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Preface 

This textbook is a practical guide for Artificial Intelligence in business management, 
co-authored by Dr Teoh Teik Toe from Nanyang Technological University and Goh 
Yu Jin. It provides many learning materials and practical examples accumulated over 
the years in applying Artificial Intelligence to business applications as practitioners. 

Dr Teoh has been conducting research in Big Data, Deep Learning, Cyber-
security, Artificial Intelligence, Machine Learning, and Software Development for 
more than 25 years. His works have been published in more than 50 journals, 
conference proceedings, books, and book chapters. He holds a PhD in Computer 
Engineering from Nanyang Technological University (NTU); a Doctor of Business 
Administration from the University of Newcastle; a Master of Law from the 
National University of Singapore (NUS); LLB and LLM from the University of 
London (UoL); and Chartered Financial Analyst (CFA), Association of Chartered 
Certified Accountants (ACCA), and Chartered Institute of Management Accoun-
tants (CIMA) qualification. With over 15 years of experience in Data Mining, 
Quantitative Analysis, Data Statistics, Finance, Accounting, and Law, he is passion-
ate about the synergy between business and technology. He believes that Artificial 
Intelligence should be accessible to everyone and is eager to share his knowledge of 
the field. 

Throughout his career, Dr Teoh has taught Artificial Intelligence to students from 
all backgrounds and levels of experience, including those with limited programming 
knowledge. Under his guidance, many of his students gained confidence in writing 
their own AI programs. 

Yu Jin is an Artificial Intelligence Engineer with four years of working expe-
rience. He enjoys the challenges of using data to improve business processes and 
has 1.5 years of teaching experience in AI and Data Science. He coauthored two 
conference publications on AI and deep learning and is passionate about applying 
AI to a variety of use cases and making it accessible to everyone. 

Artificial Intelligence is a broad field that involves creating systems capable of 
executing tasks that typically require human intelligence. With applications in time 
series, images, videos, speech, and text data, AI has become versatile enough to be 
applied across all types of businesses. However, developing develop good Artificial
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Intelligence programs requires a deep understanding of the field. While concepts 
used in self-driving cars and virtual assistants like Amazon’s Alexa may seem very 
complex and difficult to grasp, this book will cover them in a step-by-step manner 
with code snippets to provide tangible examples for readers to learn from. This 
approach ensures that the lessons are easy to follow. 

This book aims to provide readers with an easy-to-understand explanation on 
how Artificial Intelligence can be applied to alleviate various pain points faced by 
businesses. We hope to empower individuals who are eager to learn about Artificial 
Intelligence and apply it to solve business problems. By introducing readers to the 
potential of Artificial Intelligence, this book seeks to help them understand how to 
make the most of the technology and how it can be used for their business. Through 
the materials compiled in this book, readers will gain the knowledge they need on 
how to create such systems to solve business problems. 

Part I of the book introduces readers to various key concepts required to 
understand how Artificial Intelligence algorithms are developed. Topics in Artificial 
Intelligence such as classification, regression, and clustering are covered to build 
a solid foundation for beginners. Readers will be taught various methods of 
applying Artificial Intelligence to unstructured data to handle a wide variety of data 
appropriately. 

This builds the foundation for Part II, where readers will be exposed to how 
Artificial Intelligence can be applied to various aspects of business. Various 
implementations of Artificial Intelligence are shared, allowing readers to generate 
their own Artificial Intelligence algorithms to perform various tasks such as lead 
scoring, contract analysis, SWOT analysis using reviews, and product demand 
forecasting. 

Singapore, Singapore Teik Toe Teoh 
Yu Jin Goh
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Part I 
Artificial Intelligence Algorithms



Chapter 1 
Introduction to Artificial Intelligence 

1.1 Introduction 

Intelligence refers to the capability of acquiring knowledge and applying them to 
solve difficult challenges. upGrad [1] Humans are highly intelligent beings that 
have been learning about and developing solutions to various problems for many 
centuries. Artificial intelligence is humanity’s attempt to replicate this powerful 
innate ability to learn in our machines. 

Machines that can learn by themselves would be able to deepen their knowledge 
and make better decisions. Furthermore, combining artificial intelligence with 
robotics would allow us to benefit from the increased efficiency and automation 
of manual labor that it brings. 

Through the use of artificial intelligence, it would be possible to develop solu-
tions that are able to function autonomously without requiring human intervention. 

The field of artificial intelligence is very broad and covers a multitude of topics. 
There are many different types of basic intelligence that is present in humans that 
artificial intelligence engineers hope to be able to recreate in their creations such 
as: 

• Visual-spatial intelligence 
• Linguistic intelligence 
• Logical intelligence 
• Bodily kinesthetic intelligence 
• Interpersonal intelligence 

Developing artificial intelligence solutions requires a high amount of upfront 
investment to prepare and clean the data. This process is shown in Fig. 1.1. In order 
to develop a useful model, the data collected much first be prepared in a way that 
these algorithms can use them, and feature extraction has to be performed to sieve 
out useful features, followed by model training and eventually model testing. 
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Fig. 1.1 Process and applications of machine learning [2] 

These algorithms can be developed for a wide variety of tasks across different 
data types as well. Some examples of tasks that can be used by artificial intelligence 
algorithms are: 

1. Image recognition 
2. Voice recognition 
3. Optical character recognition 
4. Intelligent data analysis 
5. Customized data types 
6. Sensory data analysis 

Artificial intelligence algorithms are commonly applied to solve one of 4 different 
types of problems shown in Fig. 1.2: 

1. Classification 
Classification tasks are used in categorizing the input data. The algorithms aim to 
categorize the data into various pre-defined categories that could be binary (e.g., 
spam vs. not spam) or multi-class such as (e.g., dog, cat, bird, fish).
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Fig. 1.2 Types of machine learning tasks [3] 

2. Regression 
Regression tasks are used to predict real or continuous values such as age and 
salary. Further analysis can be done to understand how the dependent variable 
will be impacted by the independent variable. 

3. Clustering 
Clustering aims to group data points into certain groups based on how similar 
they are from one another. It is generally an unsupervised learning problem and 
aims to identify naturally occurring patterns in the data. 

4. Anomaly detection 
Anomaly detection aims to identify anomalies by learning what is normal and 
predicting all things that fall out of normality as abnormal. Anomalies may not 
occur very often, and so specialized techniques are developed to try to solve these 
tasks.
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1.2 History of Artificial Intelligence 

One of the challenges in developing intelligent solutions is being able to measure its 
success. In 1950, Alan Turing developed the Turing Test that helped to determine 
whether or not a machine is intelligent. 

Many other scholars and mathematicians apart from Turing were deeply inter-
ested in this topic. The phrase “artificial intelligence” was created during a 
symposium in 1956. For many years, governments incubated the growth of artificial 
intelligence solutions up till the 1974 when the first AI winter began. AI research 
ceased at the time due to apathy and sluggish development of the field. However, 
interest in artificial intelligence picked up soon after using if-then logic that caused 
a boom in 1980 and faded in 1988 once the limitations of if-then logic surfaced. 
Artificial intelligence began to pick up greatly in 1995 when computational power 
and big data became widely available, thus increasing the possibilities for more 
complex artificial intelligence solutions to be developed. 

AI has grown by leaps and bounds since then. In 1997, an IBM computer called 
Deep Blue defeated Russian champion Garry Kasparov at the game of chess. In 
2016, Google’s AlphaGo had beaten a World Champion, Lee Sedol, at the game of 
Go. 

Nowadays, artificial intelligence can be found everywhere from mobile phones 
to healthcare devices in hospitals. Numerous businesses are focusing on leveraging 
artificial intelligence to build better solutions and tackle various difficulties they 
face. 

1.3 Types of Artificial Intelligence Algorithms 

There are generally 3 main types of artificial intelligence algorithms as shown in 
Fig. 1.3. Each of them comes with its own benefits and drawbacks: 

1. Supervised learning 
Supervised learning algorithms are the most widely used type of algorithms 
among the three. These algorithms are made to learn from human labeled data 
in an attempt to recognize patterns in the data required to predict and mimic 
the answers provided by the labelers. These algorithms are highly effective in 
learning the task at hand but require high amounts of labor from annotators in 
labeling the huge amounts of data required. 

2. Unsupervised learning 
Unsupervised learning algorithms are designed to learn from data without labels 
to identify naturally occurring patterns and clusters in the underlying data. Such 
algorithms can be highly effective in uncovering naturally occurring patterns 
from the data and can easily use large amounts of data as do not require the huge 
annotation effort required in supervised learning. However, it might be difficult 
to understand the results presented, and it may be hard to adapt to a specific task
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Fig. 1.3 Types of artificial Intelligence Algorithms [4] 

as the algorithm does not know what we want it to learn from the underlying 
data. 

3. Reinforcement learning 
Reinforcement learning algorithms are developed using a reward and punishment 
system. These algorithms learn by maximizing the rewards it can achieve when 
performing certain actions and minimizing the penalties in performing actions 
where punishments are dealt. Such algorithms are effective in learning tasks that 
can be hard to define which humans may not know how to go about achieving it. 
On the other hand, it is less effective in learning tasks which answers are provided 
for as compared to supervised algorithms since the algorithm also has to test and 
explore new outcomes. Deep Blue and AlphaGo are examples of reinforcement 
learning algorithms. ChatGPT was also finetuned using reinforcement learning 
to further improve user experience. 

1.4 Organization of the Book 

Artificial intelligence in business management aims to help management profes-
sionals exploit the predictive powers of AI and demonstrate to AI practitioners how 
their expertise can be applied in fundamental business operations. As such, the book 
has been organized into two parts: artificial intelligence algorithms and applications 
of artificial intelligence in business management. 

Part I of the book aims to help readers build up their knowledge of common 
artificial intelligence algorithms, through the explanations of various algorithms and 
simple python examples provided. On the other hand, Part II highlights different 
problems faced by business management professionals across core business func-
tions and illustrates how artificial intelligence could be utilized to alleviate them. 

The content covered in Part I would be essential to business management 
professionals, which may not be as familiar with artificial intelligence, to gain
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a better understanding of how different kinds of artificial intelligence algorithms 
work. Readers would be exposed to different problems and types of data where 
artificial intelligence algorithms are used to solve. This knowledge acquired in Part I 
will be especially valuable in Part II, as these algorithms will be utilized to help solve 
various specific challenges in different business contexts. Therefore, Part II will be 
focused on how AI can be utilized to alleviate different kinds of issues faced by 
businesses. 

In this way, basic concepts and simple problems in artificial intelligence will be 
covered first before working on applying AI to more complex business problems to 
facilitate learning. We hope that by reading this book, readers will be able to better 
leverage the potential of AI for business success. 
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Chapter 2 
Regression 

Learning Outcomes 

• Learn and apply basic models for regression tasks using sklearn and keras.
• Learn data processing techniques to achieve better results.
• Learn how to use simple feature selection techniques to improve our model.
• Data cleaning to help improve our model’s RMSE . 

Regression looks for relationships among variables. For example, you can 
observe several employees of some company and try to understand how their salaries 
depend on the features, such as experience, level of education, role, city they work 
in, and so on. 

This is a regression problem where data related to each employee represent one 
observation. The presumption is that the experience, education, role, and city are the 
independent features, and the salary of the employee depends on them. 

Similarly, you can try to establish a mathematical dependence of the prices of 
houses on their areas, the numbers of bedrooms, distances to the city center, and so 
on. 

Generally, in regression analysis, you usually consider some phenomenon of 
interest and have a number of observations. Each observation has two or more 
features. Following the assumption that (at least) one of the features depends on 
the others, you try to establish a relation among them. 

The dependent features are called the dependent variables, outputs, or responses. 
The independent features are called the independent variables, inputs, or predic-

tors. 
Regression problems usually have one continuous and unbounded dependent 

variable. The inputs, however, can be continuous, discrete, or even categorical data 
such as gender, nationality, brand, and so on. 
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Fig. 2.1 Example of spurious correlations [5] 

It is a common practice to denote the outputs with y and inputs with x. If there 
are two or more independent variables, they can be represented as the vector . x =
(x1, . . . , xr ), where r is the number of inputs. 

Typically, you need regression when you need to answer whether some phe-
nomenon influences the other and how do they influence each other. You may also 
need regression to understand how several variables are related. For example, you 
can use it to determine if and to what extent the experience or gender impacts 
salaries. 

Regression is also useful when you want to forecast a response using a new set 
of predictors. For example, you could try to predict electricity consumption of a 
household for the next hour given the outdoor temperature, time of day, and the 
number of residents in that household. 

Regression is used in many different fields: economy, computer science, social 
sciences, and so on. Its importance rises every day with the availability of large 
amounts of data and increased awareness of the practical value of data. 

An important to note is that regression does not imply causation. It is easy to find 
examples of non-related data that, after a regression calculation, do pass all sorts 
of statistical tests. The following Fig. 2.1 is a popular example that illustrates the 
concept of data-driven “causality.” 

It is often said that correlation does not imply causation, although, inadvertently, 
we sometimes make the mistake of supposing that there is a causal link between two 
variables that follow a certain common pattern. 

Dataset: “Alumni Giving Regression (Edited).csv” You can obtain the dataset 
from this link: 

https://www.dropbox.com/s/veak3ugc4wj9luz/Alumni
↪→%20Giving%20Regression%20%28Edited%29.csv?dl=0.
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Also, you may run the following code in order to download the dataset in google 
colab: 

!wget https://www.dropbox.com/s/veak3ugc4wj9luz/Alumni
↪→%20Giving%20Regression%20%28Edited%29.csv?dl=0 -O
--quiet "./Alumni Giving Regression (Edited).csv" 

!wget https://www.dropbox.com/s/veak3ugc4wj9luz/Alumni
↪→%20Giving%20Regression%20%28Edited%29.csv?dl=0 -O -
↪→quiet "./Alumni Giving Regression (Edited).csv" 

# Importing libraries needed 
# Note that keras is generally used for deep learning

↪→as well 
from keras.models import Sequential 
from keras.layers import Dense, Dropout 
from sklearn.metrics import classification_report,

↪→confusion_matrix 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
import numpy as np 
from sklearn import linear_model 
from sklearn import preprocessing 
from sklearn import tree 
from sklearn.ensemble import RandomForestRegressor,

↪→GradientBoostingRegressor 
import pandas as pd 
import csv 

Using TensorFlow backend. 

In general, we will import dataset for structured dataset using pandas. We will 
also demonstrate the code for loading dataset using numpy to show the differences 
between both libraries. Here, we are using a method in pandas call read_csv that 
takes the path of a csv file. 'CS' in CSV represents comma separated. Thus, if you 
open up the file in excel, you would see values separated by commas. 

# fix random seed for reproducibility 
np.random.seed(7) 
df = pd.read_csv("Alumni Giving Regression (Edited).

↪→csv", delimiter="," ) 
df.head()
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A B C D E F  
0 24 0.42 0.16 0.59 0.81 0.08 
1 19 0.49 0.04 0.37 0.69 0.11 
2 18 0.24 0.17 0.66 0.87 0.31 
3 8 0.74 0.00 0.81 0.88 0.11 
4 8 0.95 0.00 0.86 0.92 0.28 

In pandas, it is very convenient to handle numerical data. Before doing any 
model, it is good to take a look at some of the dataset’s statistics to get a “feel” of the 
data. Here, we can simply call df.describe that is a method in pandas dataframe. 

df.describe() 

A B C D E F  
count 123.000000 123.000000 123.000000 123.000000 123.000000 123.000000 
mean 17.772358 0.403659 0.136260 0.645203 0.841138 0.141789 
std 4.517385 0.133897 0.060101 0.169794 0.083942 0.080674 
min 6.000000 0.140000 0.000000 0.260000 0.580000 0.020000 
25% 16.000000 0.320000 0.095000 0.505000 0.780000 0.080000 
50% 18.000000 0.380000 0.130000 0.640000 0.840000 0.130000 
75% 20.000000 0.460000 0.180000 0.785000 0.910000 0.170000 
max 31.000000 0.950000 0.310000 0.960000 0.980000 0.410000 

Furthermore, pandas provides a helpful method to calculate the pairwise correla-
tion between 2 variables. 

Correlation refers to a mutual relationship or association between quantities 
(numerical number). In almost any business, it is very helping to express one 
quantity in terms of its relationship with others. We are concerned with this 
because business plans and departments are not isolated! For example, sales 
might increase when the marketing department spends more on advertisements, 
or a customer’s average purchase amount on an online site may depend on his 
or her characteristics. Often, correlation is the first step to understanding these 
relationships and subsequently building better business and statistical models. 

For example: “D” and “E” have a strong correlation of 0.93 that means that when 
D moves in the positive direction E is likely to move in that direction too. Here, 
notice that the correlation of A and A is 1. Of course, A would be perfectly correlated 
with A. 

corr=df.corr(method ='pearson') 
corr 

A B C D E F  
A 1.000000 -0.691900 0.414978 -0.604574 -0.521985 -0.549244 
B -0.691900 1.000000 -0.581516 0.487248 0.376735 0.540427 
C 0.414978 -0.581516 1.000000 0.017023 0.055766 -0.175102 
D -0.604574 0.487248 0.017023 1.000000 0.934396 0.681660 
E -0.521985 0.376735 0.055766 0.934396 1.000000 0.647625 
F -0.549244 0.540427 -0.175102 0.681660 0.647625 1.000000 

In general, we would need to test our model. train_test_split is a func-
tion in Sklearn model selection for splitting data arrays into two subsets for train-
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ing data and for testing data. With this function, you do not need to divide the dataset 
manually. You can use from the function train_test_split using the follow-
ing code sklearn.model_selection import train_test_split. 
By default, Sklearn train_test_split will make random partitions for the two subsets. 
However, you can also specify a random state for the operation. 

Here, take note that we will need to pass in the X and Y to the function. X refers 
to the features, while Y refers to the target of the dataset. 

Y_POSITION = 5 
model_1_features = [i for i in range(0,Y_POSITION)] 
X = df.iloc[:,model_1_features] 
Y = df.iloc[:,Y_POSITION] 
# create model 
X_train, X_test, y_train, y_test = train_test_split(X,

↪→ Y, test_size=0.20, random_state=2020) 

2.1 Linear Regression 

Linear regression is a basic predictive analytics technique that uses historical data to 
predict an output variable. It is popular for predictive modeling because it is easily 
understood and can be explained using plain English. 

The basic idea is that if we can fit a linear regression model to observed data, we 
can then use the model to predict any future values. For example, let us assume that 
we have found from historical data that the price (P) of a house is linearly dependent 
upon its size (S)—in fact, we found that a house’s price is exactly 90 times its size. 
The equation will look like this: P = 90*S. 

With this model, we can then predict the cost of any house. If we have a house that 
is 1,500 square feet, we can calculate its price to be: P = 90*1500 = $135, 
000. 

There are two kinds of variables in a linear regression model:

• The input or predictor variable is the variable(s) that helps predict the value of 
the output variable. It is commonly referred to as X.

• The output variable is the variable that we want to predict. It is commonly 
referred to as Y . 

To estimate Y using linear regression, we assume the equation: 
.Ye = α + βX, 

where . Ye is the estimated or predicted value of Y based on our linear equation. 
Our goal is to find statistically significant values of the parameters . α and . β that 
minimize the difference between Y and . Ye. If we are able to determine the optimum 
values of these two parameters, then we will have the line of best fit that we can use
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Fig. 2.2 Regression example: house prices against house size 

to predict the values of Y , given the value of X. So, how do we estimate . α and . β? 
We can use a method called ordinary least squares. 

The objective of the least squares method is to find values of . α and o that 
minimize the sum of the squared difference between Y and . Ye. Optimizing for 
parameters . α and . β will provide us with fitted line shown in Fig. 2.2. 

Here, we notice that when E increases by 1, our Y increases by 0.175399. Also, 
when C increases by 1, our Y falls by 0.044160. 

#Model 1 : linear regression 

model1 = linear_model.LinearRegression() 
model1.fit(X_train, y_train) 
y_pred_train1 = model1.predict(X_train) 
print("Regression") 
print("================================") 
RMSE_train1 = mean_squared_error(y_train,y_pred_

↪→train1) 

print("Regression Train set: RMSE {}".format(RMSE_
↪→train1)) 
print("================================") 

(continues on next page)
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(continued from previous page) 

y_pred1 = model1.predict(X_test) 
RMSE_test1 = mean_squared_error(y_test,y_pred1) 
print("Regression Test set: RMSE {}".format(RMSE_

↪→test1)) 
print("================================") 

coef_dict = {} 
for coef, feat in zip(model1.coef_,model_1_features): 

coef_dict[df.columns[feat]] = coef 

print(coef_dict) 

Regression 
================================ 
Regression Train set: RMSE 0.0027616933222892287 
================================ 
Regression Test set: RMSE 0.0042098240263563754 
================================ 
{'A': -0.0009337757382417014, 'B': 0.

↪→16012156890162915, 'C': -0.04416001542534971, 'D':
↪→0.15217907817100398, 'E': 0.17539950794101034} 

2.2 Decision Tree Regression 

A decision tree is arriving at an estimate by asking a series of questions to the data, 
each question narrowing our possible values until the model gets confident enough 
to make a single prediction. The order of the question as well as their content is being 
determined by the model. In addition, the questions asked are all in a True/False 
form. 

This is a little tough to grasp because it is not how humans naturally think, and 
perhaps the best way to show this difference is to create a real decision tree. In 
Fig. 2.3, we can visualize how features are utilized to make predictions for the target 
variable y by asking True/False questions starting at the root node and being refined 
at various decision nodes. The final result obtained will be the value found at the 
terminal node. 

The decision of making strategic splits heavily affects a tree’s accuracy. The 
decision criteria are different for classification and regression trees. Decision tree 
regression normally uses mean squared error (MSE) to decide to split a node in two 
or more sub-nodes. Suppose we are doing a binary tree, the algorithm first will pick 
a value and split the data into two subsets. For each subset, it will calculate the MSE 
separately. The tree chooses the value with results in smallest MSE value.
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Fig. 2.3 Splitting of a decision tree [3] 

Let us examine how is splitting performed for decision tree regressors in more 
details. The first step to create a tree is to create the first binary decision: 

1. In order to create an effective split, we need to pick a variable and the value to 
split on such that the two groups are as different from each other as possible. 

2. For each variable, for each possible value of the possible value of that variable 
see whether it is better. 

3. Take weighted average of two new nodes (mse*num_samples) . 

To sum up, we now have:

• A single number that represents how good a split is which is the weighted average 
of the mean squared errors of the two groups that create.

• A way to find the best split which is to try every variable and to try every possible 
value of that variable and see which variable and which value gives us a split with 
the best score. 

Training of a decision tree regressor will stop when some stopping condition is met: 

1. When you hit a limit that was requested (for example: max_depth) 
2. When your leaf nodes only have one thing in them (no further split is possible, 

MSE for the train will be zero but will overfit for any other set—not a useful 
model) 

#Model 2 decision tree 
model2 = tree.DecisionTreeRegressor() 
model2.fit(X_train, y_train) 
print("Decision Tree") 
print("================================") 

(continues on next page)
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(continued from previous page) 

y_pred_train2 = model2.predict(X_train) 
RMSE_train2 = mean_squared_error(y_train,y_pred_

↪→train2) 
print("Decision Tree Train set: RMSE {}".format(RMSE_

↪→train2)) 
print("================================") 
y_pred_test2 = model2.predict(X_test) 
RMSE_test2 = mean_squared_error(y_test,y_pred_test2) 
print("Decision Tree Test set: RMSE {}".format(RMSE_

↪→test2)) 
print("================================") 

Decision Tree 
================================ 
Decision Tree Train set: RMSE 1.4739259778473743e-36 
================================ 
Decision Tree Test set: RMSE 0.008496 
================================ 

2.3 Random Forests 

The fundamental concept behind random forest is a simple but powerful one—the 
wisdom of crowds. In data science speak, the reason that the random forest model 
works so well is: A large number of relatively uncorrelated models (decision trees) 
operating as a committee will outperform any of the individual constituent models. 

The low correlation between models is the key. Just like how investments with 
low correlations (such as stocks and bonds) come together to form a portfolio that 
is greater than the sum of its parts, uncorrelated models can produce ensemble 
predictions that are more accurate than any of the individual predictions. The reason 
for this wonderful effect is that the trees protect each other from their individual 
errors (as long as they do not constantly all err in the same direction). While some 
trees may be wrong, many other trees will be right, so as a group the trees are able 
to move in the correct direction. So the prerequisites for random forest to perform 
well are: 

1. There needs to be some actual signal in our features so that models built using 
those features do better than random guessing. 

2. The predictions (and therefore the errors) made by the individual trees need to 
have low correlations with each other.
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So how does random forest ensure that the behavior of each individual tree is not 
too correlated with the behavior of any of the other trees in the model? It uses the 
following two methods: 

1. Bagging (Bootstrap Aggregation)—Decisions trees are very sensitive to the data 
they are trained on—small changes to the training set can result in significantly 
different tree structures. Random forest takes advantage of this by allowing each 
individual tree to randomly sample from the dataset with replacement, resulting 
in different trees. This process is known as bagging. 

2. Feature Randomness—In a normal decision tree, when it is time to split a node, 
we consider every possible feature and pick the one that produces the most 
separation between the observations in the left node vs. those in the right node. 
In contrast, each tree in a random forest can pick only from a random subset 
of features. This forces even more variation among the trees in the model and 
ultimately results in lower correlation across trees and more diversification. 

As random forest is actually a collection of decision trees, this makes the 
algorithm slower and less effective for real-time predictions. In general, random 
forest can be fast to train, but quite slow to create predictions once they are trained. 
This is due to the fact that it has to run predictions on each individual tree and then 
average their predictions to create the final prediction. 

Each individual tree in the random forest spits out a class prediction, and the class 
with the most votes becomes our model’s prediction. Decision trees do suffer from 
overfitting, while random forest can prevent overfitting resulting in better prediction 
most of the time. 

#Model 3 Random Forest 
model3 = RandomForestRegressor() 
model3.fit(X_train, y_train) 
print("Random Forest Regressor") 
print("================================") 
y_pred_train3 = model3.predict(X_train) 
RMSE_train3 = mean_squared_error(y_train,y_pred_

↪→train3) 
print("Random Forest Regressor TrainSet: RMSE {}".

↪→format(RMSE_train3)) 
print("================================") 
y_pred_test3 = model3.predict(X_test) 
RMSE_test3 = mean_squared_error(y_test,y_pred_test3) 
print("Random Forest Regressor TestSet: RMSE {}".

↪→format(RMSE_test3)) 
print("================================") 

Random Forest Regressor 
================================ 

(continues on next page)
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(continued from previous page) 

Random Forest Regressor TrainSet: RMSE 0.
↪→0004964972448979589 
================================ 
Random Forest Regressor TestSet: RMSE 0.

↪→004843255999999997 
================================ 

2.4 Neural Network 

Neural networks are the representation we make of the brain: neurons intercon-
nected to other neurons, which forms a network. A simple information transits in 
a lot of them before becoming an actual thing, like “move the hand to pick up this 
pencil.” 

The operation of a neural network is straightforward: variables at each layer are 
taken in as inputs (for example, an image if the neural network is supposed to tell 
what is on an image) and produce multiple outputs (probability of whether an image 
is a cat). 

As shown in Fig. 2.4, each blue circle represents inputs, x, and each orange circle 
represents a vertex where operations are performed. The vertices are connected 
by edges that have their own corresponding weight values, w, which is learned at 
training time. Each vertex will multiply the weights with the corresponding inputs 

Layer L1 

X1 

hw,b(x) 

Layer L3 

Layer L4 

Layer L2 

+1 

X2 

X3 

+1 

+1 

Fig. 2.4 Example of a neural network [4]
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and sum up all the values. The resulting value will be passed on to the next layer 
until it reaches the output. 

When an input is given to the neural network, it returns an output. On the first try, 
it cannot get the right output by its own (except with luck) and that is why, during the 
learning phase, every input comes with its label, explaining what output the neural 
network should have guessed. If the choice is the good one, actual parameters are 
kept and the next input is given. However, if the obtained output does not match the 
label, weights are changed. Those are the only variables that can be changed during 
the learning phase. This process may be imagined as multiple buttons that are turned 
into different possibilities every time an input is not guessed correctly. To determine 
which weight is better to modify, a particular process, called “backpropagation,” is 
done. 

Below is the code to create a simple neural network in Python: 

python model.add(Dense(64, input_dim=Y_position,
↪→activation='relu')) 

The following code is telling Python to add a layer of 64 neurons into the neural 
network. We can stack the models by adding more layers of neuron. Or we can 
simply increase the number of neurons. This can be thought of as to increase the 
number of “neurons” in one’s brain and thereby improving one’s learning ability. 

#Model 5: neural network 
print("Neural Network") 
print("================================") 
model = Sequential() 
model.add(Dense(64, input_dim=Y_POSITION, activation=

↪→'relu')) 
model.add(Dense(64, activation='relu')) 
model.add(Dropout(0.2)) 
model.add(Dense(1, activation='relu')) 
# Compile mode 
# https://www.tensorflow.org/guide/keras/train_and_

↪→evaluate 
model.compile(loss='MSE', optimizer='Adamax',

↪→metrics=['accuracy']) 
# Fit the model 
model.fit(X_train, y_train, epochs=300, batch_size=5,

↪→verbose=0) 
# evaluate the model 
predictions5 = model.predict(X_train) 
RMSE_train5 = mean_squared_error(y_train,predictions5) 
print("Neural Network TrainSet: RMSE {}".format(RMSE_

↪→train5)) 
(continues on next page)
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(continued from previous page) 

print("==================================") 
predictions5 = model.predict(X_test) 
RMSE_test5 = mean_squared_error(y_test,predictions5) 
print("Neural Network TestSet: RMSE {}".format(RMSE_

↪→test5)) 
print("================================") 

Neural Network 
================================ 
Neural Network TrainSet: RMSE 0.02496122448979592 
================================== 
Neural Network TestSet: RMSE 0.032824 
================================ 

2.5 Improving Regression Performance 

2.5.1 Boxplot 

A boxplot is a standardized way of displaying the distribution of data based on a 
five number summary (“minimum,” first quartile (Q1), median, third quartile (Q3), 
and “maximum”) as shown in Fig. 2.5. It tells you about your outliers and what their 
values are. It can also tell you if your data are symmetrical, how tightly your data 
are grouped, and if and how your data are skewed. 
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Fig. 2.5 Example of a boxplot [2]
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Fig. 2.6 Example of a boxplot [2] 

Figure 2.6 shows how a boxplot represents the values found on a normal 
distribution: 

As seen, a boxplot is a great way to visualize your dataset. Now, let us try to 
remove the outliers using our boxplot plot. This can be easily achieved with pandas 
dataframe. But do note that the dataset should be numerical to do this. 

Code for boxplot: 

import seaborn as sns 
import pandas as pd 
boxplot = df.boxplot()
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Fig. 2.7 Outliers visualized using a boxplot 

As shown in Fig. 2.7, there are values in column 0 that are outliers that are values 
that are extremely large or small. This can skew our dataset. A consequence of 
having outliers in our dataset is that our model cannot learn the right parameters. 
Thus, it results in a poorer prediction. 

2.5.2 Remove Outlier 

The code below removes outlier that is more than 99th percentile. The result is 
shown in Fig. 2.8. 

quantile99 = df.iloc[:,0].quantile(0.99) 
df1 = df[df.iloc[:,0] < quantile99] 
df1.boxplot() 

Next, let us apply this on values lower than 1st percentile. 

quantile1 = df.iloc[:,0].quantile(0.01) 
quantile99 = df.iloc[:,0].quantile(0.99) 
df2 = df[(df.iloc[:,0] > quantile1) & (df.iloc[:,0] <

↪→quantile99)] 
df2.boxplot() 

As shown in Fig. 2.9, we have removed the 99th percentile outliers from the data 
successfully.
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Fig. 2.8 Boxplot after 99th percentile outliers removed 

Fig. 2.9 Boxplot after 1st and 99th percentile outliers removed
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df2.shape 

(118, 6) 

2.5.3 Remove NA 

To drop all the rows with the NaN values, you may use: 

df.dropna() 

df1 = df1.dropna() 

2.5.4 Feature Importance 

Apart from cleaning, we can apply use variables that we deem to be important to us. 
One way of doing so is via feature importance of random forest trees. In many use 
cases, it is equally important to not only have an accurate, but also an interpretable 
model. Oftentimes, apart from wanting to know what our model’s house price 
prediction is, we also wonder why it is this high/low and which features are 
most important in determining the forecast. Another example might be predicting 
customer churn—it is very nice to have a model that is successfully predicting which 
customers are prone to churn, but identifying which variables are important can help 
us in early detection and maybe even improving the product/service. 

Knowing feature importance indicated by machine learning models can benefit 
you in multiple ways, for example: 

1. By getting a better understanding of the model’s logic, you cannot only verify 
it being correct but also work on improving the model by focusing only on the 
important variables. 

2. The above can be used for variable selection—you can remove x variables that 
are not that significant and have similar or better performance in much shorter 
training time. 

3. In some business cases, it makes sense to sacrifice some accuracy for the sake 
of interpretability. For example, when a bank rejects a loan application, it must 
also have a reasoning behind the decision, which can also be presented to the 
customer.
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We can obtain the feature importance using this code: 

importances = RF.feature_importances_ 

Then, we can sort the feature importance for ranking and indexing. 

indices = numpy.argsort(importances)[::-1] 

import numpy 
RF = model3 
importances = RF.feature_importances_ 
std = numpy.std([tree.feature_importances_ for tree

↪→in RF.estimators_],axis=0) 
indices = numpy.argsort(importances)[::-1] 

# Print the feature ranking 
print("Feature ranking:") 

for f in range(X.shape[1]): 
print("%d. feature (Column index) %s (%f)" % (f +

↪→1, indices[f], importances[indices[f]])) 

Feature ranking: 
1. feature (Column index) 3 (0.346682) 
2. feature (Column index) 1 (0.217437) 
3. feature (Column index) 0 (0.174081) 
4. feature (Column index) 4 (0.172636) 
5. feature (Column index) 2 (0.089163) 

Let us use the top 3 features and retrain another model. Here, we took a shorter 
time to train the model, yet the RMSE does not suffer due to fewer features. 

indices_top3 = indices[:3] 
print(indices_top3) 
dataset=df 
df = pd.DataFrame(df) 

Y_position = 5 
TOP_N_FEATURE = 3 

X = dataset.iloc[:,indices_top3] 
Y = dataset.iloc[:,Y_position] 
# create model 
X_train, X_test, y_train, y_test = train_test_split(X,

↪→ Y, test_size=0.20, random_state=2020) 
(continues on next page)
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(continued from previous page) 

#Model 1 : linear regression 

model1 = linear_model.LinearRegression() 
model1.fit(X_train, y_train) 
y_pred_train1 = model1.predict(X_train) 
print("Regression") 
print("================================") 
RMSE_train1 = mean_squared_error(y_train,y_pred_

↪→train1) 

print("Regression TrainSet: RMSE {}".format(RMSE_
↪→train1)) 
print("================================") 
y_pred1 = model1.predict(X_test) 
RMSE_test1 = mean_squared_error(y_test,y_pred1) 
print("Regression Testset: RMSE {}".format(RMSE_

↪→test1)) 
print("================================") 

[3 1 0]  
Regression 
================================ 
Regression TrainSet: RMSE 0.0027952079052752685 
================================ 
Regression Testset: RMSE 0.004341758028139643 
================================ 

Exercises 

We will utilize this dataset [1]: 
https://www.kaggle.com/datasets/ashydv/advertising-dataset 

The advertising dataset contains the amount of sales of a product, in thousands of 
units together with the advertising expenditure in thousands of dollars, across TV, 
radio, and newspapers. 

In this exercise, try to predict the amount of sales generated based on the 
advertising budget allocated to the various advertising mediums. 

Here you can put what you have learned into practice by creating, testing, and 
tuning the performance of various regression models.

https://www.kaggle.com/datasets/ashydv/advertising-dataset
https://www.kaggle.com/datasets/ashydv/advertising-dataset
https://www.kaggle.com/datasets/ashydv/advertising-dataset
https://www.kaggle.com/datasets/ashydv/advertising-dataset
https://www.kaggle.com/datasets/ashydv/advertising-dataset
https://www.kaggle.com/datasets/ashydv/advertising-dataset
https://www.kaggle.com/datasets/ashydv/advertising-dataset
https://www.kaggle.com/datasets/ashydv/advertising-dataset
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import pandas as pd 
df = pd.read_csv('advertising.csv') 
df.head() 

TV Radio Newspaper Sales 
0 230.1 37.8 69.2 22.1 
1 44.5 39.3 45.1 10.4 
2 17.2 45.9 69.3 12.0 
3 151.5 41.3 58.5 16.5 
4 180.8 10.8 58.4 17.9 
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Chapter 3 
Classification 

Learning Outcomes 

• Learn the difference between classification and regression. Be able to differentiate 
between classification and regression problems.

• Learn and apply basic models for classification tasks using sklearn and keras.
• Learn data processing techniques to achieve better classification results. 

We learned about regression previously. Now, let us take a look at classification. 
Fundamentally, classification is about predicting a label and regression is about 
predicting a quantity. 

Classification predictive modeling is the task of approximating a mapping 
function (f) from input variables (X) to discrete output variables (y). The output 
variables are often called labels or categories. The mapping function predicts the 
class or category for a given observation. 

For example, an email of text can be classified as belonging to one of two classes: 
“spam” and “not spam.” A classification can have real-valued or discrete input 
variables. 

Here are different types of classification problem:

• A problem with two classes is often called a two-class or binary classification 
problem.

• A problem with more than two classes is often called a multi-class classification 
problem.

• A problem where an example is assigned multiple classes is called a multi-label 
classification problem. 

It is common for classification models to predict a continuous value as the 
probability of a given example belonging to each output class. The probabilities 
can be interpreted as the likelihood or confidence of a given example belonging to 
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each class. A predicted probability can be converted into a class value by selecting 
the class label that has the highest probability. 

For example, a specific email of text may be assigned the probabilities of 0.1 
as being “spam” and 0.9 as being “not spam.” We can convert these probabilities 
to a class label by selecting the “not spam” label as it has the highest predicted 
likelihood. 

There are many ways to estimate the skill of a classification predictive model, 
but perhaps the most common is to calculate the classification accuracy. 

The classification accuracy is the percentage of correctly classified examples out 
of all predictions made. 

For example, if a classification predictive model made 5 predictions and 3 of 
them were correct and 2 of them were incorrect, then the classification accuracy of 
the model based on just these predictions would be: 

accuracy = correct predictions / total predictions *
↪→100 
accuracy = 3 / 5 * 100 
accuracy = 60% 

An algorithm that is capable of learning a classification predictive model is called 
a classification algorithm. 

Dataset: “Diabetes (Edited).csv” 
You can obtain the dataset from this link https://www.dropbox.com/s/ggxo241uo 

g06yhj/Diabetes (Edited).csv?dl=0 
Also, you may run the following code in order to download the dataset in 

google colab: 

!wget https://www.dropbox.com/s/ggxo241uog06yhj/
↪→Diabetes%20%28Edited%29.csv?dl=0 -O --quiet
↪→"Diabetes (Edited).csv" 

from keras.models import Sequential 
from keras.layers import Dense, Dropout 
from sklearn.metrics import classification_report,

↪→confusion_matrix 
from sklearn.model_selection import train_test_split 
import numpy 
from sklearn import linear_model 
from sklearn import preprocessing 
from sklearn import tree 
from sklearn.ensemble import RandomForestClassifier,

↪→GradientBoostingClassifier 
import pandas as pd 
import csv


 17256 29101 a 17256 29101 a
 
https://www.dropbox.com/s/ggxo241uog06yhj/Diabetes%20%28Edited%29.csv?dl=0
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Using TensorFlow backend. 

First, we will work on preprocessing the data. For numerical data, often we would 
preprocess the data by scaling it. In our example, we apply standard scalar, a popular 
preprocessing technique. 

Standardization is a transformation that centers the data by removing the mean 
value of each feature and then scaling it by dividing (non-constant) features by their 
standard deviation. After standardizing data, the mean will be zero and the standard 
deviation one. 

Standardization can drastically improve the performance of models. For instance, 
many elements used in the objective function of a learning algorithm assume that all 
features are centered around zero and have variance in the same order. If a feature 
has a variance that is orders of magnitude larger than others, it might dominate 
the objective function and make the estimator unable to learn from other features 
correctly as expected. 

Here the code that does the scaling is as follows: 

scaler = preprocessing.StandardScaler().fit(X_train) 
scaled_X_train = scaler.transform(X_train) 
scaled_X_test = scaler.transform(X_test) 

Notice that we are using the scalar fitted on our X_train to transform values in 
X_test. This is to ensure that our model does not learn from the testing data. Usually, 
we would split our data before applying scaling. It is a bad practice to do scaling on 
the full dataset. 

Apart from standard scaling, we can use other scalar such as MinMaxScalar. 
feature_range refers to the highest and lowest values after scaling. By default, 
“feature_range” is . −1 to 1. However, this range may prove to be too small as 
changes in our variable would be compressed to maximum of . −1 to 1.  

from sklearn.preprocessing import MinMaxScaler 
scaler = MinMaxScaler(feature_range=(-3,3)) 
scaled_X_train = scaler.transform(X_train) 
scaled_X_test = scaler.transform(X_test) 

Y_position = 8 

# fix random seed for reproducibility 
numpy.random.seed(7) 

df = pd.read_csv('Diabetes (Edited).csv') 
print(df) 
# summary statistics 

(continues on next page)
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(continued from previous page) 

print(df.describe()) 

X = df.iloc[:,0:Y_position] 
Y = df.iloc[:,Y_position] 

# create model 
X_train, X_test, y_train, y_test = train_test_split(X,

↪→ Y, test_size=0.40, random_state=2020) 

#scaling to around -2 to 2 (Z) 
scaler = preprocessing.StandardScaler().fit(X_train) 
scaled_X_train = scaler.transform(X_train) 
scaled_X_test = scaler.transform(X_test) 

A B C D E F G H  I  
0 6 148 72 35 0 33.6 0.627 50 1 
1 1 85 66 29 0 26.6 0.351 31 0 
2 8 183 64 0 0 23.3 0.672 32 1 
3 1 89 66 23 94 28.1 0.167 21 0 
4 0 137 40 35 168 43.1 2.288 33 1 
.. .. ... .. .. ... ... ... .. .. 
763 10 101 76 48 180 32.9 0.171 63 0 
764 2 122 70 27 0 36.8 0.340 27 0 
765 5 121 72 23 112 26.2 0.245 30 0 
766 1 126 60 0 0 30.1 0.349 47 1 
767 1 93 70 31 0 30.4 0.315 23 0 

[768 rows x 9 columns] 
A B C D E F  \  

count 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 
mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 
std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160 
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
25% 1.000000 99.000000 62.000000 0.000000 0.000000 27.300000 
50% 3.000000 117.000000 72.000000 23.000000 30.500000 32.000000 
75% 6.000000 140.250000 80.000000 32.000000 127.250000 36.600000 
max 17.000000 199.000000 122.000000 99.000000 846.000000 67.100000 

G H I  
count 768.000000 768.000000 768.000000 
mean 0.471876 33.240885 0.348958 
std 0.331329 11.760232 0.476951 
min 0.078000 21.000000 0.000000 
25% 0.243750 24.000000 0.000000 
50% 0.372500 29.000000 0.000000 
75% 0.626250 41.000000 1.000000 
max 2.420000 81.000000 1.000000
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In order to reduce code duplication as seen in the chapter on Regression, we  
can abstract the model and create a function to help us train and predict. Here is the 
explanation for the code: 

model.fit(scaled_X_train, y_train) 

We train the model using scaled_X_train and provide its label y_train 

y_predicted = model3.predict(scaled_X_test) 

We predict the model on our testing data and store its result in the variable 
y_predicted 

cm_test = confusion_matrix(y_test,y_pred) 

We create a confusion matrix given our y_test and y_pred. And what is a 
confusion matrix? 

A confusion matrix is an N x N matrix used for evaluating the performance of a 
classification model, where N is the number of target classes. The matrix compares 
the actual target values with those predicted by the machine learning model. This 
gives us a holistic view of how well our classification model is performing and what 
kinds of errors it is making:

• Expected down the side: Each row of the matrix corresponds to a predicted class.
• Predicted across the top: Each column of the matrix corresponds to an actual 

class. 

acc_test = (cm_test[0,0] + cm_test[1,1]) /
↪→sum(sum(cm_test)) 

Lastly, this code calculates the accuracy for us. Accuracy is the number of 
correctly predicted data points out of all the data points. More formally, it is defined 
as the number of true positives and true negatives divided by the number of true 
positives, true negatives, false positives, and false negatives. These values are the 
outputs of a confusion matrix. 

Here, we are assuming a binary classification problem. For multi-class classifica-
tion problem, I would highly recommend using sklearn’s accuracy function for 
its calculation. 

def train_and_predict_using_model(model_name= "",
↪→model=None): 

model.fit(scaled_X_train, y_train) 
y_pred_train = model.predict(scaled_X_train) 
cm_train = confusion_matrix(y_train,y_pred_train) 
print(model_name) 

(continues on next page)
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(continued from previous page) 

print("================================") 
print("Training confusion matrix: ") 
print(cm_train) 
acc_train = (cm_train[0,0] + cm_train[1,1]) /

↪→sum(sum(cm_train)) 
print("TrainSet: Accuracy %.2f%%" % (acc_

↪→train*100)) 
print("================================") 
y_pred = model.predict(scaled_X_test) 
cm_test = confusion_matrix(y_test,y_pred) 
print(cm_test) 
acc_test = (cm_test[0,0] + cm_test[1,1]) /

↪→sum(sum(cm_test)) 
print("Testset: Accuracy %.2f%%" % (acc_test*100)) 
print("================================") 

3.1 Logistic Regression 

Why not use linear regression? 
Let us say we have some tumor size malignancy with values shown by the plotted 

X’s. As a classification issue, plotting shows that all values fall between 0 and 1. 
From the plot, we can see that fitting the best regression line with the threshold set 
at 0.5 works well to classify our data [2]. As shown in Fig. 3.1, we are able to select 
a point on the x-axis where all numbers to its left are negative and those to its right 
are positive. 

However, things would start to become messy if there are outliers in the data. 
In Fig. 3.2, we illustrate what would happen if there were multiple outliers with a 
tumor size of 14 cm. 

In the above example, if we keep the original threshold of 0.5, the best found 
regression line will not be good enough to help differentiate between the two classes. 
It will insert some samples from the positive class into the negative class. The initial 
decision boundary that distinguished between malignant and benign tumors would 
have resulted in misclassifications. When outliers are present, using linear regression 
in this way might lead to skewed results. As a result, for classification jobs, we often 
employ logistic regression instead. 

As pointed out previously, logistic regression employs the sigmoid function, 
which is more resistant to outliers in classification tasks. The logistic function is 
a sigmoid function that accepts any real value between zero and one and is used to
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Fig. 3.1 Regression for classification 
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Fig. 3.2 Problem using regression to classify when outliers are present 

regress between binary classes in logistic regression. It is defined as follows: 

. σ(t) = et

et + 1
= 1

1 + e−t

And if we plot it, the graph drawn will be in the shape of an S curve as shown in 
Fig. 3.3.
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Fig. 3.3 Logistic regression for classification 
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Fig. 3.4 Logistic regression for classification with outliers 

As you can see in Fig. 3.4, the logistic regression model is more robust to outliers 
in a binary classification task compared to linear regression. 

Take the scenario in which we are attempting to solve a classification issue and 
the ideal result would be a probability. Our probability output would range between 
the values of 0 to 1, representing the probability that the event occurred. However, 
applying linear regression would provide results ranging from 1 to infinity. On the 
other hand, when data points are mapped to a sigmoid function, they are mapped 
between 0 and 1, based on the linear regression outcome.
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#https://scikit-learn.org/stable/modules/generated/
↪→sklearn.linear_model.LogisticRegression.html 
linear_classifier = linear_model.

↪→LogisticRegression(random_state=123) 
linear_classifier.fit(scaled_X_train, y_train) 
y_pred_train1 = linear_classifier.predict(scaled_X_

↪→train) 
cm1_train = confusion_matrix(y_train,y_pred_train1) 
print("Regression") 
print("================================") 
print(cm1_train) 
acc_train1 = (cm1_train[0,0] + cm1_train[1,1]) /

↪→sum(sum(cm1_train)) 
print("Regression TrainSet: Accuracy %.2f%%" % (acc_

↪→train1*100)) 
print("================================") 
y_pred1 = linear_classifier.predict(scaled_X_test) 
cm1 = confusion_matrix(y_test,y_pred1) 
print(cm1) 
acc1 = (cm1[0,0] + cm1[1,1]) / sum(sum(cm1)) 
print("Regression Testset: Accuracy %.2f%%" %

↪→(acc1*100)) 
print("================================") 

Regression 
================================ 
[[274 31] 
[ 62 93]] 

Regression TrainSet: Accuracy 79.78% 
================================ 
[[172 23] 
[ 53 60]] 

Regression Testset: Accuracy 75.32% 
================================ 

Sample result: 

================================ 
[[274 31] 
[ 62 93]] 

Regression TrainSet: Accuracy 79.78% 
================================
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[[274 31] 
[ 62 93]] 

Here is an example of a confusion matrix in Python:

• 274 is when the actual class is true and predicted class is true.
• 31 is when the actual class is true and predicted class is false.
• 62 is when the actual class is false and predicted class is true.
• 93 is when the actual class is false and predicted class is false. 

Improvement to Our Code 
Recall we have written a helper function to help us to capture the logic of training 

the model, predicting the output and printing the train and test accuracy as well as 
confusion matrix? Let us put it to use here! 

train_and_predict_using_model('Logistic Regression',
↪→linear_classifier) 

Logistic Regression 
================================ 
Training confusion matrix: 
[[274 31] 
[ 62 93]] 

TrainSet: Accuracy 79.78% 
================================ 
[[172 23] 
[ 53 60]] 

Testset: Accuracy 75.32% 
================================ 

We have managed to reduce multiple lines of code to a succinct function 
call. This is a huge improvement in terms of code maintenance and code 
changes. If we need to change any of our code, we only have to apply it on 
our train_and_predict_using_model function. 

3.2 Decision Tree and Random Forest 

The code and intuition behind decision tree and random forest is similar to that in 
regression. Thus, we will not be delving deeper into both models.
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The code is as follows: 

decision_tree_clf = tree.DecisionTreeClassifier() 
train_and_predict_using_model('Decision Tree

↪→Classifier', linear_classifier) 

print( 
'\n\n' 

) 

rf_clf = RandomForestClassifier(n_estimators=100, max_
↪→depth=2,random_state=0) 
train_and_predict_using_model('Random Forest

↪→Classifier', rf_clf) 

Decision Tree Classifier 
================================ 
Training confusion matrix: 
[[274 31] 
[ 62 93]] 

TrainSet: Accuracy 79.78% 
================================ 
[[172 23] 
[ 53 60]] 

Testset: Accuracy 75.32% 
================================ 

Random Forest Classifier 
================================ 
Training confusion matrix: 
[[290 15] 
[ 96 59]] 

TrainSet: Accuracy 75.87% 
================================ 
[[184 11] 
[ 80 33]] 

Testset: Accuracy 70.45% 
================================
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3.3 Neural Network 

In this section, we will introduce the neural network. Similar to logistic regression, 
we have to map our output from -inf to inf into 0 to 1. Here, we will have to add 
a Dense layer with a sigmoid activation function. For multi-class, we should use 
a softmax activation function. 

model.add(Dense(1, activation='sigmoid')) 

Here, we added a last layer mapping to a sigmoid function. Notice that we have 
1 neuron in this layer as we would like to have 1 prediction. This might be different 
for multi-class, and we should always check out the documentation. 

model.compile(loss='binary_crossentropy', optimizer=
↪→'Adamax', metrics=['accuracy']) 

Also, we would need to tell the model that we need to use a different loss 
function. Here, for binary problem (Yes/No). binary_crossentropy is the 
way to go. For multi-class problem, we might need to use categorical_ 
crossentropy as the loss function. 

#Neural network 
#https://www.tensorflow.org/guide/keras/train_and_

↪→evaluate 
model = Sequential() 
model.add(Dense(5, input_dim=Y_position, activation=

↪→'relu')) 
model.add(Dense(1, activation='sigmoid')) 

# Compile model 
# https://www.tensorflow.org/guide/keras/train_and_

↪→evaluate 
model.compile(loss='binary_crossentropy', optimizer=

↪→'Adamax', metrics=['accuracy']) 

# Fit the model 
model.fit(scaled_X_train, y_train, epochs=1, batch_

↪→size=20, verbose=0) 

# evaluate the model 
scores = model.evaluate(scaled_X_train, y_train) 

print("Neural Network Trainset: \n%s: %.2f%%" %
↪→(model.metrics_names[1], scores[1]*100)) 

(continues on next page)
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predictions = model.predict(scaled_X_test) 

y_pred = (predictions > 0.5) 
y_pred = y_pred*1 #convert to 0,1 instead of True

↪→False 
cm = confusion_matrix(y_test, y_pred) 
print("==================================") 
print("==================================") 
print("Neural Network on testset confusion matrix") 
print(cm) 

## Get accurary from Confusion matrix 
## Position 0,0 and 1,1 are the correct predictions 
acc = (cm[0,0] + cm[1,1]) / sum(sum(cm)) 
print("Neural Network on TestSet: Accuracy %.2f%%" %

↪→(acc*100)) 

460/460 [==============================] - 0s 63us/
↪→step 
Neural Network Trainset: 
accuracy: 71.09% 
================================== 
================================== 
Neural Network on testset confusion matrix 
[[177 18] 
[ 78 35]] 

Neural Network on TestSet: Accuracy 68.83% 

From above, notice that the training accuracy is at 71%, which might be a case of 
underfitting. Underfitting happens when our trained model is too simple to capture 
the complexity of the underlying data distribution. To improve our model, we can 
always increase the number of neurons / layer or increase the epoch for training. 

#Neural network 
#https://www.tensorflow.org/guide/keras/train_and_

↪→evaluate 
model = Sequential() 
model.add(Dense(10, input_dim=Y_position, activation=

↪→'relu')) 
model.add(Dense(256, activation='relu')) 
model.add(Dropout(0.1)) 
model.add(Dense(256, activation='tanh')) 

(continues on next page)
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model.add(Dropout(0.1)) 
model.add(Dense(1, activation='sigmoid')) 

# Compile model 
# https://www.tensorflow.org/guide/keras/train_and_

↪→evaluate 
model.compile(loss='binary_crossentropy', optimizer=

↪→'RMSprop', metrics=['accuracy']) 

# Fit the model 
model.fit(scaled_X_train, y_train, epochs=200, batch_

↪→size=20, verbose=0) 

# evaluate the model 
scores = model.evaluate(scaled_X_train, y_train) 

print("Neural Network Trainset: \n%s: %.2f%%" %
↪→(model.metrics_names[1], scores[1]*100)) 

predictions = model.predict(scaled_X_test) 

y_pred = (predictions > 0.5) 
y_pred = y_pred*1 #convert to 0,1 instead of True

↪→False 
cm = confusion_matrix(y_test, y_pred) 
print("==================================") 
print("==================================") 
print("Neural Network on testset confusion matrix") 
print(cm) 

## Get accuracy from Confusion matrix 
## Position 0,0 and 1,1 are the correct predictions 
acc = (cm[0,0] + cm[1,1]) / sum(sum(cm)) 
print("Neural Network on TestSet: Accuracy %.2f%%" %

↪→(acc*100)) 

460/460 [==============================] - 0s 126us/
↪→step 
Neural Network Trainset: 
accuracy: 99.57% 
================================== 
================================== 

(continues on next page)



3.4 Support Vector Machines 43

(continued from previous page) 

Neural Network on testset confusion matrix 
[[152 43] 
[ 43 70]] 

Neural Network on TestSet: Accuracy 72.08% 

Now, our accuracy on training has reached 99%. However, accuracy of test is 
still lower. This might be because of testing dataset differing from training dataset 
or overfitting. For overfitting, we will look at some regularization techniques. For 
now, adding Dropout layer and reducing training epoch would work just fine. 

3.4 Support Vector Machines 

The support vector machine is a widely used machine learning algorithm, often 
applied on classification, but sometimes also for regression and outlier detection 
tasks. The support vector machine algorithm aims to find a suitable hyperplane in a 
multidimensional space that can separate the data into two distinct classes. 

However, there are many possible hyperplanes that can fit the above-mentioned 
criteria. Hence, instead of simply selecting a suitable hyperplane, the support vector 
machine algorithm is made to select the best plane. This is achieved by finding 
a plane that maximizes the distance between both classes. The data points that 
determine the position of this hyperplane are called support vectors, and they lie 
closest to the resulting hyperplane. 

from sklearn import svm 

clf = svm.SVC() 
train_and_predict_using_model("SVM (Classifier)", clf) 

SVM (Classifier) 
================================ 
Training confusion matrix: 
[[361 46] 
[101 106]] 

TrainSet: Accuracy 76.06% 
================================ 
[[84 9] 
[31 30]] 

Testset: Accuracy 74.03% 
================================
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Fig. 3.5 Support vector machine using a radial basis function kernel 

3.4.1 Important Hyperparameters 

For SVM here are some important parameters to take note of: 

Kernel 
Kernel functions generally transform the data so that a non-linear decision surface 
is transformed into a linear one in a higher number of dimension spaces. Some of 
the possible kernel functions are as follows:

• Radial basis function (rbf)
• Polynomial
• Sigmoid 

Here is an illustrated use of a rbf kernel in Fig. 3.5. The rbf kernel maps the data 
into a higher dimensional space by calculating the dot products and squares against 
data in the training set. After mapping into this higher dimensional space, we can 
then apply SVM for the final linear classification. 

rbf_svc = svm.SVC(kernel='rbf') 
train_and_predict_using_model("SVM (RBF kernel)", rbf_

↪→svc) 

SVM (RBF kernel) 
================================ 
Training confusion matrix: 

(continues on next page)
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[[361 46] 
[101 106]] 

TrainSet: Accuracy 76.06% 
================================ 
[[84 9] 
[31 30]] 

Testset: Accuracy 74.03% 
================================ 

rbf_svc = svm.SVC(kernel='poly') 
train_and_predict_using_model("SVM (polynomial kernel)

↪→", rbf_svc) 

SVM (polynomial kernel) 
================================ 
Training confusion matrix: 
[[393 14] 
[148 59]] 

TrainSet: Accuracy 73.62% 
================================ 
[[89 4] 
[47 14]] 

Testset: Accuracy 66.88% 
================================ 

rbf_svc = svm.SVC(kernel='sigmoid') 
train_and_predict_using_model("SVM (sigmoid kernel)",

↪→rbf_svc) 

SVM (sigmoid kernel) 
================================ 
Training confusion matrix: 
[[320 87] 
[112 95]] 

TrainSet: Accuracy 67.59% 
================================ 
[[68 25] 
[35 26]] 

Testset: Accuracy 61.04% 
================================
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Another important parameter would be class_weight. Here, it is mainly used for 
imbalanced datasets. 

# fit the model and get the separating hyperplane
↪→using weighted classes 
wclf = svm.SVC(kernel='linear', class_weight={1:2}) 
train_and_predict_using_model('SVM uneven class weight

↪→', wclf) 

SVM uneven class weight 
================================ 
Training confusion matrix: 
[[316 91] 
[ 75 132]] 

TrainSet: Accuracy 72.96% 
================================ 
[[71 22] 
[18 43]] 

Testset: Accuracy 74.03% 
================================ 

3.5 Naive Bayes 

Naive Bayes is a classification technique based on Bayes’ theorem with an 
assumption of independence among predictors. In simple terms, a Naive Bayes 
classifier assumes that the presence of a particular feature in a class is unrelated 
to the presence of any other feature. 

For example, a fruit may be considered to be an apple if it is red, round, and 
about 3 inches in diameter. Even if these features depend on each other or upon the 
existence of the other features, all of these properties independently contribute to 
the probability that this fruit is an apple and that is why it is known as “Naive.” 

Naive Bayes model is easy to build and particularly useful for very large 
datasets. Along with simplicity, Naive Bayes is known to outperform even highly 
sophisticated classification methods. 

Bayes theorem provides a way of calculating posterior probability P(c|x) from 
P(c), P(x), and P(x|c) as shown in the equation below: 
. P(c|x) = P(x|c)P (c)

P (x)

from sklearn.naive_bayes import GaussianNB 

# maximum likelihood 
(continues on next page)
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gnb = GaussianNB() 
train_and_predict_using_model("Naive Bayes", gnb) 

Naive Bayes 
================================ 
Training confusion matrix: 
[[337 70] 
[ 93 114]] 

TrainSet: Accuracy 73.45% 
================================ 
[[78 15] 
[28 33]] 

Testset: Accuracy 72.08% 
================================ 

import numpy as np 
from sklearn.datasets import make_classification 
from sklearn.naive_bayes import GaussianNB 

X, y = make_classification(n_samples=1000, weights=[0.
↪→1, 0.9]) 
# your GNB estimator 
gnb = GaussianNB() 
gnb.fit(X, y) 

print("model prior {} close to your defined prior of
↪→{}".format(gnb.class_prior_, [0.1,0.9])) 

model prior [0.105 0.895] close to your defined prior
↪→of [0.1, 0.9] 

3.6 Improving Classification Performance 

Similar to how we utilized feature importance for regression tasks, we can apply 
feature importance to classification tasks as well. 

RF = model3 
importances = RF.feature_importances_ 

(continues on next page)
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std = numpy.std([tree.feature_importances_ for tree
↪→in RF.estimators_], 
axis=0) 
indices = numpy.argsort(importances)[::-1] 

# Print the feature ranking 
print("Feature ranking:") 

for f in range(X.shape[1]): 
print("%d. feature (Column index) %s (%f)" % (f + 1,

↪→indices[f], importances[indices[f]])) 

Feature ranking: 
1. feature (Column index) 1 (0.307004) 
2. feature (Column index) 7 (0.237150) 
3. feature (Column index) 0 (0.129340) 
4. feature (Column index) 5 (0.129255) 
5. feature (Column index) 6 (0.069927) 
6. feature (Column index) 4 (0.055137) 
7. feature (Column index) 2 (0.044458) 
8. feature (Column index) 3 (0.027729) 

indices_top3 = indices[:3] 
print(indices_top3) 

# fix random seed for reproducibility 
numpy.random.seed(7) 
# load pima indians dataset 
dataset = numpy.loadtxt("Diabetes (Edited).csv",

↪→delimiter=",") 

df = pd.DataFrame(dataset) 

Y_position = 8 
TOP_N_FEATURE = 3 

X = dataset[:,indices_top3] 
Y = dataset[:,Y_position] 
# create model 
X_train, X_test, y_train, y_test = train_test_split(X,

↪→ Y, test_size=0.20, random_state=2020) 

(continues on next page)
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#scaling to around -2 to 2 (Z) 
scaler = preprocessing.StandardScaler().fit(X_train) 
scaled_X_train = scaler.transform(X_train) 
scaled_X_test = scaler.transform(X_test) 

#Model 1 : linear regression 
linear_classifier = linear_model.

