features.

12.5.3 Prediction loss

The attention map for this framework is extracted directly from the actual prediction loss
(See Fig. 12.7) at the top of the prediction stack. The prediction loss is a factor of the quality of
the predictions made and the relative spatial alignment of the prediction errors. The motion
weighted loss from Eq. (12.8) is used to compute a weight αij associated with each spatial
location (i, j) in the predicted feature f̂ S

t+1 as

αij = exp(eij )∑wk

m=1

∑hk

n=1 exp(emn)
(12.10)

where eij represents the weighted prediction error at location (i, j) (Eq. (12.8)). It can be con-
sidered to be a function a(f S

t , hl
t−1) of the state of the top-most LSTM and the input feature

f S
t at time t . The resulting matrix is an error-based attention map that allows us to localize the

prediction error at a specific spatial location. And the average spatial error over time, E(t), is
used for temporal localization.

12.5.4 Action tubes extraction

The actions are extracted as tubes using an energy objective function that is minimized to
ensure spatial and temporal consistency. The action localization module receives, as an input,
a stream of bounding box proposals (several proposals per frame) and a stream of prediction
loss maps (one per frame). An energy function is defined to extract coherent action tubes by
filtering the proposals using the prediction loss map and returning the collection of proposals
with a higher probability of action localization. This is achieved by assigning an energy term
to each of the bounding box proposals (Bit ) at time t and choosing the top k bounding boxes
with the least energy as our final proposals. The energy of a bounding box Bit is defined as

E(Bit ) = wα φ(αij ,Bit ) + wtδ
(
Bit , {Bj,t−1}

)
(12.11)
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where φ(·) is a function that returns a value characteristic of the distance between the bound-
ing box center and location of the maximum error, δ(·) is a function that returns the minimum
spatial distance between the current bounding box and the closest bounding box from the
previous time step. The constants wα and wt are scaling factors. Fig. 12.18 shows an example
of extracted action tubes for a single activity in a stream of frames.

12.5.5 Results

12.5.5.1 Data

We use three publicly available datasets to evaluate our approach on the action localization
task.

UCF Sports (Rodriguez et al., 2008) is an action localization dataset consisting of 10 classes
of sports actions, such as skating and lifting, collected from sports broadcasts. It is an inter-
esting dataset since it has a high concentration of distinct scenes and motions that make it
challenging for localization and recognition. We use the splits (103 training and 47 testing
videos) as defined in Lan et al. (2011) for evaluation.

JHMDB (Jhuang et al., 2013) is composed of 21 action classes and 928 trimmed videos. All
videos are annotated with human-joints for every frame. The ground truth bounding box for
the action localization task is chosen such that the box encompasses all the joints. This dataset
offers several challenges, such as increasing amounts of background clutter, high interclass
similarity, complex motion (including camera motion), and occluded objects of interest. We
present all results as the average across all three splits.

THUMOS’13 (Jiang et al., 2014) is a subset of the UCF-101 (Soomro et al., 2012) dataset,
consisting of 24 classes and 3,207 videos. Ground truth bounding boxes are provided for
each of the classes for the action localization task. It is also known as the UCF-101-24 dataset.
Following prior works (Li et al., 2018; Soomro and Shah, 2017), we perform the experiments
and report results on the first split.

We also analyze the approach’s generalization ability on egocentric videos by evaluating
it on the unsupervised gaze prediction task. There is ample evidence from cognitive psychol-
ogy for a strong correlation between gaze points and action localization (Tipper et al., 1992).
Hence, the gaze prediction task would be a reasonable measure of the generalization to action
localization in egocentric videos. We evaluate the performance on the GTEA Gaze (Fathi et
al., 2012) dataset, which consists of 17 sequences of tasks performed by 14 subjects, with each
sequence lasting about 4 minutes. We use the official splits for the GTEA datasets as defined
in prior works (Fathi et al., 2012).

12.5.5.2 Metrics and baselines

For the action localization task, we follow prior works (Li et al., 2018; Soomro and Shah,
2017) and report the mean average precision (mAP) at various overlap thresholds, obtained
by computing the Intersection Over Union (IoU) of the predicted and ground truth bounding
boxes. We also evaluate the quality of bounding box proposals by measuring the average,
perframe IoU, and the bounding box recall at varying overlap ratios.

Since ours is an unsupervised approach, we obtain class labels by clustering the learned
representations using the k-means algorithm. While more complicated clustering may yield
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better recognition results (Soomro and Shah, 2017), the k-means approach allows us to eval-
uate the robustness of learned features. We evaluate our approach in two settings Kgt and
Kopt , where the number of clusters is set to the number of ground truth action classes,
and an optimal number obtained through the elbow method (Kodinariya and Makwana,
2013), respectively. From our experiments, we observe that Kopt is three times the number of
ground truth classes, which is not unreasonable and has been a working assumption in other
deep learning-based clustering approaches (Hershey et al., 2016). Clusters are mapped to the
ground truth clusters for evaluation using the Hungarian method, as done in prior unsuper-
vised approaches (Ji et al., 2019; Xie et al., 2016). We also compare against other LSTM and
attention-based approaches (Section 12.5.5.3.3) to the action localization problem for evaluat-
ing the effectiveness of our training protocol.

For the gaze prediction task, we evaluate the approaches using Area Under the Curve
(AUC), which measures the area under the curve on saliency maps for true positive versus
false-positive rates under various threshold values. We also report the Average Angular Error
(AAE), which measures the angular distance between the predicted and ground truth gaze
positions. Since our model’s output is a saliency map, AUC is a more appropriate metric than
the average angular error (AAE), which requires specific locations.

12.5.5.3 Quantitative evaluation
In this section, we present the quantitative evaluation of our approach on two different

tasks, namely action localization and egocentric gaze prediction. For the action localization
task, we evaluate our approach on two aspects – the quality of proposals and spatial-temporal
localization.

12.5.5.3.1 Quality of localization proposals

We first evaluate the quality of our localization proposals by assuming perfect class pre-
diction. This allows us to independently assess the quality of localization performed in a
self-supervised manner. We present the evaluation results in Table 12.5 and compare them
against fully supervised, weakly supervised, and unsupervised baselines. As can be seen, the
predictive approach outperforms many supervised and weakly supervised baselines. APT
(Van Gemert et al., 2015) achieves a higher localization score. However, it produces, on av-
erage, 1500 proposals per video, whereas our approach returns approximately 10 proposals.
A large number of localization proposals per video can lead to higher recall and IoU but
makes the localization task more challenging, i.e., action labeling per video harder, and can
affect the ability to generalize across domains.

Also, it should be noted that our approach produces proposals in streaming fashion, as
opposed to many of the other approaches, which produce action tubes based on motion com-
puted across the entire video. This can make real-time action localization in streaming videos
harder.

12.5.5.3.2 Spatial-temporal action localization

We also evaluate our approach on the spatial-temporal localization task. This evaluation
allows us to analyze the robustness of the self-supervised features learned through predic-
tion. We generate video-level class labels through clustering and use the standard evaluation
metrics (Section 12.5.5.2) to quantify the performance. The AUC curves with respect to vary-
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TABLE 12.5 Comparison with fully supervised and weakly super-
vised baselines on class-agnostic action localization on UCF Sports
dataset. We report the average localization accuracy of each approach
i.e. average IoU.

Supervision Approach Approach

Full
STPD (Tran and Yuan, 2011) 44.6

Max Path Search (Tran and Yuan, 2012) 54.3

Weak
Ma et al. (Ma et al., 2013) 44.6

GBVS (Grundmann et al., 2010) 42.1
Soomro et al. (Soomro and Shah, 2017) 47.7

None
IME Tublets (Jain et al., 2014) 51.5
APT (Van Gemert et al., 2015) 63.7

Predictive Approach 55.7

FIGURE 12.16 AUC for the action localization tasks are shown for (a) UCF Sports, (b) JHMDB and (c) THU-
MOS13 datasets. We compare against baselines with varying levels of supervision such as Lan et al. (2011), Tian et
al. (2013), Wang et al. (2014b), Gkioxari and Malik (2015), Jain et al. (2014), Soomro et al. (2015, 2016); Soomro and
Shah (2017), Hou et al. (2017), and VideoLSTM (Li et al., 2018).

ing overlap thresholds are presented in Fig. 12.16. We compare against a mix of supervised,
weakly-supervised, and unsupervised baselines on all three datasets.

On the UCF Sports dataset (Fig. 12.16(a)), we outperform all baselines including several
supervised baselines, except for Gkioxari and Malik Gkioxari and Malik (2015) at higher over-
lap thresholds (σ > 0.4) when we set number of clusters k to the number of ground truth
classes. When we allow for some oversegmentation and use the optimal number of clusters,
we outperform all baselines till σ > 0.5.

On the JHMDB dataset (Fig. 12.16(b)), we find that our approach, while having high recall
even at more stringent thresholds (77.8% @ σ = 0.5), the large camera motion and intra-class
variations have a significant impact on the classification accuracy. Hence, the mAP suffers
when we set k to be the number of ground truth classes. When we set the number of clus-
ters to the optimal number of clusters, we outperform other baselines at lower thresholds
(mAP @ σ<0.5). It should be noted that the other unsupervised baseline (Soomro et al. (2017))
uses object detection proposals from a Faster R-CNN backbone to score the “humanness” of a
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TABLE 12.6 Comparison with other LSTM-based and attention-based approaches on the THUMOS’13
dataset. We report average recall at various overlap thresholds, mAP at 0.2 overlap threshold and the average
number of proposals per frame.

Approach
Annotations

# Proposals
Average Recall mAP

Labels Boxes 0.1 0.2 0.3 0.4 0.5 @0.2

ALSTM (Sharma et al.,
2015)

� ✗ 1 0.46 0.28 0.05 0.02 – 0.06

VideoLSTM (Li et al., 2018) � ✗ 1 0.71 0.52 0.32 0.11 – 0.37

Actor Supervision (Escorcia
et al., 2020)

� ✗ ∼ 1000 0.89 – – – 0.44 0.46

Our Approach ✗ ✗ ∼ 10 0.84 0.72 0.58 0.47 0.33 0.59

proposal. This assumption tends to make the approach biased towards human-centered ac-
tion localization and affects its ability to generalize towards actions with nonhuman actors.
On the other hand, we do not make any assumptions on the characteristics of the actor, scene,
or motion dynamics.

On the THUMOS’13 dataset (Fig. 12.16(c)), we achieve consistent improvements over un-
supervised and weakly supervised baselines, at k = kgt and achieve state-of-the-art mAP
scores when k = kopt . It is interesting to note that we perform competitively (when k = kgt )
with the weakly-supervised attention-based VideoLSTM (Li et al., 2018), which uses a convL-
STM for temporal modeling along with a CNN-based spatial attention mechanism. It should
be noted that we have a higher recall rate (0.47 @ σ = 0.4 and 0.33 @ σ = 0.5) at higher thresh-
olds than other state-of-the-art approaches on THUMOS’13 and shows the robustness of the
error-based localization approach to intra-class variation and occlusion.

Clustering quality. Since there is a significant difference in the mAP score when we set
a different number of clusters in k-means, we measured the homogeneity (or purity) of the
clustering. The homogeneity score measures the “quality” of the cluster by measuring how
well a cluster models a given ground-truth class. Since we allow the oversegmentation of
clusters when we set k to the optimal number of clusters, this is an essential measure of feature
robustness. Higher homogeneity indicates that intra-class variations are captured since all
data points in a given cluster belong to the same ground truth class. We observe an average
homogeneity score of 74.56% when k is set to the number of ground truth classes and 78.97%
when we use the optimal number of clusters. As can be seen, although we oversegment, each
of the clusters typically models a single action class to a high degree of integrity.

12.5.5.3.3 Comparison with other LSTM-based approaches

We also compare our approach with other LSTM-based and attention-based models to
highlight the importance of the self-supervised learning paradigm. Since LSTM-based frame-
works can have highly similar architectures, we consider different requirements and charac-
teristics, such as the level of annotation required for training and the number of localization
proposals returned per video. We compare with three approaches similar in spirit to our
approach – ALSTM (Sharma et al., 2015), VideoLSTM (Li et al., 2018) and Actor Supervi-
sion (Escorcia et al., 2020) and summarize the results in Table 12.6. It can be seen that we
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significantly outperform VideoLSTM and ALSTM on the THUMOS’13 dataset in both recall
and mAP @ σ = 0.2.

Actor Supervision (Escorcia et al., 2020) outperforms our approach on recall, but it is to
be noted that the region proposals are dependent on two factors – (i) object detection-based
actor proposals and (ii) a filtering mechanism that limits proposals based on ground truth
action classes, which can increase the training requirements and limit generalizability. Also,
note that returning a higher number of localization proposals can increase recall at the cost of
generalization.

12.5.5.3.4 Ablative studies

This predictive framework has three major components that affect its performance the
most – (i) the region proposal module, (ii) the future prediction module, and (iii) the error-
based action localization module. We consider and evaluate several alternatives to all three
modules. We choose selective search (Uijlings et al., 2013) and EdgeBox (Zhu et al., 2015) as
alternative region proposal methods to SSD.

We use an attention-based localization method for action localization as an approximation
of the ALSTM (Sharma et al., 2015) to evaluate the effectiveness of using the error-based local-
ization. We also evaluate a 1-layer LSTM predictor with a fully connected decoder network
to approximate (Aakur and Sarkar, 2019) on the localization task. We evaluate the effect of
attention-based prediction by introducing a Bahdanau (Bahdanau et al., 2014) attention layer
before prediction as an alternative to the error-based action localization module.

These ablative studies are conducted on the UCF Sports dataset. The results are plotted
in Fig. 12.17(a). It can be seen that the use of the prediction error-based localization has a
significant improvement over a trained attention-based localization approach. We can also
see that the choice of region proposal methods does have some effect on the performance of
the approach, with selective search and EdgeBox proposals doing slightly better at higher
thresholds (σ ∈ (0.4,0.5)) at the cost of inference time and additional bounding box proposals
(50 compared to the 10 from SSD-based region proposal). Using SSD for generating proposals
allows us to share weights across the frame encoder and region proposal tasks and reduce the
memory and computational footprint of the approach. We also find that using attention as
part of the prediction module significantly impacts the architecture’s performance. It could,
arguably, be attributed to the objective function, which aims to minimize the prediction error.
Note that we use the error-based attention to localize events in this approach as opposed to a
learned attention vector from Section 12.4. We find that using Bahdanau attention to encode
the features could impact the prediction function for this approach.

12.5.5.3.5 Unsupervised egocentric gaze prediction

Finally, we evaluate the ability to generalize to egocentric videos by quantifying the
model’s performance on the unsupervised gaze prediction task. Given that we do not need
any annotations or other auxiliary data, we employ the same architecture and training strat-
egy for this task. We evaluate on the GTEA gaze dataset and compare it with other unsu-
pervised models in Table 12.7. As can be seen, we obtain competitive results on the gaze
prediction task, outperforming all baselines on both the AUC and AAE scores. It is to be
noted that we outperform the center bias method on the AUC metric. Center bias exploits
the spatial bias in egocentric images and always predicts the center of the video frame as the
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TABLE 12.7 Comparison with state-of-the-art on the unsupervised egocentric gaze prediction task on the
GTEA dataset.

Itti and Koch
(2000)

GBVS (Harel et
al., 2007)

AWS-
D Leboran et al.

(2016)

Center Bias OBDL (Sayed
et al., 2015)

Ours

AUC 0.747 0.769 0.770 0.789 0.801 0.861
AAE 18.4 15.3 18.2 10.2 15.6 13.6

FIGURE 12.17 Qualitative analysis of our approach on UCF Sports dataset (a) ablative variations on AUC.
(a) class-wise AUC, and (c) class-wise bounding box recall at different overlap thresholds.

predicted gaze position. The AUC metric’s significant improvement indicates that our ap-
proach predicts gaze fixations that are more closely aligned with the ground truth than the
center bias approach. Given that the model was not designed explicitly for this task, it is a
remarkable performance, especially given the performance of fully supervised baselines such
as DFG (Zhang et al., 2017), which achieves 10.6 and 88.3 for AUC and AAE.

12.5.5.4 Qualitative evaluation

We find that our approach has a consistently high recall for the localization task across
datasets and domains. We consider that an action is correctly localized if the average IoU
across all frames is higher than 0.5, which indicates that most, if not all, frames in a video are
correctly localized. We illustrate the recall scores and subsequent AUC scores for each class
in the UCF sports dataset in Figs. 12.17(b) and (c). For many classes (7/10 to be specific), we
have more than 80% recall at an overlap threshold of 0.5. Through visual inspection, we find
that the spatial-temporal error is often correlated with the actor but is usually not at the center
of the region of interest and thus reduces the quality of the chosen proposals. We illustrate
this effect in Fig. 12.18. The first row shows the input frame, the second shows the error-
based attention, and the last row shows the final localization proposals. If more proposals
are returned (as is the case with selective search and EdgeBox), we can obtain a higher recall
(Fig. 12.17(b)) and higher mAP.
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FIGURE 12.18 Qualitative Examples: Error-based attention location and the final prediction. Green BB: Predic-
tion, Blue BB: Ground truth.

12.6 Other event segmentation approaches in computer vision

Typically, there are three different classes of approaches for temporal event segmentation:
fully supervised, weakly supervised, and fully unsupervised. While fully supervised ap-
proaches have more precise localization and better labeling accuracy, the required number
of annotations is rather large. The labeled training data demands do not scale well with an
increase in label classes. While not requiring frame-level annotations, weakly supervised ap-
proaches have the underlying assumption that there exists a large, annotated training set that
allows for effective detection of all possible actors (both human and nonhuman) in the set of
action classes. Unsupervised approaches, such as ours, do not make any such assumptions
but can result in poorer localization performance. We alleviate this to an extent by leveraging
advances in region proposal mechanisms and robust self-learning representations. One par-
ticular class of unsupervised approach, called self-supervision, uses the data itself, without
annotations, for supervision.

12.6.1 Supervised approaches

Fully supervised methods have been the dominant approach to temporal event segmenta-
tion. They consider the problem to be fully supervised and use the groundtruth annotations
to take a segment by classification approach i.e., they assign the labels to semantically coherent
“chunks”, with contiguous frames sharing the same label, to segment the video into its con-
stituent segments. The common pipeline in these approaches has been to extract features
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(either hand-crafted or automated using deep learning) to perform frame-based labeling
support vector machines (Kuehne et al., 2014) or model temporal dynamics using Hidden
Markov Models (Kuehne et al., 2014), temporal convolutional neural networks (TCN) (Lea
et al., 2017), spatiotemporal convolutional neural networks (CNN) (Lea et al., 2016) and re-
current networks (Richard et al., 2017) to name a few. While fully supervised approaches
are appealing due to their strong quantitative performance, obtaining large-scale annotated
datasets, especially with frame-level annotations, can become quite expensive and may not
always be available. This problem becomes more pronounced as the granularity of the events
becomes finer.

Similarly, some approaches tackle action localization through the simultaneous generation
of bounding box proposals and labeling each bounding box with the predicted action class.
Both bounding box generation and labeling are fully supervised, i.e., they require ground
truth annotations of both bounding boxes and labels. Typical approaches leverage advances
in object detection to include temporal information (Gkioxari and Malik, 2015; Hou et al.,
2017; Jain et al., 2014; Soomro et al., 2015, 2016; Tian et al., 2013; Tran and Yuan, 2012; Wang
et al., 2014b) for proposal generation. The final step typically involves the use of the Viterbi
algorithm (Gkioxari and Malik, 2015) to link the generated bounding boxes across time.

12.6.2 Weakly-supervised approaches

The underlying concept behind weak supervision is to alleviate the need for direct labeling
by leveraging accompanying text scripts or instructions as indirect supervision for learning
highly discriminant features. There have been two common approaches to weakly supervised
learning for temporal segmentation of videos – (1) using script or instructions for weak anno-
tation (Bojanowski et al., 2014; Ding and Xu, 2018; Alayrac et al., 2016; Malmaud et al., 2015),
and (2) following an incomplete temporal localization of actions for learning and inference
(Huang et al., 2016; Richard et al., 2017). While such approaches model the temporal transi-
tions using RNNs, they still rely on enforcing semantics for segmenting actions and hence
require some supervision for learning and inference.

These approaches have been explored for action localization to reduce the need for exten-
sive annotations (Escorcia et al., 2020; Lan et al., 2011; Li et al., 2018; Sharma et al., 2015).
They typically only require video-level labels and rely on object detection-based approaches
to generate bounding box proposals. It is to be noted that weakly supervised approaches also
use object-level labels and characteristics to guide the bounding box selection process. Some
approaches (Escorcia et al., 2020) use a similarity-based tracker to connect bounding boxes
across time to incorporate temporal consistency.

12.6.3 Unsupervised approaches

Unsupervised approaches do not need external supervision in terms of annotated training
data that can be used to determine when the output is right and wrong. These approaches
have not been explored to the same extent as supervised and weakly-supervised approaches.
The primary approach is to use clustering as the unsupervised approach using discriminant
features (Bhatnagar et al., 2017; Sener and Yao, 2018). The models incorporate a temporal
consistency into the segmentation approach by using either LSTMs (Bhatnagar et al., 2017)
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or generalized mallows model (Sener and Yao, 2018). Garcia et al. (2018) explore the use of
a generative LSTM network to segment sequences like we do. However, they handle only
coarse temporal resolution in life-log images sampled as far apart as 30 seconds. Consecutive
images when events change have more variability making for easier discrimination. Besides,
they require an iterative training process, which we do not.

Some approaches do not require any supervision for either labels or bounding boxes. The
two more common approaches are to generate action proposals using (i) supervoxels (Jain
et al., 2014; Soomro and Shah, 2017) and (ii) clustering motion trajectories (Van Gemert et
al., 2015). It should be noted that Soomro and Shah (2017) also uses object characteristics to
evaluate the “humanness” of each supervoxel to select bounding box proposals.

Our approach falls into the class of unsupervised action localization approaches. The most
closely related approaches (with respect to architecture and theme) to ours are VideoLSTM (Li
et al., 2018) and Actor Supervision (Escorcia et al., 2020), which use attention in the selection
process for generating bounding box proposals, but require video-level labels. We, on the
other hand, do not require any labels or bounding box annotations for training.

12.6.4 Self-supervised approaches

One class of unsupervised approach that has gained attention is self-supervised ap-
proaches that use training data, but unannotated. There are two main types of self-supervised
approaches: (1) hiding a subset of the data and trying to predict it, i.e., predict the occluded
from the visible or predict color from gray-level (Zhang et al., 2016; Vondrick et al., 2018);
(2) altering the input and predicting the function (parameters) used for altering it (Gidaris et
al., 2018; Doersch et al., 2015; Misra et al., 2016; Fernando et al., 2017). The prediction of part
of the input, or the unaltered version of the input, forces the network to learn good semantic
features from the dataset. Contrastive learning approaches (Chen et al., 2020; Grill et al., 2020;
Caron et al., 2020) fall under the second category where the input is altered and the network
is forced to learn a representation that maximizes the similarity between the original and the
altered input. These approaches have been found to learn fairly robust representations that
can then be coupled with different tasks, i.e., labeling, motion estimation, and so on.

In the context of videos, self-supervision has been mostly prediction of the next couple of
image frames (Srivastava et al., 2015; Mathieu et al., 2015; Neverova et al., 2017; Lotter et al.,
2016; Finn et al., 2016). Feature-level predictions have been proposed to discover cooccurring
visual feature spaces (Wang et al., 2014a) and learn representations for better recognition (Liu
et al., 2018; Li et al., 2017). Such approaches propose the discovery of context through cooc-
currences of features across temporal sequences to learn either multifeature correlation such
as motion and appearance modeling for future frame generation (Li et al., 2017) or for unsu-
pervised learning of cooccurring concepts like the presence of noses and eyes in faces (Wang
et al., 2014a).

There is also an increasing body of work on the prediction of future activities (Sun et al.,
2019; Luc et al., 2017; Ma et al., 2016; Liang et al., 2019; Kitani et al., 2012; Fragkiadaki et al.,
2015; Walker et al., 2014; Alahi et al., 2016; Santoro et al., 2017; Hamilton et al., 2017). However,
these approaches all adopt the standard annotated training-based deep-learning framework.

Our approach is similar in spirit to the predictive learning framework from videos es-
poused by Vondrick et al. (2016), but for higher-level concepts, instead of just action labels.
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There are strong indications from brain and cognitive studies, apart from Zack’s research
group, that predictions play a significant role in how the brain circuits learn new concepts.
Based on studies of many neuroscience experiments, Hawkins et al. (2016) have also sug-
gested a repeated architecture of layers of feed-forward, predictive memory, and temporal
pooling, which they demonstrated for anomaly detection in 1D signals. Heeger (2017) has
also has shown the effectiveness of a layered architecture with bottom-up and top-down con-
nections, but driven by prior predictions for temporal signal processing. Lotter et al. (2016)
have implemented a predictive coding stack, but for video frame-level prediction.

12.7 Conclusions

This chapter drew from cognitive science research to define the problem of event seg-
mentation and to design highly effective computer vision algorithms for spatio-temporal
segmentation of events in videos. These approaches do not require any annotated data, nor
do they require multiple passes through the data. They can process streaming video data while
learning robust representations for segmenting events.

The main idea is to use predictive learning, as posited in the Event Segmentation The-
ory in cognitive science, to detect event boundaries. As in the EST, a perceptual processing
unit (a CNN stack) sends the extracted features from the current frame (conditioned on the
working event model) to a prediction unit (LSTM, a stack of LSTMs, bounding box prediction
head), which predicts future perceptual features. A mismatch in the predicted features and
the actual features computed for the next time instance generates a prediction error signal.
A high error signals an event boundary. A new event model is now needed to make future
predictions. The prediction error triggers a gating mechanism to update the working event
model (hidden states in the LSTM) with a new model.

Extensive experiments on a variety of domains demonstrate that the predictive learning
approach can learn robust event representations from unlabeled streaming video sequences,
with only one epoch of training (single pass through video). The event representations were able
to obtain state-of-the-art results in unsupervised temporal segmentation (Section 12.3) and
spatial-temporal action localization (Section 12.5) while offering competitive performance
with fully supervised baselines that require extensive amounts of annotated training data.
Additionally, we show that the predictive learning framework can process and segment
streaming video data of extremely long duration (Section 12.4), at close to real-time process-
ing. Predictive learning can help break the increasing dependency on training data and move
towards open-world visual understanding. We hope that these results encourage research in
this promising direction and unlatch computer vision research from the increasing depen-
dence on more and more annotated data.
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CHAPTER POINTS

• This chapter introduces an anomaly
detection framework and explains its
benefits to self-aware systems to keep
learning incrementally.

• We briefly review anomaly detection
methods in the state of the art, performing
a comparison of them, and highlighting
our contribution.

• A self-aware agent dealing with
multimedia sensory data can detect
hierarchical-level abnormalities and handle
both low- and high-dimensional data.

• Generalized States (GSs) are built directly
from low dimensional observations. In
contrast, a Variational Autoencoder is used
to output lower dimension GSs from high
dimensional data.

• A Generalized Dynamic Bayesian Network
(GDBN) is learned from GSs and used to
predict the system’s dynamics at multiple
levels.

• The predictive and diagnostic messages
passing inside the GDBN allow calculating
the Generalized Errors to discover new
emergent rules.

• We validate the proposed approach using
real multi-sensory data from a
semi-autonomous self-aware vehicle.
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13.1 Introduction

The identification of abnormal instances of data represents a relevant issue across several
diverse research topics. Through anomaly detection algorithms, video surveillance cameras
can recognize when possibly dangerous or violent events are happening, such as break-
ins, assaults, armed robberies or traffic incidents; suspicious zones in medical images like
mammograms or tomography scans can be identified and can provide a help for doctors to
diagnose tumors or nodules; fraudulent credit card transactions can be detected as deviations
from the normal usage profile of the clients. In general, anomaly detection methods constitute
a necessary component in all applications that require identifying a deviation from a known
set of rules or models. It is indeed fundamental to note that anomalies are related to a model
and are not absolute: in the video surveillance case, the initial model could describe the nor-
mal interactions between customers in a store; in the medical imaging case it could extract the
salient features of a healthy organ; in the credit card case it could keep track of user’s normal
credit card transaction patterns. Abnormal data correspond to a deviation from these learned
models and are instead subject to different rules. Therefore, it is evident how anomaly detec-
tion, which has many applications, represents a fundamental step also for artificial self-aware
systems that can continually learn from new situations, as it allows a system to distinguish
the occurrence of a new situation from an already experienced one.

Self-awareness can be defined as the “capacity of becoming the object of one’s own at-
tention” (Morin, 2006) and is reached when an agent focuses not only on the external envi-
ronment, but also on the evolution of its own state. The concept of self-awareness has been
typically attributed to biological beings and has been studied by scientists of different back-
grounds, such as Haykin and Fuster (2014), Friston et al. (2014) and Damasio (1999). Recent
research has also started to transfer this concept to embody artificial agents, such as semiau-
tonomous cars and drones or cognitive radios. For these agents to be at the same time aware
of their surroundings and of their internal state, they must be endowed with two different
types of sensors: i) exteroceptive sensors to reach situational awareness, such as external
cameras; ii) proprioceptive sensors to gain self-awareness, such as a steering wheel sensor
in a vehicle. Though their situational and self-awareness capabilities, these agents can recog-
nize the experience they are encountering from a set of learned experiences; this knowledge
consequently constitutes the base to conduce a decision making step and perform an action,
impressed on the environment through a set of actuators.

As recently proposed by Regazzoni et al. (2020), six basic capabilities should be possessed
by an agent for it to be considered self-aware: initialization, inference, anomaly detection,
model creation, and interface with control. The self-aware agent is first initialized with a pre-
defined model (i), and is able to memorize the model (ii); it consequently uses the learned
model to perform inferences about its future state and the future changes in the environment
(iii); it identifies new situations when they appear (iv) and learns a new model to describe
them (v); finally, it uses the acquired knowledge to perform decisions and impress changes
in the environment (vi). It can be observed how each capability is consecutive to the other
and how they form a closed loop, as (v) reconnects itself with (ii). Again, the importance of
anomaly detection for self-aware systems appears fundamental, as it triggers the identifica-
tion of the presence of unknown rules and the creation of a new model. In such a context, it is
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additionally fundamental to remark how we consider time series data and how the genera-
tion of anomalies can be defined through the comparison of the prediction at one time instant
for the following one and the observation at the following time instant.

In this chapter, we propose a method for the detection of anomalies on time-series data, to
be inserted in the above-described self-awareness cycle. The method leverages Generalized
Dynamic Bayesian Networks (GDBNs) and their message-passing capabilities to define a hi-
erarchy of different levels of anomalies. It can be used both for low-dimensional data and for
high-dimensional data. In the high-dimensional case (e.g., images), Generative Models such
as Variational Autoencoders (VAEs) or Generative Adversarial Networks (GANs) can be used
to perform reduction of the high-dimensional data to a probabilistic low-dimensional latent
space. In this chapter, we discuss as a case study the use of a VAE for dimensionality reduc-
tion.