↪→LogisticRegression(random_state=123) 
linear_classifier.fit(scaled_X_train, y_train) 
y_pred_train1 = linear_classifier.predict(scaled_X_

↪→train) 
cm1_train = confusion_matrix(y_train,y_pred_train1) 
print("Regression") 
print("================================") 
print(cm1_train) 
acc_train1 = (cm1_train[0,0] + cm1_train[1,1]) /

↪→sum(sum(cm1_train)) 
print("Regression TrainSet: Accuracy %.2f%%" % (acc_

↪→train1*100)) 
print("================================") 
y_pred1 = linear_classifier.predict(scaled_X_test) 
cm1 = confusion_matrix(y_test,y_pred1) 
print(cm1) 
acc1 = (cm1[0,0] + cm1[1,1]) / sum(sum(cm1)) 
print("Regression Testset: Accuracy %.2f%%" %

↪→(acc1*100)) 
print("================================") 
print("================================") 
print("================================") 

#Model 2: decision tree 
clf = tree.DecisionTreeClassifier() 
clf = clf.fit(scaled_X_train, y_train) 
y_pred_train2 = clf.predict(scaled_X_train) 
cm2_train = confusion_matrix(y_train,y_pred_train2) 
print("Decision Tree") 
print("================================") 
print(cm2_train) 
acc_train2 = (cm2_train[0,0] + cm2_train[1,1]) /

↪→sum(sum(cm2_train)) 
(continues on next page)
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print("Decsion Tree TrainSet: Accuracy %.2f%%" % (acc_
↪→train2*100)) 
print("================================") 
y_pred2 = clf.predict(scaled_X_test) 
cm2 = confusion_matrix(y_test,y_pred2) 
acc2 = (cm2[0,0] + cm2[1,1]) / sum(sum(cm2)) 
print(cm2) 
print("Decision Tree Testset: Accuracy %.2f%%" %

↪→(acc2*100)) 
print("================================") 
print("================================") 
print("================================") 

#Model 3 random forest 
model3 = RandomForestClassifier(n_estimators=100, max_

↪→depth=2,random_state=0) 
model3.fit(scaled_X_train, y_train) 
y_predicted3 = model3.predict(scaled_X_test) 

y_pred_train3 = model3.predict(scaled_X_train) 
cm3_train = confusion_matrix(y_train,y_pred_train3) 
print("Random Forest") 
print("================================") 
print(cm3_train) 
acc_train3 = (cm3_train[0,0] + cm3_train[1,1]) /

↪→sum(sum(cm3_train)) 
print("Random Forest TrainSet: Accuracy %.2f%%" %

↪→(acc_train3*100)) 
print("================================") 
y_pred3 = model3.predict(scaled_X_test) 
cm_test3 = confusion_matrix(y_test,y_pred3) 
print(cm_test3) 
acc_test3 = (cm_test3[0,0] + cm_test3[1,1]) /

↪→sum(sum(cm_test3)) 
print("Random Forest Testset: Accuracy %.2f%%" % (acc_

↪→test3*100)) 
print("================================") 
print("================================") 
print("================================") 

(continues on next page)
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#Model 4: XGBoost 

print("Xgboost") 
print("================================") 

model4 = GradientBoostingClassifier(random_state=0) 
model4.fit(scaled_X_train, y_train) 
y_pred_train4 = model4.predict(scaled_X_train) 
cm4_train = confusion_matrix(y_train,y_pred_train4) 
print(cm4_train) 
acc_train4 = (cm4_train[0,0] + cm4_train[1,1]) /

↪→sum(sum(cm4_train)) 
print("Xgboost TrainSet: Accuracy %.2f%%" % (acc_

↪→train4*100)) 
predictions = model4.predict(scaled_X_test) 
y_pred4 = (predictions > 0.5) 
y_pred4 =y_pred4*1 #convert to 0,1 instead of True

↪→False 
cm4 = confusion_matrix(y_test, y_pred4) 
print("==================================") 
print("Xgboost on testset confusion matrix") 
print(cm4) 
acc4 = (cm4[0,0] + cm4[1,1]) / sum(sum(cm4)) 
print("Xgboost on TestSet: Accuracy %.2f%%" %

↪→(acc4*100)) 
print("==================================") 

#Model 5: neural network 
model = Sequential() 
model.add(Dense(10, input_dim=TOP_N_FEATURE,

↪→activation='relu')) 
#model.add(Dense(10, activation='relu')) 
#model.add(Dropout(0.2)) 
model.add(Dense(1, activation='sigmoid')) 
# Compile mode 
# https://www.tensorflow.org/guide/keras/train_and_

↪→evaluate 

model.compile(loss='binary_crossentropy', optimizer=
↪→'Adamax', metrics=['accuracy']) 

(continues on next page)
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# Fit the model 
model.fit(X_train, y_train, epochs=100, batch_size=5,

↪→verbose=0) 
# evaluate the model 
scores = model.evaluate(X_train, y_train) 
#print(scores) 
print("Neural Network Trainset: \n%s: %.2f%%" %

↪→(model.metrics_names[1], scores[1]*100)) 

predictions5 = model.predict(X_test) 
#print(predictions) 
#print('predictions shape:', predictions.shape) 

y_pred5 = (predictions5 > 0.5) 
y_pred5 = y_pred5*1 #convert to 0,1 instead of True

↪→False 
cm5 = confusion_matrix(y_test, y_pred5) 
print("==================================") 
print("==================================") 
print("Neural Network on testset confusion matrix") 
print(cm5) 

## Get accuracy from Confusion matrix 
## Position 0,0 and 1,1 are the correct predictions 
acc5 = (cm5[0,0] + cm5[1,1]) / sum(sum(cm5)) 
print("Neural Network on TestSet: Accuracy %.2f%%" %

↪→(acc5*100)) 

[1 7 0]  
Regression 
================================ 
[[361 46] 
[105 102]] 
Regression TrainSet: Accuracy 75.41% 
================================ 
[[82 11] 
[30 31]] 
Regression Testset: Accuracy 73.38% 
================================ 
================================ 
================================ 
Decision Tree 

(continues on next page)
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================================ 
[[407 0] 
[ 0 207]] 
Decsion Tree TrainSet: Accuracy 100.00% 
================================ 
[[68 25] 
[32 29]] 
Decision Tree Testset: Accuracy 62.99% 
================================ 
================================ 
================================ 
Random Forest 
================================ 
[[377 30] 
[128 79]] 
Random Forest TrainSet: Accuracy 74.27% 
================================ 
[[87 6] 
[40 21]] 
Random Forest Testset: Accuracy 70.13% 
================================ 
================================ 
================================ 
Xgboost 
================================ 
[[389 18] 
[ 58 149]] 
Xgboost TrainSet: Accuracy 87.62% 
================================== 
Xgboost on testset confusion matrix 
[[80 13] 
[29 32]] 
Xgboost on TestSet: Accuracy 72.73% 
================================== 
20/20 [==============================] - 0s 1ms/step -

↪→ loss: 0.5480 - accuracy: 0.7671 
Neural Network Trainset: 
accuracy: 76.71% 
================================== 
================================== 
Neural Network on testset confusion matrix 
[[81 12] 

(continues on next page)
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[29 32]] 
Neural Network on TestSet: Accuracy 73.38% 

Exercises 

We will utilize this dataset [1]: 
https://www.kaggle.com/datasets/yasserh/titanic-dataset 
The titanic dataset contains the details of passengers aboard the titanic as well as 
whether they survived the sinking of the titanic. Here are the descriptions of the 
variables used: 

Variable Definition Key 

Survived Whether the passenger was a survivor 0 . = No, 1 .= Yes 

Pclass Passenger class 1 . = 1st, 2 . = 2nd, 3 . = 3rd 

Name Passenger name Text 

Sex Sex of passenger Male or female 

Age Age in years Numerical 

sibsp Number of siblings/spouses aboard Numerical 

the Titanic 

Parch Number of parents/children aboard Numerical 

the Titanic 

Ticket Ticket number Text 

Fare Passenger fare Numerical 

Cabin Cabin number Text 

Embarked Port of Embarkation C . = Cherbourg, Q . = Queenstown, 

S . = Southampton 

In this exercise, try to predict whether or not each of the passengers survived. 
Here you can put what you have learned into practice. Try to:

• Perform data preparation by cleaning and converting the dataset to a suitable 
form.

• Create, test, and tune the performance of various classification models.
• Improve the performance by selecting suitable features. 

import pandas as pd 
df = pd.read_csv('Titanic-Dataset.csv') 
df.head()

https://www.kaggle.com/datasets/yasserh/titanic-dataset
https://www.kaggle.com/datasets/yasserh/titanic-dataset
https://www.kaggle.com/datasets/yasserh/titanic-dataset
https://www.kaggle.com/datasets/yasserh/titanic-dataset
https://www.kaggle.com/datasets/yasserh/titanic-dataset
https://www.kaggle.com/datasets/yasserh/titanic-dataset
https://www.kaggle.com/datasets/yasserh/titanic-dataset
https://www.kaggle.com/datasets/yasserh/titanic-dataset
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PassengerId Survived Pclass \ 
0 1 0 3  
1 2 1 1  
2 3 1 3  
3 4 1 1  
4 5 0 3  

Name Sex Age SibSp \ 
0 Braund, Mr. Owen Harris male 22.0 1 
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 
2 Heikkinen, Miss. Laina female 26.0 0 
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 
4 Allen, Mr. William Henry male 35.0 0 

Parch Ticket Fare Cabin Embarked 
0 0 A/5 21171 7.2500 NaN S 
1 0 PC 17599 71.2833 C85 C 
2 0 STON/O2. 3101282 7.9250 NaN S 
3 0 113803 53.1000 C123 S 
4 0 373450 8.0500 NaN S 
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Chapter 4 
Clustering 

Learning Outcomes 

• Understand the difference between supervised and unsupervised algorithms.
• Learn and apply the K-means algorithm for clustering tasks using scikit-learn.
• Learn the Elbow method to select a suitable number of clusters. 

4.1 Introduction to Clustering 

Clustering is the task of dividing the population or data points into a number of 
groups, such that data points in the same groups are more similar to other data points 
within the group and dissimilar to the data points in other groups. Clustering is a 
form of unsupervised algorithm. This means that unlike classification or regression, 
clustering does not require ground truth labeled data. Such algorithms are capable 
of finding groups that are not explicitly labeled and identify underlying patterns that 
might appear in the dataset. In Fig. 4.1, we can see an example of how the data are 
split into 3 distinct clusters. One of the simplest, yet effective clustering algorithms 
is the K-means algorithm. 

4.2 K-means 

K-means is used for a variety of cases [1], such as:

• Customer profiling
• Market segmentation
• Computer vision 
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Fig. 4.1 Example of clustering [1]

• Geo-statistics
• Astronomy 

The K-means algorithm clusters data by trying to separate samples in n groups of 
equal variance, minimizing a criterion known as the inertia or within-cluster sum-of-
squares. The K-means algorithm aims to choose centroid that minimizes the inertia, 
or within-cluster sum-of-squares criterion: 

. 

n∑

i=0

min
μj ∈C

(||xi − μj ||)2

The process for the K-means algorithm is as follows: 

1. Ask user how many clusters they would like (e.g., .k = 5). 
2. Randomly guess k-cluster center locations. 
3. Each data point identifies which center it is closest to according to the sum-of-

squares criterion. (Thus each center “owns” a set of data points.) 
4. Reposition the k-cluster center locations by minimizing the sum-of-squares 

criterion. This can be achieved by setting the new locations as the average of 
all the points in a cluster. 

5. Repeat steps 3 and 4 until no new data points are added or removed from all 
clusters, or the pre-defined maximum number of iterations has been reached.
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Step 6 

Step 3Step 2 

Step 5Step 4 

Step 1 

Fig. 4.2 Step-by-step K-means clustering [1] 

Overtime, the associations to each cluster will stabilize and converge to a stable 
solution. Figure 4.2 shows how the cluster associations progress over each iteration. 

4.3 The Elbow Method 

As you can see in the first step of the K-means algorithm, the user has to specify the 
number of clusters to be used for the algorithm. We can do this by attempting the 
K-means for various values of K and visually selecting the K-value using the elbow 
method as shown in Fig. 4.3. We would like a small sum-of-squares error; however, 
the sum-of-squares error tends to decrease toward 0 as we increase the value of k. 
Sum-of-squares will decrease toward 0 with increasing k because when k is equal 
to the number of data points, each data point is its own cluster, and there will be no 
error between it and the center of its cluster. 

The following code example shows the K-means algorithm and the elbow 
visualization in figure 4.3 using the Iris dataset that can be obtained from [3]: 
https://www.kaggle.com/uciml/iris 

import numpy as np 
import pandas as pd 

(continues on next page)
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Fig. 4.3 The elbow method [2] 

(continued from previous page) 

df = pd.read_csv("iris.csv") 
print(df) 
df["Species"].unique() 
df = df.replace("Iris-setosa", 0) 
df=df.replace("Iris-versicolor", 1) 
df = df.replace("Iris-virginica", 2) 

X=df.loc[:, ["SepalLengthCm","SepalWidthCm",
↪→"PetalLengthCm","PetalWidthCm"]] 
Y=df['Species'] 
print(X) 
print(Y) 

from sklearn.cluster import KMeans 
model=KMeans(n_clusters=3, random_state=2021) 
model.fit(X,Y) 
pred=model.predict(X) 

from sklearn.metrics import confusion_matrix 
cm=confusion_matrix(pred, Y) 
print(cm) 

accuracy=(cm[0,0]+cm[1,1]+cm[2,2])/sum(sum(cm))
↪→#cm[rows, columns] 
print(accuracy) 

(continues on next page)
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(continued from previous page) 

from yellowbrick.cluster import KElbowVisualizer 

visualizer = KElbowVisualizer(model, k=(2,15)) 

visualizer.fit(X) 
visualizer.show() 

SepalLength SepalWidth PetalLength PetalWidth Iris 
0 5.1 3.5 1.4 0.2 Iris-setosa 
1 4.9 3.0 1.4 0.2 Iris-setosa 
2 4.7 3.2 1.3 0.2 Iris-setosa 
3 4.6 3.1 1.5 0.2 Iris-setosa 
4 5.0 3.6 1.4 0.2 Iris-setosa 
.. ... ... ... ... ... 
145 6.7 3.0 5.2 2.3 Iris-virginica 
146 6.3 2.5 5.0 1.9 Iris-virginica 
147 6.5 3.0 5.2 2.0 Iris-virginica 
148 6.2 3.4 5.4 2.3 Iris-virginica 
149 5.9 3.0 5.1 1.8 Iris-virginica 

[150 rows x 5 columns] 
SepalLength SepalWidth PetalLength PetalWidth Iris 

0 5.1 3.5 1.4 0.2 0 
1 4.9 3.0 1.4 0.2 0 
2 4.7 3.2 1.3 0.2 0 
3 4.6 3.1 1.5 0.2 0 
4 5.0 3.6 1.4 0.2 0 
.. ... ... ... ... ... 
145 6.7 3.0 5.2 2.3 2 
146 6.3 2.5 5.0 1.9 2 
147 6.5 3.0 5.2 2.0 2 
148 6.2 3.4 5.4 2.3 2 
149 5.9 3.0 5.1 1.8 2 

[150 rows x 5 columns] 
[[50 0 0] 
[ 0 48 14]  
[ 0 2 36]] 

0.8933333333333333
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Exercises 

We will utilize this dataset [4]: 
https://www.kaggle.com/datasets/harrywang/wine-dataset-for-clustering 

The wine dataset contains the results of a chemical analysis of wines grown in 
the same region in Italy but may be derived from different cultivars. The analysis 
determined the quantities of 13 compounds present in the wine varieties. The 
information of which variety the wine belongs to has been removed to facilitate 
an unsupervised classification problem. 

In this exercise, try to cluster the data into different clusters of wine types. 
Here you can put what you have learned into practice. Try to:

• Perform clustering on the dataset using clustering techniques covered in this 
chapter.

• Select a suitable number of clusters. 

import pandas as pd 
df = pd.read_csv('wine-clustering.csv') 
df.head() 

Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols \ 
0 14.23 1.71 2.43 15.6 127 2.80 
1 13.20 1.78 2.14 11.2 100 2.65 
2 13.16 2.36 2.67 18.6 101 2.80 

(continues on next page)
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(continued from previous page) 
3 14.37 1.95 2.50 16.8 113 3.85 
4 13.24 2.59 2.87 21.0 118 2.80 

Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue \ 
0 3.06 0.28 2.29 5.64 1.04 
1 2.76 0.26 1.28 4.38 1.05 
2 3.24 0.30 2.81 5.68 1.03 
3 3.49 0.24 2.18 7.80 0.86 
4 2.69 0.39 1.82 4.32 1.04 

OD280 Proline 
0 3.92 1065 
1 3.40 1050 
2 3.17 1185 
3 3.45 1480 
4 2.93 735 
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Chapter 5 
Time Series 

Learning outcomes: 

• Understand what is stationarity and how to test for it.
• Understand concepts such as level, trend, and seasonality.
• Learn to model time series data with simple, double, and triple exponential smoothing.
• Understand difference between autoregressive models and moving average models.
• Learn about SARIMA models.
• Learn about heteroskedasticity and how to predict volatility of time series data. 

5.1 Introduction to Time Series 

A time series is a collection of data points listed in chronological order. Generally, 
cleaned time series data also ensure that any two consecutive data points have 
a fixed, defined time interval between them. We perform time series analysis 
in order to uncover underlying patterns and discover useful insights from the 
time series data. Time series data analysis is becoming increasingly significant in 
a variety of industries, including finance, pharmaceuticals, social media, online 
service providers, research, and many more businesses. 

In this chapter, we will cover various forms of time series analysis and demon-
strate how to model univariate time series problems. 
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The dataset we will use will come from the AirPassengers dataset, which can be 
obtained from this link [6]: 
https://www.kaggle.com/datasets/rakannimer/air-passengers 

import pandas as pd 
df = pd.read_csv("AirPassengers.csv") 

df.head() 

Month #Passengers 
0 1949-01 112 
1 1949-02 118 
2 1949-03 132 
3 1949-04 129 
4 1949-05 121 

df = df.drop(['Month'], axis=1) 
df.iloc[:,0]=pd.to_numeric(df.iloc[:,0], errors=

↪→"coerce") 

df = df.dropna() 
df = df.interpolate() 
column_name=df.columns[0] 

n_row=len(df) 
train_row = int(0.8 * n_row) 
train = df[0:train_row] 
test = df[train_row:] 
pred = test.copy() 

train.plot() 
test.plot()

https://www.kaggle.com/datasets/rakannimer/air-passengers
https://www.kaggle.com/datasets/rakannimer/air-passengers
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5.2 Stationarity 

There are various types of time series trends as shown in Fig. 5.1. One particular 
time series to take note of are stationary time series. A time series is only considered 
stationary when its mean, variance, and autocovariance do not change across time. 

If the time series is not stationary, you will need to use a model that captures 
trend and/or seasonality. 

After developing the model, you can remove the trend and seasonality component 
away from the time series and then the label the residuals as stationary. If the 
residuals left are still not stationary, then the model used is not suitable or the time 
series cannot be accurately predicted.
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Fig. 5.1 Types of trends [5] 

We can test for stationarity using the Dickey–Fuller test if .>0.05 => non 
stationary => needs to use trend and seasonality. 

from statsmodels.tsa.stattools import adfuller 

dicky = adfuller(df) 
print(dicky[1]) 

0.9918802434376408 

In this case, the data have a p-value .>0.05, and hence, it is not stationary. 

5.3 Level, Trend, and Seasonality 

Level: The average value of the series. 
Trend: The increasing or decreasing value in the series. 
Seasonality: The repeating short-term cycle in the series. 
Noise: The random variation in the series. 

Both trends and seasonality can be additive or multiplicative as shown in Fig. 5.2. 
We can decompose a time series into its various components as follows using an 

additive model. 

from statsmodels.tsa.seasonal import seasonal_
↪→decompose 
import matplotlib.pyplot as plt 

(continues on next page)
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Fig. 5.2 Types of trends [5] 

(continued from previous page) 

decomposition = seasonal_decompose(train, model=
↪→'additive', period=12) 
trend = decomposition.trend.dropna() 
seasonal=decomposition.seasonal.dropna() 
residual=decomposition.resid.dropna() 

decomposition.plot() 
plt.show()
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We can recompose the time series back by adding the various components 
together in an additive model. 

series = trend + seasonal + residual 
plt.plot(series, linewidth=5) 
plt.plot(train) 
plt.show() 

Similarly, we can also decompose a time series using a multiplicative model. 

decomposition = seasonal_decompose(train, model=
↪→'multiplicative', period=12) 
trend = decomposition.trend.dropna() 
seasonal=decomposition.seasonal.dropna() 
residual=decomposition.resid.dropna() 

decomposition.plot() 
plt.show()
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And recompose it back by multiplying the elements. 

series = trend*seasonal*residual 
plt.plot(series, linewidth=5) 
plt.plot(train) 
plt.show()
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5.4 Exponential Smoothing 

5.4.1 Simple Exponential Smoothing 

Simple exponential smoothing forecasts future values based on a weighted average 
of previous values [1]. It is suitable for time series that have no trends and no 
seasonality. 

The model only contains a level component. 

. ŷt = α · yt−1 + (1 − α) · ŷt−1

The current level is equivalent to a mixture of the previous level and the currently 
observed value at time t . Alpha is the weight placed on the current observation and 
is called a smoothing constant. 

When Alpha is equal to 1, the predicted value is only dependent on the most 
recent observed value. 

When Alpha is equal to 0, the predicted value is only dependent on the past value 
where l0 = x0. 

Using simple exponential smoothing, let us forecast the entire test period. 

from statsmodels.tsa.api import SimpleExpSmoothing,
↪→Holt, ExponentialSmoothing 
import numpy as np 
from sklearn.metrics import mean_squared_error 

model = SimpleExpSmoothing(np.asarray(train.iloc[:,
↪→0])).fit(smoothing_level=0.6) 
#0.6 is for y(t-1) and 0.4 is for y(t-1 and below) 
pred['ES'] = model.forecast(len(test)) 

mean_squared_error(pred['ES'],test[column_name])**0.5 

79.71276692933388 

plt.plot(train) 
plt.plot(test) 
plt.plot(pred['ES']) 
plt.show()
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5.4.2 Double Exponential Smoothing (Holt’s Exponential 
Smoothing) 

Double exponential smoothing forecasts future values based on the level and a trend 
[1]. It is suitable for time series that have only trends and no seasonality. 

The model only contains a level component and a trend component. A trend can 
be either additive or multiplicative, and the following shows the formulas for an 
additive model. 

. 

�t = αyt + (1 − α)(�t−1 + bt−1)

bt = β(�t − �t−1) + (1 − β)(bt−1)

ŷt+1 = �t + bt

The trend is equivalent to a mixture of the previous trend value and the change in 
the level at time t . Beta is the weight placed on the change in the level and is another 
smoothing constant. 

Note that the equation for level has been adapted to include the trend forecast at 
.t−1. 

When Beta is equal to 1, the predicted value is only dependent on the most recent 
difference in level values. 

When Beta is equal to 0, the predicted value is only dependent on the past trends.
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# exponential = False for additive model and True for
↪→multiplicative model 
model = Holt(np.asarray(train.iloc[:,0]),

↪→exponential=False).fit(smoothing_level = 0.1,
↪→smoothing_trend = 0.1) 
pred['Holt'] = model.forecast(len(test)) 
mean_squared_error(pred['Holt'],test[column_name])**0.

↪→5 

70.67897411947663 

plt.plot(train, label='Train') 
plt.plot(test, label='Test') 
plt.plot(pred['Holt'], label='Holt') 
plt.legend(loc='best') 
plt.show()
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5.4.3 Triple Exponential Smoothing (Holt–Winters 
Exponential Smoothing) 

Triple exponential smoothing forecasts future values based on the level, a trend, and 
seasonality [1]. It is suitable for time series that have trends and seasonality. 

The model only contains a level component, a trend component, and a seasonality 
component. Seasonality can be either additive or multiplicative, and the following 
shows the formulas for an additive model. 

. 

�t = α(yt − st−p) + (1 − α)(�t−1 + bt−1)

bt = β(�t − �t−1) + (1 − β)(bt−1)

st = γ (yt − �t ) + (1 − γ )st−p

ŷt+m = �t + mbt + st−p+1+(m−1)modp

The seasonality is equivalent to a mixture of the previous seasonality value and 
the difference between the current level and observation values at time t. Gamma 
is the weight placed on the change in the seasonality and is another smoothing 
constant. p is the seasonality period. 

When Gamma is equal to 1, the predicted value is only dependent on the most 
recent difference between the current observation and level values. 
When Gamma is equal to 0, the predicted value is only dependent on the past 
seasonality. 

#Parameter https://www.statsmodels.org/dev/generated/
↪→statsmodels.tsa.holtwinters.ExponentialSmoothing.
↪→html 

model = ExponentialSmoothing(train, trend='add',
↪→seasonal='mul', seasonal_periods=12).fit() 
pred['Holt_Winter'] = model.forecast(len(test)) 
pred = pred.dropna() 
mean_squared_error(pred['Holt_Winter'],pred[column_

↪→name])**0.5 

26.803585376637876 

plt.plot(train) 
plt.plot(test) 
plt.plot(pred['Holt_Winter']) 
plt.show()
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5.5 Moving Average Smoothing 

Moving average smoothing is a simple and effective time series forecasting 
technique that may be used in feature engineering or prediction [2]. 

It aims to eliminate noise and better reveal the signal of underlying causal 
processes by reducing fine-grained variance between time steps in time series. This 
is done by calculating a new series comprised of the average of raw observations 
within a sliding window from the original time series. Thus, the moving average 
requires the window size to be specified. 

The term “moving average” refers to how the window of values indicated by the 
window size is moving along the time series to determine the values in the new 
series. Simple moving average, weighted moving average, and exponential moving 
average are some of the most commonly used moving average smoothing techniques 
used in time series forecasting. 

Simple Moving Average: . SMAt = X1+X2+....+Xn

n

Weighted Moving Average: . WMAt = (W1X1 + W2X2 + .... + WnXn)

Exponential Moving Average: . EMAt = EMAt−1 + α(Xt − EMAt−1)

pred['SMA'] = df.iloc[:,0].rolling(12).mean() 

mean_squared_error(pred['SMA'],test[column_name])**0.5 

71.81844893395912
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plt.plot(train) 
plt.plot(test) 
plt.plot(pred['SMA']) 
plt.show() 

5.6 Autoregression 

Autoregression means regression on self as we use data from the same input variable 
at earlier time steps [3]. 

Regression models, such as linear regression, predict an output value from a 
linear combination of input values. 

. y = b0 + b1 ∗ X1
where y is the prediction, . b0 and . b1 are coefficients learned from the training data, 
and X is an input value. 

This approach may be applied to time series in which the input variables are 
taken as observations at past time steps, which are called lag variables. This is called 
autoregression. 

For example, we may estimate the value at time step t using the observations 
from the previous two time steps (.t−1 and .t−2). 

. Xt = b0 + b1 ∗ Xt−1 + b2 ∗ Xt−2

from matplotlib import pyplot 
from statsmodels.tsa.ar_model import AutoReg 

(continues on next page)
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(continued from previous page) 

from math import sqrt 

model = AutoReg(train, lags=12) 
model = model.fit() 

predictions = model.predict(start=min(test.index),
↪→end=max(test.index), dynamic=False) 
predictions = predictions[predictions.index.isin(test.

↪→index)] 

# plot results 
plt.plot(test) 
plt.plot(predictions) 
plt.show() 

rmse = sqrt(mean_squared_error(test, predictions)) 
print('Test RMSE: %.3f' % rmse) 

Test RMSE: 43.255 

5.7 Moving Average Process 

The moving average model here refers to a moving average process, which is 
different from moving average smoothing. A moving average model is used to 
anticipate future values, whereas moving average smoothing is used to estimate



5.7 Moving Average Process 79

previous value trend cycles [4]. The moving average model uses errors of previous 
forecasts to estimate future errors. 

. yt = c + εt + θ1εt−1 + θ2εt−2 + ... + θqεt−q

where . εt is assumed to be white noise. 
A moving average model of order q is called a MA(q) model. As you can see from 

the formula above, each value of . yt can be viewed as a weighted moving average of 
the past few forecast errors. 

# ARMA example 
from statsmodels.tsa.arima.model import ARIMA 
model = ARIMA(train.iloc[:,0], order=(12, 0, 12)).

↪→fit() 

pred['ARMA'] = model.forecast(max(test.index)) 
mean_squared_error(pred['ARMA'], pred[column_

↪→name])**0.5 

69.89049777416116 

plt.plot(train) 
plt.plot(test) 
plt.plot(pred['ARMA']) 
plt.show()
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5.8 SARIMA 

SARIMA is short for seasonal autoregressive integrated moving average model. 
This model extends the ARIMA algorithm by adding a seasonality component. 
Thus, SARIMA combines seasonality, autoregression, differencing, and moving 
average process and has many parameters to tune. 
An ARIMA model is characterized by 3 terms: p, d, q, 
where 
p is the order of the AR term, 
q is the order of the MA term, 
and d is the number of differencing required to make the time series stationary. 
Seasonal Elements 
There are four seasonal elements that are not part of ARIMA that must be 
configured; they are: 
P: Seasonal autoregressive order. 
D: Seasonal difference order. 
Q: Seasonal moving average order. 
m: The number of time steps for a single seasonal period. 

import statsmodels.api as sm 

model = sm.tsa.statespace.SARIMAX(train.iloc[:,0],
↪→order=(2, 2, 2), seasonal_order=(1,1,1,12)).fit() 

pred['SARIMA'] = model.forecast(max(test.index)) 
mean_squared_error(pred['SARIMA'],pred[column_

↪→name])**0.5 

25.61952170892105 

plt.plot(train) 
plt.plot(test) 
plt.plot(pred['SARIMA']) 
plt.show()
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# check dicky fuller on the residual 

result = adfuller(residual) 
print('p-value: %f' % result[1]) 

# p vlaue > 0.05 means there non-stationary, need to
↪→use non stationary model 

p-value: 0.000004 

5.9 ARCH/GARCH 

Heteroskedasticity refers to a situation where the standard deviations of the residuals 
in a regression model are non-constant over different values of an independent 
variable or time periods. 

Autoregressive conditional heteroskedasticity (ARCH) is a statistical model used 
to analyze volatility in time series in order to forecast future volatility. 

GARCH is appropriate for time series data where the variance of the error term 
is serially autocorrelated following an autoregressive moving average process. 

The innovation is the difference between the observed value of a variable at time t 
and the optimal forecast of that value based on information available prior to time t . 
p: The number of lag variances. 
q: The number of lag residual errors.
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from arch import arch_model 
model = arch_model(df, vol="ARCH", p=1) 
results = model.fit() 
results.summary() 

Iteration: 1, Func. Count: 5, Neg. LLF: 854.6007658170145 
Iteration: 2, Func. Count: 11, Neg. LLF: 854.5884325691222 
Iteration: 3, Func. Count: 16, Neg. LLF: 854.2541165562286 
Iteration: 4, Func. Count: 21, Neg. LLF: 852.6533203012712 
Iteration: 5, Func. Count: 26, Neg. LLF: 846.5727355761943 
Iteration: 6, Func. Count: 32, Neg. LLF: 845.7983348298947 
Iteration: 7, Func. Count: 37, Neg. LLF: 845.7954504118902 
Iteration: 8, Func. Count: 42, Neg. LLF: 845.7953853667937 
Iteration: 9, Func. Count: 47, Neg. LLF: 845.7953355810648 
Iteration: 10, Func. Count: 52, Neg. LLF: 845.7951657021088 
Iteration: 11, Func. Count: 57, Neg. LLF: 845.7947852612426 
Iteration: 12, Func. Count: 62, Neg. LLF: 845.7936868695066 
Iteration: 13, Func. Count: 67, Neg. LLF: 845.790907784166 
Iteration: 14, Func. Count: 72, Neg. LLF: 845.7834353508538 
Iteration: 15, Func. Count: 77, Neg. LLF: 845.7637034098763 
Iteration: 16, Func. Count: 82, Neg. LLF: 845.7110763686674 
Iteration: 17, Func. Count: 87, Neg. LLF: 845.5732564306693 
Iteration: 18, Func. Count: 92, Neg. LLF: 845.1900634849089 
Iteration: 19, Func. Count: 97, Neg. LLF: 844.2688848009523 
Iteration: 20, Func. Count: 102, Neg. LLF: 843.464456336123 
Iteration: 21, Func. Count: 107, Neg. LLF: 842.3234724262779 
Iteration: 22, Func. Count: 112, Neg. LLF: 842.0273124952928 
Iteration: 23, Func. Count: 117, Neg. LLF: 841.9980327602752 
Iteration: 24, Func. Count: 122, Neg. LLF: 841.2787441430107 
Iteration: 25, Func. Count: 129, Neg. LLF: 840.8270304418386 
Iteration: 26, Func. Count: 135, Neg. LLF: 840.6654988236875 
Iteration: 27, Func. Count: 140, Neg. LLF: 840.5572235842828 
Iteration: 28, Func. Count: 145, Neg. LLF: 840.5342860613555 
Iteration: 29, Func. Count: 150, Neg. LLF: 840.5335370026474 
Iteration: 30, Func. Count: 155, Neg. LLF: 840.5335343507581 
Optimization terminated successfully. (Exit mode 0) 

Current function value: 840.5335343695717 
Iterations: 30 
Function evaluations: 159 
Gradient evaluations: 30 

<class 'statsmodels.iolib.summary.Summary'> 
""" 

Constant Mean - ARCH Model Results 
============================================================================== 
Dep. Variable: #Passengers R-squared: 0.000 
Mean Model: Constant Mean Adj. R-squared: 0.000 
Vol Model: ARCH Log-Likelihood: -840.534 
Distribution: Normal AIC: 1687.07 
Method: Maximum Likelihood BIC: 1695.98 

No. Observations: 144 
Date: Tue, Feb 21 2023 Df Residuals: 143 
Time: 23:23:21 Df Model: 1 

Mean Model 
============================================================================ 

coef std err t P>|t| 95.0% Conf. Int.
----------------------------------------------------------------------------
mu 202.4031 8.359 24.213 1.624e-129 [1.860e+02,2.188e+02] 

Volatility Model 
============================================================================ 

coef std err t P>|t| 95.0% Conf. Int.
----------------------------------------------------------------------------

(continues on next page)
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(continued from previous page) 
omega 343.7569 104.579 3.287 1.012e-03 [1.388e+02,5.487e+02] 
alpha[1] 1.0000 5.702e-02 17.538 7.367e-69 [ 0.888, 1.112] 
============================================================================ 

Covariance estimator: robust 
""" 

from arch import arch_model 
model = arch_model(df, vol="GARCH", p=1,q=1) 
results = model.fit() 
results.summary() 

Iteration: 1, Func. Count: 6, Neg. LLF: 867.8646906481998 
Iteration: 2, Func. Count: 12, Neg. LLF: 858.811426534049 
Iteration: 3, Func. Count: 19, Neg. LLF: 857.6407923629904 
Iteration: 4, Func. Count: 25, Neg. LLF: 857.5452375347352 
Iteration: 5, Func. Count: 31, Neg. LLF: 857.0520810189686 
Iteration: 6, Func. Count: 37, Neg. LLF: 854.7269894558582 
Iteration: 7, Func. Count: 44, Neg. LLF: 853.324769527305 
Iteration: 8, Func. Count: 51, Neg. LLF: 846.8532975963085 
Iteration: 9, Func. Count: 59, Neg. LLF: 843.2081443338757 
Iteration: 10, Func. Count: 65, Neg. LLF: 840.9208681923458 
Iteration: 11, Func. Count: 72, Neg. LLF: 840.812365925325 
Iteration: 12, Func. Count: 78, Neg. LLF: 840.6235710976691 
Iteration: 13, Func. Count: 84, Neg. LLF: 840.6226903990031 
Iteration: 14, Func. Count: 90, Neg. LLF: 840.6225148219894 
Iteration: 15, Func. Count: 96, Neg. LLF: 840.6225006840967 
Iteration: 16, Func. Count: 102, Neg. LLF: 840.6224171929287 
Iteration: 17, Func. Count: 108, Neg. LLF: 840.6219978934255 
Iteration: 18, Func. Count: 114, Neg. LLF: 840.6199192651045 
Iteration: 19, Func. Count: 120, Neg. LLF: 840.6100925694149 
Iteration: 20, Func. Count: 126, Neg. LLF: 840.5729297977884 
Iteration: 21, Func. Count: 132, Neg. LLF: 840.5351083598802 
Iteration: 22, Func. Count: 138, Neg. LLF: 840.5335777331641 
Iteration: 23, Func. Count: 144, Neg. LLF: 840.533535251781 
Optimization terminated successfully. (Exit mode 0) 

Current function value: 840.5335346045151 
Iterations: 23 
Function evaluations: 145 
Gradient evaluations: 23 

<class 'statsmodels.iolib.summary.Summary'> 
""" 

Constant Mean - GARCH Model Results 
============================================================================== 
Dep. Variable: #Passengers R-squared: 0.000 
Mean Model: Constant Mean Adj. R-squared: 0.000 
Vol Model: GARCH Log-Likelihood: -840.534 
Distribution: Normal AIC: 1689.07 
Method: Maximum Likelihood BIC: 1700.95 

No. Observations: 144 
Date: Tue, Feb 21 2023 Df Residuals: 143 
Time: 23:23:22 Df Model: 1 

Mean Model 
============================================================================ 

coef std err t P>|t| 95.0% Conf. Int.
----------------------------------------------------------------------------
mu 202.4018 9.040 22.389 5.019e-111 [1.847e+02,2.201e+02] 

Volatility Model 
========================================================================== 

(continues on next page)
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(continued from previous page) 
coef std err t P>|t| 95.0% Conf. Int.

--------------------------------------------------------------------------
omega 343.8344 135.831 2.531 1.136e-02 [ 77.611,6.101e+02] 
alpha[1] 1.0000 0.260 3.842 1.222e-04 [ 0.490, 1.510] 
beta[1] 5.3178e-17 0.261 2.040e-16 1.000 [ -0.511, 0.511] 
========================================================================== 

Covariance estimator: robust 
""" 

Exercises 

We will utilize this dataset [7]: 
https://www.kaggle.com/datasets/bhaveshsonagra/monthly-milk-production 

The time series dataset measures pounds of milk produced per cow as its unit per 
month from January 1962 to December 1975. 

In this exercise, try to forecast the production of milk using time series 
techniques. 

Here you can put what you have learned into practice. Try to:

• Test for stationarity.
• Experiment with moving average smoothing.
• Create, test, and tune the performance of various time series forecasting tech-

niques covered in this chapter. 

import pandas as pd 
df = pd.read_csv('monthly-milk-production-pounds.csv') 
df.head() 

Month Monthly milk production: pounds per cow. Jan 62 ? Dec 75 
0 1962-01 589.0 
1 1962-02 561.0 
2 1962-03 640.0 
3 1962-04 656.0 
4 1962-05 727.0 
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Chapter 6 
Convolutional Neural Networks 

Learning outcomes: 

• Understand how convolution, pooling, and flattening operations are performed.
• Perform an image classification task using convolutional neural networks.
• Familiarize with notable convolutional neural network (CNN) architectures.
• Understand transfer learning and finetuning.
• Perform an image classification task through finetuning a convolutional neural network 

previously trained on a separate task.
• Exposure to various applications of convolutional neural networks. 

A fully connected neural network consists of a series of fully connected layers 
that connect every neuron in one layer to every neuron in the other layers. The 
main problem with fully connected neural networks is that the number of weights 
required is very large for certain types of data. For example, an image of . 224 ×
224 × 3 would require 150528 weights in just the first hidden layer and will grow 
quickly for even bigger images. You can imagine how computationally intensive 
things would become once the images reach dimensions as large as 8K resolution 
images (.7680 × 4320), and training such a network would require a lot of time and 
resources. 

However for image data, repeating patterns can occur in different places. Hence, 
we can train many smaller detectors, capable of sliding across an image, to take 
advantage of the repeating patterns as shown in Fig. 6.1. This would reduce the 
number of weights required to be trained. 

A convolutional neural network is a neural network with some convolution layers 
(and some other layers). A convolution layer has a number of filters that do the 
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Fig. 6.1 Illustration of 
sliding window detectors [4] “upper-left 

beak” detector 

“middle beak” 
detector 

They can be compressed 
to the same parameters. 

Fig. 6.2 Illustration of 
convolution operation [4] 

Beak detector 

A filter 

Inputs Outputs 

convolution operation. Figure 6.2 shows how the input image is processed with a 
convolution filter to produce the output feature maps. 

6.1 The Convolution Operation 

The convolution operation as shown in Fig. 6.3 is very similar to image processing 
filters such as the Sobel filter and Gaussian filter. The kernel slides across an image 
and multiplies the weights with each aligned pixel, element-wise across the filter. 
Afterward, the bias value is added to the output. 

There are three hyperparameters deciding the spatial of the output feature map:

• Stride (S) is the step each time we slide the filter. When the stride is 1, then we 
move the filters one pixel at a time. When the stride is 2 (or uncommonly 3 or 
more, though this is rare in practice), then the filters jump 2 pixels at a time as 
we slide them around. This will produce smaller output volumes spatially.

• Padding (P): The inputs will be padded with a border of size according to the 
value specified. Most commonly, zero-padding is used to pad these locations. In
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Fig. 6.3 Illustration of convolution operation for single channel [6] 

neural network frameworks (Caffe, TensorFlow, Pytorch, MXNet), the size of 
this zero-padding is a hyperparameter. The size of zero-padding can also be used 
to control the spatial size of the output volumes.

• Depth (D): The depth of the output volume is a hyperparameter too, and it 
corresponds to the number of filters we use for a convolution layer. 

Given W as the width of input, and F is the width of the filter, with P and S as 
padding, the output width will be: .(W + 2P−F)/S + 1 Generally, set . P = (F − 1)/2
when the stride is S=1 ensures that the input volume and output volume will have 
the same size spatially. 

For an input of .7 × 7 × 3 and an output depth of 2, we will have 6 kernels as 
shown below. 3 for the first depth output and another 3 for the second depth output. 
The outputs of each filter are summed up to generate the output feature map. 

In the example shown in Fig. 6.4, the output from each Kernel of Filter W1 is as 
follows: 

Output of Kernel . 1 = 1
Output of Kernel . 2 = −2
Output of Kernel . 3 = 2
Output of Filter W1 = Output of Kernel 1 + Output of Kernel 2 + Output of Kernel 

3 + bias . = 1−2 + 2 + 0 = 1

6.2 Pooling 

Nowadays, a CNN always exploits extensive weight-sharing to reduce the degrees 
of the freedom of models. A pooling layer helps reduce computation time and 
gradually build up spatial and configuration invariance. For image understanding, 
pooling layer helps extract more semantic meaning. The max pooling layer simply
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Fig. 6.4 Example of convolution operation for multiple channels [10] 

Fig. 6.5 Example of max pooling and average pooling [6] 

returns the maximum value over the values that the kernel operation is applied on. 
The example below in Fig. 6.5 illustrates the outputs of a max pooling and average 
pooling operation, respectively, given a kernel of size 2 and stride 2.
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Output Volume 
588x1 

Output Volume 
14x14x3 
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Flatten layerInput Volume 
32x32x1 

Fig. 6.6 Example of CNN using flattening for classification [1] 

6.3 Flattening 

Adding a fully connected layer is a (usually) cheap way of learning non-linear com-
binations of the high-level features as represented by the output of the convolution 
layer. The fully connected layer is learning a possibly non-linear function in that 
space. 

As shown in Fig. 6.6, flattening the image into a column vector allows us to 
convert our input image into a suitable form for our multi-level perceptron. The 
flattened output is fed to a feed-forward neural network and backpropagation applied 
to every iteration of training. Over a series of epochs, the model is able to distinguish 
between dominating and certain low-level features in images and classify them 
using the Softmax classification technique. 

6.4 Building a CNN 

We will build a small CNN using convolution layers, max pooling layers, and 
dropout layers in order to predict the type of fruit in a picture. 

The dataset we will use is the fruits 360 dataset. You can obtain the dataset from 
this link [5]: 
https://www.kaggle.com/moltean/fruits

https://www.kaggle.com/moltean/fruits
https://www.kaggle.com/moltean/fruits
https://www.kaggle.com/moltean/fruits
https://www.kaggle.com/moltean/fruits
https://www.kaggle.com/moltean/fruits
https://www.kaggle.com/moltean/fruits
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import numpy as np # linear algebra 
import pandas as pd # data processing, CSV file I/O

↪→(e.g. pd.read_csv) 
import os 

from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense, Dropout,

↪→Flatten 
from tensorflow.keras.layers import Conv2D,

↪→MaxPooling2D 
from tensorflow.keras import optimizers 
import numpy as np 
import pandas as pd 
from tensorflow.keras.preprocessing.image import

↪→ImageDataGenerator 

import matplotlib.pyplot as plt 
import matplotlib.image as mpimg 
import pathlib 

train_root =pathlib.Path("D:/Programming Stuff/Teoh
↪→'s Slides/book-ai-potato (docs)/fruits-360_dataset/
↪→fruits-360/Training") 
test_root = pathlib.Path("D:/Programming Stuff/Teoh's

↪→Slides/book-ai-potato (docs)/fruits-360_dataset/
↪→fruits-360/Test") 

batch_size = 10 

from skimage import io 
image = io.imread("D:/Programming Stuff/Teoh's Slides/

↪→/book-ai-potato (docs)/fruits-360_dataset/fruits-
↪→360/Training/Apple Braeburn/101_100.jpg") 
print(image.shape) 
io.imshow(image) 

(100, 100, 3) 

<matplotlib.image.AxesImage at 0x1543232f070>
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Generator = ImageDataGenerator() 
train_data = Generator.flow_from_directory(train_root,

↪→ (100, 100), batch_size=batch_size) 
test_data = Generator.flow_from_directory(test_root,

↪→(100, 100), batch_size=batch_size) 

Found 67692 images belonging to 131 classes. 
Found 22688 images belonging to 131 classes. 

num_classes = len([i for i in os.listdir(train_root)]) 
print(num_classes) 

131 

model = Sequential() 

model.add(Conv2D(16, (5, 5), input_shape=(100, 100,
↪→3), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) 
model.add(Dropout(0.05)) 

model.add(Conv2D(32, (5, 5), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) 
model.add(Dropout(0.05)) 

model.add(Conv2D(64, (5, 5),activation='relu')) 
model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) 

(continues on next page)
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(continued from previous page) 

model.add(Dropout(0.05)) 

model.add(Conv2D(128, (5, 5), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) 
model.add(Dropout(0.05)) 

model.add(Flatten()) 

model.add(Dense(1024, activation='relu')) 
model.add(Dropout(0.05)) 

model.add(Dense(256, activation='relu')) 
model.add(Dropout(0.05)) 

model.add(Dense(num_classes, activation="softmax")) 

model.compile(loss=keras.losses.categorical_
↪→crossentropy, optimizer=optimizers.Adam(), metrics=[
↪→'accuracy']) 
model.fit(train_data, batch_size = batch_size,

↪→epochs=2) 

Epoch 1/2 
6770/6770 [==============================] - 160s

↪→24ms/step - loss: 1.2582 - accuracy: 0.6622 
Epoch 2/2 
6770/6770 [==============================] - 129s

↪→19ms/step - loss: 0.5038 - accuracy: 0.8606 

<tensorflow.python.keras.callbacks.History at
↪→0x154323500a0> 

score = model.evaluate(train_data) 
print(score) 
score = model.evaluate(test_data) 
print(score) 

6770/6770 [==============================] - 105s
↪→15ms/step - loss: 0.2151 - accuracy: 0.9366 
[0.21505890786647797, 0.9366099238395691] 

(continues on next page)
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(continued from previous page) 

2269/2269 [==============================] - 34s 15ms/
↪→step - loss: 0.8411 - accuracy: 0.8114 
[0.8410834670066833, 0.8113980889320374] 

6.5 CNN Architectures 

There are various network architectures being used for image classification tasks. 
VGG16, Inception Net (GoogLeNet), and ResNet are some of the more notable 
ones as shown in Fig. 6.7. 

6.5.1 VGG16 

The VGG16 architecture garnered a lot of attention in 2014. It makes the improve-
ment over its predecessor, AlexNet, through replacing large kernel-sized filters (11 
and 5 in the first and second convolution layers, respectively) with multiple . 3 × 3
kernel-sized filters stacked together. 

Fig. 6.7 VGG, Inception V3, and ResNet architectures [3, 7, 8]
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Fig. 6.8 Illustration of inception module [8] 

6.5.2 InceptionNet 

Before the dense layers (which are placed at the end of the network), each time we 
add a new layer we face two main decisions: 

(1) Deciding whether we want to go with a pooling or convolution operation 
(2) Deciding the size and number of filters to be passed through the output of the 

previous layer 

Google researchers developed the inception module shown in Fig. 6.8 that allows 
us to apply different options all together in one single layer. 

The main idea of the inception module is that of running multiple operations 
(pooling, convolution) with multiple filter sizes (.3 × 3, 5 × 5. . . ) in parallel so that  
we do not have to face any trade-off. 

6.5.3 ResNet 

Researchers thought that increasing more layers would improve the accuracy of the 
models. But there are two problems associated with it: 

(1) Vanishing gradient problem—Somewhat solved with regularization like batch 
normalization, etc. Gradients become increasingly smaller as the network 
becomes deeper, making it harder to train deep networks. 

(2) The authors observed that adding more layers did not improve the accuracy. 
Also, it is not overfitting also as the training error is also increasing.
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Fig. 6.9 Illustration of 
residual connections [3] 
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Thus, they developed the residual connection as shown in Fig. 6.9. The basic 
intuition of the residual connections is that, at each convolution layer, the network 
learns some features about the data F(x) and passes the remaining errors further into 
the network. So we can say the output error of the convolution layer is H(x) = F(x)
-x. 

This solution also helped to alleviate the vanishing gradient problem as gradients 
can flow through the residual connections. 

6.6 Finetuning 

Neural networks are usually initialized with random weights. These weights will 
converge to some values after training for a series of epochs, to allow us to properly 
classify our input images. However, instead of a random initialization, we can 
initialize those weights to values that are already good to classify a different dataset. 

Transfer learning is the process of training a network that already performs 
well on one task, to perform a different task. Finetuning is an example of transfer 
learning, where we use another network trained on a much larger dataset to initialize 
and simply train it for classification. In finetuning, we can keep the weights of earlier 
layers as it has been observed that the early layers contain more generic features, 
edges, and color blobs and are more common to many visual tasks. Thus we can 
just finetune the later layers that are more specific to the details of the class. 

Through transfer learning, we would not require a dataset as big compared to 
having to train a network from scratch. We can reduce the required number of 
images from hundreds of thousands or even millions of images down to just a few 
thousands. Training time is also sped up during the retraining process as it is much 
easier due to the initialization. 

In the exercise below, we will finetune a ResNet50, pretrained on imagenet (more 
than 14 million images, consisting of 1000 classes) for the same fruit classification 
task. In order to speed up the training process, we will freeze ResNet and simply 
train the last linear layer.
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from tensorflow.keras.applications.resnet import
↪→ResNet50 
resnet_model = ResNet50(include_top=False, weights=

↪→'imagenet', input_shape=(100,100,3)) 
resnet_model.trainable = False 

from tensorflow.keras.layers import Conv2D,
↪→MaxPooling2D, Flatten, Dense, Dropout, InputLayer,
↪→GlobalAveragePooling2D 
from tensorflow.keras.models import Sequential 
from tensorflow.keras import optimizers 
model = Sequential() 
model.add(resnet_model) 
model.add(GlobalAveragePooling2D()) 
model.add(Dense(num_classes, activation='softmax')) 
model.compile(loss=keras.losses.categorical_

↪→crossentropy, optimizer=optimizers.Adam(), metrics=[
↪→'accuracy']) 

model.summary() 

Model: "sequential_1" 
_________________________________________________________________ 
Layer (type) Output Shape Param # 
================================================================= 
resnet50 (Model) (None, 4, 4, 2048) 23587712 
_________________________________________________________________ 
global_average_pooling2d_1 ( (None, 2048) 0 
_________________________________________________________________ 
dense_1 (Dense) (None, 131) 268419 
================================================================= 
Total params: 23,856,131 
Trainable params: 268,419 
Non-trainable params: 23,587,712 
_________________________________________________________________ 

model.fit(train_data, epochs=1) 

6770/6770 [==============================] - 388s 57ms/step - loss: 0.1312 -
↪→accuracy: 0.9728 

<tensorflow.python.keras.callbacks.History at 0x15420d63490> 

score = model.evaluate(train_data) 
print(score) 
score = model.evaluate(test_data) 
print(score)
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6770/6770 [==============================] - 387s 57ms/step - loss: 0.0214 -
↪→accuracy: 0.9927 
[0.021364932879805565, 0.9926578998565674] 
2269/2269 [==============================] - 132s 58ms/step - loss: 0.3093 -
↪→accuracy: 0.9347 
[0.3093399107456207, 0.9346791505813599] 

6.7 Other Tasks That Use CNNs 

CNNs are used in many other tasks apart from image classification. 

6.7.1 Object Detection 

Classification tasks only tell us what is in the image and not where the object is. 
Object detection is the task of localizing objects within an image. CNNs, such as 
ResNets, are usually used as the feature extractor for object detection networks. An 
example of an object detection task is shown in Fig. 6.10. 

Fig. 6.10 Example of object detection task
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Fig. 6.11 Example of semantic segmentation task [9] 

6.7.2 Semantic Segmentation 

Using fully convolutional nets, we can generate output maps that tell us which 
pixel belongs to which classes. This task, as shown in Fig. 6.11, is called semantic 
segmentation. 

Exercises 

We will utilize this dataset [2]: 
https://www.kaggle.com/datasets/gauravduttakiit/ants-bees 
This dataset consists of Hymenoptera species, namely ants and bees.

https://www.kaggle.com/datasets/gauravduttakiit/ants-bees
https://www.kaggle.com/datasets/gauravduttakiit/ants-bees
https://www.kaggle.com/datasets/gauravduttakiit/ants-bees
https://www.kaggle.com/datasets/gauravduttakiit/ants-bees
https://www.kaggle.com/datasets/gauravduttakiit/ants-bees
https://www.kaggle.com/datasets/gauravduttakiit/ants-bees
https://www.kaggle.com/datasets/gauravduttakiit/ants-bees
https://www.kaggle.com/datasets/gauravduttakiit/ants-bees
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In this exercise, try to develop a convolutional neural network to classify between 
the two species. 
Here you can put what you have learned into practice. Try to:

• Prepare and load the data using ImageDataGenerator in keras.
• Build your own convolutional neural network and train it from scratch.
• Finetune a pretrained CNN for this task.
• Improve the performance of the networks by trying out different parameters such 

as learning rate. 

import matplotlib.pyplot as plt 
import os 
import cv2 

ants_folder = "hymenoptera_data/train/ants" 
ants_sample = os.path.join(ants_folder, os.

↪→listdir(ants_folder)[0]) 
ants_image = cv2.cvtColor(cv2.imread(ants_sample),

↪→cv2.COLOR_BGR2RGB) 
fig, axs = plt.subplots(1, 2, figsize = (20,10)) 
axs[0].imshow(ants_image) 
axs[0].set_title("Ants") 

bees_folder = "hymenoptera_data/train/bees" 
bees_sample = os.path.join(bees_folder, os.

↪→listdir(bees_folder)[0]) 
bees_image = cv2.cvtColor(cv2.imread(bees_sample),

↪→cv2.COLOR_BGR2RGB) 
axs[1].imshow(bees_image) 
axs[1].set_title("Bees") 
plt.show() 
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Chapter 7 
Text Mining 

Learning outcomes: 

• Represent text data in structured and easy-to-consume formats for machine learning and 
text mining.

• Perform sentence classification tasks on text data.
• Identify important keywords for sentence classification. 

Text mining combines both machine learning and natural language processing 
(NLP) to draw meaning from unstructured text documents. Text mining the driving 
force behind how a business analyst turns 50,000 hotel guest reviews into specific 
recommendations, how a workforce analyst improves productivity and reduces 
employee turnover, and how companies are automating processes using chatbots. 

A very popular and current strategy in this field is vectorized term frequency 
and inverse document frequency (TF-IDF) representation. In fact, Google search 
engine also uses this technique when a word is searched. It is based on unsupervised 
learning technique. TF-IDF converts your document text into a bag of words and 
then assigns a weighted term to each word. In this chapter, we will discuss how to 
use text mining techniques to get meaningful results for text classification. 

7.1 Preparing the Data 

import pandas as pd 

#this assumes one json item per line in json file 
df=pd.read_json("TFIDF_news.json", lines=True) 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
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df.dtypes 

short_description object 
headline object 
date datetime64[ns] 
link object 
authors object 
category object 
dtype: object 

#number of rows (datapoints) 
len(df) 

124989 

# Take sample of 3 to view the data 
df.sample(3) 

short_description \ 
100659 The hardest battles are not fault in the stree... 
74559 Mizzou seems to have catalyzed years of tensio... 
48985 But also hilariously difficult. 

headline date \ 
100659 American Sniper Dials in on the Reality of War 2015-01-23 
74559 Campus Racism Protests Didn't Come Out Of Nowh... 2015-11-16 
48985 These People Took On Puerto Rican Slang And It... 2016-09-02 

link \ 
100659 https://www.huffingtonpost.com/entry/american-... 
74559 https://www.huffingtonpost.com/entry/campus-ra... 
48985 https://www.huffingtonpost.com/entry/these-peo... 

authors category 
100659 Zachary Bell, ContributorUnited States Marine ... ENTERTAINMENT 
74559 Tyler Kingkade, Lilly Workneh, and Ryan Grenoble COLLEGE 
48985 Carolina Moreno LATINO VOICES 

Looking at the range of dates, articles are between July 2014 and July 2018. 

df.date.hist(figsize=(12,6),color='#86bf91',) 

<matplotlib.axes._subplots.AxesSubplot at
↪→0x1a695a80508>
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Before we begin, we need to analyze the distribution of our labels. Looking at 
the data, there are a total of 31 categories. 

len(set(df['category'].values)) 

31 

Most of the articles are related to politics. Education-related articles have the lowest 
volume. 

import matplotlib 
import numpy as np 
cmap = matplotlib.cm.get_cmap('Spectral') 
rgba = [cmap(i) for i in np.linspace(0,1,len(set(df[

↪→'category'].values)))] 
df['category'].value_counts().plot(kind='bar',color

↪→=rgba) 

<matplotlib.axes._subplots.AxesSubplot at
↪→0x1a6942753c8>
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7.2 Texts for Classification 

In our example, we will only use the headline to predict category. Also, we will only 
be using 2 categories for simplicity. We will use the CRIME and COMEDY categories 
from our dataset. 

df_orig=df.copy() 
df = df_orig[df_orig['category'].isin(['CRIME','COMEDY

↪→'])] 
print(df.shape) 
df.head() 
df = df.loc[:, ['headline','category']] 
df['category'].value_counts().plot(kind='bar',color =[

↪→'r','b']) 

(6864, 6) 

<matplotlib.axes._subplots.AxesSubplot at
↪→0x1a695c76388>
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7.3 Vectorize 

Text vectorization is the process of converting text into numerical representation. 
Some of the more commonly used techniques for text vectorization are:

• Binary term frequency
• Bag of words (BoW) term frequency
• (L1) Normalized term frequency
• (L2) Normalized TF-IDF
• Word2Vec 

Binary Term Frequency 
Binary term frequency captures the presence (1) or absence (0) of term in document. 
For this part, under TfidfVectorizer, we set binary parameter equal to true so that it 
can show just presence or absence. 

Bag of Words (BoW) Term Frequency 
Bag of words (BoW) term frequency captures frequency of term in document. Under 
TfidfVectorizer, we set binary parameter equal to false so that it can show the actual 
frequency of the term and norm parameter equal to none.
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The following code is an example of bag of words term frequency: 

from sklearn.feature_extraction.text import
↪→CountVectorizer 

sample_doc = ["Hello I am a boy", "Hello I am a
↪→student", "My name is Jill"] 
cv=CountVectorizer(max_df=0.85) 
word_count_vector=cv.fit_transform(sample_doc) 
word_count_vector_arr = word_count_vector.toarray() 
pd.DataFrame(word_count_vector_arr,columns=sorted(cv.

↪→vocabulary_, key=cv.vocabulary_.get)) 

am boy hello is jill my name student 
0 1 1 1 0 0 0 0 0  
1 1 0 1 0 0 0 0 1  
2 0 0 0 1 1 1 1 0  

An important note is the vocabulary is placed in a dictionary and python 
dictionaries are unsorted. Notice that the header in the following code is different 
from the first example. 

## Wrong example 
pd.DataFrame(word_count_vector_arr,columns=cv.

↪→vocabulary_) 

hello am boy student my name is jill 
0 1 1 1 0 0 0 0 0  
1 1 0 1 0 0 0 0 1  
2 0 0 0 1 1 1 1 0  

This is because of dictionary in Python. See below: 

cv.vocabulary_ 

{'hello': 2, 
'am': 0, 
'boy': 1, 
'student': 7, 
'my': 5, 
'name': 6, 
'is': 3, 
'jill': 4}
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Let us move on to our code example. Now, let us look at 10 words from our 
vocabulary. We have also removed words that appear in 95% of the documents. In 
text analytics, such words (stop words) are not meaningful. An intuitive approach to 
understanding removal of stop words is that in a sentence, many words are present 
because of grammatical rules and do not add extra content or meaning. Ignoring 
such words would allow us to distill the key essence of a document and sentence. 
Sweet, after removing stop words by having maxdf=0.95, our keywords are 
mostly crime and comedy related. 

from sklearn.feature_extraction.text import
↪→CountVectorizer 
docs=df['headline'].tolist() 
# create a vocabulary of words, 
# ignore words that appear in 85% of documents, 
# eliminate stop words 
cv=CountVectorizer(max_df=0.95) 
word_count_vector=cv.fit_transform(docs) 
list(cv.vocabulary_.keys())[:10] 

['there', 
'were', 
'mass', 
'shootings', 
'in', 
'texas', 
'last', 
'week', 
'but', 
'only'] 

We can also use machine learning models learned previously to classify our 
headlines! See code below: 

from sklearn.feature_extraction.text import
↪→TfidfTransformer 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import confusion_matrix 

df['category_is_crime'] = df['category']=='CRIME' 
X_train, X_test, y_train, y_test = train_test_

↪→split(word_count_vector, df['category_is_crime'],
↪→test_size=0.2, random_state=42)
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Wow, we achieve 95.19% in classifying headlines. This is a remarkable feat for 
our machine! 

model1 = LogisticRegression() 
model1.fit(X_train, y_train) 

y_pred = model1.predict(X_test) 
cm=confusion_matrix(y_test, y_pred) 
print(cm) 
acc=(cm[0,0]+cm[1,1])/sum(sum(cm)) 
print('Accuracy of a simple linear model with TFIDF

↪→is .... {:.2f}%'.format(acc*100)) 

[[766 26] 
[ 40 541]] 

Accuracy of a simple linear model with TF-IDF is ....
↪→95.19% 

7.4 TF-IDF 

tfidf_transformer=TfidfTransformer(smooth_idf=True,
↪→use_idf=True) 
tfidf_x_train = tfidf_transformer.fit_transform(X_

↪→train) 
model1 = LogisticRegression() 
model1.fit(tfidf_x_train, y_train) 
tfidf_x_test = tfidf_transformer.transform(X_test) 
y_pred = model1.predict(tfidf_x_test) 
cm=confusion_matrix(y_test, y_pred) 
print(cm) 
acc=(cm[0,0]+cm[1,1])/sum(sum(cm)) 
print('Accuracy of a simple linear model with TFIDF

↪→is .... {:.2f}%'.format(acc*100)) 

[[777 15] 
[ 57 524]] 

Accuracy of a simple linear model with TF-IDF is ....
↪→94.76% 

Apart from text classification, we can use TF-IDF to discover “important” 
keywords. Here are a few examples that show the importance of each individual
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word. Such technique is simple and easy to use. But on a cautionary note, using TF-
IDF is heavily dependent on the input data, and the importance of the text is closely 
related to the frequency in the document and across the entire data. 