The rest of the chapter is structured as follows: Section 13.2 presents basic concepts about
Generative Models, GDBNs, Variational Autoencoders and state of the art regarding anomaly
detection in low-dimensional and high-dimensional data; Section 13.3 describes the proposed
method; Section 13.4 shows and discusses results obtained on proposed data; Section 13.5
concludes the chapter and presents some insights about possible future work.

13.2 Base concepts and state of the art

13.2.1 Generative models

Two types of models can be distinguished in the Machine Learning context: discriminative
models and generative models. Discriminative models learn the conditional probability of a class
label given some observed input; this is the case of classifiers. On the other hand, generative
models are able to learn the underlying hidden distribution of the data they are trained on
and can generate samples from the same distribution. Bayesian Networks (BNs) are a type of
generative model factorizing the joint distribution of data w.r.t. conditional probabilities de-
pending on hidden model variables; whereas Dynamic Bayesian Networks (DBNs) perform
this factorization across time.

When working on high dimensional data such as images, the most commonly used gen-
erative models are Variational Autoencoders (VAEs) (Kingma and Welling, 2014) and Gen-
erative Adversarial Networks (GANs) (Goodfellow et al., 2014). VAEs learn the probability
distribution of data explicitly, commonly assuming a Gaussian or Gaussian Mixture Model
distribution. VAEs supposing a Gaussian distribution of the data encode each data sample
through a mean and a variance. Sampling from the learned distribution, they can generate
similar datapoints to the ones they were trained on. Conversely, GANs implicitly learn the
distribution of the data without defining any parameters. VAEs and GANs can additionally
be used inside a DBN to learn the relation between high-dimensional data (e.g., images) and
low-dimensional latent states (i.e., the socalled observation model) (Slavic et al., 2021). We can
consequently distinguish two cases in our generative model definition problem: in the first
case, the observation model is given (e.g., radio-data case); in the second case, the observation
model must be learned (e.g., video-data case). In this chapter, we report results on both the
partially learned and totally learned case.
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13.2.2 Dynamic Bayesian Network (DBN) models

Bayesian Networks (BNs) are directed acyclic graph models where nodes in the graph
represent a set of random variables and edges encode a particular factorization of the joint
distribution of that set from a single point in time. However, in many real-world applica-
tions, most of the events are not detected based on a single point in time but on multiple
observations that yield to a certain event (Mihajlovic and Petkovic, 2001).

A Dynamic Bayesian Network (DBN) is an extension of the BNs that can model dynamic
processes and describes a system’s evolution with time at hierarchical levels. DBNs allow
encoding probabilistic dependencies and feedbacks between random variables over differ-
ent time slices. A DBN is typically represented by two sets of parameters. The first includes
the number of nodes in each time slice and the corresponding topology while the second
set consists of the conditional probability distributions (CPDs) described by the edges of
the network. DBNs generalize linear dynamical systems by representing the hidden and ob-
served states in terms of random state variables providing a graphical structure that specifies
the corresponding conditional dependencies and a compact parameterization of the model.
DBNs can decompose data with complex and nonlinear dynamics into segments that are
explainable by simpler dynamical units. A specific class of DBN models known as Switch-
ing linear dynamic systems (SLDS) (Fox et al., 2011) can be used to represent the dynamical
units and explain their switching behavior and their dependency on both observations and
continuous hidden states. Learning a DBN consists of parameter learning and structure learn-
ing. The former is the process of learning the distributions of discrete or continuous hidden
variables in the DBN while the latter is the process of using data to learn the links (i.e., the
conditional probabilities) among random variables in the DBN. Both parameter and structure
learning depend on the state-space model in question. A state-space representation of a time
series process defines a prior P(Xt), a state transition function P(Xt |Xt−1) and an observa-
tion function P(Zt |Xt). Hidden Markov Models (HMMs) and Kalman Filter Models (KFMs)
are possible ways to represent state-space models encoded in a simple DBN which includes
one hidden variable and one observed node per slice as shown in Fig. 13.1. The hidden dis-
crete variables in HMM are assumed to have a multinomial discrete distribution and evolve
according to transition rules parametrized in the model. The discrete variables and the cor-
responding transition matrix can be learned by using a clustering algorithm to the observed
time-series data. In the case of KFMs the state transition evolution becomes a linear-Gaussian
such as:

Xt = AXt−1 + BUt + wt (13.1)

where Ut is the control input realizing the parent node of the corresponding Xt . In the
Bayesian framework, learning starts with a priori knowledge about the model structure (i.e.
links in the DBN) and model parameters. In the case of a simple DBN (Fig. 13.1), the initial
knowledge about the hidden state variable Xt in terms of probability distribution P(Xt ) can
be updated using data Zt and used to calculate the posterior probability P(Xt |Zt) using Bayes
rule:

P(Xt |Zt) = P(Zt |Xt)P (Xt )

P (Zt )
. (13.2)
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FIGURE 13.1 Simple Dynamic Bayesian Network. The network is an HMM when X is a discrete variable; it is a
KFM when X is a continuous variable.

A possible combination of Particle Filter (PF) and Kalman Filter (KF) presented in Baydoun
et al. (2018) can be implemented on the DBN as a probabilistic inference algorithm. In the
Bayesian framework, there are different types of probabilistic inferences, namely, the top-
down (or predictive) inference and the bottom-up (or diagnostic) inference. Each of these
inferences relies on decomposing the required computation into local calculations at each
node of the network which requires only messages passed (i.e. using the message passing
algorithm (Winn and Bishop, 2005)) along the edges connected to that node.

In this chapter, the proposed approach is enriched with advanced capabilities compared to
the classical Bayesian inference to exploit the predictive and diagnostic messages incoming
into a generic node of the DBN to calculate abnormality measurements at hierarchical levels
using appropriate probabilistic distances. Such abnormalities can also be used to learn new
models incrementally that describe variations at different abstraction levels.

13.2.3 Variational autoencoder

As observed in Sec. 13.2.1, a VAE is a generative model. In its vanilla version, it is com-
posed of an encoder Qθ(X|Z) and a decoder Pφ(Z|X), which can be estimated through the
learning process of the VAE on training data. Through θ and φ, we define the parameters of
the encoder and decoder, respectively. The encoder Qθ(X|Z) allows to represent each sample
Z inputted to it through two bottleneck features, i.e., a mean μ and a variance σ 2. On the
other hand, the decoder Pφ(Z|X) synthesizes an observation Z from a latent state X sampled
from N (μ,σ 2). Therefore, the former allows reduction of dimensionality of the observations
(i.e., image data) and treatment of anomaly detection at a low-dimensional state level; in-
stead, the latter allows to obtain again high-dimensional data and treat anomaly detection at
the observation level. Note how, in the DBN framework described in the previous section,
the VAE can be seen as an observation model P(Zt |Xt).

The learning of the VAE is conducted to optimize the parameters θ and φ, maximizing the
sum of the lower bound on the marginal likelihood of each observation Z of the dataset D, as
described in Kingma and Welling (2014, 2019):

Lφ,θ (D) =
∑
Z∈D

Lφ,θ (Z), (13.3)

where L(θ,φ;Z) is defined as:

Lφ,θ,(Z) = − DKL

(
Qθ(X|Z)||Pφ(X)

) + EQθ(X|Z)

[
logpφ(Z|X)

]
, (13.4)
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where the term DKL is the KL divergence. Therefore, the first term measures the difference
between the encoder’s distribution Qθ(X|Z) and the prior Pφ(X); the prior typically being a
standard normal distribution N (0,1). The second term is the expected log-likelihood of the
observation Z and forces the VAE to reconstruct the input data.

In this work, the ability of the VAE is used to encode the input information in a significant
lower-dimensional space that exhibits probabilistic properties. As observed in Section 13.2.1,
VAEs can be integrated inside a DBN model, in the case in which the observation model is
not given, but must be learned too.

13.2.4 Types of anomalies and anomaly detection methods

As observed in Sec. 13.1 anomalies correspond to any deviation that manifests itself w.r.t.
a reference model. The concept of anomaly is vast and dependent on data type, cardinality of
relationship between the involved variables, data structure and data distribution (Foorthuis,
2020). Different anomaly types – and consequently anomaly distances and anomaly detection
algorithms – can be indentified when working on time-independent or time dependent appli-
cations, on low-dimensional data such as trajectories, high dimensional data such as images
or structures such as graphs, etc.. To estimate the complexity and vastness of anomaly detec-
tion, we reconnect ourselves again to the work of Foorthuis (2020), that through a review of
anomaly detection literature recognizes three broad groups of anomaly, 9 basic types and 63
subtypes. Taking as an example video data, Ramachandra et al. (2020) distinguish five main
types of anomaly: i) appearance anomaly, ii) short-term motion anomaly, iii) long-term mo-
tion anomaly, iv) group anomaly, v) time-of-day anomaly. To make an example, a car driving
along a street could either see an abnormal object as a traffic cone at the center of the street
(i), detect an abnormal motion as the car in front suddenly braking (ii), perform a sequence
of abnormal movements, due for example to the driver falling asleep (iii), observe two other
vehicles interacting in an abnormal way, as in a collision (iv); finally, normal motions and
speeds during the day could not be legal after sunset (v).

The work by Chandola et al. (2009) represents a base point for classification of anomaly
detection methods. In this section, we report a brief summary of the defined anomaly classes
for point anomalies. The authors of Chandola et al. (2009) distinguish six general meth-
ods for point anomaly detection; the first five are nonprobabilistic methods, while the sixth
one groups together the probabilistic methods. In the following paragraphs, we give a brief
discussion of five out of six of these methods. Additionally, Chandola et al. (2009) notice
how additional methods can be distinguished for contextual anomalies such as abnormal
sequences in a time series.

Classification based methods (CLA)

In this type of methods, a classifier is learned that can either distinguish normal data from
abnormal ones based on a discriminative boundary (one-class classifier) or different classes of
normal data from each other (multiclass classifier). In the second case, an instance is detected
as abnormal when it can not be associated with enough confidence to any of the normal
classes. Any algorithm typically used for classification can be adopted for this type of method,
including Neural Networks, Bayesian Networks, Support Vector Machines (SVMs) and rule-
based classification methods.
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Distance based methods (DB)

These types of method are based on the calculation of the distance of data points from
their closest neighbors, leveraging the assumptions that normal data occur in dense neigh-
borhoods, whereas anomalies are far from their closest neighbors. The choice of the distance
metric is therefore essential. To account for neighborhoods of various densities, the distance
value is often relative to the distances between points in the closest neighborhood.

Clustering based methods (CLU)

These methods rely on assumptions dependent on the chosen clustering techniques: i)
techniques like DBSCAN, ROCK or SNN assume that anomalies are not assigned to any of
the built clusters; ii) when using techniques like SOM, one can assume that abnormal data
lie far away from the cluster’s centroid; iii) finally, one could leverage the assumption that
normal data belong to big clusters and abnormal ones to small clusters.

Information theoretic methods (IT)

These methods use information theoretic measures such as Kolomogorov Complexity, en-
tropy or relative entropy to analyze the information content of the data and extract the most
anomalous subset of data points (i.e., sequence, subgraph, image area) w.r.t. the rest of the
data.

Statistic/probabilistic methods (STA)

Probabilistic-based methods aim to model the normal sample features’ distributions (in-
liers) associated with the training data, whereas abnormalities can be detected as data sam-
ples known as outliers with low probability (Rivera et al., 2020). The probability that a data
sample belongs to a certain distribution can be estimated using probabilistic distances such
as Bhattacharyya, Mahalanobis, Hellinger or the Kullback–Leibler divergence. Abnormal-
ity detection using probabilistic (statistical) models can be classified into two main groups,
parametric as Gaussian Mixture Model (GMM) methods and Regression methods and non-
parametric as Histogram or Kernel Density Estimation (KDE) methods (Wang et al., 2019).
A significant advantage of the probabilistic approach is that it can be easily generalized to
different data types and modalities; whereas its drawback is related to fitting the data to a
certain distribution which may not be appropriate in some cases (Aggarwal, 2016).

Additionally, Chandola et al. (2009) identify a further set of anomaly methods, i.e., spectral
anomaly detection techniques, based on the assumption that data, especially high dimen-
sional ones, can be brought to a lower dimensional subspace where normal and abnormal
data can be more easily distinguished. Examples of such methods could be using PCA on
image data or embedding graphs as adjacency matrices. These methods can be used as a
preprocessing step to the other methods defined above. As we will talk more in detail on
the problem of dimensionality reduction in Sec. 13.2.6, we momentarily ignore this type
of method. Similarly, when handling abnormal sequences of data, such as in time-series
data, detection can be either performed through an adaptation of the previous methods to
contextual anomalies or through methods that learn the structure of the data, for example
executing the prediction of the following time instants from the previous ones (prediction
methods (PRE)).
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Table 13.1 summarizes the proposed classification, indicating desired characteristics for
each method. Notice how all the proposed methods are applicable to time-series data and are
semisupervised or unsupervised, necessitating no training labels. Most methods could also
be applied for some variety of incremental learning through the use of anomaly scores, but
this problem is rarely tackled in the state of the art. Classification does not give an anomaly
score with a confidence range, as in general in this class of method a sample is only de-
scribed as belonging or not to the class; information theoretic methods also do not have
this capability. Distance based methods and information theoretic methods are additionally
difficult to extend to high dimensional data. Only prediction based methods and statisti-
cal methods can be applied to probability models. Finally, our method has all the defined
characteristics and additionally provides an anomaly score on different levels of abstrac-
tion.

TABLE 13.1 Comparisons between the different methods. *: unnecessary for one-class version,
necessary for multiclass version; **: valid for most methods of this category but not all.

CLA DB CLU IT STA PRE Ours
Data labeling unnecessary * ✓ ✓ ✓ ✓ ✓ ✓

Gives anomaly score with confidence range ✗** ✓ ✓ ✗ ✓ ✓ ✓

Extendable to HD data ✓ ✗ ✓ ✗ ✓ ✓ ✓

Applicable to probability models ✗ ✗ ✗ ✗ ✓ ✓ ✓

Applicable to time-series data ✓ ✓ ✓ ✓ ✓ ✓ ✓

Allows incremental learning ✓ ✓ ✓ ✗ ✓ ✓ ✓

Gives anomaly on diverse abstraction levels ✗ ✗ ✗ ✗ ✗ ✗ ✓

13.2.5 Anomaly detection in low-dimensional data

In this chapter, we concentrate on semisupervised probabilistic methods based on DBN
representations for time-series data. Several works have leveraged BNs and DBNs to perform
anomaly detection in various fields (Mascaro et al., 2014; Bronstein et al., 2001; Salotti, 2018).
This type of networks, allowing a hierarchical probabilistic representation of the world, is
particularly appropriate for autonomous systems that try to reflect human reasoning. BNs
additionally allow to build a hierarchy of anomalies.

In particular, Markov Jump Particle Filter (MJPF) has been used as a basic Bayesian filter
applied on DBNs to perform anomaly detection on low-dimensional data from different types
of sensors of multimodal physical agents like semiautonomous vehicles, as odometry data in
Baydoun et al. (2018) and control information in Kanapram et al. (2019).

13.2.6 Anomaly detection in high-dimensional data

As video data is high-dimensional, it cannot be elaborated pixel-wise in a time-efficient
way by most anomaly detection algorithms developed for low-dimensional data – including
MJPF. Instead, features need first to be extracted from the video data, allowing the problem
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to be reformulated in a lower dimensionality (Chong and Tay, 2015). The process of feature
extraction can either be accomplished through hand-crafted methods or through Deep Learn-
ing (DL) based methods. In the first case, human knowledge about specific problems such as
occlusion, variations in orientation, scale, or illumination is exploited to develop feature ex-
tractors; one famous example among many is that of the Histogram of Oriented Gradients
(HOG) (Dalal and Triggs, 2005). In DL based methods, NNs are trained to extract from data
the relevant features for a specific task by minimizing a loss function. As DL based methods
have largely proved to outperform hand-crafted ones (Antipov et al., 2015; Alshazly et al.,
2019; Nugroho, 2018), in this chapter we only consider the former ones.

Once dimensionality reduction is performed, many anomaly detection methods described
in Section 13.2.4 can be performed on the extracted features, as summarized in Table 13.1. Ad-
ditionally, when employing a feature extractor that also allows to perform reconstruction of
the original frames from the low-dimensional features, reconstruction based anomaly meth-
ods are typically used too. As defined by Kiran et al. (2018), these types of method learn to
reconstruct normal frames or video sequences, and identify badly reconstructed data sam-
ples as anomalies; they typically use techniques such as Principal Component Analysis or
Autoencoders. Generative models like VAEs and GANs can be similarly used too, addition-
ally displaying the ability to learn the underlying distribution of data at the observation level.

This ability of VAEs and GANs is in line with the spirit of this chapter, as it focuses its
attention on the development of a method that is probabilistic and that can consequently be
inserted inside a DBN framework for capturing anomalies and exploiting them to perform
the continual learning of models in time-series data. By reducing the dimensionality of the
observed frames, VAEs and GANs can be used as nonlinear observation models in the DBN
framework described in Sec. 13.2.2.

As VAEs are able to explicitly describe the probability distribution of the underlying data,
several works have attempted to use them for the creation of a linear switching model for
high dimensional data (Watter et al., 2015; Johnson et al., 2016; Fraccaro et al., 2017; Becker-
Ehmck et al., 2019). These works however did not consider anomaly detection and continual
learning of models as an objective. Additionally, experiments were until now conducted on
very simple datasets displaying only basic motions and observations from a static view point.

Another work (Ravanbakhsh et al., 2020) instead coupled GANs and DBNs contemplat-
ing at the same time anomaly detection and continual learning. In this work, a hierarchy
of coupled cross-modal GANs is developed. When a high anomaly is produced due to the
detection of abnormal observations or abnormal dynamics, a new GAN is built for learn-
ing the new situation. Instead of a MJPF, a Switching model is developed, consisting of the
hierarchy of GANs at the continuous level and of an HMM at the discrete level. However,
due to the learning of the data probability without explicit parametrization – as is intrinsic
to GANs – this method has limitations and does not contemplate the possibility of using
some of the anomaly distances typically used for statistic anomaly detection methods (see
Sec. 13.2.4).

The closest works to the one proposed in this chapter are those of Slavic et al. (2021, 2020)
and Campo et al. (2020), in which a coupling of VAE and MJPF is introduced, with the objec-
tive of performing anomaly detection and continual learning of models.
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13.3 Framework for computing anomaly in self-aware systems

13.3.1 General framework description

The proposed framework is described in Fig. 13.2. Low and high dimensional data can
be given as input to the framework. After executing preprocessing on low-dimensional data
and feature extraction through the VAEs’ encoders on high-dimensional data, a Generalized
State vector is built including the filtered states as generalized errors obtained from the ini-
tial model which is activated during the real-time inference during the initial iteration. In
this case, the initial model represents static rules of the surrounding environment (i.e. the
expected dynamic changes are quasi null and are affected by only random perturbations).
Performing clustering on the Generalized Errors, a Generalized Dynamic Bayesian Network
(GDBN) model is learned. When new data is obtained, the learned model is used to per-
form inference through the GDBN and different levels of anomalies are extracted (i.e., frame
anomaly, state anomaly, discrete level anomaly). If a high level of anomaly is detected, the
corresponding Generalized States and Generalized Errors are stored, and a new model is
built to be used in parallel with the previous ones in the next GDBNs inference.

From Fig. 13.2 we can also deduce the characteristics described in Table 13.1. i) First of all,
our method does not need any data labeling. Instead, it is semisupervised: a model is learned
and anomaly is detected w.r.t. it. ii) Both low and high dimensional data can be used as input.
In Fig. 13.2, odometry, steering angle, power and rotor velocity data from a vehicle are shown
as examples of low-dimensional data; video data from a camera as high-dimensional data;
iii) Time-series data is considered; iv) A probability model in the form of a GDBN is learned;
v) Anomalies w.r.t. this model is detected at different abstraction levels, specifically at the
frame level, continuous level and discrete level; vi) The detected anomalies are coupled with
a confidence range, as will be evident in Section 13.3.4; vii) When an anomaly is detected w.r.t.
a learned model, a new model is created, allowing incremental learning and an expansion of
previous knowledge.

In the following sections, a more detailed description of the framework is provided. The
training of the GDBN model is defined in Section 13.3.2. Sections 13.3.3 and 13.3.4 describe
the MJPF testing algorithm and its multilevel anomaly measurements, respectively. Finally,
in Section 13.3.5, the use of Generalized Errors obtained through the DBN anomalies is set as
a basis for the continual learning of new models. The index of the Section where each concept
is explained can also be found in red in Fig. 13.2 near its graphic representation.

13.3.2 Generalized dynamic Bayesian network (GDBN) model

Initially, a Self-Aware agent starts perceiving the surrounding environment using an initial
GDBN (i.e., a null force filter with static assumptions about the environmental states) by
interpreting the received generalized observations Z̃t = [Zt Żt ] that comprise the variable and
its generalized coordinates of motion coming from the agent’s sensors. In this case, the agent
detects abnormalities all the time and calculates the Generalized Errors (GE(X̃t )) expressed
as:

X̃t = [Xt Ẋt ] (13.5)
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FIGURE 13.2 Block diagram of the proposed method.

where, Xt are the predicted hidden states performed by the null force filter according to the
following dynamic model:

Xt = Xt−1 + vt (13.6)

while, Ẋt are errors on derivatives calculated as innovations by the null force filter using
current generalized observations as follows:

Ẋt = Zt − HXt−1

�t
. (13.7)

Consequently, the GEs collected in previous experience are used during the training phase
as input to an unsupervised clustering algorithm (e.g. Growing Neural Gas (GNG) (Fritzke,
1994), Self-Organizing Maps (SOMs) (Kohonen, 2001)) which encodes the GEs into discrete
components producing a set of discrete variables (S) or neurons which we refer to as super-
states, such that:

S = {S1, S2, . . . , SM} (13.8)

where M is the total number of superstates.
Note how the equations considered above refer to the low-dimensional data case, in which

the observation model is known, is linear and is expressed by the matrix H that maps obser-
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vations to hidden states. In the case of high-dimensional data, instead, we must first bring
data to a low-dimensionality through the use of a feature extractor. Therefore, the first part of
the GDBN that must be learned is the observation model itself. As observed in Section 13.2.6,
this can be performed through the training of networks such as VAEs and GANs. In this chap-
ter, we consider as example case the use of VAEs for such a task. To capture both information
of frame content and of motion between subsequent frames, we train a couple of VAEs, one to
reconstruct the frame at time t , zt , and the other to reconstruct the Optical Flow (OF) between
frames at time t and t + 1, OFt . The bottleneck is consequently divided in two parts: one,
that we call Xt , representing the state/content (from zt ); the other, that we call Ẋt , capturing
the motion/velocity information (from OFt ). Clustering is performed on the combination of
these two variables.

Once the dimensionality reduction process is performed, the rest of the method remains
mostly the same, with some adjustments and limitations.

After clustering, the M × M transition matrix (Π) defined as:

Π =
⎡
⎢⎣

π(St = S1)
...

π(St = SM)

⎤
⎥⎦ =

⎡
⎢⎣

π11 . . . π1M

...
. . .

...

πM1 . . . πMM

⎤
⎥⎦ (13.9)

is learned by estimating the transition probabilities πi,j = P(St = i|St−1 = i), i, j ∈ S over a
period of time. Thus, it is possible to create a set of generalized superstates S̃t defined as
follows:

S̃t = [St Ṡt ] = [
St E(St |St−1)

]
(13.10)

which includes the current discrete variable St and the event E(.) of transiting to that variable
conditioned to be in St−1 in the previous time instant. This set of discrete variables realizes
the top or discrete level of the GDBN. Each generalized superstate S̃t (S̃t ∈ S̃) is associated
with statistical properties as mean value (μ

S̃t
), covariance matrix (Σ

S̃t
) and a set of hidden

Generalized States (GSs) X̃t encoded inside it. The hidden continuous GSs (X̃t ) represent the
intermediate or continuous level of the GDBN. The relationship among the hidden states and
superstates is characterized by P(X̃t |S̃t ) link in the GDBN. The GDBN represents the hidden
variables in generalized coordinates of motion, which allows the SA agent to self-organize
by optimizing the joint posterior as new observations arrive and to encode continually new
concepts related to an emergent situation after detecting anomalies.

The bottom level in the GDBN stands for the real generalized observations (Z̃t ) measured
by the sensors. The path from S̃t to Z̃t realizes the chain of causality among random variables
at hierarchical levels. The probabilistic dependencies among the variables involved in the
chain of causality is characterized by the linked edges. Considering in this case the chain
rule, the joint probability of S̃t , X̃t and Z̃t ; P(S̃t , X̃t , Z̃t ), can be factorized as a product of the
conditional probabilities such as:

P(S̃t , X̃t , Z̃t ) = P(S̃t )P (X̃t |S̃t )P (Z̃t |X̃t ). (13.11)

This implies the possibility to use the model to generate new data samples given the direct
cause (i.e. the parent node). In addition, links between generalized hidden variables at consec-
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utive time instants represent the corresponding conditional temporal probabilities. Π embeds
the dynamic rules at the discrete level that drive the dynamic changes by switching between
multiple dynamic models at the continuous level. Such probabilistic causal reasoning in the
GDBN, allows to explain events, diagnose causes, and make predictions about future events
which improve the decision making/action processes. The transition probability P(S̃t |S̃t−1)

at the discrete level can be decomposed into:

S̃t = f (S̃t−1) + wt = f (πij ) + wt (13.12)

where f (.) is a nonlinear function that determines the superstates temporal evolution based
on the learned transition matrix and is subject to a process noise wt which is assumed to
be drawn from a zero multivaraite normal distribution with covariance Σt such that wt ∼
N (0,Σt ).

The dynamic causal models describing the state-space representation of a time-series pro-
cess – assuming that each observation Z̃t is generated from a d-dimensional hidden state X̃t

which by the way has been generated by a discrete hidden superstate S̃t – have the following
forms:

X̃t = g(X̃t−1, S̃t−1) + wt = AX̃t−1 + BU
S̃t

+ wt (13.13)

Z̃t = h(X̃t ) + vt = HX̃t + vt . (13.14)

The continuous function g(.) in Eq. (13.13) is assumed to be linear and determines the state
temporal evolution at the continuous level guided by the discrete level predictions and it is
subject to a Gaussian noise wt . In Eq. (13.13), A and B are the dynamic model matrix and
the control model matrix, respectively. A different control vector U

S̃t
is associated to each

superstate S̃t that depends on the mean derivative of X̃t samples encoded in that superstate.
So, Π encodes not only the transitions between superstates but also jumps between different
linear models at the continuous level. In Eq. (13.14), H is the observation matrix that maps
hidden X̃t to observation Z̃t and vt is the measurement Gaussian noise with zero mean and
covariance Rt such that vt ∼ N (0,Rt ).

Note how, in the case of high-dimensional data, the observation model described in
Eq. (13.14) corresponds to the nonlinear transformation applied by the VAEs when perform-
ing feature extraction. Therefore, the function h is in this case nonlinear. Additionally, also
Eq. (13.13) can not be directly applied to describe the state temporal evolution, due to strong
nonlinearities that can be found in the GS. To keep the structure of the high-dimensional case
as similar to the low-dimensional one as possible, we choose to learn for each found super-
state a Neural Network N(S) describing the temporal evolution of the GS for that superstate.
Eq. (13.13) can therefore be substituted with the following expression:

X̃t = g(X̃t−1, S̃t−1) + wt = NS̃t (X̃t−1) + wt (13.15)

where wt is the error after convergence of the network and can be approximated as a Gaussian
noise.
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FIGURE 13.3 The proposed Generalized Dynamic Bayesian Network.

Fig. 13.3 summarizes the proposed GDBN. In red, the intraframe connections are linked to
their corresponding element: P(Z̃t−1|X̃t−1) is the observation model and corresponds to ma-
trix H in the low-dimensional case and to the VAE’s decoder Pφ(Z̃|X̃) in the high-dimensional
case; the link P(X̃t−1|S̃t−1) is correlated with the cluster covariance Σ

S̃t
. In green, the inter-

frame connections are displayed: the prediction model P(X̃t |X̃t−1) is chosen through the local
motion U

S̃t
in the low-dimensional case and through the NN NSt in the high dimensional case;

P(S̃t |S̃t−1) is encoded by the transition matrix Π .

13.3.3 Real-time inference algorithm

The Markov Jump Particle Filter (MJPF) firstly introduced in Baydoun et al. (2018) is here
employed during the real-time process to perform inferences at different hierarchical levels
starting from the learned GDBN model. MJPF realizes a switching model that uses a com-
bination of Particle Filter (PF) to predict discrete superstates and a bank of Kalman Filters
(KFs) for continuous states’ prediction and estimation. In the case of GSs extracted from high-
dimensional data, in which we apply a nonlinear model to perform state prediction, a bank
of Unscented Kalman Filters (UKF) (Wan and van der Merwe, 2000) can be used instead, as
performed in Slavic et al. (2020). Such a switching behavior between the dynamic transitions
at discrete/continuous levels and observations permits updating of belief in hidden vari-
ables by passing local messages in simultaneous inference modes, namely the predictive or
causal inference (top-down) and the diagnostic inference (bottom-up). Temporal predictive
messages (π(S̃t ), π(X̃t )); refer to Fig. 13.3) depend on the dynamic rules stored in the model
while the hierarchical intraslice top-down messages from S̃t to X̃t depend on the clustering
statistics including mean values and covariance matrices. The bottom-up reasoning is based
on likelihood models consisting of messages (λ(S̃t ), λ(X̃t )); refer to Fig. 13.3) passing in a
feed-backward manner to adjusting expectations given a sequence of observations. The PF
relies on the transition matrix encoded in the dynamic model as a proposal distribution to
predict future superstates (S̃n

t ). Initially, it draws N samples from that distribution which are
equally weighted and associated to a specific superstate such that:

〈S̃n
t ,Wn〉 ∼ 〈π(

S̃n
t

)
,1/N〉. (13.16)
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Then, for each particle (.n), a KF is employed to predict the continuous variables X̃t which
depend on the expected superstate as pointed out in Eq. (13.13) and can be expressed in
terms of conditional probability P(X̃t |X̃t−1, S̃

n
t ). The posterior probability associated with the

predicted state is defined as:

π(X̃t ) = P(X̃t , S̃t |Z̃t−1) =
∫

P(X̃t |X̃t−1, S̃t )

P (Z̃t−1|X̃t−1)︷ ︸︸ ︷
λ(X̃t−1) dX̃t−1. (13.17)

Accordingly, once a new evidence Z̃t is observed, a message back-ward propagated from the
bottom-level towards the higher levels can be exploited by the MJPF to estimate the posterior
probability P(X̃t , S̃

n
t |Zt) in the following way:

P(X̃t , S̃t |Z̃t ) = π(X̃t )λ(X̃t ). (13.18)

Consequently, the weights of the corresponding particle can be updated according to:

Wn
t = Wn

t λ(S̃t ) (13.19)

and then normalized following the Sequential Importance Resampling (SIR) approach. In
Eq. (13.19), λ(S̃t ) is the diagnostic message propagated from bottom towards the top level of
hierarchy to update the belief in hidden variables at that level and can be calculated as:

λ(S̃t ) = λ(X̃t )P (X̃t |S̃t ) = P(Z̃t |X̃t )P (X̃t |S̃t ) (13.20)

where P(X̃t |S̃t ) ∼ N (μ
S̃k

, Σ
S̃k

) denotes a Gaussian distribution with mean μ
S̃k

and covariance
Σ

S̃k
. While, λ(X̃t ) ∼ N (μ

Z̃t
,R) denotes a Gaussian distribution with mean μ

Z̃t
and covariance

R. The multiplication between λ(X̃t ) and P(X̃t |S̃t ) can be obtained by calculating the Bhat-
tacharyya distance (DB ) as follows:

DB

(
λ(X̃t ),P (X̃t |S̃t = S̃k)

) = − ln
∫ √

λ(X̃t )P (X̃t |S̃t = S̃k)dX̃t (13.21)

where S̃k ∈ S̃. The vector Dλ containing all the DB values between λ(X̃t ) and all the super-
states in the set S̃ is here estimated as:

Dλ = [
DB

(
λ(X̃t ),P (X̃t |S̃t = S̃1)

)
, . . . ,DB

(
λ(X̃t ),P (X̃t |S̃t = S̃L)

)]
. (13.22)

Therefore, the vector λ(S̃t ) in terms of probability is:

λ(S̃t ) =
[

1/Dλ(1)

1/
∑L

l=1 Dλ(l)
, . . . ,

1/Dλ(L)

1/
∑L

l=1 Dλ(l)

]
. (13.23)

In classical Bayesian filtering, predictive and diagnostic reasoning is used to estimate a
joint posterior at different hierarchical levels. However, an indispensable step is missed in
this process to evaluate the differences between two messages arriving at a given node based
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on a probabilistic metric that estimates the surprise caused by observations which can not
be explained by the model. The following section shows how to provide a Self-Aware agent
with the capability to detect multimodal abnormalities which are the basis to continually
update the knowledge about the perceived environment and encode new concepts related to
the emergent abnormal behavior.

13.3.4 Multimodal abnormality measurements

In the proposed approach, classical Bayesian inference (i.e., MJPF) is enriched with ad-
vanced functionality that exploits a probabilistic distance between top-down and bottom-up
messages incoming to a generic node at different levels inside the GDBN to define hierarchi-
cal abnormality measurements. Such probabilistic distances quantify the similarity between
two probability distributions (π(X ) and λ(X )) over the domain X which can be continuous
or discrete distributions. Several important probabilistic distances include the following:

• Bhattacharrya distance (DB ) (Bhattacharyya, 1946): this distance has been proposed to re-
flect the degree of dissimilarity between two probability distributions. It is based on the
Bhattacharyya Coefficient (BC) that approximates the amount of overlap between two dis-
tributions. In the case of discrete probability distributions BC is defined as follows:

BC
(
π(X ), λ(X )

) =
∑
x∈X

√
π(x)λ(x) (13.24)

while, in the case of continuous distributions:

BC
(
π(X ), λ(X )

) =
∫ √

π(X )λ(X )dX . (13.25)

Thus, the Bhattacharrya distance DB is defined through the BC in the following way:

DB = − ln
[
BC

(
π(X ), λ(X )

)]
. (13.26)

In either cases (discrete and continuous distributions), 0 ≤ BC ≤ 1 and 0 ≤ DB ≤ ∞.
• Hellinger distance (DH ) (Beran, 1977): this distance (DH ) is also related to the Bhat-

tacharyya Coefficient (BC) and it can be defined as:

DH =
√

1 −BC
(
π(X ), λ(X )

)
(13.27)

and satisfies the following property: 0 ≤ DH ≤ ∞.
• Kullback–Leibler divergence (DKL) (Kullback and Leibler, 1951): the DKL is a way to mea-

sure the matching between two probability distributions. If two distributions perfectly
match then DKL = 0, otherwise it ranges between 0 and ∞. The DKL between two dis-
crete probability distributions can be formulated as:

DKL

(
π(X )||λ(X )

) =
∑
x∈X

π(x) log
π(x)

λ(x)
(13.28)
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while for continuous distributions it is defined in the following way:

DKL

(
π(X )||λ(X )

) =
∫

π(X ) log
π(X )

λ(X )
dX . (13.29)

• Bregman Divergence (BD) (Bregman, 1967): BD measures the distance between two distri-
butions defined in terms of a strictly convex function (φ).

BD = φ
(
π(X )

) − φ
(
λ(X )

) − �φ
(
λ(X )

)(
λ(X ) − π(X )

)
(13.30)

where �φ(λ(X )) is the gradient of φ at λ(X ) and BD ≥ 0.

In the following subsections, we use some of the aforementioned probabilistic distances as
examples to associate abnormality metrics with the different levels of the GDBN.

13.3.4.1 Discrete level

The abnormality indicator at the discrete level is defined as a distance between the predic-
tive (π(S̃t )) and diagnostic (λ(S̃t )) messages entering to node S̃t . Such a difference provides
an awareness signal indicating of how the real sensory signals received from the surround-
ing environments behave with respect to the rules encoded in the generalized model. We use
the symmetric Kullback-Leibler Divergence as an example to measure the similarity between
the two discrete probability distributions (π(S̃t ) and λ(S̃t )). The Kullback-Leibler Divergence
Abnormality (KLDA) as defined in Krayani et al. (2020) has the following form:

KLDA = DKL

(
π(S̃t )||λ(S̃t )

) + DKL

(
λ(S̃t )||π(S̃t )

)
. (13.31)

At each time instant t the histogram of the predicted particles is extracted and the probability
of occurence of each particle is calculated as:

p(S̃t = i) = y(S̃t = i)

N
i ∈ S̃ (13.32)

where y(.) is the frequency of occurrence of a specific superstate i and N is the total number
of particles propagated by PF. It is worth noting that λ(S̃t ) is unique for all particles at time
instant t . Let’s define S as the set of winning particles whose probability of occurrence is
greater than zero such that:

S = {
i|p(S̃t = i) > 0

}
i ∈ S. (13.33)

DKL is calculated between λ(St ) and specific rows of the transition matrix related to the win-
ning particles in S. Hence, (13.31) becomes:

KLDA =
∑
i∈S

[
p(i)

M∑
j=1

πij log

(
πij

λj

)]
+

∑
i∈S

[
p(i)

M∑
j=1

λj log

(
λj

πij

)]
. (13.34)
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13.3.4.2 Continuous level
At this level we will focus on the messages entering to node X̃t and calculate the corre-

sponding abnormality measurements defined as statistical metrics based on a probabilistic
distance (e.g. DB , DH , DKL, etc.). The message P(X̃t |S̃t ) forwarded towards the intermediate
level describes the probability of having the prediction X̃t in a certain superstate. Thus calcu-
lating the difference between the predictive message π(X̃t ) and P(X̃t |S̃t ) allows to evaluate if
the predictions performed at the discrete level match the prediction done at the continuous
level. For example, such a difference can be obtained through the DB distance in the following
way:

Db2 = DB

(
π(X̃t ),P

(
X̃t |S̃n

t

)) = − ln
∫ √

P
(
X̃t , S̃

n
t |Z̃t−1

)
P

(
X̃t |S̃n

t

)
dX̃t . (13.35)

On the other hand, it is important to evaluate how much the real observations support the
predictions performed at the continuous level which lead to detect any abnormal behavior
occurred in the surrounding environment. The second abnormality at the continuous level
can be calculated as the difference between the observations (λ(X̃t )) and the predicted gener-
alized states (π(X̃t )) which is also based on the probabilistic distances defined previously (e.g.
DB , DH , DKL, etc.). For example using DB distance, the second abnormality at the continuous
level can be formulated as:

Db1 = DB

(
π(X̃t ), λ(X̃t )

) = − ln
∫ √

P
(
X̃t , S̃

n
t |Z̃t−1

)
P(Z̃t |X̃t )dX̃t . (13.36)

13.3.4.3 Observation level
The anomaly at this level is particularly informative in the case of high-dimensional data.

In general, two types of observation-level anomalies can be distinguished: i) the direct re-
construction error due to having learned an observation model that is not suitable for the
observed data. This is the case, for example, of anomalies due to previously unseen contents
and elements appearing in the scene. These anomalies lead to a high discrepancy between
the observed image, Xt , and its reconstruction, X̂t through the VAE network. ii) the distance
between the observation, Xt , at t and the predictive message π(X̃t ) forward propagated from
the continuous level towards the node Zt . From the practical point of view, this can be inter-
preted through the calculation of an frame and OF anomaly such as the Mean Squared Error
(MSE) between the predicted image, Ẑt−1, at time t − 1 and the observed image, Xt , at time
instant t .

13.3.5 Use of generalized errors for continual learning

In the previous sections, we have seen how the described framework allows to enrich the
GDBN architecture and leverage its message-passing concept for the calculation of anomalies
and GEs.

The objective of anomaly indicators is to provide the agent with the capability of under-
standing whether the models that it is using are suitable or not to predict the evolution of
the world and of its own state in the situation it is sensing and experiencing. As shown in
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Fig. 13.2, in the “Continual Learning” diagram, when high anomalies are detected, the agent
is alerted that it should learn a new model. It consequently stores the corresponding GEs.

On the other hand, the purpose of GEs is identifying which actions the filter has to execute
in order to correct the predictions it performed. A new model learned from the GEs is one that
minimizes the GEs on the same type of sequence as the one on which they had been identified.
A clustering process is performed again and a new model is inserted in the vocabulary of
learned models.

To summarize, anomalies indicate that a new model should be created, whereas GEs instruct
the agent on how the new model should be created.

It is to note how, in the high-dimensional case, some limitations to the Continual Learn-
ing through GEs are present. New observations (e.g., new objects appearing in the scene, new
types of environments, etc.) could be detected. In this case, the training of a new VAE is neces-
sary. In this situation, testing requires the use of multiple VAEs (and so, multiple observation
models) in parallel.

13.4 Case study results: anomaly detection on multisensory data from a
self-aware vehicle

13.4.1 Case study presentation

As a case study on which to present the framework described in Section 13.3, anomaly de-
tection on multisensory data from a moving vehicle is performed. The vehicle, called “iCab”
(Marın-Plaza et al., 2016), displayed in Fig. 13.4a, is maneuvered by a human while perform-
ing different tasks in the closed environment shown in Fig. 13.4b. Different data types (i.e.,
video from an onboard front camera, odometry data, control data, etc.) are extracted from the
vehicle. We choose to consider odometry data and video data in detail and provide additional
examples regarding control data (Steering Angle, Rotor Velocity, Power). As odometry obser-
vations have dimension d = 2, they constitute the example for a low-dimensional sensor. On
the other hand, image data has an initial dimension of d = 640 × 480, providing a study case
for the treatment of high-dimensional data. Both these types of sensors are what we defined
in the Introduction of the chapter as “exteroceptive sensors”.

To perform training on an initial model, as displayed in Fig. 13.2, we take data from a
case in which the vehicle moves around the environment without being influenced by exter-
nal agents, i.e., it performs Perimeter Monitoring (PM) of the courtyard. Two other tasks are
proposed, in which the vehicle is hindered in its original PM movement by the presence of
pedestrians. Consequently, as the driver must perform new motions to avoid them, anoma-
lies should be detected w.r.t. the first learned model. These two abnormal tasks differentiate
themselves based on where the pedestrian is located and, as a consequence, how the driver
avoids them: in one case (Fig. 13.5c), the pedestrian, at the center of the courtyard lane, is
avoided by moving on its side (PA); in the other case (Fig. 13.5e), as the pedestrian is at a
corner of the environment, it is avoided through a U-turn motion (U-turn).

Fig. 13.5 displays the proposed tasks by showing the positions that the vehicle covers
across time (left side, i.e., Fig. 13.5a, 13.5c, 13.5e) and some of the images taken from the
front camera (right side, i.e., Fig. 13.5b, 13.5d, 13.5f).
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FIGURE 13.4 Employed vehicle and environment.

13.4.2 DBN model learning

As a first step of the described framework, an initial model must be learned. In the case
of the odometry data, the observation model is known and is given by matrix H , defined as
seen in Section 13.3.2. The model’s components to be learned are: i) the discrete superstates
found with a clustering algorithm as the GNG (Fritzke, 1994), with their statistical properties
(i.e., mean value μSk

, covariance matrix ΣSk
); ii) the transition matrix Π describing the links

between superstates. On the other hand, in the case of video data, the parameters of the
encoders and decoder of the VAE must be learned too, which corresponds to estimating the
DBN’s observation model. Additionally, in this second case, the NNs capturing the prediction
model inside each cluster must be trained too.

Through this step, the normality model is learned. In the presented case study, the PM data
is used to obtain this initial model.

Fig. 13.6 displays the performed clustering on the odometry and video (13.6b) data. Ob-
serving the odometry case (13.6a), the mean values μSk

for each cluster can be visually rec-
ognized as the mean value of the position data of the clusters (shown through the cyan dots)
and the mean values of the speed data of the clustered (displayed through the blue arrows).
Additionally, the dashed circles are proportional to the standard deviation of the clusters’
positions, which can be extracted from the diagonal of ΣSk

. Note that the circumference has
been approximated for better visualization purposes through the maximum value along the
two directions. Instead, Fig. 13.6a represents clustering in the video case. As opposite sides
of the courtyard display similar visual appearance, while the same motions are performed, a
symmetry is present. A shadow area is assigned a unique separate cluster (cluster 1).

13.4.3 Multilevel anomaly detection

Once all the parameters of the initial model have been learned, it can be used to perform
inference when the data of the other two tasks are given. Anomalies can be detected between
the predictions performed with the model based on the PM task and the observations from
data extracted during the PA and U-turn tasks.
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FIGURE 13.5 The proposed tasks performed by the self-aware vehicle. The odometry data of the vehicle is dis-
played in blue on the left, whereas the red dots show where the pedestrian is located. On the right we propose some
images from the front camera of the vehicle, while performing the three tasks.

13.4.3.1 Pedestrian avoidance task

Figs. 13.7 and 13.8 show the anomalies detected when filtering with the above-described
framework on the odometry and on the video data, respectively. In the former case, anoma-
lies at continuous and discrete levels are displayed only, while in the latter, anomalies at the
observation level are shown too. Green areas refer to straight motion zones, yellow areas to
curving motion zones, and blue areas to zones displaying abnormal actions (i.e., the pedes-
trian avoidance maneuver).

In Fig. 13.7 we distinguish three plots. The black plot displays the mean value of the GEs,
that we call ε̃t . The red plot shows anomaly Db2 (Eq. (13.35)). To notice the similarity between
these two plots, as they both represent a comparison between π(Xk) and λ(Xk). Both of them
display high anomaly values corresponding to the Pedestrian avoidance motion and false
positives due to slightly irregular curving actions. However, it is to note how Db1 gives better
results, as it considers the full probability information of π(Xk) and λ(Xk), while ε̃t discards
the covariance information ΣSk

and only keeps the mean μSk
.
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FIGURE 13.6 Odometry and video Clustering.

FIGURE 13.7 Odometry multilevel anomaly values for Pedestrian Avoidance task.

Finally, the blue plot in Fig. 13.7 is related to anomaly Db1 (Eq. (13.36)). This anomaly
becomes particularly relevant at the center of the abnormal motion. For example, we could
observe that around time t = 600, particles get assigned to clusters relative to the curve on
the upper right of Fig. 13.6a, due to the motion mostly resembling this area. However, the
likelihood of being in that area is quite low.

The second plot of Fig. 13.7 refers to the KLDA anomaly described in Eq. (13.34). Pedes-
trian avoidance zones clearly display a very high anomaly value, a consequence of abnormal
passages between clusters.

Fig. 13.8 displays these same types of anomalies in the video data case. Additionally, the
first plot shows anomalies at the observation level. Black and blue lines refer to the direct VAE
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FIGURE 13.8 Video multilevel anomaly values for Pedestrian Avoidance task.

FIGURE 13.9 Odometry multilevel anomaly values for pedestrian avoidance through U-turn task.

reconstruction anomalies, signaling an unsuitable observation model. On the other hand, red
and green anomalies are the image-level errors due to discrepancy between observation and
prediction.
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FIGURE 13.10 Video multilevel anomaly values for pedestrian avoidance through U-turn task.

13.4.3.2 U-turn task

Fig. 13.9 and Fig. 13.10 display the odometry and video anomalies in the U-turn task. In
this case, the blue area shows the zone where U-turn is performed. In the area between these
two zones, the vehicle moves with similar motions observing similar images to those of train-
ing, but with opposite direction. It consequently follows from this that: i) anomalies ε̃t and
Db2 in the odometry case (Fig. 13.9) display high values only in correspondence to the ab-
normal U-turn motions and curves on opposite directions to that of training; ii) anomaly Db1
and KLDA show a high value along all the U-turn motion and while the car is moving with
opposite direction to that of training. In both cases, this derives from particles being assigned
to clusters on the other side of the courtyard, resulting in a high discrepancy between cluster
values and predictions for CLA and abnormal transitions for KLDA. iii) In the video case
(Fig. 13.10), high anomalies appear in correspondence to the U-turn motion and to perform-
ing curves in the opposite direction to that of training only.

13.4.3.3 Image-level anomalies

Fig. 13.11 displays examples of image-level behavior. The first two columns and the last
two ones report actual frame and OF data at consequent time instants; the third and fourth
columns show the direct reconstructions through the VAE; the fifth and sixth columns display
the prediction’s reconstruction.
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FIGURE 13.11 Examples of image-level anomalies. With the symbol R{X} we express in a concise way the de-
coding of the latent variable X through the VAE decoder.

Three example cases are shown. i) In the first row, an example of normal straight motion
taken from the PA dataset is reported. ii) In the second row, we display a time instant previous
to the start of the avoidance maneuver in the PA dataset. The presence of the pedestrian
causes an anomaly that is strictly related to the observation model. A new VAE should be
trained to learn the “pedestrian” concept. iii) In the third row, we have an anomaly due to
performing a curve in the opposite direction w.r.t. training, in the U-turn dataset. To note how,
despite not being optimal, the reconstruction is reasonable. On the other hand, the prediction
model can capture the anomaly in a more evident way. This is because, when observing the
curve-related part of the courtyard, we could expect to be moving left (see the red color of the

predicted OF R{ ˆ̇Xt }), but instead we perform a turn to the right.

13.4.3.4 Anomaly detection evaluation

To evaluate the anomaly detection method, the anomaly estimation obtained at the differ-
ent abstraction levels is compared with the Ground Truth (GT). The GT of the PA and U-turn
scenarios are built by hand, considering the vehicle’s motion for the odometry data. In the
odometry U-turn case, the entire sequence from the beginning of the first U-turn to the end of
the second one is considered abnormal, as the vehicle moves in the opposite direction w.r.t.
training. For the video data, 10 frames before starting the abnormal maneuver are added to
the positive GT to account for the pedestrian’s presence; additionally, a simple shadow de-
tection method is used to account for abnormal shadow zones.

In Figs. 13.12 and 13.13, the Receiver Operating Characteristic (ROC) curves are shown for
the anomaly results on odometry and video data, respectively. A ROC curve plots the values
of True Positive Rate (TPR) and False Positive Rate (FPR) at different anomaly thresholds,
where T PR = T P

T P+FN
and FPR = FP

FP+T N
. In our case, TPR and FPR consist respectively in

the percentage of times in which anomalies are correctly identified and in which they are
incorrectly assigned. The AUC (Area Under the Curve) can be used as a measurement of the
performance of the method. Another measure of performance is the accuracy (ACC), given
by the sum of True Positives (TPs) and True Negatives (TNs). In the field of incremental self-
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FIGURE 13.12 ROC curves for odometry data.

FIGURE 13.13 ROC curves for video data.

aware systems, further evaluation methods could be used, e.g., how good are the anomalies
to extract errors allowing to build better models.

In Fig. 13.12, the two continuous anomaly values (i.e., Db1 and Db2) are normalized and
summed together to provide a single anomaly value, displaying much higher performance
than its two separate components.
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FIGURE 13.14 Control data (SP, SV) anomaly at continuous level for pedestrian avoidance case.

13.4.4 Proprioceptive sensory data anomalies

Some in-detail descriptions of training and testing using odometry and video data were
provided in the previous sections. They all constituted examples of exteroceptive data sensors
of the vehicle. Besides exteroceptive sensors, in a Self-Awareness framework, proprioceptive
sensors of the vehicle should be considered too. These include, for example, Steering Angle
(S), Rotor Velocity (V), and Power (P).

Fig. 13.14 and Fig. 13.15 show results of Db2 anomaly on Pedestrian Avoidance and U-turn
case, respectively. The three control features – i.e., S, V, and P – can be combined in different
ways to form the considered sensory data on which to build the GDBN model. In Fig. 13.14
we report results using the combinations SP (Steering Angle and Power) and SV (Steering
Angle and Rotor Velocity) on the PA task; in Fig. 13.14 we show the combinations SP, SV and
VP (Rotor Velocity and Power) on the U-turn task. In both cases, the green areas correspond to
normal zones and the blue areas to abnormal zones, i.e., Pedestrian Avoidance in the first case
and U-turn in the second one. Results related to the control data can be found in Kanapram
et al. (2019).

13.4.5 Additional results

The provided study case considered anomalies from a semiautonomous vehicle frame-
work, proposing both low-dimensional, high-dimensional, proprioceptive, and exteroceptive
data. A system with a single agent (vehicle) was considered, but systems with multiple agents
could be handled too, and the interaction between them modeled at a higher layer, as done
by Kanapram et al. (2020).

It is important to note that the described method can be applied to data from other appli-
cations too, e.g., self-aware radios. Results in that direction can be examined in the work by
Krayani et al. (2020).
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FIGURE 13.15 Control data (SP, SV, VP) anomaly at continuous level for U-turn case.

In all these works, anomalies on a maximum of three levels have been considered. How-
ever, higher abstraction levels and, consequently, higher levels of anomalies could be defined.
An example in this direction is provided by Zaal et al. (2019): for each task, a graph is obtained
connecting adjacent clusters; where a high anomaly on the graph is detected, an emergent
concept is found.

13.5 Conclusions

In this chapter, we presented a framework to detect anomalies in time-series data for a Self-
Aware system. Under the Self-Awareness framework, an agent dealing with multimedia data,
including high and low dimensional data, is capable of detecting anomalies at hierarchical
levels, which realize an essential step to continually learn a new dynamic model that encodes
the emergent abnormal behavior. For the high dimensional data, a VAE is used to reduce
the data-dimensionality. The features are extracted and incorporated in a generalized state
vector, whereas in low dimensional data, features are extracted directly from observations
and incorporated in a generalized state vector. Training the dynamic model as a probabilistic
graphical model structured in a Dynamic Bayesian Network (DBN) forms the bridge between
high and low dimensional data. It is shown how the messages passing inside the DBN can be
exploited to define a hierarchy of anomalies based on probabilistic distances. A real data-set
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is used to evaluate the framework, and results shown that multimodal abnormalities can be
detected effectively by the Self-Aware agent.
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14
Deep plug-and-play and deep
unfolding methods for image

restoration
Kai Zhang and Radu Timofte

Computer Vision Lab, ETH Zürich, Zürich, Switzerland

CHAPTER POINTS

• The merits and drawbacks of model-based
methods and learning-based methods for
image restoration are discussed.

• Deep plug-and-play methods and deep
unfolding methods can take advantage of
both learning-based methods and
model-based methods.

• Experimental results demonstrate the
flexibility and effectiveness of deep
plug-and-play methods and deep
unfolding methods for image restoration.

14.1 Introduction

Image restoration (IR) has been a long-standing problem for its highly practical value
in various low-level vision applications (Richardson, 1972; Andrews and Hunt, 1977). This
chapter focuses on three representative and fundamental IR problems: denoising, deblur-
ring, and superresoution. In general, the purpose of IR is to recover the latent clean image x
from its degraded observation y = (x ⊗ k)↓s +n, where ⊗ represents two-dimensional con-
volution of x with blur kernel k, ↓s denotes the standard s-fold downsampler, i.e., keeping
the upper-left pixel for each distinct s × s patch and discarding the others, and n is usually
assumed to be additive, white Gaussian noise (AWGN) specified by standard deviation (or
noise level) σ . The above degradation model is a general model for single image superreso-
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lution (SISR). However, if the scale factor s is 1, it becomes an image deblurring degradation
model; by further fixing k as a delta kernel, it turns into a denoising degradation model.

Since IR is an ill-posed inverse problem, the prior, which is also called regularization, needs
to be adopted to constrain the solution space (Roth and Black, 2009; Zoran and Weiss, 2011).
From a Bayesian perspective, the solution x̂ can be obtained by solving a Maximum A Poste-
riori (MAP) estimation problem,

x̂ = arg max
x

logp(y|x) + logp(x), (14.1)

where logp(y|x) represents the log-likelihood of observation y, logp(x) delivers the prior of
clean image x and is independent of degraded image y. More formally, (14.1) can be reformu-
lated as

x̂ = arg min
x

1

2σ 2
‖y − (x ⊗ k)↓s ‖2 + λR(x), (14.2)

where the solution minimizes an energy function composed of a data term 1
2σ 2 ‖y − (x ⊗ k)↓s

‖2 and a regularization or prior term λR(x) with regularization parameter λ. Specifically, the
data term guarantees that the solution accords with the degradation process, while the prior
term alleviates the ill-posedness of the problem by enforcing the desired property on the
solution.

Generally, the methods to solve Eq. (14.2) can be divided into two main categories,
viz, model-based methods and learning-based methods. The former aim to directly solve
Eq. (14.2) with some optimization algorithms, while the latter mostly train a predefined
parameterized function by optimization of a loss function on a training set containing N

degraded-clean image pairs {(yi ,xi )}Ni=1 (Tappen, 2007; Barbu, 2009; Sun and Tappen, 2013;
Schmidt and Roth, 2014; Chen and Pock, 2017). In particular, the learning-based methods are
usually modeled as the following bi-level optimization problem

⎧⎪⎪⎨
⎪⎪⎩

min
Θ

N∑
i=1

L(x̂i ,xi ) (14.3a)

s.t. x̂i = f (yi ,Θ), (14.3b)

where Θ denotes the trainable parameters, L(x̂i ,xi ) measures the loss of estimated clean im-
age x̂i with respect to ground truth image xi .

The main difference between model-based methods and learning-based methods is that
the former are flexible to handle various IR tasks by simply specifying the degradation
operations and can directly optimize on the degraded image y, whereas the later require
cumbersome training to learn the model before testing and are usually restricted by special-
ized tasks. Nevertheless, learning-based methods can not only enjoy a fast testing speed but
also tend to deliver better performance due to the end-to-end training. In contrast, model-
based methods are usually time-consuming with sophisticated priors for the purpose of good
performance (Gu et al., 2014). For example, model-based methods such as NCSR (Dong et
al., 2013) are flexible to handle denoising, superresolution and deblurring, whereas learning-
based methods MLP (Burger et al., 2012), SRCNN (Dong et al., 2016), DCNN (Xu et al., 2014)
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are designed for these respective tasks. Even for a specific task such as denoising, model-
based methods (e.g., BM3D (Dabov et al., 2007) and WNNM (Gu et al., 2014)) can handle
different noise levels, whereas the learning-based method of (Jain and Seung, 2009) sepa-
rately trains a different model for each level. As a result, these two categories of methods
have their respective merits and drawbacks, and thus it would be attractive to investigate
their integration to leverage their respective merits.

The integration of model-based methods and learning-based methods has resulted in the
deep plug-and-play IR method which replaces the denoising subproblem of model-based
optimization with the learning-based CNN denoiser prior. The main idea of deep plug-
and-play IR is that, with the aid of variable splitting algorithms, such as the alternating
direction method of multipliers (ADMM) (Boyd et al., 2011) and half-quadratic splitting
(HQS) (Geman and Yang, 1995), it is possible to deal with the data term and prior term sep-
arately (Parikh et al., 2014), and particularly, the prior term only corresponds to a denoising
subproblem (Danielyan et al., 2010; Heide et al., 2014; Venkatakrishnan et al., 2013) which can
be solved via a deep CNN denoiser. Hence, one can treat the deep plug-and-play method as
a special case of model-based methods.

Apart from deep plug-and-play methods, deep unfolding methods can also integrate
model-based methods and learning-based methods. Their main difference is that the latter
optimize the parameters in an end-to-end manner by minimizing the loss function over a
large training set, and thus generally produce better results even with fewer iterations. Math-
ematically, the deep unfolding method can be modeled as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
Θ

N∑
i=1

L(x̂i ,xi ) (14.4a)

s.t. x̂i = arg min
x

1

2σ 2
‖yi − (x ⊗ k)↓s ‖2 + λR(x). (14.4b)

In other words, the deep unfolding method aims to replace the predefined function Eq. (14.3b)
with the unfolding inference Eq. (14.4b), thus one can treat it as a special case of learning-
based methods. The main idea of deep unfolding IR is to first unfold the model-based energy
function via a half-quadratic splitting algorithm to obtain an inference which iteratively al-
ternates between solving two subproblems, one related to a data term and the other to a prior
term, and then to treat the inference as a deep network, by replacing the solutions to the two
subproblems with neural modules. Since the two subproblems correspond respectively to en-
forcing degradation consistency knowledge and guaranteeing denoiser prior knowledge, the
deep unfolding method is well-principled with explicit degradation and prior constraints,
which is a distinctive advantage over plain learning-based SISR methods. Fig. 14.1 shows an
illustration of the connections between learning-based methods, model-based methods, deep
plug-and-play methods, and deep unfolding methods.

The rest of this chapter is organized as follows. Since both deep plug-and-play and deep
unfolding methods are highly related to variable splitting algorithms, we thus first introduce
one of the most popular ones, i.e., the half quadratic splitting (HQS) algorithm, in Section 14.2.
We then present the deep plug-and-play image restoration methods in Section 14.3. Specifi-
cally, we propose a highly flexible and effective CNN denoiser prior and then plug the deep
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FIGURE 14.1 An illustration of the connections between learning-based methods, model-based methods, deep
plug-and-play methods, and deep unfolding methods.

denoiser prior as a modular part into the HQS algorithm to solve various image restoration
problems. In Section 14.4, we provide the deep unfolding image restoration methods which
can handle deblurring and superresolution with different blur kernels and scale factors via a
single model. Section 14.5 shows the quantitative and qualitative results and also provides a
thorough analysis of hyper-parameter setting and intermediate results to better understand
the working mechanism of deep plug-and-play methods and deep unfolding methods.