## Important keywords extraction using tfidf 
print(df.iloc[1].headline) 
vector = cv.transform([df.iloc[1].headline]) 
tfidf_vector = tfidf_transformer.transform(vector) 
coo_matrix = tfidf_vector.tocoo() 
tuples = zip(coo_matrix.col, coo_matrix.data) 
sorted_tuple = sorted(tuples, key=lambda x: (x[1],

↪→x[0]), reverse=True) 
[(cv.get_feature_names()[i[0]],i[1]) for i in sorted_

↪→tuple] 

Rachel Dolezal Faces Felony Charges For Welfare Fraud 

[('welfare', 0.413332601468908), 
('felony', 0.413332601468908), 
('dolezal', 0.413332601468908), 
('rachel', 0.3885287853920158), 
('fraud', 0.3599880238280249), 
('faces', 0.3103803916742406), 
('charges', 0.2954500640160872), 
('for', 0.15262948420298186)] 

## Important keywords extraction using tfidf 
print(df.iloc[5].headline) 
vector = cv.transform([df.iloc[5].headline]) 
tfidf_vector = tfidf_transformer.transform(vector) 
coo_matrix = tfidf_vector.tocoo() 
tuples = zip(coo_matrix.col, coo_matrix.data) 
sorted_tuple = sorted(tuples, key=lambda x: (x[1],

↪→x[0]), reverse=True) 
[(cv.get_feature_names()[i[0]],i[1]) for i in sorted_

↪→tuple] 

Man Faces Charges After Pulling Knife, Stun Gun On
↪→Muslim Students At McDonald's 

[('stun', 0.37604716794652987), 
('pulling', 0.3658447343442784), 

(continues on next page)
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(continued from previous page) 

('knife', 0.32581708572483403), 
('mcdonald', 0.32215742177499496), 
('students', 0.30480662832662847), 
('faces', 0.2922589939460096), 
('muslim', 0.28707744879148683), 
('charges', 0.27820036570239326), 
('gun', 0.24718607863715278), 
('at', 0.17925932409191916), 
('after', 0.17428789091260877), 
('man', 0.17199120825269787), 
('on', 0.15323370190782204)] 

comedy_1 = df[~df['category_is_crime']].iloc[0].
↪→headline 
print(comedy_1) 

Trump's New 'MAGA'-Themed Swimwear Sinks On Twitter 

## Important keywords extraction using tfidf 
vector = cv.transform([comedy_1]) 
tfidf_vector = tfidf_transformer.transform(vector) 
coo_matrix = tfidf_vector.tocoo() 
tuples = zip(coo_matrix.col, coo_matrix.data) 
sorted_tuple = sorted(tuples, key=lambda x: (x[1],

↪→x[0]), reverse=True) 
[(cv.get_feature_names()[i[0]],i[1]) for i in sorted_

↪→tuple] 

[('swimwear', 0.4735563110982704), 
('sinks', 0.4735563110982704), 
('maga', 0.4735563110982704), 
('themed', 0.37841071080711314), 
('twitter', 0.2770106227768904), 
('new', 0.22822300865931006), 
('on', 0.17796879475963143), 
('trump', 0.15344404805174222)]
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7.5 Web Scraping 

The BeautifulSoup4 package is used to send requests to various websites and return 
their html page. From there, you can search and extract relevant text information to 
perform analysis on. 

import requests 
from bs4 import BeautifulSoup 

page = requests.get("http://www.facebook.com") 
soup = BeautifulSoup(page.content, "html.parser") 

print(soup) 

7.6 Tokenization 

Tokenization is used to break down larger chunks of text into smaller blocks called 
tokens. This allows us to assign a meaning to these smaller building blocks that can 
be reused in various documents. 

from nltk.tokenize import TweetTokenizer 
tknzr = TweetTokenizer() 
s0 = "This is a cooool #dummysmiley: :-) :-P <3 and

↪→some arrows < > -> <--" 
print(tknzr.tokenize(s0)) 

['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-
↪→)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>',
↪→'->', '<--'] 

7.7 Part of Speech Tagging 

Part of speech tagging is used to label each word with a corresponding part of speech 
tag that describes how the word was used in a sentence. This includes nouns, verbs, 
adjectives, adverbs, and more. We can use the averaged perceptron tagger to tag our 
tokens with corresponding part of speech tags. 

import nltk 
nltk.download('averaged_perceptron_tagger') 

(continues on next page)
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(continued from previous page) 

nltk.download("tagsets") 
from nltk.tokenize import TweetTokenizer 
tknzr = TweetTokenizer() 
s0 = "This is a cooool #dummysmiley: :-) :-P <3 and

↪→some arrows < > -> <--" 
tokens=tknzr.tokenize(s0) 
tagged = nltk.pos_tag(tokens) 
print(tagged) 

[('This', 'DT'), ('is', 'VBZ'), ('a', 'DT'), ('cooool
↪→', 'JJ'), ('#dummysmiley', 'NN'), (':', ':'), (':-)
↪→', 'JJ'), (':-P', 'JJ'), ('<3', 'NN'), ('and', 'CC
↪→'), ('some', 'DT'), ('arrows', 'NNS'), ('<', 'VBP'),
↪→ ('>', 'JJ'), ('->', 'CD'), ('<--', 'JJ')] 

7.8 Stemming and Lemmatization 

Stemming removes common suffixes in an attempt to convert words back into 
their root words. For example, the four words, marketing, markets, marketed, and 
marketer, all have market as the root word. Thus stemming is used to convert all of 
them into market. 

from nltk.stem import PorterStemmer 

ps = PorterStemmer() 

sample_words = ["marketing", "markets", "marketed",
↪→"marketer"] 

print(sample_words) 

for each in sample_words: 
print("{:s} -> {:s}".format(each, ps.stem(each))) 

['marketing', 'markets', 'marketed', 'marketer'] 
marketing -> market 
markets -> market 
marketed -> market 
marketer -> market
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However, this may not always work out well. For example, words such as 
busy and business will end up mapping to busi but have two completely different 
meanings. On the other hand, lemmatization handles this properly by converting 
words into their meaningful base form otherwise known as the lemma. It requires 
the use of a vocabulary and morphological analysis of the words used. 

from nltk.stem import WordNetLemmatizer 
import nltk 
nltk.download('wordnet') 
wnl = WordNetLemmatizer() 

print(wnl.lemmatize("beaten")) 
print(wnl.lemmatize("beaten", "v")) 
print(wnl.lemmatize("women", "n")) 
print(wnl.lemmatize("happiest", "a")) 

beaten 
beat 
woman 
happy 

Exercises 

We will utilize this dataset [1]: 
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification 

This dataset consists of SMS text messages that are labeled as spam or not spam 
(labeled as spam and ham, respectively). 

In this exercise, try to develop a text classification model to classify between the 
two types of text. 

Here you can put what you have learned into practice. Try to:

• Analyze the label distribution.
• Experiment with various text vectorizers covered in this chapter with various 

classification models. 

import pandas as pd 
df = pd.read_csv('SPAM text message 20170820 - Data.

↪→csv') 
df["Spam"] = df["Category"] == "spam" 
df.drop("Category", axis=1, inplace=True) 
df.head()

https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
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Message Spam 
0 Go until jurong point, crazy.. Available only ... False 
1 Ok lar... Joking wif u oni... False 
2 Free entry in 2 a wkly comp to win FA Cup fina... True 
3 U dun say so early hor... U c already then say... False 
4 Nah I don't think he goes to usf, he lives aro... False 
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Chapter 8 
Chatbot, Speech, and NLP 

Learning Outcomes 

• Explore into speech to text capabilities in Python.
• Represent text data in structured and easy-to-consume formats for chatbots.
• Familiarize with the encoder–decoder architecture.
• Develop a chatbot to answer questions. 

In this chapter, we will explore the speech to text capabilities with Python, and 
then we will assemble a seq2seq long short-term memory (LSTM) model using 
Keras Functional API to create an example chatbot that would answer questions 
asked to it. You can try integrating both programs together. However, do note that 
the code we have provided does not integrate both components. 

Chatbots have become applications themselves. You can choose the field or 
stream and gather data regarding various questions. We can build a chatbot for an 
e-commerce website or a school website where parents could get information about 
the school. 

Messaging platforms such as Allo have implemented chatbot services to engage 
users. The famous https://assistant.google.com/Google Assistant, https://www. 
apple.com/in/siri/Siri, https://www.microsoft.com/en-in/windows/cortanaCortana, 
and https://www.alexa.com/Alexa were built using similar models. 

So, let us start building our chatbot. 

8.1 Speech to Text 

#pip install SpeechRecognition 
#pip install pipwin 

(continues on next page) 
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(continued from previous page) 

#pipwin install pyaudio 
import speech_recognition as sr 
import sys 
r = sr.Recognizer() 

print("please say something in 4 seconds... and wait
↪→for 4 seconds for the answer.....") 
print("Accessing Microphone..") 

try: 
with sr.Microphone() as source: 

r.adjust_for_ambient_noise(source, duration=2) 
# use the default microphone as the audio source,

↪→duration higher means environment noisier 
print("Waiting for you to speak...") 
audio = r.listen(source) #

↪→listen for the first phrase and extract it into
↪→audio data 

except (ModuleNotFoundError,AttributeError): 
print('Please check installation') 
sys.exit(0) 

try: 
print("You said " + r.recognize_google(audio))

↪→# recognize speech using Google Speech Recognition 
except LookupError: #

↪→speech is unintelligible 
print("Could not understand audio") 

except: 
print("Please retry...") 

please say something in 4 seconds... and wait for 4 seconds for the answer..... 
Accessing Microphone.. 
Waiting for you to speak... 
result2: 
{ 'alternative': [ {'confidence': 0.97219545, 'transcript': 'hello hello'}, 

{'transcript': 'hello hello hello'}], 
'final': True} 

You said hello hello
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Here is how we can run the same speech to text function using pre-recorded wave 
files as well: 

from IPython.display import Audio 
import speech_recognition as sr 
import sys 
r = sr.Recognizer() 

with sr.WavFile("Welcome.wav") as source: 
audio = r.record(source) 

try: 
text = r.recognize_google(audio) 
print("You said: " + text) 

except LookupError: 
print("Could not understand audio") 

You said: thank you for choosing the Olympus
↪→dictation management system the Olympus dictation
↪→management system gives you the power to manage
↪→your dictations transcriptions and documents
↪→seamlessly and to improve the productivity of your
↪→daily work for example you can automatically send
↪→the dictation files or transcribe documents to your
↪→assistant or the author via email or FTP if you're
↪→using the speech recognition software the speech
↪→recognition engine works in the background to
↪→support your document creation we hope you enjoy
↪→the simple flexible reliable and Secure Solutions
↪→from Olympus 

The following code requires SpeechRecognition, pipwin, and pyaudio. 
Please install first before carrying out the code. The code adjusts according to the 
ambient noise that helps to capture what we have said. If there is an error, try 
adjusting the duration parameter in adjust_for_ambient_noise. Now  
we have managed to capture what is said in r.recognize_google(audio). 
We will be able to use this can pass it to our chatbot. 

import numpy as np 
import tensorflow as tf 
import pickle 
from tensorflow.keras import layers , activations ,

↪→models , preprocessing
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8.2 Preparing the Data for Chatbot 

8.2.1 Download the Data 

The dataset we will be using comes from this link [1]: 
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp. 

zip?raw=true 
This dataset contains pairs of questions and answers based on a number of 

subjects such as food, history, AI, etc. 
To start, we will need to download the dataset and unzip the file. There should be 

a chatbot_nlp folder that contains the data we will be using. 

8.2.2 Reading the Data from the Files 

We will import https://www.tensorflow.orgTensorFlow and our beloved https:// 
www.tensorflow.org/guide/kerasKeras. Also, we import other modules that help in 
defining model layers. 

We parse each of the .yaml files:

• Concatenate two or more sentences if the answer has two or more of them.
• Remove unwanted data types that are produced while parsing the data.
• Append <START> and <END> to all the answers.
• Create a Tokenizer and load the whole vocabulary ( questions + 

answers ) into it. 

from tensorflow.keras import preprocessing , utils 
import os 
import yaml 

dir_path = 'chatbot_nlp/data' 
files_list = os.listdir(dir_path + os.sep) 

questions = list() 
answers = list() 

for filepath in files_list: 
stream = open( dir_path + os.sep + filepath , 'rb

↪→') 
docs = yaml.safe_load(stream) 
conversations = docs['conversations'] 

(continues on next page)

https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://github.com/shubham0204/Dataset_Archives/blob/master/chatbot_nlp.zip?raw=true
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras


8.2 Preparing the Data for Chatbot 121

(continued from previous page) 

for con in conversations: 
if len( con ) > 2 : 

questions.append(con[0]) 
replies = con[ 1 : ]  
ans = '' 
for rep in replies: 

ans += ' '  + rep 
answers.append( ans ) 

elif len( con )> 1: 
questions.append(con[0]) 
answers.append(con[1]) 

answers_with_tags = list() 
for i in range( len( answers ) ): 

if type( answers[i] ) == str: 
answers_with_tags.append( answers[i] ) 

else: 
questions.pop( i ) 

answers = list() 
for i in range( len( answers_with_tags ) ) : 

answers.append( '<START> ' + answers_with_tags[i]
↪→+ ' <END>' ) 

tokenizer = preprocessing.text.Tokenizer() 
tokenizer.fit_on_texts( questions + answers ) 
VOCAB_SIZE = len( tokenizer.word_index )+1 
print( 'VOCAB SIZE : {}'.format( VOCAB_SIZE )) 

VOCAB SIZE : 1894 

8.2.3 Preparing Data for Seq2Seq Model 

Our model requires three arrays namely encoder_input_data, decoder_ 
input_data, and decoder_output_data. 

For encoder_input_data:

• Tokenize the questions. Pad them to their maximum length. 

For decoder_input_data:

• Tokenize the answers. Pad them to their maximum length.
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For decoder_output_data:

• Tokenize the answers. Remove the first element from all the tokenized_ 
answers. This is the <START> element which we added earlier. 

from gensim.models import Word2Vec 
import re 

vocab = [] 
for word in tokenizer.word_index: 

vocab.append( word ) 

def tokenize( sentences ): 
tokens_list = [] 
vocabulary = [] 
for sentence in sentences: 

sentence = sentence.lower() 
sentence = re.sub( '[^a-zA-Z]', ' ', sentence

↪→) 
tokens = sentence.split() 
vocabulary += tokens 
tokens_list.append( tokens ) 

return tokens_list , vocabulary 

# encoder_input_data 
tokenized_questions = tokenizer.texts_to_sequences(

↪→questions ) 
maxlen_questions = max( [  len(x) for x in tokenized_

↪→questions ] ) 
padded_questions = preprocessing.sequence.pad_

↪→sequences( tokenized_questions , maxlen=maxlen_
↪→questions , padding='post' ) 
encoder_input_data = np.array( padded_questions ) 
print( encoder_input_data.shape , maxlen_questions ) 

# decoder_input_data 
tokenized_answers = tokenizer.texts_to_sequences(

↪→answers ) 
maxlen_answers = max( [  len(x) for x in tokenized_

↪→answers ] ) 
padded_answers = preprocessing.sequence.pad_

↪→sequences( tokenized_answers , maxlen=maxlen_
↪→answers , padding='post' ) 

(continues on next page)
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decoder_input_data = np.array( padded_answers ) 
print( decoder_input_data.shape , maxlen_answers ) 

# decoder_output_data 
tokenized_answers = tokenizer.texts_to_sequences(

↪→answers ) 
for i in range(len(tokenized_answers)) : 

tokenized_answers[i] = tokenized_answers[i][1:] 
padded_answers = preprocessing.sequence.pad_

↪→sequences( tokenized_answers , maxlen=maxlen_
↪→answers , padding='post' ) 
onehot_answers = utils.to_categorical( padded_answers

↪→, VOCAB_SIZE ) 
decoder_output_data = np.array( onehot_answers ) 
print( decoder_output_data.shape ) 

(564, 22) 22 
(564, 74) 74 
(564, 74, 1894) 

tokenized_questions[0],tokenized_questions[1] 

([10, 7, 269], [10, 7, 269]) 

padded_questions[0].shape 

(22,) 

8.3 Defining the Encoder–Decoder Model 

The model will have embedding, LSTM, and dense layers. The basic configuration 
is as shown in Fig. 8.1:

• 2 Input Layers: One for encoder_input_data and another for decoder_ 
input_data.

• Embedding layer: For converting token vectors to fix sized dense vectors. (Note: 
Do not forget the mask_zero=True argument here. )

• LSTM layer: Provide access to long short-term cells.
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Fig. 8.1 Illustration of the Seq2Seq architecture 

Working: 

1. The encoder_input_data comes in the embedding layer (encoder_ 
embedding ). 

2. The output of the embedding layer goes to the LSTM cell, which produces 2 state 
vectors ***( h and c that are encoder_states ). 

3. These states are set in the LSTM cell of the decoder. 
4. The decoder_input_data comes in through the embedding layer. 
5. The embeddings go into LSTM cell (which had the states) to produce sequences. 

encoder_inputs = tf.keras.layers.Input(shape=( maxlen_
↪→questions , )) 
encoder_embedding = tf.keras.layers.Embedding( VOCAB_

↪→SIZE, 200 , mask_zero=True ) (encoder_inputs) 
encoder_outputs , state_h , state_c = tf.keras.layers.

↪→LSTM( 200 , return_state=True )( encoder_embedding ) 
encoder_states = [ state_h , state_c ] 

decoder_inputs = tf.keras.layers.Input(shape=( maxlen_
↪→answers , )) 
decoder_embedding = tf.keras.layers.Embedding( VOCAB_

↪→SIZE, 200 , mask_zero=True) (decoder_inputs) 
decoder_lstm = tf.keras.layers.LSTM( 200 , return_

↪→state=True , return_sequences=True ) 
decoder_outputs , _ , _ = decoder_lstm ( decoder_

↪→embedding , initial_state=encoder_states ) 
decoder_dense = tf.keras.layers.Dense( VOCAB_SIZE ,

↪→activation=tf.keras.activations.softmax ) 
output = decoder_dense ( decoder_outputs ) 

model = tf.keras.models.Model([encoder_inputs,
↪→decoder_inputs], output ) 

(continues on next page)
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model.compile(optimizer=tf.keras.optimizers.RMSprop(),
↪→ loss='categorical_crossentropy') 

model.summary() 

Model: "model" 
___________________________________________________________________________________
↪→_______________ 
Layer (type) Output Shape Param # Connected to 
=================================================================================== 
input_1 (InputLayer) [(None, 22)] 0 
___________________________________________________________________________________
↪→_______________ 
input_2 (InputLayer) [(None, 74)] 0 
___________________________________________________________________________________
↪→_______________ 
embedding (Embedding) (None, 22, 200) 378800 input_1[0][0] 
___________________________________________________________________________________
↪→_______________ 
embedding_1 (Embedding) (None, 74, 200) 378800 input_2[0][0] 
___________________________________________________________________________________
↪→_______________ 
lstm (LSTM) [(None, 200), (None, 320800 embedding[0][0] 
___________________________________________________________________________________
↪→_______________ 
lstm_1 (LSTM) [(None, 74, 200), (N 320800 embedding_1[0][0] 

lstm[0][1] 
lstm[0][2] 

___________________________________________________________________________________
↪→_______________ 
dense (Dense) (None, 74, 1894) 380694 lstm_1[0][0] 
=================================================================================== 
Total params: 1,779,894 
Trainable params: 1,779,894 
Non-trainable params: 0 
___________________________________________________________________________________
↪→_______________ 

8.4 Training the Model 

We train the model for a number of epochs with RMSprop optimizer and 
categorical_crossentropy loss function. 

model.fit([encoder_input_data , decoder_input_data],
↪→decoder_output_data, batch_size=50, epochs=150,
↪→verbose=0 ) 
model.save( 'model.h5' ) 

output = model.predict([encoder_input_data[0,np.
↪→newaxis], decoder_input_data[0,np.newaxis]])
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output[0][0] 

array([4.5021617e-10, 2.7967335e-06, 2.6644248e-08, ..., 7.4593916e-12, 
6.7842798e-08, 1.0224695e-08], dtype=float32) 

np.argmax(output[0][0]) 

132 

import pandas as pd 

tokenizer_dict = { tokenizer.word_index[i]:i for i in
↪→tokenizer.word_index} 
pd.DataFrame.from_dict(tokenizer_dict, orient='index

↪→').tail(15) 

0 
1879 par 
1880 dont 
1881 richard 
1882 nixon 
1883 1963 
1884 soviet 
1885 union 
1886 sputnik 
1887 gyroscope 
1888 edwin 
1889 andromeda 
1890 kingdom 
1891 britain 
1892 europe 
1893 echolocation 

tokenizer_dict[np.argmax(output[0][1])] 

'intelligence' 

tokenizer_dict[np.argmax(output[0][2])]
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'is' 

output = model.predict([encoder_input_data[0,np.
↪→newaxis], decoder_input_data[0,np.newaxis]]) 
sampled_word_indexes = np.argmax(output[0],1) 
sentence = "" 
maxlen_answers = 74 
for sampled_word_index in sampled_word_indexes: 

sampled_word = None 
sampled_word = tokenizer_dict[sampled_word_index] 
if sampled_word == 'end' or len(sentence.split())

↪→> maxlen_answers: 
break 

sentence += ' {}'.format( sampled_word ) 
sentence 

' artificial intelligence is the branch of
↪→engineering and science devoted to constructing
↪→machines that think' 

def print_train_result(index): 
print(f"Question is : {questions[index]}") 
print(f"Answer is : {answers[index]}") 
output = model.predict([encoder_input_data[index,

↪→np.newaxis], decoder_input_data[index,np.newaxis]]) 
sampled_word_indexes = np.argmax(output[0],1) 
sentence = "" 
maxlen_answers = 74 
for sampled_word_index in sampled_word_indexes: 

sampled_word = None 
sampled_word = tokenizer_dict[sampled_word_

↪→index] 
if sampled_word == 'end' or len(sentence.

↪→split()) > maxlen_answers: 
break 

sentence += ' {}'.format( sampled_word ) 
print(f"Model prediction: {sentence}") 

print_train_result(4)
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Question is : Are you sentient? 
Answer is : <START> Even though I'm a construct I do

↪→have a subjective experience of the universe, as
↪→simplistic as it may be. <END> 
Model prediction: even though i'm a construct i do

↪→have a subjective experience of the universe as
↪→simplistic as it may be 

print_train_result(55) 

Question is : What is a motormouth 
Answer is : <START> A ratchet-jaw. <END> 
Model prediction: a ratchet jaw 

print_train_result(32) 

Question is : Bend over 
Answer is : <START> That's personal! <END> 
Model prediction: that's personal 

8.5 Defining Inference Models 

We create inference models that help in predicting answers. 

Encoder Inference Model Takes the question as input and outputs LSTM states 
(h and c). 

Decoder Inference Model Takes in 2 inputs, one are the LSTM states (output of 
encoder model), and second are the answer input sequences (ones not having the 
<start> tag). It will output the answers for the question which we fed to the 
encoder model and its state values. 

def make_inference_models(): 

encoder_model = tf.keras.models.Model(encoder_
↪→inputs, encoder_states) 

decoder_state_input_h = tf.keras.layers.
↪→Input(shape=( 200 ,)) 

decoder_state_input_c = tf.keras.layers.
↪→Input(shape=( 200 ,)) 

(continues on next page)
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decoder_states_inputs = [decoder_state_input_h,
↪→decoder_state_input_c] 

decoder_outputs, state_h, state_c = decoder_lstm( 
decoder_embedding , initial_state=decoder_

↪→states_inputs) 
decoder_states = [state_h, state_c] 
decoder_outputs = decoder_dense(decoder_outputs) 
decoder_model = tf.keras.models.Model( 

[decoder_inputs] + decoder_states_inputs, 
[decoder_outputs] + decoder_states) 

return encoder_model , decoder_model 

8.6 Talking with Our Chatbot 

First, we define a method str_to_tokens that converts str questions into 
integer tokens with padding. 

def str_to_tokens( sentence : str ): 

words = sentence.lower().split() 

tokens_list = list() 

for word in words: 

tokens_list.append( tokenizer.word_index[ word ] ) 

return preprocessing.sequence.pad_sequences( [tokens_list] , maxlen=maxlen_

↪→questions , padding='post') 

1. First, we take a question as input and predict the state values using enc_model. 
2. We set the state values in the decoder’s LSTM. 
3. Then, we generate a sequence that contains the <start> element. 
4. We input this sequence in the dec_model. 
5. We replace the <start> element with the element that was predicted by the 

dec_model and update the state values. 
6. We carry out the above steps iteratively till we hit the <end> tag or the maximum 

answer length. 

enc_model , dec_model = make_inference_models() 

states_values = enc_model.predict( str_to_tokens(
↪→input( 'Enter question : ' ) ) )  

(continues on next page)
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(continued from previous page) 

empty_target_seq = np.zeros( ( 1 , 1 ) )  
empty_target_seq[0, 0] = tokenizer.word_index['start'] 
stop_condition = False 
decoded_translation = '' 
while not stop_condition : 

dec_outputs , h , c = dec_model.predict([ empty_
↪→target_seq ] + states_values ) 

sampled_word_index = np.argmax( dec_outputs[0, -1,
↪→ :] ) 

sampled_word = None 
for word , index in tokenizer.word_index.items() : 

if sampled_word_index == index : 
sampled_word = word 
if sampled_word == 'end' or len(decoded_

↪→translation.split()) > maxlen_answers: 
stop_condition = True 
break 

decoded_translation += ' {}'.format( word
↪→) 

empty_target_seq = np.zeros( ( 1 , 1 ) )  
empty_target_seq[ 0 , 0 ] = sampled_word_index 
states_values = [ h , c ]  

print( decoded_translation ) 

Enter question : what is capitalism 

the economic system in which all or most of the
↪→means of production and distribution as land
↪→factories railroads etc are privately owned and
↪→operated for profit originally under fully
↪→competitive conditions 

Now we have a working demonstration of a chatbot that has been trained on 
our data. This example is a simple demonstration of how chatbots are trained, as 
it will face difficulties with words not in our dataset and also may not always give 
great answers. Chatbots such as Siri, Alexa, and Google Assistant are created with 
a larger vocabulary, significantly more data, and more complex architectures, which 
help them perform significantly better than the example provided.
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Exercises 

We will utilize this dataset [2]: 
https://www.kaggle.com/datasets/rtatman/questionanswer-dataset/ 
This dataset consists of various Question and Answer pairs about many different 

topics. 
In this exercise, try to develop a chatbot that can answer questions provided in 

the dataset. 
Here you can put what you have learned into practice. Try to:

• Perform data preparation by converting the Questions and Answer into tokens.
• Consider cleaning up the Questions and Answers using the techniques learned.
• Experiment with various network layer configurations such as increasing the 

number of hidden layers.
• Touch up the interface by adding a speech to text module for inputs and text to 

speech for outputs. 

import pandas as pd 
df = pd.read_csv('S08_question_answer_pairs.txt',

↪→delimiter="\t") 
df.head() 

ArticleTitle Question Answer \ 
0 Abraham_Lincoln Was Abraham Lincoln the sixteenth President of... yes 
1 Abraham_Lincoln Was Abraham Lincoln the sixteenth President of... Yes. 
2 Abraham_Lincoln Did Lincoln sign the National Banking Act of 1... yes 
3 Abraham_Lincoln Did Lincoln sign the National Banking Act of 1... Yes. 
4 Abraham_Lincoln Did his mother die of pneumonia? no 

DifficultyFromQuestioner DifficultyFromAnswerer ArticleFile 
0 easy easy S08_set3_a4 
1 easy easy S08_set3_a4 
2 easy medium S08_set3_a4 
3 easy easy S08_set3_a4 
4 easy medium S08_set3_a4 
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Part II 
Applications of Artificial Intelligence 

in Business Management



Chapter 9 
AI in Human Resource Management 

Learning Outcomes 

• Understand the roles and responsibilities of human resource departments.
• Be able to list some of the challenges that human resource departments face.
• Identify ways that artificial intelligence can be applied to human resource management.
• Develop artificial intelligence solutions for recommending salaries, recruitment, recom-

mending courses, and predicting attrition. 

9.1 Introduction to Human Resource Management 

The human resource department is vital in managing one of the most precious 
resources in all businesses and its employees. Human resources is in charge of 
recruiting, onboarding, training, and managing employees from the time they apply 
for a job until they leave the company [10]. This comprehensive personnel manage-
ment entails payroll and benefits administration, employee upskilling, developing 
a healthy workplace culture, improving staff productivity, managing employer– 
employee relationships, employee termination, and more. The human resources 
department is responsible for developing policies that create a balance between the 
interests of the company and the employees. 

Today, the average human resources staff is responsible for more than just payroll 
and benefits administration, severance management, and post-retirement interac-
tions. Their role now includes developing strategies to attract the ideal personnel, 
ensuring employee retention by resolving their concerns, managing employee 
separation, dealing with compliance and legal issues, and staying current on HR 
industry developments. Figure 9.1 shows some of the roles and responsibilities of 
the human resource department. 
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Fig. 9.1 Roles and responsibilities in human resource management [11] 

Some of the tasks that human resources staff are responsible for include:

• Recruitment 
Human resources is in charge of filling open positions inside an organization. 
Creating and publishing job descriptions, receiving applications, shortlisting 
prospects, organizing interviews, hiring, and onboarding are all part of the 
recruiting process. Each of these recruitment processes includes planning the 
workflow and executing it in such a way that the top applicants are hired. 
Many teams rely on recruiting software to assist with the automation of these 
procedures.

• Compensation and benefits 
Handling employee salaries and benefits is a critical component of human 
resource duties. Compensation plays an essential role in recruiting and keeping 
top employees. HR must come up with inventive ways to compensate workers 
so that they are encouraged to remain and advance within the firm. In addition 
to payroll administration, it covers travel costs, paid vacation, sick leaves, 
retirement, health, and other benefits.

• Talent management 
Employee attrition is a serious concern for many companies, as losing valuable 
employees can be costly financially and time-consuming to replace. High 
attrition rates indicate a serious problem within the organization and can be 
caused by a variety of factors, from salary dissatisfaction to poor management
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practices. In such cases, high attrition is a symptom of a bigger underlying issue 
that needs to be addressed. These issues are likely to harm the organization’s 
brand, making it harder to attract talented individuals to join the company.

• Defining organization culture 
Human resources is responsible for more than recruiting employees and also 
ensuring that the environment is conducive to optimal performance. An orga-
nization needs a united culture to function effectively. HR must establish the 
desired corporate culture by creating workplace policies in cooperation with top 
management and ensuring that they are applied across the whole firm.

• Compliance with labor laws 
Human resource managers should also be familiar with the rules and regulations 
of the state in order to effectively manage the department and deal with any 
legal concerns that may surface in the workplace. Understanding the law will 
enable them to combat discrimination and abuse, avoid liabilities, and manage 
legal concerns in human resource management. Labor laws are enacted by 
the government to protect everyone, resolve disputes, and promote a healthy 
workplace. HR professionals must have a thorough understanding of the law 
and the ability to articulate it to both employers and workers. It is also the 
responsibility of the HR department to make sure that the business complies with 
and upholds labor and employment regulations. 

9.2 Artificial Intelligence in Human Resources 

The landscape of human resource management is always changing, and human 
resource managers have to adapt to the evolving workplace. For example, as 
economies become increasingly globalized and the trend of remote working has 
begun to take off, there has been an increasing shift to remote work. Organizations 
and employees both have to adapt to this shift and it is the human resources 
department to develop and execute policies that will redefine the future of work 
for the company. Artificial intelligence has the ability to assist human resource 
departments in helping human resource organizations automate repetitive tasks and 
provide insights to help drive decision-making in human resources. Here are some 
of the potential use cases that artificial intelligence can bring in human resource 
management: 

1. Hiring 
Hiring for top talents is currently very competitive [3]. Candidates may already 
be hired by other competitors by the time you have reached out to them. In 
this aspect, artificial intelligence is able to speed up the recruitment process 
by crawling through a large number of applicants and ranking them based on 
their suitability for a role. Furthermore, screening software may help to eliminate 
unconscious biases by excluding features from personal information such as race, 
age, and gender. Chatbots can also help in the recruitment process by scheduling
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meetings, answering potential questions, and providing important information 
about the interview process. 

2. Employee retention 
After recruiting a great employee, the next challenge is to retain them. Artificial 
intelligence is able to help in this aspect by analyzing large amounts of data 
and providing insights to human resource departments that could help reduce 
attrition. AI can be used to help to ensure that employees are compensated fairly 
through analyzing salaries to keep up with the market rates. Additionally, AI can 
be used to predict the likelihood of attrition using data collected from salaries, 
surveys, and performance reviews. This can be used to help identify groups that 
are at risk of higher-than-normal turnover and help facilitate resource and policy 
planning. 

3. Human resource policy-making 
Human resources performs an important role in developing policies that shape an 
organization’s culture and workforce. Thus, it is important for them to be able to 
pay attention to the latest changes in the labor market. This can be done to analyze 
a large number of reviews to identify important features and rising trends, such as 
work–life balance or remote working, that can help attract or retain employees. 

4. Learning and development 
Artificial intelligence can be utilized in learning and development to create 
personalized training recommendations, tailored to each staff. This can be 
achieved by developing recommender systems that rank and recommend courses 
that an employee might be interested in. Improving learning and development can 
help develop the organization’s workforce and improve employee engagement. 

5. Reduce administrative workload 
Artificial intelligence can be used to help automate various HR functions such 
as scheduling and facilitating leave requests. This can help reduce administrative 
friction, improve employee satisfaction, and free up precious time for human 
resource staff to perform other important tasks. 

In conclusion, artificial intelligence has the potential to change and shape the 
future of human resources through various applications, from streamlining the 
recruitment process to developing individualized learning programs for employees. 
This can help improve the overall efficiency of organizations and provide employees 
with a better working experience. Now, we will go through some simple examples 
of how artificial intelligence can be applied in human resource management. 

9.3 Applications of AI in Human Resources 

9.3.1 Salary Prediction 

Ensuring that employees are well compensated is important for improving the 
overall morale and motivation of the staff, as well as reducing turnover, which is
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vital to the long-term success of any business. Companies that pay their employees 
well are in a much better position to attract and retain talented staff, which is key to 
establishing a successful business. In this respect, artificial intelligence can be used 
to predict worker salaries based on their job descriptions and skills. This can be 
used to provide better salary offers to potential employees and ensure that existing 
employees are properly compensated for their work. Companies that are able to use 
artificial intelligence to accurately predict worker salaries will be better positioned 
to attract and retain the best talent and, in turn, build a more successful business. 

In this example, we will develop a model to predict the salaries of data scientists 
using data scrapped from glassdoor [5]. We can access the dataset from: 

https://www.kaggle.com/datasets/lokkagle/glassdoor-data 
This dataset contains various job titles, descriptions, ratings, companies, and 

salaries of data scientists across the United States. 
Now, let us begin by importing the relevant packages 

import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import mean_absolute_error 

Let us take a better look at the data. 

# loading the data 
data = pd.read_csv('Human_Resources/glassdoor_jobs.csv

↪→') 
data.head(3) 

Unnamed: 0 Job Title Salary Estimate \ 
0 0 Data Scientist $53K-$91K (Glassdoor est.) 
1 1 Healthcare Data Scientist $63K-$112K (Glassdoor est.) 
2 2 Data Scientist $80K-$90K (Glassdoor est.) 

Job Description Rating \ 
0 Data Scientist\nLocation: Albuquerque, NM\nEdu... 3.8 
1 What You Will Do:\n\nI. General Summary\n\nThe... 3.4 
2 KnowBe4, Inc. is a high growth information sec... 4.8 

Company Name Location \ 
0 Tecolote Research\n3.8 Albuquerque, NM 
1 University of Maryland Medical System\n3.4 Linthicum, MD 
2 KnowBe4\n4.8 Clearwater, FL 

Headquarters Size Founded Type of ownership \ 
0 Goleta, CA 501 to 1000 employees 1973 Company - Private 

(continues on next page)
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1 Baltimore, MD 10000+ employees 1984 Other Organization 
2 Clearwater, FL 501 to 1000 employees 2010 Company - Private 

Industry Sector \ 
0 Aerospace & Defense Aerospace & Defense 
1 Health Care Services & Hospitals Health Care 
2 Security Services Business Services 

Revenue Competitors 
0 $50 to $100 million (USD) -1 
1 $2 to $5 billion (USD) -1 
2 $100 to $500 million (USD) -1 

data.info() 

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 956 entries, 0 to 955 
Data columns (total 15 columns): 
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Unnamed: 0 956 non-null int64 
1 Job Title 956 non-null object 
2 Salary Estimate 956 non-null object 
3 Job Description 956 non-null object 
4 Rating 956 non-null float64 
5 Company Name 956 non-null object 
6 Location 956 non-null object 
7 Headquarters 956 non-null object 
8 Size 956 non-null object 
9 Founded 956 non-null int64 
10 Type of ownership 956 non-null object 
11 Industry 956 non-null object 
12 Sector 956 non-null object 
13 Revenue 956 non-null object 
14 Competitors 956 non-null object 

dtypes: float64(1), int64(2), object(12) 
memory usage: 112.2+ KB 

data.isna().sum() 

Unnamed: 0 0 
Job Title 0 
Salary Estimate 0 
Job Description 0 

(continues on next page)
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Rating 0 
Company Name 0 
Location 0 
Headquarters 0 
Size 0 
Founded 0 
Type of ownership 0 
Industry 0 
Sector 0 
Revenue 0 
Competitors 0 
dtype: int64 

Now, let us copy the data and remove the “Unnamed: 0” column which provides 
no useful information. 

# take a copy of data and remove unnecessary
↪→attributes 
emp_data = data.copy(deep= True) 
emp_data.drop(columns= ['Unnamed: 0'], inplace = True) 
emp_data.head() 

Job Title Salary Estimate \ 
0 Data Scientist $53K-$91K (Glassdoor est.) 
1 Healthcare Data Scientist $63K-$112K (Glassdoor est.) 
2 Data Scientist $80K-$90K (Glassdoor est.) 
3 Data Scientist $56K-$97K (Glassdoor est.) 
4 Data Scientist $86K-$143K (Glassdoor est.) 

Job Description Rating \ 
0 Data Scientist\nLocation: Albuquerque, NM\nEdu... 3.8 
1 What You Will Do:\n\nI. General Summary\n\nThe... 3.4 
2 KnowBe4, Inc. is a high growth information sec... 4.8 
3 *Organization and Job ID**\nJob ID: 310709\n\n... 3.8 
4 Data Scientist\nAffinity Solutions / Marketing... 2.9 

Company Name Location \ 
0 Tecolote Research\n3.8 Albuquerque, NM 
1 University of Maryland Medical System\n3.4 Linthicum, MD 
2 KnowBe4\n4.8 Clearwater, FL 
3 PNNL\n3.8 Richland, WA 
4 Affinity Solutions\n2.9 New York, NY 

Headquarters Size Founded Type of ownership \ 
0 Goleta, CA 501 to 1000 employees 1973 Company - Private 
1 Baltimore, MD 10000+ employees 1984 Other Organization 
2 Clearwater, FL 501 to 1000 employees 2010 Company - Private 
3 Richland, WA 1001 to 5000 employees 1965 Government 
4 New York, NY 51 to 200 employees 1998 Company - Private 

(continues on next page)
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Industry Sector \ 
0 Aerospace & Defense Aerospace & Defense 
1 Health Care Services & Hospitals Health Care 
2 Security Services Business Services 
3 Energy Oil, Gas, Energy & Utilities 
4 Advertising & Marketing Business Services 

Revenue \ 
0 $50 to $100 million (USD) 
1 $2 to $5 billion (USD) 
2 $100 to $500 million (USD) 
3 $500 million to $1 billion (USD) 
4 Unknown / Non-Applicable 

Competitors 
0 -1  
1 -1  
2 -1  
3 Oak Ridge National Laboratory, National Renewa... 
4 Commerce Signals, Cardlytics, Yodlee 

Next, there are many variations in the job titles, and let us clean it up by 
categorizing them into their relevant categories. 

# job title cleaning 

def jobtitle_cleaner(title): 
if 'data scientist' in title.lower(): 

return 'D-sci' 
elif 'data engineer' in title.lower(): 

return 'D-eng' 
elif 'analyst' in title.lower(): 

return 'analyst' 
elif 'machine learning' in title.lower(): 

return 'ML' 
elif 'manager' in title.lower(): 

return 'manager' 
elif 'director' in title.lower(): 

return 'director' 
elif 'research' in title.lower(): 

return 'R&D' 
else: 

return 'na' 

emp_data['JobTitles'] = emp_data['Job Title'].
↪→apply(jobtitle_cleaner) 
emp_data['JobTitles'].value_counts()
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D-sci 358 
na 219 
D-eng 158 
analyst 124 
manager 36 
ML 26 
R&D 19 
director 16 
Name: JobTitles, dtype: int64 

Now, we will need to split the categories into senior, junior, and other roles. 

senior_list = ['sr','sr.','senior','principal',
↪→'research', 'lead', 'R&D','II', 'III'] 
junior_list = ['jr','jr.','junior'] 

def jobseniority(title): 
for i in senior_list: 

if i in title.lower(): 
return 'Senior' 

for j in junior_list: 
if j in title.lower(): 

return 'Junior' 
else: 

return 'No Desc' 

emp_data['Job Seniority'] = emp_data['Job Title'].
↪→apply(jobseniority) 
emp_data['Job Seniority'].value_counts() 

No Desc 671 
Senior 283 
Junior 2 
Name: Job Seniority, dtype: int64 

We will also be able to binarize their skill sets based on the skills specified in 
their job descriptions. 

# job descriptions 
jobs_list = ['python', 'excel','r studio', 'spark',

↪→'aws'] 

(continues on next page)
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for i in jobs_list: 
emp_data[i+'_'+'job'] = emp_data['Job Description

↪→'].apply(lambda x :  1 if i in x.lower() else 0) 
for i in jobs_list: 

print(emp_data[i+'_'+'job'].value_counts()) 

1 496 
0 460 
Name: python_job, dtype: int64 
1 486 
0 470 
Name: excel_job, dtype: int64 
0 955 
1 1  
Name: r studio_job, dtype: int64 
0 742 
1 214 
Name: spark_job, dtype: int64 
0 714 
1 242 
Name: aws_job, dtype: int64 

Now, let us clean up the company names. 

emp_data['Company Name'] = emp_data['Company Name'].
↪→apply(lambda x : x.split("\n")[0]) 
emp_data['Company Name'].value_counts() 

Novartis 14 
MassMutual 14 
Takeda Pharmaceuticals 14 
Reynolds American 14 
Software Engineering Institute 13 

.. 
Systems Evolution Inc. 1 
Centro 1 
comScore 1 
Genesis Research 1 
Fivestars 1 
Name: Company Name, Length: 448, dtype: int64 

There are many cities that these data scientists are working at and the counts 
would be too small to extract anything meaningful. Let us aggregate the data by 
grouping the cities into states instead.
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emp_data['location spots'] = emp_data['Location'].str.
↪→split(',').str[1] 
emp_data['location spots'].value_counts().head() 

CA 210 
MA 124 
NY 96 
VA 56 
IL 48 

Name: location spots, dtype: int64 

Now we will clean up the companies of competitors by specifying only the top 
competitor. 

emp_data['competitor company'] = emp_data['Competitors
↪→'].str.split(',').str[0].replace('-1', 'no
↪→competitors') 
emp_data['competitor company'].value_counts() 

no competitors 634 
Novartis 14 
Oak Ridge National Laboratory 12 
Travelers 11 
Roche 9 

... 
Greystar 1 
Ecolab 1 
USAA 1 
Clearlink 1 
Belly 1 
Name: competitor company, Length: 137, dtype: int64 

Clean up the ownership column as well. 

emp_data['Ownership'] = emp_data['Type of ownership'].
↪→str.split('-').str[1].replace(np.NaN, 'others') 
emp_data['Ownership'].value_counts() 

Private 532 
Public 237 

others 176 
1 11  
Name: Ownership, dtype: int64
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We can also specify the revenue of the company that these data scientists work 
for to get a better estimate. 

emp_data['Revenue'] = emp_data['Revenue'].str.replace(
↪→'-1','others') 

Define the Headquarter location by the state instead of city as well. 

emp_data['HQ'] = emp_data['Headquarters'].str.split(',
↪→').str[1] 

Clean up the company size. 

emp_data['Size'] = emp_data['Size'].str.replace('-1',
↪→'others') 
emp_data['Size'].value_counts() 

1001 to 5000 employees 177 
201 to 500 employees 160 
51 to 200 employees 155 
10000+ employees 154 
501 to 1000 employees 144 
5001 to 10000 employees 79 
1 to 50 employees 61 
Unknown 15 
others 11 
Name: Size, dtype: int64 

Now we will need to extract the minimum, maximum, and average salary from 
the salary range data provided by glassdoor. This requires cleaning up the text data 
and filling up the empty rows with the mean value. 

import warnings 
warnings.simplefilter(action='ignore',

↪→category=FutureWarning) 
emp_data['min_sal'] = emp_data['Salary Estimate'].str.

↪→split(",").str[0].str.replace('(Glassdoor est.)','') 
emp_data['min_sal'] = emp_data['min_sal'].str.replace(

↪→'(Glassdoor est.)','').str.split('-').str[0].str.
↪→replace('$','') 
emp_data['min_sal'] = emp_data['min_sal'].str.replace(

↪→'K','') 
emp_data['min_sal'] = emp_data['min_sal'].str.replace(

↪→'Employer Provided Salary:','') 

(continues on next page)
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emp_data['min_sal'] = pd.to_numeric(emp_data['min_sal
↪→'], errors='coerce') 
emp_data['min_sal'] = emp_data['min_sal'].replace(np.

↪→nan, emp_data['min_sal'].mean()) 

emp_data['max_sal'] = emp_data['Salary Estimate'].str.
↪→split(",").str[0].str.replace('(Glassdoor est.)','') 
emp_data['max_sal'] = emp_data['max_sal'].str.replace(

↪→'(Glassdoor est.)','').str.split('-').str[0].str.
↪→replace('$','') 
emp_data['max_sal'] = emp_data['max_sal'].str.replace(

↪→'K','') 
emp_data['max_sal'] = emp_data['max_sal'].str.replace(

↪→'Employer Provided Salary:','') 
emp_data['max_sal'] = pd.to_numeric(emp_data['max_sal

↪→'], errors='coerce') 
emp_data['max_sal'] = emp_data['max_sal'].replace(np.

↪→nan, emp_data['min_sal'].mean()) 

emp_data['avg.salary'] = (emp_data['min_sal'] + emp_
↪→data['max_sal'])/ 2 

Now that the text is all cleaned up, let us create dummy variables to represent our 
categorical data columns. 

processed_data = emp_data[['Rating', 
'Company Name', 'Size', 
'Type of ownership','Sector', 'Revenue', 
'JobTitles', 'Job Seniority', 'python_job',

↪→'excel_job', 'r studio_job', 
'spark_job', 'aws_job', 'HQ', 'location spots', 
'competitor company', 'Ownership','avg.salary

↪→']] 
processed_data = pd.get_dummies(data = processed_data,

↪→ columns = ['Company Name', 'Size', 'Type of
↪→ownership', 'Sector', 

'Revenue', 'JobTitles', 'Job Seniority','HQ',
↪→'location spots', 

'competitor company', 'Ownership']) 
processed_data.head() 

Rating python_job excel_job r studio_job spark_job aws_job \ 
0 3.8 1 1 0 0 0  
1 3.4 1 0 0 0 0  

(continues on next page)
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2 4.8 1 1 0 1 0  
3 3.8 1 0 0 0 0  
4 2.9 1 1 0 0 0  

avg.salary Company Name_1-800-FLOWERS.COM, Inc. Company Name_1904labs \ 
0 53.0 0 0 
1 63.0 0 0 
2 80.0 0 0 
3 56.0 0 0 
4 86.0 0 0 

Company Name_23andMe ... competitor company_World Wide Technology \ 
0 0 ... 0 
1 0 ... 0 
2 0 ... 0 
3 0 ... 0 
4 0 ... 0 

competitor company_YOOX NET-A-PORTER GROUP competitor company_Zocdoc \ 
0 0 0  
1 0 0  
2 0 0  
3 0 0  
4 0 0  

competitor company_bluebird bio competitor company_eClinicalWorks \ 
0 0 0  
1 0 0  
2 0 0  
3 0 0  
4 0 0  

competitor company_no competitors Ownership_ Private Ownership_ Public \ 
0 1 1 0  
1 1 0 0  
2 1 1 0  
3 0 0 0  
4 0 1 0  

Ownership_1 Ownership_others 
0 0 0  
1 0 1  
2 0 0  
3 0 1  
4 0 0  

[5 rows x 758 columns] 

We will apply the min–max scaler to scale all features to between 0 and 1 so 
that all features are equally weighted by magnitude and will not skew the data with 
extreme numbers. 

ms = MinMaxScaler() 
scaled_data = processed_data.copy() 
scaled_data[['Rating', 'avg.salary']] = ms.fit_

↪→transform(processed_data[['Rating', 'avg.salary']]) 

X = scaled_data.drop(columns= 'avg.salary').values 
y = scaled_data["avg.salary"].values
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Now that we are done, let us split the data and train our model. 

X_train, X_test, y_train, y_test = train_test_split(X,
↪→ y, test_size = 0.2, random_state = 0) 
# Creating random forest regression model 
model = RandomForestRegressor(n_estimators=100,

↪→criterion='mse', random_state=0) 
# Fitting the dataset to the model 
model.fit(X_train, y_train) 

min_avg_salary = processed_data["avg.salary"].min() 
max_avg_salary = processed_data["avg.salary"].max() 

train_error = mean_absolute_error(y_train, model.
↪→predict(X_train)) 
train_error = (train_error * (max_avg_salary - min_

↪→avg_salary) * 1000) 
print("Average training error: ${0}".

↪→format(round(train_error, 2))) 
test_error = mean_absolute_error(y_test, model.

↪→predict(X_test)) 
test_error = test_error * (max_avg_salary - min_avg_

↪→salary) * 1000 
print("Average test error: ${0}".format(round(test_

↪→error, 2))) 

Average training error: $3799.53 
Average test error: $9666.36 

Now we have a model that can estimate salaries with an error of approximately 
$9.7k in annual compensation. This can be further improved with more data and 
finer grained features extracted from the job description and titles. 

9.3.2 Recruitment 

One of the most challenging parts of recruitment is the process of screening 
candidates from a long list of applications. It is very time-consuming and tedious. 
An average recruiter would spend approximately 15 hours to identify a suitable hire 
[6]. This problem is exacerbated by the ease of job searching in the digital age. As 
thousands of jobs can be easily found through a quick web search, the volumes of 
applications continue to increase significantly. With the same amount of manpower, 
human resource staff have to become more efficient in screening through resumes. 
This is where artificial intelligence can shine in the recruitment process as it can
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help automate and sort through a large number of resumes to provide rankings on 
the suitability of candidates. Furthermore, unconscious human biases can be reduced 
through this initial screening process. In this example, we will develop a simple AI 
algorithm to demonstrate how it can be used in the recruitment process [9]. 

We will be using the data provided from this link [8]: 
https://www.kaggle.com/datasets/rafunlearnhub/recruitment-data 
The dataset contains features of various candidates for a recruitment process. The 

outcome is labeled under the Recruitment_Status column which indicates whether 
a candidate was eventually recruited or not. 

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn import tree 
from imblearn.over_sampling import SMOTE 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import accuracy_score, confusion_

↪→matrix 

We will import and take a quick look at our data. 

df = pd.read_csv('Human_Resources/recruitment_
↪→decision_tree.csv') 
df.head() 

Serial_no Gender Python_exp Experience_Years Education Internship \ 
0 1 Male Yes 0.0 Graduate No 
1 2 Male No 1.0 Graduate No 
2 3 Male No 0.0 Graduate Yes 
3 4 Male No 0.0 Not Graduate No 
4 5 Male Yes 0.0 Graduate No 

Score Salary * 10E4 Offer_History Location Recruitment_Status 
0 5139 0.0 1.0 Urban Y 
1 4583 128.0 1.0 Rural N 
2 3000 66.0 1.0 Urban Y 
3 2583 120.0 1.0 Urban Y 
4 6000 141.0 1.0 Urban Y 

Okay, our data contain various categorical and Boolean variables. Let us map 
them into numbers. 

sex_map = {'Male':1, 'Female':0} 
df['Gender'] = df['Gender'].map(sex_map) 

pyth_map = {'Yes':1, 'No':0} 
df['Python_exp'] = df['Python_exp'].map(pyth_map) 

(continues on next page)
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edu_map = {'Graduate':1, 'Not Graduate':0} 
df['Education'] = df['Education'].map(edu_map) 

intern_map = {'Yes':1, 'No':0} 
df['Internship'] = df['Internship'].map(intern_map) 

locat_map = {'Urban':3, 'Semiurban':2, 'Rural':1} 
df['Location'] = df['Location'].map(locat_map) 

status_map = {'Y':1, 'N':0} 
df['Recruitment_Status'] = df['Recruitment_Status'].

↪→map(status_map) 

df = df.drop('Serial_no', axis=1) 
df.head() 

Gender Python_exp Experience_Years Education Internship Score \ 
0 1.0 1.0 0.0 1 0.0 5139 
1 1.0 0.0 1.0 1 0.0 4583 
2 1.0 0.0 0.0 1 1.0 3000 
3 1.0 0.0 0.0 0 0.0 2583 
4 1.0 1.0 0.0 1 0.0 6000 

Salary * 10E4 Offer_History Location Recruitment_Status 
0 0.0 1.0 3 1 
1 128.0 1.0 1 0 
2 66.0 1.0 3 1 
3 120.0 1.0 3 1 
4 141.0 1.0 3 1 

Now, let us check for empty cells. 

df.isna().sum() 

Gender 13 
Python_exp 3 
Experience_Years 15 
Education 0 
Internship 32 
Score 0 
Salary * 10E4 21 
Offer_History 50 
Location 0 
Recruitment_Status 0 
dtype: int64
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We will set female as the default gender, assume that blanks have no previous 
offers or internships, set the years of job experience and Python experience to be 0, 
and set blanks in salary to be the mean value. 

df['Gender'].fillna(0, inplace=True) 

df['Experience_Years'].fillna(0, inplace=True) 

df['Python_exp'].fillna(0, inplace=True) 

df['Offer_History'].fillna(0, inplace=True) 

df['Internship'].fillna(0, inplace=True) 

df['Salary * 10E4'].fillna(np.mean(df['Salary * 10E4
↪→']), inplace=True) 

df.describe() 

Gender Python_exp Experience_Years Education Internship \ 
count 614.000000 614.000000 614.000000 614.000000 614.000000 
mean 0.796417 0.346906 0.744300 0.781759 0.133550 
std 0.402991 0.476373 1.009623 0.413389 0.340446 
min 0.000000 0.000000 0.000000 0.000000 0.000000 
25% 1.000000 0.000000 0.000000 1.000000 0.000000 
50% 1.000000 0.000000 0.000000 1.000000 0.000000 
75% 1.000000 1.000000 1.000000 1.000000 0.000000 
max 1.000000 1.000000 3.000000 1.000000 1.000000 

Score Salary * 10E4 Offer_History Location \ 
count 614.000000 614.000000 614.000000 614.000000 
mean 5402.302932 146.165261 0.773616 2.037459 
std 6109.024398 84.244922 0.418832 0.787482 
min 150.000000 0.000000 0.000000 1.000000 
25% 2877.500000 100.000000 1.000000 1.000000 
50% 3812.500000 128.500000 1.000000 2.000000 
75% 5771.500000 164.750000 1.000000 3.000000 
max 81000.000000 700.000000 1.000000 3.000000 

Recruitment_Status 
count 614.000000 
mean 0.687296 
std 0.463973 
min 0.000000 
25% 0.000000 
50% 1.000000 
75% 1.000000 
max 1.000000 

We will need to split our data into training and testing accordingly. In this case 
we will place 30% of our data into the testing set.
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np.random.seed(42) 
idx = np.random.rand(len(df))<0.70 

train = df[idx] 
test = df[~idx] 

x_train = train.drop('Recruitment_Status', axis=1) 
y_train = train[['Recruitment_Status']] 

x_test = test.drop('Recruitment_Status', axis=1) 
y_test = test[['Recruitment_Status']] 

As our dataset is imbalanced in terms of classes, we will apply Synthetic 
Minority Oversampling Technique (SMOTE) to synthesize more of the minority 
class by interpolating between the features of the existing data points across the 
minority class. 

oversample = SMOTE(random_state=0) 
x_train, y_train = oversample.fit_resample(x_train, y_

↪→train) 

Now we can train our model and predict on our test set. 

model = DecisionTreeClassifier(criterion="entropy",
↪→max_depth=4, random_state=0) 
model.fit(x_train, y_train) 

y_test_pred = model.predict(x_test) 

Let us see how our model does. 

print(confusion_matrix(y_test, y_test_pred)) 
print(accuracy_score(y_test, y_test_pred)) 

[[ 31 33] 
[ 17 106]] 

0.732620320855615 

Now we have created a model that can predict suitable candidates with 73% 
accuracy. Let us visualize the tree. 

plt.figure(0, figsize=(35, 15)) 
tree.plot_tree(model, fontsize=20) 
plt.show()
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df.columns[8] 

'Location' 

As you can see, the model places significant weightage on Location (x[7]) and 
Gender (x[0]) which may not be ideal. Gender bias can be removed by simply 
excluding such features from the model and location may not matter as much if 
companies are willing to spend more to support recruiting top talent around the 
world. Let us see what happens when we remove these features. 

x_train2 = x_train.drop(['Gender', 'Location'],
↪→axis=1) 
x_test2 = x_test.drop(['Gender', 'Location'], axis=1) 

model = DecisionTreeClassifier(criterion="entropy",
↪→max_depth=4, random_state=0) 
model.fit(x_train2, y_train) 

y_test_pred = model.predict(x_test2) 

print(confusion_matrix(y_test, y_test_pred)) 
print(accuracy_score(y_test, y_test_pred)) 

[[ 34 30] 
[ 21 102]] 

0.7272727272727273 

It looks like our model seems to perform pretty well even without using these 
features. Let us visualize how it decides who is worth recruiting.
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plt.figure(0, figsize=(35, 15)) 
tree.plot_tree(model, fontsize=20) 
plt.show() 

Let us use a more complex model such as a Random Forest which is an ensemble 
of decision trees generated by randomly sampling subsets of the training set with 
replacement. The classes are determined by aggregating the votes across all decision 
trees. 

model = RandomForestClassifier(random_state=0) 
model.fit(x_train2, np.ravel(y_train)) 

y_test_pred = model.predict(x_test2) 

print(confusion_matrix(y_test, y_test_pred)) 
print(accuracy_score(y_test, y_test_pred)) 

[[ 31 33] 
[ 14 109]] 

0.7486631016042781 

We are able to get up to 74.8% accuracy with the random forest. Now we can 
rank our candidates using our model. 

probs = model.predict_proba(x_test2)[:, 1] 
most_suitable_candidates = probs.argsort()[::-1][0:10] 
print(most_suitable_candidates, probs[most_suitable_

↪→candidates]) 

[ 90 37 174 11 68 24 91 113 22 47] [1. 1. 1. 0.99 0.99 0.99 0.
↪→99 0.99 0.98 0.98]
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As you can see, the model is able to recommend the top few candidates that it 
believes suitable. This is a simple model that demonstrates what can be done with 
categorical and numerical variables. More complex models can be developed with 
more data and more descriptive features. For example, sentences in resumes can 
be processed by natural language processing and suitability can be assessed based 
on how well their resume matches a query job description to further improve the 
relevance to each individual job application. 

9.3.3 Course Recommendation 

Professionals require training to fill up their knowledge gaps, required for both their 
present responsibilities and career progression. Training and development play a 
significant role in fostering employee confidence and happiness at work. Thus, it is 
essential for HR departments to recognize skill gaps among employees and conduct 
training programs for them. 

Training needs could originate from the employee, the employee’s supervisor, 
or job-specific requirements. Identifying such needs requires the collection and 
consolidation of data. Looking at training programs that are popular among peers 
with similar interests is one of the ways to go about it. AI will be able to assist by 
analyzing evaluations for various training programs and identifying programs that 
a particular employee may enjoy. In this example, we will look into how AI can be 
used for course recommendation [2]. 

Collaborative filtering is one of the techniques applied in recommendation 
systems for user item suggestion. This approach detects comparable users based 
on the items they share in common. For each user, the system suggests goods 
that comparable users have liked or purchased. Numerous e-commerce websites 
utilize this method to produce product suggestions for visitors. In the exercise, we 
will demonstrate how we can modify the process to develop a system for course 
recommendations. 

We will be using the employee course ratings dataset from this link [1]: 
https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-

ai?select=employee_course_ratings.csv 
The dataset consists of employee evaluations collected from courses they 

completed as part of their training programs. The dataset consists of the employee 
ID, name of the employee who completed the course, course ID, course name, and 
the associated rating provided at the end of the course. The rating scores range 
between one and five, with five being the highest. 

We will develop an algorithm to predict an employee’s rating of a course that he 
or she has not taken yet. We expect that employees would submit a higher rating if 
they found the training beneficial. 

Let us begin by importing the libraries and dataset.

https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
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https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
https://www.kaggle.com/datasets/aryashah2k/datasets-in-hr-analytics-applied-ai?select=employee_course_ratings.csv
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from csv import reader 
import pandas as pd 
import os 
import numpy as np 
import math 
import torch 
from sklearn.model_selection import train_test_split 

ratings_data = pd.read_csv("Human_Resources/employee_
↪→course_ratings.csv") 

ratings_data.head() 

EmployeeID EmpName CourseID CourseName Rating 

0 1408 Ignace Ormonde 14 Video Production 3 

1 1249 Gabriela Balcon 17 Translation 2 

2 1158 Enrique Lewer 8 IT Architecture 3 

3 1564 Wallie Byrd 18 Natural Language Processing 3 

4 1334 Hannah Ganter 6 Java Programming 4 

We will build a list of unique employees and courses. 