14.2 Half quadratic splitting (HQS) algorithm

Although there exist various variable splitting algorithms to solve Eq. (14.2), the half-
quadratic splitting (HQS) algorithm owes its popularity to simplicity and fast convergence.
We therefore adopt HQS in this chapter. Typically, HQS tackles Eq. (14.2) by introducing an
auxiliary variable z, leading to the following approximate equivalence

Eμ(x,z) = 1

2σ 2 ‖y − (z ⊗ k)↓s ‖2 + λΦ(x) + μ

2
‖z − x‖2, (14.5)

where μ is the penalty parameter. Such a problem can be addressed by iteratively solving
subproblems for x and z

⎧⎨
⎩

zk =arg min z‖y − (z ⊗ k)↓s‖2+μσ 2‖z − xk−1‖2, (14.6)

xk =arg min x
μ

2
‖zk − x‖2 + λΦ(x). (14.7)

According to Eq. (14.6), μ should be large enough so that x and z are approximately equal to
the fixed point. However, this would also result in slow convergence. Therefore, a good rule
of thumb is to iteratively increase μ. For convenience, in the k-th iteration μ is denoted by μk .
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It can be observed that the data term and the prior term are decoupled into Eq. (14.6) and
Eq. (14.7), respectively. For the solution of Eq. (14.6), the fast Fourier transform (FFT) can
be utilized by assuming the convolution is carried out with circular boundary conditions.
Notably, it has a closed-form expression (Zhao et al., 2016)

zk =F−1
(

1

αk

(
d−F(k) �s

(F(k)d) ⇓s

(F(k)F(k)) ⇓s+αk

))
, (14.8)

where d is defined as

d = F(k)F(y ↑s) + αkF(xk−1)

with αk � μkσ
2 and where the F(·) and F−1(·) denote FFT and inverse FFT, F(·) denotes the

complex conjugate of F(·); �s denotes the distinct block processing operator with element-
wise multiplication, i.e., applying element-wise multiplication to the s×s distinct blocks of
F(k); ⇓s denotes the distinct block downsampler, i.e., averaging the s×s distinct blocks; ↑s
denotes the standard s-fold upsampler, i.e., upsampling the spatial size by filling the new
entries with zeros. For the special case of deblurring when s = 1, Eq. (14.8) can be concisely
written as

zk = F−1
(F(k)F(y) + αkF(xk−1)

F(k)F(k) + αk

)
. (14.9)

In other words, Eq. (14.8) generalizes Eq. (14.9). For the solution of Eq. (14.7), it is known that,
from a Bayesian perspective, it actually corresponds to a denoising problem with noise level
βk �

√
λ/μk (Chan et al., 2017).

14.3 Deep plug-and-play image restoration

Plug-and-play IR generally involves two steps. The first step is to decouple the data term
and prior term of the objective function via a certain variable splitting algorithm, resulting in
an iterative scheme consisting of alternately solving a data subproblem and a prior subprob-
lem. The second step is to solve the prior subproblem with any off-the-shelf denoisers, such
as K-SVD (Elad and Aharon, 2006), nonlocal means (Buades et al., 2005), BM3D (Dabov et al.,
2007). As a result, unlike traditional model-based methods, which need to specify the explicit
and hand-crafted image priors, plug-and-play IR can implicitly define the prior via the de-
noiser. Such an advantage offers the possibility of leveraging a very deep CNN denoiser to
improve effectiveness.

The plug-and-play IR can be traced back to Danielyan et al. (2010); Zoran and Weiss (2011);
Venkatakrishnan et al. (2013). Danielyan et al. (2012) used Nash equilibrium to derive an iter-
ative decoupled deblurring BM3D (IDDBM3D) method for image deblurring. In Egiazarian
and Katkovnik (2015), a similar method equipped with CBM3D denoiser prior was proposed
for single image superresolution (SISR). By iteratively updating a back-projection step and a
CBM3D denoising step, the method has an encouraging performance for its PSNR improve-
ment over SRCNN (Dong et al., 2016). In Danielyan et al. (2010), the augmented Lagrangian
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method was adopted to fuse the BM3D denoiser to solve image deblurring task. With a sim-
ilar iterative scheme as in Danielyan et al. (2012), the first work that treats the denoiser as
“plug-and-play prior” was proposed in Venkatakrishnan et al. (2013). Prior to that, a simi-
lar plug-and-play idea is mentioned in Zoran and Weiss (2011) where the HQS algorithm is
adopted for image denoising, deblurring and inpainting. Heide et al. (2014) used an alter-
native to ADMM and HQS, i.e., the primal-dual algorithm (Chambolle and Pock, 2011), to
decouple the data term and prior term. Teodoro et al. (2016) plugged a class-specific Gaus-
sian mixture model (GMM) denoiser (Zoran and Weiss, 2011) into ADMM to solve image
deblurring and compressive imaging. Metzler et al. (2016) developed a denoising-based ap-
proximate message passing (AMP) method to integrate denoisers, such as BLS-GSM (Portilla
et al., 2003) and BM3D, for compressed sensing reconstruction. Chan et al. (2017) proposed
a plug-and-play ADMM algorithm with BM3D denoiser for single image superresolution
and quantized Poisson image recovery for single-photon imaging. Kamilov et al. (2017) pro-
posed a fast iterative shrinkage thresholding algorithm (FISTA) with BM3D and WNNM (Gu
et al., 2014) denoisers for nonlinear inverse scattering. Sun et al. (2019b) proposed FISTA by
plugging the TV and BM3D denoiser prior for Fourier ptychographic microscopy. Yair and
Michaeli (2018) proposed to use a WNNM denoiser as the plug-and-play prior for inpainting
and deblurring. Gavaskar and Chaudhury (2020) investigated the convergence of ISTA-based
plug-and-play IR with a nonlocal means denoiser.

With the development of deep learning techniques such as network design and gradient-
based optimization algorithm, a CNN-based denoiser has shown promising performance in
terms of effectiveness and efficiency. Following its success, a flurry of CNN denoiser-based
plug-and-play IR works have been proposed. Romano et al. (2017) proposed explicit regular-
ization by TNRD denoiser for image deblurring and SISR. In our previous work (Zhang et al.,
2017b), different CNN denoisers are trained to plug into HQS algorithm to solve deblurring
and SISR. Tirer and Giryes (2018) proposed iterative denoising and backward projections with
IRCNN denoisers for image inpainting and deblurring. Gu et al. (2018) proposed to adopt
WNNM and IRCNN denoisers for plug-and-play deblurring and SISR. Tirer and Giryes
(2019) proposed use the IRCNN denoisers for plug-and-play SISR. Li and Wu (2019) plugged
the IRCNN denoisers into the split Bregman iteration algorithm to solve depth image in-
painting. Ryu et al. (2019) provided the theoretical convergence analysis of plug-and-play IR
based on a forward-backward splitting algorithm and ADMM algorithm, and proposed spec-
tral normalization to train a DnCNN denoiser. Sun et al. (2019a) proposed a block coordinate
regularization-by-denoising (RED) algorithm by leveraging the DnCNN (Zhang et al., 2017a)
denoiser as the explicit regularizer.

Although plug-and-play IR can leverage the powerful expressiveness of a CNN denoiser,
existing methods generally exploit DnCNN or IRCNN denoisers which do not make full use
of CNN. Typically, the denoiser for plug-and-play IR should be nonblind and is required to
handle a wide range of noise levels. However, DnCNN needs to separately learn a model for
each noise level. To reduce the number of denoisers, some works adopt one denoiser fixed
to a small noise level. However, according to Romano et al. (2017), such a strategy tends to
require a large number of iterations for a satisfying performance, which would increase the
computational burden. While IRCNN denoisers can handle a wide range of noise levels, it
consists of 25 separate 7-layer denoisers, among which each denoiser is trained on an inter-
val noise level of 2. Such a denoiser suffers from the following two drawbacks. First, it does
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not have the flexibility to handle a specific noise level. Second, it is not effective enough due
to the shallow layers. Given the above considerations, it is necessary to devise a flexible and
powerful denoiser to boost the performance of plug-and-play IR. Inspired by FFDNet (Zhang
et al., 2018a), the proposed deep denoiser can handle a wide range of noise levels via a sin-
gle model by taking the noise level map as input. Moreover, its effectiveness is enhanced by
taking advantage of both ResNet (He et al., 2016) and U-Net (Ronneberger et al., 2015). The
deep denoiser is further incorporated into HQS-based plug-and-play IR to show the merits
of using a powerful deep denoiser. Meanwhile, a novel periodical geometric self-ensemble
is proposed to potentially improve the performance without introducing an extra compu-
tational burden, and a thorough analysis of parameter setting and intermediate results is
provided to better understand the working mechanism of the proposed deep plug-and-play
IR.

14.3.1 Learning deep CNN denoiser prior

Although various CNN-based denoising methods have been recently proposed, most of
them are not designed for plug-and-play IR. In Lehtinen et al. (2018); Krull et al. (2019); Bat-
son and Royer (2019), a novel training strategy without ground-truth is proposed. In Guo et
al. (2019); Brooks et al. (2019); Abdelhamed et al. (2019); Zamir et al. (2020), a real noise syn-
thesis technique is proposed to handle real digital photographs. However, from a Bayesian
perspective, the denoiser for plug-and-play IR should be a Gaussian denoiser. Hence, one
can add synthetic Gaussian noise to a clean image for supervised training. In Lefkimmiatis
(2017); Zhang et al. (2019); Liu et al. (2018); Plötz and Roth (2018), the nonlocal module was
incorporated into the network design for better restoration. However, these methods learn
a separate model for each noise level. Perhaps the most suitable denoiser for plug-and-play
IR is FFDNet (Zhang et al., 2018a) which can handle a wide range of noise levels by taking
the noise level map as input. Nevertheless, FFDNet only has a comparable performance to
DnCNN and IRCNN, thus lacking effectiveness to boost the performance of plug-and-play
IR. For this reason, we propose to improve FFDNet by taking advantage of the widely-used
U-Net (Ronneberger et al., 2015) and ResNet (He et al., 2016) for architecture design.

14.3.1.1 Denoising network architecture
It is well-known that U-Net (Ronneberger et al., 2015) is effective and efficient for image-

to-image translation, while ResNet (He et al., 2016) is superior in increasing the modeling
capacity by stacking multiple residual blocks. Following FFDNet (Zhang et al., 2018a), which
takes the noise level map as input, the proposed denoiser, namely DRUNet, further integrates
residual blocks into U-Net for effective denoiser prior modeling. Note that this work does not
focus on designing a new denoising network architecture. The similar idea of combining U-
Net and ResNet can also be found in other works such as Zhang et al. (2018); Venkatesh et al.
(2018).

Like FFDNet, DRUNet has the ability to handle various noise levels via a single model. The
backbone of DRUNet is U-Net which consists of four scales. Each scale has an identity skip
connection between 2 × 2 strided convolution (SConv) downscaling and 2 × 2 transposed
convolution (TConv) upscaling operations. The number of channels in each layer from the
first scale to the fourth scale are 64, 128, 256 and 512, respectively. Four successive residual
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blocks are adopted in the downscaling and upscaling of each scale. Inspired by the network
architecture design for superresolution in Lim et al. (2017), no activation function is followed
by the first and the last convolutional (Conv) layers, as well as the SConv and TConv layers.
In addition, each residual block only contains one ReLU activation function.

It is worth noting that the proposed DRUNet is bias-free, which means no bias is used
in all the Conv, SConv and TConv layers. The reason is two-fold. First, a bias-free network
with ReLU activation and identity skip connection naturally enforces the scaling invariance
property of many image restoration tasks, i.e., f (ax) = af (x) holds true for any scalar a ≥ 0
(please refer to Mohan et al. (2019) for more details). Second, we have empirically observed
that, for a network with bias, the bias magnitude would be much larger than that of the filters,
which in turn may harm the generalizability.

14.3.2 Training details

It is well known that CNN benefits from the availability of large-scale training data. To
enrich the denoiser prior for plug-and-play IR, instead of training on a small dataset that in-
cludes the 400 Berkeley segmentation dataset (BSD) images of size 180 × 180 (Chen and Pock,
2017), we construct a large dataset consisting of 400 BSD images, 4,744 images of the Waterloo
Exploration Database (Ma et al., 2017), 900 images from the DIV2K dataset (Agustsson and
Timofte, 2017), and 2,750 images from the Flick2K dataset (Lim et al., 2017). Because such a
dataset covers a larger image space, the learned model can slightly improve the PSNR results
on the BSD68 dataset (Roth and Black, 2009) while having an obvious PSNR gain on testing
datasets from a different domain.

As a common setting for Gaussian denoising, the noisy counterpart y of clean image x
is obtained by adding AWGN with noise level σ . Correspondingly, the noise level map is a
uniform map filled with σ and has the same spatial size as a noisy image. To handle a wide
range of noise levels, the noise level σ is randomly chosen from [0,50] during training. The
network parameters are optimized by minimizing the L1 loss rather than L2 loss between
the denoised image and its ground-truth with the Adam algorithm (Kingma and Ba, 2015).
Although there is no direct evidence on which loss would result in better performance, it is
widely acknowledged that L1 loss is more robust than L2 loss in handling outliers (Bishop,
2006). Regarding denoising, outliers may occur during the sampling of AWGN. In this sense,
L1 loss tends to be more stable than L2 loss for denoising network training. The learning rate
starts from 1e-4 and then decreases by half every 100,000 iterations, and finally ends once it
is smaller than 5e-7. In each iteration during training, 16 patches with patch size of 128 ×
128 were randomly sampled from the training data. We separately learn a denoiser model for
grayscale images and color images. It takes about four days to train the model with PyTorch
and an Nvidia Titan Xp GPU.

14.3.3 Denoising results

14.3.3.1 Grayscale image denoising
For grayscale image denoising, we compared the proposed DRUNet denoiser with sev-

eral state-of-the-art denoising methods, including two representative model-based methods
(i.e., BM3D (Dabov et al., 2007) and WNNM (Gu et al., 2014)), one CNN-based method which
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TABLE 14.1 Average PSNR(dB) results of different methods with noise levels 15, 25 and 50 on the widely-
used Set12 and BSD68 (Martin et al., 2001; Roth and Black, 2009; Zhang et al., 2017a) datasets. The best results
are highlighted in bold.

Datasets Noise Level BM3D WNNM DnCNN IRCNN FFDNet DRUNet
15 32.37 32.70 32.86 32.77 32.75 33.25

Set12 25 29.97 30.28 30.44 30.38 30.43 30.94
50 26.72 27.05 27.18 27.14 27.32 27.90

15 31.08 31.37 31.73 31.63 31.63 31.91
BSD68 25 28.57 28.83 29.23 29.15 29.19 29.48

50 25.60 25.87 26.23 26.19 26.29 26.59

separately learns a single model for each noise level (i.e., DnCNN (Zhang et al., 2017a)) and
two CNN-based methods which were trained to handle a wide range of noise levels (i.e.,
IRCNN (Zhang et al., 2017b) and FFDNet (Zhang et al., 2018a)). The PSNR results of differ-
ent methods on the widely-used Set12 (Zhang et al., 2017a) and BSD68 (Martin et al., 2001;
Roth and Black, 2009) datasets for noise levels 15, 25 and 50 are reported in Table 14.1. It
can be seen that DRUNet achieves the best PSNR results for all the noise levels on the two
datasets. Specifically, DRUNet has an average PSNR gain of about 0.9 dB over BM3D and
surpasses DnCNN, IRCNN and FFDNet by an average PSNR of 0.5 dB on the Set12 dataset
and 0.25 dB on the BSD68 dataset. Fig. 14.2 shows the grayscale image denoising results of
different methods on image “Monarch” from the Set12 dataset with noise level 50. It can be
seen that DRUNet can recover much sharper edges than DnCNN, FFDNet.

FIGURE 14.2 Grayscale image denoising results of different methods on image “Monarch” from Set12 dataset
with noise level 50. (a) Noisy (14.78 dB); (b) DnCNN (26.83 dB); (c) FFDNet (26.92 dB); (d) DRUNet (27.31 dB).

14.3.3.2 Color image denoising
Since existing methods mainly focus on grayscale image denoising, we only compare

DRUNet with CBM3D, DnCNN, IRCNN and FFDNet for color denoising. Table 14.2 re-
ports the color image denoising results of different methods for noise levels 15, 25 and 50
on CBSD68 (Martin et al., 2001; Roth and Black, 2009; Zhang et al., 2017a), Kodak24 (Franzen,
1999) and McMaster (Zhang et al., 2011) datasets. One can see that DRUNet outperforms the
other competing methods by a large margin. It is worth noting that while having a good per-
formance on the CBSD68 dataset, DnCNN does not perform well on the McMaster dataset.
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FIGURE 14.3 Color image denoising results of different methods on image “163085” from CBSD68 dataset with
noise level 50. (a) Noisy (14.99 dB); (b) DnCNN (28.68 dB); (c) FFDNet (28.75 dB); (d) DRUNet (29.28 dB).

Such a discrepancy highlights the importance of reducing the image domain gap between
training and testing for image denoising. The visual results of different methods on image
“163085” from the CBSD68 dataset with noise level 50 are shown in Fig. 14.3, from which
it can be seen that DRUNet can recover more fine details and textures than the competing
methods.

TABLE 14.2 Average PSNR(dB) results of different methods for noise levels 15, 25 and 50 on CBSD68 (Mar-
tin et al., 2001; Roth and Black, 2009; Zhang et al., 2017a), Kodak24 and McMaster datasets. The best results
are highlighted in bold.

Datasets Noise Level CBM3D DnCNN IRCNN FFDNet DRUNet
15 33.52 33.90 33.86 33.87 34.30

CBSD68 25 30.71 31.24 31.16 31.21 31.69
50 27.38 27.95 27.86 27.96 28.51

15 34.28 34.60 34.69 34.63 35.31
Kodak24 25 32.15 32.14 32.18 32.13 32.89

50 28.46 28.95 28.93 28.98 29.86

15 34.06 33.45 34.58 34.66 35.40
McMaster 25 31.66 31.52 32.18 32.35 33.14

50 28.51 28.62 28.91 29.18 30.08

14.3.4 HQS algorithm for plug-and-play IR

As mentioned previously, we adopt the HQS as the variable splitting algorithm for its sim-
plicity and fast convergence. Meanwhile, there is no doubt that parameter setting is always a
nontrivial issue (Romano et al., 2017). In other words, careful parameter setting is needed to
obtain a good performance. To have a better understanding on the HQS-based plug-and-play
IR, we will discuss the general methodology for parameter setting after providing a short
review of the HQS algorithm. We then propose a periodical geometric self-ensemble strategy
to potentially improve the performance.
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14.3.4.1 Half quadratic splitting (HQS) algorithm

HQS adopts the following iterative scheme to solve Eq. (14.2)

⎧⎪⎨
⎪⎩

xk = arg min
x

‖y − (x ⊗ k)↓s ‖2 + μσ 2‖x − zk−1‖2 (14.10a)

zk = arg min
z

1

2(
√

λ/μk)2
‖z − xk‖2 +R(z). (14.10b)

In particular, the subproblem of (14.10b), from a Bayesian perspective, corresponds to Gaus-
sian denoising on xk with noise level βk �

√
λ/μk . Consequently, any Gaussian denoiser can

be plugged into the alternating iterations to solve (14.2). To address this, we rewrite (14.10b)
as follows

zk = Denoiser(xk, βk). (14.11)

One can make two observations from Eq. (14.11). First, the prior R(·) can be implicitly spec-
ified by a denoiser. For this reason, both the prior and the denoiser for plug-and-play IR are
usually termed as denoiser prior. Second, it is interesting to learn a single CNN denoiser to
replace Eq. (14.11) so as to exploit the advantages of CNN, such as high flexibility of network
design, high efficiency on GPUs, and powerful modeling capacity with deep networks.

14.3.4.2 General methodology for parameter setting

From the alternating iterations between Eq. (14.10a) and Eq. (14.10b), it is easy to see
that three adjustable parameters are involved, including penalty parameter μ, regulariza-
tion parameter λ and the total number of iterations K . Generally, to guarantee that xk and zk

converge to a fixed point, a large μ is needed, which however requires a large K for conver-
gence. Hence, the common way is to adopt the continuation strategy to gradually increase
μ, resulting in a sequence of μ1 < · · · < μk < · · · < μK . Nevertheless, a new parameter needs
to be introduced to control the step size, making the parameter setting more complicated.
According to Eq. (14.11), we can observe that μ controls the noise level βk(= √

λ/μk) in the
k-th iteration of the denoiser prior. On the other hand, a noise level range of [0,50] is sup-
posed to be enough for βk . Inspired by such domain knowledge, we can instead set βk and λ

to implicitly determine μk . Based on the fact that μk should be monotonically increasing, we
uniformly sample βk from a large noise level β1 to a small one βK in log space. This means
that μk can be easily determined via μk = λ/β2

k . Following Zhang et al. (2017b), β1 is fixed to
49 while βK is determined by the image noise level β. Since K is user-specified and σK has
a clear physical meaning, they are practically easy to set. As for the theoretical convergence
of plug-and-play IR, please refer to Chan et al. (2017). By far, the remaining parameter for
setting is λ. Due to the fact that λ comes from the prior term and thus should be fixed, we
can choose the optimal λ by a grid search on a validation dataset. Empirically, λ can yield
favorable performance from the range of [0.19,0.55]. In this chapter, we fix it to 0.23 unless
otherwise specified. It should be noted that since λ can be absorbed into β and plays the role
of controlling the trade-off between data term and prior term, one can implicitly tune λ by
multiplying β by a scalar.
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14.3.4.3 Periodical geometric self-ensemble

Geometric self-ensemble based on flipping and rotation is a commonly-used strategy to
boost IR performance (Timofte et al., 2016). It first transforms the input via flipping and ro-
tation to generate 8 images, then gets the corresponding restored images after feeding the
model with the 8 images, and finally produces the averaged result after the inverse transfor-
mation. While a performance gain can be obtained via geometric self-ensemble, it comes at
the cost of increased inference time.

Different from the above method, we instead periodically apply the geometric self-
ensemble for every successive 8 iterations. In each iteration, this involves one transformation
before denoising and the counterpart inverse transformation after denoising. Note that the
averaging step is abandoned because the input of the denoiser prior model varies across iter-
ations. We refer to this method as periodical geometric self-ensemble. Its distinct advantage
is that the total inference time will not increase. We empirically found that geometric self-
ensemble can generally improve the PSNR by 0.02 dB ∼ 0.2 dB.

Based on the above discussion, we summarize the detailed algorithm of deep plug-and-
play IR, namely DPIR, in Algorithm 1.

Algorithm 1: Plug-and-play image restoration with deep denoiser prior (DPIR).
Input : Deep denoiser prior model, degraded image y, degradation model

y = (x ⊗ k)↓s +n, image noise level σ , βk of denoiser prior model at k-th
iteration for a total of K iterations, trade-off parameter λ.

Output: Restored image zK .

1 Initialize z0 from y, precalculate αk = λσ 2/β2
k .

2 for k = 1,2, · · · ,K do
3 xk = arg minx ‖y − (x ⊗ k)↓s ‖2 + αk‖x − zk−1‖2 ; // Solving data subproblem
4 zk = Denoiser(xk, βk) ; // Denoising with deep DRUNet denoiser and periodical

geometric self-ensemble
5 end

14.4 Deep unfolding image restoration

The early deep unfolding methods can be traced back to Barbu (2009); Samuel and Tappen
(2009); Sun and Tappen (2011) where a compact MAP inference based on the gradient descent
algorithm was proposed for image denoising. Since then, a flurry of deep unfolding methods
based on certain optimization algorithms (e.g., half-quadratic splitting (Afonso et al., 2010),
alternating direction method of multipliers (Boyd et al., 2011) and primal-dual (Chambolle
and Pock, 2011)) have been proposed to solve different image restoration tasks, such as im-
age denoising (Chen and Pock, 2017; Lefkimmiatis, 2017), image deblurring (Schmidt and
Roth, 2014; Kruse et al., 2017), and image compressive sensing (Zhang and Ghanem, 2018).
Compared to plain learning-based methods, deep unfolding methods are interpretable and
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can fuse the degradation constraint into the learning model. However, most of them suffer
from one or several of the following drawbacks. (i) The solution of the prior subproblem
without using a deep CNN is not powerful enough for good performance. (ii) The data sub-
problem is not solved by a closed-form solution, which may hinder convergence. (iii) The
whole inference is trained in a stage-wise and fine-tuning manner rather than a complete
end-to-end manner. It is thus of particular interest to propose a method that overcomes the
above mentioned drawbacks.

14.4.1 Deep unfolding network

Once the unfolding optimization, i.e., HQS algorithm, is determined, the next step is to
design the deep unfolding image restoration (DUIR) network. Because the unfolding opti-
mization mainly consists of iteratively solving a data subproblem (i.e., Eq. (14.6)) and a prior
subproblem (i.e., Eq. (14.7)), DUIR should alternate between a data module D and a prior
module P . In addition, as the solutions of the subproblems also take the respective hyper-
parameters αk and βk as input, a hyper-parameter module H is further introduced into DUIR.
Fig. 14.4 illustrates the overall architecture of DUIR with K iterations, where K is empirically
set to 8 for the speed-accuracy trade-off. Next, more details on D, P and H are provided.

14.4.1.1 Data module D
The data module plays the role of Eq. (14.8) which is the closed-form solution of the data

subproblem. Intuitively, it aims to find a clearer HR image which minimizes a weighted com-
bination of the data term ‖y − (z ⊗ k)↓s ‖2 and the quadratic regularization term ‖z − xk−1‖2

with trade-off hyper-parameter αk . Because the data term corresponds to the degradation
model, the data module not only has the advantage of taking the scale factor s and blur ker-
nel k as input but also imposes a degradation constraint on the solution. Actually, it is difficult
to manually design such a simple but useful multiple-input module. For brevity, Eq. (14.8) is
rewritten as

zk = D(xk−1, s,k,y, αk). (14.12)

Note that x0 is initialized by interpolating y with scale factor s via the simplest nearest neigh-
bor interpolation. It should be noted that Eq. (14.12) contains no trainable parameters, which
in turn results in better generalizability due to the complete decoupling between data term
and prior term. For the implementation, we use PyTorch, where the main FFT and inverse
FFT operators can be implemented by torch.fft.fftn and torch.fft.ifftn, respectively.

14.4.1.2 Prior module P
The prior module aims to obtain a cleaner estimation xk by passing zk through a denoiser

with noise level βk . Inspired by Zhang et al. (2018a), we propose a deep CNN denoiser that
takes the noise level as input

xk = P(zk, βk). (14.13)

The proposed denoiser, namely ResUNet, integrates residual blocks (He et al., 2016) into
U-Net (Ronneberger et al., 2015). U-Net is widely used for image-to-image mapping, while
ResNet owes its popularity to fast training and its large capacity with many residual blocks.
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FIGURE 14.4 The overall architecture of the DUIR with K = 8 iterations. DUIR can flexibly handle the degrada-
tion model y = (x ⊗ k) ↓s +n via a single model as it takes the degraded image y, scale factor s, blur kernel k and
noise level σ as input. Specifically, DUIR consists of three main modules, including the data module D that makes
HR estimation clearer, the prior module P that makes HR estimation cleaner, and the hyper-parameter module H
that controls the outputs of D and P .

ResUNet takes the concatenated zk and noise level map as input and outputs the denoised
image xk . By doing so, ResUNet can handle various noise levels via a single model, which sig-
nificantly reduces the total number of parameters. Following the common setting of U-Net,
ResUNet involves four scales, each of which has an identity skip connection between down-
scaling and upscaling operations. Specifically, the numbers of channels in the layers from the
first to the fourth scale are set to 64, 128, 256 and 512, respectively. For the downscaling and
upscaling operations, 2 × 2 strided convolution (SConv) and 2 × 2 transposed convolution
(TConv) are adopted, respectively. Note that no activation function is followed by the SConv
and TConv layers, as well as the first and the last convolutional layers. For the sake of inher-
iting the merits of ResNet, a group of 2 residual blocks is adopted in the downscaling and
upscaling of each scale. As suggested in Lim et al. (2017), each residual block is composed
of two 3 × 3 convolution layers with ReLU activation in the middle and an identity skip
connection summed to its output.

14.4.1.3 Hyper-parameter module H
The hyper-parameter module acts as a ‘slide bar’ to control the outputs of the data and

prior modules. For example, the solution zk would gradually approach xk−1 as αk increases.
According to the definition of αk and βk , αk is determined by σ and μk , while βk depends on
λ and μk . Although it is possible to learn a fixed λ and μk , we argue that a performance gain
can be obtained if λ and μk vary with two key elements, i.e., scale factor s and noise level σ ,
that influence the degree of ill-posedness. Let α = [α1, α2, . . . , αK ] and β = [β1, β2, . . . , βK ]: we
use a single module to predict α and β

[α,β] = H(σ, s). (14.14)

The hyper-parameter module consists of three fully connected layers with ReLUs as the first
two activation functions and Softplus as the last. The number of hidden nodes in each layer
is 64. Considering the fact that αk and βk should be positive, and Eq. (14.8) should avoid
division by extremely small αk , the output Softplus layer is followed by an extra addition of
1e-6.
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14.4.2 End-to-end training

The end-to-end training aims to learn the trainable parameters of DUIR by minimizing a
loss function over a large training data set. Thus, this section mainly describes the training
data, loss function and training settings. Following Wang et al. (2018), we use DIV2K (Agusts-
son and Timofte, 2017) and Flickr2K (Timofte et al., 2017). The degraded images are syn-
thesized via the degradation model y = (x ⊗ k)↓s +n. The scale factors are chosen from
{1,2,3,4}. For the blur kernels, we use anisotropic Gaussian kernels as in Riegler et al. (2015);
Shocher et al. (2018); Zhang et al. (2018b) and motion kernels as in Boracchi and Foi (2012).
We fix the kernel size to 25 × 25. For the noise level, we set its range to [0,25]. With regard
to the loss function, we adopt the L1 loss for PSNR performance. To optimize the parameters
of DUIR, we adopt the Adam solver (Kingma and Ba, 2015) with mini-batch size 128. The
learning rate starts from 1 × 10−4 and decays by a factor of 0.5 every 4 × 104 iterations and
finally ends with 3 × 10−6. It is worth pointing out that due to the infeasibility of parallel
computing for different scale factors, each min-batch only involves one random scale factor.
The patch size of the clean image is set to 96 × 96. We train the models with PyTorch on four
Nvidia Tesla V100 GPUs in Amazon AWS cloud. It takes about two days to obtain the DUIR
model.