#Build list of unique Employees 
emp_list=ratings_data.groupby( 

['EmployeeID','EmpName']).size().reset_index() 
emp_list.head() 
print("Total Employees: ",len(emp_list)) 

#Build list of unique Courses 
course_list=ratings_data.groupby( 

['CourseID','CourseName']).size().reset_index() 
course_list.head() 
print("Total Courses: ", len(course_list)) 

Total Employees: 638 
Total Courses: 25 

Now we will need to split the data into training, validation, and testing. 

ratings_train_val, ratings_test = train_test_
↪→split(ratings_data, test_size=0.1) 
ratings_train, ratings_val = train_test_split(ratings_

↪→train_val, test_size=0.1)
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We will need to define a torch dataset and dataloader in order to load our data for 
training and evaluation. 

class ReviewDataset(torch.utils.data.Dataset): 
def __init__(self, df): 

self.df = df 

def __getitem__(self, idx): 
row = self.df.iloc[idx] 
feats = torch.tensor([row["EmployeeID"], row[

↪→"CourseID"]]) 
labels = torch.tensor(row["Rating"], dtype =

↪→torch.FloatTensor.dtype) 
return feats, labels 

def __len__(self): 
return len(self.df) 

train_dataset = ReviewDataset(ratings_train) 
val_dataset = ReviewDataset(ratings_val) 
test_dataset = ReviewDataset(ratings_test) 
train_dataloader = torch.utils.data.DataLoader(train_

↪→dataset, batch_size=64, shuffle=True) 
val_dataloader = torch.utils.data.DataLoader(val_

↪→dataset, batch_size=64, shuffle=True) 
test_dataloader = torch.utils.data.DataLoader(test_

↪→dataset, batch_size=64, shuffle=True) 

Word embedding is a common language modeling and feature learning technique 
often applied in deep learning, especially in the field of natural language processing. 
Word embeddings translate text into numerical values and represent the connections 
between words using vectors. After training on a dataset, it captures how various 
words relate to one another, with co-occurring terms receiving greater similarity 
scores. 

In this use case, we will utilize employee IDs and course IDs instead of words to 
construct embeddings. Each employee ID and course ID will be represented by its 
own embedding. For each data point, we will concatenate the course ID embedding 
with the employee ID embedding before passing it through our network. 

class CourseRecommender(torch.nn.Module): 
def __init__(self, emp_emb_size = 5, course_emb_

↪→size = 5): 
super(CourseRecommender, self).__init__() 
self.employee_embedding = torch.nn.

↪→Embedding(max(emp_list), emp_emb_size) 
(continues on next page)
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(continued from previous page) 

self.course_embedding = torch.nn.
↪→Embedding(len(course_list)+1, course_emb_size) 

self.fc1 = torch.nn.Linear(emp_emb_size +
↪→course_emb_size, 128) 

self.relu1 = torch.nn.ReLU() 
self.fc2 = torch.nn.Linear(128, 32) 
self.relu2 = torch.nn.ReLU() 
self.fc3 = torch.nn.Linear(32, 1) 

def forward(self, embedding): 
emp_x = self.employee_embedding(embedding[:,

↪→0]) 
course_x = self.course_embedding(embedding[:,

↪→1]) 
merged = torch.cat((emp_x, course_x), dim = 1) 
x = self.fc1(merged) 
x = self.relu1(x) 
x = self.fc2(x) 
x = self.relu2(x) 
x = self.fc3(x) 
x = x.squeeze(1) 
return x 

Now that we have set up our model and dataset, let us define the loss and 
optimizer and begin training the model. 

model = CourseRecommender() 
criterion = torch.nn.MSELoss() 
optimizer = torch.optim.NAdam(model.parameters(),

↪→lr=0.001) 

best_loss = np.inf 
for epoch in range(50): 

training_loss = [] 
validation_loss = [] 

for feats, labels in train_dataloader: 
optimizer.zero_grad() 
loss = criterion(model(feats), labels) 
loss.backward() 
optimizer.step() 

(continues on next page)
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(continued from previous page) 

training_loss.append(loss.detach().cpu().
↪→item()) 

with torch.no_grad(): 
for feats, labels in val_dataloader: 

loss = criterion(model(feats), labels) 
validation_loss.append(loss.detach().

↪→cpu().item()) 

training_loss = np.array(training_loss).mean() 
validation_loss = np.array(validation_loss).mean() 

if validation_loss < best_loss: 
best_model_statedict = model.state_dict() 
best_loss = validation_loss 

print("Epoch: {0}, Training Loss: {1}, Validation
↪→Loss: {2}".format(epoch,

↪→ np.array(training_loss).mean(),

↪→ np.array(validation_loss).mean()

↪→ )) 

Epoch: 0, Training Loss: 7.713223970853365, Validation Loss: 6.383551836013794 

Epoch: 1, Training Loss: 4.214089925472553, Validation Loss: 2.992550849914551 

Epoch: 2, Training Loss: 2.1887883223020115, Validation Loss: 2.358051896095276 

Epoch: 3, Training Loss: 1.9668291165278509, Validation Loss: 2.4290822744369507 

Epoch: 4, Training Loss: 1.9138606878427358, Validation Loss: 2.4183861017227173 

Epoch: 5, Training Loss: 1.867754074243399, Validation Loss: 2.1712432503700256 

Epoch: 6, Training Loss: 1.8279758049891546, Validation Loss: 2.144009292125702 

Epoch: 7, Training Loss: 1.8098880419364343, Validation Loss: 2.1635595560073853 

Epoch: 8, Training Loss: 1.7635837426552405, Validation Loss: 2.004770040512085 

Epoch: 9, Training Loss: 1.7478572313602154, Validation Loss: 1.9925899505615234 

Epoch: 10, Training Loss: 1.7204478337214544, Validation Loss: 2.3151422142982483 

Epoch: 11, Training Loss: 1.7139681027485774, Validation Loss: 2.2434771060943604 

Epoch: 12, Training Loss: 1.6844779253005981, Validation Loss: 2.1030672788619995 

Epoch: 13, Training Loss: 1.665182507955111, Validation Loss: 2.169582962989807 

Epoch: 14, Training Loss: 1.6464892350710356, Validation Loss: 2.3010743856430054 

Epoch: 15, Training Loss: 1.621514888910147, Validation Loss: 2.233031749725342 

Epoch: 16, Training Loss: 1.6048019665938158, Validation Loss: 2.1360620260238647 

Epoch: 17, Training Loss: 1.5979149433282704, Validation Loss: 2.0288277864456177 

Epoch: 18, Training Loss: 1.5910156139960656, Validation Loss: 1.991523027420044 

Epoch: 19, Training Loss: 1.574485448690561, Validation Loss: 2.053059697151184 

Epoch: 20, Training Loss: 1.559514696781452, Validation Loss: 2.073699951171875 

Epoch: 21, Training Loss: 1.540119693829463, Validation Loss: 2.172857403755188 

(continues on next page)



9.3 Applications of AI in Human Resources 161

(continued from previous page) 

Epoch: 22, Training Loss: 1.522446687404926, Validation Loss: 2.1322072744369507 

Epoch: 23, Training Loss: 1.5124560319460356, Validation Loss: 2.1579567193984985 

Epoch: 24, Training Loss: 1.4868639065669134, Validation Loss: 2.0146883726119995 

Epoch: 25, Training Loss: 1.481570372214684, Validation Loss: 1.9257043600082397 

Epoch: 26, Training Loss: 1.4848324427237878, Validation Loss: 1.9063563346862793 

Epoch: 27, Training Loss: 1.453480234512916, Validation Loss: 2.0531848073005676 

Epoch: 28, Training Loss: 1.4430676698684692, Validation Loss: 2.1641669869422913 

Epoch: 29, Training Loss: 1.4371415835160475, Validation Loss: 2.013516664505005 

Epoch: 30, Training Loss: 1.423480198933528, Validation Loss: 1.915759265422821 

Epoch: 31, Training Loss: 1.4072460578038142, Validation Loss: 2.134285807609558 

Epoch: 32, Training Loss: 1.3975641268950243, Validation Loss: 2.0174754858016968 

Epoch: 33, Training Loss: 1.3734032190763032, Validation Loss: 1.9743831157684326 

Epoch: 34, Training Loss: 1.3530409473639269, Validation Loss: 1.9249634146690369 

Epoch: 35, Training Loss: 1.3571633192209096, Validation Loss: 1.9951313734054565 

Epoch: 36, Training Loss: 1.3370022498644316, Validation Loss: 1.6750591397285461 

Epoch: 37, Training Loss: 1.3319801550645094, Validation Loss: 2.0654801726341248 

Epoch: 38, Training Loss: 1.2990752091774573, Validation Loss: 1.8388822674751282 

Epoch: 39, Training Loss: 1.2814254027146559, Validation Loss: 1.896884262561798 

Epoch: 40, Training Loss: 1.277358889579773, Validation Loss: 1.8458614945411682 

Epoch: 41, Training Loss: 1.2613131541472216, Validation Loss: 1.7650485634803772 

Epoch: 42, Training Loss: 1.236700796163999, Validation Loss: 2.0034565329551697 

Epoch: 43, Training Loss: 1.2196704332645123, Validation Loss: 1.8137983083724976 

Epoch: 44, Training Loss: 1.2169052912638738, Validation Loss: 1.90548837184906 

Epoch: 45, Training Loss: 1.1830403483830965, Validation Loss: 1.9475241303443909 

Epoch: 46, Training Loss: 1.1710590766026423, Validation Loss: 2.053204596042633 

Epoch: 47, Training Loss: 1.1692262979654164, Validation Loss: 1.7238733768463135 

Epoch: 48, Training Loss: 1.1471708921285777, Validation Loss: 1.804313838481903 

Epoch: 49, Training Loss: 1.1309779653182397, Validation Loss: 2.1029959321022034 

Now, let us evaluate our model on the test set. 

model.load_state_dict(best_model_statedict) 

test_loss = 0 
with torch.no_grad(): 

for feats, labels in test_dataloader: 
count = len(labels) 
loss = criterion(model(feats), labels) 
test_loss = loss.cpu().item() * len(labels) 

test_loss = test_loss/len(test_dataloader.dataset) 
print("Average MSE:", test_loss) 

0.5740793323516846 

Our model can predict the test set well with an average of 0.57 error in the ratings. 
In order to predict the rating for a particular course, we need to have both the 

employee ID and course ID to be fed into the model. We will demonstrate this for 
employee Harriot Laflin by predicting on all courses that he has not attended. After 
collecting all the rating predictions, we can use argsort to get the indexes and sort 
them by descending value. This will allow us to extract the highest rated five courses 
for him.
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emp_to_predict="Harriot Laflin" 

#Get employee ID for the employee name 
pred_emp_id=emp_list[emp_list['EmpName'] == emp_to_

↪→predict]["EmployeeID"].iloc[0] 

#find Courses already taken by employee. We dont want
↪→to predict those. 
completed_courses=ratings_data[ratings_data[

↪→"EmployeeID"] == pred_emp_id]["CourseID"].unique() 

#Courses not taken by employee 
new_courses = course_list.query("CourseID not in

↪→@completed_courses")["CourseID"] 

#Create a list with the same employee ID repeated for
↪→the same number of times as the 
#number of new courses. This provides the employee

↪→and course Series with same size 
emp_dummy_list=pd.Series(np.array([pred_emp_id for i

↪→in range(len(new_courses))])) 

#Predict ratings for the new courses for this employee 
query_courses = torch.tensor(np.stack((emp_dummy_list.

↪→to_numpy(), new_courses.to_numpy())).transpose()) 
projected_ratings = model(query_courses).detach().

↪→cpu().numpy() 
flat_ratings = projected_ratings.flatten() 

print("Course Ratings: ", flat_ratings) 

#Recommend top 5 courses 
print("\nRating CourseID CourseName\n----------------

↪→-------------------") 
for idx in (-flat_ratings).argsort()[:5]: 

course_id=new_courses.iloc[idx] 
course_name=course_list.query("CourseID ==

↪→@course_id")["CourseName"].iloc[0] 
print(" ", round(flat_ratings[idx],1)," ",

↪→course_id, " ", course_name) 

Course Ratings: [3.1841657 2.7555847 3.086042 3.3539135 3.1158957 3.
↪→5255125 3.583489 
3.2019932 3.8597908 3.9257545 3.8376594 2.8970377 2.7350543 2.8152738 

(continues on next page)
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3.6061487 3.576098 2.9578328 2.6336784 3.0504766 3.4058409 2.6937842 
3.0530422 3.5699735] 

Rating CourseID CourseName
-----------------------------------

3.9 11 Analytical Reasoning 
3.9 10 Mobile Development 
3.8 12 People Management 
3.6 16 Audio Production 
3.6 8 IT Architecture 

As you can see, our model recommends the courses Analytical Reasoning, 
Mobile Development, People Management, Audio Production, and IT Architecture 
for Harriot Laflin. 

9.3.4 Employee Attrition Prediction 

Because recruitment is a costly process and top talents are in short supply, it is 
critical that onboarded employees stay with the firm for as long as feasible. HR is 
responsible for employee training and development, whether for a new recruit or 
an experienced employee, in cooperation with management. Given the increasingly 
interconnected nature of our society, it is now a lot simpler for competitors to snatch 
away top employees. In order to retain the company’s talents, human resource 
departments create a variety of initiatives to encourage employee loyalty and 
retention. Retaining employees requires significant effort to facilitate career growth, 
provide mentorship, perform succession planning, and facilitate interdepartmental 
transfers. Through the use of AI, we can use data collected from internal surveys to 
predict the likelihood that an employee would leave the organization. This can be 
useful in identifying individuals who are at risk of leaving and preventive measures 
can be taken to alleviate the problems that they may face. 

In this example, we will use the dataset from the link below [4]: 
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-

dataset 
This dataset contains various survey results and personal information collected 

from various employees within the company. Employees who have left will be 
marked with “Yes” under the attrition column. We will use this historical infor-
mation to train a model to be able to predict how likely will a particular employee 
leave the company. 

import pandas as pd 
import numpy as np 
import seaborn as sns 
from sklearn.model_selection import train_test_split 
from xgboost import XGBClassifier 

(continues on next page)
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from sklearn.preprocessing import LabelEncoder 
from sklearn.metrics import roc_auc_score 
from sklearn.model_selection import train_test_split,

↪→StratifiedKFold 
from sklearn.metrics import accuracy_score, confusion_

↪→matrix, balanced_accuracy_score 
import matplotlib.pyplot as plt 

Let us take a look at the data. 

employee_attrition_data = pd.read_csv("Human_
↪→Resources/WA_Fn-UseC_-HR-Employee-Attrition.csv") 
employee_attrition_data.head() 

Age Attrition BusinessTravel DailyRate Department \ 

0 41 Yes Travel_Rarely 1102 Sales 

1 49 No Travel_Frequently 279 Research & Development 

2 37 Yes Travel_Rarely 1373 Research & Development 

3 33 No Travel_Frequently 1392 Research & Development 

4 27 No Travel_Rarely 591 Research & Development 

DistanceFromHome Education EducationField EmployeeCount EmployeeNumber \ 

0 1 2 Life Sciences 1 1 

1 8 1 Life Sciences 1 2 

2 2 2 Other 1 4 

3 3 4 Life Sciences 1 5 

4 2 1 Medical 1 7 

... RelationshipSatisfaction StandardHours StockOptionLevel \ 

0 ... 1 80 0 

1 ... 4 80 1 

2 ... 2 80 0 

3 ... 3 80 0 

4 ... 4 80 1 

TotalWorkingYears TrainingTimesLastYear WorkLifeBalance YearsAtCompany \ 

0 8 0 1 6  

1 10 3 3 10  

2 7 3 3 0  

3 8 3 3 8  

4 6 3 3 2  

YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager 

0 4 0 5  

1 7 1 7  

2 0 0 0  

3 7 3 0  

4 2 2 2  

[5 rows x 35 columns]
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employee_attrition_data.info() 

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 1470 entries, 0 to 1469 
Data columns (total 35 columns): 
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Age 1470 non-null int64 
1 Attrition 1470 non-null object 
2 BusinessTravel 1470 non-null object 
3 DailyRate 1470 non-null int64 
4 Department 1470 non-null object 
5 DistanceFromHome 1470 non-null int64 
6 Education 1470 non-null int64 
7 EducationField 1470 non-null object 
8 EmployeeCount 1470 non-null int64 
9 EmployeeNumber 1470 non-null int64 
10 EnvironmentSatisfaction 1470 non-null int64 
11 Gender 1470 non-null object 
12 HourlyRate 1470 non-null int64 
13 JobInvolvement 1470 non-null int64 
14 JobLevel 1470 non-null int64 
15 JobRole 1470 non-null object 
16 JobSatisfaction 1470 non-null int64 
17 MaritalStatus 1470 non-null object 
18 MonthlyIncome 1470 non-null int64 
19 MonthlyRate 1470 non-null int64 
20 NumCompaniesWorked 1470 non-null int64 
21 Over18 1470 non-null object 
22 OverTime 1470 non-null object 
23 PercentSalaryHike 1470 non-null int64 
24 PerformanceRating 1470 non-null int64 
25 RelationshipSatisfaction 1470 non-null int64 
26 StandardHours 1470 non-null int64 
27 StockOptionLevel 1470 non-null int64 
28 TotalWorkingYears 1470 non-null int64 
29 TrainingTimesLastYear 1470 non-null int64 
30 WorkLifeBalance 1470 non-null int64 
31 YearsAtCompany 1470 non-null int64 
32 YearsInCurrentRole 1470 non-null int64 
33 YearsSinceLastPromotion 1470 non-null int64 
34 YearsWithCurrManager 1470 non-null int64 

dtypes: int64(26), object(9) 
memory usage: 402.1+ KB 

We have a total of 34 features collected and 1 “Attrition” ground truth column. 
Here is the explanation for what each number represents in the categorical features 
collected.
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Variable Key 

Education 1 = ‘Below College’, 2 = ‘College’, 3 = ‘Bachelor’, 4 = ‘Master’, 
5 = ‘Doctor’ 

Environment Satisfaction 1 = ‘Low’, 2 = ‘Medium’, 3 = ‘High’, 4 = ‘Very High’ 

Job Involvement 1 = ‘Low’, 2 = ‘Medium’, 3 = ‘High’, 4 = ‘Very High’ 

Job Satisfaction 1 = ‘Low’, 2 = ‘Medium’, 3 = ‘High’, 4 = ‘Very High’ 

Performance Rating 1 = ‘Low’, 2 = ‘Good’, 3 = ‘Excellent’, 4 = ‘Outstanding’ 

Relationship Satisfaction 1 = ‘Low’, 2 = ‘Medium’, 3 = ‘High’, 4 = ‘Very High’ 

Work Life Balance 1 = ‘Bad’, 2 = ‘Good’, 3 = ‘Better’, 4 = ‘Best’ 

Let us begin by mapping the binary variables into numbers. 

employee_attrition_data["IsOver18"] = employee_
↪→attrition_data["Over18"].map({"Y": 1, "N":0}) 
employee_attrition_data["DidOverTime"] = employee_

↪→attrition_data["OverTime"].map({"Yes": 1, "No":0}) 
employee_attrition_data["IsMale"] = employee_

↪→attrition_data["Gender"].map({"Male":1, "Female":0}) 
employee_attrition_data["Quit"] = employee_attrition_

↪→data["Attrition"].map({"Yes": 1, "No": 0}) 

df = employee_attrition_data.drop(["Over18", "OverTime
↪→", "Gender", "Attrition"], axis=1) 

For features with multiple categories such as Job Role, we will need to create 
dummy variables. Dummy variables are set to 1 if the employee belongs to a specific 
category, such as being a Healthcare Representative, and 0 if they do not. 

df = pd.get_dummies(df) 
df.head() 

Age DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber \ 

0 41 1102 1 2 1 1 

1 49 279 8 1 1 2 

2 37 1373 2 2 1 4 

3 33 1392 3 4 1 5 

4 27 591 2 1 1 7 

EnvironmentSatisfaction HourlyRate JobInvolvement JobLevel ... \ 

0 2 94 3 2 ... 

1 3 61 2 2 ... 

2 4 92 2 1 ... 

3 4 56 3 1 ... 

4 1 40 3 1 ... 

JobRole_Laboratory Technician JobRole_Manager \ 

0 0 0  

(continues on next page)
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(continued from previous page) 

1 0 0  

2 1 0  

3 0 0  

4 1 0  

JobRole_Manufacturing Director JobRole_Research Director \ 

0 0 0  

1 0 0  

2 0 0  

3 0 0  

4 0 0  

JobRole_Research Scientist JobRole_Sales Executive \ 

0 0 1  

1 1 0  

2 0 0  

3 1 0  

4 0 0  

JobRole_Sales Representative MaritalStatus_Divorced \ 

0 0 0  

1 0 0  

2 0 0  

3 0 0  

4 0 0  

MaritalStatus_Married MaritalStatus_Single 

0 0 1  

1 1 0  

2 0 1  

3 1 0  

4 1 0  

[5 rows x 54 columns] 

Now, let us plot our features, and we will overlay the features of those that quit 
over those that did not. This will allow us to explore and see if any feature is highly 
correlated with attrition. 

fig, axes = plt.subplots(9, 6, figsize=(20,30)) 
df[df["Quit"] == 0].hist(figsize=(15,15), ax=axes,

↪→grid=False) 
df[df["Quit"] == 1].hist(figsize=(15,15), ax=axes,

↪→grid=False) 
plt.tight_layout() 
plt.show()
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From this plot, we can learn a lot about our data. For example, the proportion of 
sales representatives that remain is only slightly higher than those that have quit their 
jobs. Thus, the sales representative role in the company has a significant attrition 
issue. Furthermore, we can infer that younger staff and lower paid staff are more 
likely to quit. Let us take a look at the how likely is a sales representative to quit. 

ratio = employee_attrition_data.groupby("JobRole")[
↪→"Quit"].sum() / employee_attrition_data.groupby(
↪→"JobRole")["Quit"].count() 
ratio 

JobRole 
Healthcare Representative 0.068702 
Human Resources 0.230769 
Laboratory Technician 0.239382 
Manager 0.049020 
Manufacturing Director 0.068966 
Research Director 0.025000 
Research Scientist 0.160959 
Sales Executive 0.174847 
Sales Representative 0.397590 
Name: Quit, dtype: float64 

Close to 40% of sales representatives eventually quit. That is very high. Let us 
take a look at the salary by jobs. 

mean_salary = employee_attrition_data.groupby("JobRole
↪→")["MonthlyIncome"].mean() 
mean_salary 

JobRole 
Healthcare Representative 7528.763359 
Human Resources 4235.750000 
Laboratory Technician 3237.169884 
Manager 17181.676471 
Manufacturing Director 7295.137931 
Research Director 16033.550000 
Research Scientist 3239.972603 
Sales Executive 6924.279141 
Sales Representative 2626.000000 
Name: MonthlyIncome, dtype: float64 

Sales representatives have a low paying job overall which may contribute to the 
attrition issue. This is better visualized through a scatter plot of attrition against 
salary.
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plt.scatter(mean_salary, ratio) 
plt.show() 

Now, let us split our dataset and train our model. 

features = df.drop("Quit", axis=1) 
labels = df["Quit"] 
X_train, X_test, y_train, y_test = train_test_

↪→split(features, labels, test_size=0.20, random_
↪→state=42) 

model = XGBClassifier(random_state = 0) 
model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 
print(accuracy_score(y_test, y_pred)) 
print(confusion_matrix(y_test, y_pred)) 

0.8809523809523809 
[[247 8] 
[ 27 12]] 

We have achieved an accuracy of 88% on our dataset. 

balanced_accuracy_score(y_test, model.predict(X_test))
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0.6381598793363499 

This can be further improved by using SMOTE to synthesize more examples of 
the minority class. SMOTE does this by interpolating between the features of the 
minority class. 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE(random_state=42) 
X_train, y_train = oversample.fit_resample(X_train, y_

↪→train) 

model = XGBClassifier(random_state = 0) 
model.fit(X_train, y_train) 
y_pred = model.predict(X_test) 

print(accuracy_score(y_test, y_pred)) 
print(confusion_matrix(y_test, model.predict(X_test))) 
print(balanced_accuracy_score(y_test, y_pred)) 

0.8775510204081632 
[[243 12] 
[ 24 15]] 

0.6687782805429864 

It looks like our model’s accuracy dropped slightly, but we are better able to 
predict which staff are likely to quit. Let us perform k-fold cross validation to select 
the best split to further improve our performance. 

import numpy as np 
from sklearn.model_selection import KFold 
from copy import deepcopy 
kf = KFold(n_splits=5, shuffle=True, random_state=42) 

selected_model = None 
best_score = -1 
best_split = None 
for train, test in kf.split(df): 

X_train = df.iloc[train].drop("Quit", axis=1) 
y_train = df.iloc[train]["Quit"] 
oversample = SMOTE(random_state=0) 
X_train, y_train = oversample.fit_resample(X_

↪→train, y_train) 

(continues on next page)
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(continued from previous page) 

model = XGBClassifier(use_label_encoder=False,
↪→verbosity=0) 

model.fit(X_train, y_train) 
X_test = df.iloc[test].drop("Quit", axis=1) 
y_test = df.iloc[test]["Quit"] 

score = balanced_accuracy_score(y_test, model.
↪→predict(X_test)) 

if score > best_score: 
best_score = score 
selected_model = deepcopy(model) 
best_split = X_train, X_test, y_train, y_test 

X_train, X_test, y_train, y_test = best_split 
print(accuracy_score(y_test, selected_model.predict(X_

↪→test))) 
print(confusion_matrix(y_test, selected_model.

↪→predict(X_test))) 
print(balanced_accuracy_score(y_test, selected_model.

↪→predict(X_test))) 

0.8741496598639455 
[[236 7] 
[ 30 21]] 

0.6914790607601065 

Now we have a model that performs better in predicting attrition with a balanced 
accuracy score of 69% while maintaining a high accuracy score of 87.4%. 

Exercises 

1. List at least three different roles and responsibilities of human resource depart-
ments. 

2. List three different challenges that human resource departments face. 
3. For each of the challenges listed in 2, identify one way that artificial intelligence 

could potentially be used to alleviate the problem. 
4. Predict employee attrition for healthcare workers. 

We will utilize this dataset [7]: 
https://www.kaggle.com/datasets/jpmiller/employee-attrition-for-healthcare 
This dataset consists of information collected about various employees working 
in the healthcare sector and a label for whether there was attrition or not.
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In this exercise, try to use what you have learned so far to develop a model that 
can predict whether an employee is likely to leave the company. 
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Chapter 10 
AI in Sales 

Learning Outcomes 

• Understand the roles and responsibilities of sales departments.
• Be able to explain the various segments of the sales cycle.
• Identify ways that artificial intelligence can be applied to business sales.
• Develop artificial intelligence solutions for lead scoring, chatbots, and recommending 

products. 

10.1 Introduction to Sales 

Sales is the process of convincing a potential customer to purchase goods and 
services. The typical sales process usually requires salespeople to contact leads 
that fit the profile of their target audience. These leads are often identified by the 
marketing department first, before being handed over to the sales team. The sales 
team will then qualify the leads produced by the marketing team. Leads that are 
qualified are called Sales Qualified Leads and are ready to be approached by the 
sales team. The salesperson will then persuade the lead to make a purchase by 
highlighting a problem that would be fixed by using the product. 

This is achieved by developing and executing a sales plan. Sales strategies lay 
out explicit guideline and targets for the sales teams to follow. These strategies 
are developed to help maximize sales and also ensure that sales teams are on the 
same page. Prospecting, lead qualification, and developing persuasive messaging 
to demonstrate product value to potential buyers are all essential components of a 
successful sales strategy. 
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Sales representatives are often tasked to: 

1. Convert prospective customers 
The fundamental objective of any company’s sales team is to boost the company’s 
profits by generating more revenue. A successful sales team will be able to 
achieve a high conversion rate and boost the company’s profits. 

2. Grow the business by building relationships 
When the vast majority of your clientele are pleased with the service they receive, 
news quickly spreads about your company. New customers will be easier to con-
vert into paying customers if they can readily obtain glowing recommendations 
from your present customers. An effective sales team establishes the framework 
for future expansion by fostering constructive, long-lasting connections with 
clients. 

3. Retain existing customers 
The cost of bringing in new consumers far outweighs the cost of keeping old 
ones. That is why it is so important for sales and account teams to follow up with 
customers after the transaction to make sure they are satisfied. 

10.1.1 The Sales Cycle 

The sales cycle in Fig. 10.1 represents the various stages that a salesperson would 
have to accomplish in order to convert a client from a prospect into a customer. 
Good sales would eventually lead to more positive word of mouth advertisements 
and repeat purchases, thus restarting the sales cycle once more. 

1. Prospecting 
The first stage of the sales cycle begins with prospecting leads. In this stage 
you will identify ideal customers and figure out a strategy to best position your 
product or services to them. You will also have to identify and compile a list of 
prospective leads to contact once the campaign has started. 
You may want to include the lead’s company, position, and other information in 
your list and categorize them by their industry or other factors. 

2. Making Contact 
Getting in touch with prospective clients is the next step. There are many ways to 
do this—via email, phone, face-to-face meetings, etc. These methods are useful 
but only if potential leads can see the value of your products instantly after 
contact. Start by establishing contact, convincing them of the value you are able 
to provide, and arranging a formal meeting with them. 

3. Qualifying Leads 
This stage happens after the first meeting with a prospective lead. Not everyone 
you add to the leads list may be a good fit, suitable leads are otherwise known as 
a qualified lead. This is why you will need a strong plan for qualifying your leads. 
By only contacting sales qualified leads who have shown interest in purchasing 
your products or services, you can save a lot of time and energy.
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Fig. 10.1 The sales cycle 

Ask questions to get a better understanding of the potential customer’s needs 
and identify areas which you might be able to help with in the first meeting. 
Their expected schedule and budget are two important pieces of information to 
consider. This will help you assess whether working with them will be beneficial. 

4. Lead Nurturing 
Once leads have been successfully qualified, the next step is to begin nurturing 
them. Begin by identifying which of your leads are most likely to convert and 
start providing them with targeted information about your products. This can be 
easily done through email or social media channels. 
However, lead nurturing entails more than simply providing prospective leads 
with brand-related information. This process will entail convincing the lead that 
they need a product or service similar to what your business offers. 

5. Making an Offer 
Presenting offers to prospective leads is a critical next step in the sales cycle. This 
implies sales reps need to convince clients to believe your product or service 
is the greatest possible option for them. This stage not only requires the most 
amount of work but will also provide a possibility of conversion if executed well.
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6. Handling Objections 
When presented with an offer, the vast majority of your potential consumers will 
either reject it outright or flood the sales representatives with inquiries. Therefore, 
sales teams have to respond quickly and effectively to address their questions and 
concerns. 
Some of the common questions that might arise are “Why is the price so 
high?” or “What sets you apart from the competition/what is your unique selling 
proposition (USP)?” You must be ready to respond confidently and calmly to 
their questions. 

7. Closing a Sale 
If all the procedures up to this point were well executed, sales teams will have 
an easier time with this step. The outcome of this stage is dependent on how the 
previous stages were executed. 
The strategy you should adopt in this stage is dependent on how your clients 
established a connection with your brand in the previous stages. A direct 
approach is appropriate if you are confident that you have addressed all of their 
issues and that they are actively listened to what you have to say. Otherwise, if 
you believe they are not being adequately nurtured, a softer approach would be 
appropriate. 

8. Delivery 
After closing a sale, the process does not stop. You will still need to put in the 
effort to continuously win over your customer. Good delivery of your product or 
service can lead to word-of-mouth advertising and more purchases from satisfied 
customers. This is your opportunity to impress them and deliver on the promises 
you made earlier. 

10.2 Artificial Intelligence in Sales 

The concept of highly streamlined sales processes that are powered by artificial 
intelligence and machine learning is not just a fantasy; it is already a reality [3]. 

Through leveraging robust algorithms and in-depth data, intelligent, integrated 
AI-enabled sales solutions have the potential to enhance decision-making, boost 
sales rep productivity, and boost the efficiency of sales processes to produce a 
superior customer experience. 

Including artificial intelligence enabled tools to revamp your sales process 
presents a new opportunity to differentiate yourself from the competition. Currently, 
firms are trying to align their sales processes with manners which customers are 
comfortable in. 

A sustainable competitive advantage can be gained by businesses that identify, 
disseminate, and use best-selling techniques. This means that the vendors’ perfor-
mance is now the single most important factor in determining victory rates.
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To some extent, artificial intelligence may provide a problem for sales teams all 
by itself. However, AI has great promise for increased productivity, effectiveness, 
and sales success when integrated with a well-thought-out strategy. 

Ways that AI is Changing Sales: 

1. Lead Scoring 
2. Price Optimization 
3. Managing for Performance 
4. Upselling and Cross-selling 
5. Forecasting 
6. Customer Improvement 
7. Practice Improvement 
8. Easier Prioritization 
9. Increased Sales 

10. Decreased Costs and Time 
11. Increased Human Touch 

10.3 Applications of AI in Sales 

10.3.1 Lead Scoring 

Lead scoring is the process of assigning a score to each generated lead [6]. Most 
businesses use a point system: the better the fit and interest of the lead, the higher 
the lead’s score. Lead scoring helps marketing and sales focus their efforts so that 
they are always concentrating on the most promising leads to convert. 

Inbound marketing is great because it brings in leads. When your inbound 
marketing approach is in full swing, you will notice a steady flow of qualified leads 
into your website and inbox. 

However, not all leads are created equal, and your sales team only has so many 
hours in a day to close them. Lead scoring provides your marketing and sales teams 
with a standardized scoring framework to determine which leads to prioritize. 

Therefore, lead scoring is necessary to help sales teams avoid burnout and help 
them focus on closing more relevant leads. 

Most lead scoring models utilize a point system, whereby points are assigned 
based on attributes or qualities that a lead has. Points can be either positive or 
negative. As points are tallied for each lead, those with the highest score will be 
the most qualified. 

The fit of a lead refers to how well they suit your product or service. If they are 
in your service region, operate in the appropriate industry, and have the appropriate 
job title or role at their organization, then they likely match your buyer profile. They 
are probably an excellent fit for your product or service. 

However, even if a lead is a perfect match, they are not a high-quality lead if they 
lack interest in your organization, product, or services. When assessing leads, it is
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essential to consider both a lead’s suitability and interest. Webpage visits, interacting 
with offers and looked at your pricing pages are some ways to quantify a buyer’s 
interest in a product or service. 

Lead scoring makes it simple to determine which incoming leads are most likely 
to convert. Therefore, your sales force will spend less time nurturing leads and more 
time closing deals. 

When they are able to see at a glance the best qualified leads, they can invest their 
time in a way that will bring the largest impact to your bottom line. This would be 
accomplished by reaching out to and interacting with those leads first. 

Lead scoring is useful for businesses that want to focus their efforts on prospects 
which will yield the most return. 

Developing a lead scoring strategy that works for your firm requires some effort 
up front, but the result is that your marketing and sales teams are: 

1. Aligned on which leads are the most valuable. 
2. Concentrated on leads that are most likely to result in a profit. 

In this dataset, an education company, XEducation, sells online courses. In this 
example we will create a lead scoring system to help recognizing and selecting 
promising leads that will most likely convert to paying customers. This will be done 
by assigning lead scores to each lead such that customers with a high lead score will 
have a higher chance of conversion. 

The dataset can be obtained from [2]: 
https://www.kaggle.com/datasets/ashydv/leads-dataset 

# https://www.kaggle.com/code/adityamishra0708/lead-
↪→scoring/notebook 
import pandas as pd 
import numpy as np 

leads = pd.read_csv('Sales_Marketing/Leads.csv') 
leads.head() 

Prospect ID Lead Number Lead Origin \ 
0 7927b2df-8bba-4d29-b9a2-b6e0beafe620 660737 API 
1 2a272436-5132-4136-86fa-dcc88c88f482 660728 API 
2 8cc8c611-a219-4f35-ad23-fdfd2656bd8a 660727 Landing Page Submission 
3 0cc2df48-7cf4-4e39-9de9-19797f9b38cc 660719 Landing Page Submission 
4 3256f628-e534-4826-9d63-4a8b88782852 660681 Landing Page Submission 

Lead Source Do Not Email Do Not Call Converted TotalVisits \ 
0 Olark Chat No No 0 0.0 
1 Organic Search No No 0 5.0 
2 Direct Traffic No No 1 2.0 
3 Direct Traffic No No 0 1.0 
4 Google No No 1 2.0 

Total Time Spent on Website Page Views Per Visit ... \ 
0 0 0.0 ... 
1 674 2.5 ... 

(continues on next page)

https://www.kaggle.com/datasets/ashydv/leads-dataset
https://www.kaggle.com/datasets/ashydv/leads-dataset
https://www.kaggle.com/datasets/ashydv/leads-dataset
https://www.kaggle.com/datasets/ashydv/leads-dataset
https://www.kaggle.com/datasets/ashydv/leads-dataset
https://www.kaggle.com/datasets/ashydv/leads-dataset
https://www.kaggle.com/datasets/ashydv/leads-dataset
https://www.kaggle.com/datasets/ashydv/leads-dataset
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(continued from previous page) 
2 1532 2.0 ... 
3 305 1.0 ... 
4 1428 1.0 ... 

Get updates on DM Content Lead Profile City \ 
0 No Select Select 
1 No Select Select 
2 No Potential Lead Mumbai 
3 No Select Mumbai 
4 No Select Mumbai 

Asymmetrique Activity Index Asymmetrique Profile Index \ 
0 02.Medium 02.Medium 
1 02.Medium 02.Medium 
2 02.Medium 01.High 
3 02.Medium 01.High 
4 02.Medium 01.High 

Asymmetrique Activity Score Asymmetrique Profile Score \ 
0 15.0 15.0 
1 15.0 15.0 
2 14.0 20.0 
3 13.0 17.0 
4 15.0 18.0 

I agree to pay the amount through cheque \ 
0 No  
1 No  
2 No  
3 No  
4 No  

A free copy of Mastering The Interview Last Notable Activity 
0 No Modified 
1 No Email Opened 
2 Yes Email Opened 
3 No Modified 
4 No Modified 

[5 rows x 37 columns] 

Let us view the columns in our dataset 

leads.info() 

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 9240 entries, 0 to 9239 
Data columns (total 37 columns): 
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Prospect ID 9240 non-null object 
1 Lead Number 9240 non-null int64 
2 Lead Origin 9240 non-null object 
3 Lead Source 9204 non-null object 
4 Do Not Email 9240 non-null object 
5 Do Not Call 9240 non-null object 
6 Converted 9240 non-null int64 
7 TotalVisits 9103 non-null float64 
8 Total Time Spent on Website 9240 non-null int64 
9 Page Views Per Visit 9103 non-null float64 
10 Last Activity 9137 non-null object 
11 Country 6779 non-null object 

(continues on next page)
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(continued from previous page) 
12 Specialization 7802 non-null object 
13 How did you hear about X Education 7033 non-null object 
14 What is your current occupation 6550 non-null object 
15 What matters most to you in choosing a course 6531 non-null object 
16 Search 9240 non-null object 
17 Magazine 9240 non-null object 
18 Newspaper Article 9240 non-null object 
19 X Education Forums 9240 non-null object 
20 Newspaper 9240 non-null object 
21 Digital Advertisement 9240 non-null object 
22 Through Recommendations 9240 non-null object 
23 Receive More Updates About Our Courses 9240 non-null object 
24 Tags 5887 non-null object 
25 Lead Quality 4473 non-null object 
26 Update me on Supply Chain Content 9240 non-null object 
27 Get updates on DM Content 9240 non-null object 
28 Lead Profile 6531 non-null object 
29 City 7820 non-null object 
30 Asymmetrique Activity Index 5022 non-null object 
31 Asymmetrique Profile Index 5022 non-null object 
32 Asymmetrique Activity Score 5022 non-null float64 
33 Asymmetrique Profile Score 5022 non-null float64 
34 I agree to pay the amount through cheque 9240 non-null object 
35 A free copy of Mastering The Interview 9240 non-null object 
36 Last Notable Activity 9240 non-null object 

dtypes: float64(4), int64(3), object(30) 
memory usage: 2.6+ MB 

Now we will need to drop: 

1. Irrelevant columns as they do not provide useful information. 
2. Columns with too many incomplete information for simplicity instead of figuring 

out how to fill missing values. 
3. Drop columns with 99% of all answers being a single option as this does not help 

discriminate between leads. 

#drop prospect id, lead number, country and city as
↪→it is not helpful in lead scoring 
leads.drop(['Prospect ID', 'Lead Number', 'Country',

↪→'City'], axis = 1, inplace = True) 

#dropping colummns 
cols = leads.columns 

for i in cols: 
# Removing the columns that contain more than 30%

↪→of missing values 
if((100*leads[i].isnull().sum()/len(leads.index))

↪→>= 30): 
leads.drop(i, axis = 1, inplace = True) 
continue 

# Removing columns which 99% of all values are 1
↪→option 

(continues on next page)
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(continued from previous page) 

for value in leads[i].unique(): 
if len(leads[leads[i] == value])/len(leads[i].

↪→dropna()) > 0.99: 
leads.drop(i, axis = 1, inplace = True) 
break 

Afterward, we are left with 11 columns only. 

leads.info() 

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 9240 entries, 0 to 9239 
Data columns (total 14 columns): 
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Lead Origin 9240 non-null object 
1 Lead Source 9204 non-null object 
2 Do Not Email 9240 non-null object 
3 Converted 9240 non-null int64 
4 TotalVisits 9103 non-null float64 
5 Total Time Spent on Website 9240 non-null int64 
6 Page Views Per Visit 9103 non-null float64 
7 Last Activity 9137 non-null object 
8 Specialization 7802 non-null object 
9 How did you hear about X Education 7033 non-null object 
10 What is your current occupation 6550 non-null object 
11 Lead Profile 6531 non-null object 
12 A free copy of Mastering The Interview 9240 non-null object 
13 Last Notable Activity 9240 non-null object 

dtypes: float64(2), int64(2), object(10) 
memory usage: 1010.8+ KB 

leads.info() 

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 9240 entries, 0 to 9239 
Data columns (total 14 columns): 
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Lead Origin 9240 non-null object 
1 Lead Source 9204 non-null object 
2 Do Not Email 9240 non-null object 
3 Converted 9240 non-null int64 
4 TotalVisits 9103 non-null float64 
5 Total Time Spent on Website 9240 non-null int64 
6 Page Views Per Visit 9103 non-null float64 
7 Last Activity 9137 non-null object 
8 Specialization 7802 non-null object 
9 How did you hear about X Education 7033 non-null object 
10 What is your current occupation 6550 non-null object 
11 Lead Profile 6531 non-null object 
12 A free copy of Mastering The Interview 9240 non-null object 
13 Last Notable Activity 9240 non-null object 

(continues on next page)
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(continued from previous page) 
dtypes: float64(2), int64(2), object(10) 
memory usage: 1010.8+ KB 

For each of the remaining columns, let us drop the null rows. 

cols = leads.columns 

for i in cols: 
leads = leads[~pd.isnull(leads[i])] 

print(len(leads)) 

6372 

We now have 6000. + rows to still work with. Let us replace all the values that 
contain “Select” with “others.” 

leads = leads.replace('Select', 'Others') 

We need to create one-hot categorical variables for columns which are not 
numerical. 

dummy_cols= leads.loc[:, leads.dtypes == 'object'] 

print(dummy_cols.columns) 

dummy = pd.get_dummies(leads[dummy_cols.columns],
↪→drop_first=True) 

# Add the results to the master dataframe 
leads = pd.concat([leads, dummy], axis=1) 

leads = leads.drop(dummy_cols.columns, 1) 

Index(['Lead Origin', 'Lead Source', 'Do Not Email',
↪→'Last Activity', 

'Specialization', 'How did you hear about X
↪→Education', 

'What is your current occupation', 'Lead
↪→Profile', 

'A free copy of Mastering The Interview',
↪→'Last Notable Activity'], 

dtype='object') 

Now we will scale numerical features to lie between 0 and 1.
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from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 
leads[['TotalVisits', 'Page Views Per Visit', 'Total

↪→Time Spent on Website']] = scaler.fit_
↪→transform(leads[['TotalVisits', 'Page Views Per
↪→Visit', 'Total Time Spent on Website']]) 
leads.head() 

Converted TotalVisits Total Time Spent on Website Page Views Per Visit \ 
0 0 0.000000 0.000000 0.000000 
1 0 0.019920 0.296655 0.045455 
2 1 0.007968 0.674296 0.036364 
3 0 0.003984 0.134243 0.018182 
4 1 0.007968 0.628521 0.018182 

Lead Origin_Landing Page Submission Lead Origin_Lead Add Form \ 
0 0 0  
1 0 0  
2 1 0  
3 1 0  
4 1 0  

Lead Origin_Lead Import Lead Source_Direct Traffic Lead Source_Facebook \ 
0 0 0 0  
1 0 0 0  
2 0 1 0  
3 0 1 0  
4 0 0 0  

Lead Source_Google ... Last Notable Activity_Email Opened \ 
0 0 ... 0 
1 0 ... 1 
2 0 ... 1 
3 0 ... 0 
4 1 ... 0 

Last Notable Activity_Email Received \ 
0 0  
1 0  
2 0  
3 0  
4 0  

Last Notable Activity_Had a Phone Conversation \ 
0 0  
1 0  
2 0  
3 0  
4 0  

Last Notable Activity_Modified \ 
0 1  
1 0  
2 0  
3 1  
4 1  

Last Notable Activity_Olark Chat Conversation \ 
0 0  
1 0  

(continues on next page)
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(continued from previous page) 
2 0  
3 0  
4 0  

Last Notable Activity_Page Visited on Website \ 
0 0  
1 0  
2 0  
3 0  
4 0  

Last Notable Activity_SMS Sent Last Notable Activity_Unreachable \ 
0 0 0  
1 0 0  
2 0 0  
3 0 0  
4 0 0  

Last Notable Activity_Unsubscribed \ 
0 0  
1 0  
2 0  
3 0  
4 0  

Last Notable Activity_View in browser link Clicked 
0 0  
1 0  
2 0  
3 0  
4 0  

[5 rows x 89 columns] 

Now that our data is all cleaned up, we can split the dataset into training and 
testing data. We will drop our target variable from the features, “Converted,” which 
represents leads that were successfully converted. We will use it for our labels 
instead. 

from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import confusion_matrix,

↪→classification_report 

X = leads.drop(['Converted'], 1) 
y = leads['Converted'] 

# Split the dataset into 70% train and 30% test 
X_train, X_test, y_train, y_test = train_test_split(X,

↪→ y, train_size=0.7, test_size=0.3, random_state=100) 

Now let us train our model.
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logreg = LogisticRegression(solver='liblinear') 
logreg.fit(X_train,y_train) 

print("Training Accuracy") 
print(logreg.score(X_train,y_train)) 
print("Testing Accuracy") 
print(logreg.score(X_test,y_test)) 

predicted = logreg.predict(X_test) 
print(confusion_matrix(y_test,predicted)) 
print(classification_report(y_test,predicted)) 

Training Accuracy 
0.8141255605381166 
Testing Accuracy 
0.8043933054393305 
[[824 164] 
[210 714]] 

precision recall f1-score support 

0 0.80 0.83 0.82 988 
1 0.81 0.77 0.79 924 

accuracy 0.80 1912 
macro avg 0.81 0.80 0.80 1912 

weighted avg 0.80 0.80 0.80 1912 

Our model has achieved a testing accuracy of 80.4%, which means we can 
correctly classify whether a lead will be converted or not with 80% accuracy. We 
can further rank the leads based on the probability scores provided by the logistic 
regression function where index 1 represents the probability of a lead converting. 
This score is our lead score. Let us view which are the top 10 leads in our test set. 

lead_score = logreg.predict_proba(X_test)[:,1] 
sorted_leads = lead_score.argsort() 
# reverse the order since argsort returns results in

↪→ascending order 
sorted_leads = sorted_leads[::-1] 

print(sorted_leads[0:10]) 
print(lead_score[sorted_leads][0:10]) 

[ 399 430 1323 905 1546 160 79 91 131 1744] 
[0.99916925 0.99838004 0.99774375 0.99766929 0.

↪→99766929 0.99763192 
0.99763192 0.99763192 0.99763192 0.99750443] 

Great, now we know which leads our sales reps should focus on first.
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10.3.2 Sales Assistant Chatbot 

Salespeople are under consistent pressure to generate new business. However, they 
are often bogged down by administrative tasks that prevent them from focusing on 
what really matters: closing deals and developing relationships with prospects [4]. 

Shortening the sales cycle will mean increasing the productivity of the sales 
teams, thus bringing in more sales to the company. However, improving the sales 
cycle is easier said than done. In order to do so, we need to be fully aware of the 
things happening at every stage of the cycle to identify practices that work and things 
that need improvement. 

For example, improving the quality of your leads or identifying leads that are 
more likely to become loyal customers will help you save time and effort in 
nurturing unqualified leads. 

Artificial intelligence can be utilized in sales to boost the productivity of the 
sales operations. This can come in the form of chatbots and virtual assistants that 
can help reduce the administrative and repetitive work that sales teams encounter. 
For example, chatbots can help ask and answer simple and repetitive questions that 
can reduce time spent by the sales representative. 

Simple questions such as “Are you an existing customer?” ensure that chats 
are correctly routed to customer support instead of sales. Other questions such 
as “What are you looking for?” can help determine which products the customer 
might be interested in. With existing information about the customer, personalized 
chats can be tailored to improve customer experience and engagement. All of this 
information would allow the chatbot to route the appropriate sales team based on 
interest, location, industry, and many other factors. 

Benefits will include: 

1. Better customer engagement and reduced churn with instant responses 
Research indicates that leads are more likely to convert into customers if you 
respond quickly under the first five minutes [5]. Chatbots enable 24/7 instant 
conversations, and thus this allows people to engage with businesses anytime, 
anywhere. This allows businesses to engage with their potential customers and 
increase the chances of converting them into paying customers. 
Conversational commerce is also picking up via messenger apps which allows 
chatbots to help drive businesses and sales through platforms such as WhatsApp, 
Telegram, and Facebook Messenger. 

2. Customer-centric conversations 
Personalization is a key feature of chatbots as they can analyze the customers, 
data, conversations, and behavior to effectively respond, recommend, or nudge 
them into making a purchase. This helps drive customer satisfaction and 
increases sales efficiency. 

For example, chatbots are able to re-target prospective customers who stop 
halfway while making a purchase, thus creating new opportunities with no 
human intervention [1]. The bot re-engages with these clients to answer their 
questions and convince them to make the purchase by offering exclusive deals
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and discounts for a limited time. This has the potential to increase customer 
engagement by 15% and speed up sales by 15–20%. 

3. Allowing sales teams to better focus on selling 
Sales teams are able to better focus on selling tasks rather than administrative 
duties that can be offloaded by the chatbot. This can help increase conversions in 
a business as sales teams are able to provide higher quality interactions with 
potential customers and reach out to more leads. Furthermore, conversation 
guidance can help recommend ideas and messages to sales representatives to 
help tailor to the customer and improve their sales pitches. 
After sales, customer service can also be assisted by chatbots by sending follow-
up messages and collecting feedback. This will help sales teams to help improve 
customer satisfaction. 

Here we will demonstrate how to develop a simple telegram chatbot using the 
SnatchBot platform. 

To begin, please visit https://snatchbot.me/ and register for a free account. 
After you are done, login to your account and you should be directed to your 

dashboard with a navigation sidebar on the left. Click on “My Bots” on the sidebar 
as shown in Fig. 10.2 to manage your chatbots. 

This page will allow you to see all your bots. 
Click on “Create Bot” as shown in Fig. 10.3 to create your first bot. 
Now click on “Blank Bot” as shown in Fig. 10.4. 
Decide on a name for your bot, write a description, select your language of 

choice, and upload a profile photo for your bot as shown in Fig. 10.5. 
Now that the bot has been created, we will need to develop the chat interface. 
Click on “Add new interaction/Plugin” as shown in Fig. 10.6 to create the 

opening message. 

Fig. 10.2 Click on my bots

https://snatchbot.me/
https://snatchbot.me/
https://snatchbot.me/
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Fig. 10.3 Click on create bot 

Fig. 10.4 Click on blank bot 

On this page, select the “Bot Statement” option, name the interaction “Welcome,” 
and click “Add” as shown in Fig. 10.7. 

Type in a message in the message box, shown in Fig. 10.8, you would like the 
customer to see. For example, you could craft a message saying “Hello welcome to 
XYZ store, we are a business that sells sneakers. How may I help you?” 

In this example, let us assume the customer wants to know about the latest 
sneakers you have in stock. To do that, you will need to craft a response and create 
a connection.
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Fig. 10.5 Fill in name 

Fig. 10.6 Add interaction 

Let us create a new response by clicking on “Add new interaction / plugin” again 
to create another response, just like how the Welcome statement was created. 

Once again, select the “Bot Statement” option, name the interaction “Response,” 
and click “Add.” 

Write a response such as “Our latest sneaker additions in March are the Adidas 
NMD 360 shoes and the Nike Air Max 270.” 

Now that you have crafted a response, you will need to set up a connection. 
Go back to “Welcome” (Fig. 10.9). 
In the tabs shown in Fig. 10.10, select “Connections.” 
Type in a quick reply option such as “See New Arrivals” and click on the “+” 

button to add the quick reply. A prompt will ask you whether you would like to add 
a new connection to your quick reply. Click on “Yes” to proceed. You will see the 
dialog below in Fig. 10.11.
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Fig. 10.7 Add bot statement 

Under Item, select “Response to this interaction.” Under condition, select 
“contains (any part).” Under interaction, select “Response.” Click "Add Quick 
Reply" as shown in Fig. 10.11. 

Congrats! you have created your first chatbot! 
Now let us deploy it on telegram. 
Download telegram. 
Create an account. 
Go to telegram web at https://web.telegram.org/ 
Type BotFather in the search bar shown in Fig. 10.12. 
Click on the start button, and you now will see the prompts in Fig. 10.13. 
Type /new bot. 
Type the name of your telegram bot, e.g., “XYZ store.”

https://web.telegram.org/
https://web.telegram.org/
https://web.telegram.org/
https://web.telegram.org/
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Fig. 10.8 Add message 

Fig. 10.9 Click on welcome 

Type the unique telegram username for your bot, and this will be how people can 
find your bot publicly on telegram. 

Copy the token shown in Fig. 10.14. 
Go back to the SnatchBot webpage. 
Click on channels. 
Click on telegram as shown in Fig. 10.15. 
Scroll down to click on step 3.
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Fig. 10.10 Select connections tab 

Paste the Telegram API token into the text box as shown in Fig. 10.16, and click 
“Deploy.” 

Now your bot is running live on telegram! 
In this example, we have shown how a simple chatbot can be created via the 

SnatchBot platform. There are many more things that can be done with chatbots. 

1. Complex conversations and better insights can be enabled with the use of Natural 
Language Processing techniques. 

2. Live agents can be directed into the chatbot when more assistance is required. 
3. Collection and verification of personal details such as emails, phone numbers, 

addresses, and identity numbers. 
4. Schedule and arrange delivery dates, meetings, and other appointments. 
5. Redirect users to appropriate websites. 
6. Direct users to answers via search engines. 
7. Perform translation to a different language. 
8. Perform sales of goods and collecting payments using payment gateways. 

A good use of AI chatbots can immensely benefit businesses in driving sales and 
shortening the sales cycles.
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Fig. 10.11 Add quick reply 

Fig. 10.12 Telegram search bar 

10.3.3 Product Recommender Systems 

Recommendation systems are software that analyze a wide range of data collected 
from customers through online interactions. It can then intelligently analyze each 
user’s usage patterns based on this vast amount of data and provide recommenda-
tions for the goods, offers, and bargains that are most likely to appeal to them. 

The algorithm powering a recommendation system takes into account things like 
a person’s page views, product interests, time spent on the site, and the types of 
pages they visit to determine what goods and categories to propose to that user. 

Some systems also use language analysis, which enables them to determine 
which keywords will have the biggest influence when tailoring the shopping 
experience.
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Fig. 10.13 Create new bot 

There are generally 2 main types of recommender systems [7]: 

1. Content filtering 
This is the quickest recommendation system to create. With a single user, the 
system may begin to study their activity and generate customized recommenda-
tions. It offers personalized recommendations based on the customer’s browsing 
activity. 
The most well-known examples are Netflix and Spotify, which are built on 
personalization algorithms that assess the content consumption of each visitor in 
order to recommend films, television shows, and music that correspond to their 
preferences.
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Fig. 10.14 HTTP API key 

Content-based suggestions analyze a customer’s previous visits and purchases in 
order to determine which products best suit their apparent preferences. 
The disadvantage of this type of system is that it requires a large amount of 
constant data input and must evaluate massive amounts of data if the store 
has a high volume of traffic. This needs several hours of analysis, as well as 
repeating and revising forecasts whenever new buyers visit or the product catalog 
is updated. 
In addition, for such recommendation systems to be successful and beneficial 
to the consumer, product content must be well organized and categorized. Only 
then will the system be able to return the most relevant suggestions. 

2. Collaborative filtering 
Recommendations are generated by providing visitors with suggestions of 
products or items that have received high ratings from users with comparable 
characteristics. Instead of producing personalized recommendations based on 
each user’s preferences, the system functions as a bridge between similar
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Fig. 10.15 Set up telegram bot 

Fig. 10.16 Fill in HTTP API key 

customers. Unlike content filtering, collaborative filtering does not need the items 
to be categorized. However, it does need a lot of transactions from different users. 
Amazon popularized this approach, and you will identify it by the “Other 
customers also bought” section. 

Recommender systems—whether they are using content-based, item-based, or 
user-based filtering methods—all have one requirement in common: their under-
lying algorithms require a good amount of information for them to generate a 
relevant product recommendation. When products are new and few customers have 
purchased them, the amount of information available to recommender systems 
can be too low to calculate a correlation and the products may not appear within 
recommendations. This is known as the “cold start.” It takes a time for products 
to warm up and generate enough data to allow recommender systems to produce 
relevant results. 

After attaining sufficient data, we can use AI to analyze objects that are 
frequently bought together and recommend them to customers who have added one 
of the items to cart. This will help to increase the number of products sold and boost 
the revenue of the business.
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In this example, we will be creating a recommender system based on collabora-
tive filtering using the Online Retail dataset. The dataset can be obtained from: 

https://archive.ics.uci.edu/ml/machine-learning-databases/00352/Online 
Retail.xlsx 

import pandas as pd 

First, let us read the data and take a quick look at it. 

df = pd.read_excel("Sales_Marketing/Online Retail.xlsx
↪→") 
df.head() 

InvoiceNo StockCode Description Quantity \ 
0 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 
1 536365 71053 WHITE METAL LANTERN 6 
2 536365 84406B CREAM CUPID HEARTS COAT HANGER 8 
3 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 
4 536365 84029E RED WOOLLY HOTTIE WHITE HEART. 6 

InvoiceDate UnitPrice CustomerID Country 
0 2010-12-01 08:26:00 2.55 17850.0 United Kingdom 
1 2010-12-01 08:26:00 3.39 17850.0 United Kingdom 
2 2010-12-01 08:26:00 2.75 17850.0 United Kingdom 
3 2010-12-01 08:26:00 3.39 17850.0 United Kingdom 
4 2010-12-01 08:26:00 3.39 17850.0 United Kingdom 

We are only interested in the InvoiceNo, StockCode, Description, and Quantity, 
so let us filter it out. 

df_baskets = df[['InvoiceNo', 'StockCode',
↪→'Description', 'Quantity']] 
df_baskets.head() 

InvoiceNo StockCode Description Quantity 
0 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 
1 536365 71053 WHITE METAL LANTERN 6 
2 536365 84406B CREAM CUPID HEARTS COAT HANGER 8 
3 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 
4 536365 84029E RED WOOLLY HOTTIE WHITE HEART. 6 

Now we will convert the dataset into a sparse matrix, listing the items purchased 
in each transaction using pandas’s pivot table. 

df_items = df_baskets.pivot_table(index='InvoiceNo',
↪→columns=['Description'], values='Quantity').
↪→fillna(0) 
df_items.head(5)



-2016 1266 a -2016 1266 a
 
https://archive.ics.uci.edu/ml/machine-learning-databases/00352/Online%20Retail.xlsx
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Description 20713 4 PURPLE FLOCK DINNER CANDLES \ 

InvoiceNo 

536365 0.0 0.0 

536366 0.0 0.0 

536367 0.0 0.0 

536368 0.0 0.0 

536369 0.0 0.0 

Description 50'S CHRISTMAS GIFT BAG LARGE DOLLY GIRL BEAKER \ 

InvoiceNo 

536365 0.0 0.0 

536366 0.0 0.0 

536367 0.0 0.0 

536368 0.0 0.0 

536369 0.0 0.0 

Description I LOVE LONDON MINI BACKPACK I LOVE LONDON MINI RUCKSACK \ 

InvoiceNo 

536365 0.0 0.0 

536366 0.0 0.0 

536367 0.0 0.0 

536368 0.0 0.0 

536369 0.0 0.0 

Description NINE DRAWER OFFICE TIDY OVAL WALL MIRROR DIAMANTE \ 

InvoiceNo 

536365 0.0 0.0 

536366 0.0 0.0 

536367 0.0 0.0 

536368 0.0 0.0 

536369 0.0 0.0 

Description RED SPOT GIFT BAG LARGE SET 2 TEA TOWELS I LOVE LONDON ... \ 

InvoiceNo ... 

536365 0.0 0.0 ... 

536366 0.0 0.0 ... 

536367 0.0 0.0 ... 

536368 0.0 0.0 ... 

536369 0.0 0.0 ... 

Description wrongly coded 20713 wrongly coded 23343 wrongly coded-23343 \ 

InvoiceNo 

536365 0.0 0.0 0.0 

536366 0.0 0.0 0.0 

536367 0.0 0.0 0.0 

536368 0.0 0.0 0.0 

536369 0.0 0.0 0.0 

Description wrongly marked wrongly marked 23343 \ 

InvoiceNo 

536365 0.0 0.0 

536366 0.0 0.0 

536367 0.0 0.0 

536368 0.0 0.0 

536369 0.0 0.0 

Description wrongly marked carton 22804 wrongly marked. 23343 in box \ 

InvoiceNo 

(continues on next page)
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(continued from previous page) 

536365 0.0 0.0 

536366 0.0 0.0 

536367 0.0 0.0 

536368 0.0 0.0 

536369 0.0 0.0 

Description wrongly sold (22719) barcode wrongly sold as sets \ 

InvoiceNo 

536365 0.0 0.0 

536366 0.0 0.0 

536367 0.0 0.0 

536368 0.0 0.0 

536369 0.0 0.0 

Description wrongly sold sets 

InvoiceNo 

536365 0.0 

536366 0.0 

536367 0.0 

536368 0.0 

536369 0.0 

[5 rows x 4223 columns] 

10.3.4 Recommending via Pairwise Correlated Purchases 

One simple way to recommend products frequently purchased together is to use 
correlation to identify objects which are often purchased together in the same 
transaction. When two objects are frequently purchased together, the correlation 
score would be high. On the other hand, the correlation score would be low if they 
are not frequently purchased together. In this example, we can further filter results 
to have a minimum correlation of 0.3 to filter out weak correlations. 

def get_recommendations(df, item, threshold=0.3): 
"""Generate a set of product recommendations

↪→using item-based collaborative filtering. 

Args: 
df (dataframe): Pandas dataframe containing

↪→matrix of items purchased. 
item (string): Column name for target item. 

Returns: 
recommendations (dataframe): Pandas dataframe

↪→containing product recommendations. 
""" 

(continues on next page)
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(continued from previous page) 

recommendations = df.corrwith(df[item]) 
recommendations.dropna(inplace=True) 
recommendations = pd.DataFrame(recommendations,

↪→columns=['correlation']).reset_index() 
recommendations = recommendations.sort_values(by=

↪→'correlation', ascending=False) 
return recommendations[recommendations[

↪→"correlation"] > threshold] 

By querying for the WHITE HANGING HEART T-LIGHT HOLDER, we 
can see that GIN . + TONIC DIET METAL SIGN and FAIRY CAKE FLANNEL 
ASSORTED COLOUR have a high correlation score of 0.8 and would make a great 
recommendation. 

recommendations = get_recommendations(df_items,
↪→'WHITE HANGING HEART T-LIGHT HOLDER') 
recommendations 

Description correlation 
3918 WHITE HANGING HEART T-LIGHT HOLDER 1.000000 
1478 GIN + TONIC DIET METAL SIGN 0.824987 
1241 FAIRY CAKE FLANNEL ASSORTED COLOUR 0.820905 
1072 DOORMAT FAIRY CAKE 0.483524 
3627 TEA TIME PARTY BUNTING 0.469207 
2847 RED HANGING HEART T-LIGHT HOLDER 0.342551 
3630 TEA TIME TEA TOWELS 0.337001 
1710 HEART OF WICKER SMALL 0.311869 

However, using correlations in this manner will only tell us about the relation-
ships between two items. In order to find a third recommendation when pairs of 
items were purchased together, we will need to group the itemsets together and there 
will be many pairings. Another way we can identify prominent recommendations is 
by association rule mining. 

Association rules are “if-then” statements, which help to show the probability of 
relationships between data items, within large data sets in various types of databases. 

Association rule mining is the process of engineering data into a predictive 
feature in order to fit the requirements or to improve the performance of a machine 
learning model. The Apriori Algorithm is an algorithm used to perform association 
rule mining over a structured dataset. 

An itemset is a set of items in a transaction. An itemset of size 3 means there are 
3 items in the set. In general, it can be of any size, unless specified otherwise. 

Association Rule

• Forms: X => Y.
• X associated with Y.
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• X is the “antecedent” itemset, and Y is the “consequent” itemset.
• There might be more than one item in X or Y. 

In order to select the interesting rules out of multiple possible rules from this 
small business scenario, we will be using the following measures:

• Support 
Support is an indication of how frequently the item appears in the dataset. For 
example, how popular a product is in a shop. 

The support for the combination A and B would be,
- P(AB) or P(A) for Individual A

• Confidence 
Confidence is an indication of how often the rule has been found to be true. It 
indicates how reliable the rule is. For example, how likely is it that someone 
would buy toothpaste when buying a toothbrush. 

In other words, confidence is the conditional
↪→probability of the consequent given the antecedent,

- P(B|A), where P(B|A) = P(AB)/P(A)

• Lift 
Lift is a metric to measure the ratio of the confidence of products occurring 
together if they were statistically independent. For example, how likely is another 
product purchased when purchasing a product, while controlling how popular the 
other product is. 
A lift score that is smaller than 1 indicates that the antecedent and the consequent 
are substitutes of each other. This means that the occurence of the antecedent 
has a negative impact on the occurence of the consequent. A lift score that is 
greater than 1 indicates that the antecedent and consequent are dependent to each 
other, and the occurrence of antecedent has a positive impact on the occurrence 
of consequent. A lift score that is smaller than 1 indicates that the antecedent and 
the consequent are substitute each other that means the existence of antecedent 
has a negative impact to consequent or vice versa. 

Consider an association rule ``if A then B.” The
↪→lift for the rule is defined as
- P(B|A)/P(B), which is also P(AB)/(P(A)*P(B)). 

As shown in the formula, lift is symmetric in that
↪→the lift for ``if A then B” is the same as the lift
↪→for ``if B then A.”
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Fig. 10.17 Example 
transaction database

• Conviction 
Conviction score is a ratio between the probability that one product occurs 
without another while they were dependent and the actual probability of one 
product’s existence without another. It measures the implied strength of the 
rule from statistical independence, for example, if the (oranges) .→ (apples) 
association has a conviction score of 1.5; the rule would be incorrect 1.5 times 
more often (50% more often) if the association between the two were totally 
independent. 

The Conviction score of A -> B would be defined as :
- (1 - Support(B)) / (1 - Confidence(A -> B)) 

Using this small example in Fig. 10.17, we can calculate the support, confidence, 
and lift of a rule. 

For example, for the rule {milk, bread} => Butter, we can calculate the following 
measures:

• Support ({milk}) = 2/5 = 0.4
• Support ({milk, bread}) = 2/5 = 0.4
• Confidence ({milk, bread} => Butter)= 1/2 = 0.5
• Lift ({milk, bread} => Butter) = (1/2) / (2/5) = 1.25 

We can find multiple rules from this scenario. For example, in a transaction of 
milk and bread, if milk is bought, then customers also buy bread. 

In the following example, we will mine for good association rules to identify 
good recommendations by analyzing the data. 

import numpy as np 
df_associations = (df_items >= 1).astype(np.int) 

We will use a small support of 0.02 as the data is sparse since there are many 
transactions and many item options for our customers to purchase. A confidence 
threshold of 0.5 is set so that we select good associations.
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from mlxtend.frequent_patterns import apriori,
↪→association_rules 
item = apriori(df_associations, use_colnames=True,

↪→min_support=0.02) 
item.head() 

support itemsets 
0 0.039066 (6 RIBBONS RUSTIC CHARM) 
1 0.025280 (60 CAKE CASES VINTAGE CHRISTMAS) 
2 0.033871 (60 TEATIME FAIRY CAKE CASES) 
3 0.025157 (72 SWEETHEART FAIRY CAKE CASES) 
4 0.040088 (ALARM CLOCK BAKELIKE GREEN) 

rules = association_rules(item, metric = 'confidence',
↪→ min_threshold=0.5) 
rules.head() 

antecedents consequents \ 
0 (ALARM CLOCK BAKELIKE RED ) (ALARM CLOCK BAKELIKE GREEN) 
1 (ALARM CLOCK BAKELIKE GREEN) (ALARM CLOCK BAKELIKE RED ) 
2 (CHARLOTTE BAG PINK POLKADOT) (RED RETROSPOT CHARLOTTE BAG) 
3 (RED RETROSPOT CHARLOTTE BAG) (CHARLOTTE BAG PINK POLKADOT) 
4 (CHARLOTTE BAG SUKI DESIGN) (RED RETROSPOT CHARLOTTE BAG) 

antecedent support consequent support support confidence lift \ 
0 0.042993 0.040088 0.026180 0.608944 15.190043 
1 0.040088 0.042993 0.026180 0.653061 15.190043 
2 0.030394 0.042297 0.021353 0.702557 16.609974 
3 0.042297 0.030394 0.021353 0.504836 16.609974 
4 0.036080 0.042297 0.020740 0.574830 13.590225 

leverage conviction 
0 0.024457 2.454665 
1 0.024457 2.758433 
2 0.020068 3.219788 
3 0.020068 1.958151 
4 0.019214 2.252517 

From the earlier analysis, we can see that people who purchase ALARM CLOCK 
BAKELIKE RED tend to also purchase ALARM CLOCK BAKELIKE GREEN. 
Thus, it might be meaningful to consider creating discounted variety packs for alarm 
clocks to encourage more purchases. 

Additionally, we are able to recommend other similar products to help the 
customer pick better products across relevant searches. This could help raise 
customer satisfaction by allowing them to products that would better suit their needs.
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In this example, we will implement a text-based search engine 

import pandas as pd 
df = pd.read_excel("Sales_Marketing/Online Retail.xlsx

↪→") 

In this example, we will search for products with descriptions similar to the 
“WHITE HANGING HEART T-LIGHT HOLDER.” To do this, we will convert 
all the descriptions found in the dataset into a document embedding using the flair 
library and compare it against the document embedding of “WHITE HANGING 
HEART T-LIGHT HOLDER.” 

from flair.Embeddings import WordEmbeddings,
↪→DocumentPoolEmbeddings 
from flair.data import Sentence 
import torch 

# initialize the word embeddings 
glove_embedding = WordEmbeddings('glove') 

# initialize the document embeddings, mode = mean 
document_embeddings = DocumentPoolEmbeddings([glove_

↪→embedding]) 

First, we need to convert all the descriptions in the dataset to embeddings. 

product_description = df["Description"].dropna().
↪→unique() 

Embeddings = [] 
for description in product_description: 

# create an example sentence 
sentence = Sentence(str(description)) 
# embed the sentence with our document embedding 
document_embeddings.embed(sentence) 
Embeddings.append(sentence.embedding) 

Embeddings = torch.stack(Embeddings) 

Now let us get the document embedding of “WHITE HANGING HEART 
T-LIGHT HOLDER.” We will use cosine similarity to identify the top 5 most 
similar descriptions. In this case, we can see that the “RED HANGING HEART 
T-LIGHT HOLDER” and “PINK HANGING HEART T-LIGHT HOLDER” are 
other possible relevant items that the user could be interested in.
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# create an example sentence 
sentence = Sentence('WHITE HANGING HEART T-LIGHT

↪→HOLDER') 

# embed the sentence with our document embedding 
document_embeddings.embed(sentence) 

cos = torch.nn.CosineSimilarity(dim=1) 
output = cos(sentence.embedding.unsqueeze(0),

↪→Embeddings) 
output.argsort(descending=True) 
product_description[output.

↪→argsort(descending=True)[1:6].cpu()] 

array(['RED HANGING HEART T-LIGHT HOLDER', 
'PINK HANGING HEART T-LIGHT HOLDER', 'BLACK

↪→HEART CARD HOLDER', 
'CREAM HANGING HEART T-LIGHT HOLDER', 
'HEART STRING MEMO HOLDER HANGING'],

↪→dtype=object) 

Through various uses such as lead scoring, recommendation systems, and chat-
bots, artificial intelligence is able to help streamline and optimize sales processes, 
bringing in increased productivity and profit for businesses. 

Exercises 

1. List the different roles and responsibilities of the sales team. 
2. For each stage of the sales cycle below, explain how making improvements to 

each stage will impact the sales process.

• Prospecting
• Making contact
• Qualifying leads
• Lead nurturing
• Making an offer
• Handling objections
• Closing a sale
• Delivering 

3. List three different challenges that sales departments face. 
4. For each of the challenges listed in 2, identify one way that artificial intelligence 

could potentially be used to alleviate the problem.



208 10 AI in Sales

5. Develop a chatbot that helps answer customer queries and direct the flow of 
conversation to different sales teams. 

Assume that you work in a business that sells beauty products. The company 
sells skincare, body wash, shampoo, and makeup products targeted for people of 
different age groups and gender. 

In this exercise, try to use what you have learned so far to develop a chatbot 
that can:

• Direct potential buyers to the relevant sales team.
• Help answer frequently asked questions to potential customers.
• Schedule meetings with salespeople. 
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Chapter 11 
AI in Marketing 

Learning Outcomes 

• Understand the roles and responsibilities of marketing departments.
• Be able to explain the differences in roles between sales and marketing teams.
• Identify ways that artificial intelligence can be applied to marketing.
• Develop artificial intelligence solutions for customer segmentation and identify word 

which brands are associated with. 

11.1 Introduction to Marketing 

Marketing is the process of attracting potential clients to a company’s products or 
services. The overarching purpose of marketing is to persuade customers to buy 
a product or service by communicating the benefits it can bring. Market research 
helps businesses determine their target audience and understand their needs. Based 
on their research, marketing teams will develop a marketing strategy to formulate 
the 4Ps of marketing: Product, Pricing, Promotion, and Place. 

The marketing department is tasked with cultivating interest for the company’s 
products and is also responsible for creating and maintaining the image of a 
company. The scope of marketing teams includes: 

1. Brand image and perception 
Brand image is the customer’s impression about a brand and is developed over 
time. Customers’ perceptions of a brand are formed based on their experiences 
and interactions with the brand. These interactions can occur in a variety of ways, 
not just through the purchase or use of a product or service. 
When a consumer makes a purchase, he or she is also purchasing the image 
associated with the product or service offered. Therefore, brands need to be 
distinctive, positive, and immediately recognizable. Brand communication, such 
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as product packaging, advertisements, word-of-mouth marketing, and other 
forms of promotion, can also be used to bolster the brand’s reputation. 

2. Market research 
Market research provides critical information essential to understand your market 
and competitive landscape. Knowing how your target audience views your 
business is important in expanding your business. It can provide insights to 
better engage with them, analyze our performance compared to the competition, 
and highlight the way forward. All these insights will lead to better product 
development, return on advertising, customer satisfaction, and lead generation. 

3. Developing and disseminating promotional content 
Content marketing provides answers to audience inquiries while also fostering 
relationships, enhancing conversions, and generating leads. Customers are more 
likely to do business with a company if they feel confident that they are dealing 
with industry experts. Thus, content marketing is a great way to prove your 
brand’s knowledge and credibility in your niche. Content marketing can help 
build trust in your brand while imparting useful information that will enable the 
reader to make a wiser choice when making a purchase. 

4. Tracking trends and monitoring competition campaigns 
Keeping up with the latest trends helps to generate more original ideas and 
knowing which trends are popular might help you produce similar content and 
remain relevant. By monitoring and analyzing these trends, marketing teams can 
identify ways to improve, reach, and engage the target audience better. To stay 
ahead of the competition, it is important to pay attention to the latest industry 
trends and find out how to implement them into your own firm. 
Understanding the competition will enable businesses to better anticipate the 
innovations of rivals and strategize how to respond to them. Keeping an eye on 
the competition can also help avoid making poor business choices. Furthermore, 
we can avoid making mistakes by learning from their failures. 

5. Performing optimization of marketing campaigns 
Improving marketing campaigns can be done in a variety of ways such as 
working on search engine optimization, improving content scores, identifying 
better target audiences, etc. Through search engine optimization, we can improve 
online traffic and increase the reach of products and services to a greater number 
of people. This will allow us to generate more leads which will ideally increase 
sales. 
Content scoring enables us to evaluate and measure the potential of a piece of 
content by monitoring the performance of prior individual content pieces in terms 
of lead generation and conversion. Improving the quality of content is pivotal to 
the success of marketing campaigns and can help improve engagement with the 
audience.
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11.1.1 Sales vs Marketing 

Sales and marketing teams seem to have many similar goals, such as getting more 
leads, turning those leads into new customers, and making as much money as 
possible. While these two departments must cooperate to successfully achieve their 
objectives, there are a few key differences. 

1. Objectives: Marketing focuses on generating interest in your business’s products 
or services, while sales teams aim to convincing potential customers to make 
their purchases. 

2. Methods: Sales teams generally contact leads using more personal interactions 
such as trade show networking, face-to-face meetings, cold calling, and retail 
interaction. Marketing strategies typically utilize a more impersonal approach, 
such as print and TV advertising, social media marketing, email marketing, 
search engine optimization (SEO), and digital marketing. 

3. Scope: Sales performance indicators are oriented toward hitting short-term quo-
tas, while marketing objectives usually focus on long-term big-picture targets. 

4. Responsibilities: Sales teams are responsible for selling existing products and 
services. Whereas marketing teams may be included in the product development 
process through providing insights gained from market research and translating 
that into product properties which would appeal to a target demographic. 

5. Tools: Sales departments manage the sales cycle, organize communication with 
leads, and prioritize tasks through the use of CRM software (customer relation-
ship management). On the other hand, marketing departments mainly utilize 
marketing automation software to manage their digital and email marketing 
campaigns, as well as track marketing-qualified leads. 

11.2 Artificial Intelligence in Marketing 

These days, artificial intelligence and machine learning are at the forefront of the 
advertising world. This is primarily due to the fact that such technologies provide 
an opportunity to transform marketing tools and datasets into valuable marketing 
insights, which would help a company increase its return on investment. When it 
comes to content marketing, a company risks losing its edge in the market if it does 
not implement marketing solutions using artificial intelligence. 

AI enables organizations to extract insights from online activity about their 
followers, which helps them to target more relevant content and advertisements 
to the appropriate audiences. Furthermore, machine learning and natural language 
processing can help us gather insights about what customers are looking for and 
analyze the content they have posted on their social media profiles. 

The use of AI may also enable marketing teams to reply quickly to these clients 
while still being relevant and helpful though suggested responses. Blog posting and 
content creation can also be assisted by AI though generating ideas and creating
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initial drafts for marketing teams to vet through and improve on. It can also analyze 
consumer behavior, engagement, and sentiment to assist future marketing decisions. 
By responding to consumer posts in real time and tailoring its marketing to those 
customers, the incorporation of AI into marketing has the potential to provide more 
customized experiences for the company’s customers. 

Ways that AI is Changing Marketing: 

1. Lead Generation 
2. Customer Segmentation 
3. Content Creation 
4. Personalized website experiences 
5. Competition Analysis 
6. Brand Analysis 
7. Market Basket Analysis 

11.3 Applications of AI in Marketing 

11.3.1 Customer Segmentation 

Customer segmentation is the process of splitting customers into smaller groups 
which contain similar kinds of people for the purpose of marketing. 

Customer segmentation operates under the premise that marketing efforts would 
be better served if they targeted particular, smaller groups with messages relevant to 
those customers and encourage them to purchase something. 

Additionally, companies also hope to obtain a deeper understanding of their 
consumers’ tastes and demands, so as to determine what each client segment values 
most. This information would help to target their marketing materials more precisely 
to the relevant groups. 

When determining customer segmentation practices, many factors are considered 
such as demographic, geographic, psychographic, and behavioral attributes. 

The dataset we will be using can be obtained from the link [3]: 
https://www.kaggle.com/datasets/vjchoudhary7/customer-segmentation-tutorial-

in-python 
This dataset contains information about the customers who visit a specific super-

market mall. Information about their spending habits is collected from membership 
card sign ups and spending habits. The spending score is assigned to customers 
based on known customer behaviors according to their preferences and purchasing 
data. Our task here is to provide the marketing team with insights about the different 
customer groups and characterize their spending habits for targeted advertising 
campaigns.
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import os, warnings 
warnings.filterwarnings("ignore") 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.preprocessing import StandardScaler,

↪→MinMaxScaler 
from scipy.cluster import hierarchy 
from sklearn.cluster import KMeans 
from sklearn.metrics import silhouette_score 

cust = pd.read_csv('Sales_Marketing/Mall_Customers.csv
↪→', sep=',') 
cust.rename(columns={"Annual Income (k$)": "Annual

↪→Income", "Spending Score (1-100)": "Spending Score"}
↪→, inplace=True) 
print("There are {:,} observations and {} columns in

↪→the data set.".format(cust.shape[0], cust.shape[1])) 
print("There are {} missing values in the data.".

↪→format(cust.isna().sum().sum())) 
cust.head() 

There are 200 observations and 5 columns in the data set. 
There are 0 missing values in the data. 

CustomerID Gender Age Annual Income Spending Score 
0 1 Male 19 15 39 
1 2 Male 21 15 81 
2 3 Female 20 16 6 
3 4 Female 23 16 77 
4 5 Female 31 17 40 

cust.drop('CustomerID', axis=1, inplace=True) 
pd.DataFrame(cust.describe()).style.set_caption(

↪→"Summary Statistics of Numeric Variables") 

<pandas.io.formats.style.Styler at 0x1813d5da820>



214 11 AI in Marketing

cust['Gender'] = ['Women' if i == 'Female' else 'Men'
↪→for i in cust.Gender] 
pd.DataFrame(cust.select_dtypes('object').describe().

↪→T).style.set_caption("Summary Statistics of
↪→Categorical Variables") 

<pandas.io.formats.style.Styler at 0x1815edc7eb0> 

import matplotlib.pyplot as plt 
import seaborn as sns 

# Create a subplot with multiple plots 
fig, axs = plt.subplots(1, 4, figsize=(20, 5)) 
axs = axs.ravel() 

# Plot histograms for all columns 
for i, column in enumerate(cust.columns): 

sns.histplot(cust[column], ax=axs[i]) 
axs[i].set_title(column) 

plt.tight_layout() 
plt.show() 

# K-Means Clustering 
clust_df = cust.copy() 
clust_df['Gender'] = [1 if i == "Women" else 0 for i in clust_df.Gender] 

k_means = list() 
max_silhouette_score = -np.inf 
best_cluster_number = 2 
for n_clusters in range(2,10): 

km = KMeans(n_clusters=n_clusters, init='k-means++', random_state=21).
↪→fit(clust_df) 

kmeans = KMeans(init='k-means++', n_clusters = n_clusters, n_init=100) 
kmeans.fit(clust_df) 
clusters_customers = kmeans.predict(clust_df) 

(continues on next page)
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(continued from previous page) 

silhouette_avg = silhouette_score(clust_df, clusters_customers) 
print('number of clusters: {}, silhouette score: {:<.3f}'.format(n_

↪→clusters, silhouette_avg)) 

if silhouette_avg > max_silhouette_score: 
best_cluster_number = n_clusters 
max_silhouette_score = silhouette_avg 

print("Best silhouette score: {0}, Recommended number of clusters: {1}".
↪→format(max_silhouette_score, best_cluster_number)) 

number of clusters: 2, silhouette score: 0.293 
number of clusters: 3, silhouette score: 0.384 
number of clusters: 4, silhouette score: 0.405 
number of clusters: 5, silhouette score: 0.444 
number of clusters: 6, silhouette score: 0.452 
number of clusters: 7, silhouette score: 0.441 
number of clusters: 8, silhouette score: 0.428 
number of clusters: 9, silhouette score: 0.414 
Best silhouette score: 0.45205475380756527, Recommended number of clusters: 6 

It seems like the algorithm recommends 6 clusters based on the silhouette score. 
Let us plot our clusters with respect to the original features to visualize how it is 
clustering the data. 

km = KMeans(n_clusters=best_cluster_number, init='k-
↪→means++', random_state=21).fit(clust_df) 
km_pred = km.fit_predict(clust_df) 
plot_km=clust_df.copy() 
plot_km['K-Means Cluster'] = km_pred 
plot_km=plot_km.sort_values(by='K-Means Cluster') 

# Plot of clusters 
plt.figure(0) 
for cluster_id in range(best_cluster_number): 

plt.scatter(plot_km[plot_km["K-Means Cluster"] ==
↪→cluster_id]["Spending Score"], 

plot_km[plot_km["K-Means Cluster"] ==
↪→cluster_id]["Annual Income"]) 
plt.legend(["Cluster {0}".format(i) for i in

↪→range(best_cluster_number)]) 
plt.xlabel("Spending score") 
plt.ylabel("Annual Income") 
plt.figure(1) 
for cluster_id in range(best_cluster_number): 

plt.scatter(plot_km[plot_km["K-Means Cluster"] ==
↪→cluster_id]["Spending Score"], 

plot_km[plot_km["K-Means Cluster"] ==
↪→cluster_id]["Gender"]) 

(continues on next page)
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(continued from previous page) 

plt.legend(["Cluster {0}".format(i) for i in
↪→range(best_cluster_number)]) 
plt.xlabel("Spending score") 
plt.ylabel("Gender") 
plt.figure(2) 
for cluster_id in range(best_cluster_number): 

plt.scatter(plot_km[plot_km["K-Means Cluster"] ==
↪→cluster_id]["Spending Score"], 

plot_km[plot_km["K-Means Cluster"] ==
↪→cluster_id]["Age"]) 
plt.legend(["Cluster {0}".format(i) for i in

↪→range(best_cluster_number)]) 
plt.xlabel("Spending score") 
plt.ylabel("Age") 
plt.show()
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It seems that 6 clusters express the data well. 5 clusters seem distinct when using 
the Annual income attribute, but when looking at the Age attribute, the center cluster 
of clusters 2 and 4 could be split further into 2 more distinct clusters. Let us plot the 
two attributes out. 

for cluster_id in range(best_cluster_number): 
plt.scatter(plot_km[plot_km["K-Means Cluster"] ==

↪→cluster_id]["Annual Income"], 
plot_km[plot_km["K-Means Cluster"] ==

↪→cluster_id]["Age"]) 
(continues on next page)
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(continued from previous page) 

plt.legend(["Cluster {0}".format(i) for i in
↪→range(best_cluster_number)]) 
plt.xlabel("Annual Income") 
plt.ylabel("Age") 
plt.show() 

Thus we can cluster our customers into 6 types: 

Cluster 0: young and low income (high spending score) 
Cluster 1: old and high income (low spending score) 
Cluster 2: old and middle income (average spending score) 
Cluster 3: young and high income (high spending score) 
Cluster 4: young and middle income (average spending score) 
Cluster 5: old and low income (low spending score) 

In this example, we have demonstrated how to perform customer segmentation 
based on their attributes. Through this, we are able to better profile the different 
types of customers and characterize their spending habits for marketing teams to 
understand their audience profiles better and create better targeted advertisements. 
For example, we could create promotion campaigns for daily needs to entice 
specifically older people to visit by aiming for volume since they spend lesser. On 
the other hand, we could focus on promoting lifestyle products to younger customers 
that may be more expensive but attractive as they are more willing to spend.
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11.3.2 Analyzing Brand Associations 

In this example, we will try to identify words that people associate with a particular 
brand in comparison to others. This helps to identify differentiating features that 
make up the brand identity and also helps marketers understand how effective their 
campaigns for brand awareness are. We will achieve this by training a Logistic 
Regression model to differentiate brands from one another and identify the words 
that carry the most weight to identify a particular brand. 

from sklearn.feature_extraction.text import
↪→TfidfTransformer 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import confusion_matrix,

↪→balanced_accuracy_score 
from sklearn.feature_extraction.text import

↪→CountVectorizer 
from nltk.corpus import stopwords 
from nltk.tokenize import word_tokenize 

Let us import the dataset. 

reviews = pd.read_csv("Sales_Marketing/car_5_brands.
↪→csv") 
reviews.head() 

Unnamed: 0 Rating car_year brand_name date \ 
0 0 5.0 2018 Audi 2018-07-11 
1 1 5.0 2018 Audi 2018-06-24 
2 2 5.0 2018 Audi 2018-05-02 
3 3 5.0 2018 Audi 2017-12-07 
4 4 5.0 2018 Audi 2017-10-25 

review 
0 BEST ALL AROUND PURPOSE CROSSOVER SUV I have n... 
1 Best car This is a wonderful car. The technol... 
2 Great Buy Do your home work 
3 Fun Car Great ride. Loaded with technology. St... 
4 Best luxury SUV w/ perfect comfort/sport balan... 

Now we will prepare the brand labels by mapping brands to integer classes. 

label_map = {brand: idx for idx, brand in
↪→enumerate(reviews["brand_name"].unique())} 
reviews["brand_labels"] = reviews["brand_name"].

↪→map(label_map) 

We will next drop all empty reviews.
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reviews.dropna(subset=['review'], inplace=True) 

Drop all tokens with numbers in them as they usually do not describe a brand 
well. 

reviews["processed_text"] = reviews["review"].
↪→apply(lambda row: " ".join([word for word in row.
↪→split(" ") if word.isalpha()])) 

We will also predict and drop nouns as we are interested in words that can define 
a brand apart from its products and services. 

reviews["processed_text"] = reviews["processed_text"].
↪→apply(lambda row: " ".join([i[0] for i in nltk.tag.
↪→pos_tag(word_tokenize(row)) if not i[1].startswith(
↪→'NN')])) 

Now we will need to remove the stopwords, brand_name, lowercase the words, 
and use CountVectorizer to count the occurrence of each word. Then we can split 
the data into the training and testing sets. 

docs=reviews["processed_text"].tolist() 
stop_words = stopwords.words('english') 
[stop_words.append(i.lower()) for i in reviews["brand_

↪→name"].unique()] 

cv=CountVectorizer(max_df=0.90, lowercase=True, stop_
↪→words=stop_words) 
word_count_vector=cv.fit_transform(docs) 

X_train, X_test, y_train, y_test = train_test_
↪→split(word_count_vector, reviews["brand_labels"],
↪→test_size=0.2, random_state=42) 

Let us check the class counts. 

np.unique(y_train, return_counts=True) 

(array([0, 1, 2, 3, 4], dtype=int64), 
array([4839, 4895, 3436, 6454, 5926], dtype=int64)) 

It looks relatively balanced. Now we will apply TF-IDF to extract the importance 
of the terms and train the model.
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tfidf_transformer=TfidfTransformer(smooth_idf=True,
↪→use_idf=True) 
tfidf_x_train = tfidf_transformer.fit_transform(X_

↪→train) 
model1 = LogisticRegression(max_iter=1000) 
model1.fit(tfidf_x_train, y_train) 
tfidf_x_test = tfidf_transformer.transform(X_test) 
y_pred = model1.predict(tfidf_x_test) 
cm=confusion_matrix(y_test, y_pred) 
acc=balanced_accuracy_score(y_test, y_pred) 
print('Accuracy of a simple linear model with TFIDF

↪→is .... {:.2f}%'.format(acc*100)) 

Accuracy of a simple linear model with TF-IDF is ....
↪→29.52% 

It looks like we can classify the brand with 30% accuracy, which is higher 
than 20% for 5 brands. Keep in mind that we have removed most of the easily 
differentiating words such as brand-specific products and items. Now let us see 
which words are more correlated with a particular brand. 

for brand, brand_idx in label_map.items(): 
idx = model1.coef_[brand_idx].argsort()[::-

↪→1][0:25] 
print(brand, np.array(cv.get_feature_

↪→names())[idx]) 
print() 

Audi ['quattro' 'turbo' 'avant' 'german' 'tiptronic' 'timing' 'tie' 
'understated' 'wheel' 'snowy' 'virtual' 'supercharged' 'glued' 
'headlight' 'manual' 'quatro' 'settled' 'silly' 'magnetic' 'premium' 
'automotive' 'wait' 'subtle' 'quart' 'given'] 

Lexus ['hybrid' 'quiet' 'hesitates' 'ls' 'smooth' 'older' 'rides' 'floating' 
'luxurious' 'present' 'advised' 'remote' 'smoothest' 'complained' 'gs' 
'reliable' 'leasing' 'negative' 'pebble' 'listed' 'soft' 'dropped' 
'forever' 'annoying' 'suitable'] 

INFINITI ['tech' 'intelligent' 'searched' 'airbag' 'watching' 'dvd' 'uneven' 
'touring' 'spacious' 'dependable' 'bring' 'catalytic' 'falling' 'held' 
'reasonable' 'owed' 'poor' 'secret' 'trade' 'fight' 'leased' 'stand' 
'confidently' 'rotate' 'admiring'] 

BMW ['idrive' 'ultimate' 'xdrive' 'flat' 'convertible' 'steptronic' 'hugs' 
'manual' 'active' 'wow' 'provide' 'throttle' 'assembly' 'classic' 
'polarized' 'window' 'cup' 'master' 'bavarian' 'ordered' 'cooling' 'cold' 
'balanced' 'handled' 'automatic'] 

(continues on next page)
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(continued from previous page) 

Mercedes-Benz ['mercedes' 'amg' 'airmatic' 'matic' 'retractable' 'electrical
↪→' 'ml' 
'benz' 'diesel' 'tall' 'mb' 'solid' 'fails' 'raise' 'classic' 'clk' 
'breaking' 'safest' 'half' 'repair' 'various' 'modern' 'repaired' 
'updated' 'sophisticated'] 

For the top words, we can identify descriptive words that people associate with 
the brand. 

Audi is more associated with words such as turbo and supercharged. 
Lexus is more associated with words such as quiet, smooth, and luxurious. 
INFINTI is more associated with words such as intelligent, spacious, and 

dependable. 
BMW is more associated with words such as ultimate and convertible. 
Mercedes-Benz is more associated with words such as safest, modern, and 

sophisticated. 

Exercises 

1. List at least three different roles and responsibilities of marketing departments. 
2. List the differences between sales teams and marketing teams for each of the 

following points:

• Objectives
• Methods
• Scope
• Responsibilities
• Tools used 

3. Identify three different challenges that human resource departments face. 
4. For each of the challenges listed in 3, identify one way that artificial intelligence 

could potentially be used to alleviate the problem. 
5. Predict a marketing lead score for potential term deposit customers for a bank. 

We will utilize this dataset [1]: 
https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset 
This dataset consists of information collected about various leads that were 
previously contacted and whether or not they eventually opened up a deposit 
account. 
In this exercise, try to use what you have learned so far to develop a model that 
can provide a marketing lead score to help marketers identify suitable potential 
customers for targeted advertising. 

6. Perform customer segmentation on automobile customers. 
We will utilize this dataset [2]: 
https://www.kaggle.com/datasets/akashdeepkuila/automobile-customer
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This dataset consists of information collected about various automobile cus-
tomers. 
In this exercise, discard the segmentation grouping provided and try to use what 
you have learned so far to develop a model that can segment the customers into 
different groups for better targeted marketing. 
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Chapter 12 
AI in Supply Chain Management 

Learning Outcomes 

• Understand the roles and responsibilities of supply chain departments.
• Be able to explain the various segments of the supply chain cycle.
• Be able to list examples of supply chain models.
• Be able to define what is the bullwhip effect.
• Be able to list potential causes of variation in quantity ordered.
• Recommend ways to reduce the bullwhip effect.
• Identify ways that artificial intelligence can be applied to supply chain management.
• Develop artificial intelligence solutions for demand forecasting, automating quality 

assurance, predicting delivery time, and optimizing deliveries. 

12.1 Introduction to Supply Chain Management 

12.1.1 Supply Chain Definition 

A supply chain is an interrelated series of processes within a firm and across 
different firms covering the entire chain of supply and operations from raw materials 
to the end customer [4]. 

Supply chain management is a set of approaches utilized to efficiently integrate 
suppliers, manufacturers, warehouses, and stores, so that merchandise is produced 
and distributed in the right quantities, and at the right time, in order to minimize 
system-wide costs while satisfying service level requirements. 

By optimizing the supply chain, businesses can reduce extra expenses and 
expedite product delivery to consumers. This is accomplished by maintaining tighter 
control over internal inventories, internal manufacturing, distribution channels, 
sales, and vendor stocks. 
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Fig. 12.1 The supply chain cycle 

Supply chain cycle as shown in Fig. 12.1 consists of 5 operations which are 
planning, sourcing, manufacturing, delivering, and returning. 

1. Planning 
The supply chain management (SCM) process often begins with planning to align 
supply with customer and production expectations. Companies are required to 
forecast their future demands for the availability and quantity of raw materials 
required at various points in the SCM process, as well as the capabilities and 
constraints of relevant equipment and the number of workers required. Large 
organizations frequently rely on Enterprise Resource Planning (ERP) system 
modules to aggregate data and develop these plans. 

2. Sourcing 
Effective SCM operations rely primarily on reliable supplier relationships. 
Sourcing requires collaborating with suppliers to obtain the necessary raw 
materials for the production process. A corporation may be able to plan ahead and 
collaborate with a supplier to procure goods. However, several businesses have 
distinct sourcing requirements. Typically, SCM sourcing involves ensuring:

• The raw materials satisfy the manufacturing requirements necessary for the 
manufacture of commodities.

• The prices paid are in accordance with market expectations.
• Due to unforeseen situations, the provider has the ability to send emergency 

supplies.
• The supplier has a track record of on-time high-quality product delivery.
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When businesses are working with perishable commodities, supply chain 
management is very crucial. When sourcing materials, businesses should 
consider lead time and a supplier’s ability to meet those requirements. 

3. Manufacturing 
Supply chain management revolves around the company’s ability to create 
something new out of raw materials through the application of energy, time, and 
other resources. This final product is the end result of the manufacturing process, 
although it is not the last step in supply chain management. 
The manufacturing procedure can be subdivided into tasks such as assembly, 
testing, inspection, and packing. During the production process, a company must 
be cautious of waste and other controllable elements that may result in deviations 
from the plans. For instance, if a company uses more raw materials than intended 
and sourced for due to a lack of employee training, the organization must address 
the issue or revisit the previous stages of SCM. 

4. Delivering 
Once things are produced and sales are completed, a business must deliver 
them to customers. Distribution is frequently viewed as an important factor to 
the organization’s brand image since the customer has not yet interacted with 
the product at this point. An organization with excellent SCM procedures has 
reliable logistical resources and distribution channels to guarantee the timely, 
risk-free, and cost-effective transport of goods. This includes having a backup 
distribution method or multiple distribution methods in the event that one source 
of transportation is temporarily unavailable. 

5. Returning 
The management of the supply chain finishes with support for product and 
customer returns. It is bad when a client must return a product and is worse when 
the return is due to an error on the company’s side. This procedure is referred to as 
reverse logistics, and the organization must have the capacity to handle returned 
products and appropriately issue refunds. Regardless of the reason for a return, 
be it a product recall or customer dissatisfaction, the return has to executed and 
the underlying issue has to be rectified. 
Many view customer returns as a form of contact between the customer and 
the business. However, the communication between businesses to determine the 
cause of a defect is crucial to the success of the customer return process. Without 
addressing the root cause of a customer return, subsequent returns are likely to 
continue. 

12.1.2 Types of Supply Chain Models 

Supply chain management differs from company to company. Every organization’s 
SCM process is shaped by its own set of objectives, limitations, and advantages. 
Typically, there are six primary models a firm can utilize to direct its supply chain 
management activities.
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• Continuous Flow Model 
This model, which is one of the more classic supply chain strategies, is frequently 
best suited for mature industries. The continuous flow approach relies on 
a company manufacturing the same product again and anticipating minimal 
volatility in consumer demand.

• Agile Model 
This model is ideal for businesses whose demand is unpredictable or whose 
products are made to order. This approach promotes adaptability, as a company 
may at any time have a special need and must be prepared to pivot accordingly. 
This model is usually suited for a product with a short life cycle to have rapid 
turnovers.

• Fast Model 
A business seeks to capitalize on a trend, produce goods rapidly, and ensure that 
all products are sold before the trend ends when using a fast chain model.

• Flexible Model 
The flexible model is most effective for seasonal businesses. Some businesses 
may have substantially higher demand requirements during peak season, while 
others may have minimal volume requirements. A flexible form of supply chain 
management facilitates the ramping up or winding down of production.

• Efficient Model 
For businesses operating in industries with extremely slim profit margins, the 
most efficient supply chain management technique may provide a competitive 
advantage. This comprises the optimal utilization of equipment and machinery, 
as well as the management of inventories and processing of orders.

• Custom Model 
If none of the aforementioned models meet a company’s demands, it can always 
choose for a custom model. This is typically the case in highly specialized busi-
nesses with stringent technological standards, such as the automobile industry. 

12.1.3 Bullwhip Effect 

The various parties in the supply chain such as customers, suppliers, manufacturers, 
and merchants have minimal power over the supply chain, yet their activities have an 
impact on everyone else [1]. As these parties attempt to respond to demand changes, 
ripple effects propagate down the supply chain. This effect is known as the bullwhip 
effect. This phenomenon was named after the movement of a bullwhip, in which a 
slight wrist movement results in a considerably bigger, uncontrolled movement at 
the whip’s end. 

The bullwhip effect occurs in a supply chain when each party steadily escalates 
an originally tiny increase in demand, causing the demand to spiral out of control. 
Each participant in the supply chain overcompensates for this demand with excess 
demand for raw materials, which results in higher output, erroneous demand 
forecasting, and uneven inventory.
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12.1.4 Causes of Variation in Orders

• Structural 

– Order batching: To keep things simple, members of the supply chain may 
round their orders up or down, or they may wait until a given date to place an 
order which makes forecasting demand challenging. 

– Promotion: Discounts, promotions, and other special offers have an impact on 
ordinary demand and can lead to erroneous estimates as buyers try to adjust 
their usual forecasting metrics for these deals. 

– Long lead time: If replenishment merchandise takes a long time to reach the 
seller, it will not be in sync with demand and will hinder the seller’s ability to 
meet client demands.

• Behavioural 

– Shortage gaming: When upstream inventory becomes low, retailers and 
suppliers order substantially higher quantities and build up their own supplies 
to ensure they can satisfy demand, often harming the entire supply chain in 
the process. 

– Over reaction to backlog: Meeting client demands frequently necessitates 
extra options, such as in-store pickups and direct-from-vendor shipments. 
The supply chain may become more complex as a result of these various 
requirements, which may also raise the pressure to have supplies on hand. 
Overstocking may result from trying to ensure a supply of all possible choices. 

– Fear of empty stock: Members of the supply chain may fear having an empty 
stock and losing customers as a result. Under high demand, they may place 
excessive orders and cause a bullwhip effect. 

12.1.5 Reducing the Bullwhip Effect 

The bullwhip effect is exacerbated because supply chain stakeholders lack a 
comprehensive understanding of why buyers are raising demand. Improving chain-
wide visibility can help everyone understand the context of demand shifts. For 
example, the rise in orders could be attributable to a promotion, seasonal demands, 
or something else. Members can identify potential causes of overreactions and 
resolve them before the situation spirals out of control. 

Having precise, current demand information is the best method to combat the 
bullwhip effect [8]. To do this, we must switch from a forecast-driven ordering 
system to the one that enables information sharing with supply chain partners and, 
hence, full awareness of actual customer demand. Kanban System, Vendor Managed 
Inventory (VMI), Strategic Supply Chain Partnerships, Lean Management, Real-
Time Information Sharing, and Just-in-Time Inventory Replenishment System are a
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few of the common measures that companies around the world employ to combat 
the bullwhip effect and establish a demand-driven supply chain.

• Vendor Managed Inventory 
VMI programs enable suppliers to obtain sales and forecast data from down-
stream partners in real time. In conjunction with predetermined settings such 
as minimum/maximum shelf presence, the data is analyzed by an algorithm for 
machine learning to generate replenishment recommendations. By utilizing VMI, 
suppliers no longer have to wait for retailers or distributors to run out of stock 
before replenishing. Instead, businesses can plan for a new shipment to arrive at 
the optimal time to avoid stockouts and excess inventory.

• Kanban System 
Kanban is a tool for optimizing the supply chain that organizations can employ to 
increase productivity. It is a lean or just-in-time manufacturing method in which 
just the necessary components and stock are replenished at that time. This allows 
businesses to increase productivity while decreasing inventories.

• Strategic Supply Chain Partnerships 
Reducing the product’s required travel distance by sourcing for local suppliers 
can reduce lead times and expenses. This approach is not always realistic, 
but it is always possible to locate dependable, swift partners that can help to 
reduce lead times. Strategic collaboration involves working with your partners 
to increase forecast accuracy, fortify connections, and head off problems before 
they even happen. Aligning your key performance indicators (KPIs) and other 
performance measurements can assist in keeping everyone on the same page. 
Strong collaboration is one of the most effective safeguards against the bullwhip 
effect, which is typically caused by fragmented inventory practices.

• Lean Management 
Lean supply chain management entails minimizing waste and saving costs as 
a result. The lean strategy emphasizes efficient, simplified processes, and the 
elimination of anything that does not provide value to the customer-facing 
product or service. Lean supply chain management prioritizes dependability and 
predictability over adaptability and flexibility.

• Real-Time Information Sharing 
To lessen the impact of the “bullwhip effect,” participants in the supply chain 
should coordinate their actions. Sharing information is very important in this 
case because it lets different groups work together and see more of the supply 
chain than just the part they control. Collaboration is of utmost importance in 
increasingly globalized supply chains, as items may cross international borders 
and pass through numerous businesses.

• Just-in-Time Inventory Replenishment System 
Just-in-time inventory management ensures that inventory arrives precisely when 
it is required for manufacturing or to fulfill consumer demand and no earlier. 
The objective is to eliminate waste and improve operation efficiency. Long-term 
contracts with dependable suppliers are required for this to work because the 
primary focus is on frequency quality and not pricing. Just-in-time is an example
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of lean management. All components of a manufacturing or service system, 
including people, are integrated in just-in-time. They are interdependent and 
mutually dependent on producing good outcomes. 

By incorporating one or more of the aforementioned methods and management 
philosophies, we can not only mitigate the bullwhip effect in our supply chain but 
also benefit from improved long-term strategic alliances. 

12.2 Artificial Intelligence in Supply Chain Management 

Artificial intelligence has many use cases in supply chain management and can bring 
about advancements in many segments of the supply chain [7]. These applications 
include: 

1. Back-office automation 
By combining conversational AI with Robotic Process Automation (RPA), 
labor-intensive and repetitive tasks such as document processing can be 
automated. 

2. Logistics automation 
Artificial intelligence and automated processes can also help improve supply 
chain logistics. Major investments in transport automation technology, such 
as driverless trucks, would be able to improve the efficiency and scale of our 
supply chain. 

3. Warehouse automation 
Automatic warehouse management is bolstered by AI-enabled technologies 
such as collaborative robots which improves efficiency, productivity, and safety 
of warehouses. 

4. Automated quality checks 
Product quality checks can be aided through the use of AI-powered computer 
vision systems. Since these systems do not become exhausted, they can improve 
productivity and accuracy in the quality assurance process. Through employing 
computer vision, defects can be detected automatically, thus automating and 
improving the quality of products. 

5. Automated inventory management 
Bots with computer vision and AI/ML capabilities can be used to automate 
repetitive operations in inventory management, such as real-time inventory 
scanning. Inventory scanning bots like this can also be used in retail businesses. 
However, before implementing such solutions, it is important to analyze their 
feasibility and assess their long-term benefits. 

6. Inventory optimization 
By examining historical demand and supply data and patterns, AI-powered 
systems can assist in determining ideal inventory levels.
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7. Region-specific forecasts 
The supply chain AI can also provide comprehensive regional demand data to 
assist corporate leaders in making better decisions. For example, each region 
has its own festivals, holidays, fashions, and so on. AI-powered forecasting 
systems can help customize fulfillment procedures based on region-specific 
requirements by employing region-specific parameters. 

8. Bullwhip effect prevention 
The bullwhip effect is a significant source of concern in supply chain man-
agement. This is because tiny changes at one end of the supply chain are 
amplified as they move upstream/downstream. By integrating data collected 
from customers, suppliers, manufacturers, and distributors, AI-powered fore-
casting solutions can help mitigate demand and supply swings to regulate the 
bullwhip effect. This would lead to the reduction of stockouts and backlogs. 

9. Improved supplier selection 
AI-enabled supplier relationship management (SRM) software can help with 
supplier selection based on aspects like pricing, buying history, sustainability, 
and so on. AI-powered systems can also assist in tracking, analyzing, and 
ranking supplier performance data. 

10. Improved supplier communications 
RPA and other AI-powered tools can also help automate typical supplier 
communications such as invoice sharing and payment reminders. Automation 
of these activities can aid in avoiding delays, such as forgetting to pay a vendor 
on time, which can have a detrimental impact on shipment and output. 

11. Greener transport logistics 
Using factors like traffic, road closures, and weather, AI-powered systems can 
help optimize transportation routes by reducing the distance traveled. AI can be 
used, for instance, to optimize vehicle routes and reduce fuel use, resulting in 
reduced emissions and enhanced sustainability. 

12. Greener warehousing 
Carbon emissions associated with excess inventory storage and transit can 
be minimized through employing AI in maintaining ideal inventory levels. 
Smart energy usage solutions can also help to reduce greenhouse gas emissions 
associated with warehouse energy consumption. 

13. Route Optimization 
Shorter and more cost-efficient routes can be found and planned using AI to 
help optimize and reduce the costs incurred by suggesting better routes. Real-
time route suggestion can also be done to help reduce implications of road 
conditions such as weather and traffic jams. 

14. Resource Allocation 
Artificial intelligence can also help to automate resource planning requirements 
through taking into account the production and requirements of different 
segments in the supply chain such that the number of deliveries and time taken 
to transport logistics are minimized.
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12.3 Applications of AI in Supply Chain Management 

12.3.1 Demand Forecasting with Anomaly Detection 

AI in demand forecasting can help to predict micro- and macro-trends used for 
optimizing the amount of goods to be produced and help determine the amount 
of raw materials to be purchased from suppliers. This will help to reduce the 
bullwhip effect brought about by over or under productions through generating 
better consumer demand and supply estimates. 

Anomalous demand can also be flagged out by the system when the actual 
demand is significantly more or less than forecasted. This would enable managers 
to determine whether the effect is due to a long-term trend or a short-term spike to 
guide future predictions. 

Through the use of AI in demand forecasting, organizations would be able to 
capture macro- and micro-trends in consumer behaviors quickly and accurately, as 
well as reduce the time needed to react to drivers of change in demand, thus bringing 
improved profitability to the organizations. 

In this example we will use the pytrends library to extract the worldwide Google 
trends for sunscreen between 1 Jan 2017 to 1 Jan 2022. This will give us an estimate 
of the interest in a particular type of product. 

import pytrends 
from pytrends.request import TrendReq 
import pandas as pd 

tr = TrendReq(hl='en-US', tz=360) 
tr.build_payload(kw_list = ["sunscreen"], cat=0,

↪→timeframe='2017-01-01 2022-01-01', geo='', gprop='') 

tr.interest_over_time() returns a pandas dataframe object. We will reset the index 
such that the index will correspond to the row number. We will print the top few 
rows using head to visualize what the dataframe looks like. 

df = tr.interest_over_time().reset_index() 
df.head() 

date sunscreen isPartial 
0 2017-01-01 11 False 
1 2017-01-08 12 False 
2 2017-01-15 11 False 
3 2017-01-22 10 False 
4 2017-01-29 11 False
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# df = pd.read_csv("Sunscreen_Google_Trends.csv") 

As you can see, the data contains the relative number of searches for sunscreen, 
where 100 is the date with the highest search and 0 is the date with the least amount 
of searches. We can plot this to visualize what the demand looks like over time. 

plt.plot(df["sunscreen"]) 
plt.show() 

From the graph, we can see that sunscreen searches are increasing over time and 
exhibit some form of annual seasonality, likely due to higher demands in sunscreen 
during summer months where the sun is the hottest within a year. 

We will continue by splitting our data into training and testing, where the testing 
data is the last 20% of dates we extracted. 

from statsmodels.tsa.api import SimpleExpSmoothing,
↪→Holt, ExponentialSmoothing 
from sklearn.metrics import mean_squared_error 
import matplotlib.pyplot as plt 
import numpy as np 

n_row=len(df) 
train_row = int(0.8 * n_row) 
train = df[0:train_row] 
test = df[train_row:]



12.3 Applications of AI in Supply Chain Management 235

Let us train our model with an additive trend and multiplicative seasonality as we 
observed from the data collected. 

model = ExponentialSmoothing(train["sunscreen"],
↪→trend='add', seasonal='mul', seasonal_periods=52).
↪→fit() 
pred = model.forecast(len(test)) 

# model = ExponentialSmoothing(train["sunscreen"],
↪→trend='add').fit() 
# pred = test.copy() 
# pred['Holt_Winter'] = model.forecast(len(test)) 
# pred = pred.dropna() 
print(mean_squared_error(pred, test["sunscreen"])**0.

↪→5) 

plt.plot(train["sunscreen"]) 
plt.plot(test["sunscreen"]) 
plt.plot(pred) 
plt.show() 

10.310581438285055
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From the graph, it seems that our model performs relatively well. We can use this 
model to forecast the increase in demand for sunscreen over time. However, there 
are certain occasions in the year where the demand is significantly higher than our 
forecast. 

Such instances can be flagged out through anomaly detection methods applied 
on our model, so that the organization can assess whether the change in trend is 
something to be concerned about. 

In this example, we will use the Brutlag algorithm for anomaly detection to add 
on the Holt winters time series [2]. 

Confidence bands are bands which classify whether a data point is considered 
an anomaly. Data points are considered as anomalies when they go above the upper 
band or below the lower band. The confidence bands for the Brutlag algorithm are 
as follows [2]: 

. 

ŷmaxt = Lt−1 + Pt−1 + St−p + mdt−p

ŷmint = Lt−1 + Pt−1 + St−p − mdt−p

dt = γ |yt − ŷt | + (1 − γ )dt−p

ŷmaxt = ŷt + m(γ |yt−p − ŷt−p| + (1 − γ )dt−2p)

ŷmint = ŷt − m(γ |yt−p − ŷt−p| + (1 − γ )dt−2p)

where 

k represents number of measurements in time series. 
t represents the moment in time. 
. yt represents the predicted value of variable at moment t . 
. yt represents the real measured observation in moment t . 
p represents the time series period. 
. α represents the data smoothing factor. 
. β represents the trend smoothing factor. 
. γ represents the seasonal change smoothing factor 
m represents the scaling factor for Brutlag confidence band. 

Let us begin by calculating the difference between the data points and our model’s 
prediction. 

predictions = model.predict(start=df.iloc[:, 1].
↪→index[0], end=df.iloc[:, 1].index[-1]) 
diff = df["sunscreen"] - predictions 

"""Brutlag Algorithm""" 
PERIOD = 52 # The
↪→given time series has seasonal_period=52 
GAMMA = 0.10 # the
↪→seasonility component 

(continues on next page)
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SF = 2.75 #
↪→brutlag scaling factor for the confidence bands. 
UB = [] #
↪→upper bound or upper confidence band 
LB = [] #
↪→lower bound or lower confidence band 

difference_array = [] 
dt = [] 
difference_table = { 

"actual": df["sunscreen"], "predicted":
↪→predictions, "difference": difference_array, "UB":
↪→UB, "LB": LB}  

Let us calculate the upper and lower confidence bands. 

for i in range(len(predictions)): 
diff = df["sunscreen"][i]-predictions[i] 
if i < PERIOD: 

dt.append(abs(diff/predictions[i])) 
else: 

dt.append(GAMMA*abs(diff/predictions[i]) + (1-
↪→GAMMA)*dt[i-PERIOD]) 

difference_array.append(diff) 
UB.append(predictions[i] +

↪→abs(predictions[i])*SF*dt[i]) 
LB.append(predictions[i] -

↪→abs(predictions[i])*SF*dt[i]) 

print("\nDifference between actual and predicted\n") 
difference = pd.DataFrame(difference_table) 
print(difference) 

Difference between actual and predicted 

actual predicted difference UB LB 
0 11 11.262954 -0.262954 11.986079 10.539830 
1 12 10.792813 1.207187 14.112578 7.473047 
2 11 11.041324 -0.041324 11.154965 10.927683 
3 10 11.857316 -1.857316 16.964936 6.749697 
4 11 10.188302 0.811698 12.420471 7.956134 
.. ... ... ... ... ... 
256 35 27.752998 7.247002 35.277667 20.228328 
257 32 28.794269 3.205731 31.104807 26.483730 
258 30 28.718575 1.281425 33.757684 23.679466 

(continues on next page)
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259 34 28.650632 5.349368 32.877352 24.423912 
260 37 34.076066 2.923934 37.206145 30.945987 

[261 rows x 5 columns] 

Now that we have determined the upper and lower confidence bands, we can 
classify each data point as either normal or an anomaly. 

normal = [] 
normal_date = [] 
anomaly = [] 
anomaly_date = [] 

for i in range(len(df["sunscreen"].index)): 
if (UB[i] < df["sunscreen"][i] or LB[i] > df[

↪→"sunscreen"][i]) and i > PERIOD: 
anomaly_date.append(df.index[i]) 
anomaly.append(df["sunscreen"][i]) 

else: 
normal_date.append(df.index[i]) 
normal.append(df["sunscreen"][i]) 

anomaly = pd.DataFrame({"date": anomaly_date, "value
↪→": anomaly}) 
anomaly.set_index('date', inplace=True) 
normal = pd.DataFrame({"date": normal_date, "value":

↪→normal}) 
normal.set_index('date', inplace=True) 

print(len(anomaly), "data points classified as
↪→anomaly\n") 

40 data points classified as anomaly 

Now let us visualize our work so far. 

""" 
Plotting the data points after classification as

↪→anomaly/normal. 
Data points classified as anomaly are represented in

↪→red and normal in green. 
""" 
plt.figure(figsize=(20,20)) 

(continues on next page)
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plt.plot(predictions.index, predictions) 
plt.plot(df.index, df["sunscreen"]) 
plt.plot(normal.index, normal, 'o', color='green') 
plt.plot(anomaly.index, anomaly, 'o', color='red') 
# Ploting brutlag confidence bands 
plt.plot(df.index, UB, linestyle='--', color='grey') 
plt.plot(df.index, LB, linestyle='--', color='grey') 
# Formatting the graph 
plt.legend(['Normal', 'Anomaly', 'Upper Bound',

↪→'Lower Bound']) 
plt.gcf().autofmt_xdate() 
plt.xlabel("Time") 
plt.show() 

12.3.2 Quality Assurance 

One of the other significant use cases of applying artificial intelligence to the 
supply chain is in quality assurance. Through the use of computer vision, quality 
assurance in the supply chain can be automated to work round the clock with good 
accuracy rates. This can help to reduce the number of defective products shipped 
out, therefore increasing customer satisfaction and strengthen brand reliability.
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For this exercise, we will be using the dataset from [5]: 
https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-

casting-product 
The dataset will be used to detect defects in a casting manufacturing product. 

Casting is a manufacturing process in which a liquid material is usually poured 
into a mold, which contains a hollow cavity of the desired shape, and then allowed 
to solidify. However, casting defects may occur in these casts which are undesired 
irregularities formed during the metal casting process and need to be detected. 

There are many types of defects in casts such as blow holes, pinholes, burr, 
shrinkage defects, mold material defects, pouring metal defects, metallurgical 
defects, etc. 

The quality inspection department is in charge of ensuring the quality of the 
casts. However, the inspection process is carried out manually and is a very time-
consuming process which is subjected to human error and is not 100% accurate as 
well. Thus we will create a model to classify between acceptable casts and defective 
casts automatically. 

These all photos are top view of a submersible pump impeller. The dataset 
contains the total 7348 image data in total. These all are the size of (300*300) pixels 
gray-scaled images. In all images, data augmentation has already been applied. 

There are mainly two categories: 

1. Defective 
2. Ok 

The data have been split with the following distribution: 
train: deffront has 3758 images and okfront has 2875 images 
test: deffront has 453 images and ok_front has 262 images 
In this example, we will apply transfer learning by using the weights of some 

other model previously trained on a separate task. We will achieve this by training 
only the last few layers of our model. Transfer learning is effective in training 
models with small datasets as it uses pre-trained features from other big datasets 
and simply finetunes the network for the new task. This works because the features 
learned by CNNs on larger datasets are able to capture a variety of descriptive 
features that are sufficient to describe the data, and thus we can simply train the 
last layer to classify between the defective samples and the normal samples. 

We will begin by importing the relevant packages and visualizing the datasets 
used for training. 

import numpy as np 
import pandas as pd 
import cv2 
import matplotlib.pyplot as plt 

import tensorflow, os 
from tensorflow.keras.layers import Conv2D, MaxPool2D,

↪→ Dropout, Flatten, Dense (continues on next page)
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from tensorflow.keras.preprocessing import image 
from tensorflow.keras.models import Sequential 

okay_folder = "Supply_Chain/casting_data/casting_data/
↪→train/ok_front" 
okay_sample = os.path.join(okay_folder, os.

↪→listdir(okay_folder)[0]) 
okay_image = cv2.cvtColor(cv2.imread(okay_sample),

↪→cv2.COLOR_BGR2RGB) 
fig, axs = plt.subplots(1, 2) 
axs[0].imshow(okay_image) 
axs[0].set_title("okay sample") 

def_folder = "Supply_Chain/casting_data/casting_data/
↪→train/def_front" 
def_sample = os.path.join(def_folder, os.listdir(def_

↪→folder)[0]) 
def_image = cv2.cvtColor(cv2.imread(def_sample), cv2.

↪→COLOR_BGR2RGB) 
axs[1].imshow(def_image) 
axs[1].set_title("defective sample") 
plt.show() 

As you can see, there are tiny dents in the defective sample that differentiates 
it from the okay samples. We will train our convolutional neural network to 
differentiate between the two. To do that, we will first have to create our data 
generators.
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train_data_gen = image.ImageDataGenerator(rescale= 1./255) 
train= train_data_gen.flow_from_directory(directory="Supply_Chain/casting_
↪→data/casting_data/train" , target_size=(256,256) , batch_size=32, class_
↪→mode = 'binary') 

Found 6633 images belonging to 2 classes. 

train_data_gen = image.ImageDataGenerator(rescale= 1./
↪→255) 
test= train_data_gen.flow_from_directory(directory=

↪→"Supply_Chain/casting_data/casting_data/test" ,
↪→target_size=(256,256) , batch_size=32, class_mode =
↪→'binary') 

Found 715 images belonging to 2 classes. 

In this case we will be finetuning the Xception network trained original on 
ImageNet. 

We need to specify the input shapes for the images we will feed the model and 
set include_top to False as we want to include other layers to the end the Xception 
model to be trained on our own data. 

from tensorflow.keras.applications import Xception 
xcept = Xception(input_shape = (256, 256, 3), include_

↪→top = False, weights = 'imagenet') 

In this case we will set the xcept.layers to not be trainable as we want to preserve 
the already trained weights. We will just add additional layers to the end for the 
classification task. 

for layer in xcept.layers: 
layer.trainable = False 

model = tensorflow.keras.Sequential([ 
xcept, 
tensorflow.keras.layers.Flatten(), 
tensorflow.keras.layers.Dense(units=256,

↪→activation="relu"), 
tensorflow.keras.layers.Dropout(0.2), 
tensorflow.keras.layers.Dense(units=1, activation=

↪→"sigmoid"), 
]) 

(continues on next page)
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model.compile(optimizer="adam",loss='binary_
↪→crossentropy',metrics=['accuracy']) 

model.summary() 

Model: "sequential_1" 
_________________________________________________________________ 
Layer (type) Output Shape Param # 
================================================================= 
xception (Model) (None, 8, 8, 2048) 20861480 
_________________________________________________________________ 
flatten (Flatten) (None, 131072) 0 
_________________________________________________________________ 
dense (Dense) (None, 256) 33554688 
_________________________________________________________________ 
dropout (Dropout) (None, 256) 0 
_________________________________________________________________ 
dense_1 (Dense) (None, 1) 257 
================================================================= 
Total params: 54,416,425 
Trainable params: 33,554,945 
Non-trainable params: 20,861,480 
_________________________________________________________________ 

model.fit(train,epochs=10,steps_per_epoch=7,
↪→validation_data=test,validation_steps=len(test)) 

Epoch 1/10 
7/7 [==============================] - 21s 3s/step - loss: 12.7714 - accuracy: 0.
↪→5848 - val_loss: 2.0342 - val_accuracy: 0.7105 
Epoch 2/10 
7/7 [==============================] - 19s 3s/step - loss: 1.9719 - accuracy: 0.
↪→7455 - val_loss: 0.9434 - val_accuracy: 0.8322 
Epoch 3/10 
7/7 [==============================] - 19s 3s/step - loss: 1.0524 - accuracy: 0.
↪→8616 - val_loss: 1.1076 - val_accuracy: 0.8126 
Epoch 4/10 
7/7 [==============================] - 19s 3s/step - loss: 0.9593 - accuracy: 0.
↪→8616 - val_loss: 0.7977 - val_accuracy: 0.8629 
Epoch 5/10 
7/7 [==============================] - 19s 3s/step - loss: 1.0131 - accuracy: 0.
↪→8661 - val_loss: 0.4438 - val_accuracy: 0.9119 
Epoch 6/10 
7/7 [==============================] - 19s 3s/step - loss: 0.6367 - accuracy: 0.
↪→8973 - val_loss: 0.3567 - val_accuracy: 0.9287 
Epoch 7/10 
7/7 [==============================] - 19s 3s/step - loss: 0.7191 - accuracy: 0.
↪→8705 - val_loss: 0.4454 - val_accuracy: 0.9105 
Epoch 8/10 
7/7 [==============================] - 19s 3s/step - loss: 0.3637 - accuracy: 0.
↪→9554 - val_loss: 0.1467 - val_accuracy: 0.9706 
Epoch 9/10 
7/7 [==============================] - 19s 3s/step - loss: 0.0665 - accuracy: 0.
↪→9777 - val_loss: 0.1938 - val_accuracy: 0.9566 

(continues on next page)
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Epoch 10/10 
7/7 [==============================] - 19s 3s/step - loss: 0.1318 - accuracy: 0.
↪→9732 - val_loss: 0.1082 - val_accuracy: 0.9776 

<tensorflow.python.keras.callbacks.History at 0x1fc28d5fa00> 

As you can see, the model is able to predict the dataset well with up to 97.76% 
accuracy. Let us plot the loss and accuracy graphs. 

import seaborn as sns 
import matplotlib.pyplot as plt 
plt.subplots(figsize = (8, 4)) 
df = pd.DataFrame(model.history.history, index =

↪→range(1, 1+len(model.history.epoch))) 
sns.lineplot(data = df[["loss", "val_loss"]]) 
plt.title("Loss", fontweight = "bold", fontsize = 20) 
plt.xlabel("Epochs") 
plt.ylabel("Metrics") 

plt.legend(labels = ['train loss', 'val loss']) 
plt.show() 
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plt.subplots(figsize = (8, 4)) 
sns.lineplot(data = df[["accuracy", "val_accuracy"]]) 
plt.title("Accuracy", fontweight = "bold", fontsize =

↪→20) 
(continues on next page)
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plt.xlabel("Epochs") 
plt.ylabel("Metrics") 

plt.legend(labels = ['train accuracy', 'val accuracy
↪→']) 
plt.show() 
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12.3.3 Estimating Delivery Time 

In order to allocate resources efficiently, supply chain managers have to be able 
to estimate the time required to transfer one resource or product from one place 
to another. Underestimating the time required to deliver a resource may lead to 
delays down the supply chain and overestimating the time required would lead 
to inefficient resource allocation. Thus it is important for supply chain managers 
to be able to monitor and predict how long their deliveries would take. Artificial 
intelligence is able to take into account information from a multitude of sources in 
order to accurately predict the delivery time, so that supply chain managers can plan 
accordingly. In this example, we will develop a model to predict the delivery time 
for food deliveries from the restaurant to the delivery location. 