14.5 Experiments

To validate the flexibility and effectiveness of DPIR and DUIR, we consider two classical
IR tasks, including image deblurring and single image superresolution (SISR). For each task,
we will show the quantitative and qualitative results of DPIR and DUIR on three classical
testing images, as shown in Fig. 14.5. In addition, we will compare the hand-designed and
learned hyper-parameter setting between DPIR and DUIR. Furthermore, we will provide the
visual comparison of xk and zk at intermediate iterations for DPIR and DUIR.

FIGURE 14.5 Three classical testing images. (a) Butterfly; (b) Leaves; (c) Starfish.
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14.5.1 Image deblurring

We consider two of the eight real blur kernels from (Levin et al., 2009) for testing which are
of size 17 × 17 and 27 × 27, respectively. As shown in Table 14.3, we also consider Gaussian
noise with different noise levels 2.55(1%) and 7.65(3%). Following the common setting of
uniform deblurring, we synthesize the blurry images by first applying a blur kernel and then
adding AWGN with noise level σ . For the hyper-parameter setting of DPIR, K and σK are set
to 8 and σ , respectively, while z0 is initialized as y.

14.5.1.1 Quantitative and qualitative results
Table 14.3 reports the PSNR(dB) results of DPIR and DUIR on the three testing images.

It can be seen that DPIR and DUIR achieve similar results. Note that DPIR has a larger and
slower denoiser prior than DUIR, thus DPIR is less efficient than DUIR. The visual results of
DPIR and DUIR on the testing images are shown in Fig. 14.6. One can see that both DPIR and
DUIR can effectively recover image sharpness and naturalness.

TABLE 14.3 PSNR (dB) results of DPIR and DUIR on the three test-
ing images for image deblurring. The best results are highlighted in bold.

Methods σ Butterfly Leaves Starfish
The second kernel of size 17 × 17 from Levin et al. (2009)

DPIR
2.55

34.26 35.19 34.21
DUIR 33.73 34.35 34.02

DPIR
7.65

29.52 30.11 29.83
DUIR 29.55 30.02 29.84

The fourth kernel of size 27 × 27 from Levin et al. (2009)
DPIR

2.55
34.18 35.12 33.91

DUIR 33.58 34.26 33.73

DPIR
7.65

29.45 30.27 29.46
DUIR 29.38 29.94 29.43

14.5.1.2 Hand-designed vs. learned hyper-parameters
Figs. 14.7 and 14.8 illustrate the hyper-parameters, i.e., α and β, of DPIR and DUIR, respec-

tively. One can see that the learned hyper-parameters of DUIR are generally in accordance
with the hand-designed hyper-parameters of DPIR. From Figs. 14.7 and 14.8(a), one can see
that α is positively correlated with σ . From Figs. 14.7 and 14.8(b), one can see that β has a de-
creasing tendency with the number of iterations and increases with noise level. This implies
that the noise level of intermediate estimation is gradually reduced across iterations and a
severe degradation requires a large βk to tackle with the illposeness.

14.5.1.3 Intermediate results
Figs. 14.9 and 14.10 provide the visual results and PSNR results of xk and zk at different

iterations of DPIR and DUIR on the Starfish image from Fig. 14.12. One can observe from
Fig. 14.9 that, while the closed-form solution x1 can handle the distortion of blur, it would
also aggravate the strength of noise. The deep denoiser prior plays the role of removing noise,
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FIGURE 14.6 Visual results of DPIR and DUIR for image deblurring. The blur kernel is visualized in the upper
right corner of the blurry image. The noise level is 7.65 (3%). (a) Blurry image; (b) DPIR; (c) DUIR.

leading to a noise-free zk . As the number of iterations increases, x7 contains less structured
noise than x1, while z7 recovers more details and sharper edges than z1. One can observe from
Fig. 14.10 that D and P can facilitate each other for iterative and alternating blur removal.
Interestingly, z1 of DPIR significantly differs from z1 of DUIR, which means that, unlike DPIR,
the learned denoiser prior of DUIR is not a Gaussian denoiser prior.

We can have the following observations. First, while Eq. (14.10a) can handle the distortion
of blur, it also aggravates the strength of noise compared to its input zk−1. Second, the deep
denoiser prior plays the role of removing noise, leading to a noise-free zk . Third, compared
with x1 and x2, x8 contains more fine details, which means Eq. (14.10a) can iteratively recover
the details.
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FIGURE 14.7 The hyper-parameters, i.e., (a) α and (b) β, of DPIR for deblurring with respect to different noise
levels.

FIGURE 14.8 The hyper-parameters, i.e., (a) α and (b) β, of DUIR for deblurring with respect to different noise
levels.

14.5.2 Single image superresolution (SISR)

Although we use the degradation model y = (x ⊗ k)↓s +n for SISR, it is worth noting
that existing SISR methods are mainly designed for the bicubic degradation model with the
formulation y = x ↓bicubic

s , where ↓bicubic
s denotes bicubic downsampling with downscaling

factor s. However, it has been revealed that these methods would deteriorate seriously if the
real degradation model deviates from the assumed one (Efrat et al., 2013; Zhang et al., 2015).
Since bicubic degradation is well-studied, it is interesting to investigate its relationship to
the classical degradation model. Actually, the bicubic degradation can be approximated by
setting a proper blur kernel in the degradation model y = (x⊗k)↓s. To achieve this, we adopt
the data-driven method to solve the following kernel estimation problem by minimizing the
reconstruction error over a large HR/bicubic-LR pair {(x, y)},

k×s
bicubic = arg min k‖(x ⊗ k)↓s −y‖. (14.15)
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FIGURE 14.9 Estimations in different iterations of DPIR for deblurring on the Starfish in Fig. 14.6. (a) x1; (b) z1;
(c) x2; (d) z6; (e) x7; (f) z7.

Fig. 14.11 shows the approximated bicubic kernels for scale factors 2, 3 and 4. It should be
noted that since the downsamlping operation selects the upper-left pixel for each distinct
s×s patch, the bicubic kernels for scale factors 2, 3 and 4 have a center shift of 0.5, 1 and 1.5
pixels to the upper-left direction, respectively.

For the sake of synthesizing the corresponding testing LR images via the degradation
model y = (x⊗k)↓s +n, blur kernels and noise levels should be provided. Generally, it would
be helpful to employ a large variety of blur kernels and noise levels for a thorough evalua-
tion; however, it would also give rise to a burdensome evaluation process. For this reason,
we only consider 8 representative and diverse blur kernels, including 4 isotropic Gaussian
kernels with different widths (i.e., 0.7, 1.2, 1.6 and 2.0) and 4 anisotropic Gaussian kernels
from Zhang et al. (2018b). We do not consider motion blur kernels since it has been pointed
out that Gaussian kernels are enough for the SISR task. In order to further analyze the kernel
robustness, we will thus separately report the PSNR results for each blur kernel rather than
for each type of blur kernel. Although it has been pointed out that the proper blur kernel
should vary with scale factor (Zhang et al., 2015), we argue that the 8 blur kernels are di-
verse enough to cover a large kernel space. For the noise levels, we choose 2.55 (1%) and 7.65
(3%). For the overall parameter setting, K and σK are set to 24 and max(σ, s), respectively.
For the initialization of z0, the bicubic interpolation of the LR image is utilized. In particular,
since the classical degradation model selects the upper-left pixel for each distinct s × s patch,
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FIGURE 14.10 Estimations in different iterations of DUIR for deblurring on the Starfish in Fig. 14.6. (a) x1; (b) z1;
(c) x2; (d) z6; (e) x7; (f) z7.

the shift problem should be properly addressed. To tackle this, we adjust z0 by using grid
interpolation.

14.5.2.1 Quantitative and qualitative comparison

Table 14.4 reports the average PSNR(dB) results of DPIR and DUIR on the three testing im-
ages. From Table 14.4, we can see the PSNR results vary across different blur kernels and the
blur kernels that lead to the highest PSNR for each scale factor are different. More specifically,
a larger scale factor generally requires a smoother blur kernel. In addition, DUIR outperforms
DPIR by a large margin. Such a phenomenon indicates that end-to-end training is more help-
ful for superresolution than for deblurring. Fig. 14.12 shows the visual results of DPIR and
DUIR on the three testing images. It can be observed that both DPIR and DUIR can signifi-
cantly improve the visual quality. In comparison, DUIR produces sharper edges than DPIR
which is possibly due to the end-to-end-training.

14.5.2.2 Hand-designed vs. learned hyper-parameters

Figs. 14.13 and 14.14 illustrate the hyper-parameters, i.e., α and β, of DPIR and DUIR
for different combinations of scale factor s and noise level σ , respectively. One can see that
the learned hyper-parameters of DUIR accord with the hand-designed hyper-parameters of
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FIGURE 14.11 Approximated bicubic kernels for scale factors 2, 3 and 4 under the degradation model y = (x ⊗
k)↓s. Note that these kernels contain negative values.

TABLE 14.4 Average PSNR(dB) results of DPIR and DUIR for different combinations of scale factors, blur
kernels and noise levels. The best results are highlighted in bold.

Method
Scale
Factor

Noise
Level

Blur Kernel

× 2 0 31.79 32.10 31.28 29.63 28.72 28.62 29.45 27.77
× 3 0 26.04 26.82 26.97 26.89 26.73 25.89 26.58 26.49

DPIR × 3 2.55 25.91 26.49 26.23 25.43 24.81 24.44 25.29 24.13
× 3 7.65 25.53 25.67 24.91 23.68 23.14 22.81 23.56 22.33
× 4 0 22.62 23.50 23.74 23.85 23.76 23.18 23.58 23.88

× 2 0 33.58 34.47 33.49 31.79 31.29 31.29 31.45 30.20
× 3 0 28.05 29.53 29.88 29.87 29.40 29.37 29.43 29.25

DUIR × 3 2.55 27.77 28.74 28.47 27.70 27.15 27.20 27.42 26.54
× 3 7.65 26.87 27.13 26.43 25.47 25.15 25.03 25.24 24.47
× 4 0 24.71 26.38 27.02 27.30 27.16 26.76 26.69 27.28
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FIGURE 14.12 Visual results of DPIR and DUIR on the three testing images. The blur kernel is visualized in the
upper right corner of the LR image. (a) LR image; (b) DPIR; (c) DUIR.

DPIR. From Figs. 14.13 and 14.14(a), one can see that α is positively correlated with σ and
varies with s. This actually accords with the definition of αk . From Figs. 14.13 and 14.14(b),
one can see that β has a decreasing tendency with the number of iterations and increases
with scale factor and noise level. This implies that the noise level of HR estimation is grad-
ually reduced across iterations and complex degradation requires a large βk to tackle the
illposedness.

14.5.2.3 Intermediate results

Figs. 14.15 and 14.16 provide the visual results of xk and zk at different iterations of DPIR
and DUIR on the Starfish image from Fig. 14.12. One can observe from Fig. 14.15 that, al-
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FIGURE 14.13 The hyper-parameters, i.e., (a) α and (b) β, of DPIR for superresolution with respect to different
combinations of noise levels and scale factors.

FIGURE 14.14 The hyper-parameters, i.e., (a) α and (b) β, of DUIR for superresolution with respect to different
combinations of noise levels and scale factors.

though the LR image contains no noise, the closed-form solution x1 would introduce severe
structured noise. After passing x1 through the Gaussian denoiser, such structured noise is re-
moved, as can be seen from z1. Meanwhile, the tiny textures and structures are smoothed
out and the edges become blurry. As the number of iterations increases, x7 contains less
structured noise than x1, while z7 recovers more details and sharper edges than z1. One can
observe from Fig. 14.16 that, D and P can facilitate each other for iterative and alternating
blur removal and detail recovery. Interestingly, different from the Gaussian denoiser prior
of DPIR, P can also act as a detail enhancer for high-frequency recovery which is possibly
attributed to the task-specific training. In addition, it does not reduce blur kernel induced
degradation, which verifies the decoupling between D and P . As a result, the end-to-end
trained DUIR has a task-specific advantage over DPIR.
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FIGURE 14.15 HR estimations in different iterations of DPIR for superresolution on the Starfish in Fig. 14.12. (a)
x1; (b) z1; (c) x2; (d) z6; (e) x7; (f) z7.

14.6 Discussion and conclusions

In this chapter, we introduce the deep plug-and-play methods and deep unfolding meth-
ods that can integrate model-based methods and learning-based methods for image restora-
tion. Specifically, with the aid of the half-quadratic splitting algorithm which can decouple
the data and prior terms, deep plug-and-play methods can replace the prior subproblem
with learning-based denoiser prior, while deep unfolding methods learn an end-to-end train-
able, iterative network by solving the prior subproblem via neural modules. As a result,
both deep plug-and-play methods and deep unfolding methods can inherit the flexibility
of model-based methods, while maintaining the advantages of learning-based methods. In
order to better understand the working mechanism of both kinds of method, quantitative
and qualitative results as well as a comparative analysis of hyper-parameter setting and in-
termediate results are provided. The results demonstrate that while deep unfolding methods
learn similar hyper-parameters to the hand-designed ones of deep plug-and-play methods,
the learned prior modules are different from those of the Gaussian denoiser priors. For exam-
ple, the learned prior module of deep unfolding methods can also enhance the details while
the Gaussian denoiser prior of deep plug-and-play methods does not have such a merit.
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FIGURE 14.16 HR estimations in different iterations of DUIR for superresolution on the Starfish in Fig. 14.12.
(a) x1; (b) z1; (c) x2; (d) z6; (e) x7; (f) z7.

While the proposed deep plug-and-play methods and deep unfolding methods have
shown great promise, they also have several drawbacks for real applications. First, they are
nonblind methods which require an accurate estimation of degradation parameters such as
the blur kernel. If the estimated blur kernel deviates largely from the ground-truth one, per-
formance would deteriorate seriously. Second, they are designed on the ideal degradation
model which rarely matches for real images. If the real-world noise does not follow an addi-
tive white Gaussian distribution, this would lead to a drop in performance.
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CHAPTER POINTS

• The chapter presents the problem
definition of adversarial attacks for visual
tasks using both images and videos as
input.

• The chapter presents the properties of the
adversarial attacks and the types of
perturbations.

• The chapter presents the target models and
datasets used in the attack scenarios.

• The chapter discusses adversarial attacks
for images processing, image classification,
semantic segmentation, object detection,
object tracking, and video classification.

• The chapter also discusses defenses
devised against the adversarial attacks.

15.1 Introduction

Deep neural networks (DNNs) have been shown to be successful in several vision tasks,
such as image classification (Krizhevsky et al., 2012; He et al., 2016), object detection (Ren
et al., 2017; Redmon and Farhadi, 2017), semantic segmentation (Long et al., 2015; Yu et al.,
2017), optical flow estimation (Revaud et al., 2015; Ranjan and Black, 2017), and video clas-
sification (Carreira and Zisserman, 2017; Jiang et al., 2018; Ng et al., 2015). However, DNNs
are sensitive to perturbations of the input data that produce the so-called adversarial examples
that induce DNNs to erroneous predictions (Szegedy et al., 2014).

The study of data alterations designed to evade a classifier is not new: techniques that
mislead classifiers have been discussed for over two decades and include attacks on fraud
detection systems (Bolton et al., 2002), spam filters (Meyer and Whateley, 2004) and on specific
classifiers, such as Support Vector Machines (Biggio et al., 2013). More recently, there has been
a growing interest in adversarial examples for DNNs in visual tasks (Szegedy et al., 2014).
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Adversarial examples in visual tasks are generated by modifying pixel values with care-
fully crafted additive noise that is imperceptible to the human eyes (Carlini and Wagner, 2017;
Jiang et al., 2019); or that replaces (rectangular or circular) image regions (Brown et al., 2018;
Ranjan et al., 2019) or the border of an image (Zajac et al., 2019). Adversarial examples help
investigate and improve the robustness of DNN models (Tsipras et al., 2019; Allen-Zhu and
Li, 2020; Engstrom et al., 2019; Santurkar et al., 2019) as well as protect private information in
images (Li et al., 2019a; Sanchez-Matilla et al., 2020).

An adversarial attack can be targeted or untargeted. Targeted attacks modify an image or a
video for the DNN model to predict a specified class label, such as an object type (Szegedy et
al., 2014) or a predefined object trajectory in subsequent frames (Liang et al., 2020). Untargeted
attacks modify a source image or video to be classified as any incorrect label other than the
original one, or the video perturbations can generate incorrect bounding boxes to mislead a
tracker (Liang et al., 2020). Finally, carefully modified stop signs can cause a false negative
detection or an incorrect detection of another object type (Lu et al., 2017).

After the problem definition of visual adversarial attacks (Section 15.2), we discuss their
main properties (Section 15.3) and the types of perturbation they generate (Section 15.4). Then
we overview attack scenarios, models and datasets used to craft adversarial attacks (Sec-
tion 15.5). Specifically, we cover adversarial attacks for image processing tasks (Section 15.6),
image classification (Section 15.7), semantic segmentation and object detection (Section 15.8),
object tracking (Section 15.9), and video classification (Section 15.10). Finally, we present
strategies to defend DNN models from these attacks (Section 15.11) and conclude the chapter
(Section 15.12).

15.2 Problem definition

Let x be an image or a video and y be a true label associated with x. The label can be a
single class for image or video classification, or a region for optical flow, object detection or
object tracking.

Let f (·) be a DNN model that maps x to the label y: y = f (x). An adversarial attack mod-
ifies x to produce an adversarial example ẋ that at test time misleads the model, such that
f (x) �= f (ẋ) (see Fig. 15.1). The adversarial example can be obtained by directly modifying
the visual data with a perturbation δ such that ẋ = g(x, δ), where g(·) represents the process
of adding the perturbation to x or replacing pixel values in x with those of δ.

The adversarial perturbation itself may be crafted using machine learning. In such a case,
the attacker may design a loss function L(x, y) that is used to generate the prediction of
the original input with respect to the correct prediction (Goodfellow et al., 2015; Moosavi-
Dezfooli et al., 2016; Jiang et al., 2019; Shamsabadi et al., 2020c; Liang et al., 2020). For
example, the loss of an adversarial attack may maximize the classification error for a set of
training images (Szegedy et al., 2014; Moosavi-Dezfooli et al., 2016; Hosseini and Pooven-
dran, 2018) or may optimize the loss function with the additional objective of modifying
the image with an imperceptible perturbation (Szegedy et al., 2014; Goodfellow et al., 2015;
Moosavi-Dezfooli et al., 2016; Modas et al., 2019; Shamsabadi et al., 2020c).

Based on knowledge of the target model, f (·), and/or its predictions, y, available to an
adversary, an attack can be categorized as white-box or black-box. In a white-box attack, the
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FIGURE 15.1 Illustrative example of adversarial attack for image classification. The original image is classified
with the label hare by the target model (top), while the perturbed image (adversarial example), obtained with the
Basic Iterative Method (Kurakin et al., 2017b) attack, is classified with the label armadillo by the same model (bottom).
Note that the target model is an illustrative and abstract representation of the Inception V3 classifier (Szegedy et al.,
2016) that is trained on ImageNet (Deng et al., 2009). Note also that the magnitude of the perturbation is scaled up
to 20 times larger than the real one for visualization purposes.

adversary has full access to the target model (the specific architecture, its parameters and/or
the training data), which is used to directly craft the adversarial perturbation. White-box set-
tings help discover the limits of a trained model and evaluate their robustness. In a black-box
attack, the adversary has no direct access to the architecture or parameters of the target model.
Black-box attacks are more realistic than white-box attacks since models (or even their out-
puts) are not available in real-world applications. With a black box attack the attacker may
have no access to the output of f (·) and thus no information about y (no-output attack),
or have access only to the label y (classes) generated by adversarial examples submitted
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to the classifier f (·) (label-output attack); or only to the values of the neurons prior to the
last layer, namely the logits/probabilities of adversarial examples submitted to the classifier
(distribution-output attack).

15.3 Properties of an adversarial attack

Adversarial attacks can be evaluated based on four main properties, namely effectiveness,
robustness, transferability, and noticeability.

The effectiveness of an adversarial attack is the degree to which it succeeds in misleading a
machine learning model. Effectiveness can be measured as the accuracy of f (·) over a target
dataset. The lower the accuracy, the higher the effectiveness of an adversarial attack.

The robustness of an adversarial attack is its effectiveness in the presence of a defense that
removes the effect of δ prior to the data being processed by f (·). Examples of defense include
median filtering (Xu et al., 2018), requantization (Xu et al., 2018), and JPEG compression (Das
et al., 2017; Dziugaite et al., 2016; Guo et al., 2018). Robustness can be measured as the differ-
ence in accuracy of f (·) over a target dataset when a defense is used with respect to a setting
when the defense is not used for f (·). The smaller this difference, the higher the robustness
of an adversarial attack.

The transferability of an adversarial attack is the extent to which a perturbation δ crafted
for a model f (·) is effective in misleading another model f ′(·) that was not used to generate
δ. Transferability can be measured as the difference in accuracy of f (·) and f ′(·) over a target
dataset of adversarial examples crafted for f (·). The smaller this difference, the higher the
transferability of the attack to the classifier f ′(·).

The noticeability of an adversarial attack is the extent to which an adversarial perturbation
δ can be seen as such by a person looking at an image/video. Noticeability can be measured
with a double stimulus test that compares image or video clip pairs, {(x, ẋ)}; a single stimulus
test on the naturalness of image or video clips, {ẋ}, controlled by the results obtained with the
corresponding {x}; or with a (reliable) no-reference perceptual quality measure.

In addition to these four main properties, other properties, such as detectability and re-
versibility, may be considered when analyzing or evaluating adversarial attacks for specific
tasks or objectives. The detectability of an adversarial attack is the extent to which a defense
mechanism is capable of identifying that a perturbation was applied to modify an original
image, video, or scene. Detectability, which is related to robustness, can be measured as the
proportion of adversarial examples that are detected as such in a given dataset or given sce-
narios. A (successful) defense can be used to determine the detectability of an attack by
comparing the output of f (·) on a given input and on the same input preprocessed with a
defense, as different outputs suggest the presence of an attack. Finally, the reversibility of an
adversarial attack is the extent to which an analysis of the predictions or output labels of f (·)
may support the retrieval of the original class of ẋ. For instance, the analysis of the frequency
of an adversarial-original prediction mapping revealed that untargeted attacks are more re-
versible than targeted attacks (Li et al., 2021).
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15.4 Types of perturbations

An adversarial perturbation can be global or region-based depending on the spatial distri-
bution of δ, and bounded or unbounded based on the amount of change caused to the pixel
intensities.

Global perturbations change the intensity of each pixel individually and thus generate high
spatial-frequency noise. The nature of these perturbations makes them vulnerable to defenses
(e.g., median filtering or JPEG compression) (Dziugaite et al., 2016). Global perturbations can
be sparse (Papernot et al., 2016b) or dense (Goodfellow et al., 2015). An extreme case is the
one-pixel perturbation that modifies a single pixel of the original image (Su et al., 2019).

Region-based perturbations are applied to image areas, such as a frame around the image bor-
der, a semantic region, or a rectangular or circular patch. Adversarial patches are noticeable
and extremely salient to the target model f (·) (Brown et al., 2018; Ranjan et al., 2019). Selected
regions may also be manipulated depending on their expected saliency to the human visual
system (Shamsabadi et al., 2020c).

Bounded perturbations restrict the amount of change for the value of each pixel (Goodfellow
et al., 2015) or image (Szegedy et al., 2014), generally with an �p-norm constraint. The bound
of the adversarial perturbation can be defined by a parameter ε, such that ‖x− ẋ‖p < ε (Carlini
and Wagner, 2017; Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016; Modas et al., 2019).
Using the �2-norm, ‖.‖2, limits the maximum energy change (Moosavi-Dezfooli et al., 2016),
whereas using the �∞-norm, ‖.‖∞, constrains the maximum change for each pixel (Kurakin et
al., 2017a; Li et al., 2019a). Bounded perturbations have generally limited transferability (Xie
et al., 2019) and limited robustness against defenses (Xu et al., 2018).

Unbounded perturbations do not limit the intensity changes or attack regions, thus often
resulting in noticeably distorted adversarial examples (Hosseini and Poovendran, 2018). To
reduce (or avoid) artifacts, content-based unbounded perturbations manipulate low-level im-
age features, such as color, texture, or edges, and achieve higher transferability and robust-
ness (Bhattad et al., 2020; Shamsabadi et al., 2020b).

15.5 Attack scenarios

We group models that have been targeted by adversarial attacks in image processing and
computer vision tasks, and the corresponding datasets used for crafting and evaluating these
attacks for images and videos. Table 15.1 and Table 15.2 summarize the main characteristics
of adversarial attacks for images or videos.

15.5.1 Target models

A target DNN model has a specific architecture that consists of layers, whose parameters
are learned. The number of layers determines how deep a DNN model is. Increasing the
depth of a DNN architecture results in a larger number of parameters and hence a large-scale
dataset (over one million images) is needed to learn the parameters values during training.
The last layers may predict the logits (values in the range (−∞, +∞)) or the probabilities
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TABLE 15.1 Summary of existing adversarial attacks for tasks that use images as input. KEY – ◦: white-box, •: black-box, T: targeted, T: untargeted,
B: bounded, B: unbounded, Opt: optimization-based, Grad: gradient-based, Bound: boundary approximation, GradE: gradient estimation, LocS: local
search, RanS: random search, C: classification, S: semantic segmentation, D: object detection, IC: image captioning, E: edge detection.

Reference Method box T T B B Approach Datasets Task
(Szegedy et al., 2014) L-BFGS � � � Opt ImageNet, MNIST, Youtube C
(Carlini and Wagner, 2017) CW � � � Opt MNIST, CIFAR C
(Goodfellow et al., 2015) FGSM � � � Grad MNIST C
(Kurakin et al., 2017b) BIM (I-FGSM) � � � Grad ImageNet C
(Madry et al., 2018) PGD � � � Grad MNIST, CIFAR C
(Papernot et al., 2016b) JSMA � � � Grad MNIST C
(Moosavi-Dezfooli et al., 2016) DeepFool � � Grad ImageNet, MNIST, CIFAR C
(Modas et al., 2019) SparseFool � � Grad ImageNet, MNIST, CIFAR C
(Xie et al., 2019) DI2-FGSM , � � � Grad ImageNet C
(Tramèr et al., 2018) E-FGSM , � � Grad ImageNet C
(Li et al., 2019a) P-FGSM � � Grad Places C
(Sanchez-Matilla et al., 2020) RP-FGSM � � � Grad Places C
(Moosavi-Dezfooli et al., 2017) UAP � � Opt ImageNet C
(Mopuri et al., 2017) Fast Feature Fool � � Opt ImageNet, Places-205 C
(Baluja and Fischer, 2018) ATN � � � Opt ImageNet, MNIST C
(Xiao et al., 2018) AdvGAN , � � � Opt ImageNet, MNIST C
(Poursaeed et al., 2018) GAP � � � Opt ImageNet, Cityscapes C,S
(Mopuri et al., 2018) NAG , � � Opt ImageNet C
(Bhattad et al., 2020) Semantic Manipulation � � Opt ImageNet, MSCOCO C,IC
(Shamsabadi et al., 2020a) EdgeFool � � Opt ImageNet, Places C
(Papernot et al., 2016a) SBA � � � Bound MNIST C
(Shi et al., 2019) Curls & Whey � � � Bound ImageNet C
(Dong et al., 2019) TI Attack � � Bound ImageNet C
(Chen et al., 2017) ZOO � � � GradE ImageNet, MNIST, CIFAR C
(Ilyas et al., 2018) Query-limited Attack � � GradE ImageNet C
(Tu et al., 2019) AutoZOOM � � � GradE ImageNet, MNIST, CIFAR C
(Narodytska and
Kasiviswanathan, 2017)

LocSearchAdv � � � GradE ImageNet, MNIST, CIFAR, SVHN, STL C

(Brendel et al., 2018) BA � � � LocS ImageNet, MNIST, CIFAR C
(Guo et al., 2019) SimBA � � � LocS ImageNet C
(Hosseini and Poovendran,
2018)

SemanticAdv � � � RanS CIFAR C

(Shamsabadi et al., 2020c) ColorFool � � RanS ImageNet, CIFAR, Places C
(Fischer et al., 2017) SSA � � Grad Cityscapes S
(Xie et al., 2017) DAG � � Grad VOC S,D
(Wei et al., 2019) UEA , � � Opt ImageNet VID D
(Cosgrove and Yuille, 2020) Edge Attack � � � Grad Cityscapes E
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TABLE 15.2 Summary of existing adversarial attacks for tasks that use videos as input. KEY – ◦: white-box,
•: black-box, T: targeted, T: untargeted, DD: data input dependency, U: universal, B: unbounded, B: bounded,
R: region-based, Gen: generative, Opt: optimization, C: video classification, ME: motion estimation, OT: object
tracking.

Reference Method box T T DD U B B R Approach Data sets Task
Ranjan et al. (2019) OFA , � � � � Opt KITTI ME
Liang et al. (2020) FAN , � � � � Gen OTB, VOT OT
Jiang et al. (2018) V-BAD � � � � Opt UCF,

HMDB,
Kinetics

C

Li et al. (2019b) C-DUP � � � Gen UCF,
JESTER

C

Lo and Patel (2020) MultAV � � � � � � � Direct, Opt UCF C

(values in the range [0,1]) of the predicted labels, or the final labels. As not all layers (e.g.,
pooling layers) have trainable parameters, in this chapter we will use the term layer only for
those with trainable parameters (e.g., convolutional and fully connected layers).

The models that have been attacked, or target models, are LeNet, AlexNet, VGGNets,
GoogleNet and variants, ResNets and WideResNets, DenseNets, and MobileNets for image
classification; FCN, HED, and Faster R-CNN, for semantic segmentation, edge detection, and
object detection, respectively; C3D, CNN + LSTM, I3D, and 3D ResNet-18 for video classi-
fication; SiamFC, SiamRPN, SiamRPN + CIR, and SiamRPN ++ for visual object tracking;
and FlowNet, FlowNet2, SpyNet, PWC-Net, and Back2Future for motion estimation. We also
include two non-DNN models, namely Epic Flow and LDOF, for optical flow estimation.