The dataset that we will be using will be taken from this link [3]: 
https://www.kaggle.com/datasets/gauravmalik26/food-delivery-dataset?select= 

train.csv
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Let us begin by importing the packages required and the data. 

import pandas as pd 
import numpy as np 
from geopy.distance import geodesic 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import r2_score, mean_absolute_

↪→error 

df = pd.read_csv("Supply_Chain/train.csv") 
df 

ID Delivery_person_ID Delivery_person_Age Delivery_person_Ratings \ 

0 0x4607 INDORES13DEL02 37 4.9 

1 0xb379 BANGRES18DEL02 34 4.5 

2 0x5d6d BANGRES19DEL01 23 4.4 

3 0x7a6a COIMBRES13DEL02 38 4.7 

4 0x70a2 CHENRES12DEL01 32 4.6 

... ... ... ... ... 

45588 0x7c09 JAPRES04DEL01 30 4.8 

45589 0xd641 AGRRES16DEL01 21 4.6 

45590 0x4f8d CHENRES08DEL03 30 4.9 

45591 0x5eee COIMBRES11DEL01 20 4.7 

45592 0x5fb2 RANCHIRES09DEL02 23 4.9 

Restaurant_latitude Restaurant_longitude Delivery_location_latitude \ 

0 22.745049 75.892471 22.765049 

1 12.913041 77.683237 13.043041 

2 12.914264 77.678400 12.924264 

3 11.003669 76.976494 11.053669 

4 12.972793 80.249982 13.012793 

... ... ... ... 

45588 26.902328 75.794257 26.912328 

45589 0.000000 0.000000 0.070000 

45590 13.022394 80.242439 13.052394 

45591 11.001753 76.986241 11.041753 

45592 23.351058 85.325731 23.431058 

Delivery_location_longitude Order_Date Time_Orderd Time_Order_picked \ 

0 75.912471 19-03-2022 11:30:00 11:45:00 

1 77.813237 25-03-2022 19:45:00 19:50:00 

2 77.688400 19-03-2022 08:30:00 08:45:00 

3 77.026494 05-04-2022 18:00:00 18:10:00 

4 80.289982 26-03-2022 13:30:00 13:45:00 

... ... ... ... ... 

45588 75.804257 24-03-2022 11:35:00 11:45:00 

45589 0.070000 16-02-2022 19:55:00 20:10:00 

45590 80.272439 11-03-2022 23:50:00 00:05:00 

45591 77.026241 07-03-2022 13:35:00 13:40:00 

45592 85.405731 02-03-2022 17:10:00 17:15:00 

Weatherconditions Road_traffic_density Vehicle_condition \ 

(continues on next page)
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0 conditions Sunny High 2 

1 conditions Stormy Jam 2 

2 conditions Sandstorms Low 0 

3 conditions Sunny Medium 0 

4 conditions Cloudy High 1 

... ... ... ... 

45588 conditions Windy High 1 

45589 conditions Windy Jam 0 

45590 conditions Cloudy Low 1 

45591 conditions Cloudy High 0 

45592 conditions Fog Medium 2 

Type_of_order Type_of_vehicle multiple_deliveries Festival \ 

0 Snack motorcycle 0 No 

1 Snack scooter 1 No 

2 Drinks motorcycle 1 No 

3 Buffet motorcycle 1 No 

4 Snack scooter 1 No 

... ... ... ... ... 

45588 Meal motorcycle 0 No 

45589 Buffet motorcycle 1 No 

45590 Drinks scooter 0 No 

45591 Snack motorcycle 1 No 

45592 Snack scooter 1 No 

City Time_taken(min) 

0 Urban (min) 24 

1 Metropolitian (min) 33 

2 Urban (min) 26 

3 Metropolitian (min) 21 

4 Metropolitian (min) 30 

... ... ... 

45588 Metropolitian (min) 32 

45589 Metropolitian (min) 36 

45590 Metropolitian (min) 16 

45591 Metropolitian (min) 26 

45592 Metropolitian (min) 36 

[45593 rows x 20 columns] 

Now we will perform some feature engineering by converting the latitude and 
longitude values of the restaurant and delivery location into a distance metric using 
the geodesic distance. We will also need to format our data accordingly such that 
the time taken is a float and strip the prefix for the weather conditions column. 

df["Straight_Line_KM"] = df.apply(lambda x:
↪→geodesic(np.array([x.Restaurant_latitude, x.
↪→Restaurant_longitude]), np.array([x.Delivery_
↪→location_latitude, x.Delivery_location_longitude])).
↪→km, axis=1) 
df["Time_taken(min)"] = df["Time_taken(min)"].

↪→apply(lambda x: float(x.split(" ")[-1])) 
df["Weatherconditions"] = df["Weatherconditions"].

↪→apply(lambda x: x.split(" ")[-1])
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Next, we will need to drop columns that would not be helpful in predicting the 
time taken for the delivery to happen. 

df = df.drop(["Time_Orderd", "Time_Order_picked",
↪→"Delivery_person_ID", "ID", "Order_Date", 

"Restaurant_latitude", "Restaurant_
↪→longitude", "Delivery_location_latitude", 

"Delivery_location_longitude"], axis=1) 
df = df.drop(df[(df == "NaN ").any(axis=1)].index) 
df = df.drop(df[df.Straight_Line_KM > 100].index) 

Here we will format our data into the appropriate types. 

df["Vehicle_condition"] = df["Vehicle_condition"].
↪→astype(str) 
df["Delivery_person_Age"] = df["Delivery_person_Age"].

↪→astype(np.int_) 
df["Delivery_person_Ratings"] = df["Delivery_person_

↪→Ratings"].astype(np.float16) 

Non-numerical variables will need to be converted into dummy variables to 
indicate the presence or the absence of a particular condition. For example, in sunny 
weather, we will have a True value in the Sunny column and False in the Windy, 
Stormy, Cloudy, Fog, and Sandstorms columns. 

df = pd.get_dummies(df) 

Now we will need to format our dataset into features and labels, as well as split 
it into training and testing. 

X = df.drop(["Time_taken(min)"], axis=1) 
y = df["Time_taken(min)"] 
x_train, x_test, y_train, y_test = train_test_split(X,

↪→ y, test_size=0.33, random_state=42) 

Let us train our model and evaluate its performance. 

regressor=RandomForestRegressor(n_estimators= 20, 
min_samples_split= 4, 
min_samples_leaf= 1) 

regressor.fit(x_train, y_train) 
y_pred = regressor.predict(x_test)
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r2_score(y_test, y_pred) 

0.8251718756925756 

mean_absolute_error(y_test, y_pred) 

3.105488065872512 

Great, we were able to get a high regression score of 0.825 and our model has an 
average error of 3.1 minutes in prediction. 

12.3.4 Delivery Optimization 

Delivery optimization helps identify the most time and cost-effective way to get 
from point A to point B by choosing the most effective delivery routes. 

More complex optimization algorithms help businesses fill orders while taking 
into account things like driver schedules, available hours, total stops, fulfillment 
estimates, and legal requirements. The fastest or cheapest route is not the focus of 
the optimization. Finding a path that effectively and adequately takes into account 
all of the relevant factors is the goal. 

In this example, we will demonstrate how we can optimize supply chains by 
determining how many croissants should be delivered to each café from each 
bakery in Manhattan [6]. We will achieve this by minimizing the Wasserstein loss, 
otherwise known as the Earth mover’s distance. 

We will be using the Python Optimal Transport package for this task [6]. 

try: 
import ot 

except: 
!pip install POT 

import numpy as np 
import matplotlib.pyplot as plt 
import time 
import ot 

The data that we are using was extracted through a Google maps query for 
bakeries and cafés in Manhattan. Fictional production and sales values were 
synthesized that both add up to the same number of croissants. The file can be 
downloaded from [6]: 

https://github.com/PythonOT/POT/blob/master/data/manhattan.npz?raw=true
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In this case the solution will be generated by finding the Earth mover’s distance. 
The Earth mover’s distance is the minimum cost incurred to convert one distribution 
(production of croissants) into another (consumption of croissants) when provided 
a cost matrix. 

data = np.load('Supply_Chain/manhattan.npz') 

bakery_pos = data['bakery_pos'] 
bakery_prod = data['bakery_prod'] 
cafe_pos = data['cafe_pos'] 
cafe_prod = data['cafe_prod'] 
Imap = data['Imap'] 

print('Bakery production: {}'.format(bakery_prod)) 
print('Cafe sale: {}'.format(cafe_prod)) 
print('Total croissants : {}'.format(cafe_prod.sum())) 

Bakery production: [31. 48. 82. 30. 40. 48. 89. 73.] 
Cafe sale: [82. 88. 92. 88. 91.] 
Total croissants : 441.0 

Let us plot the location and the quantities supplied/demanded on the map. Larger 
circles will represent larger quantities demanded/supplied. 

plt.figure(1, (14, 12)) 
plt.clf() 
plt.imshow(Imap, interpolation='bilinear') # plot

↪→the map 
plt.scatter(bakery_pos[:, 0], bakery_pos[:, 1],

↪→s=bakery_prod, c='r', ec='k', label='Bakeries') 
plt.scatter(cafe_pos[:, 0], cafe_pos[:, 1], s=cafe_

↪→prod, c='b', ec='k', label='Cafés') 
plt.legend() 
plt.title('Manhattan Bakeries and Cafés') 

Text(0.5, 1.0, 'Manhattan Bakeries and Cafés')
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We will now compute the cost matrix between the bakeries and the cafés, which 
will be the transport cost matrix. The ot.dist will return the squared Euclidean 
distance between the locations. It can also return other distance metrics such as 
the Manhattan distance. This cost matrix can also be populated using other methods 
such as the estimated delivery timings from the earlier example or even a fusion of 
metrics. 

C = ot.dist(bakery_pos, cafe_pos) 

labels = [str(i) for i in range(len(bakery_prod))] 
f = plt.figure(2, (14, 7)) 
plt.clf() 
plt.subplot(121) 
plt.imshow(Imap, interpolation='bilinear') # plot

↪→the map 
for i in range(len(cafe_pos)): 

plt.text(cafe_pos[i, 0], cafe_pos[i, 1],
↪→labels[i], color='b', 

(continues on next page)
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(continued from previous page) 

fontsize=14, fontweight='bold', ha='center
↪→', va='center') 
for i in range(len(bakery_pos)): 

plt.text(bakery_pos[i, 0], bakery_pos[i, 1],
↪→labels[i], color='r', 

fontsize=14, fontweight='bold', ha='center
↪→', va='center') 
plt.title('Manhattan Bakeries and Cafés') 

ax = plt.subplot(122) 
im = plt.imshow(C, cmap="coolwarm") 
plt.title('Cost matrix') 
cbar = plt.colorbar(im, ax=ax, shrink=0.5, use_

↪→gridspec=True) 
cbar.ax.set_ylabel("cost", rotation=-90, va="bottom") 

plt.xlabel('Cafés') 
plt.ylabel('Bakeries') 
plt.tight_layout() 

The red cells in the matrix image show the bakeries and cafés that are further 
away and thus more costly to transport from one to the other, whereas the blue 
ones show those that are closer to each other, with respect to the squared Euclidean 
distance. 

Now let us find the solution by using ot.emd.
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start = time.time() 
ot_emd = ot.emd(bakery_prod, cafe_prod, C) 
time_emd = time.time() - start 
print(time_emd, "seconds") 

0.0009844303131103516 seconds 

Now let us visualize the solution. The thick lines should show the larger amounts 
of croissants that need to be transported from one bakery to another. 

# Plot the matrix and the map 
f = plt.figure(3, (14, 7)) 
plt.clf() 
plt.subplot(121) 
plt.imshow(Imap, interpolation='bilinear') # plot

↪→the map 
for i in range(len(bakery_pos)): 

for j in range(len(cafe_pos)): 
plt.plot([bakery_pos[i, 0], cafe_pos[j, 0]],

↪→[bakery_pos[i, 1], cafe_pos[j, 1]], 
'-k', lw=3. * ot_emd[i, j] / ot_emd.

↪→max()) 
for i in range(len(cafe_pos)): 

plt.text(cafe_pos[i, 0], cafe_pos[i, 1],
↪→labels[i], color='b', fontsize=14, 

fontweight='bold', ha='center', va='center
↪→') 
for i in range(len(bakery_pos)): 

plt.text(bakery_pos[i, 0], bakery_pos[i, 1],
↪→labels[i], color='r', fontsize=14, 

fontweight='bold', ha='center', va='center
↪→') 
plt.title('Manhattan Bakeries and Cafés') 

ax = plt.subplot(122) 
im = plt.imshow(ot_emd) 
for i in range(len(bakery_prod)): 

for j in range(len(cafe_prod)): 
text = ax.text(j, i, '{0:g}'.format(ot_emd[i,

↪→j]), 
ha="center", va="center",

↪→color="w") 
plt.title('Transport matrix') 

(continues on next page)
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(continued from previous page) 

plt.xlabel('Cafés') 
plt.ylabel('Bakeries') 
plt.tight_layout() 

We can calculate the minimized loss value for comparison as well. 

W = np.sum(ot_emd * C) 
print('Wasserstein loss (EMD) = {0:.2f}'.format(W)) 

Wasserstein loss (EMD) = 10838179.41 

Exercises 

1. List three different roles and responsibilities of supply chain departments. 
2. For each stage of the supply chain cycle below, explain how making improve-

ments to each stage will impact the supply chain.

• Planning
• Sourcing
• Manufacturing
• Delivering
• Returning
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3. List three examples of supply chain models and state its benefits. 
4. Define the bullwhip effect. 
5. List three potential reasons for variations in quantity ordered. 
6. Provide three solutions to reduce the bullwhip effect. 
7. Identify three different challenges in supply chain management. 
8. For each of the challenges listed in 7, identify one way that artificial intelligence 

could potentially be used to alleviate the problem. 
9. Perform demand forecasting using google trends data for a few products:

• Beanies
• Tote bags
• Bicycles 

Observe the differences between the trends of the products and determine what 
kind of trend and seasonality suits them better. 
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Chapter 13 
AI in Operations Management 

Learning Outcomes 

• Understand the roles and responsibilities of operations departments.
• Explain the steps performed in business process management.
• Explain the steps performed in Six Sigma.
• Identify ways that artificial intelligence can be applied to operations management.
• Develop artificial intelligence solutions for predicting root causes, predicting machine 

failures, and performing process automation. 

13.1 Introduction to Operations Management 

Operations management (OM) is the management of business execution in order to 
achieve the highest level of planning within an organization. It is concerned with 
converting materials and labor into goods and services as efficiently as feasible in 
order to increase an organization’s profit. The operations management team strives 
to achieve the maximum net operational profit feasible by balancing costs and 
income. 

Operations management is concerned with the use of assets such as workers, 
resources, appliances, and technology. Operations managers acquire, expand, and 
supply commodities to clients based on client wants and the company’s capabilities. 

Operations management is responsible for a variety of critical organizational 
decisions. Some examples are determining the scale of manufacturing factories, 
project administration procedures, and maintaining the information technology 
infrastructure. Other operational difficulties include inventory level management, 
which includes business process levels and raw material purchases, quality control, 
manual handling, and maintenance standards. 
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13.1.1 Business Process Management 

Business process management is a practice where you evaluate, optimize, and 
automate your business processes [2]. Business process management must be done 
regularly as processes in order to continuously improve processes to increase the 
operational efficiency. 

The lifecycle of business process management includes five steps as shown in 
Fig. 13.1: 

1. Design and analyze ideas for how to improve and optimize the process. 
2. Model how the changes would impact the process and the entire organization. 
3. Execute your new processes using software that allows you to easily create and 

edit them. 
4. Monitor and control your processes to ensure that they are working properly. 
5. Optimize and refine your implementation continuously. 

Fig. 13.1 Business process management [5]
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In certain instances, it is preferable to re-engineer your business processes rather 
than making incremental improvements. This implies that you are beginning over 
by recreating your business procedures from scratch. Sometimes, new technologies 
can help to simplify this task and make it easier than current operational processes. 

13.1.2 Six Sigma 

Six Sigma is a management method to help improve the quality of goods and 
services by identifying issues with the current processes. Six Sigma aims to achieve 
less than 3.4 inadequacies or inefficiencies across one million opportunities. 

DMAIC is the most widely used tool for implementing the Six Sigma method-
ology. It works to improve manufacturing processes in 5 easy steps as outlined in 
Fig. 13.2: 

Define – Measure – Analysis – Improvement – Control

• Define: Determine the issue with a certain manufacturing process and how it 
might be improved. Identify the appropriate tools or resources to employ.

• Measure: Quantify the performance of the process. This could help to figure out 
the best way forward to improve performance.

• Analysis: Analyze the process to find out what was done wrong or could be 
improved.

• Improvement: Identify solutions and determine the best option forward.
• Control: Make small changes across each new process so that results can be 

easily comparable against previous results to determine if things are getting better 
or not. 

13.1.3 Supply Chain Management (SCM) vs. Operations 
Management (OM) 

Supply chain management and operations management are two areas that are closely 
related, and some executives in both fields are well-versed in both [4]. There 
are discrepancies in what each type of executive handles, including the fact that 
they supervise different parts of the organization. If you are strong at organizing, 
transmitting, and managing information, either field could be a good fit for you. 

The following are some of the differences between supply chain management 
and operations management [4]:

• Management of Force vs. Management of Functions 
Supply chain management is mostly about managing the flow of goods and 

services. Operations management, on the other hand, is mostly about managing 
operations or functions.
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Fig. 13.2 Six sigma [6]

• **Concerns Within Company vs. Outside Company 
Supply chain management is primarily concerned with events that occur 

outside of the company or trade, such as the delivery of products to appropriate 
areas, the acquisition of materials, and so on, whereas operations management is 
primarily concerned with what occurs within a business or trade.

• Supply vs. Process 
Supply chain management manages the supply or movement of goods and 

products, whereas operations management manages the process of goods and 
products.

• Evaluation vs. Planning 
The majority of supply chain management time is spent on appraising, which 

is analyzing and approving distributors based on qualitative and quantitative 
criteria, and on negotiable contracts, which is creating contracts between parties.
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In contrast, the majority of time in operations management is spent planning, 
directing, arranging, and executing.

• Supply Chain Activities vs. Development Activities 
The supply chain management process involves the design, planning, exe-

cution, control, and monitoring of all supply chain activities. The operation 
management process includes planning, coordinating, and directing work, which 
leads to increased development.

• Reduction in Operating Costs vs. Increase in Revenue 
Supply chain management benefits include lower operational expenses, 

increased cash flow, reduced risk, improved quality control, and so on. 
Operations management benefits include increased revenue, engaged employees, 
improved customer happiness, improved product quality, and so on.

• Difference in Objectives 
The primary goals of supply chain management are to increase the total 

value generated, improve overall organizational performance, effectively regulate 
inventories, and so on, whereas the primary goals of operations management 
are leveraging organizational resources to develop products, services, or goods, 
boosting customer satisfaction, and providing things of desired quality on 
schedule. 

13.2 Artificial Intelligence in Operations Management 

Artificial intelligence can be used to increase the efficiency of business operations 
in many ways through efficiently utilizing data for predicting events. This can help 
operation managers reduce the amount of repetitive work done by staff or deliver 
insights that can help reduce costs in the organization. Some examples of how 
artificial intelligence can be applied to business operations are as follows: 

1. Predicting operational failures: This can help flag out aberrations and allow 
the organization to avoid critical catastrophes. Such AI-enabled systems should 
be able to monitor the materials, machines, and equipments in order to predict 
potential failures. Furthermore, they can also be extended to systems that interact 
with customers such as orders and supply–procurement. 

2. Automating repetitive processes: As a result of outsourcing the mundane to 
“smart” technologies, the workers can focus on more value-adding jobs and the 
unit can run more efficiently with fewer personnel. 

3. Predict causes of failures: Common issues that often occur can be fed into these 
intelligent algorithms that can help recommend the best way to tackle incidences 
that occur during operations. 

4. Improving product quality checks: Product defects in the manufacturing 
process can be reduced through the use of AI to flag out anomalies in the quality 
checking process by utilizing past data to train models to detect defects, thus 
improving the quality of the manufacturing process.
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13.3 Applications of AI in Operations 

13.3.1 Root Cause Analysis for IT Operations 

Root cause analysis is an iterative, questioning strategy used to investigate the cause-
and-effect links of a fundamental problem. 

When a problem occurs, we are only able to observe the problem’s symptoms. 
The symptoms must be mapped to a root cause by asking a series of exploratory 
questions and executing a battery of diagnostic tests. This is comparable to how a 
physician links a symptom, such as a fever, to its underlying cause, such as a viral 
infection. 

IT operations receive numerous service incidents from users every day. These 
incidences usually describe only the symptoms seen by the user. IT operation 
engineers will need to investigate the issue further and uncover more symptoms. 
This process requires analyzing the symptoms in order to identifying the underlying 
cause as specifically as possible. 

For example, symptoms might be a user observing a message stating, “We are 
unable to save your changes. Please contact the administrator.” This might be due 
to having no disk space in the database. Time is required for the IT operations staff 
to find out the root cause, and this process of investigation can impact resolution 
times significantly. This may require the help of other experts, which could be the 
developers or the product vendor which could lengthen resolution times. AI can 
help here by observing the symptoms and helping to make a data-driven guess on 
what the root cause might be, thus helping staff to fix the root causes faster. In 
this example, we will build an AI model that can help predict the root cause of the 
problems faced using features extracted from logs. 

The data we will be using is called root_cause_analysis.csv. It can be obtained 
from [1]: 
https://www.kaggle.com/datasets/aryashah2k/datasets-in-it-ops-applied-ai. 

This data describes the symptoms observed for various problems reported by 
users and are gathered by IT operation engineers. Each symptom is a separate 
attribute with values containing either one if the symptom is seen or zero when 
it is not. The symptoms are CPU load, memory load, delays, and whether some of 
these specific error codes were seen in the log files. The root cause attribute is the 
target variable that contains classes of root causes. 

This example uses a simple set of symptoms. However, in real-life scenarios, 
there can be numerous symptoms. Symptoms can be further classified based on 
where they are observed. For example, was the CPU load at the load balancer or a 
single micro-service? Text mining can also be used to extract symptoms from broad 
text. 

We will begin by loading up the dataset and preprocess it to make it ready for 
machine learning consumption.
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First we load the CSV into a Pandas dataframe using the read_csv method. We 
then print the data types and contents of the dataframe to check if the loading 
happened successfully. 

Next, we need to convert data to formats that can be consumed. In this case, the 
root cause is in text which needs to be converted into an integer. We will use the 
label encoder from Scikit-learn to transform the root cause into an integer. We then 
separate the features into X and labels into Y. 

# Importing necessary libraries 
import pandas as pd 
import os 
import tensorflow as tf 

#Load the data file into a Pandas Dataframe 
symptom_data = pd.read_csv("Operations/root_cause_

↪→analysis.csv") 

#Explore the data loaded 
print(symptom_data.dtypes) 
symptom_data.head() 

ID int64 
CPU_LOAD int64 
MEMORY_LOAD int64 
DELAY int64 
ERROR_1000 int64 
ERROR_1001 int64 
ERROR_1002 int64 
ERROR_1003 int64 
ROOT_CAUSE object 
dtype: object 

ID CPU_LOAD MEMORY_LOAD DELAY ERROR_1000 ERROR_1001 ERROR_1002 \ 
0 1 0 0 0 0 1 0  
1 2 0 0 0 0 0 0  
2 3 0 1 1 0 0 1  
3 4 0 1 0 1 1 0  
4 5 1 1 0 1 0 1  

ERROR_1003 ROOT_CAUSE 
0 1 MEMORY 
1 1 MEMORY 
2 1 MEMORY 
3 1 MEMORY 
4 0 NETWORK_DELAY 

# Convert input data to formats that can be used by
↪→ML Algorithms 
from sklearn import preprocessing 

(continues on next page)
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(continued from previous page) 

label_encoder = preprocessing.LabelEncoder() 
symptom_data['ROOT_CAUSE'] = label_encoder.fit_

↪→transform( 
symptom_data['ROOT_

↪→CAUSE']) 

#Convert Pandas DataFrame to a numpy vector 
np_symptom = symptom_data.to_numpy() 

#Extract the feature variables (X) 
X = np_symptom[:,1:8] 

#Extract the target variable (Y) 
Y = np_symptom[:,8] 

print("Shape of feature variables :", X.shape) 
print("Shape of target variable :",Y.shape) 

Shape of feature variables : (1000, 7) 
Shape of target variable : (1000,) 

Let us create a decision tree model to predict the root cause based on the 
symptoms. Decision tree models allow us to trace the various conditions that may 
lead to the error observed. To illustrate this with a simpler example, we will set the 
max_depth to 3 and visualize the trained model. 

For testing, we will set aside 20% of the records to be used to evaluate our 
models. 

from sklearn import tree 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split,

↪→cross_val_score 
from sklearn.tree import DecisionTreeClassifier 

X_train, X_test, y_train, y_test = train_test_split(X,
↪→ Y, test_size=0.20, random_state=42) 
clf = DecisionTreeClassifier(random_state=0, max_

↪→depth = 3) 
clf.fit(X_train, y_train) 
print("Accuracy score: {:.2f}%".format(clf.score(X_

↪→test, y_test) * 100)) 

(continues on next page)
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(continued from previous page) 

plt.figure(0, figsize=(30, 10)) 
tree.plot_tree(clf, fontsize=20) 
plt.show() 

Accuracy score: 73.50% 

With a depth of 3, the tree is able to isolate certain cases of NETWORK DELAYS 
very well. In the leaf node where the gini coefficient is 0.039 and the training 
samples containing classes of [3, 0, 148], these cases are defined when DELAY 
is True, but both CPU_LOAD and MEMORY_LOAD are False. This makes sense 
as the error is not caused by the computer, but rather a network issue. 

In the example above, we restricted the model to only a depth of 3 for simple 
visualization. But because of that, it can only look at 3 binary features. We will 
now remove the restriction and perform k-fold cross validation to estimate the 
expected accuracy of the trained model. K-fold cross validation trains 5 models 
with 5 different splits of the data. Once it is done, we can calculate the average 
accuracy over the 5 models for a reliable estimate of the model’s performance when 
deployed. 

from sklearn.tree import DecisionTreeClassifier 

clf = DecisionTreeClassifier(random_state=0) 
print("Accuracy score: {:.2f}%".format(cross_val_

↪→score(clf, X, Y, cv=5).mean() * 100)) 

Accuracy score: 84.10% 

We see that the model can achieve an accuracy of 84.10% with the test data. Now 
that we have the model setup, let us train it with our split. 

from sklearn.tree import DecisionTreeClassifier 

clf = DecisionTreeClassifier(random_state=0) 
(continues on next page)
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clf.fit(X_train, y_train) 
y_pred = clf.predict(X_test) 
print("Accuracy score: {:.2f}%".format(clf.score(X_

↪→test, y_test) * 100)) 

Accuracy score: 86.00% 

Our current model predicts 86% of the test set correctly. Now we will demon-
strate how this model can be used to predict root causes. 

Now that we have developed a Root Cause Analysis model, we can use it to 
predict the cause for a new incident. When a new incident happens, we can identify 
the symptoms of the incident and populate the related feature variables here, like 
CPU load, memory load, delays, and error codes. 

These features are then passed to the model’s prediction function which will 
return a class prediction for the root cause. The class will then be translated into 
the underlying root cause, wherein this case would be either DATABASE_ISSUE, 
MEMORY, or NETWORK_DELAY. 

In the below example, we demonstrate that when CPU_LOAD is high and when 
ERROR_1003 appears, it is likely due to a MEMORY issue. This could help IT 
operations staff quickly try to isolate the problem by looking into the server’s 
memory. 

CPU_LOAD=1 
MEMORY_LOAD=0 
DELAY=0 
ERROR_1000=0 
ERROR_1001=0 
ERROR_1002=0 
ERROR_1003=1 

prediction = clf.predict([[CPU_LOAD, MEMORY_LOAD,
↪→DELAY, ERROR_1000, ERROR_1001, ERROR_1002, ERROR_
↪→1003]]) 
print(label_encoder.inverse_transform(prediction)) 

['MEMORY'] 

Through this example, we have demonstrated how AI can be used to help 
identify the root causes of issues in IT operations. This can be further improved 
by monitoring more features of the system and feeding in more accurate features 
that can better describe the issues faced by the system. 

Improved root cause analysis could potentially help speed up the time taken 
to resolve issues in IT operations as staff are able to identify and fix the problem 
quicker.
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13.3.2 Predictive Maintenance 

Predictive maintenance software employs data science and predictive analytics to 
forecast when a piece of equipment will break, allowing remedial maintenance to 
be arranged before the problem occurs. The goal is to plan maintenance at the 
most convenient and cost-effective time, allowing the equipment’s lifespan to be 
maximized to the greatest extent possible, but before the equipment is impaired. 

Predictive maintenance solutions often have an underlying architecture that 
includes data acquisition and storage, data transformation, condition monitoring, 
asset health evaluation, prognostics, a decision support system, and a human 
interface layer. 

Nondestructive testing methods such as acoustic, corona detection, infrared, 
oil analysis, sound level measurements, vibration analysis, and thermal imaging 
predictive maintenance, which measure and gather operations and equipment real-
time data via wireless sensor networks, are examples of predictive maintenance 
technologies. These measures and predictive maintenance machine learning tech-
niques, such as the classification approach or the regression approach, are used by 
predictive maintenance service providers to discover equipment weaknesses. 

In this example, we will develop a predictive maintenance model for the Air 
Pressure system (APS) in Scania trucks. The dataset can be obtained here [7]: 
https://www.kaggle.com/datasets/uciml/aps-failure-at-scania-trucks-data-set. 

This collection is made up of data obtained from large Scania vehicles in normal 
use. The system under consideration is the Air Pressure System (APS), which 
produces pressured air for use in various truck tasks such as braking and gear 
changes. The datasets’ positive class consists of component failures for a given APS 
system component. Trucks in the negative class have failed for reasons unrelated to 
the APS. The data is a subset of all accessible data chosen by specialists. 

For proprietary reasons, the data attribute names have been anonymized. It is 
made up of both single-number counters and histograms made up of bins with 
varying conditions. Histograms typically feature open-ended conditions at each end. 
For example, if we measure the ambient temperature “T,” the histogram might be 
characterized as having four bins. 

The properties are as follows: class, anonymized operational data, and so on. The 
operational data has an identifier and a bin id, such as “Identifier Bin.” There are 171 
attributes in all, 7 of which are histogram variables. “na” represents missing values. 

The steps already applied for preprocessing the data in aps_failure_training_set_ 
processed_8bit.csv and aps_failure_test_set_processed_8bit.csv are as follows: 

1. Replace missing fields such as “na” with NaN. 
2. Map binary-valued column “class” to {. −1,1} instead of 1 and 0 for neural 

network models that use the hyperbolic tangent function, tanh(), as the activation 
function. 

3. Fill missing fields using a K-nearest neighbors estimate of the fancyimpute 
Python package for training and test data separately.
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4. Normalize feature columns to zero mean, unit variance in training data. Apply 
normalization coefficients calculated for training data to test data. 

5. Clip feature columns to [. −1, 1] to dampen the effect of outliers. 
6. Lower the precision of the data so that each value can fit in a single byte. Before 

this step, all fields were in the [. −1, 1] range and were of np.float32 dtype. After 
this step, they are in the [. −0.9921875, 0.9921875] range. 

Let us begin by importing the data. 

import pandas as pd 
import numpy as np 
from sklearn.metrics import confusion_matrix,

↪→balanced_accuracy_score 
from sklearn.linear_model import LogisticRegression 

X_train = pd.read_csv('Operations/aps_failure_
↪→training_set_processed_8bit.csv').drop('class',
↪→axis = 1) 
y_train = pd.read_csv('Operations/aps_failure_

↪→training_set.csv')['class'] 
y_train = (y_train == 'pos').astype(np.int) 

X_test = pd.read_csv('Operations/aps_failure_test_set_
↪→processed_8bit.csv').drop('class', axis = 1) 
y_test = pd.read_csv('Operations/aps_failure_test_set.

↪→csv')['class'] 
y_test = (y_test == 'pos').astype(np.int) 

The company has determined that the cost incurred for calling in an unnecessary 
maintenance check is $10 and the cost incurred for a truck breakdown is $500. 
Let us calculate the current cost incurred by the company without implementing a 
maintenance prediction system. 

cost_1 = 10 
cost_2 = 500 

predictions = [0 for i in range(len(y_test))] 
tn, fp, fn, tp = confusion_matrix(y_test.tolist(),

↪→predictions).ravel() 
check_all_trucks_cost = fp * cost_1 + fn * cost_2 
print("cost of checking all trucks everyday:", check_

↪→all_trucks_cost, "dollars") 

predictions = [1 for i in range(len(y_test))] 
(continues on next page)
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(continued from previous page) 

tn, fp, fn, tp = confusion_matrix(y_test.tolist(),
↪→predictions).ravel() 
ignore_breakdowns_cost = fp * cost_1 + fn * cost_2 
print("cost of not checking trucks:", ignore_

↪→breakdowns_cost, "dollars") 

print("minimum cost is", min(check_all_trucks_cost,
↪→ignore_breakdowns_cost), "dollars per", len(y_test),
↪→ "truck-days") 

cost of checking all trucks everyday: 187500 dollars 
cost of not checking trucks: 156250 dollars 
minimum cost is 156250 dollars per 16000 truck-days 

According to what we have calculated, the cost incurred by the company would 
be 156250 dollars for not checking any trucks, fixing them only after a breakdown. 
Using AI to predict the possibility of a breakdown occurring, we can try to reduce 
the cost incurred to maintain the truck fleet. 

model = LogisticRegression(max_iter=100000) 
model.fit(X_train, y_train) 

print("Test Accuracy: {:.4f}%".format(model.score(X_
↪→test, y_test) * 100)) 

Test Accuracy: 98.9500% 

In this case we have developed a model that can predict with 98.95% accuracy. 
This looks great, but in actual fact, regular accuracy may not represent the data well 
as there are more cases of no breakdowns than breakdowns. Instead, we should use 
the balanced accuracy score metric which calculates the accuracy score for each 
class and averages them so that all classes get an equal weightage. 

print("Number of operational truck-days:", len([i for
↪→i in y_test if i == 0])) 
print("Number of breakdowns:", len([i for i in y_test

↪→if i == 1])) 
print() 
print("Balanced accuracy score: {:.4f}%".

↪→format(balanced_accuracy_score(y_test, model.
↪→predict(X_test)) * 100))
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Number of operational truck-days: 15625 
Number of breakdowns: 375 

Balanced accuracy score: 83.5861% 

predictions = model.predict(X_test) 
tn, fp, fn, tp = confusion_matrix(y_test.tolist(),

↪→predictions).ravel() 
cost = fp * cost_1 + fn * cost_2 

print("cost is", cost, "dollars per", len(y_test),
↪→"truck-days") 

cost is 61460 dollars per 16000 truck-days 

With the current model, we have been able to decrease the cost of operations 
from 156250 down to 61460 per 16000 truck-days. 

Knowing that the data is imbalanced with 59 times more cases of no breakdown 
than breakdowns, the model would be biased to predict that there is no breakdown. 
Thus, we can try to reduce this effect by applying SMOTE to create more 
samples of the under-represented class by creating more synthetic samples through 
interpolating between features of breakdowns. 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE(random_state=3) 
X_train2, y_train2 = oversample.fit_resample(X_train,

↪→y_train) 

model.fit(X_train2, y_train2) 
print("Balanced accuracy score: {:.4f}%".

↪→format(balanced_accuracy_score(y_test, model.
↪→predict(X_test)) * 100)) 

tn, fp, fn, tp = confusion_matrix(y_test.tolist(),
↪→model.predict(X_test)).ravel() 
cost = fp * cost_1 + fn * cost_2 
print("cost is", cost, "dollars per", len(y_test),

↪→"truck-days") 

Balanced accuracy score: 95.3696% 
cost is 16470 dollars per 16000 truck-days
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print("cost savings in percent = {:.4f}%".format((1 -
↪→cost/min(check_all_trucks_cost, ignore_breakdowns_
↪→cost)) * 100)) 

cost savings in percent = 89.4592% 

After accounting for class imbalance, we were able to further reduce the cost 
down to 16470 dollars per 16000 truck-days. Through this example, we have 
demonstrated that a model trained for predictive maintenance is able to reduce the 
operational cost by 89.45%. 

13.3.3 Process Automation 

Operations can be further streamlined through the use of AI by process automation. 
Instead of having humans to perform mundane and repetitive tasks, we can automate 
these tasks through the use of robotic process automation. 

Robotic process automation (RPA) is a technology that automates digital oper-
ations by using robots that mimic human actions. Bots can mimic and learn 
rule-based actions, as well as interact with any system or program in the same way 
that humans do. RPA bots, on the other hand, can work around the clock without 
tiring and do not exhibit bias in procedures like humans. Artificial intelligence is 
used in RPA to help deal with semi-structured and unstructured data from various 
media such as text, images, webpages, PDFs, and videos. For example, Optical 
Character Recognition is one of the most common forms of AI that is applied in 
RPA to recognize printed and handwritten characters on scanned documents. 

As a result, RPA services have become an essential component of business 
operations. Many corporate operations duties, including marketing, information 
technology (IT), scheduling, and time tracking, can be automated. The IT system, 
which is the backbone of any firm, is the biggest benefit of RPA technology. 

In this example, we will go through how RPA can be used to automate a form 
filling process using UiPath [3]. 

Step 1: Let us begin by creating a csv file containing fake personal details as 
shown below in Fig. 13.3. The Google forms will be populated with this data. 

Step 2: Open your UiPath studio and click on Process as shown in Fig. 13.4. 
Step 3: Select a name for your process and click on the Create button as shown 

in Fig. 13.5. 
Step 4: Click on Open Main Workflow as shown in Fig. 13.6. 
Step 5: Click on “Drop Activity Here” and then search for “Sequence” activity 

from the activity box as shown in Fig. 13.7.
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Fig. 13.3 Step 1: Example excel 

Fig. 13.4 Step 2: Click on process 

Step 6: After selecting a sequence activity, click on “Drop Activity Here,” search 
for Read CSV activity, and add it as shown in Fig. 13.8. The Read CSV activity is 
used for reading the CSV file. 

Step 7: Click on the folder icon to provide the address of your csv file. Then 
create a new output variable by clicking on the “+” icon followed by clicking on 
“Create Variable” as shown in Fig. 13.9. Check the csv header file so that we can 
use the csv headers such as Name, Address, and Contact. 

Step 8: Name the variable as data and press Enter as shown in Fig. 13.10. 
Step 9: Now add For Each Row activity by clicking on the “. +” button and 

searching for it in the search bar as shown in Fig. 13.11. This will allow us to process 
every row of the CSV file line by line. 

Step 10: Under “ForEach,” provide an iteration variable named CurrentRow as 
shown in Fig. 13.12. Under ‘In,” click on the “data” variable that we have defined 
earlier from our read_csv process.
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Fig. 13.5 Step 3: Create process 

Fig. 13.6 Step 4: Open workflow
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Fig. 13.7 Step 5: Create sequence activity 

Fig. 13.8 Add Read CSV operation 

Step 11: Now open up the link to the Google form you want to fill in a browser 
of your choice as shown in Fig. 13.13. 

Step 12: Now in the body of each row activity, click on the “+” button and add 
the Use Application/Browser activity as shown in Fig. 13.14. This will allow us to 
open our browser. 

Step 13: Click on the “Indicate application to automate” button as shown in 
Fig. 13.15. 

Step 14: Provide the Google form link under Browser URL. Click on the “+” 
sign, search for the “type into” activity, and add it to the sequence as shown in
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Fig. 13.9 Step 7: Create variables 

Fig. 13.10 Step 8: Name variable 

Fig. 13.16. In this example we will create 3 sets of type into activities because I have 
3 fields in my Google form, but you can add as many according to your requirement. 

Step 15: First make sure that your Google form opened in the background of your 
UiPath and after that click on “Indicate in Edge” (Fig. 13.17). 

Step 16: Click on the field on the webpage where you want to type/ add data into 
and anchor it to something descriptive as shown in Fig. 13.18. 

Step 17: Type “CurrentRow(“Name”).toString” to reference the Name variable 
in the csv file as shown in Fig. 13.19. Repeat steps 14 to 17 for all the fields required 
for the “Type Into Activities” actions. 

Step 18: Now search for “Click Activity” and add it as shown in Fig. 13.20. 
Step 19: Anchor the click to the submit button by clicking once on the button and 

another time on the “Submit” word as shown in Fig. 13.21. 
Step 20: Click on the “. +” button and search for “Navigate Browser”. Add it to 

the sequence as shown in Fig. 13.22. 
Step 21: Select “Close Tab” to close the form as shown in Fig. 13.23.
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Fig. 13.11 Step 9: Iterate through rows 

Fig. 13.12 Step 10: Iterate through rows 

Step 22: Now our Process is Ready and you just Run by clicking on the green 
“Play” button. The RPA script will read all the rows available in our CSV file and fill 
them all into the Google Form one by one without any human interaction needed. 

This example demonstrates how RPA can be used to automate repetitive tasks 
such as filling details into Google forms. There are many other useful applications 
of RPA such as invoice automation, employee onboarding, payroll automation, and 
many others. The automation of various business operations can help reduce the 
amount of tasks done by humans and therefore increasing operational efficiency 
across the business.
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Fig. 13.13 Step 11: Open webpage 

Fig. 13.14 Step 12: Open webpage
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Fig. 13.15 Step 13: Select application to automate 

Fig. 13.16 Step 14: Set up automatic typing
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Fig. 13.17 Step 15: Click on indicate in Edge 

Fig. 13.18 Step 16: Click on anchors in the webpage
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Fig. 13.19 Step 17: Assign values from the csv file to variables 

Fig. 13.20 Step 18: Add click activity
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Fig. 13.21 Step 19: Anchor submit button 

Fig. 13.22 Step 20: Add navigate browser activity 

Fig. 13.23 Step 21: 
Automate tab closing
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Exercises 

1. List three different roles and responsibilities of operations departments. 
2. Explain the purpose of the business process management and list the five steps 

involved. 
3. Explain the purpose of Six Sigma and list the five steps involved. 
4. Identify three different challenges in operations management. 
5. For each of the challenges listed in 4, identify one way that artificial intelligence 

could potentially be used to alleviate the problem. 
6. Develop a process automation robot that can help create new accounts and send 

confirmation emails using UiPath. 
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Chapter 14 
AI in Corporate Finance 

Learning outcomes: 

• Understand the roles and responsibilities of corporate finance departments.
• Be able to list some of the challenges that corporate finance departments face.
• Identify ways that artificial intelligence can be applied to corporate finance.
• Develop artificial intelligence solutions for predicting credit defaults and predicting 

credit card fraud. 

14.1 Introduction to Corporate Finance 

The finance department is in charge of overseeing all operations within the company 
that utilizes money. Tasks such as financing, risk analysis, investments, accounting, 
and compliance are performed by the finance department [1]. 

Financing 
A firm needs money, or capital, to operate, and there are multiple ways for them to 
get it. The finance department is in charge of deciding the capital structure of the 
business and sourcing for the capital to fund operations. There are many instruments 
that a business can use to finance their operations. These include corporate bonds, 
bank loans, equities, and other financial instruments. In order to secure the capital 
required, the finance department negotiates loan terms, connects with potential 
investors, and maintains relations with the existing shareholders. They also have 
to consider the pros and cons of each financing option to best match the needs of the 
company. 

Investments 
Business leaders seek guidance from the finance department about how to invest 
available funds. Advisors in the finance department identify lucrative opportunities 
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that business can take. They compare different investment projects (both internal and 
external to the company) by analyzing the projected returns of various opportunities 
as well as the capital required to fund these projects. They will also have to decide 
which projects to fund and how much to fund these projects in a way that would 
help maximize profits for the company. 

Risk Analysis 
Assessing financial risks is one of the ways the financial department supports the 
success of a business. They can manage risk by reviewing the terms of loans, 
researching the credit history of their clients, and reviewing price changes in their 
industry. By conducting financial analysis on the operations of the business, the 
financial department can advise the business on the best way forward to minimize 
financial risk. 

Account Management 
Accounts receivable and accounts payable are overseen by members of the finance 
department. They make ensure that the organization fulfills its contractual commit-
ments by paying the money that it owes, sending out invoices, and making steps 
to reclaim money that is still owed to it. Finance departments are also in charge of 
tracking and documenting all transactions to facilitate financial audits. 

Compliance 
The finance department also contributes to the maintenance of compliance with 
applicable financial legislation and policies. This involves conducting an audit of 
the firm’s financial procedures, engaging with regulatory officials, and making 
certain that corporate assets and financial records are in agreement with one another. 
Additionally, they are responsible for the preparation of any necessary reports for 
the public disclosure of the company’s earnings or financial policies. 

14.2 Artificial Intelligence in Finance 

The use of artificial intelligence to corporate finance is of the utmost significance. 
Corporate finance investment and transactions are key forms of corporate activity 
that have a considerable influence not just on specific industrial sectors but also on 
national and regional economies and, by extension, on society as a whole. 

(1) Process automation 
Process automation can be used in the finance department to streamline 
repetitive processes. Processing claims by extracting information and verifying 
the legitimacy of the transactions can be performed using artificial intelligence 
and robotic process automation to detect and recognize texts in an invoice. 
Documents can also be classified so that they can be properly tagged and routed 
to the right teams. Such examples can help reduce time spent by finance teams 
and allow them to perform more complex tasks.
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(2) Credit defaults 
Bankruptcy and defaults are significant risks to the company as they may never 
be able to receive the cash for services provided or even capital that was loaned 
to debtors. We can utilize AI to predict bankruptcy, taking into account the 
financial status of the companies that we are transacting with. A higher accuracy 
in predicting defaults would allow business to better anticipate and plan to 
collect money back effectively. 

(3) Fraud detection 
Fraud is another financial risk that companies face. Businesses can lose money 
or inventory through fraudulent transactions that are performed by bad actors. 
Chargeback fraud is one example, where customers request a refund for a 
transaction directly with the payment processor after receiving the goods, 
through the chargeback process without informing the business. Such cases lead 
to a loss of inventory as the costs would be borne by the business. Artificial 
Intelligence can be utilized to reduce such risks by flagging out potentially 
fraudulent activity and provide a probability that a transaction is fraudulent. 

(4) Enforce regulation 
Business operations are required to comply with financial regulations in 
the country of operation, and failure to comply with these regulations can 
lead to detrimental consequences for a business. One such example is anti-
money laundering laws, which are created to prevent illicit funds from being 
disguised as legitimate transactions. In such cases, artificial intelligence may be 
used to help comply with regulation requirements through facilitating identity 
verification and conducting customer due diligence. 

14.3 Applications of AI in Corporate Finance 

14.3.1 Default Prediction 

Credit risk modeling is the process of assessing the likelihood of a borrower 
defaulting on their loan [2]. This is accomplished by extracting insights from 
historical data of previous borrowers. Banks and other financial organizations utilize 
credit risk models in order to improve their decision-making processes about the 
individuals to whom they lend money, the amount of money they lend, and when 
they should draw back. Similarly, businesses can apply the same techniques to 
determine the credit risk of their customers’ business to business (B2B) credit 
transactions. 

When businesses have a better grasp of the elements that contribute to the risk 
that a borrower would default on their loans, they are able to make more educated 
decisions on who to lend money to, how much money to extend, and when to draw 
back. One way they do this is by improving their ability to predict credit risk by 
using machine learning. Machine learning models are able to draw insights from
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past data and identify customers which may default on their loans. In addition, 
algorithms that use machine learning may acquire new knowledge from data over 
time, which allows them to improve their predictions as more data are collected. 

In this exercise we will be predicting whether a company will or will not become 
bankrupt and hence default on their payments. We will achieve this using Support 
Vector Machines with SMOTE. 

First, let us begin by downloading and importing the data. The dataset we will be 
using can be obtained from [3]: 
https://www.kaggle.com/datasets/lupitaastari/bankruptcy?select=bankruptcy_ 
Train.csv. 

We will split the data provided in bankruptcy_Train into training and testing as 
the test set provided does not provide labels for us to verify how successful our 
model would be in predicting bankruptcy. 

import pandas as pd 
import numpy as np 
df = pd.read_csv("Finance/bankruptcy_Train.csv") 
fields = pd.read_excel("Finance/bankruptcy DataField.

↪→xlsx") 

df 

Attr1 Attr2 Attr3 Attr4 Attr5 Attr6 Attr7 \ 
0 -0.031545 -0.091313 -0.040269 -0.013529 0.007406 -0.016047 -0.000264 
1 -0.231729 -0.049448 0.304381 -0.080975 0.007515 -0.016047 -0.034963 
2 -0.058602 0.065060 -0.488404 -0.189489 0.006572 -0.016047 -0.004954 
3 -0.069376 0.044641 -0.181684 -0.140032 0.007477 -0.010915 -0.005599 
4 0.236424 -0.051912 0.678337 -0.014680 0.007879 -0.016047 0.057418 
... ... ... ... ... ... ... ... 
9995 -0.079533 0.034814 -0.492082 -0.189873 0.006687 -0.006462 -0.008582 
9996 -0.081046 -0.095260 0.184167 0.021280 0.007497 -0.034968 -0.009689 
9997 -0.230571 0.061341 -0.830634 -0.222373 0.006716 -0.013742 -0.042210 
9998 -0.108156 0.029524 0.102420 -0.042692 0.008123 -0.018374 -0.013544 
9999 -0.068674 -0.081793 0.734155 0.039538 0.007850 0.001952 -0.005791 

Attr8 Attr9 Attr10 ... Attr56 Attr57 Attr58 \ 
0 0.641242 -0.748385 0.126789 ... 0.014367 0.005457 -0.014143 
1 0.074710 0.469815 0.073759 ... 0.008492 -0.008385 -0.008666 
2 -0.456287 0.270351 -0.071287 ... 0.010819 0.006779 -0.009437 
3 -0.462971 -0.286746 -0.085266 ... 0.010683 0.005384 -0.010840 
4 0.097183 0.423405 0.076880 ... 0.010970 0.025295 -0.011056 
... ... ... ... ... ... ... ... 
9995 -0.374739 -0.372026 -0.034110 ... 0.009554 0.003007 -0.009712 
9996 0.689695 -0.393121 0.123218 ... 0.009243 0.002485 -0.009400 
9997 -0.471830 -0.351828 -0.084068 ... 0.009841 -0.025046 -0.009998 
9998 -0.355796 -0.480887 -0.026274 ... 0.009595 -0.000439 -0.009101 
9999 0.293253 -0.398417 0.066852 ... 0.009162 0.003478 -0.009319 

Attr59 Attr60 Attr61 Attr62 Attr63 Attr64 class 
0 -0.020924 0.068399 -0.214478 -0.013915 -0.173939 -0.046788 0 
1 -0.023095 -0.033498 -0.205796 -0.015174 -0.073056 -0.027236 0 
2 -0.007919 -0.043455 0.019740 -0.011736 -0.291624 -0.033580 0 
3 0.001381 -0.042828 -0.350519 0.002969 -0.554685 -0.046823 0 
4 -0.022535 -0.035892 -0.181557 -0.015623 -0.027841 -0.023694 0 

(continues on next page)
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(continued from previous page) 
... ... ... ... ... ... ... ... 
9995 -0.016201 -0.043479 -0.320006 0.002964 -0.554635 -0.043685 0 
9996 -0.021760 -0.040991 0.081487 -0.017605 0.275468 -0.040571 0 
9997 -0.009408 -0.038734 -0.250595 -0.005232 -0.463932 -0.040395 0 
9998 -0.005170 -0.022103 -0.298745 -0.013596 -0.194810 -0.043671 0 
9999 -0.023124 -0.015060 -0.029375 -0.018460 0.503620 -0.017615 0 

[10000 rows x 65 columns] 

{i.split("\xa0- ")[0]:i.split("\xa0- ")[1] for i in
↪→fields["Data fields"].tolist()} 

{'attr1': 'net profit / total assets', 
'attr2': 'total liabilities / total assets', 
'attr3': 'working capital / total assets', 
'attr4': 'current assets / short-term liabilities', 
'attr5': '[(cash + short-term securities + receivables - short-term liabilities) /

↪→ (operating expenses - depreciation)] * 365', 
'attr6': 'retained earnings / total assets', 
'attr7': 'EBIT / total assets', 
'attr8': 'book value of equity / total liabilities', 
'attr9': 'sales / total assets', 
'attr10': 'equity / total assets', 
'attr11': '(gross profit + extraordinary items + financial expenses) / total

↪→assets', 
'attr12': 'gross profit / short-term liabilities', 
'attr13': '(gross profit + depreciation) / sales', 
'attr14': '(gross profit + interest) / total assets', 
'attr15': '(total liabilities * 365) / (gross profit + depreciation)', 
'attr16': '(gross profit + depreciation) / total liabilities', 
'attr17': 'total assets / total liabilities', 
'attr18': 'gross profit / total assets', 
'attr19': 'gross profit / sales', 
'attr20': '(inventory * 365) / sales', 
'attr21': 'sales (n) / sales (n-1)', 
'attr22': 'profit on operating activities / total assets', 
'attr23': 'net profit / sales', 
'attr24': 'gross profit (in 3 years) / total assets', 
'attr25': '(equity - share capital) / total assets', 
'attr26': '(net profit + depreciation) / total liabilities', 
'attr27': 'profit on operating activities / financial expenses', 
'attr28': 'working capital / fixed assets', 
'attr29': 'logarithm of total assets', 
'attr30': '(total liabilities - cash) / sales', 
'attr31': '(gross profit + interest) / sales', 
'attr32': '(current liabilities * 365) / cost of products sold', 
'attr33': 'operating expenses / short-term liabilities', 
'attr34': 'operating expenses / total liabilities', 
'attr35': 'profit on sales / total assets', 
'attr36': 'total sales / total assets', 
'attr37': '(current assets - inventories) / long-term liabilities', 
'attr38': 'constant capital / total assets', 
'attr39': 'profit on sales / sales', 
'attr40': '(current assets - inventory - receivables) / short-term liabilities', 
'attr41': 'total liabilities / ((profit on operating activities + depreciation) *

↪→(12/365))', 
'attr42': 'profit on operating activities / sales', 
'attr43': 'rotation receivables + inventory turnover in days', 
'attr44': '(receivables * 365) / sales', 
'attr45': 'net profit / inventory', 
'attr46': '(current assets - inventory) / short-term liabilities', 
'attr47': '(inventory * 365) / cost of products sold', 

(continues on next page)
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(continued from previous page) 
'attr48': 'EBITDA (profit on operating activities - depreciation) / total assets', 
'attr49': 'EBITDA (profit on operating activities - depreciation) / sales', 
'attr50': 'current assets / total liabilities', 
'attr51': 'short-term liabilities / total assets', 
'attr52': '(short-term liabilities * 365) / cost of products sold)', 
'attr53': 'equity / fixed assets', 
'attr54': 'constant capital / fixed assets', 
'attr55': 'working capital', 
'attr56': '(sales - cost of products sold) / sales', 
'attr57': '(current assets - inventory - short-term liabilities) / (sales - gross

↪→profit - depreciation)', 
'attr58': 'total costs /total sales', 
'attr59': 'long-term liabilities / equity', 
'attr60': 'sales / inventory', 
'attr61': 'sales / receivables', 
'attr62': '(short-term liabilities *365) / sales', 
'attr63': 'sales / short-term liabilities', 
'attr64': 'sales / fixed assets', 
'class': 'the response variable Y: 0 = did not bankrupt; 1 = bankrupt'} 

Then let us visualize the class counts. 

pd.value_counts(df["class"]).plot.bar() 

<AxesSubplot:> 

Split the data into training and testing. 

train = df[:int(0.8*(len(df)))] 
test = df[int(0.8*(len(df))):] 

Visualize the class counts for train and test, respectively. 

pd.value_counts(train["class"]).plot.bar()
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<AxesSubplot:> 

pd.value_counts(test["class"]).plot.bar() 

<AxesSubplot:> 

pd.value_counts(df["class"])[1]/ pd.value_counts(df[
↪→"class"])[0] 

0.020720628763907317 

Let us split the data into features (X) and labels (Y). 

from collections import Counter 
train_X, train_Y = train.drop("class", axis = 1),

↪→train["class"] 
(continues on next page)
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(continued from previous page) 

test_X, test_Y = test.drop("class", axis  = 1), test[
↪→"class"] 
# summarize the class distribution 
counter = Counter(train_Y) 
print(counter) 

Counter({0: 7838, 1: 162}) 

As you can see, the class distribution is highly imbalanced. Bond defaults only 
account for approximately 2% of the dataset. Training a classifier on such a dataset 
would yield bad results as the model would simply predict all transactions as 
unlikely to default since that would lead to a 98% accuracy. 

For example, let us try a Logistic Regression classifier with the current imbal-
anced data. 

from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import balanced_accuracy_score,

↪→recall_score, confusion_matrix 

model = LogisticRegression(max_iter = 1000) 
model.fit(train_X, train_Y) 
prediction = model.predict(test_X) 

confusion_matrix(test_Y, prediction) 

array([[1956, 3], 
[ 41, 0]], dtype=int64) 

balanced_accuracy_score(test_Y, prediction) 

0.4992343032159265 

recall_score(test_Y, prediction, average = None) 

array([0.99846861, 0. ]) 

As you can see from the confusion matrix and the recall scores, due to the class 
imbalance, the model predicts that no one will become bankrupt as such cases 
are very rare. In order to combat the imbalanced dataset, we can use SMOTE for 
generating more of the minority class.
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SMOTE operates by selecting 2 samples that are close in the feature space, 
calculating a line between them in the feature space, and generating a new point 
by sampling a new point along the line. 

Specifically, a random sample from the minority class is selected to begin with. 
Then we searched for k of its nearest neighbors for that sample. One of these 
selected neighbors is chosen and a new example is created randomly at a selected 
point that lies between the two examples in feature space. 

Let us see how it works. 

from imblearn.over_sampling import SMOTE 

from sklearn.decomposition import PCA 
pca = PCA(n_components=2) 
pca.fit(train_X) 
pca_train = pca.transform(train_X) 

This is a plot of the minority class before SMOTE. 

import matplotlib.pyplot as plt 
plt.scatter(pca_train[train_Y==1][:,0], pca_

↪→train[train_Y==1][:,1]) 

<matplotlib.collections.PathCollection at
↪→0x1b64eeabd30> 

oversample = SMOTE(random_state=0) 
train_X, train_Y = oversample.fit_resample(train_X,

↪→train_Y) 

(continues on next page)
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(continued from previous page) 

# summarize the new class distribution 
counter = Counter(train_Y) 
print(counter) 

Counter({0: 7838, 1: 7838}) 

pca_train = pca.transform(train_X) 

This is a plot of the minority sample after SMOTE. 

plt.scatter(pca_train[train_Y==1][:,0], pca_
↪→train[train_Y==1][:,1]) 

<matplotlib.collections.PathCollection at
↪→0x1b64fd1bdc0> 

Now that we have equal classes in the training set, let us train the Logistic 
Regression classifier once more. 

model = LogisticRegression(max_iter = 1000, random_
↪→state=0) 
model.fit(train_X, train_Y) 
prediction = model.predict(test_X) 

confusion_matrix(test_Y, prediction)
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array([[1478, 481], 
[ 5, 36]], dtype=int64) 

balanced_accuracy_score(test_Y, prediction) 

0.8162576725307835 

recall_score(test_Y, prediction, average = None) 

array([0.75446656, 0.87804878]) 

As you can see, we have achieved 80.4% in the balanced accuracy score, and we 
were able to recall 85% of all defaults (and hence, avoid purchasing) in the test set. 

Using Logistic Regression, we are able to predict the probability of default. The 
earlier model predicts a default when the probability of default is greater than 50%. 
We can lower it to be more conservative to recall more defaults, but some bonds that 
we have previously deemed unlikely to default may now also be considered to be at 
risk of defaulting. 

probability_of_default = model.predict_proba(test_
↪→X)[:,1] 

threshold_confidence = 0.2 
prediction = (probability_of_default > threshold_

↪→confidence).astype(np.int) 

confusion_matrix(test_Y, prediction) 

array([[1144, 815], 
[ 1, 40]], dtype=int64) 

balanced_accuracy_score(test_Y, prediction) 

0.7797905850421445 

recall_score(test_Y, prediction, average = None) 

array([0.58397141, 0.97560976]) 

As you can see, setting a lower threshold of 20% instead of 50% on our model 
allows us to be more conservative. As a result, we detected 97.6% of all defaults.
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14.3.2 Predicting Credit Card Fraud 

Chargeback fraud is when a person dishonestly disputes a payment transaction 
through the issuing bank or the payment processor, which ultimately results in a 
chargeback [4]. The fundamental objective of the purchaser is to acquire a refund 
while retaining possession of the good(s). The customer starts a chargeback on 
purpose instead of contacting the business where they made the purchase. Through 
this process, they are able to steal from the company through the chargeback 
process. 

Every chargeback results in a cost being imposed to the business. If a business 
wants to dispute a chargeback, they usually go through a long dispute process. In 
the event that the consumer wins their case throughout the dispute procedure, the 
company is obligated to issue a refund for the amount that was originally charged 
to the client. Businesses lose billions of dollars yearly due to chargebacks, and a 
rapidly growing percentage of that loss is attributed to fraudulent chargebacks. 

It is essential for businesses to maintain a low chargeback rate in order to avoid 
incurring excessive costs and maintain their ability to accept major credit cards. 
With the prevalence of both chargeback fraud and friendly fraud on the rise, it is 
becoming increasingly hard for businesses to keep their chargeback rate low. 

In this example we will develop a model that can accurately detect fraudulent 
credit card transactions [5]. The problem is significant because false positive fraud 
detections can result in inconvenience for customers, while false negatives can result 
in monetary losses for the credit card company. 

The dataset contains transactions made by European credit cardholders in 
September 2013. The transactions have been transformed with Principal Component 
Analysis (PCA), with the exception of the “Time” and “Amount” features. The 
“Class” feature represents whether a transaction is fraudulent (1) or not (0). The 
dataset is highly imbalanced, with only 0.172% of transactions being fraudulent. 

import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.linear_model import LogisticRegression 
from imblearn.pipeline import Pipeline 
from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import cross_val_predict 
from sklearn.metrics import confusion_matrix,

↪→balanced_accuracy_score, accuracy_score, recall_
↪→score 
import matplotlib.pyplot as plt 
from imblearn.over_sampling import SMOTE 

df=pd.read_csv("Finance/creditcard.csv")
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# Shape of the dataset 
print("Shape of the dataset:", df.shape) 

Shape of the dataset: (284807, 31) 

# Overview of the data 
print("Overview of the data:" ) 
df.head() 

Overview of the data: 

Time V1 V2 V3 V4 V5 V6 V7 \ 
0 0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 
1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 
2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 
3 1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 
4 2.0 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 

V8 V9 ... V21 V22 V23 V24 V25 \ 
0 0.098698 0.363787 ... -0.018307 0.277838 -0.110474 0.066928 0.128539 
1 0.085102 -0.255425 ... -0.225775 -0.638672 0.101288 -0.339846 0.167170 
2 0.247676 -1.514654 ... 0.247998 0.771679 0.909412 -0.689281 -0.327642 
3 0.377436 -1.387024 ... -0.108300 0.005274 -0.190321 -1.175575 0.647376 
4 -0.270533 0.817739 ... -0.009431 0.798278 -0.137458 0.141267 -0.206010 

V26 V27 V28 Amount Class 
0 -0.189115 0.133558 -0.021053 149.62 0 
1 0.125895 -0.008983 0.014724 2.69 0 
2 -0.139097 -0.055353 -0.059752 378.66 0 
3 -0.221929 0.062723 0.061458 123.50 0 
4 0.502292 0.219422 0.215153 69.99 0 

[5 rows x 31 columns] 

df.info() 

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 284807 entries, 0 to 284806 
Data columns (total 31 columns): 
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Time 284807 non-null float64 
1 V1 284807 non-null float64 
2 V2 284807 non-null float64 
3 V3 284807 non-null float64 
4 V4 284807 non-null float64 
5 V5 284807 non-null float64 
6 V6 284807 non-null float64 
7 V7 284807 non-null float64 

(continues on next page)
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(continued from previous page) 

8 V8 284807 non-null float64 
9 V9 284807 non-null float64 
10 V10 284807 non-null float64 
11 V11 284807 non-null float64 
12 V12 284807 non-null float64 
13 V13 284807 non-null float64 
14 V14 284807 non-null float64 
15 V15 284807 non-null float64 
16 V16 284807 non-null float64 
17 V17 284807 non-null float64 
18 V18 284807 non-null float64 
19 V19 284807 non-null float64 
20 V20 284807 non-null float64 
21 V21 284807 non-null float64 
22 V22 284807 non-null float64 
23 V23 284807 non-null float64 
24 V24 284807 non-null float64 
25 V25 284807 non-null float64 
26 V26 284807 non-null float64 
27 V27 284807 non-null float64 
28 V28 284807 non-null float64 
29 Amount 284807 non-null float64 
30 Class 284807 non-null int64 

dtypes: float64(30), int64(1) 
memory usage: 67.4 MB 

df.describe() 

Time V1 V2 V3 V4 \ 
count 284807.000000 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 
mean 94813.859575 1.168375e-15 3.416908e-16 -1.379537e-15 2.074095e-15 
std 47488.145955 1.958696e+00 1.651309e+00 1.516255e+00 1.415869e+00 
min 0.000000 -5.640751e+01 -7.271573e+01 -4.832559e+01 -5.683171e+00 
25% 54201.500000 -9.203734e-01 -5.985499e-01 -8.903648e-01 -8.486401e-01 
50% 84692.000000 1.810880e-02 6.548556e-02 1.798463e-01 -1.984653e-02 
75% 139320.500000 1.315642e+00 8.037239e-01 1.027196e+00 7.433413e-01 
max 172792.000000 2.454930e+00 2.205773e+01 9.382558e+00 1.687534e+01 

V5 V6 V7 V8 V9 \ 
count 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 
mean 9.604066e-16 1.487313e-15 -5.556467e-16 1.213481e-16 -2.406331e-15 
std 1.380247e+00 1.332271e+00 1.237094e+00 1.194353e+00 1.098632e+00 
min -1.137433e+02 -2.616051e+01 -4.355724e+01 -7.321672e+01 -1.343407e+01 
25% -6.915971e-01 -7.682956e-01 -5.540759e-01 -2.086297e-01 -6.430976e-01 
50% -5.433583e-02 -2.741871e-01 4.010308e-02 2.235804e-02 -5.142873e-02 
75% 6.119264e-01 3.985649e-01 5.704361e-01 3.273459e-01 5.971390e-01 
max 3.480167e+01 7.330163e+01 1.205895e+02 2.000721e+01 1.559499e+01 

... V21 V22 V23 V24 \ 

(continues on next page)
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count ... 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 
mean ... 1.654067e-16 -3.568593e-16 2.578648e-16 4.473266e-15 
std ... 7.345240e-01 7.257016e-01 6.244603e-01 6.056471e-01 
min ... -3.483038e+01 -1.093314e+01 -4.480774e+01 -2.836627e+00 
25% ... -2.283949e-01 -5.423504e-01 -1.618463e-01 -3.545861e-01 
50% ... -2.945017e-02 6.781943e-03 -1.119293e-02 4.097606e-02 
75% ... 1.863772e-01 5.285536e-01 1.476421e-01 4.395266e-01 
max ... 2.720284e+01 1.050309e+01 2.252841e+01 4.584549e+00 

V25 V26 V27 V28 Amount \ 
count 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 284807.000000 
mean 5.340915e-16 1.683437e-15 -3.660091e-16 -1.227390e-16 88.349619 
std 5.212781e-01 4.822270e-01 4.036325e-01 3.300833e-01 250.120109 
min -1.029540e+01 -2.604551e+00 -2.256568e+01 -1.543008e+01 0.000000 
25% -3.171451e-01 -3.269839e-01 -7.083953e-02 -5.295979e-02 5.600000 
50% 1.659350e-02 -5.213911e-02 1.342146e-03 1.124383e-02 22.000000 
75% 3.507156e-01 2.409522e-01 9.104512e-02 7.827995e-02 77.165000 
max 7.519589e+00 3.517346e+00 3.161220e+01 3.384781e+01 25691.160000 

Class 
count 284807.000000 
mean 0.001727 
std 0.041527 
min 0.000000 
25% 0.000000 
50% 0.000000 
75% 0.000000 
max 1.000000 

[8 rows x 31 columns] 

We will take a look and count how many transactions are not fraudulent and 
compare it against how many that are fraudulent. 

#Plotting the count of each class in the target
↪→variable 
sns.countplot(x='Class', data=df) 

#Adding the title, x-axis label and y-axis label to
↪→the plot 
plt.title("Distribution of the target variable") 
plt.xlabel("Class") 
plt.ylabel("Count") 

#Displaying the plot 
plt.show() 
class_counts = df['Class'].value_counts() 
print(class_counts)
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0 284315 
1 492 
Name: Class, dtype: int64 

As shown by the plots, the dataset is highly imbalanced, with the bulk samples 
belonging to class 0 (not fraudulent) and only a tiny percentage belonging to class 1 
(fraudulent) (fraudulent). Specifically, there are 284315 examples from class 0 and 
just 492 samples from class 1. This imbalance in the target variable will hurt the 
performance of the machine learning models because it is likely that the model will 
be biased toward the majority class. 

Now let us plot the distribution of the amount transacted for both non-fraudulent 
and fraudulent transactions. The first plot shows the distribution of class 0 (non-
fraud) in blue with respect to the amount transacted. On the other hand, the 
second plot shows the distribution for class 1 (fraud) in red. By comparing the two 
groups visually, we can identify notable differences that help separate the fraudulent 
transactions from the non-fraudulent ones. 

# Create a subplot with two plots side by side 
fig, axs = plt.subplots(1, 2, figsize=(15, 5)) 

# Plot distribution of amount for class 0 
sns.distplot(df[df['Class'] == 0]['Amount'], kde=True,

↪→ ax=axs[0], color='b') 
axs[0].set_title('Class 0') 
axs[0].set_xlabel('Amount') 
axs[0].set_ylabel('Count') 

# Plot distribution of amount for class 1 
sns.distplot(df[df['Class'] == 1]['Amount'], kde=True,

↪→ ax=axs[1], color='r') (continues on next page)
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axs[1].set_title('Class 1') 
axs[1].set_xlabel('Amount') 
axs[1].set_ylabel('Count') 

plt.show() 

As you can see, the red plot has a smaller range of amounts transacted than 
the blue plots, indicating that fraudulent transactions usually happen with small 
amounts transacted to avoid drawing attention. 

# Create a subplot with multiple plots 
fig, axs = plt.subplots(8, 4, figsize=(20, 30)) 
axs = axs.ravel() 

# Plot histograms for all columns 
for i, column in enumerate(df.columns): 

sns.histplot(df[df['Class'] == 0][column],
↪→ax=axs[i]) 

sns.histplot(df[df['Class'] == 1][column],
↪→ax=axs[i], color='tab:orange') 

axs[i].set_title(column) 

plt.tight_layout() 
plt.show()
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Let us visualize the histograms of all features in our dataset so that we can 
better understand the distribution of each of the variables. Examining the histograms
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enables us to determine if the data is regularly distributed, skewed to the left or right, 
or has several peaks. This information can help with preprocessing the data, like 
transforming or scaling the variables, and choosing the right modeling techniques. 

# Split the data into features and target 
X = df.drop('Class', axis=1) 
y = df['Class'] 

Sampling and data scaling are crucial steps in the data preparation process. 
However, it is important to perform these operations only using the training data 
to avoid data leakage. Data leakage occurs when information from the test set is 
used to train the model, which can result in overfitting and poor performance on 
new unseen data. 

X_train, X_test, y_train, y_test = train_test_split(X,
↪→ y, test_size=0.3, random_state=0) 
scaler = StandardScaler() 
X_train = scaler.fit_transform(X_train) 
X_test = scaler.transform(X_test) 

sampler = SMOTE(random_state=0) 
X_train, y_train = sampler.fit_resample(X_train, y_

↪→train) 

model = LogisticRegression(random_state=42) 
model.fit(X_train, y_train) 
y_pred = model.predict(X_test) 

Now that we have generated our predictions, let us evaluate the results. 

# Calculate precision, recall, and f1-score 
accuracy = accuracy_score(y_test, y_pred) 
balanced_accuracy = balanced_accuracy_score(y_test, y_

↪→pred) 
recall_fraud = recall_score(y_test, y_pred) 
recall_non_fraud = recall_score(y_test, y_pred, pos_

↪→label=0) 
print(recall_non_fraud) 

# Print the metrics 
print('Accuracy Score: {:.3f}'.format(accuracy.

↪→mean())) 
print('Recall Fraudulent: {:.3f}'.format(recall_fraud.

↪→mean())) 
(continues on next page)
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print('Recall Non-Fraudulent: {:.3f}'.format(recall_
↪→non_fraud.mean())) 
print('Balanced Accuracy Score: {:.3f}'.

↪→format(balanced_accuracy.mean())) 
print(confusion_matrix(y_test, y_pred)) 

0.9760715625586194 
Accuracy Score: 0.976 
Recall Fraudulent: 0.918 
Recall Non-Fraudulent: 0.976 
Balanced Accuracy Score: 0.947 
[[83255 2041] 
[ 12 135]] 

As you can see, we have successfully recalled 91.8% of all fraudulent transac-
tions while ensuring that 97.6% of normal transactions would not be flagged out by 
our model. Only 2.4% of transactions may be declined or require further verification. 

Exercises 

(1) List three different roles and responsibilities of corporate finance departments. 
(2) Be able to list some of the challenges that corporate finance departments face. 
(3) Identify three different challenges in corporate finance. 
(4) For each of the challenges listed in 3, identify one way that artificial intelligence 

could potentially be used to alleviate the problem. 
(5) Develop artificial intelligence solutions for predicting e-commerce fraud. 

We will utilize this dataset [6]: 
https://www.kaggle.com/datasets/vbinh002/fraud-ecommerce. 
This dataset consists of information collected about various purchase transac-
tions. 
In this exercise, try to use what you have learnt so far to develop a model that 
can classify whether a transaction is fraudulent or not. 
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Chapter 15 
AI in Business Law 

Learning outcomes: 

• Recognize what constitutes business law.
• Analyze the differences between business structures and remember the considerations 

when selecting one to use.
• Be able to list the different types of business laws.
• Identify how artificial intelligence can be applied in business laws.
• Develop artificial intelligence solutions for legal document summarization, contract 

review, and legal research. 

15.1 Introduction to Business Law 

A law is a widely accepted and upheld concept or causal connection that, when 
broken, carries a punishment like harm, suffering, failure, or loss [12]. Laws are 
enforceable regulations that govern how people and corporations must behave. They 
are created to establish responsibility and uphold the rule of law. A law is primarily 
the result of formal or informal legislation by a local authority figure, such as a 
legislature or a king. Laws have the authority and power of the enacting entity, and 
anyone who disobeys them faces repercussions. 

Laws get their legitimacy by being founded on commonly recognized ideas, such 
as the sovereign authority of the person passing them or the justice of each law. 
Laws, which are frequently derived through observations or experiments, define 
precise connections between the causes and effects of occurrences. 

Business law, often known as mercantile law or commercial law, is the body of 
regulations that governs businesses engaged in commercial activities [5]. Business 
law covers all laws that are relevant to businesses which include formation law, 
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employment law, intellectual property law, contract law and negotiations, taxes, 
lawsuits, bankruptcy laws, and antitrust laws. These regulations may be passed by:

• Agreement
• Convention
• International or national legislation 

Businesses of all types have one thing in common: they must follow the required 
guidelines and regulations [5]. Whether it’s formation laws that assist businesses in 
getting started, or bankruptcy laws that help a business dissolve, the entire lifeline 
of a business is built on these rules and norms that regulate it and give it structure. 

There are various types of business structures and each of which is governed 
differently by the law. Below are some of the considerations in selecting a suitable 
business structure [3]:

• Taxes 
Tax obligations, payers, and applicable tax exemptions vary based on how a 
business is organized.

• Liabilities 
In certain business structures, the owner’s personal assets may be at risk if the 
business fails to meet its financial obligations.

• Hierarchies 
The size and responsibilities of corporate ladders vary based on the business 
formation structure chosen.

• Documents and Permits 
The process of filing with entities and obtaining necessary permits will differ 
depending on the type of business structure. As a result, the annual reporting and 
documentation requirements will differ. 

15.1.1 Types of Businesses 

Selecting a suitable type of business to operate is an important strategy that 
will affect how your business is run. Different types of business structures have 
different responsibilities, liabilities, privileges, and restrictions. Below are some of 
the different types of business structures:

• Sole Proprietorship 
In a sole proprietorship, you and your businesses are the same. The advantage 
is that the formation costs are lower, and you have complete control over all 
business decisions. The disadvantage is that you have no liability protection and 
are putting your personal assets at risk.

• Partnership 
A partnership is formed when several people share their resources to run a 
business. This can be done in a variety of ways, but it is usually formalized
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through a partnership agreement that specifies partner ownership and profit/loss 
percentages within the business. 

– General Partnership: All partners in a general partnership have equal rights 
and obligations. The day-to-day management of the company is split among 
partners. 

– Limited Partnership: Some partners in this business structure are “silent 
partners,” meaning they are not held liable for the company’s responsibilities. 
Their main obligation is to invest money. In limited partnerships, at least 
one general partner is in charge of making decisions. The personal assets 
of the silent partners are insulated from responsibility due to their minimal 
involvement in the business. The general partners are the ones putting their 
own money at risk. 

– Limited Liability Partnership: Every partner is accountable for making busi-
ness decisions. Each partner, however, is insulated from the liabilities of the 
other partners. Partners are protected from the possibility of losing personal 
assets if one of the other partners is sued. 

– Limited Liability Limited Partnership: These are limited partnerships where 
both the general and quiet partners are protected from liability.

• Corporations 
A corporation is a corporate entity that is owned by investors and a board of 
directors. The purpose of for-profit corporations is to be profitable in the best 
interests of the shareholders. Shareholders can benefit from the chance to return 
their investment while being protected from the risk of lenders pursuing their 
personal assets. 

– S-Corporation: S-Corp businesses are exempt from paying taxes. S-
corporations can only have 100 shareholders. 

– C-Corporation: C-Corp is subject to double taxation, and thus the business 
will have to pay its taxes. Its shareholders, however, are liable to personal 
income tax. The number of members in a C-Corps is not limited. 

– B-Corporation: A B-Corp, often known as a “benefit corporation,” is a 
certification for a corporation that ensures that the company’s aim is to benefit 
the public (workers, customers, suppliers, etc.) rather than its shareholders. 
The goal is to create a profit while also benefiting society. B-Corps, like C-
Corps, has a double-taxation scheme.

• Limited Liability Companies 
A limited liability company (LLC) is a popular business structure. The advan-
tages of being a company include lower potential liability. LLCs prevent 
company members from disclosing personal assets to pay off penalties. LLCs 
are pass-through entities. On their personal tax returns, members record business 
profits and losses. This avoids the problem of double taxes that corporations 
incur. 

– Single Member LLC: A single-member LLC is owned by an individual or 
group.
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– Multi-Member LLC: A multi-member LLC has multiple persons or groups 
registered as business owners. Multi-member LLCs, like other businesses, 
must file a tax return.

• Non-profit 
Non-profit organizations are formed to assist various groups of individuals and 
public entities. Unlike other businesses, their mission statement is not purely for 
profit and generally includes the language of the society the firm seeks to serve. 
Furthermore, the charitable nature of many firms qualifies them for state and 
federal tax breaks. 
Non-profits and B-Corps are similar, but there are significant differences. Non-
profits are not owned by anyone, whereas B-Corps are held by shareholders. 
Non-profits, on the other hand, are governed by a board of trustees. Non-profits 
can also host fundraisers and collect donations from investors to raise revenue. 
At the same time, B-Corps are limited to traditional methods such as borrowing 
or selling stock. 

15.1.2 Types of Business Laws 

Business law refers to all laws that govern businesses. As such there are many 
different types of laws that fall under business law such as [5]:

• Formation Law 
Formation laws are the rules that a corporation must follow in order to be 
founded and recognized as a legal entity. A firm cannot legally operate until it 
has gotten the official recognition from the law. To ensure the legitimacy of a 
company’s classification, the proper documentation must be filled out and the 
relevant criteria must be fulfilled. This is true in many areas of formation and 
incorporation law. Businesses must settle on a classification and their method of 
operation. The type of business founded will have an impact on the taxes paid, 
the management style, the rules to abide by at the national and state level, and 
much more.

• Employment Law 
Employment law governs both employers’ and employees’ rights and respon-
sibilities. Sexual harassment, improper workplace behavior, salaries, workplace 
health and safety, and unlawful discrimination are all topics covered in employ-
ment law. Both recruiters and workers have certain rights and duties that must be 
observed according to the employment law. Employment law defines the rules 
that regulate these laws and also deals with scenarios and organizations that fail 
to follow the established employment norms.

• Intellectual Property Law 
Businesses constantly invest money to develop fresh, ground-breaking, and 
forward-thinking concepts all the time. Because there are so many cutting-edge
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solutions that are always being developed, they want to be sure that their concept 
was not stolen or created by someone else. 
Intellectual property includes inventions, intellectual and creative works, designs, 
trademarks, brands, and logos used in business. Intellectual property law allows 
businesses to protect their creative talents. Intellectual property law is divided 
into various sections, including copyright and trademarks.

• Tax Law 
Taxes are monetary charges imposed and enforced by the federal and state 
governments. Businesses must pay their fair share of taxes or risk suffering severe 
repercussions. These penalties include hefty fines and/or severe jail term. Some 
examples of taxes include sales tax, employee and payroll tax, income tax, and 
property tax.

• Contract Law 
Contract law governs the development, implementation, and execution of busi-
ness contracts. Business contract law makes it easier for businesses and groups to 
make agreements. Contract law is an essential part of business law. Because many 
firms and enterprises are involved in numerous agreements and discussions, it is 
essential to find someone who can handle the responsibility of addressing the 
needs and desires of all parties and aiding them in making an agreement.

• Antitrust Law 
Antitrust laws are recommendations that aim to assist firms maintain fair compe-
tition. The purpose of antitrust legislation is to establish a level playing field for 
all players or enterprises in a certain industry. These regulations are in place to 
assist in combating businesses that amass too much power and act unfairly to the 
detriment of others. Market allocation, price fixing, and monopolies are some of 
the issues that antitrust laws attempt to address.

• Bankruptcy Law 
Although no one likes to file for bankruptcy, it is something that certain 
companies have to do. Filing for bankruptcy provides a business with various 
options, each with its own set of advantages and disadvantages. Part of the legal 
procedure for declaring bankruptcy is deciding on the best alternative to assist the 
struggling firm. Bankruptcy is governed by federal law. When a business decides 
to file for bankruptcy, it must appear in court to declare and restructure its debts. 

15.2 Artificial Intelligence in Business Law 

Laws have profound impact on every aspect of how a business operates [11]. 
Almost all business transactions such as sales, purchases, partnerships, mergers, 
acquisitions, and even reorganization are upheld by legally binding contracts. With-
out strong laws that help protect creative and intellectual property of businesses, 
innovation would not be able to flourish. Whether we realize it or not, our legal 
system permeates all facets of our lives and influences how we live.
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In the world today, the amount of information generated for legal cases is 
increasing quickly. Even though there might be a lot of useful information being 
collected, it takes a significant amount of time to examine. This is especially the 
case when practicing law which can be monotonous and frustrating. At the same 
time, lawyers face increasing demands for speed by clients, regulatory agencies, 
and courts. 

Even though the global market for legal services is one of the largest, it still 
remains incredibly under digitalized. The legal profession is famously sluggish in 
the uptake of new tools and technological advancements, due to its tradition-bound 
nature. 

Artificial intelligence has a tremendous potential to improve the efficiency of 
legal services. Through its ability to extract information and identify patterns in 
large amounts of legal documents, artificial intelligence is able to find relevant 
information, spot errors, and identify inconsistencies. All this can help boost the 
productivity of lawyers and mitigate potentially expensive errors. 

There are five aspects of legal activities where NLP is becoming more prevalent 
[4]:

• Legal research 
Finding information for use in legal decision-making is done through legal 
research. This typically entails scouring both statute and case law to discover 
what is relevant to the particular issue at hand. Statutes are documents produced 
by the legislature, whereas case laws are produced by the courts.

• Electronic discovery 
The process of locating and gathering electronically stored information in 
response to a demand for production in a legal proceeding or investigation is 
known as electronic discovery or e-discovery. A major challenge in this situation 
is sorting through the potentially hundreds of thousands of files on a standard 
hard drive to determine what content is relevant and what is not.

• Contract review 
Lawyers frequently evaluate contracts, offer suggestions for improvement, and 
counsel clients on whether to sign or argue for better terms. The contracts in 
question can range from being small and straightforward, like non-disclosure 
agreements (NDAs) to being quite large and intricate, numbering hundreds of 
pages. 
Automated contract review tools can be utilized to examine papers whose content 
is largely regular and predictable. The procedure entails breaking down the 
contract into component sections or clauses and then analyzing each one, either 
to extract significant information or to compare against some standard (which 
could be a set of other similar contracts held by a firm). Therefore, a contract 
review system might, for instance, flag the absence of a phrase to address bribery 
or highlight that a clause for price rises is missing a percentage limit.

• Document automation 
Document automation systems often employ a fill-in-the-blanks method that 
enables the development of a customized legal document based on a set of
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criteria. The information needed to produce the document could, however, be 
acquired using an iterative question-and-answer dialog, such as a chatbot. In such 
situations, the document automation system’s user interface is comparable to that 
of a legal advising system.

• Legal advice 
Legal advisers are interactive systems that generate advice specific to the user’s 
needs and circumstances based on a series of questions it asks. Usually, this 
involves a question-and-answer format, specific to the case at hand. Legal advice 
could be delivered in the form of document automation since the outcome is 
frequently some sort of legal document. 

15.3 Applications of AI in Business Law 

15.3.1 Legal Document Summarization 

Legal research is a labor-intensive and time-consuming procedure. For instance, 
legal practitioners must read court cases that can be up to 100 pages lengthy just to 
sum up the most crucial details and determine whether their business should take on 
the case. As a result, Natural Language Processing (NLP) methods like information 
extraction and summarization provide excellent prospects to save law firms time. 

Document summarization can reduce the amount of text that legal practitioners 
needed to understand the overall content of the document. This can help increase 
the efficiency for them in identifying relevant documents for their work through 
searching case abstracts instead of delving into lengthy documents. 

In this example, we will perform text summarization of a litigation case 
published by the Securities and Exchange Commission about the manipulative 
trading of securities. It will be done using a model pre-trained on summarizing legal 
documents [9]. 

The text used was extracted from this website: https://www.sec.gov/news/press-
release/2018-28 

To generate the summary, we will have to import the model with its pre-trained 
weights, tokenize the text, and run it on our text. 

from transformers import AutoTokenizer,
↪→AutoModelForSeq2SeqLM 

tokenizer = AutoTokenizer.from_pretrained("nsi319/
↪→legal-led-base-16384") 
model = AutoModelForSeq2SeqLM.from_pretrained("nsi319/

↪→legal-led-base-16384") 

(continues on next page)
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(continued from previous page) 

padding = "max_length" 

text="""On March 2, 2018, the Securities and Exchange
↪→Commission announced securities fraud charges
↪→against a U.K.-based broker-dealer and its
↪→investment manager in connection with manipulative
↪→trading in the securities of HD View 360 Inc., a U.
↪→S.-based microcap issuer. The SEC also announced
↪→charges against HD View's CEO, another individual,
↪→and three entities they control for manipulating HD
↪→View's securities as well as the securities of
↪→another microcap issuer, West Coast Ventures Group
↪→Corp. The SEC further announced the institution of
↪→an order suspending trading in the securities of HD
↪→View. These charges arise in part from an
↪→undercover operation by the Federal Bureau of
↪→Investigation, which also resulted in related
↪→criminal prosecutions against these defendants by
↪→the Office of the United States Attorney for the
↪→Eastern District of New York. In a complaint filed
↪→in the U.S. District Court for the Eastern District
↪→of New York, the SEC alleges that Beaufort
↪→Securities Ltd. and Peter Kyriacou, an investment
↪→manager at Beaufort, manipulated the market for HD
↪→View's common stock. The scheme involved an
↪→undercover FBI agent who described his business as
↪→manipulating U.S. stocks through pump-and-dump
↪→schemes. Kyriacou and the agent discussed
↪→depositing large blocks of microcap stock in
↪→Beaufort accounts, driving up the price of the
↪→stock through promotions, manipulating the stock's
↪→price and volume through matched trades, and then
↪→selling the shares for a large profit. The SEC's
↪→complaint against Beaufort and Kyriacou alleges
↪→that they: opened brokerage accounts for the
↪→undercover agent in the names of nominees in order
↪→to conceal his identity and his connection to the
↪→anticipated trading activity in the accounts
↪→suggested that the undercover agent could create
↪→the false appearance that HD View's stock was 

(continues on next page)



15.3 Applications of AI in Business Law 313

(continued from previous page)

↪→liquid in advance of a pump-and-dump by "gam[ing]
↪→the market" through matched trades executed
↪→multiple purchase orders of HD View shares with the
↪→understanding that Beaufort's client had arranged
↪→for an associate to simultaneously offer an
↪→equivalent number of shares at the same priceA
↪→second complaint filed by the SEC in the U.S.
↪→District Court for the Eastern District of New York
↪→alleges that in a series of recorded telephone
↪→conversations with the undercover agent, HD View
↪→CEO Dennis Mancino and William T. Hirschy agreed to
↪→manipulate HD View's common stock by using the agent
↪→'s network of brokers to generate fraudulent retail
↪→demand for the stock in exchange for a kickback
↪→from the trading proceeds. According to the
↪→complaint, the three men agreed that Mancino and
↪→Hirschy would manipulate HD View stock to a higher
↪→price before using the agent's brokers to liquidate
↪→their positions at an artificially inflated price.
↪→The SEC's complaint also alleges that Mancino and
↪→Hirschy executed a "test trade" on Jan. 31, 2018,
↪→coordinated by the agent, consisting of a sell
↪→order placed by the defendants filled by an
↪→opposing purchase order placed by a broker into an
↪→account at Beaufort. Unbeknownst to Mancino and
↪→Hirschy, the Beaufort account used for this trade
↪→was a nominal account that was opened and funded by
↪→the agent. The SEC's complaint also alleges that,
↪→prior to their contact with the undercover agent,
↪→Mancino and Hirschy manipulated the market for HD
↪→View and for West Coast by using brokerage accounts
↪→that they owned, controlled, or were associated
↪→with -including TJM Investments Inc., DJK
↪→Investments 10 Inc., WT Consulting Group LLC - to
↪→effect manipulative "matched trades." 

... please refer to link provided for full text 
"""
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(continued from previous page) 

input_tokenized = tokenizer.encode(text, return_
↪→tensors='pt', padding=padding, pad_to_max_
↪→length=True, max_length=6144, truncation=True) 
summary_ids = model.generate(input_tokenized, 
num_beams=4, 
no_repeat_ngram_size=3, 
length_penalty=2, 
min_length=250, 
max_length=500) 
summary = [tokenizer.decode(g, skip_special_

↪→tokens=True, clean_up_tokenization_spaces=False)
↪→for g in summary_ids][0] 

Now let us view what the model has generated. 

print(summary) 

On March 2, 2018, the Securities and Exchange
↪→Commission announced securities fraud charges
↪→against a U.K.-based broker-dealer and its
↪→investment manager in connection with manipulative
↪→trading in the securities of HD View 360 Inc. The
↪→SEC's complaint, filed in federal court in
↪→Manhattan, alleges that Beaufort Securities Ltd.
↪→and Peter Kyriacou, an investment manager at
↪→Beaufort, manipulated the market for HD View's
↪→common stock through pump-and-dump schemes.
↪→According to the complaint, the defendants opened
↪→brokerage accounts for the undercover agent in the
↪→names of nominees in order to conceal his identity
↪→and his connection to the anticipated trading
↪→activity in the stock, and then used the agent's
↪→network of brokers to effect manipulative "matched
↪→trades." The complaint also alleges that, in a
↪→series of recorded telephone conversations, Mancino
↪→and Hirschy discussed depositing large blocks of
↪→microcap stock in Beaufort accounts, driving up the
↪→price of the stock through matched trades,
↪→manipulating the stock's price and volume through
↪→matched trading, and selling the shares for a large
↪→profit. In a parallel action, the U.S. Attorney's
↪→Office for the Eastern District of New York
↪→announced criminal charges against the defendants.
↪→On March 4, the SEC announced the filing of a civil
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↪→injunctive action against Beaufort. The case is
↪→being handled by Lara S. Mehraban, Robert Nesbitt,
↪→and Antonia Chion of the SEC Enforcement Division's
↪→Market Abuse Unit, with assistance from Joseph G.
↪→Sansone of the Division of Economic and Risk
↪→Analysis and the Office of the United States
↪→Attorney's Retail Strategy Task Force. The SEC's
↪→investigation was conducted by Preethi
↪→Krishnamurthy and Ms. Shah and supervised by Cheryl
↪→Crumpton. The SEC appreciates the assistance of the
↪→Federal Bureau of Investigation, the Internal
↪→Revenue Service, the Alberta Securities Commission,
↪→and the Ontario Securities Commission in this
↪→matter. 

Let us see how much the model was able to summarize. 

print("Summarized", len(text.split(" ")), "words into
↪→", len(summary.split(" ")), "words") 

Summarized 818 words into 301 words 

The model was able to compress the article by 63% into 301 words. 

15.3.2 Contract Review Assistant 

The traditional method of managing contracts requires a lot of manual effort and 
takes a lot of time [13]. Not to mention, it is a significant waste of the time that fee 
earners could use to charge clients and generate business for their firm. 

Artificial intelligence can help alleviate this by helping to automate certain tasks. 
For instance, during a session of generating proposals, AI algorithms can learn 
to distinguish between a collection of non-disclosure agreements (NDAs). AI can 
identify NDAs in collections of documents and then design subsequent procedures 
in accordance with your needs. It can also help facilitate the process of contract 
checking by creating processes according to pre-defined data rules, such as “Send 
this contract to x employee for compliance checks if it is an NDA.” 

AI is able to uncover patterns in massive texts and find the connections between 
various contracts. Furthermore, it can spot mistakes and irregularities and develop 
patterns to improve business contracts. You can use it to extract useful information 
like the time to sign and frequently renegotiated contract terms. 

This means that the information collected during the contract review process 
can be used to enhance procedures, assist renegotiation tactics, spot upselling 
possibilities, and gradually enhance operations.
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In this example, we will be demonstrating how artificial intelligence can be used 
to assist in the contract review process by answering questions about the text within 
the contract provided [7, 8]. 

First let us begin by downloading the dataset in the link below [6]: 
https://github.com/TheAtticusProject/cuad/raw/main/data.zip. and unzip the con-
tents into a folder named cuad-data. 

Then now we will download the model weights from https://zenodo.org/record/ 
4599830/files/roberta-base.zip?download=1 and unzip the contents into a folder 
named cuad-model. 

We can then begin by importing the pre-trained model, tokenizer, and dataset for 
question and answers. The model has been previously trained on this dataset which 
has been curated for commercial contract understanding and will be able to answer 
questions about the contract. 

import torch 
from transformers import AutoConfig,

↪→AutoModelForQuestionAnswering, AutoTokenizer 
import json 

model_path = "Business_Law/cuad-models/roberta-base/" 
config_class, model_class, tokenizer_class =

↪→(AutoConfig, AutoModelForQuestionAnswering,
↪→AutoTokenizer) 
config = config_class.from_pretrained(model_path) 
tokenizer = tokenizer_class.from_pretrained(model_

↪→path, do_lower_case=True, use_fast=False) 
model = model_class.from_pretrained(model_path,

↪→config=config) 

with open('Business_Law/cuad-data/CUADv1.json') as
↪→json_file: 

data = json.load(json_file) 

questions = [i["question"] for i in data['data'][0][
↪→'paragraphs'][0]['qas']][0:10] 
paragraph = ' '.join(data['data'][0]['paragraphs'][0][

↪→'context'].split()) 

Here is an example of a question that would be asked about the contract. 

questions[2]
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'Highlight the parts (if any) of this contract
↪→related to "Agreement Date" that should be reviewed
↪→by a lawyer. Details: The date of the contract' 

This will be the contract paragraph that the model will have to look through to 
provide us with an answer. 

paragraph[0:1000] 

'EXHIBIT 10.6 DISTRIBUTOR AGREEMENT THIS DISTRIBUTOR
↪→AGREEMENT (the "Agreement") is made by and between
↪→Electric City Corp., a Delaware corporation (
↪→"Company") and Electric City of Illinois LLC (
↪→"Distributor") this 7th day of September, 1999.
↪→RECITALS A. The Company\'s Business. The Company is
↪→presently engaged in the business of selling an
↪→energy efficiency device, which is referred to as
↪→an "Energy Saver" which may be improved or
↪→otherwise changed from its present composition (the
↪→"Products"). The Company may engage in the business
↪→of selling other products or other devices other
↪→than the Products, which will be considered
↪→Products if Distributor exercises its options
↪→pursuant to Section~7 hereof. B. Representations.
↪→As an inducement to the Company to enter into this
↪→Agreement, the Distributor has represented that it
↪→has or will have the facilities, personnel, and
↪→financial capability to promote the sale and use of
↪→Products. As an inducement to Distributor to enter
↪→into this Agreement ' 

We can feed the question into the model together with the text that we want it to 
search from, in order to provide us with an answer. 

# concatenates & encodes question and paragraph 
encoding = tokenizer.encode_plus(text=questions[2],

↪→text_pair=paragraph[0:1000]) 
# extracts the embeddings for model prediction 
inputs = encoding['input_ids'] 
# get the tokens 
tokens = tokenizer.convert_ids_to_tokens(inputs) 

# make model prediction 
outputs = model(input_ids=torch.tensor([inputs])) 

(continues on next page)
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(continued from previous page) 

# get the start and end logits 
start_scores = outputs.start_logits 
end_scores = outputs.end_logits 

# retrieve start & end tokens with the highest
↪→probability 
start_index = torch.argmax(start_scores) 
end_index = torch.argmax(end_scores) 

# retrieve the answer predicted by the model 
answer = tokenizer.convert_tokens_to_

↪→string(tokens[start_index:end_index+1]).strip() 
print(answer.strip()) 

7th day of September, 1999. 

As you can see, the model was able to determine the agreement date from the 
text provided. 

However, you may have noticed that we only fed in the first 1000 characters from 
the contract into the model. Transformer models are trained with a fixed length input 
and cannot be fed more tokens than what it was trained on. Thus, we will need to 
work around it by splitting our inputs into multiple chunks so that our network will 
be able to process them one at a time and merge the results afterward. 

import torch 
import time 
from torch.utils.data import DataLoader,

↪→RandomSampler, SequentialSampler 

from transformers import ( 
AutoConfig, 
AutoModelForQuestionAnswering, 
AutoTokenizer, 
squad_convert_examples_to_features 

) 

from transformers.data.processors.squad import
↪→SquadResult, SquadV2Processor, SquadExample 
from transformers.data.metrics.squad_metrics import

↪→compute_predictions_logits
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We will set the following hyperparameters for our algorithm. These can be tuned 
according to different use cases. 

### Setting hyperparameters 
max_seq_length = 512 
doc_stride = 256 
n_best_size = 1 
max_query_length = 64 
max_answer_length = 512 
do_lower_case = False 
null_score_diff_threshold = 0.0 

We will use the Squad Examples and Squad Results to help us process our dataset 
for large chunks of text. This is done by having the network predict whether each 
word is a start token or end token for the answer. To get this, the question will be 
repeated to the network at every segment of the text that was split from the contract. 

examples = [] 

for i, question in enumerate(questions): 
example = SquadExample( 

qas_id=str(i), 
question_text=question, 
context_text=paragraph, 
answer_text=None, 
start_position_character=None, 
title="Predict", 
answers=None, 

) 

examples.append(example) 

features, dataset = squad_convert_examples_to_
↪→features( 

examples=examples, 
tokenizer=tokenizer, 
max_seq_length=max_seq_length, 
doc_stride=doc_stride, 
max_query_length=max_query_length, 
is_training=False, 
return_dataset="pt", 
threads=1, 

) 

(continues on next page)
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eval_sampler = SequentialSampler(dataset) 
eval_dataloader = DataLoader(dataset, sampler=eval_

↪→sampler, batch_size=10) 

convert squad examples to features: 100
↪→%| | 10/10 [00:02<00:00, 3.43it/
↪→s] 
add example index and unique id: 100

↪→%| | 10/10 [00:00<00:00, 9967.
↪→45it/s] 

Now it is time for inference. We have split the dataset into smaller chunks of 
text, and now we will need to infer through all of them and aggregate the results. 
The final answer will be the sentence that lies between the highest start token score 
and the highest end token score. 

all_results = [] 

device = torch.device("cuda" if torch.cuda.is_
↪→available() else "cpu") 
model.to(device) 

for batch in eval_dataloader: 
model.eval() 
batch = tuple(t.to(device) for t in batch) 

with torch.no_grad(): 
inputs = { 

"input_ids": batch[0], 
"attention_mask": batch[1], 
"token_type_ids": batch[2], 

} 

example_indices = batch[3] 

outputs = model(**inputs) 

for i, example_index in enumerate(example_
↪→indices): 

eval_feature = features[example_index.
↪→item()] 

unique_id = int(eval_feature.unique_id) 

(continues on next page)
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output = [output[i].detach().cpu().
↪→tolist() for output in outputs.to_tuple()] 

start_logits, end_logits = output 
result = SquadResult(unique_id, start_

↪→logits, end_logits) 
all_results.append(result) 

Let us consolidate the answers from the logits. 

answers = compute_predictions_logits( 
all_examples=examples, 
all_features=features, 
all_results=all_results, 
n_best_size=n_best_size, 
max_answer_length=max_answer_length, 
do_lower_case=do_lower_case, 
output_prediction_file=None, 
output_nbest_file=None, 
output_null_log_odds_file=None, 
verbose_logging=False, 
version_2_with_negative=True, 
null_score_diff_threshold=null_score_diff_

↪→threshold, 
tokenizer=tokenizer 

) 

We will now predict for the first 10 questions in the dataset for this contract and 
visualize the answers generated. 

for q, a in zip(questions, answers.values()): 
print("Question: {0}\nAnswer: {1}\n".format(q, a)) 

Question: Highlight the parts (if any) of this
↪→contract related to "Document Name" that should be
↪→reviewed by a lawyer. Details: The name of the
↪→contract 
Answer: DISTRIBUTOR AGREEMENT 

Question: Highlight the parts (if any) of this
↪→contract related to "Parties" that should be
↪→reviewed by a lawyer. Details: The two or more
↪→parties who signed the contract 

(continues on next page)
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Answer: Electric City of Illinois L.L.C. 

Question: Highlight the parts (if any) of this
↪→contract related to "Agreement Date" that should be
↪→reviewed by a lawyer. Details: The date of the
↪→contract 
Answer: 7th day of September, 1999. 

Question: Highlight the parts (if any) of this
↪→contract related to "Effective Date" that should be
↪→reviewed by a lawyer. Details: The date when the
↪→contract is effective 
Answer: The term of this Agreement shall be ten (10)

↪→years (the "Term") which shall commence on the date
↪→upon which the Company delivers to Distributor the
↪→last Sample, as defined hereinafter. 

Question: Highlight the parts (if any) of this
↪→contract related to "Expiration Date" that should
↪→be reviewed by a lawyer. Details: On what date will
↪→the contract's initial term expire? 
Answer: The term of this Agreement shall be ten (10)

↪→years (the "Term") which shall commence on the date
↪→upon which the Company delivers to Distributor the
↪→last Sample, as defined hereinafter. 

Question: Highlight the parts (if any) of this
↪→contract related to "Renewal Term" that should be
↪→reviewed by a lawyer. Details: What is the renewal
↪→term after the initial term expires? This includes
↪→automatic extensions and unilateral extensions with
↪→prior notice. 
Answer: If Distributor complies with all of the terms

↪→of this Agreement, the Agreement shall be renewable
↪→on an annual basis for one (1) year terms for up to
↪→another ten (10) years on the same terms and
↪→conditions as set forth herein. 

(continues on next page)
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Question: Highlight the parts (if any) of this
↪→contract related to "Notice Period To Terminate
↪→Renewal" that should be reviewed by a lawyer.
↪→Details: What is the notice period required to
↪→terminate renewal? 
Answer: If Distributor complies with all of the terms

↪→of this Agreement, the Agreement shall be renewable
↪→on an annual basis for one (1) year terms for up to
↪→another ten (10) years on the same terms and
↪→conditions as set forth herein. 

Question: Highlight the parts (if any) of this
↪→contract related to "Governing Law" that should be
↪→reviewed by a lawyer. Details: Which state/country
↪→'s law governs the interpretation of the contract? 
Answer: This Agreement is to be construed according

↪→to the laws of the State of Illinois. 

Question: Highlight the parts (if any) of this
↪→contract related to "Most Favored Nation" that
↪→should be reviewed by a lawyer. Details: Is there a
↪→clause that if a third party gets better terms on
↪→the licensing or sale of technology/goods/services
↪→described in the contract, the buyer of such
↪→technology/goods/services under the contract shall
↪→be entitled to those better terms? 
Answer: 

Question: Highlight the parts (if any) of this
↪→contract related to "Non-Compete" that should be
↪→reviewed by a lawyer. Details: Is there a
↪→restriction on the ability of a party to compete
↪→with the counterparty or operate in a certain
↪→geography or business or technology sector? 
Answer: Term of the Agreement and for a period of

↪→eighteen (18) months thereafter, nor will
↪→Distributor solicit any customer or potential
↪→customer of Company to purchase a competitive
↪→product during that period.
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15.3.3 Legal Research Assistant 

In countries following the Common Law system (e.g., UK, USA, Canada, Australia, 
India), there are two primary sources of law—Statutes (established laws) and 
Precedents (prior cases). Statutes deal with applying legal principles to a situation 
(facts/scenario/circumstances which lead to filing the case). Precedents or prior 
cases help a lawyer understand how the court has dealt with similar scenarios in 
the past and prepare the legal reasoning accordingly. 

When a lawyer is presented with a situation (which will potentially lead to filing 
of a case), it will be very beneficial to him/her if there is an automatic system 
that identifies a set of related prior cases involving similar situations as well as 
statutes/acts that can be most suited to the purpose in the given situation. Such 
a system shall not only help a lawyer but also benefit a common man, in a way 
of getting a preliminary understanding, even before he/she approaches a lawyer. It 
shall assist him/her in identifying where his/her legal problem fits, what legal actions 
he/she can proceed with (through statutes), and what were the outcomes of similar 
cases (through precedents). 

In this exercise, we will be developing an artificial intelligence legal research 
assistant that helps to sort cases by their relevance [1]. This will help to increase 
the efficiency of lawyers when performing legal research as relevant cases are more 
likely to be presented to them first. To start, we will first have to download the 
dataset and place it in a folder named AILA_2019_dataset. 
The dataset can be obtained from this website [10]: 
https://www.kaggle.com/datasets/ananyapam7/legalai 

Once we are done, we can begin by importing the relevant packages and datasets. 

import glob 
import functools 
import datetime as dt 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
import os 
import random 
import re 
import numpy as np 
import pandas as pd 
import csv 

read_files = glob.glob('Business_Law/AILA_2019_
↪→dataset/Object_casedocs/*') 

(continues on next page)

https://www.kaggle.com/datasets/ananyapam7/legalai
https://www.kaggle.com/datasets/ananyapam7/legalai
https://www.kaggle.com/datasets/ananyapam7/legalai
https://www.kaggle.com/datasets/ananyapam7/legalai
https://www.kaggle.com/datasets/ananyapam7/legalai
https://www.kaggle.com/datasets/ananyapam7/legalai
https://www.kaggle.com/datasets/ananyapam7/legalai


15.3 Applications of AI in Business Law 325

(continued from previous page) 

with open("object_casedocs.csv", "w") as outfile: 
w=csv.writer(outfile) 
for f in read_files: 

with open(f, "r") as infile: 
w.writerow([" ".join([line.strip() for

↪→line in infile])]) 

lst_arr = os.listdir('Business_Law/AILA_2019_dataset/
↪→Object_casedocs/') 
df_filename = pd.DataFrame(lst_arr, columns = ['Name

↪→']) 
df_filename 

Name 
0 C1.txt 
1 C10.txt 
2 C100.txt 
3 C1000.txt 
4 C1001.txt 
... ... 
2909 C995.txt 
2910 C996.txt 
2911 C997.txt 
2912 C998.txt 
2913 C999.txt 

[2914 rows x 1 columns] 

We will need to import the evaluation data which contains labels on whether a 
case document is relevant to a particular query document. The relevance will be 
marked as 0 if the document is irrelevant and 1 if it is relevant. This dataset should 
have a total of 195 relevant query–case pairs. 

evaluate = pd.read_csv('Business_Law/AILA_2019_
↪→dataset/relevance_judgments_priorcases.txt',
↪→delimiter = " ", header = None) 
evaluate.columns = ["Query_Number", "Q0", "Document" ,

↪→"Relevance"] 
evaluate=evaluate.drop(columns=["Q0"]) 
evaluate
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Query_Number Document Relevance 
0 AILA_Q1 C168 0 
1 AILA_Q1 C382 0 
2 AILA_Q1 C428 0 
3 AILA_Q1 C949 0 
4 AILA_Q1 C2303 0 
... ... ... ... 
145695 AILA_Q50 C1367 0 
145696 AILA_Q50 C2079 0 
145697 AILA_Q50 C2066 0 
145698 AILA_Q50 C1951 0 
145699 AILA_Q50 C1111 0 

[145700 rows x 3 columns] 

Now let us import the case documents. 

df = pd.read_csv('Business_Law/object_casedocs.csv',
↪→header=None) 
df.columns = ["Text"] 
df 

Text 
0 Masud Khan v State Of Uttar Pradesh Supreme Co... 
1 Prabhakaran Nair, Etc. v State Of Tamil Nadu A... 
2 Hiten P. Dalal v Bratindranath Banerjee Suprem... 
3 Ashok Kumar and Others v State of Tamil Nadu S... 
4 Ashok Dhingra v N.C.T. of Delhi Supreme Court ... 
... ... 
2909 Rajendra Singh v State of Uttaranchal Supreme ... 
2910 Food Corporation Of India & Anr v Seil Ltd. & ... 
2911 State of Kerala v Sasi Supreme Court of India ... 
2912 Columbia Sportswear Company v Director Of Inco... 
2913 Bharat Gurjar and others v State of Rajasthan ... 

[2914 rows x 1 columns] 

We will need to know which text came from which case file, so we will 
concatenate the filenames to the text. 

df = pd.concat([df_filename, df], axis = 1) 
df 

Name Text 
0 C1.txt Masud Khan v State Of Uttar Pradesh Supreme Co... 
1 C10.txt Prabhakaran Nair, Etc. v State Of Tamil Nadu A... 
2 C100.txt Hiten P. Dalal v Bratindranath Banerjee Suprem... 

(continues on next page)
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3 C1000.txt Ashok Kumar and Others v State of Tamil Nadu S... 
4 C1001.txt Ashok Dhingra v N.C.T. of Delhi Supreme Court ... 
... ... ... 
2909 C995.txt Rajendra Singh v State of Uttaranchal Supreme ... 
2910 C996.txt Food Corporation Of India & Anr v Seil Ltd. & ... 
2911 C997.txt State of Kerala v Sasi Supreme Court of India ... 
2912 C998.txt Columbia Sportswear Company v Director Of Inco... 
2913 C999.txt Bharat Gurjar and others v State of Rajasthan ... 

[2914 rows x 2 columns] 

len(df) 

2914 

There is a total of 2914 case records. 
Preprocessing the data 
We first need to convert the texts to lowercase, remove punctuation, numbers, 

and special characters, using RegEx and strip. Numbers are removed as they often 
do not add much meaning to these texts apart from the dates. 

import re 
#Convert lowercase remove punctuation and Character

↪→and then strip 
text = df.iloc[0]["Text"] 
text = re.sub(r'[^\w\s]', '', str(text).lower().

↪→strip()) 
text = re.sub(r'\d+', '', text) 
txt = text.split() 
print(txt[0:100]) 

['masud', 'khan', 'v', 'state', 'of', 'uttar',
↪→'pradesh', 'supreme', 'court', 'of', 'india', '26',
↪→'september', '1973', 'writ', 'petition', 'no',
↪→'117', 'of', '1973', 'the', 'judgment', 'was',
↪→'delivered', 'by', 'a', 'alagiriswami', 'j', '1',
↪→'petitioner', 'masud', 'khan', 'prays', 'for',
↪→'his', 'release', 'on', 'the', 'ground', 'that',
↪→'he', 'an', 'indian', 'citizen', 'has', 'been',
↪→'illegally', 'arrested', 'and', 'confined', 'to',
↪→'jail', 'under', 'paragraph', '5', 'of', 'the',
↪→'foreigners', 'internment', 'order', '1962', 'he',
↪→'had', 'come', 'to', 'india', 'from', 'pakistan',
↪→'on', 'the', 'basis', 'of', 'a', 'pakistani',
↪→'passport', 'dated', '1371954and', 'indian', 'visa',
↪→ 'dated', '941956', 'in', 'his', 'application',
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↪→'for', 'visa', 'he', 'had', 'stated', 'that', 'he',
↪→'had', 'migrated', 'to', 'pakistan', 'in', '1948',
↪→'and', 'was', 'in'] 

The next thing we should do is to remove stopwords. Stopwords are words 
that do not provide much meaning to a text. These are removed to reduce wasting 
computation on these words and also ensure that the algorithms do not take them 
into account. 

#remove stopwords 
import nltk 
nltk.download('stopwords') 
lst_stopwords = nltk.corpus.stopwords.words("english") 
txt = [word for word in txt if word not in lst_

↪→stopwords] 
print(txt[0:100]) 

['masud', 'khan', 'v', 'state', 'uttar', 'pradesh',
↪→'supreme', 'court', 'india', '26', 'september',
↪→'1973', 'writ', 'petition', '117', '1973', 'judgment
↪→', 'delivered', 'alagiriswami', 'j', '1',
↪→'petitioner', 'masud', 'khan', 'prays', 'release',
↪→'ground', 'indian', 'citizen', 'illegally',
↪→'arrested', 'confined', 'jail', 'paragraph', '5',
↪→'foreigners', 'internment', 'order', '1962', 'come',
↪→ 'india', 'pakistan', 'basis', 'pakistani',
↪→'passport', 'dated', '1371954and', 'indian', 'visa',
↪→ 'dated', '941956', 'application', 'visa', 'stated',
↪→ 'migrated', 'pakistan', '1948', 'government',
↪→'service', 'pakistan', 'pwd', 'darogha', 'given',
↪→'permanent', 'address', 'hyderabad', 'sind', '2',
↪→'statements', 'correct', 'petitioner', 'would',
↪→'clearly', 'pakistani', 'national', 'fact', 'brought
↪→', 'counter', 'affidavit', 'filled', 'behalf',
↪→'respondent', 'petitioner', 'filed', 'affidavit',
↪→'stating', 'appointed', 'police', 'constable',
↪→'hasanganj', 'police', 'station', 'district',
↪→'fatehpur', 'february', '1947', 'continued', 'police
↪→', 'constable', 'till'] 

[nltk_data] Downloading package stopwords to 
[nltk_data] C:\Users\YuJin\AppData\Roaming\nltk_

↪→data... 
[nltk_data] Package stopwords is already up-to-date!
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Lastly, we will need to perform lemmatization. Lemmatization allows us to 
retrieve the base word of a provided word. This allows us to reduce the variation 
of the tokens used in the text as words with the same meaning would be grouped 
together. For example, run, runs, and running would all be lemmatized to run. 

#Lemmetization 
nltk.download('omw-1.4') 
nltk.download('wordnet') 
nltk.download('averaged_perceptron_tagger') 

from nltk.corpus import wordnet as wn 

def is_noun(tag): 
return tag in ['NN', 'NNS', 'NNP', 'NNPS'] 

def is_verb(tag): 
return tag in ['VB', 'VBD', 'VBG', 'VBN', 'VBP',

↪→'VBZ'] 

def is_adverb(tag): 
return tag in ['RB', 'RBR', 'RBS'] 

def is_adjective(tag): 
return tag in ['JJ', 'JJR', 'JJS'] 

def penn_to_wn(tag): 
if is_adjective(tag): 

return wn.ADJ 
elif is_noun(tag): 

return wn.NOUN 
elif is_adverb(tag): 

return wn.ADV 
elif is_verb(tag): 

return wn.VERB 
return wn.NOUN 

lem = nltk.stem.wordnet.WordNetLemmatizer() 
print([lem.lemmatize(word, penn_to_wn(pos)) for word,

↪→pos in nltk.pos_tag(txt)][0:100])
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['masud', 'khan', 'v', 'state', 'uttar', 'pradesh',
↪→'supreme', 'court', 'india', '26', 'september',
↪→'1973', 'writ', 'petition', '117', '1973', 'judgment
↪→', 'deliver', 'alagiriswami', 'j', '1', 'petitioner
↪→', 'masud', 'khan', 'prays', 'release', 'ground',
↪→'indian', 'citizen', 'illegally', 'arrest', 'confine
↪→', 'jail', 'paragraph', '5', 'foreigner',
↪→'internment', 'order', '1962', 'come', 'india',
↪→'pakistan', 'basis', 'pakistani', 'passport', 'date
↪→', '1371954and', 'indian', 'visa', 'date', '941956',
↪→ 'application', 'visa', 'state', 'migrate',
↪→'pakistan', '1948', 'government', 'service',
↪→'pakistan', 'pwd', 'darogha', 'give', 'permanent',
↪→'address', 'hyderabad', 'sind', '2', 'statement',
↪→'correct', 'petitioner', 'would', 'clearly',
↪→'pakistani', 'national', 'fact', 'bring', 'counter',
↪→ 'affidavit', 'fill', 'behalf', 'respondent',
↪→'petitioner', 'file', 'affidavit', 'state', 'appoint
↪→', 'police', 'constable', 'hasanganj', 'police',
↪→'station', 'district', 'fatehpur', 'february', '1947
↪→', 'continued', 'police', 'constable', 'till'] 

Now let us put it all together in one function for pre-processing our dataset. 

#to apply all the technique to all the records on
↪→dataset 
def utils_preprocess_text(text, flg_lemm =True, lst_

↪→stopwords=None, remove_numbers = True ): 
text = re.sub(r'[^\w\s]', '', str(text).lower().

↪→strip()) #\w\s 

if remove_numbers: 
text = re.sub(r'\d+', '', text) 

#tokenization(convert from string to List) 
lst_text = text.split() 

#remove stopwords 
if lst_stopwords is not None: 

lst_text = [word for word in lst_text if word
↪→not in 

lst_stopwords] 

#Lemmentization 
(continues on next page)
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if flg_lemm == True: 
lem = nltk.stem.wordnet.WordNetLemmatizer() 
lst_text = [lem.lemmatize(word, penn_to_

↪→wn(pos)) for word, pos in nltk.pos_tag(lst_text)] 

# back to string from list 
text = " ".join(lst_text) 
return text 

stopwords = nltk.corpus.stopwords.words("english") 
CHARS_TO_REMOVE = list('''.()"',-:;''') 
stopwords.extend(CHARS_TO_REMOVE) 

Let us run our function on all the text and save the outputs under clean_text. 

df['clean_text'] = df['Text'].apply(lambda x: utils_
↪→preprocess_text(x, flg_lemm=True, lst_
↪→stopwords=stopwords)) 
df.head(5) 

Name Text \ 
0 C1.txt Masud Khan v State Of Uttar Pradesh Supreme Co... 
1 C10.txt Prabhakaran Nair, Etc. v State Of Tamil Nadu A... 
2 C100.txt Hiten P. Dalal v Bratindranath Banerjee Suprem... 
3 C1000.txt Ashok Kumar and Others v State of Tamil Nadu S... 
4 C1001.txt Ashok Dhingra v N.C.T. of Delhi Supreme Court ... 

clean_text 
0 masud khan v state uttar pradesh supreme court... 
1 prabhakaran nair etc v state tamil nadu or sup... 
2 hiten p dalal v bratindranath banerjee supreme... 
3 ashok kumar others v state tamil nadu supreme ... 
4 ashok dhingra v nct delhi supreme court india ... 

train = df["clean_text"] 
train.head(5) 

0 masud khan v state uttar pradesh supreme court... 
1 prabhakaran nair etc v state tamil nadu or sup... 
2 hiten p dalal v bratindranath banerjee supreme... 
3 ashok kumar others v state tamil nadu supreme ... 
4 ashok dhingra v nct delhi supreme court india ... 
Name: clean_text, dtype: object 

Now we will read in our query documents and perform the same pre-processing 
steps.
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test = pd.read_csv("Business_Law/AILA_2019_dataset/
↪→Query_doc.txt",delimiter = "|",header=None) 
test.columns = ["AILA","NAN", "Query"] 
test=test.drop(columns=["AILA","NAN"]) 

test['Query_processed'] = test['Query'].apply(lambda
↪→x: utils_preprocess_text(x, flg_lemm=True, lst_
↪→stopwords=stopwords)) 

test.head(5) 

Query \ 
0 The appellant on February 9, 1961 was appointe... 
1 The appellant before us was examined as prime ... 
2 This appeal arises from the judgment of the le... 
3 The Petitioner was married to the Respondent N... 
4 This appeal is preferred against the judgment ... 

Query_processed 
0 appellant february appoint officer grade iii r... 
1 appellant u examine prime witness trial tr fil... 
2 appeal arise judgment learn single judge high ... 
3 petitioner marry respondent th november per hi... 
4 appeal preferred judgment date pass high court... 

After pre-processing out text, we will need to tokenize them into various tokens 
to be fed into our model. Tokenization will split the sentence into a sequence of 
words. 

from nltk.tokenize import word_tokenize 
nltk.download("punkt") 
query_array_processed = [0]*len(test) 

corpus_array_processed = [0]*len(train) 

train_array=df.iloc[:, 2:].values 

for i in range(len(train_array)): 
corpus_array_processed[i] = train_array[i][0] 

query_array=test.iloc[:,1:].values 

for i in range(len(query_array)): 
query_array_processed[i] = query_array[i][0] 

(continues on next page)
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tokenized_corpus_array = [word_tokenize(_d.lower())
↪→for _d in corpus_array_processed] 
tokenized_query_array = [word_tokenize(_d.lower())

↪→for _d in query_array_processed] 

[nltk_data] Downloading package punkt to 
[nltk_data] C:\Users\YuJin\AppData\Roaming\nltk_data... 
[nltk_data] Package punkt is already up-to-date! 

We will strip the “.txt” extension and the “C” in front of each case document so 
that we can easily compare the results. 

ID = df["Name"] 
ID = ID.str.rstrip('.txt').str.lstrip("C") 
ID 

0 1  
1 10  
2 100 
3 1000 
4 1001 

... 
2909 995 
2910 996 
2911 997 
2912 998 
2913 999 
Name: Name, Length: 2914, dtype: object 

For the retrieval algorithm, we will use BM25+ which is an improved variant 
of the Best Match 25 (BM25) ranking function. BM25 builds upon TF-IDF in 
order to better represent the relevance function. Like TF-IDF, BM25 rewards term 
frequency and penalizes document frequency but takes into account the limitations 
of its assumptions. For example, having twice the frequency of a high occurring 
word does not make a text twice as relevant. Furthermore, the length of a document 
compared to the mean document length should be put into consideration as well as 
more text but the same number of word occurrences would make a document less 
relevant. 

We have set a k1 value higher at 10 as the text is significantly longer in legal 
applications and higher occurrences of a word is more significant. 

from rank_bm25 import BM25Plus 
bm25Plus = BM25Plus(tokenized_corpus_array, k1=10) 
bm25Plus
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<rank_bm25.BM25Plus at 0x208cf32ec40> 

count = 0 
topn = 15 
for i in range(len(query_array_processed)): 

for j in bm25Plus.get_top_n(tokenized_query_
↪→array[i], ID, n=topn): 

temp = evaluate.loc[evaluate['Query_Number']
↪→== "AILA_Q"+str(i+1)] 

temp = temp[temp["Relevance"] == 1]["Document
↪→"] 

for k in temp.str.replace('C', ''): 
if (j==k): 

count=count+1 
count 

38 

Precision = count/(len(query_array_processed)*topn) 
Recall = count/len(evaluate[evaluate["Relevance"]==1]) 

print(Precision) 
print(Recall) 

0.050666666666666665 
0.19487179487179487 

As you can see, by applying our algorithm, we can retrieve 19.5% of relevant 
texts by searching the top 15 documents out of 2914. 

Exercises 

(1) Explain the difference between Limited Partnership and Limited Liability 
Partnership. 