15.5.1.1 Models for image-based tasks
LeNet is a convolutional neural network (CNN) with 3 convolution layers and 2 fully con-
nected layers for image recognition (LeCun et al., 1998).
AlexNet has 8 convolutional layers and 3 fully connected layers, and the model architecture
is similar to LeNet (Krizhevsky et al., 2012).
VGGNet has deeper architectures with 16 and 19 layers, but smaller convolution filter ker-
nels as multiple small convolution filters with fewer parameters outperform a single large
filter (Simonyan and Zisserman, 2014).
GoogLeNet (Inception-v1) has 22 layers (only layers with parameters are counted) and 9
of these layers consist of multiple convolutional filter sizes (inception layer/module) that
reduces the computational cost and resources of the architecture (Szegedy et al., 2015).
Inception-v2 and Inception-v3 (Szegedy et al., 2016) and Inception-v4 (Szegedy et al., 2017)
are variants that further improve accuracy and reduce computational complexity. Improve-
ments include factorizing filter sizes to stacked smaller filter size, increasing the number of
filters and their size in each model (wider instead of deeper), label smoothing (regularization
term to reduce the confidence of the network on a class), adding reduction blocks, and sim-
plification of different modules (e.g., by choosing different number of filters and their size).
Reduction blocks are 1×1 convolutional layers, also known as projection layers, that perform
pooling of the feature maps over the channel dimension, thus resulting in a dimensionality
reduction.
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ResNet may have 18, 50, 101, or 150 layers. Blocks of layers are grouped to learn a function
that maps the input with the output as a residual mapping (He et al., 2016).
DenseNet has architectures with 121, 169, 201, and 264 layers, whose (4) dense blocks can
contain from 12 to 128 convolutional layers. DenseNet extends the residual mapping of
ResNet by providing the feature maps of all previous layers within a block as input to subse-
quent layers within the same block (dense connection) to reduce the number of parameters,
improve the flow of information and gradients throughout the network, and reduce overfit-
ting (Huang et al., 2017).
MobileNet has 28 layers and two hyper-parameters that regulate the width of the network
at each layer and the resolution of an input image (Howard et al., 2017). The first 13 layers
are depth-wise separable convolution layers that split the standard convolution layer into
two layers, a separate layer for filtering and a separate layer for combining the resulting out-
put. This factorization reduces computation and model size. The architecture can be further
reduced by removing layers.
WideResNet has higher accuracy than ResNet on image classification tasks with a shallower
architecture and a larger width of the residual blocks (Zagoruyko and Komodakis, 2016).
Fully Convolutional Networks (FCN) use CNN models for image classification, such as
AlexNet, VGGNet, and GoogleNet, and replace fully connected layers with convolutional
layers, followed by an upsampling layer (Long et al., 2015), thus generating an output fea-
ture map of the same size as the input. Because of this FCN can be trained end-to-end for
(semantic) segmentation.
Holistically-nested Edge Detector (HED) is an FCN-based architecture that uses average
pooling to detect edges (Xie and Tu, 2015).
Faster R-CNN is an FCN-based architecture that learns to generate object candidates, fol-
lowed by localization and classification of the objects among the candidates (Ren et al.,
2017). Faster R-CNN consists of pretrained convolution layers, such as 13 convolution lay-
ers of VGGNet, where the output is fed into the small network, with two convolution layers,
that outputs lower-dimensional features. These features, each of which represents an object
candidate, are then fed into two independent fully connected layers to find the location of
bounding boxes and their classes for object candidates.

15.5.1.2 Models for video-based tasks

CNN + LSTM is a video classifier that applies 2D architectures (e.g., AlexNet or GoogleNet)
to each frame independently using shared parameters through time, and then learns how to
integrate information over time by using a recurrent neural network based on the Long-Short
Temporal Memory (LSTM) operating on frame-level CNN activations (Ng et al., 2015). The
combination of LSTM with the 2D networks allows the video classifier to maintain a constant
number of parameters while capturing a global description of the video temporal evolution.
C3D is a spatio-temporal classifier with 8 3D convolutional layers and 2 fully connected lay-
ers (Tran et al., 2015). C3D can process 16 frames for action recognition.
Inflated 3D CNN (I3D) is a spatio-temporal architecture, built on top of 2D DNNs for image
classification (e.g., InceptionV1), that combines the output of two 3D CNNs, one processing
a group of RGB frames and the other processing a group of optical flow predictions among
consecutive RGB frames (Carreira and Zisserman, 2017). I3D extends filters and pooling op-
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erations from 2D to 3D (inflating). I3D can also use pretrained weights from 2D models as
initialization prior to fine-tuning.
3D ResNet is a spatio-temporal architecture that, similarly to I3D, extends image-based
ResNet models to the temporal domain using 3D CNNs (Hara et al., 2018). Additional mod-
els, such as WideResNet and DenseNet can be extended with 3D CNNs.
SiamFC uses a fully convolutional Siamese architecture consisting of two convolutional neu-
ral networks sharing the same parameters. SiamFC is trained to predict a similarity map
between a target template (or reference patch) and a search region in a current image via
cross-correlation of the features outputted by the two branches. The reference patch is pro-
vided or initialized in the first frame (Bertinetto et al., 2016).
SiamRPN is based on the Siamese architecture to extract the features from the template and
the search area. SiamRPN adds a region proposal network consisting of two branches, one
for foreground-background classification and the other for regression, based on pair-wise
cross-correlation (Li et al., 2018).
SiamRPN ++ improves SiamRPN by using a spatially aware sampling strategy that provides
a strict translation invariance, as padding introduced within DNNs breaks the invariance.
Moreover, SiamRPN ++ adds a depth-wise cross-correlation layer that predicts multichan-
nel correlation features between a template and search patches, exploiting the structure of a
ResNet (Li et al., 2019)
SiamRPN + CIR adds Cropping-Inside Residual (CIR) units to eliminate the underlying
position bias given by the zero padding. SiamRPN + CIR applies CIR units to different
deep and wide networks, such as ResNet and Inception, when used within SiamFC and
SiamRPN (Zhang and Peng, 2019).
FlowNet is an autoencoder (encoder-decoder architecture) with 9 convolutional layers and a
correlation layer that performs multiplicative patch comparisons between two feature maps.
Pairs of images with arbitrary size are provided as input to two branches of the architecture
and combined with the correlation layer. The decoder part has 4 upconvolutional layers that
perform extension of the feature maps, and concatenates with feature maps from the encoder
to refine the optical flow with image details (Dosovitskiy et al., 2015).
FlowNet2 stacks multiple FlowNet architectures to improve the accuracy of the optical flow
estimation for both small and large displacements. The first network is FlowNet and the
stacked networks use a single branch whose input is given by the concatenation of the flow es-
timated by the previous network with the two images, the warped image based on the optical
flow, and a brightness error. The last stage of FlowNet2 fuses the output of the stacked net-
works with the output of an autoencoder for small displacements to obtain the final flow (Ilg
et al., 2017).
SpyNet (Spatial Pyramid Network) combines a coarse-to-fine strategy, based on a spatial-
pyramid formulation, with convolutional neural networks to estimate large motions within
the image pyramid. For each level of the pyramid, a convolutional neural network updates
the estimated optical flow, as one image of a pair is warped by the estimated optical flow at
the coarser level (Ranjan and Black, 2017).
PWC-Net is a coarse-to-fine architecture that replaces the image pyramid with a feature pyra-
mid. For each level, PWC-Net adds a layer that warps the feature from the second image
toward the first image using the upsampled flow, and a correlation layer between features of
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the first image and warped features of the second image to compute partial matching costs
for associating a pixel with its corresponding pixels at the next frame (Sun et al., 2018).
Back2Future is a coarse-to-fine architecture that uses both image and feature pyramids of
three consecutive frames (past, present, and future) and is trained in an unsupervised way
with a photometric loss. The multiframe formulation addresses occlusions and allows adding
a linear motion model as a soft temporal constraint (Janai et al., 2018).
Epic Flow is a classic optical flow estimation approach that performs a dense matching by
edge-preserving interpolation from a sparse set of matches, followed by a variational energy
minimization initialized with the dense matches. The sparse-to-dense interpolation relies on
an edge-aware geodesic distance, tailored to handle occlusions and motion boundaries (Re-
vaud et al., 2015).
LDOF is a classic optical flow estimation approach that combines the matching of local de-
scriptors (i.e., feature vectors extracted from the local area around localized interests points,
such as corner points) with variational techniques based on image warping and energy min-
imization. This approach can handle fast motions of different body parts (Brox and Malik,
2011).

15.5.2 Datasets and labels

We describe the main features of the datasets (and their annotations) used to generate
adversarial images and videos. Image datasets include MNIST, SVHN, CIFAR-10, STL-10,
ImageNet, Places, COCO. Video datasets include action recognition datasets used for video
classification, visual object tracking, and motion estimation. These datasets are KITTI, UCF,
JESTER, HMDB, Kinetics, and two benchmarks for tracking (and their variants): Object Track-
ing Benchmark (OTB) (Wu et al., 2015) and Visual Object Tracking (VOT).

15.5.2.1 Image datasets

MNIST (Modified National Institute of Standards and Technology) has 60,000 training and
10,000 test images (28 × 28, gray-scale) of handwritten digits (LeCun, 1998).
SVHN (Street View House Numbers) has 600,000 Google Street View images with small
cropped digits (Netzer et al., 2011).
CIFAR-10 (Canadian Institute for Advanced Research-10) has 50,000 training and 10,000 test
32×32 images of 10 classes, such as airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck (Krizhevsky et al., 2009).
STL-10 contains 500 training images, 800 test images per class, and 100,000 unlabeled images
within 10 classes total (same classes as CIFAR-10). The image resolution is 96 in color (Coates
et al., 2011).
ImageNet includes 14,197,122 RGB images with 1000 classes (Deng et al., 2009). Variants of
ImageNet include tiny ImageNet that contains a 120,000 images for 200 classes with 64 size.
Places have two scene-centric versions: Places-205, with 2,448,873 images and 205 scene cat-
egories, and Places-365, with 1,800,000 images and 365 scene categories (Zhou et al., 2017).
COCO (Common Objects In Context) has 330,000 images, of which over 200,000 are semanti-
cally labeled for object detection, semantic segmentation, image classification, and keypoint
estimation (Lin et al., 2014).
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F-MNIST (Fashion MNIST) contains 60,000 training and 10,000 test 28 gray-scale images with
a label for 10 types of clothing, such as t-shirt, trousers, pullover, dress, coat, sandal, shirt, sneaker,
bag, and Ankle boot (Xiao et al., 2017).
VOC (PascalVOC) was used for several image classification, object detection, and seman-
tic segmentation benchmarks, such as VOC2007 and VOC2012 (Everingham et al., 2015).
VOC2007 consists of 9963 images with 24,640 annotated objects from 20 classes. VOC2012
consists of 11,530 train/validation images containing 27,450 annotated objects (bounding box)
and 6929 segmentations from 20 classes.
LFW (Labeled Faces in the Wild) consists of more than 13,000 photos of faces labeled with the
name of the person pictured (Huang et al., 2008). The dataset has one or more distinct photos
for 1680 people.
BSDS500 contains 500 natural images with the ground-truth annotations drawn by humans
for edge detection (Martin et al., 2004).

15.5.2.2 Video datasets

Cityscapes consists of stereo video sequences from the streets of 50 cities and includes 5,000
images with high quality pixel-level annotations and 20,000 additional images with coarse
annotations (Cordts et al., 2016).
HAR (Human Activity Recognition) includes 30 subjects doing activities of daily living
(ADL), while carrying a waist-mounted smartphone with embedded inertial sensors (An-
guita et al., 2013). Each participant was instructed to perform twice a designed protocol of
activities, including 6 actions, namely walking, walking upstairs, walking downstairs, sitting,
standing and lying. Performing the protocol takes 192 seconds in total.
UAV has 123 sequences (and a total of 110,000 frames) captured from unmanned aerial vehi-
cles in low-altitude for object tracking (Mueller et al., 2016).
KITTI consists of 389 scenes (image pairs), split into training and testing sets, of a static en-
vironment captured by a camera mounted on a moving car (Geiger et al., 2012). The training
set includes sparse annotations of the flow between the two images.
UCF has 13,320 YouTube clips of 101 coarse-grained human actions categories split into 25
groups (4–7 clips for each group), sharing common attributes, such as same background or
actor (Soomro et al., 2012). The dataset has diverse camera motions, object scales, lighting
conditions, backgrounds, and actors involved.
JESTER has 148,092 video clips (of 3 seconds duration, on average) with fine-grained human
gestures, divided in 27 categories and performed by a total of 1,376 actors. Examples of ges-
tures are zooming in with two fingers, pushing hand out, and swiping right (Materzynska et al.,
2019).
HMDB contains 6,766 video clips of different actions, split into 51 categories (about 100
clips for each category) and 5 types, such as general facial actions (e.g., smile), facial actions
with object manipulation (e.g., smoking), general body movements (e.g., handstand), body
movements with object interaction (e.g., pour), and body movements for human interaction
(e.g., fencing) (Kuehne et al., 2011).
Kinetics has 306,245 clips of 400 human actions, including single person actions, person-
person actions, and person-object actions, depicting a variety of actors and large variations in
backgrounds, illuminations, perspective, and action execution (e.g., speed and poses) (Kay et
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al., 2017). Each action category contains between 400 to 1,000 video clips, whose duration is
around 10 seconds.
OTB (or OTB-2015) has 100 short videos with per-frame annotations of bounding boxes and
11 attributes, such as illumination and scale variations, occlusion, nonrigid object deforma-
tion, or out-of-view (Wu et al., 2015). OTB-13, the first release, contained 51 sequences.
VOT1 contains 60 videos of fewer than 1,500 frames at 30 fps with various animals, people,
or moving objects, often acquired with a moving camera. Examples of scenes include a per-
son carrying a book, gymnastics, ants moving, flying birds, moving drones, a moving car
on the road, fish in a water tank, people playing basketball, soccer, and handball. Per-frame
annotations are available of rotated bounding boxes, segmentation masks, and attributes.

15.6 Image processing

In this section, we discuss adversarial attacks that aim at misleading image processing
operations, such as edge detection (Cosgrove and Yuille, 2020) and motion estimation (Ranjan et
al., 2019).

Edge Attack is devised to craft adversarial perturbations for a CNN-based edge detection
model, HED (Xie and Tu, 2015). HED is trained on BSDS500 and combines the feature maps
extracted from each convolution layer to classify whether each pixel in the image belongs to
the object boundary or not. Edge Attack estimates the loss function for the edge detection
and crafts the perturbations that maximize the gradient of the loss function (Goodfellow et
al., 2015).

Optical Flow Attack (OFA) (Ranjan et al., 2019) aims to adversarially perturb two consec-
utive pairs of images (xk,xk+1) in a video such that the labels associated with the optical flow,
i.e., the displacement vectors (u, v), are incorrectly predicted (untargeted attack). Because of
the limited availability of datasets with dense optical flow annotations, OFA uses the opti-
cal flow prediction of the model f (·) as pseudo-annotation to self-supervise the learning of
the region-based (e.g., circular patch) adversarial perturbation δ. OFA applies (e.g., pastes) the
learned adversarial patch onto the image. In addition to perturbing a small number of pix-
els within a pair of consecutive images, OFA constrains the adversarial perturbation to be
quasi-imperceptible, such that

‖xk − ẋk‖0 + ‖xk+1 − ẋk+1‖0 < ε, (15.1)

where ε is a small constant (bounded perturbation), while the predicted output of the optical
flow model f (·, ·) on the perturbed images is significantly affected, i.e.,

‖f (xk,xk+1) − f (ẋk, ẋk+1)‖ > E, (15.2)

where E is a large constant.

1 https://www.votchallenge.net.

https://www.votchallenge.net
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The adversarial patch is therefore learned as

δ = arg min
δ

E(xk,xk+1)∼X ,l∼Ω,t∼T

[
(u, v) · (u̇, v̇)

‖(u, v)‖ · ‖(u̇, v̇)‖
]

, (15.3)

with

(u, v) = f (xk,xk+1), (15.4)
(u̇, v̇) = f (g(xk, δ, l, t (δ)), g(xk+1, δ, l, t (δ))), (15.5)

where δ is the adversarial patch, l is the pixel location sampled over all the locations Ω in the
image, g(·) is the operator that replaces the image pixels with the values of δ at the location l,
t (δ) is a 2D transformation sampled from the set of transformations T (or their combination)
and applied to the adversarial patch δ, and (u̇, v̇) is the optical flow resulting from the images
attacked with the adversarial patch.

OFA works with different types of optical flow models, such as classical (Epic Flow, LDOF),
autoencoder-based architectures (FlowNet, FlowNet2), and image-pyramids-based architec-
tures (SpyNet, PWC-Net, Back2Future), in a white-box scenario. In such a scenario, OFA
learns a specific adversarial patch for each model independently and of different sizes, while
a universal adversarial patch is learned from some of the models and applied to the input
videos against other models in a black-box scenario. In both scenarios, the attack on auto-
encoder models impacts large image areas even with a small patch size (0.1% of the image
resolution). Other types of models are instead more robust to such an attack.

15.7 Image classification

In this section, we discuss and categorize adversarial examples for image classification.

15.7.1 White-box, bounded attacks

White-box bounded attacks commonly generate the perturbations with an �p-norm con-
straint so that the distortion of the resulting adversarial example is imperceptible to humans.

L-BFGS (Szegedy et al., 2014) misleads a target classifier with adversarial examples that
consist of imperceptible adversarial perturbations added to a normalized input x ∈ [0,1]. The
L-BFGS attack solves a constrained optimization problem whose goal is to find ẋ ∈ [0,1] with
an �2-norm constraint:

c‖ẋ − x‖2 +L (ẋ, ẏ) , (15.6)

where c is a hyper-parameter and L (ẋ, ẏ) is the cross-entropy loss that measures the differ-
ence between the label y predicted by a target classifier from an adversarial input and the
target mis-classification label ẏ. This loss encourages the attack to generate ẋ that can mislead
the target classifier. The Carlini & Wagner (CW) attack (Carlini and Wagner, 2017) generates
an �p-norm bounded perturbation by solving a constrained optimization problem, similarly
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to L-BFGS. CW minimizes a loss, within �p-norm bounded constraints, that measures the dif-
ference between the logit value, ży , of ẋ belonging to y, the same class of the prediction from
x, and the maximum logit value among all the other classes:

min
δ

(
‖ẋ − x‖p + c

(
max

n=1,...,D
{żn;n �= y} − ży

))
, (15.7)

where D is the total number of labels, p ∈ {0,2,∞} and c > 0 is a constant determined via
linear search to find an optimal value. Minimizing the second term encourages the attack to
find ẋ that makes żn ≥ ży so that the classification output can avoid y. Unlike L-BFGS that
employs cross-entropy loss, CW attack is based on the margin loss that is more efficient in
finding the minimally distorted adversarial example (Carlini and Wagner, 2017).

Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) is a gradient-based ap-
proach that determines a direction of perturbation such that the loss from the target model
increases. FGSM estimates the perturbations by computing the gradient of the loss function,
L (x, y), with respect to a given input x, with a small ε to generate imperceptible adversarial
perturbations:

ẋ = x + εsgn
(∇xL (x, y)

)
. (15.8)

Since the perturbations are generated along the direction of ∇xL (x, y), the adversarial exam-
ple can mislead a target model to avoid the original label y, resulting in an untargeted attack.
FGSM can also be formulated as a targeted attack by decreasing the loss of the target model
with respect to the target label ẏ as:

ẋ = x − εsgn
(∇xL (x, ẏ)

)
, (15.9)

which generates a perturbation that misleads the classifier to the target label ẏ.
Variants of FGSM using gradient-based optimization can also be either untargeted or tar-

geted in a similar manner as shown in Eqs. (15.8) and (15.9). Basic Iterative Method (BIM) (or
I-FGSM) (Kurakin et al., 2017b) extends FGSM by aggregating the adversarial perturbations
for a fixed number of iterations:

ẋi+1 = Cẋi ,ε

(
ẋi + αsgn (∇xL (ẋi , y))

)
, (15.10)

where α controls the magnitude of perturbations at each step and the clipping operation,
Cẋi ,ε(·), clips the pixel intensities of the adversarial image at time step i to be in the image
range. Projected Gradient Descent (PGD) (Madry et al., 2018) generalizes BIM without the
constraint on the magnitude of perturbation. Instead, in each step, PGD projects the adver-
sarial examples to �∞ neighbor so that the perturbation can be bounded.

ẋi+1 = Pẋi ,ε(ẋi + αsgn
(∇xL (ẋi , y)

)
, (15.11)

where Pẋi ,ε is the projection operator. Jacobian-based Saliency Map Attacks (JSMA) (Paper-
not et al., 2016b) generates a saliency map, S

(
xq, ẏ

)
, that determines each pixel xq ∈ x, at pixel

location q to select the pixels which are likely to be perturbed to obtain the desired changes
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in classification to a target label ẏ:

S(xq, ẏ) =
{

0, ∇xqPẏ(x) < 0 or
∑

j �=ẏ ∇xqPj (x) > 0,

∇xqPẏ(x)

∥∥∥∑
j �=ẏ ∇xqPj (x)

∥∥∥
1
, otherwise,

(15.12)

where Pẏ(x) is the predicted softmax probability on ẏ prior to the last layer for classification.
The algorithm perturbs a pixel xq with the highest value of S(xq, ẏ) to increase (or decrease)
the softmax probabilities of the target class. The attack iteratively generates the perturbation
until the adversarial image is classified as ẏ or a predefined number of pixels has been per-
turbed.

DeepFool (Moosavi-Dezfooli et al., 2016) is another gradient-based approach that gener-
ates l2-bounded perturbations by estimating the distance of an input at time step i, ẋi , to
the closest decision boundary of a target classifier with the original class y. This process is re-
peated until f (ẋi ) �= f (xi ). DeepFool produces smaller perturbations compared to the L-BFGS
attack and with lower computation cost. SparseFool (Modas et al., 2019) employs DeepFool-
like adversarial attack with an l1-norm constraint to the perturbations. SparseFool employs
the low mean curvature of the decision boundary to compute adversarial perturbations effi-
ciently with a few pixels.

The aforementioned methods generally focus on the effectiveness and noticeability of an
adversarial attack, while the transferability is less considered. Some FGSM variants also inves-
tigate further challenges in adversarial attack, such as misleading multiple models or unseen
models and protecting the private information, e.g., original class, from the input image. The
perturbations crafted from FGSM-based attacks can be overfitted to the target model. To im-
prove the transferability to multiple models, Diverse Input Iterative FGSM (DI2-FGSM) (Xie
et al., 2019) applies a random resizing and padding to the input images at each iteration to
produce hard and diverse input patterns. Ensemble FGSM (E-FGSM) (Tramèr et al., 2018)
employs multiple classifiers simultaneously when creating the FGSM-like perturbations (see
Eq. (15.9)). E-FGSM can be applicable to multiple models that are used for training, but the
perturbations tend to be overfitted to the employed multiple models and not desirable to un-
seen classifiers. Noting that the true class of images from these FGSM variants can be easily
inferred, it is important to protect the privacy of the input label. Private FGSM (P-FGSM) Li
et al. (2019a) achieves this by discarding the top predicted classes from the class selection
to craft perturbation similar to Eq. (15.9), but does not consider the transferability to other
models or defenses that can estimate the original label. To satisfy both the transferability
and privacy issues, as well as detectability in adversarial attack, Robust Private FGSM (RP-
FGSM) (Sanchez-Matilla et al., 2020) randomly selects a target model to attack as well as a
defense to evade with the strategy of P-FGSM for class selection.

Unlike previous attacks that craft perturbations on a particular image (image-dependent
attacks), Universal Adversarial Perturbation (UAP) (Moosavi-Dezfooli et al., 2017) is a single
perturbation that aims to mislead a model for most images in the training set. UAP accumu-
lates image-dependent perturbations by iteratively applying DeepFool until a certain portion
of input images are misclassified. UAP thus requires training data where the target model can
be trained to solve a data dependent optimization for producing a single universal perturba-
tion. Fast Feature Fool (Mopuri et al., 2017) assumes that there is no access to the original
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training data. The method thus aims to generate universal perturbations that can fool the fea-
tures from a target model by optimizing the product of mean activations at multiple layers of
the target model when the input is the universal perturbation.

The adversarial attacks discussed so far generate perturbations by solving a constrained
optimization problem or updating the feedback from the gradients with respect to the
input images. Unlike aforementioned methods, Adversarial Transformation Networks
(ATN) (Baluja and Fischer, 2018) trains a feed-forward neural network to generate an adver-
sarial example that is similar to the input image. Once trained, the network can generate ad-
versarial examples faster than optimization-based algorithms and gradient-based ones with
iterative updates. Similarly, Adversarial generative adversarial networks (AdvGAN) (Xiao
et al., 2018) learn to craft adversarial perturbations using neural networks, motivated by
generative adversarial networks (Goodfellow et al., 2014) that consist of a generator and a
discriminator. The generator in AdvGAN generates perturbations, whereas the discrimina-
tor, trained to classify the real input image from adversarial images, is added to train the
generator to craft an adversarial example similar to the input image. The method can be
considered as a semiwhite (or gray) box attack as the trained feed-forward network (gener-
ator) can produce adversarial perturbations for any input instances without requiring access
to the model itself anymore. With this framework, the black-box attack is also available by
replacing a target model by a distilled (or substitute) model. Generative Adversarial Per-
turbations (GAP) (Poursaeed et al., 2018) is a generative model that crafts image-dependent
or universal perturbations for untargeted or targeted attacks. Image-dependent perturba-
tions are crafted similar to AdvGAN (Xiao et al., 2018) where the generator outputs the
perturbation from an input image. For universal perturbation, the generator takes a fixed
pattern, sampled from a uniform distribution, to create the perturbation that is added to
clean images to fool the classifier. Network for Adversary Generation (NAG) (Mopuri et
al., 2018) crafts universal perturbations by employing a GAN-like generative model that
models the unknown distribution of adversarial perturbations for a given DNN classifier.
Based on the estimated distribution, NAG can generate a wide variety of universal perturba-
tions.

15.7.2 White-box, content-based attacks

Content-based perturbations are crafted by considering image properties, such as im-
age structures (Shamsabadi et al., 2020a), textures or colors (Bhattad et al., 2020). Unlike
norm-bounded perturbations (Goodfellow et al., 2014; Szegedy et al., 2014), content-based
perturbations are unbounded, i.e., do not constrain the magnitude of adversarial perturba-
tions. This allows content-based adversarial attacks to improve transferability and reduce
detectability to defenses.

Semantic Manipulation (Bhattad et al., 2020) presents two adversarial attacks that ma-
nipulate the visual descriptors, namely colors and textures, of an input image. The color
attack employs image colorization as an adversarial attack. Given an input image converted
to grayscale, the attacker learns to colorize the grayscale image with the color seeds from the
original image in order to mislead a target classifier. The texture attack transfers texture from
a different image to the input image. EdgeFool (Shamsabadi et al., 2020a) generates adver-
sarial images with detail enhancement. EdgeFool trains a feed-forward neural network with
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a multitask loss functions that jointly considers image smoothing and untargeted adversarial
attack (Carlini and Wagner, 2017). The image details, extracted from the learned smooth im-
age, are manipulated with traditional detail enhancement technique (Farbman et al., 2008).
The detail enhancement output is then fed into the CW loss function (Carlini and Wagner,
2017) so that the EdgeFool framework can generate adversarial images with detail enhance-
ment.

15.7.3 Black-box attacks

Black-box attacks assumed limited or no information about the target model, e.g., only the
final output label or the prediction scores. Black-box attack can be performed by training a
substitute model that can approximate the target model (decision boundary approximation),
generating the perturbation based on the estimated loss gradient by queries that return scores
or probabilities of labels from the target model (gradient estimation), manipulating the per-
turbations of the current step to the correct direction in order to mislead a target model (local
search), or performing greedy search until the target model is misled or reaches the maximum
iteration (random search).

Decision boundary approximation methods generally consider the transferability of adver-
sarial images. Substitute Blackbox Attack (SBA) (Papernot et al., 2016a) trains a substitute
model that emulates the original model, and then uses white-box attacks on the trained
substitute model to craft adversarial perturbations. By leveraging the transferability of ad-
versarial images, SBA obtains predictions on the synthetic dataset from the targeted model,
and then trains a substitute model to imitate the prediction of the targeted model. The trained
substitute model is used as a pseudo-target model, where the adversaries can now gener-
ate perturbations with a manner of a white-box attack. Since the substitute model is trained
based on the assumption of transferability of perturbations, it is important to choose white-
box attacks that show high transferability. The Curls & Whey (Shi et al., 2019) attack aims to
improve the transferability of adversarial images for other target models. First, Curls itera-
tion crafts perturbations along the direction of gradient ascent and descent of the substitute
model, which allows the adversarial images to have better transferability by diversifying the
generated images. The second step, Whey optimization, reduces the magnitude of perturba-
tions from the crafted adversarial images. Noting that the good transferability of adversarial
images allows black-box attacks, Translation-Invariant (TI) attack (Dong et al., 2019) em-
ploys an ensemble of translated adversarial images rather than optimizing the loss function
to estimate a substitute model. TI attack performs black-box attack by crafting transferable
adversarial images which are generated for a different white-box classifier with translation-
invariant property but have high transferability for black-box attacks.

Gradient estimation-based attacks take a query feedback form, where the adversary itera-
tively generates the perturbations and asks if the target model is mispredicted until the goal
is achieved. By estimating the gradient of the loss function from input queries, the adver-
sary can generate the perturbation based on the direction of the estimated gradient. Zeroth
Order Optimization (ZOO) (Chen et al., 2017) estimates the gradients of the target model
based on the assumption that the adversary has an access to obtain the probability scores of
all the classes from the target model. This assumption alleviates the black-box attack easier
than the previous works (Papernot et al., 2016a) that can only obtain the label information
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from the classifier. ZOO generates adversarial perturbations by observing the changes in
the probabilities which enables to approximate the gradients. The approximated gradients
can then be used for stochastic coordinate descent to perform the adversarial attack. One is-
sue in black-box attack is query-efficiency, where the large number of queries are required
to predict unknown target models. Query-limited Attack (Ilyas et al., 2018) generates ad-
versarial images with a limited number of queries. The method uses natural evolutional
strategies (Salimans et al., 2017) as a gradient estimation technique with the black-box setting.
The estimated gradient together with PGD (Madry et al., 2018), used for white-box attacks,
can then generate the adversarial example. Autoencoder based Zeroth Order Optimization
(AutoZOOM) (Tu et al., 2019) also addresses query-efficiency problems. AutoZoom reduces
the number of queries required to generate successful adversarial images by an adaptive ran-
dom gradient estimation strategy in which the attack can be accelerated with an autoencoder
either trained offline with unlabeled data or a bilinear resizing operation.

Local search-based approach seeks the correct direction in the perturbations of the current
step to mislead a target classifier. LocSearchAdv (Narodytska and Kasiviswanathan, 2017)
presents a greedy local-search based approach. In each step, LocSearchAdv perturbs a few
pixels of the current input and observes the change in probability scores of the target clas-
sifier that implicitly approximates the gradient of the loss function. The perturbation is then
updated in the next step, based on the approximated gradient. Boundary Attack (BA) (Bren-
del et al., 2018) solely relies on the final decision of the model when crafting the adversarial
perturbations. BA starts from the perturbation that is already adversarial, and then iteratively
perturbs the image along the boundary between adversarial and the nonadversarial region to
find smaller perturbations. Simple black-box adversarial attacks (SimBA) (Guo et al., 2019)
iteratively samples random perturbations from a predefined orthonormal basis where the
perturbations are either added or subtracted to the input image. Assuming that continuous
prediction scores are available from the target model, the algorithm chooses to add or subtract
the random perturbation which decreases the prediction scores of the adversarial example.

Random search methods craft random perturbations until the adversarial example mislead
the target model. SemanticAdv (Hosseini and Poovendran, 2018) modifies an input image in
HSV color space. The hue and saturation of an input image are perturbed with a random per-
turbation chosen uniformly from the range of valid values. SemanticAdv draws new pertur-
bations until the classifier is misled or a maximum number of attempts is reached (e.g., 1000).
Since the hue and saturation values change by the same amount, adversarial images may
look unnatural. Unlike SemanticAdv, ColorFool (Shamsabadi et al., 2020c) generates pertur-
bations that consider the naturalness of adversarial images to address the noticeability in
addition to the performance. The method first identifies nonsensitive and sensitive regions
through semantic segmentation. The perturbations then operate on the a and b channels of
the Lab color space: the perturbations of nonsensitive regions are drawn randomly from
the whole range of possible values, whereas the perturbations of sensitive regions are cho-
sen randomly from predefined natural-color ranges, defined based on human perception.
In addition, SemanticAdv and ColorFool craft unbounded perturbations that achieve better
transferability to other models than other black-box attacks, which mainly fix the perturba-
tions to be bounded while focusing on designing the methodology of attack.
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15.8 Semantic segmentation and object detection

In this section, we discuss adversarial attacks designed for semantic segmentation and
object detection models. Semantic segmentation aims to label the object segments, assigning
a label to every pixel in the image. Object detection, unlike semantic segmentation, localizes
the objects with bounding boxes and classifies each object.

Semantic Segmentation Attack (SSA) (Fischer et al., 2017) employs BIM (Kurakin et al.,
2017b) attack to every pixel in the image or the region with a specific label, to mislead the
pixel-wise semantic segmentation task by FCN. Dense Adversary Generation (DAG) (Xie
et al., 2017) crafts adversarial perturbations for object detection and semantic segmenta-
tion tasks performed by Faster R-CNN and FCN, respectively. Note that, in a single image,
Faster R-CNN performs classification on multiple object candidates to locate the object as a
bounding box, and FCN classifies the label of each pixel in the image. Considering the ob-
ject candidates and image pixels as multiple targets to mislead, DAG crafts gradient-based
perturbations that aim to confuse as many pixels as possible. Unified and Efficiency Ad-
versary (UEA) (Wei et al., 2019) generates untargeted adversarial images with a conditional
Generative Adversarial Network (cGAN) to mislead object detectors. UEA, together with the
adversarial loss used to attack Faster R-CNN in DAG, devises a loss function that integrates a
multiscale attention feature loss to concentrate the perturbations more on the object regions.
The images crafted with the multiscale attention can mislead Faster R-CNN with fewer num-
ber of perturbations than DAG, and improve the transferability of the black-box attack to
another object detector, e.g., SSD. An object boundary detector can be attacked as presented
in Edge Attack (Cosgrove and Yuille, 2020) which employs FGSM (Goodfellow et al., 2015)
variants to mislead a HED detector (Xie and Tu, 2015) (see Section 15.6). Edge Attack transfers
the crafted adversarial images to image classification and semantic segmentation.

15.9 Object tracking

DNN models tackle single object tracking as a template-based similarity metric problem
that searches in each frame for the most similar region to a reference patch, which is given
as prior or selected from the first frame. Siamese architectures (Bromley et al., 1994) are
used to this end to compare the reference patch with a patch from the searching area in a
frame (Bertinetto et al., 2016; Li et al., 2018; Zhang and Peng, 2019; Li et al., 2019). An adver-
sarial attack for object tracking can generate perturbations that modify the reference patch,
the searching area, or both.

Fast Attack Network (FAN) (Liang et al., 2020) is, to date, the only adversarial attack for
object tracking. FAN can operate as an untargeted or targeted attack. The untargeted FAN per-
turbs the searching area, independently for subsequent frames, such that the response map is
maximized in random regions out of the true object trajectory. The targeted FAN induces the
tracker to follow a different, predefined trajectory by perturbing both the reference patch and
the search areas. To avoid early failures of the tracker in the targeted attack, FAN modifies
the searching areas (reference patch) such that the distance in the feature space between the
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adversarial searching areas (or adversarial reference patch) and the specified trajectory areas
is minimized.

FAN uses a generative approach to obtain perturbations that are imperceptible to the hu-
man eye as well as easy to add to the input videos. During training, the FAN parameters are
optimized by alternating between generator and discriminator. The loss function for the dis-
criminator, D(·), is based on PatchGAN (Isola et al., 2017). The generator G(·) is trained with a
multiobjective loss function, LF, which accounts for the embedded feature distance, Le, (tar-
geted attack); a dual-objective drift term, β1Ld + β2Ls , (untargeted attack); and a �2-norm
distance between original images and adversarial images, Lu (unnoticeability); in addition to
the standard term for the generator, LG (based on cyclic GAN):

LF = LG + α1Lu + α2Le + α3(β1Ld + β2Ls), (15.13)

where α1, α2, α3, β1, and β2 are hyper-parameters to balance the influence of each term of the
multiobjective loss. The hyper-parameters for the targeted and untargeted terms are set to
zero when optimizing for either of the attacks. The loss term for the generator is defined as

LG = E

[
(D(δ + R(xk,bk) − 1)2

]
, (15.14)

where xt is the original video frame at time k, R(·) is the region extractor based on the search-
ing area bk at frame k. To craft an imperceptible perturbation, the similarity term in the loss
is defined as

Lu = Exk∼X
[‖R(ẋk,bk) − R(xk,bk)‖2

]
, (15.15)

where X denotes the set of frames in an input video. For the targeted attack, Le aims to
minimize the distance in the feature space between the adversarial reference patch and the
specified trajectory

Le = Exk∼X ,ε̇k∼E
[‖φ(R(xk,bk) + δ) − φ(ε̇k)‖2

]
, (15.16)

where ε̇k is the adversarial area of the specified adversarial trajectory E at frame k, φ(·) is a
function that maps the image area to the embedded feature space, and δ is generated by G(·)
and restricted to the image area selected by R(·). Note that R(xk,bk) is the reference patch
when k = 0.

For the untargeted attack, the drift term aims at maximizing the response score outside of
the region where the tracker usually has the highest response within a searching area to track
the object:

Ld = 1

γ + ‖q+1
max − q−1

max‖2
− ξ, (15.17)

while also pushing away the adversarial activation center from the real activation one:

Ls = min
q∈S+1

(
log

(
1 + eyqsq

)) − max
q∈S−1

(
log

(
1 + eyqsq

))
, (15.18)

where S = S+1 ∪ S−1 is the response map with positive and negative labels yq = {−1,+1} for
each pixel location q; q+1

max and q−1
max are the pixel locations with maximum activation scores
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in positive and negative areas of the response map, respectively; sq is the response score at
pixel location q; γ is a small constant for numerical stability; and ξ controls the offset degree
of the activation center.

15.10 Video classification

Attacks for image classification could be naturally extended to the temporal domain to
mislead a target model for video classification by operating on each frame independently.
However, temporal information can be exploited to create more robust adversarial perturba-
tions using a batch of frames or by processing the frames online, as they are acquired by the
camera. In this section, we discuss three adversarial attacks for video classification: C-DUP,
V-BAD, and MultAV.

Circular Universal Dual Purpose Perturbations (C-DUP) is a white-box attack that mis-
leads online video classifiers under real-time requirements (Li et al., 2019b). C-DUP aims at
inducing the mis-classification of only specific classes, while keeping the recognition of other
classes unaltered. C-DUP extends the work of Mopuri for images (Mopuri et al., 2018), and
uses a modified GAN to learn offline a single set of (universal) perturbations that can be
applied online to an unseen input. The GAN fixes the discriminator with the known pre-
trained classifier, and only trains the 3D generator to obtain the universal perturbations that
are added to the input video clips, while aiming to fool the discriminator. To attack only
specific classes, C-DUP uses a loss function with the probability vectors of all classes, as
outputted by the discriminator, over all the training data. This dual purpose loss function
supports the minimization of the cross-entropy for the target class(es), ẏ ∈ A ⊂ Y (where
Y is the set of class labels) and the maximization of the cross-entropy for all other classes,
Y \A:

min
G

W∑
o=1

⎛
⎝ ∑

x∈X \Xa

− log
[
Py(x + ρ(G(h), o))

]

+λ
∑

xa∈Xa

− log
[
1 − Pẏ(xa + ρ(G(h), o))

]⎞⎠ , (15.19)

where λ is a weighting parameter that balances the losses, h is a noise vector from a la-
tent space (e.g., uniform distribution in the range [−1,1]); G(·) is the generator; Py is the
probability of the unattacked label y; Pẏ is the probability of the label under attack ẏ;
Xa ⊂ X is the subset of video clips whose action label is under attack; and ρ(G(h), o) = δo

is the permutation function that applies a circular shift across all the frames (o = 1, . . . ,W ,
where W is the number of frames in a clip) on the generated perturbations. The per-
mutation function enforces C-DUP to be agnostic to the temporal sequence of frames in
the clip. To produce these circular perturbations, a postprocessing unit is used between
the 3D generator and the discriminator. Finally, the 3D generator constrains the adversar-
ial perturbations to be within a unit ball defined by a bound ε. The success of C-DUP
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on the coarse-grained (UCF) and fine-grained (JESTER) action recognition datasets to mis-
lead the spatio-temporal C3D classifier (Tran et al., 2015) exceeds 80% for target classes
while keeping the classification accuracy higher than 80% for the other classes (the orig-
inal classification accuracy for C3D is 96% and 90% on UCF and JESTER, respectively).
A variant of C-DUP generates a single, quasi-imperceptible 2D perturbation to be applied
to each frame of a clip. However, this attack is less effective than C-DUP, especially for
fine-grained action classification where information about temporal changes is more signifi-
cant.

V-BAD is a black-box attack with a 3-stage iterative scheme to query the model under
attack and obtain, for each iteration, the classification label and corresponding probabil-
ity (Jiang et al., 2019). V-BAD can be targeted or untargeted. The targeted V-BAD aims at
fooling the model with a target class returned as top-1, and uses a sample video from the tar-
get class as input, while adjusting the size of the perturbation bound. The untargeted V-BAD
uses the original video as input and keeps the size of the perturbation bound constant. The
perturbations are imperceptible and bounded in an ε-ball centered at the original video. Ten-
tative perturbations are generated independently for each frame of the original input video
(or the adversarial example for each iteration) with an ensemble of three pretrained DNNs
and then averaging their outputs. V-BAD exploits the uniform partitions in patches of the
input perturbations and limits the number of queries to the video recognition model under
attack using a patch-wise gradient estimator. The gradient estimator provides a vector of
weights based on an adversarial loss with respect to the probability returned by the model
under attack. Patches of perturbations are then rectified using the vector of weights and ap-
plied to the input video (or adversarial example at previous iteration) via one-step PGD.
V-BAD was used to attack the CNN + LSTM and I3D video classifiers.

MultAV is a set of direct or iterative gradient-based attacks (�p-norm, �2-norm PGD) that
craft for each frame of a video multiplicative perturbations (Lo and Patel, 2020). Similarly to
their additive-perturbation counterpart, gradient-based MultAV attacks are bounded. Specif-
ically, MultAV introduces the ratio bound εm (where m stands for multiplicative) that restricts
the pixel-wise ratio between the adversarial example and the original image to make the
perturbation imperceptible. Considering as example the �2-norm bounded attack with ad-
ditive perturbation (see Eq. (15.10)), the multiplicative counterpart created by the iterative
MultAV-�2 is generated as follows. An adversarial example at iteration i + 1 is obtained by
multiplying the adversarial example of the previous iteration with a multiplicative step size,
αm, whose exponent is given by the gradient of the loss,

xi+1 = Cxi ,εm

{
x 
 α

∇xi
L(xi ,y)

‖∇xi
L(xi ,y)‖2

m

}
, (15.20)

where Cxi ,εm{·} is the clipping operation, εm is the ratio bound, such that ‖ xi+1
x ‖2 < (εm + 1),

and 
 is the Hadamard product (element-wise). Alternatively, MultAV applies the same mul-
tiplicative principle to patch-based methods, such as rectangular occlusion and adversarial
framing, or to pixel-based additive noise. However, these attacks result in perceptible pertur-
bations. MultAV was applied on UCF to mislead the 3D ResNet-18 video classifier.
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TABLE 15.3 Summary of defenses against adversarial attacks. KEY – Dec: detection-based method, GradM:
gradient masking, ModelR: model robustness, Aux: auxiliary model, Stat: statistical approach, CCheck: consis-
tency checking, NonDiff: nondifferentiable gradient, Van/Exp: Vanishing/exploding gradient, Stoch: Stochastic
gradient, AdvT Adversarial training, Reg: regularization, Cert: certified defense, Exp: experiment, C: image clas-
sification, D: object detection, S, semantic segmentation, F: face recognition, T: object tracking.

Reference Method Goal Approach Datasets Task
Hendrycks and Gimpel
(2016)

PCA Dec Stat ImageNet, MNIST,
CIFAR

C

Grosse et al. (2017) Statistical test Dec Stat MNIST C
Gong et al. (2017) Binary Classifier Dec Aux MNIST, CIFAR, SVHN C
Metzen et al. (2017) Adversary Detector Net. Dec Aux ImageNet, CIFAR C
Feinman et al. (2017) KDE & BUE Dec CCheck MNIST, CIFAR C
Xu et al. (2018) Feature Squeezing Dec CCheck MNIST, CIFAR C
Buckman et al. (2018) Thermometer Encoding GradM NonDiff MNIST, CIFAR, SVHN C
Guo et al. (2018) Image Transformations GradM NonDiff ImageNet C
Papernot et al. (2016c) Defensive Distillation GradM Van/Exp MNIST, CIFAR C
Song et al. (2018) PixelDefend GradM Van/Exp F-MNIST, CIFAR C
Samangouei et al.
(2018)

Defense-GAN GradM Van/Exp F-MNIST C

Zhou et al. (2020) A-VAE GradM Van/Exp LFW F
Dhillon et al. (2018) Stochastic pruning GradM Stoch CIFAR C
Xie et al. (2018) Randomization GradM Stoch ImageNet C
Gu and Rigazio (2014) Deep Contractive Net. ModelR Reg MNIST C
Cisse et al. (2017) Parseval Net. ModelR Reg CIFAR, SVHN C
Goodfellow et al. (2015) AdvTrain ModelR AdvT MNIST C
Madry et al. (2018) PGD AdvTrain ModelR AdvT MNIST, CIFAR C
Tramèr et al. (2018) Ensemble AdvTrain ModelR AdvT ImageNet C
Zhang and Wang (2019) AROD ModelR AdvT PascalVOC, COCO D
Jia et al. (2020) RT ModelR AdvT OTB, VOT, UAV T
Raghunathan et al.
(2018)

Single Semidefinite Relax. ModelR Cert MNIST C

Wong and Kolter (2018) Deep ReLU Net ModelR Cert F-MNIST, HAR, SVHN C
Arnab et al. (2018) RSSM ModelR Exp PascalVOC, CityScapes S

15.11 Defenses against adversarial attacks

Defenses aim to protect machine learning models from adversarial attacks. A defense may
identify an adversarial example (defense by detection) or confuse the gradient feedback from
the network loss function to disable the attack (defense by gradient masking). Alternatively,
the model itself can be trained with adversarial examples to increase its robustness to at-
tacks (model robustness). Defenses and their properties are summarized in Table 15.3 and
discussed below.
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15.11.1 Detection

Defenses by detection aim to discriminate an adversarial example and reject it. These
defenses may use statistics to distinguish adversarial examples, rely on the creation of an
auxiliary model or on analyzing the prediction consistency.

Adversarial examples can be detected by finding differences in the statistical proper-
ties (statistics) between adversarial and clean examples. Principal Component Analysis
(PCA) (Hendrycks and Gimpel, 2016) can be employed to detect adversarial examples relying
on the fact that the later principal components of adversarial images have a larger variance
than those of clean images. Statistical Test (Grosse et al., 2017) employs the fact that the data
distributions of adversarial examples and clean ones are different. By using a statistical test,
such as maximum mean discrepancy (Gretton et al., 2012), the method examines whether a
group of data are adversarial or not. The method also presents an augmented model that is a
target model with an extra class used for classifying the adversarial inputs.

Auxiliary models can be trained to discriminate adversarial examples from clean ones. Bi-
nary Classifier (Gong et al., 2017) is a straightforward approach to build a classifier that
detects adversarial examples. The classifier takes an image as input to the classifier and gener-
ates a binary label that indicates whether the input is adversarial or not. Adversary Detector
Networks (Metzen et al., 2017) build a binary classifier where the input for the classifier is
the output response from an intermediate layer of the target model.

Other methods detect the adversarial images by checking the consistency of the predic-
tion from the input. This can be done by manipulating the input or the target model up to
an acceptable limit and then checking whether the output prediction is consistent. KDE &
BUE (Feinman et al., 2017) addresses detection by investigating the model confidence on
adversarial samples by using kernel density estimates (KDE) of training data and Bayesian
uncertainty estimates (BUE) in dropout layers. KDE are calculated with the training set in
the feature space of the last hidden layer and detect points that lie far from the data man-
ifold. BUE can detect adversarial examples if the uncertainty distribution estimated by the
random dropout is different from clean data. Feature Squeezing (Xu et al., 2018) performs
requantizing images (color bit depth reduction), and spatial filtering (median filtering) to in-
put images. The method assumes that the model prediction from clean images is not affected
when requantization or median filtering is applied. If the prediction result becomes different
after the requantization or median filtering, the method detects the input as the adversarial
image.

15.11.2 Gradient masking

Most adversarial attacks use the gradient of the loss function from the target model to craft
perturbations. Gradient masking aims to make the gradient information of a target model
not applicable to craft adversarial perturbations. Examples are nondifferentiable gradient, van-
ishing/exploding gradient, and stochastic gradient.

Thermometer Encoding (Buckman et al., 2018) tackles the linear extrapolation behavior
of DNN models by preprocessing the input with discretization to make a defense model
nonlinear and nondifferentiable. Regular quantization may not be effective to defense as the
quantized inputs can be also affected approximately linearly by perturbations. Thermome-
ter Encoding thus learns to project the discretized value, which enables the model to make
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the input effective for resisting the adversarial perturbations. Image Transformation (Guo
et al., 2018) presents several image processing approaches, such as cropping and rescaling,
bit-depth reduction, and JPEG compression. Total variance minimization also can be used to
regularize each small set of pixels in the image. Image quilting, synthesizing images by small
patches, is another approach that replaces the local patches in the adversarial image with
their nearest-neighbor clean patches. These nondifferentiable transforms make it difficult for
the attack to infer the gradient of the loss function from the target model.

Vanishing/exploding gradient makes the gradients of the loss function very small or large
when training a defensive model. This approach distracts the adversary from attacking the
input images. Defensive Distillation (Papernot et al., 2016c) adds flexibility to a classification
process so the model is less confident about its prediction. In distillation training, a distilled
model is trained to predict the output probabilities of a target model. This target model was
trained to achieve high accuracy with learning softer probability distribution by the softmax
function with large temperature T : ezn/T /

∑
m ezm/T . The distilled model is then used for test-

ing with a small T , which makes the model more confident of prediction than using a large
T . This prevents the adversary from estimating the gradient since the gradient of the loss
from other classes becomes close to zero. PixelDefend (Song et al., 2018) trains a generative
network on clean data to approximate its distribution and hence encouraging the network
to follow the original distribution even when the adversarial images are given as input. This
task can be considered as removing the adversarial effect. Moreover, because of the large
number of parameters in the generative network, the gradients from the loss function can
become very small or large, confusing the adversary from inferring the adversarial pertur-
bations. Defense-GAN (Samangouei et al., 2018) is a GAN framework that simultaneously
trains a generative network to emulate the data distribution and a discriminative model to
predict whether an input is from original data or was artificially crafted. As for PixelDefend,
the generative network can work to remove the effect of adversarial perturbations. Adversar-
ial Variational AutoEncoder (A-VAE) (Zhou et al., 2020) is a defense against face recognition
attack and trains a VAE-based generator with original images to learn the clean data distri-
bution. At inference time, the downsampled input image is fed into the trained VAE, while
multiple latent codes are sampled from the encoder to generate decoded images with diverse
details. The input for the face recognition model is then chosen by finding the nearest neigh-
bor of the input in the decoded images. This enables A-VAE to find an image that is likely to
be predicted as a clean label as well as similar to the input image.

Stochastic gradient confuses the adversary on the target model to attack by applying ran-
domized operations to the input or the network. Stochastic pruning (Dhillon et al., 2018)
drops a random subset of hidden-layer outputs (or activations) and scales up the rest to
compensate. The method retains nodes with probabilities proportional to the magnitude of
their activation and scales up the surviving nodes to preserve the dynamic range of the ac-
tivations in each layer. This approach can make the pretrained models more robust against
adversarial examples without fine-tuning. Randomization (Xie et al., 2018) employs two ran-
domization operations – random resizing and padding – on the input images in order to
mitigate adversarial attacks. Although adding random resizing and random padding shows
a little accuracy drop on clean images, the prediction with Randomization shows robustness
to norm-bounded attacks.
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15.11.3 Model robustness

Robustness of a target model to an adversarial attack can be increased by regularization,
adversarial training, or certified defense. Regularization of the neural network layers makes
the training less sensitive to the input distortions. Adversarial training retrains a target model
with adversarial examples generated by an attack, in addition to the clean examples. How-
ever, there is no guarantee that the retrained model can be robust to other attacks not used
for retraining. Certified defenses aim to provide a certificate that ensures the robustness of the
model within certain bounds of perturbations. This differs from adversarial training and reg-
ularization that alleviate adversarial effects in the data/feature domains.

Deep Contractive Network (Gu and Rigazio, 2014) regularizes adversarial attack by ap-
plying a layer-wise penalty as a loss that constrains the magnitude of the partial derivative
of hidden layers in the target model, in addition to the adversarial loss for the attack. This
allows the network to be less sensitive to the changes in an input image, such as adversarial
perturbations. Parseval Network (Cisse et al., 2017) controls the global Lipschitz constant of
the network within the layer-wise regularization. Considering a network as a combination
of functions, the network can be robust to small input perturbations by maintaining a small
Lipschitz constant for these functions. Parseval Network addresses this with Parseval tight
frames that control the spectral norm of the network weight matrix.

Vanilla AdvTrain (Goodfellow et al., 2015) retrains the target classifier with adversarial
examples generated by FGSM and whose labels are the same as the original images. The re-
trained classifier is thus robust to FGSM attack. PGD AdvTrain (Madry et al., 2018) extends
Vanilla AdvTrain by using the PGD attack that crafts the worst-case adversarial example
within an �∞ bound. Ensemble AdvTrain (Tramèr et al., 2018) retrains the target model on
the adversarial examples crafted from other pretrained classifiers. This strategy avoids the
overfitting problem in Vanilla AdvTrain and the adversarial examples from other classifiers
can approximate the worst-case adversarial example. Ensemble AdvTrain is more efficient
than previous methods as the retraining process and adversarial attack are separated. Adver-
sarially robust object detector (AROD) (Zhang and Wang, 2019) applies FGSM-like attack
to classification and localization loss functions that are used in object detection, and crafts
adversarial images from each loss. The resulting adversarial image is the one that maximizes
the overall loss function (both classification and localization). The same loss is then used for
adversarial training. Robust tracker (RT) (Jia et al., 2020) estimates the unknown adversarial
perturbations, crafted by considering temporal motion in the input videos and learns to elim-
inate their effects during tracking. The method first defines an adversarial loss that includes
the original label, e.g., a bounding box and its class, with a target pseudo label. Given an
input image with unknown perturbations, the gradient from the adversarial loss, measured
by using the estimated label from the previous frame and its corresponding pseudo label, is
subtracted from the input image to reduce the effect of the attack.

Another approach is training to optimize certificates that ensure the model robustness (cer-
tified defense). Given a model and input, the verifier outputs a certificate if the image is
guaranteed not to be the adversarial one. This can be done by checking whether there is any
image, within an �p distance, that has a different label from the original one. One approach
is to train a certificate that approximates the outer bounds of adversarial loss to the target
model. Single Semidefinite Relaxation generates a certificate that provides an upper bound
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where no attack is available, given a target model and input (Raghunathan et al., 2018). Simi-
larly, Deep ReLU Network (Wong and Kolter, 2018) is a deeper network for training provably
robust classifiers that are guaranteed to be robust against any norm-bounded adversarial per-
turbations on the training set. Since the trained certificate approximates the outer bounds of
adversarial loss, unseen adversarial examples can be detected with zero false negatives, but
this may also include false positives.

Arnab et al. (2018) investigate the robustness of several modules used in DNNs for seman-
tic segmentation to adversarial attacks, i.e., Robust Semantic Segmentation Models (RSSM).
Models for semantic segmentation consist of a pretrained classification model used as back-
bone and additional layers or modules for better pixel-level localization, such as conditional
random fields, dilated convolutions, skip-connections, and multiscale networks. The work
attacks semantic segmentation models with FGSM variants (Goodfellow et al., 2015; Kurakin
et al., 2017b) and shows that the most accurate model on clean images is not necessarily the
most robust one. Conditional random fields, which are commonly used in semantic segmen-
tation for enforcing the structural constraints, include mean-field inference which naturally
performs gradient masking, resulting in increases of robustness to untargeted adversarial at-
tacks. RSSM based on skip connections, e.g., ResNet (He et al., 2016) and multiscale formula-
tion are more robust to adversarial attacks than VGG-like models (Simonyan and Zisserman,
2014).

15.12 Conclusions

We presented an extensive overview of adversarial attacks against machine learning mod-
els based on DNNs for image processing, image classification, object detection, semantic
segmentation, object tracking, and video classification, as well as defenses that protect from
these attacks. We introduced the key properties of an adversarial attack, namely effective-
ness, robustness, transferability, and noticeability, and we discussed additional properties
to consider when evaluating an attack, such as detectability and reversibility. We then cat-
egorized methods as bounded and unbounded based on the magnitude of the adversarial
perturbation, and we distinguished perturbations as global or region-based. We compared
strategies considering the specific task they are designed for (e.g., motion estimation, image
or video classification, object tracking) and distinguished white-box and black-box settings.
The analysis of the attacks allowed us to define categorized strategies that defend a DNN
from adversarial examples. Defenses can detect whether the input is adversarial, or prevent
an attack by gradient masking, where the gradient comes from the loss function. Furthermore,
we discussed how DNN models can be made more robust through adversarial training.