(2) Explain the difference between a C-corporation and an S-corporation. 
(3) List at least five different types of business laws. 
(4) Identify three ways that artificial intelligence could potentially be used in 

business law.
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(5) Develop artificial intelligence solutions for predicting the judgement of a court. 
We will utilize this dataset [2]: 
https://www.kaggle.com/datasets/deepcontractor/supreme-court-judgment-
prediction 
This dataset consists of information collected about various court proceedings 
and whether the first party won the case. 
In this exercise, try to use what you have learnt so far to develop a model that 
can classify whether who won the case. 
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Chapter 16 
AI in Business Strategy 

Learning outcomes: 

• Be able to define what are business strategies.
• Be able to list examples of business strategies.
• Be able to list and understand various commonly used business strategy frameworks.
• Be able to list different examples of barriers to entry.
• Identify ways that artificial intelligence can be applied to business strategy.
• Develop artificial intelligence solutions for recommending acquisitions and identifying 

closest competitors and SWOT analysis. 

16.1 Introduction to Business Strategy 

A business strategy is an organized approach to accomplishing a company’s 
overarching aims and objectives. It defines how a firm intends to compete in its 
selected market, including the products and services it plans to offer, intended 
customer demographics, and sales and marketing strategies. A business strategy may 
also include details about the organization’s structure, alliances, and other factors 
that are important to the company’s success. A business strategy’s main objective is 
to develop a sustained competitive advantage for the organization. 

16.1.1 Types of Business Strategies 

1. Cost leadership 
This strategy involves being the lowest cost producer in a market. Companies 
using this strategy aim to produce goods or services at a lower cost than their 
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competitors, which allows them to offer lower prices to customers. Walmart is a 
well-known example of a company that uses a cost leadership strategy. 

2. Differentiation 
This strategy involves creating a unique product or service that is not offered 
by competitors. Companies using this strategy aim to differentiate themselves 
from competitors by offering something that is unique and valuable to customers. 
Apple is an example of a company that has used a differentiation strategy to great 
success. 

3. Market niche 
This strategy involves targeting a specific, narrow market segment with special-
ized products or services. Companies using this strategy aim to become the best 
in their chosen niche, rather than trying to compete in a broader market. Tesla 
is an example of a company that has used a market niche strategy, focusing on 
electric cars and sustainable energy. 

4. Diversification 
This strategy involves adding new products, services, or markets to a company’s 
portfolio. Companies using this strategy aim to reduce risk by spreading their 
investments across different areas. GE is an example of a company that has used a 
diversification strategy, with businesses in industries such as aviation, healthcare, 
and energy. 

5. Structuralist 
A structuralist business plan is founded on the existing market and industry 
standards. Everything, from goods to processes, is designed around the current 
market environments and industry standards, and the company strategy is built 
around it. 

6. Growth 
Growth strategies are focused on increasing a company’s size and market share. 
This can be accomplished through entering new markets, inventing new goods 
or services, or acquiring other businesses. Growth strategies can be risky but can 
also lead to increased market share and profitability. 

7. Price-skimming 
Price-skimming strategies involve charging a high price for a product or service 
in the early stages of its life cycle. This can be an effective strategy for companies 
with a strong brand or a unique product that is in high demand. The goal of price-
skimming is to maximize profits while demand is high before competition enters 
the market and prices drop. 

8. Acquisition 
Acquisition strategies involve acquiring other companies to achieve strategic 
objectives, such as growth, cost savings, diversification, competitive advantage, 
or access to new technology or resources. Acquiring a company can be a fast 
and efficient way to achieve these objectives, but it can also be risky and requires 
careful planning and execution.



16.1 Introduction to Business Strategy 339

Fig. 16.1 Porter’s five forces 

16.1.2 Business Strategy Frameworks 

Strategy frameworks are tools that help businesses structure their ideas and guide 
them as they grow and achieve their goals. They are often used to examine and 
build strategies. The following are some strategy frameworks which are commonly 
employed: 

1. Porter’s Five Forces: This framework as shown in Fig. 16.1, developed by 
Michael Porter, examines the competitive forces in an industry and how they 
impact a company’s ability to generate profits. It can help a company to 
understand the competitive landscape and identify potential opportunities for 
differentiation or cost leadership. 

2. BCG Matrix: The Boston Consulting Group (BCG) matrix, shown in Fig. 16.2, 
is a tool for analyzing a company’s portfolio of products or business units. It 
lists various products on a chart of annual growth against market share. It helps 
a company to visualize which business units generate the most profits and which 
use the most resources. This information can be used to make strategic decisions 
about which business units to invest in, divest, or grow. 

3. Value Chain Analysis: Value chain analysis, shown in Fig. 16.3, is a tool that 
helps to identify the activities that a company performs and the value that is 
added at each step. It helps a company to understand how it creates value and 
where it can create more value. 

4. PESTLE analysis: PESTLE analysis shown in Fig. 16.4 is a tool that helps 
to identify the external factors that may impact a company. It looks at the 
political, economic, social, technological, legal, and environmental factors that 
can influence a business. 

5. Product Life Cycle Analysis: Analyzing the product life cycle can help a business 
shape its strategy by providing insights into where a product or service is in its 
life cycle and what actions the business should take to maximize its revenue
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Fig. 16.2 Boston consulting group matrix [6] 

Fig. 16.3 Value chain analysis [10]
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Fig. 16.4 PESTLE analysis [8] 

and profits. By understanding where a product or service is in its life cycle, a 
business can make more informed decisions about how to allocate resources and 
make strategic changes to optimize revenue and profits. Figure 16.5 shows the 
different stages of a product’s life cycle. 

6. SWOT analysis: SWOT analysis, shown in Fig. 16.6, is a tool that can be used 
to evaluate a company’s internal strengths and weaknesses, as well as external 
opportunities and threats. It is often used as a starting point for developing a 
business strategy, by providing an overview of a company’s current position in 
the market.
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Fig. 16.5 Product life cycle analysis [9] 

Fig. 16.6 SWOT analysis [7]
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All these frameworks are designed to help companies to understand their internal 
and external environment, identify opportunities and risks, and make informed 
decisions about their business strategy. The choice of which framework to use 
depends on the company’s goals and what it wants to achieve. 

16.1.3 Barriers to Entry 

Barriers to entry refer to the obstacles that make it difficult for new companies to 
enter a market and compete with established players. The higher the barriers to entry, 
the more difficult it is for new companies to enter the market and compete. High 
barriers to entry can help protect a company’s competitive advantages by making it 
difficult for new companies to enter the market and compete. This allows established 
companies to maintain their dominant position and continue to reap the benefits of 
their competitive advantages. 

Companies can develop various barriers to entry to deter potential threats from 
other companies. Some examples of these are: 

1. Technical barriers 
Developing and maintaining a high-quality, reliable, and scalable solution 
requires significant technical expertise and resources. This can be a significant 
barrier to entry for new companies, as they may not have the necessary 
experience or resources to develop a competitive product. 

2. Economies of scale 
Companies that have already established a large customer base can benefit from 
economies of scale, which can make it difficult for new companies to compete 
on price. 

3. Network effects 
In some cases, the value of a product increases as more customers use it. This 
creates a network effect, which can make it difficult for new companies to attract 
customers, as their product may not be as valuable without a large customer base. 

4. Brand recognition 
Established companies often have a strong brand recognition and reputation, 
which can make it difficult for new companies to attract customers. 

5. Capital requirements 
Developing and scaling certain businesses can be capital-intensive, and new 
companies may not have the resources or access to funding to compete with 
established players. 

6. Intellectual Property 
Strong patents, trademarks, and copyrights can protect a company’s products or 
processes, making it difficult for new companies to enter the market.
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7. Customer Relationships 
A company that has established strong relationships with its customers, such as 
through loyalty programs, can have a significant advantage over new entrants, as 
it can be difficult for new companies to attract these customers. 

8. Government Regulations 
Certain industries, such as healthcare and energy, are heavily regulated, and the 
process of obtaining licenses, permits, and approvals can be a significant barrier 
to entry for new companies. 

16.2 Artificial Intelligence in Business Strategy 

Artificial intelligence has demonstrated magnificent results in strategy development. 
Games like chess and go have been tackled by artificial intelligence with amazing 
results, demonstrating strong potential in its application in strategy development. 
In fact, artificial intelligence has been applied to model and monitor the strategic 
decision-making of governments and corporations. One such example is a machine 
learning model based on China’s decision-making called the Policy Change Index 
which predicts the most relevant issues faced by the country, based on the text 
provided by the People’s Daily newspapers [4]. This information highlights what 
current issues are the government most concerned with and hence would provide 
clues to how the Chinese government will be allocating its resources. 

However, completely automating corporate strategies using artificial intelligence 
is still far away in the future. Artificial intelligence researchers are working on sci-
ence fiction concepts such as artificial general intelligence, but it is a long way to go 
before these ideas get realized and that form of AI is simply irrelevant to the present. 
While many use cases of artificial intelligence show promise in strategy, it generally 
works well in conditions where the consequences of each action are known before 
making a decision. However, it is only until recently that artificial intelligence has 
had some success in making decisions under incomplete information scenarios. 
Furthermore, understanding how complex artificial intelligence algorithms make 
decisions is still largely unsolved. Furthermore, strategic decisions have enormous 
repercussions. Thus, it is imperative for executives to be able to understand the 
reasons behind its predictions and identify which set of data is it extrapolating from. 
Only then they are able to assess whether they can trust these predictions. 

While it is not possible to perform a high level of automation on strategic 
business decisions, there are many possibilities for incorporating AI into strategy 
building blocks to significantly improve the decision-making process. Artificial 
intelligence can be used to assist and crawl through large amounts of data points 
from various sources such as reviews, financial statements, and social media to 
analyze the competitive landscape businesses face. Through such use cases, artificial 
intelligence can help provide useful insights to business leaders for strategic 
decision-making. In this chapter, we will go through some examples of use cases 
that artificial intelligence can bring.
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16.3 Applications of AI in Business Strategy 

16.3.1 Startup Acquisition 

Mergers and acquisitions (M&A) activity has been demonstrated to be highly linked 
with corporate performance and is becoming an increasingly important aspect of a 
successful business strategy in today’s society. Acquiring successful startups can 
bring many benefits to larger businesses. By capitalizing on the strengths of the 
acquired company’s targets, the acquiring company can expand its primary business 
or access brand new markets for revenue growth. These are some of the reasons that 
acquiring a startup can be a good business strategy [2]: 

1. Filling a product gap 
Rather than developing technology from scratch, businesses frequently acquire 
and integrate it into their product pipeline. In order to complement their primary 
offering, businesses frequently purchase an anchor component in a new product 
category. Acquisitions are one strategy that a corporation may employ to improve 
the primary goods or services that it provides to customers. 

2. Expanding the customer base 
A corporation can expand through the acquisition of a target with a relevant 
consumer base. This can assist the organization reach new markets and increase 
the reputation of the product/service, allowing it to achieve a greater market 
share. 

3. Recruiting domain experts 
Possessing the appropriate competencies may provide a significant edge over 
one’s competitors and should be a priority for any business. By acquiring 
experienced personnel, M&A may improve the acquirer’s internal capabilities 
and core product. These are relatively minor acquisitions that will complement 
the acquirer’s main digital business strategy and skills. 

For companies that are looking to use strategic acquisitions as a business 
strategy, monitoring and identifying successful startups to acquire would be highly 
important. However, investigating whether a company is worth acquiring requires 
a lot of research and can be very time-consuming. It becomes even more difficult 
as identifying suitable acquisition targets can be very challenging when there are 
hundreds of thousands of startups across the world. In this aspect, predicting startup 
success can be useful to pre-filter potential acquisition targets and facilitate strategic 
acquisitions. 

In this example, we will work on predicting the likelihood that a startup is worth 
acquiring [1].
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The data can be obtained from [3]: 
https://www.kaggle.com/datasets/manishkc06/startup-success-prediction 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.model_selection import GridSearchCV,

↪→train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.preprocessing import PolynomialFeatures 
from sklearn.preprocessing import StandardScaler 
from sklearn.decomposition import PCA 
from sklearn.feature_selection import RFE 
from sklearn.ensemble import RandomForestClassifier 

Let us read the data. 

df=pd.read_csv("Business_Strategy/startup data.csv") 

df.head() 

Unnamed: 0 state_code latitude longitude zip_code id \ 
0 1005 CA 42.358880 -71.056820 92101 c:6669 
1 204 CA 37.238916 -121.973718 95032 c:16283 
2 1001 CA 32.901049 -117.192656 92121 c:65620 
3 738 CA 37.320309 -122.050040 95014 c:42668 
4 1002 CA 37.779281 -122.419236 94105 c:65806 

city Unnamed: 6 name labels ... \ 
0 San Diego NaN Bandsintown 1 ... 
1 Los Gatos NaN TriCipher 1 ... 
2 San Diego San Diego CA 92121 Plixi 1 ... 
3 Cupertino Cupertino CA 95014 Solidcore Systems 1 ... 
4 San Francisco San Francisco CA 94105 Inhale Digital 0 ... 

object_id has_VC has_angel has_roundA has_roundB has_roundC has_roundD \ 
0 c:6669 0 1 0 0 0 0 
1 c:16283 1 0 0 1 1 1 
2 c:65620 0 0 1 0 0 0 
3 c:42668 0 0 0 1 1 1 
4 c:65806 1 1 0 0 0 0 

avg_participants is_top500 status 
0 1.0000 0 acquired 
1 4.7500 1 acquired 
2 4.0000 1 acquired 
3 3.3333 1 acquired 
4 1.0000 1 closed 

[5 rows x 49 columns] 

Now let us see what columns are there.
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df.info() 

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 923 entries, 0 to 922 
Data columns (total 49 columns): 
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Unnamed: 0 923 non-null int64 
1 state_code 923 non-null object 
2 latitude 923 non-null float64 
3 longitude 923 non-null float64 
4 zip_code 923 non-null object 
5 id 923 non-null object 
6 city 923 non-null object 
7 Unnamed: 6 430 non-null object 
8 name 923 non-null object 
9 labels 923 non-null int64 
10 founded_at 923 non-null object 
11 closed_at 335 non-null object 
12 first_funding_at 923 non-null object 
13 last_funding_at 923 non-null object 
14 age_first_funding_year 923 non-null float64 
15 age_last_funding_year 923 non-null float64 
16 age_first_milestone_year 771 non-null float64 
17 age_last_milestone_year 771 non-null float64 
18 relationships 923 non-null int64 
19 funding_rounds 923 non-null int64 
20 funding_total_usd 923 non-null int64 
21 milestones 923 non-null int64 
22 state_code.1 922 non-null object 
23 is_CA 923 non-null int64 
24 is_NY 923 non-null int64 
25 is_MA 923 non-null int64 
26 is_TX 923 non-null int64 
27 is_otherstate 923 non-null int64 
28 category_code 923 non-null object 
29 is_software 923 non-null int64 
30 is_web 923 non-null int64 
31 is_mobile 923 non-null int64 
32 is_enterprise 923 non-null int64 
33 is_advertising 923 non-null int64 
34 is_gamesvideo 923 non-null int64 
35 is_ecommerce 923 non-null int64 
36 is_biotech 923 non-null int64 
37 is_consulting 923 non-null int64 
38 is_othercategory 923 non-null int64 
39 object_id 923 non-null object 
40 has_VC 923 non-null int64 
41 has_angel 923 non-null int64 
42 has_roundA 923 non-null int64 
43 has_roundB 923 non-null int64 

(continues on next page)
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(continued from previous page) 

44 has_roundC 923 non-null int64 
45 has_roundD 923 non-null int64 
46 avg_participants 923 non-null float64 
47 is_top500 923 non-null int64 
48 status 923 non-null object 

dtypes: float64(7), int64(28), object(14) 
memory usage: 353.5+ KB 

Let us drop the irrelevant columns such as location information. 

df.drop(["Unnamed: 0","Unnamed: 6","id","state_code",
↪→"category_code", "state_code.1","latitude",
↪→"longitude","zip_code","city","name", 

"closed_at","founded_at","first_funding_at",
↪→"last_funding_at","object_id"], axis=1,
↪→inplace=True) 

df.head() 

labels age_first_funding_year age_last_funding_year \ 
0 1 2.2493 3.0027 
1 1 5.1260 9.9973 
2 1 1.0329 1.0329 
3 1 3.1315 5.3151 
4 0 0.0000 1.6685 

age_first_milestone_year age_last_milestone_year relationships \ 
0 4.6685 6.7041 3 
1 7.0055 7.0055 9 
2 1.4575 2.2055 5 
3 6.0027 6.0027 5 
4 0.0384 0.0384 2 

funding_rounds funding_total_usd milestones is_CA ... \ 
0 3 375000 3 1 ... 
1 4 40100000 1 1 ... 
2 1 2600000 2 1 ... 
3 3 40000000 1 1 ... 
4 2 1300000 1 1 ... 

is_othercategory has_VC has_angel has_roundA has_roundB has_roundC \ 
0 1 0 1 0 0 0  
1 0 1 0 0 1 1  
2 0 0 0 1 0 0  
3 0 0 0 0 1 1  
4 0 1 1 0 0 0  

has_roundD avg_participants is_top500 status 
0 0 1.0000 0 acquired 
1 1 4.7500 1 acquired 
2 0 4.0000 1 acquired 
3 1 3.3333 1 acquired 
4 0 1.0000 1 closed 

[5 rows x 33 columns]
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As we can see from the data, label 1, indicates that a startup was successful 
and was acquired by another company, whereas 0 means that a startup was not 
successful. 

Now let us check out data for empty values. 

df.isnull().sum().sort_values(ascending=False).head() 

age_first_milestone_year 152 
age_last_milestone_year 152 
labels 0 
has_angel 0 
is_ecommerce 0 
dtype: int64 

We have 152 empty values in both the “age_first_milestone_year” and 
“age_last_milestone_year” columns. We will fill these empty values with the 
median values of the column. 

df.age_first_milestone_year.fillna(df["age_first_
↪→milestone_year"].median(), inplace=True) 
df.age_last_milestone_year.fillna(df["age_last_

↪→milestone_year"].median(), inplace=True) 

Now we need to separate the features from the ground truth labels. 

X=df.drop(["status", "labels"], axis=1) 
Y=df.labels 

We will split our dataset into training and testing with a ratio of 70% in training 
and 30% in testing. 

X_train, X_test, Y_train, Y_test = train_test_split(X,
↪→ Y, test_size=0.30, random_state=42) 

We will normalize each feature to have mean 0 and standard deviation 1. This will 
allow our features to equally weighted when using PCA to perform dimensionality 
reduction. 

scaler = StandardScaler() 
scaler.fit(X_train) 
X_train = scaler.transform(X_train) 
X_test = scaler.transform(X_test) 

We can see how much of the original data is explained by the number of 
principal components used in the graph below. As you can see, the last few principal 
components do not contribute as much after the 90th percentile.
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pca=PCA(n_components=len(X.columns)-1) 

X_pca=pca.fit_transform(X_train) 
exp_var=pca.explained_variance_ratio_ 
cumsum_var=np.cumsum(exp_var) 
print(cumsum_var) 
plt.plot(cumsum_var) 
plt.grid() 

[0.1308337 0.22365973 0.28174192 0.3346305 0.
↪→38009515 0.42333056 
0.46477985 0.50263267 0.53999606 0.57659398 0.
↪→6122668 0.6472743 
0.68087381 0.71354846 0.74537942 0.77623246 0.
↪→80610559 0.83372807 
0.86063452 0.88447349 0.90656267 0.92701329 0.
↪→94402292 0.96063281 
0.97485717 0.98784006 0.99323711 0.99786195 0.
↪→99992513 1. ] 

pca_new=PCA(n_components=(cumsum_var > 0.9).
↪→nonzero()[0][0]) 
X_new=pca_new.fit_transform(X_train) 

exp_var_new=pca_new.explained_variance_ratio_ 
cumsum_var_new=np.cumsum(exp_var_new) 

(continues on next page)
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(continued from previous page) 

plt.plot(cumsum_var_new) 
plt.grid() 
X_new=pd.DataFrame(X_new) 

Let us use PCA to transform our features. 

X_train_pca = pca_new.transform(X_train) 
X_test_pca = pca_new.transform(X_test) 

Now we can train our model. We will train the random forest classifier algorithm 
to predict the success of the startups and evaluate it on the test set. 

forest=RandomForestClassifier(n_estimators=20, 
max_depth=6, 
criterion="gini", 
random_state=42, 

) 

forest.fit(X_train,Y_train) 
y_test_pred_forest=forest.predict(X_test) 
y_train_pred_forest=forest.predict(X_train) 

print("Classification Report:","\n",classification_
↪→report(Y_test,y_test_pred_forest),"\n") 

(continues on next page)
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(continued from previous page) 

print("Confusion Matrix","\n",confusion_matrix(Y_test,
↪→y_test_pred_forest),"\n") 
print("Accuracy score of random forest test set:",

↪→accuracy_score(Y_test,y_test_pred_forest)) 

Classification Report: 
precision recall f1-score support 

0 0.83 0.60 0.70 100 
1 0.80 0.93 0.86 177 

accuracy 0.81 277 
macro avg 0.82 0.77 0.78 277 

weighted avg 0.82 0.81 0.80 277 

Confusion Matrix 
[[ 60 40] 
[ 12 165]] 

Accuracy score of random forest test set: 0.8122743682310469 

Let us predict the probability of success for the first 10 startups in the test set. 

for prob, ground_truth in zip(forest.predict_proba(X_
↪→test[0:10,:])[:,1], Y_test[0:10]): 

print(round(prob,2), ground_truth) 

0.82 1 
0.57 1 
0.71 0 
0.38 0 
0.47 0 
0.04 0 
0.7 1 
0.72 1 
0.77 0 
0.69 1 

Now let us rank the startups by most likely to become successful and identify the 
top 5 most worth looking into, according to our model.
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probability_of_success = forest.predict_proba(X_
↪→test)[:,1] 
print("Top 5 startups most likely to succeed in the

↪→test set:", probability_of_success.argsort()[::-
↪→1][0:5]) 
print("With probabilities of:", probability_of_

↪→success[probability_of_success.argsort()[::-
↪→1][0:5]]) 

Top 5 startups most likely to succeed in the test
↪→set: [180 102 169 117 57] 
With probabilities of: [0.94758606 0.94215402 0.

↪→937314 0.93586826 0.93088208] 

16.3.2 Identifying Closest Competitors 

Brands are often compared against one another in various reviews, and this can 
provide insights to business leaders on which companies do they have to watch out 
for the most within their industry. In this example we will map out the competitive 
landscape and see which brands are often mentioned together in reviews [5]. 

import os 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from bs4 import BeautifulSoup 
import requests 
import nltk 
import nltk.corpus 
from nltk.tokenize import word_tokenize 
from nltk.corpus import stopwords 
import string 
from nltk.corpus import stopwords, wordnet 
from nltk.stem import WordNetLemmatizer 
nltk.download('stopwords') 
nltk.download('wordnet') 
nltk.download('punkt')
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[nltk_data] Downloading package stopwords to 
[nltk_data] C:\Users\YuJin\AppData\Roaming\nltk_data... 
[nltk_data] Package stopwords is already up-to-date! 
[nltk_data] Downloading package wordnet to 
[nltk_data] C:\Users\YuJin\AppData\Roaming\nltk_data... 
[nltk_data] Package wordnet is already up-to-date! 
[nltk_data] Downloading package punkt to 
[nltk_data] C:\Users\YuJin\AppData\Roaming\nltk_data... 
[nltk_data] Package punkt is already up-to-date! 

True 

The model details table lists which brand does a car model belong to. 

model_details = pd.read_csv(r"Business_Strategy\Text-
↪→Mining-Car-Review-Data\models.csv") 
model_details.head() 

brand model 
0 acura integra 
1 acura Legend 
2 acura vigor 
3 acura rlx 
4 acura ILX 

The attributes table categorizes various key words into topic categories. 

attributes = pd.read_csv(r".\Text-Mining-Car-Review-
↪→Data\attributes.csv") 
attributes.head() 

category word 
0 cost price 
1 cost value 
2 cost warranty 
3 performance engine 
4 performance power 

The aspirational table lists words that represent interest in purchasing a particular 
model. 

# import aspirational data 
aspirational = pd.read_csv(r"Business_Strategy\Text-

↪→Mining-Car-Review-Data\aspirational.csv") 
aspirational.head()
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category word 
0 aspirational buy 
1 aspirational sale 
2 aspirational consider 
3 aspirational dealer 
4 aspirational offer 

In this example, we have extracted text reviews from this forum: https://forums. 
edmunds.com/discussion/7526/general/x/midsize-sedans-2-0 

The forum discusses on various mid-size sedan models and brands which 
provides useful insights on how people view the various car brands for the mid-size 
sedan category. 

df = pd.read_csv(r"Business_Strategy\Text-Mining-Car-
↪→Review-Data\edmunds_extraction.csv") 
df.head() 

Counter Date User \ 
0 1 April 11, 2007 6:52PM \r\nmotownusa 
1 2 April 11, 2007 7:33PM \r\nexshoman 
2 3 April 12, 2007 6:51AM \r\ntargettuning 
3 4 April 12, 2007 8:43AM \r\npat 
4 5 April 13, 2007 11:49AM \r\nperna 

Comment 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI'm sure some folks would appreciate havin... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we're here... 
4 \r\nThe Altima is my favorite of the bunch. It... 

# Drop any rows with null values 
df.dropna(axis=0, inplace=True) 
df.shape 

(5000, 4) 

We will begin preprocessing the reviews by decontracting contractions by 
converting words such as “won’t” into “will not.” 

#expand contraction words 
import re 

def decontracted(phrase): 
# specific 
phrase = re.sub(r"won\'t", "will not", phrase) 

(continues on next page)
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phrase = re.sub(r"can\'t", "can not", phrase) 
# general 
phrase = re.sub(r"n\'t", " not", phrase) 
phrase = re.sub(r"\'re", " are", phrase) 
phrase = re.sub(r"\'s", " is", phrase) 
phrase = re.sub(r"\'d", " would", phrase) 
phrase = re.sub(r"\'ll", " will", phrase) 
phrase = re.sub(r"\'t", " not", phrase) 
phrase = re.sub(r"\'ve", " have", phrase) 
phrase = re.sub(r"\'m", " am", phrase) 
return phrase 

df['Comment1'] = df.apply(lambda row :
↪→decontracted(row['Comment']), axis = 1) 

Next we will remove trailing whitespaces and full stops and perform tokenization 
to split the reviews into smaller tokens for text analysis. 

#Tokenization the comments column 
def token_(x): 

x = x.strip(' \r.\n') 
token = word_tokenize(x) 
return token 

df['Comment_token'] = df.apply(lambda row : token_
↪→(row['Comment1']), axis = 1) 

df['Comment_token'] 

0 [Hi, Pat, :, You, forgot, the, Chrysler, Sebring] 
1 [I, am, sure, some, folks, would, appreciate, ... 
2 [You, can, try, to, revive, this, topic, but, ... 
3 [Model, vs., model, is, exactly, what, we, are... 
4 [The, Altima, is, my, favorite, of, the, bunch... 

... 
4995 [``, Let, me, try, one, more, time, ., Accord,... 
4996 [``, No, one, likes, repairs, on, their, car, ... 
4997 [Toyota, &, GM, gives, you, guys, what, they, ... 
4998 [What, weaknesses, ?, you, have, goota, be, ki... 
4999 [Well, the, cheapest, service, did, not, have,... 
Name: Comment_token, Length: 5000, dtype: object
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The text comes in various cases which is not ideal as the same word could be 
captured differently due to capitalization. Hence, we will convert all letters to its 
lower case. 

# Lower Casing the Tokenized comments 
def lower_case(x): 

ret = [] 
for words in x: 

words = words.lower() 
ret.append(words) 

return ret 
df['Comment_token'] = df.apply(lambda row : lower_

↪→case(row['Comment_token']), axis = 1) 

df.head() 

Counter Date User \ 
0 1 April 11, 2007 6:52PM \r\nmotownusa 
1 2 April 11, 2007 7:33PM \r\nexshoman 
2 3 April 12, 2007 6:51AM \r\ntargettuning 
3 4 April 12, 2007 8:43AM \r\npat 
4 5 April 13, 2007 11:49AM \r\nperna 

Comment \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI'm sure some folks would appreciate havin... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we're here... 
4 \r\nThe Altima is my favorite of the bunch. It... 

Comment1 \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI am sure some folks would appreciate havi... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we are her... 
4 \r\nThe Altima is my favorite of the bunch. It... 

Comment_token 
0 [hi, pat, :, you, forgot, the, chrysler, sebring] 
1 [i, am, sure, some, folks, would, appreciate, ... 
2 [you, can, try, to, revive, this, topic, but, ... 
3 [model, vs., model, is, exactly, what, we, are... 
4 [the, altima, is, my, favorite, of, the, bunch... 

We will do the same for the model details table. 

def lower(x): 
l = x.lower() 
return l 

# Applying the 'lower' function to model_details
↪→dataframe in both the columns 

(continues on next page)
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model_details['brand'] = model_details.apply(lambda
↪→row : lower(row['brand']), axis = 1) 
model_details['model'] = model_details.apply(lambda

↪→row : lower(row['model']), axis = 1) 

In order to determine how the overall brand is viewed between mid-size 
sedans, we will first begin by replacing all of the car models discussed by their 
corresponding car brands. This will allow us to aggregate the information provided 
across various car models in a particular brand. 

#Replacing the model names with brand names 
for i in range(len(df)): 

for j in range(len(df['Comment_token'][i])): 
if df['Comment_token'][i][j] in model_details[

↪→'model'].tolist(): 
df['Comment_token'][i][j] = model_details[

↪→'brand'][model_details['model'].tolist().index(df[
↪→'Comment_token'][i][j])] 

df.head() 

Counter Date User \ 
0 1 April 11, 2007 6:52PM \r\nmotownusa 
1 2 April 11, 2007 7:33PM \r\nexshoman 
2 3 April 12, 2007 6:51AM \r\ntargettuning 
3 4 April 12, 2007 8:43AM \r\npat 
4 5 April 13, 2007 11:49AM \r\nperna 

Comment \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI'm sure some folks would appreciate havin... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we're here... 
4 \r\nThe Altima is my favorite of the bunch. It... 

Comment1 \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI am sure some folks would appreciate havi... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we are her... 
4 \r\nThe Altima is my favorite of the bunch. It... 

Comment_token 
0 [hi, pat, :, you, forgot, the, chrysler, chrys... 
1 [i, am, sure, some, folks, would, appreciate, ... 
2 [you, can, try, to, revive, this, topic, but, ... 
3 [model, vs., model, is, exactly, what, we, are... 
4 [the, nissan, is, my, favorite, of, the, bunch...
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Now we will remove the punctuations from the comments as well and delete all 
tokens containing empty strings. 

# Removing Punctuation 
import re 
punctuation = re.compile(r'[-.?!,:;()%\/|0-9""]') 
def post_punctuation(x): 

ret = [] 
for words in x: 

item = punctuation.sub("",words) 
if len(item)>0: 

ret.append(item) 
return ret 

df['Comment_token_punct'] = df.apply(lambda row :
↪→post_punctuation(row['Comment_token']), axis = 1) 

Stopwords such as “a,” “the,” and “and” do not provide additional information 
about a review and should be removed to reduce unnecessary computation and 
increase the emphasis on more important words. 

#Stopwords 
stop_words = set(stopwords.words('english')) 
def remove_stopwords(x): 

filtered_sentence = [] 
for w in x: 

if w not in stop_words: 
filtered_sentence.append(w) 

return filtered_sentence 
df['Comment_token_punct_stopwords'] = df.apply(lambda

↪→row : remove_stopwords(row['Comment_token_punct']),
↪→axis = 1) 

Here we will lemmatize our words so that the similar words such as fuel, fueling, 
and fueled will be converted to fuel. This is best done by providing the part of speech 
tags to the lemmatizer. The part of speech tag describes whether a word is used as 
a Noun, Adjective, Verb, or Adverb. Below we will use the averaged perceptron 
tagger to provide the part of speech tags for each token in the sentences. 

#POS Tagging 
nltk.download('averaged_perceptron_tagger') 
df['pos_tags'] = df['Comment_token_punct_stopwords'].

↪→apply(nltk.tag.pos_tag) 

[nltk_data] Downloading package averaged_perceptron_tagger to 
[nltk_data] C:\Users\YuJin\AppData\Roaming\nltk_data... 

(continues on next page)
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[nltk_data] Package averaged_perceptron_tagger is already up-to-
[nltk_data] date! 

#wordnet POS - this gives us more accurate
↪→lemmatization 
def get_wordnet_pos(tag): 

if tag.startswith('J'): 
return wordnet.ADJ 

elif tag.startswith('V'): 
return wordnet.VERB 

elif tag.startswith('N'): 
return wordnet.NOUN 

elif tag.startswith('R'): 
return wordnet.ADV 

else: 
return wordnet.NOUN 

df['wordnet_pos'] = df['pos_tags'].apply(lambda x:
↪→[(word, get_wordnet_pos(pos_tag)) for (word, pos_
↪→tag) in x]) 
#Lemmatization 
wnl = WordNetLemmatizer() 
df['lemmatized'] = df['wordnet_pos'].apply(lambda x:

↪→[wnl.lemmatize(word, tag) for word, tag in x]) 

Now we will further remove duplicate words. 

# ALl the duplicate words will be removed from the
↪→text/comments including all the adjectives and
↪→verbs. 
def unique_(test_list): 

res = [] 
for i in test_list: 

if i not in res: 
res.append(i) 

return res 
df['Comment_token_punct_stopwords_unique'] = df.

↪→apply(lambda row : unique_(row['lemmatized']), axis
↪→= 1) 

df.head() 

Counter Date User \ 
0 1 April 11, 2007 6:52PM \r\nmotownusa 

(continues on next page)
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1 2 April 11, 2007 7:33PM \r\nexshoman 
2 3 April 12, 2007 6:51AM \r\ntargettuning 
3 4 April 12, 2007 8:43AM \r\npat 
4 5 April 13, 2007 11:49AM \r\nperna 

Comment \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI'm sure some folks would appreciate havin... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we're here... 
4 \r\nThe Altima is my favorite of the bunch. It... 

Comment1 \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI am sure some folks would appreciate havi... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we are her... 
4 \r\nThe Altima is my favorite of the bunch. It... 

Comment_token \ 
0 [hi, pat, :, you, forgot, the, chrysler, chrys... 
1 [i, am, sure, some, folks, would, appreciate, ... 
2 [you, can, try, to, revive, this, topic, but, ... 
3 [model, vs., model, is, exactly, what, we, are... 
4 [the, nissan, is, my, favorite, of, the, bunch... 

Comment_token_punct \ 
0 [hi, pat, you, forgot, the, chrysler, chrysler] 
1 [i, am, sure, some, folks, would, appreciate, ... 
2 [you, can, try, to, revive, this, topic, but, ... 
3 [model, vs, model, is, exactly, what, we, are,... 
4 [the, nissan, is, my, favorite, of, the, bunch... 

Comment_token_punct_stopwords \ 
0 [hi, pat, forgot, chrysler, chrysler] 
1 [sure, folks, would, appreciate, chevrolet, in... 
2 [try, revive, topic, without, able, discuss, h... 
3 [model, vs, model, exactly, manufacturer, vs, ... 
4 [nissan, favorite, bunch, amongst, fastest, be... 

pos_tags \ 
0 [(hi, NN), (pat, NN), (forgot, VBD), (chrysler... 
1 [(sure, JJ), (folks, NNS), (would, MD), (appre... 
2 [(try, VB), (revive, JJ), (topic, NN), (withou... 
3 [(model, NN), (vs, NN), (model, NN), (exactly,... 
4 [(nissan, JJ), (favorite, JJ), (bunch, NN), (a... 

wordnet_pos \ 
0 [(hi, n), (pat, n), (forgot, v), (chrysler, n)... 
1 [(sure, a), (folks, n), (would, n), (appreciat... 
2 [(try, v), (revive, a), (topic, n), (without, ... 
3 [(model, n), (vs, n), (model, n), (exactly, r)... 
4 [(nissan, a), (favorite, a), (bunch, n), (amon... 

lemmatized \ 
0 [hi, pat, forget, chrysler, chrysler] 
1 [sure, folk, would, appreciate, chevrolet, inc... 

(continues on next page)
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2 [try, revive, topic, without, able, discus, ho... 
3 [model, v, model, exactly, manufacturer, vs, m... 
4 [nissan, favorite, bunch, amongst, fast, best,... 

Comment_token_punct_stopwords_unique 
0 [hi, pat, forget, chrysler] 
1 [sure, folk, would, appreciate, chevrolet, inc... 
2 [try, revive, topic, without, able, discus, ho... 
3 [model, v, exactly, manufacturer, vs, belongs,... 
4 [nissan, favorite, bunch, amongst, fast, best,... 

For this exercise, we will focus on the top 10 most frequently discussed brands 
with sufficient data points. 

#Frequency Distribution 
from nltk.probability import FreqDist 
fdist = FreqDist() 
for i in range(len(df)): 

for word in df['Comment_token_punct_stopwords_
↪→unique'][i]: 

fdist[word]+=1 

freq_list = [] 
for i in range(len(model_details['brand'].unique())): 

if model_details['brand'].unique()[i] in fdist: 
l = model_details['brand'].unique()[i],

↪→fdist[model_details['brand'].unique()[i]] 
freq_list.append(l) 

freq_table = pd.DataFrame(freq_list,columns=["Model",
↪→"Frequency"]) 
freq_table.sort_values(by = 'Frequency',ascending =

↪→False, inplace = True, ignore_index=True) 

freq_table.head(10) 

Model Frequency 
0 honda 2084 
1 ford 1344 
2 toyota 966 
3 hyundai 598 
4 mazda 576 
5 nissan 564 
6 chevrolet 246 
7 saturn 245 

(continues on next page)
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8 chrysler 221 
9 subaru 158 

col_req = 10 
model_list = freq_table.head(col_req)['Model'].

↪→tolist() 

Now to see which brand is the closest competitor, we will see which brands are 
often mentioned within the same reviews. This will allow us to determine which 
cars are often being compared against one another and identify which is the closest 
competitor. We will create a co-occurrence matrix that counts the number of times 
two brands appear in a review. 

cooccur_mat = pd.DataFrame(np.zeros((col_req,col_
↪→req)), columns=model_list, index=model_list) 

for rows in range(len(df)): 
for i in range(len(model_list)): 

if model_list[i] in df['Comment_token_punct_
↪→stopwords_unique'][rows]: 

for j in range(i+1,len(model_list)): 
if model_list[j] in df['Comment_token_

↪→punct_stopwords_unique'][rows]: 
cooccur_mat[model_list[i]][model_

↪→list[j]] = cooccur_mat[model_list[i]][model_
↪→list[j]] + 1 

cooccur_mat[model_list[j]][model_
↪→list[i]] = cooccur_mat[model_list[i]][model_list[j]] 

cooccur_mat 

honda ford toyota hyundai mazda nissan chevrolet saturn \ 
honda 0.0 652.0 690.0 358.0 275.0 339.0 137.0 131.0 
ford 652.0 0.0 366.0 189.0 182.0 176.0 89.0 88.0 
toyota 690.0 366.0 0.0 218.0 106.0 242.0 90.0 109.0 
hyundai 358.0 189.0 218.0 0.0 75.0 108.0 52.0 54.0 
mazda 275.0 182.0 106.0 75.0 0.0 94.0 29.0 31.0 
nissan 339.0 176.0 242.0 108.0 94.0 0.0 55.0 77.0 
chevrolet 137.0 89.0 90.0 52.0 29.0 55.0 0.0 70.0 
saturn 131.0 88.0 109.0 54.0 31.0 77.0 70.0 0.0 
chrysler 126.0 77.0 53.0 43.0 21.0 28.0 22.0 12.0 
subaru 89.0 35.0 36.0 35.0 59.0 35.0 12.0 14.0 

chrysler subaru 
honda 126.0 89.0 
ford 77.0 35.0 
toyota 53.0 36.0 

(continues on next page)
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hyundai 43.0 35.0 
mazda 21.0 59.0 
nissan 28.0 35.0 
chevrolet 22.0 12.0 
saturn 12.0 14.0 
chrysler 0.0 7.0 
subaru 7.0 0.0 

Great, now we have created our co-occurrence matrix. However, this needs to be 
further processed as brands which are more talked about would have higher counts. 
In order to represent whether the comparison between two cars is more than normal, 
we will calculate the lift of two car brands. A lift greater than 1 indicates that the 
two brands are compared more than normal, whereas a lift less than 1 indicates the 
brands are compared less than normal. 

len(df) 

5000 

lift = pd.DataFrame(np.zeros((col_req,col_req)),
↪→columns=model_list, index=model_list) 

total = len(df) 
for i in range(col_req): 

for j in range(col_req): 
lift[model_list[i]][model_list[j]] =

↪→total*(cooccur_mat[model_list[i]][model_list[j]]/
↪→(freq_table.iloc[i,1]*freq_table.iloc[j,1])) 
lift 

honda ford toyota hyundai mazda nissan \ 
honda 0.000000 1.163913 1.713737 1.436330 1.145467 1.442092 
ford 1.163913 0.000000 1.409531 1.175794 1.175492 1.160925 
toyota 1.713737 1.409531 0.000000 1.886897 0.952525 2.220901 
hyundai 1.436330 1.175794 1.886897 0.000000 1.088698 1.601082 
mazda 1.145467 1.175492 0.952525 1.088698 0.000000 1.446759 
nissan 1.442092 1.160925 2.220901 1.601082 1.446759 0.000000 
chevrolet 1.336158 1.345940 1.893652 1.767409 1.023318 1.982068 
saturn 1.282855 1.336249 2.302784 1.842878 1.098356 2.786221 
chrysler 1.367888 1.296192 1.241299 1.626841 0.824849 1.123199 
subaru 1.351466 0.824103 1.179338 1.852165 3.241473 1.963821 

chevrolet saturn chrysler subaru 
honda 1.336158 1.282855 1.367888 1.351466 
ford 1.345940 1.336249 1.296192 0.824103 
toyota 1.893652 2.302784 1.241299 1.179338 
hyundai 1.767409 1.842878 1.626841 1.852165 
mazda 1.023318 1.098356 0.824849 3.241473 
nissan 1.982068 2.786221 1.123199 1.963821 
chevrolet 0.000000 5.807201 2.023323 1.543686 
saturn 5.807201 0.000000 1.108136 1.808318 

(continues on next page)
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chrysler 2.023323 1.108136 0.000000 1.002348 
subaru 1.543686 1.808318 1.002348 0.000000 

Now we will generate a dissimilarity matrix. To do this, we need to calculate 
the reciprocal of this function and replace infinity values with zero. This is because 
brands with higher lift values should be closer to one another than those with lower 
lift values in a distance metric. For example, the high lift value between the Mazda 
and Subaru should mean that the distance between them is smaller. 

test = 1/lift 
test = test.replace(np.inf, 0) 
test 

honda ford toyota hyundai mazda nissan \ 
honda 0.000000 0.859171 0.583520 0.696219 0.873007 0.693437 
ford 0.859171 0.000000 0.709456 0.850489 0.850708 0.861382 
toyota 0.583520 0.709456 0.000000 0.529971 1.049842 0.450268 
hyundai 0.696219 0.850489 0.529971 0.000000 0.918528 0.624578 
mazda 0.873007 0.850708 1.049842 0.918528 0.000000 0.691200 
nissan 0.693437 0.861382 0.450268 0.624578 0.691200 0.000000 
chevrolet 0.748415 0.742975 0.528080 0.565800 0.977214 0.504524 
saturn 0.779511 0.748364 0.434257 0.542630 0.910452 0.358909 
chrysler 0.731054 0.771491 0.805608 0.614688 1.212343 0.890314 
subaru 0.739937 1.213440 0.847933 0.539909 0.308502 0.509211 

chevrolet saturn chrysler subaru 
honda 0.748415 0.779511 0.731054 0.739937 
ford 0.742975 0.748364 0.771491 1.213440 
toyota 0.528080 0.434257 0.805608 0.847933 
hyundai 0.565800 0.542630 0.614688 0.539909 
mazda 0.977214 0.910452 1.212343 0.308502 
nissan 0.504524 0.358909 0.890314 0.509211 
chevrolet 0.000000 0.172200 0.494236 0.647800 
saturn 0.172200 0.000000 0.902417 0.553000 
chrysler 0.494236 0.902417 0.000000 0.997657 
subaru 0.647800 0.553000 0.997657 0.000000 

Now we will plot out our results by performing Multidimensional Scaling 
on our dataset. Multidimensional Scaling finds a nonlinear mapping to map the 
dissimilarity matrix provided by us, into a 2-dimensional coordinate system that 
preserves the dissimilarity. This allows us to intuitively visualize which brand is 
more similar to one another. 

#Need to replace 'inf' with zero, otherwise the MDS
↪→function does not work 
from sklearn.manifold import MDS 

mds = MDS(n_components=2, dissimilarity="precomputed",
↪→ random_state=42) 
results = mds.fit(test) 
mds_coords = results.fit_transform(test)
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#ANOTHER WAY TO PLOT THE MDS 
coords = results.embedding_ 
plt.figure() 
plt.scatter(mds_coords[:,0],mds_coords[:,1], 

facecolors = 'none', edgecolors = 'none') #
↪→points in white (invisible) 
labels = freq_table['Model'] 
for label, x, y in zip(labels, mds_coords[:,0], mds_

↪→coords[:,1]): 
plt.annotate(label, (x,y), xycoords = 'data') 

plt.xlabel('First Dimension') 
plt.ylabel('Second Dimension') 
plt.title('Dissimilarity among car brands') 
plt.show() 

Now we have a nice visualization of how similar the public perception of various 
mid-sized sedan car brands is. From the graph, we can therefore extract valuable 
insights. Here are some example insights that we can infer from the graph: 

1. We can see that Toyota is very close to Saturn and Chevrolet, which means that 
these are their closest competitors that they may need to watch out for as they are 
being compared more often than normal. 

2. On the other hand, Toyota is rarely compared with Honda and Mazda. Therefore, 
competition against brands is less of a concern. 

3. Interestingly, ford is significantly far from all other brands which indicates that 
they have been successful in brand differentiation.
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16.3.3 SWOT Analysis 

SWOT analysis is a useful tool for understanding a company’s current position and 
identifying potential opportunities and risks. 

Once a SWOT analysis has been conducted, the information can be used to 
identify potential opportunities for the company to pursue and areas that need to 
be addressed. For example, if a company’s strengths include a strong brand and a 
loyal customer base, it may want to consider a differentiation strategy that leverages 
those assets. On the other hand, if a company’s weaknesses include high production 
costs, it may want to focus on a cost leadership strategy. 

In addition, SWOT analysis can help a company to identify potential threats and 
take steps to mitigate them. For example, if a company identifies a potential new 
competitor entering the market, it may want to consider a strategy to defend its 
market position. 

The results can then be used to inform the development of a business strategy 
that is well aligned with the company’s strengths and weaknesses, as well as the 
external market opportunities and threats. 

In this example, we will perform an automated SWOT analysis using reviews 
gathered from the forum in our analysis of the competitive landscape. 

First let us reload the earlier dataframe as we will be breaking down the reviews 
into smaller sentences. 

df = pd.read_csv(r"Business_Strategy\Text-Mining-Car-
↪→Review-Data\edmunds_extraction.csv") 
df.head() 

Counter Date User \ 
0 1 April 11, 2007 6:52PM \r\nmotownusa 
1 2 April 11, 2007 7:33PM \r\nexshoman 
2 3 April 12, 2007 6:51AM \r\ntargettuning 
3 4 April 12, 2007 8:43AM \r\npat 
4 5 April 13, 2007 11:49AM \r\nperna 

Comment 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI'm sure some folks would appreciate havin... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we're here... 
4 \r\nThe Altima is my favorite of the bunch. It... 

Once again we will perform decontraction 

df['Comment1'] = df.apply(lambda row :
↪→decontracted(row['Comment']), axis = 1) 
df
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Counter Date User \ 
0 1 April 11, 2007 6:52PM \r\nmotownusa 
1 2 April 11, 2007 7:33PM \r\nexshoman 
2 3 April 12, 2007 6:51AM \r\ntargettuning 
3 4 April 12, 2007 8:43AM \r\npat 
4 5 April 13, 2007 11:49AM \r\nperna 
... ... ... ... 
4995 4996 September 12, 2007 12:49PM \r\nkdshapiro 
4996 4997 September 12, 2007 12:55PM \r\nbenderofbows 
4997 4998 September 12, 2007 1:24PM \r\njimlockey 
4998 4999 September 12, 2007 2:21PM \r\ncaptain2 
4999 5000 September 12, 2007 2:24PM \r\nthegraduate 

Comment \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI'm sure some folks would appreciate havin... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we're here... 
4 \r\nThe Altima is my favorite of the bunch. It... 
... ... 
4995 \r\n"Let me try one more time. Accord and Camr... 
4996 \r\n"No one likes repairs on their car but I f... 
4997 \r\nToyota & GM gives you guys what they want ... 
4998 \r\nWhat weaknesses? you have goota be kiddin... 
4999 \r\nWell the cheapest service didn't have a pr... 

Comment1 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI am sure some folks would appreciate havi... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nModel vs. model is exactly what we are her... 
4 \r\nThe Altima is my favorite of the bunch. It... 
... ... 
4995 \r\n"Let me try one more time. Accord and Camr... 
4996 \r\n"No one likes repairs on their car but I f... 
4997 \r\nToyota & GM gives you guys what they want ... 
4998 \r\nWhat weaknesses? you have goota be kiddin... 
4999 \r\nWell the cheapest service did not have a p... 

[5000 rows x 5 columns] 

Now we will perform sentence tokenization to break a long review into smaller 
sentences. 

from nltk.tokenize import sent_tokenize 

sent_df = {i:[] for i in df.columns} 
sent_df["Sentence"] = [] 
for idx, line in df.iterrows(): 

for sent in sent_tokenize(line["Comment1"].strip(
↪→"\r\n. ")): 

for col in df.columns: 
sent_df[col].append(line[col]) 

(continues on next page)
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sent_df["Sentence"].append(sent) 
sent_df = pd.DataFrame.from_dict(sent_df) 

sent_df.head() 

Counter Date User \ 
0 1 April 11, 2007 6:52PM \r\nmotownusa 
1 2 April 11, 2007 7:33PM \r\nexshoman 
2 3 April 12, 2007 6:51AM \r\ntargettuning 
3 3 April 12, 2007 6:51AM \r\ntargettuning 
4 4 April 12, 2007 8:43AM \r\npat 

Comment \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI'm sure some folks would appreciate havin... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nYou can try to revive this topic but witho... 
4 \r\nModel vs. model is exactly what we're here... 

Comment1 \ 
0 \r\nHi Pat:You forgot the Chrysler Sebring 
1 \r\nI am sure some folks would appreciate havi... 
2 \r\nYou can try to revive this topic but witho... 
3 \r\nYou can try to revive this topic but witho... 
4 \r\nModel vs. model is exactly what we are her... 

Sentence 
0 Hi Pat:You forgot the Chrysler Sebring 
1 I am sure some folks would appreciate having t... 
2 You can try to revive this topic but without b... 
3 I do agree about issues with other members/pos... 
4 Model vs. model is exactly what we are here for! 

Now we will perform the same preprocessing on the sentences. However, we will 
also record down which brands were mentioned and what topics were the reviewers 
talking about. This will allow us to break down and understand which aspects of a 
brand are being talked about in the reviews. 

sent_df['Sentence_token'] = sent_df.apply(lambda row
↪→: token_(row['Sentence']), axis = 1) 
sent_df['Sentence_token'] = sent_df.apply(lambda row

↪→: lower_case(row['Sentence_token']), axis = 1) 

model_details['brand'] = model_details.apply(lambda
↪→row : lower(row['brand']), axis = 1) 
model_details['model'] = model_details.apply(lambda

↪→row : lower(row['model']), axis = 1) 

sent_df['Brands'] = sent_df.apply(lambda row :
↪→set([]), axis = 1) 

(continues on next page)
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(continued from previous page) 

for i in range(len(sent_df)): 
for j in range(len(sent_df['Sentence_token'][i])): 

if sent_df['Sentence_token'][i][j] in model_
↪→details['brand'].tolist(): 

sent_df["Brands"][i].add(sent_df[
↪→'Sentence_token'][i][j]) 

if sent_df['Sentence_token'][i][j] in model_
↪→details['model'].tolist(): 

sent_df['Sentence_token'][i][j] = model_
↪→details['brand'][model_details['model'].tolist().
↪→index(sent_df['Sentence_token'][i][j])] 

sent_df["Brands"][i].add(sent_df[
↪→'Sentence_token'][i][j]) 

#Replace certain related words to form larger
↪→attribute categories 
sent_df['Attributes'] = sent_df.apply(lambda row :

↪→set([]), axis = 1) 
for i in range(len(sent_df)): 

for j in range(len(sent_df['Sentence_token'][i])): 
if sent_df['Sentence_token'][i][j] in

↪→attributes['word'].tolist(): 
sent_df["Attributes"][i].add(attributes[

↪→'category'][attributes['word'].tolist().index(sent_
↪→df['Sentence_token'][i][j])]) 

sent_df['Sentence_token'][i][j] =
↪→attributes['category'][attributes['word'].tolist().
↪→index(sent_df['Sentence_token'][i][j])] 

Now we will drop all entries that do not contain any brands or attributes. 

sent_df.drop(sent_df[sent_df["Brands"].apply(lambda
↪→x: len(x)) == 0].index, inplace=True) 
sent_df.drop(sent_df[sent_df["Attributes"].

↪→apply(lambda x: len(x)) == 0].index, inplace=True) 
len(sent_df) 

2438
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Now we will drop duplicate words. 

sent_df['Sentence_token_punct_stopwords_unique'] =
↪→sent_df.apply(lambda row : unique_(row['Sentence_
↪→token']), axis = 1) 

Merge the tokens together into complete sentences for our sentiment analyzer to 
take in. 

sent_df['Processed_Sentence'] = sent_df.apply(lambda
↪→row : ' '.join(row['Sentence_token_punct_stopwords_
↪→unique']), axis = 1) 

Now let us begin by importing Vader, our sentiment analysis model, and use it to 
score the sentiment of the sentences. 

from nltk.sentiment.vader import
↪→SentimentIntensityAnalyzer 
nltk.download('vader_lexicon') 

sid = SentimentIntensityAnalyzer() 
sent_df["vader_score"] = sent_df.apply(lambda row :

↪→sid.polarity_scores(row['Processed_Sentence']),
↪→axis = 1) 

[nltk_data] Downloading package vader_lexicon to 
[nltk_data] C:\Users\YuJin\AppData\Roaming\nltk_data... 
[nltk_data] Package vader_lexicon is already up-to-date! 

We will collate the results in separate rows. 

sent_df['neutral'] = sent_df.apply(lambda row : row[
↪→'vader_score']["neu"], axis = 1) 
sent_df['sentiment'] = sent_df.apply(lambda row : row[

↪→'vader_score']["compound"], axis = 1) 

Let us drop all sentences that are completely neutral. 

sent_df.drop(sent_df[sent_df['neutral'] == 1.0].index,
↪→ inplace=True) 

Now we want to find out which attributes were more discussed about for car 
brands.
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discussed_attributes = {} 
for attrs in sent_df["Attributes"]: 

for attr in attrs: 
if attr in discussed_attributes: 

discussed_attributes[attr] += 1 
else: 

discussed_attributes[attr] = 1 

discussed_attributes = pd.DataFrame.from_
↪→dict(discussed_attributes, orient="index", columns=[
↪→"Frequency"]) 
discussed_attributes = discussed_attributes.reset_

↪→index() 
discussed_attributes.sort_values(by = 'Frequency',

↪→ascending = False, inplace = True, ignore_
↪→index=True) 
attr_list = discussed_attributes['index'].tolist() 
attr_list 

['performance', 'look', 'cost', 'gas', 'size'] 

Now we can see the most discussed topics with engine having the highest 
frequency. Let us break our dataframe into smaller dataframes, specific to each of 
the topics identified. 

topic_dfs = {} 
for attr in attr_list: 

topic_dfs[attr] = sent_df[sent_df.apply(lambda
↪→row: attr in row["Attributes"], axis = 1)] 

Now that we have broken down our data into relevant topics, let us perform a 
SWOT analysis for Saturn. 

In SWOT analysis, we can define the strengths of our company as areas where 
our company has a higher sentiment score in comparison to the industry average. 
Similarly, the weaknesses will be defined as area which our company is performing 
poorly in as compared to the industry. 

Opportunities and threats are external factors which will come from our competi-
tive landscape. This will be done by analyzing the sentiments of our competitors and 
categorizing them as threats if they are close or above our sentiment score for that 
category. On the other hand, if the sentiments of our competitors are lower compared 
to ours significantly, we will classify it as an opportunity that we can differentiate 
our brand by and capitalize on. 

To make things simpler, let us analyze reviews which mention about 1 brand in 
the sentence as comparisons between two brands can be more complex to analyze.
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First let us begin by defining the function that will provide us with brand and 
industry scores. 

def get_brand_sentiment_scores(brand, attr_list,
↪→topic_dfs): 

brand_scores = {} 
industry_scores = {} 
for attr in attr_list: 

topic_df = topic_dfs[attr] 
industry_score = topic_dfs[attr]["sentiment"].

↪→mean() 
brand_topic_df = topic_df[topic_df.

↪→apply(lambda row: (brand in row["Brands"]) and
↪→(len(row["Brands"]) == 1), axis = 1)] 

brand_score = brand_topic_df["sentiment"].
↪→mean() 

if np.isnan(brand_score): 
# For attributes which weren't mentioned

↪→in the reviews, we will set it equal to the industry 
brand_scores[attr] = industry_score 

else: 
brand_scores[attr] = brand_score 

industry_scores[attr] = industry_score 
return brand_scores, industry_scores 

Great, now let us pretend that we are working for Chevrolet and want to perform 
a SWOT analysis for our company. Let us see how we fare. 

brand = "chevrolet" 
chevrolet_scores, industry_scores = get_brand_

↪→sentiment_scores(brand, attr_list, topic_dfs) 

for attr, score in chevrolet_scores.items(): 
print(attr, round(score, 3), round(industry_

↪→scores[attr], 3)) 

performance 0.108 0.229 
look 0.469 0.33 
cost 0.639 0.227 
gas 0.219 0.229 
size 0.178 0.296 

Our scores look pretty decent. 
Now that we have our brand’s sentiment scores against the larger automotive 

industry, let us categorize them into strengths and weaknesses.
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Let us set some thresholds to define what would we consider a strength or 
weakness. Here we will define attributed with scores that are at least 0.05 higher 
against the industry to be classified as strengths, and attributes with scores at least 
0.05 below the industry to be considered as weaknesses. 

Strengths = [] 
Weaknesses = [] 

for attr, score in chevrolet_scores.items(): 
if (score - industry_scores[attr]) > 0.05: 

Strengths.append("Our " + attr + " is better
↪→than the industry standard, we can use this to our
↪→advantage") 

if (score - industry_scores[attr]) < -0.05: 
Weaknesses.append("Our " + attr + " is worse

↪→than the industry standard, we will need to improve
↪→in this aspect") 

Now let us see what the scores are for some of our closest competitors, Saturn 
and Toyota. 

brand = "toyota" 
toyota_scores, industry_scores = get_brand_sentiment_

↪→scores(brand, attr_list, topic_dfs) 

for attr, score in toyota_scores.items(): 
print(attr, round(score, 3), round(industry_

↪→scores[attr], 3)) 

performance 0.231 0.229 
look 0.446 0.33 
cost 0.127 0.227 
gas 0.22 0.229 
size 0.3 0.296 

brand = "saturn" 
saturn_scores, industry_scores = get_brand_sentiment_

↪→scores(brand, attr_list, topic_dfs) 

for attr, score in saturn_scores.items(): 
print(attr, round(score, 3), round(industry_

↪→scores[attr], 3) )
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performance 0.294 0.229 
look 0.305 0.33 
cost 0.272 0.227 
gas 0.229 0.229 
size 0.129 0.296 

We will now compare Chevrolet’s sentiment scores to our competitors’ sentiment 
scores. This time we will be stricter as it is important to monitor companies that we 
are close to in terms of performance. Therefore, we will list competitors that are 
within 0.05 of our score to be threats that need to be monitored. Subsequently, we 
will list our competitors’ attributes that have a score greater than our corresponding 
score .+0.05 as threats that are stronger than us. Lastly, we will list our competitors’ 
attributes that have a score less than our corresponding score .−0.05 as opportunities. 

Opportunities = [] 
Threats = [] 

for attr, score in chevrolet_scores.items(): 
if toyota_scores[attr] < score - 0.05: 

Opportunities.append("Toyota's " + attr + "
↪→is weaker than our's, we can leverage on this
↪→opportunity") 

if abs(toyota_scores[attr] - score) < 0.05: 
Threats.append("Toyota's " + attr + " is

↪→close to our's, we will need to monitor the
↪→situation carefully") 

elif toyota_scores[attr] > score - 0.05: 
Threats.append("Toyota's " + attr + " is

↪→stronger than our's, this is a concern we need to
↪→address") 

for attr, score in chevrolet_scores.items(): 
if saturn_scores[attr] < score - 0.05: 

Opportunities.append("Saturn's " + attr + "
↪→is weaker than our's, we can leverage on this
↪→opportunity") 

if abs(saturn_scores[attr] - score) < 0.05: 
Threats.append("Saturn's " + attr + " is

↪→close to our's, we will need to monitor the
↪→situation carefully") 

elif saturn_scores[attr] > score - 0.05: 
(continues on next page)
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(continued from previous page) 

Threats.append("Saturn's " + attr + " is
↪→stronger than our's, this is a concern we need to
↪→address") 

Let us collate our results from our SWOT analysis. 

print("Strengths: ") 
for strength in Strengths: 

print(strength) 
print() 

print("Weaknesses:") 
for weakness in Weaknesses: 

print(weakness) 
print() 

print("Opportunities: ") 
for opportunity in Opportunities: 

print(opportunity) 
print() 

print("Threats:") 
for threat in Threats: 

print(threat) 

Strengths: 
Our look is better than the industry standard, we can

↪→use this to our advantage 
Our cost is better than the industry standard, we can

↪→use this to our advantage 

Weaknesses: 
Our performance is worse than the industry standard,

↪→we will need to improve in this aspect 
Our size is worse than the industry standard, we will

↪→need to improve in this aspect 

Opportunities: 
Toyota's cost is weaker than our's, we can leverage

↪→on this opportunity 
Saturn's look is weaker than our's, we can leverage

↪→on this opportunity 
(continues on next page)
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(continued from previous page) 

Saturn's cost is weaker than our's, we can leverage
↪→on this opportunity 

Threats: 
Toyota's performance is stronger than our's, this is

↪→a concern we need to address 
Toyota's look is close to our's, we will need to

↪→monitor the situation carefully 
Toyota's gas is close to our's, we will need to

↪→monitor the situation carefully 
Toyota's size is stronger than our's, this is a

↪→concern we need to address 
Saturn's performance is stronger than our's, this is

↪→a concern we need to address 
Saturn's gas is close to our's, we will need to

↪→monitor the situation carefully 
Saturn's size is close to our's, we will need to

↪→monitor the situation carefully 

Great, so now we know that we are maintaining our competitiveness against 
Toyota and Saturn through our cost advantage and better looking cars. On the other 
hand, we will need to improve our performance and size. 

Exercises 

1. Define what is a business strategy. 
2. List three different examples of business strategies. 
3. List three different commonly used business strategy frameworks and explain 

how it helps the business in developing a business strategy. 
4. List three different examples of barriers to entry. 
5. Identify two ways that artificial intelligence can be applied to business strategy. 
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