The interplay between attacks and defenses will be an important direction of future re-
search to help understand the limitations of DNN models and the design of more reliable
DNNs. Moreover, another important area of investigation is physical attacks, which alter
the appearance of real objects or place adversarial objects in the environment, and corre-
sponding defenses (Eykholt et al., 2018; Sharif et al., 2016; Brown et al., 2018; Kurakin et al.,
2017b; Athalye et al., 2018; Ranjan and Black, 2017; Chen et al., 2017; Thys et al., 2019; Xu et
al., 2020). DNNs tend to be more vulnerable to adversarial attacks than traditional machine
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learning models since the end-to-end learnable DNNs architectures make the attack easy and
still some properties of DNNs have not yet been fully investigated. Overcoming the vulner-
abilities of DNNs to the malicious manipulation of images and videos, either directly on the
digital domain or in the physical world, is key for their adoption in real-world applications,
such as commerce, security, and authentication, and safety critical autonomous systems, such
as self-driving vehicles (Modas et al., 2020).
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493, 495, 496, 500

accord, 500
methods, 484
model, 495
trainable parameters, 495

Deformable parts model (DPM), 28
Deformable templates, 28
Degraded accuracy, 323
Dense Adversary Generation (DAG), 529
Depthwise

convolution, 170, 173–175
convolution layer, 173, 175, 176
separable convolution, 173, 176

Detection
accuracies, 104
branches, 108
capabilities, 60
feature, 61, 86
humans, 94
hypotheses, 104
literature, 115
loss layer, 109
networks, 323
object, 17, 29, 76, 86, 93–95, 167, 178, 278, 292,

294, 318, 323, 340, 374, 377, 391, 431,
436, 441, 511, 512, 517, 520

occlusion, 350
performance, 104, 107, 115
predictions, 112
problem, 103

sensitivity, 8, 41
setting, 103
stage, 101
task, 96, 101

Dictionary learning
adaptive, 248
algorithm, 251
for gradual adaptation, 258
framework, 250
incremental, 255
methods, 252
online, 257, 258
problem, 249

Disappearance
object, 367
target, 339, 346, 349, 350, 367

Discrete Fourier Transform (DFT), 343
Discriminative

adaptation, 262
adaptation techniques, 262
classification models, 255
classifiers, 245, 366
features, 244
holistic trackers, 308
learning, 327
target model, 330
trackers, 308, 343
training, 255

Discriminative correlation filter (DCF), 314, 316,
319, 323, 331

Discriminator
domain, 284, 285, 288, 290, 291
effort, 288
function, 262
learnable, 278
losses, 265, 266
network, 199, 200, 208, 211, 212, 261, 262, 265,

266, 269, 282, 285
training, 141, 283

Distillation
loss, 297

Document classification, 127, 128
Domain

adversarial
adaptation, 262, 282
loss, 261
training, 261–263

classifier, 287
discriminator, 284, 285, 288, 290, 291



550 Index

source, 138, 244, 246, 250, 255–258, 261, 278,
279, 284, 286

target, 137, 138, 140–142, 244–246, 248, 250, 252,
253, 256, 257, 261–263, 265, 266,
275–281, 284, 286, 287, 289, 290, 298

Domain Adaptation (DA), 142, 243–245, 251, 252,
254, 255, 260, 263, 276–281, 286

for deep networks, 278
for semantic segmentation, 138
frameworks, 282
task, 283
techniques, 275, 280, 282

Dynamic Bayesian Network (DBN), 451, 452, 476
framework, 453, 457
model learning, 468

Dynamic Time Warping (DTW), 148

E
ECO tracker, 325–327
EdgeFool framework, 527
Egocentric videos, 359, 434, 438
Encoded

features, 408, 423
frames in feature space, 423

Encoder
CNNs, 78, 431
frame, 438
module, 410
network, 78, 211, 288, 410, 414, 423
outputs, 281, 422
size, 78
subnetwork, 202

Equivariant
Siamese trackers, 361–364
trackers, 363

Erroneous
features, 26
predictions, 511

Error Correcting Code (ECC), 231
Event

representations, 421, 443
segmentation, 406–408, 410, 414, 425, 427, 428,

443
segmentation approaches, 415, 440
segmentation problem, 407
segmentation temporal, 440

Event Segmentation Theory (EST), 407, 408
Expectation maximization (EM) algorithm, 58

F
FaceNet

architecture, 232
model, 232, 233

Facial
feature, 239, 240
feature extractions, 230
pose, 228

False Positive Rate (FPR), 473
Fast Attack Network (FAN), 529
Fast Fourier transform (FFT), 485
Fast Gradient Sign Method (FGSM), 524
Fast iterative shrinkage thresholding algorithm

(FISTA), 486
Feature

adaptation, 326
classification, 230
convolutional, 103
detection, 61, 86
extraction, 96, 124, 131, 227, 229, 297, 410, 412,

422, 431, 457, 458, 461
extraction layers, 297
extraction multistage training procedure, 97
learning, 251, 252, 255
maps, 77, 78, 82, 98, 99, 101, 102, 109, 166, 167,

172, 173, 202, 203, 206, 223, 225, 266,
318, 320, 323, 324, 343, 345, 351, 353,
361, 377, 379, 422, 432, 517–519

network, 269
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prediction, 432
representations, 95, 96, 109, 112, 192, 213, 261,

281, 285, 287, 288, 290, 408
robustness, 437
space, 122, 140, 202, 206, 260, 261, 266, 276, 282,

285, 290, 296, 297, 414, 423, 529, 530, 534
space adaptation, 285
training, 235

Feature pyramid network (FPN), 109
FEI dataset, 235, 236
Fergus architecture, 232
Filters

continuous, 324
convolution, 77, 517
convolutional, 162, 204, 344
correlation, 343–345
learned, 77
trackers, 344

Flow features, 135
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FlowNet architectures, 519
Focal loss, 113, 114
Foreground objects, 58, 59
Frame

annotation, 328
encoder, 438
encoding, 410
generation, 442
level, 425, 458
level segmentation, 428
rate, 341
video, 367, 384, 438, 530
window, 417
window size, 425, 426

Framework
dictionary learning, 250
GANs, 535
learning, 208, 296
perceptual, 422
perceptual prediction, 408, 410, 416, 421, 424,

426
predictive, 420, 438
segmentation, 419

Fraud detection, 511
Full perspective projection (FPP), 33
Fully connected (FC) layer, 98, 223, 225, 226, 229,

237, 238
Fully Convolutional Network (FCN), 518

G
Gated Recurrent Unit (GRU), 413
Gaussian mixture model (GMM), 58, 329, 455, 486
Gaze prediction task, 434, 435, 438
Generalized Dynamic Bayesian Network

(GDBN), 451, 458, 460, 461, 464, 465
architecture, 466
model, 458, 475

Generalized Hough transform (GHT), 19, 26
Generalized State (GS), 460
Generative

adaptation, 286
adversarial, 195, 526
appearance, 329
holistic tracker, 308
LSTM network, 442
models, 194–197, 199, 200, 263, 264, 266, 451,

457
network, 199, 212, 213, 276, 277, 535
synthesis network, 211

Generative Adversarial Network (GAN), 199,
200, 244, 247, 258, 260, 263, 266, 398,
451, 457

converge, 264
framework, 535

Generative Adversarial Perturbation (GAP), 526
Generator

constrains, 531
network, 208, 264, 269

Generic
objects, 356
target representation, 345

Geodesic Flow Kernel (GFK), 258
Global detection network (GDN), 344
GoogLeNet, 75, 517, 518
Graph Convolutional Network (GCN), 396
Graphical

constraints, 399
representations, 396

Ground Truth (GT), 96, 97, 103, 105, 132, 134–136,
238, 265, 266, 269, 284, 310, 327, 338,
350, 365, 417, 418, 426, 435, 473, 482

action classes, 435, 438
activities, 428
annotations, 136, 137, 292, 440, 441
bounding boxes, 111, 434
classes, 435–437
counterparts, 96
object, 95, 106, 111
segmentation, 284, 414, 417

Group
convolutions, 175, 361
different trackers, 343
sparsity constraints, 162

Growing Neural Gas (GNG), 459
GTEA datasets, 434

H
Half quadratic splitting (HQS), 483, 484, 491
Hardware

architectures, 170, 182
friendly architectures, 110

Hidden layers, 68, 71, 72, 74, 223, 297, 395, 420,
534, 536

Hidden Markov Model (HMM), 452
Hierarchical

LSTM stack, 433
network, 251
prediction, 432
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HOG features, 94, 318
Hough transform (HT), 20
Human visual system (HVS), 50
Humans

activities, 381, 383
detection, 94
learning, 291
supervision, 142, 278

Hybrid learning, 350, 364
Hypernetwork, 178

I
Idealized

object, 24, 25
template, 24

Illumination
background, 59
changes, 355
conditions, 346
images, 250
invariants, 350
variation, 339

Image restoration (IR), 481
ImageNet

challenge, 71
classification, 178
database, 73
dataset, 73
ILSVRC challenge, 73
images, 73

ImageNet Large Scale Visual Recognition
Competition (ILSVRC), 226

Imitation Learning (IL), 145, 150
Imperceptible adversarial perturbations, 523, 524
Incoming frames, 80, 350
Incorrect

detection, 512
predictions, 280, 287, 414

Incremental
dictionary learning, 255
dictionary learning method, 255
learning, 205, 291, 293, 456, 458
learning algorithms, 296
learning techniques, 296
task learning, 292

Incremental Visual Tracking (IVT), 342

Independent component analysis (ICA), 195
Indoor scenes, 29, 377, 380
Inherent

inaccuracy for objects, 327
tracker, 346

INRIA Instructional Videos dataset, 416, 417, 419
Interframe connections, 462
Interpreting scenes, 2
Intraframe connections, 462
Invariant representations, 281
IoU thresholds, 95, 103, 104, 106, 115, 134

J
JHMDB dataset, 436
Joint

learning, 124
loss, 322
training, 293

K
Kalman Appearance Tracker (KAT), 342
Kalman Filter (KF), 453, 462
Kalman Filter Model (KFM), 452
Kernel density estimate (KDE), 534
Kernel Density Estimation (KDE), 455
Kernelized correlation filters, 344
Knowledge distillation (KD), 159, 166, 277, 296

L
Latent space, 212, 244, 249, 258, 263, 281, 287, 290,

297
Layer

architecture, 443
classification, 132
correlation, 519
denoisers, 486
LSTM, 432
LSTM predictor, 438
network, 68
neurons, 69, 71
prediction, 423
softmax, 173

Layered
architecture, 443
pattern, 226
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Learnable
discriminator, 278
DNNs architectures, 538
parameters, 239, 277, 412, 413, 416, 428

Learned
classifier, 326, 349
features, 318, 420
features robustness, 435
filters, 77
GDBN model, 462
multistyle network, 205
network, 135, 202
network modeling, 148
representations, 376, 434

Learning
adaptive, 343, 410, 415–417, 419, 421
adversarial, 276, 278, 282, 283, 285, 286
affordances, 381, 382, 399
algorithms, 246
approaches, 326, 382, 387, 390
branches, 202
capacity, 197
challenge, 340
component, 366
dataset, 348
deep, 2, 79, 83, 84, 95, 113, 123, 161, 166, 185,

195, 221, 222, 277, 278, 291, 328, 337,
342, 343, 382, 390, 408, 410, 441, 457, 479

discriminative, 327
disentangled representations, 201
dynamic tasks, 145
feature, 251, 252, 255
framework, 208, 296
humans, 291
incremental, 205, 291, 293, 456, 458
joint, 124
methods, 152, 345
new tasks, 297
online, 325, 350, 353, 356, 364–366, 368
paradigms, 152, 340
patch, 345
perspective, 192
predictive, 413, 415, 443
problem, 306, 347
process, 146, 151, 196, 200, 277, 282, 285, 287,

289, 290, 296, 297, 344, 432, 453
rate, 416
representations, 194
robot, 381, 383

robotic manipulations, 130
robotics tasks, 120
robust representations, 443
separate representations, 359
setup, 275
step, 147, 148, 294
subgoal prediction, 147
supervised, 120, 149, 275, 276, 289, 340, 348, 398
target model, 330
tasks, 291, 293
unsupervised, 193, 399, 442

LeNet, 71, 517
Level adaptation, 280–282
LFW dataset, 216, 227, 232, 233, 236
Linear

classifiers, 127
filters, 67

Local Binary Pattern (LBP), 222
Local detection network (LDN), 344
Locally Linear Embedding (LLE), 246
Locally Orderless Tracking (LOT), 342
Locating

articulated objects, 29
learnable parameters, 238

Long Short-Term Memory (LSTM), 410, 413,
419–421, 423, 427, 432, 435, 443, 518

cell, 413
classifier, 366
layer, 432
model, 413
network, 432
prediction, 433
processes, 432
trained, 417

Loopy Belief Propagation (LBP), 125
Loss

accuracy, 161, 163, 165, 166
adversarial, 140, 141, 262, 265, 529, 532, 536
classification, 100, 140, 143, 261, 262
domain adversarial, 261
for binary classification, 113
for PSNR performance, 495
function, 100, 103, 116, 122, 133, 160, 162, 202,

212, 228, 232, 260, 261, 283, 296, 338,
423, 482, 483, 495, 512, 522, 524, 527

joint, 322
magnitude, 114
performance, 162
prediction, 423, 428–430, 433
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softmax, 211
style, 203
term, 530
tracker, 347
weight, 211, 212

M
Machine learning

algorithms, 120, 221, 237
performance, 239
supervised, 230, 277
unsupervised, 222

Manipulation activities, 375, 383
Manual

annotations, 125
supervision, 119

Markov chain Monte Carlo (MCMC), 196
Markov Decision Process (MDP), 146
Markov Jump Particle Filter (MJPF), 456, 462
Markov random field (MRF), 194
Max pooling, 128, 176, 225, 238, 253, 254, 361, 363
Maximum A Posteriori (MAP), 482
Maximum classifier

discrepancy, 263
strategy, 291

Maximum Likelihood Estimate (MLE), 147
Maximum Mean Discrepancy (MMD), 262
Mean Squared Error (MSE), 466
Metalearning, 398

component, 365
strategy, 365

Metaverb classes supervised visual learning, 398
Mislead

classifiers, 511
object detectors, 529
online video classifiers, 531

MobileNets, 517, 518
Model

accuracy, 164
appearance, 342
architecture, 426, 517
background, 56–58
classification, 122, 124, 125, 127
classifier, 260, 263, 270
DUIR, 495
GDBN, 458, 475
LSTM, 413
network, 327
object, 25, 60

perceptual prediction, 407
performance, 277
physics constraints, 398
prediction, 120, 125, 137, 180, 278, 280, 282, 288,

348, 350, 432, 462, 468, 473, 534
predictor, 365
pretrained, 128, 229, 234, 238, 239, 278, 535
robustness, 533, 536
segmentation, 139, 142
source, 138
target, 329, 330, 512, 513, 515, 524–527
tracker, 338, 340, 341, 347, 349, 350
trained, 296, 513

Movements learned affordances, 382
Multiclass classification problem, 147, 231
Multiclassification problems, 230
Multidomain adaptation, 244
Multidomain adaptation settings, 245
Multiframe formulation addresses occlusions, 520
Multilayer

neural networks, 69
perceptrons, 262
recognition systems, 69

Multilevel patch decomposition, 254
Multiobjective loss, 530
Multiobjective loss function, 530
Multiple

layers, 223, 252, 253, 526
learning layers, 223
object tracklets, 82
per-class distinct feature discriminators, 285
predictions, 288
representations, 390
source domains, 252
target domains, 277
view vision, 55

Multiple Instance Learning (MIL), 130, 132
Multiscale

detection, 112
feature representations, 116

Multisource
adaptation, 245, 263
daptation, 263
setting, 263

Multitask
adaptation, 291
loss, 99, 108, 109, 115
loss function, 99, 113, 527

Multiway adversarial adaptation, 263
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N
Natural Language Processing (NLP), 393
Neighboring

neurons, 225
patches, 366

Network
architecture, 131, 264, 487
architecture design, 488
attribute, 211, 213
classification, 260
decoder, 438
deep learning, 276
deep unfolding, 493
design, 201, 486, 487, 491
design process, 182
discriminator, 199, 200, 208, 211, 212, 261, 262,

265, 266, 269, 282, 285
encoder, 288, 410, 414, 423
feature, 269
flow, 61
generative, 199, 212, 213, 276, 277, 535
hierarchical, 251
input, 96
layers, 68, 96, 108
loss function, 533
LSTM, 432
maintenance, 162
model, 327
optimization, 141
output, 282
parameters, 133
performance, 282
pretrained, 167, 215, 227
proposal, 115, 430, 431
representations, 278
segmentation, 140–143, 280, 281, 285–287, 425
Siamese, 80
stages, 281
stride, 80
structure, 202, 223
target, 169, 226, 229
trained, 80, 163, 213, 227
training, 165, 488
weights, 297

Neural
architecture, 176, 178, 185
architectures from scratch, 185

network, 70, 73, 80, 103, 147, 159, 160, 163, 165,
176, 177, 181–183, 198, 223, 224, 258,
262, 277, 454, 461, 526

architectures, 170, 176–181
IP, 166
layers, 423, 536
performance, 258

Neural Architecture Search (NAS), 176, 183
Neurons

artificial, 223
connected together network, 223
layer, 69, 71
multiple layers, 394

Nonrigid object, 389, 522
Normalized cross correlation (NCC), 312
Numberplate recognition, 1

O
Object

affordances, 375, 381
analysis system, 69
appearances, 16, 340, 351
boundary, 15, 522
bounding boxes, 29, 82, 95
candidates, 354, 518, 529
categories, 95, 96, 109, 340, 359, 376, 379
class, 305, 307, 328, 391
class labels, 95
classification, 93, 340, 359
classifier, 60
dataset, 84
descriptions, 32
detection, 17, 29, 76, 86, 93–95, 167, 178, 278,

292, 294, 318, 323, 340, 374, 377, 391,
431, 436, 441, 511, 512, 517, 520

detection algorithms, 379
detection performance, 97
detectors, 93, 95, 103, 104, 107, 110, 112, 115, 116,

380
dimension, 382
disappearance, 367
features, 11, 37, 86, 382
following, 28
grasping, 388
ground truth, 95, 106, 111
identification, 36, 354
identification algorithms, 32
interactions, 376, 383, 521
learning affordances, 375
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level, 376, 383
localization, 82
location, 4, 6, 15, 23, 27–29, 60, 109
location information, 78
manipulation, 521
model, 25, 60
orientations, 359
plane, 36
points, 44, 45
pose, 32
position, 382
prediction, 123
recognition, 1, 36, 37, 61, 84, 93, 123, 128, 228,

243–245, 254, 337, 354, 377, 390, 398
recognition accuracy, 358
shapes, 16, 32, 33, 389
size, 45, 319
surfaces, 31
target, 21, 80, 82, 328, 330, 338–341, 349, 351,

354, 355, 357, 358, 364, 366, 367
tracking, 59, 79, 306, 340, 512, 521, 529, 537
trajectory, 529

Object Tracking Benchmark (OTB), 520
Occlusion detection, 350
OFA

constrains, 522
network, 183

Offline learning, 350, 353, 368
Online

dictionary learning, 257, 258
learning, 325, 350, 353, 356, 364–366, 368
trained, 326, 330
training, 330

Online tracking benchmark (OTB), 305
Optical Flow Attack (OFA), 522
Optical Flow (OF), 460
Orientation accuracy, 8
Outdoor scenes, 398
Overlapping

frames, 426
patches, 253

Oversegmentation, 417, 420, 421, 437

P
Parseval Network, 536
Parseval tight frames, 536
Partial occlusion, 36

Particle Filter (PF), 453, 462
Patch

border, 314
learning, 345
sizes, 344
target, 343, 351, 360

Pattern
learning, 195
recognition, 2

Perceptual
features, 408, 410, 412, 414, 416, 443
frames, 410
framework, 422
prediction, 410, 416, 418

error, 408, 410, 414–416
framework, 408, 410, 416, 421, 424, 426
model, 407

Performance
classification, 95, 135
degradation, 283
detection, 104, 107, 115
drop, 162
evaluation, 176, 178
gain, 255, 492, 494
gap, 138, 290
levels, 143
loss, 162
machine learning, 239
measures, 310
model, 277
network, 282
recognition, 120, 420
segmentation, 420, 428

Perframe
accuracy, 310
IoU, 434

Perimeter Monitoring (PM), 467
Photometric loss, 520
Pixels

background, 321, 342
classes, 294
target, 342

Point spread function (PSF), 20
Pointwise

convolutions, 170, 172
group convolution, 175

Pooled features, 140
Pooling layers, 77, 83, 98, 170, 225, 361, 517
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Pose
alignment, 250
ambiguities, 32
facial, 228
object, 32
source, 250
target, 250
variations, 222, 240, 251

Predefined object trajectory, 512
Predicting

actions, 388
context, 395
future features, 414

Prediction
classes, 435
consistency, 534
convolutional, 432
error, 353, 409, 412, 414–417, 433, 438, 443
feature, 432
function, 438
hierarchical, 432
layer, 423
loss, 423, 428–430, 433
loss function, 424, 426
loss signal, 428
LSTM, 433
methods, 455
model, 120, 125, 180, 278, 280, 282, 288, 432, 462,

468, 473
module, 438
networks, 284, 329
object, 123
perceptual, 410, 416, 418
quality, 409, 414
quality metric, 414, 415
result, 534
scores, 527, 528
segmentation, 140, 144, 281
task, 120, 434, 438
temporal, 397
unit, 408, 432

Predictive
approach, 417, 419, 420, 435
coding, 443
framework, 420, 438
function, 432
learning, 413, 415, 443
learning approach, 443
learning framework, 442, 443

messages, 462
models, 419
pretraining, 420

Predictor model, 365, 416
Pretrained

classification, 537
classifiers, 531, 536
CNN, 229
CNN features, 394
convolution layers, 518
deep learning architecture, 231
DNNs, 532
model, 128, 229, 234, 238, 239, 278, 535
network, 167, 215, 227
semantic embedding, 391
visual features, 397
weights, 161, 185, 519

Pretraining
predictive, 420
supervised, 145, 149

Principal Component Analysis (PCA), 73, 195,
222, 245, 534

Projected Gradient Descent (PGD), 524
Proposal

features, 97
network, 115, 430, 431

Provably robust classifiers, 537
Public datasets, 213
Pyramid feature representations, 107

Q
Quantitative performance, 441
Quantized network, 163
Quantized network binary, 166

R
Raw

frames, 430
image patch, 311
videos, 82

Reappearance target, 350
Receiver Operating Characteristic (ROC), 425, 473
Recognition

accuracy, 67, 232, 233
class, 56
cues, 239
modules, 376
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object, 1, 36, 37, 61, 84, 93, 123, 128, 228,
243–245, 254, 337, 354, 377, 390, 398

performance, 120, 420
problem, 63, 95, 223
process, 68
rates, 230, 235, 236, 240
tasks, 232, 233, 239
texture, 66
video, 532

Recognizing
affordances, 377
objects, 2, 106

Reconstructing scene geometry, 389
Recurrent networks, 432, 441
Recurrent neural network (RNN), 148, 388, 417,

518
Redundant signal representations, 247
Region proposal network (RPN), 101
Regression loss, 149
Regressor network, 327
Regularization

parameter, 326, 482, 491
techniques, 264
term, 263, 296, 517

Reinforcement learning (RL), 145, 152, 177
Representations

appearance, 390
attribute, 392
binary, 392
continuous, 391
feature, 95, 96, 109, 112, 192, 213, 261, 281, 285,

288, 290, 408
learned, 376, 434
learning, 194
multiple, 390
network, 278
semantic, 391, 394
source, 281, 287
target, 278, 282, 285, 288, 290, 291
target feature, 261

Reproducing Kernel Hilbert Space (RKHS), 245,
262

ResNet, 109, 262, 487, 493, 494, 517–519
Retrained

classifier, 536
model, 536

Retraining
process, 536

RGB frames, 417, 518

RGBD
video, 385, 389
video input, 381

Road scenes, 28, 56, 57
Robot

learning, 381–383
motor learning, 383
vision, 374, 376, 382

Robust Semantic Segmentation Model (RSSM),
537

Robust tracker (RT), 536
Robustness

feature, 437
measure, 310
model, 533, 536

RoI pooling, 99, 101, 110, 115
RoI pooling layer, 100, 101
Rotated filters, 360
Rotationally equivariant Siamese tracker, 360

S
Salient features, 32, 406
Scalable neural architecture, 179
Scale equivariant convolutions, 362, 363
Scene

analysis, 68
classification, 128
components, 374
constituents, 374, 384, 397
description, 389
interpretation, 374, 389
surfaces, 377
understanding, 374, 390, 399

Segmentation
approach, 421, 441
binary, 296
boundaries, 406
framework, 419
ground truth, 284, 414, 417
maps, 284, 285, 291, 294
mask, 338
model, 139, 142
network, 140–143, 280, 281, 285–287, 425
output, 285, 290
output space, 285
performance, 420, 428
prediction, 140, 144, 281
process, 408
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semantic, 75, 77, 86, 130, 137, 140, 142, 167, 178,
277, 278, 280, 282, 284, 285, 337, 374,
379, 511, 512, 517, 520, 528, 529

task, 281, 282, 288
temporal, 408, 410, 417, 420
video, 331

Segmented objects, 331
SegNet architecture, 77
Semantic

classes, 279, 290, 295
constraints, 394
features, 394, 442
map annotations, 295
representations, 391, 394
segmentation, 75, 77, 86, 130, 137, 140, 142, 167,

178, 277, 278, 280, 282, 284, 285, 337,
374, 379, 511, 512, 517, 520, 528, 529

benchmarks, 294, 521
domain adaptation, 120, 137
networks, 78
task, 276, 278, 280, 285, 298

Semantic Segmentation Attack (SSA), 529
Semisupervised learning, 288–290
Sensory features, 414
Sequential Importance Resampling (SIR), 463
Shadow detection method, 473
Shallow

feature map, 325
features, 323
layers, 487
trackers, 342, 344

Siamese
architecture, 519
fully convolutional, 344
network, 80
trackers, 308, 327, 345, 350, 351, 353–355, 358,

360, 364–368
SiamFC, 82, 344, 517, 519
Single

channel MOSSE filters, 318
detection layer, 108
detector, 104
feature descriptor, 251
GPU, 71, 74
hidden layer, 68
image, 97, 529
image superresolution, 482, 485, 486, 495, 498
input texture image, 83
layer deep features, 324

object tracking, 529
scene node, 128
target domain, 244
target objects, 82

Singular value decomposition (SVD), 54
Softmax

classifier, 229
layer, 173
loss, 211

Source
classes, 279
data, 248, 253, 254, 257
dataset, 139, 275
distribution, 141, 290
domain, 138, 244, 246, 250, 255–258, 261, 278,

279, 284, 286
features, 269
image, 141, 142, 266, 286
image domain, 286
labels, 265, 269
model, 138
original, 289
pose, 250
representations, 281, 287
semantic annotations, 287
supervision, 282, 287, 289

Spam filters, 511
Sparse

annotations, 521
convolution, 322
features, 253
subnetwork, 162

Sparsity constraints, 162, 249, 253
Sparsity constraints group, 162
Specialized subnetwork, 183
Stacked networks, 519
Standard

classifiers, 234, 377
convolution, 172, 175, 176
convolution layer, 171–173, 518
datasets, 345

Static scenes semantic segmentation, 86
Stationary background, 56
Steerable filters, 360–362
Stereo video sequences, 521
Stochastic gradient descent (SGD), 103
Streaming video, 420, 435, 443

data, 443
sequences, 443
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Structure learning, 452
Structured Random Forest (SRF), 378
Student network, 166, 289
Style

loss, 203
transfer, 193, 200, 201, 207, 286, 287

Stylization
loss, 203
network, 205

Submodular Function Minimization (SFM), 126
Subsampling layers, 74, 223
Substitute Blackbox Attack (SBA), 527
Supervised

learning, 120, 149, 275, 276, 289, 340, 348, 398
learning algorithms, 338
machine learning, 230, 277
pretraining, 145, 149
source domain, 284
training, 286, 487

Supervision
humans, 142, 278
source, 282, 287, 289
target, 287

Support Vector Machine (SVM), 123, 127, 228, 454
classifiers, 97
training, 97

Supportive samples, 255–257
Switching linear dynamic system (SLDS), 452

T
Target

annotations, 278
appearance, 330, 338, 341, 343, 365
appearance variations, 343
applications, 294
artificial annotations, 289
bounding boxes, 365
class, 525, 531, 532
classifier, 244, 523, 525, 526, 528, 536
data, 248, 254, 280, 289, 355
data distribution, 282
dataset, 137–139, 143, 514
disappearance, 339, 346, 349, 350, 367
distributions, 137, 262, 263
DNN model, 515
domain, 137, 138, 140–142, 244–246, 248, 250,

252, 253, 256, 257, 261–263, 265, 266,
275–281, 284, 286, 287, 289, 290, 298

domain classes, 299

embeddings, 290
feature, 260, 261, 269, 287, 288

maps, 262
representations, 261
spaces, 260

function, 321, 325, 327
generative network, 199
hardware, 179, 181, 183
images, 137, 139–143, 260, 266, 270, 285, 286,

289, 291, 356
location, 353
logits, 263
mask, 330
model, 329, 330, 512, 513, 515, 524–527

learning, 330
output, 330
resembling, 330

network, 169, 226, 229
object, 21, 80, 82, 328, 330, 338–341, 349, 351,

354, 355, 357, 358, 364, 366, 367
appearance, 353
classifier, 366
regardless, 354

output, 316
output representations, 285
patch, 343, 351, 360
pixels, 342
pose, 250
position, 320, 343
predictions, 282, 289
private classes, 279
problem, 276
reappearance, 350
region, 343
representations, 278, 282, 285, 288, 290, 291
sample, 256
scale, 321
score map, 313
segmentation maps, 289
side, 137
size, 326
supervised training, 287
supervision, 287
tasks, 176, 279
template, 361, 519
tracker, 82
unlabeled, 138, 262, 282, 289
visual patterns, 193
weak labels, 141
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Targeted
attack, 512, 514, 524, 526, 529, 530
model, 527

TConv layers, 488, 494
Teacher network, 289
Template

branch, 351, 360, 361
correlation matching, 59
feature map, 365
head, 360
image, 342, 343
matching, 26, 311, 331, 364, 365
representation, 344
target, 361, 519
update, 60

Temporal
annotations, 134
event segmentation, 440
frame averaging, 56
order constraints, 148
prediction, 397
segmentation, 408, 410, 417, 420
segmentation task, 417

Texture
classification, 222
classifier, 83
datasets, 84, 86
features, 83
recognition, 66

Textured objects, 318
Tracked objects, 60, 340, 356
Tracker

algorithm, 352, 355
drift, 346
loss, 347
model, 338, 340, 341, 347, 349, 350
predictions, 346
target, 82

Tracking by Sampling Trackers (TST), 342
Tracking on the Affine Group (TAG), 342
Trainable

layers, 239
parameters, 71, 72, 85, 238, 482, 493, 517
parameters DUIR, 495

Trained
certificate, 537
classifier, 68, 265
CNN, 228
CNN model, 231

detector, 103
LSTM, 417
model, 296, 513
network, 80, 163, 213, 227
neural network, 79, 80
substitute, 527
VAE, 535

Transfer Joint Matching (TJM), 258
Transfer learning (TL), 244
Translated

adversarial images, 527
source domain, 265

Triplet loss, 232
True Negative (TN), 473
True Positive Rate (TPR), 473
True Positive (TP), 473
True target

images, 266
labels, 269

U
Universal Adversarial Perturbation (UAP), 525
Unlabeled

dataset, 120, 122, 208
target, 138, 262, 282, 289
target domain, 282
training set, 288

Unlatch computer vision, 443
Unpooling layer, 76, 77
Unscented Kalman Filters (UKF), 462
Unseen

adversarial examples, 537
classes, 295, 298, 393, 394
classifiers, 525

Unsupervised
egocentric gaze prediction, 438
event segmentation algorithms, 407
learning, 193, 399, 442
machine learning, 222
temporal segmentation, 443

Unsupervised Domain Adaptation (UDA), 137,
138, 142, 244, 245, 247, 258, 264, 265,
269, 277, 278, 280, 282, 288, 297

Untargeted
adversarial attacks, 527, 537
attack, 512, 514, 522, 524, 530
FAN perturbs, 529

Upconvolutional layers, 519
Upsampling layer, 518
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V
Validation

accuracy, 177, 239
dataset, 491
videos, 134

Vanilla AdvTrain, 536
Vanishing point (VP), 41
Variational Autoencoder (VAE) network, 451, 453,

466
Vector representations, 391, 396
Vector Symbolic Architecture (VSA), 399
VGG

architecture, 380
network, 237

VGGNet, 75, 76, 78, 84, 517, 518
architecture, 74, 75
convolution layers, 518
front end, 78
layers, 77

Video
analysis, 331
captioning, 130
classification, 511, 512, 517, 520, 531
classification methods, 135
classifier, 518, 532
clips, 132, 514, 521, 522, 531
data, 454, 456, 458, 467–470, 473
datasets, 425, 520, 521
durations, 367
features, 132
frame, 367, 384, 421, 438, 530
interpretation, 385
length, 346
object tracking, 337–339, 362
processing, 479
recognition, 532
recording, 384
segment, 152

segmentation, 331
sequences, 341, 349, 351, 366, 421, 457
spanning, 338
summarization, 130
surveillance, 450
surveillance cameras, 450
temporal segmentation, 441
understanding, 337

Video instance segmentation (VIS), 328
Video object segmentation (VOS), 328

target, 330
training phase, 330

Vision
algorithms, 83
community for extracting features, 75
machine, 73
robot, 374, 376, 382
sensors, 389

Visual Object Tracking (VOT), 305, 520

W
Wavelet features, 94
Weak

labels, 120, 130, 132, 134, 137–142
supervision, 134, 143, 152

Weak perspective projection (WPP), 33
Weighting template, 8, 9
WideResNet, 517–519

Y
You only look once (YOLO), 110
Youcook dataset, 385

Z
Zero Shot Learning (ZSL), 391
Zeroth Order Optimization (ZOO), 527, 528
ZFNet architecture, 71
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